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Preface

This book deals primarily with fundamental aspects of engineering vibrations
within the framework of the linear theory. Although it is true that in practical
cases it is sometimes not easy to distinguish between linear and nonlinear
phenomena, the basic assumption throughout this text is that the principle
of superposition holds.

Without claim of completeness, the authors’ intention has been to discuss
a number of important topics of the subject matter by bringing together, in
book form, a central set of ideas, concepts and methods which form the
common background of real-world applications in disciplines such as
structural dynamics, mechanical, aerospace, automotive and civil engineering,
to name a few.

In all, the authors claim no originality for the material presented. However,
we feel that a book such as this one can be published at the end of the 1990s
because, while it is true that the general theory of linear vibrations is well
established (Lord Rayleigh’s book Theory of Sound is about a century old),
this by no means implies that the subject is ‘closed’ and outside the mainstream
of ongoing research. In fact, on the one hand, the general approach to the
subject has significantly changed in the last 30 years or so. On the other
hand, the increasing complexity of practical problems puts ever higher
demands on the professional vibration engineer who, in turn, should acquire
a good knowledge in a number of disciplines which are often perceived as
distinct and separate fields.

Also, in this regard, it should be considered that the computer revolution
of recent years, together with the development of sophisticated algorithms
and fully automated testing systems, provide the analyst with computation
capabilities that were unimaginable only a few decades ago. This state of
affairs, however—despite the obvious advantages—may simply lead to
confusion and/or erroneous results if the phenomena under study and the
basic assumptions of the analysis procedures are not clearly understood.

The book is divided into two parts. Part I (Chapters 1 to 12) has been
written by Paolo L.Gatti and is concerned with the theory and methods of
linear engineering vibrations, presenting the topics in order of increasing
difficultly—from single-degree-of-freedom systems to random vibrations and
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stochastic processes—and also including a number of worked examples in
every chapter. Within this part, the first three chapters consider, respectively,
some basic definitions and concepts to be used throughout the book (Chapter
1), a number of important aspects of mathematical nature (Chapter 2) and
a concise treatment of analytical mechanics (Chapter 3). In a first reading,
if the reader is already at ease with Fourier series, Fourier and Laplace
transforms, Chapter 2 can be skipped without loss of continuity. However,
it is assumed that the reader is familiar with fundamental university calculus,
matrix analysis (although Appendix A is dedicated to this topic) and with
some basic notions of probability and statistics.

Part II (Chapters 13 to 15) has been written by Vittorio Ferrari and deals
with the measurement of vibrations by means of modern electronic
instrumentation. The reason why this practical aspect of the subject has been
included as a complement to Part I lies in the importance—which is sometimes
overlooked—of performing valid measurements as a fundamental requirement
for any further analysis. Ultimately, any method of analysis, no matter how
sophisticated, is limited by the quality of the raw measurement data at its
input, and there is no way to fix a set of poor measurements. The quality of
measurement data, in turn, depends to a large extent on how properly the
available instrumentation is used to set up a measuring chain in which each
significant source of error is recognized and minimized. This is especially
important in the professional world where, due to a number of reasons such
as limited budgets, strict deadlines in the presentation of results and/or real
operating difficulties, the experimenter is seldom given a second chance.

The choice of the topics covered in Part II and the approach used in the
exposition reflect the author’s intention of focusing the attention on basic
concepts and principles, rather than presenting a set of notions or getting
too much involved in inessential technological details. The aim and hope is,
first, to help the reader—who is only assumed to have a knowledge of basic
electronics—in developing an understanding of the essential aspects related
to the measurement of vibrations, from the proper choice of transducers and
instruments to their correct use, and, second, to provide the experimenter
with guidelines and advice on how to accomplish the measurement task.

Finally, it is possible that this book, despite the attention paid to reviewing
all the material, will contain errors, omissions, oversights and/or misprints.
We will be grateful to readers who spot any of the above or who have any
comment for improving the book. Any suggestion will be received and
considered.

Milan 1998

Paolo Luciano Gatti,
Vittorio Ferrari

Email addresses:
pljgatti@tin.it

ferrari@bsing.ing.unibs.it
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1 Review of some fundamentals

1.1 Introduction

It is now known from basic physics that force and motion are strictly
connected and are, by nature, inseparable. This is not an obvious fact; it
has taken almost two millennia of civilized human history and the effort
of many great minds to understand. At present, it is the starting point of
almost every branch of known physics and engineering. One of these
branches is dynamics: the study that relates the motion of physical bodies
to the forces acting on them. Within certain limitations, this is the realm of
Newton’s laws, in the framework of the theory that is generally referred to
as classical physics.

Mathematically, the fact that force causes a change in the motion of a
body is written

(1.1)

This is Newton’s second law which defines the unit of force once the
fundamental units of mass and distance are given.

An important part of dynamics is the analysis and prediction of vibratory
motion of physical systems, in which the system under study oscillates about
a stable equilibrium position as a consequence of a perturbing disturbance
which, in turn, starts the motion by displacing the system from such a position.

This type of behaviour and many of its aspects—wanted or unwanted—
is common everyday experience for all of us and is the subject of this book.
However, it must be clear from the outset that we will only restrict our
attention to ‘linear vibrations’ or, more precisely, to situations in which
vibrating systems can be modelled as ‘linear’ so that the principle of
superposition applies. Future sections of this chapter and future chapters
will clarify this point in stricter detail.
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1.2 The role of modelling (linear and nonlinear, discrete
and continuous systems, deterministic and random
data)

In order to achieve useful results, one must resort to models. This is true in
general and applies also to all the cases of our concern. Whether these models
be mathematical or nonmathematical in nature, they always represent an
idealization of the actual physical system, since they are based on a set of
assumptions and have limits of validity that must be specified at some point
of the investigation. So, for the same system it is possible to construct a
number of models, the ‘best’ being the simplest one that retains all the essential
features of the actual system under study.

Generally speaking, the modelling process can be viewed as the first step
involved in the analysis of problems in science and engineering: the so-called
‘posing of the problem’. Many times this first step presents considerable
difficulties and plays a key role to the success or failure of all subsequent
procedures of symbolic calculations and statement of the answer. With this
in mind, we can classify oscillatory systems according to a few basic criteria.
They are not absolute but turn out to be useful in different situations and
for different types of vibrations.

First, according to their behaviour, systems can be linear or nonlinear.
Formally, linear systems obey differential equations where the dependent
variables appear to the first power only, and without their cross products;
the system is nonlinear if there are powers greater than one, or fractional
powers. When the equation contains terms in which the independent variable
appears to powers higher than one or to fractional powers, the equation
(and thus the physical system that the equation describes) is with variable
coefficients and not necessarily nonlinear. The fundamental fact is that for
linear system the principle of superposition applies: the response to different
excitations can be added linearly and homogeneously. In equation form, if
f(x) is the output to an input x, then the system is linear if for any two inputs
x1 and x2, and any constant a,

(1.2)

 
(1.3)

 
The distinction is not an intrinsic property of the system but depends on

the range of operation: for large amplitudes of vibration geometrical
nonlinearity ensues and—in structural dynamics—when the stress-strain
relationship is not linear material nonlinearity must be taken into account.

Our attention will be focused on linear systems. For nonlinear ones it is
the author’s belief that there is no comprehensive theory (it may be argued
that this could be their attraction), and the interested reader should refer to
specific literature.
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Second, according to the physical characteristics—called parameters—
systems can be continuous or discrete. Real systems are generally continuous
since their mass and elasticity are distributed. In many cases, however, it is
useful and advisable to replace the distributed characteristics with discrete
ones; this simplifies the analysis because ordinary differential equations for
discrete systems are easier to solve than the partial differential equations
that describe continuous ones.

Discrete-parameter systems have a finite number of degrees of freedom,
i.e. only a finite number of independent coordinates is necessary to define
their motion. The well-known finite-element method, for example, is in
essence a discretization procedure that retains aspects of either continuous
and discrete systems and exploits the calculation capabilities of high-speed
digital computers. Whatever discretization method is used, one advantage is
the possibility to improve the accuracy of the analysis by increasing the
number of degrees of freedom.

Also in this case, the distinction is more apparent than real; continuous systems
can be seen as limiting cases of discrete ones and the connection of one
formulation to the other is very close. However, a detailed treatment of continuous
systems probably gives more physical insight in understanding the ‘standing-
wave-travelling-wave duality’, intrinsic in every vibration phenomenon.

Third, in studying the response of a system to a given excitation, sometimes
the type of excitation dictates the analysis procedure rather than the system
itself. From this point of view, a classification between deterministic and
random (or stochastic or nondeterministic) data can be made. Broadly
speaking, deterministic data are those that can be described by an explicit
mathematical relationship, while there is no way to predict an exact value at
a future instant of time for random data. In practice, the ability to reproduce
the data by a controlled experiment is the general criterion to distinguish
between the two. With random data each observation will be unique and
their description is made only in terms of statistical statements.

1.3 Some definitions and methods

As stated in the introduction, the particular behaviour of a particle, a body or
a complex system that moves about an equilibrium position is called oscillatory
motion. It is natural to try to describe such a particle, body or system using an
appropriate function of time x(t). The physical meaning of x(t) depends on
the scope of the investigation and, as often happens in practice, on the available
measuring instrumentation: it might be displacement, velocity, acceleration,
stress or strain in structural dynamics, pressure or density in acoustics, current
or voltage in electronics or any other quantity that varies with time.

A function that repeats itself exactly after certain intervals of time is called
periodic. The simplest case of periodic motion is the harmonic (or sinusoidal)
that can be defined mathematically by a sine or cosine function:
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(1.4)

 
where:

X is the maximum, or peak amplitude (in the appropriate units);
(ωt–θ) is the phase angle (in radians);
ω is the angular frequency (in rad/s);
θ is the initial phase angle (in radians), which depends on the choice of
the time origin and can be taken equal to zero if there is no relative
reference to other sinusoidal functions.

The time between two identical conditions of motion is the period T. It is
measured in seconds and is the inverse of the frequency v whose unit is the
hertz (Hz, with dimensions of s–1) and, in turn, represents the number of
cycles per unit time. The following relations hold:

(1.5)
 

(1.6)

 
A plot of eq (1.4), amplitude versus time, is shown in Fig. 1.1 where the

peak amplitude is equal to unity.
A vector x of modulus X that rotates with angular velocity ω in the xy plane

is a useful representation of sinusoidal motion: x(t) is now the instantaneous
projection of x on the x-axis (on the y-axis for a sine function).

Fig. 1.1 Cosine harmonic oscillation of unit amplitude.
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Other representations are possible, each one with its own particular
advantages; however, the use of complex numbers for oscillatory quantities
gives probably the most elegant and compact way of dealing with the
problem.

Recalling from basic calculus the Euler equations

(1.7)
 

where i is the imaginary unit and  e=2.71828…is the well-known
basis of Naperian logarithms, an oscillatory quantity can be conveniently
written as the complex number

(1.8)
 

where C is the complex amplitude, i.e. a complex number that contains
both magnitude and phase information and can be written as (a+ib) or Xeiθ

 with magnitude and phase angle θ, where and θ=b/a,

cos θ=α/X and sin θ=b/X.
The number  is the complex conjugate of C and the square of

the magnitude is given by 
The idea of eq (1.8)—called the phasor representation—is the temporary

replacement of a real physical quantity by a complex number for purposes
of calculation; the usual convention is to assign physical significance only to
the real part of eq (1.8), so that the oscillatory quantity x(t) can be expressed
in any of the four ways

(1.9)

or

(1.10)
 

where only the real part is taken of the expressions in eq (1.10).
A little attention must be paid when we deal with the energy associated

with these oscillatory motions. The various forms of energy (energy, energy
density, power or intensity) depend quadratically on the vibration amplitudes,
and since  we need to take the real part first and then square
to find the energy.

Furthermore, it is often useful to know the time-averaged energy or
power and there is a convenient way to extract this value in the general
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case. Suppose we have the two physical quantities expressed in the real
form of eq (1.4)

 

It is easy to show that  i.e. the average value of the product  is
different from zero only if  and in this case we get
 

(1.11)

 
where  and the factor 1/2 comes from the result 

If we want to use phasors and represent the physical quantities as
 

 

we see that in order to get the correct result of eq (1.11) we must calculate
the quantity
 

(1.12)

 
In the particular case of  (where these terms are expressed in

the form of eq (1.8)), our convention says that the average value of x squared
is given by

 

Phasors are very useful for representing oscillating quantities obeying linear
equations; other authors (especially in electrical engineering books) use the
letter j instead of i and ejωt instead of  and some other authors use the
positive exponential notation eiωt. Since we mean to take the real part of the
result, the choice is but a convention; any expression is fine as long as we
are consistent. The negative exponential is perhaps more satisfactory when
dealing with wave motion, but in any case it is possible to change the formulas
to the electrical engineering notation by replacing every i with –j.

Periodic functions in general are defined by the relation
 

 
and will be considered in subsequent chapters where the powerful tool of
Fourier analysis will be introduced.
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1.3.1 The phenomenon of beats

Let us consider what happens when we add two sinusoidal functions of slightly
different frequencies w1 and w2, with  and e being a small quantity
compared to w1 and w2. In phasor notation, assuming for simplicity equal
magnitude and zero initial phase for both oscillations x1 and x2, we get
 

(1.15)
 
that can be written as

 
with a real part given by
 

(1.16)
 
where  and  We can see eq (1.16) as an
oscillation of frequency wav and a time-dependent amplitude  A
graph of this quantity is shown in Figs 1.2 and 1.3 where  rad/s and

 (Fig. 1.2) and 1.0 (Fig. 1.3), respectively.
Physically, the two original waves remain nearly in phase for a certain

time and reinforce each other; after a while, however, the crests of the first
wave correspond to the troughs of the other and they practically cancel out.
This pattern repeats on and on and the result is the phenomenon of beats
illustrated in Figs 1.2 and 1.3. Maximum amplitude occurs when 
(n=0, 1, 2,…), that is, every  seconds. Therefore, the frequency of the

Fig. 1.2 Beat phenomenon 
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beats is  equal to the difference in frequency between the two
original signals.

When the signals have unequal amplitudes (say A and B) the total
amplitude does not become zero, it oscillates between A+B and A–B, but the
general pattern can still be easily identified.

Fig. 1.4 Beat phenomenon measured on an Italian belltower (oscillation of largest
bell).

Fig. 1.3 Beat phenomenon 
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In acoustics, for example, beats are heard as a slow rise and fall in sound
intensity (at the beat frequency ) when two notes are slightly out of
tune. Many musicians exploit this phenomenon for tuning purposes, they
play the two notes simultaneously and tune one until the beats disappear.

Figure 1.4 illustrates a totally different situation. It is an actual vibration
measurement performed on an ancient belltower in Northern Italy during
the oscillation of the biggest bell. The measurement was made at about two-
thirds of the total height of about 50 m on the body of the tower in the
transverse direction. There is a clear beat phenomenon between the force
imposed on the structure by the oscillating bell (at about 0.8 Hz, with little
variations of a few percent) and the first flexural mode of the tower (0.83
Hz). Several measurements were made and the beat frequency was shown to
vary between 0.03 and 0.07 Hz, indicating a situation close to resonance.
This latter concept, together with the concepts of forced oscillations and
modes of a vibrating system will be considered in future chapters.

1.3.2 Displacement, velocity and acceleration

If the oscillating quantity x(t) in eq (1.8) is a displacement and we recall the
usual definitions of velocity and acceleration
 

 

we get from the phasor representation
 

(1.17)

 

since the phase angle of –i is π/2 and the phase angle of –1 is π. The velocity
leads the displacement of 90°, the acceleration leads the velocity of 90° and
all three rotate clockwise in the Arland-Gauss plane (abscissa=real part,
ordinate=imaginary part) as time passes. Moreover, from eqs (1.17) we note
that the maximum velocity amplitude is  while the maximum
acceleration amplitude is 

In theory it should not really matter which one of these three quantities
is measured; the necessary information and frequency content of a signal is
the same whether displacement, velocity or acceleration is considered and
any one quantity can be obtained from any other one by integration or
differentiation. However, physical considerations on the nature of vibrations
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themselves and on the electronic sensors and transducers used to measure
them somehow make one parameter preferred over the others.

Physically, it will be seen that displacement measurements give most weight
to low-frequency components and, conversely, acceleration give most weight
to high-frequency components. So, the frequency range of the expected signals
is a first aspect to consider; when a wide-band signal is expected, velocity is
the appropriate parameter to select because it weights equally low- and high-
frequency components. Furthermore, velocity (rms values, see next section),
being directly related to the kinetic energy, is preferred to quantify the severity,
i.e. the destructive effect, of vibration.

On the other hand, acceleration sensitive transducers (accelerometers) are
commonly used in practice because of their versatility: small physical
dimensions, wide frequency and dynamic ranges, easy commercial availability
and the fact that analogue electronic integration is more reliable than
electronic differentiation are important characteristics that very often make
acceleration the measured parameter. All these aspects play an important
role but, primarily, it must be the final scope and aim of the investigation
that dictates the choice to make for the particular problem at hand.

Let us make some heuristic considerations from the practical point of
view of the measurement engineer. Suppose we have to measure a vibration
phenomenon which occurs at about v=1 Hz with an expected displacement
amplitude (eq (1.17)) of C=±1 mm. It is not difficult to find on the market
a cheap displacement sensor with, say, a total range of 10 mm and a sensitivity
of 0.5 V/mm. In our situation, such a sensor would produce an output signal
of 1 V, meaning a good signal-to-noise ratio in most practical situations. On
the other hand, the acceleration amplitude in the above conditions is about

 so that a
standard general-purpose accelerometer with a sensitivity of, say, 100 mV/g
would produce an output signal of  which is much
less favourable from a signal-to-noise ratio viewpoint.

By contrast—for example in heavy machinery—forces applied to massive
elements generally result in small displacements which occur at relatively
high frequencies. So, for purpose of illustration, suppose that a machinery
element vibrates at about 100 Hz with a displacement amplitude of ±0.05
mm. The easiest solution in this case would be an acceleration measurement
because the acceleration amplitude is now  so that a general
purpose (and relatively unexpensive) 100 mV/g accelerometer would produce
an excellent peak-to-peak signal of about 400 mV. In order to measure such
small displacements at those values of frequency, we would probably have
to resort to more expensive optical sensors.

1.3.3 Quantification of vibration level and the decibel scale

The most useful descriptive quantity—which is related to the power content
of the of the vibration and takes the time history into account—is the root
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mean square value (xrms), defined by
 

(1.18)

 

For sinusoidal motion it is easily seen that  In the
general case X/xrms is called the the form factor and gives some indication of
the waveshape under study when impulsive components are present or the
waveform is extremely jagged. It is left as an easy exercise to show that for
a triangular wave (see Fig. 1.5) 

In common sound and vibration analysis, amplitudes may vary over wide
ranges (the so-called dynamic range) that span more than two or three
decades. Since the dynamic range of electronic instrumentation is limited
and the graphical presentation of such signals can be impractical on a linear
scale, the logarithmic decibel (dB) scale is widely used.

By definition, two quantities differ by one bel if one is 10 times (101)
greater than the other, two bels if one is 100 times (102) greater than the
other and so on. One tenth of a bel is the decibel and the dB level (L) of a
quantity x, with respect to a reference value x0, is given by
 

(1.19)

Fig. 1.5 Triangular wave.
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So, for example, 3 dB represent a doubling of the relative quantity, i.e.
Decibels, like radians, are dimensionless; they are not ‘units’ in the

usual sense and consistency dictates that the reference value must be
universally accepted. When this is not the case, the reference value must be
clearly specified. Sound intensity levels (SIL), in acoustics, are given by eq
(1.19) and the reference intensity value is 

A more commonly used version of this logarithmic scale requires the
proportionality factor 20 instead of 10, and is related to the fact—already
mentioned in the preceding paragraph—that energies, powers, rms values,
etc. depend quadratically on the amplitudes.

We have  

(1.20)

 

In acoustics, eq (1.20) defines the sound pressure level (SPL) where the reference
value (in air) is the pressure  In vibration measurements one
can have a displacement level Ld, a velocity level Lv, an acceleration level La or
a force level Lf. These are obtained, respectively, by the relations
 

 

The reference values are not universally accepted, but usually we have
 

 

Another choice that is commonly adopted in instrumentation, e.g. spectrum
analysers, is to take 1 V or the input voltage range (IVR) as the reference value.
Vibration sensors, in fact, feed to the analyser an output voltage which depends—
through the sensitivity of the sensor—on the vibration level to be measured. The
analyser, in turn, allows the operator to preset an input voltage range
(  (for instance) which is sometimes used
as a reference when displaying power spectra on a dB scale. So, the dB value of
a voltage signal fed to the analyser is given by
 
 

and in this case one always gets negative dB levels, because always 
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From the definition, it is clear that decibels are not added and subtracted
linearly. If we have two decibel levels L1 and L2 (obviously referred to the
same reference value) that must be added, the total dB level, say LT, is not

 but
 

(1.21)

 

Fig. 1.6 (a) Addition and (b) subtraction of dB levels (dB levels calculated as in eq
(1.19)).
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since
 

 

and the total level is by definition

Fig. 1.7 (a) Addition and (b) subtraction of dB levels (dB levels calculated as in eq
(1.20)).
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Similar considerations apply in the case of subtractions of dB levels, the
most common case being the subtraction of a background level Lb from a
total measured level LT, in order to obtain the actual level La. Of course,
there is now a minus sign in the parentheses of (1.21) and in this case 
and 

The graphs in Fig. 1.6(a), (b) (dB levels calculated according to eq (1.19))
and Fig. 1.7(a), (b) (dB levels calculated according to eq (1.20)) are useful
when adding or subtracting dB levels and there is no pocket calculator at
hand. For example, we want to add the two levels L1=60 dB and L2=63 dB.
Referring to Fig. 1.6(a), the difference  is 3 dB and this value
gives on the ordinate axis a dB increment of  to be added to the
higher level (63 dB). The result of the addition is then 64.8 dB.

For an example of subtraction, suppose that we measure a total level of
70 dB on a background level of 63 dB. Referring to Fig. 1.6(b), for the
abscissa entry  one obtains for the ordinate value a dB decrement

 to be subtracted from the total level. The actual value is then
69.0 dB.

A final word on the calculation of the average dB level of a series of N
measurements: this is given by

(1.22)

and not by the familiar
 

 

1.4 Springs, dampers and masses

Almost any physical system possessing elasticity and mass can vibrate. The
simplest realistic model considers three basic discrete elements: a spring, a
damper and a mass. Mathematically, they relate applied forces to
displacement, velocity and acceleration, respectively. Let us consider them
more closely.

The restoring force that acts when a system is slightly displaced from
equilibrium is supplied by internal elastic forces that tend to bring the system
back to the original position. In solids, these forces are the macroscopic
manifestation of short-range microscopic forces that arise when atoms or
molecules are displaced from the equilibrium position they occupy in some
organized molecular structure.

These phenomena are covered by the theory of elasticity. In addition, in
complex structures, macroscopic restoring forces occur when different
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structural elements meet. In general, it is not easy to predict the performance
of a such a joint, even under laboratory conditions, because the stiffness is
dependent on very local distortions. Here probably lies the main reason of
the fallibility of predictions of stiffnesses in many cases.

This may come as a surprise to many engineering graduates and it is due
to the mistaken belief that ‘everything’ can be calculated with a high-speed
computer, using finite-element techniques with very fine resolution. As it
turns out, it is frequently cheaper to test than to predict.

The easiest way to model such characteristics relating forces to
displacements is by means of a simple stiff element: the linear massless spring,
shown in Fig. 1.8. The assumption of zero mass assures that a force F acting
on one end must be balanced by a force –F on the other end so that, in such
conditions, the spring undergoes an elongation equal to the difference between
the displacements x2 and x1 of the endpoints. For small elongations it is
convenient and also correct to assume a linear relation, i.e.
 

(1.23)
 
where k is a constant (the spring stiffness, with units N/m) that represents
the force required to produce a unit displacement in the specified direction.

Often, one end of the spring is considered to be fixed, the displacement of
the other end is simply labelled x and—since F is an elastic restoring force—
eq (1.23) is written F=–kx, with the minus sign indicating that the force
opposes the displacement. The reciprocal of stiffness, i.e. 1/k, is frequently
used and is called flexibility or compliance.

In real-world systems, energy is always dissipated by some means. In the
cases concerning us the energies of interest are the kinetic energy of motion
and the potential strain energy due to elasticity. Friction mechanisms of
different kinds are often considered to represent this phenomenon of energy
‘damping’ that ultimately results in production of heat and is probably the
main uncertainty in most engineering problems. In fact, a word of caution
is necessary: any claim that damping in structures can be predicted with
accuracy should be treated with scepticism.

On a first approach, we will see that damping can be neglected (undamped
systems) without losing the physical insight to the problem at hand;
nevertheless, it must be kept in mind that this is a representation of an unreal
situation or an approximation that can be accepted only in certain
circumstances.

Fig. 1.8 Ideal massless spring.
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The simplest model of damping mechanism is the massless viscous damper
that relates forces to velocities. An example can be a piston fitting loosely in
a cylinder filled with oil so that the oil can flow around the piston as it
moves inside the cylinder. The graphical symbol usually adopted is the dashpot
shown in Fig. 1.9. Once again, a force F on one end must be balanced by a
force –F on the other end and linearity is assumed, i.e.
 

(1.24)

 
where the dot indicates the time derivative and c is the coefficient of viscous
damping, with units N s/m.

If one end is fixed and the velocity of the other end is labelled  eq (1.24)
is written  with the minus sign indicating that the damping force
resists an increase in velocity.

The quantity that relates forces to accelerations is the mass and the
fundamental relation is Newton’s second law, which can be written, with
respect to an inertial frame of reference,
 

(1.25)

 
In the SI system of units the mass is measured in kilograms and eq (1.25)

defines the unit of force (see also Section 1.1). The mass represents the inertia
properties of physical bodies that, under the action of a given applied force
F, are set in motion with an acceleration that is inversely proportional to
their mass.

Finally, it is interesting to consider a few examples of ‘equivalent springs’
keq, meaning by this term the replacement of one or more combination of
stiff elements with a single spring that takes into account and represents—
for the problem at hand—the stiffness of such combination.

Two springs can be connected in series or in parallel, as shown in Fig.
1.10(a) and (b). (However, for a different approach see Section 13.7.3) In
the first case we have
 

(1.26)

 

For an equivalent spring of stiffness keq connected between the fixed point
and x2 we would have  It is then easy to show that it must be
 

(1.27)  

Fig. 1.9 Ideal massless dashpot.
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and extending to the case of N springs connected in series we obtain

(1.28)

 
For the connection in parallel of two springs (Fig. 1.10 (b)) the force F

divides into F1 and F2 (with the obvious condition)  and the
relations  The equivalent spring obeys  from
which it follows that  The generalization to N springs in parallel
is straightforward and we get
 

(1.29)

 

Considering the real spring of Fig. 1.11(a), under the action of an axial
tension or compression its stiffness constant is
 

(1.30)

 
where G (in N/m2) is the modulus of elasticity in shear of the material of
which the spring is made, n is the number of turns and the other symbols are
shown in Fig. 1.11a. Different values are obtained for torsion or bending
actions and Young’s modulus, in these latter cases, also plays a part.

Fig. 1.10 Springs connected in: (a) series; (b) parallel.
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Fig. 1.11 (a) Typical helical spring. (b)–(e) Bending of bars.
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Other examples are shown in:
 
• Fig. 1.11(b): cantilever with fixed-free boundary conditions and force F

applied at the free end, k is the local stiffness at the point of application
of the force,

• Fig. 1.11(c): fixed-fixed bar of length L with transverse localized force
F at L/2; k is the local stiffness at the point of application of the force;

• Fig. 1.11(d): fixed-fixed bar of length L with uniform transverse load w
(N/m), k is the local stiffness at the point of maximum displacement;

• Fig. 1.11(e): bar simply supported at both ends with force F at L/2, k is
the local stiffness at the point of application of the force.

 
The result of Fig. 1.11(b) comes from the fact that we know from basic
theory of elasticity that the vertical displacement x of the cantilever free end
under the action of F is given by
 

 
so that
 

 
Similar considerations apply to the other examples, E being Young’s

modulus in N/m2 and I being the cross-sectional moment of inertia in m4.

1.5 Summary and comments

Chapter 1 introduces and reviews some basic notions in engineering vibrations
with which the reader should already have some familiarity. At the very
beginning, it is important to point out that the modelling process is always
the first step to be taken in every approach to problems in science and
engineering. The model must be able to reproduce, within an acceptable
degree of accuracy, the essential features of the physical system under
investigation. The definitions of the terms ‘acceptable degree of accuracy’
and ‘essential features’ depend on the particular problem at hand and, in
general, should be based on decisions that specify: the results that are needed,
the error one is willing to accept, the money cost involved, how and what to
measure if measurements must be taken. When the budget is fixed and time
deadlines are short, a compromise between cost and attainable level of
accuracy must be made and agreed upon.

Copyright © 2003 Taylor & Francis Group LLC



More specifically, a few classifications are given which may help in setting
the guidelines of the type of modelling schemes that can be adopted for a
wide class of problems.

First and above all is the distinction between linear and nonlinear analysis.
Linearity or nonlinearity are not intrinsic properties of the system under
study, but different behaviours of mechanical and structural systems under
different conditions. Small amplitudes of motion, in general, are the range
where linearity holds and the cornerstone of linearity is the principle of
superposition.

Second, discrete and continuous systems can be distinguished, or,
equivalently, finite or infinite-degree-of-freedom systems. Continuous
distributed parameters are often substituted by discrete localized parameters
to deal with ordinary differential equations rather than with partial
differential equations and perform the calculations via computer.

Third, signals encountered in the field of linear vibrations can be classified
as deterministic or random: an analytical form can be written for the former,
while statistical methods must be adopted for the latter. The type of signals
encountered in a particular problem often dictates the method of analysis.

The other sections of the chapter introduce some basic definitions and
methods that will be used throughout the text. A few examples are simple
sinusoidal motion, its complex (phasor) representation and the decibel scale.
The phenomenon of beats is then considered, for its own intrinsic interest
and as an application of phasors, and, finally, an examination of the
parameters that make systems vibrate or prevent them from vibrating—
namely mass, stiffness and damping—is made, together with their simplest
schematic representations.
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2 Mathematical preliminaries

2.1 Introduction

The purpose of this chapter is twofold: (1) to introduce and discuss a number
of concepts and fundamental results of a mathematical nature which will be
used whenever necessary in the course of our analysis of linear vibrations,
and (2) to provide the reader with some notions which are important for a
more advanced and more mathematically oriented approach to the subject
matter of this text. In this light, some sections of this chapter can be skipped
in a first reading and considered only after having read the chapters that
follow, in particular Chapters 6–9.

It is important to point out that not all the needed results will be considered
in this chapter. More specifically, matrix analysis is considered separately in
Appendix A, while the whole of Chapter 11 is dedicated to the discussion of
some basic concepts of probability and statistics which, in turn, serve the purpose
of introducing the subjects of stochastic processes and random vibrations (Chapter
12). Also, when short mathematical remarks do not significantly interfere with
the main line of reasoning of the subject being considered, brief digressions are
made whenever needed in the course of the text.

So, without claim of completeness and/or extreme mathematical rigour,
this chapter is intended mainly for reference purposes. We simply hope that
it can be profitably used by readers of this and/or other books on the specific
field of engineering vibrations and related technical subjects.

2.2 Fourier series and Fourier transforms

In general terms, Fourier analysis is a mathematical technique that deals
with two problems:
 
1. the addition of several sinusoidal oscillations to form a resultant

(harmonic synthesis);
2. the reverse problem, i.e. given a resultant, the problem of finding the

sinusoidal oscillations from which it was formed (harmonic analysis).
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As a trivial opening example, it is evident that adding two harmonic
oscillations of the same frequency
 

(2.1)

 
leads to a harmonic oscillation  of the same frequency with a sine
amplitude  and a cosine amplitude  If the two oscillations
have different frequencies, the resultant will not be harmonic. However, if
the frequencies being summed are all multiples of some fundamental frequency
ω1, then the resultant oscillation will repeat itself after a time  and
we say that it is periodic with a period of T seconds. For example, the function
 

(2.2)

 
shown in Fig. 2.1, repeats itself with period  seconds, so that

 (in Fig. 2.1, note that the time axis extends from  to

If, on the other hand, the frequencies being summed have no common
factor, the resultant waveform is not periodic and never repeats itself. As an
example, the function
 

(2.3)

 
is shown in Fig. 2.2 from t=0 to t=50 seconds.

Fig. 2.1 Periodic function.
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In short, the process of harmonic synthesis can be expressed
mathematically as
 

(2.4)

 
where the quantities An, and Bn are, respectively, the cosine and sine
amplitudes at the frequency ωn. When a fundamental frequency ω1 exists,
then  and we call ωn the nth harmonic frequency.

2.2.1 Periodic functions: Fourier series

As stated before, harmonic analysis is, in essence, the reverse process of
harmonic synthesis. J.B.Fourier’s real achievement, however, consists of the
fact that he showed how to solve the problem by dealing with an infinite
number of frequencies, that is, for example, with an expression of the type
 

(2.5)

 
where it is understood that the meaning of eq (2.5) is that the value of x(t)
at any instant can be obtained by finding the partial sum SN of the first N
harmonics and defining x(t) as the limiting value of SN when N tends to
infinity. As an example, it is left to the reader to show that eq (2.5) with the

Fig. 2.2 Nonperiodic function.
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coefficients An=0, and Bn=1/n is the well-known periodic ‘sawtooth’ oscillation
(see Fig. 2.3 representing the partial sum S6 with ).

Incidentally, two short comments can be made at this point.
First, the example of Fig. 2.3 gives us the opportunity to note that a

function which executes very rapid changes must require that high-frequency
components have appreciable amplitudes: more generally it can be shown
that a function with discontinuous jumps (the ‘sawtooth’, for example) will
have A and B coefficients whose general trend is proportional to n–1. By
contrast, any continuous function that has jumps in its first derivative (for
example, the triangular wave of Fig. 1.5) will have coefficients that behave
asymptotically as n–2.

Second, although our notation reflects this particular situation, the term
‘oscillation’ does not necessarily imply that we have to deal with time-varying
physical quantities: for example, time t could be replaced by a space variable,
say z, so that the frequency ω would then be replaced by a ‘spatial frequency’
(the so-called wavenumber, with units of rad/m and usually denoted by k or k),
meaning that x(z) has a value dependent on position. Moreover, in this case, the
quantity 2π/k (with the units of a length) is the wavelength  of the oscillation.

So, returning to the main discussion, we can say that a periodic oscillation
x(t) whose fluctuations are not too pathological (in a sense that will be
clarified in the following discussion) can be written as
 

(2.6a)

Fig. 2.3 Harmonic synthesis of sawtooth oscillation (first six terms).
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and the Fourier coefficients An, and Bn are given by
 

(2.6b)

 

where  is the period of the oscillation and the limits of integration
t1, t2 can be chosen at will provided that  (the most frequent choices
being obviously  or ). Note that the ‘static’
term (1/2)A0 has been included to allow the possibility that x(t) oscillates
about some value different from zero; furthermore, we write this term as (1/
2)A0 only for a matter of convenience. By so doing, in fact, the first of eqs
(2.6b) applies correctly even for this term and reads
 

(2.6c)

 

where we recognize the expression on the r.h.s. as the average value of our
periodic oscillation.

As noted in Chapter 1, it often happens that complex notation can provide
a very useful tool for dealing with harmonically varying quantities. In this
light, it is not difficult to see that, by virtue of Euler’s equations (1.7), the
term  can also be written as
 

(2.7a)
 

where the complex amplitudes C+ and C– are given by
 

(2.7b)

 

and no convention of taking the real or imaginary part of eq (2.7a) is
implied because C+ and C– combine to give a real resultant. Then, eq (2.6a)
can also be written as
 

(2.8)
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where in the last expression the complex coefficients Cn are such that 

(2.9)

and eqs (2.6b) translate into the single formula

(2.10)

 

Now, if we become a bit more involved with mathematical details we can
turn our attention to some issues of interest. The first issue is how we obtain
eqs (2.6b) (or eq. (2.10)). Assuming that our periodic function x(t) can be
written in the form

 

let us multiply both sides of this equation by  and integrate over one
period, to get

(2.11)

 

Noting that

 

where δmn is the Kronecker delta defined by

(2.12)

then
 

 

which is precisely eq (2.10).
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The second issue we consider has to do with the conditions under which
the series (2.6a) (or (2.8)) converges to the function x(t). As a matter of fact,
three basic assumptions have been tacitly made in the foregoing discussion:
(1) the expansion (2.6a) is possible, (2) the function  under the
integral in eq (2.11) is integrable over one period and (3) the order of integration
and summation can be reversed (r.h.s. of eq (2.11)) when calculating the Fourier
coefficients (eqs (2.6b) or (2.10)). Various sets of conditions have been
discovered which ensure that these assumptions are justified, and the Dirichlet
theorem that follows expresses one of these possibilities:

Dirichlet theorem. If the periodic function x(t) is single valued, has a finite
number of maxima and minima and a finite number of discontinuities, and
if  is finite, then the Fourier series (2.6a) converges to x(t) at all
the points where x(t) is continuous. At jumps (discontinuities) the Fourier
series converges to the midpoint of the jump. Moreover, if x(t) is complex (a
case of little interest for our purposes), the conditions apply to its real and
imaginary parts separately.

Two things are worthy of note at this point. First, the usefulness of this
theorem lies mainly in the fact that we do not need to test the convergence
of the Fourier series. We just need to check the function to be expanded, and
if the Dirichlet conditions are satisfied, then the series (when we get it) will
converge to the function x(t) as stated. Second, the Dirichlet conditions are
sufficient for a periodic function to have a Fourier series representation, but
not necessary. In other words, a given function may fail to satisfy the Dirichlet
conditions but it may still be expandable in a Fourier series.

The third and last issue we consider is the relation between the mean
squared value of x(t), i.e.
 

(2.13)

 

and the coefficients of its Fourier series. The result we will obtain is called
Parseval’s theorem and is very important in many practical applications where
energy and/or power are involved. If, for example, we use the expansion in
exponential terms (eq (2.8)) it is not difficult to see that  

(2.14a)
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which shows that each Fourier component of x(t), independently of the other
Fourier components, makes its own separate contribution to the mean squared
value. In other words, no cross (or ‘interference’) terms of the form

 appear in the expression of the mean squared value of x(t). If,
on the other hand, we use the series expansion in sine and cosine terms, it is
immediate to determine that Parseval’s theorem reads
 

(2.14b)

2.2.2 Nonperiodic functions: Fourier transforms

Nonperiodic functions cannot be represented in terms of a fundamental
component plus a sequence of harmonics, and the series of harmonic terms
must be generalized to an integral over all values of frequency. This can be
done by means of the Fourier transform, which, together with the Laplace
transform, is probably the most widely adopted integral transform in many
branches of physics and engineering.

Now, given a sufficiently well-behaved nonperiodic function f(t) (i.e. the
counterpart of the function x(t) of Section 2.2.1) the generalization of the
Fourier series to a continuous range of frequencies can be written as
 

(2.15)

 

provided that the integral exists. Then, the counterpart of eq (2.10) becomes

 

(2.16)

 
where the function F(ω) is called the Fourier transform of f(t) and, conversely,
f(t) is called the inverse Fourier transform of F(ω). Also, the two functions
f(t) and F(ω) are called a Fourier transform pair and it can be said that eq
(2.15) addresses the problem of Fourier synthesis, while eq (2.16) addresses
the problem of Fourier analysis.

A set of conditions for the validity of eqs.(2.15) and (2.16) are given by
the Fourier Integral theorem, which can be stated as follows:

Fourier integral theorem. If a function f(t) satisfies the Dirichlet conditions
on every finite interval and if  then eqs (2.15) and (2.16)
are correct. In other words, if we calculate F(ω) as shown in eq (2.16) and
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substitute the result in eq (2.15) this integral gives the value of f(t) where f(t)
is continuous, while at jumps, say at t=t0, it gives the value of the midpoint
of the jump, i.e. the value 

Without giving a rigorous mathematical proof (which can be found in
many excellent mathematics texts), let us try to justify the formulas above.
Starting from the Fourier series of the preceding section, it may seem
reasonable to represent a nonperiodic function f(t) by letting the interval of
periodicity  So, let us rewrite eq (2.8) as
 

(2.17)

 

where  and we know that the fundamental frequency ω1 is related
to the period T by  In this light, if we define  it
is seen immediately that  so that eq (2.10) becomes
 

(2.18)

and can be substituted in eq (2.17) to give
 

(2.19a)

where we define (note that α is a dummy variable of integration)
 

(2.19b)

 

Now, if we let  then  and, in the limit
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so that eq (2.19a) becomes
 

(2.20)

where we have defined
 

(2.21)

 

Equations (2.20) and (2.21) are the same as (2.15) and (2.16). Equation
(2.20) also justifies the different notations frequently encountered in various
texts where, for example, the multiplying factor 1/(2π) is attached to the
inverse transform. The difference is irrelevant from a mathematical point of
view, but care must be exercised in practical situations when using tables of
Fourier transform pairs. Some commonly encountered forms (other than
our definition given in eqs (2.15) and (2.16)) are as follows:
 

(2.22a)

 

(2.22b)

 

(2.22c)

 

where in eqs (2.22c) the ordinary frequency v (in Hz) is used rather than the
angular frequency  (in rad/s).
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Example 2.1 Given a rectangular pulse in the form
 

(2.23)

 

(a so-called ‘boxcar’ function) we want to investigate its frequency content.
From eq (2.16) we have
 

(2.24a)

 

and the graph of F(ω) is sketched in Fig. 2.4.
Furthermore, if we want the Fourier transform in terms of ordinary

frequency, from the condition  and the fact that 
we get
 

(2.24b)

 

Note that in this particular example F(ω) is a real function (and this is
because the real function f(t) is even). In general, this is not so, as the reader
can verify, for instance, by transforming the simple exponential function

Fig. 2.4 Fourier transform of even ‘boxcar’ function.
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 which we assume to be zero for t<0. The result is
 

 

Alternatively, the reader can consider the Fourier transform of the pulse
function f(t)=1/2 for 0<t<2 and zero otherwise (which is just a time-shifted
version of (2.23)) and note that the result can be written as
 

 

with exactly the same magnitude as the expression (2.24a) but different phase
(because the phase depends on the arbitrary definition of time zero).

Before considering some properties of Fourier transforms, a word on notation
is necessary: in what follows—and whenever convenient in the course of
future chapters—the symbol  will indicate that F(ω) is the
Fourier transform of f(t). Conversely, the symbol  will indicate
that f(t) is the inverse Fourier transform of F(ω). With this notation, the first
easily verified property is linearity, that is
 

(2.25)
 

where a and b are two constants and f(t) and g(t) are two Fourier-
transformable functions.

A second important property has to do with the Fourier transform of the
function df(t)/dt. Integrating by parts and taking into account the fact that—for
the transform to exist—necessarily we must have  as  we get
 

(2.26a)

 

which is just a special case of the relation
 

(2.26b)

 

Clearly, eq (2.26b) is true only if  is a Fourier-transformable function
in its own right. By similar arguments, if f(t) is absolutely integrable then the
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function  is continuous. If it is also absolutely integrable,
then
 

(2.27)

 

Consider now two Fourier-transformable functions f(t) and g(t) with Fourier
transforms F(ω) and G(ω), respectively. The function w(t) defined by
 

(2.28)

 

is called the convolution of f(t) and g(t) and it has considerable importance
when calculating the time response of linear systems. Provided that

 we can take the transform of w(t) and use Fubini’s
theorem (see any book on calculus) to get
 

 

Then, by making the change of variable  in the t integral,
it follows that
 

(2.29a)

 

which expresses the convolution theorem: in words, the transform of the
convolution f(t) * g(t) is 2π times the product of the transforms of f(t) and
g(t). Again, the position of the 2π factor depends on the definition of Fourier
transform that we use (eqs (2.22a–c)). By the same token, it is left to the
reader to show that
 

(2.29b)
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The Parseval formula for Fourier transforms reads
 

(2.30)

 

and can be derived as follows. Consider the integral
 

 

Assuming that the order of integration is immaterial (again Fubini’s theorem),
we can write it as
 

(2.31)

or, noting that  and hence  as

(2.32)

 

so that eqs (2.31) and (2.32) together lead exactly to the Parseval theorem
expressed by eq (2.30). Like its counterpart for periodic functions (eqs (2.14a)
or (2.14b)), eq (2.30) is very important in practical applications when dealing
with the squares of physical time-varying signals, i.e. quantities that have to
do with the energy and/or the power associated with the signal itself.

2.2.3 The bandwidth theorem (uncertainty principle)

The idea of the uncertainty principle comes from the development of quantum
mechanics during the 1920s. The principle, in its most famous form given
by the physicist W. Heisenberg, reads  and, broadly speaking, means
that the product of the uncertainties in position (∆x) and momentum (∆p)
for a particle is always greater than Planck’s constant 
More generally, the principle states that any phenomenon described by a
pair of conjugate (or complementary) variables must obey some form of
uncertainty relation.
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For our purposes the conjugate variables are time t and frequency v and
the uncertainty principle in the field of signal analysis relates the duration of
a transient function (a pulse) to the range of frequencies that are present in
its transform. So, if we call ∆t the duration of the transient f(t) and ∆v the
range of frequencies spanned by F(v), then
 

(2.33)

 
which is the so-called bandwidth theorem. The approximation sign in eq
(2.33) means that the product lies usually in the range 0.5–3 for most simple
transients (try, for instance, the boxcar function of Example 2.1, where ∆v
can be approximately taken as the width at the basis of the peak centred at
v=0), but its precise value is not really important for the essence of the
argument. Stated simply, eq (2.33) shows that the two members of a Fourier
transform pair—each one in its appropriate domain—cannot both be of short
duration. The implications of this fact pervade the whole subject of signal
analysis and have important consequences in both theory and practice.

In the course of this text, we will encounter many situations that agree
with eq (2.33): for example, a lightly damped structure in free vibration will
oscillate for a long time (large ∆t) at its natural frequency ωn, so that the
spectrum of the recorded signal will show a very narrow peak at 
(small ∆ω); by contrast, if we want to excite many modes of a structure in
a broad band of frequencies (large ∆ω), we can do so by a sudden blow of
very short duration (small ∆t) or by means of a random, highly erratic time
signal, and so on. So, the essence of this short section is that the uncertainty
principle represents an inescapable law of nature (or, at least, of the way in
which we perceive the phenomena of nature) with which we must come to
terms either by looking for trade-offs or by using different methods to extract
all the desired information from a given signal.

Finally, if we observe that for slowly decaying signals it may not be so
easy to define the quantities ∆t and ∆v, we can give the following definitions
in order to make these concepts more precise:

(2.34)
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These integrals may not be easy to calculate, but they give a prescription
applicable to a wide variety of signals: with these definitions it can be shown
that the bandwidth theorem becomes 

2.3 Laplace transforms

From a general mathematical viewpoint, the Fourier transform is just a special
case of a class of linear integral transforms which can be formally written as
 

(2.35)

 

where the function K(t, u) is called the kernel of the transform and T{f(t)} is
the integral transform of f(t) with respect to the kernel K(t,u). The various
transforms are characterized by their kernels and their limits a and b so that,
for example, for the Fourier transform  and 

 Other types of integral transforms are, to name just a few, the Laplace
transform, the Hankel transform and the Mellin transform.

Mathematically, their utility lies in the fact that, with certain kernels,
ordinary differential equations yield algebraic expressions in the transformed
variable (partial differential equations also lead to more tractable problems)
and the solution in the transformed space is found more easily. Clearly, the
problem of finding the solution in the original variable remains and the
calculation of the inverse transformation is often the most difficult part of
the whole procedure.

In its own right—together with the Fourier transform—the Laplace
transform is the most popular integral transform. It is defined as

 
(2.36)

 

where s is a complex quantity. Equation (2.36) is particularly useful when
we are interested in functions whose Fourier transform does not exist, i.e.
for example the function  where b>0. In many cases the trouble at

 can be fixed by multiplication with a factor e–ct if c is real and larger
than some minimum value a (which, in turn, depends on the function to be
transformed: for f(t)=ebt, for example, we must have c>b), while the ‘bad’
behaviour at  can be taken care of by noting that our interest often
lies in functions f(t) that are zero for t<0. In these circumstances, the function

 does have a Fourier transform and we get
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Introducing the complex variable  we obtain exactly the integral
of eq (2.36) which, in turn, exists only in the right half of the s-plane where

 (a is the minimum value for c mentioned above).
Therefore, broadly speaking, we can say that the Laplace kernel is a

damped version of the Fourier kernel or, more properly, that the Fourier
kernel is an undamped version of the Laplace kernel. The inverse transform,
in turn, can be written as

 

(2.37)

 
Now, since  and hence  eq (2.37) becomes

 

 
from which it follows that

 

(2.38)

 
where the integral on the r.h.s. is known as Laplace inversion (or Bromwich)
integral and is understood in the principal-value sense. It converges to f(t)
where f(t) is continuous, while at jumps it converges to the midpoint of the
jump; in particular, for t=0 the integral converges to (1/2)f (0+).

Note that we have made the factor 1/(2π) appear in the inverse transform
and not in the forward transform; this is merely a matter of convenience
due to the fact that the Laplace transform is almost universally defined as
in eq (2.36).

Although in practical situations one generally refers to tables of Laplace
transform pairs (e.g. Erdélyi [1]), the integral of eq (2.38) can be evaluated
as a complex (contour) integral by resorting to the theorem of residues and
the following understanding:
 
1. For t>0 the integration is calculated along the straight vertical line

Re(s)=c, where c is large enough so that all the poles of the function
F(s)est lie to the left of this line. The contour is closed, forming a large
semicircle around the complex plane to the left of the line.

2. For t<0, since f(t) must be zero, the contour is closed, forming a semicircle
that extends to the right of the line (no poles in the contour). More
details on complex integration can be found, for example, in Mathews
and Walker [2] or Sidorov et al. [3].
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Now, if we turn to some properties of Laplace transforms, it is not difficult
to show that, first of all, the Laplace transform is a linear transformation
and that the first derivative of f(t) transforms into
 

(2.39)

Also, a double integration by parts leads to
 

(2.40)

 

or, if we write
 

 

then, more generally
 

(2.41)

 

where—in eqs (2.39), (2.40) and (2.41)—it must be noted that 0 really means
0+, the limit as zero is approached from the positive side.

If f(t) is piecewise continuous, then the function  is
continuous, I(0)=0 and we get
 

(2.42)

Furthermore, given two functions f(t) and g(t), the convolution theorem
for Laplace transforms reads
 

(2.43)
 

where in the rightmost expression we have defined F(s) and G(s), the Laplace
transforms of f(t) and g(t), respectively.

Example 2.2. With reference to the problem of finding the inverse Laplace
transform of a function it is of interest to note that one often has to deal with
functions which can be written as the ratio of two polynomials in s, i.e.
 

(2.44a)
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where Q(s) is of higher degree than P(s). If we suppose that Q(s) is a polynomial
of order n with the n distinct roots  then the polynomial in the
denominator can be written as  and the
function F(s) as
 

(2.44b)

 

where the coefficients Aj are obtained from
 

(2.44c)

Since
 

(2.45)

the inverse transform of F(s) is
 

(2.46)

As a simple example, consider the function
 

 

where the roots of the denominator are  From eq (2.44c) we
get  therefore
 

 

and
 

 

As for the case of repeated roots and/or more difficult cases in general,
the reader can find more details on partial-fraction theory in any basic text
on calculus or algebra.
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In the light of the foregoing discussion, we may observe that the main
advantages of the Laplace transform over the Fourier transform are that:
 
1. The Laplace integral converges for a large class of functions for which

the Fourier integral is divergent.
2. By virtue of eq (2.41), the Laplace transform provides automatically

for the initial conditions at t=0. This latter characteristic will be
considered (and exploited) in the following examples and in future
chapters.

 
Example 2.3. For this example we consider the ordinary (homogeneous)
differential equation
 

(2.47)

 

where a is a constant and we are given the initial conditions  and
 Taking the Laplace transform on both sides gives

 
 

so that the solution in the s-domain is easily obtained as
 

Then, from a table of Laplace transforms, we get 
and  and hence
 

(2.48)

which is precisely the result that we will obtain in eqs (4.8) and (4.9) by
standard methods.

On the other hand, if we consider the nonhomogeneous differential
equation
 

(2.49)

where, for example, the forcing function is  and the initial
conditions are still given by  Laplace transformation
of both sides leads, after a little manipulation, to
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because  In order to return to the time domain, we
already know the inverse transform of the last two terms, while for the first
term we can use the convolution theorem and write

 

 
so that the time domain solution of eq (2.49) is
 

(2.51)

 
(see also eq (5.19) with the appropriate modifications).

Partial differential equations can also be solved with the aid of Laplace
transforms, the effect of Laplace transformation being the reduction of
independent variables by one. Also, Laplace and Fourier transforms can be
used together, as in the following example.

Example 2.4. (Initial-value problem of an infinitely long flexible string). This
problem will be considered in detail in Section 8.2; see this section for the
meaning of the symbols.

The equation of motion for the small oscillations of a vibrating string is
 

(2.52)

 
Let the initial conditions of the problem be specified by the two functions

 

(2.53)

 

(2.50)
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If we call Y(x, s) the Laplace transform of y(x, t) with respect to the time
variable and transform eq (2.52), we get
 

(2.54)

 
Now, let us take the Fourier transform of eq (2.54) with respect to the

space variable x and define
 

 
where the variable k (the wavenumber) is the conjugate variable of x. We have
 

 

 
from which it follows that
 

(2.55)

 
Taking the inverse Laplace transform of (2.55) gives
 

(2.56)

 
and the final solution can be obtained by inverse Fourier transformation of
eq (2.56). The inverse Fourier transform of the first term on the r.h.s. is
 

(2.57a)
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while for the second term we may note that
 

 

where α is a dummy variable of integration. Hence
 

(2.57b)

 

and putting eqs (2.57a) and (2.57b) back together yields
 

(2.58)
 
which is the same result we will obtain in eq (8.7a) by a different method.

Incidentally, note that for a string of finite length L, we can proceed from
eq (2.54) by expanding the functions Y(x, s), u(x) and w(x) in terms of
Fourier series rather than taking their Fourier transforms.

2.4 The Dirac delta function and related topics

In physics and engineering it is often convenient to envisage some finite
effect achieved in an arbitrarily small interval of time or space. For example,
the cases with which we will have to deal in future chapters are impulsive
forces which act for a very short time or localized actions applied at a given
point on a structure.

In this regard, the general attitude consists of using mathematics as a
means for handling relations reasonably and efficiently, rather than as a
free-standing discipline. Under the guide of mathematical reasonableness and,
hopefully, physical insight, we often interchange the order of summations of
infinite series (implemented as appropriate limits when necessary) with
integration or differentiation, without asking whether the interchange is
rigorously warranted from a mathematical viewpoint. The final results are
then checked a posteriori for physical sense and consistency, and only at
that stage, in doubtful cases, can we reassess our mathematics. In their own
right, the ideas of the Dirac delta function, the Heaviside function, etc.—
which have been widely used since the beginning of this century without a
rigorous mathematical justification—reflect very well this ‘practical’ attitude.

Before getting a bit more involved with the mathematical details, let us
consider briefly the standard (practical) approach.
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Intuitively, the Dirac delta function δ(t) (we write it as a function of time
only for future convenience) is defined to be zero when  and infinite at

 in such a way that the area under it is unity. So, if a and b are two
positive numbers, we can write
 

(2.59a)
 

and
 

(2.59b)

 
which evidently implies  The weakness of the
definition given by eqs (2.59a and b) is evident: strictly speaking, one can
object that, first, δ(t) is not a function and, second, that eqs (2.59a) and (2.59b)
are incompatible (if a function is zero everywhere except at one point, its
integral, no matter what definition of integral is used, is necessarily zero).

Nonetheless, one generally ignores these objections and proceeds by stating
that the definition of eqs (2.59a and b) can be replaced by the following and
equivalent definition: let g(t) be any well-behaved function which we may
call a ‘test function’, then
 

(2.60)

 
the rationale behind eq (2.60) being that, by virtue of (2.59a), there is no
contribution to the integral from anywhere where  so that g(t) can
be replaced by the constant g(0) which, in turn, can be moved outside the
integral sign. The equality in (2.60) then follows from eq. (2.59b).

Equation (2.60) is the usual definition commonly found in textbooks,
which is sometimes called the ‘weak definition’ of δ(t) because it leaves
undefined the value of the integral when one of the limits of integration is
precisely zero. As a matter of fact, eq (2.60) and its consequences are
compatible with many different assignments of the integrals
 

(2.61)

 

which are only subject to the condition 
Therefore, any definition that assigns values to the integrals of eqs (2.61) can

Copyright © 2003 Taylor & Francis Group LLC



be called a ‘strong’ definition of δ(t). In practice, however, provided that no
integration stops at zero (as is often the case), no strong definition is necessary
and we can simply ignore the difference. On the other hand, when one of the
integration limits is zero, we definitely need a strong definition, also in the light
of the fact that there exist equations that are ‘weakly true but strongly false’.

On physical grounds, the delta function may arise, for example, in a situation
in which we consider a sudden impulsive blow applied to a mass m. If this
impulsive force f(t) lasts from t=t0 to t=t1, from Newton’s second law we get
 

(2.62)

 

stating that the impulse of f(t) equals the change in momentum of the mass.
Also, note that the precise shape of f(t) is irrelevant, the relevant quantity
being its area between the two instants of time. So, let this area be unity and
let, for simplicity, the initial velocity of the mass be  If  is very
small we can simply ignore the motion of the mass during this time and
assume that its momentum changed abruptly from zero to mυ1. As 
gets smaller and smaller, the graph of momentum versus time approaches a
step Heaviside function and—since (see eq (2.62)) the function f(t) is the
slope of this graph—we are practically requiring f(t) to be the derivative of
such a step function, i.e. infinite at t=t0 and zero otherwise. No ordinary
function possesses these properties; however, since we are not so much
interested in f(t) itself but in the effect it produces, it can be convenient to
introduce an entity—identified by the symbol  —that represents this
infinitely high and infinitely narrow ‘unnatural’ force. In this light, δ(t) can
physically represent a sudden blow applied at t0=0.

So, returning to the general discussion, it is not difficult to show that the
following (weakly true) properties of δ(t) hold:
 

1. (2.63)

 
Also
 

2. (2.64)

 
where  From the evenness of δ(t) (i.e.  or 
it follows that
 

3. (2.65)
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with the consequence that  meaning that δ(t) is the identity
element in the operation of convolution. Next, if we consider the step
Heaviside function
 

(2.66)

 
we can formally write
 

4. (2.67a)

 
and also
 

5. (2.67b)

 
Then, if we turn our attention to the derivative δ´(t) of δ(t), we may note
that this function is not directly determined by the definition of δ(t) so that,
consequently, it is meaningless to ask what this derivative is. Instead, in
order for the ordinary rules of integration by parts remain valid, the approach
is to define δ´(t) in such a way that  when  In symbols, if g(t) is
a differentiable test function, we get
 

 

 

and hence
 
6. (2.68)

 
so that, by extension, the nth derivative d(n)(t) is required to vanish at 
and for a well-behaved function g(t) we get

 
7. (2.69)

 
The formal ‘proofs’ of all the above properties are not difficult and are

left to the reader. Other properties will be considered if and whenever needed
in the course of future chapters.
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Nonetheless, it is worth noting that the above properties do not follow
from the definition of δ(t), but they are mere assumptions consistent with
the formal properties of the integral.

Similarly, the fact that the Dirac function can be considered as the limit
of a sequence of functions χε(t) (where ε is a ‘smallness’ parameter) by writing
 

(2.70)
 

is not justified in the ordinary sense. Let us ignore this for the moment and
proceed in our discussion by giving some examples of how we can see δ(t)
as a limit of this kind. If we take a sequence of functions χε(t) whose integral

 equals unity for any value of ε, some common examples of eq
(2.70) are as follows:
 
1. Gaussian
 

(2.71a)

 

2. Lorentzian (resonance shape)
 

(2.71b)

 

3. Dirichlet (diffraction peak)
 

(2.71c)

 

4. Square step (boxcar function of width 2ε and height 1/(2ε))
 

(2.71d)

 

where θ(t) is the Heaviside function of eq (2.66).
 
In the limit of eq (2.70), these functions formally satisfy the defining property
of δ(t). So, for example, for the Gaussian form of χε(t) we can verify that eq
(2.60) holds, i.e.
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where in the second integral we introduced the variable  and the well-
behaved test function g(t) is assumed to vanish fast enough at infinity to
ensure the convergence of any integral in which it occurs.

For purpose of illustration, Figs 2.5(a) and 2.5(b) show a sequence of such
functions for three decreasing values of ε: Gaussian functions with unit area
in Fig. 2.5(a) and Lorentzian functions with unit area in Fig. 2.5(b). From
these graphs it is evident that, as ε gets smaller, the functions χε(t) become
taller and narrower and approach the delta function in the limit of 

Fig. 2.5 Dirac’s delta as the limit of: (a) Gaussian functions; (b) Lorentzian
functions.
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(Incidentally, note that all the functions χε(t) are symmetrical (even) and
imply the strong definition  This is not strictly
necessary and, for example, the lopsided functions

 
 

have a limit (for ) that satisfies the weak definition of δ(t). However, in
this case the strong definition  and  is implied.)

In the light of the discussion above, we can also obtain a Fourier integral
representation of δ(t). In fact, if  eq (2.70) and (2.71c) give
 

(2.72)

Then, noting that
 

we can write eq (2.72) as
 

(2.73)

which also tells us that, formally,  This, in turn, implies
 and in fact, from eq (2.60) we get

 
(2.74)

More generally
 

(2.75)

which leads to the following Fourier representation of :

 
(2.76)
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The representation (2.76), in turn, is often used to obtain many important
properties of Fourier transforms. As an example, we can obtain Parseval’s
theorem. If we suppose that  by introducing the dummy
variables of integration α and β, we can formally write  

which is precisely the Parseval formula of eq (2.30).

2.4.1 Brief introduction to the theory of distributions

According to the developments of the preceding section, we note that,
ultimately, the delta function and its derivatives make sense only when
multiplied by a sufficiently well-behaved function and integrated over some
finite or infinite domain. As a matter of fact, it is only in this context that
they are ever required in practice, and equations where they appear without
an integral sign should be considered just as convenient half-way stages that
allow a larger degree of flexibility in calculations. Since, on a number of
occasions in future chapters, we will need and use mathematical entities
such as the Dirac function, the Heaviside function, etc. in connection with
differential equations, the scope of this short section of a mathematical nature
is—without claim of completeness—to give the reader a general idea of how
the Dirac delta function itself and the various relations involving this function
can be justified on the basis of the rigorous theory of distributions. We assume
that the interested reader has some familiarity with mathematical notations,
mathematical terminology and with the Lebesgue theory of measure and
integration (for most practical purposes there is no difference between
Lebesgue and Riemann integrals; however, the Lebesgue theory is more useful
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for theoretical purposes because certain important theorems hold for Lebesgue
integrals but not for Riemann integrals).

The reason for including this section has to do with the fact that an
improper use of entities such as the delta function can lead to serious errors
which can go unnoticed if the ‘usual’ definitions are taken too literally. For
example, at the beginning of Section 2.4—following the customary non-
rigorous approach—we ‘defined’ δ(t) by means of the two relations
 

 

and
 

 

Now, consider the function 2δ(t). In accordance with the second relation
we must have  but, owing to the first relation, the function
2δ(t) must be equal to infinity at t=0. We are then led to the absurd result
2=1. This simple but meaningful example shows that care must be exercised
in these cases and that it is of great help to have a general idea of the way
in which mathematics deals (rigorously) with this subject so that, when in
doubt, there is the possibility of double-checking the results and the
mathematical manipulations which are often obtained and performed by
following the non-rigorous approach.

Returning to the main discussion of this section, we can say that, in essence,
ordinary differential calculus sometimes runs into difficulties because of the
existence of nondifferentiable functions. The theory of distributions—initially
developed by Schwartz during the late 1940s-early 1950s—frees differential
calculus from these difficulties by extending it to a class of objects called
distributions or generalized functions, the main ideas behind this extension
being as follows:
 
1. Every continuous function is a distribution.
2. Every distribution has partial derivatives which are themselves

distributions; moreover, for differentiable functions, the new notion of
derivative coincides with the old one.

3. The usual formal rules of calculus hold.
4. There is a supply of convergence theorems that is adequate for handling

the usual limit process.
 
In this light, it is clear that the class of distributions is larger than the class
of differentiable functions to which calculus applies in its original form.

For example, if we consider functions of one variable and integrals are
taken with respect to the Lebesgue measure, we say that a function f(x) is
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locally integrable if it is measurable and  for every compact
 being the real line). Now, if we consider f as something that assigns

the number  to every suitably chosen ‘test function’  rather
than as something that assigns the number f(x) to each  we adopt a
new point of view that turns out to be particularly useful in physics and
engineering (in fact, physicists have been improperly using distributions long
before the mathematical theory was constructed). Obviously, the first thing
to do is to specify the class of test functions.

So, let Ω be an open, nonempty set of n (for our purposes we generally
have)  and let  be the vector space of all  whose support
is compact. Recall that supp( ), i.e. the support of the function , is the
closure of the set  In simpler terms, these latter statements
mean that (1)  is continuous in Ω with all its derivatives and (2)  is
identically zero outside its support which, in turn, is a compact (a finite
interval in ) subset of Ω.

At this point mathematicians introduce an appropriate topology  on
 and indicate with  the topological vector space  We simply

take this for granted and only point out two important facts:
 

1. In , every Cauchy sequence (see Section 2.5 on Hilbert spaces for
the definition of a Cauchy sequence) converges.

2. The convergence of the sequence { j} to  implies that (a)
there is a compact set  such that  for every

 and (b) the derivatives  converge
uniformly to  for every multi-index α.

 

(A word on notation to explain the shorthand symbol  we define a
multi-index as an ordered n-tuple of non-negative numbers 
whose ‘order’ is  and we write
 

 

with the assumption that  In this light, condition (b) means that
the derivatives of j of every order converge uniformly to the derivatives of
ϕ of the same order.)

We are now in a position to give the definition of distribution: a continuous
linear functional on  is called a distribution in Ω where, by the term
‘functional’ it is customary to denote any operator that maps a function
belonging to an appropriate linear space (  in this case) to a real or
complex number.

The space of all distributions in Ω is denoted by  In other words, a
distribution  is a mapping or  is the complex field
and  is the real field) which is continuous with respect to the topology , this
latter statement meaning that  implies 
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Note that, since it is often customary to indicate the action of a linear
functional  as  is a complex or real number)
and since linearity means that  

(2.77)

we can immediately consider  as a linear space by means of the ‘natural’
definitions
 

(2.78)

 

which, in mathematical terminology, means that  is the ‘dual space’ of.

At this point, we can make some considerations which are of direct
importance for our purposes:
 
• If f(x) is a locally integrable function and dx denotes the Lebesgue

measure, the relation
 

(2.79)

 

defines a linear functional Tf so that it is customary to identify the
distribution Tf with f, write (improperly) f in place of Tf and say that
such distributions ‘are’ functions.

• Every  determines a linear functional δx on  defined by
 

(2.80)
 

and called the Dirac distribution. If x=0 one simply writes  and we
have 

 
Distributions that can be represented in the form of eq (2.79) are generally
called ‘regular’, while distributions which cannot be reduced to such a form—
δ for example, and its derivatives—are called ‘singular’ (or, sometimes ‘symbolic
functions’). In this regard, when we write an equation such as eq (2.60), we
are treating the Dirac distribution as if it were a regular distribution, i.e. we
introduce a (nonexistent) locally integrable function δ(x) and write
 

(2.81)

 
which is a formal justification of eqs (2.59a and b).
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Without getting into details that are beyond our scope, we can also take
for granted that the topology defined on  induces a topology on 
(called the weak* (‘weak-star’) topology by mathematicians) and the
statement  means that
 

 
Then, it can be shown that every distribution can be obtained as a limit of
a sequence of regular distributions, i.e. for any  we can find a
sequence of functions fj(x) such that, as 
 

(2.82)

 
and it is noteworthy that such a sequence can always be a sequence of
functions that belong to  in the case of eq (2.82)). A typical
example is given by sequences of functions that approximate the Dirac
distribution (Section 2.4); it is only in the sense of distributions that the
passage to the limit as  of eqs (2.71a, b and c) is justified and we can
see the Dirac delta function as a limit of ordinary functions.

We are now in a position to consider the subject of calculus with
distributions. Given a distribution  we define the derivatives of T
by means of the relation
 

(2.83a)

 
noting that  because the r.h.s. of eq (2.83a) is always a well-
defined quantity. In its simpler form (first derivative) eq (2.83a) reads
 

(2.83b)

 
From this definition it can be shown that if f is a continuous function which
admits a continuous derivative  in the ordinary sense, and if Tf is
the (regular) distribution associated with f, then, in the sense of distributions

 In fact, integration by parts gives
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because  on the boundary of Ω. (In essence, the definition of eq (2.83a)
is intentionally tailored on the property of integration by parts: since eq
(2.83a) holds for continuous functions with continuous derivatives, we extend
it to distributions by taking it as the definition of generalized derivative.) It
should be noted, however, that it is not always true that the distribution
derivative  equals Tf´ (or more generally, it is not always true that)

 even when both quantities have a meaning. In particular, if Ω
is a segment of ℜ, it can be shown that  (or, in usual notation)

 if and only if the function f (x) is absolutely continuous.
At this point it is important to note the considerable implications of eq

(2.83a) which can be summarized as follows:
 
• Distributions always possess derivatives of any order with respect to

any variable.
• If a sequence of distributions {Tj} converges to T, then the sequence of

derivatives  converges to T´ (or, equivalently, every convergent series
of distributions can be differentiated term by term any number of times).

 
Furthermore, when ordinary derivatives exist and are well-behaved, the
derivatives in the sense of distributions (the so-called generalized derivatives)
coincide with the ordinary derivatives; if, on the other hand, ordinary
derivatives do not exist, then the generalized derivatives with all their desirable
properties (say, for example,  for all multi-indices α and
β, a property which may not be valid for ordinary derivatives) ‘take over’
and allow a much larger degree of flexibility, while at the same time
maintaining the formal rules of ordinary calculus.

Let us now consider a few examples. The first typical example is given by
the locally integrable Heaviside function θ(x) (eq (2.66)) for which the
equation (see also eq (2.67a))
 

(2.84)

 

has a meaning only in the sense of distributions. In fact,
 

 

where in the last equality we adopted the notation of eq (2.81). Note that,
strictly speaking, the distribution θ is the functional defined by the relation
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The second example is given by the derivatives of δ(x) which, in the
distribution sense, are well-defined functionals. In fact, in the case of the
first derivative, for example, we have
 

 

which justifies eq (2.68) and, by extension, eq (2.69).
Now let f(x)be a function which is continuous everywhere except at the

origin where it has a jump discontinuity of a1, that is
 

 
 

and suppose further that f(x) is differentiable everywhere except at x=0. Its
ordinary derivative is defined for x<0 and x>0, but it is undefined at x=0.
Now, since the r.h.s. of eq (2.83b) reads
 

 

 

it follows from eq (2.83b) that the generalized derivative {f´(x)} is given by
 

(2.85a)
 

or
 

(2.85b)

 
if the jump occurs at x=x1. In other words, the generalized derivative is the
ordinary derivative plus a1 times a delta function. Similarly, for the second
derivative we get
 

(2.86a)
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where b1 is the jump on the first derivative f´(x). More generally, if f(x) has
jumps of magnitude  at the points  and f´(x) has jumps
of magnitude  at the points  we have
 

(2.86b)
 

so that, with these considerations in mind, one generally drops the notation
 etc. and simply writes  etc.

Example 2.5. As a preliminary result, it is left to the reader to show that, in
the sense of distributions, the following equality holds:
 

(2.87)
 

where f(x) is any continuous function.
Then, using this result and considering an absolutely continuous function

g(x), let us determine that the distribution derivative of g(x)θ(x) is
 

 

i.e. the result that we obtain by applying the ordinary differentiation rule of
a product. In fact, from the definition of generalized derivative we get  

 

so that the term within brackets in the last integral defines the distribution
derivative {(gθ)́ } and we get, as expected
 

(2.88)

 
where eq (2.87) has been taken into account. This result is just a specific
example which shows that the usual product rule for differentiation holds
(if the products involved have a meaning).
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Finally, in just the same way in which we can introduce a generalized
derivative, we can introduce the notion of generalized antiderivative—i.e.
indefinite integrals—by saying that the distribution Z is the indefinite integral
of T if  and it is worth noting the fact
that the distribution derivative coincides with the usual derivative in all cases
in which we can recover the original function by integration. As soon as the
ordinary derivative becomes of little practical utility and does not allow us
to go back to the original function, the two concepts differ. This is one of
the major strengths of the theory of distributions.

We will not pursue the subject any further and we close this section with
a few final comments:
 
1. It is possible to extend to distributions a large number of operations

which are commonly used with ordinary functions. Among these
operations we find, for example, the translation f(x–a), the
multiplication by a function  the change of variable, the
convolution, etc. So, for example, if  and T is a
distribution on Ω, then by the product gT we understand the distribution
satisfying

 
(2.89)

 

2. There exists an important theorem which states that every distribution
can be expressed as the derivative  (for some multi-index α) of some
continuous function f.

3. In the light of comments (1) and (2), the reader can refer to a number of
excellent books to see how the theory of distribution has important
consequences in the study of ordinary differential equations as well as
partial differential equations (e.g. Friedman [4]) because, as a matter of
fact, the development of the theory of distributions was to a large extent
motivated by problems involving differential equations. For example,
suppose that we want to find the distribution g that satisfies

 
(2.90a)

 

for a given distribution f, on some interval [a, b] on the real line. If f and
g were ordinary functions (say, for example,  and 
i.e. f is continuous on [a, b] and g continuous with continuous first
derivative on [a, b]) then eq (2.90) would be a simple first order
differential equation. However, since f and g are actually distributions,
we must go back to the definition of generalized derivative and eq (2.90a)
reads  or

 
(2.90b)
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If by eq (2.90a) we understand eq (2.90b), then eq (2.90a) is said to be
a distributional differential equation. Clearly, this same procedure applies
to more general differential equations, for example to

 
(2.91a)

 

where A is a (generalized) differential operator given by
 

 

 and we interpret eq (2.91) as a differential
equation involving generalized derivatives of g so that we seek g such
that

 
(2.91b)

 
which is equivalent to

 
(2.91c)

 
where the operator Â results from repeated application of (2.89) and of
the definition of generalized derivative. Explicitly

 

 

Naturally, one would expect that if f is continuous (i.e. a distribution
generated by a continuous function) then the solution g should be a
function that is k times continuously differentiable. This is indeed so. In
other words, when the distributions involved are generated by sufficiently
differentiable functions, we recover the classical concept of differential
equation and, in this case, g is called a classical solution. On the other
hand, if f is a regular distribution generated by a function which is locally
integrable but not continuous—or it is a singular distribution—then eq.
(2.91a) cannot be expected to have any meaning in the classical sense
and the solution is called a weak or generalized solution.

4. There exist many possible choices of the test space other than the space
of infinitely differentiable finite functions (i.e. the space ), for
example, in  we can choose the test space to be the space of all infinitely
differentiable functions which, together with all their derivatives,
approach zero faster than any power of 1/|x|. This test space is usually
denoted by  and it is used in connection with Fourier transforms
(e.g. Vladimirov [5]). The space ´ of all continuous linear functionals
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on  defines the space of the so-called ‘tempered’ distributions. This
shows that, as a matter of fact, there is no need to commit oneself to
any definite choice of test space; rather, it is better to choose a test space
which appears to be the most suitable for the problem, (or the class of
problems) at hand. In this regard, however, it should be noted that the
smaller the test space, the greater the freedom in performing various
analytical operations (differentiation, passage to the limit, etc.) and the
larger the number of functionals. Nonetheless, the test space should not
be too small, otherwise there will not be enough test functions to allow
us to ‘tell ordinary functions (i.e. regular distributions) apart’, this latter
statement meaning that given any two continuous functions f1 and f2

where  there must be a test function  such that 

2.5 The notion of Hilbert space

One of the most important concepts in mathematics and in its applications
to physics and engineering is that of linear or vector space, a concept with
which we assume that the reader has some familiarity (if this is not the case,
see the appendix on matrix analysis for a refresher on the fundamental
properties of linear spaces). Broadly speaking, linear spaces can be seen as
extensions of the three-dimensional space 3 of usual vectors and, in this
light, we can consider finite-dimensional linear spaces with an arbitrary
number n of dimensions. For our purposes, it should be mentioned that
these spaces are the ‘natural’ setting for the study of vibrating systems with
a finite number of degrees of freedom. In these spaces, the notion of inner or
scalar product—which is a symmetric, linear, positive definite operation and
provides a means of measuring both the length (or norm) of a vector and the
distance between two points—plays a predominant role. These concepts can
be generalized to spaces with an infinite number of dimensions (in a sense
that will be clear from the following discussion).

More specifically, if we let X be a complex vector space, an inner product
<u |v>  of  is any operation that satisfies the following axioms for all

 and  (i.e. any two complex numbers)
 
1.

2.

3.

4. and <u|u>=0 if and only if u=0
 

where the asterisk denotes complex conjugation.
A vector space endowed with the inner product  is called an inner

product space. Two observations can be made immediately: first, although
the inner product is in general a complex number (axiom 1), axiom 2 shows
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that  is always a real number, so that the axiom of positive definiteness
(axiom 4) makes complete sense and, second, it should be noted that in our
definition linearity (i.e. the properties of additivity and homogeneity) applies
to the first slot of the inner product and for complex inner product spaces it
makes a difference whether linearity is defined with respect to the first or
the second slot. In fact, from the axioms above it follows that additivity
applies also to the second slot, i.e.  but
homogeneity does not apply, i.e. we have 

It is possible to define an inner product on real vector spaces as well, and
this is an important special case which will often serve our purposes. In this
case the axioms read (note that now a, b )
 
1´.

2´.

3´.

4´. and if and only if u=0
 

and linearity in the second slot can be verified immediately.
A simple example of inner product is given by the product of two column

vectors x, y of an n-dimensional vector space, i.e. the product,
 where 

and 
A less intuitive example of inner product is defined in the space of square-

integrable (in the Lebesque sense) functions defined on an interval 
a space which is commonly denoted by mathematicians and physicists as
L2(α , β). It is left to the reader to show that this is a linear space and to
verify that for any two functions f and  the expression
 

(2.92)

 

defines an inner product in L2(α , β).
With the concept of inner product at our disposal, it is straightforward to

introduce the notion of orthogonality between two members of an inner
product space  are said to be orthogonal if
 

(2.93)
 

and one often writes  For example, in the real inner product space
 the two functions  and  are orthogonal

because
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An important property which holds in any inner product space is the so-
called Cauchy-Schwartz inequality which reads
 

(2.94)
 

Furthermore, for the interested reader it is worth noting that, from a
mathematical point of view, an inner product space is structured at three levels
because the inner product generates a norm (i.e. a notion of length) || . ||
according to the definition
 

(2.95a)
 

and the norm, in turn, generates a metric (i.e. a notion of distance) d( · , ·)
by means of the definition
 

(2.95b)
 

In terms of the norm generated by the inner product, the Cauchy-Schwartz
inequality can be written as 

It should be noted that both the norm and the metric are primitive concepts
whose definitions are given by a number of axioms and do not require the
existence of an inner product (in fact, not all norms are generated by an
inner product and not all metrics are generated by a norm), however, our
main interest lies in inner product spaces and this justifies the definitions
and use of eqs (2.95a and b).

In normed and inner product spaces the notion of completeness of the
space plays an important role in many circumstances. In finite- (say n-)
dimensional linear spaces completeness has to do with the fact that any
vector of the space can be expressed as a linear combination of a set of n
linearly independent vectors (i.e. a basis of the space) and that the
dimensionality of the space is defined by means of the maximum number of
linearly independent vectors which may be chosen from among the vectors
of the space. Furthermore, when an inner product is defined between vectors,
we can always choose a orthonormal set  such that 
These concepts can be extended to infinite-dimensional linear inner product
spaces with the only difference that in the infinite-dimensional case the
completeness of the space is not always guaranteed.

In order to properly define the notion completeness of a space in a general
case, we need the notion of Cauchy sequence. A sequence {un} in a subset
(either a proper subset or the entire space) Y of a normed space X is called
a Cauchy sequence if
 

 

or, more formally, for any given ε>0 there exists a number N such that
 whenever m, n>N. Every convergent series is clearly a Cauchy
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sequence but the point is that not every Cauchy sequence is convergent
because the limit may not belong to the space. When this is the case, we say
that the space is incomplete. By contrast we have the following definition of
completeness: a subset (proper or not) Y of a normed space X is complete if
every Cauchy sequence in Y converges to an element of Y.

As mentioned before, completeness is not a problem in finite-dimensional
spaces because there is a theorem which states that every finite-dimensional
normed space is complete.

When a (infinite-dimensional) space is incomplete, however, the situation
can be remedied by adding to the original space all those elements that are
the limits of Cauchy sequences; this process is called completion of the space
and a few examples will help clarify these points.

Example 2.6. The easiest way to construct an infinite-dimensional linear space
is to generalize the space of n-tuples of real or complex numbers to the space
l2 of all infinite sequences  which satisfy the convergence
condition  where the sum and multiplication by a scalar are
defined as  and

 This space becomes an infinite-dimensional
inner product space when equipped with the inner product
 

 

and, generalizing from the finite-dimensional case, the simplest orthonormal
‘basis’ (we will return on this aspect later in this section) in this space consists
of the vectors
 

 

The proof that this space is complete can be found in any textbook on
advanced calculus.

Example 2.7. Let us now consider the space of all real-valued continuous
functions defined on the interval [0, 1], i.e. the space C[0, 1] equipped
with the L2-norm  which is the norm induced by the inner
product  It is readily shown that this space is not
complete; in fact, consider the Cauchy (as the reader can verify) sequence
{un} defined by
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Its ‘limit’ is the discontinuous function
 

 

which obviously does not belong to C[0,1]. Hence C[0, 1], and more generally
the space C[a, b], with the L2-norm is not complete. Furthermore, it can be
shown that if we complete this space by adding all the limits of Cauchy
sequences, we obtain the space L2[a, b]. By contrast, the space C[a, b]
equipped with the norm  is indeed complete.

Example 2.8. The final example—the most important for our purposes—is
the space L2(W), where  A famous theorem of functional analysis
states and proves that this space is complete; following, for example,
Vladimirov ([5], Chapter 1) the Riesz-Fisher theorem states that:
 

If a sequence of functions un, n=1, 2,… belonging to L2(Ω) is a Cauchy
sequence in L2( Ω) there is a function  such that

 the function f is unique to within values on a
set of measure zero.

 
This latter statement has to do with the fact that Lebesque integration is
essential for the completeness of L2(Ω), in fact the space of functions that
are Riemann square integrable is not complete.

We are now in a position to give a precise definition of a Hilbert space: a
Hilbert space is a complete inner-product linear space. Clearly, all finite-
dimensional inner-product linear spaces are Hilbert spaces, but the most
interesting cases of Hilbert spaces in physics and engineering are spaces of
functions such as the aforementioned L2(Ω).

At this point, the problem arises of extending the familiar notion of
orthonormal basis to a general (infinite-dimensional) Hilbert space, that is,
we are faced with the problem of representing a given function as a linear
combination of some given set of functions or, in other words, with the
problem of series expansions of functions in terms of a given set. Needless
to say, the prototype of such series expansions is the Fourier series. The
additional question of how one generates bases in infinite-dimensional spaces
is partially answered by considering Sturm-Liouville problems (Section 2.5.1)
which, in turn, are special cases of eigenvalue problems with a number of
interesting properties. The most relevant of these properties is that their
eigenfunctions form orthonormal bases in L2(Ω), where Ω is the domain in
which the Sturm-Liouville problem is formulated, i.e. for our purposes (see
Chapter 8), a limited interval [a, b] of the real line .

Some explanatory remarks are in order. Now, if we take as a representative
example the Hilbert space L2(Ω), it is obvious that this space is not finite
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dimensional, i.e. it is not possible to find a finite set of functions in L2(Ω) that
spans L2(Ω). The best that can be done is to construct an infinite set of functions
with the property that any member of the space can be approximated arbitrarily
closely by a finite linear combination of these functions, provided that a
sufficiently large number of functions is used. This, in essence, is the idea that
leads to the notion of a basis consisting of a countably infinite set and, in the
end, to the counterpart of orthonormal bases of a finite-dimensional linear
space, i.e. sets of functions  for which
 

(2.96)

 
In this light, the following definition applies: let X be any inner-product space
and let  be an orthonormal set in X. Then we say that Φ is a
maximal orthonormal set in X if there is no other non-zero member φ in X
that is orthogonal to all the φk. In other words, Φ is maximal if  for
all k implies  meaning that it is not possible to add to Φ a further nonzero
element that is orthogonal to all existing members of Φ. Furthermore, a maximal
orthonormal set in a Hilbert space H is called an orthonormal basis (or complete
orthonormal set; note that completeness in this case is not the same as
completeness of the space, although the two concepts are intimately connected)
for H. It is obvious that we are generalizing from finite-dimensional inner-
product spaces and, as a matter of fact, this definition coincides with the familiar
idea of orthonormal basis in the finite-dimensional case.

Example 2.9. It can be shown that the set
 

 

is a maximal orthonormal set in L2(–1, 1). Since L2(–1, 1) is complete (i.e.
a Hilbert space), Φ is an orthonormal basis.

Before completing our brief discussion on Hilbert spaces, we need a further
definition and two important theorems which underlie the developments of
the discussion of Chapter 8. Let {φk} be an orthonormal set in an inner-
product space X. Then, for any  the numbers  are called the
Fourier coefficients of u with respect to {φk}. Clearly, these are the infinite-
dimensional counterparts of the components uk of an element u of a finite-
dimensional space. In this case, we know that if  is an orthonormal
basis for an inner-product space X with dimension n, then for any 
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where  The two theorems, which we state without proof, are as
follows.

The best approximation theorem. Let X be an inner product space and
 an orthonormal set in X. Let u be a member of X and let sn and tn

denote the partial sums  where 
is the kth Fourier coefficient of of u and the ck are arbitrary real or complex
numbers. Then:  
1. Best approximation:
 

(2.97)
 
2. Bessel’s inequality: the series  converges and
 

(2.98)

 

3. Parseval’s formula:

(2.99)

 

The Fourier series theorem. Let H be a Hilbert space and let  be
an orthonormal set in H. Then any  can be expressed in the form
 

(2.100)

 

if and only if Φ is an orthonormal basis, i.e. a maximal orthonormal set.
 
Moreover, another important theorem of functional analysis guarantees the
existence of a countable orthonormal basis in any (separable) Hilbert space
(we will never consider nonseparable Hilbert spaces, so the definition of
‘separable Hilbert space’ is not really relevant for our purposes).

2.5.1 Sturm-Liouville problems

This section lays the mathematical framework in which we will be able to
deal with the ‘modal approach’ to the vibrations of strings and rods, a topic
that will be considered in Chapter 8. As a preliminary remark, it must be
said that the method of separation of variables is a common technique used
for solving a number of linear initial-boundary-value problems. This method
leads to a differential eigenvalue problem whose solution is essential to the
solution of the problem as a whole, and it is such eigenvalue problems that

Copyright © 2003 Taylor & Francis Group LLC



are examples of Sturm-Liouville problems, the eigenfunctions of which are
candidates for orthonormal bases of the Hilbert space of (Lebesque) square
integrable functions.

As a matter of fact, it can be shown that the eigenfunctions of Sturm-
Liouville problems constitute orthonormal bases for L2(Ω), where Ω is an
appropriate subset of .

A Sturm-Liouville operator L is a linear differential operator of the form
 

(2.101a)

 

defined on an interval [a, b] of the real line. The basic assumptions are that
 and ρ (x) are continuous real-valued functions on [a, b]

that satisfy
 

(2.101b)
 

on [a, b]. Furthermore, we have the linear operators B1 and B2 that specify
the boundary values of a continuous function and are defined by
 

(2.101c)
 

where by the symbol u´ we mean du/dx and the constants in eq (2.101c)
satisfy (i=1, 2)
 

(2.101d)

 

Then, we define a ‘regular’ Sturm-Liouville problem on a finite interval
[a, b] as an eigenvalue problem of the form
 

(2.102)

 

where  is a complex number. The first of eqs (2.102) is a differential equation
which is often written explicitly in the form
 

(2.103)
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and the second and third of eqs (2.102) represent the boundary conditions.
If any of the requirements in the definitions differ from those given here
(limited interval, eqs (2.101b) or (2.101d)), the problem is known as a
‘singular’ Sturm-Liouville problem.

More generally, if for a moment we abstract the discussion from the present
special case, the defining features of an eigenvalue problem (we will have to
deal with such problems in Chapters 6–8), which is expressed synthetically
as  where A is a linear operator and u is whatever kind of object A
can operate on (a column vector if A is a matrix, a function if A is a differential
or an integral operator), are that: (1) u=0 is a solution known as the trivial
solution and (2) there are special nonzero values of λ called eigenvalues, for
which the equation  has nontrivial solutions. In the context of matrix
problems these solutions are called eigenvectors, whereas for differential or
integral equations they are known as eigenfunctions. In either case they are
determined only up to a multiplicative constant (i.e. if u is an eigenvector or
eigenfunction, then so is αu for any constant α) and, because of this
indeterminacy, it is customary to ‘normalize’ the eigenvectors or
eigenfunctions in some convenient manner. When A is a differential operator
defined on a domain Ω with boundary S, it is necessary to specify the
boundary conditions which are, in their own right, an essential part of the
eigenvalue problem.

Returning to our main discussion, the problem (2.102) is considered in
the space L2(a, b) endowed with the inner product
 

(2.104)

 
and the function ρ(x), because of its role, is called a weighting function. The
first issue to consider is the domain D(L) of the operator L because, clearly,
not all members of L2(a, b) have derivatives in the classical sense. For our
purposes it suffices to take
 

(2.105)

 
which is a proper subspace of L2(a, b) and, broadly speaking, is a ‘sufficiently
large’ subspace of L2(a, b) (the correct mathematical terminology is that
D(L) is ‘dense’ in L2(a, b)).

Now, it turns out that Sturm-Liouville operators are examples of what
are known as symmetrical operators, and symmetrical operators have many
of the nice properties that symmetrical matrices possess in linear algebra. In
general, if L is a linear operator defined on a Hilbert space H with domain
D(L), L is said to be symmetrical if
 

(2.106)
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where it must always be kept in mind that the definition applies to members
of the domain of L, and since boundary conditions play a role in the choice
of the domain (as in (2.105)), these will be crucial in determining whether a
given operator is symmetrical. In this light, the results that follow are direct
generalizations of the situation that pertains to symmetrical matrices.

Lemma 1. The eigenvalues of a symmetrical linear operator are real.
 
The proof of this lemma is straightforward if we consider that given an
arbitrary complex number , we have  Then, since

 we get
 

 

where the last equality is obtained by virtue of eq (2.106).

Lemma 2. Let L be a symmetrical linear operator defined on a Hilbert space
H. Then, the eigenfunctions corresponding to two distinct eigenvalues are
orthogonal (the proof is easy and is left to the reader).

Finally, the following two theorems summarize all the important results for
Sturm-Liouville operators.
 
Theorem 1.
1. The Sturm-Liouville operator is symmetrical.
2. The Sturm-Liouville operator L is positive, that is  for all

 
An important corollary to Theorem 1 is that the eigenvalues of L are all non-
negative and form a countable set. This means that they can be arranged in the
sequence  in addition, it can be shown that  as 

Theorem 2. The eigenfunctions of a regular Sturm-Liouville problem form
an orthonormal basis for L2(a, b), that is, recalling the Fourier series theorem
of the preceding section, given a Sturm-Liouville problem defined on D(L)
and any function  the eigenfunctions  are such that
 

 

in the sense that  where sn is the finite sum
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Finally, a further significant result can be considered if we introduce the
Rayleigh quotient R, i.e. a functional defined on D(L) by
 

(2.107)

 
where it should be noted that  for the positivity of L.

Theorem 3. The minimum of R(u) over all functions  that are
orthogonal to the first n eigenfunctions is  That is
 

 

 
The proofs of the above theorems are not given here and can be found

in any book on advanced analysis. However, because of its importance in
future discussions, we will just show here the proof of the fact that the
Sturm-Liouville operator is symmetrical. For any  indicating
for simplicity the complex conjugate with an overbar rather than the usual
asterisk, we have

 
Now, since  so does  It follows that  or in matrix
form, using eq (2.101c)
 

 

From the conditions (2.101d) at least one of α1 and β1 must be nonzero, and
this is only possible if the matrix is singular, i.e. if

(2.108)
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The same line of reasoning applied to the boundary condition
 leads to

 
 

and from these two equations it follows that the right-hand side of eq (2.108)
is zero and L is symmetric, as stated in Theorem 1.

2.5.2 A few additional remarks

As is apparent from the foregoing sections, the theoretical background needed
for the treatment of the eigenvalue problems of our concern constitutes a
vast and delicate subject in its own right. In particular, we will be interested
in the vibration of one, two- or three-dimensional continuous systems
extending in a limited domain of space Ω. Clearly, a detailed discussion of
the mathematical theory of these aspects is far beyond the scope of this
book. However, we believe that a brief section with some additional remarks
to what has been said up to this point is not out of place, because it may be
of help to the interested reader who wants to refer to more advanced texts
on the subject.

Consider the differential operator of order m with continuous complex-
valued coefficients 
 

(2.109a)

 

where  and  In addition, consider the m
boundary operators of order 
 

(2.109b)

 

with complex coefficients α l i,  β l i and suppose further that, for all
 satisfying the boundary conditions 

 we have (we return to the asterisk to indicate complex
conjugation and the following condition, in words, states that the operator
is symmetric)
 

(2.110)

 
and, lastly, that ρ(x)>0 is a continuous, real-valued function on [a, b]. Now
if we consider the eigenvalue problem on [a, b]
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(2.111)

 
the following theorem can be proven.

 
Theorem 4. There exists a sequence  of eigenpairs of
problem (2.111) such that  

 is a orthonormal basis in L2(a, b) endowed with
the inner product

 
 

 
that is, for all 
 

(2.112)

 
with the series converging in the L2-sense. Moreover, all eigenvalues are real
and have finite multiplicity (meaning that a multiple eigenvalue can only be
repeated a finite number of times). Note that the Sturm-Liouvulle problem of
the preceding section is a special case of the symmetrical problem (2.111).
 
A more general approach which deals with the free vibrations of three-
dimensional structures with sufficiently smooth boundaries considers a
variational formulation of the problem in the bounded domain  (the
space occupied by the structure) with a smooth boundary S. The general
point of Ω is denoted by  and  denotes the displacement
field at time t at point x. Further, it is supposed that a part of the boundary

0 is fixed and the remaining part  is free. Clearly 
The formulation of the problem is rather involved and we do not consider

it here. However, in its final steps this formulation considers an appropriate
space  of ‘sufficiently differentiable’ functions defined on Ω with values in

3 and leads to the introduction of two linear operators K and M which are
called the stiffness and mass operator, respectively. In terms of these operators
the problem is formulated as

 
(2.113)

 
where  and  (the so-called ‘space of admissible functions’) is the
space of all functions that belong to  for which u=0  on 0. Since Ω is a
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bounded domain and the two operators can be shown to be symmetrical
and positive definite, the fundamental results are that:
 
1. There exists an increasing sequence of positive eigenvalues
 

(2.114)

 
and every eigenvalue has a finite multiplicity;

2. The eigenfunctions {uk} satisfy the orthogonality conditions
 

(2.115)

 
form a complete set in 0 and are called, in engineering terminology,
elastic modes (the meaning of this term will be clearer in future
chapters).

 
When the structure is free—i.e.  where Ø is the empty set—the
eigenvalue problem (2.113) is posed in , the stiffness operator is only positive
semidefinite and there exist solutions of the type  The
eigenfunctions corresponding to these solutions are called rigid-body modes
and can be indicated by the symbol urig. In this case it can be shown that:
 
1. any displacement field  can be expanded in terms of rigid-body

modes and elastic modes;
2. the elastic modes and the rigid-body modes are mutually orthogonal.  

References

1. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Tables of Integral
Transforms, 2 vols, McGraw-Hill, New York, 1953.

2. Mathews, J. and Walker, R.L., Mathematical Methods of Physics, 2nd edn,
Addison-Wesley, Reading, Mass., 1970.

3. Sidorov, Yu. V., Fedoryuk, M.V. and Shabunin, M.I., Lectures on the Theory of
Functions of a Complex Variable, Mir Publishers, Moscow, 1985.

4. Friedman, A., Generalized Functions and Partial Differential Equations, Prentice
Hall, Englewood Cliffs, NJ, 1963.

5. Vladimirov, V.S., Equations of Mathematical Physics, Mir Publishers, Moscow,
1984.

Copyright © 2003 Taylor & Francis Group LLC



3 Analytical dynamics—an
overview

3.1 Introduction

In order to describe the motion of a physical system, it is necessary to specify
its position in space and time. Strictly speaking, only relative motion is
meaningful, because it is always implied that the description is made with
respect to some observer or frame of reference.

In accordance with the knowledge of his time, Newton regarded the
concepts of length and time interval as absolute, which is to say that these
quantities are the same in all frames of reference. Modern physics showed
that Newton’s assumption is only an approximation but, nevertheless, an
excellent one for most practical purposes. In fact, Newtonian mechanics,
vastly supported by experimental evidence, is the key to the explanation of
the great majority of everyday facts involving force and motion.

If one introduces as a fundamental entity of mechanics the convenient
concept of material particle—that is, a body whose position is completely
defined by three Cartesian coordinates x, y, z and whose dimension can be
neglected in the description of its motion—Newton’s second law reads
 

(3.1)
 
where F is the resultant (i.e. the vector sum) of all the forces applied to the
particle,  is the particle acceleration and the quantity m
characterizes the material particle and is called its mass. Obviously, x is here
the vector of components x, y, z.

Equation (3.1) must not be regarded as a simple identity, because it establishes
a form of interaction between bodies and thereby describes a law of nature; this
interaction is expressed in the form of a differential equation that includes only
the second derivatives of the coordinates with respect to time. However, eq
(3.1) makes no sense if the frame of reference to which it is referred is not
specified. A difficulty then arises in stating the cause of acceleration: it may be
either the interaction with other bodies or it may be due to some distinctive
properties of the reference frame itself. Taking a step further, we can consider a
set of material particles and suppose that a frame of reference exists such that
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all accelerations of the particles are a result of their mutual interaction. This can
be verified if the forces satisfy Newton’s third law, that is they are equal in
magnitude and opposite in sign for any given pair of particles.

Such a frame of reference is called inertial. With respect to an inertial
frame of reference a free particle moves uniformly in a straight line and
every observer in uniform rectilinear motion with respect to an inertial frame
of reference is an inertial observer himself.

3.2 Systems of material particles

Let us consider a system of N material particles and an inertial frame of
reference. Each particle is subjected to forces that can be classified either as:
internal forces, due to the other particles of the system or external forces,
due to causes that are external to the system itself. We can write eq (3.1) for
the kth particle as
 

(3.2)

 
where k=1, 2,…, N is the index of particle,  and  are the resultants
of external and internal forces, respectively. In addition, we can write the
resultant of internal forces as
 

(3.3)

 

which is the vector sum of the forces due to all the other particles, Fkj being the
force on the kth particle due to the jth particle. Newton’s third law states that
 

(3.4)
 

hence
 

(3.5)

 

and eq (3.2), summing on the particle index k, leads to
 

(3.6)

 

These results are surely well known to the reader but, nevertheless, they
are worth mentioning because they show the possibility of writing equations
where internal forces do not appear.

Copyright © 2003 Taylor & Francis Group LLC



3.2.1 Constrained systems

Proceeding further in our discussion, we must account for the fact that, in
many circumstances, the particles of a given system are not free to occupy
any arbitrary position in space, the only limitation being their mutual
influences. In other words, we must consider constrained systems, where the
positions and/or the velocities of the particles are connected by a certain
number of relationships that limit their motion and express mathematically
the equations of constraints.

A perfectly rigid body is the simplest example: the distance between any
two points remains unchanged during the motion and 3N–6 equations (if

 and the points are not aligned) must be written to satisfy this condition.
In every case, a constraint implies the presence of a force which may be, a

priori, undetermined both in magnitude and direction; these forces are called
reaction forces and must be considered together with all other forces. For the
former, however, a precise law for their dependence on time, coordinates or
velocities (of the point on which they act or of other points) is not given; when
we want to determine the motion or the equilibrium of a given system, the
information about them is supplied by the constraints equations.

Constraints, in turn, may be classified in many ways according to their
characteristics and to the mathematical form of the equations expressing
them, we give the following definitions: if the derivatives of the coordinates
do not appear in a constraint equation we speak of holonomic constraint
(with the further subdivision in rheonomic and scleronomic), their general
mathematical expression being of the type
 

(3.7)
 
where time t appears explicitly for a rheonomic constraint and does not
appear for a scleronomic one. In all other cases, the term nonholonomic is
used.

For example, two points rigidly connected at a distance L must satisfy
 

(3.8)
 
A point moving in circle in the x–y plane must satisfy
 

(3.9a)
 
or, in parametric form,
 

(3.9b)
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where the angle θ (the usual angle of polar coordinates) is the parameter
and shows how this system has only one degree of freedom (the angle θ), a
concept that will be defined soon.

Equations (3.8) and (3.9) are two typical examples of holonomic
(scleronomic) constraints. A point moving on a sphere whose radius increases
linearly with time (R=at) is an example of rheonomic constraint, the constraint
equation being now
 

(3.10a)
 

or, in parametric form
 

(3.10b)

 

where the usual angles for spherical coordinates have been used.
From the examples above, it can be seen that holonomic constraints reduce

the number of independent coordinates necessary to describe the motion of
a system to a number that defines the degrees of freedom of the system.
Thus, a perfectly rigid body of N material points can be described by only
six independent coordinates; in fact, a total of 3N coordinates identify the
N points in space but the constraints of rigidity are expressed by 3N–6
equations, leaving only six degrees of freedom.

Consider now a sphere of radius R that rolls without sliding on the x–y
plane. Let X and Y be the coordinates of the centre with respect to the fixed
axes x and y and let ωx and ωy be the components of the sphere angular
velocity along the same axes. The constraint of rolling without sliding is
expressed by the equations (the dot indicates the time derivative)
 

(3.11a)

 

which are the projections on the x and y axes of the vector equation
 

 

where v and ω are the sphere linear and angular velocities, the symbol × indicates
the vector product, C is the position vector of the point of contact of the sphere
with the x–y plane and O is the position vector of the centre of the sphere. Making
use of the Euler angles φ, θ and  (e.g. Goldstein [1]), eqs (3.11a) become
 

(3.11b)

which express the nonholonomic constraint of zero velocity of the point C.
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A disc rolling without sliding on a plane is another classical example—
which can be found on most books of mechanics—of nonholonomic
constraint. These constraints do not reduce the number of degrees of freedom
but only limit the way in which a system can move in order to go from one
given position to another.

In essence, they are constraints of ‘pure mobility’: they do not restrict the
possible configurations of the system, but how the system can reach them.

Obviously, a holonomic constraint of the kind (dropping the vector
notation and using scalar quantities for simplicity)
 

 

implies the relation on the time derivative
 

 

but when we have a general relation of the kind
 

 
which cannot be obtained by differentiation (i.e. it is not an exact differential)
the constraint is nonholonomic. In the equation above, A and B are two
functions of the variables x1 and x2. Incidentally, it may be interesting to
note that the assumption of relativistic mechanics stating that the velocity of
light in vacuum  is an upper limit for the velocities of
physical bodies is, as a matter of fact, a good example of nonholonomic
constraint.

Thus, in the presence of constraints:
 
1. The coordinates xk are no longer independent (being connected by the

constraint equations).
2. The reaction forces appear as unknowns of the problem; they can only

be determined a posteriori, that is, they are part of the solution itself.
This ‘indetermination’ is somehow the predictable result of the fact that
we omit a microscopical description of the molecular interactions
involved in the problem and we make up for this lack of knowledge
with information on the behaviour of constraints—the reaction forces—
on a macroscopic scale. So, unless we are specifically interested in the
determination of reaction forces, it is evident the interest in writing, if
possible, a set of equations where the reaction forces do not appear.

 
For every particle of our system we must now write

(3.12)
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where F is the resultant of active (internal and external) forces, Φ is the
resultant of reactive (internal and external) forces and the incomplete
knowledge on Φ is supplied by the equation(s) of constraint.

The nature of holonomic constraints itself allows us to tackle point (1) by
introducing a set of generalized independent coordinates; in addition, we
are led to equations where reaction forces disappear if we restrict our interest
to reactive forces that, under certain circumstances of motion, do no work.
These are the subjects of the next section.

3.3 Generalized coordinates, virtual work and d’Alembert
principles: Lagrange’s equations

If m holonomic constraints exist between the 3N coordinates of a system of
N material particles, the number of degrees of freedom is reduced to
n=3N–m. It is then possible to describe the system by means of n configuration
parameters  usually called generalized coordinates, which are
related to the Cartesian coordinates by a transformation of the form
 

(3.13)

 

and time t does not appear explicitly if the constraints are not time dependent.
The advantage lies obviously in the possibility of choosing a convenient set
of generalized coordinates for the particular problem at hand.

From eq (3.13) we note that the velocity of the kth particle is given by
 

(3.14)

 

Let us now define the kth (k=1, 2,…, N) virtual displacement δxk as an
infinitesimal displacement of the kth particle compatible with the constraints.
In performing this displacement we assume both active and reactive forces
to be ‘frozen’ in time at the instant t, that is to say that they do not change
as the system passes through this infinitesimal change of its configuration.
This justifies the term ‘virtual’, as opposed to a ‘real’ displacement dxk, which
occurs in a time dt. Similarly, we can define the kth virtual work done by
active and reactive forces as

and the total work on all of the N particles is
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(3.15)

 
If the system is in equilibrium, eq (3.15) is zero, because each one of the N
terms in parentheses is zero; if in addition we restrict our considerations to
reactive forces whose virtual work is zero, eq (3.15) becomes
 

(3.16)

which expresses the principle of virtual work. We point out that only active
forces appear in eq (3.16) and, in general,  because the virtual
displacements are not all independent, being connected by the constraints
equations. The method leads to a number of equations <N, but equal—for
holonomic constraints—to the number of degrees of freedom.

The assumption on the constraints leading to eq (3.16) is not very restrictive
and, in practice, is valid for all holonomic constraints without friction. When
the constraints are not frictionless, the equation is still valid if we count the
tangential components of friction forces as active forces themselves. It could
be added that if the principle of virtual work allows to obtain the equilibrium
condition with frictionless constraints, the same conditions must apply when
friction is present.

Since holonomic constraints are our major concern, we consider the
transformation (3.13) and write
 

(3.17)

where time does not appear because of the definition of virtual displacement.
Substitution in eq (3.16) gives the principle of virtual work
 

(3.18)

in terms of the generalized forces, defined as
 

(3.19)

The generalized forces do not necessarily have the dimensions of a force
themselves, but the product Qjδqj has the dimension of work. Now all the
δqjs are independent and eq (3.18) implies
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(3.20)

 
for every j=1, 2,…, n. Equation (3.20) expresses the equilibrium condition
of our system and, as such, applies to the static case.

The extension to the dynamic case—with the difference that now we want
to determine the equations of motion—is made by means of d’Alembert’s
principle, which sees eq (3.1) as an equilibrium equation by writing
 

(3.21)

 
which means that a material particle is in equilibrium if we consider the
inertia force (–ma) together with all other forces whose resultant is F. Under
the same assumptions that lead to eq (3.16), we can rewrite it in the form
 

(3.22)

 
and transform it into an equation where the virtual displacements of the
generalized coordinates appear, so that we are allowed to say that every
multiplicative coefficient of these virtual displacements is individually equal
to zero.

We have already considered the term  for the other term we
can substitute eq (3.17) into eq (3.22) and obtain

 

(3.23)

 
For the summation on the index k we can write
 

and since it is not difficult to verify that (eq (3.14))

(3.24)
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eq (3.24) becomes
 

 

Substituting back in eq (3.23), we get the expression
 

 

where we recognize the total kinetic energy of the system
 

(3.25)

 

which, in general, is a function of the kind  or,
for short, 

Putting all the pieces back together we finally get the expression we were
looking for, i.e.
 

 

from which it follows that
 

(3.26)

owing to the independence of the δqjs. Equations (3.26) are called Lagrange’s
equations of the second kind and are valid for holonomic systems with
frictionless constraints. It can be shown that they form a system of n second-
order differential equations which can be solved for the second derivatives
and written as
 

(3.27)

 
The solution is determined completely by introducing 2n constants of

integration, obtained by imposing the initial conditions at t=0.
When the system is conservative (see next section for more details), the

forces can be obtained from a scalar function)  as
 

(3.28)
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The elementary work, i.e. the work done as the system passes through an
infinitesimal displacement, is an exact differential and eq (3.18) can be
written as
 

 

which implies
 

(3.29)

 

Lagrange’s equations (3.26) thus become
 

 

and defining the Lagrangian function (or simply Lagrangian) as the difference
between kinetic and potential energies, i.e.
 

(3.30)
 
we obtain Lagrange’s equations of the first kind for conservative systems as
 

(3.31)

 

where  and we exploited the fact that 
When some of the forces acting on the system are conservative and some

others are not, it is worth noting that Lagrange’s equations can always be
written in the form of eq (3.31), where now a term Qj appears on the right-
hand side. In this case, the potential V accounts for conservative forces and
the Qjs represent all the forces that cannot be derived from a potential function.

A fundamental property of Lagrange’s equations (3.26) and (3.31) is that
they are invariant under an arbitrary transformation of generalized coordinates;
in fact, it can be proven that an invertible transformation of the type
 

(3.32)
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converts, for example, eqs (3.31) into
 

(3.33)

 

where L1 is the appropriate Lagrangian in the new coordinates.

3.3.1 Conservative forces

It is well known that the work done by a force F on a material particle
which undergoes an infinitesimal displacement dx is
 

(3.34)
 

Suppose now that the particle moves along some curve in space (say,
from a point A to a point B), with the force varying as the particle moves.
On a curve, x, y and z are related by the equations of the curve and in three
dimensions two equations are needed. Thus, along a curve there is only one
independent variable and the total work from A to B, i.e. the integral of eq
(3.34) is an ordinary integral of a function of one variable, more precisely,
it is a line integral. To evaluate a line integral, we must write it as a single
integral using one independent variable.

For example, in two dimensions (the x–y plane), given the force field
 

 

where i and j are, respectively, the usual unit vectors in the positive x and y
directions, let us find the work from A=(0, 0) to B=(2, 1) along the two
paths:
 
1. straight line 
2. parabola 
 
It is not difficult to see that
 

 

becomes an integral in dx and leads to the following results: W=1 in case
(1), and W=2/3 in case (2). So, the work done may depend on the path the
particle follows; in fact, it usually will when there is friction.

A force field for which the quantity
 

(3.35)
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depends upon the path as well as the endpoints is called nonconservative.
Physically this means that energy has been dissipated, for example by friction.

However, there are conservative fields for which the integral above is the
same between two given points, regardless of what path we calculate it along.

It can be shown from calculus that, ordinarily,
 

(3.36)
 
is a necessary and sufficient condition for the integral (3.35) to be independent
of path, that is  for conservative fields and  for
nonconservative fields. Explicitly, the components of the vector  can
be obtained from the determinant
 

 

It is not difficult to justify the considerations above. Suppose that for a
given F there is a function W(x, y, z) such that
 

 

then, from the fact that  etc., we see that the
components of  are all zero. Then, if  it follows that 
Conversely, if  then we can find a function W(x, y, z) for which

 In this case we can write
 

(3.37)

 

and
 

(3.38)

 

where W(B) and W(A) are the values of the function W at the endpoints of
the path of integration. Since the integral does not depend on the path but
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only on the endpoints A and B, then F is conservative, W is the scalar
potential of the force F and it is customary to define the potential energy
as V=–W.

From its definition, it is clear that V can be changed by adding any
constant; this corresponds to the choice of the zero level of the potential
energy and has no effect on F.

The differential dW of eq (3.37) is an exact differential. In the light of the
discussion above, we can say that  is a necessary and sufficient
condition for F . dx to be an exact differential. More generally, the following
theorem of vector calculus can be proven:

If the components of F have continuous first partial derivatives in a simply
connected region, then any one of the following five conditions implies all
the others:

 
1.  at every point of the region.
2.  around every simple closed curve in the region.
3. F is conservative, that is,  does not depend on the path of

integration from point A to point B (the path, obviously, must lie entirely
in the region).

4. F · dx is an exact differential.
5. There exists a function V such that  where V is single-valued.

 
Generally speaking, a region is ‘simply connected’ if any simple closed curve
in the region can be shrunk to a point without encountering any points not
in the region.

Two examples of conservative forces that will be of interest to us are
gravitational forces and elastic forces. It is very well known to the reader
that the potential energy of a body of mass m lifted above the surface of the
earth to a height h is mgh (where h=0 is the choice for zero potential energy)
and the potential energy of a stretched (or compressed) spring within its
linear range is  In fact,  where ∆l is the
displacement from the unstretched position, which is commonly assumed as
the position of zero potential energy.

The elastic potential energy is also called strain energy; in general, for an
elastically deformed body it can be written as
 

 

where wstrain is the strain energy per unit volume of the body, dV is the
element of volume and we have used here the letter E for the energy to
avoid ambiguities between the usual notation V for the potential energy
and V for volume. Again, zero potential energy is assigned to the undeformed
body.
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Example 3.1. Illustratively, we can calculate the potential energy of a rod of
length L and cross-section A under the action of an axial tensile force F(x, t).
The infinitesimal element dx of the rod undergoes an elongation
 

 

where u(x, t) is the displacement and ε(x, t) is the strain at point x and time
t. The strain energy of the volume element Adx is equal in magnitude to the
work done by the force F, i.e.
 

 

from the definition of axial stress  and the assumption to remain
within the elastic range—so that  (E=Young’s modulus)—we get
 

 

from which the strain energy of the rod follows as
 

(3.39)

 

Obviously, the action of an axial compressive force F(x, t) leads to the same
result.

3.3.2 A few generalizations of Lagrange’s equations

One of the most important nonconservative forces is viscous damping.
The viscous force is proportional to the particle velocity, so that for the
kth particle
 

(3.40a)
 

or, explicitly, for the single components
 

(3.40b)
 

where k is the particle index (k=1, 2,…, N) and α is the component index
 (indicates the x component,  they component and

 the z component).

Copyright © 2003 Taylor & Francis Group LLC



These forces can be derived from a scalar function D—a kind of
generalized potential—of the form
 

(3.40c)

 

from which it follows that  or
 

(3.41)
 

where the subscript vk indicates that the gradient is taken with respect to
velocities. For example, in the case of a single particle moving in one direction
with velocity v the equations above simply state that F=–cv and D=cv2/2, so
that F=–dD/dv.

From eq (3.41) we get
 

 

and since  it follows that
 

(3.42)

 

Lagrange’s equation may then be written as
 

(3.43)

 

in the case of conservative and viscous forces, or as
 

(3.44)

 

when conservative, viscous and nonconservative (other than viscous) forces
are acting on our system. The first two terms on the left-hand side account
for conservative forces (through the function V which is part of the
Lagrangian L), the third term accounts for viscous forces and the term on
the right-hand side accounts for all other nonconservative forces.

Sometimes it may be convenient to work with constrained coordinates. Let us
suppose that we have an n-degrees of freedom system and n+1 coordinates
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(which we will call) ), i.e. we have one coordinate in excess with
respect to the minimum number required to describe our system. Therefore,
they will be connected by one constraint equation of the general form
 

(3.45)
 

from which it follows that
 

(3.46)

 

and implies that only n out of the n+1 δqis are independent, the (n+1)th
being determined by eq (3.46). The application of d’Alembert’s principle to
the principle of virtual work leads again to the expression
 

(3.47)

 

but now this does not imply that the coefficients in brackets are individually
zero. Let us then add  times eq (3.46) to eq (3.47), where  is an unknown
arbitrary parameter called the Lagrangian multiplier,
 

(3.48)

 

and let us choose  so that
 

(3.49)

 

The sum (3.48) is then a sum of n terms implying the n Lagrange equations
 

 

which, together with eqs (3.49) and (3.45), are n+2 equations in the n+2
unknowns  The extension to the case of more than one,
say N (N>n), coordinates is straightforward; we will then have m=N–n
constraint equations and m Lagrangian multipliers  thus
obtaining N+m equations in N+m unknowns, i.e. the N coordinates plus
the m multipliers.
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The reader has probably noticed that in the foregoing discussion on
Lagrangian multipliers we assumed one (or more) holonomic constraint (eq
(3.45)). The method can be used also in the case of nonholonomic constraints
which, very often, have the general form
 

(3.50)

 

where l=1, 2,…, m in the case of m nonholonomic constraints. The generalized
coordinates are now n in number,  and bl=bl(t). In this case
it is not possible to find m functions such that eqs (3.50) are equivalent to
fl=const, but referring to virtual displacements we can write eq (3.50) in
differential form
 

 

multiply it by l, sum it to the usual expression (3.47), where now j=1, 2,…, n,
choose the m multipliers so that, say, the last m terms are zero, i.e.
 

(3.51)

 

and obtain explicitly the Lagrange multipliers; it follows that
 

(3.52)

 

Equations (3.50) and (3.52), are now the n equations that can be solved
for the n coordinates qj. Equivalently, we can say that eqs (3.50), (3.51) and
(3.52) are n+m equations in n+m unknowns.

The method is particularly useful in problems of statics because the
parameters  represent the generalized reactive forces which
automatically appear as a part of the solution itself.

3.3.3 Kinetic energy and Rayleigh’s dissipation function in
generalized coordinates. Energy conservation

From the foregoing discussion it is clear that Lagrange’s equations are based
on the calculation of the derivatives of the kinetic energy with respect to the
generalized coordinates. Since we know that  
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 from eq (3.14) we get the kinetic energy as the sum of three terms
 

(3.53)

 

where
 

(3.53a)

 

(3.53b)

 

(3.53c)

 
and a noteworthy simplification occurs in the case of scleronomic (time
independent) constraints, i.e. when time does not appear explicitly in the
coordinate transformation (3.13). In fact, in this case, only the third term in
eq (3.53) is different from zero and the kinetic energy is a quadratic form in
the generalized velocities.

First we note that
 

(3.54)

 

and the term in question can also be written in matrix notation as
 

(3.55)

 

where
 

 

A is symmetrical and  is simply the transpose of matrix 
Furthermore, by virtue of Euler’s theorem on homogeneous functions—

which we state briefly without proof—T is a homogeneous function of
degree 2 in the s and can be written as
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(3.56)

 
a form that may turn out to be useful in many circumstances.

Euler’s theorem on homogeneous functions. A general function f(x, y, z) is
homogeneous of degree m if

Euler’s theorem says that if f is homogeneous of degree m then
 

 

 
By looking at the general expression of Rayleigh’s dissipation function

(eq (3.40c)) it is not difficult to see that this function too is a quadratic form
in the generalized velocities which can be written as
 

(3.57)

 

where
 

(3.57a)

 

and
 

(3.57b)

 
From eq (3.56) it follows that
 

(3.58)

 

On the other hand, since  we can also write

 

(3.59)
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subtracting eq (3.59) from (3.58) and using Lagrange’s equations we get
 

(3.60)

 

If the forces are conservative, i.e.  the term on the right-hand
side is nothing but –dV/dt so that
 

(3.61)

 

or
 

(3.62)

 
which states the conservation of energy for a conservative system with
scleronomic constraints.

If the nonconservative forces are viscous in nature, the term on the right-
hand side of eq (3.60) is the power dissipated by such forces; following the
same line of reasoning that leads to eq (3.56) we have
 

 

hence
 

(3.63)

 
and, as expected, energy is not conserved in this case, 2D being the rate of
energy dissipation due to the frictional forces.

3.3.4 Hamilton’s equations

Lagrange’s equations for a n-degree-of-freedom system are n second-order
equations. In many cases, such a set of equations is equivalent to a set of 2n
first order equations; in analytical mechanics these are Hamilton’s equations,
which we introduce briefly. Whenever a Lagrangian function exists, we can
define the conjugate momenta as
 

(3.64)
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and a Hamiltonian function
 

(3.65)

 

where the  are expressed as functions of the generalized momenta and
then H is, in general, a function  By differentiating eq (3.65)
and taking into account Lagrange’s equations, we get
 

 

which is valid for any choice of the differentials dpj and dqj; it then follows
that
 

(3.66)

 

These are Hamilton’s canonical equations, showing a particular formal
elegance and symmetry. It is not difficult to show that in the case of
scleronomic constraints the function H is the total energy T+V of the system,
which is a constant of motion when the Lagrangian does not depend explicitly
on time t. Since we will make little use of Hamilton’s equations, we do not
pursue the subject any further and the interested reader can find references
for additional reading at the end of Part I.

3.4 Hamilton’s principle of least action

Many problems of physics and engineering lend themselves to mathematical
formulations that belong to the specific subject called ‘calculus of variations’.
In principle, the basic problem is the same as finding the maximum and
minimum values of a function f(x) in ordinary calculus. We calculate df/dx
and set it equal to zero; the values of x that we find are called stationary
points and they correspond to maximum points, minimum points or points
of inflection with horizontal tangent. In the calculus of variation the quantity
to make stationary is an integral of the form
 

(3.67)
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where  The statement of the problem is as follows: given the two
points  and the form of the function f, find the curve
y=y(x), passing through the given points, which makes the integral I have the
smallest value (or stationary value). Such a function y(x) is called an extremal.
Then let η(x) be an arbitrary function whose only properties are to be zero at
x1 and x2 and have continuous second derivatives. We define Y(x) as
 

(3.68)
 

where y(x) is the desired (unknown) extremal and e is a parameter. Due to
the arbitrariness of η(x), Y(x) represents any curve that can be drawn through
the points . Then
 

 

and we want  when . By differentiating under the integral sign
and substituting eq (3.68) we are led to
 

(3.69)

 

because Y=y when . The second term can be integrated by parts as
 

 

and the first term on the right-hand side is zero because of the requirements
on η(x). We obtain
 

 

and for the arbitrariness of η(x)
 

(3.70)

 

which is called the Euler-Lagrange equation. The extension to more than
one dependent variable (but always one independent variable) is
straightforward: one gets as many Euler-Lagrange equations as the number
of dependent variables.
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A word of warning about the mathematical symbols: the reader will often
find δI for the differential  where the δ symbol reads ‘the
variation of’ and indicates that ε and not x is the differentiation variable.
Similarly,  and 

The formal structure of eq (3.70) already suggests the connection with
the problems of interest to us. In fact, if we replace the independent variable
x with time and if the function f is the Lagrangian of some mechanical system,
eq (3.70) is a Lagrange equation for a single-degree-of-freedom conservative
system where y(x)—the dependent variable—is nothing but the generalized
coordinate q(t).

In the case of n degrees of freedom we have n generalized coordinates
and the procedure outlined above leads exactly to the n Lagrange equations
(3.31). The integral to be made stationary is called action; it is usually denoted
by the symbol S and is defined as
 

(3.71)

 

where L is the Lagrangian of the system under consideration. Hamilton’s
principle of least action can then be written

 

(3.72)

 

Thus, for a conservative system with frictionless constraints the natural
motion has the property of making the Hamiltonian action stationary with
respect to all varied motions for which 

More specifically, the class of varied motions considered in this case are
called ‘synchronous’ to make the increments δq correspond to the virtual
displacements introduced in preceding sections; other types of increments
can be considered but this is beyond the scope of the present discussion.

In essence, Hamilton’s principle is an integral version of the virtual work
principle because it considers the entire motion of the system between two
instants t1 and t2. Furthermore, Hamilton’s principle is a necessary and
sufficient condition for the validity of Lagrange’s equations; as such, it can
be obtained by starting from d’Alembert’s principle, i.e. the equation
 

 

(e.g. Meirovitch [2]). The advantages—as with Lagrange’s and Hamilton’s
equations—are the possibility of working with a scalar function, the
invariance with respect to the coordinate system used and their validity for
linear and nonlinear systems.
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An extended, or generalized Hamilton principle can be stated as
 

(3.73)

 

where
 

 

is the virtual work done by nonconservative forces (including damping forces
and forces not accounted for in V).

Example 3.2. As an example, we can use the generalized Hamilton principle
to derive the governing equation of motion for the transverse vibration of
an Euler-Bernoulli beam (shear deformation and rotary inertia ignored, see
Chapter 8 for more details) in the general case of variable mass density and
bending stiffness EI(x), as shown in Fig. 3.1.

The kinetic energy is
 

(3.74)

 

where  is the mass per unit length and y=y(x, t) is the transverse
displacement from the neutral axis; the potential strain energy is in this case
 

(3.75)

 

where E is Young’s modulus and I(x) is the cross-sectional area moment of
inertia of the beam about its neutral axis. Finally, the virtual work done by the

Fig. 3.1 Transverse vibration of a slender (Euler-Bernoulli) beam.
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nonconservative distributed external force f(x, t) is
 

(3.76)

 

where  is an arbitrary virtual displacement.
Inserting the expressions above in the generalized Hamilton principle,

under the assumptions that the operator δ commutes with the time and spatial
derivatives and that the time and spatial integrations are interchangeable,
we obtain, for example, for the term 
 

 

Integration by parts with respect to time gives
 

(3.77)

because δy vanishes at t=t1 and t=t2. Similar calculations apply for the strain
energy term, where now two integrations by part with respect to x must be
performed and we get
 

 

Putting all the pieces back together in Hamilton’s principle we obtain
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Because of the arbitrariness of δy, the equation above is satisfied only if
the integrand vanishes for all t and all x in the domain 0<x<L,  i .e.
 

(3.78)

 

The other terms should also vanish, so that
 

(3.79)

(3.80)

 

Equation (3.79) can be satisfied if either the displacement is zero—which
implies —or the shearing force

 

is zero at either end; eq (3.80), in turn, can be satisfied if either the slope is
zero, i.e.  or the bending moment
 

 

is zero at either end.
It is not difficult to identify eq (3.78) as the differential equation of motion

for the transverse (or flexural or bending) vibrations of a slender beam and
eqs (3.79) and (3.80) as the essential and natural boundary conditions, which
automatically appear from Hamilton’s principle.

For the moment, it suffices to say that in any case of beam vibration, four
boundary conditions must exist: two at each end. The specific problem under
investigation dictates which particular set of conditions apply in that
particular case.

3.5 The general problem of small oscillations

In application of mechanics, our interest lies specifically in a special form of
motion known as ‘small oscillations’.

It is well explained in many textbooks how the problem of an oscillating
simple pendulum leads, in the general case, to an equation relating the
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deflection angle θ to time which is a nonelementary (elliptic) integral.
However, the problem is greatly simplified if  i.e. the deflection angle is
small compared to a radian. The fundamental point in this case is that the
frequency of small oscillations does not depend on the amplitude of
oscillation.

A slightly more complicated example is given by the double pendulum,
which is composed of two masses m1 and m2 as shown in Fig. 3.2. The
masses are connected to each other by a light string of length l2 and the first
mass is suspended from a fixed point by means of a light string of length l1.

It is obvious that this is a two-degree-of-freedom system and a proper
choice of generalized coordinates are the two angles θ and φ. The Lagrangian
function is in this case
 

(3.81)

 

where the origin of the coordinates is taken at the suspension point and the
y axis is directed downwards.

Using Lagrange’s equations, the reader is invited to derive the equations
of motion. It will soon be clear that the equations are nonlinear and, in
order to proceed further, some simplification is necessary (unless we want to
resort to numerical integration).

The procedure of ‘linearization’ (or small amplitude approximation) is
based on the assumption that θ and φ remain small and consists of neglecting
all higher-order terms in a Taylor series expansion of the cosine terms in
eq (3.81). Then, the two equations of motion become linear and can be

Fig. 3.2 Double pendulum.
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tackled with much less effort. For our example, the Lagrangian becomes
 

(3.82)

 

and the equations of motion are easily obtained as
 

(3.83a)

(3.83b)

 
These introductory remarks are much more general than the two simple

cases above may suggest and, as a matter of fact, they are fundamental to all
the problems considered in this book.

We note immediately that it makes more sense to examine and perform
the appropriate modifications to the terms T and V before Lagrange’s
equations are formulated rather than simplify the equations of motion once
they have been obtained. This is, in essence, the central idea to the discussion
that follows.

All oscillations occur about a position of equilibrium and since force is
equal to the derivative (with respect to the coordinate) of potential energy, the
equilibrium condition for a single-degree-of-freedom system can be written as
 

(3.84)

 
Let q0 be the solution of eq (3.84), representing the equilibrium

configuration of our system. From basic physics we know that the equilibrium
is stable if V has a minimum at q=q0. When we consider small deviations
from the equilibrium we can expand V in a Taylor series as
 

 (3.85)

 
The first term on the right-hand side is zero in accordance with eq (3.84)

and, without loss of generality, we can assume  so that
 

(3.86)
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where we have defined
 

(3.87)

 

and  The condition of stable equilibrium (force acting in the
opposite direction of displacement) clearly implies k>0. The kinetic energy,
in its turn, can be written in the general form
 

(3.88)

 

(note that a(q)=m if u is a Cartesian coordinate) and expanding the coefficient
a(q) in a Taylor series we get
 

 

where we define  The zero-order term of T is already of the same
order as the second-order term in the expansion of V; we retain this term
only and obtain the Lagrangian function
 

(3.89)

 

which leads to the equation of motion
 

  
or
 

(3.90)

 
where we defined 

The solution of eq (3.90) is discussed in detail in Chapter 4, but its essential
feature is that ω is the characteristic frequency of oscillation, which is
completely defined by the physical properties of the system itself and does
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not depend on the initial conditions of motion. This is a consequence of the
small-oscillation assumption and is no longer valid when higher-order
approximations are considered; mathematically, this important property of
ω is strictly connected to the fact that V is a quadratic function of the
generalized coordinate.

The considerations above can be generalized to n-degree of freedom
conservative systems with scleronomic constraints. As before, the system is
in equilibrium when the generalized applied forces are zero, i.e.
 

(3.91)

 

Let the equilibrium configuration be identified by the coordinates
 stability requires that the stationary point of V defined by

eqs (3.91) is a minimum and if we confine our attention to small oscillations
about the equilibrium position, all the relevant functions may be expanded
in a Taylor series. Letting  be the variation of the ith generalized
coordinate from equilibrium, we have
 

(3.92)

 

where the subscript q=q0 refers now to the entire set of coordinates. As before,
we retain only the lowest order nonzero term, i.e.
 

(3.93)

 

where we defined the constants
 

 

which are clearly symmetrical in the indices i and j.
An analogous line of reasoning applies to the kinetic energy which, in the

case of scleronomic constraints, can be written as (eq (3.55))
 

(3.94)
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In general, the coefficients Aij are functions of the generalized coordinates
and can be expanded in a Taylor series about equilibrium:
 

 

Only the first term of the expansion is retained, so that
 

(3.95)

 

where mij represents the constant coefficients  From eqs
(3.93) and (3.95) we obtain the Lagrangian
 

(3.96)

 

Performing the appropriate differentiations, Lagrange’s equations lead (since
 and i and j are dummy indices of summation) to the n equations of

motion
 

(3.97)

 

which are equivalent to the matrix expression
 

(3.98)
 

where the mass, stiffness, displacement and acceleration matrices have been
introduced:
 

(3.98a)
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(3.98b)

 

In the language of matrices, the symmetry of the coefficients mij and kij

translates into
 

(3.99)
 

If dissipative forces of viscous nature are also acting on our n-degree of
freedom system, the generalization is straightforward. The formal analogy
of the Rayleigh dissipation function D (see eq (3.57)) with the kinetic energy
term—a symmetrical quadratic form in the generalized velocities—suggests
that the coefficients Cij in the function D can also be expanded in a Taylor
series as
 

 

 

where  and only the first term on the right-hand side
is retained. Using Lagrange’s equations in the form of eq (3.43) leads now
to the n equations of motion
 

(3.100)

 

or, in matrix form
 

(3.101)

 
where
 

 

is called the damping matrix and the symmetry of the coefficients implies
C=CT. The addition of viscous forces in eq (3.90)—i.e. the single degree of
freedom system—follows easily as a particular case of eqs (3.100).
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Finally, generalized external forces can be taken into account by a term
Qi on the right-hand side of eqs (3.97) or (3.100), which in matrix notation
means the addition of the column vector f on the right-hand side of eqs
(3.98) or (3.101) to give
 

(3.102)
 

in the case of an ‘undamped’ (no dissipative forces) system, or
 

(3.103)
 

in the case of a viscously damped system. Explicitly 
and we have used the symbol f to avoid ambiguities with the column vector
q of the generalized coordinates that we used in eq (3.55).

The solutions of eqs (3.98) and (3.101)—free vibration problem—and of
eqs (3.102) and (3.103)—forced vibration problem—will be obtained and
analysed in future chapters.

In the double pendulum example considered at the beginning of this
section, the explicit quadratic expressions of the kinetic and potential energy
are, in matrix form
 

 

where the elements of the mass and stiffness matrices are, respectively
 

 

3.5.1 A qualitative discussion of Lagrange’s method in small-
oscillation problems

In the light of the discussion above, some qualitative observations can be
made. They will not add anything substantial to what have been already
said but they may be helpful in providing further insight in the formulation
of the problem. The simplification procedure of small oscillation consists of
performing appropriate modifications in the terms T and V so that only
linear terms appear in Lagrange’s equations. Let us then rewrite the kinetic
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energy (for a n-degree-of-freedom system with scleronomic constraints) and
the ith Lagrange equation as
 

(3.104)

(3.105)

 

The first term on the right-hand side of eq (3.105) will always be at least
of second order, since the two  in the expression of T are unaffected by the

 operation; this term becomes

 

and will therefore be neglected.
On the left-hand side, the term  will be linear in the generalized

velocities, i.e. we get

 

where δ is the usual Kronecker symbol and the symmetry of the coefficients
has been used. The operator d/dt applies both to the q and  variables of
this term. The time differentiation of any q results in the appearance of a
second  and therefore in a term that will be neglected; the time differentiation
of the  will produce an expression linear in the  with coefficients (the Aij)
that in general depend on some of the qs. In formula
 

 

The required linear term is obtained by assigning to these qs their
equilibrium values (the coefficients mij in the Taylor expansion of the Aij).

In other words, it is clear that the qs in the kinetic energy term do not play
a significant role when small oscillations are considered: every time they are
differentiated the term is neglected and when they are not differentiated they
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are given their equilibrium values. It follows that it is reasonable to give the qs
in T their equilibrium values before substitution in Lagrange’s equations.

For the potential energy, we can observe that linear terms in  will
come from the second-order terms in a Taylor expansion of V. Thus, V is
required correct to the second-order in the qs and no first-order terms appear
since  is zero at equilibrium.

Summarizing:
 
1. In T, assign to the qs their equilibrium values.
2. Obtain V to the second-order in the qs.
3. Apply Lagrange’s equations to the modified T and V.
 
Returning again to the double pendulum example, the kinetic energy is
 

 

and assigning to the generalized coordinates their values at equilibrium 
and  we get
 

 

which, together with the Taylor expansion of the cosine terms that appear
in the potential energy, adds up to form the ‘small oscillations’ Lagrangian
of eq (3.82).

3.6 Lagrangian formulation for continuous systems

At the end of Section 3.4 (Example 3.2) we used Hamilton’s principle to
obtain the differential equation of motion for the transverse vibrations of an
Euler-Bernoulli beam. We assumed without much explanation that the
function y(x, t) describes the beam transverse displacement from its neutral
axis and we were led by Hamilton’s principle to the equation of motion
(and boundary conditions!) in a straightforward manner.

A few words of explanation are needed at this point. The assumption
above is common in continuum mechanics; the equations of motion are
expressed in terms of scalar or vector (or tensor) fields—i.e. physical quantities
that depend, in general, on the spatial coordinates x, y, z and on time t—and
owing to the fact that the space variables vary in a continuous way, the
system is said to possess infinite degrees of freedom. In addition, Example
3.2 suggested the fundamental importance of space boundary conditions in
the continuous case: in any given problem, in fact, their formulation is an
essential part of the problem itself.
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Now, since it is reasonable, and in general correct, to consider continuous
systems as limiting cases of discrete systems and since we have seen that
Lagrange’s equations can be derived from Hamilton’s principle, it is
instructive to obtain a Lagrangian formulation for continuous systems (in
the foregoing discussion, Lagrange’s equations have only been given for finite-
degree of freedom systems) and consider briefly the nature of the
modifications that occur in the transition from discrete to continuous systems.

Restricting ourselves for the moment to one dimensional continuous
systems—for example a string or a beam in longitudinal or transverse
vibrations—the key aspect of the transition is in the role played by the position
coordinate x. This is not a generalized coordinate of the problem, but a
continuous index replacing the index i (or j, or whichever discrete index we
decide to use) of the discrete case. For purposes of illustration, think for
example of a slender beam of length L undergoing longitudinal vibrations;
its discrete counterpart could be a chain of n equal mass points spaced a
distance L/n apart and connected by uniform massless springs. Just as each
value of i (i=1, 2,…, n) corresponds to a different generalized coordinate
υi(t) of the system, for each value of x there is a generalized coordinate υ(x,
t), so that x, like t, can be considered as a parameter entering into the
Lagrangian. If the system is two- or three-dimensional, the generalized
coordinate is labelled by two or three continuous ‘space indices’ and written
as υ(x, y, t) or υ(x, y, z, t). The indices x, y, z and t are completely independent
of each other and this is the reason why many authors write the derivative
of υ with respect to any of them as a total derivative rather than a partial
derivative; we prefer to adopt the partial derivative notation.

We start from Hamilton’s principle
 

 

where L appears now as a space integral (over an appropriate domain Ω) of
a Lagrangian density . In the case of the beam of Example 3.2 we have
 

(3.106)

 

and the space integration is in dx on the domain W=[0, l]. We used here the
lowercase letter l for the beam length to avoid ambiguities with the uppercase
L which stands for the Lagrangian function.

For a general one-dimensional continuum, the Lagrangian density will be
a function of the kind
 

(3.107)
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where the overdots designate time derivatives and the primes designate space
derivatives. Expressing the variation δL in Hamilton’s principle we get
 

and a rather tedious symbolic integration by parts (remember that Hamilton’s
principle implies  can be performed in order to factor out
the term δv. For example, the second and the fifth terms of eq (3.108) give

 

In conclusion, we arrive at the somewhat lengthy expression  

 

and using the usual argument on the arbitrariness and independence of the
variations dv, the above equation gives the governing differential equation
and the boundary conditions as follows:
 

(3.108)
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(3.109)

(3.110)

(3.111)

 

The procedure above lends itself to further generalizations; an elegant
and detailed discussion, together with some interesting applications, can be
found, for example in the text of Junkins and Kim [3]. Their formulation
applies to a wide family of multibody hybrid discrete/distributed systems
(collections of interconnected rigid and elastic bodies), resulting in a hybrid
system of ordinary and partial integrodifferential equations.

The authors explicitly say that the method ‘is especially attractive for
more mature analysts because, on the average, integration by parts ceases to
be fun sometime around age forty-five’. Their treatment, however, is beyond
the scope of this book and the interested reader can find additional
information also in Lee and Junkins [4].

Two examples will now illustrate the Lagrangian formulation discussed
above.

Example 3.3. Let us go back to the transverse vibrations of the beam
considered in Example 3.2. In this case, the Lagrangian density is given by
eq (3.106), i.e.

 
(3.112)

 
which is obviously a particular case of the symbolic expression (3.107). The
equation of motion can be obtained from eq (3.109) which now becomes

 

(3.113)
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with the boundary conditions
 

(3.114)

(3.115)

 

By performing on the Lagrangian density of eq (3.112) the appropriate
derivatives prescribed by Lagrange’s equation, it is easy to obtain the explicit
expression
 

(3.116)

 

for the differential equation of motion and
 

(3.117)

(3.118)
 

for the boundary conditions. As expected, since no external forces have been
considered in this example, eq (3.116) is the homogeneous counterpart of eq
(3.78) and eqs (3.117) and (3.118) are exactly the same as eqs (3.79) and
(3.80).

Example 3.4. If, on the other hand, we consider the longitudinal vibrations
of the same beam, the Lagrangian density has the form
 

(3.119)

 

where A is the cross-sectional area of the beam. The reader is invited to
verify that the same line of reasoning as in the preceding example leads to
the equation of motion
 

(3.120)

 

and the boundary conditions
 

(3.121)
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4 Single-degree-of-freedom
systems

4.1 Introduction

This chapter deals with the simplest system capable of vibratory motion: the
single-degree-of-freedom (SDOF) system which, in its discrete-parameters
form, is often called harmonic oscillator.

Despite its apparent simplicity, this system contains and exhibits most of
the essential features of vibrating systems and its analysis is a necessary
prerequisite to any further investigation in vibration theory and practice. In
addition, many complex systems behave and can be considered, under certain
circumstances, as SDOF systems, thus considerably simplifying the procedures
of measurement and analysis. It is often a matter of the modelling scheme
that we choose to adopt for the system under examination and of the degree
of approximation that we are willing to accept.

The second-order ordinary differential equation which these SDOF obey
is commonly found in many branches of physics and engineering—acoustics,
mechanical, structural engineering and electronics, to name a few—and all
its physical and mathematical aspects are worth considering for their own
sake since they are the basis of useful analogies between these different fields.

This basic equation, in the general form that is of interest to us, is the
equation of motion of the linear harmonic oscillator shown in Fig. 4.1 under
an external applied force f(t). It can be written as (Chapter 3)
 

(4.1)

 

where m, c and k are the mass, the damping and elastic constant of our
SDOF system (see also Section 1.4). Unless otherwise specified, we will assume
that these quantities are time-independent.

When the motion is pure rotational, there is a whole formal analogy with
the translational case for which eq (4.1) applies. Obviously, the quantities to
consider now are angular displacements, angular velocities and angular
accelerations. The analogies are listed in Table 4.1 and, as a consequence of
this analogy, only translational systems will be discussed in the following
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sections. The treatment of rotational systems is obtained by substitution of
the appropriate quantities with the consistent units.

As a word of caution, it must be said that rotational quantities cannot be
measured as easily as translational quantities and therefore the experimental
part may turn out to be more critical.

4.2 The harmonic oscillator I: free vibrations

When friction forces are absent (or negligible), any elastic system that, in
some way, is slightly displaced from its equilibrium position and is subsequently
let free by removing the cause of the initial disturbance, executes an oscillatory
motion and continues to vibrate forever unless we decide to interfere with it
again. This particular condition is called undamped free vibrations. The
frequency characteristics of the oscillatory motion depend on the parameters
of the system itself, that is, on its mass and elasticity; the amplitude
characteristics, on the contrary, depend on the initial conditions and the
vibration does not die out because no energy is lost during the motion.

Fig. 4.1 Harmonic oscillator.

Table 4.1 Analogies between translational and rotational systems
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When some kind of damping is present, energy is lost during the motion
and the amplitude of vibration decreases as time passes, until it stops
completely; this is the case of damped free vibrations.

Once again, however, the frequency characteristics of the oscillatory
motion depend on the parameters of the system, and not on the initial
conditions that started the motion. No musical instrument could be played
in tune if this general rule did not apply.

In the case of ‘strong damping’, the system does not vibrate at all but
loses quickly its initial energy and simply returns to its equilibrium position
without oscillating. We will determine quantitatively the meaning of the term
‘strong damping’ in the following sections.

4.2.1 Undamped free vibrations

Let us now consider the simple ideal system of Fig. 4.2. It consists of a mass
m and a massless spring k; the mass can only move in the x direction and no
friction of any kind acts during the motion. The equation of motion is eq
(4.1) with c=0, f=0 and can be written as
 

(4.2)
 

where we have defined
 

(4.3)

 

and x=0 determines the equilibrium position of the mass.
It is interesting to note that if the mass was suspended in a vertical position,

eq (4.2) would still hold because the weight mg (gravity acceleration g=9.81
m/s2) cancels out with the term kδst, which represents the restoring force
acting on the mass in the vertical equilibrium position, in which the spring
is stretched by the amount δst. The subscript ‘st’ is for static, and at
equilibrium .

Fig. 4.2 Undamped harmonic oscillator.
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This is a general principle that applies to all linear elastic systems and for
this reason the static equilibrium position is chosen as a reference to eliminate
gravity forces from the equations of motion. The displacements thus determined
are the dynamic response; total deflections, stresses etc. are obtained by adding
the relevant static quantities to the result of the dynamic analysis.

The general solution of eq (4.2) can be expressed in exponential form as
 the characteristic equation  is with solutions

 Using complex numbers we get
 

(4.4)
 

where A and B are two complex constants determined by the initial
conditions. Since x(t) is a real quantity, we must have A=B*. Moreover, if
the initial conditions for t=0 are given by
 

(4.5)

 

we obtain
 

(4.6)

 

Equation (4.4) represents a pure oscillation at the frequency ωn, which is
the natural frequency of the undamped system (or undamped natural
frequency). It is easy to show that eq (4.4) can also be alternatively written
in the forms
 

(4.7)

(4.8)
 

where the constants of integration are now C and θ in the first case, D and
E in the second case and all of them can be expressed in terms of x0 and v0.

Explicitly:  

(4.9)
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 Another possibility is to use the convention on complex numbers explained
in Chapter 1 and write the solution in the form  where C is
complex with magnitude |C| and phase angle θ, and we agree to take the
real part (or the imaginary part) to represent the quantity x(t).

Two points need to be emphasized:
 
• Only the initial displacement x0 and the initial velocity v0 need be given

to determine completely the subsequent motion of the oscillator. The
mathematical counterpart of this statement is that the solution of any
second-order differential equation has two arbitrary constants in it

• The frequency of the oscillation depends only on k and m and not at all
on x0 and v0. With a given spring, an increase of mass results in a decrease
of the natural frequency and vice versa; with a given mass, an increase
of the spring stiffness results in an increase of the natural frequency and
vice versa.

 
Returning for a moment to the case in which the mass is suspended vertically
and the equilibrium position corresponds to a certain amount of stretching
of the spring, we can obtain the natural frequency of the system by the
static deflection (δst) only. In fact, at equilibrium  and so, from
(4.3), we get

 
(4.10)

 
The system we are considering is conservative: once the motion has been

started no energy is lost through friction and no energy is supplied by an
external source. The total energy ET does not depend on time and is the sum
of the kinetic and potential energies which, in turn, are given respectively by
 

 

where  and y is a dummy variable of integration. Using for example
the form of eq (4.7), we obtain for the total energy
 

(4.11)
 

where  is the velocity amplitude of the motion. So, the total energy
is equal to the potential energy at maximum displacement or to the kinetic
energy at maximum velocity and  In terms of x0 and v0, we
see that ET depends on the square of these two quantities.
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If we consider average values over a time period T, it is left as an easy
exercise to show that
 

(4.12)

4.2.2 Damped free vibrations

The equation to solve is now
 

(4.13)

 

which corresponds to the system of Fig. 4.1 where f=0. Different forms of
damping other than viscous are possible and we will consider this aspect
later. To solve eq (4.13) we make use of the exponential function again; the
characteristic equation is now  with solutions α1 and α2

given by
 

(4.14)

 

so that the general solution of eq (4.13) is written
 

(4.15)
 

where A and B are two constants to be evaluated from the initial conditions.
Three cases are possible, depending on the sign of the term under the square
root in eq (4.14). Let us introduce the definitions
 

(4.16)
 

(4.17)

where:  
 
• ccr is the value of damping that makes the radical in eq (4.14) equal to

zero and is called critical damping;
• ζ is a nondimensional quantity known as the damping ratio.
 

With these definitions the equation of motion (4.13) becomes
 

(4.18)
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and the three cases correspond to  and  since the roots α1, 2

are written
 

(4.19)

 
Case 1. Critically damped motion: 

In this case  and in order to have two linearly independent
solutions, x(t) has the form
 

(4.20)

 
With the usual initial conditions of eqs (4.5), we get for the constants A

and B
 

(4.21)

 
Equation (4.20) represents an exponentially decaying response; the system does
not oscillate and returns to rest in the shortest time possible. For a given system,
Fig. 4.3 shows three types of responses x(t) which differ by the value of initial
velocity (the initial displacement being x0=0.1 m in all of the three cases).

In many applications that employ meters and measuring instrumentation
in general, the physical systems or some of their moving parts are critically
damped on purpose in order to avoid unwanted overshoot and oscillations.

Fig. 4.3 Critically damped motion.
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Case 2. Overdamped motion: 

The two roots are separate and real; the general solution is
 

(4.22)
 

which is an exponentially decaying function similar to the ones shown in
Fig. 4.3. The constants A and B determined by the initial conditions and
substitution of the latter in eq (4.20) gives
 

(4.23)

Once again, the system returns to rest without oscillating but it takes
longer than in case 1; how much longer, for fixed initial conditions, depends
on how much ζ is greater than unity.

Case 3. Underdamped motion: 

This is the case of greatest interest in vibration problems. Substituting eq
(4.19) into eq (4.15), the general solution becomes
 

(4.24)
 

which represents an oscillation at frequency  with an exponentially
decaying amplitude. The curves  envelop the displacement-time
relationship and touch it at the points where  These are
not the points of maximum displacement: the actual maxima lie a bit to
their left and can be determined by equating the derivative of x(t) to zero;
obviously, they depend on the value of ζ.

Looking at the general solution, it is common to define
 

(4.25)
 
as the frequency of damped free oscillation. The oscillation is not periodic
because the motion never repeats itself; however, if ζ is small compared to
unity the motion is very nearly periodic and ωd is very nearly equal to ωn. In
this case, the expression for ωd can be expanded and all but the first two
terms can be neglected so that

 

To evaluate the effect of damping on the frequency it may be useful to
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note that a plot of  versus ζ is a circle of unit radius in the first quadrant
(since  and 

We point out that, once again, the frequency is independent of the
amplitude of motion and the decay properties, which in turn, are independent
of the way the SDOF system is started into motion. Strictly speaking, the
word ‘frequency’ used in this case of nonperiodic motion is improper, but
when the damping is small the word still has some meaning. This can be
seen in Fig. 4.4 where we have plotted the displacement time history of a
underdamped system with  rad/s and  started into motion by
the initial conditions x0=0.1m and υ0=0 m/s.

The constants A and B can be obtained from the initial conditions. We get
 

(4.26)

with A=B* since x(t) must be a real quantity.
Other equivalent forms can be used to express the general solution (4.24);

we can write
 

(4.27)

Fig. 4.4 Underdamped motion .
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The second expression is the real part of  where C is complex
with magnitude X and phase angle θ; in this case the initial conditions
determine X and θ that are given by
 

(4.28)

With reference to the decaying amplitude, one often find references to the
decay time ( ) which is defined as the time it takes to have an amplitude
that is 1/e of its initial value. This is  Furthermore, if one writes
the general solution in complex form as
 

 
the complex quantity
 

(4.29)
 
is defined complex damped frequency of free oscillation and contains
information on both the damped frequency of the system and its decay time.

Energy is not conserved in this case, since friction forces are at work
during the motion. We can calculate the rate of loss of energy and consider
the subject from this point of view. Using, for example, the second form of
eq (4.27) for the general solution to the equation of motion, we can first
calculate the energy of the system at any instant. We have  

 

where the time dependent amplitude  has been written for convenience
of notation in the general form A(t). If we average this quantity over one period,
the second term (with the product sin(···)cos(···)) goes to zero. If, in addition,
A(t) is slowly varying so that dA/dt is small compared to ωdA, the third term
can be neglected and we obtain the approximate expression for the energy
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(4.30)

 
where V(t) is the time-dependent velocity amplitude and in the last expression
ωn can be substituted for ωd because of the requirement of slowly varying
amplitude.

The rate of energy loss is given by the product of the friction force c
times the velocity, i.e. c 2 (force times velocity is power, the rate of change
of energy), and with the same approximations as above we get the average
energy loss per second which, by definition, is the average dissipated power

 

(4.31)

4.2.3 Logarithmic decrement

The free oscillation response of a given SDOF system can be used to determine
the amount of damping when this is not known. We are referring to the
underdamped case with viscous damping.

It must be noted that the true damping characteristics of physical systems
are in general difficult to define, but it is often common practice to consider
equivalent viscous damping ratios ζ for systems in free vibration that show
similar decay rates. So, it is important to see how this damping ratio can be
obtained by an experimental measurement of the free oscillation time history.

Considering two successive positive (or negative) peaks x1 and x2 that
occur at times t1 and t2 respectively, we can calculate the ratio
 

 

 
and, since  (where Td is the period of damped
oscillation), we get
 

 

 
The logarithmic decrement δ is defined as the natural logarithm of this

amplitude ratio, i.e.
 

(4.32)
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If, as it is often the case, the damping is low, eq (4.32) can be approximated by
 

(4.33)
 
and the exponential in the ratio  can be expanded in series retaining
only the first two terms; since  this leads to
 

(4.34)

 

Figure 4.5 illustrates a plot of the exact and the approximate values of δ, as
given by eqs (4.32) and (4.33) respectively, as a function of ζ. Figure 4.6, in
turn, is a graph of practical use where, as a function of the approximate ζ
given by eq (4.34), ζexact is given. From the recorded decaying time history
the approximate value ζapprox is obtained by using eq (4.34) and then, from
Fig. 4.6, the exact value of ζ can be determined.

In case of very low damping—i.e. when the difference between the
amplitudes of two successive peaks is small—it is more convenient (and more
accurate) to consider two peaks that are a few cycles apart, say xi and xi+m

(m cycles apart), so that
 

(4.35)

 

and the same approximations as before give
 

(4.36)

Fig. 4.5 Exact and approximate logarithmic decrement vs damping ratio.
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It is left as an exercise to the reader to determine the number of cycles, as
a function of ζ, required to reduce the oscillation amplitude by 50%. This
can be done by using eq (4.35) and, as a quick rule of thumb, it can be
convenient to remember that for 10% critical damping (i.e. ) the
amplitude is reduced by 50% in one cycle, for 5% critical damping (i.e.

) the amplitude is reduced by 50% in about two cycles, more precisely
in 2.2 cycles.

The value of the logarithmic decrement δ can be expressed in terms of
energy considerations as well. From the definition of δ we get

 

and, since the energy of the system at the relative maxima x1 and x2 is
given by

it follows that

Fig. 4.6 Exact damping ratio versus approximate damping ratio.
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For low damping the exponential term can be expanded giving
 

(4.37)

4.2.4 Further analogies

Now that we have gained some initial insight in the behaviour of mechanical
systems, it is interesting to go back to the introduction to this chapter and show
some analogies between these systems and other systems that, in their own
right, belong to different branches of physics and engineering. The importance
lies in the fact that a good understanding of the essential aspects and phenomena
in one particular field can be taken over to another field of interest, once the
appropriate substitutions are made. It is then possible to compare an unfamiliar
system with one that is better known and extend the line of reasoning to the
former system. The analogy between translational and rotational systems—
although both in the realm of mechanical vibrations—is a good example.

The electrical circuit is a widely exploited vibrating system in which the
kinetic, potential energy and dissipation may be expressed by equations
similar to the ones we have considered so far. Table 4.2 shows the dynamic
analogies between mechanical and electrical elements.

The analogy above is sometimes called the voltage-force analogy and is
constructed on the basis of Kirchhoff’s voltage law, which states that the
algebraic sum of all the voltages around any closed circuit is equal to zero in
any network. Kirchhoff’s current law can be used to establish the current-force
analogy and other analogies with acoustical systems can be given. The interested
reader can refer, for example, to Section 13.7.3 or to Olson [1] and Seto [2].

4.3 The harmonic oscillator II: forced vibrations

It often happens that a system is set into vibration because it is subjected in
some way to an external excitation that supplies the energy to keep it

Table 4.2 Analogies between mechanical and electrical quantities*

* See Section 13.7.3 for more details.
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oscillating. In these cases one speaks of forced oscillations because the external
excitation—the input to our system—is the ‘forcing’ cause of the vibration.
The characteristics of the system’s response (i.e. the output) depend on its
physical properties and on the type of excitation as well. Figure 4.7 illustrates
schematically this situation in the case of a single-input single-output linear
system.

Common examples can be the diaphragm of a microphone that vibrates
because it is linked, by means of sound waves, to the vibrations of a violin
string; a tall and slender structure that vibrates under the forcing action of
the wind or a building under the action of an earthquake or the passage of
heavy traffic in its vicinity.

The input excitation and the output response can be in the form of
displacement, velocity, acceleration or force and in a number greater than
one; in addition, there can be some form of feedback between some of the
outputs and inputs. However, in many cases of interest, the system under
investigation does not feed back any appreciable amount of energy to the
forcing (or ‘driving’) system that supplies the excitation, either because the
linkage between the two is weak or because the driving system has so great
a reserve of energy that the amount fed back is negligible in comparison.

So, for the present, we need not be concerned with these complications
and consider as the only relevant property of the driving system the fact that
it supplies an excitation that persists for a certain interval of time; furthermore,
linearity assures that the principle of superposition (Section 1.2) holds.

A simple case of a single-input single-output linear system is the harmonic
oscillator under the action of an external time-varying force f(t) as shown in
Fig. 4.1. The equation of motion is eq (4.1), which we can rewrite here in
the form
 

(4.38)

 
If damping is absent or negligible, we put c=0 in eq (4.38) and we speak

of undamped forced vibrations; when damping is taken into account the
term damped forced vibrations is commonly used.

In both cases the excitation force can be:
 
1. applied to the mass of our SDOF system;
2. a motion of the ‘foundation’ that supports the system.

Fig. 4.7 Single-input single-output linear system (schematic ‘black-box’
representation).
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In case 1 the response may be expressed either as the amplitude of motion
of the mass (motion response) or the fraction of the applied force transmitted
to the support (force transmissibility).

In case 2 the response is usually given in terms of the amplitude of mass
motion divided by amplitude of support motion, and one speaks of motion
transmissibility.

All these quantities depend on the frequency of the forcing excitation and
vary for different types and degrees of damping; the excitation, in turn, can
be harmonic, periodic or nonperiodic in time or, more generally, deterministic
or random. This latter aspect—bearing in mind the use to be made of the
result—somehow dictates the procedure of analysis.

Because of its fundamental nature and for the multitude of practical
applications, we will start with the simplest case of excitation: a harmonically
varying function of time.

4.3.1 Forced vibrations

The system we consider is illustrated in Fig. 4.1 and the relevant equation of
motion is eq (4.1) or, which is the same, eq (4.38). This is, mathematically
speaking, an inhomogeneous linear differential equation with constant
coefficients and its solution can be expressed as the sum of two parts: a
complementary function and a particular integral.

The complementary function is obtained by solving the homogeneous
equation, i.e. eq (4.13), where f(t)=0. This part was discussed in the previous
sections and we saw that the solution involves two arbitrary constants to
satisfy the initial conditions. Furthermore, complementary solutions are
transient in nature because, as a result of damping, they decay with time.

On the other hand, a particular solution (or integral) depends on the
exciting force and does not involve any arbitrary constant; by itself, it will
not satisfy the initial conditions of displacement and velocity at time t=0.
The particular solution represents the steady-state condition of motion
because it persists as long as the exciting force does. It can be obtained by
a process of trial and error when f(t) is a simple function of time and by
more complex techniques when this is not the case. In brief, steady-state
motion is the motion of a system that has forgotten how it started.

We begin with a mass-applied harmonic forcing function that we write
for convenience in complex exponential form as
 

(4.39)

with magnitude f0 and zero phase angle (Note that, as stated in Chapter 1,
the positive exponential convention—i.e. —could be adopted
without affecting the essence of the results; the choice is subjective and either
is fine as long as consistency is maintained.)
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The general solution can be written, as stated above, as
 

(4.40)
 

where:
 
• x1(t) is the transient complementary function that dies out with time

because of damping and can be expressed in any one of the forms
discussed in the preceding section. (An important observation, however,
must be made at this point. Although we can write x1(t) as, say, in the
first of eqs (4.27), it should be noted that now the two constants D and
E are no longer given by eq (4.28) because in the forced vibration case
they must be evaluated by taking into account also the particular solution.
In this regard, see, e.g. eqs. (4.60) and (4.61).)

• x2(t) is the particular solution. When  only this part remains,
 and the motion takes place at the forcing frequency with

amplitude and phase characteristics that depend on the particular value
of the forcing frequency.

 
We can assume the particular solution to be of the form

 
(4.41)

 

where X is the complex amplitude with magnitude |X| and phase angle φ
(with respect to zero, or more generally, to the phase angle of f(t)). Calculating
the first and second time derivatives of eq (4.41) and substituting in eq (4.38)
we obtain after a few stages
 

(4.42)

 

which can be written more conveniently as
 

(4.43)

 

since  and we have defined 
The magnitude of X, its real and imaginary parts and the phase angle φ

(in radians) can be easily obtained from complex algebra and are given
respectively by
 

(4.44)
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(4.45)

(4.46)

(4.47)

The explicit form of the steady-state solution is then
 

(4.48)

 
For the moment, we concentrate our attention on eqs (4.44) and (4.47).

The ratio of the amplitude response to the static displacement which would
be produced by the force f0—i.e. the ratio f0/k—is a nondimensional quantity
often called dynamic magnification factor  and, as the phase
angle φ, is a function only of the frequency ratio β and of the damping factor
ζ. Before making some general comments on the behaviour of our system, it
is interesting to study the graphical representations of D and φ as functions
of β, with ζ as a parameter. They are shown in Figs 4.8 and 4.9.

It is evident that the damping factor ζ has a large influence on the amplitude
and phase angle in the region where  (i.e. when ). The condition

Fig. 4.8 Dynamic magnification factor versus β.
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 is called resonance; for small damping it is characterized by violent
vibration and may lead to disastrous effects. It can be shown that the maximum
value of amplitude (amplitude resonance) does not occur at exactly  but at
 

(4.49a)

 
and the maximum value of the dynamic magnification factor is
 

(4.50a)

 
For light damping, such as when  eqs (4.49a) and (4.50a) can be

approximated by
 

(4.49b)

 
and
 

(4.50b)

 
without significant loss of accuracy (for  the relative error, in
percentage with respect to the true value, is 0.25% on β and 0.13% on
Dmax). A brief point to note is that eq (4.50b)—from electrical engineering

Fig. 4.9 Phase angle versus β.
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terminology—defines the quality factor  which describes the
sharpness of the response at resonance and can be used as a measure of the
system’s damping characteristics. Low damping corresponds to high values
of Q and to a strongly peaked response, high damping corresponds to low
values of Q and to smaller amplitudes at resonance.

As damping increases, the amplitude of motion decreases and the value
of Dmax is shifted to the left of the vertical line  If  the
amplitude response shows no peak, D is a monotonous decreasing function
of β and the maximum value of D occurs at 

With these considerations in mind, we can go back to Fig. 1.4 and
understand what was meant by saying that the oscillating bell imposes on
the structure (the belltower) a transverse force with frequency close to
resonance for the first flexural mode of the tower. In the time domain, the
phenomenon of beats is of great use in detecting such phenomena, especially
when the frequency resolution of the instrumentation at hand is not adequate
and cannot resolve—in the frequency domain—the two peaks of the driving
force and of the natural frequency of the vibrating system.

In general applications, harmonically driven systems can be used in two
different ways. One type requires the system to respond strongly only to particular
values of frequency (for example an acoustic resonator or the tuning circuit of a
radio), and in this case friction must be small in order to have a large response
only at the natural frequency of the driven system. The other type requires the
system to respond more or less equally well to all frequencies in a certain range
(for example the diaphragm of a microphone or a vibration measuring device
such as an accelerometer or a seismometer) and this requirement can be met by
an appropriate selection of the values of friction, stiffness and mass.

The phase angle φ describes the time shift  between the output
displacement x2(t) and the force excitation f(t); from Fig. 4.9 it can be seen
to vary, as a function of β, between 0° and 180°, passing through the point

 at  for all values of ζ. The transition between the two extremes
becomes more and more gradual as the damping factor increases. This shows
that the motion is not in phase with the force, the angle of lag of the
displacement behind the force being given by φ, which is zero when 
when  and 180° when  and approaches infinity (indicating that the
displacement is opposite in direction to the force).

Let us examine more closely these three regions that correspond,
respectively, to the cases  and 
 
• When the driving frequency is much smaller than the natural frequency

of our system, the displacement is in phase with the force and the
amplitude and phase angle are small because both the inertia and
damping forces are small.

• At resonance, the inertia force is balanced by the spring force, the
amplitude is large (if damping is small), the displacement lags behind
the force of 90° and the velocity is in phase with the force.
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• Finally, when the driving frequency is much greater than the natural
frequency, the amplitude becomes very small (approaching zero as ω
tends to infinity), the displacement is opposed to the force which, in
turn, is now in phase with acceleration and is expended almost entirely
in overcoming the large inertia force.

 
The displacement response of eq (4.44) can be approximated, at these
frequency conditions, as
 

(4.51a)

(4.51b)

(4.51c)

From eqs (4.51)—depending on which element is primarily responsible
for the system’s behaviour—the oscillator is often described as stiffness
controlled, resistance (or damping) controlled and mass controlled in the
three cases above, respectively.

It is left as a very useful exercise to the reader to actually draw the rotating
vectors and see how they add up to give the displacement response and
phase relations according to the equation

 
 

 
where the bold type indicates a vector.

So far in this section we have considered the displacement amplitude
response; however, velocity and acceleration amplitude responses can be
considered as well, especially if we remember that these are the two quantities
more frequently measured in experimental practice. They show different
characteristics in the limits of  and  and also the peak values
occur at slightly different forcing frequencies. If the resonant frequency is
defined as the frequency for which the response is maximum, our SDOF
system has three resonant frequencies, all of them different from the damped
natural frequency.

Equation (4.49) defines the displacement resonant frequency, which is
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The velocity resonant frequency can be obtained by the standard techniques
of calculus if we consider that (Section 1.3.2)
 

 

Equating to zero the derivative of the velocity amplitude with respect to
β leads to the condition
 

 

and using eq (4.44), the velocity resonant frequency can be determined; this is
 

 

An analogous procedure gives the acceleration resonant frequency which is
 

 

In practice, for the degree of damping of common physical systems, the
difference among the three resonant frequencies is often negligible;
nevertheless, the difference is worth noting for sake of completeness.

4.3.2 Force transmissibility and harmonic motion of the support

At the beginning of this chapter we defined the concepts of force and motion
transmissibility: the first quantity considers the fraction of driving force
(applied to the mass) transmitted to the support, the second quantity expresses
the amplitude of mass motion with respect to an excitation due to the motion
of the ‘foundation’ that supports our SDOF system. From the definitions
themselves, it is not difficult to understand that both these quantities are of
fundamental importance in the broad field of vibration isolation where two
general problems are of interest:
 
• the transmission of as little vibration as possible to the base that supports

a vibrating system;
• the isolation of sensitive instruments from possible vibrations of the base

that supports them.
 
An extensive treatment of this subject is beyond the scope of this book but
the basic aspect can be outlined as follows.

When the mass is subjected to a time-varying force f(t), the force
transmitted to the support through the spring and the damper is
 

(4.52)
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The two quantities on the right-hand side add vectorially to give a
magnitude
 

 

which, assuming x(t) in the form  can be written more
explicitly as
 

 
The force transmissibility itself, defined by the ratio  can be

expressed as a harmonically varying quantity with magnitude |T | and phase
angle (with respect to f) φT. From the considerations above and eq (4.44)
we get
 

(4.53)

 

The phase angle can be obtained by observing that velocity and
displacement are 90° out of phase and for this reason fT leads the displacement
of an angle θ given by
 

 
The displacement, in turn, lags behind the driving force of the angle φ

given by eq (4.47); it follows that the phase angle of T is  and
remembering from trigonometry that
 

 

we obtain
 

(4.54)

 

When the support is vibrating, it is easy to see that the equation of motion
has the form
 

(4.55)

 

where the function y(t) describes the support motion and x(t) is the
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displacement of the mass relative to a fixed frame of reference. Equation
(4.55) can be rearranged to
 

(4.56)

 
Using complex algebra, we let the support motion be of the form and the

 complex motion transmissibility is found to be

 

(4.57)

 
with magnitude and phase angle φxy given by
 

 

which are exactly the same as the magnitude and phase angle of the force
transmissibility T of equations (4.53) and (4.54).

Graphs of eqs (4.53) and (4.54) are shown in Figs 4.10 and 4.11 for the
two values of damping  and 

Fig. 4.10 Transmissibility (magnitude) versus β.
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So, the problem of isolating a mass from the motion of the support is
identical to that of limiting the force transmission to the base of a vibrating
system. Figure 4.10 shows that the transmissibility amplitude is smaller than
one only in the region  and that all curves, at  have the same
value equal to unity. Surprisingly, damping does not make the situation any
better in the effective range of vibration isolation and an undamped system
is superior to a damped one in reducing the transmissibility, zero damping
giving the smallest motion or force transmission. However, zero damping
represents an unreal condition and a small amount of damping is desirable
to keep the response within reasonable limits if the system has to go through
the resonant region.

In the design of isolation systems, when the frequency ratio β is greater
than  the damping is usually kept small, the transmissibility can be
approximated by
 

(4.58)

 
and it is often convenient to speak in terms of isolation effectiveness, rather
than transmissibility. The isolation effectiveness is defined mathematically
by the quantity 1–T.

A general consideration on base motion can be made by going back to eq
(4.55). The relative motion of the mass with respect to the base is

Fig. 4.11 Transmissibility (phase angle) versus β.
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By subtracting the quantity mÿ from both sides of eq (4.55) we obtain
 

(4.59)
 

where we can see that the base motion has the effect of adding a reversed
inertia force  to the equation of relative motion. Equation (4.59)
is useful because in many applications relative motion is more important
than absolute motion and also because the base acceleration is relatively
easy to measure. The quantity feff(t) is the effective support excitation loading,
i.e. the system responds to the base acceleration as it would to an external
load equal to the product (mass) × (base acceleration). The minus sign
indicates that the effective force opposes the direction of the base acceleration;
this has little importance in practice, since the base motion is generally
assumed to act in an arbitrary direction.

4.3.3 Resonant response of damped and undamped SDOF
systems

Immediately after the driving force is turned on it is not reasonable to expect
that the oscillator response is given by eq (4.43). In fact, the force has not been
acting long enough even to establish what its frequency is and it takes a while
for the motion to settle into the steady state. The mathematical counterpart to
this statement is, as we have seen before, that the general solution is the sum of
two parts: the transient complementary function and a particular integral which
represents the steady-state term. Explicitly, we can write
 

(4.60)
 

The amplitude and phase angle of the steady-state term are still given by eqs
(4.44) and (4.47), but the initial conditions  and 
now lead to
 

(4.61)

 

With the intention to investigate what happens in resonance conditions
(i.e. when ), we assume that the system starts from rest 
and we get for A and B the values
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since  With the further assumption of
small damping, the damped frequency is nearly equal to the undamped
frequency, we can write  and eq (4.60) becomes
 

(4.62)

 

from which it is evident that the response rapidly builds up asymptotically
to its maximum value  It is left to the reader to draw a graph of eq
(4.62), and also to determine, for different values of ζ, how many cycles are
needed to practically reach the maximum response amplitude.

The case of an undamped SDOF system can be easily worked out from
the considerations of the preceding sections by letting  In this case the
magnitude of the response is given by (eq (4.44))
 

 

the phase angle is given by  and eq (4.60) becomes
 

(4.63)

 

Again, we assume for simplicity that our system starts from rest and from
the initial conditions we get
 

 

Substituting in eq (4.63), the displacement response is
 

 

which becomes indeterminate at resonance, i.e. when we let  Using
L’Hospital’s rule we finally obtain
 

(4.64)
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The response builds up linearly with time and it is evident that after a few
cycles the linear equations considered so far are no longer valid: the amplitude
of oscillation increases indefinitely until disruptive effects ensue. Figure 4.12
illustrates the undamped resonant response given by eq (4.64).

4.3.4 Energy considerations

In the case of forced vibrations of a viscously damped system energy is
dissipated because of damping and energy is supplied to the system by the
driving force. The energy input per cycle can be obtained considering the
infinitesimal work dWf done by f(t) as the system moves through a small
distance dx and integrating over one cycle, i.e.
 

 

where we have taken the harmonically varying force in the form
 and the displacement in the form  from

which it follows 
The integration gives after a few passages

 
(4.65)

 

It is instructive to see how the same result can be obtained by using phasors
if we remember the convention explained in Section 1.3 (eq (1.12)). We have
now to consider the product force times velocity (which is the input supplied

Fig. 4.12 Undamped resonant response.
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power) where force and velocity are in the complex form
 

 

respectively. Note that we have temporarily dropped the notation |X| for the
magnitude of the complex displacement and we are using X throughout this
section to be consistent with the ‘sinusoidal’ notation of eq (4.65).

The integrated value over one cycle is exactly Wf and is obtained by
calculating the quantity
 

 

where we had to multiply by the period  because eq (1.12) gives
the average over one cycle and incorporates the division by T.

The same procedure can be used to calculate the work done by the damping
force  per cycle of motion. We have now in sinusoidal notation
 

(4.66)

 

or, using phasors,

 

 

It is not difficult at this point to show that  since 
we get from eqs (4.44), (4.46) and (4.47)

 

 

that must be substituted in eq (4.65) to give
 

(4.67)
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The known relations  and  can be used to
rearrange the result of eq (4.66) to
 

 
which is the same as eq (4.67) and proves that the energy delivered by the
driving force just equals the energy lost by friction. This fact implies that the
work done per cycle by the spring and inertial forces is zero. In fact, the
inertia and spring forces are related to the displacement by
 

 

and a plot of fI (or fS) versus x over one cycle is a straight line enclosing a zero
area. If we remember that the area enclosed in a graph of this kind represents the
work done by the force over one cycle, we have justified the statement above.
Obviously, this same statement can be proven by performing the calculations in
sinusoidal or phasor notation. With regard to the damping force we have
already determined that the work done by fD over one cycle is different from
zero (eq (4.66)), but a graphical representation may also be useful. We can write
 

 

squaring and rearranging leads to
 

 

i.e.
 

(4.68)

which relates force and displacement and is the equation of an ellipse with
area equal to  We note that at resonance the phase angle φ is π/2
radians and eq (4.65) reduces to
 

(4.69)

4.4 Damping in real systems, equivalent viscous damping

Damping is an inherent property of every real system; its effect is to remove
energy from the system by dissipating it as heat or by radiating it away.
There are many mechanisms which can cause damping in materials and
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structures: internal friction, fluid resistance, sliding friction at joints and
interfaces within a structure and at its connections and supports. Therefore,
the basic physical characteristics of damping are seldom fully understood
and many different types—besides viscous damping which we have considered
so far—can be encountered in practice. One often finds reference to structural
(hysteretic), Coulomb (dry-friction) or velocity-squared (aerodynamic drag)
damping. They are all damping mechanisms based on some modelling
assumptions that try to explain and fit the experimental data from vibration
analysis. Unfortunately, in real systems damping is rarely of a viscous nature
even if, on the other hand, most systems are lightly damped and the difference
is insignificant in regions away from resonance. It is then possible to obtain
approximate models of nonviscous damping in terms of equivalent viscous
dampers and exploit this simple vibration model in different situations.

The concept of equivalent viscous damping is based on the equivalence of
energy dissipated per cycle by a viscous damping mechanism and by the given
nonviscous real situation. We have seen in the preceding section that the energy
loss per cycle (eq (4.66)) is directly proportional to the frequency of motion,
the damping coefficient c and the square of the amplitude. However,
experimental tests show that the actual energy loss per cycle of stress is directly
proportional to the square of the amplitude, but independent of frequency over
wide ranges of frequency and temperature; this suggests a relation of the type
 

(4.70)
 

where α is a constant for a given frequency and temperature range.
This type of damping is called structural (or hysteretic) damping and is

attributed to the hysteresis phenomenon observed in cyclic stress of elastic
materials, where the energy loss per cycle is equal to the area inside the
hysteresis loop. Equating eqs (4.66) and (4.70) we get
 

 
The equivalent viscous damping coefficient can be defined in this case as
 

(4.71)

 

Our structurally damped system subjected to harmonic excitation can thus
be treated as if it were viscously damped with a coefficient given by eq (4.71).
By introducing this result in the equation of motion we obtain the complex
amplitude response

(4.72)
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with magnitude, real and imaginary parts and phase angle given by
 

(4.73)

(4.74)

(4.75)

(4.76)

 
where we have defined the structural damping factor (or loss factor)

 A plot of eqs (4.73) and (4.76) is similar to Figs 4.8 and 4.9 but
there are differences worthy of note:
 
• The amplitude response is always maximum at  (irrespective of the

value of γ) and for very low values of β the response depends on γ.
• The phase angle tends to the value arctan γ for  while 

for viscous damping.
 
By comparing the denominators of eqs (4.43) and (4.72) we can see that γ.
corresponds to the quantity 2ζβ of the viscous case and since damping factors
are usually small and are effective only in the vicinity of resonance, we have
 

(4.77)

 
Another equivalent way to introduce structural damping is to incorporate

in the complex equation of motion a term which is proportional to
displacement but in phase with velocity, i.e.
 

(4.78)

 
where γ is as before;  (or  if we adopt the positive exponential
form ) is called complex stiffness and was introduced for the calculation
of the flutter speeds of airplane wings and tail surfaces [3]. One word of
caution is necessary: the analogy between structural and viscous damping is
valid only for harmonic excitation, because a driving force at frequency ω is
implied in the foregoing discussion.
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Other damping models that are frequently used and encountered in practice
are Coulomb and velocity-squared damping. We limit the discussion to some
fundamental results.

Coulomb damping arises from sliding of two dry surfaces; to start the
motion the force must overcome the resistance due to friction, i.e. it must be
greater than µsmg, where 0<µs<1 is the static friction coefficient and mg is
the weight of the sliding mass. When this happens, the resistance force
suddenly drops to µkmg, where µk is the kinetic friction coefficient and is
generally smaller than µs. The friction force opposes velocity (i.e. 
with the appropriate sign for every half cycle of motion) and remains constant
as long as the forces acting on m are sufficient to overcome the dry friction.
The motion stops when this is no longer the case.

It is easy to see that a graph of force versus displacement is a rectangle in
this case (with sides 2X and 2µkmg) and the energy lost per cycle is given by

 so that the following equivalent damping coefficient is obtained:
 

(4.79)

 

Other characteristics of Coulomb damping are:
 
1. The free vibration decay still occurs at the ‘frequency’ ωn (remember,

however, that this is an improper term because the decaying motion is
not strictly periodic) but is linear (and not exponential) in time with an
amplitude reduction of 4µkmg/k per cycle of motion (this can be easily
verified by solving the homogeneous equation of motion).

2. In forced vibration conditions the damping does not limit the amplitude
at resonance and the quantity tan φ is independent of β, but its sign
changes abruptly as β passes through 1.

 
Bodies moving with moderate speed in a fluid (for example air, water or oil)
experience a resisting force that is proportional to the square of the speed
(aerodynamic damping), i.e.
 

 
where the minus sign is used when  is positive and vice versa. It is left to
the reader to determine that the energy lost per cycle is given by
 

(4.80)
 

and the equivalent viscous damping is given in this case by
 

(4.81)
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The constant a is in general related to the drag coefficient, to the exposed
surface area of the body and to the density of the fluid in which the body is
immersed.

It should be noted that both coefficients (4.79) and (4.81) are nonlinear,
since they are functions of the amplitude of the vibration.

4.4.1 Measurement of damping

There are many ways to quantify and measure the damping of a system. The
ideal situation would be that all these quantities were consistent with each
other and that a linear relation would hold between any two of them. This
is not always the case, and care must be taken to ensure that the chosen
quantity is clearly specified. Further complications arise because it appears
that there is not a unified set of symbols to describe damping and because
the generalization to systems with a high degree of damping or to systems
with more than one degree of freedom is not always straightforward.

In the following, we will describe a few of the most common ways to
measure this parameter, based on the insight we have gained on the behaviour
of the harmonically excited SDOF system considered so far.

Free vibration decay

This method has already been explained in Section 4.2.3 (eqs (4.34) and
(4.36)). In practice, the system is excited by any convenient means and then
allowed to vibrate freely. The time history of the free vibration is recorded
and the displacement amplitudes of successive peaks can be used for the
calculation of damping. For instance, with this technique mean values for
the logarithmic decrement of concrete have been quoted in the order of 0.03
(uncracked) and 0.1 (cracked). Obviously, the constituents of the concrete
and the amount and type of reinforcement influence the amount of damping
present.

The equipment and instrumentation required in this case are minimal
and the ‘convenient means’ to impart the excitation may sometimes be very
simple. For example, the damping characteristics of tall buildings have been
obtained by observing the free vibration caused by wind, nondamaging impact
or the release of a taut cable connecting the building to the ground. This
latter technique, with minor modifications, was used to determine the
damping of offshore platforms [4] and bridges [5]. The author has measured
the damping of a 300 kg subway two-way switch by standing on it and
suddenly jumping down, recording the signal with only one accelerometer
connected to a digital oscilloscope. Also, the damping of a few ancient Italian
belltowers has been measured by suddenly stopping the oscillation of the
bell on top (by means of a braking system that electrically controls the bell
oscillations).
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Resonant response

We have seen that at resonance the phase angle is  If the phase angle
can be measured, one can detect resonance by adjusting the exciting frequency
until the condition above is attained. The measured displacement is then
given by
 

 

which is eq (4.44) with ; it follows that
 

(4.82)

 

However, it may not be easy to apply the exact resonance frequency and
the measurement of the phase may also be somewhat difficult. An alternative
is to obtain the amplitude response curve in the vicinity of resonance and
measure the peak value; for viscous damping this is given by (eq (4.50))
 

 

from which ζ can be easily obtained. In ordinary structures the term ζ 2 can
be neglected with respect to unity and we get
 

(4.83)

 

If the damping is hysteretic in nature we have
 

(4.84)

 

In any case the static displacement must be known or measured by some
means and this may present a problem with this technique.

Half-power (bandwidth)

This technique assumes that the frequency response curve is available from
experimental measurements and avoids the need for the static response. A
sinusoidal excitation at a closely spaced sequence of frequencies in the
resonance region is applied to the structure and the resulting displacement
curve is plotted as a function of frequency. The points where the amplitude

Copyright © 2003 Taylor & Francis Group LLC



response (or the dynamic magnification factor) is reduced to  of its
peak value are used to calculate damping. There are two such points; they
are often defined as half-power points (because power and energy are
proportional to the square of the amplitude) or –3 dB points [because

 and they can be obtained by the condition
 

 

Upon squaring and rearranging we get the equation
 

 

whose roots are given by
 

 

and can be simplified as follows:
 

 

The two values of ß can be finally obtained using the binomial expansion
 

(4.85)
 

thus giving
 

(4.86)

 

This same result can be obtained by measuring the frequencies at which
 (or) . From eq (4.47) we get the two values of β from

the conditions
 

 

which give
 

(4.87a)

(4.87b)

 
and the result of eq (4.86) can be obtained by subtracting eq (4.87a) from eq
(4.87b).
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This latter procedure relies again on the possibility to measure phase angles
between input force and output displacement which, as we said before, may
not be an easy task.

Energy loss per cycle

When force-displacement measurements can be made by running a harmonic
excitation test at a specified frequency over a whole cycle, the damping can
be determined from a plot of their relationship. We have seen (eq (4.68))
that a graph of the viscous force versus displacement is an ellipse that
intercepts the ordinate axis at cωX. The same is true when the total force
 

versus displacement is plotted, the only difference being the fact that now
the ellipse is inclined at an angle with respect to the coordinate axes. Since
ω  and X are both known, the damping c can be obtained by the intercept on
the ordinate axis.

If the damping is not viscous, the graph will not in general be an ellipse,
but an equivalent viscous damping can be determined by measuring the area
WD enclosed by the force-displacement relationship and equating it to the
value obtained in the viscous case, i.e.  We get
 

(4.88)

 

and a damping ratio
 

(4.89)

which requires us to estimate or measure m and k. This latter parameter can
be obtained by running the test at a very low frequency, which in practice
corresponds to almost static conditions. The force-displacement diagram fS

versus x is a straight line with slope k. Alternatively, the area WS under the
diagram can be used to determine k as
 

 

thus giving ζ as a function of the ratio of the damping energy loss per cycle
divided by the strain energy at maximum displacement, i.e.
 

(4.90)
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Running the test at resonance makes β:
 
1. equal to unity in the denominator of eq (4.90);
2. equal to zero the inclination angle—with respect to the coordinate axes—

of the principal axes of the ellipse obtained from the diagram f versus x.
 
Condition 2 applies because at resonance the inertia force exactly balances
the spring force and a diagram of the applied force versus displacement is
identical to the damping force versus displacement diagram.

Frequency response function

The frequency response function (FRF) is a widely used quantity in many
fields of engineering and is of fundamental importance in many applications
of vibration analysis. Here we briefly introduce the basic definitions in order
to proceed with the topic we are presently discussing, i.e. the determination
of damping. However, due to its importance, the subject will be considered
in detail in subsequent chapters.

For linear systems, the FRF—usually indicated by H(ω)—establishes a
relationship between the Fourier transform of the input signal X(ω) and the
Fourier transform output signal Y(ω). The general relationship is
 

(4.91)
 

i.e.
 

(4.92)

 

provided that  Equation (4.92) is often given as the definition of
H(ω). Since, in general, the FRF is a complex-valued function of a real-
valued independent variable ω (thus involving three quantities: the frequency
ω, the real and imaginary part of H(ω)), two x–y graphs are needed for
complete information. The graphical display is a matter of choice, depending
on the information required. Obviously, for the concept of FRF to make
sense, the input and output signals must be Fourier transformable—a
condition that is met by all physically realizable systems—and the input
signal must be non-zero at all frequencies of interest.

If now we refer to our harmonically excited SDOF system, the input signal
is the sinusoidal force and the output signal is the displacement response;
both signals can be taken in the complex-valued form and the complex FRF
of this system can be found by solving the equation of motion for an arbitrary
Fourier component, i.e.
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thus giving
 

(4.93)

 

where we recognize eq (4.42) and we understand that the FRF representation
gives information on both the magnitude of response and the phase angle of
lag between response and excitation. This particular form of FRF
(displacement response-driving force) is called receptance; other forms can
be obtained by considering velocity or acceleration as the measured response.
Table 4.3 gives a brief list of these various forms with the corresponding
names that are commonly used.

The real part of the function in eq (4.93) is obtained from eq (4.45) simply
dividing by the force and is plotted in Fig 4.13 for two different values of ζ.
It is not difficult to determine that the two extrema occur at the values
 

 

so that the damping ratio is usually calculated by
 

(4.94)

 

The same expressions on the right-hand side give the value of γ in the case
of hysteretic damping.

The last method that we consider is based on a form of display of the
FRF called the Nyquist plot. This is a plot of the imaginary part of the FRF
versus its real part; as such it does not contain the frequency information
explicitly but it is a useful representation in view of the generalization of
FRFs to multiple-degree-of-reedom systems.

The particular form of FRF we consider now for our viscously damped
SDOF system is mobility, which is the ratio of the velocity response function
divided by the driving force (Table 4.3) and which we indicate for the present

Table 4.3 Different types of frequency response functions
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by M(ω). By taking the time derivative of receptance, the real and imaginary
part of M(ω) can be obtained, i.e.
 

(4.95)

(4.96)

 
so that defining the quantities U and V as
 

 

we get
 

(4.97)

 
which is the equation of a circle of radius 1/(2c) and centre at the origin of
the U–V plane. Referring back to the plane with axes 
(which is horizontally translated to the left of the U–V plane of the quantity
1/(2c)) the centre is now at the point (1/(2c), 0). So, a Nyquist plot of

Fig. 4.13 Re[H(ω)] versus β.
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Fig. 4.15 Different types of damping. (Reproduced with permission from H.
Bachmann, W.J.Ammann et al., Vibration Problems in Structures—
Practical Guidelines, Birkhäuser-Verlag, Basel, Boston, Berlin, 1995.)

Fig. 4.14 Damped SDOF system: Nyquist mobility plot.
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mobility traces out an exact circle as the frequency ω sweeps from zero to
infinity and therefore the measurement of damping reduces to a measure of
the radius of such a circle.

In the same way it can be determined that for a hysteretically damped
system a Nyquist plot of the receptance will form a circle of radius 1/(2γ)
and centre at the point (0, –1/(2γ)).

The Nyquist plot of mobility, for an arbitrary value of ζ of a viscously
damped SDOF, is shown in Fig. 4.14 where the small crosses are equal
increments in frequency.

Finally, Fig. 4.15 [6] is a useful schematic representation of the different
types and sources of damping encountered in structural dynamics.

4.5 Summary and comments

In Chapter 4 the general model of single-degree-of-freedom (SDOF) system
is considered. A single mass with a spring and a viscous damper—the so-
called harmonic oscillator—is the simplest model which, despite its
simplicity, shows many of the fundamental characteristics of vibrating
systems in general. The equation of motion for such a system has been
obtained in Chapter 2 and here it is solved in the undamped and damped
cases, considering free vibrations first (homogeneous equation: no forcing
external excitation) and then forced vibrations (nonhomogeneous equation)
under the action of an external sinusoidal excitation. Energy considerations
are made in both cases.

The section on free vibrations introduces the concepts of natural frequency,
overdamped, critically damped and underdamped systems, showing how and
when a system can vibrate depending on the values of its parameters. The
underdamped case is the most important in vibration analysis and leads to
the definitions of frequency of damped free oscillations and logarithmic
decrement.

The section on forced vibrations sheds light on the important phenomenon
of resonance, which plays a major role in so many applications in physics
and engineering. Three frequency ranges are considered according to a
comparison between forcing frequency and natural frequency of the system
and the phase relationship between input (excitation) and output (motion:
in the form of displacement, velocity or acceleration) is shown.

In some circumstances, when the transmission of force or motion from
support to mass (or vice versa) is of interest, one speaks of force or motion
transmissibility, obtaining the surprising result that, away from resonance,
damping does not seem to be of any help in limiting the amplitude of motion.
Zero damping, however, is an unreal condition; a small amount of damping
is always desirable because the transient part of the vibration must be
considered when a mechanical or structural system is set into motion and
disruptive effects may ensue if damping is too low. Such effects do appear if
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an undamped SDOF system is excited at resonance: the motion increases
without bounds and the range of linearity is soon exceeded.

Furthermore, damping represents the mechanism of energy dissipation of
the system, and in real situations this mechanism is often very hard to define
analytically; the viscous model is adopted in general for convenience but
sometimes leads to results that do not agree with experimental measurements.
To overcome this difficulty, the concept of equivalent viscous damping is
introduced by comparing the energy loss per cycle in different situations
(hysteretic, Coulomb and velocity-squared damping). Nevertheless, an
experimental measurement of this parameter is often necessary because, unlike
mass and stiffness, it cannot be predicted with an acceptable degree of
accuracy from theoretical considerations alone.

With this in mind, five different methods to measure damping are then
considered at the end of the chapter. The instrumentation requirements to
accomplish this task vary considerably: in some cases an appropriate vibration
sensor and an oscilloscope may do, but only highly (and sometimes costly)
sophisticated electronic instruments may do the job in others. In general, the
choice is dictated by the desired accuracy and by the operating conditions of
measurement; sometimes—for example in hostile industrial environments—
the speed of the measurement may be paramount and the results obtained
can be good enough for all practical purposes.
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5 More SDOF—transient
response and approximate
methods

5.1 Introduction

The harmonic excitation considered so far is a special kind of deterministic
dynamic loading that only in a few cases can approximate a real situation.
Nevertheless, its consideration is a necessary prerequisite for any further analysis,
and not only for didactical purposes. If we remember that for linear systems
the principle of superposition holds, from the fact that any reasonably well-
behaved excitation function can be written as the sum or integral of a series of
simple functions, it follows that the total response is then the sum (or integral)
of the individual responses. So, in principle, the complications seem to be more
of a mathematical nature rather than a physical nature, and such a statement
of the problem does not seem to add anything substantial to the understanding
of the behaviour of a linear SDOF system under the action of a complex exciting
load. However, things are not so simple; a number of different approaches and
techniques are available to deal with this problem and the choice is partly a
subjective matter and partly dictated by the complexity of the situation, the
final results that one wants to achieve and the mathematical tractability of the
calculations by means of analytical or computer-based methods.

The first and main distinction can be made between:
 
• time-domain techniques
• frequency-domain techniques.
 
As the name itself implies, the first approach relies on the manipulation of
the functions involved (generally the loading and the response functions) in
the domain of time as the independent variable of interest. The important
concepts are ultimately the impulse response function and the convolution,
or Duhamel’s, integral.

On the other hand, the second technique is based on the powerful tool of
mathematical transforms: the manipulations are made in the domain of an
appropriate independent variable (frequency, for example, hence the name)
and then, if necessary, the result is transformed back to the domain of the
original variable.
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The two approaches, as one might expect, are strictly connected and the
result does not depend on the particular technique adopted for the problem at
hand. Unfortunately, except for simple cases, both techniques involve evaluations
of integrals that are not always easy to solve and their practical application
must often rely heavily on numerical methods which, in their turn, require the
relevant functions to be ‘sampled’ at regular intervals of the independent variable.
This ‘sampling’ procedure introduces further complications that belong to the
specific field of digital signal analysis, but they cannot be ignored when
measurements are taken and computations via electronic instrumentation are
performed. Their basic aspects will be dealt in future chapters.

Until a few decades ago the computations involved in frequency-domain
techniques were no less than those in a direct evaluation of the discrete
convolution in the time domain. The development of a special algorithm
called the fast Fourier transform [1] has completely changed this situation,
cutting down computational time of orders of magnitude and making
frequency techniques more effective.

Both the convolution integral and the transform methods apply when
linearity holds; for nonlinear systems recourse must be made to a direct
numerical integration of the equations of motion, a technique which,
obviously, applies to linear systems as well.

When the predominant frequency of vibration is the most important
parameter and the system is relatively complex, the Rayleigh ‘energy method’
and other techniques with a similar approach turn out to be useful to obtain
such a parameter. The simplest application represents a multiple- (or infinite-)
degree-of-freedom system as a ‘generalized’ SDOF system after an educated
guess of the vibration pattern has been made. The method is approximate (but
so are numerical methods, and in general are much more time consuming) and
its accuracy depends on how well the estimated vibration pattern matches the
true one. Its utility lies in the fact that even a crude but reasonable guess often
results in a frequency estimate which is good enough for most practical purposes.

5.2 Time domain—impulse response, step response and
convolution integral

Let us refer back to Fig. 4.7. The SDOF system considered so far is a particular
case of the situation that this figure illustrates, i.e. a single-input single-output
linear system where the output x(t) and the input f(t) (written as a force for
simplicity, but it need not necessarily be so) are related through a linear
differential equation of the general form
 

(5.1)
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The coefficients ai and bj (i=1, 2, 3, ···, n; j=1, 2, 3, ···, r), that is the parameters
of the problem, may also be functions of time, but in general we shall consider
only cases when they are constants. On physical grounds, this assumption
means that the system’s parameters (mass, stiffness and damping) do not
change, or change very slowly, during the time of occurrence of the vibration
phenomenon. This is the case, for example, for our spring—mass-damper
SDOF system whose equation of motion is eq (4.13), which is just a particular
case of eq (5.1).

Very common sources of excitation are transient phenomena and
mechanical shocks, both of which are obviously nonperiodic and are
characterized by an energy release of short duration and sudden occurrence.
Broadly speaking, we can define a mechanical shock as a transmission of
energy to a system which takes place in a short time compared with the
natural period of oscillation of the system, while transient phenomena may
last for several periods of vibration of the system.

An impulse disturbance, or shock loading, may be for example a ‘hammer
blow’: a force of large magnitude which acts for a very short time.
Mathematically, the Dirac delta function (Chapter 2) can be used to represent
such a disturbance as
 

(5.2)

 
where  has the dimensions newton-seconds and describes an impulse (time
integral of the force) of magnitude
 

(5.3)

 
One generally speaks of unit impulse when 
From Newton’s second law fdt=mdv, assuming the system at rest before

the application of the impulse, the result on our system will be a sudden
change in velocity equal to  without an appreciable change in its
displacement. Physically, it is the same as applying to the free system the
initial conditions x(0)=0 and  The response can thus be written
(eq (4.8))
 

(5.4)

 

for an undamped system, and (eq (4.27))
 

(5.5)
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for a damped system. In both cases it is convenient to write the response as
 

(5.6)

 
where h(t) is called the unit impulse response (some authors also call it the
weighting function) and is given by
 

(5.7a)

 
for the undamped and damped case, respectively. Equations (5.7a) represent
the response to an impulse applied at time t=0; if the impulse is applied at
time  they become
 

(5.7b)

 
for  and zero for  since the change of variable from t to is
geometrically a simple translation of the coordinate axes to the right by an
amount  seconds. In practice, an impact of duration ∆t of the order of
10–3 s (and ∆t is short compared to the system’s period)  is a
common occurrence in vibration testing of structures. In these cases, the
considerations above apply.

Figure 5.1 illustrates a graph of  for a damped system with unit
mass, damping ratio  and damped natural frequency 

Example 5.1. Let us consider the response of an undamped system to an
impulse of a constant force f0 that acts for the short (compared to the system’s
period) interval of time 0<t<t1. We assume the system to be initially at rest
and we have
 

(5.8)
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During the ‘forced vibration era’ (0<t<t1) the response of the system is given
by eq (4.63) where β=0 (because ω=0) and the particular integral is given
by f0/k, i.e.

 
(5.9)

 
the initial conditions x(0)=0 and (0)=0 determine the constants A and B
and we get
 

(5.10)

 
In the ‘free vibration era’ (t>t1)the excitation is no longer active and the

response is given by eq (4.8) with initial conditions determined by the state
of the system at the instant t=t1. Explicitly this is written
 

(5.11)

Fig. 5.1 Impulse response function h(t)—damped system.
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where
 

(5.12)

 

and the approximations above hold for  (or, better, ). By noting
that  and that the impulse has a value  from eq (5.11) we
obtain in the limit
 

(5.13)

 
which is, as expected, the impulse response of the undamped system (eq
(5.4)). It is left to the reader to determine how considerations similar to the
ones above lead to eq (5.5) for a damped system.

A general transient loading such as the one shown in Fig. 5.2 can be
regarded as a superposition of impulses; each impulse is applied at time 
and has a magnitude given by f( )∆ , with  varying along the time axis
(shaded area in Fig. 5.2).

Mathematically we can write
 

(5.14)
 
and the function f(t) can be approximated by a superposition of these
impulses as
 

(5.15)

Fig. 5.2 General loading as a series of impulses.
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The response to the impulse of eq (5.14) is
 

 
and the total response from time  to time  is obtained by summing
the effects of all the impulses up to the instant t, i.e.
 

(5.16)

 
Passing to the limit of  the summation becomes an integral and the
response from  to  is finally given by
 

(5.17)

 
The integral of eq (5.17) is known as Duhamel’s integral or convolution

integral and may be used to determine the response to an arbitrary input as
long as it satisfies certain mathematical conditions. For our damped SDOF
system the explicit expression of eq (5.17) is given by
 

(5.18)

 
if the system is initially at rest. If this is not the case, the complementary
function must be added, thus obtaining
 

(5.19)

 
It should be noted that all linear systems can be completely characterized by

their impulse response function (functions if there is more than one input and
more than one output) and furthermore, the response to any input is given by
the input function’s convolution with the system’s impulse response function.
The importance of these concepts deserves a few comments and observations.

The nature of the convolution integral can be ‘visualized’ by considering
that its evaluation is performed through multiplication of f( ) by each
incremental shift in . As the present time t varies the impulse response

 scans the excitation function, producing a weighted sum of past inputs
up to the present instant; so, in terms of the superposition principle the
system’s response x(t) may be interpreted as being the weighted superposition
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of past input f( ) values ‘weighted’ or multiplied by . In other words,
to find the response x(t0) for some t=t0, we form the function  and we
shift it to ; the area of the product  yields x(t0).

In the foregoing discussion we have assumed that the force f(t) starts at
t=0; since this may not be case and f(t) can extend to negative values of t,
we can write eq (5.17) in the more general form

 
(5.20)

 
In order for a constant-parameter linear system to be physically realizable

(causal), it is necessary that it responds only to past inputs; this requires

 
(5.21)

 
In fact, if we recall that  is the response to an impulse applied at time

 (i.e. ), for  (i.e. ) there is no response because no
impulse has been applied. This justifies eq (5.21) and allows us to extend the
upper limit of integration in eq (5.20) from  without changing
the result; we can then write

 

(5.22)

 
We note in passing that a physical system is always causal if the

independent variable is the real time t; however, not all physical systems are
causal (for example, if the independent variable is a space variable).

Consider now, in eq (5.20), the change of variable obtained by defining
 where  can be interpreted as the time delay between the occurrence

of the input and the instant when its result is calculated; we get
 

 

where the minus sign in the second integral comes from the fact that
 Changing over the limits of integration to dispense with the minus

sign we get
 

(5.23)

 
which is an alternative form of the convolution integral.
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Another alternative form can be obtained either by putting  in eq
(5.20) or by noting—in the second integral of eq (5.23)—that  for

 since there is no response before the impulse occurs: this yields
 

(5.24)

 
The equality between the two integrals is obvious and in the last expression
we have used the common symbol * to indicate the convolution between
two functions. Equation (5.24) is the most general form of the convolution
integral for our purposes.

An analogous line of reasoning, starting from eq (5.17) leads to
 

(5.25)

 
which, with eq (5.24), shows the symmetry of the convolution integral in
the excitation f(t) and the impulse response h(t). Simplicity suggests that the
simpler of the two functions be shifted in performing the calculations.

A constant-parameter linear system is stable if any possible bounded input
produces a bounded output. Since
 

(5.26)

 
if the input is bounded, i.e. there exists some finite constant K such that
 

(5.27)

 
then
 

(5.28)

 
It follows that if the impulse response function is absolutely integrable, i.e.
 

(5.29)

 
then the output will be bounded and the system is stable. Note that x(t) does
not need to satisfy
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(5.30)

 
which is necessary in the classical Fourier transform (frequency response)
approach.

A final comment to show the important property of frequency preservation
in linear systems. Let h(t) be the impulse response of a constant-parameter
linear system; for an arbitrary, well behaved input f(t) the nth derivative of
the output x(t) is given by
 

(5.31)

 

If we assume a sinusoidal input of the general form  we
obtain, for example, for its second derivative  Inserting
this result in eq (5.31) we get
 

(5.32)

 

so that x(t) must be sinusoidal with the same frequency as f (t). It follows
that a constant-parameter linear system cannot cause any frequency
translation, but can only modify the amplitude and phase of an applied
input.

Example 5.2. Let us now determine the response of a damped system to the
step function given by eq (5.33), which is often called the Heaviside function
when f0=1. In real situations this could model some kind of machine operation
or a car running over a surface that changes level abruptly (i.e. a curb).
 

(5.33)

 

For  assuming that the system starts from rest, the response can be
written as the convolution integral
 

(5.34)

 

which can be easily calculated if we remember that
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Since  and  after some manipulations we get
 

(5.35)

 

where in the second expression
 

(5.36)

 

It is worth noting how the same result can be obtained by writing (for )
the general solution of the equation of motion. This is
 

(5.37)

 

The initial conditions x(0)=0 and (0)=0 give for the constants
 

 

which, after substitution in eq (5.37) and a little algebra, give exactly the
solution of eq (5.35). Figure 5.3 is a graph of eq (5.35) with: f0=50 N, k=1000
N/m,  and 

For an undamped system eq (5.37) becomes
 

(5.38)

 

The response to a unit step input (sometimes called indicial response) and
the unit step function (Heaviside) itself are also very important in linear
vibration theory and are often indicated with a symbol of their own: as we
did in Chapter 2, we will write θ(t) for the Heaviside function applied at t=0
while we will use the symbol s(t) for the response to a Heaviside input. We
can write symbolically eq (4.13) for our SDOF linear system as
 

(5.39)
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where D is the linear differential operator
 

(5.40)

 

Following this notation, we can then write the symbolic relations
 

(5.41)

 

and since—in the sense of distributions (Chapter 2)—it can be shown that
 

 

it is left to the reader to determine the following important relations between
the impulse response and the Heaviside response
 

(5.42)

 
which can be verified in eqs (5.7a), (5.35) and (5.38) (see also eq (5.34)).

Fig. 5.3 Response to step function.
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Two more examples will now show further applications of what has been
said up to this point. Both examples refer to an undamped SDOF system,
since this system is often considered—for comparison purposes—in the
analysis of shock loading. In these cases, the excitation is short compared to
the natural period of the structure and as a result, the response is not
significantly influenced by the presence of damping. We point out that the
response of structures to shock is vital in design, particularly preliminary
design, to select the system’s parameters in a manner that limits within a
specified range a certain response quantity—e.g. maximum response
amplitude, maximum stress etc.—in order to prevent undesired vibration or
damage of the structure. The concept of shock (or response) spectrum has
been devised to deal with these problems and, due to its importance, it will
be considered separately in the following section.

Example 5.3. The first example is the response to a rectangular pulse of
duration t1 and amplitude f0. This problem has already been considered in
Example 5.1 (eqs (5.10) and (5.11)), but now we proceed from eq (5.11) by
substituting the appropriate initial conditions (5.12) to obtain an explicit
expression for the ‘free vibration era’ t>t1. The substitution gives

 

 
which, after some manipulations, yields the response for t>t1

 

(5.43)

 
Alternatively, the rectangular pulse f(t) can be seen as the superposition

of two step functions, i.e.  where f1(t) is given by eq (5.8),
f2(t) is a step of magnitude –f0 applied at t=t1 and the response can be
determined accordingly as a superposition of the two responses. Needless to
say, the results are again eq (5.10) for the ‘forced vibration era’ and eq (5.43)
for the ‘free vibration era’. The reader is invited to draw a graph of the
response for different values of t1.

Example 5.4. In this second example we consider the response of an
undamped system to a half-sine shock excitation, that is, to an excitation
function of the form
 

(5.44)
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During the ‘forced vibration era’  the exciting function is a
sinusoid with circular frequency  In order to calculate the
response, we notice that f(t) can be written in phasor form as  if we
agree to take the imaginary part as described in Chapter 1 (recall that
the form of the exponential and the choice of the real or imaginary part
is a matter of convenience, it is only important to be consistent). The
response is then given by
 

  

and the integral can be easily solved using again
 

 

where now  and  The
calculation of the definite integral in brackets yields
 

 

Taking the imaginary part of the expression above we get the system’s
response for  which is
 

(5.45)

 

The response in the ‘free vibration era’ (t>t1) is obtained from eq (4.8)
with initial conditions that are determined by the state of the system at t=t1:
this is
 

(5.46)

where now
 

(5.47)
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Substitution of eqs (5.47) into eq (5.46)—considering that —yields
 

(5.48)

 

Figures 5.4(a) and 5.4(b) illustrate how the same undamped SDOF system
 responds to two different half-sine excitations.

Fig. 5.4 Undamped SDOF system—half-sine response. (a) 
 (b) 
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Both the excitation and the response are shown in the two graphs even if the
measurement units are obviously different (newtons for the excitation function
and metres for the response displacement function).

5.2.1 Shock response

We defined a shock as a sudden application of a force (or other form of
excitation) that results in a transient response of a system. Roughly speaking,
a shock takes place in a short time (t1) compared with the natural period of
the system, i.e. t1/T<1, and the vibration severity that it causes can be
categorized by analysing, as a standard reference, the maximum value of the
response of an undamped SDOF system. The whole time history of the
response is not considered for this purpose, and significance is given to its
maximum value plotted as a function of t1/T or, alternatively, as a function
of ωn/ω when the quantity ω (frequency of the exciting pulse) can be defined.

Such curves, extensively used in engineering practice, are called response
or shock spectra. Several kinds of maxima are important, but in general the
so-called maximax response is considered, which is the maximum of the
response attained at any time following the onset of the shock pulse.

Mathematically speaking, given an exciting force f(t) of duration t1, we
want to determine the quantity

 

(5.49)

 
Let us consider a rectangular pulse of amplitude f0 and duration t1. The

response to such excitation is given by eqs (5.10) and (5.43) in the ‘forced’
and ‘free’ vibration era, respectively. The maximum value of response will
be attained in either the first or second era, depending on the value of t1:
when t<t1, equating the derivative of eq (5.10) to zero gives the condition

 which is verified at a time tm given by  provided that
 

(5.50)

 
where n is an integer and we have taken n=1 because we are interested in the
first maximum and we know that  Substitution of tm in eq (5.10)
gives the maximum value
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(5.51)

 
and this result can be stated by saying that the maximum value of the ratio
of dynamic response to static deformation (maximum dynamic magnification
factor) is equal to 2.

In the free vibration era the response is given by eq (5.43). Equating its
derivative to zero gives the condition
 

 
which—considering again the first maximum—is verified at a time tm given by
 

 
i.e.
 

(5.52)

 
provided that  i.e.  Substitution of eq (5.52) in eq (5.43)
yields after some manipulation

 

(5.53)

 
The response spectrum for a rectangular pulse excitation is then obtained

by combining eqs (5.51) and (5.53) and is shown in Fig. 5.5.
We turn now to the half-sine excitation considered in Example 5.4. The

response to this kind of pulse is given by eqs (5.45) and (5.48) for the forced
and free vibration era, respectively and, once again, the maximum value can
be attained for  or t>t1, depending on the value of t1. The two cases
are illustrated in Figs 5.4(a) and 5.4(b).

Let us suppose that the maximum response occurs in the forced vibration
era; equating the derivative of eq (5.45) to zero gives
 

 
which is satisfied at a time tm determined by
 

(5.54)
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The first maximum is attained by considering the minus sign and n=1 in
eq (5.54) and we get
 

(5.55)

 

provided that  which means  (or ) if we remember that
 and hence  Substitution of eq (5.55) in eq

(5.45) yields after some manipulation
 

(5.56a)

or, defining
 

(5.56b)

So, for example, if  it follows  and the maximum value
of the dynamic magnification factor D is given by

Fig. 5.5 Rectangular pulse—shock spectrum.
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If the maximum occurs for t>t1, equating the derivative of eq (5.48) to
zero leads to
 

 

which is satisfied at the time tm given by
 

(5.57a)
 

(5.57b)

 
provided that  i.e.  (or)  and we have considered the
first maximum (n=1 and the minus sign) passing from eq (5.57a) to eq (5.57b).

Substitution of the explicit expression for tm in eq (5.48) yields for the
maximum value of displacement
 

(5.58a)

or, as a function of 
 

(5.58b)

 

for example, if  the maximum value of D is found to be
 

 

The shock spectrum for a half-sine pulse excitation is shown in Fig. 5.6,
where Dmax is plotted as a function of t1/T.

At resonance, i.e. when  (or), the expressions given by
eqs (5.56a or 5.56b) and (5.58a or 5.58b) become indeterminate but the value of
Dmax can be obtained by calculating the limit for  and using L’Hospital’s
rule in either one of the above equations. It is not difficult to show that
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Following a similar line of reasoning, shock spectra for other impulsive
loading conditions can be worked out (e.g. Harris [2], Jacobsen [3]).

The calculations become more and more laborious, especially if damping
is taken into account, and other techniques are available (for example the
Laplace transform, which will be considered later, and the plane-phase or
other graphical methods), but often one has to make use of a computer for
an extensive investigation of the problem.

However, the following general conclusions can be drawn for step-type
and pulse-type excitations, where damping is of relatively less importance
unless the system is highly damped.

The excitation—a function of time only—may be a force applied to the
mass (as in the examples above) or a ground motion acting on the spring
anchorage. The ground motion, in its turn, can be in the form of displacement,
velocity or acceleration. All these cases are mathematically similar and the
general equation

 
(5.59)

 
can be used, where v and ξ are the response and the excitation, respectively,
in the appropriate form. For example, if y(t) is the ground displacement with
respect to a fixed frame of reference, the equation of motion is (4.55) with
c=0, i.e.

Fig. 5.6 Half-sine pulse—shock spectrum.
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which, differentiating twice with respect to time, can be rearranged to

 

 
and can be treated as a second-order equation in  when the ground
acceleration ÿ(t) is given. Note the formal analogy with eq (5.59) where v=
and 

For step-type excitations xmax occurs after the step has risen to its full
value (t1 being the rise time) and the extreme values of Dmax are 1 and 2.
As the ratio t1/T approaches zero, Dmax approaches the upper limit of 2;
when t1/T approaches infinity (low rise time compared to the system’s
natural period), the step loses its character of dynamic excitation and Dmax

approaches the lower limit of 1, which means that xmax tends to the static
value f0/k.

The reader is invited to verify that for some shapes of the step rise time,
Dmax is equal to unity at certain finite values of t1/T: for example, for a step
with constant slope rise, Dmax=1 when  Different values
are obtained for different shapes of the slope, but the minimum value of t1/
T for which this occurs is 1. When Dmax=1, the amplitude of motion with
respect to the final value of the excitation as a base (the so-called residual
response) is zero and this fact is sometimes exploited in the practical design
situation in order to achieve the smallest possible residual response.

For pulse-type excitations, when the ratio of pulse duration to system
natural period t1/T is less than 1/2, the shape of certain types of pulses of
equal area (equal impulse) is of secondary significance in determining the
maxima of the system’s response. If  the pulse shape has little
significance in almost all cases; only when  must the pulse shape
be considered carefully. Furthermore, the maximum response usually occurs
for  and Dmax has values between 1.5 and 1.8. If the pulse has
a vertical rise, Dmax attains asymptotically the value of 2 and in the particular
case of rectangular pulse Dmax=2 for 

Again, the reader is invited to verify that the residual response amplitude
is zero for certain values of t1/T and if the pulse has a vertical rise or a vertical
decay (but not both) there are no zero values except at  In the case
of a rectangular pulse, the residual response is zero for  As
an example, Fig. 5.7 shows the response of the undamped SDOF to a
rectangular pulse of duration t1=4 s in the case of 

Note that Fig. 5.7 illustrates a particular case; for different values of
t1/T the oscillation of the system continues after the end of the pulse with
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amplitude characteristics that depend on the value of t1/T considered in the
specific case under study.

For several shapes of pulse the minimum value of t1/T for zero residual
response is 1 and occurs for an exciting rectangular pulse; for a sine pulse
the lowest value for zero residual response is  and for a symmetrical
triangular pulse is 

5.3 Frequency and s-domains. Fourier and Laplace
transforms

Fourier analysis is a mathematical technique that deals with the addition of
several harmonic oscillations to form a resultant and with the opposite
problem. Any branch of physical sciences in which harmonically varying
quantities play a part makes use of the theory of Fourier analysis at some
stage of its theoretical development. The subject of engineering vibrations is
no exception, and we have already given a review of the fundamental
mathematical aspects in Chapter 2. We move on from there, recalling some
of these fundamentals when needed in the course of our investigation. With
respect to Chapter 2, small differences in notation will be noted in a few
cases. They have been adopted to suit our present needs and, in any case,
are irrelevant to the essence of the discussion as long as consistency is
maintained from the beginning to the end of the specific argument being
discussed.

Fig. 5.7 Rectangular pulse response .
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5.3.1 Response to periodic excitation

A periodic signal is a particular type of deterministic (i.e. that can be expressed
by an explicit mathematical relationship) signal that repeats itself in time
every T seconds; T is called the period and for all values of t
 

 

where n=1, 2, 3, ···. Provided that the fluctuations in f(t) are not too
pathological, a periodic function can be represented by a convergent series
of harmonic functions whose frequencies are integral multiples of a certain
fundamental frequency 

A periodic exciting function f(t) (written in the form of a force for our
present convenience) can be written as
 

(5.60a)

 

or, alternatively
 

(5.60b)

or, in complex notation
 

(5.60c)

 

where
 

 

establish the relation between eqs (5.60a) and (5.60b), and
 

 
give the relation between eq (5.60a) and the complex form.

If all the Cs are real, then all the bs are zero, f(t) is real and an even
function of t, i.e. f(–t)=f(t); if  (i.e. all as and bs are real, as in our
case), then f(t) is real but not necessarily symmetrical about t=0. We point

Copyright © 2003 Taylor & Francis Group LLC



out that eq (5.60c) is not a phasor representation of the input signal (the
second expression of eq (5.60b) is!), it is a different way of writing the periodic
function f(t) in its own right, where no convention of taking only the real or
imaginary part is implied.

The conditions for the convergence of the series are extremely general
and cover the majority of engineering situations; one important restriction
to be kept in mind is that, when f(t) is discontinuous, the series gives the
average value of f(t) at the discontinuity. The Fourier coefficients of the
series are given by (eq (2.6b) or (2.10))

 

(5.61)

 
for the expression of eq (5.60a) and

 

(5.62)

 
for the complex representation of eq (5.60c).

The mean (over one period) and mean-square values of f(t) and of its time
derivative can be expressed in terms of the Fourier coefficients as (Parseval’s
theorem)

 

(5.63)

 

and
 

(5.64)

 
Obviously, the periodic function could be a displacement and in this case

eqs (5.64) would give the mean and mean square of velocity.
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Under such an excitation, we have the equation of motion for our damped
SDOF system
 

(5.65)

 

Owing to the principle of superposition, the steady-state response to each
harmonic component can be calculated separately and the results added to
obtain—following the notation of eq (4.40)—the particular solution x2(t).
This is
 

(5.66)

which can be recognized as a Fourier series itself where
 

(5.67)

 

and 
Alternatively, if the excitation is written in the more compact form of eq

(5.60c), x2 too can be taken in the form of a series with summation from –
to + . Since we have determined in Chapter 4 (eqs (4.48) and (4.92)) that
the steady-state response of our system to a sinusoidal load  is written
 

(5.68)

 
where H(ω0) is the complex frequency response function (receptance in this
case, see also subsequent sections) and is given by
 

(5.69)

 
the response to our periodic load can be written as
 

(5.70)
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from which it follows that
 

(5.71)

 
The complementary function x1(t) must be added to eq (5.66) or (5.70) in
order to obtain the general solution  Again (Chapter 4),
the complementary function dies out with time and contains two arbitrary
constants that must be determined by the initial conditions. From the
discussion above we see that if the frequency of one of the harmonics in the
excitation is close to the system’s natural frequency ωn, its contribution to
the response will be relatively large (especially for light damping) and a
condition of resonance may exist when  for some value of n (it is
clear from the context, but we note that the subscript n in ωn is for ‘natural’
frequency of the system and is not an integer n=1, 2, 3, ···)·

The undamped case can be easily obtained as a particular case of the
equations above with c=0.

5.3.2 Transform methods I: preliminary remarks

All the problems of transient response that we have considered up to the
present can be solved by means of other methods by, so to speak, looking at
them from a different angle. These techniques—which involve integral
transforms—may seem only mathematical complications when applied to
relatively simple cases but their usefulness and power become clear when
more complicated problems of nonperiodic excitations are encountered.
Nonperiodic signals cannot be represented in terms of a fundamental
component plus a sequence of harmonics, but must be considered as a
superposition of signals of all frequencies. In other words, the series must be
generalized into an integral over all values of ω. In Chapter 2 we introduced
the Fourier transform of a function y(t) as (eq (2.16))

 
(5.72)

 
and the inverse Fourier transform (Fourier integral representation) as
 

(5.73)

 
Equation (5.73) represents the synthesis of y(t) from complex exponential

harmonics while eq (5.72) represents analysis of y(t) into its frequency
components, each frequency having for its amplitude the magnitude |Y(ω)|
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of the complex quantity Y(ω) and for its phase the phase angle of Y(ω). If
y(t) is real then (since t is real) Y(–ω) must be the complex conjugate of
Y(ω), i.e  Obviously, eqs (5.72) and (5.73) have meaning only
when the integrals converge.

As stated in Chapter 2, we are often interested in functions whose Fourier
transforms do not exist and are zero for negative values of t (for example,
the Heaviside function). There, we determined that the (one-sided) Laplace
transform of a function y(t) is obtained as (eq (2.36))
 

(5.74)

 

Moreover, we also determined that the inverse transform is
 

(5.75)

 

and that this integral can be evaluated as a contour integral in the complex
plane (the so-called Bromwich integral).

The utility of integral transforms lies in the fact that their application to
linear differential equations yields algebraic expressions in the transformed
variable. By treating the transformed problem, solutions may be found more
easily. However, these solutions are in the transformed space and the problem
of inverting these solutions remains. Obtaining the inverse transformation
usually turns out to be the most formidable part of the entire problem. Luckily,
extensive tables of Fourier and Laplace transforms are available in the
literature (e.g. Erdélyi et al. [4], Thomson [5], Graff [6] and Inman [7]).

If now we turn our attention to the relationship between the input
(excitation) and the output (response) of a linear SDOF system, we can
summarize the situation as follows. By virtue of the superposition principle—
and we refer here to the cases of our interest, i.e. linear, physically realizable
and stable systems—frequency components in the frequency band from ω to

 in the input (excitation) will correspond with components in the same
frequency band in the output (response) signal. More specifically, we
determined in Chapter 4 that a sinusoidal excitation at frequency ω produces
a (steady-state) response at the same frequency. Further evidence of this has
been obtained by the ‘frequency preservation property’ discussed in connection
with the convolution integral (eq (5.32)) and in Section 5.3.1. In other words,
the quantities that are affected—and change—in ‘passing through the system’
are the amplitude and the phase (with respect to the input), not the frequency.
So, if our sinusoidal excitation is written in the form  where
the function F(ω) provides the information on the input amplitude and phase
at the frequency ω, then the system’s response will be in the form

 where X(ω) contains the necessary information on the
amplitude and phase of the output at the same frequency. Hence, the effect of
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the system can be represented by means of a (complex) function H(ω) which
(1) depends only on the system’s characteristics and (2) provides the
information on how the system itself affects (at the frequency ω) the amplitude
and phase of the input signal. In mathematical terms we have
 

 
from which it follows that
 

(5.76a)

 
and H(ω) is called the system’s ‘frequency response function’ (FRF). Equation
(5.76a) is, as a matter of fact, the fundamental input-output relationship for
linear systems in the frequency domain and is strictly related to the excitation-
response relationship in the time domain obtained in section 5.2. The nature
of this relation—which clearly has to do with Fourier transforms of the time
signals—will be considered in a later section.

As far as the Laplace domain is concerned, it will be shown that the
fundamental input-output relation in the s-domain is given by
 

(5.76b)

 
although less physical meaning can be attached to the Laplace variable s.
The term transfer function (or ‘generalized impedance’, from electrical
engineering terminology) is used for the function H(s) and, incidentally, we
note that the term ‘transfer function’ is also sometimes used for H(ω). Since
H(s) and H(ω) are different, we will not follow this loose terminology.

5.3.3 Transform methods [II]: applications

As useful applications of the preceding discussion, we consider in this section
a number of problems which we have already solved by means of time-
domain techniques.

Example 5.5. The equation of motion of an undamped system, initially at
rest, excited by a delta function at t=0 is
 

 

taking the Laplace transform of both sides yields
 

(5.77)
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where  Solving for X(s) we have
 

(5.78)

 

where we recognize the symbolic notation of eq (5.76b) with
 

 

From any table of Laplace transforms one finds (a is a constant)
 

 

and we finally get
 

(5.79)

 

in agreement with the first of eqs (5.7a) which gives the unit impulse response
for an SDOF undamped system.

The introduction of viscous damping in our system would obviously lead
to the second of eqs (5.7a) because the function
 

 

transforms back to
 

 

where 

Example 5.6. If the forcing function to our undamped SDOF system is a
unit step Heaviside function θ(t), the transformed equation with zero initial
conditions is
 

(5.80)

Copyright © 2003 Taylor & Francis Group LLC



from which follows the indicial response
 

(5.81)

 

in agreement with eq (5.38).

Example 5.7. Let the exciting function be a unit rectangular impulse of
duration t1, i.e.
 

 

which can be written as
 

(5.82)

 
The transformed equation of our undamped system is now
 

 

where the right-hand side is the Laplace transform of eq (5.82). Solving for
X(s) yields
 

(5.83)

 
We already know the inverse transform of the first term on the right-

hand side (eq (5.81)) and we concentrate our attention on the second term.
This can be seen as the product
 

 

and we know from Chapter 2 that the inverse transform of such a product
is the convolution integral of the two inverse transformed functions, i.e.
 

(5.84)
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where G1(s) and G2(s) are the transforms of g1(t) and g2(t), respectively. From
a table of transforms we get
 

 

so that the convolution integral is zero for t<t1, leaving only the first term in
eq (5.83) and
 

for t>t1. The inverse transformation of eq (5.83) finally yields
 

 

which, aside from the constant f0, are exactly eqs (5.10) and (5.43).
So far, we have not yet considered the possibility of obtaining directly the

final solution satisfying given initial conditions. This is one advantage of
solving linear differential equations with constant coefficients by the Laplace
transform method. By standard methods one finds a general solution
containing arbitrary constants, and further calculations for the values of the
constants are needed to solve a particular problem. The Laplace transforms
of derivatives given in Chapter 2 (eqs (2.39) and (2.40)) will now be used to
clarify this point.

Let us consider the general equation of motion for a damped SDOF system
 

(5.85)
 

with initial conditions  and  The Laplace transformation
of both sides gives
 

(5.86)
 
where, as customary, we are using lower-case letters for functions in the
time domain and capital letters for functions in the transformed domain.

Solving for X(s) and rearranging leads to
 

(5.87)
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The first term on the right-hand side (product of two functions of s)
transforms back to the convolution integral
 

(5.88a)

 

the second term transforms back to (see any list of Laplace transforms)
 

(5.88b)

 

and we have already considered the third term whose inverse transform is
 

(5.88c)

 

The sum of the three expressions (5.88a, b and c) finally gives the general
response
 

 

which is, as expected, eq (5.19) and shows explicitly how this method takes
directly into account the initial conditions in the calculation of the response
to external excitation.

5.4 Relationship between time-domain response and
frequency-domain response

From the discussion and the examples of preceding sections it appears that
both h(t), the impulse response function (IRF), and the frequency response
function (FRF) H(ω) (or the transfer function H(s)) completely define the
dynamic characteristics of a linear system. This fact suggests that we should
be able to derive one from the other and vice versa. The key connection
between the two domains is established by the convolution theorem and by
the Fourier (or Laplace) transform of the Dirac delta function. In Chapter 2
(eq (2.29a)) we determined that the Fourier transform of the convolution of
two functions g1(t) and g2(t)—provided that —is the
product of the two transformed functions. With our definition of the Fourier
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transform, as a formula this statement reads
 

 

and results, as we have seen, from an application of Fubini’s theorem.
Now, since we know from Section 5.2 that the time-domain response x(t)

of a linear system is given by the convolution (Duhamel’s integral) between
the forcing function f(t) and the system’s IRF h(t), i.e.
 

 

we can Fourier transform both sides of this equation to get the input-output
relationship in the frequency domain
 

(5.89)
 

Equation (5.89) justifies eq (5.76a) from a more rigorous mathematical point
of view. In fact the two equations (5.76a) and (5.89) are the same if we define
 

(5.90a)

 

and
 

(5.90b)

In this light, note that the functions F(ω) and X(ω) are the Fourier transforms
of the functions f(t) and x(t), respectively, but the FRF H(ω) (eq (5.90a))
differs slightly from the definition of the Fourier transform of the IRF h(t)
(there is no 1/(2π) multiplying factor). This is a consequence of our definition
of the Fourier transform (eqs (2.15) and (2.16)) and of the fact that the
fundamental input-output relationship for linear systems is almost always
found in the form given by eq (5.76a). However, this is only a minor
inconvenience since (Chapter 2) the position of the factor 1/(2π) is optional
so long as it appears in either the Fourier transform equation or the inverse
Fourier transform equation. Hence, the inverse transform equation
corresponding to eq (5.90a) is
 

(5.91)
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which, conforming to our definition of the inverse transform can be written
 No such inconvenience arises in the case of Laplace

transforms because in this case, by virtue of the convolution theorem (eq
(2.43)), the Laplace transform of the Duhamel integral leads to

 
(5.92)

 
where we defined X(s) as the Laplace transform of the response x(t).

With the above general developments in mind, we may now recall that,
for a linear system, the function h(t) represents the system’s response to a
delta input, i.e. x(t)=h(t) when  Consequently, since 
(eq (2.74)), and  eqs (5.89) and (5.92) give respectively

 
(5.93)

 
which tell us that, in the case of δ-excitation, the Fourier (Laplace) transform
of the system’s response is precisely its frequency response (transfer) function,
a circumstance which is also exploited in experimental practice.

With the definitions above, it is now not difficult to verify eq (5.76a)
(and hence eq (5.93)) for the case of, say, a viscously damped SDOF system.
In fact, in this case we know from the second of eqs (5.7a) that

 

 
so that, with the aid of a table of integrals from which we get
 

 

we can calculate the term
 

 

by noting that, in our specific case  and 
It is then left to the reader to show that the actual calculation leads to
 

(5.94)
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where, as usual,  If we multiply this result by 
we obtain explicitly the right-hand side of eq (5.76a) for our viscously damped
SDOF system. Then, the left hand-side can be obtained by virtue of eq (5.5)
and it can be determined immediately that, as expected,
 

 

In the light of these considerations we can write the response of a system
to an input f(t), whose Fourier and Laplace transforms are F(ω) and F(s), as
 

(5.95)

 

or, when more convenient, as the inverse Laplace transform of the product
H(s)F(s). Thus the following three equivalent definitions of the FRF H(ω)
can be given:
 
1. H(ω) is 2π times the Fourier transform of h(t).
2. For a sinusoidal input, i.e.  is the coefficient of the

resulting sinusoidal response 
3. Provided that  in the frequency range of interest, H(ω) equals

the ratio  where X(ω) is the Fourier transform of x(t).
 
Figure 5.8. is a frequently found schematic representation of the fact that
the dynamic characteristics of a ‘single-input single-output’ system are fully
defined by either h(t) or H(ω)

A final note of interest concerns two systems connected in cascade as shown
in Fig. 5.9. Denoting by h(t) and H(ω) the IRFs and FRFs of the combined

Fig. 5.8 Symbolic representation of a linear system.

Fig. 5.9 Systems in cascade.
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system, by  and H1(ω) and H2(ω) the relevant functions of the
two subsystems we have
 

(5.96a)

 
and
 

(5.96b)

5.5 Distributed parameters: generalized SDOF systems

Up to the present we have always considered the simplest type of SDOF
system, i.e. a system where all the parameters of interest—mass, damping
and elasticity—are represented by discrete localized elements. This is, of
course, an idealized view. However, even when more complicated modelling
is required for the case under study, we have to remember that the key aspect
of SDOF systems is that only one generalized coordinate is sufficient to
describe their motion; if this characteristic is maintained it can be shown
that the equation of motion of our SDOF system, no matter how complex,
can always be written in the form
 

(5.97)

 
where z(t) is the single generalized coordinate and the symbols with asterisks
(not to be confused with complex conjugation) represent generalized physical
properties—the generalized parameters—of our system with respect to the
coordinate z(t). This latter statement means that a different choice of this
coordinate leads to different values of the generalized parameters. The possibility
of writing an equation such as (5.97) allows us to extend all the considerations
that we have made so far to a broader class of systems: assemblages of rigid
bodies with localized spring elements, systems with distributed mass, damping
and elasticity (bars, plates, etc.) or combinations thereof can be analysed in
this way once the relevant generalized parameters have been determined. Their
values can be obtained, in general, from energy principles such as Hamilton’s
or the principle of virtual displacements (Chapter 3) but general standardized
forms of these expressions can be given for practical use.

It is important to note that the SDOF behaviour of the system under
investigation may sometimes correspond very closely to the real situation
but, more often, is merely an assumption based on the consideration that
only a single vibration pattern (or deflected shape in case of continuous
systems) is developed. For example, a beam that deforms in flexure is, as a
matter of fact, a system with an infinite number of degrees of freedom, but
in certain circumstances a SDOF analysis can be good and accurate enough
for all practical purposes.
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For continuous systems in particular, the success of this procedure—which
is a particular case of the assumed modes method (Chapter 9)—depends on
the validity of the assumption above and on an appropriate choice of a
shape (or trial) function (x) which, in turn, depends on the physical
characteristics of the system and also on the type of loading. Ideally, the
selected shape function should satisfy all the boundary conditions of the
problem. At a minimum, it should satisfy the essential boundary conditions.

In this light, a few definitions are given here and then some examples will
clarify the considerations above.
 
• An essential (or geometric) boundary condition is a specified condition

placed on displacements or slopes on the boundary of a physical body
(e.g. at the clamped end of a cantilever bar both displacement and slope
must be zero).

• A natural (or force) boundary condition is a condition on bending
moment and shear (e.g. at the free end of a cantilever bar the bending
moment and the shear force must be zero).

• A comparison function is a function of the space coordinate(s) satisfying
all the boundary conditions—essential and natural—of the problem at
hand, plus appropriate conditions of continuity up to an appropriate
order.

• An admissible function is a function that satisfies the essential boundary
conditions and is continuous with its derivatives up to an appropriate
order. For a specific problem, the class of comparison functions is a
subset of the class of admissible functions.

• An assumed mode (or shape function) is a comparison or an admissible
admissible function used to approximate the deformation of a continuous
body.

 
Example 5.8. Let us consider the rigid bar of length L metres and mass m
kilograms shown in Fig. 5.10. The angle θ of rotation about the hinge, where

 at static equilibrium, can be chosen as the generalized coordinate. The
vertical displacement z(t) of the tip of the bar can be another choice; for
small oscillations  as shown in the figure.

Since the bar is considered rigid, the system has distributed mass (along
the length of the bar), localized stiffness, damping (the spring and the dashpot)
and is subjected to a localized force f(t).

For small oscillations about the equilibrium, we assume the shape function
 The virtual displacement is then given by  and

from the principle of virtual displacements it is not difficult to obtain
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since  we get

(5.98)

 

which is of the form (5.97) where the generalized parameters are
 

(5.99a)

(5.99b)

(5.99c)

(5.99d)

 
The reader can easily verify that the choice of z(t) as a generalized coordinate
leads to different values for the generalized parameters.

Example 5.9. As a second example we can consider the model of a beam of
length L that deforms in flexure and is supported by an elastic foundation;
we assume the following schematized beam and foundation characteristics:
 
• a mass  per unit length and a flexural rigidity EI (beam);
• a spring constant of  per unit length (foundation);
• a damping constant of  per unit length (foundation).
 
In addition, the beam is subjected to a distributed transverse external force

 per unit length.
This is obviously a one-dimensional system where all the relevant

parameters are distributed and can be represented for purpose of illustration
by the drawing of Fig. 5.11. The direction of the x-axis is also shown.

Fig. 5.10 Hinged rigid bar with localized stiffness (spring) and damping (dashpot).
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Our method assumes that only one mode is developed during the motion
and represents the deflected shape u(x, t) of the beam as the product
 

(5.100)
 

where (x) is the chosen admissible function and z(t) is the unknown
generalized coordinate. The principle of virtual displacements considers all
the forces that do work and reads
 

(5.101)
 
where  from the definition of potential energy V. It will be
shown in later chapters that the strain potential energy of a beam undergoing
a transverse deflection u(x, t) is given by
 

(5.102)

 

where we indicated for simplicity of notation  It follows
from eq (5.102)
 

(5.103)

 

since 
For the inertia forces we get

 

(5.104)

 

since  and 

Fig. 5.11 Schematized beam on elastic foundation.
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Similarly, for damping forces we get
 

(5.105)

 
and for the distributed spring and external forces
 

(5.106)

(5.107)

 
Addition of the various terms leads to
 

where all the integrals are taken between 0 and L. The virtual displacement δz
is arbitrary and therefore can be cancelled out, leaving the equation of motion
of our system in the form of eq (5.97) where, after rearranging, the generalized
parameters are given by
 

(5.108a)

(5.108b)

(5.108c)

(5.108d)

 

It is now evident how the particular choice of the shape function affects
the generalized parameters of the system. Moreover, it is also clear that the
application of Hamilton’s principle leads the same expressions of eqs
(5.108a–d).

The most general case of the type shown above consists of a system which
is a combination of distributed and localized masses, springs, dampers and
external forces. Again, the displacement is assumed of the form
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 where z(t) is the unknown generalized coordinate and the
following standardized expressions for the generalized parameters can be
given:
 

(5.109)

 

(5.110)

 

(5.111)

 

(5.112)

 

where the integrals take into account the distributed parameters of the system
under investigation (the symbols with a caret (^) are intended per unit length)
and the summations take into account the discrete elements. For example,
the contribution to the generalized damping of a localized dashpot of constant
c1 at a distance x1 from the origin of the axes is given by  in the
summation of eq (5.110). With regard to the generalized mass, the second
summation accounts for the rotation effects of localized rigid-body masses:
I0j is the mass moment of inertia of the jth mass and the first derivative of 
at the point xj represents the rotation at that point. Referring back to the
example of Fig. 5.10, it is not difficult to see that the generalized parameters
of eqs (5.99a–d) are particular cases of eqs (5.109)–(5.112) where the assumed
motion was  and the connection to the general case is given by
 

 

and the generalized mass accounts for translational motion of the centre of
mass (at x=L/2) and the rotational motion around the centre of mass (mass
moment of inertia ).

Care must be taken in the calculation of the generalized stiffness when
‘destabilizing’ forces are acting, since they add a further contribution to eq
(5.111). Destabilizing forces may arise in different situations and may be of
various nature. Gravity, for example, can be such a force in the case of an
inverted pendulum, where a mass M is mounted on the tip of a light rigid
bar as in Fig. 5.12.

The reader is invited to determine that the effective stiffness of the system
can be written as k–kG where kG depends on the weight Mg. When 
the system becomes unstable.
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For rotating systems, the centrifugal force can be destabilizing and, again,
the generalized stiffness shows an additional term due to its effect.

However, for our purposes, compressive or tensile axial forces are the main
concern. They tend to reduce (compressive forces) or increase (tensile forces)
the stiffness of a structure and can play a significant role in determining the
system’s response under dynamic loading. Suppose that the beam of Fig 5.11 is
subjected to an axial compressive loading P(x). A deformed infinitesimal portion
of the beam (exaggerated for purposes of illustration) is shown in Fig. 5.13,
where it is assumed that the element remains dx in length as it rotates of α and
that the axial force does not change direction as the structure moves.

As before, we choose  from which it follows that
 From the figure we get  i.e. 

As the element dx passes through a virtual displacement, we have
 and since for small angles  and

Fig. 5.12 Inverted pendulum.

Fig. 5.13 Beam element under axial compressive loading.
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 we obtain
 

(5.113)

 
The virtual work done by P(x) is finally obtained as

 

(5.114)

 
The term of eq (5.114) must now be added to eq (5.101) to give a generalized
stiffness in the form  where k* is as before and
 

(5.115)

 
In the case of a simple beam under the action of the axial compressive load

only—if P does not depend on x and can be taken out of the integral—we can
obtain the critical buckling load from the condition  as
 

(5.116)

 
which is, obviously, relative to the assumed shape (x).

As the simple examples above show, and as the word itself implies,
destabilizing forces lead to stability problems. Stability is a broad subject in
its own right and extends outside our scope. Some of its basic aspects will be
considered when and if appropriate in the course of the book. For the moment,
it suffices to say that stability is in general connected to situations in which
the physical parameters (m, k or c or their generalized counterparts; one or
more of them) become negative. The motion is not well-behaved in these
cases and may diverge, i.e. increase without bounds, with or without
oscillating. An example of diverging motion, even if no destabilizing forces
are active, is the undamped oscillator excited at resonance.

One final word to point out that the assumed mode procedure can be
extended to more complicated elements. For example, if the element
undergoing flexure is two dimensional—i.e. a rectangular membrane or a
plate—we can assume the displacement of the centre as the generalized
coordinate z(t) and write
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where, again, (x, y) is a reasonable shape function consistent with the
boundary conditions. However, a good choice of the shape function becomes
more and more difficult as the number of dimensions increases and, as a
consequence, the method may lead to unreliable results.

5.5.1 Rayleigh (energy) method and the improved Rayleigh
method

Often, in practical situations, the quantity of main concern is the fundamental
frequency of vibration of a given structural or mechanical system. When the
system is complex, the exact determination of such a quantity may not be
an easy task, long computation time and difficult calculations being involved
in the process. The basis of a class of approximate methods to obtain the
needed result is the so-called Rayleigh’s method.

When an undamped elastic system vibrates at its fundamental frequency,
each part of the system executes simple harmonic motion about its equilibrium
position. The principle of conservation of energy applies for such a system
and during the motion two extreme situations occur:
 
• All the energy is in the form of potential strain energy at maximum

displacement.
• All the energy is in the form of kinetic energy when the system passes

through its equilibrium position (maximum velocity).
 
Conservation of total energy requires that the potential energy at maximum
displacement must equal the kinetic energy at maximum velocity, i.e.
 

(5.117)

 
The Rayleigh method calculates these maximum values, equates them and
solves for frequency, since this quantity always appears in the kinetic energy
term as a consequence of the simple harmonic motion of the system.

The undamped harmonic oscillator of Fig. 4.2 is the simplest example:
the motion of such a system can be written as (Chapter 4)
 

 
the potential and kinetic energies are then
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Their maximum values are
 

 

Equation (5.117) follows because, individually, the two terms above must
equal the total energy. Solving for ωn we get the well-known result
 

(5.118)

 
Another example can be the beam of Fig. 5.10 in free vibration; we make

it conservative by considering c=0 and f(t)=0: no energy is removed from the
system and no energy is fed into it. We assume as before  and a
harmonic motion of the generalized coordinate given by  The
maximum values of the potential and kinetic energies are now

equating the two energies and solving for frequency gives
 

(5.119)

 
where the generalized stiffness and mass are the same as in eqs (5.99a) and
(5.99c).

It is clear at this point that Rayleigh’s method is strictly related to the
assumed modes method (which is used to obtain the equation of motion),
and the generality of the symbolic relation —often referred to
as the Rayleigh quotient—can be appreciated.

Further generalization will be given in later chapters when appropriate.
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As a last example of SDOF system we consider a simple cantilever beam
(i.e. a beam that is clamped at one end and free at the other) that undergoes
flexural vibrations without energy loss during its motion. We assume the x-
axis in the horizontal direction.

The assumption  characterizes the SDOF behaviour of
this system and, again,  characterizes the harmonic time
dependence of this motion. The maximum potential and kinetic energies are
 

(5.120)

 

(5.121)

 
respectively, where EI is the flexural rigidity,  is the mass per unit length.
Equating and solving for the frequency gives
 

(5.122)

At this point it is interesting to test the effect of different choices for (x)
on the calculated frequency. Since the exact deformation shape can only be
obtained by solving the equation of motion (but in this case the value of the
fundamental frequency would be determined also) and therefore it is not
known, we will try three trial functions
 

(5.123)

(5.124)

(5.125)

 
All of these functions give zero displacement at the clamped end (x=0)

and unit displacement at the free end (x=L) of the cantilever, the rationale
being as follows: 1 is the simplest function one can think of in the given
situation, 2 is a reasonable sinusoidal function and 3 is the static deflection
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curve of a cantilever beam under uniform load. In all of the cases above we
can calculate the Rayleigh quotient and obtain an approximate value for the
fundamental frequency of our system.

After some calculation that the reader is invited to try, we get the following
results:
 

(5.126)

(5.127)

(5.128)

 

respectively, where the superscript in parentheses refers to the chosen trial
function. It will be determined in Chapter 8 that the exact fundamental
frequency of the system we are considering is
 

(5.129)

 

The first consideration is that all of the trial functions produce a result
that overestimates the exact value; this is a fundamental characteristic of the
Rayleigh quotient and will be proven rigorously on a mathematical basis.
On physical grounds, one can observe that additional constraints must be
applied to the system if it is forced to vibrate in a shape that is different from
its natural one; these constraints add stiffness to the system and hence an
increase in frequency. Obviously, if the exact shape function (the lowest order
eigenfunction) is used for (x), the result is eq (5.129).

In addition, we note that the degree of approximation is rather crude
(27% high) for the first function, but satisfactory for the other two.
Qualitatively, we can say that the more the trial function resembles the true
deflection shape, the more accurate the result will be. A closer examination
requires the analysis of the boundary conditions. For the cantilever beam
the following boundary conditions must be satisfied:
 

1. zero displacement and slope at the clamped end (x=0), i.e.  

(5.130)

which we recognize as essential boundary conditions;
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2. zero bending moment and shear force at the free end (x=L), i.e.
 

(5.131)

 

which we recognize as natural boundary conditions.
 
All the trial functions satisfy the conditions of eqs (5.130) but only 3(x)
satisfies all four; 1(x) does not satisfy the first of eqs (5.131) and 2(x) does
not satisfy the second of eqs (5.131).

In general, the deflection produced by a static load is a good candidate
for Ψ(x) because it automatically satisfies all the necessary boundary
conditions and simplifies the calculation of the potential strain energy that
can be obtained as the work done by the static load to produce the desired
deflection. Only the function (x) appears in this calculation and not its
second derivative.

A common assumption is to choose the deflection shape that results from
the application of the gravity load due to the mass of the structure. In this
case, the direction of gravity must be chosen to match the probable
deformation shape: in the analysis of the free vibrations of a vertical cantilever
for example, the direction of gravity must be horizontal if we are interested
in lateral motions of the structure. Obviously, this does not correspond to
anything real, it is just a useful expedient.

There are two are the reasons that justify the assumption above:
 
1. It is not necessary to spend much time in the choice of an assumed

shape because any reasonable function compatible with the essential
boundary conditions leads to acceptable results. It will be shown in
Chapter 9 that the error on the calculated frequency is of the order of
ε2, if ε is the error of the assumed shape with respect to the exact one.

2. The displacements in free vibration result, as a matter of fact, from the
application of inertia forces and these forces depend, in their turn, on
the mass distribution in our system.

 
This latter consideration, together with the serious disadvantage that the
method does not allow us to estimate e if the exact (x) is not known, leads
to the improved Rayleigh method, whose line of reasoning is as follows.
Suppose that the true deflection (x) is the same as the deflection produced
by an external load f(x). Then, deflection  is produced by a
load zf(x) and the potential strain energy is the work done by this force to
give the displacement z , i.e.
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If, as before,  we get

 

 
Equating to the maximum kinetic energy of eq (5.121) gives

 
(5.132)

 
which states that the load of eq (5.132), where we recognize inertia forces,
produces the exact vibration shape. Equation (5.132) is true if (x) is the
true shape. Our assumed shape, which we call now 0(x), is probably
different from the true one and hence the load  will produce a
shape different from 0(x), let us call it  This function cannot be
calculated because of the unknown  factor, but intuition suggests that it
is likely to be a better approximation than 0 for the true deflected shape.
Nevertheless, the function  (not to be confused with the
function of eqs (5.123) which was a particular 0 for the cantilever problem)
can be obtained from

 
(5.133)

 
and we can write the maximum potential energy as

 
(5.134)

 
Equating to the maximum kinetic energy gives

 

(5.135)

 
At this point it seems reasonable to proceed further and use 1 also for the

kinetic energy, so that
 

(5.136)
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Equating to Ep,max of eq (5.134) gives now
 

(5.137)

 

Further iteration—that is, the use of 1 to obtain an even better
approximate function 2 and use the latter to calculate the frequency—is
generally not worth it.

We still do not have an estimate for the error ε , but indirectly we can
have an idea by looking at the difference between the frequencies obtained
from eq (5.122) and eq (5.135) or (5.137). If this difference is large, the
function 0 is not a very good approximation for the true deflected shape
and ε  is large as well; if it is small, ε  is small as well and 0 is a good choice.

Now, going back to the cantilever problem, we show an application of
the improved Rayleigh method. We start from the function —
which produced the result of eq (5.126)—and use the inertia forces  to
calculate a better deflected shape. We know from beam theory that
 

where 1 is the shape that results from the application of the forces on the
right-hand side. By integrating four times and calculating the constants of
integration from the boundary conditions of eqs (5.130) and (5.131) we get

(5.138)

 

which can be used in eq. (5.135) to obtain
 

(5.139)

 
or in eq (5.137) to get
 

(5.140)
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These values are much better estimates of the exact frequency (given by
eq (5.129)) and the large difference between the frequencies obtained from
eq (5.126) and (5.139)—26.7% with respect to the lower value—indirectly
suggests that the assumed 0 was not a good approximation for the true
deflected shape and hence the relative error on the frequency must have
been large as well.

5.6 Summary and comments

Chapter 5 continues the discussion on SDOF systems. When the excitation
is not a simple sinusoidal function, the response of the system can be obtained
by means of various techniques, which obviously apply to harmonic excitation
as well. The main distinction is between time-domain and frequency-domain
techniques.

If the functions involved are analysed in the time domain, a fundamental
concept is the impulse response function h(t), whose convolution with the
forcing exciting function provides the time response of our SDOF system.
This particular form of convolution is known as Duhamel integral, which,
in turn, can be visualized as a sum of the input excitation ‘weighted’ by an
appropriately shifted form of the impulse response h(t). As far as dynamic
aspects are concerned, the function h(t) is an inherent property of the system
and characterizes it completely.

In this light, the response to the frequently encountered situation of
loadings of short duration that may release a considerable amount of energy
can be considered. One generally speaks of transient or shock loading,
depending on a comparison between the time duration of the input load and
the system’s period of oscillation  The ratio between these two latter
quantities is the natural abscissa axis for the representation of shock spectra,
where the maximum response of the system is plotted on the ordinate axis
without regard to the entire time history of the event. Shock spectra are
obtained considering an undamped SDOF system as a standard reference
and are widely used for design and comparison purposes in order to assess
the potential disruptive effects of various forms of shock.

Another class of loadings is given by periodic (i.e. with a repetitive pattern
in time) functions. Fourier’s theorem states that a general periodic (and well-
behaved) signal is the superposition of an infinite number of simple sinusoidal
functions with frequencies that are all integral multiples of a value ω0. It
follows that its mathematical form is a convergent Fourier series of such
functions and, owing to the principle of superposition, the response of a
linear system is a similar Fourier series as well. Amplitudes and phases are
modified between input and output (excitation and response), but it is not so
for the frequency content and even if, rigorously, an infinite number of terms
appear in the mathematical representation of the above series, a finite and
limited number of terms often suffices for all practical purposes.

Copyright © 2003 Taylor & Francis Group LLC



The generalization of Fourier series to nonperiodic signals leads to the
Fourier and Laplace transformation integrals, which constitute the basis of
the frequency-domain approach. Besides the fact that they often allow a
simplification of the mathematics required to solve specific problems, their
importance cannot be overstated and the fundamental concepts of frequency
response function H(ω) and transfer function H(s) of a linear system follow
directly from their application.

These latter functions play a crucial role in almost every aspect of linear
vibration analysis. They completely characterize a linear system in the
frequency domain and—as h(t) in the time domain—they are inherent
properties of the system under study. Given these similarities, logic dictates
that it must be possible to obtain H(ω)—or H(s)—from h(t) and vice versa.
The connection is the Fourier (or Laplace) transform: h(t) and H(ω) are a
Fourier transform pair and, likewise, h(t) and H(s) are a Laplace transform
pair.

Unfortunately, both the time-domain and the frequency-domain
approaches often lead to integral expressions which cannot be evaluated
analytically and, therefore, recourse must then be made to computer
calculations on ‘sampled’ versions of the original signals. This sampling
process is not harmless and its effects will be considered in Part II of the
book which deals with electronic instrumentation. It is, however, important
to point out right away that some care must be exercised in these cases if we
do not want to run into undesirable consequences.

The last part of the chapter shows how, in some circumstances, an SDOF
analysis can be extended to a wide class of more complex systems when
some basic assumptions on the system’s behaviour can be made or when the
needed results can be accepted with a reasonable degree of approximation.
The concept of generalized parameters is introduced in order to obtain a
SDOF equation of motion or to calculate an approximate value of the
fundamental frequency by means of the Rayleigh energy method. The
assumption that only one vibration pattern (or ‘shape’) is developed during
the motion is particularly useful in an approximate examination of continuous
systems, where the static deflection under an appropriate load—often their
own weight—is a good choice for the assumed vibration shape in most cases.
The assumed shape then satisfies automatically the essential and natural
boundary conditions of the problem. Nevertheless, simpler shapes satisfying
only the essential boundary conditions can be chosen if great accuracy is not
needed. Needless to say, the exact value of frequency is obtained if one has
the luck (or the physical insight) to choose the correct deformed shape.

The improved Rayleigh method provides more accuracy in the calculation
of the fundamental frequency—which is always overestimated when the
assumed shape is not correct—and allows an indirect qualitative evaluation
of the error with respect to the (unknown) exact value by looking at the
improvement of the first one or two iterations involved in the process. Further
iterations are, in general, not needed.
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6 Multiple-degree-of-freedom
systems

6.1 Introduction

In one way or another, almost any vibrating system could be modelled and
represented as an SDOF system. In general, the quality of this assumption
depends on the type of system and excitation, on the accuracy required and
on the scope of the investigation. In some circumstances the assumption is
correct; in some other cases it may lead to a description of the system’s
dynamic behaviour within an acceptable degree of accuracy but, in many
other cases, the assumption is just an extreme oversimplification leading to
inaccurate results which have almost nothing to do with the real situation.
Since, a priori, the true behaviour of a real system is in general not known,
the assessment of the validity of the results obtained from a SDOF analysis
may not be an easy task. Therefore, in order to obtain a meaningful
description for a wide class of systems, more complex representations are
needed from the outset.

When one coordinate is not sufficient to characterize the motion of a
given system, one speaks rightfully of two-, three-,…n- or, in general, multiple-
degree-of-freedom (MDOF) systems; where the number refers to the
independent coordinates necessary to describe completely the vibration
phenomenon.

The SDOF model enables us to explain—without particular mathematical
difficulties—many fundamental concepts such as free and forced vibrations,
natural frequency and resonance. Broadly speaking, all of these concepts
can be extended to MDOF models. However, some important differences
will appear; in anticipation we can say that the natural vibration of an MDOF
system may occur at a number of different frequencies. Each one of them
corresponds to a particular pattern (or ‘shape’ to give a pictorial view) of
the system’s motion and these different configurations, known as natural or
normal modes of vibration, play a crucial role in almost every aspect of
further analysis.

As discussed in Chapter 3, a set of n simultaneous ordinary differential
equations of motion—one for each degree of freedom—must now be obtained
in order to mathematically describe our system and a proper choice of the
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generalized coordinates is one of the key points of the whole process. In
fact, the theory of finite-dimensional vector spaces and the closely related
subject of linear matrix algebra are the most convenient mathematical tools
required to deal with MDOF systems: it is well-known that the choice of a
basis in a vector space determines the particular matrix representation of
operators and vectors and may considerably simplify the problem at hand.

6.2 A simple undamped 2-DOF system: free vibration

As a starting point, let us consider the simple system of Fig. 6.1. It consists
of two masses M and m connected by a spring k2, with the mass M suspended
from a fixed point by a spring k1. We assume that this system is constrained
to move only in the vertical direction; in this case the coordinates x1 and x2

that specify the position of the two masses at any instant are sufficient to
describe the motion completely and we have a 2-DOF system.

If we take the position of static equilibrium as a reference, the terms
representing the weights of the masses cancel out with the spring tensions at
equilibrium, exactly as stated in Section 4.2.1; as the masses move at x1 and
x2, respectively, the tension in the lower spring is  The (coupled)
equations of motion are

(6.1)

 
 

Fig. 6.1 Simple 2-DOF system.
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as can also be determined by using Lagrange’s equations. Let us consider
now if such a system can vibrate so that all the masses move with the same
frequency  and, if this is possible, at how many different frequencies
this vibration can occur. Let us suppose further that, for example, M=3m,
k2=k and k1=4k. Equations (6.1) become

(6.2)

By analogy with the behaviour of SDOF systems, we look for harmonic
solutions. Using for example the sinusoidal notation we write

(6.3)

where A, B and ω are constants.
Substituting eqs. (6.3) in eqs. (6.2) leads to

(6.4)

We note in passing that the same phase angle is used because, were it not so,
only the trivial case A=0 and B=0 (i.e. no motion at all) would be a solution;
the case in which the phase angles differ by π is equivalent to a change of the
sign of B, which is, as yet, still arbitrary.

A nontrivial solution of eqs (6.4) exists if the determinant

vanishes. For reasons that will become clear in the following sections, the
problem of determining the values of frequency for which eqs (6.4) admit
nontrivial solutions is called the eigenvalue (or characteristic value) problem.
Equating to zero the determinant above leads to the frequency equation

(6.5)

with solutions

(6.6)
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since ω is a positive quantity. For each of these frequencies the ratio A/B can
be determined by the following relations:

(6.7)

which have been obtained from eqs (6.4) (two equations for three unknowns).
So, for each ω given by eqs (6.6), the phase θ and one of the constants A

and B can be arbitrarily assigned: the choice of θ specifies the instant at
which the motion is started and the choice of A (or B) determines the
amplitude of vibration.

The two values of frequency at which harmonic motions of the type (6.3)
exist are called the natural frequencies of the system. They are inherent
characteristics of the system under study and correspond, as we will see
shortly, to well-determined configurations in space of the system itself, the
so-called normal modes of vibration.

For the value of frequency  we obtain from eqs (6.7)
A/B=1/3. This means that at any instant of time both masses are above or below
their equilibrium position (in phase), the displacement of mass m being three
times the displacement of mass M. Likewise, for the frequency

 we get A/B=–1: so that at any instant the masses have the
same displacement with respect to their equilibrium positions, but on opposite
sides of them (opposition of phase).

Thus, each normal frequency ‘belongs’ to a well-defined pattern of
motion—its relevant normal mode—and vice versa, each normal mode
represents a pattern of motion that occurs at a well-defined value of frequency.
The natural frequencies and the mode shapes (i.e. the pattern of motion of
the normal modes) are unique for a given system, the amplitude of the mode
shapes is not. However, for a given mode, the ratio of amplitudes is
determined uniquely.

This degree of arbitrariness is a mathematical consequence of the fact
that the eigenvalue problem (6.4) is homogeneous and multiplication of a
mode shape by a constant does not change the mode shape itself.

Taking the analysis of our simple 2-DOF system a little further, we can
write explicitly the solution corresponding to the frequency ω1. This is

For this solution, we note that the quantity  vanishes at all times
and the same happens to the quantity  for the solution relative to ω2.
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Now, subtracting the second of eqs (6.2) from the first gives

(6.8)

and adding the first equation of (6.2) to three times the second gives

(6.9)

If we define the new coordinates

(6.10)

eq (6.8) and (6.9) become

(6.11)

which are two uncoupled equations in the new coordinates and, as such,
can be solved independently. The simplification is noteworthy, because eqs
(6.2) were coupled and had to be solved simultaneously. This new set of
coordinates, or any multiples of them, are referred to as normal coordinates.
In a normal mode only one normal coordinate is nonzero and the solutions
to eqs (6.11) can be immediately written following the procedure described
in Section 4.2.1.

The four arbitrary constants appearing in the expressions of η1(t) and
η2(t) can be determined from the initial conditions and then, if needed, x1

and x2 may be recovered. It is desirable and easier at this point to fit the
initial conditions before x1 and x2 are separately determined, otherwise we
get four simultaneous equations for the four constants.

If now we turn our attention to the energy of our system, it is easy to
write the potential and kinetic energies:

(6.12a)

(6.13a)

which become, in our example 

(6.12b)

(6.13b)
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These same quantities can be expressed in terms of the normal coordinates.
Inverting eqs (6.10) gives

(6.14)

 
and substitution in the energy expressions (6.12b) and (6.13b) leads to

(6.15)

(6.16)

 
Note that, when they are written in normal coordinates, no cross-product

terms appear in the potential and kinetic energy expressions, the only nonzero
terms being squares of the coordinates and their time derivatives. It is
obviously not so in the original coordinates, where the cross-product term
kx1x2 appears in the potential energy (eq (6.12b)). Furthermore, if we write
Lagrange’s equation for η1

(6.17)

an energy equation can be obtained; multiplying eq (6.17) by  and
integrating with respect to time, we get

(6.18)

 
which shows that the η1 contributions to V and T have a constant sum. The
same applies to the coordinate η2, as the reader can immediately verify. So,
the energy associated with any particular normal coordinate remains constant
and this result—a refinement of the energy equation for the whole system—
implies that the total energy of the system is divided into parts which are
separately constant. There is no energy interchange between any two different
normal coordinates. This is clearly not true for the original coordinates,
because the cross-product term in V provides the mechanism for an energy
interchange between x1 and x2.

The results above are quite general and this particular example has been
given in order to illustrate some basic aspects of a simple undamped MDOF
system without getting too much involved in the specific techniques adopted
in the solution of such problems. In the case of more complex systems, it is
obvious that the procedure above leads to arduous and cumbersome
calculations and one has to resort to other more tractable methods.
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6.3 Undamped n-DOF systems: free vibration

In Chapter 3, making use of Lagrange’s equations, we obtained the equations
of motion of a n-DOF system without damping as (eq (3.97))

(6.19)

Equations (6.19) are equivalent to the matrix expression

(6.20)

where M and K are symmetrical (i.e. equal to their transpose) n×n matrices
and u is an n×1 column vector. The solution of the n coupled equations
(6.19)—or (6.20)—represents the free vibration of our system, where the
initial conditions are now given by a set of n initial displacements and n
initial velocities.

As an example, we can refer back to the simple 2-DOF system of Fig. 6.1
and write the equations of motion (6.1) in matrix form as

(6.21)

(It is worth noting that the emphasis on matrix notation is due to the fact
that this ‘language’ is convenient and particularly appropriate for computer
implementation; its brevity is a virtue and it has proven to be an extremely
useful organizational tool to keep track of complicated sequences of
operations.)

The coupling of the equations arises from the fact that, in general, the
mass (or inertia) matrix M or the stiffness matrix K, or both, may not be
diagonal: when M is not diagonal the system is called inertially, or
dynamically, coupled, when K is not diagonal we speak of elastic (or stiffness,
or static) coupling, see for example, eqs. (6.21). Obviously, the system is
inertially and elastically coupled when both M and K are not diagonal.

However, it is very important to note that the type of coupling is not an
intrinsic property of the system, but depends on the choice of coordinates
used to express the equations of motion. In fact, it is not difficult—always
referring to the simple system of Fig. 6.1 as an example—to choose a set of
coordinates in which the stiffness matrix is diagonal and the mass matrix is
not. In this light, it could be inferred that the most desirable situation in
which both M and K are diagonal—and the equations of motion are
uncoupled, which means much easier to solve—can eventually be achieved
with an appropriate choice of coordinate system. In the following we will
see that this is always the case for an undamped MDOF system.
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Returning to eq (6.20), we investigate the possibility of having solutions
of the form

(6.22)

where z is a ‘shape’ vector and the time dependency has been separated out.
Physically, this means that all the coordinates execute a synchronous motion
and the system configuration changes its amplitude but not its shape during
the motion. Substitution in eq (6.20) gives

(6.23)

or, equivalently,

(6.24)

Equation (6.23), or (6.24), represents a set of n homogeneous linear equations
and it is known that a nontrivial (different from zero, i.e. no motion at all)
solution exists if and only if the determinant of the coefficients vanishes, i.e.

(6.25)

Mathematically, eq (6.24) represents a problem commonly known as
generalized (or ‘linearized’ for other authors) eigenvalue problem. We may
refer to it also as the ‘real eigenvalue problem’, to distinguish it from the
‘complex eigenvalue problem’, which is relative to systems with damping.

The standard, or canonical, form of the eigenvalue problem (see also the
Appendix A on matrix analysis for more details) is

(6.26a)

or
 

(6.26b)

 
where A is a square (n×n) matrix, z is a right n×1 eigenvector and  is the
corresponding eigenvalue (or proper value). The solution of the
‘eigenproblem’, given the matrix A, consists of finding the values of  and
the vectors for which eqs (6.26) hold. Eigenvalue problems occur in so many
areas of physics and engineering that a large volume of literature is available
on the subject, and this is also due to the fact that, for large systems, its
solution may present considerable computational difficulties.

The expansion of the determinant of eq (6.25) leads to an algebraic
equation of order n in ω 2. This is known as the characteristic or frequency
equation (remember eq (6.5)) and its n roots are the eigenvalues of the
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undamped free vibration problem. These n roots are not necessarily all
different and we must consider their algebraic multiplicities, i.e. the number
of times a repeated root occurs as a solution of the frequency equation.
However, we leave for later the case of repeated roots, the so-called
eigenvalue degeneracy, which is, for the most part, only a mathematical
complication.

Physically, the positive square roots of the eigenvalues represent the natural
frequencies of our system. We denote them as  where the
subscript increases as the value of frequency increases and the lowest
frequency, ω1, is called the fundamental frequency.

When the natural frequencies  are known, we can go
back to eq (6.23) and solve for the eigenvectors zj(j=1, 2,…, n), which, in
turn, can only be determined within a multiplicative arbitrary constant
because of the homogeneous nature of the problem. In other words, the
eigenvectors are arbitrary to the extent of an indeterminate multiplier: if zj

is a solution of the problem, αz j is also a solution, α being a constant. Fixing
the value of α by some convention determines the eigenvector completely,
or, alternatively, assigning a definite value to one element of the eigenvector
determines its remaining n–1 elements uniquely. This process is known as
‘normalization’ and more than one convention can be used, as we shall see
later.

Whatever normalization is chosen to fix its amplitude, each eigenvector
zj represents a unique pattern or ‘shape’ of vibration of our MDOF system,
a vibration pattern which takes place at the frequency ω j; this occurrence
suggests for the zj the common names of natural modes of vibration, modal
shapes or modal vectors.

The general solution of the problem, given its linearity, is a sum of the 2n
solutions (note that, mathematically, the roots of the frequency equation are

i.e.

(6.27a)

or, alternatively

(6.27b)

(6.27c)
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where the set of 2n constants—Aj and Bj for the case of eq (6.27a), Cj and
θj for the case of eq (6.27b) and Dj and Ej for eq (6.27c)—can be obtained
from the initial conditions

(6.28)

We may note that, up to this point, we have re-expressed in matrix notation
and extended to a number of n degrees of freedom many of the concepts
introduced with the simple example of Section 6.2. The matrix approach,
however, goes deeper into the fundamental aspects of the problem and some
useful properties of the eigenvectors need to be pointed out before proceeding
further.

6.3.1 Orthogonality relationships of eigenvectors and
normalization

For our convenience, let us rewrite the eigenvalue problem of eq (6.24) as

(6.29)

where  Now, let z i and z j be any two eigenvectors whose
corresponding eigenvalues are, respectively, i and j and we assume 
Then the two equations

(6.30)

are identically satisfied. Premultiplication of the first of eqs (6.30) by  gives

(6.31)

and transposing both sides, since K=KT and M=MT, we get

(6.32)

On the other hand, premultiplication of the second of eqs (6.30) by  yields

(6.33)

and subtracting eq (6.33) from eq (6.32) leads to
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which implies

(6.34)

because of the assumption of distinct eigenvalues. Equation (6.34) generalizes
the usual concept of orthogonality of two vectors x and y, which can be
written as

where x and y are two elements of a Euclidean space (i.e. a vector space of
finite dimension where an inner product has been defined). In this case one
speaks of orthogonality of two vectors when their inner product is zero.

In the case of eq (6.34) we speak of orthogonality with respect to the
mass matrix or, in brief, mass-orthogonality. It is now straightforward to
show that the eigenvectors zi and zj are also orthogonal with respect to the
stiffness matrix: by virtue of eq (6.34), eq (6.32) gives

(6.35)

which is precisely the stiffness-orthogonality condition of the two eigenvectors.
When i=j, the left-hand side of eqs. (6.34) and (6.35) is different from

zero and we can write

(6.36)

where the scalars Mii and Kii are called the modal or generalized mass and
the modal or generalized stiffness of the ith mode, respectively. These terms
are rather misleading because the eigenvectors are subjected to an arbitrary
scaling factor which, as yet, has been left undetermined; nevertheless the
ratio Kii/Mii is uniquely determined because, by virtue of eq (6.29), we have
 

(6.37)

The formal analogy with the usual  for an SDOF system is evident.
Going back in our discussion on eigenvectors, we tacitly assumed that the

frequency equation has precisely n roots, counting multiplicities. Strictly
speaking, this is true in the complex field (which is algebraically closed) and
little can be said if we limit ourselves to real numbers. However, we note that
both M and K are symmetrical and symmetrical matrices are just Hermitian—
or self-adjoint—matrices with real entries. A direct consequence of their
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Hermitian property is that all eigenvalues are real. In fact, consider the second
of eqs (6.30), its adjoint equation, i.e. its transposed complex conjugate, is

(6.38)

because K=KH and M=MH, where KH and MH indicate the Hermitian adjoint
matrices of K and M, respectively. Now, multiply from the right of eq (6.38)
by zi, multiply from the left of the first of eqs (6.30) by  and subtract one
of the resulting equations from the other. We get

(6.39a)

and the particular case of i=j gives

(6.39b)

Once again, the Hermitian property of M can be used to show that the matrix
product  is real. (Hint: write explicitly the real and imaginary parts of
the eigenvector as  perform the multiplication and note that the
imaginary part of the result must vanish because  it follows
that  i.e. i is real.) On physical grounds, it could be argued that an
imaginary part of ω different from zero would introduce an exponential
decreasing or increasing factor in our solution (6.22) and this factor, in its
turn, would lead to changes of the total energy as time passes. This is in
contradiction with the fact that we are dealing with a conservative system.

Equations (6.34), (6.35) and (6.37), the othogonality conditions, can be
stated more concisely if we form the modal matrix Z by assembling the
eigenvectors side by side as columns of an n×n square matrix [zij], where the
first subscript is the component index and the second subscript is the mode
or eigenvector index.

Explicitly, the modal matrix is written

(6.40)

and the orthogonality conditions become

(6.41)

where I is the unit n×n matrix.
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The process of normalization removes the indeterminacy on the amplitude
of the eigenvectors. In principle, any scaling factor will do as long as
consistency is maintained throughout the process of analysis, but the most
usual conventions are:

1. Set the largest component of each eigenvector equal to unity and
determine the remaining n–1 components accordingly.

2. Mass normalization: scale each eigenvector so that

(6.42a)

or, in general

(6.42b)

where pi is the mass-normalized ith eigenvector and δij is the usual
Kronecker symbol, equal to unity when i=j and zero when  The
relationship between the mass-normalized eigenvector and its more
general form is obviously

(6.43)

and the immediate consequence of eq (6.42) is

(6.44)

so that the concise form of eqs (6.42b) and (6.44) now reads

(6.45)

where P is the modal matrix formed with the vectors pi (sometimes called
the weighted modal matrix) and we have defined the n×n matrix of
eigenvalues L: its only entries different from zero lie on the main diagonal
and are equal to the eigenvalues. This normalization process is the most
relevant in the field of modal testing, which we shall consider in later
chapters.

3. Another possibility is to normalize the eigenvectors so that all the modal
masses are equal to M, where M is some convenient value, for example
the total mass of the system.

4. Set each mode vector length (its norm in vector space terminology) equal
to unity.
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It is left to the reader to write down the counterpart of eqs (6.45) for cases
3 and 4.

6.3.2 General solution of the undamped free vibration problem,
degeneracy and normal coordinates

The discussion of the preceding section has shown that the eigenvectors zi

(i=1, 2,…, n) are independent and mutually orthogonal with respect to the
mass matrix. It is then straightforward to consider this set of vectors as a
complete basis spanning an n-dimensional vector space and write, by virtue
of the expansion theorem, any nth order vector x as

(6.46)

where the α j are scalar multipliers which can be easily obtained by making
use of the othogonality conditions after premultiplication of both sides of eq
(6.46) by  i.e.

from which it follows that

(6.47)

The expression

(6.48a)

is often called the modal expansion of x. From the second form of the
expansion given in eq (6.48) the spectral expansion of the unit matrix can
be deduced

(6.49a)

which turns out to be a useful calculation check on the matrices of the right-
hand side. Incidentally, we may note that eq (6–49a) expresses the
completeness of the orthogonal set of vectors Zj.
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The same considerations apply if we consider the mass-normalized
eigenvectors pi; we now get

(6.48b)

and

(6.49b)

Therefore, the general solution of the undamped free vibration problem can
be written in any one of the forms of eqs (6.27a–c) by expanding the initial
conditions (6.28) on the basis of eigenvectors and using the orthogonality
conditions as shown above. For example, these calculations performed on
the expression (6.27c) yield

(6.50)

or, in terms of the mass-normalized eigenvectors

(6.51)

and it is not difficult to see that the relationships among the constants in the
different forms (6.27a–c), by analogy with eqs (4.9), are

(6.52)

Alternatively, we can write eq (6.50) as

(6.53)

where the vectors u0 and  have now been put into evidence. Equations
(6.50) and (6.53) are equivalent, and it is a matter of convenience which one
we decide to use.
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In any case, for each coordinate ui—i.e. the rth component of the vector
u—the solution is in general a sum of simple harmonic oscillations in all of
the frequencies satisfying the frequency equation and it is worth noting that,
unless it happens that all of the frequencies are commensurable (rational
fractions of each other), ui never repeats its initial value and therefore it is
not a periodic function of time. However, in the specific case in which the
initial displacement vector resembles a particular modal vector (say, for
example,  where β is a constant) and the initial velocity vector is
zero, we get from eq (6.51)

(6.54)

so that the system executes a harmonic oscillation at the natural frequency
ωr and its configuration resembles the rth mode at all times. This implies
that any one natural mode can be excited independently of the others by an
appropriate choice of the initial conditions. This occurrence can be useful in
some practical applications.

Eigenvalue degeneracy

When one or more of the roots of the frequency equation are repeated, the
argument leading to eq (6.34) ceases to be valid for  Hence, this case
needs to be discussed separately.

We recall that, in the general case, the characteristic polynomial
 can be written as

where  are the distinct roots of the
polinomial and di is called, in mathematical terms, the algebraic multiplicity
of i.

If di>1 we speak, in the terminology of physics and engineering, of di-fold
degeneracy of the eigenvalue i; obviously  and m=n is
the nondegenerate case of n distinct eigenvalues considered so far. On the
other hand, the dimension of the subspace corresponding to the eigenvalue

i is called its geometric multiplicity. Put simply, the geometric multiplicity
is just the minimum number of linearly independent eigenvectors associated
with an eigenvalue and it is, in general, different from its algebraic multiplicity.
However, it can be proven that Hermitian matrices (and, more generally,
normal matrices, i.e. matrices such that ) are ‘nondefective’,
which is to say that the geometric multiplicity is the same as the algebraic
multiplicity for each eigenvalue. The direct consequence of this statement is
that it is always possible to generalize the orthogonality relationships shown
above by a proper choice of di orthogonal eigenvectors in the di-dimensional
subspace corresponding to the di-fold degenerate eigenvalue i.
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Without loss of generality, let us suppose, for example, that λ is a double
root of the frequency equation; any two of the eigenvector components may
be chosen arbitrarily, the rest being fixed by the eigenvalue equations. Any
pair of randomly chosen eigenvectors—say  and  which we assume to
have been mass normalized—will not, in general, be mutually orthogonal
but the linear combination

is also an eigenvector and we want to choose the constants c1 and c2 so that
zl is orthogonal to  The orthogonality condition requires that

(6.55)

and eq (6.55) together with the mass-normalization condition for zl provides
the necessary equations to fix c1 and c2. The eigenvectors zl and  are precisely
what we were looking for: they are automatically orthogonal to the
eigenvectors of the other distinct eigenvalues and they have been constructed
to be mutually orthogonal.

The process is completely analogous to the Gram-Schmidt algorithm used
to replace a set of linearly independent vectors by an orthonormal set. It is
obvious that this replacement may be carried out in infinitely many ways,
but the point we are trying to make here is that it is always possible to
obtain a set of n eigenvectors in order to form the modal matrix. This justifies
the statement above that the presence of multiple roots is, for our purposes,
only a mathematical complication.

Normal coordinates

Let us define the new set of coordinates y related to the original coordinates u by

(6.56a)

or, in terms of components

(6.56b)

where  is the modal matrix of eqs (6.45).
The equations of motion (6.20) now become

 

(6.57a)
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or, in terms of components

(6.57b)

which represent n uncoupled SDOF equations of motion, one equation for
each mode. Their solution is simply harmonic and can be easily obtained by
the methods of Chapter 4. Each coordinate yj corresponds to a vibration of
the system with only one frequency and the complete motion is built up out
of the sum of these component oscillations, each one of them weighted with
appropriate magnitude and phase factors which can be obtained from the
initial condition. In fact, premultiplication by PT yields, by virtue of eqs (6.45)

(6.58)

The new generalized coordinates which uncouple the equations of motion
are called normal coordinates and the procedure of coordinate transformation
leading to eqs (6.57a or b) is known as modal, or mode superposition,
analysis. It is worth pointing out that modal analysis plays a central role in
many aspects of vibration problems.

Pursuing further this line of reasoning, we can consider the potential and
kinetic energies of our MDOF system which, in the case of small oscillations,
can be written (eqs (3.93) and (3.95)) in matrix form as

(6.59)

(6.60)

Since u=Py, it follows  and substitution in eqs (6.59) and (6.60)
gives

(6.61)

(6.62)

so that the normal coordinates expressions of the potential and kinetic
energies are sum of squares only, without any cross-product terms.

It is then straightforward to write the Lagrangian of the system as the
sum of Lagrangians for n harmonic oscillators

(6.63)
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obtain the Lagrange equations (i.e. eqs (6.57b)) and follow, for each normal
coordinate, the same procedure that led to eq (6.18) in order to determine
that the total energy associated with any particular yj does not change with
time and that there is no energy interchange between any two different normal
coordinates. This is not true for the original set of coordinates where cross-
product terms appear.

These important considerations extend and generalize to any undamped
MDOF system the results obtained in the particular case of the simple 2-DOF
system of Fig. 6.1.

Example 6.1. We are now in a position to discuss the system of Fig. 6.1
along the lines of the formal development above. Substitution of the
appropriate values in eqs (6.21) yields

(6.64)

Assuming a harmonic time-dependent solution leads to the eigenvalue
problem

(6.65)

which is the explicit form of eq (6.24) for our particular problem. We have
nontrivial solutions when  i.e. when the frequency equation
(6.5) is satisfied; this means

(6.66)

Substitution of ω1 in eq (6.65) gives

from which it follows that  the same procedure for ω2 gives

We can normalize according to convention 1 of Section 6.3.1 and get the
eigenvectors

(6.67a)
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or normalize with respect to the mass matrix (convention 2 of Section 6.3.1,
eq (6–42a)) and get

(6.67b)

It is then easy to verify the orthogonality relationships, i.e.

or

and—if we decide to use the eigenvectors of eqs (6.67a)—to obtain the modal
masses and stiffnesses as

or, in case we want to use the mass-normalized eigenvectors, to determine
that

and

We can now form the mass-orthonormal modal matrix

and obtain the normal coordinates. Since x=Py, it follows that y=PTMx.
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In our case, explicitly,

which is to say

(6.68)

Suppose now that the system is started into motion with the following
initial conditions:

(6.69)

we can write, for example, the general solution in the form of eq (6.50) or
(6.53), i.e.

which means

(6.70)

Figures 6.2(a) and 6.2(b) show the first 30 s of motion of x1 and x2; for
purposes of illustration, k and m have been assigned the values k=20 N/m
and m=5 kg, so that  and 

It is left to the reader to transform the initial conditions of eqs (6.69) into
the initial conditions for the normal coordinates and to write explicitly the
general solution for y1 and y2.

We point out that, in its schematic simplicity, the system considered in
this example may be considered as representative of a wide class of undamped
systems, which are essentially the same when we adopt some simplifying but
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reasonable assumptions in the modelling process. The simplest and obvious
example, for reasons explained in Chapter 4, is the same system which moves
horizontally, i.e. the system of Fig. 6.3.

A second example is the two-storey shear building shown in Fig. 6.4. The
basic assumptions are as follows: the frame is constrained to move in the

Fig. 6.2 First 30 s of time history for: (a) x1(t); (b) x2(t).
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Fig. 6.4 Schematic (undamped) model of a two-storey building.

horizontal direction with no joint rotations, each floor is considered as a
lumped mass at the floor level and the stiffness is associated with the lateral
flexure of the weightless columns. This commonly adopted model can be
extended to a n-storey frame building in a straightforward manner.
Furthermore, on a qualitative basis, it can be (correctly) argued that the
stiffness of the ith storey must depend on the flexural rigidity EI of all the
columns in the storey and on the storey height l. In future chapters this
statement will be made quantitatively clear.

The third example is shown in Fig. 6.5: two discs are mounted on a light
(massless) shaft and have moments of inertia J1 and J2 about the shaft. The
shaft, in turn, is clamped at one end. The generalized coordinates which come
naturally in setting up the equations of motions are now θ1 and θ2, i.e. the
angles through which the discs rotate about the shaft; these coordinates are
the counterpart of x1 and x2 of the original problem. Physically, the torque
exerted by the shaft on a disc is equal to the rate of change of the angular
momentum of the disc about the shaft. Referring back to the analogy between

Fig. 6.3 Undamped 2-DOF translational system.
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Fig. 6.5 Undamped 2-DOF rotational system: discs on a massless shaft.

translational and rotational systems of Table 4.1, it is not difficult to realize
that the stiffness considered here is torsional stiffness, which is directly
proportional to the angle and in a direction tending to return the discs to
their equilibrium positions.

It is then left to the reader to show that, after the appropriate substitutions
have been made, all the systems above lead to a formally identical set of
equations of motion which can be solved with the matrix methods of the
preceding sections.

Example 6.2. A schematic vehicle model which accounts for bounce (up and
down) and pitch (angular) motions is the one depicted in Fig. 6.6. This is a
2-DOF model; we assume the vertical coordinate x to be positive in the upward
direction and the angle of pitch θ to be positive in the clockwise direction.

Fig. 6.6 Schematic model of a vehicle accounting for bounce and pitch motions.
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The Lagrangian function is

(6.71)

where J is the moment of inertia about the centre of gravity (C.G. in the
figure). Lagrange’s equations lead to the equations of motion

(6.72)

which have already been written in matrix form; note that the static coupling
disappears if  If we assume the following reasonable values for
a car: 

 it is not difficult to determine the two eigenvalues

(6.73)

and the corresponding eigenvectors (normalized in accordance to the
convention (1) of Section 6.3.1)

(6.74)

It may be pointed out that the first mode is mainly translational, while
the second mode is, on the contrary, mainly rotational. It can be argued a
posteriori—on the basis of this consideration—that a reasonable estimate of
the two frequencies could have been obtained by simply calculating the ratios

where the translational stiffness is divided by the mass to give the translational
frequency and the rotational stiffness is divided by the moment of inertia to
give the rotational frequency. The argument is, in principle, correct but it
must be said that such circumstances are very seldom known in advance,
especially when more complicated models are involved.

It is now left to the reader to verify the mass and stiffness orthogonality
of the two eigenvectors, obtain the mass orthonormal eigenvectors, form
the modal matrix and determine the normal coordinates. In addition, it may
be useful to note how the accuracy of the orthogonality conditions and of eq
(6.49a), i.e. the spectral expansion of the unit matrix, can be improved by
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retaining a different number of significant decimal figures in the entire process
of calculation.

6.4 Eigenvalues and eigenvectors: sensitivity analysis

In the preceding sections we have seen that, for a given MDOF system, the
eigenvalues and eigenvectors are physical quantities which strongly
characterize the system under investigation. Consequently, before any further
consideration can be made, it is interesting to have an idea of how these
quantities change when the system is subjected to small modifications of its
structural parameters, typically its mass and/or its stiffness. These
modifications may reflect a number of different situations (for example, the
addition or removal of springs or masses, a variation in the elasticity
coefficients of materials or in their cross-sectional area, etc.) and being aware
of their effects on the dynamical properties of the system may sometimes
prevent—among other things—costly and ineffective system modifications.
Furthermore, the effects of small errors in the measurement of the system
properties can also be investigated.

This whole subject is known as ‘sensitivity analysis’ (or ‘conditioning of
the eigenvalue problem’); here we will consider here the case of a
nondegenerate system subjected to a time-independent (stationary) small
perturbation of its mass and/or stiffness matrix.

Let the unperturbed (zeroth-order) problem be

(6.75)

where we assume that the unperturbed eigenvalues  and mass orthonormal
eigenvectors  are known. Let K1 and M1 be small perturbations of the
stiffness and mass matrices, respectively. The perturbed problem can be
written as

(6.76)

This assumption of small perturbations suggests that we expand the perturbed
eigenvalues and eigenvectors in terms of a parameter γ such that the zeroth,
first, etc. powers of γ correspond to the zeroth, first, etc. orders of the
perturbation calculation. We then replace K1 and M1 by γK1 and γM1 and
express i and pi as (well-behaved and rapidly converging) power series in γ.
In the final result γ can be set equal to 1.

The perturbed eigenvalues and eigenvectors are written

(6.77)
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and substitution into the eigenvalue problem gives

We can now equate the coefficients of equal powers of γ on both sides to
obtain a series of equations that represent successively higher orders of the
perturbation. We shall limit ourselves to the first order, since this is the most
important perturbative term and it seldom makes sense to consider orders
higher than the first or, at most, the second. We get

(6.78)

As expected, the zeroth-order problem (the first of eqs (6.78)) is the
unperturbed problem. Let us now consider the first-order problem (the second
of eqs (6.78)) and expand the vector  on the basis of the unperturbed
eigenvectors, i.e.

(6.79)

It is not difficult to see that substitution of eq (6.79) in the first-order
problem leads to

and premultiplication of this equation by  gives

(6.80)

where we used the orthogonality condition  When k=i, eq
(6.80) yields

(6.81)

and when  we get from eq (6.80)

(6.82)
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Now, in order to determine completely the first order perturbation of the
eigenvector, only the coefficient ckk is left; by imposing the normalization
condition  and retaining only the first power of γ, we get

and by virtue of the expansion (6.79) we are finally led to

(6.83)

We can now explicitly write the result of the first-order perturbation
calculation for the ith eigenvalue and the ith eigenvector as

(6.84)

(6.85)

From the expressions above, it may be noted that only the ith unperturbed
parameters enter into the calculation of the perturbed eigenvalue, while the
complete unperturbed eigensolution is required to obtain the perturbed
eigenvector. Roughly speaking, we could say that the perturbation has the
effect of ‘mixing’ the ith unperturbed eigenvector  with all the other
eigenvectors  for which the term in brackets of eq (6.85) is different
from zero. Furthermore, a quick glance at the same equation suggests that
the closer eigenvectors (to ) give a greater contribution, because, for these
vectors, the term  is smaller.

It is evident that—with only minor modifications—the same results apply
if we use the z eigenvectors; we only have to take into account the fact that in
this case  Also, the perturbed p vectors are orthonormal
with respect to the new mass matrix, not with respect to M0.

Example 6.3. Let us go back to the system of Fig. 6.1, whose eigensolution
has been considered in Example 6.1, and make the following modifications:
we increase the first mass by 0.25m and decrease the second mass by 0.1m.
The total mass of the system changes from 4.0m into 4.15m, which
corresponds to an increase of 3.75% with respect to the original situation.
Also, let us increase the stiffness of the first spring of 0.1k so that the term

 changes from 5.0k into 5.1k, i.e. an increase of 2.0% with respect to
the original situation. These modifications can be considered small and we
expect accurate results from our perturbative calculations.

The perturbation terms are
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We remember from Example 6.1 that: 

and

so that the first-order perturbative terms for the eigenvalues can be obtained
as (eq (6.84))

and hence

(6.86)

For the first eigenvector, the expansion coefficients are given by

from which it follows that

(6.87a)

and the same procedure for the second eigenvector leads to

(6.87b)
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Because of the simplicity of this example, these results can be compared
to the exact calculation for the modified system, which can be performed
with small effort. The exact eigenvalues are  and

 which corresponds to a relative error of 0.07% on the
first frequency and a relative error of 0.46% on the second. The exact
eigenvectors are

and they must be compared, respectively, to eqs (6.87a and b).
Some complications appear in the case of degenerate eigenvalues. We will

not deal with this subject in detail but a few qualitative considerations can
be made. Suppose, for example, that two independent eigenvectors  and

 correspond to the unperturbed eigenvalue  (twofold degeneracy). In
general, the perturbation will split this eigenvalue into two different values,
say λi1 and λi2; as the perturbation tends to zero, the eigenvectors will tend
to two unperturbed eigenvectors  and , which will be in general two
linear combinations of  and . The additional problem is, as a matter
of fact, the determination of  and : this particular pair—out of the
infinite number of combinations of  and —will depend on the
perturbation itself.

For instance, let  be an m-fold degenerate eigenvalue and let
 be a possible choice of mass-orthonormal eigenvectors (i.e.

a basis in the subspace relative to the ith eigenvalue). We can then write the
expansions

(6.88)

and

(6.89)

substitute them in the first-order problem and project the resulting equation
successively on the eigenvectors  (this is done by
premultiplying, respectively, by ). We obtain, after some
manipulation, a system of m homogeneous equations, which admits nontrivial
solutions if the determinant of the coefficients is equal to zero. This condition
results in an algebraic equation of degree m in  and its m solutions

 represent the first-order corrections to . Substitution of
each one of these values into the homogeneous system allows the calculation
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of the zeroth-order coefficients  for the relevant
eigenvector. We have thus obtained the desired m linear combinations of the
unperturbed eigenvectors (i.e. the ); once these are known, the coefficients

 can be obtained by projecting the first-order equation on different
eigenvectors.

It is interesting to note that, in many cases, the effect of the perturbation
is to completely or partially ‘remove the degeneracy’ by splitting the
degenerate eigenvalue into a number of different frequencies that were
indistinguishable in the original system. This circumstance can be useful in
some practical applications, and it is worth pointing out that similar
procedures apply—with only minor modifications—in the case of distinct
but closely spaced eigenvalues.

The subject of sensitivity analysis is much broader than shown in our
discussion; in general, we can say that some linear systems are extremely
sensitive to small changes in the system, and others are not. Sensitive systems
are often said to be ‘ill-conditioned’, whereas insensitive systems are said to
be ‘well-conditioned’.

We will see that the generalized eigenvalue problem of eq (6.24) (or (6.29),
which is the same) can be transformed into a standard eigenvalue problem
(eq (6–26a)), where A is an appropriate matrix whose form and entries depend
on how the transformation is carried out. The key point is that the eigenvalues
are continuous functions of the entries of A, so we have reason to believe
that a small perturbation matrix will correspond to a small change of the
eigenvalues. But one often needs precise bounds to know how small is ‘small’
in each case.

We will not pursue this subject further here for two reasons: first, a
detailed discussion is beyond the scope of this book and, second, it would
lead us too far away from the main topic of this chapter. For the moment,
it suffices to say that if A is diagonalizable (see Appendix A on matrix
analysis), it can be shown that it is possible to define a ‘condition number’
that represents a quantitative measure of ill-conditioning of the system and
provides an upper bound on the perturbation of the eigenvalues due to a
unit norm change in the system matrix; furthermore, it may be of interest
to note that normal matrices are well-conditioned with respect to eigenvalue
computations, that the condition number is generally conservative and that
a better bound can be obtained if both A and the perturbing matrices are
Hermitian. (The interested reader is referred to Horn and Johnson [1] and
Junkins and Kim [2].)

6.4.1 Light damping

The free vibration of a damped system is governed by eq (3.101), i.e.

(6.90)
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As in the undamped case there are 2n independent solutions which can be
superposed to meet 2n initial conditions. Assuming a trial solution of the
form

(6.91)

leads to

(6.92)

which admits a nontrivial solution if the matrix in parentheses on the left-
hand side is singular. Equation (6.92) represents what is commonly called a
complex (or quadratic) eigenvalue problem because the eigenvalue  and
the elements of the eigenvector z are, in general, complex numbers; if  and
z satisfy eq (6.92), then so also do * and z*, where the asterisk denotes
complex conjugation. In general, the complex eigenvalue problem is much
more difficult than its undamped counterpart and much less attention has
been given to efficient numerical procedures for its solution, but we will
return to these aspects later.

For the moment, let us make the following assumptions: the solution of
the undamped problem is known and the system is lightly damped. The
damping term can then be considered a small perturbation of the original
undamped system and we are in a position to investigate its effect on the
eigensolution of the conservative system.

Let  and pj (j=1, 2, …, n) be the eigenvalues and the mass-orthonormal
eigenvectors of the conservative system (i.e. when C=0 in eq (6.92)); under
the assumption of light damping we can write

(6.93)

Substitute these expressions in eq (6.92) and retain only the first-order terms
(note that the terms in ∆ C and C∆z are neglected because they are second-
order for light damping). After some manipulation we arrive at

(6.94)

Now, as we did in eq (6.79), we expand ∆p on the basis of the unperturbed
eigenvectors, i.e.

(6.95)
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Substitute eq (6.95) in (6.94) and premultiply the resulting expression by
 to get

(6.96)

Since  for k=j we get the first-order perturbation of the jth
eigenvalue

(6.97)

Note that a term Mjj appears in the denominator of the right-hand side of eq
(6.97) if we do not use mass-orthonormal vectors in the calculation.

From eq (6.97) two observations can be made:

• Each correction to the unperturbed eigenvalues takes the form of a real
negative part (matrix C is generally positive definite) which transforms
the solution into a damped oscillatory motion and accounts for the fact
that the free vibration of real systems dies out with time because there
is always some loss of energy.

• The first-order correction involves only the diagonal terms of the matrix
PTCP which is, in general, nondiagonal unless some assumptions are
made on the damping matrix (remember that both M and K become
diagonal under the similarity transformation PTMP and PTKP). Off-
diagonal terms have only a second-order effect on the unperturbed
eigenvalues.

When  eq (6.96) gives

(6.98a)

Again, a term Mkk appears at the denominator on the right-hand side if the
calculation is made with eigenvectors that are not mass-orthonormal; note
also that a minus sign appears on the right-hand side if we start with

 The perturbed eigenvector is then

(6.98b)

showing that the perturbation splits the original real eigenvector into a pair
of complex vectors having the same real part as the undamped mode
(remember that, in vibration terminology, the term mode is analogous to
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eigenvector: more precisely, a mode is a particular pattern of motion which
is mathematically represented by an eigenvector) but having small conjugate
imaginary parts.

On physical grounds—unless damping has some desirable characteristics
which will be considered in a later section—this occurrence translates into
the fact that, in a particular mode, each coordinate has a relative amplitude
and a relative phase with respect to any other coordinate. In other words,
the free vibration of a generally damped system oscillating in a particular
mode is no longer a synchronous motion of the whole system: the individual
degrees of freedom no longer move in phase or antiphase and they no longer
reach their extremes of motion together.

For obvious reasons, this pattern of motion is usually called a ‘complex
mode’, as opposed to the ‘real mode’ of the undamped system where each
coordinate does have an amplitude, but a phase angle which is either 0° or
180° and real numbers suffice for a complete description.

6.5 Structure and properties of matrices M, K and C: a few
considerations

A fundamental part of the analysis of MDOF systems—and of any physical
phenomenon in general—is the solution of the appropriate equations of
motion. However, as we stated in Chapter 1, the first step in any investigation
is the formulation of the problem; this step involves the selection of a
mathematical model which has to be both effective and reliable, meaning
that we expect our model to reproduce the behaviour of the real physical
system within an acceptable degree of accuracy and, possibly, at the least
cost. We always must keep in mind that, once the mathematical model has
been chosen, we solve that particular model and the solution can never give
more information than that implicitly contained in the model itself. These
observations become more important when we consider that:

• Numerical procedures implemented on digital computers play a central
role (think, for example, to the finite-element method) in the analysis of
systems with more than three or four degrees of freedom.

• Matrix algebra is the ‘natural language’ of these procedures
• The effectiveness and reliability of numerical techniques depend on the

structure and properties of the input matrices.
• Continuous systems (i.e. systems with an infinite number of degrees of

freedom) are very often modelled as MDOF systems.

As in the case of an SDOF system, the principal forces acting on an MDOF
system are (1) the inertia forces, (2) the elastic forces, (3) the damping forces
and (4) the externally applied forces. We will not consider, for the moment,
the forces of type (4). Under the assumption of small amplitude vibrations,
we have seen in Chapter 3 that matrices M, K and C are symmetrical.
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Symmetry is a desirable property and results in significant computational
advantages. In essence, the symmetry property of M and K depends on the
form of the kinetic and potential energy functions and the symmetry C of
depends on the existence of the Rayleigh dissipation function.

Unfortunately, for most systems the damping properties are very difficult,
if not impossible, to define. For this reason the most common choices for the
treatment of its effects are (1) neglect damping altogether (this is often a
better assumption than it sounds), (2) assume ‘proportional damping’ (Section
6.7) or (3) use available experimental information on the damping
characteristics of a typical similar structure or on the structure itself.

We know from Chapter 3 that both kinetic and potential energies can be
written as quadratic forms and we know from basic physics that they are
essentially positive quantities. If none of the degrees of freedom has zero
mass,  (eq (3.95)) is never zero unless is a zero vector and hence M,
besides being symmetrical, is also positive definite; if some of the degrees of
freedom have zero mass then M is a positive semidefinite matrix.

Similar considerations apply for the stiffness matrix; unless the system is
unrestrained and capable of rigid-body modes, K is a positive definite matrix.
When this is not the case, i.e. when rigid-body modes are possible (Section
6.6), the stiffness matrix is positive semidefinite. It is worth pointing out
that if a matrix A is symmetrical and positive definite, then A–1 always exists
(i.e. A is nonsingular) and is a symmetrical positive definite matrix itself.
The fact that either M, or K, or both, are nonsingular is useful when we
want to transform the generalized eigenvalue problem (eq (6.29)) into a
standard eigenvalue problem (eq (6.26a)), which is the form required by
some numerical eigensolvers (section 6.8).

6.5.1 Mass properties

The simplest procedure for defining the mass properties of a structure is by
concentrating, or lumping, its mass at the points where the displacements
are defined. This is certainly not a problem for a simple system such as the
one in Fig. 6.1 where mass is, as a matter of fact, localized, but a certain
degree of arbitrariness is inevitable for more complex systems. In any case,
whatever the method we use to concentrate the masses of a given structure,
if we choose the coordinates as the absolute displacement of the masses we
obtain a diagonal mass matrix. In fact, the off-diagonal terms are zero because
an acceleration at one point produces an inertia force at that point only; this
is not strange if we consider that mij is the force that must be applied at
point i to equilibrate the inertia forces produced by a unit acceleration at
point j, so that mii=mi and mij=0 for 

A diagonal matrix is certainly desirable for computational purposes, but a
serious disadvantage of this approach is the fact that the mass associated with
rotational degrees of freedom is zero because a point has no rotational inertia.
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This means that—when rotational degrees of freedom must be considered in
a specific problem—the mass matrix is singular. In principle, the problem could
be overcome by assigning some rotational inertia to the masses associated
with rotational degrees of freedom (in which case the diagonal mass coefficient
would be the rotational inertia of the mass), but this is easier said than done.
The general conclusion is that the lumped mass matrix is a diagonal matrix
with nonzero elements for each translational degree of freedom and zero
diagonal elements for each rotational degree of freedom.

A different approach is based on the assumed-modes method, a far-
reaching technique developed along the line of reasoning of Section 5.5 (see
also Chapter 9). In that section, a distributed parameter system was modelled
as an SDOF system by an appropriate choice of a shape, or trial, function
under the assumption that only one vibration pattern is developed during
the motion. This basic idea can be improved by superposing n shape functions

 so that

(6.99)

where the zi(t) constitute a set of n generalized time-dependent coordinates.
(Note that we considered the trial functions in eq (6.99) to depend on one
spatial coordinate only, thus implying a one-dimensional problem (for
example, an Euler-Bernoulli beam); this is only for our present convenience,
and the extension to two or three spatial coordinates is straightforward.)

In essence, eq (6.99) represents an n-DOF model of a continuous system,
and since the kinetic energy of a continuous system is an integral expression
depending on the partial derivative  we can substitute eq (6.99) into
this expression to arrive at the familiar form

(6.100)

where the coefficients mij will now depend on the mass distribution of the
system and on the trial functions i. Consider, for example, the axial vibration
of an elastic bar of length L and mass  per unit length; the kinetic energy
is given by

(6.101)

Inserting eq (6.99) into eq (6.101) leads to

(6.102)
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which is formally equivalent to eq (6.100) when we define the coefficients
mij as

(6.103)

and it is evident that mij=mji, i.e. the mass matrix is symmetrical. Note that
if we define the row vector of shapes  and the column vector
of generalized coordinates  we can write eqs (6.99) and (6.102)
and the mass matrix, respectively, as

(6.104)

For purposes of illustration, let us consider a clamped-free bar in axial
vibration: we can model this continuous system as a 2-DOF system and
express the displacement by means of the two shape functions  and

 From eq (6.103) we get

(6.105a)

and hence the mass matrix

(6.105b)

6.5.2 Elastic properties

The determination of the elastic properties of a given system is a standard
problem of structural analysis. This task is accomplished by means of the
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influence coefficients which express the relation between the displacement
at a point and the forces acting at that and other points of the system. The
flexibility influence coefficient aij is defined as the displacement at point x=xi

due to a unit load applied at point x=xj with all other loads equal to zero.
The principle of superposition for linearly elastic systems allows one to write
the displacement ui at point i as

(6.106)

where fj is the force applied at x=xj. The units of the flexibility coefficients
are metres per newton when the relation (6.106) is between linear
displacements and forces, if angular displacements and torques are
considered, the units change accordingly. In the case of a single spring it is
evident that the flexibility coefficient is simply a=1/k, where k is the spring
constant.

Equation (6.106) can be written in matrix form as u=Af, where A is called
the flexibility matrix and the other symbols are obvious.

The stiffness influence coefficient kij is defined as the load required at
x=xi to produce a unit displacement at x=xj when all other displacements are
held to zero. This definition is more involved than the definition of the
flexibility coefficient; nevertheless the stiffness coefficients are sometimes
easier to determine than the flexibility coefficients. Consider, for example a
one-dimensional 3-DOF system, if x=x1 is given a unit displacement (i.e.
u1=1) and uj=0 for  the forces at points 1, 2 and 3 required to maintain
this displacement configuration are exactly k11, k21 and k31, i.e. the first column
of the stiffness matrix; moreover, these coefficients must be considered with
the appropriate sign: positive in the sense of positive force and negative
otherwise. By a line of reasoning parallel to that used for aij, we can write

(6.107)

or, equivalently, f=Ku, where K is the stiffness matrix. The conservative nature
of the linearly elastic systems we consider (meaning that the sequence of
load applications is unimportant) leads to Clapeyron’s law for the total strain
energy which reads

(6.108)

and is valid for a structure which is initially stress free and not subjected to
temperature changes. Furthermore, Maxwell’s reciprocity theorem holds and
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it can be invoked to prove that  and  or, in matrix form

(6.109)

i.e. the flexibility matrix and the stiffness matrix are symmetrical.
The structure of eqs (6.106) and (6.107) suggests that the two matrices

should be related; it is so, and it is not difficult to prove that

(6.110)

The interested reader can find excellent discussions of this topic in many
textbooks (e.g. Bisplinghoff et al. [3]).

Depending on the specific problem, in some cases it may be easier to
obtain directly the stiffness matrix whereas in some other cases it may be
more convenient to obtain the flexibility matrix and then invert it. We must
remember, however, that for an unrestrained system—where rigid body
motions are possible—the stiffness matrix K is singular, hence it has no inverse.
This is consistent with the fact that for an unrestrained system we cannot
define flexibility influence coefficients.

Example 6.4. Using the definitions given above, the reader is invited to
determine that the flexibility and stiffness matrices for the one-dimensional
3-DOF system of Fig. 6.7 are, respectively

It is then straightforward to show that KA=I.

Example 6.5. Consider now the system of Fig. 6.8. The mass m is connected
to a base of mass M which can undergo translational and rotational motion.
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The mass moment of inertia of the base is JG, kr is a rotational spring and all
the other symbols are shown in the figure. The system has three degrees of
freedom and the equations of free motion can be written in the usual matrix
form as  where  Using the definition of stiffness
and flexibility influence coefficients, the reader is invited to determine that

and that the stiffness matrix can be also (and maybe more easily) determined
by making use of Lagrange’s equations, the Lagrangian of this system being

As expected, Lagrange’s equations lead to the equations of motion and
hence also to the mass matrix. Note that this choice of coordinates results in
both dynamic and static coupling of the equations of motion.

In principle, the above definition of influence coefficients may be used
whenever convenient. However, the assumed-modes method can be useful in
many circumstances. Suppose, for example, that we are dealing with a continuous
system; as for the kinetic energy, its potential energy is an integral expression
depending on the partial spatial derivatives of the function u(x, t). The basic
assumption of eq (6.99) generates a n-DOF model of our system and can be
substituted in the potential energy expression to arrive at the familiar form

(6.111)

Fig. 6.7 One-dimensional 3-DOF system.
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Fig. 6.8 3-DOF system: mass m elastically supported on a base M.

where the coefficients kij will depend on the stiffness distribution and on the
trial functions i. If we consider again the axial vibration of an elastic bar
of length L and axial rigidity EA (where A is the cross-sectional area), its
potential strain energy is given by

(6.112)

Substitution of eq. (6.99) in (6.112) yields

(6.113)

which is formally equal to eq (6.111) if we define

(6.114)

where, as is customary, the prime indicates the derivative with respect to the
spatial variable, i.e.  To be more specific, let the bar be clamped
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at one end and free at the other end; we choose a 2-DOF model by choosing
the ‘reasonable’ functions  and  then

(6.115a)

where we have assumed a uniform axial rigidity. In matrix form, eqs (6.115a)
are written

(6.115b)

Note that the mass matrix of eq (6.105b) refers to the same system as the
stiffness matrix (6.115b) and both have been obtained by using the same
shape functions: the common terminology in this case is that the mass matrix
is ‘consistent’ with the stiffness matrix of eq (6.115b). Strictly speaking, the
term applies to the finite-element approach, but the latter can be considered
as an application of the assumed-modes method where the shape functions
represent deflection patterns of limited portions (the so-called finite elements)
of a given structural system. In the end, in order to construct a mathematical
model of the whole structure, these elements are assembled together in a
common (or global) frame of reference.

The assumed-modes method leaves open the question of what constitutes
a judicious choice of the shape functions. We have already faced this problem
in Chapter 5 where we stated the importance of boundary conditions for
continuous systems and we defined, for a given system, the classes of
admissible and comparison functions (incidentally, note that  and

 are admissible functions for the clamped-free bar in axial
vibration). We will not pursue this subject here; for the moment we adhere
to the considerations of Section 5.5 with only one additional observation
due to the fact that now we must choose more than one function: the trial
functions should be linearly independent and form a complete set. We will
be more specific about this and about finite-element modelling whenever
needed in the course of the discussion.
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6.5.3 More othogonality conditions

The conditions of eqs (6.42b) and (6.44) are only a particular case of a broader
class of othogonality properties involving the eigenvectors pi and the matrices
M and K. If pi is an eigenvector, the eigenvalue problem  is
identically satisfied. Let us premultiply both sides of the eigenvalue problem
by  we get, by virtue of (6.42b) and (6.44)

(6.116)

Premultiplication of the eigenvalue problem by  yields

(6.117)

where the result of eq (6.116) has been taken into account. The process can
be repeated to give

(6.118)

which can be rewritten in the equivalent form

(6.119)

just by premultiplying the term in parentheses on the left-hand side of eq
(6.118) by MM–1. The cases b=0 and b=1 in eq (6.119) correspond,
respectively, to eqs (6.42b) and (6.44).

An analogous procedure can be started by premultiplying both sides of
the eigenvalue problem by  to give

which means, provided that 

(6.120)

and the term in the centre is due to the fact that 
Now, premultiplying both sides of the eigenvalue problem by

 and taking eq (6.120) into account we get

Repeated application of this procedure leads to

(6.121)
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Equations (6.119) and (6.121) can be put together to express the family
of orthogonality conditions

(6.122)

6.6 Unrestrained systems: rigid-body modes

Suppose that, for a given system, there is a particular vector  for
which the relationship

(6.123)

holds. First of all, this occurrence implies that the matrix K is singular and
that the potential energy is now a positive semidefinite quadratic form.
Furthermore, this vector can be substituted in the eigenvalue problem of eq
(6.29) to give  i.e.  and hence, since M is generally
positive definite,  It follows that r can be considered an eigenvector
corresponding to the eigenvalue  At first sight, an oscillation at zero
frequency may appear surprising, but the key point is that this solution does
not correspond to an oscillatory motion at all: we speak of oscillatory motion
because eq (6.29) has been obtained by assuming a time dependence of the
form.  However, if we assume a more general solution of the form

(6.124)

and we substitute it in eq (6.20) we get  which corresponds to a
uniform motion f(t)=at+b where a and b are two constants. In practice, the
system moves as a whole and there is no change in the potential energy because
such rigid displacement does not produce any elastic restoring force. In other
words, we are dealing with a system with a neutrally stable equilibrium
position. Some examples could be: an aeroplane in rectilinear flight, a shaft
supported at both ends by frictionless sleeves or, in general, any structure
supported on springs that are very soft compared to its stiffness. This latter
situation is of considerable importance in the field of dynamic structural testing
and it is usually referred to as the ‘free’ condition (see also Chapter 10).

The maximum number of eigenvectors which correspond to the eigenvalue
 (the so-called rigid-body modes; this is why we used the letter r) is six

because a three-dimensional body has a maximum of six rigid-body degrees
of freedom (three translational and three rotational): moreover, for a given
problem, it is generally not difficult to identify the rigid-body modes by
inspection.

For example, suppose that we model an aeroplane body and wings as a
flexible beam with three lumped masses, M being the mass of the fuselage
and m being the mass of each wing: if we only consider motions in the plane
of the page, the first two modes occur at zero frequency and they correspond
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to a rigid-body translation and a rigid-body rotation as shown in Fig. 6.9.
The higher modes are elastic modes representing flexural deformations of
our simple structure.

The arguments used to arrive at the orthogonality relationships retain
their validity; hence, the rigid-body modes are M- and K-orthogonal to the
elastic eigenvectors (because they are associated with distinct eigenvalues)
and the rigid-body modes can always be assumed mutually M-orthogonal
(because they just represent a particular case of eigenvalue degeneracy). The
only difference is the stiffness orthogonality condition for rigid-body modes
that now reads, because of eq (6.123)

(6.125)

for every index i and j.
As in the case of the ‘usual’ orthogonality conditions, rigid-body modes

do not represent a difficulty in all the aspects of the foregoing discussions. In
order to be more specific, we can consider an n-DOF system with m rigid-
body modes and write eq (6.56a) as

(6.126)

Fig. 6.9 (a) Simple aeroplane model. (b) Rigid-body translation. (c) Rigid-body
rotation.
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where we introduced the rigid-body n×m matrix  and the
m×1 matrix  of normal coordinates associated with rigid-
body modes. The matrices P and y are associated with elastic modes and
retain their original meaning; however, their dimensions are now n×(n–
m) and (n–m)×1, respectively. Substitution of eq (6.126) into 
leads to

(6.127)

because KRw=0. Premultiplying eq (6.127) by RT and PT, by virtue of the
othogonality conditions, gives

(6.128)

where L is the (n–m)×(n–m) diagonal matrix of eigenvalues different
from zero. The expressions (6.128) show that the equation for the elastic
modes remains unchanged, while the rigid-body normal equations have
solutions of the form  The general solution, for
example in the form of eq (6.27c), can then be written as the eigenvector
expansion

(6.129)

where the 2n constants are determined by the initial conditions

By using once again the orthogonality conditions, we arrive at the explicit
expression

(6.130a)
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or, equivalently

(6.130b)

Equations (6.130a) and (6.130b) are the counterpart of eqs (6.51) and
(6.53) when the system admits m rigid-body modes. Furthermore, by virtue
of eq (6.126), it is not difficult to see that the potential and kinetic energy
are now given by

(6.131)

where L is the (n–m)×(n–m) matrix of eq (6.128).
The expressions above show that the elastic motion and the rigid-body

motion are completely uncoupled and that the rigid-body modes, as expected,
give no contribution to the potential energy. Besides the fact that the general
solution must take rigid-body modes into account, another aspect that deserves
attention is the fact that K is now singular. This is mostly a problem of a
computational nature because some important numerical techniques require
the inversion of the stiffness matrix. The highly specialized subject of the
numerical solution of the eigenproblem is well beyond the scope of the book
but it is worth knowing that there are simple ways to circumvent this problem.

One solution is the addition of a small fictitious stiffness along an adequate
number of degrees of freedom of the unrestrained system. This is generally
done by adding restraining springs to prevent rigid-body motions and make
the stiffness matrix nonsingular. If the additional springs are very ‘soft’ (that
is, they have a very low stiffness) the modified system will have frequencies
and mode shapes that are very close to those of the unrestrained system. It
is apparent that this procedure involves a certain approximation because, as
a matter of fact, the original system has been modified. In practice, however,
a satisfactory degree of accuracy can be achieved in most cases.

A second possibility, extensively used by eigensolvers, is called shifting.
We calculate the shifted matrix

(6.132)
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where ρ is the shift, and solve the eigenproblem

(6.133)

Since the solution of the eigenproblem is unique, it is not difficult to see that
the original eigenvalues are given by

(6.134)

and that the original eigenvectors are left unchanged by the shifting process.
Suppose, for example, that a given system leads to the eigenproblem

with eigenvalues  and mass-normalized eigenvectors

Imposing a shift of, say,  leads to the shifted eigenproblem of eq (6.133)

and to the characteristic equation  which admits the
solutions  and  Equation (6.134) is verified and it is easy to
determine that the eigenvectors are the same as before.

This procedure does not involve any approximation, so that, in principle,
it may be sufficient to have solution algorithms for eigenvalues different
from zero. In fact, it is always possible to operate on the shifted matrix 
which, in turn, can always be made nonsingular by an appropriate choice of
the shifting value ρ.

A third possibility lies in the fact that, as stated above, rigid-body modes
can often be identified by inspection. Thus, by imposing the condition of
orthogonality between rigid-body modes and the elastic modes we can obtain
as many constraint equations as there are rigid-body modes. The constraint
equations are then used to perform a coordinate transformation between
(n–m) independent coordinates and the original n coordinates. This leads to
a reduced eigenvalue problem where the rigid-body modes have been
eliminated; the reduced system is positive definite and can be solved by means
of any standard eigensolver. This procedure, for the reasons explained above,
is often called sweeping of rigid-body modes.
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For example, we can consider the system of Fig. 6.10 where the three
masses can only move along the x-axis. Choosing the coordinates shown in
the figure, we obtain the following mass and stiffness matrices:

The rigid-body mode represents a translation of the whole system in the
x direction and, besides normalization, it can be written as r=[1 1 1]T. Any
elastic mode  must be orthogonal to r, i.e.

(6.135)

Equation (6.156), as a matter of fact, is a holonomic constraint ensuring
that the centre of mass remains fixed at the origin; we can use this equation
to reduce by one the number of degrees of freedom of the system by expressing
one of the coordinates as a function of the other two. Which coordinate to
eliminate is only a matter of choice; for example we can eliminate x1 and
write the coordinate transformation

where the first equation is obtained from the constraint (6.135) and the
other two are simple identities. In matrix form the transformation above
can be written as

(6.136)

where we call z the ‘constrained’ 3×1 vector and  the 2×1 vector of
independent coordinates. At this stage we can form the reduced eigenproblem

(6.137a)

Fig. 6.10 Unrestrained 3-DOF system.
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where  and  are the 2×2 matrices

(6.137b)

As expected, the reduced eigenproblem yields the two eigenvalues different
from zero of the original problem and two 2×1 eigenvectors  and  which,
in turn, can be used to obtain the full eigenvectors by means of the coordinate
transformation (6.136). Obviously, substitution of  into eq (6.136) will
yield the first elastic mode and substitution of  will yield the second elastic
mode and, at the end of the process, we must not forget the rigid-body mode
that has been removed by the reduction procedure. In general, for large
systems this method is not numerically very efficient for two reasons: first
because the reduction is not significant (the rigid-body modes are at most
six) and second because the transformation of eq (6.137b) destroys some
computationally useful properties of the original matrices (for instance, in
our simple example above the mass matrix M is diagonal while  is not).

6.7 Damped systems: proportional and nonproportional
damping

6.7.1 Proportional damping

In Section 6.4.1 we considered the inclusion of a small amount of viscous
damping in the equations of motion as a perturbative term of an originally
undamped n-DOF system. Our intention was twofold: to have a general
idea of what to expect when some dissipative effects are taken into account
and to investigate the behaviour of lightly damped structures, a frequently
occurring situation in practical vibration analysis. The starting point was eq
(6.90), which we rewrite here for our present convenience:

(6.138)

When the undamped solution is known it is always possible to perform
the coordinate transformation (6.56a), premultiply by the modal matrix PT

and arrive at

(6.139)

which is not a set of n uncoupled equations unless the matrix PTCP is
diagonal. When this is the case, the n uncoupled equations of motion can be
written as

(6.140)
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where ζj is the jth modal damping ratio, in analogy with the SDOF equation
(4.18). The solution of eq (6.140) is given in Chapter 4 and for  we
are already familiar with its oscillatory character at the frequency

and its exponentially decaying amplitude. At this point the usefulness of
investigating the condition under which the damping matrix can be
diagonalized by the coordinate transformation (6.56a) is evident. Some
common assumptions are as follows:

(6.141)

i.e. a damping matrix which is proportional either to the mass matrix or to
the stiffness matrix, or both. The damping distributions of eqs (6.141) are
classified as proportional damping and the last of eqs (6.141), which covers
the two cases before, is often referred to as Rayleigh damping. Some
justifications can be given for the assumptions above; for example:

• The first case may represent a situation in which each mass is connected
to a viscous damper whose other end is connected to ‘the ground’ and
every coefficient cij is in the same proportion a to the mass coefficient mij.

• A damping element in parallel with each spring element with a constant
ratio  can be invoked for the second case, but the use of eqs
(6.141) is mostly a matter of convenience which turns out to be adequate
in many practical situations. In these circumstances the damped
eigenvectors are the same as the undamped ones and it is evident that
eqs (6.141) take advantage of their orthogonality properties to arrive at
(eqs (6.139) and (6.140))   

(6.142)

which allows us to determine the proportionality coefficient(s) when
one (or two in the third case of (6.141)) damping ratio(s) has been
specified or measured for the system under investigation.

For example, suppose we assumed mass proportional damping and we
measured ζk from a free-vibration amplitude decay test performed by
imposing appropriate initial conditions. Then, provided that we know the
value of ωk, we get
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and the other damping ratios can be obtained from (6.142) as

(6.143)

On the other hand, the assumption of stiffness proportional damping
leads to

and hence

(6.144)

Equations (6.143) and (6.144), respectively, show that mass proportional
damping assigns a higher damping to low-frequency modes, while stiffness
proportional damping assigns higher damping to high-frequency modes.

A greater degree of control on the damping ratios can be achieved if we
assume Rayleigh damping, where we can specify the damping ratios for any
two modes, say the kth and the mth, to get

(6.145a)

so that a and b can be obtained and substituted in eq (6.142) to determine
the jth damping ratio when j is different from k and m. Equation (6.145a)
in matrix form reads

(6.145b)

Note that Rayleigh damping results approximately in a constant damping
ratio for the middle-frequency modes and an increasing damping ratio for
the low- and high-frequency modes. However, the situation may vary
depending on the specific values of a and b; the reader is invited to consider
a few reasonable cases and draw a graph of the function  for each
case.

The foregoing procedure can be extended if we take into account the
additional orthogonality conditions of Section 6.5.1. In fact, assume for
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example that r damping ratios, say  are given; then a damping
matrix satisfying eq (6.142) can be obtained by using the Caughey summation

(6.146)

where the r coefficients can be obtained from the r simultaneous equations

(6.147)

Rayleigh damping is obviously a particular case of eq (6.146) where we
have a=a0 and b=a1.

From the foregoing considerations, we can see the assumption of
proportional damping leads, in the end, to a diagonal damping matrix

(6.148)

If some technique other than the mode superposition (for example, a direct
numerical integration of the equations of motion) is needed for a specific
problem, it is evident that the explicit damping matrix can be obtained as

 However, this expression is not computationally very convenient,
especially for large systems. The inversion of the modal matrix can be avoided
if we consider that I=PTMP, from which it follows that 

 and hence

(6.149a)

which, because of eq (6.148), can be written as

(6.149b)

where the contribution of each mode has been put into evidence. Those
modes which are not included in eq (6.149b) are considered as undamped
(i.e. their damping ratio is zero).

Finally, it is interesting to note that the equations of motion of an MDOF
system with hysteretic damping can also be uncoupled by using the normal
modes (i.e. the eigenvectors) of the undamped system because it is customary
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to assume a hysteretic damping matrix which is proportional to the stiffness
matrix. Nevertheless, the attention to this case is mainly focused on the
analysis of the forced response because this type of damping presents some
difficulties to a rigorous free-vibration analysis. In fact, it must be remembered
(Section 4.4) that the equivalent damping coefficients are defined under the
assumption of harmonic excitation forces at a given frequency ω so that the
equations of motion can be written as

(6.150a)

However, for a proportional damping matrix as above it is left to the
reader to show that, under the assumption  the free-vibration
solution of eq (6.150a) consists of the same eigenvectors as for the undamped
problem with eigenvalues that are given by

(6.150b)

where ωj is the undamped jth natural frequency.

6.7.2 Nonproportional damping

The assumption of proportional damping, despite its usefulness in many
theoretical and practical analysis, is not always justified. Therefore, in order
to gain some insight in the behaviour of real structures, one must also consider
the more general case in which the equations of motion (6.138) do not
uncouple under the transformation to normal coordinates. If we assume a
solution of the form

(6.151)

and substitute it in eq (6.138) we arrive at the complex eigenvalue problem
of eq (6.92) which admits a nontrivial solution if

(6.152)

which results in a characteristic equation of order 2n with real coefficients.
The fact that the coefficients are all real implies that the 2n solutions are
either real or, if they are complex, they occur in complex conjugate pairs.
Moreover, if the initial disturbation of the system results in an exponential
decay (steady or oscillating, depending on the amount of damping) and in a
progressive loss of energy, it is not difficult to see that the real eigenvalues
must be negative and the complex eigenvalues must have a negative real
part.
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The general solution to the free vibration problem is again obtained by
superposing the 2n solutions as

(6.153)

where the constants Aj are determined from the initial conditions.
Each complex eigenvalue will be accompanied by a complex eigenvector

and together they must satisfy the complex eigenvalue problem, meaning
that the real and imaginary parts on the left-hand side of eq (6.92) must
separately be zero. This implies that the complex eigenvectors also occur in
complex conjugate pairs. A general eigenvalue can then be written explicitly
as  and it will be associated with the eigenvector 
while the eigenvalue  will be associated with the
eigenvector  Note that there is no loss of generality in
assigning the (j+1)th index to the complex conjugate solution of the jth
eigenpair. When this is the case, then  because we are dealing
with a physical problem and the general solution must be real.

Alternatively, we can assign the jth index to both eigenpairs, sum from 1
to n in eq (6.153) and consider the expression

(6.154)

as the jth contribution to the general solution. In order to take a closer look
at the expression (6.154) let us drop for a moment the index j and assume
for simplicity that  then (6.154) becomes

(6.155a)

or, for each one of the n elements of the column vector u

(6.155b)

where the subscript m must now be interpreted as a matrix element index
and not a mode index (which has been temporarily dropped). In eq (6.155b)
we recognize two phasors rotating in opposite directions of the Argand-
Gauss plane. Their sum results in a real oscillating quantity with a decaying
amplitude, which can also be written as

(6.155c)

where the phase angle is given by  and is, in general,
different from θk when 
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So, in a complex mode different coordinates no longer move in phase or
in antiphase with each other (0° or 180° phase angles), and consequently
they no longer pass through their equilibrium position or reach their
extremes of motion simultaneously. In other words, there are phase
differences between the various parts of the structure. An animated display
of a complex mode shape shows a ‘travelling wave’ situation, with no
stationary nodal points or nodal lines (points or lines of no motion). This
is different from the animation of a real mode shape, in which well defined
nodal points or lines can be identified and a ‘standing wave’ situation can
be recognized.

Another important difference has to do with the orthogonality conditions
of complex eigenvectors. Suppose that zj is an eigenvector of the generally
damped problem relative to the eigenvalue j. Then the complex
eigenproblem  is identically satisfied. Now,
premultiply by  to get

(6.156)

write the complex eigenproblem for the kth eigenpair, transpose it and
postmultiply by zj. We get

(6.157)

Subtracting eq (6.156) from eq (6.157), provided that  leads to the
orthogonality condition

(6.158)

A second orthogonality condition can be obtained if we multiply eq (6.156)
by k and eq (6.157) by j and subtract one of the resulting equations from
the other; if  we get

(6.159)

Equations (6.158) and (6.159) are not as simple as their real mode
counterparts but, as in that case, they still hold true for repeated eigenvalues
provided that an appropriate choice is made for the eigenvectors associated
with a repeated root. Furthermore, since it is often convenient to represent
a complex eigenvalue as

(6.160)

(the formal analogy with the SDOF case is evident: Chapter 4), when 
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it is not difficult to obtain the relationships

(6.161)

where the kth damping ratio ζk and the kth frequency ωk can be determined
from the kth eigenvecctor and the damping, mass and stiffness matrices.

6.8 Generalized and complex eigenvalue problems:
reduction to standard form

For conservative and nonconservative systems we need to find the solution
of a particular eigenproblem: the so-called generalized eigenvalue problem
in the first case and the complex eigenvalue problem in the second case. A
widely adopted strategy of solution is to organize the equations of motions
so that the eigenvalue problem can be represented in the standard form

(6.162)

where the matrix A and the vector v depend on the particular transformation
procedure. In general, the transformation is carried out for two reasons:
first because a large number of effective solution algorithms are available
for the standard eigenproblem, and second because all the properties of the
eigenvalues and eigenvector of the original eigenproblem can be deduced
from the properties of the standard eigensolution.

Our purpose here is simply to make the reader aware of the fact that
several alternative methods are available for the solution of the various forms
of eigenproblems and that many of these possibilities transform the original
problem into the form (6.162). We merely outline some of the possibilities;
for a detailed discussion the reader can refer to more advanced texts or to
the wide body of specific literature. Broadly speaking, there is no such thing
as ‘the best method’ and the selection among the alternative eigensolvers
depends on the dimension of the problem, the number of eigenvalues and
eigenvectors required and the structure (typically the symmetry and
bandwidth) of the matrices involved.

6.8.1 Undamped systems

Let us consider the conservative case first. Both sides of the generalized
eigenproblem  can be premultiplied by M–1 (provided that M is
nonsingular) to give

(6.163)
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where we have defined the dynamic matrix A=M–1K. Alternatively we can
premultiply the generalized problem by K–1 (provided that K is nonsingular)
and arrive at

(6.164)

where the dynamic matrix is now defined as  and 
Numerical procedures known as iteration methods can be used both for
(6.163) and (6.164); however, the form (6.164) is preferred because it can
be shown that the iteration converges to the largest value of γ, i.e. to the
fundamental frequency of the system under investigation (one generally speaks
of inverse iteration in this case). Conversely, the iteration converges to the
highest value of  for eq (6.163), and higher frequencies are generally of less
interest in vibration analysis. Once the first eigenpair has been obtained, the
process can continue provided that the influence of the first eigenvector is
removed from the trial vector that is chosen to start the iteration. The
procedure is then repeated to obtain the second eigenpair and so on. Equation
(6.163) leads to the determination of eigenpairs in decreasing order (i.e.),

 while the reverse is true for eq. (6.164).
The main drawback of the methods above is that, in general, the dynamic

matrix—M–1K or K–1M, whichever is the case—is not symmetrical. However,
the symmetry of M and K can be exploited to transform A into a symmetrical
matrix before extracting its eigenvalues: for example the mass matrix can be
factored into

(6.165)

where L—not to be confused with the diagonal matrix of eigenvalues used
in preceding sections—is a lower triangular matrix (with positive diagonal
terms because M is positive definite). Equation (6.165), known as the
Cholesky factorization, expresses an important theorem of matrix algebra.
Substitution of eq (6.165) into eq (6.164) and successive premultiplication
by LT leads to  which, defining the new set of coordinates
x=LTz, turns into the standard form

(6.166)

where  is a symmetrical matrix (because K–1 is symmetrical and
hence  Solving the eigenproblem (6.166) leads to the
same eigenvalues as the original starting problem and to eigenvectors xj which
satisfy the orthogonality conditions

(6.167)
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Then, thanks to the upper triangular form of LT, the original eigenvectors
can be obtained by backward substitution.

Alternatively, instead of the Cholesky factorization, we can solve the
standard eigenvalue problem for the matrix M (which is symmetrical and
positive definite) and write its spectral decomposition as

(6.168)

where R is an orthogonal matrix (RRT=I) and D2 is the diagonal matrix of
the (positive, this is why we write D2) eigenvalues of M. Substitution of eq
(6.168) in the generalized eigenproblem gives  and since

 we arrive at

(6.169)

where we have defined the matrix  Now, premultiply eq (6.169) by
N–1, insert the identity matrix  between K and z on the left-hand side
and define the vector x=NTz. We have thus obtained a standard eigenvalue
problem of the form (6.166), where the matrix S is now 

The problem is symmetrical because 
 and it is easy to verify that 

Another possibility is to start from the generalized eigenvalue problem
 substitute the coordinate transformation z=M–1/2x in it and

premultiply the resulting equation by M–1/2 to arrive at the symmetrical
standard eigenproblem

(6.170a)

which results in the same eigenvalues as the original problem and in n
eigenvectors xj (j=1, 2,…, n) connected to the original mode shapes by

(6.170b)

Again, the symmetry of the problem is a computational advantage, but
the numerical disadvantage is the calculation of the matrix M–1/2. However,
if M is a lumped mass matrix of the form

then

Consider now the matrix equation (6.20), which constitutes a set of n
second-order ordinary differential equations. Premultiplication by M–1 leads to

(6.171)
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If now we define the n×1 vectors x1 and x2 as

(6.172)

we get

which can be written in matrix form as

(6.173)

where we have defined the 2n×1 vector  and the matrix A is
given by

Assuming a solution of eq (6.173) of the form  we arrive at the
standard eigenproblem of order 2n

(6.174a)

Equation (6.174a) results in 2n eigenvalues which correspond to the natural
frequencies of the system according to the relations

(6.174b)

where only the positive values of frequency have physical meaning and are
used to obtain the 2n×1 eigenvectors. These, in turn, have the form

(6.174c)

where the zj are the eigenvectors of the original problem. Note that this
procedure, in essence, converts a set of n second-order ordinary differential
equations into an equivalent set of 2n first-order ordinary differential
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equations by introducing velocities as an auxiliary set of variables. Equation
(6.173) represents what is commonly called a state-space formulation of the
equations of motions because, from a mathematical point of view, the set of
2n variables  defines the state (or phase) space of
the system under investigation. We have already considered an analogous
approach in Section 3.3.4, where—due to their importance in analytical
mechanics—we briefly discussed Hamilton’s canonical equations. In that
case the conjugate momenta played the role of auxiliary variables.

6.8.2 Viscously damped systems

A state-space formulation of the eigenproblem can also be adopted for the
case of viscously damped n-DOF systems when the transformation to normal
coordinates fails to uncouple the equations of motion. This is done by
combining the two equations

(6.175a)

(i.e. the equations of motion of the damped system plus a simple identity)
into the single matrix equation

(6.175b)

which can be written in the form

(6.175c)

where we have defined the 2n×1 state vector  and the 2n×2n real
symmetrical matrices

which are not, in general, positive definite. Once again, assuming a solution
of the form  leads to the generalized 2n symmetrical eigenvalue problem

(6.176)

whose characteristic equation and eigenvalues are the same as the ones of
the complex eigenproblem (eq (6.92)); the coefficients of the characteristic
equation are all real and the eigenvalues are real or in complex conjugate
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pairs. The 2n×1 eigenvectors of eq (6.176) have the form

(6.177)

where zj the are the n×1 eigenvectors of the complex eigenproblem. Apart
from the increased computational difficulty, the solution of eq. (6.176)
develops along the same line of reasoning followed in the case of the
generalized eigenvalue problem of undamped systems.

The advantage of the present formulation with respect to the complex
eigenproblem is that the eigenvectors s are now orthogonal with respect to
both  and , i.e.

(6.178)

where the constants  and  are determined from the normalization. Note
that the right-hand side of eq (6.178) is zero also when the two eigenvectors
are complex conjugate of each other, because, as a matter of fact, they
correspond to different eigenvalues. Moreover, eqs (6.178) can be taken a step
further and the reader, by writing explicitly a complex eigenvector as

 is invited to obtain the orthogonality relationships between
different eigenvectors in terms of their real and imaginary parts. These latter
relationships are useful in the numerical solution of the complex eigenproblem.

Example 6.6. The reader is also invited to consider Example 6.1 (Fig. 6.1);
assume the numerical values m=1 kg, k=2 N/m and add two viscous dampers
of constants c1=0.02 and c2=0.01 N s/m in parallel with the springs k1 and
k2s. The equations of motion (6.64) have now also a viscous term where the
damping matrix is

Outline the formulation of the complex eigenproblem and of the generalized
eigenproblem (6.176) and show that they both lead to the characteristic equation

whose solutions are

Determine the eigenvectors.
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If needed, the generalized problem of eq (6.176) can be converted into
the standard form by premultiplying both sides by  or  (when they
exist), in close analogy to the procedure that led to eq (6.163) or (6.164). In
this case it is not difficult to show that, for example, in terms of the original
mass and damping matrices,  is given by

The fact that the symmetrical generalized eigenproblem (6.176) leads to
complex eigenvalues may seem in contradiction with the statement of
Section 6.3.1 that a symmetrical eigenvalue problem produces only real
eigenvalues (a general conclusion that was obtained from eq (6.39b)).
However, there is no contradiction because eq (6.176) is not a ‘true’ 2n
generalized eigenproblem but a state-space formulation of a complex
eigenproblem of order n. Substitution of the explicit expressions of sj (eq
(6.177)) and of  into eq (6.39b) will show, after a few calculations, that
the conclusion  is no longer valid. In addition, note that the state
formulation of eq (6.176) applies also for undamped systems; in this case,
however, the matrix  is given by

because C=0. This formulation, as one might expect, leads to the same
eigenvalues and eigenvectors of eqs (6.174b) and (6.174c). The fact that
now we obtain purely imaginary eigenvalues can be once again proved with
the help of eq (6.39b), which now reads

The reader is invited to show that the calculation of the matrix product above
and substitution of the explicit expressions  and 
into the resulting equation leads to 

The last possibility that we consider follows closely the procedure that
led to eq (6.174a) for an undamped system. We start from 
premultiply by M–1, define the vectors x1 and x2 as in (6.172) and obtain

(6.179)
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If now we define the 2n×1 vector  and the matrix

(6.180a)

Equation (6.179) can be written in matrix form as  in formal analogy
with eq (6.173). Once again, assuming a solution of the form  leads
to a standard eigenvalue problem of order 2n for the matrix A, i.e.

(6.180b)

The main drawback is that, in general, the problem is not symmetrical.
More details about the solution of nonsymmetrical standard eigenproblems

are given in Appendix A. For the moment, it suffices to say that
nonsymmetrical eigenproblems lead to two set of eigenvectors, the so-called
right and left eigenvectors: the right eigenvectors are associated with the
original eigenproblem (i.e. the matrix A in the case of the last formulation
that led to eq (6.180)) while the left eigenvectors are associated with the
transposed eigenproblem (i.e. the matrix AT for the case of eq (6.180)). Then,
an appropriate set of ‘biorthogonality’ conditions holds between left and
right eigenvectors (in this regard, it may be noted that it is not necessary to
solve the eigenvalue problem for AT because the left eigenvectors can be
obtained by inverting the matrix of right eigenvectors).

In general, the lack of symmetry is not a problem when the eigenvalues
are distinct. However, some complications may arise with degenerate
eigenvalues when the matrix is defective, that is when a degenerate eigenvalue
has a strictly smaller geometric than algebraic multiplicity. In this case, the
concept of a principal vector (or, less properly, generalized eigenvector) is
introduced by performing linear operations on previously computed
eigenvectors. We will deal with this very particular case as appropriate in
the course of future chapters; the interested reader can refer, for example, to
Newland [4] and Gantmacher [5].

6.9 Summary and comments

Chapter 6 has been entirely dedicated to the free vibration of undamped and
damped n-DOF systems, where n is any finite number. Hardly any mention has
been made of approximate methods, which will be deferred to later chapters.

As a preliminary, we started our analysis with a simple 2-DOF undamped
system without making use of matrix algebra; some important conclusions
were reached:

1. The equations of motion are, in general, coupled.
2. The system is capable of harmonic motion at two well-defined values of

frequency (the natural frequencies).
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3. Each frequency is associated with a specific, but not uniquely defined,
pattern of motion (the normal modes of vibration), the indeterminacy
on the amplitude of motion being a consequence of the homogeneous
nature of the problem.

4. There exists a choice of coordinates (the normal coordinates) which
uncouples the equations of motions and leads to potential- and kinetic-
energy expressions with no cross-product terms.

A direct consequence of point 4 is that the coupling of the equations of
motion is not an intrinsic property of the system but depends on the choice
of coordinates.

All the conclusions above are then extended and generalized to the case
of undamped systems with n degrees of freedom with the aid of matrix
algebra, which is the natural mathematical ‘tool’ for computer
implementation. The matrix formulation of the free-vibration problem has
the form of a symmetrical generalized eigenvalue problem of order n whose
solution determines the eigenvalues (the natural frequencies) and eigenvectors
(the mode shapes) of the undamped system under investigation. The
eigenvectors, in turn, satisfy the important conditions of mass and stiffness
orthogonality and form a basis of an n-dimensional vector space. Hence, it
follows from the linearity of the problem that its general solution can be
obtained by superposition of the n ‘normalized’ eigenvectors. The process of
normalization of eigenvectors is needed to remove their amplitude
indeterminacy by an appropriate choice, made by the analyst, of a scaling
factor. Moreover, the eigenvectors can be arranged in matrix form (the modal
matrix) in a way that leads naturally to the normal coordinates, and hence
to the uncoupling of the equations of motion, which is always possible for
undamped systems. The simplification is noteworthy, because the problem
is reduced to n independent SDOF equations of motion.

Once the intrinsic importance of the eigenvalues and eigenvectors has been
established, we turn our attention to their sensitivity, i.e. the way in which
they change as a consequence of small modifications of the mass and/or stiffness
parameters of the system. This is done via a perturbation method, widely
employed in many branches of physics and engineering. The calculations are
limited to the first order because this is the most significant perturbation term.

Successively, the same perturbation technique is used to investigate the
consequences of the addition of a small viscous damping term in the equations
of motion; in brief, these consequences are:

• the appearance of complex eigenvalues and eigenvectors;
• the validity of the modal approach for lightly damped structures, where

the influence of the off-diagonal terms of the matrix PTCP is, to the first
order, negligible.

A whole section is then dedicated to a general discussion on the structure
and properties of the mass and stiffness matrices because, in general, the
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effectiveness and reliability of a numerical solution (the only one possible
for complex systems) depend on the structure and properties of the input
matrices. As a matter of fact, there is no unique way to define the mass and
stiffness properties of a given system, and the choice of one approach rather
than a different one may reflect on the quality of the solution. For its
conceptual importance and its far-reaching consequences in numerical analysis
(especially finite-element methods), we introduce in this section the important
approach of the assumed-modes method and show some examples for simple
systems.

One particular property of the input matrices is their nonsingularity.
However, situations occur when the stiffness matrix is singular because the
system is capable of rigid-body motions. The name ‘rigid-body modes’,
occurring at zero frequency, is a bit misleading because these are not
oscillatory solutions of the equations of motion but correspond to a rigid
translation of the system as a whole. Rigid-body modes do not involve any
change in the potential elastic energy and are due to the fact that the system
is unrestrained; they can often be identified by inspection and their effect is
often removed by means of appropriate techniques in the solution of the
eigenproblem. However, they must not be forgotten when we write the general
free-vibration solution.

Damped systems are considered next. They lead to the formulation of the
complex eigenvalue problem. In general, the transformation to normal
coordinates does not uncouple the equations of motion because of the
damping matrix. However, the assumption of ‘proportional’ damping leads
to a set of n uncoupled equations of motion and to a set of n damping
ratios, in analogy with the SDOF damped equation of motion. Then, the
damped eigenvectors are the same as the undamped ones. A more general
form of damping matrix which results in a set of n uncoupled equations of
motion is given by the Caughey summation form, which exploits a general
family of eigenvector orthogonality conditions.

Nevertheless, the assumption of these special forms of damping is not always
justified and the case must be considered when the equations of motion cannot
be uncoupled. We are led to a set of complex eigenvalues and eigenvectors.
The complex eigenvectors represent motions of the system (the so-called
complex modes) in which different parts of the system are no longer in phase
or antiphase with each other and do not satisfy simple orthogonality relations
as in the undamped case. When animation of the mode shapes is available, it
is noted that complex modes depict waves travelling along the structure rather
than stationary waves with well-defined nodal points or lines.

Finally, the last section deals with the possibility of transforming one
particular type of eigenproblem into a different form, more amenable to
numerical solution. Hence, we can transform a generalized eigenproblem
into a standard form, or transform a complex eigenproblem into a generalized
or a standard eigenproblem. A widely adopted strategy consists of formulating
the equations in the state (or phase) space. The cost of the resulting simpler
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form of the problem is the doubling of its size (that is, we are led to an
eigenproblem of order 2n) and sometimes the loss of its symmetry.
Nevertheless, the advantages generally outweigh the disadvantages and more
effective numerical procedures can be employed to solve the transformed
eigenproblem.
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7 More MDOF systems—
forced vibrations and
response analysis

7.1 Introduction

The preceding chapter was devoted to a detailed discussion of the free-
vibration characteristics of undamped and damped MDOF linear systems.
In the course of the discussion, it has become more and more evident—both
from a theoretical and from a practical point of view—that natural frequencies
(eigenvalues) and mode shapes (eigenvectors) play a fundamental role. As
we proceed further in our investigation, this idea will be confirmed.

Following Ewins [1], we can say that for any given structure we can
distinguish between the spatial model and the modal model: the first being
defined by means of the structure’s physical characteristics—usually its mass,
stiffness and damping properties—and the second being defined by means
of its modal characteristics, i.e. a set of natural frequencies, mode shapes
and damping factors. In this light we may observe that Chapter 6 led from
the spatial model to the modal model; in Ewins’ words, we proceeded along
the ‘theoretical route’ to vibration analysis, whose third stage is the response
model. This is the subject of the present chapter and concerns in the analysis
of how the structure will vibrate under given excitation conditions.

The importance is twofold: first, for a given system, it is often vital for
the engineer to understand what amplitudes of vibration are expected in
prescribed operating conditions and, second, the modal characteristics of a
vibrating system can be obtained by performing experimental tests in
appropriate ‘forced-vibration conditions’, that is by exciting the structure
and measuring its response. These measurements, in turn, often constitute
the first step of the ‘experimental route’ to vibration analysis (again Ewins’
definition), which proceeds in the reverse direction with respect to the
theoretical route and leads from the measured response properties to the
vibration modes and, finally, to a structural model.

Obviously, in common practice the theoretical and experimental
approaches are strictly interdependent because, hopefully, the final goal is to
arrive at a satisfactory and effective description of the behaviour of a given
system; what to do and how to do it depends on the scope of the investigation,
on the deadline and, last but not least, on the available budget.
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In this chapter we pursue the theoretical route to its third stage, while the
experimental route will be considered in later chapters.

7.2 Mode superposition

In the analysis of the dynamic response of a MDOF system, the relevant
equations of motions are written in matrix form as

(7.1)

where  is a time-dependent n×1 vector of forcing
functions. In the most general case eqs (7.1) are a set of n simultaneous
equations whose solution can only be obtained by appropriate numerical
techniques, more so if the forcing functions are not simple mathematical
functions of time.

However, if the system is undamped (C=0) we know that there always
exists a set of normal coordinates y which uncouples the equations of motion.
We pass to this set of coordinates by means of the transformation (6.56a), i.e.

(7.2)

where P is the weighted modal matrix, that is the matrix of mass orthonormal
eigenvectors. As for the free-vibration case, premultiplication of the
transformed equations of motion by PT gives

(7.3a)

where  is the diagonal matrix of eigenvalues and the
term on the right-hand side is called the modal force vector. Equations (7.3a)
represent a set of n uncoupled equations of motion; explicitly they read

(7.3b)

where we define the jth modal participation factor  i.e. the jth element
of the n×1 modal force vector, which clearly depends on the type of loading.
In this regard, it is worth noting that the jth modal participation factor can
be interpreted as the amplitude associated with the jth mode in the expansion
of the force vector with respect to the inertia forces. In other words, if the
vector f is expanded in terms of the inertia forces Mpi generated by the
eigenmodes, we have

(7.4)
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where the ais are the expansion coefficients. Premultiplication of both sides
of eq (7.4) by  leads to

and hence to the conclusion  which proves the statement above.
The equations of motion in the form (7.3b) can be solved independently

with the methods discussed in Chapters 4 and 5: each equation is an SDOF
equation and its general solution can be obtained by adding the complemen-
tary and particular solutions. The initial conditions in physical coordinates

are taken into account by means of the transformation to normal coordinates.
The transformation (7.2) suggests that the initial conditions in normal
coordinates could be obtained as

(7.5a)

However, as in eqs (6.58), it is preferable to use the orthogonality of
eigenmodes and calculate

(7.5b)

The solution strategy considered above is often called the mode
superposition method (or the normal mode method) and is based on the
possibility to uncouple the equations of motion by means of an appropriate
coordinate transformation. It is evident that the first step of the whole process
is the solution of the free-vibration problem, because it is assumed that the
eigenvalues and eigenvectors of the system under study are known.

The same method applies equally well to damped systems with
proportional damping or, more generally, to damped systems for which the
matrix PTCP has either zero or negligible off diagonal elements. In this case
the uncoupled equations of motion read

(7.6a)

or, explicitly

(7.6b)
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where damping can be more easily specified at the modal level by means of
the damping ratios ζj rather than obtaining the damping matrix C. The initial
conditions are obtained exactly as in eqs (7.5b) and the complete solution
for the jth normal coordinate can be written in analogy with eq (5.19) as

(7.7a)

where we write yj0 and j0 to mean the initial displacement and velocity of
the jth normal coordinate and, in the terms ωdj, the subscript d indicates
‘damped’. As in the SDOF case, the damped frequency is given by

and the exact evaluation of the Duhamel integral is only possible when the
φj(t) are simple mathematical functions of time, otherwise some numerical
technique must be used. It is evident that if we let  eq (7.7) leads
immediately to the undamped solution. Also, we note in passing that for a
system initially at rest (i.e. ) we can write the vector of normal
coordinates in compact form as

(7.7b)

where diag[h1(t),…, hn(t)] is a diagonal matrix of modal impulse response
functions (eq (5.7a), where in this case  because the eigenvectors
are mass orthonormal)

Two important observations can be made at this point:

• If the external loading f is orthogonal to a particular mode pk, that is if
 that mode will not contribute to the response.

• The second observation has to do with the reciprocity theorem for
dynamic loads, which plays a fundamental role in many aspects of linear
vibration analysis. The theorem, a counterpart of Maxwell’s reciprocal
theorem for static loads, states that the response of the jth degree of
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freedom due to an excitation applied at the kth degree of freedom is
equal to the response of the kth degree of freedom when the same
excitation is applied at the jth degree of freedom.

To be more specific, let us assume that the vibrating system is initially at
rest, i.e.  or, equivalently  in eq (7.7) (this assumption
is only for our present convenience and does not imply a loss of generality).
From eq (7.2), the total response of the jth physical coordinate uj is given by
 

(7.8a)

Now, suppose that the structure is excited by a single force at the kth point,
i.e.  the ith participation factor will be given by

(7.9a)

so that, by substituting eqs (7.7) (with zero initial conditions) and (7.9a) in
eq (7.8a), we have

(7.10a)

The same line of reasoning shows that the response of the kth physical
coordinate is written as

(7.8b)

and, under the assumption that we apply the same force as before at the jth
degree of freedom (i.e. only the jth term of the vector f is different from
zero), we have the following participation factors:

(7.9b)

Once again, substitution of the explicit expression of yi and of eq (7.9b) into
eq (7.8b) yields

(7.10b)

which is equal to eq (7.10a) when the hypothesis of the reciprocity theorem
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is satisfied, that is, that the external applied load is the same in the two
cases, the only difference being the point of application.

So, returning to the main discussion of this section, we saw that in order
to obtain a complete solution we must evaluate n equations of the form
(7.7) and substitute the results back in eq (7.2), where the response in physical
coordinates is expressed as a superposition of the modal responses. For large
systems, this procedure may involve a large computational effort. However,
one major advantage of the mode superposition method for the calculation
of dynamic response is that, frequently, only a small fraction of the total
number of uncoupled equations need to be considered in order to arrive at
a satisfactory approximate solution of eq (7.1). Broadly speaking, this is due
to the fact that, in common situations, a large portion of the response is
contained in only a few of the mode shapes, usually those corresponding to
the lowest frequencies. Therefore, only the first  equations need to be
used in order to obtain a good approximate ‘truncated’ solution. This is
written as

(7.11)

How many modes must be included in the analysis (i.e. the value of s)
depends, in general, on the system under investigation and on the type of
loading, namely its spatial distribution and frequency content. Nevertheless,
the significant saving of computation time can be appreciated if we consider,
for example, that in wind and earthquake loading of structural systems we
may have 

If not enough modes are included in the analysis, the truncated solution
will not be accurate. On a qualitative basis, we can say that the lack of
accuracy is due to the fact that—owing to the truncation process—part of
the loading has not been included in the superposition. Since we can expand
the external loading in terms of the inertia forces (eq (7.4)), we can calculate

(7.12)

and note that a satisfactory accuracy is obtained when ∆∆∆∆∆f corresponds, at
most, to a static response. It follows that a good correction ∆∆∆∆∆u—the so-
called static correction—to the truncated solution u(s) can be obtained from

(7.13)

Also, on physical grounds, lack of accuracy must be expected when the
external loading has a frequency component which is close to one of the
system’s modes (say, the kth mode, where k>s) that has been neglected. In
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this case, in fact, the contribution of the kth mode to the response becomes
important and an inappropriate truncation will fail to take this part of the
response into account. This is a typical example of what we meant by saying
that the frequency content of the input—together with its spatial
distribution—determines the number of modes to be included in the sum
(7.11).

From a more general point of view, it must also be considered that little
or hardly any accuracy can be expected in both the theoretical (for example,
by finite-element methods) calculation and the experimental determination
(for example, by means of experimental modal analysis) of higher frequencies
and mode shapes. Hence, for systems with a high number of degrees of
freedom, modal truncation is almost a necessity.

A final note of practical use: frequently we may be interested in the
maximum peak value of a physical coordinate uj. An approximated value
for this quantity, as a matter of fact, is based on the truncated mode
summation and it reads

(7.14)

where pjk is the (jk)th element of the modal matrix or, in other words, the jth
element of the kth eigenvector. Equation (7.14) is widely accepted and has
been found satisfactory in most cases; the contribution of modes other than
the first is taken into account by means of the term under the square root
which, in turn, is a better expression than  because, statistically
speaking, it is very unlikely that all maxima occur simultaneously.

7.2.1 Mode displacement and mode acceleration methods

The process of expressing the system response through mode superposition
and restricting the modal expansion to a subset of s modes is often called the
mode displacement method. Experience has shown that this method must
be applied with care because, owing to convergence problems, many modes
are needed to obtain an accurate solution. Suppose, for example that the
applied load can be written in the form

If we consider, for simplicity, the response of an undamped system initially
at rest, we have the mode displacement solution

(7.15)
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which does not take into account the contribution of the modes that have
been left out. Moreover—besides depending on the frequency content of the
excitation and on the eigenvalues of the vibrating system, which are both
taken into account in the convolution integral—the convergence of the
solution depends also on how well the spatial part of the applied load f0 is
represented on the basis of the s modes retained in the process. The mode
acceleration method approximates the response of the missing modes by
means of an additional pseudostatic response term. The line of reasoning
has been briefly outlined in the preceding section (eqs (7.12) and (7.13)) and
will be pursued a little further in this section.

We can rewrite the equations of motion of our undamped (and initially at
rest) system in the form

premultiplicate both sides by K–1 (under the assumption of no rigid-body
modes) and substitute the truncated expansion of the inertia forces to get
the mode acceleration solution û(s) as

(7.16)

and since  we obtain

(7.17)

where the first term on the right-hand side of eq (7.17) is called the
pseudostatic response and the name of the method is due to the ÿi in the
second term. Moreover, note that if the loading is of the form  the
term  can be calculated only once. Then, it can be multiplied by g(t)
for each specific value of t for which the response is required.

Now, the expression

can be inserted in  which, in turn, is obtained from eq (7.3b);
the result is then substituted in eq (7.17) to give

(7.18)
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Equation (7.18) can be put in its final form if we consider the spectral
expansion of the matrix K–1. This is not difficult to obtain: we start from the
spectral expansion of the identity matrix (eq (6.49b)), transpose both sides
to obtain

premultiply both sides by K–1 and consider that  It follows

(7.19)

which is the expansion we were looking for. Inserting eq (7.19) into (7.18)
leads to

(7.20)

where it is now evident the contribution of the n–s modes that had been
completely neglected in the mode displacement solution.

As opposed to the mode displacement method, the mode acceleration
method shows better convergence properties and, in general, fewer
eigenvalues and eigenvectors are needed to obtain a satisfactory solution.
Nevertheless, some attention must always be paid to the number of modes
employed in the superposition. In fact, if the highest (sth) eigenvalue is much
larger than the highest frequency component ωmax of the applied load, say
for example  the response of modes s+1, s+2,…, n is essentially
static because (Fig. 4.8)

and the pseudostatic term, as a matter of fact, is a proper representation of
their contribution. On the other hand, if some frequency component of the
loading is close to the frequency of a ‘truncated’ mode, the mode acceleration
solution will be just as inaccurate as the mode displacement solution and no
effective improvement should be expected in this case.

For viscously damped system with proportional damping, the mode
acceleration solution can be obtained from
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and written as

(7.21)

where the last term on the right-hand side is exactly as in eq (7.17) and the
second term has been obtained using the spectral expansion (7.19) and the
expression  (i.e. eq (6.142)).

7.3 Harmonic excitation: proportional viscous damping

Suppose now that a viscously damped n-DOF system is excited by means of
a set of sinusoidal forces with the same frequency ω but with various
amplitudes and phases. We have

(7.22)

and we assume that a solution exists in the form

(7.23)

where f0 and z are n×1 vectors of time-independent complex amplitudes.
Substitution of eq (7.23) into (7.22) gives

whose formal solution is

(7.24)

where we define the receptance matrix (which is a function of ω)
 The (jk)th element of this matrix is the

displacement response of the jth degree of freedom when the excitation is
applied at the kth degree of freedom only. Mathematically we can write

(7.25)

The calculation of the response by means of eq (7.24) is highly inefficient
because we need to invert a large (for large n) matrix for each value of frequency.

However, if the system is proportionally damped and the damping matrix
becomes diagonal under the transformation PTCP we can write
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premultiply both sides by PT and postmultiply by P to get

which we can write as  where we define for brevity of notation

From the above it follows that  which, after
pre- and postmultiplication of both sides by P and PT, respectively, leads to

(7.26)

so that the solution (7.24) can be written as

(7.27)

and the (jk)th element of the receptance matrix can be explicitly written as

(7.28)

Now, the term in brackets in eq (7.28) looks, indeed, familiar and a slightly
different approach to the problem will clarify this point. For a proportionally
damped system, the equations of motion (7.22) can be uncoupled with the
aid of the modal matrix and written in normal coordinates as

(7.29)

Each equation of (7.29) is a forced SDOF equation with sinusoidal
excitation. We assume a solution in the form

where j is the complex amplitude response. Following Chapter 4, we arrive
at the steady-state solution (the counterpart of eq (4.42)),

(7.30)

where 
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By definition, the frequency response function (FRF) is the coefficient H(ω)
of the response of a linear, physically realizable system to the input ; with
this in mind we recognize that

(7.31)

is the jth modal (because it refers to normal, or modal, coordinates) FRF. If
we define the n×1 vector  of response amplitudes we can
put together the n equations (7.29) in the matrix expression

(7.32)

and the passage to physical coordinates is accomplished by the transformation
(7.2), which, for sinusoidal solutions, translates into the relationship between
amplitudes  Hence

(7.33)

which must be compared to eq (7.27) to conclude that

(7.34a)

Equation (7.34a) establishes the relationship between the FRF matrix (R) of
receptances in physical coordinates and the FRF matrix of receptances in
modal coordinates. This latter matrix is diagonal because in normal (or
modal) coordinates the equations of motion are uncoupled. This is not true
for the equations in physical coordinates, and consequently R is not diagonal.
Moreover, appropriate partitioning of the matrices on the right-hand side of
eq (7.34a) leads to the alternative expression for the receptance matrix

(7.34b)

where the term  is an (n×1) by (1×n) matrix product and hence results
in an n×n matrix. From eq (7.34a) or (7.34b) it is not difficult to determine
that

(7.35)

i.e. R is symmetrical; this conclusion can also be reached by inspection of eq
(7.28) where it is evident that  This result is hardly surprising. In
fact, owing to the meaning of the term Rjk (i.e. eq (7.25)), it is just a different
statement of the reciprocity theorem considered in Section 7.2.
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7.4 Time-domain and frequency-domain response

In Section 7.2, eq (7.7b) represents, in the time domain, the normal coordinate
response of a proportionally damped system to a general set of applied forces.
Since we pass to physical coordinates by means of the transformation u=Py,
we have

(7.36)

so that the n×n matrix of impulse response functions in physical coordinates
is given by

(7.37a)

Explicitly, the (jk)th element of matrix (7.37a) is written

(7.37b)

and it is evident that  or equivalently, 
On the other hand, if we take the Fourier transform of both sides of eqs

(7.6), we get

(7.38)

where we have called Yj(ω) and Φj(ω) the Fourier transforms of the functions
yj(t) and  respectively. If we form the column vectors

and

where  is the (element by element) Fourier
transform of f, we obtain from eq (7.38)

(7.39)
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Now, since u(t)=Py(t) it follows that  and eq (7.39)
leads to

(7.40)

which is the frequency-domain counterpart of the time-domain equation
(7.36). Summarizing the results above and referring to the discussion of
Chapter 5 about impulse-response functions and frequency-response
functions, we can say that—as for the SDOF case—the modal coordinates
functions hj(t) and  are a Fourier transform pair and fully
define the dynamic characteristics of our n-DOF proportionally damped
system.

In physical coordinates, the dynamic response of the same system is
characterized by the matrices h(t) and R(ω) whose elements are given,
respectively, by eqs (7.37b) and (7.28). These matrices are also a Fourier
transform pair (Section 5.4), i.e.

(7.41)

which is not unexpected if we consider that the Fourier transform is a linear
transformation. Also, from the discussion of Chapter 5, it is evident that the
considerations of this section apply equally well if ω is replaced by the Laplace
operator s and the FRFs are replaced by transfer functions in the Laplace
domain. Which transform to use is largely dictated by a matter of convenience.

A note about the mathematical notation

In general an FRF function is indicated by the symbol H(ω) and, consequently,
a matrix of FRF functions can be written as H(ω). However, as shown in
Table 4.3, H( ω) can be a receptance, a mobility or an accelerance (or
inertance) function; in the preceding sections we wrote R(ω) because,
specifically, we have considered only receptance functions, so that R(ω) is
just a particular form of H(ω). Whenever needed we will consider also the
other particular forms of H(ω), i.e. the mobility and accelerance matrices
and we will indicate them, respectively, with the symbols V(ω) and A(ω)
which explicitly show that the relevant output is velocity in the first case
and acceleration in the second case. Obviously, the general FRF symbol H(ω)
can be used interchangeably for any one of the matrices R(ω), V(ω) or A(ω).
By the same token, H(s) is a general transfer function and R(s), V(s) or A(s)
are the receptance, mobility and accelerance transfer functions.

Finally, it is worth noting that some authors write FRFs as H(iω) in order
to remind the reader that, in general, FRFs are complex functions with a real

Copyright © 2003 Taylor & Francis Group LLC



and imaginary part or, equivalently, that they contain both amplitude and
phase information. We do not follow this symbolism and write simply H(ω).

7.4.1 A few comments on FRFs

In many circumstances, one may want to consider an FRF matrix other than
R(ω). The different forms and definitions are listed in Table 4.3 and it is not
difficult to show that, for a given system, the receptance, mobility and
accelerance matrices satisfy the following relationships:

(7.42)

which can be obtained by assuming a solution of the form (7.23) and noting
that

(7.43)

where we have defined the (complex) velocity and acceleration amplitudes v
and a. However, the definitions of Table 4.3 include also other FRFs, namely
the dynamic stiffness, the mechanical impedance and the apparent mass
which, for the SDOF case are obtained, respectively, as the inverse of
receptance, mobility and accelerance. This is not so for an MDOF system.

Even if in this text we will generally use only R(ω), V(ω) or A(ω), the
reader is warned against, say, trying to obtain impedance information by
calculating the reciprocals of mobility functions. In fact, the definition of a
mobility function Vjk, in analogy with eq (7.25), implies that the velocity at
point j is measured when a prescribed force input is applied at point k, with
all other possible inputs being zero. The case of mechanical impedance is
different because the definition implies that a prescribed velocity input is
applied at point j and the force is measured at point k, with all other input
points having zero velocity. In other words, all points must be fixed (grounded)
except for the point to which the input velocity is applied.

Despite the fact that this latter condition is also very difficult (if not
impossible) to obtain in practical situations, the general conclusion is that

(7.44)

where we used for mechanical impedance the frequently adopted symbol Z.
Similar relations hold between receptance and dynamic stiffness and between

Copyright © 2003 Taylor & Francis Group LLC



accelerance and apparent mass. So, in general [1], the FRF formats of dynamic
stiffness, mechanical impedance and apparent mass are discouraged because
they may lead to errors and misinterpretations in the case of MDOF systems.

Two other observations can be made regarding the FRF which are of
interest to us:

• The first observation has to do with the reciprocity theorem. Following
the line of reasoning of the preceding section where we determined (eq
(7.35)) that the receptance matrix is symmetrical, it is almost
straightforward to show that the same applies to the mobility and
accelerance matrices.

• The second observation is to point out that only n out of the n2 elements
of the receptance matrix R(ω) are needed to determine the natural
frequencies, the damping factors and the mode shapes.

We will return to this aspect in later chapters but, in order to have an idea,
suppose for the moment that we are dealing with a 3-DOF system with
distinct eigenvalues and widely spaced modes. In the vicinity of a natural
frequency, the summation (7.28) will be dominated by the term corresponding
to that frequency so that the magnitude  can be approximated by
(eqs (7.28) and (7.34b))

(7.45)

where j, k=1, 2, 3. Let us suppose further that we obtained an entire column
of the receptance matrix, say the first column, i.e. the functions R11, R21 and
R31; a plot of the magnitude of these functions will, in general, show three
peaks at the natural frequencies ω1, ω2 and ω3 and any one function can be
used to extract these frequencies plus the damping factors ζ1, ζ2 and ζ3.

Now, consider the first frequency ω1: from eq (7.45) we get the expressions

(7.46)

where the terms on the right-hand side are known. If we write explicitly eqs
(7.46), we obtain three equations in three unknowns which can be solved to
obtain p11, p21 and p31, i.e. the components of the eigenvector p1. Then, the
phase information on the three receptance functions can be used to assign a
plus or minus sign to each component (phase at ω1 is either +90° or –90°)
and determine completely the first eigenvector. The same procedure for ω2
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and ω3 leads, respectively, to p2 and p3 and, since the choice of the first
column of the receptance matrix has been completely arbitrary, it is evident
that any one column or row of an FRF matrix (receptance, mobility or
accelerance) is sufficient to extract all the modal parameters. This is
fundamental in the field of experimental modal analysis (Chapter 10) in
which the engineer performs an appropriate series of measurements in order
to arrive at a modal model of the structure under investigation.

Kramers-Kronig relations

Let us now consider a general FRF function. If we become a little more
involved in the mathematical aspects of the discussion, we may note that
FRFs, regardless of their origin and format, have some properties in common.
Consider for example, an SDOF equation in the form (4.1) (this simplifying
assumption implies no loss of generality and it is only for our present
convenience). It is not difficult to see that a necessary and sufficient condition
for a function f(t) to be real is that its Fourier transform F(ω) have the
symmetry property  which, in turn, implies that Re[F(ω)] is
an even function of ω, while Im[F(ω)] is an odd function of ω. Since H(ω) is
the Fourier transform of the real function h(t), the same symmetry property
applies to H(ω) and hence

(7.47)

where, for brevity, we write HRe and HIm for the real and imaginary part of
H, respectively. In addition, we can express h(t) as

(7.48)

divide the real and imaginary parts of H(ω) and, since h(t) must be real,
arrive at the expression

(7.49)

where the change of the limits of integration is permitted by the fact that,
owing to eqs (7.47), the integrands in both terms on the r.h.s. are even
functions of ω.
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If we now introduce the principle of causality—which requires that the
effect must be zero prior to the onset of the cause—and consider the cause
to be an impulse at t=0, it follows that h(t) must be identically zero for
negative values of time. The two terms of eq (7.49) are even and odd functions
of time and so, if h(t) is to vanish for all t<0, we have

(7.50)

for all positive values of t. In other words, the two terms of eq (7.49) are
each equal to h(t)/2 when t is positive but cancel out when t is negative.

Equation (7.50) constitutes another restriction on the mathematical
properties of the real and imaginary parts of an FRF and means that if we
know HRe(ω), we can compute HIm(ω) and vice versa.

The explicit relations between HRe and HIm can be found by writing the
relation

where the lower limit of integration can be set to zero because we assumed
h(t)=0 for t<0. Next, by separating the real and imaginary parts of H(ω) we
obtain

(7.51)

In addition, from eq (7.49) we have

which (introducing the dummy variable of integration)  can be substituted
in the second of eqs (7.51) to give
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and hence, since it can be shown that

we can perform the time integration to obtain the result

(7.52)

where the symbol P indicates that it is necessary to take the Cauchy principal
value of the integral because the integrand possesses a singularity.

By following a similar procedure and noting that from eq (7.50) we can
also write  we can introduce this expression
into the first of eqs (7.51) to obtain

(7.53)

Equations (7.52) and (7.53) are known as Kramers-Kronig relations. Note
that they are not independent but they are two alternative forms of the same
restriction on H(ω) imposed by the principle of causality.

The conclusion is that for any given ‘reasonable’ choice of HRe on the real
axis there exists one and only one ‘well-behaved’ form of HIm. The terms
‘reasonable’ and ‘well-behaved’ are deliberately vague because a detailed
discussion involves considerations in the complex plane and would be out of
place here: however, the reader can intuitively imagine that, for example, by
‘reasonable’ we mean continuous and differentiable and such as to allow the
Kramers-Kronig integrals to converge.

We will not pursue this subject further because, in the field of our interest,
the Kramers-Kronig relations are unfortunately of little practical utility. In
fact, even with numerical integration, the integrals are very slowly convergent
and experimental errors on, say, HRe may produce anomalies in HIm which
can be easily misinterpreted and vice versa. Nevertheless, the significance of
the Kramers-Kronig relations is mainly due to the fact that they exist and
that their very existence reflects the fundamental relation between cause and
effect, a concept of paramount importance in our quest for an increasingly
refined and complete description of the physical world.

7.5 Systems with rigid-body modes

Consider now an undamped system with m rigid-body modes. From the
equations of motion
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and the usual assumption of a harmonic solution in the form  we get

(7.54)

whose formal solution is given by

(7.55)

where  is the receptance matrix of our undamped system.
As in Section 7.3, our scope is to arrive at an explicit expression for this FRF
matrix.

Referring back to Section 6.6, we can expand the vector z on the basis of
the system’s eigenvectors, which now include the m rigid-body modes: the
expansion (whose coefficients must be determined) reads

(7.56)

where we assume all modes to be mass orthonormal. Equation (7.56) can be
substituted in eq (7.54) to obtain a somewhat lengthy expression which, in
turn, can be premultiplied by  to give

(7.57a)

and premultiplied by  to give

(7.57b)

so that eq (7.56) becomes

(7.58)

which can be compared to eq (7.55) to conclude that the receptance matrix
is written as

(7.59a)
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and its (jk)th element is

(7.59b)

Note that the expansion (7.56) on the basis of modes which are not mass
orthonormal results in a term Mii in the denominator of the first sum on the
right-hand side of eqs (7.59a) and (7.59b) and in a term Mii in the denominator
of the second sum.

Equations (7.59a) and (7.59b) are, respectively, the counterpart of eqs
(7.34b) and (7.28) for an undamped system with rigid-body modes: the
rigid-body modes contribution is evident and it is also evident that the
function

is the lth modal FRF Hl(ω) of an undamped system. In this light, the discussion
of this section can be extended with only little effort to a proportionally
damped system with m rigid-body modes. The reader is invited to do so.

As far as unrestrained systems are concerned, it is interesting to note that
the mode displacement and the mode acceleration methods can also be used
to determine their response. The mode displacement method does not present
additional difficulties due to the presence of rigid-body modes, but the
extension of the mode acceleration method is not straightforward. In essence,
the reason lies in the fact that the stiffness matrix of an unrestrained system
is singular and the method (Section 7.2.1) requires the calculation of K–1.

However, this difficulty can be circumvented; we do not pursue this subject
here and for a detailed discussion the interested reader is referred, for example,
to Craig [2].

7.6 The case of nonproportional viscous damping

The preceding sections have all dealt either with undamped systems or with
systems whose damping matrix becomes diagonal under the transformation
PTCP. In these cases, the modal approach for the calculation of their response
properties relies on the possibility to directly uncouple the equations of
motion, solve each equation independently and superpose the individual
responses.

As stated in Section 6.7.1, the assumption of proportional damping is not
always justified and a general damping matrix leads, in the homogeneous
case, to the complex eigenvalue problem (6.92). This, in turn, can either be
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solved directly as it is or can be tackled by adopting a state-space formulation,
as shown in Section 6.8 (eqs (6.75a and b) or eqs (6.179)).

The nature of the problem itself leads to a complex eigensolution, but the
eigenvectors that we obtain in the first case satisfy the ‘undesirable’
orthogonality conditions of eqs (6.158) and (6.159) which, in general, are of
limited practical utility. By contrast, the state-space formulation results either
in a generalized or in a standard eigenvalue problem—both of which forms
are preferred for numerical solution—and in a set of much simpler
orthogonality conditions. This approach is also more effective in the
nonhomogeneous case.

Let us first consider the equations

(7.60a)

and write them in matrix form as

or

(7.60b)

where we define the matrix q=[f 0]T and the matrices ,  and x as in eq
(6.175c). We are already familiar with the solution of the homogeneous
counterpart of eq (7.60b); hence we can express the solution of (7.60b) as
the superposition of eigenmodes

(7.61)

which can be substituted in eq (7.60b) and, taking eqs (6.178) into account,
premultiplied by  to get the 2n independent first-order equations

or, equivalently

(7.62)

where we defined

(7.63)
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and took into account the relation  Equations (7.62) can be
easily solved by multiplying both sides by  and writing the result as

Hence

(7.64)

It may now be useful to show how, with a more compact notation, we can
arrive at the result (7.64) in matrix form. Let us write eq (7.61) as

(7.65)

where S is the 2n×2n matrix of eigenvectors and  now,
substitute (7.65) in eq (7.60b) and premultiply by ST to obtain

(7.66)

Without loss of generality, we can assume  and arrive at the matrix
equation

(7.67)

which is the matrix form of the 2n equations (7.62). If now we define the
2n×1 matrix of the constants of integration  the 2n
solutions of eq (7.64) can be combined into the single equation

(7.68)

and the solution in the original coordinates can be obtained by means of the
transformation (7.65), so that

(7.69)
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Finally, if we remember that  it follows that the last n elements
of x are the derivatives of the first n elements; this implies, as we know from
the preceding chapter, that each eigenvector is in the form

(7.70)

By virtue of eq (7.70), the 2n×2n matrices S and ST can be partitioned into

(7.71a)

and

(7.71b)

where the orders of Z, ZT and diag( j) are n×2n, 2n×n and 2n×2n, respectively.
With this in mind, noting that

we can recover the displacement solution from eq (7.69) as

(7.72)

which represents the response of our system to an arbitrary excitation.

7.6.1 Harmonic excitation and receptance FRF matrix

The solution for a harmonic excitation  can be worked out as a particular
case of eq (7.64). The jth participation factor is now

(7.73)

where  Without loss of generality we can assume zero initial
conditions and the normalization condition  then, eq (7.64) becomes

(7.74)
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Since we are mainly interested in the steady-state solution, we can drop the
second term on the right-hand side which (if the system is stable and all
eigenvalues  have negative real parts) dies away as 
and arrive at the solution

(7.75a)

or, alternatively

(7.75b)

Next, once again by virtue of eq (7.70), we can partition the matrices S and
ST as in eqs (7.71a and b) and obtain

from which it follows that

(7.76a)

or, equivalently

(7.76b)

From the definition of receptance matrix and from eqs (7.76a) and (7.76b)
we get the n×n matrix

(7.77)

whose (jk)th element is obtained as

(7.78a)
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Furthermore, for the case in which we are mainly interested—i.e.
underdamped systems—we know that both eigenvalues and eigenvectors
appear in complex conjugate pairs; this implies that eq (7.78a) can be written
as the sum of n terms

(7.78b)

where the last expression was written by taking eq (6.160) into account.
So, as in the other cases, we have obtained an explicit expression for the

receptance FRF matrix. This is precisely the response model for the system
under study and, once again, we can see that the general element of the
receptance matrix is the sum of the contributions of the different modes of
vibration.

At this point, it is worth pointing out that in modal analysis terminology
the eigenvalues m are often called the poles and the term zjmzkm—referred to
as the residue for mode m—is given a symbol in its own right: for example,
the reader may find in current literature the symbols mAjk or rjk,m, both of
which stand for zjmzkm.

At this point it may be instructive to follow a similar line of reasoning as
above to work out a response model (and an explicit expression for the
receptance FRF matrix) by starting from the state-space formulation of eqs
(6.179). As a useful—and not trivial—exercise, the reader is urged to do so
by taking advantage of the guidelines that follow.

1. the homogeneous case leads to a standard 2n eigenvalue problem 
where, in general, the matrix A is not symmetrical.

2. The eigenvalues and eigenvectors occur in complex conjugate pairs
(underdamped case) and the eigenvectors have the form 

3. If the matrix A is nondefective (which we assume to be the case), we can
form the 2n×2n matrix S of column eigenvectors so that   

(7.79)

4. The forced vibration equations can be cast in the form   

(7.80a)
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where now we define

(7.80b)

5. The transformation to normal coordinates x=Sy can be substituted in eq
(7.80a) in order to arrive at

(7.81)

which is formally similar to eq (7.67) and leads, in the end, to

(7.82)

6. The matrix of right eigenvectors S can be partitioned into two n×2n
matrices as

(7.83a)

and, by the same token, it is also convenient to partition S–1 into two
2n×n matrices as

(7.83b)

Furthermore

(7.84)

and hence

(7.85)

which is the displacement response of our system to an arbitrary excitation.
7. Again, the case of harmonic excitation can be obtained as a particular

case of eq (7.85). The jth participation factor is now

(7.86)
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where we called  the left jth eigenvector of A (Appendix A). Note that
 is a row 1×2n vector (this is why we write the superscript T for

transpose: because in our notation, as it is customary, vectors are arranged
as columns) and its components form the jth row of matrix S–1 just like
the components of sj (the jth right eigenvector of A) form the jth column
of matrix S.

8. The displacement response is given by

(7.87)

and hence the n×n receptance FRF matrix is

(7.88)

9. The expression of a single receptance FRF function Rjk(ω) in terms of
individual components is a bit involved; however, if we call brs the general
(r, s)th element of the 2n×n matrix  it is not difficult to
determine that

(7.89)

7.7 MDOF systems with hysteretic damping

We stated in Section 6.7 that this type of damping does not lend itself easily
to a rigorous free-vibration analysis because, strictly speaking, the concept
of hysteretic (or structural) damping is based on an analogy with the viscous
damping case when the system is excited by means of a harmonic forcing
function. Nevertheless, experimental tests are often performed in a forced
vibration condition and it is undoubtedly useful to obtain a response model
for these systems in terms of eigenvalues and mode shapes, however
questionable this free-vibration solution may be. Therefore, provided that
the results are used judiciously, we justify the considerations that follow on
the basis of physical sense.

In general, hysteretic damping is taken into account by expressing the
equations of motion in the form (6.150), where the damping matrix is written
as iγK. In the homogeneous case, assuming a solution in the form

(7.90)

Copyright © 2003 Taylor & Francis Group LLC



leads to

which admits a nontrivial solution if  It is not
difficult to see that we obtain now a set of n complex eigenvalues  (because
the coefficients of the characteristic polynomial are complex) and that the
set of n real eigenvectors zj are the same as for the undamped case.

The eigenvalues contain information on both frequency and damping
characteristics and they can be written as

(7.91)

where

(7.92)

Note that, as in the previous cases, the ωjs have well-defined values but the
values of the Kjjs and Mjjs depend on the normalization that we choose.
Once again, it is common practice to fix the indeterminacy on the eigenvectors
by choosing, out of the many possibilities, the vectors pj (j=1, 2,…, n) which
satisfy the relations 

Incidentally, it may be worth noting that a more general case of
proportional hysteretic damping can be considered by writing the equations
of motion as

(7.93a)

and assuming that the hysteretic damping matrix H (not to be confused
with a FRF matrix) is given by

(7.93b)

where a and b are two constants. We will not deal specifically with this case
because, as the reader can verify, the nature of the eigensolution is the same
as before and nothing is added to the essence of the problem.

With the above considerations in mind, it is now only a small effort to
arrive at a response model in the case of the harmonic excitation 

We start from the equations of motion (6.150) and perform the change of
coordinates

where P is the matrix of mass orthonormal eigenvectors. Next, we premultiply
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the resulting equation by PT and arrive at

(7.94a)

which represents a set of n uncoupled equations. The jth equation reads
explicitly

(7.94b)

Assuming a harmonically varying response  it is not difficult to
retrieve the solution in physical coordinates as

(7.95)

and recognize the receptance matrix

(7.96a)

whose (jk)th element is given by

(7.96b)

and the last expression has been written by taking eq (7.91) into account.
The reader is invited to consider the more general case of proportional

hysteretic damping expressed by eqs (7.93a) and (7.93b) and show that we
arrive at

(7.97)

where now we have

(7.98)

Despite the discussion at the beginning of this section, there seems to be
no difficulty in the derivation of the response model of eqs (7.96a, b) and
(7.97). There is, however, a subtle conceptual problem. Our FRFs must be
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the Fourier transform of real impulse response functions, and this implies
(Section 7.4) that the conditions (7.47) apply. This is not the case for the
FRFs of eqs (7.96b) and (7.97); furthermore, if these latter are modified to
agree with eqs (7.47) it follows that our FRFs do not satisfy the requirement
of causality. We will not go proceed further in this discussion which is beyond
the scope of this book, but it seems that these conceptual problems—although
they can be ignored in many practical situations—are the price that we must
pay for the inadequacy of a free vibration solution in the hysteretic case.

The interested reader can refer, for example, to Nashif et al. [3] and
Newland [4].

7.8 A few remarks on other solution strategies: Laplace
transform and direct integration

This chapter has dealt in some detail with the response properties of various
types of MDOF system. However, special attention has been intentionally
given to the so-called modal approach (or modal superposition, modal
expansion techniques), where the dynamic response is expressed as a series
expansion of eigenmodes. The reason is twofold: first of all, this text is mainly
concerned with linear vibrations of structural and mechanical systems and,
second, the modal approach has considerable importance in many aspects
of experimental vibration measurements. Nevertheless, the reader would be
right in assuming that other approaches are available in order to solve the
forced vibration problem of MDOF systems.

7.8.1 Laplace transform method

At least in principle, the Laplace transform method can be directly applied
to eq (7.1) to obtain

(7.99)

where U=U(s) and F(s) are, respectively, the Laplace transforms of u(t) and
f(t), s is the Laplace operator and  are the vectors of initial displacements
and velocities. For zero initial conditions eq (7.99) can be rewritten as

(7.100)

and consequently

(7.101)

where the last expression on the right-hand side for G–1 can be found in any
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book on matrix algebra: adj(G) is called classical adjoint (or adjugate, to
avoid confusion with the Hermitian adjoint) of G and is the transposed matrix
of cofactors of G. From eq (7.101) we recognize G–1 as the matrix of receptance
transfer functions Rij(s) and we note that, in the inverse transformation of eq
(7.101), the poles from the transfer functions are the eigenvalues of our system
because they are obtained from the characteristic equation

This method also applies only for linear systems and may be useful for systems
with nonproportional damping, where eqs (7.1) cannot be uncoupled by
means of the classical modal matrix P. Note also that the terms ‘poles’ and
‘residues’ come directly from the Laplace transform approach.

In addition to what has been said above and in Section 5.3.3, we can
briefly review the case of a SDOF system—thus keeping the mathematics
extremely simple—and get an idea of how this technique works as far as
transfer and frequency response functions are concerned.

If we take the Laplace transform of both sides of the equation
 and assume zero initial conditions (which amounts to

neglecting the solution of the homogeneous equation), we arrive at the SDOF
counterpart of eq (7.100) which can be written as

(7.102)

where the meaning of the symbols is obvious and

(7.103)

is the (complex-valued) receptance transfer function. The denominator of eq
(7.103) is the characteristic equation, whose roots (the poles) can be written
for an underdamped system as

(7.104)

Now we note that H(s) can be rewritten as

(7.105a)

and expanded in partial fractions as

(7.105b)
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where the coefficients (residues) Aj can be obtained from

(7.106)

It is straightforward, in this case, to determine that  and obtain

(7.107)

If now we consider that the frequency response function is simply the
transfer function evaluated along the iω axis, we obtain from eq (7.105b)

(7.108a)

where we can substitute the explicit expressions for s1, s2, A1 and A2 to
arrive at the familiar form

(7.108b)

and, as usual, 
Note that graphically, the transfer function is completely represented by

two surfaces in the complex plane, i.e. its real and imaginary parts or its
magnitude and phase. The corresponding FRF is obtained as the curve seen
by an observer who looks down on a plane which cuts through the surface
and whose normal is parallel to the σ-axis (Fig. 7.1).

7.8.2 Direct integration methods

A different approach to the solution of the forced-vibration problem for
both SDOF and MDOF systems consists of a direct numerical integration of
the equation(s) of motion in the time domain. The details of this approach
belong rightfully to the subject of numerical techniques and are beyond the
scope of this book; however, some general comments on the advantages and
limitations of these methods are not out of place.

In particular, the reader is warned against the temptation to use direct
integration as a ‘black box’, where you input the right equations and obtain
the correct response time history.

The major advantage of direct integration is that it applies both to linear
and nonlinear problems and, as a matter of fact, it is the only generally
applicable method for the analysis of nonlinear systems. Nonetheless, as far
as linear vibrations are concerned, direct integration methods may also be an
effective alternative to the modal approach. For example, in the case of a
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Fig. 7.1 Representations of the transfer and frequency response functions.
(Reprinted by permission of Hewlett-Packard.)
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complex structure which undergoes the action of short-duration impulsive
loads:

1. It is possible that many modes are excited and contribute significantly
to the response.

2. Model idealizations very often result in inaccurate higher modes.

These factors make the modal approach less effective with respect to direct
integration in which (1) the analyst does not need to transform the equations
into a different form and (2) under the circumstances, only a short response
time history is needed.

One drawback is that it is generally difficult, for an MDOF system, to
define explicitly the damping matrix, but this potential difficulty is counter-
balanced by an increase of flexibility in the choice of the damping
characteristics, since there is no need to uncouple the equations of motion.

In essence, direct integration is based upon finite time differences;
instead of trying to satisfy the equations of motion for any time t, these
numerical methods consider the equilibrium between elastic, damping,
inertia forces and applied loads only at discrete time intervals 
n=1, 2,…, N where ∆t is the (usually constant) time step of integration
and the response is calculated for the time interval  This
results in a ‘sampled’ time history response, as opposed to the continuous
time solution which would be obtained from the exact integration of the
equations of motion.

All the integration schemes assume appropriate variations of
displacements, velocities and accelerations within each time step ∆t and
consist of expressions that relate these response parameters at a given time
to their values at one or more previous time points. In other words, the
procedure marches along the time dimension by assuming a general
expression of the type

(7.109)

(where by un+1 we mean the displacement at time tn+1 etc.) and substitute the
relevant expressions in the equations of motion written either for time tn or
for time tn+1. In this regard, an important subdivision exists between explicit
and implicit methods, the former being when the equilibrium equations are
expressed at time tn, i.e.

and the latter when the equilibrium equations are considered at time tn+1.
For a given time step ∆t, implicit methods involve more computational effort
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than explicit methods but these latter cannot always be used effectively
because of stability problems of the solution, a concept that will be made
clearer in the following discussion.

Strictly speaking, eq (7.109) defines a direct ‘multistep’ integration method
because the response at time tn+1 is calculated from the values of the response
parameters at times  however, it must be noted that
in most methods m is generally small. When m=1 one speaks of single step
methods.

Some of the most effective integration schemes are, to name a few:

• the central difference method (explicit),
• the linear acceleration method (implicit),
• the Houbolt method (implicit),
• the Wilson θ method (implicit)
• the family of Newmark methods (explicit or implicit depending on the

choice of two parameters usually indicated with the symbols γ and β).

In general, whatever integration method we decide to adopt, there are
two issues of fundamental importance: stability and accuracy of the
solution. Stability has to do with the boundedness of the solution—which
we do not want to grow indefinitely and become meaningless by being
artificially amplified by the integration scheme—and accuracy has to do
with the fact that, ideally, we want a solution with no (or small) amplitude
and periodicity errors. Engineering common sense suggests that it may
not be wise to integrate the response contribution of higher modes with
a time step ∆t that is larger than half their natural period T or, in other
words, when the ratio ∆t/T is large. On the other hand, for large systems
with many degrees of freedom, the highest period is so small that selection
of an appropriate time step would make the whole procedure costly and
impractical. So we must try to understand what kind of response is
obtained when the ratio ∆t/T is large. In this regard we can distinguish
between:

• unconditionally stable integration methods, where the solution remains
bounded for any time step ∆t and, in particular, when ∆t/T is large;

• conditionally stable methods, where the solution remains bounded only
if ∆t is smaller or equal to a certain critical value ∆tcr.

In particular, explicit methods are only conditionally stable, while most of
the implicit methods are unconditionally stable. Therefore explicit methods
can be used only provided that the restriction on the time step is observed
and results in a reasonable value of ∆t, otherwise one must resort to an
implicit unconditionally stable method. In this case the solution does remain
bounded but the selection of an appropriate time step (which can be generally
much larger than in a conditionally stable case) reflects on the accuracy of
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the calculated response which, in turn, can be characterized in terms of
amplitude accuracy and period accuracy. The first attribute refers to amplitude
errors—specifically, artificial damping introduced by the numerical
procedure—and the second refers to period elongations. If we want to
represent appropriately the oscillating behaviour of the response, it is clear
that both types of errors need to be avoided as much as possible.

We limit ourselves to these general considerations and we urge the
interested reader to refer to specialized literature.

7.9 Frequency response functions of a 2-DOF system

The case of a simple 2-DOF system with proportional viscous damping
will now be of help to illustrate from a more practical point of view some
aspects of the preceding discussions. Let us consider the 2-DOF system of
Fig. 7.2.

We assume the following characteristics:

and we want to arrive at the explicit expressions of the receptance FRF matrix.
Since the damping matrix is proportional to the stiffness matrix we know

that the undamped modes uncouple the equations of motion, so we solve
the undamped free-vibration problem and we obtain the following eigenvalues

Fig. 7.2 Schematic 2-DOF translational system.

Copyright © 2003 Taylor & Francis Group LLC



and mass-orthonormal eigenvectors:

(7.110a)

(7.110b)

Fig. 7.3 Receptance R11(ω): (a) magnitude, (b) phase, versus frequency.
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Fig. 7.3 Receptance R11(ω): (c) real part and (d) imaginary part, versus frequency.
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which have already been arranged in matrix form. The eigenmodes of our
system occur at the frequencies  and  and referring
to eq (6.142) it is not difficult to determine the modal damping ratios as

 and  With this in mind we can now write the two
modal receptance FRFs as

(7.111a)

(7.111b)

and arrive at the receptance matrix in physical coordinates by virtue of eq
(7.34b); we get

(7.112)

If now, for our convenience, we want to obtain each FRF by separating its
real and imaginary parts, it only takes a little patience to arrive at

(7.113a)

(7.113b)
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(7.113c)

in which we can substitute the appropriate values. From these expressions
the magnitude and phase angle can be obtained as

(7.114)

(7.115)

It is now instructive to see how these functions look in graphic form; we
must not be deceived by the simplicity of this example because many of the
important characteristics of MDOF FRF (receptances in this case) are already
present and, as a matter of fact, can be better appreciated in an example like
this one rather than in a more complex case.

Since it is more convenient for the eye to visualize two-dimensional graphs
and we are dealing with complex functions, our FRFs can only be completely
represented if we draw two such graphs for each FRF. As for the SDOF case,
the most common choices are two:

1. magnitude and phase as functions of frequency;
2. real and imaginary parts as functions of frequency.

Figures 7.3–7.5 show representations 1 and 2 for each receptance FRF of
eqs (7.113a, b and c).

Note the dB scale on the graphs of magnitude and the fact that the phase
angle is considered to vary from 0° to 360°, with increasing angles in the counter-
clockwise direction. A quick look at these graphs shows two things right away:

• The first mode is much less damped than the second.
• Between the two resonances there is a considerable difference in the

behaviour of the magnitude curves: on one hand the FRFs R11(ω) and
R22(ω) show an evident ‘antiresonance’ slightly above 30 rad/s while, on
the other hand, no such thing appears in the graphs of R12(ω) and R21(ω).

We will have more to say about the distinctive features of these graphs in
later chapters; for the time being the reader is invited to draw the graphs of
mobility and accelerance (representations 1 and 2) for this example.
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In addition—although unnecessary for proportional damping—it may also be
useful to adopt, for example, the second state-space formulation outlined in Section
7.6.1 to treat the above problem. In this case we form the dynamic matrix

Fig. 7.4 Receptance R12(ω): (a) magnitude, (b) phase, versus frequency.
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Fig. 7.4 Receptance R12(ω): (c) real part and (d) imaginary part, versus frequency.
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and obtain the matrix of eigenvalues and eigenvectors as

Fig. 7.5 Receptance R22(ω): (a) magnitude, (b) phase, versus frequency.
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Fig. 7.5 Receptance R22(ω): (c) real part and (d) imaginary part, versus frequency.
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Next we form the matrix Supper with the first two rows of S, obtain S–1, form
the matrix  with its last two columns and calculate the product

Now, if we consider for example the function R11(ω) we get

(7.116a)

where the eigenvectors are ordered as in the matrix diag(λj). Since 
and  we can substitute their values into eq (7.116a) to get

(7.116b)

which is, as expected, the same as the (1, 1) element of matrix (7.112). The
same applies for the other FRF functions  and R22(ω).

Note that the only difference between eqs (7.112) and (7.116b) is in the
sign of the third (damping) term in both denominators: this is due to the fact
that we can choose the harmonic excitation either in the form 
(as in Section 7.3) or in the form  (as in Section 7.6.1). It is obvious
that the choice leads to no consequences as long as consistency is maintained.

Another useful exercise would be to consider the same 2-DOF system
with a nonproportional damping matrix, for example

The reader is invited to arrive at the matrix of receptances by following the
state space formulation of eq (7.60a): the 2n×2n matrix S of -orthonormal
eigenvectors is in this case
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and the matrix of eigenvalues is

Note that, as expected,  Moreover, for the sake of
completeness, it may be worth pointing out that the above eigenvectors and
eigenvalues—provided that  is nonsingular—can also be obtained from
the standard eigenvalue problem

or from eq (6.180b). The reader is by now well aware of this fact which,
nevertheless can be of help whenever a program that solves generalized
eigenvalues problems is not available.

7.10 Summary and comments

This chapter has considered the response characteristics of MDOF systems.
Intentionally, our approach has given more emphasis to the mode super-
position solution strategy in view of future chapters which will consider the
experimental part of the subject. For the moment, the discussion has followed
what we may call a ‘theoretical approach’, in which the physical
characteristics of the system under investigation (mass, stiffness and damping,
i.e. the spatial model) are supposed to be known. This knowledge allows the
analyst to obtain:

1. the system’s eigenvalues and eigenvectors;
2. the system’s response to an external excitation.

Point 1 has to do with the solution of the free-vibration problem and it has
been considered in detail in Chapter 6.

As far as point 2 is concerned, we can distinguish between various types
of systems and between various types of excitations: for example, the system
under study may be undamped, viscously damped or hysteretically damped,
and with or without rigid-body modes (here the analyst has sometimes a
certain degree of control because he/she can choose to test the system in a
restrained or an unrestrained condition). In turn, damping may be
proportional or nonproportional, and the external excitations may or may
not be simple functions of time.

Whatever solution strategy we decide to use, a general and important
result is expressed by the reciprocity theorem (Section 7.2) which states that
the response at point j of our system due to an excitation applied at point k
is equal to the response at point k when the same excitation is applied at
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point j. This occurrence has important consequences from an experimental
point of view and, mathematically, translates into the fact that the matrices
of IRF and of FRF are symmetrical.

Specifically, the mode superposition strategy for linear systems is to—
where possible—uncouple the equations of motion by means of an
appropriate coordinate transformation, solve the equations independently
and, by virtue of the superposition principle, superpose the individual results
to obtain the desired response. One of its major advantages has to do with
the fact that the system’s response can often be represented within a
reasonable degree of accuracy by considering only a small fraction (say s,
where s<n) of the n uncoupled equations of motion. This circumstance is
exploited in the mode displacement and mode acceleration methods (Section
7.2.1) where, provided that some precautions on the number of modes to
consider are observed, the response is obtained by means of a ‘truncated’
solution. In general, the mode acceleration method is preferred.

As for SDOF systems, the case of harmonic excitation is particularly
important because it leads directly to the response model of the system under
study, i.e. a set of FRFs, usually in the preferred forms of receptance, mobility
or accelerance. For a given (linear) system, these FRFs are intrinsic
characteristics which deserve special attention for the implications on any
further stage of theoretical and experimental analysis. In Section 7.4 it is
shown that there is a strict connection between the FRF matrix and the
impulse response matrix and in each one of the following sections an explicit
expression of the response model is obtained for various systems. In Section
7.4 we included also a note of theoretical importance, namely the Kramers-
Kronig relations, which relate the real and imaginary part of a general FRF
and express a fundamental consequence of the principle of causality.

For nonproportionally damped systems the price we have to pay in
order to uncouple the equations of motion is the doubling of the order of
our system. Section 7.6 describes two strategies that follow directly from
the two state-space formulations of the homogeneous problem given in
Section 6.8.

Despite the fact that the mathematical part is a bit more involved, the
methods show no additional conceptual difficulty with respect to the
‘standard’ modal approach.

Some conceptual problems, however, do arise in the case of hysteretic
damping, which is considered in Section 7.7. In fact, the solution of the
homogeneous case is not fully justified in this case and only physical sense—
and the need for a response model for future developments—can be invoked.
The difficulty lies in the definition of hysteretic damping itself, which implies
a harmonically forced vibration condition. Nevertheless, one could argue
that experiments are generally performed by exciting the system and by
measuring its response so that, as a matter of fact, we are in a forced-vibration
condition despite the fact that the final result may involve only quantities
that, mathematically, come directly from the homogeneous case. This latter
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may seem a proper justification, but the price we pay is more subtle: the
FRFs that we obtain do not satisfy the requirement of causality.

Finally, Section 7.8 outlines other solution strategies that can be adopted
to solve the forced vibration problem: the Laplace transform method and a
direct integration of the equations of motion in the time domain. One word
of caution about this latter technique: despite the computational capabilities
of computers it must not be used as a ‘black box’, some care must always be
exercised because of convergence and accuracy problems of the solution.

Specifically, many different integration schemes are available and a major
distinction can be made between implicit and explicit integration procedures.
In addition, it must be pointed out that direct integration is the only applicable
technique for the analysis of nonlinear systems.
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8 Continuous or distributed
parameter systems

8.1 Introduction

The representation of physical systems by means of discrete models in which
properties like inertia, stiffness and damping are localized and identified with
different elements like masses, springs and dampers is often very convenient
and leads to satisfactory results in many circumstances. In reality, however,
one has to deal with, say, aircraft structures, pipelines, car bodies, various
types of buildings, etc.; in other words, with structures which generally comprise
cables, rods, beams, plates and shells, all of which are neither rigid nor massless.
Every material portion of the system may possess mass, stiffness and damping
properties at the same time, and these properties may vary from point to
point. In these cases, whenever possible, one can resort to continuous models
(we already encountered some examples of such models in Chapters 3 and 5),
where the displacement is a continuous function of both space and time and
we are in presence of an infinite number of degrees of freedom.

Distributed parameter models are based on another idealization: the
continuous elastic medium which, for its part, leads to a fundamental insight
into the nature of mechanical vibrations: the so-called wave-mode duality.
In everyday engineering problems we often tend to think of vibrations in
terms of modes and of, say, acoustical phenomena in terms of waves. As a
matter of fact, this distinction is somehow fictitious because we are just
considering the same physical phenomena: that is, the propagation of a
localized disturbance (mechanical in our case) which ‘spreads’ from one part
of a medium into other parts of the same medium or into a different medium.

We are referring here to the propagation of mechanical waves which, as
a matter of fact, represents a deeper level of explanation for mechanical
vibrations. Normal modes of vibration are in fact particular motions of a
system (for which the system is, let’s say, particularly well suited) which
ensue because of its finite physical dimensions in space and hence because of
the presence of boundaries. In other words, the superposition of travelling
waves reflected back and forth from the physical boundaries of the medium
ultimately result in the appearance of standing waves which, in turn, represent
the normal modes of vibration of our system.
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This book is primarily concerned with aspects of mechanical vibrations
that do not need a detailed discussion of the ‘wave approach’ and for this
reason the subject of wave propagation and motion in elastic solids will
only be touched on briefly whenever needed in the course of the discussion.
For our purposes, the importance of the considerations above is mostly a
matter of principle, but it must be pointed out that the wave-mode duality
has also significant implications in all fields of engineering where the interest
lies in the study of interactions between sound waves and solid structures.

In essence, distributed parameter systems present many conceptual
analogies with MDOF systems. However, some important differences of
mathematical nature will be clear from the outset. First of all, the motion of
these systems is governed by partial differential equations and, second, these
equations must be supplemented by an appropriate number of boundary
conditions. Moreover, boundary conditions are just as important as the
differential equations themselves and constitute a fundamental part of the
problem; for short, one often says that the motion of a continuous system is
governed by boundary value problems.

These problems are in general much more difficult to solve than their
discrete counterpart (where boundary conditions enter only indirectly because
they are implicitly included into the system’s matrices) and hence, for
continuous systems, exact solutions are available only for a limited number
of cases. We will consider some of these cases and provide the exact solutions.
Nonetheless, for more complex systems we have to resort to approximate
solutions which, in turn, are often obtained through spatial discretization
and in the end—despite the fact that the techniques of analysis may be highly
sophisticated (e.g. the finite-element method)—bring us back to finite-degree-
of-freedom systems.

On a more theoretical basis, we pass from the finite-dimensional vector
spaces of the discrete case to infinite-dimensional vector spaces. More
specifically, we have to deal with Hilbert spaces, i.e. infinite-dimensional
vector spaces where an inner product has been defined and are complete
with respect to the norm defined by means of the above inner product. The
reader can find in Chapter 2 some introductory considerations on these
theoretical aspects because it is important to be aware of the fact that the
conceptual analogies with the discrete case rest on the fact that, broadly
speaking, Hilbert spaces are the ‘natural generalization’ of the usual finite-
dimensional vector spaces.

At the beginning of this chapter we will consider a simple system—the
flexible string—in some detail in order to gain some insight on the
fundamental aspects of wave propagation, natural frequencies and modes
of a continuous system which, with the appropriate modifications, can be
taken as representative for other types of distributed parameter systems.
The beam in bending vibration will be considered next, before turning our
attention to more general aspects of the differential eigenvalue problem and
to the analysis of some two-dimensional systems.
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8.2 The flexible string in transverse motion

The flexible string under tension—with some basic assumptions that will be
considered soon—is the simplest model of continuous system where mass
and elasticity are distributed over its whole extent. From the discussion
developed in preceding chapters we can argue that, in principle, we could
(and indeed we do) arrive at a satisfactory description of its motion by
considering it as a linear array of oscillators where masses are lumped at
discrete points and elasticity is introduced by means of massless springs
connecting the masses. The greater the number of degrees of freedom, the
better the approximation. Furthermore, we could also work out an asymptotic
solution by increasing the number of masses indefinitely and by letting their
mutual distance tend to zero. However, we adopt a different method of attack
which contains more physical insight than the mathematical expedient of
the limiting procedure; that is, we do not consider the motion of each one of
the individual infinite number of points of the string but only concern
ourselves with the shape of the string as a whole.

So, let us consider a string of indefinite length (we want to avoid for the
moment a discussion of the boundary conditions) which is stretched by a
tension of T0 newtons and whose undisturbed position coincides with the x-
axis.

Let us further assume that the displacements of each point of the string are
wholly transverse in a direction parallel to the y-axis. It follows that the string
motion is specified by a ‘shape’ function y(x, t) where x and t play the role of
independent variables: for a fixed time t1 the graph of the function y(x, t1)
depicts the shape of the string at that instant while the graph of the function

Fig. 8.1 Displaced differential element of taut string.
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 fixed—represents the motion of the point located at x1 as time
passes, i.e. the time history of the particle at x1.

Qualitatively, if we assume that any variation of the tension due to the
transverse displacement of the string is negligible, we can apply Newton’s
second law to the differential element of the string shown in Fig. 8.1 to get
the equation of motion in the vertical direction as

(8.1)

where µ (kg/m) is the mass per unit length of the string, which for the present
we assume uniform throughout the length of the string.

If we further assume that the slope of the string is everywhere small—i.e.
 or, in other words, the inclination angle θ is always small compared

with one radian, we can write

so that eq (8.1) becomes

(8.2a)

which we can choose to write in the form

(8.2b)

where  has the dimensions of a velocity and, in the approximations
above, is independent of both x and t. Note that the small slopes
approximation (or small-amplitude approximation) expressed by 
allows us to neglect all quantities of second and higher order in ∂y/∂x. Only
in this circumstance the net horizontal force on the differential element of
string is zero and we can assume  so that the displacement of each
point is perpendicular to the x-axis and the tension T0 remains unchanged in
passing from point x to point x+dx. When the small slopes assumption ceases
to be valid, the resulting differential equation is nonlinear.
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Equation (8.2b) is the well-known one-dimensional differential wave
equation which, by assigning the appropriate meanings to the quantities
involved, represents a broad range of wave phenomena in many branches of
physics and engineering (acoustics, electromagnetism, etc.).

Obviously, in our case, the motion ensues because the string has been
disturbed from its equilibrium position (‘plucked’, for example) at some time.
The tension then provides the restoring force but inertia delays the immediate
return to the equilibrium position by overshooting the rest position. Note
also that, for the time being, no consideration whatsoever is given to
dissipative damping forces and to the effect of stiffness that, although
generally negligible, occurs in real strings.

All books on basic physics show that the general solution of the one-
dimensional wave equation is of the form

(8.3)

which is called the d’Alembert solution of the wave equation. The functions
f and g can be any two arbitrary and independent twice-differentiable
functions whose forms depend on how the string has been started into motion,
i.e. on the initial conditions. It is not difficult to see that f(x–ct) represents a
shape—or a profile—which moves without distortion in the positive x-
direction with velocity c, while g(x+ct) represents a similar wave (with a
different shape if ) which moves in the negative x-direction with velocity
c; the linearity of the wave equation implies that if both waveforms have a
finite spatial duration, they can ‘pass through’ one another and reappear
without distortion. Most of us will be familiar with these ‘travelling wave’
phenomena from childhood games with ropes.

8.2.1 The initial value problem

In the case of a string of indefinite length, we can gain some further insight
by considering its motion due to some initial disturbance. This disturbance
is specified by means of the initial conditions, i.e. the functions that determine
the shape and velocity of the string at t=0. Let these functions be

(8.4)

From the general solution, at t=0 we have

(8.5)
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where the primes represent here the derivatives of the functions f and g with
respect to their arguments. The second of eqs (8.5) can be integrated to give

(8.6)

where the constant of integration C can be set to zero without loss of
generality. From the first of eqs (8.5) and (8.6) it follows

which establish the initial values of the functions f and g. For  we replace
the variable x with the appropriate arguments to get

or, alternatively

(8.7a)

which, by integration of the second term on the r.h.s., i.e.

can be written as

(8.7b)

Equation (8.7b)—which has also been obtained by using transform techniques
in Section 2.3—physically represents identical leftward and rightward
propagating disturbances containing separate contributions from the
displacement and velocity initial conditions.
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8.2.2 Sinusoidal waves, energy considerations and the presence
of boundaries

Sinusoidal waves

Out of the infinite variety of functions permitted as solutions by the wave
equation (as a matter of fact, any reasonable function of x+ct or x–ct), it
should be expected that sinusoidal waveforms deserve particular attention.
This is because, besides their mathematical simplicity and the fact that many
real-world sources of waves are nearly sinusoidal, we can represent as closely
as desired any reasonable periodic and non-periodic function by the linear
superposition of many sinusoidal functions (Fourier analysis—see Chapter 2
for more details). Mathematically, we can express an ideal sinusoidal wave
of unit amplitude travelling along the string as

(8.8)

where k is the so-called wavenumber: when the quantity kx increases by 2π
the corresponding increment in x is the wavelength  so that  or,
equivalently, 

Note that, in the light of preceding chapters, the symbols may be a bit
misleading: here k is not a spring constant and  is not an eigenvalue.
However, these symbols for the wavenumber and the wavelength are so
widely used that we adhere to the common usage: the meaning is generally
clear from the context but precise statements will be made whenever some
ambiguities may arise in the course if the discussion.

As far as time dependency is concerned, we already know that the period
T is related to the frequency v by T=1/v and that the angular frequency ω is
given by  the fact that the wave moves to the right can be deduced
by noting that, as time passes, increasing values of x are required to maintain
the phase  constant. Two ‘snapshots’ of the waveform at times t0

and t0+T look exactly the same; this implies that the wave has travelled a
distance  in the time interval T so that

(8.9)

Moreover, it is evident that also in this case the exponential representation
(Chapter 1)

(8.10)

is widely adopted and is often very convenient. The wave of eq (8.8) is
obtained by taking the imaginary part of eq (8.10) but, as stated in previous
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chapters, the real-part convention may be adopted as well, and the difference
is irrelevant as long as consistency is maintained. The general restriction of
small amplitudes  translates for harmonic waves into  or,
in other words, into

(8.11)

which states that the maximum amplitude must be much smaller than the
wavelength. One final word here to point out that the velocity of the
propagation of the disturbance c must not be confused with the velocity of
the individual particles of the string, i.e. with ∂y/∂t; as a matter of fact, for
a general waveform y(x, t)=f(x–ct), since

it follows that the small-amplitude approximation requires

(8.12)

where it must be understood that the string particles move in a transverse
direction while the waveform propagates along the string. The word
‘propagation’ itself, as we shall see shortly, implies a transport of energy and
momentum.

Energy considerations

From the previous discussion, it is apparent that the kinetic energy in a
differential element of string is given by

 
and the kinetic energy in a segment between x1 and x2 is then
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which, for small deflections, can be approximated as

(8.13)

The calculation of the potential energy is a bit more involved because second
order terms come into play. The string must possess potential energy because
some external work would have to be done to give it the deflected shape
which, in turn, must locally stretch the string where the wave is present.
This local stretching, however, must excite longitudinal waves that propagate
along the string as well as the transverse waves. The coupling between
longitudinal and transverse waves is expressed by nonlinear terms in the
equation of motion, and precisely these terms is what we want to neglect.
This difficulty can be circumvented by assuming a negligible Young’s modulus
(ideally E=0, i.e. a string which is perfectly flexible). In this hypothesis we
can consider the change in length of a portion of string of initial length dx:
this is

so that the potential energy between x1 and x2 is

(8.14)

because the stretching takes place against a force of tension T0. In the light
of eqs (8.13) and (8.14), it is often convenient to speak of kinetic and potential
energy densities

(8.15)

although these definition have a certain degree of arbitrariness because it is
often difficult—and sometimes meaningless—to keep track of the location
in space and time of a given amount of energy.
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Two points are worthy of notice at this point:

1. If we consider a general waveform f(x–ct), the kinetic and potential energy
densities are given by

respectively, and since  we see that the two expressions are
equal. Moreover, we can consider a harmonic wave in the exponential
form —where A is just the amplitude which we assume now to
be different from unity—and calculate the average kinetic and potential
energy densities. Let us consider for example the potential energy density:
we have from eq (8.15)

where the bracket indicates the average over one period. If now we
resort to the phasor convention of Section 1.3, we get

from which it follows that

(8.16)

By the same token, the reader is invited to calculate the average kinetic
energy density, verify that  and arrive at the same result by
considering a harmonic wave in the form of eq (8.8).

2. The equation of motion (8.2) can be obtained by substituting the kinetic
and potential energy densities in eq (3.109) where the Lagrangian density
is given by 

In addition, we may be interested in the flux of energy past a given point x;
this rate of energy transfer is just the instantaneous power flow from any
piece of the string to its neighbour. Mathematically, it is obtained as the
product of the vertical component of tension  by the transverse
velocity of the string at x (Fig. 8.1), i.e.

(8.17)

so that a positive value of P (watts) implies power flowing toward the positive

Copyright © 2003 Taylor & Francis Group LLC



x-direction and a negative P means power flowing toward the negative x-
direction. For a general travelling wave f(x–ct) we have from eq (8.17)

(8.18)

In the case of a sinusoidal wave, which again we take in the exponential
form of the preceding paragraph, the average power transmitted by the wave
can be obtained from

(8.19)

where, again, the phasor convention of Chapter 1 gives

so that eq (8.19) results in

(8.20)

The calculation of the momentum in the x-direction associated with a
transverse wave that obeys eq (8.2a or b) has to do with the small longitudinal
motion that occurs when a transverse wave is present. We shall not perform
such a calculation here but it can be shown (e.g. Morse and Ingard [1];
Elmore and Heald [2]) that the quantity

(8.21)

may be interpreted as a localized momentum density in the x-direction
associated with a transverse wave. Note that

(8.22)

This is a general relationship connecting energy flow and momentum density
for plane waves travelling in linear isotropic media.

The presence of boundaries

Real strings have a finite length and must be fastened somewhere. This
circumstance affects the motion of the string by imposing appropriate
boundary conditions which—as opposed to the initial conditions of Section
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8.2.1 which are specified at a given time (usually t=0)—must be satisfied
at all times. Let us suppose that our string is attached to a rigid support
at x=0 and extends indefinitely in the positive x-direction (semi-infinite
string). This is probably the simplest type of boundary condition and it
is not difficult to see that such a ‘fixed-end’ situation mathematically
translates into

(8.23)

for all values of t: a condition which must be imposed on the general solution
f(x–ct)+g(x+ct). The final result is that the incoming wave g(x+ct) is reflected
at the boundary and produces an outgoing wave –g(x–ct) which is an exact
replica of the original wave except for being upside down and travelling in
the opposite direction. The fact that the original waveform has been reversed
is characteristic of the fixed boundary.

Another simple boundary condition is the so-called free end which can be
achieved, for example, when the end of the string is attached to a slip ring
of negligible mass m which, in turn, slides along a frictionless vertical post
(for a string this situation is quite artificial, but it is very important in many
other cases). In physical terms, we can write Newton’s second law stating
that the net transverse force Fy(0, t) (due to the string) acting on the ring is
equal to  Since  and m is negligible, the free-
end condition is specified by

(8.24)

which asserts that the slope of string at the free end must be zero at all times.
By enforcing the condition (8.24) on the general d’Alembert solution, it is

now easy to show that the only difference between the original and the
reflected wave is that they travel in opposite directions: that is, the reflected
wave has not been inverted as in the fixed-end case. Note that, as expected,
in both cases—fixed and free end—the incoming and outgoing waves carry
the same amount of energy because neither boundary conditions allow the
string to do any work on the support. Other end conditions can be specified,
for example, corresponding to an attached end mass, a spring or a dashpot
or a combination thereof.

Mathematically, all these conditions can be analysed by equating the
vertical component of the string tension to the forces on these elements. For
instance, if the string has a non-negligible mass m attached at x=0, the
boundary condition reads

(8.25)
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or, say, for a spring with elastic constant k0

(8.26)

Enforcing such boundary conditions on the general d’Alembert solution
makes the problem somewhat more complicated. However, on physical
grounds, we can infer that the incident wave undergoes considerable distortion
during the reflection process. More frequently, the reflection characteristics
of boundaries are analysed by considering the incident wave as pure harmonic,
thus obtaining a frequency-dependent relationship for the amplitude and
phase of the reflected wave.

8.3 Free vibrations of a finite string: standing waves and
normal modes

Consider now a string of finite length that extends from x=0 to x=L, is fixed
at both ends and is subjected to an initial disturbance somewhere along its
length. When the string is released, waves will propagate both toward the
left and toward the right end. At the boundaries, these waves will be reflected
back into the domain [0, L] and this process, if no energy dissipation occurs,
will continually repeat itself. In principle, a description of the motion of the
string in terms of travelling waves is still possible, but it is not the most
helpful. In this circumstance it is more convenient to study standing waves,
whose physical meaning can be shown by considering, for example, two
sinusoidal waves of equal amplitude travelling in opposite directions, i.e. the
waveform
 

(8.27a)

which, by means of familiar trigonometric identities, can be written as

(8.27b)

Two interesting characteristics of the waveform (8.27b) need to be pointed
out:
 
1. All points xj of the string for which sin(kxj)=0 do not move at all times,

i.e. y(xj, t)=0 for every t. These points are called nodes of the standing
wave and in terms of the waveform (8.27a), we can say that whenever
the crest of one travelling wave component arrives there, it is always
cancelled out by a trough of the other travelling wave.
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2. At some specified instants of time that satisfy  all points x of the
string for which  reach simultaneously the zero position and their
velocity has its greatest value. At other instants of time, when 
all the above points reach simultaneously their individual maximum
amplitude value A sin(kx), and precisely at these times their velocity is zero.
Among these points, the ones for which sin(kx)=1 are alternatively crests
and troughs of the standing waveform and are called antinodes.

In order to progress further along this line of reasoning, we must investigate
the possibility of motions satisfying the wave equation in which all parts of
the string oscillate in phase with simple harmonic motion of the same
frequency. From the discussions of previous chapters, we recognize this
statement as the definition of normal modes.

The mathematical form of eq (8.27b) suggests that the widely adopted
approach of separation of variables can be used in order to find standing-
wave, or normal-mode, solutions of the one-dimensional wave equation.

So, let us assume that a solution exists in the form y(x, t)=u(x)z(t), where
u is a function of x alone and z is a function of t alone. On substituting this
solution in the wave equation we arrive at
 

which requires that a function of x be equal to a function of t for all x and
t. This is possible only if both sides of the equation are equal to the same
constant (the separation constant), which we call –ω2. Thus
 

(8.28)

The resulting solution for y(x, t) is then

(8.29)

where  and it is easy to verify that the product (8.29) results in a
series of terms of the form (8.27b). The time dependent part of the solution
represents a simple harmonic motion at the frequency ω, whereas for the
space dependent part we must require that

(8.30)
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because we assumed the string fixed at both ends. Imposing the boundary
conditions (8.30) poses a serious limitation to the possible harmonic motions
because we get A=0 and the frequency equation
 

(8.31)

which implies  (n integer) and is satisfied only by those values of
frequency ωn for which
 

(8.32)

These are the natural frequencies or eigenvalues of our system (the flexible string
of length L with fixed ends) and, as for the MDOF case, represent the frequencies
at which the system is capable of undergoing harmonic motion. Qualitatively,
an educated guess about the effect of boundary conditions could have led us to
argue that, when both ends of the string are fixed, only those wavelengths for
which the ‘matching condition’  (where n is an integer) applies can
satisfy the requirements of no motion at x=0 and x=L. This is indeed the case
and the allowed wavelengths satisfy  etc.

The first four patterns of motion (eigenfunctions) are shown in Fig 8.2:
the motion for n=1, 3, 5,…result in symmetrical (with respect to the point
x=L/2) modes, while antisymmetrical modes are obtained for n=2, 4, 6,…
So, for a given value of n, we can write the solution as
 

(8.33)

where, for convenience, the constant of the space part has been absorbed in
the constants An and Bn. Then, given the linearity of the wave equation, the
general solution is obtained by the superposition of modes:

(8.34)

where the (infinite) sets of constants An and Bn represent the amplitudes of the
standing waves of frequency ωn. The latter quantities, in turn, are related to the
allowed wavenumbers by the equation  On physical grounds, since we
observed that there is no motion at the nodes and hence no energy flow between
neighbouring parts of the string, one could ask at this point how a standing
wave gets established and how it is maintained. To answer this question we
must remember that a standing wave represents a steady-state situation; during
the previous transient state (which, broadly speaking, we may call the ‘travelling
wave era’) the nodes move and allow the transmission of energy along the string.
Moreover, it should also be noted that nodes are not perfect in real strings
where friction is present; they are only points of minimum amplitude of vibration.
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Fig. 8.2 Vibration of a string with fixed ends: (a) first, (b) second mode.

The values of the constants An and Bn can be obtained by imposing the
initial conditions (8.4) on the general solution (8.34). We get

(8.35)
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Fig. 8.2 Vibration of a string with fixed ends: (c) third and (d) fourth modes.

which we recognize as Fourier series with coefficients An and ωnBn,
respectively. Following the standard methods of Fourier analysis, we multiply
both sides of eqs (8.35) by sin kmx and integrate over the interval [0, L] in
order to obtain, by virtue of

(8.36)
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the expressions

(8.37)

which establish the motion of our system. Note that eq (8.34) emphasizes
the fact that the string is a system with an infinite number of degrees of
freedom, where, in the normal mode representation, each mode represents a
single degree of freedom; furthermore, from the discussion above it is clear
that the boundary conditions determine the mode shapes and the natural
frequencies, while the initial conditions determine the contribution of each
mode to the total response (or, in other words, the contribution of each
mode to the total response depends on how the system has been started into
motion). If, for example, we set the string into motion by pulling it aside at
its centre and then letting it go, the ensuing free motion will comprise only
the odd (symmetrical) modes; even modes, which have a node at the centre,
will not contribute to the motion.

A final important result must be pointed out: when the motion is written
as the summation of modes (8.34), the total energy E of the string—i.e. the
integral of the energy density

over the length of the string—is given by

(8.38)

where it is evident that each mode contributes independently to the total
energy, without any interaction with other modes (recall Parseval’s theorem
stated in Chapter 2). The explicit calculation of (8.38), which exploits the
relation (8.36) together with its cosine counterpart

(8.39)

is left to the reader.
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We close this section with a word of caution. Traditionally, cable vibration
observations of natural frequencies and mode shapes are compared to those
of the taut string model. However, a more rigorous approach must take into
account the axial elasticity and the curvature of the cable (for example, power-
line cables hang in a shape called ‘catenary’ and generally have a sag-to-
span ratio between 0.02 and 0.05) and may show considerable discrepancies
compared to the string model. In particular, the natural frequencies and mode
shapes depend on a cable parameter  (E=Young’s modulus,
A=cross-sectional area, ρg=cable weight per unit volume, L0=half-span length)
and on the sag-to-span ratio. The interested reader may refer, for example,
to Nariboli and McConnell [3] and Irvine [4].

8.4 Axial and torsional vibrations of rods

In the preceding sections we considered in some detail a simple case of continuous
system—i.e. the flexible string. However, in the light of the fact that our interest
lies mainly in natural frequencies and mode shapes, we note that we can explore
the existence of solutions in which the system executes synchronous motions
just by assuming a simple harmonic motion in time and asking what kind of
shape the string has in this circumstance. This amounts to setting

 and substituting it into the wave equation to arrive directly at
the first of eqs (8.28) so that, by imposing the appropriate boundary conditions
(fixed ends), we arrive at the eigenvalues (8.32) and the eigenfunctions
 

(8.40)

where Cn are arbitrary constants which, a priori, may depend on the index n.
If now we consider the axial vibration of a slender rod of uniform density ρ

and cross-sectional area A in presence of a dynamically varying stress field σ(x, t),
we can isolate a rod element as in Fig. 8.3 and write Newton’s second law as

(8.41)

where y(x, t) is the longitudinal displacement of the rod in the x-direction.
If we assume the rod to behave elastically, Hooke’s law requires that

 where  is the axial strain, and upon substitution in
eq (8.41) we get
 

(8.42)
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Fig. 8.3 Differential element of a thin rod.

which is the familiar wave equation. Now the wave velocity is given by
 

(8.43)

where  is the rod mass per unit length.
Alternatively, we could obtain eq (8.42) by writing the Lagrangian density

(eq (3.119)) and by performing the appropriate derivatives required by eq
(3.109). Note that this latter procedure leads also to the boundary conditions
(3.121).

A completely similar line of reasoning leads to the equation of motion for
the torsional vibration of rods which reads
 

(8.44)

 
where θ(x, t) is the angle of twist, C is the torsional rigidity of the rod
(which, in turn, depends on the shear modulus G and on the type of cross-
section) and J is the polar moment of inertia.

For a circular cross-section C=JG and eq (8.44) becomes
 

(8.45)

 
which is again in the form of a wave equation. As for the case of the string,
it should be noted that some simplifying assumptions are implicit in the
development of both eq (8.42) and eq (8.45): these assumptions are considered
in any book on elementary strengths of materials and will not be repeated
here. In the light of the formal analogy of the equations of motion stressed
above, it is evident that, with the appropriate modifications for parameters
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and physical dimensions, the discussions of the preceding sections apply also
for the cases above.

If now we separate the variables and assume a harmonic solution in time,
we arrive at the ordinary differential equations

(8.46)

where, for convenience, we called u(x) the spatial part of the solution in
both cases (8.42) and (8.45) and the parameter γ 2 is equal to ω 2ρ/E for the
first of eqs (8.46) and to ω 2ρ/G for the second.

Again, in order to obtain the natural frequencies and modes of vibrations
we must enforce the boundary conditions on the spatial solution
 

(8.47)

One of the most common cases of boundary conditions is the clamped-free
(cantilever) rod where we have

(8.48)

so that substitution in (8.47) leads to

which, in turn, translates into  meaning that the natural
frequencies are given by

(8.49)

for the two cases of axial and torsional vibrations, respectively. Like the
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eigenvectors of a finite DOF system, the eigenfunctions are determined to
within a constant. In our present situation

(8.50)

where un(x) must be interpreted as an axial displacement or an angle,
depending on the case we are considering.

If, on the other hand, the rod is free at both ends, the boundary conditions
 

(8.51)

lead to B=0 and  so that  and

(8.52)

are the eigenvalues for the two cases, respectively, while

(8.53)

(where γn is as appropriate) are the eigenfunctions. Note that in the case of
the free-free rod the solution with n=0 is a perfectly acceptable root and
does not correspond to no motion at all (see the taut string for comparison).
In fact, for n=0 we get  and, from eq (8.46),  so that

 where C1 and C2 are two constants whose value is irrelevant
for our present purposes. Enforcing the boundary conditions (8.51) gives

which corresponds to a rigid body mode at zero frequency. As for the discrete
case, rigid-body modes are characteristic of unrestrained systems.

For the time being, we do not consider other types of boundary conditions
and we turn to the analysis of a more complex one-dimensional system—the
beam in flexural vibration. This will help us generalize the discussion on
continuous systems by arriving at a systematic approach in which the
similarities with discrete (MDOF) systems will be more evident.
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In fact, if now in eq (8.46) we define  replace the differential
operator with a stiffness matrix and the mass density ρ with a mass matrix,
we may note an evident formal similarity with a matrix (finite-dimensional)
eigenvalue problem. Moreover, it is not difficult to note that the same applies
to the case of the flexible string.

8.5 Flexural (bending) vibrations of beams

Consider a slender beam of length L, bending stiffness EI(x) and mass per
unit length µ(x). We suppose further that no external forces are acting.

By invoking the Euler-Bernoulli theory of beams—namely that plane cross-
sections initially perpendicular to the axis of the beam remain plane and
perpendicular to the neutral axis during bending—and by deliberately neglecting
the (generally minor) contribution of rotatory inertia to the kinetic energy, we
can refer back to Example 3.2 to arrive at the governing equation of motion,

(8.54)

where the function y(x, t) represents the transverse displacement of the beam.
Equation (8.54) is a fourth-order differential equation to be satisfied at every
point of the domain (0, L) and it is not in the form of a wave equation. If,
for simplicity, we also assume that the beam is homogeneous throughout its
length, eq (8.54a) becomes

(8.55a)

 

or, alternatively

(8.55b)

where ρ is the mass density.
Note that a does not have the dimensions of velocity. We do not enter

into the details of flexural wave propagation in beams, but is worth noting
that substitution of a harmonic waveform  into eq (8.55) leads to
the dispersion relation  and since the phase velocity of wave
propagation is given by  it follows that

(8.56)
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which shows that the phase velocity depends on wavelength and implies
that, as opposed to the cases of the previous sections, a general nonharmonic
flexural pulse will suffer distortion as it propagates along the beam. Energy,
in this case, propagates along the beam at the group velocity 
which can be shown (e.g. Kolsky [5] and Meirovitch [6]) to be related to the
phase velocity by

Furthermore, eq (8.56) predicts that waves of very short wavelength (very
high frequency) travel with almost infinite velocity. This unphysical result is
due to our initial simplifying assumptions—i.e. the fact that we neglected
rotatory inertia and shear deformation—and the price we pay is that the
above treatment breaks down when the wavelength is comparable with the
lateral dimensions of the beam. Such restrictions must be kept in mind also
when we investigate the natural frequencies and normal bending modes of
the beam unless, as it often happens, our interest lies in the first lower modes
and/ or the beam cross-sectional dimensions are small compared to its length.
When this is the case, we can assume a harmonic time-dependent solution

 substitute it into eq. (8.55) and arrive at the fourth-order
ordinary differential equation

 

(8.57)

 

where we define

We try a solution of the form  and solve the characteristic equation
 which gives  and  so that

(8.58)

where the arbitrary constants Aj or Cj (j=1, 2, 3, 4) are determined from
the boundary and initial conditions. The calculation of natural frequencies
and eigenfunctions is just a matter of substituting the appropriate
boundary conditions in eq (8.58); we consider now some simple and
common cases.
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Case 1. Both ends simply supported (pinned-pinned configuration)

The boundary conditions for this case require that the displacement u(x)
and bending moment  vanish at both ends, i.e.

(8.59)

where, in the light of the considerations of Section 5.5, we recognize that the
first of eqs (8.59) are boundary conditions of geometric nature and hence
represent geometric or essential boundary conditions. On the other hand,
the second of eqs (8.59) results from a condition of force balance and hence
represents natural or force boundary conditions.

Substitution of the four boundary conditions in eq (8.58) leads to
 and to the frequency equation

(8.60)

which implies  and hence

(8.61)

The eigenfunctions are then given by
 

(8.62)

and have the same shape as the eigenfunctions of a fixed-fixed string.
 
Case 2. One end clamped and one end free (cantilever configuration)
 

Suppose that the end at x=0 is rigidly fixed (clamped) and the end at x=L is
free; then the boundary conditions require that the displacement u(x) and
slope du/dx both vanish at the clamped end, i.e.

(8.63a)
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and that the bending moment and shear force  both vanish at
the free end, i.e.

(8.63b)

We recognize eqs (8.63a) as geometric boundary conditions and eqs.(8.63b)
as natural boundary conditions. Substitution of eqs (8.63a and b) into (8.58)
gives
 

(8.64a)

which can be arranged in matrix form as

(8.64b)

and admits nontrivial solutions only if the determinant of the 4×4 matrix is
zero, that is, if the frequency equation

(8.65)
 

is satisfied. Equation (8.65) must be solved by some numerical method and
the first few roots are given (in radians) by

(8.66a)

so that

(8.66b)
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Note that for  the approximation  is generally good. The
eigenfunctions can be obtained from the first three of eqs (8.64a) which give

and, upon substitution into eq (8.58) lead to

(8.67)
 
where C1 is arbitrary. One word of caution: because of the presence of
hyperbolic functions, the frequency equation soon becomes rapidly divergent
and oscillatory with zero crossings that are nearly perpendicular to the γL-
axis. For this reason it may be very hard to obtain the higher eigenvalues
numerically with an unsophisticated root-finding algorithm.
 
Case 3. Both ends clamped (clamped-clamped configuration)
 

All the boundary conditions are geometrical and read
 

(8.68)

 

We can follow a procedure similar to the previous case to arrive at
 

and to the frequency equation
 

(8.69)
 

The first six roots of eq (8.69) are

(8.70)
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which, for  can be approximated by  Note that the root
 of eq (8.69) implies no motion at all, as the reader can verify by solving

eq (8.57) with  and enforcing the boundary condition on the resulting
solution.

As in the previous case, the eigenfunctions can be obtained from the
relationships among the constants Cj and are given by

(8.71)
 

where now

(8.72)

Case 4. Both ends free (free-free configuration)
 

The boundary conditions are now all of the force type, requiring that bending
moment and shear force both vanish at x=0 and x=L, i.e.

(8.73)

which, upon substitution into eq (8.58) give

Equating the determinant of the 4×4 matrix to zero yields the frequency
equation

(8.74)

which is the same as for the clamped-clamped case (eq (8.69)), so that the
roots given by eq (8.70) are the values which lead to the first lower frequencies
corresponding to the first lower elastic modes of the free-free beam. The
elastic eigenfunctions can be obtained by following a similar procedure as in
the previous cases. They are

(8.75)
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where  is the same as in eq (8.72). In this case, however, the system is
unrestrained and we expect rigid-body modes occurring at zero frequency,
i.e. when  On physical grounds, we are considering only lateral
deflections and hence we expect two such modes: a rigid translation
perpendicular to the beam’s axis and a rotation about its centre of mass.
This is, in fact, the case. Substitution of  in eq (8.57) leads to

(8.76a)
 
where A, B, C are constants. Imposing the boundary conditions (8.73) to
the solution (8.76a) yields
 

(8.76b)

which is a linear combination of the two functions
 

(8.77)

where we omitted the constants because they are irrelevant for our purposes.
It is not difficult to interpret the functions (8.77) on a mathematical and on
a physical basis: mathematically they are two eigenfunctions belonging to
the eigenvalue zero and, physically, they represent the two rigid-body modes
considered above.

We leave to the reader the case of a beam which is clamped at one end and
simply supported at the other end. The frequency equation for this case is
 

(8.78)

and its first roots are
 

(8.79)

Also, note that we can approximate 
Finally, one more point is worthy of notice. For almost all of the

configurations above, the first frequencies are irregularly spaced; however,
as the mode number increases, the difference between the two frequency
parameters  and γnL approaches the value π for all cases. This result
is general and indicates, for higher frequencies, an insensitivity to the
boundary conditions.
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8.5.1 Axial force effects on bending vibrations

Let us consider now a beam which is subjected to a constant tensile force T
parallel to its axis. This model can represent, for example, either a stiff string
or a prestressed beam.

On physical grounds we may expect that the model of the beam with no
axial force should be recovered when the beam stiffness is the dominant
restoring force and the string model should be recovered when tension is by
far the dominant restoring force. This is, in fact, the case. The governing
equation of motion for the free motion of the system that we are considering
now is
 

(8.80)

Equation (8.80) can be obtained, for example, by writing the two equilibrium
equations (vertical forces and moments) in the free-body diagram of Fig. 8.4
and noting that, from elementary beam theory, 
Alternatively, we can write the Lagrangian density

and arrive at eq (8.80) by performing the appropriate derivatives prescribed
in eq (3.109). The usual procedure of separation of variables leads to a
solution with a harmonically varying temporal part and to the ordinary
differential equation
 

(8.81)

Fig. 8.4 Beam element with tensile axial force (schematic free-body diagram).
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where, as in the previous cases, we called u(x) the spatial part of the solution.
If now we let  eq (8.81) yields

where  is positive and  is negative. It follows that we have the four
roots ±η and  where we defined

(8.82)

The solution of eq (8.81) can then be written as

(8.83)

which is formally similar to eq (8.58) but it must be noted that the hyperbolic
functions and the trigonometric functions have different arguments. We can
now consider different types of boundary conditions in order to determine
how the axial force affects the natural frequencies. The simplest case is when
both ends are simply supported; enforcing the boundary conditions (8.59)
leads to  and to the frequency equation

(8.84)

which results in  because  for any nonzero value of η.
The allowed frequencies are obtained from  this means

(8.85a)

which can be rewritten as

(8.85b)
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where it is more evident that for small values of the nondimensional ratio
 (i.e. when ) the tension is the most important restoring

force and the beam behaves like a string. At the other extreme—when R is
large—the stiffness is the most important restoring force and in the limit of

 we return to the case of the beam with no axial force.
In addition to the observations above, note also that:

• In the intermediate range of values of R, higher modes are controlled by
stiffness because of the n2 factor under the square root in eq (8.85b).

• The eigenfunctions are given by (enforcement of the boundary conditions
leads also to C2=0)

(8.86)

which have the same sinusoidal shape of the eigenfunctions of the beam
with no tension (although here the sine function has a different argument).

The conclusion is that an axial force has little effect on the mode shapes but
can significantly affect the natural frequencies of a beam by increasing their
value in the case of a tensile force or by decreasing their value in the case of
a compressive force. In fact, the effect of a compressive force is obtained by
just reversing the sign of T. In this circumstance the natural frequencies can
be conveniently written as

(8.87)

where we recognize  as the critical Euler buckling load. When
 the lowest frequency goes to zero and we obtain transverse buckling.

In the case of other types of boundary conditions the calculations are, in
general, more involved. For example, we can consider the clamped-clamped
configuration and observe that placing the origin x=0 halfway between the
supports divides the eigenfunctions into even functions, which come from
the combination

and odd functions, which come from the combination

 

In either case, if we fit the boundary conditions at x=L/2, they will also
fit at x=–L/2. For the even functions the boundary conditions
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lead to the equation

(8.88a)

and for the odd functions we obtain

(8.88b)

Both eqs (8.88a and b) must be solved numerically: from eq (8.88a) we
obtain the natural frequencies  while the natural frequencies

  are obtained from eq (8.88b).

8.5.2 The effects of shear deformation and rotatory inertia
(Timoshenko beam)

It was stated in Section 8.5 that the Euler-Bernoulli theory of beams provides
satisfactory results as long as the wavelength  is large compared to the
lateral dimensions of the beam which, in turn, may be identified by the radius
of gyration r of the beam section. Two circumstances may arise when the
above condition is no longer valid:

1. The beam is sufficiently slender (say, for example, ) but we are
interested in higher modes.

2. The beam is short and deep.

In both cases the kinematics of motion must take into account the effects of
shear deformation and rotatory inertia which—from an energy point of
view—result in the appearance of a supplementary term (due to shear
deformation) in the potential energy expression and in a supplementary term
(due to rotatory inertia) in the kinetic energy expression.

Let us consider the effect of shear deflection first. Shear forces t result in an
angular deflection θ which must be added to the deflection � due to bending
alone. Hence, the slope of the elastic axis ∂y/∂x is now written as

(8.89)

and the relationship between bending moment and bending deflection (from
elementary beam theory) now reads

(8.90)
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Moreover, the shear force Q is related to the shear deformation θ by

(8.91)

where G is the shear modulus, A is the cross-sectional area and  is an
adjustment coefficient (sometimes called the Timoshenko shear coefficient)
whose value must generally be determined by stress analysis considerations
and depends on the shape of the cross-section. In essence, this coefficient is
introduced in order to satisfy the equivalence

and accounts for the fact that shear is not distributed uniformly across the
section. For example,  for a rectangular cross-section and other
values can be found in Cowper [7].

In the light of these considerations, the potential energy density consists
of two terms and is written as

(8.92)

 

where in the last term we take into account eq (8.89).
On the other hand, the kinetic energy density must now incorporate a

term that accounts for the fact that the beam rotates as well as bends. If we
call J the beam mass moment of inertia density, the expression for the kinetic
energy density is written as
 

(8.93)

Moreover, J is related to the cross-section moment of inertia I by
 

(8.94)

where  is the beam mass density and  is the radius of gyration
of the cross-section. Taking eqs (8.92) and (8.93) into account, we are now
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in the position to write the explicit expression of the Lagrangian density

(8.95)

 

and perform the appropriate derivatives prescribed in eq (3.109) to arrive at
the equation of motion. In this case, however, both y and � are independent
variables and hence we obtain two equations of motion. As a function of y,
the Lagrangian density is a function of the type  where, following
the notation of Chapter 3, the overdot indicates the derivative with respect
to time and the prime indicates the derivative with respect to x.

So, we calculate the two terms

and

 

to arrive at the first equation of motion

(8.96a)

 

and to the boundary conditions (eq (3.110))
 

(8.96b)

which take into account the possibility that either the term in brackets or δy
can be zero at x=0 and x=L.
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A similar line of reasoning holds for the variable �; the Lagrangian
function is of the type  and the derivatives we must find are
now given by

so that the second equation of motion is
 

(8.97a)

with the boundary conditions (eq (3.110))

(8.97b)

which take into account the possibility that either EI(∂�/∂x) or δ� are zero
at x=0 and x=L.

Equations (8.96a) and (8.97a) govern the free vibration of a Timoshenko
beam; we note that, in the above treatment, there are two ‘modes of
deformation’ whose physical coupling translates mathematically into the
coupling of the two equations.

If now, for simplicity, we assume that the beam properties are uniform
throughout its length we can arrive at a single equation for the variable y.
From eq (8.96) we get
 

(8.98)

and by differentiating eq (8.97) we obtain

(8.99)
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Substitution of eq (8.98) into eq (8.99) yields the desired result, i.e.

(8.100)

Now, a closer look at eq (8.100) shows that:

1. The term

arises from shear deformation and vanishes when the beam is very rigid
in shear, i.e. when 

2. The term

is due to rotatory inertia and vanishes when 
3. The term

results from a coupling between shear deformation and rotatory inertia.
Note that this term vanishes when either  or 

4. When both shear deformation and rotatory inertia can be neglected we
recover the Euler-Bernoulli case, which is represented by the first two
terms.

 
With reference to the brief discussion on the velocity of wave propagation
of Section 8.5, it may be interesting to note at this point that the unphysical
result of infinite velocity as the wavelength  is removed by the
introduction of the effects of shear deformation and rotatory inertia in the
equations of motion. As a matter of fact, the introduction of rotatory inertia
alone is sufficient to obtain finite velocities at any wavelength, but the results
in the short-wavelength range are not in good agreement with the values of
velocities calculated from the exact general elastic equations. A much better
agreement is obtained by including the effect of shear deformation (e.g.
Graff [8]).
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From eq (8.100), if we assume a solution  we arrive at the ordinary
differential equation
 

(8.101)

which can be written in other forms (if the reader can find it convenient) by
taking into account the relationships  where
v is Poisson’s ratio. From here, at the price of more cumbersome calculations,
we can proceed as in the preceding cases to arrive at the values of the natural
frequencies of the Timoshenko beam. We will not do so but we will investigate
briefly the effects of shear deflection alone and of rotatory inertia alone on
the eigenvalues of a pinned-pinned beam.
 
Case 1. Shear deflection alone
 

We neglect rotatory inertia in eq (8.101) and obtain
 

(8.102)

The solution of eq (8.102) is formally analogous to the case of the beam
with axial force: we obtain four roots ±η and  where now we define
 

(8.103)

and the allowed frequencies are obtained from the condition  as
 

(8.104a)

where we indicate with  the nth eigenvalue of the pinned-pinned
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Euler-Bernoulli beam. Equation (8.104a) can also be written as

(8.104b)

where the influence of the slenderness ratio is more evident: for small values
of r/L and for low order modes we note that, as expected, 
 
Case 2. Rotatory inertia alone
 

We neglect now the effect of shear deformation in eq (8.101) and obtain the
equation

(8.105)

 

The procedure to be followed is exactly as in case 1 and it is not difficult to
arrive at

(8.106)

where, again,  refers to a pinned-pinned Euler-Bernoulli beam.
We note from eqs (8.104) and (8.106) that both shear deformation and

rotatory inertia tend to decrease the beam eigenfrequencies and also that the
shear deflection correction is more important that the rotatory inertia
correction. These considerations are of general nature and retain their validity
for types of boundary conditions other than the pinned-pinned configuration.

Finally, it may be worth pointing out that for hollow, thin-walled cross-
sections the shear and rotatory effects tend to be more important because
both the radius of gyration and the shear stresses are generally large.

8.6 A two-dimensional continuous system: the flexible
membrane

The simplest two-dimensional continuous system is the flexible membrane
which can be considered as the two-dimensional counterpart of the flexible
string. As for strings, the assumption of flexibility implies that restoring forces
in membranes arise from the in-plane tensile (or stretching) forces and that
there is no resistance to bending and shear. In essence, it is the two-dimensional
characteristics that distinguish this case from the case of the string.

In this regard, we note that now the tension at a point must be specified in
terms of the pull across an elementary length of line drawn through the point:
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this tension must equal the force tending to split the membrane along this line.
This pull will be proportional to the length ds of the line element and the
proportionality factor T is a force per unit length (in units of N/m) which may
or may not be perpendicular to the line element. In other words, in the general
case, T is a vector which is a function of the position and orientation of the
line element. The common simplifying assumption is to consider membranes
for which this tensile stress is the same at every point on the membrane and
for every orientation of the line element: in this circumstance T is a constant
and represents also the outward pull across each unit length of the membrane’s
boundary, i.e. its perimeter. With this in mind, we can picture a stretched
membrane under the action of the in-plane stress T and consider a rectangular
element of area dxdy (Figs 8.5(a), (b)).

Fig. 8.5 Membrane area element: (a) plane view; (b) side view.
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If we call  the coordinate used to measure the deflection of
the membrane in the z direction it is easy to obtain from Fig 8.5(b) and from
a similar figure in the y–z plane

(8.107a)

where s is the membrane mass per unit area and the angles θx and θy are
given by ∂w/∂x and ∂w/∂y respectively. Note that small deflections have been
assumed, so that  etc. and the area of the deflected element can
still be written as dxdy. Equation (8.107a) results in the equation of motion

(8.107b)

Obviously, we can arrive at eq (8.107b) by using Hamilton’s principle and
by considering that the Lagrangian density in this case is given by

(8.108)

We will not do it here, but we can follow an analogous line of reasoning
as in Chapter 3 to arrive at the Euler-Lagrange equation for the membrane
which reads (e.g. Morse and Ingard [1]; Meirovitch [9])

(8.109)

where we write for simplicity  etc.
Now, since the Laplacian operator ∇2 in rectangular coordinates is

expressed by
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we can write eq (8.107b) as

(8.110)

where  has the dimension of a velocity. Equation (8.110) is the
two-dimensional wave equation and has the advantage of being written in
a form valid for all types of coordinates; the shape of the boundary (unless
it is irregular) suggests which type of coordinates to use.

In order to obtain a solution of eq (8.110) we can once more adopt the
method of separation of variables; we look for a solution in the form w=ug
where u is a function of the space variables alone and g is a function of time
alone. We substitute this solution into eq (8.110), divide both members by
ug and arrive at

where the left side is a function of the space variables only and the right side
is a function of time only and therefore both members must be equal to a
constant, which we call –k2. The time equation becomes

(8.111)

where  and the space equation is the so-called Helmholtz equation
 

(8.112)

which assumes different explicit forms depending on the type of coordinates
we decide to use. Note that  is the familiar wavenumber. Equation
(8.111) is well known and its solution is represented by a sinusoidal function
of time; hence, we turn to eq (8.112).

As an example we will now consider the calculation of the natural
frequencies and eigenfunctions of a circular membrane of radius R clamped
at its outer edge. The geometry of the problem suggests the use of polar
coordinates (r, θ) so that the Laplacian is written

and eq (8.112) reads explicitly

(8.113)

Copyright © 2003 Taylor & Francis Group LLC



If now we assume a solution of the form  eq (8.113) leads to
the two equations

(8.114)

where we call γ 2 the separation constant. Now, by noting that the solution
of the first equation is harmonic in θ, the continuity of membrane
displacement requires that  This periodicity condition
can only be met if γ is an integer; hence the second of eq (8.114) becomes

(8.115)

which is Bessel’s equation of order n having the solution
 

(8.116)
 

where Jn and Yn are the Bessel functions of the first and second kind,
respectively. The functions Yn approach infinity as  so, for a complete
(i.e. without a hole in the centre) membrane, we must eliminate them and
write  If the membrane is clamped at its outer edge r=R, we
must satisfy the boundary condition f(R)=0, this means
 

(8.117)

which is the frequency equation. The zeros of Bessel’s function can be found
in table form in various texts (e.g. Abramowitz and Stegun [10]) and some
of the zeros are as follows:

It should be noted that x=0 is also a root for all Bessel’s functions of order
 but this leads to trivial solutions for w and is therefore excluded.
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The natural frequencies of our system can then be written as
 

(8.118)

which means that for each value of n there exist a whole sequence of solutions
labelled with the index m. For example, the frequencies  are
the solutions of  the frequencies  are the solutions
of  and so on; ω01 is the fundamental frequency and is given by
 

(8.119)

The overtones (which are not harmonics, i.e. are not integer multiples of the
fundamental frequency) are, in increasing order
 

The mode shapes are obtained by the product of the two spatial solutions:
for the frequency ω0m (m=1, 2, 3,…) we have the eigenfunction
 

(8.120)

where A0m is a constant and we note that u is a function of r alone. For each
value of m, the corresponding mode has (m–1) nodal circles. A schematic
representation for the first few modes can be given as in Fig 8.6.

For each one of the frequencies  we have the
two eigenfunctions (Anm and  are arbitrary constants)

(8.121)

 

which have the same shape and differ from one another only by an angular
rotation of 90°. This is an example of degeneracy (two or more eigenfunctions
belonging to the same eigenvalue) which occurs frequently in two- and three-
dimensional systems.

Copyright © 2003 Taylor & Francis Group LLC



Fig. 8.6 First few modes for n=0.

Fig. 8.7 First few modes for n>0.
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A schematic representation of a few of the functions (8.121) is shown in Fig
8.7 where we note that the (n, m)th mode has n nodal diameters and (m–1)
circular nodes.

A final word for the curious reader. From the foregoing discussions it
may seem that—provided that the mathematics is manageable—we can tackle
any boundary value problem by the method of separation of variables which,
in its own right, is a widely adopted method for finding solutions of boundary
value problems for partial differential equations. However, strictly speaking,
this is not so. In fact, although it is not our case, it is worth knowing that the
same equation may allow a separation of variables in one system of
coordinates but not in another; for example, the Helmholtz equation separates
into ordinary differential equations in eleven different orthogonal coordinate
systems [11], which, in fact, is sufficient to solve a large number of problems
of physical significance.

8.7 The differential eigenvalue problem

So far in this chapter we limited ourselves to the discussion of some important
continuous systems. These and many other distributed parameters systems,
in spite of the significant differences in the order of the equations of motion
and in the type of boundary conditions, can be analysed mathematically
from a more general point of view which somehow broadens and extends
the discussion and the formalism developed in the case of MDOF systems
(Chapters 6 and 7).

In essence, the fundamental aspects of the analysis of n-DOF systems
have their mathematical basis in the theory of finite-dimensional (with
dimension n, depending on the number of degrees of freedom) vector spaces
where the relevant quantities involved are vectors and matrices. In their own
right, the finite-dimensional eigenvalue problems considered in Chapter 6 fit
fully within this mathematical framework.

Matrices, in turn—besides being simply interpreted as arrays of numbers—
can be seen as representations of linear operators in the vector space: a given
operator is represented by different matrices when different bases (complete
sets of linearly independent vectors) are chosen in the vector space and
‘similar’ matrices are just different basis representations of a single linear
operator (recall that two matrices A and B are said to be similar when there
exists an invertible matrix S such that B=S–1 AS and that similarity is an
equivalence relation on the set of all n×n matrices).

Particularly important (Section 6.3.1) are Hermitian (or self-adjoint)
matrices, i.e. matrices with complex entries for which A=AH or matrices
with real entries for which A=AT (we speak of symmetrical matrices in this
latter case). Among other desirable properties, recall that a Hermitian matrix
has real eigenvalues and a complete set of orthonormal eigenvectors
(Appendix A), where the concept of orthogonality implies that an inner
product has been defined in the vector space.
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With these considerations in mind, we can now go back to continuous
systems and reconsider the cases of a finite flexible string and of the
longitudinal and torsional vibrations of a bar of finite length (Sections 8.3
and 8.4). It is not difficult to show—for example, using Lagrange’s equation
(3.109)—that when the relevant physical parameters are not uniform
throughout the length of the vibrating element, we arrive at the following
equations of free motion:

(8.122a)

which, upon separation of the time and space variables, lead to the ordinary
differential equations for the space function u=u(x):

(8.122b)

where, for reasons that will be clear shortly we call –  the separation constant.
The formal structure of the above equations resembles the structure of an
eigenvalue problem. In addition, it is worth recalling that what we did in
Sections 8.3 and 8.4 was to look for the values of  so that eqs (8.122b)
admit nontrivial solutions which satisfy the appropriate boundary conditions
dictated by the problem at hand.

If we note that in the case of finite-dimensional vector spaces we write the
standard eigenvalue problem as  where A is an n×n matrix, we can
leave aside mathematical rigour for the moment and observe that this concept
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can be generalized to the case of any linear operator, whether it be a matrix,
a differential operator or an integral operator. The basic equation can again
be written in the form

(8.123)

where now u is whatever kind of object A can operate on: a column vector
if A is a matrix, a (reasonably well-behaved) function if A is a differential
operator and so forth. Furthermore, if we observe that the natural extension
of finite-dimensional vector spaces with an inner product are the so-called
Hilbert spaces (i.e. infinite-dimensional complete spaces with an inner
product), we can introduce the concept of linear operators on a Hilbert space
and, within this set, consider the fact that we often have to deal with
Hermitian (symmetrical if we deal with spaces of real functions) operators
which, in turn, have the following important properties:

1. Their eigenvalues are real.
2. Eigenfunctions belonging to different eigenvalues are orthogonal, where

orthogonality means that their (appropriately defined) inner product is
zero.

 

The point we are trying to make should be clear by now: despite the
mathematical difficulties and intricacies—which are fundamental from a
theoretical viewpoint—brought about by infinite dimensionality, for the cases
of our interest there is a significant analogy with the finite-dimensional case.
This analogy goes even further if we consider that, under conditions which
are general enough for our purposes, there exists a counterpart of the
expansion theorem stating that the eigenfunctions of a Hermitian operator
form a complete set so that it is possible to expand any function belonging
to an appropriate Hilbert space in a series of eigenfunctions.

Hence, with reference to eqs (8.122b), we note that the first member is
just a linear differential operator acting on the function u(x). In other words,
when appropriate boundary condition have been specified, the above
equations are particular cases of a differential eigenvalue problem. This
differential eigenvalue problem is not precisely of the standard form (8.123)
but is closer to the generalized problem where a ‘mass operator’ appears on
the right-hand side. More specifically, eqs (8.122b) are just particular cases
of the wellknown Sturm-Liouville equation (Chapter 2), which is usually
written in mathematics textbooks as

where p(x), q(x) and ρ(x) are real functions and ρ(x), often called the density
or weighting function, is assumed to be non-negative on the interval in
question.
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Now, the Sturm-Liouville problem is a second-order problem and, as such,
deals with second-order systems. However, the foregoing general discussion
goes further than this and covers a broad class of continuous systems, despite
the fact that the mathematical difficulties of the calculations soon become
formidable as the systems under investigation become more and more
complex. In other words, although for a large number of complex systems
no solutions in closed form are available, the above (and following)
considerations retain their validity.

8.7.1 The differential eigenvalue problem: some mathematical
concepts

This section is meant to serve the purposes of the present chapter and adapts
to our present needs the mathematical concepts of Sections 2.5, 2.5.1 and
2.5.2. For this reason it will be kept short and results will be given without
proof in the form of statements.

Since our interest lies mainly in one and two-dimensional continuous
systems, let � be a two-dimensional finite domain with a smooth boundary
S and let K and M be two differential operators of orders 2p and 2q,
respectively, where we assume p>q. Pursuing the analogy with MDOF
systems, we call K and M the stiffness and mass operators, respectively.

The general differential eigenvalue problem is written symbolically as
 

(8.124)

and is supplemented by a set of p boundary conditions which we assume of
the form

(8.125)
 

where Bi are linear differential operators (boundary operators) of maximum
order 2p–1. Equations (8.124) and (8.125) together define a homogeneous
differential eigenvalue problem whose solution consists of determining the
values of  (eigenvalues) and the nontrivial functions (eigenfunctions) for
which the differential equation (8.124) and the boundary conditions (8.125)
are satisfied.

Now, let f and g be two real-valued square-integrable (hence finite-energy)
functions in the domain � which, in addition, satisfy all the boundary
conditions (8.125) (in mathematical terminology f, and g belong to an
appropriate subspace of L2(�)). In other words, let f and g be two comparison
functions. The integral

(8.126)

defines an inner product in L2(�) and the two functions are said to be
orthogonal if 
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More generally, if A is a linear operator defined on a subspace of a Hilbert
space, where we know from Chapter 2 that A is called symmetrical if

(8.127a)
 

or, alternatively

(8.127b)

and positive definite if  for every  If, on the other hand, the
inner product  can be zero for some  A is said to be positive
semidefinite. Moreover, two functions f and g are said to be A-orthogonal if

Now, returning to the eigenvalue problem defined by eqs (8.124) and
(8.125), we give without proof the following results:

1. The problem admits a countable infinite set of eigenvalues 
2. The eigenvalues of a symmetrical eigenvalue problem (i.e. K and M

symmetrical) are real and the eigenfunctions of a symmetrical eigenvalue
problem can be chosen to be real.

3. If a symmetrical eigenvalue problem is positive definite (i.e. K and M
symmetrical and positive definite) the eigenvalues are such that 
for every index i. If the problem is only positive semidefinite (i.e. K is
positive semidefinite and M is positive definite) then 

4. For a symmetrical eigenvalue problem, any two eigenfunctions ui and uj

corresponding to different eigenvalues i and  are both K- and M-
orthogonal, i.e.  This statement deserves an
additional comment: in the case of m-fold degeneracy (and it can be proven
that m is always finite) of an eigenvalue, say k, there are m eigenfunctions
associated with it. These functions, in general, are not mutually orthogonal,
although they are orthogonal to the eigenfuctions belonging to i with

 However, since it is always possible (by means of the Schmidt
orthogonalization procedure) to construct a set of m mutually orthogonal
eigenfunctions of λk by appropriate linear combinations of the original m
eigenfunctions, all the eigenfunctions of a symmetrical problem can be
considered as mutually orthogonal. In addition, their amplitude—which
is arbitrary to within a multiplying constant because of the homogeneous
nature of the problem—can be arranged in such a way as to make them
mutually orthonormal, i.e. such that

(8.128)

where we indicate with the symbol φi the mass-orthonormal functions
to distinguish them from the ui in which the arbitrary amplitude constant
is left undetermined.
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5. The eigenfunctions ui (i=1, 2, 3,…) of a symmetrical eigenvalue problem
form a complete set, meaning that every function  satisfying
the boundary conditions of the problem can be expanded in a series of
eigenfunctions in the form

(8.129)

where the ci are the Fourier coefficients given by

(8.130)

Note that eqs (8.130) are obtained by first making the operator K (or M
for the first of eqs (8.130)) act on both members of eq (8.129) and then
by taking the inner product with φi. The orthonormality conditions (8.128)
lead immediately to eqs (8.130).

 
Given the results above, we can now return to Chapter 6 and consider the
analysis of the free vibrations of undamped MDOF systems. We may note
that it is sufficient to adopt the ‘bracket notation’ 〈x|y〉 to denote the inner
product xTy between the two n×1 vectors x and y in order to have—for our
purposes—a noteworthy analogy with the case of undamped continuous
systems. The property of symmetry of the differential operators K and M
parallels the symmetry of the matrices K and M, the othogononality
conditions (6.44) and (6.42b) are the counterpart of eqs (8.128) and the
expansion theorem is now an expansion in a series of eigenfunctions which
reads explicitly
 

and corresponds to the finite sum of eq (6.48b) where the pj are the mass-
orthonormal eigenvectors which satisfy the algebraic eigenvalue problem

We conclude this section by pointing out that the utility of the above
discussion is threefold:

1. The class of symmetrical systems is quite large and includes all the
continuous conservative systems considered in this chapter.

2. Regardless of the fact that a closed-form solution may not be available
for a given system, all the above considerations hold true when it can be
shown that the system is symmetrical.
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3. We attain a significant economy of thought by considering that all the
equations that describe the free vibration of a large number of
conservative continuous systems are formally identical to the equations
valid for MDOF systems. Moreover, for the former systems, the
convergence of the series involved is mathematically guaranteed in all
cases of practical interest.

8.7.2 The differential eigenvalue problem: some examples and
further considerations

In the light of the formalism developed in the preceding section, we can now
re-examine some of the systems encountered before. For one-dimensional
systems (beams included) extending in the domain from x=0 to x=L the
operators K, M and Bi can be expressed in the general forms

(8.131)

where the fj(x) and gi(x) are continuous functions with continuous derivatives
up to the order p and q, respectively, and the boundary conditions index i
runs from i=0 to i=2p. More specifically, for the free vibrations of a fixed-
fixed string with homogeneous properties (Section 8.3) we have 

 and

(8.132)

Moreover, in the two boundary operators we have 
 and the zeroth-order derivative is

defined in such a way that  Note that in eq (8.131) we
expressed the boundary conditions in terms of 2p operators and not in terms
of p operators as prescribed in (8.125). This is just a matter of our present
convenience and it is immediate to see that in terms of (8.125) the boundary
conditions are expressed as  at x=0 and x=L.
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The operator M is clearly symmetrical because for any two comparison
functions  we have
 

(8.133)

For the operator K we can write

(8.134a)

where we have integrated by parts and took into account the boundary
conditions. The same procedure leads also to

(8.134b)

so that  and the operator K is symmetrical. Also, we
determined in Section 8.3 that the eigenfunctions of a fixed-fixed string are
given by  since

mass orthogonality is straightforward, i.e.,  for  stiffness
othogonality follows because  and the mass-orthonormal
functions φn(x) are given by

(8.135)

so that  and  Finally, if we let
 in eqs (8.133) and (8.134a) it follows that  and

 

This inequality holds because  is not a solution of the eigenvalue
problem. Hence both M and K are positive definite.
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On the other hand, for a uniform cantilevered Euler-Bernoulli beam
(Section 8.5) we have  the stiffness and mass
operators are

(8.136)

and for the boundary conditions we have now  with
all other coefficients being zero. The property of symmetry of the operator
K can be proven by a double integration by parts which takes into account
the boundary conditions (8.63a) and (8.63b), M is trivially symmetrical and
we leave it to the reader to show that K is positive definite. The proof of
orthogonality and the determination of the normalizing constants involve
now some cumbersome calculations which we do not pursue here.

By contrast, we can check the definite positiveness of the operator K in
the two cases:
 
1. clamped-clamped beam
2. free-free beam.

In both cases, after a double integration by parts and due consideration to
the boundary conditions, we get

which—if —can only be zero if a function f of the form  is
a solution of the differential eigenvalue problem. It is easy to verify that this
is not possible for case 1 but is for case 2, meaning that, as expected, K is
positive definite in case 1 and only positive semidefinite in case 2, where

 is a twofold degenerate eigenvalue whose eigenfunctions represent rigid-
body motions.

We conclude this analysis on one-dimensional systems with a few
additional considerations of particular interest. First, it is interesting to note
that differential eigenvalue problems of the type (8.131) arise also in a
number of problems related to elastic stability of one-dimensional members,
where now the eigenvalue  generally represents a critical load parameter
beyond which the member’s undeformed position of static equilibrium
becomes unstable and leads to buckling. The eigenfunction then represents
the buckled shape. Consider, for example, a clamped-pinned column centrally
loaded by a compressive force F; the eigenvalue problem can be written as

 (where the primes indicate space derivatives) and the boundary
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conditions read  In this circumstance (e.g.
Bazant and Cedolin [12]) the lowest eigenvalue is the smallest critical load

 and its eigenfunction u1 represents the shape of the
buckled column. Then, for  the linear theory predicts a diverging
amplitude but linearity soon ceases to be valid and a nonlinear description
must be adopted for the postbuckling behaviour.

The second point we want to make concerns the perturbative method
described in Section 6.4. If, for instance, we consider the first-order perturbation
of the eigenvalues (eq (6.81)), we can write it in ‘bracket notation’ as

By analogy, for a differential eigenvalue problem this equation becomes

(8.137)

and fully retains its validity. As an example we can investigate the first-order
effect of shear deformation on the eigenvalues of a pinned-pinned beam.
The eigenvalue problem for this case is obtained from eq (8.102) and reads
(all symbols have been introduced in Section 8.5)

where now we write  in place of ω2. The perturbative term is expressed by
the operator

(8.138)

which is just the additional term representing shear in the equation of motion.
Equation (8.62), in turn, yields the zeroth-order mass orthonormal
eigenfunctions

(8.139)

and since in the present case K1=0, we can insert eqs (8.138) and (8.139)
into eq (8.137) to get
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Then, owing to eq (8.36), we obtain

and finally, since the first-order perturbate eigenvalues are given by
 our result is given by

 

(8.140)

 
which is in perfect agreement with eq (8.104b). In fact, eq (8.140) is just the
first-order series expansion of eq (8.104b) and is valid for small values of
the ratio r/L and for low-order modes: precisely the hypotheses under which
the shear effect can be considered as a small perturbation.

If now we turn our attention to a two-dimensional system, we can consider
the clamped circular membrane of Section 8.6. The differential eigenvalue
problem (8.112) can be written as

 
(8.141)

 
which must be verified in a circular domain of radius R. We call this domain
� and we call its boundary S. In order to prove the symmetry of the operator

 we can resort to vector analysis and remember that 
or, equivalently, using the operator ‘del’,  Now, since

 we have
 

Now we invoke the divergence theorem in the last integral, i.e.
 

where n is a unit vector perpendicular to S so that  and dg/dn
indicates the directional derivative of g along the normal to the boundary.
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Substituting back into the expression of 〈f|Kg〉 we get
 

(8.142)

 
and then, by exchanging f and g we arrive at a similar equation which, in
turn, can be subtracted from eq (8.142) to give
 

(8.143)

 

Since the right-hand side of eq (8.143) is zero because the functions f and
g obey the boundary condition of the problem it follows that the operator K
is symmetrical. Also, we point out—without pursuing this point further here—
that the right-hand side of eq (8.143) can be zero under more general
boundary conditions (involving the directional derivatives of the comparison
functions) than the present case.

If now we turn our attention to the eigenfunctions of the clamped circular
membrane of radius R, we know in principle—owing to the symmetry of M
and K—that they must be mutually orthogonal. This is indeed so and can be
verified by considering the properties of Bessel’s functions1 of the first kind:
one of these properties, provided that  can be written as

 

(8.144)

 
It is easy to see that eq (8.144) is immediately related to the property of

mass orthogonality, and hence to stiffness orthogonality; moreover, when
n=m and l=s, eq (8.144) determines the constants that make the eigenfunctions
mutually orthonormal.

8.8 Bending vibrations of thin plates

In many ways, a fundamental reference on the subject is Leissa [15]. This
work—besides being a complete summary of all known results up to 1966—
contains a comprehensive set of results for the frequencies and mode shapes
of free vibration of plates both according to the so-called ‘classical theory’
and with further complications such as anisotropy, variable thickness, in plane
forces etc. For our part, since it is beyond the scope of this book to go into the

1 Bessel’s functions have been extensively studied and tabulated (e.g. Abramowitz and Stegun
[10], Jahnke et al. [13] and the tables published by Harvard University Press [14]).
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details of this rich and mathematically delicate subject, we will limit ourselves
to a discussion of some of its fundamental aspects within the framework of
the classical theory.

In essence, plates are the two-dimensional counterpart of beams, much in
the same way as membranes are the two-dimensional counterpart of strings.
In other words, plates do have bending stiffness and the additional
complications arise not only from the increased complexity of two-
dimensional wave motion but also from the complex stresses that are set up
when a plate is bent. In fact, when a plate element is bent, the material
inside the bend becomes compressed and tends to expand laterally while the
material outside the bend is stretched and tends to contract laterally, so that
bending in one direction necessarily involves bending in a direction at right
angles to it. It is well known that the ratio of the lateral extension (contraction)
to compression (tension) is Poisson’s ratio v, which is approximately equal
to 0.2–0.3 for most materials.

This ‘sideways effect’ was ignored in the case of beams because a beam
element, in comparison with its length, is generally assumed to be thin enough
as to make lateral bending negligible for most practical purposes.

Now, if we assume that our undisturbed plate lies in the x–y plane, the
basic assumptions of the classical theory of plates vibrations can be
summarized as follows:

1. Only the transverse displacement  is considered.
2 The plate is thin, i.e., its thickness h is small compared to its lateral

dimensions (say,  where a is the smallest in plane dimension of
the plate).

3. The stress in the transverse direction σz is zero. More specifically, since
σz must vanish on the external layers at  and h is small, then σz

is assumed to be zero for all values of z.
4. During bending, plane cross-sections remain plane and perpendicular to

the midplane (just as in the Euler-Bernoulli beam development).
5. Only small deflections and slopes are considered (a maximum deflection

of one-fifth of the thickness is generally considered the limit for small-
deflection theory).

Given the above assumptions, it can be shown [see for example (e.g. Graff
[8] or, for a variational approach, Meirovitch [9] and Gerardin and Rixen
[16]) that the equation of motion for the free vibrations of a plate is given by

(8.145)

where  the Laplacian of the Laplacian, is called the biharmonic
operator, ρ is the mass density of the material (hence  is the plate mass
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density per unit area),

(8.146)

 

is the plate bending stiffness and E is the modulus of elasticity of the material.
Now, our interest is mainly in eigenvalues and eigenfunctions of finite

plates, and we do not pursue the subject o waves propagation in infinite
plates. However, in this regard it is worth noting that the plate—like the
beam—is a dispersive medium, meaning that waves of different wavelength
trvel with different velocities. By contrast, in the case of finite plates, we
note that eq (8.145) must be supplemented by appropriate boundary
conditions in order to define a complete eigenvalue problem. The simplest
types of boundary conditions are: simply supported (pinned), clamped and
free. Without reference to any particular set of coordinates (rectangular, polar,
etc.), we denote by s and n the coordinates in the tangential and normal
directions to the contour and write the boundary conditions as:
 
• Simply supported edge,

(8.147a)

where Mn is the normal bending moment per unit length.
• Clamped edge,

(8.147b)

• Free edge,

(8.147c)

where Qn is the shearing force per unit length and Mns is the twisting
moment per unit length about the direction n.

Note that the second boundary condition of eq (8.147c), i.e.
 is by no means self-evident. In fact, at first glance, it

would seem that the three stresses Qn, Mn and Mns should be independently
equal to zero at a free edge; however, for a fourth-order equation, only two
boundary conditions are required along each edge. It was left to Kirchhoff to
show that Qn and Mns combine into a single edge condition as given above
(e.g. Timoshenko and Woinowsky-Krieger [17] or Mansfield [18]).
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For the above boundary conditions it can be shown with the aid of vector
analysis that the biharmonic operator is symmetrical, so that the free
vibration of plates also fits into the framework of symmetrical eigenvalue
problems.

8.8.1 Circular plates

To be more specific, let consider the case of a uniform circular plate clamped
at its outer edge r=R. As for the circular membrane of Section 8.6, the nature
of the problem suggests the use of polar coordinates; assuming a harmonic
time dependence we write the solution in the form  and
obtain for the space part of the solution
 

(8.148a)

 
where  Equation (8.148a) can be rewritten in the form
 

(8.148b)

 
whose solution can be written as  being the solution of

 and u2 being the solution of  The equation
for u1 is formally equal to eq (8.112) for the circular membrane (note,
however, that now the constant γ does not have the dimension of a
wavenumber), so that we can separate the variables, write 
and arrive at the solution (Section 8.6)
 

(8.149a)

 
were n is an integer because—as for the circular membrane—continuity
considerations require that 

The function u2 can be explicitly obtained just by noting that its equation
can be rewritten as  we separate the space variables and
arrive at the so-called modified Bessel equation for the function f2(r) so that
we obtain

(8.149b)

 
where In and Kn are the modified Bessel functions of the first and second
kind. They are related to Jn and Yn by  and 
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Putting eqs (8.149a) and (8.149b) together we have

(8.150)

 

where the Bessel functions of the second kind Yn and Kn have been eliminated,
since they have singularities at r=0. Note that for circular plates with a circular
concentric hole of radius r=a<R these functions must be retained in the
solution because their singular behaviour at the origin no longer plays a
role; in this case, however, two additional boundary conditions must be
specified at r=a.

The boundary conditions for our case (plate clamped at its outer edge)
read
 

(8.151)

 

so that we obtain the frequency equation
 

(8.152a)
 

which, owing to the recursion relationships obeyed by Bessel’s functions,
can be equivalently written as
 

(8.152b)
 

Equation (8.152a or b) must be solved numerically: for each value of n there
are an infinite number of roots which we can identify with an index m,
where m=1, 2, 3,…. If we now define the frequency parameter 
the natural frequencies can be written as
 

(8.153)

 

where, for a given pair n, m there are two eigenmodes (except for n=0) so that
all modes with  are twofold degenerate. Furthermore, as in the case of
the clamped circular membrane, we have n nodal diameters and m–1 nodal
circles. The first few values of  are as follows:
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The eigenfuncions are written

(8.154)

where the constant A—which, a priori, can depend on both n and m—can
be fixed by means of normalization.

Different boundary conditions lead to more complicated calculations: for
example, if our plate is simply supported at r=R the boundary conditions to
be imposed on the solution (8.150) are, from eq (8.147a)

at r=R, and in polar coordinates the bending moment Mr is written explicitly

Things are even worse for a completely free plate; in fact, in this case the
boundary conditions read (eq (8.147c))

where Mr is as above and the transverse shearing force Qr and the twisting
moment Mrθ are given by

8.8.2 Rectangular plates

Due to its importance in many fields of applied engineering, let us now
consider a uniform rectangular plate extending in the domain  and

 The equation of motion of free vibrations is again (8.145) which,
assuming a harmonic time dependence becomes eq (8.148a) for the function
of the space variables  As in the preceding case, this equation can
be written as
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and we can express its solution as  Obviously, it is now convenient
to adopt a system of rectangular coordinates so that the Laplacian and
biharmonic operators are written explicitly as
 

The function u1 satisfies the equation  by separating the space
variables and looking for a solution in the form  we arrive
at the two equations
 

(8.155)

 

where  Equations (8.155) have the solutions

 

so that
 

(8.156)

The equation satisfied by the function u2 is  implying
that its solution can be obtained from eq (8.156) by replacing the
trigonometric functions by hyperbolic functions. This means that we can
write the complete solution u(x, y) as
 

(8.157)
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where the values of the constants Aj and parameters α and ß depend on the
boundary conditions. The simplest case is when all edges are simply supported
and we must enforce the boundary conditions
 

(8.158a)

(8.158b)

where the conditions on the second derivative are obtained (eq (8.147a)) by
noting that, in rectangular coordinates, the bending moments Mx and My

are given by
 

(8.159)

By inserting the conditions of eqs (8.158a and b) into the solution (8.157)
we obtain that only A1 is different from zero so that
 

(8.160)
 

In addition we get the two characteristic equations
 

(8.161)

which imply  and  with n, m=1, 2, 3,…and

(8.162)

The corresponding eigenfunctions are

(8.163a)

where it is evident that  and it is easy to see that the
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requirement  yields the following mass-orthonormal
eigenfunctions:

(8.163b)

 

The first few modes of a plate simply supported on all edges are shown
in Fig. 8.8.

It is interesting to note at this point that trying to enforce different
boundary conditions—say free or clamped—on the solution (8.157) is not
at all an easy task. This has to do with the fact that in order to apply a
separation of variables to the eigenvalue problem we must limit ourselves to
the six combinations of boundary conditions where two opposite edges are
simply supported.

Let us investigate this point a bit further. If we take a step back and write
the solution in the form  substitution into the eigenvalue
problem  leads to
 

(8.164)

and we can separate it into two independent equations if

(8.165a)

Fig. 8.8 A few lower-order modes for a rectangular plate simply supported on all
edges.
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or

(8.165b)
 
or both. Let us suppose that eq (8.165a) holds, this implies  and

(8.166)

If now we consider the boundary conditions of simply supported (SS), clamped
(C) and free (F), along x=0 we have

which come from the expression of eqs (8.147a–c) in rectangular coordinates
by noting that Mx is given in eq (8.159) and that the Kirchhoff condition reads

(8.167)

A set of similar conditions apply at x=a. Now, it is not difficult to show that
only the SS conditions can be satisfied by a function of the form (8.166)
and, more specifically, we need a sine function which satisfies  i.e.

 If also eq (8.165b) holds, all sides are simply supported and an
analogous line of reasoning yields  Moreover, substitution of eqs
(8.165a and b) and of  into eq (8.164) yields
 

(8.168)
 

which can be solved for the frequency to give eq (8.162).
When the edges at x=0 and x=a are simply supported and we exclude the

case of the other two edges simply supported, we are left with five possibilities
for which we must solve the equation

(8.169)

whose solution depends on whether  or  However,
even if separation of variables is possible in these latter cases, the information
on natural frequencies and mode shapes is not easily obtained and the
interested reader is urged to refer to the wide body of specific literature on
the subject.
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A final comment of general nature can be made on the orthogonality of
the eigenfunctions. From our preceding discussion, we know that mass and
stiffness orthogonality are guaranteed by the symmetry of the eigenvalue
problem; however, it may be of interest to approach the problem from a
different point of view. Let us consider two different eigenfunctions, say unm

and ulk: the equations

(8.170)

 

are identically satisfied. Now, since from static classical plate theory the
differential equation of static deflection is written  we can
interpret the first of eqs (8.170) as the equation of the static deflection of the
plate under the action of the load  and, by the same token, we
can say that our plate assumes the deflected shape ulk when the load

 is acting. In other words, the loads q1 and q2 represent two
systems of generalized forces while unm and ulk are the displacements caused
by such forces.

We now invoke Betti’s theorem which states that:
 

For a linearly elastic structure the work done by a system q1 of forces
under a distortion caused by a system q2 of forces equals the work
done by the system q2 under a distortion caused by the system q1.

 
In our case, this translates mathematically into

(8.171a)

 

where we had to integrate over the plate domain � in order to obtain the
work expressions required by the theorem. Equation (8.171 a) gives

(8.171b)

 

and hence, since we assumed 

(8.171c)

For our purposes, we can finish here our treatment on the free vibration
of continuous systems referring the interested reader to the specific literature
on the subject. In particular, an interesting discussion on one-dimensional
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eigenvalue problems in which boundary conditions contain the eigenvalue
can be found in Humar [19] and Meirovitch [6, 9].

8.9 Forced vibrations and response analysis: the modal
approach

The action of external time-varying loads on a continuous system leads to a
nonhomogeneous partial differential equation. In general, in the light of the
preceding sections, it is not difficult to obtain the governing differential
equation also because—once the mass and stiffness operators have been
introduced—its formal structure is similar to the matrix equation governing
the forced vibrations of MDOF systems. However, now the boundary
conditions come into play and we must pay due attention to them.

Two general methods of solutions can be identified:

1. integral transform methods, which are particularly well suited to systems
with infinite or semi-infinite extension in space (note, in fact, that in
these cases the concept of normal mode loses its meaning) and for
problems with time-dependent boundary conditions;

2. the mode superposition method.

Here, we concentrate our attention on method 2, which we can call ‘the
modal approach’. The relevant equation of motion is written as

(8.172)

where  and, for brevity of notation, we indicate with x
the set of space variables. Note that now f is a forcing function representing
an external action (it is the counterpart of vector f of eq (7.1)) and must not
be confused with the f functions of the preceding sections in this chapter,
where this symbol was often adopted to identify a general function to be
used for the specific needs of that part only. Equation (8.172) must be
supplemented by the set of p boundary conditions
 

(8.173)
 
Now, by virtue of the results given in Section 8.7.1, the general response w
can be expressed in terms of a superposition of eigenfunctions φi multiplied
by a set of time-dependent generalized coordinates yi(t), i.e.
 

(8.174)
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which is the infinite-dimensional counterpart of eq (7.2). If we substitute the
solution (8.174) into eq (8.172) and then take the inner product of the
resulting equation by  we get

 
which, owing to the orthogonality relationships (8.128), reduces to the infinite
set of 1-DOF uncoupled equations

(8.175)

 
whose solution is given by (Chapter 5 and eq (7.7))

(8.176)

 
where yj(0) and j(0) are the initial jth modal displacement and velocity,
respectively. Moreover, it is not difficult to show that we can obtain these
quantities from the inner products

(8.177)

 
where  and  are the initial conditions in physical
coordinates. The analogy with eq (7.5b) is evident.

A few remarks can be made at this point.

1. First, it is apparent that the first step of the whole approach is the solution
of the differential (symmetrical) eigenvalue problem  satisfying
the appropriate boundary conditions. The resulting set of eigenvalues and
orthonormal eigenfunctions make it possible to express the general solution
to the free vibrations problem (i.e. eq (8.172) with f=0) as in eq (6.50),
which reads

(8.178)

For example, suppose that we want to consider the longitudinal motion of
a uniform clamped-free rod of length L and µ mass per unit length. Let the
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initial conditions be such that  and  Since the mass
orthonormal functions are given by

 

we can calculate the rod free motion by means of eq (8.178). To this end we
must first evaluate the inner product

 

(the calculation is not difficult and is left to the reader) and then obtain the
free motion as

 

where we know from eq (8.49) that

 

2. When expressed in normal coordinates, the kinetic and potential energy
of free vibration assume the particularly simple forms
 

(8.179)

 

so that the Lagrangian has no coupling terms between the coordinates and
is simply the Lagrangian function of an infinite number of independent
harmonic oscillators.

3. The final remark has to do with the apparent discrepancy according to
which our system may be equally well described by a continuous system of
coordinates w(x, t) or by a discrete one, i.e. yj(t). The general feeling is that
this second set of coordinates cannot describe the same number of degrees
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of freedom as the first one, although this number is infinite in both cases.
However, it must be noted that, broadly speaking, the definition of normal
coordinates itself somehow incorporates the boundary conditions from the
outset, and this is not the case for w(x, t). In fact, the coordinates w(x, t)
could be a priori chosen as completely independent of each other and this
would allow us—in principle—to describe also discontinuous motions of
our system. By contrast, the expansion in normal modes requires that the
functions representing the point-by-point displacement of our system be
reasonably well-behaved.

So, although the normal mode description is, as a matter of fact,
mathematically more restrictive, it really does not put any significant
restriction on the physical problem because the boundary conditions and
the good behaviour of the displacement functions are dictated by the physical
nature of our system and, ultimately, by the physics of the phenomena we
are trying to describe. Also, note that for MDOF systems there was no need
to make a similar remark because, whatever the coordinate system we choose
to adopt, the elements of the stiffness matrix automatically take care of the
boundary conditions.

We can now go back to the main discussion of this section and note that
in Chapter 7—where we dealt with the response of MDOF systems—we
gave special emphasis to the modal impulse response functions and to the
modal frequency response functions, also showing their relationships with
impulse response functions and frequency response functions expressed in
physical coordinates. We want now to extend those concepts to the case of
distributed parameter systems.

Let us consider an undamped system: from the preceding chapters we
know that the jth modal impulse response function hj(t) is the solution of the
equation
 

(8.180)

where δ is the Dirac’s delta function. Moreover, we also know that (eqs
(5.7a) and (5.7b))
 

(8.181)

where the term  representing the jth generalized mass does not appear
in the denominator of the right-hand side of eq (8.181) because we are
considering mass-orthonormal eigenfunctions.

Now, if for simplicity we assume  eq (8.176) reduces to
 

(8.182)
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If we further assume that the excitation is an impulse applied at position
x=xk at time  we can t=0 write
 

so that
 

(8.183)

 
which must be substituted in eq (8.182) to obtain yj(t).

Then, from eq (8.174) we can obtain the response in physical
coordinates as
 

(8.184)

 

More specifically, we can consider the response at the point x=xm, i.e.
 

(8.185a)

 

and note that this is just the displacement response of point xm to a unit
impulse applied at point xk at the instant t=0. In other words, eq (8.185a)
represents the impulse response function  so that we can write
 

(8.185b)

which is the continuous systems counterpart of eq (7.37b) where hjk denoted
the physical coordinates (displacement) impulse response function at the jth
DOF due to an unit force impulse applied at the kth DOF at t=0.

Alternatively, we can consider the frequency domain and note that the jth
modal frequency response function (receptance in this case) can be obtained
by assuming a forcing function in sinusoidal form. This means that

 so that eqs (8.175) become
 

(8.186)
 

hence, assuming a response which is also in sinusoidal form, we have

(8.187a)
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so that the jth receptance FRF is
 

(8.187b)

 

If we now consider a harmonic forcing function of unit amplitude applied
at the point x=xk, i.e.
 

we have  the modal response is then

 
(8.188)

 
and the (steady-state) solution in physical coordinates is given by
 

(8.189a)

 

so that the response at point x=xm is
 

(8.189b)

 

Finally, if we observe that the physical coordinate response at point xm

due to a harmonic excitation at xk can be expressed in the general form
 

where  is, by definition, the physical coordinates receptance
function corresponding to points xm and xk, we get from eq (8.189b)
 

(8.190)

 

which is the (undamped) continuous systems counterpart of eq (7.28).
Note that from eqs (8.185b) and (8.190) we get

 

(8.191)

 

which show that the reciprocity theorem holds. Moreover, the generalization
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of the second of eqs (8.191) to a general FRF function H(ω) other than
receptance is straightforward and reads
 

(8.192)
 

Note that, for reasons outlined in Section 7.4.1, we only consider FRF
functions in the forms of receptances, mobilities and accelerances; hence, for
our purposes and unless otherwise stated, the symbol H will always be tacitly
assumed to mean a FRF functions in one of these forms.

For its importance in modal testing, we refer to eqs (8.189b) and (8.190)
to point out that a concentrated excitation force applied at a point xk where

 for some index j results in no excitation of all these modes. In
other words, for example, if we excite a beam by means of a concentrated
load at mid-span, all even natural frequencies  and modes

 will not contribute to the measured response. By the same token,
if we pluck at mid-length a guitar string tuned to give the note A at 440 Hz,
the second (A at 880 Hz), fourth (A at 1760 Hz) etc. harmonics will be
missing and the sound we hear will be the superposition of the fundamental
note A (440 Hz) plus the third (E at 1320 Hz), the fifth (C# at 2200 Hz) etc.
harmonics. On the other hand, if we pluck the same string at one-third of its
length we will still hear the same fundamental note A at 440 Hz, but the
harmonic content of the sound will be different.

8.9.1 Forced response of continuous systems: some examples

Example 8.1 Consider a vertical clamped-free beam of length L, mass per
unit length µ, and flexural rigidity EI subjected to an excitation in the form
of a lateral base displacement  It is easy to realize that this
situation, for example, can be used as a first approximation to model the
response of a tall, slender building to an earthquake excitation. For our
purposes, we ignore the fact that the definition of an appropriate g(t) is very
difficult in this case and it is one of the most uncertain steps of the analysis.

To solve this problem, we need to consider eq (8.55a); we write the beam
displacement y(x, t) as
 

(8.193)
 

and substitute it into eq (8.55a). Note that u(x, t) represents the displacement
of the beam relative to the rigid-body translation of the ground. We get
 

(8.194)

 

where it is evident that the inertia forces depend on the total motion, whereas
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the stiffness (and damping, if it were included in the analysis) forces depend
only on the relative motion. The r.h.s. of eq (8.194) is the effective earthquake
force and it is usually indicated with the symbol feff. In the light of the
discussion of preceding sections, it follows that—assuming the system initially
at rest—we have (eq (8.182))
 

and hence

 

where ωj are given by eq (8.66b) and the φj are the eigenfunctions (8.67), in
which the constant C1 has been chosen so as to make them mutually mass-
orthonormal.

The relative response in physical coordinates is then obtained as the
superposition

(8.195)

 

where, in general, for seismic excitation the minus sign in (8.195) is irrelevant
and—owing to the complicated expressions of the eigenfunctions and of the
ground acceleration —the integrations must be performed numerically.
In general, only a few terms of the series must be considered in order to
obtain a satisfactory representation of the actual response so that, in the
end, we are brought back to the case of an n-DOF system, where only a
finite number (n) of modal coordinates is needed to describe the response.

The total response y(x, t) is finally obtained according to eq (8.193).
A simpler case arises if we consider the longitudinal motion of our system;

the excitation g(t) is now a vertical displacement and the relevant equation
of motion is eq (8.42). The general form of the relative displacement is still
given by eq (8.195) but the eigenvalues ωj are given by the first of eq (8.49)
and the eigenfunctions are given by eq (8.50), where  In this
circumstance, it is not difficult to show that the space integration in (8.195)
results in
 

(8.196)

and only the time integration needs to be performed numerically.
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Example 8.2. Let us now consider a uniform clamped-free rod of length L
and mass per unit length µ excited by a tip load at the free end, i.e.

 If the rod is at rest before the excitation occurs the first two
terms on the r.h.s. of eq (8.176) are zero and

(8.197)

 

so that eq (8.176) reduces to

(8.198)

 

because  If we further assume that the explicit
form of p(t) is a unit step (Heaviside) function θ(t), i.e.

 

we can substitute θ(t) into eq (8.198), perform the integration by noting that
 

and obtain

(8.199)

 

Finally the displacement in physical coordinates is obtained as the super-
position

(8.200)

 

where in the second expression we take into account the explicit form of 
Also, it is worth pointing out that eq (8.200) is dimensionally correct because,
since we have assumed a unit force, the dimensions of w(x, t) are displacement
per unit force (i.e. m/N).

Copyright © 2003 Taylor & Francis Group LLC



At this point, it is interesting to note that the system above can be analysed
either as:
 
1. an excitation-free system with a time-dependent boundary condition at

x=L, or
2. a forced vibration problem with homogeneous boundary conditions.
 
As stated at the beginning of the preceding section, free-vibration problems
with nonhomogeneous boundary conditions are often tackled by an integral
transform (Laplace or Fourier) approach; however, the modal approach can
also be adopted in consideration of the fact that a boundary value problem
of type (1) can usually be transformed into a boundary value problem of
type (2) (e.g. Courant and Hilbert [20] or Mathews and Walker [21]).

In general, it appears that in these cases a disadvantage of the modal
approach—which is essentially a ‘standing waves solution’—is that the
resultant series converges quite slowly and many terms must be included in
order to achieve a reasonable accuracy. By contrast, depending on how the
inverse transformation is carried out, the Laplace transform method allows
us the possibility to obtain a solution either in terms of standing waves or in
terms of travelling waves (waves being reflected back and forth within the
rod). This latter possibility—the travelling wave approach—leads to a solution
in the form of a rapidly converging series, thus making this strategy more
attractive. However, on physical grounds, we may argue that the time scale
in which we are interested suggests the type of solution to adopt; in fact, the
travelling wave solution converges rapidly when we consider the short-term
response of our system whereas, if the long-term response is desired, more
and more terms are needed. The situation is reversed for the modal solution:
as time progresses, the terms corresponding to higher modes die out because
of damping and we are left with a series in which, say, only the first two or
three terms have a significant contribution.

We will not consider an integral transform strategy of solution here (the
interested reader is referred to Meirovitch [22]) but, using the rod example
above, we will show how a problem of type (1) can be transformed in a
problem of type (2).

Our rod problem can be formulated as a type (1) problem in the following
form:
 

(8.201a)

(8.201b)
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where eq (8.201a) is the homogeneous equation of motion and eq (8.201b)
are the boundary conditions. Since one boundary condition (the second) is
nonhomogeneous we assume the solution of our problem in the form
 

(8.202)

 
where the term —which we can define in compact notation as

—is a so-called ‘pseudostatic’ displacement brought about by the
boundary motion and v(x, t) is the displacement relative to the support
displacement. Mathematically, the function ust is chosen in such a way as to
make the boundary conditions for v(x, t) homogeneous. On physical grounds,
the usual assumption made for the choice of ust is that no inertia forces (i.e.,
no accelerations) are produced by the application of the support motion;
hence the name ‘pseudostatic’. For our case, this assumption implies that ust

obeys the equation
 

(8.203)

 

from which follows (provided that 

 
(8.204)

 

Moreover, given the expression (8.202), the boundary conditions (8.201b)
become

 

from which—if we want homogeneous boundary conditions for v(x, t)—it
follows
 

(8.205)

 

Enforcing the boundary conditions (8.205) on the solution (8.204) leads to
 

(8.206)
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The transformation of the problem (8.201) into a type (2) problem is
complete when we determine the nonhomogeneous equation of motion for
the relative displacement v(x, t): this is simply accomplished by substituting
eq (8.202) into eq (8.201a) and results in
 

(8.207a)

 
where the r.h.s. of eq (8.207) has clearly the dimensions of N/m and, for
short, can be indicated with the symbol feff (effective force).

Equations (8.207a), (8.206) plus the homogeneous boundary conditions
 

(8.207b)

 

constitute our type (2) boundary value problem which fits into the scheme
of problems that can be more effectively tackled by the modal approach. In
this light, we expand v(x, t) in a series of eigenfunctions and calculate the
normal coordinates as prescribed in eq (8.182) (note that, from eq (8.206),
we get  i.e.
 

(8.208)

 

Upon substituting the explicit expressions of φj and � in eq (8.208), the
space integral within braces gives
 

so that eq (8.208) becomes
 

(8.209)
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Now, in the problem we are considering, we assumed that p(t) is the
Heaviside function θ(t); since (eq (2.67a) or (2.84))  the time
integral of eq (8.209) becomes

 
where we take into account the properties of the Dirac’s delta function (eq
(2.69)) and the explicit expression of hj. The final steps consist of substituting
this result in eq (8.209), writing explicitly the series expansion of v(x, t), i.e.

 
and putting it all back together into the solution (8.202) which becomes

(8.210)

 
This result must be compared with eq (8.200) and it is not difficult to

show that they are equal. This is due to the fact that the function (π2x/8L)
can be expanded in a Fourier series as (the proof is left to the reader)

 
so that—after performing the product in eq (8.200)—the first term is exactly
(x/EA), i.e. the function �(x) of the pseudostatic displacement. The advantage
of including explicitly the pseudostatic displacement from the outset lies in
the more rapid convergence of the series (8.210) as compared to the series
(8.200), the pseudostatic displacement representing the average position about
which the vibration takes place.
 
Example 8.3. In modal testing, we are often concerned with the response of
a given system to an impulse loading. So, consider the rod of Example 8.2
subjected to a unit impulse applied at x=L at t=0. The response in physical
coordinates at x=L is given by eqs (8.185) and reads

(8.211)
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This result should be hardly surprising because we know from Chapter 5
(eq (5.42)) that the impulse response function is the time derivative of the
Heaviside response function. So, in this circumstance we could have ignored
eq (8.185) by simply noting that the result (8.211) can be obtained by
calculating the time derivative of eq (8.200) and by substituting x=L in it.

On the other hand, the receptance FRF can be obtained from eq (8.190):
at x=L this is
 

(8.212)

In the light of preceding chapters, we expect that h(L, L, t) and H(L, L,
ω) form a Fourier transform pair. However, the Fourier transform of eq
(8.211) does not exist, but we may note that the Laplace transform of eq
(8.211) does exist and is given by

where s is the (complex) Laplace operator and can be expressed as 
Hence, leaving aside mathematical rigour for a moment, we see that we can
arrive at eq (8.212) by first taking the Laplace transform of eq (8.211) and
then letting  This mathematical trick is just for purposes of illustration
and it would not be needed if the system had some amount of positive damping;
as a matter of fact, this is always the case for real systems whose time response
and FRFs (eq (8.211) and (8.212)) do not go to infinity when 

Example 8.4. Consider now the case of a constant force P moving at a
constant velocity V along an Euler-Bernoulli beam simply supported at both
ends. The engineering importance of this case is evident because this example
can be used to model a number of common situations, the simplest one
being a heavy vehicle travelling across a bridge deck. We also make the
reasonable assumption that the mass of the vehicle is small in comparison
with the beam mass (the bridge deck) and it does not alter appreciably its
eigenvalues and eigenfunctions.

Mathematically, the moving load can be represented as

(8.213)

and, with reference to eq (8.182), we obtain
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so that, assuming the beam at rest at t=0, we get

(8.214)

where now

are the eigenfrequencies of our pinned-pinned Euler-Bernoulli beam.
A double integration by parts in eq (8.214) leads to

(8.215)

so that the displacement in physical coordinates is given by

(8.216)

The solution (8.216) needs further comments. First, it is interesting to
note that there are a series of values of velocity at which resonance may
occur; they are

(8.217a)

and the time of passage tj at these values of speed is given by

(8.217b)

so that, calling  the fundamental period of vibration of the beam,
we have  Furthermore, if we try to
evaluate the response (8.216) at the critical speeds—i.e. when —
we run into an indeterminate 0/0 situation. However, we can use L’Hospital’s
rule and obtain

(8.218)

which, owing to the finiteness of the time of passage, is a bounded quantity
and does not grow indefinitely with time.
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We will not consider an example of a two-dimensional system (say, a
membrane or a plate) but it is evident that, besides the added mathematical
complexities, the extension of the modal approach to these systems follows
the same line of reasoning. Obviously, now the expansion (8.174) must include
all modes and hence we must sum on all indexes, i.e. the mode indexes and
the degeneracy indexes. For example, recalling the eigenfunctions of a circular
membrane clamped at its outer edge (eqs (8.120) and (8.121)) the expansion
in series of eigenmodes reads
 

where the first series involves the Bessel functions of the first kind of order
zero (no degeneracy), while the second series involves the Bessel functions of
order  and the twofold degeneracy (expressed by eq (8.121)) which,
in the expansion above, is taken into account by means of the summation
index  where we defined for convenience  and

8.10 Final remarks: alternative forms of FRFs and the
introduction of damping

For the sake of completeness, two final remarks are needed before closing this
chapter. The first remark has to do with an alternative approach for finding a
closed-form solution of the frequency response function of a continuous system.
In essence, if we assume a harmonic excitation in the form
 

(8.219)

 
we know that there will always exist a steady-state response of our system
in the form

(8.220)

so that, upon substituting eqs (8.219) and (8.220) into the appropriate
equation of motion, the exponential terms cancel out and we obtain a linear
differential equation in W(x, ω) together with the appropriate boundary
conditions. Then, if we consider that the FRF  is, by definition,
the multiplying coefficient of the harmonic solution when the response is
measured at x=xm and the excitation is applied at the point x=xk—i.e.

 then we have
 

(8.221)

Copyright © 2003 Taylor & Francis Group LLC



By this method, the solution is not obtained in the form of a series of
eigenfunctions (for example, like eq (8.200)) and one of the advantages is
that it can be profitably used in the case of support motion where, in general,
a set of orthonormal functions cannot be obtained.

As an example of this method we can consider the longitudinal vibrations
of a vertical rod (see end of Example 8.1) subjected to a support harmonic
motion of unit amplitude. If, to be consistent with eq (8.220), we call w(x,
t) the longitudinal rod displacement, the relevant equation of motion is
 

(8.222a)

 

with the boundary conditions
 

(8.222b)

 
Assuming a solution in the form of eq (8.220) leads to

 

(8.223a)

 
where  Moreover, the boundary conditions for W are obtained
from eq (8.222b) as

 

(8.223b)

 
It is then easy to show that the solution of the problem (8.223) is

 
(8.224)

 
which becomes unbounded (no damping has been considered) when

 i.e. in correspondence of the eigenvalues of a clamped-free rod.
The same line of reasoning applies if we reconsider the system of example

8.2 and we assume a harmonic excitation of unit amplitude at the free end
x=L. Equations (8.222a) and (8.223a) still apply, but the boundary conditions
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for W are now

(8.225)

which must be enforced on the solution  to give

(8.226)

Equation (8.226a) must be compared with the series solution obtained from
eq (8.190), i.e. explicitly

(8.227)

 

where the frequencies ωj are given by the first of eqs (8.49). The fact that eqs
(8.226) and (8.227) are the same is not obvious at first sight, but it left to
the reader to prove that it is indeed so. (Hint: use the orthogonality property
of the eigenfunctions φj of the clamped—free rod and calculate the inner
product 

From eq (8.226) the FRF at x=L is obtained as

(8.228)

 

which must be compared with the series solution (8.212).
The second remark has to do with the fact that in none of the preceding

sections have we taken into account the effect of energy dissipation. However,
the inclusion of damping—both in free and forced vibration conditions—
leads to results that parallel closely the MDOF case.

As stated on a number of occasions, damping is difficult to define and the
general assumption of viscous damping is mostly a matter of mathematical
convenience rather than an effective explanation of the physical phenomenon.
In this light, if we call w(x, t) the function that represents the displacement
of our continuous system, the general equation of motion (8.172) can be
written as
 

(8.229)

Copyright © 2003 Taylor & Francis Group LLC



where C is a linear homogeneous ‘damping’ operator which involves only
space derivatives up to the order 2p (Section 8.7.1). Now, if we assume that
we already solved the undamped free-vibration problem in terms of
eigenvalues j and mass orthonormal eigenfunctions φj, we can follow the
modal approach and expand w(x, t) as in eq (8.174). Then, taking the inner
product

 

we arrive at

 
(8.230)

 

which, in general, are a set of coupled linear differential equations unless the
damping operator is of the ‘proportional’ form
 

(8.231)

At this point the parallel with the MDOF case is evident: if eq (8.231)
applies, eqs (8.230) become uncoupled and we can define the modal damping
ratios ζj by means of
 

(8.232)

 
which is the infinite dimensional counterpart of eq (6.142). Also, it is
understood that now the modal FRFs are given by eq (7.31).

As for the MDOF case, it may often be more convenient to introduce
viscous damping at the modal level, without the need to specify a damping
operator. In other words, we obtain the uncoupled set of undamped equations
first, and only at this stage we introduce the terms  the values of ζj

being chosen on the basis of experience and/or experimental measurements.
Alternatively, for a harmonic forcing excitation  the model

of structural damping can be introduced. This is generally done by assuming
a damping operator which is proportional to the stiffness operator so that
the uncoupled equations read
 

(8.233)

 
where here γ denotes the structural damping factor.

In the case of general damping, i.e. a damping operator which does not
allow the uncoupling of the equation of motion, it may be interesting to
note that, in principle, we can still adopt the approach described at the
beginning of this section. In other words, if we want to obtain the frequency
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response of our (nonproportionally) damped system, we can assume a
harmonic excitation and a harmonic response in the forms of eqs (8.219)
and (8.220), substitute them in the equation of motion and arrive at a linear
ordinary differential equation for the function W(x, ω). However, this
differential equation has constant but complex coefficients and an analytical
solution is often impossible to obtain.

8.11 Summary and comments

This chapter has dealt with the free and forced vibrations of continuous
parameter systems. As a matter of fact, real-world vibrating systems are
systems whose physical properties (mass, stiffness and damping) are
continuously distributed although—very often—the modelling scheme one
chooses to adopt is a discrete parameter model which lends itself more easily
to the computer implementation of the necessary calculations. The rationale
behind this choice is that continuous systems—which, mathematically
speaking, have an infinite number of degrees of freedom—can be considered
as the limit of finite DOF systems as the number of degrees of freedom tends
to infinity. Then, provided that a sufficient number of DOFs is used in the
appropriate modelling scheme, the finite DOF model can approximate the
continuous system under investigation within an acceptable (and often good
or very good) degree of accuracy.

In this light, it would seem that a specific analysis of continuous systems
is not strictly necessary from a practical point of view. However, this analysis
is of fundamental nature in its own right because it provides physical insight
on the nature of the ‘proper modes of vibration’ of a structure (i.e. the
eigenvectors in the finite DOF representation) which extends over a finite
domain of space. In fact, these are specific motions of the system which
arise from the superposition of travelling waves that propagate back and
forth within the domain of space occupied by the structure. Ultimately, it is
the presence of physical boundaries which is responsible for the onset on
these ‘standing waves’.

Our analysis starts with the study of one of the simplest continuous
systems, the flexible string in transverse motion. Under some basic
assumptions which are at the basis of the ‘classical’ treatment of the subject,
we consider first the topic of transverse waves travelling along a string of
infinite length, and only at a later stage (Section 8.3) do we turn our
attention to strings of finite length. By adopting the well-known method
of separation of variables, we arrive at the identification of the natural
frequencies and proper modes of vibration of the system and obtain a
solution of the relevant equation of motion in terms of these quantities. It
is at this stage of the investigation that we point out the important role
played by boundary conditions in the analysis of the vibrating characteristics
of continuous systems.
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Next, Section 8.4 deals with the free longitudinal (axial) and torsional
vibrations of rods of finite length and the discussion develops along the same
line of reasoning of the flexible string case. This is due to the fact that,
mathematically speaking, the three cases are formally similar—that is, given
the appropriate meaning to the mathematical symbols in each case, the
equation of motion is always in the form of a one-dimensional wave equation.
The same does not apply to the case of flexural vibrations of beams, a type
of system whose equation of motion is in the form of a fourth-order differential
equation (Section 8.5). Moreover, as far as travelling waves are concerned,
the beam is a so-called ‘dispersive’ medium, where this term indicates the fact
that waves of different frequency travel at different speed so that a flexural
pulse (i.e. a given waveshape which is a superposition of a number of different
sinusoidal components) will suffer distortion as it propagates along the beam.
Restricting our attention to the analysis of a so-called ‘Euler-Bernoulli’ beam
of finite length, we consider the natural frequencies (eigenvalues) and proper
modes (eigenfunctions) of some of the most common configurations
encountered in engineering practice, the various configurations differing in
the nature of the boundary conditions. These are: (1) the pinned-pinned beam,
(2) the cantilever beam, (3) the clamped-clamped beam and (4) the free-free
beam. As expected from the developments of preceding chapters, we point
out that the free-free (unrestrained) beam, besides the elastic modes of
vibration, shows two rigid-body modes at zero frequency.

Then, with the above results in mind, Sections 8.5.1 and 8.5.2 deal with
three types of complications: the first with the effect of an axial force (as, say,
in the case of a prestressed beam) and the second effect of rotatory inertia
and shear deformation. The situation in which the latter two types are taken
into account (one generally speaks of a Timoshenko beam in this case) is of
practical importance either when the beam is not sufficiently slender or we
want to consider high-order modes of vibration. Moreover, the corrections
introduced also eliminate the nonphysical result of infinite wave velocity at
high frequencies encountered in the case of an Euler-Bernoulli beam.

Proceeding in order of increasing complexity, Section 8.6 deals with the
two-dimensional counterpart of the flexible string—i.e. the flexible
membrane—and investigates in detail the case of a circular membrane of
radius R. The discussion then turns to more theoretical aspects of the analysis
of continuous systems in general (Sections 8.7, 8.7.1 and 8.7.2), with the
scope of focusing the attention on some unifying characteristics of the
problem. Recalling some important results given in Chapter 2, we note that
the ideas developed in Chapters 6 and 7 for finite DOF (discrete) systems
can be extended, at the price of additional mathematical complexity, to the
case of infinite DOF (continuous) systems. The generalized eigenvalue
problem becomes now a differential eigenvalue problem where the system’s
matrices are replaced by appropriate linear symmetrical operators, the finite-
dimensional vector space of the discrete case becomes an infinite-dimensional
complete linear space with an inner product (a so-called Hilbert space and,
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more specifically, the Hilbert space L2(�), where � is an appropriate finite
domain of physical space) and the expansion theorem in terms of eigenvectors
becomes a series expansion in terms of eigenfunctions whose convergence,
in the general case, is understood in the L2-sense.

These considerations retain their validity even when, for more complex
systems, we are not able to obtain a solution in closed form because of the
increasing mathematical complexity of the problem. As an example of these
difficulties, we consider in Section 8.8 the free vibration of thin plates, a
type of system which, qualitatively, represents the two-dimensional
counterpart of the beam. Although it is still possible to obtain a closed-form
solution for some types of boundary conditions—and we do so for a circular
plate clamped at its outer edge and a rectangular plate simply supported on
all sides—it is clear that the problem soon becomes impracticable and not
amenable to an analytical solution. When this is the case, we have to resort
to a discrete model with a finite number of degrees of freedom, which makes
it possible to obtain an approximate solution and takes us back to the subject
of MDOF systems.

Finally, also providing a number of worked-out examples, Sections 8.9
and 8.9.1 deal with the forced vibration of continuous systems, with particular
attention to the modal approach, i.e. the strategy that allows the analyst to
express the solution of the problem as a series expansion in terms of
eigenmodes. Clearly, this is not the only method of attack (and sometimes it
may not even be the best) but this choice is often preferred in the field of
engineering vibrations because:
 
1. In the study of the response of a vibrating system to a given excitation

there is the possibility of including only a limited number of modes and
neglect all higher-order modes which do not significantly contribute to
the response

2. The technique of experimental modal analysis (Chapter 10) allows the
experimental measurement of the lowest-order eigenfrequencies and
eigenmodes of a given vibrating system and makes it possible to compare
experimental and theoretical results (these latter having been obtained,
typically, from a finite-element model).
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9 MDOF and continuous
systems: approximate
methods

9.1 Introduction

The reader is probably well aware of the fact that—in the last 30 years or
so—the most successful approximate technique that is able to deal adequately
with simple as well as with complex systems is the finite-element method
(FEM). Moreover, since a number of finite-element codes are on the market
at reasonable prices and more and more computationally sophisticated
procedures are being developed, it is easy to predict that this current state of
affairs is probably not going to change for many years to come. Finite-element
codes for engineering problem solving were initially developed for structural
mechanics applications, but their versatility soon led analysts to recognize
that this same technique could be applied with profit to a larger number of
problems covering almost the whole spectrum of engineering disciplines—
statics, dynamics, heat transfer, fluid flow, etc. Since the essence of the finite-
element approach is to establish and solve a (usually very large) set of
algebraic equations, it is clear that the method is particularly well suited to
computer implementation and that here, with little doubt, lies the key to its
success.

However, since their advent, finite-element procedures have taken on a
life of their own, so to speak, so that entire books are dedicated to the subject.
This makes discussion here impractical for two reasons: first, it would divert
us from the main topic of the book and, second, space limitations would
necessarily imply that some important information had to be left out. So,
although we will occasionally make some comments on FEMs in the course
of the book, the interested reader is urged to refer to specific literature: for
example, Bathe [1], Spyrakos [2] and Weaver and Johnston [3].

As a consequence of the considerations above, this chapter will be
dedicated to more ‘classical’ approximation methods, basing our treatment
on the fact that in common engineering practice it is often required, as a
first approach to problems, to have an idea of only a few of the first natural
frequencies—and eventually eigenfunctions—of a given vibrating system.
In this light, discrete MDOF systems and continuous systems are considered
together.
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Finally, it must be noted that some of the concepts that will be discussed,
despite the possibility to use them as computational tools, have important
implications and far-reaching consequences that pervade all the field of
engineering vibrations analysis.

9.2 The Rayleigh quotient

In Section 5.5.1 we first encountered the concept of Rayleigh’s quotient.
The line of reasoning is based on the consideration that for an undamped
(or lightly damped) system vibrating harmonically at one of its natural
frequencies the stiffness/mass ratio is equal to that particular frequency. To
be more specific, consider a n-DOF system with symmetrical mass and
stiffness matrices which is vibrating at its jth natural frequency ωj. The motion
of the system is harmonic in time so that the displacement vector is written
as  where zj is the jth eigenvector. The maximum potential and
kinetic energies in this circumstance (since no energy is lost and no energy is
fed into the system over one cycle) must be equal and are given by
 

(9.1)

respectively. Hence,  implies

 

(9.2a)

where the pjs (j=1, 2,…, n) are the mass orthonormal eigenvectors. On the
other hand, a symmetrical continuous system leads to the same result if we
consider the parallel between MDOF and continuous systems outlined in
Sections 8.7 and 8.7.1. The continuous systems counterpart of eq (9.2a) reads
 

(9.2b)

where the eigenfunctions φj (j=1, 2, 3,…) are chosen to satisfy the condition

We will now consider a discrete n-DOF system and see what happens to
the ratio (9.2a) when the vector entering the inner products at the numerator
and denominator is not an eigenvector of the system under investigation.
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Let u be a general vector and let  be the set of mass
orthonormal eigenvectors of our system. We define the Rayleigh quotient as
 

` (9.3)

By virtue of the expansion theorem, we can write
 

(9.4)

substitute it into eq (9.3) and obtain
 

(9.5)

from which it follows, since  for j=2, 3,…, n

 
(9.6)

meaning that the Rayleigh quotient for an arbitrary vector is always greater
than the first eigenvalue; the equality holds only if  or,
in other words, when u coincides with the lowest eigenvector. Furthermore,
if u is chosen in such a way as to be mass-orthogonal to the first m–1
eigenfunctions, i.e. when  for j=1, 2,…, m–1 it follows that

 and

Hence

(9.7)

and the equality holds when u coincides with the mth eigenvector. By the
same token, we note that in writing the Rayleigh quotient we can factor out
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the highest eigenvalue to get

so that
 

(9.8)

since  Suppose now that the vector u is an
approximation of the kth eigenvector pk, i.e. with e small, we have

(9.9)

where the term ex takes into account the (small) contributions to u from all
eigenvectors other than pk. Inserting eq (9.9) into eq (9.3) we get

(9.10)

and noting that we can expand the ‘error’ x as

(9.11)

so that, owing to the orthogonality properties of eigenvectors,

eq (9.10) reduces to
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where the denominator can be expanded according to the binomial
approximation  to give

(9.12)

The symbol o(ε3) means terms of order ε3 or smaller. This result can be
stated in words by saying that when the ‘trial vector’ u used in forming the
Rayleigh quotient is an approximation of order ε of the kth eigenvector,
then the Rayleigh quotient approximates the kth eigenvalue k with an error
of order ε 2. Alternatively, we can put it in more mathematical terms and say
that the functional R(u) has stationary values in the neighbourhood of
eigenvectors: the stationary values are the eigenvalues, while the eigenvectors
are the stationary points. To answer the question of whether the stationary
points are maxima, minima or saddle points we must rely on some previous
considerations and a few others that will follow.

9.2.1 Courant-Fisher minimax characterization of eigenvalues
and the eigenvalue separation property

When no orthogonality constraints are imposed on the choice of u (such as
in the discussion that leads to eq (9.5)) we may note that, as our trial vector
ranges over the vector space, eqs (9.6) and (9.8) always hold. This leads to
the important conclusions that Rayleigh quotient has a minimum when u=p1

and a maximum when u=pn, so that we can write

(9.13)

and it is understood that u can be any arbitrary vector in the n-dimensional
Euclidean space of the system’s vibration shapes. On the other hand, the
following heuristic argument can give us an idea of what happens at a
stationary point other than 1 and n, say at m, when u is completely
arbitrary. First, we write the obvious chain of inequalities

and then we note that the Rayleigh quotient is a continuous functional of u.
Suppose now that, in ranging over the vector space, u finds itself in the
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vicinity of pm; continuity considerations imply that  Then, if our
trial vector moves toward pm–1 the value of the Rayleigh’s quotient will tend
to decrease while it will tend to increase if u moves toward pm+1. The
conclusion is that the stationary point at m is a saddle point, i.e. the
counterpart of a point of inflection with horizontal tangent when we look
for the extremum points of a function f(x) in ordinary calculus.

The situation is different if the trial vector is not completely arbitrary but
satisfies a number of orthogonality constraints. In this case u is not free to
range over the entire vector space and, referring back to the discussion that
led to eq (9.7), we can write

 
(9.14)

 
meaning that Rayleigh’s quotient has a minimum value of m (which occurs
when u=pm) for all trial vectors orthogonal to the first m–1 eigenvectors

If we turn now to the utility of the considerations above we note that
Rayleigh’s quotient may provide a method for estimating the eigenvalues of
a given system. In practice, however, this possibility is often limited to the
first eigenvalue because the calculation procedure (see also Section 5.5.1)
must start with a reasonable guess of the eigenshape that corresponds to the
eigenvalue we want to estimate. This means that—unless we are dealing
with a very simple system, in which case we can attack the problem directly—
only the first eigenshape can generally be guessed with an acceptable degree
of confidence. Moreover, the deflection produced by a static (typically gravity)
load often proves to be a good trial function for the estimate of 1, while no
such intuitive hints exist for higher modes.

So, as far as the first eigenvalue is concerned, the method is very useful
and can also be improved by forming a sequence of trial vectors designed
to minimize the value of the functional R(u) which, owing to eq (9.6), will
tend to 1; this is exactly the procedure we followed in Section 5.5.1 and
identified under the name of ‘improved Rayleigh method’. It goes without
saying that the lowest eigenvalue is the most important in a large number
of applications.

By contrast, eq (9.14) is of little practical utility because we usually have
no information on the lowest eigenvectors  At this point we
could ask whether it is possible to obtain some information on the
intermediate eigenvalues without any previous knowledge of the lower
eigenvectors. This is precisely the result of the Courant-Fisher theorem. It
must be pointed out that the importance of the theorem itself and of its
consequences is not so much in the possibility of estimating eigenvalues
independently, but in its fundamental nature; in fact, it provides a rigorous
mathematical basis for a large number of developments in the solution of
eigenvalue problems (e.g. Wilkinson [4], Bathe [1] and Meirovitch[5]).
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The Courant-Fisher theorem, which we state here without proof, is
generally given in terms of a single Hermitian (symmetrical, if all its entries
are real) matrix in the following form:

Theorem 9.1. Let A be a Hermitian matrix with eigenvalues 
and let m be a given integer with  Then

(9.15)

and
 

(9.16)

where the wis (in the appropriate number to satisfy eq (9.15) or (9.16)) are
a set of (mutually independent) given vectors of the vector space.

A few comments are in order at this point.
First of all, we may note that the typical eigenvalue problem of vibration

analysis involves two symmetrical matrices, while the theorem above is
written for a single matrix alone. However, this is only a minor inconvenience,
because we have shown in Chapter 6 (Section 6.8, eqs (6.165) and (6.166))
that the generalized eigenvalue problem can be transformed into a standard
eigenvalue problem in terms of a single symmetrical matrix. Obviously, when
we are dealing with this single matrix, which we call, A the Rayleigh quotient
is defined as

Second, when m=1 or m=n, the theorem reduces to the statements
 and  which are the ‘single matrix’ counterpart

of eqs (9.13).
In general, the statement of greatest interest to us is given by eq (9.15),

because the attention is usually on lowest order eigenvalues. With this in
mind, let us look more closely at this statement of the theorem. For example,
suppose that we are trying to estimate 2; we can choose an arbitrary n×1
vector w and constrain our trial vector u to be orthogonal to w, i.e. to satisfy
the constraint equation
 

(9.17)
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Now, under the mathematical constraint expressed by eq (9.17), if u and
w are allowed to vary within the vector space, the maximum value that can
be obtained among the values  is exactly 2. If the eigenvalue
we are trying to estimate is 3, two mathematical constraints are needed,
meaning that we choose two vectors w1, w2 and our trial vector must satisfy
both conditions  Therefore, as a matter of fact, the
Courant-Fisher theorem can also be looked upon as an optimization
procedure to estimate eigenvalues.

On more physical grounds, we may summarize the evaluation of, say, 2

by noting that enforcing the vibration shape u on our system—unless u
coincides with one of the eigenshapes—necessarily increases the stiffness of
our system, the mass being fixed. In practice, we are dealing with a new
system whose first eigenvalue  satisfies the obvious inequality  but
also, owing to the constraint (9.17),  (this inequality is less obvious,
but it is not difficult to prove; the proof is left to the reader). Then, the
theorem states that the maximum value of  that can be obtained under
these conditions is 2. Likewise, the evaluation of m implies m–1
mathematical constraints of the form (9.17).

There are a number of important consequences of the Courant-Fisher
theorem; for our purposes, one that deserves particular attention is the so-
called separation property of the eigenvalues (or interlacing property), which
we state here without proof in the form of the following theorem.

Theorem 9.2. Let A be a given Hermitian n×n matrix with eigenvalues λj,
j=1, 2,…n. If we consider the eigenproblems
 

(9.18)
 

where A(k) is obtained by deleting the last k rows and columns of A, we
have the eigenvalue separation property
 

(9.19)

where the index k may range from 0 to n–2.

In other words, if, for example, we turn our eigenvalue problem of order
n into an eigenproblem of order n–1 by deleting the last row and column
from the original matrix, the eigenvalues of the n–1 eigenproblem are
‘bracketed’ by the eigenvalues of the original problem. Conversely, if A is a
n×n Hermitian matrix, v a given n×1 vector and b is a real number, the
eigenvalues  of the (n+1)×(n+1) matrix

Copyright © 2003 Taylor & Francis Group LLC



satisfy the inequalities  The extension
of Theorem 9.2 to the case of two real, positive definite n×n matrices is not
difficult and it can be shown that the eigenvalues of the two eigenproblems
 

in which the n×n matrices K and M are obtained by bordering  and  (of
order (n–1)×(n–1)) with the (n–1)×1 vectors k and m and the scalars k and
m, respectively, satisfy the separation (interlacing) property.

9.2.2 Systems with lumped masses—Dunkerley’s formula

In the preceding sections, we pointed out that, for a given system, the Rayleigh
quotient provides an approximation of its lowest eigenvalue which satisfies
the inequality  This means that, unless the choice of the trial vector
is particularly lucky, R(u) always overestimates the value of 1. For a limited
(but not small) class of systems, we will now show that Dunkerley’s formula
provides a different method to estimate 1. Furthermore, the value that we
obtain in this case is always an underestimate of 1.

Suppose that we are dealing with a positive definite n-DOF system in
which the masses are localized (lumped) at n specific points. Then, if we
choose the coordinates as the absolute displacements of the masses, the mass
matrix is diagonal (Section 6.5).

The generalized eigenproblem for this system is written in the usual form
as  but it can also be expressed as a standard eigenproblem in
terms of the flexibility matrix  (whose existence is guaranteed
by positive definiteness), i.e.

 

(9.20)

 

If the system has lumped masses and hence M=diag(mj), the matrix AM
has the particularly simple form
 

so that—by virtue of a well known result of linear algebra stating that the
trace (sum of its diagonal elements) of a matrix is equal to the sum of its
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eigenvalues—we can write

(9.21)

from which Dunkerley’s formula follows, i.e.

(9.22a)

or, equivalently,

(9.22b)

 

The advantage of eq (9.22b) for lumped mass systems lies in the fact that
the diagonal elements of the flexibility matrix are generally the easiest ones
to evaluate and that, once the lumping of masses has been decided, the mj

are all known. As opposed to the Rayleigh quotient, the main drawbacks of
Dunkerley’s formula are that the method does not apply to unrestrained
systems and that it is not possible to have an ‘equals’ sign in eqs (9.22a and
b), meaning that, in other words, Dunkerley’s formula always yields an
approximate value.

9.3 The Rayleigh-Ritz method and the assumed modes
method

The Rayleigh-Ritz method is an extension of the Rayleigh method suggested
by Ritz. In essence, the Rayleigh method allows the analyst to calculate
approximately the lowest eigenvalue of a given system by appropriately
choosing a trial vector u (or a function for continuous systems) to insert in
the Rayleigh quotient. The quality of the estimate obviously depends on this
choice, but the stationarity of Rayleigh quotient—provided that the choice
is reasonable—guarantees an acceptable result. Moreover, if the assumed
shape contains one or more variable parameters, the estimate can be improved
by differentiating with respect to this/these parameter(s) to seek the minimum
value of R(u). The Rayleigh-Ritz method depends on this idea and can be
used to calculate approximately a certain number of undamped eigenvalues
and eigenshapes of a given discrete or continuous system.

Consider for the moment a n-DOF system, where n is generally large.
Our main interest may lie in the first m eigenvalues and eigenvectors, with

 In this light, we express the displacement shape of our system as the
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superposition of m independent Ritz trial vectors zj, i.e.

(9.23)

 
where the generalized coordinates cj are, as yet, unknown and in the matrix
expression we defined the n×m and m×1 matrices  and

 Evidently, the closer the Ritz vectors are to the true
vibration shapes, the better are the results.

The displacement shape (9.23) is then inserted in the Rayleigh quotient to
give

(9.24)

 
so that the coefficients cj can be determined by making R(u) stationary. The
m×m matrices  and  in eq (9.24) are given in terms of the stiffness and
mass matrix of the original system as

(9.25)

Before proceeding further, we may note that the assumption (9.23) consists
of approximating our n-DOF by a m-DOF system, meaning that, in essence,
we impose the constraints

(9.26)

on the original system. Since constraints tend to increase the stiffness of a
system, we may expect two consequences: the first is that the m eigenvalues
obtained by this method will overestimate the lowest m ‘true’ eigenvalues
and the second is that an increase of m will yield better estimates because,
by doing so, we just eliminate some of the constraints (9.26).

The necessary conditions to make R(u) stationary are
 

(9.27)

which, taking eq (9.24) into account, become
 

(9.28)
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Now, owing to the symmetry of  and , the calculation of the derivatives
in eq (9.28) leads to a set of equations that can be put together into the
single matrix equation

(9.29)

which, by defining  we recognize as a generalized eigenvalue
problem of order m. This result shows that the effect of the Rayleigh-Ritz
method is to reduce the number of degrees of freedom to a predetermined
value m. In this regard, it is important to note that the number of eigenvalues
and eigenvectors that can be obtained with acceptable accuracy is generally
less than the number of Ritz vectors; in other words, if our interest is in the
first m eigenpairs, it is advisable to include s Ritz shapes in the process,
where, let us say, 

The eigenproblem (9.29) can be solved by means of any standard
eigensolver and the result will be a set of eigenvalues  with the
corresponding eigenvectors  the eigenvalues are approximations of
the true lower eigenvalues of the original system, while the eigenvectors are
not the mode shapes of the original system. The cjs are orthogonal with
respect to the matrices  and  and can be normalized by any appropriate
normalization procedure. If we call these normalized eigenvectors cj, we can
obtain the approximations of the m mode shapes of the original system from
eq (9.23), i.e. by writing

(9.30)

and note that these approximate eigenvectors are orthogonal with respect to
the matrices of the original system: that is, by virtue of eq (9.25), we have

(9.31a)

where we called  and  the jth generalized stiffness and mass of the
reduced system, respectively (their values obviously depend on how we decide
to normalize the vectors cj). The natural consequences of eq (9.31a) are that

(9.31b)

and that these approximate vectors can be used in the standard mode
superposition procedure for dynamic analysis.
From the above considerations it appears that the choice of the Ritz shapes
is probably the most difficult step of the whole method. In general, this is so;
however, we may note that the line of reasoning adopted in the improved
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Rayleigh method (Section 5.5.1) is still valid. Suppose, in fact, that we choose
a set of m initial trial vectors arranged in the matrix Z(0); on physical grounds
we can argue that the deflected shapes originating from the action of the
inertia forces due to Z(0) represent a better set of Ritz vectors. These are
given by  but cannot be calculated because of the unknown
factor . So, we choose the vectors

(9.32)

and use them in eq (9.23) in order to arrive at the eigenvalue problem (9.29)
where now, introducing the n×n flexibility matrix of the original system
A=K–1, we have
 

(9.33)

Again, note that the eigenvectors we obtain from this problem are not the
eigenvectors of the original system but they must be transformed back by
means of the matrix Z(1). This procedure can also be seen as the first step of
an iteration method which allows the analyst to obtain a good approximate
‘reduced’ solution even when the initial trial vectors do not represent what
we might call ‘a good guess’ of the true vibration shapes. As a matter of
fact, a robust numerical procedure based on the line of reasoning outlined
above was developed by Bathe and it is called the ‘subspace iteration method’.
The interested reader may refer, for example, to Bathe [1] (Section 11.6) or
Humar[6] (Section 11.3.4).

Also, it is worth noting that the eigenvalues that we obtain by solving the
eigenproblem of order m are bracketed by those of the eigenproblem of order
m+1 because, in essence, we reduce by one the number of constraints of eq (9.26).

The Raleigh-Ritz method works equally well in the case of continuous
systems. In this case, the initial choice consists of a set of m Ritz shape
functions zj(x) and the deflected shape of the system is written as

(9.34)

where Z is now the 1×m matrix  and c is as in eq (9.23). Then,
by forming the Rayleigh quotient

(9.35)

Copyright © 2003 Taylor & Francis Group LLC



where K and M are, respectively, the symmetrical stiffness and mass operators
of the system under investigation and we introduced the notation

(9.36)

By enforcing the conditions  we are led to the
set of m algebraic equations
 

(9.37)

which can be written in matrix form as the eigenproblem of order m
 

(9.38)

 
where  and  are m×m symmetrical matrices whose entries are, respectively,
kij and mij.

Also in this case, the quality of the result depends on the initial choice of
the Ritz functions and better approximations are obtained when these
functions resemble closely the eigenshapes of the system under investigation.
In addition, for a given continuous system, we can intuitively expect that
better approximations may be obtained by choosing a set of trial functions
which satisfy as many boundary conditions as possible. This latter aspect,
which has no counterpart in the discrete case, will be considered in a later
section. For the moment it is interesting to note that the eigenfunctions of a
simpler but similar system can be, in general, a good choice to represent the
Ritz shapes of a more complex system; a typical example could be the use of
the first eigenshapes of a beam with uniform properties as the Ritz functions
of a beam with the same boundary conditions but a nonuniform mass and
stiffness distribution along its length.

The assumed modes method is closely related to the Rayleigh-Ritz method
and, as a matter of fact, leads to the same results (for this reason, some
authors do not make a distinction between the two). In order to outline the
assumed modes method, we may refer to a continuous system and note that,
in this case, the solution is written in the form

(9.39)

where the zj, the assumed modes, are just a set of Ritz functions, whereas the
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generalized coordinates qj depend now on the variable t. This means that, as
opposed to Rayleigh-Ritz, the method starts before the elimination of the
time-dependent part of the solution and it is used in conjunction with
Lagrange’s equations to obtain a finite number of ordinary differential
equations that govern the time evolution of the qj.

Given the approximate solution (9.39), the kinetic and potential energy
of our system can be written as
 

(9.40)

where the matrices  and  are the symmetrical matrices of
eqs (9.36) and (9.38). Next, by considering Lagrange’s equations for a
conservative holonomic system
 

(9.41)

we can perform the prescribed derivatives to obtain
 

(9.42a)

which, in matrix form, reads
 

(9.42b)

so that, assuming a harmonic time dependence for the generalized coordinates
qj, i.e.  we are led to the generalized eigenvalue problem of order m

(9.43)

which is identical to eq (9.38). Its solution consists of (1) a set of eigenvalues
which represent the estimates of the first m eigenvalues of the original system
and (2) a set of eigenvectors which represent the amplitudes of the time-
dependent harmonic motion and can be used to obtain the first m
eigenfunctions of the original system by means of eq (9.39).

Example 9.1. As a simple application of the Rayleigh-Ritz method which
can be confronted with the closed form solution, we may consider the problem
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of approximating the first two eigenvalues of a clamped-clamped beam of
length L, uniform flexural stiffness EI and uniform mass per unit length µ.
For this example, we choose two Ritz functions which satisfy all the boundary
conditions (8.68), i.e.

(9.44)

 
then, we calculate the coefficients kij and mij as in eq (9.36)
 

and
 

and form the eigenvalue problem (9.38)
 

which admits nontrivial solutions only if
 

(9.45)
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where we define  Finally, from eq (9.45) we get

(9.46a)

These values must be compared to the exact eigenvalues (eq (8.70))
 

(9.46b)

showing that the relative error (with respect to the true eigenvalues) is 0.36%
for  and 2.92% for . Moreover, as expected, both approximate frequencies
are higher than the true values.

It is left to the reader to tackle the same problem by choosing as Ritz
functions the first two eigenfunctions of a beam simply supported at both
ends, i.e.

(9.47)

which satisfy only two of the four boundary conditions of the clampled-
clamped beam.

9.3.1 Continuous systems—a few comments on admissible and
comparison functions

In forming the Rayleigh quotient—both in the Rayleigh and in the Raleigh-
Ritz methods—we have pointed out more than once that a good choice of
the trial function(s) translates into better approximations for the ‘true’
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solution of the problem at hand: this means that, for continuous systems,
the boundary conditions must be taken into account. In this regard we can
refer back to Section 5.5 and recall, in the light of the developments of
Chapter 8, the definitions of admissible and comparison functions.

Given a continuous system with stiffness and mass operators K and M of
order 2p and  respectively:
 
• An admissible function is a function which is p times differentiable and

satisfies only the geometric (or essential) boundary conditions of the
problem.

• A comparison function is a function which is 2p times differentiable
and satisfies all the boundary conditions of the problem.

 
It is evident that the eigenfunctions of the system constitute a subset of
comparison functions (the comparison functions, in general, do not need to
satisfy the differential equation of motion) and that, in turn, the comparison
functions form a subset of admissible functions. So, on one hand, it would
seem highly desirable to satisfy all the boundary conditions—thus limiting
the choice to comparison functions—but, on the other hand, it is evident
that the class of admissible functions allows more freedom of choice,
particularly in view of the fact that force boundary conditions are often
more difficult to satisfy than geometric ones.

If, for present convenience, we turn our attention to a specific case, we
may consider, for example, the flexural vibrations of a beam simply supported
at both ends, whose boundary conditions are given by eqs (8.59). Let us
choose a set of (comparison) functions zj which, by definition, satisfy all of
eqs (8.59) and calculate the kij by means of the inner product 
Explicitly, the stiffness operator is of order p=2 and we have
 

We can now integrate twice by parts to arrive at the expression
 

(9.48)

where the appropriate boundary conditions have been taken into account.
The important point is that the eq (9.48) is defined for functions that are
only p times differentiable, which is precisely the requirement for admissible
functions.

In addition, we can consider other examples of continuous systems and
note that we can form the Rayleigh quotient after having performed an
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appropriate number of integration by parts, so that some requirements on the
Ritz functions can be relaxed and we can be free to choose from the larger
class of admissible functions. Obviously, these considerations hold true for the
Rayleigh method (only one function involved), the Rayleigh-Ritz method and
the assumed modes method. With reference to the beam problem above, the
consequence is that, say, in forming the Rayleigh quotient or in calculating the
kij we either can adopt the inner-product expression in conjunction with
comparison functions or adopt eq (9.48) in conjunction with admissible
functions; when comparison functions are used in eq (9.48) the two forms are
equivalent. It is left to the reader to show that the counterparts of eq (9.48)
for a rod in longitudinal or torsional vibration are, respectively

(9.49)

The discussion on the initial choice of a set of appropriate functions can be
taken further by noting that, although convenient, the use of eq (9.48) (or
(9.49), or the equivalent for the system under investigation) in conjunction
with admissible functions obviously violates the natural boundary conditions.
Hence, since comparison functions are often difficult to generate, the question
arises whether we should abandon natural boundary conditions altogether.
The answer is that yes, in most practical situations, this is the choice. However,
it is interesting to note that a class of functions, called the quasi-comparison
functions, has been devised in order to obviate this inconvenience; the
interested reader is referred to Meirovitch and Kwak [7] or Meirovitch [5].
In general, the choice of such functions may not be easy and, owing to these
difficulties, it is limited to one-dimensional systems.

In conclusion, there are two points we want to make in this section:

1. As far as the above methods are concerned, admissible functions are the
most widely encountered choice. Nevertheless, when the problem
formulation and physical insight permit, we may restrict our choice to
comparison functions.

2. In forced-vibration problems—by taking a modal approach—we can
obtain an approximate response by using the approximate m eigenvectors
which result from the Rayleigh-Ritz method and it may happen that a
particular response is better approximated by a set some judicious
admissible functions rather than a set of comparison functions. This is
because the forced response depends also on the spatial dependence of
the forcing functions, and not only on the eigenfunctions of the free
vibrating system.
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Example 9.2. As a second example in this chapter we consider a uniform
beam of length L simply supported at both ends (pinned-pinned configuration);
the flexural stiffness of the beam is EI and its mass per unit length is µ. We
want to determine an approximate solution for the first two eigenvalues and
the first two eigenfunctions. We begin by choosing the two Ritz functions

(9.50)

which we recognize as admissible functions because they do not satisfy the
natural boundary conditions of the problem. We calculate the coefficients kij

by means of eq (9.48) and the coefficients mij and we assemble them in the
matrices

which, in turn, generate the eigenproblem

(9.51)

where we define  From eq (9.51) we obtain the two eigenvalues

(9.52a)
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(which are, respectively, 10.9% and 27.1% higher with respect to the true
eigenvalues) and the two mass-orthonormal eigenvectors

(9.52b)

 

Then, the approximate eigenfunctions of the original problem can be
recovered by means of eq (9.34), from which we obtain

(9.53)

These mode shapes are plotted in Fig. 9.1 with the exact eigenshapes of
eq (8.62) as functions of the variable x/L. Note that the exact eigenshapes
have been scaled to obtain the same maximum value as the approximate
eigenfunctions.

Example 9.3. This last example is left to the reader and only a few comments
will be made. Consider the longitudinal vibration of the rod shown in Fig.
9.2. The relevant parameters of the rod are as follows: axial stiffness

Fig. 9.1 Approximate and exact mode shapes (pinned-pinned beam).
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EA, length L and mass per unit length µ. In addition, k is the stiffness of the
spring attached to the right end, and the idea is to estimate the first two
eigenvalues of this system.

An easy and reasonable choice of two Ritz functions is represented by the
polynomials

(9.54)

which satisfy all the boundary conditions—and hence are two comparison
functions—for the fixed-free rod (eqs (8.48)). However, they are only
admissible functions for the present case, whose boundary conditions read
 

(9.55)

 

and it is evident that both functions eq (9.54) do not satisfy the natural
boundary condition of axial force balance at x=L. A point worthy of notice
is that, in this case, the coefficients kij are given by
 

(9.56)

In fact, if we consider two comparison functions f and g (i.e. two functions

Fig. 9.2 Example 9.3: longitudinal vibration of a rod.
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that satisfy eqs (9.55)), we can write

where we have integrated by parts and taken into account the boundary
conditions (9.55). The last expression is defined for admissible functions
and is precisely the counterpart of the first of eq (9.49) for the case at hand.
This result should not be surprising because the localized spring must
contribute to the total potential energy of the system.

A final comment to note is that in the case of an elastic element—say, for
example a beam in transverse vibration—with s localized springs and m
localized masses, the coefficients kij and mij are obtained as
 

(9.58)

where  are the stiffness coefficients of the springs acting at
the locations x=xl and  are the localized masses at the
locations x=xr.

9.4 Summary and comments

On one hand, by means of increasingly sophisticated computational
techniques, the power of modern computers allows the analysis and the
solution of complex structural dynamics problems. On the other hand, this
possibility may give the analyst a feeling of exactness and objectivity which
is, to say the least, potentially dangerous. As a matter of fact, the user has
limited control on the various steps of the computational procedures and
sometimes—in the author’s opinion—he does not even receive great help
from the manuals that accompany the software packages. The numerical
procedures themselves, in turn, are never ‘fully tested’ for two main reasons:

(9.57)
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first, because this is often an impossible task (furthermore, the software
designer cannot be aware of the ways in which his software will be used)
and, second, because of cost and time problems. So, it is always wise to look
at the results of a complex numerical analysis with a critical eye. In this
light, the importance of approximate methods cannot be overstated. This is
why, even in the era of computers, a chapter on ‘classical’ approximate
methods is never out of place. Here, the term ‘classical’ refers to methods
that have been developed many years before the advent of digital computers
(e.g. the fundamental text of Lord Rayleigh[8]) and whose ‘only’ requirements
are a little patience, a good insight into the physics of the problem and,
when necessary, a limited use of computer resources. Hence, discussion of
the ubiquitous finite-element method—which is also an approximation
method in its own right—is not included in this chapter.

Our attention is mainly focused on the Rayleigh and Rayleigh-Ritz
methods, which are both based on the mathematical properties of the Rayleigh
quotient (Sections 9.2 and 9.2.1)—a concept that pervades all branches of
structural dynamics. For a given system, the Rayleigh method is used to
obtain an approximate value for the first eigenvalue, while the Rayleigh-
Ritz method is used to estimate the lowest eigenvalues and eigenvectors.
Both methods start with an initial assumption on the vibration shape(s) of
the system under study and their effectiveness is due to the stationarity
property of the Raleigh quotient which guarantees that a reasonable guess
of these trial shape(s) leads to acceptable results. Moreover, when the initial
assumption seems too crude, both methods can be used iteratively in order
to obtain better approximations of the ‘true’ values.

In the light of the fact that—unless the assumed shape coincides with the
true eigenshape—the Rayleigh method always leads to an overestimate of the
first eigenvalue, Section 9.2.2 considers Dunkerley’s formula which, in turn,
always leads to an underestimate of the first eigenvalue. Although its use is
generally limited to positive definite systems with lumped masses, Dunkerley’s
formula can also be useful when we need to verify that the fundamental
frequency of a given system is higher than a given prescribed value.

The Rayleigh and Rayleigh-Ritz methods apply equally well to both
discrete and continuous systems, and so does the assumed modes method,
which is closely related to the Rayleigh-Ritz method but uses a set of time
dependent generalized coordinates in conjunction with Lagrange equations.
However, for continuous systems the problem of boundary conditions must
be considered when we choose the set of Ritz trial functions. Boundary
conditions, in turn, can be classified as geometric (or essential) or as natural
(or force). Geometric boundary conditions arise from constraints on the
displacements and/or slopes at the boundary of a physical body, while natural
boundary conditions arise from force balance at the boundary. Since the
accuracy of the result depends on how well the chosen shapes approximate
the real eigenfunctions, it may seem appropriate to choose a set of trial
functions which satisfy all the boundary conditions of the problem at hand,
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i.e. a set of ‘comparison functions’. However, natural boundary conditions
are much more difficult to satisfy than geometric ones and the common
practice is to choose a set of Ritz functions which satisfy only the geometric
boundary conditions, meaning that the choice is made from the much broader
class of ‘admissible functions’. Again, this possibility ultimately relies on the
stationarity property of the Rayleigh quotient and allows more freedom of
choice to the analyst, often at the price of a negligible loss of accuracy for
most practical purposes. Furthermore, when we adopt a modal approach to
solve a forced vibration problem, a judicious choice of admissible Ritz
functions may lead to an approximation of the true response which is just as
good (or even better) as the approximation that we can obtain by choosing
a set of comparison functions. This is because the response of the system
depends both on the eigenfunctions of the system and on the spatial
distribution of the forcing function(s).
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10 Experimental modal analysis

10.1 Introduction

In almost every branch of engineering, vibration phenomena have always
been measured with two main objectives in mind: the first is to determine
the vibration levels of a structure or a machine under ‘operating’ conditions,
while the second is to validate theoretical models or predictions. Thanks to
the developments and advances in electronic instrumentation and computer
resources of recent decades, both types of measurements can now be
performed effectively; one should also consider that the increasing need for
accurate and sophisticated measurements has been brought about by the
design of lighter, more flexible and less damped structures, which are
increasingly susceptible to the action of dynamic forces.

Experimental modal analysis (EMA) is now a major tool in the field of
vibration testing. As such, it was first applied in the 1940s in order to gain
more insight in the dynamic behaviour of aircraft structures and, since then,
it has evolved through various stages where the terms of ‘resonance testing’
or ‘mechanical impedance’ were used to define this general area of activity.

Modal testing is defined as the process of characterizing the dynamic
behaviour of a structure in terms of its modes of vibration. More specifically,
EMA aims at the development of a mathematical model which describes the
vibration properties of a structure from experimental data rather than from
theoretical analysis; in this light, it is important to understand that a correct
approach to the experimental procedures can only be decided after the
objectives of the investigation have been specified in detail. In other words,
the right questions to ask are ‘What do we need to know? What is the desired
outcome of the experimental analysis?’ and ‘What are the steps that follow
the experimental test and for what reason are they undertaken?’. As often
happens in science and technology—and this easier said than done—posing
the problem correctly generally results in considerable savings in terms of
time and money. The necessity of stating the problem correctly is due to the
fact that modal testing can be used to investigate a large class of problems—
from finite-element model verification to troubleshooting, from component
substructuring to integrity assessment, from evaluation of structural
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modifications to damage detection and so forth—and therefore the final
goal has a significant influence on the practical aspects of what to do and
how to do it. Obviously, the type and size of structure under test also play
a major role in this regard.

Last but not least, it is worth noting that, on the experimenter’s part, a correct
approach to EMA requires a broad knowledge of many branches of engineering
which, traditionally, have often been considered as separate areas of activity.

If we now refer back to the introduction of Chapter 7, we can once again
adopt Ewins’ definitions and note that in this chapter we will proceed along
the ‘experimental route’ to vibration analysis which, schematically, goes
through the following three stages:
 
1. the measurement of the response properties of a given system;
2. the extraction of its modal properties (eigenfrequencies, eigenvectors and

modal damping ratios);
3. the definition of an appropriate mathematical model which, hopefully,

describes within a certain degree of accuracy some essential characteristics
of the original system and can be used for further analysis.

10.2 Experimental modal analysis—overview of the
fundamentals

In essence, EMA is the process by which an appropriate set of measurements
is performed on a given structure in order to extract information on its modal
characteristics, i.e. natural frequencies of vibration, mode shapes and damping
factors. Broadly speaking, the whole process can be divided into the three
main phases as defined in the preceding section, which can be synthetically
restated as:
 
1. data acquisition
2. modal parameters estimation
3. interpretation and presentation of results.
 
It is the author’s opinion that the most delicate phase is the first one. In fact,
no analysis can fix a set of poor experimental measurements, and it seldom
happens that the experimenter is given a second chance. By contrast, a good
set of experimental data can always be used more than once to go through
phases 2 and 3.

A modal analysis test is performed under a controlled forced vibration
condition, meaning that the structure is subject to a measurable force input
and its vibratory response output is measured at a number of locations which
identify the degrees of freedom of the structure. Three basic assumptions are
made on the structure to be tested:
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1. The structure is linear. This assumption means that the principle of
superposition holds; it implies that the structure’s response to a force input
is a linear combination of its modes and also that the structure’s response
to multiple input forces is the sum of the responses to the same forces
applied separately. In general, a wide class of structures behave linearly if
the input excitation is maintained within a limited amplitude range; hence,
during the test, it is important to excite the structure within this range.

For completeness of information, It must be pointed out that there
exists an area of activity called ‘nonlinear modal analysis’ whose main
objective is the same as for the linear case, i.e. to establish a mathematical
model of the structure under test from a set of experimental
measurements. In this case, however, the principle of superposition cannot
be invoked and the mathematical model becomes nonunique, being
dependent on vibration amplitude.

2. The structure is time invariant. This assumption means that the
parameters to be determined are constants and do not change with time.
The simplest example is a mass-spring SDOF system whose mass m and
spring stiffness k are assumed to be constant.

3. The structure is observable. This assumption means that the input-output
measurements to be made contain enough information to adequately
determine the system’s dynamics. Examples of systems that are not
observable would include structures or machines with loose components
(that may rattle) or a tank partially filled with a fluid that would slosh
during measurements: if possible, these complicated behaviours should
be eliminated in order to obtain a reliable modal model.

 
In addition to the assumptions above, most structures encountered in vibration
testing obey Maxwell’s reciprocity relations provided that the inputs and
outputs are not mixed. In other words, for linear holonomic-scleronomic
systems reciprocity holds if, for example, all inputs are forces and all outputs
are displacements (or velocities or accelerations); by contrast, reciprocity does
not apply if, say, some inputs are forces and some are displacements and if
some outputs are velocities and some are displacements. Unless otherwise stated,
we will assume in the following that reciprocity holds; for our purposes, the
main consequence of this assumption is that receptance, mobility, and
accelerance and impulse response functions matrices are all symmetrical.

Given the assumptions above, a modal test can be performed by proceeding
through phases 1–3. Since there is no such thing as ‘the right way’ valid for
all circumstances, each phase poses a number of specific problems whose
solutions depend, for the most part, on the final objectives of the investigation
and on the desired results.

In phase 1 the problem to be tackled has to do with the experimental set-
up and the questions to be answered are, for example: how many points
(degrees of freedom) are needed to achieve the desired result? how do we
excite the structure and how do we measure its response?
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In phase 2, on the other hand, the focus is on the specific technique to be
used in order to extract the modal parameters from the experimental
measurements. This task is now accomplished by means of commercial
software packages but the user, at a minimum, should at least have an idea
of how the various methods work in order to decide which technique may
be adopted for his/her specific application.

Finally, phase 3 has to do with the physical interpretation of results and
with their presentation in form of numbers, graphs, animations of the modal
shapes or whatever else is required for further theoretical analysis, if any is
needed.

10.2.1 FRFs of SDOF systems

With the exception of the available electronic instrumentation and the basic
concepts of digital signal analysis—which will be considered separately in
the final chapters of this book—most of the theoretical concepts needed in
EMA have been introduced and discussed in previous chapters (Chapters 4,
6 and 7) whose content is a prerequisite for the present developments.
Nevertheless, in the light of the fact that the first step in a large number of
experimental methods in modal analysis consists of acquiring an appropriate
set of frequency response functions (FRFs) of the system under investigation,
this section considers briefly some characteristics of these functions.

Consider, for example, the receptance function of an SDOF system whose
physical parameters are mass m stiffness k and damping coefficient c. From
eq (4.42) the magnitude of this FRF is given by

(10.1a)

or, alternatively (eq (4.44))
 

(10.1b)

 

where, as usual,  and  When or
 we   have, respectively

 
(10.2a)

 

and
 

(10.3a)
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Owing to the wide dynamic range of FRFs, it is often customary to plot
the magnitude of FRF functions on log-log graphs or, more precisely, in dB
(where the reference value, unless otherwise stated, is unity); this circumstance
has also the additional advantage that data that plot as curves on linear
scales become asymptotic to straight lines on log scales and provide a simple
means for identifying the stiffness and mass of simple systems. In fact, eqs
(10.2a) and (10.3a) become, respectively
 

(10.2b)
 

and
 

(10.3b)
 

so that in the low-frequency part of the graph we have a horizontal spring
line and in the high-frequency part of the graph we have a mass line whose
slope is –40 dB/decade (–12.04 dB/octave, or a downward slope of –2 on a
log scale) and whose position is controlled by the value of m. The stiffness
and mass lines intersect at a point whose abscissa is the resonant frequency
of the system, i.e. when the spring and the inertia force cancel and only the
damping force is left to counteract the external applied force.

As an example, a graph of this kind is plotted in Fig. 10.1 for a system
with  and c=1200 N s/m (implying 

 and  note that, as expected, the stiffness line is
at –120 dB, meaning that 

Fig. 10.1
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A similar line of reasoning applies to mobility and accelerance FRFs;
mobility graphs, for example, are symmetrical about the vertical axis at ωn;
in the low frequency range we note a stiffness line with an upward slope of
+20 dB/decade (+6.02 dB/octave, or +1 on a log scale) while in the high-
frequency range there is a mass line with a downward slope of –20 dB/
decade (–1 on a log scale). Moreover, at resonance we get
 

(10.4)
 

implying that there is a horizontal line of viscous damping in the logarithmic
representation (in this regard, the reader can verify that a horizontal line of
hysteretic damping is obtained in receptance graphs).

By contrast, accelerance graphs display a stiffness line with an upward
slope of +40 dB/decade in the low-frequency range and a horizontal mass
line in the high frequency range. The graphs of mobility and accelerance for
the SDOF system considered above are shown in Figs 10.2 and 10.3.

Equation (10.1a) (or (10.1b)), however, does not tell the whole story.
Whether we consider an SDOF or an MDOF system, we know from previous
chapters that FRFs are complex functions and cannot be completely
represented on a standard x–y graph. The consequence is that there are three
widely adopted display formats:
 
• The Bode diagram. This consists of two graphs which plot, respectively,

the FRF magnitude and phase as functions of frequency. The graph of

Fig. 10.2
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magnitude versus frequency is usually displayed in log(y)–log(x) scales,
dB(y)–log(x) or dB(y)–linear(x) scales (but linear-linear scales are
sometimes used as well); in this regard it is worth noting that plotting
the amplitude ratio in dB on a linear scale is equivalent to plotting the
amplitude on a logarithmic scale.

• The real and imaginary plots. These display the FRF real and imaginary
parts as functions of frequency.

• The Nyquist diagram (or polar graph). This is a single plot which displays
the FRF imaginary part as a function of the real part (this format is
particularly useful in many circumstances, but has the inconvenience of
not showing explicitly the frequency information (Fig. 4.14); this
information can be given by adding captions which indicate the values
of frequency).

All of the above formats are generally available in commercial software
packages.

In the Bode diagrams, the graphs of phase angles may sometimes be a
source of confusion. If we adopt the phasor representation of rotating
vectors (Chapter 1), we have stated on a few occasions that, provided that
consistency is maintained, it is somewhat irrelevant to choose the convention

 (clockwise rotating vector) or  (counterclockwise rotating vector).
However, if the forcing function is written as  it is customary (eq
(4.41)) to write the displacement response as  so that φ, when

Fig. 10.3
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Fig. 10.4
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plotted as in Fig. 4.9, is to be understood as the angle of lag of displacement
behind the external force, the two extreme situations being as follows:

• When  the displacement is in phase with the force and 
• When  the displacement lags behind the force of π radians and

 
By the same token, velocity is written as  where φv is the
angle of lag of velocity behind force and is given by  since we
know that velocity leads displacement by π/2 radians. When  velocity
leads force by π/2 so that the velocity angle of lag behind force is 
on the other hand, when  Similar considerations apply for
the acceleration phase angle  which ranges from
–π ( ) to zero ( ) radians. In brief, in the negative exponential
convention the phase angle is positive when it is an angle of lag, negative
when it is an angle of lead and for an SDOF system all phase angles plotted
as functions of frequency are monotonically increasing functions. The same
situation arises if we adopt the positive exponential convention but we write
displacement, velocity and acceleration as  and

respectively.

Fig. 10.4 (continued)
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Fig. 10.5
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By contrast, in the positive exponential convention, displacement, velocity
and acceleration are sometimes written as  and

 respectively, so that the phase angles must be accompanied
by a minus sign when they represent angles of lag. In this light, we have that
φ ranges from zero ,ranges from π /2 to

 ranges from π to zero, and all phase angles
plotted as functions of frequency are monotonically decreasing functions.

Obviously, whatever convention we choose, it must be consistent with
the physical fact that—in steady-state conditions—displacement is in phase
with force when , velocity is in phase with force at resonance, acceleration
is in phase with force when  and that, in all cases, velocity leads
displacement by π and acceleration leads velocity by π/2.

In order to illustrate this situation, Figs. 10.4(a), (b) and (c) show,
respectively, the Bode diagrams of receptance, mobility and accelerance of
the viscously damped SDOF system considered before. Those readers who
are familiar with the MATLAB® environment have certainly noticed that
these graphs have been drawn by using the ‘Bode’ command of MATLAB®.
Magnitude graphs are the same as Figs. 10.1, 10.2 and 10.3 and the label
‘Gain’ on the y-axis comes from the terminology commonly adopted in the
electrical engineering community.

The characteristic features of real and imaginary plots are that the real
part of the receptance and accelerance has a zero crossing at the resonant
frequency, while that of the mobility has a peak at resonance. On the other
hand, the imaginary part of the receptance and accelerance has a peak at
resonance, while that of the mobility has a zero crossing. Referring once
again to the SDOF system considered before in this section, examples of
such plots are shown in Figs. 10.5(a) and (b) (receptance), 10.6(a) and (b)
(mobility) and 10.7(a) and (b) (accelerance).

Finally, the Nyquist plots for the same SDOF system are shown in Figs.
10.8–10.10. All these graphs have been drawn in the frequency range 0–400
rad/s with a frequency spacing of  rad/s, meaning that we have
used 800 frequency lines to cover the whole range; the ‘+’ markers on the
curves identify these sampled frequency values. Since modern electronic
instrumentation converts analogue signals into digital ‘sampled’ signals at
an early stage of the measuring process (Chapters 13–15), the markers on
the curves below might represent actual data from acquired FRFs.

Note that, on the curves, data points away from resonance are very close
together (the markers overlap) while the arc spacing between markers becomes
larger and larger as we approach the resonant region. This is an advantage
and a disadvantage at the same time: the advantage is due to the fact that the
resonant frequency can be identified on these graphs with good accuracy
(i.e. better than other methods) by considering the maximum rate of change
of arc length as a function of frequency, while the disadvantage is that for
very lightly damped structures the typical circular shape may be lost if the
number of frequency lines is insufficient. An example of this situation is
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Fig. 10.6
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Fig. 10.7
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shown in Fig. 10.11, where the SDOF system considered in this case has
the same stiffness and mass as before, but it is much less damped (c=100
N s/m, i.e.)  and we have used 200 spectral lines to cover the
range 0–400 rad/s (i.e. the markers are  rad/s apart).

Fig. 10.8

Fig. 10.9
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From Figs 10.8–10.10, it is evident that the characteristic feature of Nyquist
plots is to enhance the resonance region with a nearly circular shape which
corresponds to the phase shift that the output undergoes with respect to the
input. However, for a viscously damped system it must be noted that only

Fig. 10.10

Fig. 10.11
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mobility traces out an exact circle (see also eqs (4.95), (4.96) and (4.97)),
while receptance and accelerance curves are distorted circles and tend to
become more distorted as damping is increased. Figures 10.12–10.14 illustrate
this situation: stiffness and mass are as before, but now c=4000 N s/m, i.e.

 Also note that in this case the graphs have been drawn in the range
0–400 rad/s by using only 200 spectral lines and no information is lost on
the shape of the curves.

Finally, from the graphs of mobility of Figs 10.9 and 10.13 we can easily
obtain the value of viscous damping. In fact, eq (4.97) shows that the diameter
D of the mobility circle is 1/c, observing that  in Fig. 10.9
and  in Fig. 10.13 we get, as expected, c=1200 N s/m in the
first case and c=4000 N s/m in the second case.

It is left to the reader to show that for a hysteretically damped system it
is receptance that traces out an exact circle with centre at (0, 1/(2kγ)) and
diameter  As a hint, define 
and note that
 

(10.5)

 

As an example, Fig. 10.15 shows the Nyquist plot of the FRF receptance
 

(10.6)

Fig. 10.12
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which represents a hysteretically damped SDOF system with k=1×106 N/m,
m=50 kg,  (i.e. ); as expected, the diameter of the
circle is  The graph covers the frequency range 0–400 rad/
s using 400 frequencies and it is worth noting that we have adopted the
negative exponential notation—i.e. the FRF is in the form of eq (4.72). The
reader is also invited to verify that, in this case, the positive exponential
notation leads to a Nyquist circle with centre at 

Fig. 10.14

Fig. 10.13
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10.2.2 FRFs of MDOF systems

Most of the considerations of the preceding section retain their validity when
we turn our attention to FRFs of MDOF systems. However, some new features
which have no counterpart in the SDOF case must be considered. The subject
will be, for the most part, discussed qualitatively, with the intention of
providing a general idea from an experimenter’s point of view. In fact, during
the data acquisition phase of a modal test—unless it is a laboratory test—
there is generally not much time for detailed quantitative considerations;
nonetheless, it is of fundamental importance to collect a ‘good’ set of data
(typically FRFs) whose quality and consistency can often by be rapidly
checked by a careful visual inspection.

For a n-DOF structure the main distinction that can be made is between
point (or driving) FRFs and transfer FRFs: a point FRF is a function of the type

 meaning that the input and output are measured at the same point on
the structure, while a transfer FRF is a function of the type  with 
Whenever appropriate, both point and transfer FRFs can be further subdivided
into direct and cross FRFs: the term direct meaning that both input and output
are measured along the same direction and the term cross meaning that input
and output are measured along different directions.

To make things clearer, suppose that we decided to test a given structure by
taking measurements at two points—point 1 and point 2—along both the x

Fig. 10.15
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and y directions (the structure, for example, could be a beam with rectangular
cross section, z being the longitudinal direction of the beam). Either:
 
1. we can perform two separate tests, one in the x direction and one in

the y direction—and in both cases we would be dealing with a 2-DOF
system, or

2. we can perform a single test in which the x and y directions are considered
together, and in this case we would be dealing with a 4-DOF system.

 
If all FRFs are measured, each test of option 1 results in two direct point
FRFs (H11 and H22) and two direct transfer FRFs (H12 and H21). Strictly
speaking, no distinction between direct and cross FRFs is needed because no
cross FRFs exist in this case. By contrast, in option 2 we would have four
direct point FRFs (input and output measured in the same point along the
same direction), four direct transfer FRFs (input and output at different points
along the same direction), four cross point FRFs (input and output at the
same point along different directions) and four cross transfer FRFs (input
and output at different points along different directions). In this case, it is
convenient to number the degrees of freedom from 1 to 4 referring, for
example, to DOFs 1 and 2 for the measurements at point 1 and 2, respectively,
along the x direction and to DOFs 3 and 4 for the measurements at points
1 and 2 along the y direction. With these definitions, the dynamic behaviour
of the structure is described by the 4×4 matrix

 

(10.7)

 
where the direct point FRFs are on the main diagonal, the cross transfer FRFs
are on the secondary diagonal, the direct transfer FRFs are the elements H12,
H21, H34 and H43, and the remaining elements are the cross point FRFs.

In general, the most common situation in experimental tests is the case of
MDOF systems in which input and output are measured in the same direction
(i.e. a test of type 1, where no cross FRFs are acquired); for this reason, in
this section we will focus our attention on such tests.

In order to examine the main characteristics of FRFs of MDOF systems,
it will suffice for our purposes to consider the 2-DOF system of Section 7.9,
because all the considerations that follow can be extended in a straightforward
manner to systems with more than two degrees of freedom.

As expected, all graphs of magnitude versus frequency show two peaks
which occur at the resonant frequencies of our system. However, we have
already pointed out (Section 7.9) the appearance, between resonances, of an
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‘inverted peak’ of antiresonance in the point FRFs R11(ω) and R22(ω). No
such antiresonance exists in the magnitude graphs of the transfer FRFs R12(ω)
and R21(ω). Moreover, it is interesting to note that a phase shift of 180° not
only occurs at each resonance, but also at each (one in our case) antiresonance.
As a rule, point FRFs must have antiresonances between resonances; by
contrast, transfer FRFs may or may not have an antiresonance between two
neighbouring resonances. In general, all that can be said in this latter case is
that transfer FRFs corresponding to two points which are relatively close
together on the structure will show more antiresonances than FRFs
corresponding to points that are further apart on the structure. Let us
investigate these statements in more detail.

For an undamped n-DOF system, it was shown in Chapter 7 that a general
receptance FRF is written as
 

(10.8)

 

(see eq (7.28), where all ) where pjm is the jth element of the mth
eigenvector. For a point FRF j=k, implying that all the coefficients 
are positive. When  all terms of the sum (10.8) are positive and the
response is generally dominated by the first term (which has the smallest
denominator). Right after the first resonance  the first term of
the sum still dominates but is now negative because its denominator is
negative; hence Rjj becomes negative and this change of sign corresponds to
the phase shift of 180°. As we move towards ω2, there will be a value of
frequency at which the sum of all (positive) terms other than the first will
exactly cancel out the contribution of the first term so that the magnitude at
this point will be exactly zero. This is the antiresonance. As we pass this
point and move towards values of increasing frequency, the sum (10.8)
becomes positive again and this second change of sign at antiresonance
corresponds to another 180° phase shift. Then—until the last resonance—
the whole process repeats again and again as we keep moving in the direction
of increasing frequencies.

If —depending on the type of structure and on the physical distance
between point j and point k—the coefficients  and  do not
necessarily have the same sign and no antiresonance may occur between any
two neighbouring resonances; when point j and point k are close together
on the structure it is more likely that the coefficients have the same sign and
there will be an antiresonance. In our 2-DOF example (R12(ω) and R21(ω))
the two neighbouring coefficients have different signs and there is no
antiresonance between the two resonances.

Referring again to this 2-DOF system (Section 7.9), the graphs of mobilities
M11, M12 and accelerances A11, A12 are shown in Figs. 10.16–10.19: part (a)
of each figure plots the magnitude on dB(y)–linear(x) scales, while part (b)
plots the magnitude on dB(y)–log(x) scales. The reader is invited to draw the

Copyright © 2003 Taylor & Francis Group LLC



graphs of M22 and A22 and the graphs of phase versus frequency; the phase
information in mobility and accelerance FRFs is the same as in receptance
FRFs, measuring velocity or acceleration rather than displacement merely
introduces an offset of 90° or 180°.

For completeness, we also show in Figs 10.20 and 10.21 the graphs of
receptances R11 and R12 on dB(y)–log(x) scales (in Chapter 7 these graphs
were drawn only on dB(y)–linear(x) scales).

Fig. 10.16
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Although this may not be immediately evident in our example, a visual
comparison of the log-log graphs above also shows that resonances at higher
frequencies tend to exhibit less displacement than lower frequency resonances.
By contrast, the opposite situation occurs in accelerance graphs, which bias
magnitude in proportion to the second power of frequency. This suggests
that receptance may be the best choice if our attention is focused on low-
frequency modes, while accelerance is better for high-frequency modes.

Fig. 10.17
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However, when the frequency range of interest is relatively large, mobility
graphs make the best use of the available dynamic range (i.e. the vertical
space) because, broadly speaking, they give equal weight to all resonances in
the frequency range. In this regard, the reader can find a more detailed
explanation in Newland ([1], Chapter 3), where the ‘skeleton’ properties of
logarithmic response graphs are considered, the ‘skeleton’ consisting of a
sequence of straight line segments which change slope every time a resonance
or an antiresonance is crossed.

Fig. 10.18
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Sometimes, the readability of the graphs may be problematic if linear scales
are used. For example, higher-frequency resonances may hardly be noticed in
FRF receptance graphs of real and imaginary part versus frequency or in a
Nyquist plot, whereas low-frequency resonances may be difficult to see in
FRF accelerance graphs. Although this is not the case for our 2-DOF example,
the reader can have an idea by looking at Figs 10.22–10.24 which show,

Fig. 10.19
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respectively, different display formats of the transfer FRFs R12, M12 and A12.
These figures also show the effect of different signs of the modal coefficients:
in the Nyquist plot, for example, the two loops are not in the same half of
the complex plane (as in point FRFs).

We close this section with two final observations. First, a careful inspection
of the mobility (receptance if we had considered a hysteretically damped

Fig. 10.20

Fig. 10.21

Copyright © 2003 Taylor & Francis Group LLC



system) Nyquist plot above shows that the loops are not exactly symmetrical
with respect to the real axis. This is always the case for MDOF systems and
it is due to the fact that each resonance loop ‘feels’ the presence of the other
resonance loops. To be more specific, consider an n-DOF system with light
hysteretic damping and well separated modes: in the vicinity, say, of the first
natural frequency the response will be dominated by the first term of the sum

Fig. 10.22
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(10.9)

 
so that, in this limited frequency range, we can write

 
(10.10)

 
where ajk is a complex constant which is introduced to account for the
effect of all the modes other than the first. So, even if the first term on the
r.h.s. of eq (10.10) plots as a circle with centre on the imaginary axis, the
presence of the second term displaces slightly this circle from its original
position. The second observation is that this displacement is generally much
more evident for non-proportionally damped systems. In fact, not only
must we take into account the contribution of other modes by virtue of a
complex constant as in eq (10.10), but we must consider that the modal
coefficients themselves are now complex quantities with magnitude and
phase. Hence, broadly speaking, the ‘more complex’ the modal coefficients
of a resonant term, the more displaced the resonance loop from its
‘symmetrical’ position.

Fig. 10.22 (continued)

(eq (7.96b))
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10.3 Modal testing procedures

As often happens with experimental methods, there is no such thing as the
‘right way’ to perform a modal test. A good background theoretical
knowledge is a fundamental prerequisite, but experience is invaluable in

Fig. 10.23
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• an excitation mechanism (shaker, impact hammer, etc.);
• a number of transducers (typically accelerometers) to measure the

structure’s response;
• an analyser with a minimum of two input channels (one for the excitation

and one for a transducer).
 
The type, cost and level of sophistication of the instrumentation can vary but,
in any case, a test planning phase is required in which the experimenter(s)
must decide the test configuration, identify the frequency range of interest, the
input and output locations (i.e. the points of the structure at which the excitation
force is applied and at which the structure response is measured) and, in case,
perform some preliminary measurements and check their quality. Furthermore,
two other sources of error must be taken into account and should be minimized
as much as possible: the first is due to the effects of the instrumentation on the
structure (say, for example, exciter-structure interactions and ‘mass loading’ if
the structure is very light), while the second has to do with improper use of
the digital electronic instrumentation during the data acquisition phase (for
example, with modern digital analysers, attention must be paid to frequency
resolution, ‘aliasing’ effects, proper ‘windowing’ of the signal and ‘leakage’
errors, noise in both the excitation and response signal, etc.). A discussion of
the electronic instrumentation is delayed to later chapters. Here, owing to the
many ways and levels of sophistication in which a modal test can be performed,

these circumstances. Basically, what we need to perform a modal test is:

Fig. 10.23 (continued)
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we will limit ourselves to a general set of guidelines, also with the intention
of making the reader aware of some common pitfalls and potential sources
of error in the measurement phase.

10.3.1 Supporting the structure

If the experimenter has some control on this aspect of the test, the support
condition of the structure under study must be considered. The two extremes

Fig. 10.24
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are the so-called ‘free’ configuration and the ‘fixed’ (or grounded)
configuration; neither of the two conditions can be perfectly obtained in
practice, but they can generally be approximated within a good degree of
accuracy. The ideal free configuration implies that the structure is floating
in the air without any support of any kind, which is obviously impossible.
However, if we support the structure on very flexible springs or suspend it
on light elastic rubber bands so that the highest rigid-body mode (note that,
in this support condition, rigid-body modes no longer occur at ) is well
separated from the lowest elastic mode, we have simulated a good free
configuration. A general rule of thumb in these circumstances is that the
highest rigid-body mode should be at least 8–10 times smaller than the lowest
elastic mode.

The ‘fixed’ condition, on the other end, can be simulated by grounding
the structure with well-tightened bolts, clamps or other devices that prevent
the movement of the structure at the supports. However, this is generally
easier said than done because, even with massive and rigid foundations, it
may not be so easy to provide sufficient grounding. In fact, strictly speaking,
no supporting structure can be regarded as infinitely rigid; if in doubt, it
may be desirable to perform a few preliminary FRF measurements on the
supporting structure in the same frequency range of the test to verify that—
near the ‘grounding’ points—the FRF levels at the base are much lower than
the corresponding levels of the structure FRFs. However, even when this is
the case, care should be exercised because rotational motion could be
involved, and this is much more difficult to measure.

Fig. 10.24 (continued)
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In any case, if we want to avoid as much as possible some undesired
effects of the supports on the structure, we must assess the repeatability of
the data, also in view of the fact that, in some circumstances, the absolute
boundary conditions may not be as important as consistency between
subsequent tests. Finally, due consideration must be given to the operating
support conditions of the structure under investigation when—as often
happens—the required results are the structure modes in operating conditions
for comparison with an analytical model. Hence, for example, if the structure
is practically grounded when operating, it would only increase the cost and
time of subsequent analysis to test the structure in a free configuration.

10.3.2 Excitation systems

The excitation system is the device used to set the structure into motion,
usually by the application of an appropriate driving force at the various
preselected measurement locations. One of the primary decisions to be made
during the phase of test planning is the type of force to be applied to the
structure—i.e. the excitation function, which indirectly dictates the type of
excitation system. Depending on the structure and on the desired results,
this may vary from a stepped-sine to a periodic-random excitation, from
transient (impact or chirp) to true random excitation, each method having
its advantages and drawbacks in terms of measurement time, cost, signal-to-
noise ratio etc. For our purposes, we can broadly classify excitation devices
as attached and unattached: an attached device—typically a shaker—remains
attached to the structure all through the duration of the test, while an
unattached device—typically an impactor—is in contact with the structure
only for short periods of time.

A shaker is an electromagnetic or electrohydraulic device which allows a
considerable degree of control on the frequency and amplitude of the force
applied to the structure. As compared to electroydraulic shakers,
electromagnetic shakers are generally smaller and can operate at higher
frequency ranges (from near zero up to 20–30 kHz). However, when larger
force amplitudes are needed, it is more feasible to use electrohydraulic shakers
which, by contrast, are generally more expensive and operate at frequency
ranges from static (DC) to a maximum of 1 kHz or less. The exciter’s moving
element is attached to the structure under test via a force transducer (load
cell), with the objective to transmit the desired excitation in a given direction
while, at the same time, allowing the structure to move freely in all other
directions. These latter movements are normal, but they can react back on
the shaker and on the force transducer and result in a distortion of the force
signal. To minimize this effect, it is customary to attach the shaker to the
structure through a ‘stinger’, which consists of a short thin steel or nylon
rod with large axial stiffness but low bending and shear stiffnesses. Shaker
support is another factor that can produce unwanted consequences: in fact,
any reaction force transmitted to the shaker should not be transmitted back
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into the structure. In other words the shaker should be isolated from the
structure under test; this is generally done—when possible—by grounding
the shaker to the floor and by suspending the structure on bungee cords,
alternatively, one can mount the shaker on a mechanically isolated foundation
or suspend the shaker. In this latter configuration, it may sometimes be
necessary to mount an additional mass on the shaker in order to generate
force amplitudes that can adequately excite the structure. Finally, another
potential problem with shakers occurs when we try to excite the structure at
one of its resonances, i.e. when a little force can produce large displacements
of the structure. The result, especially for light damping, is a dip (force
dropout) in the force spectrum which, in turn, can lead to significant
measurement problems due to a low signal-to-noise ratio. One possible
solution to these problems may be to use the so-called ‘H2 estimate’ (which
is not susceptible to noise in the input signal; see later sections) for the
calculation of the FRF in the vicinity of resonances.

A very popular excitation method is an impact device, currently available
on the market in the form of hammers of various sizes: from very small, for
testing small and light structures, to sledgehammers, for testing heavy and
more massive structures. The force input is measured by a force transducer
mounted at the back of the hammer tip which, in turn, can be changed to have
some degree of control on the frequency content of the force pulse. For a given
test structure, a harder tip produces a pulse of shorter duration with a higher
useful frequency range, while a softer tip—producing a pulse of longer
duration—allows the impact energy to be concentrated in a lower frequency
range. Typical frequency ranges may vary from zero to 4–5 kHz for smaller
hammers and from zero up to 200–300 Hz for bigger and heavier hammers.
Figure 10.25 shows two time histories of typical sledgehammer impacts obtained
by the author by hitting the concrete floor of the laboratory. The impact
represented by the thicker line has been obtained with a soft tip (the softer tip
available with the hammer kit), while impact represented by the thinner line
has been obtained with a harder tip (not the hardest available in the kit).

Basically, the maximum force amplitude is governed by the mass of the
impactor and by the velocity of impact, while the duration of the pulse (and
hence its frequency content) is determined by the stiffness of the contacting
surfaces.

Figure 10.26 represents an indication of the useful part of the force
spectrum of the above signals. It ranges from zero to a ‘cutoff frequency’ vc

(  in the figure) which is the largest value of frequency excited
by the hammer blow. At higher frequencies the spectrum decays to zero
force and the structure’s resonances above vc would not receive enough energy
to be excited adequately. As a rule of thumb, vc can be taken as the value
where the frequency spectrum ceases to be reasonably flat and has fallen
10–20 dB from its maximum value. Although the figure stops at 195 Hz, it
is evident that the value of vc for the softer tip is lower than the value of vc

for the harder tip.
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Also, while impacting a structure with a hammer, attention must be paid
to the possibility of ‘double strikes’, because they cause difficulties in the
signal processing stage. Double-impact measurements should be rejected
because the force spectrum will have ‘holes’ of zero force at values of
frequency which depend (inversely) on the time distance between the two
impacts. A basic SDOF analysis shows that double impacts are more likely
to occur when the ratio m/M—impactor mass to structure mass—is close to
the classical coefficient of restitution e (ratio of relative velocities of the two
bodies after and before impact). When this is the case, it is advisable to
reduce the impactor mass until, approximately, m/M<0.2.

The main advantages of the impact method are that it requires little
hardware, it is relatively inexpensive and is fast. Its main drawbacks are that
the energy imparted to the structure at any particular frequency is relatively
small (low signal-to-noise ratio) and that the experimenter’s control over
amplitude and frequency content of the input force is very limited. In a typical
impact test, the hammer input signal is fed to one channel of the analyser and
the response output signal (say, from an accelerometer) is fed to the other
channel. Two potential problems may arise in this situation: (1) the input
signal is generally very short (from hundreds of µs to a few ms) compared to
the time frame of the analyser; (2) for lightly damped structures, the response
signal—an exponentially decaying oscillation—may not have decayed
completely within the analyser time frame (whose length depends on the
frequency range in which we are making the measurements). Problem (1)

Fig. 10.25 Modally tuned sledgehammer blows with two different tips: time histories.

Copyright © 2003 Taylor & Francis Group LLC



implies that a significant part of the acquired input signal is practically noise,
while problem (2) results in an undesired effect called, in digital signal
processing terminology, ‘leakage’ (Part II).

Both of these problems can be addressed using a digital signal processing
technique called ‘windowing’: the input signal is (digitally) multiplied by a
‘force window’ function which forces the signal to zero right after the end of
the pulse while the response signal is forced to zero within the analyser’s
time frame through multiplication by an appropriate ‘exponential window’
function. If the structure is heavily damped, the response signal may also
have a short duration when compared to the length of the analyser time
frame, in which case application of an appropriate exponential window just
eliminates unwanted noise and results in a higher signal-to-noise ratio. Both
force and exponential ‘windows’—together with other windows usually
needed for other types of signals—are usually available on all commercial
spectrum analysers. In this regard it must be noted that the exponential
window adds artificial damping to the measurement and this effect must be
taken into account after the signal processing phase.

10.3.3 Measurement of response

The vibration response is usually measured by means of acceleration
transducers called accelerometers, the most common being the piezoelectric
type. A large number of accelerometers are available on the market and this

Fig. 10.26 Modally tuned sledgehammer blows: useful part of frequency spectrum.
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aspect of vibration transduction will be considered in more detail in Part II,
which deals with electronic instrumentation. For the moment it suffices to
say that—among others—some of the most important parameters to consider
in choosing an accelerometer are: its sensitivity (usually given in mV/g; typical
sensitivities for modal tests are either 100 mV/g or 1000 mV/g), its resonant
frequency and, in some applications on light structures, its weight.

The sensitivity rates the voltage output for unit acceleration (1 g=9.81 m/s2);
the higher the sensitivity, the higher the electrical signal for a given acceleration.

Given the transducer’s damping ratio, the resonant frequency vres indirectly
suggests the useful frequency range which—for a damping ratio of 0.65–
0.70—ranges approximately from near zero (piezoelectric accelerometers do
not extend to DC, but other types of accelerometers do) to about 0.5vres.
The weight (mass) of an accelerometer, in turn, may have undesired
consequences on the measurements. In fact, mass loading of the structure
can be a problem when the mass of the transducer is a significant fraction of
the mass of the tested structure. A quick check can be made by making an
FRF measurement with one accelerometer mounted on the structure and
then repeating the same measurement with two accelerometers (the second
accelerometer with the same mass as the first). If some frequency and
amplitude shifts near the structure’s resonant frequencies are noted, then
mass loading can be a problem. For very light structures, it may be advisable
to use a noncontacting transduction device.

In regard to mass loading, a word of caution is necessary. The general rule
of thumb is that the mass of the transducer should be less than 1/10 of the mass
of the measured structure. However, this statement is made more precise if we
refer to the ‘apparent dynamic mass’ of a particular DOF associated with a
specific mode of the structure. So, the mass of the transducer should be smaller
that 1/10 of the ‘apparent dynamic mass’ of the structure at the attachment
point. This latter quantity, in turn, may vary over a wide range depending on
the point of the structure and the mode that we are considering; for practical
applications it can be obtained by measuring a point (driving) FRF and
calculating the modal coefficient mAjj (eq (7.78b) and following). The reader
can find an enlightening and practical discussion of this subject in Døssing [2].

Finally, great attention must be paid to the way the accelerometer is
physically attached to the structure. Improper mounting can result in a
significant reduction of the transducer’s resonant frequency and hence to a
reduction of the useful frequency range. The ideal mounting is by means of
a threaded stud onto a flat, smooth surface. Other alternatives, in decreasing
order of quality, are: a thin layer of beeswax, epoxy cement, thin double-
sided adhesive, magnet and handheld.

10.3.4 Excitation functions

The last point we want to consider briefly in this section is the type of
excitation function used to set the structure into motion. Impact testing is

Copyright © 2003 Taylor & Francis Group LLC



the simplest one. With a two-channel analyser and a n-DOF system (i.e. n
locations geometrically identified on the structure under test), one generally
acquires one row of the complete n×n FRF matrix by moving the excitation,
i.e. the hammer, around the structure, while measuring the response at a
single (fixed) location—preferably not close to the node of one or more of
the structure’s modes. Conversely, one column of the FRF matrix is acquired
if we repeatedly hit the same point of the structure and move the accelerometer
around. The two techniques are called, respectively, ‘roving hammer’ and
‘roving accelerometer’ techniques.

On the other hand, we can use a shaker and excite the structure sinusoidally
at a single frequency, measure the response (or, more precisely the FRF value
at that frequency) and then perform other measurements by varying the
input frequency by small increments. This is the so called stepped-sine testing
and care must be exercised because, at each frequency, the transient part of
the response must be allowed to die out before a valid measurement can be
taken (remember that, in these tests, only the steady state of the response is
of interest to us). This technique generally has a high signal-to-noise ratio
but, although the frequency step can be varied from smaller values near
resonances to larger values away from resonances, it is lengthy.

One alternative is to excite the structure with a random signal (more
about random signals can be found in Chapters 11 and 12). For the purposes
of the test, a random signal is a signal with a continuous flat spectrum
over the frequency range of interest. Typically, the excitation device is,
once again, a shaker and the signal generator is often the analyser itself.
Since the random excitation usually has a Gaussian probability distribution
(Chapter 11), the response will also be random with a Gaussian probability
distribution. From a digital signal processing point of view, such signals
are sampled by the analyser over a finite period of time T (the time frame
or time record) and the analyser FFT algorithm implicitly assumes that the
acquired signals are periodic with period T. Then, since this is not generally
the case, leakage occurs (unless the signal is transient and its entire duration
fits completely within a time record). Once again, the remedy is to force
the signal to zero at the beginning and end of the time frame by multiplying
it by an appropriate window function, the so-called ‘Hanning’ window;
windowing the signals does not eliminate leakage completely, but minimizes
its effects. For purpose of illustration, consider Fig.10.27(a)–(c). Figure
10.27(a) shows a unit amplitude sinusoidal signal with frequency v=12
Hz, which is clearly not periodic in the hypothetical analyser time frame
of length T=1.7 s. This occurrence would cause ‘leakage’ when the FFT is
calculated. For this time frame, Fig.10.27(b), in turn, shows a typical
Hanning window and Fig.10.27(c) shows the windowed signal (product of
unwindowed signal times the window) which is used by the anlalyser to
calculate the FFT.

Alternatively, the structure can be excited by a periodic-random signal, i.e.
a signal which is random in character within the length of the time record T,
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but repeats itself with period T. Then, no window would be needed because,
as a matter of fact, the signal is periodic within the analyser time frame.

Another problem with random excitation (as with all broadband signals)
is that the signal-to-noise ratio may not be particularly favourable because
the (limited) power supplied by the exciter is spread over the entire frequency

Fig. 10.27 (a) Unwindowed signal, (b) Hanning window.

Copyright © 2003 Taylor & Francis Group LLC



range. For each pair of input-output locations, this problem may be tackled
by averaging a number (say, at least 50) of subsequent measurements,
obviously at the expense of a longer measurement time.

Finally, mention should be made of two other facts. During a modal test
with random or impact excitation and repeated averages, it is often advisable
to inspect visually the so-called ‘coherence’ function (usually indicated with
the symbol γ (ω), (Section 10.4.2)) which, ideally, should be unity over the
whole frequency range of interest. For a single-input single-output system
(e.g. Fig. 4.7) the coherence function represents a statistical level of confidence
in the FRF estimate obtained from measurement and it is also an index the
degree of causality between input an output (i.e. whether the measured
response is entirely due to the measured input). Poor coherence may be due
to a number of factors of random or of systematic nature, for example,
random noise contamination of the measurements, leakage, insufficient
frequency resolution or nonlinearities in the structure under test. However,
random sources of error can generally be minimized by taking many averages,
while this is not true for systematic (bias) sources of error.

The second fact worth mentioning is that reciprocity is another data quality
check that should be performed. This is simply made by comparing two
reciprocal measurements (i.e. the FRFs Hjk and Hkj) and observing any
differences between them. Lack of reciprocity is usually indicative of a
nonlinear system.

Fig. 10.27 (c) Windowed signal.
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10.4 Selected topics in experimental modal analysis

The intention of the preceding section was to give the reader a general overview
of the many problems that should be addressed during the measurement phase
of a modal test. By contrast, this section considers some special topics that
deserve particular attention. Owing to the available space and the large number
of specific topics that could be considered, it is clear that some a priori choice
had to be made. Therefore, there is no claim of completeness and the interested
reader is urged to consult the wide body of specific literature on all the different
aspects of experimental modal analysis [3].

First of all, as far as the testing method is concerned, it must be noted
that there are many different approaches to modal testing. Traditionally,
one can distinguish between phase separation methods and phase resonance
methods (or tuned sinusoidal or force appropriation methods).

Phase separation methods owe their wide popularity to the advent of
realtime FFT analysers; they are generally shorter in duration and less
expensive. The basic underlying assumption is that the structure’s response
is a weighted linear summation of all its uncoupled modes of vibration; under
this assumption, the excitation and the response are usually broadband signals
(for example, random or impact) and the tests are often performed by using
a two channel analyser and a single-input single-output configuration. The
modal parameters are then extracted from the measured data by mathematical
curve fitting (all modal analysis software packages offer a number of curve-
fitting techniques) which, in turn, is usually performed on the acquired FRFs
in the frequency domain. However, time-domain-fitting techniques are also
becoming popular.

Phase resonance methods (often used, for example, in the aircraft industry)
are generally more expensive and lengthy, require more hardware and
considerable experimental skill. They are multishaker techniques based on
the fact that a particular mode of vibration can be isolated by an appropriate
sinusoidal excitation.

10.4.1 Characteristic phase-lag theory and Asher’s method

Referring to the previous observation, let us consider an n-DOF system with
viscous damping excited by a set of n forces of the same frequency ω and
independently variable (as yet unknown) force amplitudes. The relevant
equations of motions can be written as
 

(10.11)
 

and it is known that the response will be sinusoidal at the same frequency ω .
However, let us look for a solution in which all the n degrees of freedom
have the same phase lag θ with respect to the excitation, i.e. is of the form
 

(10.12)
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Calculating the prescribed derivatives and substituting in eq (10.11), we get

(10.13)

 
so that, after use of well known trigonometric identities, we can separate the
terms in sin ωt and cos ωt to obtain
 

(10.14)

where the unknowns are the vectors z, f0 and the phase angle θ. Specifically,
from the second of eqs (10.14) it is immediately evident that when 
we have
 

(10.15a)

and, from the first of eq (10.14),

(10.15b)

Equation (10.15a) is well known and is precisely the undamped eigenvalue
problem for the system under investigation whose solution consists of n
undamped eigenvalues ωj and n real eigenvectors zj. More generally, if

 we can divide the second of eq (10.14) by cos θ and obtain
 

(10.16)

which can be interpreted as a generalized eigenvalue problem of order n and
eigenvalue tan θ. This means that, for every value of excitation frequency ω,
a nontrivial solution can be obtained when

(10.17)

so that there are n values of θ and n deflection shapes (the so-called phase-
lag modes which, strictly speaking, if  should not be called modes but
‘operating deflection shapes’) z that satisfy eq (10.16). These modes can be
interesting in themselves, but, as stated above, the most important case is
when the excitation frequency equals one of the undamped eigenfrequencies
ωj. In this case the jth eigenvalue of problem (10.16) is such that 
and the deflected shape equals the undamped real mode zj. Moreover, the
force configuration needed to obtain this situation can be obtained from eq
(10.15b), which can be rewritten as

(10.18)

and shows that the excitation forces must be in phase with the damping
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dissipation forces. Note that it is not important whether damping is
proportional or not.

Let us summarize the above results in a few words. When the structure
under test is excited (by means of an appropriate force configuration ) at
one of its undamped frequencies ωj, all the displacement responses are in
quadrature (90° phase shift) with the excitation forces and the structure’s
vibration shape coincides with the undamped real mode zj. So—in an
experimental test with n shakers and n response transducers—once we have
an idea of the frequency value ωj and of the amplitude force configuration

 we can ‘isolate’ (or ‘tune’) the undamped modal shape zj.

Example 10.1. As an example, let us once again consider the 2-DOF system
of Section 7.9 with the intention of obtaining the set of forces needed to
‘isolate’ the two undamped modes. The undamped eigenvalues and
eigenvectors are, respectively

(10.19)

and
 

(10.20)

(note that the eigenvectors have not been mass-orthonormalized; however,
this is irrelevant for our purposes). Then, from eq (10.18) the force
configuration needed to isolate the first mode is given by
 

(10.21)

The quantity of interest to us is the ratio  Similarly, for
the second mode, we get  the minus sign indicating that the
force applied at one of the two DOF must be in antiphase (180° phase shift)
with the force applied at the other DOF.

From a practical point of view, the characteristic phase lag theory outlined
above poses a number of problems. For example, we generally do not know
the matrices M, K and C and neither do we know the undamped frequencies
ωj. A method proposed by Asher addresses these problems. For a harmonic
excitation  we can write
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and hence, as in eq (7.24)
 

(10.22a)

where R(ω) is the receptance matrix. Separating its real and imaginary parts,
eq (10.22a) can be rewritten as
 

(10.22b)
 

so that the condition of displacements in quadrature with forces implies
 

(10.23)

This means that a preliminary measurement of the response by means of a
sinusoidal sweep or broadband excitation can be used to extract the real
part of the receptance matrix, calculate the undamped frequencies from the
relation
 

(10.24)
 
and then the force configurations (eq (10.23)) at the frequency values 
Hence, the jth mode can be isolated (or ‘tuned’) by setting the shakers to
produce the forces  sin ωt and measuring the response 

Two things should be noted at this point. First, the method is capable of
extracting the undamped modes of the structure (most methods obtain the
actual damped modes) and it has been found to produce very good results in
a large number of circumstances. Second, we have made no mention of
additional practical problems, for example, exciter location and rectangular
receptance matrices (this is often the case, because tests are often performed
using more response signals than excitation signals). However, a number of
important contributions by many authors address these subjects, which are
beyond the scope of this book.

10.4.2 Single-input single-output test configuration: FRF
measurement

This section briefly considers a typical test situation in which we excite the
structure (modelled as an n-DOF system) at one point and measure its
response at the same or at another point. Little hardware is required in this
circumstance and we can acquire a row or a column of the system’s FRF
matrix by, respectively, moving the excitation point and keeping the response
point fixed or by exciting a specific point of the structure and moving the
vibration transducer around. This type of test is usually performed by
acquiring data with a dual-channel digital analyser: the excitation signal
(say, from a shaker or from a instrumented hammer) is fed to channel 1, the
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response signal is fed to channel 2 and one FRF at a time is acquired and
stored for further analysis. For each pair of point locations, i.e. excitation at
point j and response at point k, the relevant input-output relationship in the
frequency domain is (see eq (5.76))
 

(10.25a)

which, omitting the indexes j and k and switching to ordinary frequency v
 for our present convenience, is written as

 
(10.25b)

The digital analyser can calculate the FRF by simultaneously sampling the
excitation and the response signal. However, in order to deal with all types of
signals (transient, periodic, random, etc.) and with the fact that real-world
signals are always more or less contaminated by noise, it is not convenient to
obtain the FRF by simply calculating the ratio X(v)/F(v). A fundamental
algorithm of any analyser (with two or more input channels) is based on the
so-called ‘trispectrum average’ which can be implemented on two signals that
have been simultaneously sampled. Basically, a number of repeated
measurements are taken and averaged; in the averaging process the analyser
calculates three spectra estimates from the two signals: the power autospectrum
of each signal and the power cross-spectrum between the two signals. These
three spectra are used to obtain the FRF and the coherence function (e.g.
McConnell [4]). As is customary, let us indicate these three spectra with the
symbols Gff(v) (force signal autospectrum), Gxx(v) (response signal
autospectrum) and Gfx(v) (cross-spectrum between force and response signals).
Also, it can be shown that the cross-spectrum Gxf(v) between response and
force signals is simply the complex conjugate of Gfx(v), i.e. 

Rigorous definitions of autospectra, cross-spectra and of other concepts in
this section involve statistical considerations which will be made in the next
two chapters. For the moment, let us just consider these spectra as convenient
functions which serve the purpose of optimizing the calculation of the FRF.

Mathematically, we can multiply both sides of eq (10.25b) by F*(v) to obtain
 

(10.26)

which, upon averaging an infinite number of measurements of the two signals,
leads to
 

(10.27)

so that

(10.28a)
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We must take into account, however, that in real situations we always
average over a finite number of measurements so that what we really obtain
are only estimates of these spectra. In this light, eq (10.28a) should be
rigorously written as
 

(10.28b)

(where the symbol ‘^’ indicates that we are dealing with estimates and not
with the ‘true’ quantities. With this in mind, eq (10.28b), defines the so-called
‘H1 estimate’ of H(v). Multiplying both sides of eq (10.25b) by X*(v), a similar
line of reasoning leads to the definition of the H2 estimate of H(v), i.e.
 

(10.29)

(we abandon here the ‘^’ notation, but the statistical nature of the following
discussions will be recalled whenever necessary).

Ideally (noise-free signals and an infinite number of measurements), H1 and
H2 lead to the same result, namely, the function H(v). However, this is generally
not the case. This suggests that the ratio can be an indicator of the quality of
our measurements; hence we define the ordinary coherence function as
 

(10.30)

which can be interpreted as a measure of how well the force signal is linearly
related to the response signal and is the counterpart of the familiar correlation
coefficient in ordinary regression analysis. The correlation function ranges
from zero (no correlation) to unity (optimum correlation) and from eq (10.30)
it can be anticipated that, when  H1 will tend to underestimate the actual
FRF, while H2 will tend to overestimate it. Needless to say, the coherence
function calculated and displayed by all analysers—owing to the finite number
of measurements—is only an estimate of the ‘true’ coherence function.

Before proceeding further we may note that there is a third possibility for
estimating H(v) which can be obtained by using only the magnitudes of
both sides of eq (10.25b), i.e.

so that, upon averaging, we arrive at
 

(10.31)
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where the subscript a indicates that only autospectra are used in calculating
the estimator Ha. Moreover, since we only consider magnitudes in this case, it
is important to note that no phase information is given by the estimator Ha.

Now, suppose that some uncorrelated noise contamination exists in both
the force and response signal. Even with a properly set and calibrated
instrumentation chain, extraneous noise in a test environment may exist
from a number of causes which, for practical purposes, we can classify as
either of electrical or of mechanical nature. For example, the intrinsic noise
of electronic circuitry is an electrical source of noise, while heavy construction
activities in the vicinity of the test area results in unwanted mechanical
excitation of the structure under test. Other sources of electrical noise such
as random fluctuations of disturbances due to, say, electromagnetic and radio
frequency interference, ground loops or insufficient shielding of long cables
can be, at least in principle, eliminated by eliminating the disturbances
themselves.

So, if we call the ‘true’ excitation and response signals e(t) and r(t),
respectively, the measured signals will be

(10.32)

where m(t) represents extraneous noise in the excitation signal and n(t)
represents extraneous noise in the response signal. Equations (10.32) imply
that the measured auto- and cross-spectra will be
 

(10.33)

while the true ERF can be mathematically expressed by
 

(10.34)

Also, from the first of eqs (10.34), we get
 

(10.35)
 

Under the reasonable assumption that noise signals are uncorrelated with
each other and with the excitation and response signals, i.e. that
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 three cases of interest will
be discussed in the following.  

Case 1. Noise in excitation signal, no noise in response signal

Since n(t)=0, eqs (10.33) become (omitting for brevity of notation the
frequency dependence)
 

(10.36)

 

Evaluation of H1 according to eq (10.28) gives

 

(10.37)

 
where the fist of eqs (10.34) has been taken into account. It follows that the
true FRF is generally underestimated owing to the denominator being greater
than unity. The phase information, however, is correct because it comes from
the error-free cross-spectrum (autospectra contain magnitude information
only). On the other hand, evaluation of H2 according to eq (10.29) (taking
(10.35) into account) leads to
 

(10.38)

 
showing that, under the assumption of uncorrelated noise, H2 is insensitive
to noise in the input signal. At this point it is important to remember the
intrinsic statistical nature of this whole discussion and note that eqs (10.37)
and (10.38) are strictly true for an infinite number of measurements; in a
real-world situation (i.e. finite number of averages) what these formula imply
is that when noise is present in the excitation signal only, then H1(v) is a
‘biased’ estimator of the true FRF H(v), while H2(v) is an ‘unbiased’ (and
therefore preferable) estimator of H(v).

The coherence function in this case is given by
 

(10.39)

 
and, as expected, depends on the signal-to-noise ratio  the lower
the signal-to-noise ratio, the closer the value of coherence to unity. Also,
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from eq (10.39) we get
 

(10.40)

In this regard, it is interesting to note that, since  implies in this
case  from the definition of H2 (eq (10.29)) we get
 

(10.41)

and also, since  we have also

(10.42)

Equations (10.41) and (10.42) show that both Gee and Gmm, although they
cannot be directly measured, can be calculated (strictly speaking ‘estimated’)
in terms of measured quantities.
 
Case 2. No noise in the excitation signal, noise in the response signal
 

Equations (10.33) now read
 

(10.43)

because m(t)=0. Evaluation of H1 gives
 

(10.44)

so that H1 is insensitive to uncorrelated noise in the response signal in this case.
On the other hand, by taking into account eqs (10.35) and the first of eqs (10.34)

(10.45a)

which, by virtue of the second of eqs (10.34) can also be written as

(10.45b)
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Equations (10.45) show that H2 generally overestimates the true FRF, because
the term in parentheses is usually larger than unity. The phase information,
however, is correct because it comes from the error-free cross-spectrum.

As for the previous case, the precise meaning of eqs (10.44) and (10.45) is
as follows: when only the response signal is contaminated by noise, H1 is an
unbiased (and preferable) estimator of H, while H2 is a biased estimator of H.

The coherence function is now

(10.46)

and

(10.47)

Also, we can express Grr and Gnn in terms of measured quantities because
 and hence, from the definition of H1,

(10.48)

and

(10.49)

Case 3. Noise in both excitation and response signals

Equations (10.33) become now

(10.50)

so that

(10.51)

and

(10.52)
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It is then evident that

(10.53)

and that the coherence function
 

(10.54)

can be less than unity because both excitation and response noises contribute
together.

Since H1 and H2 are, respectively, a lower and an upper bound estimator
for H, the geometric mean of these two quantities provides an estimator
that lies in between the two. This is generally called Hv and is given by

(10.55)

Some conclusions can be drawn from the discussion above. If we consider
that at the structure’s resonances the excitation signal is particularly
susceptible to noise because the structure is compliant at these values of
frequency and little force is required to produce a significant displacement
while, on the other hand (unless the response transducer is placed at a node
for that particular mode) the response signal has generally a good signal-to-
noise ratio, we can infer that better results can be expected by using the
estimator H2 near the resonances.

By contrast, away from resonances (and, specifically, around
antiresonances) the structure is stiff and the response signal, rather than the
excitation signal, may be more susceptible to noise contamination. Then, a
better estimate of the actual FRF can be obtained by using the estimator H1.

Furthermore, the coherence function is related to the variance on the
estimate of H and is a statistical parameter based on averages in the quantities
Gfx, Gff and Gxx. The coherence for a single measurement is always unity
(and is useless), even in the presence of noise. In a number of subsequent
measurements, this function can be assumed to be a measure of the quality
of our measurements with the following considerations in mind:

• With random excitation, low coherence does not necessarily imply a
poor estimate of the FRF but it may just mean that more averages are
needed for a reliable result (incidentally, we note that if we use a shaker
with a ‘stinger’ which is too stiff in the transverse direction, the transverse
shaker-structure interactions appear as noise in the excitation signal;
however, this noise is not uncorrelated with the input signal and one of
the assumptions of case 1 is not valid).
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• With deterministic excitation (for example, impact or rapid ‘chirp’
sinusoidal sweeps), low coherence usually indicates bias errors such as
nonlinearity, significant noise levels or, for improper windowing, leakage.

 
The considerations of this section can be extended to more general cases
and, in particular to the most general case of a multiple-input multiple-output
(MIMO) test configuration, i.e. where there is a number n of excitation
points and a number m of measured responses and all signals are measured
simultaneously. The main advantages of this procedure are an increase of
accuracy and consistency in the estimates of the structure FRFs and a
reduction in the testing time. Specifically, multiple input configurations allow
the separation of closely spaced modes, a circumstance in which single-input
configurations incur serious difficulties.

MIMO techniques, however, involve the inversion of a matrix (containing
the input auto- and cross-spectrum information) which, in a number of
practical situations, has been found to be singular. It has been shown that
such an inverse exists and leads to a unique solution for FRFs when the
inputs (excitations) are not correlated. In this light, the concepts of partial
coherence and multiple coherence are introduced and partial coherence
between the inputs is used for assessing whether the inputs are correlated.
There are several sources to which the interested reader can refer for detailed
discussion of this topic [5–10].

10.4.3 Identification of modal parameters—curve fitting

Once the experimental data (typically the FRFs) have been collected, the
next task of interest is to extract from this information the modal parameters
of the structure: natural frequencies, damping ratios and modal amplitudes
associated with each natural frequency. For an SDOF system, this is an easy
task; it has already been shown in Chapter 4 and in Section 10.2.1 how the
FRF can be used to obtain the values of natural frequency, mass, stiffness
and damping ratio. (For example, consider the simple SDOF system used to
draw the FRF graphs of Section 10.2.1. Noting that for an SDOF system

 as  the mass can be extracted from the dB(y)–log(x)
graph of accelerance (Fig. 10.3) by noting that the mass line in the high-
frequency range is approximately at –34 dB, so that )

Similarly, suppose we have measured a column of the FRF matrix of an
n-DOF system with widely spaced and lightly damped resonances, and
suppose further that all n modes have been experimentally observed. Among
other possibilities, we can determine the natural frequencies ωj from:
 
• the peaks of the magnitude graphs;
• the peaks of the imaginary parts of the receptance or accelerance graphs;
• the zero crossings of the real part of the mobility graphs.
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Then we can determine the modal damping ratios ζj from any one of the
magnitude graphs by calculating

(10.56)

where  and  (the so-called half-power points, or –3 dB points) are
obtained from (Section 4.4.1)

(10.57)

Alternatively, on the real part of receptance or accelerance graphs,  and
 are those values of frequency at which the local maximum and minimum

are attained (e.g. Fig. 10.22a).
When the ωj and ζj are known we can calculate the magnitude of the

modal coefficients as outlined in Section 7.4.1 for a 3-DOF system.
An alternative (generally leading to more accurate results) to this method

is to consider only the imaginary part of receptance or accelerance FRFs and
obtain directly the jth mode shape from the ratios:

(10.58)

where in eq (10.58) we assumed that we have measured the mth column of
the matrix H(ω).

Let us clarify this point. Suppose we have a 3-DOF system with natural
frequencies ω1, ω2 and ω3 and that we have measured the first column of the
receptance matrix R(ω), i.e. the functions R11, R21 and R31. Since the real
part of receptance is zero at each resonance, the response is purely imaginary
and we can obtain the first mode shape (eigenvector) from

(10.59a)

and, respectively, the second and third eigenvectors from

(10.59b)

(10.59c)
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All three eigenvectors are normalized so that their first element is unity and
the sign of each element is automatically taken into account. It is obvious that
the same results are obtained by considering any column other than the first
or any row of the matrix R(ω) or, alternatively, any row or column of A(ω).

Example 10.2. A simple numerical example can be given by considering
once again the 2-DOF system of Section 7.9 whose mass-orthonormal
eigenvectors are given in eq (7.110b). From the receptance functions R11

and R12, the calculation the eigenvectors shown above leads to

(10.60)

 

which are just the eigenvectors of eq (7.110b) with a different normalization;
the minus sign in the second element of z2 comes from the fact that 
is negative (Fig. 10.22(b)) and indicates that, in the second mode, the two
masses move in opposite phase. By contrast, all the peaks of the imaginary
part of the point FRF (R11(ω) in this case) must have the same sign because
the response and excitation are measured at the same point.

The procedure shown above can lead to reliable results when its basic
underlying assumption is verified, namely that in the vicinity of a resonance
the response is dominated by only one term of the sum (10.9). This is
generally reasonable for structures with widely spaced and lightly damped
resonances, a case in which the contribution of off-resonant modes can be
assumed to be negligible, and we treat each resonance as if the other
resonances did not exist.

In practice, all modal analysis software packages incorporate some
‘identification methods’, that is, numerical procedures with the specific
purpose of extracting the modal parameters from a set of experimental
data. Some methods require the user to participate in various decisions
throughout the analysis, while others—once the relevant data have been
supplied—are completely automatic. From a user’s point of view, however,
the main concerns are not the detailed analytical aspects of the numerical
procedures, but a general picture of the available possibilities in order to
have an idea of which method may fit his/her particular needs. Then, the
choice must be based on the available hardware (to perform the test) and
computing resources, the scope of the investigation, the structure under
test and the format of the experimental data, not necessarily in this order.
In the following, we adopt this point of view, also because due consideration
of the most popular methods would exceed the scope and boundaries of
this chapter.

All the parameter identification methods are based on analytical curve
fitting of the measured data.
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The first and more general classification concerns the domain in which
the data are treated numerically, that is, we can distinguish between frequency-
domain and time-domain methods. The former methods operate on the
system’s response characteristics in the frequency domain, i.e. on the FRFs
which are generally written as (eq (7.78b))

(10.61)

where, in the usual modal analysis symbolism, m is the mth eigenvalue (the
term ‘pole’ is also common) and it is expressed as (eq (6.160))

(10.62)
 

and  is the mth residue.
On the other hand, the latter methods perform the fitting in the time

domain, i.e. on the impulse response functions (IRFs) and generally involve
the calculation of the inverse FFT of the FRFs. The basic mathematical
expression is now

(10.63)

which is the time-domain counterpart of eq (10.61).
In principle, no difference should exist between the two approaches but

the numerical behaviour of the identification method and the fact that
experimental measurements are always performed in a limited frequency
band must be taken into account in practical applications.

Frequency-domain methods, in turn, can be further divided according to
the number of modes that can be analysed; hence we have SDOF methods
and MDOF methods. SDOF methods are based on the assumption that in
the frequency region around a resonance the response is dominated by the
resonant term corresponding to that mode only, so that the contribution of
other modes can be either completely ignored or taken into account by means
of a simple approximation term. In this regard, the strategy outlined for
purposes of illustration at the beginning of this section is a typical SDOF
method (as a matter of fact it is somewhat a mixture of the two simplest
methods known as ‘peak amplitude’ and ‘quadrature response’).

Since the above assumption is not always justified and SDOF methods
may lead to serious inaccuracies when the structure under test is not lightly
damped and has closely spaced modes, a number of MDOF methods have
been devised which fit a multiple-mode form analytical expression to the
experimental FRFs. The distinction between SDOF and MDOF methods

Copyright © 2003 Taylor & Francis Group LLC



does not exist in the time-domain because all time domain methods are
necessarily MDOF (from an IRF there is no way to make an a priori
separation of the various modes).

Then, another classification is usually made for both frequency- and time-
domain methods based on the number of functions that are analysed
simultaneously. In fact, depending also on the set of experimental FRFs (or
IRFs), we can decide to use a method which analyses one function at a time
(SISO, i.e. single-input single-output methods) or more functions at the same
time. This latter possibility comprises two cases: if the functions analysed
simultaneously have been collected by exciting the structure at one fixed
location and measuring its response at several different locations, the method
is classified as SIMO: single-input multiple-output. On the other hand, if the
experimental data have been collected by exciting the structure and measuring
the response at a number of different locations, we can analyse all the
available functions simultaneously by using a polyreference or MIMO
(multiple-input multiple-output) method. Situations of multiple-input single-
output (MISO) are also possible, but are used to a much lesser extent.

Finally, in both time and frequency domains, a general distinction exists
between indirect and direct methods. Indirect methods base the identification
procedure on the modal model, while direct methods work directly on the
spatial model, i.e. the fundamental basic matrix equation from which all the
treatment of MDOF systems is derived.

Without claim of completeness, some names may help the reader to find
his/her way among the various possibilities. In the frequency domain some
popular methods are:
 
• the peak amplitude method (SDOF, SISO)
• the quadrature response method (SDOF, SISO)
• the Kennedy-Pancu or circle-fitting method (SDOF, SISO)
• the inverse method (SDOF, SISO)
• Dobson’s method (SDOF, SISO)
• the Ewins-Gleeson method (MDOF, SISO)
• the complex exponential frequency-domain, or CEFD method (MDOF,

SISO)
• the rational fraction polynomial, or RFP method (MDOF, SISO)
• the global rational fraction polynomial, or GRFP method (MDOF, SIMO)
• the global Dobson method (MDOF, SIMO)
• the eigensystem realization algorithm in the frequency domain, or ERAFD

method (MDOF, MIMO).

On the other hand, in the time domain we have:

• the complex exponential, or CE method (SISO)
• the least squares complex exponential, or LSCE method (SIMO)
• the polyreference complex exponential, or PRCE method (MIMO)
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• the Ibrahim time-domain, or ITD method (SIMO)
• the single station time-domain, or SSTD method (SISO)
• the eigensystem realization algorithm, or ERA method (MIMO).
 
All the above methods are classified as indirect; some direct methods in the
frequency domain are:
 
• the Identification of Structural System Parameters, or ISSPA method

(SIMO)
• the spectral method (MIMO)
• the simultaneous frequency-domain, or SFD method (SIMO)
• the multimatrix method (MIMO)
• the frequency-domain direct parameter identification, or FDPI method

(MIMO).
 
Among the time-domain direct methods we find, for example:
 
• the autoregressive moving average, or ARMA method (SISO)
• the direct system parameter identification, or DSPI method (MIMO).
 
As may be expected, some of the above fitting procedures are just different
versions or extensions of other methods, and new methods are continuously
being developed. We leave the details to the specific literature cited in the
references, but it is worth remembering here that the results of the fitting
procedure, no matter how sophisticated, can be no better than the quality of
the input data (FRFs or IRFs). In other words, the quality of the measurements
is a necessary prerequisite for a reliable test, otherwise one will experience
a classical case of ‘garbage in, garbage out’.

In conclusion, given the appropriate computing capabilities, the choice is
often a matter of personal preference and familiarity with a specific method.
On a very general basis, it can be said that time-domain methods tend to
provide the best results when a large frequency range or a large number of
modes exist in the data, whereas frequency-domain methods tend to provide
the best results when the frequency range of interest is limited and/or the
number of modes is relatively small. Nonetheless, a major advantage of the
frequency domain implementation is that we can take into account the effect
of the modes outside the frequency range of interest—say, from ωa to ωb—
by virtue of residual terms (not to be confused with the terms mAjk of eq
(10.61)) that are incorporated in the model by writing eq (10.61) as

(10.64)

where n is the number of modes in the frequency range of interest, Pjk(ω) is
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the lower residual (called inertia restraint or residual inertia) and is an inverse
function of the frequency squared, and Qjk is the upper residual (called
residual flexibility), independent of frequency.

No such possibility exists in the time domain and no account is taken of
the effect of modes outside the frequency range of analysis. However, it can
be argued that the time-domain implementation is numerically better
conditioned than the frequency-domain equivalent and is generally more
suited to handle noisy measurements.

Fig. 10.29 Experimental FRF: phase versus frequency and Nyquist plot.

Fig. 10.28 Circle fitting of experimental FRF.
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We close this chapter by giving some examples of actual measurements on
engineering structures. Figure 10.28 shows the analytical fitting of a mode by
means of the frequency-domain circle-fitting method. The excellent agreement
of the two curves—i.e. the actual FRF and the analytical fit—is due to the fact
that that mode (at about 14.4 Hz) was relatively isolated. Also note how
the circle is well defined in the resonant region (from 13.50 to 15.58 Hz in
this case) and encompasses approximately 250° of the circle. In this type of

Fig. 10.30 Concrete floor: (a) first experimental mode; (b) second experimental mode.
(Courtesy of Tecniter s.r.l., Milan, Italy.)
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Fig. 10.31 Concrete floor: (a) first finite-element mode; (b) second finite-element
mode. (Courtesy of Tecniter s.r.l., Milan, Italy.)
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fitting, if possible, a span of at least 180° of the circle is advisable. The
particular FRF of this example is a point FRF and was obtained by exciting
the structure and measuring its response at location no. 13, i.e. H13, 13.

Figure 10.29, in turn, shows the unfitted curve of the same mode as seen
from the FRF H13, 15, the upper curve being the phase and the lower curve
being the Nyquist plot.

Finally, Figs 10.30(a) and (b) show the first (9.63 Hz) and second (14.72
Hz) mode of a light rectangular concrete floor (with dimensions of about
7×5 m) as obtained from a modal test. Figure 10.31(a) and (b) are the same
modes as obtained from an independent finite-element analysis of the same
structure. The experimental and theoretical (finite-element) modal frequencies
were found to be in very good agreement.

10.5 Summary and comments

Experimental modal analysis (EMA) is a well-established field of activity in
many branches of engineering. Basically, it is the process of characterizing
the dynamic behaviour—or some aspects thereof—of a structure from a set
of experimental measurements rather than from a theoretical (typically, finite-
element) analysis. A modal test can be performed for a number of reasons,
from troubleshooting and avoidance of vibration problems to finite-element
model verification and updating, from nondestructive testing to evaluation
of design modifications, from component substructuring to evaluation of
structural integrity. The final scope of the investigation is the main factor
that affects the quality and quantity of data to be collected. In fact, in some
instances, a few data of good quality can do the job, resulting in substantial
savings of time and money. On the other hand, other situations require a
sophisticated analysis, which almost necessarily implies higher demands on
hardware and computing capabilities. Although there exists an area of activity
called ‘nonlinear modal analysis’ (which we do not consider), the basic
assumption of EMA is that the structure under test is linear, time invariant,
observable and obeys Maxwell’s reciprocity relations.

We can distinguish three phases in a modal test: (1) data acquisition, (2)
modal parameter estimation and (3) interpretation and presentation of results.
Phase 1 is probably the most important because the quality of the final results
cannot be any better that the quality of the experimental measurements. On
the other hand, phase 2—once the analysis has been completed—is generally
a matter of good engineering judgement.

This chapter considers some fundamental aspects of phases 1 and 2,
starting with the properties and formats of the data that are acquired in a
modal test, i.e. the frequency response functions (FRFs). FRFs of SDOF and
MDOF systems are considered in order to give the experimenter some
guidelines for a quick check of the data during the test so that, if needed, he/
she can repeat the measurements if there seems to be something wrong.
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Then, a whole section deals with the experimental procedures, describing
the instrumentation and potential problems associated with:

• the excitation mechanism (shaker, modally tuned hammer, etc.);
• the type of excitation signal (sinusoidal, impact, random, periodic-

random, etc.);
• the measurement of the structure’s response;
• the use of a multichannel FFT analyser.

Finally, the last section analyses three selected topics of EMA: the
characteristic phase lag theory, the presence of noise in the input and/or the
output signals in a single-input single-output test configuration and the curve-
fitting methods, which are generally available on commercial software to
extract and identify—starting from a set of measured FRFs or IRFs—the
modal parameters of the structure under test.

Each part of this subject is interesting in its own right. The characteristic
phase lag theory shows how it can be possible to obtain the undamped
frequencies and mode shapes of a structure by an appropriate selection of
the input force levels in a sinusoidal excitation type of test. This type of test
is often performed on large structures, requires considerable hardware and
experimental skill and one of its practical implementations is the so-called
Asher method, whose line of reasoning is also shown.

The issue of (uncorrelated) noise in the input and/or at the output, in
turn, is important to shed some light on the definition and properties of the
most commonly adopted FRF estimators, i.e. H1(ω), H2(ω) and Hv(ω), and
on the meaning of the ordinary coherence function γ (ω), which are all
displayed by commercial FFT analysers.

Finally, a subsection on the curve-fitting procedures focuses the attention
on the various possibilities in which the modal parameters (natural
frequencies, damping factors and mode shapes) can be extracted from a set
of measurements. In consideration of the fact that the user’s main concern
is not, in general, the specific numerical procedure, a general classification
based on a set of basic criteria—frequency or time domain, number of
functions processed simultaneously, etc.—is given in order to provide some
information on the most popular methods.
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11 Probability and statistics:
preliminaries to random
vibrations

11.1 Introduction

This chapter covers some fundamental aspects of probability theory and
serves the purpose of providing the necessary tools for the treatment of
random vibrations, which will be discussed in the next chapter. Probably,
most of the readers have already some familiarity with the subject because
probability theory and statistics—directly or indirectly—pervade almost all
aspects of human activities, and, in particular, many branches of all scientific
disciplines. Nonetheless, in the philosophy of this text (as in Chapters 2 and
3 and in the appendices), the idea is to introduce and discuss some basic
concepts with the intention of following a continuous line of reasoning from
simple to more complex topics and the hope of giving the reader a useful
source of reference for a clear understanding of this text in the first place,
but of other more specialized books as well.

11.2 The concept of probability

In everyday conversation, probability is a loosely defined term employed to
indicate the measure of one’s belief in the occurrence of a future event when
this event may or may not occur. Moreover, we use this word by indirectly
making some common assumptions: (1) probabilities near 1 (100%) indicate
that the event is extremely likely to occur, (2) probabilities near zero indicate
that the event is almost not likely to occur and (3) probabilities near 0.5 (50%)
indicate a ‘fair chance’, i.e. that the event is just as likely to occur as not.

If we try to be more specific, we can consider the way in which we assign
probabilities to events and note that, historically, three main approaches
have developed through the centuries. We can call them the personal
approach, the relative frequency approach and the classical approach. The
personal approach reflects a personal opinion and, as such, is always
applicable because anyone can have a personal opinion about anything.
However, it is not very fruitful for our purposes. The relative frequency
approach is more objective and pertains to cases in which an ‘experiment’
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can be repeated many times and the results observed; P[A], the probability
of occurrence of event A is given as
 

(11.1)

 

where nA is the number of times that event A occurred and n is the total
number of times that the experiment was run. This approach is surely useful
in itself but, obviously, cannot deal with a one-shot situation and, in any case,
is a definition of an a posteriori probability (i.e. we must perform the
experiment to determine P[A]). The idea behind this definition is that the
ratio on the r.h.s. of eq (11.1) is almost constant for sufficiently large values of n.

Finally, the classical approach can be used when it can be reasonably
assumed that the possible outcomes of the experiment are equally likely; then
 

(11.2)

 

where n(A) is the number of ways in which outcome A can occur and n(S)
is the number of ways in which the experiment can proceed. Note that in
this case we do not really need to perform the experiment because eq (11.2)
defines an a priori probability. A typical example is the tossing of a fair coin;
without an experiment we can say that n(S)=2 (head or tail) and the
probability of, say, a head is  Pictorially (and also for
historical reasons), we may view eq (11.2) as the ‘gambler’s definition’ of
probability.

However, consider the following simple and classical ‘meeting problem’:
two people decide to meet at a given place anytime between noon and 1
p.m.. The one who arrives first is obliged to wait 20 min and then leave. If
their arrival times are independent, what is the probability that they actually
meet? The answer is 5/9 (as the reader is invited to verify) but the point is
that this problem cannot be tackled with the definitions of probability given
above.

We will not pursue the subject here, but it is evident that the definitions
above cannot deal with a large number of problems of great interest. As a
matter of fact, a detailed analysis of both definitions (11.1) and (11.2)—
because of their intrinsic limitations, logical flaws and lack of stringency—
shows that they are inadequate to form a solid basis for a more rigorous
mathematical theory of probability. Also, the von Mises definition, which
extends the relative frequency approach by writing
 

(11.3)

 

suffers serious limitations and runs into insurmountable logical difficulties.
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The solutions to these difficulties was given by the axiomatic theory of
probability introduced by Kolmogorov. Before introducing this theory,
however, it is worth considering some basic ideas which may be useful as
guidelines for Kolmogorov’s abstract formulation.

Let us consider eq (11.2), we note that, in order to determine what is
‘probable’, we must first determine what is ‘possible’; this means that we
have to make a list of possibilities for the experiment. Some common
definitions are as follows: a possible outcome of our experiment is called an
event and we can distinguish between simple events, which can happen only
in one way, and compound events, which can happen in more than one distinct
way. In the rolling of a die, for example, a simple event is the observation of
a 6, whereas a compound event is the observation of an even number (2, 4 or
6). In other words, simple events cannot be decomposed and are also called
sample points. The set of all possible sample points is called a sample space.

Now, adopting the notation of elementary set theory, we view the sample
space as a set W whose elements Ej are the sample points. If the sample
space is discrete, i.e. contains a finite or countable number of sample points,
any compound event A is a subset of W and can be viewed as a collection
of two or more sample points, i.e. as the ‘union’ of two or more sample
points. In the die-rolling experiment above, for example, we can write
 

 
where we call A the event ‘observation of an even number’, E2 the sample
point ‘observation of a 2’ and so on. In this case, it is evident that

 and, since E2, E4 and E6 are mutually exclusive
 

(11.4a)
 

The natural extension of eq (11.4a) is
 

(11.4b)

 

Moreover, if we denote by  the complement of set A (i.e. ),we
have also
 

(11.4c)

 
and if we consider two events, say B and C, which are not mutually exclusive, then
 

(11.4d)
 
where the intersection symbol n is well known from set theory and is
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often called the compound probability, i.e. the probability that events B and
C occur simultaneously. (Note that one often finds also the symbols A+B for

 and AB for ) Again, in the rolling of a fair die, for example, let
 and  then  and, as expected,

For three nonmutually exclusive sets, it is not difficult to extend eq
(11.4d) to
 

(11.4e)

as the reader is invited to verify.
Incidentally, it is evident that the method that we are following requires

counting; for example, the counting of sample points and/or a complete
itemization of equiprobable sets of sample points. For large sample spaces
this may not be an easy task. Fortunately, aid comes from combinatorial
analysis from which we know that the number of permutations (arrangements
of objects in a definite order) of n distinct objects taken r at a time is given by
 

(11.5)

 
while the number of combinations (arrangements of objects without regard
to order) of n distinct objects taken r at a time is
 

(11.6)

 
For example, if n=3 (objects a, b and c) and r=2, the fact that the number of
combination is less than the number of permutations is evident if one thinks
that in a permutation the arrangement of objects {a, b} is considered different
from the arrangement {b, a}, whereas in a combination they count as one
single arrangement.

These tools simplify the counting considerably. For example, suppose that
a big company has hired 15 new engineers for the same job in different
plants. If a particular plant has four vacancies, in how many ways can they
fill these positions? The answer is now straightforward and is given by
C15,4=1365. Moreover, note also that the calculations of factorials can be
often made easier by using Stirling’s formula, i.e.  which
results in errors smaller that 1% for 

Returning now to our main discussion, we can make a final comment
before introducing the axiomatic theory of probability: the fact that two
events B and C are mutually exclusive is formalized in the language of sets
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as  where Ø is the empty set. So, we need to include this event in
the sample space and require that  By so doing, we obtain the
expected result that eq (11.4d) reduces to the sum P[B]+P[C] whenever events
B and C are mutually exclusive. In probability terminology, Ø is called the
‘impossible event’.

11.2.1 Probability—axiomatic formulation and some
fundamental results

We define a probability space as a triplet  where:
 
1. W is a set whose elements are called elementary events.
2.  is a σ-algebra of subsets of W which are called events.
3. P is a probability function, i.e. a real-valued function with domain  and

such that:
 

(a)  for every 
(b) P[W]=1 and 
(c)  if the Ajs are mutually disjoint events, i.e.

 when 
 

For completeness, we recall here the definition of s-algebra: a collection  of
subsets of a given set W is a s-algebra if
 
1.
2. If  then 
3. If  and  for every index j=1, 2, 3,…then 
 
Two observations can be made immediately. First—although it may not seem
obvious—the axiomatic definition includes as particular cases both the
classical and the relative frequency definitions of probability without suffering
their limitations; second, this definition does not tell us what value of
probability to assign to a given event  This is in no way a limitation
of this definition but simply means that we will have to model our experiment
in some way in order to obtain values for the probability of events. In fact,
many problems of interest deal with sets of identical events which are not
equally likely (for example, the rolling of a biased die).

Let us introduce now two other definitions of practical importance:
conditional probability and the independence of events. Intuitively, we can
argue that the probability of an event can vary depending upon the occurrence
or nonoccurrence of one or more related events: in fact, it is different to ask
in the die-rolling experiment ‘What is the probability of a 6?’ or ‘What is the
probability of a 6 given that an even number has fallen?’. The answer to the
first question is 1/6 while the answer to the second question is 1/3. This is
the concept of conditional probability, i.e. the probability of an event A
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given that an event B has already occurred. The symbol for conditional
probability is P[A|B] and its definition is
 

(11.7)

provided that  It is not difficult to see that, for a given probability
space  satisfies the three axioms above and is a probability
function in its own right. Equation (11.7) yields immediately the
multiplication rule for probabilities, i.e.
 

(11.8a)
 

which can be generalized to a number of events  as follows:
 

 

If the occurrence of event B has no effect on the probability assigned to
an event A, then A and B are said to be independent and we can express this
fact in terms of conditional probability as
 

(11.9a)
 

or, equivalently
 

(11.9b)
 

Clearly, two mutually exclusive events are not independent because, from
eq (11.7), we have P[A|B]=0 when  Also, if A and B are two
independent events, we get from eq (11.7)
 

(11.10a)
 

which is referred to as the multiplication theorem for independent events.
(Note that some authors give eq (11.10a) as the definition of independent
events). For n mutually (or collectively) independent events eq (11.8b) yields
 

(11.10b)

 

A word of caution is necessary at this point: three (or more) random
events can be independent in pairs without being mutually independent. This
is illustrated by the example that follows.

(11. 8b)
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Example 11.1. Consider a lottery with eight numbers (1–8) and let
 respectively, be the simple events of extraction of 1, extraction

of 2, etc. Let
 

 

Now,  and  It is then easy to verify
that  and

 which means that the events are pairwise
independent. However, 
meaning that the three events are not mutually, or collectively, independent.

Another important result is known as the total probability formula. Let
 be n mutually exclusive events such that  where

W is the sample space. Then, a generic event B can be expressed as
 

(11.11)

 

where the n events  are mutually exclusive. Owing to the third axiom
of probability, this implies
 

 

so that, by using the multiplication theorem, we get the total probability
formula
 

(11.12)

 
which remains true for 

With the same assumptions as above on the events  let
us now consider a particular event Ak; the definition of conditional probability
yields
 

(11.13)
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where eq (11.12) has been taken into account. Also, by virtue of eq (11.8a) we
can write  so that substituting in eq (11.13) we get
 

(11.14)

which is known as Bayes’ formula and deserves some comments. First, the
formula is true if  Second, eq (11.14) is particularly useful for experiments
consisting of stages. Typically, the Ajs are events defined in terms of a first stage
(or, otherwise, the P[Aj] are known for some reason), while B is an event defined
in terms of the whole experiment including a second stage; asking for P[Ak|B]
is then, in a sense, ‘backward’, we ask for the probability of an event defined at
the first stage conditioned by what happens in a later stage. In Bayes’ formula
this probability is given in terms of the ‘natural’ conditioning, i.e. conditioning
on what happens at the first stage of the experiment. This is why the P[Aj] are
called the a priori (or prior) probabilities, whereas P[Ak|B] is called a posteriori
(posterior or inverse) probability. The advantage of this approach is to be able
to modify the original predictions by incorporating new data. Obviously, the
initial hypotheses play an important role in this case; if the initial assumptions
are based on an insufficient knowledge of the mechanism of the process, the
prior probabilities are no better than reasonable guesses.

Example 11.2. Among voters in a certain area, 40% support party 1 and
60% support party 2. Additional research indicates that a certain election
issue is favoured by 30% of supporters of party 1 and by 70% of supporters
of party 2. One person at random from that area—when asked—says that
he/she favours the issue in question. What is the probability that he/she is a
supporter of party 2? Now, let
 
• A1 be the event that a person supports party 1, so that P[A1]=0.4;
• A2 be the event that a person supports party 2, so that P[A2]=0.6;
• B be the event that a person at random in the area favours the issue in

question.
 
Prior knowledge (the results of the research) indicate that P[B|A1]=0.3 and
P[B|A2]=0.7. The problem asks for the a posteriori probability P[A2|B], i.e. the
probability that the person who was asked supports party 2 given the fact that
he/she favours that specific election issue. From Bayes’ formula we get
 

 

Then, obviously, we can also infer that 
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11.3 Random variables, probability distribution functions
and probability density functions

Events of major interest in science and engineering are those identified by
numbers. Moreover—since we assume that the reader is already familiar with
the term ‘variable’—we can state that a random variable is a real variable
whose observed values are determined by chance or by a number of causes
beyond our control which defy any attempt at a deterministic description. In
this regard, it is important to note that the engineer’s and applied scientist’s
approach is not so much to ask whether a certain quantity is a random variable
or not (which is often debatable), but to ask whether that quantity can be
modelled as a random variable and if this approach leads to meaningful results.

In mathematical terms, let x be any real number, then a random variable
on the probability space (W, , P) is a function  (  is the set of
real numbers) such that the sets
 

 
are events, i.e.  In words, let X be a real-valued function defined on
W; given a real number x, we call Bx the set of all elementary events w for
which  If, for every x the sets Bx belong to the σ-algebra , then X
is a (one-dimensional) random variable.

The above definition may seem a bit intricate at first glance, but a little
thought will show that it provides us precisely with what we need. In fact,
we can now assign a definite meaning to expression P[Bx], i.e. the probability
that the random variable X corresponding to a given experiment will assume
a value less than or equal to x. It is then straightforward, for a given random
variable X, to define the function  as
 

(11.15)
 
which is called the cumulative distribution function (cdf, or the distribution
function) of the random variable X. From the definition, the following
properties can be easily proved:
 

(11.16)

 

where x1, and x2 are any two real numbers such that In other words,
distribution functions are monotonically non-decreasing functions which start
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at zero for  and increase to unity for  It should be noted that
every random variable defines uniquely its distribution functions but a given
distribution function corresponds to an arbitrary number of different random
variables. Moreover, the probabilistic properties of a random variable can
be completely characterized by its distribution function.

Among all possible random variables, an important distinction can be
made between discrete and continuous random variables. The term discrete
means that the random variable can assume only a finite or countably infinite
number of distinct possible values  Then, a complete description
can be obtained by knowing the probabilities  for
k=1, 2, 3,…by defining the distribution function as

 
(11.17)

 
where we use the symbol θ for the Heaviside function (which we already
encountered in Chapters 2 and 5), i.e.

 

(11.18)

 
The distribution function of a discrete random variable is defined over

the entire real line and is a ‘step’ function with a number of jumps or
discontinuities occurring at any point xk. A typical and simple example is
provided by the die-rolling experiment where X is the numerical value
observed in the rolling of the die. In this case,  etc. and

 for every k=1, 2,…, 6. Then
 

 

so that  for  for  for
 for 

A continuous random variable, on the other hand, can assume any value
in some interval of the real line. For a large and important class of random
variables there exist a certain non-negative function (x) which satisfies
the relationship
 

(11.19)

 
where px(x) is called the probability density function (pdf) and η is a dummy
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variable of integration. The main properties of (x) can be summarized as
follows:
 

(11.20)

The second property is often called the normalization condition and is
equivalent to  Also, it is important to notice a fundamental
difference with respect to discrete random variables: the probability that the
continuous random variable X assumes a specific value x is zero and
probabilities must be defined over an interval. Specifically, if  (x) is
continuous at x we have
 

(11.21a)

 
and, obviously
 

(11.21b)

 

Example 11.3. Discrete random variables—binomial, Poisson and geometric
distributions. Let us consider a fixed number (n) of typical ‘Bernoulli trials’.
A ‘Bernoulli trial’ is an experiment with only two possible outcomes which
are usually called ‘success’ and ‘failure’. Furthermore, the probability of
success is p and does not change from trial to trial, the probability of failure
is  and the trials are independent. The discrete random variable of
interest X is the number of successes during the n trials. It is shown in every
book on statistics that the probability of having x successes is given by
 

(11.22)

 
where x=1, 2, 3,…, n and 0<p<1. We say that a random variable has a
binomial distribution with parameters n and p when its density function is
given by eq (11.22).

Now, suppose that p is very small and suppose that n becomes very large
in such a way that the product pn is equal to a constant . In mathematical
terms, provided that  we can let  and  then
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because  A random variable X with a pdf given by

 
(11.23)

 
is said to have a Poisson distribution with parameter . Equation (11.23)
is a good approximation for the binomial equation (11.22) when either

 or  Poisson-distributed random variables
arise in a number of situations, the most common of which concern ‘rare’
events, i.e. events with a small probability of occurrence. The parameter

 then represents the average number of occurrences of the event per
measurement unit (i.e. a unit of time, length, area, space, etc.). For example,
knowing that at a certain intersection we have on average 1.7 car accidents
per month, the probability of zero accidents in a month is given by

 The fact that the number of accidents follows a
Poisson distribution can be roughly established as follows. Divide a month
into n intervals, each of which is so small that at most one accident can
occur with a probability  Then, during each interval (if the occurrence
of accidents can be considered as independent from interval to interval)
we have a Bernoulli trial where the probability of ‘success’ p is relatively
small if n is large and  Note that we do not need to know the
values of n and/or p (which can be, to a certain extent, arbitrary), but it is
sufficient to verify that the underlying assumptions of the Poisson
distribution hold.

If now, in a series of Bernoulli trials we consider X to be the number of
trials before the first success occurs we are, broadly speaking, dealing with
the same problem as in the first case but we are asking a different question
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(the number of trials is not fixed in this case). It is not difficult to show that
this circumstance leads to the geometric distribution, which is written
 

(11.24)

 
where x=1, 2, 3,…and 0<p<1. Hence we will say that a random variable X
has a geometric distribution with parameter p when its pdf is given by eq
(11.24).

Example 11.4. Continuous random variable—the normal or Gaussian
distribution. The most important and widely used continuous probability
distribution was first described by de Moivre in the second half of the
eighteenth century but was implemented as a useful practical tool only half
a century later by Gauss and Laplace. Its importance is due to the central
limit theorem which we will discuss in a later section. A random variable X
is said to have a Gaussian (or normal) distribution with parameters µ, and

 if its pdf is given by

 

(11.25)

 

For practical use, it is convenient to cast eq (11.25) in a standardized
format which can be more easily expressed in tabular form. It is not difficult
to see that, by defining the new random variable Z as

 

(11.26)

 

we obtain the standard form
 

(11.27)

 

whose cdf is given by

 

(11.28)

 
since  and we defined 
Equation (11.28) has been given because either FZ(z) or Φ(z) are commonly
found in statistical tables.
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Also, it can be shown (local Laplace-de Moivre theorem, see for example
Gnedenko [1]) that when n and np are both large—i.e. for —we have
 

(11.29)

 

meaning that the binomial distribution can be approximated by a Gaussian
distribution. The r.h.s. of eq (11.29) is called the Gaussian approximation to
the binomial distribution.

Example 11.5. For purposes of illustration, let us take a probabilistic approach
to a deterministic problem. Consider the sinusoidal deterministic signal

 We ask, for any given value of amplitude x<x0, what is the
probability that the amplitude of our signal lies between x and x+dx?

From our previous discussion it is evident that we are asking for the pdf of
the ‘random’ variable X, i.e. the amplitude of our signal. This can be obtained
by calculating the time that the signal amplitude spends between x and x+dx
during an entire period  Now, from  we get
 

 

which yields
 

(11.30)

 

Within a period T the amplitude passes in the interval from x to x+dx
twice, so that the total amount of time that it spends in such an interval is
2dt; hence
 

(11.31)

 

where the last expression holds because  But, noting that 2dt/T is
exactly  i.e. the probability that, within a period, the amplitude lies
between x and x+dx, we get
 

(11.32)
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which is shown in Fig. 11.1 for x0=1. From this graph it can be noted that
a sinusoidal wave spends more time near its peak values than it does near its
abscissa axis (i.e. its mean value).

11.4 Descriptors of random variable behaviour

From the discussion of preceding sections, it is evident that the complete
description of the behaviour of a random variable is provided by its
distribution function. However, a certain degree of information—although
not complete in many cases—can be obtained by well-known descriptors
such as the mean value, the standard deviation etc. These familiar concepts
are special cases of a series of descriptors called moments of a random
variable. For a continuous random variable X, we define the first moment
of X, indicated by

 
(11.33a)

 
or, for a discrete random variable

 
(11.33b)

Fig. 11.1 Amplitude PDF of sinusoidal signal.
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Equations (11.33a) or (11.33b) define what is usually called in engineering
terms the mean (or also the ‘expected value’) of X and is indicated by the
symbol µX. Similarly, the second moment is the expected value of X2—i.e.
E[X2]—and has a special name, the mean squared value of X, which for a
continuous random variable is written as
 

(11.34)

 

The square root of the second moment  is called the root-mean-
square value or rms of X.

By analogy, we define the mth moment (m=1, 2, 3,…) of X as
 

(11.35a)

 

and in general, for a function f(X) of the random variable we have
 

(11.35b)

 

Equations (11.35a) are just particular cases of eq (11.35b).
When we first subtract its mean from the random variable and then

calculate the expected values, we speak of central moments, i.e. the mth
central moment is given by
 

(11.36)

 

In particular, the second central moment  is well known and
has a special name: the variance, usually indicated with the symbols  or
Var[X]. Note that the variance can also be evaluated by
 

(11.37)

 

which is just a particular case of the fact that central moments can be
evaluated in terms of ordinary (noncentral) moments by virtue of the binomial
theorem. In formulas we have
 

(11.38)

 
Copyright © 2003 Taylor & Francis Group LLC



The square root of the variance, i.e.  is called the standard
deviation and we commonly find the symbols sX or SD[X].

Example 11.6. Let us consider some of the pdfs introduced in previous sections
and calculate their mean and variance. For the binomial distribution, for
example, we can show that
 

(11.39)

 

The first of eqs (11.39) can be obtained as follows:
 

 

where the last equality holds because the summation represents the sum of
all the ordinates of the binomial distribution and must be equal to 1 for the
normalization condition. For the second of eqs (11.39) we can use eq (11.37)
so that we only need the term E[X2]. This is given by  

so that  
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We leave to the reader the proof that for a Poisson-distributed random
variable we have
 

(11.40)
 

while for a geometric pdf we get
 

(11.41)

 

If now we turn our attention to the continuous Gaussian pdf of eq (11.25)
we can calculate the mean using eq (11.33a) with the change of variable so

 that  and we get
 

(11.42)

 

because the first integral is equal to zero, while  An
analogous line of reasoning leads to
 

(11.43)

 
so that the parameters µ and σ of the Gaussian pdf are precisely the mean
and the standard deviation of the random variable X.

Often, it is convenient to use a standardized form of the random variable
in question. Given a random variable X, we can define the random variable
Z as  which is linearly related to X and always has zero
mean and unit variance. The third and fourth moments of this standardized
random variable are also given special names and are called skewness and
kurtosis. Indicating these descriptors with the symbols α3 and α 4,
respectively, we have
 

(11.44)

 

The meanings of the quantities above are generally well known by every
engineer or scientist. The mean (together with the median and the mode) is
a measure of location, while the variance and the standard deviation are
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measures of scatter (dispersion) of the random variable about its mean.
Skewness and kurtosis, in turn, have to do with the shape of the probability
density function. More specifically, the skewness will be zero for a pdf
symmetrical about the mean, positive for a pdf with a longer tail to the right
and negative when the tail to the left is more prominent. Kurtosis, on the
other hand describes the ‘peakedness’ of the pdf. For example, a Gaussian
pdf has  and a pdf with, say,  has a high, narrow peak and
fatter tails (with respect to a pdf with smaller kurtosis) far away from the
mean.

For the measures of location or of central tendency, we can briefly say
that the mean is the abscissa of the ‘centre of gravity’ of the area under the
pdf curve, the median M2 is the value of the random variable for which
 

(11.45)

 

while the mode M3 is the abscissa of the maximum of the pdf.
At this point, it is important to note that there exist many other distribution

functions and we have only considered a few of the most frequently
encountered. The interested reader is referred to specific texts for more
information.

The usefulness of moment analysis is due to the fact that, in many
problems, we do not know exactly the pdf but we only have an idea of
which one it might be. Then, a knowledge of the first few moments—which,
in turn, are estimated from the experimental data—can allow the evaluation
of the parameters of the (unknown) pdf, in order to accept or reject our
initial hypothesis. In other words, the lowest order moments of a random
variable constitute a first step towards a description of the distribution
function underlying a random process. The information they provide is
incomplete (all the moments would be needed to have a complete description)
but is very useful for many practical purposes.

11.4.1 Characteristic function of a random variable

We introduce here the concept of characteristic function of a random variable
which, besides the cdf and the pdf, provides an alternative way of completely
characterizing a random variable. The characteristic function of a random
variable X is denoted  and is defined as
 

(11.46a)

 

where ω is a real variable. It is evident that pX(x) and X(ω) bear a close
resemblance to a Fourier transform pair. Furthermore, we know that the pdf
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has a Fourier transform because, owing to the normalization condition, the
integral (11.46) verifies the Dirichlet condition  Also
 

(11.46b)

 
A principal use of the characteristic function has to do with its moment-

generating property. If we differentiate eq (11.46a) with respect to ω we
obtain
 

 

 
then, letting  in the above expression, we get
 

(11.47)

 
Continuing this process and differentiating m times, if the mth moment of

X is finite, we have
 

(11.48)

 
meaning that if we know the characteristic function we can find the moments
of the random variable in question by simply differentiating that function
and then evaluating the derivative at  Of course, if we know the pdf
we always have to perform the integration of eq (11.46a), but if more than
one moment is needed this is one integration only, rather than one for each
moment to be calculated.

Thus, if all the moments of X exist we can expand in a Taylor series the
function  about the origin to get
 

(11.49)

 
For example, for a Gaussian distributed random variable X we can once again
make use of the standardized random variable  so that
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Furthermore  

 

and finally
 

(11.50)

 
From eq (11.50) it is easy to determine that  so that, as
expected (eq (11.47))  It is left to the reader to verify that

 Then, by virtue of eqs (11.48) and (11.37) we
get which is the same result as eq (11.43). It must be noted that for a Gaussian
distribution all moments are functions of the two parameters µ and s only,
meaning that the normal distribution is completely characterized by its mean
and variance.

Finally, it may be worth mentioning the fact that the so called log-
characteristic function is also convenient in some circumstances. This function
is defined as the natural logarithm of 

11.5 More than one random variable

All the concepts introduced in the previous sections can be extended to the case
of two or more random variables. Consider a probability space (W, , P) and
let  be n random variables according to the
definition of Section 11.3. Then we can consider n real numbers xj and introduce
the joint cumulative distribution function
 

 

as
 

(11.51)

 
If and whenever convenient, both the Xjs and the xjs can be written as

column vectors, i.e.  and  so that
the joint distribution function is written simply Fx(x). Equation (11.51) in
words means that the joint cdf expresses the probability that all the
inequalities  take place simultaneously.
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If now, for simplicity, we consider the case of two random variables X
and Y (the ‘bivariate’ case) it is not difficult to see that the following properties
hold:
 

(11.52)

 

If there exists a function pXY(x, y) such that for every x and y
 

(11.53)

 

this function is called the joint probability density function of X and Y. This
joint pdf can be obtained from FXY(x, y) by differentiation, i.e.
 

(11.54)

 

The one-dimensional functions
 

(11.55)

 

are called marginal distributions of the random variables X and Y, respectively.
Also, we have the following properties for 

 

(11.56)
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and the one-dimensional functions pX(x) and pY(y) are called marginal density
functions: pX(x)dx is the probability that  while Y can assume
any value within its range of definition. Similarly, pY(y)dy is the probability
that  when X can assume any value between –  and + . These
concepts can be extended to the case of n random variables.

In Section 11.2.1 we introduced the concept of conditional probability.
Following the definition given by eq (11.7) we can define the cdf FX(x|y) as
 

(11.57)

 

and similarly for FY(y|x). In terms of probability density functions, the
conditional pdf that  given that  can be expressed as
 

(11.58)

 

provided that  From eq (11.58) it follows that
 

(11.59a)

 

where pY(y) is the marginal pdf of Y. Similarly
 

(11.59b)

 

so that
 

(11.60)

 
which is the multiplication rule for infinitesimal probabilities, i.e. the
counterpart of eq (11.8a). The key idea in this case is that a conditional pdf
is truly a probability density function, meaning that, for example, we can
calculate the expected value of X given that Y=y from the expression
 

(11.61)

 

In this regard we may note that E[X|y] is a function of y, i.e. different
conditional expected values are obtained for different values of y. If now we
let Y range over all its possible values we obtain a function of the random
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variable Y (i.e.)  and we can calculate its expected value as
(taking eqs (11.35b), (11.61) and (11.60) into account)
 

 

which expresses the interesting result
 

(11.62)

 
Similarly These formulas often provide a more efficient way for calculating
the expected values E[X] or E[Y].

Proceeding in our discussion, we can now consider the important concept
of independence. In terms of random variables, independence has to do with
the fact that knowledge of, ay, X gives no information whatsoever on Y and
vice versa. This occurrence is expressed mathematically by the fact that the
joint distribution function can be written as a product of the individual
marginal distribution functions, i.e. the random variables X and Y are
independent if and only if
 

(11.63)
 

or, equivalently
 

(11.64)

 
If now we consider the descriptors of two or more random variables we

can define the joint moments of X and Y defined by the expression
 

(11.65)

 

or the central moments
 

(11.66)

 
where  and  Particularly important is the
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second-order central moment which is called the covariance 
(or ΓXY are all widely adopted symbols) of X and Y, i.e.

 

(11.67a)

 
which is often expressed in nondimensional form by introducing the
correlation coefficient ρXY:

 

(11.67b)

 
For two independent variables eq (11.64) holds, this means

 and  so that if the two standard
deviations sX and sY are not equal to zero we have
 

(11.68)
 
Equation (11.68) expresses the fact that the two random variables are
uncorrelated. It must be noted that two independent variables are uncorrelated
but the reverse is not necessarily true, i.e. if eq (11.68) or  holds, it
does not necessarily mean that X and Y are independent. However, this
statement is true for normally (Gaussian) distributed random variables.

The correlation coefficient satisfies the inequalities  and is a
measure of how closely the two random variables are linearly related. In the
two extreme cases  or  there is a perfect linear relationship
between X and Y.

In the case of n random variables  the matrix notation proves
to be convenient and one can form the n×n matrix of products XXT and
introduce the covariance and the correlation matrices K and r. This latter,
for example, is given by

 

(11.69)

 
For n mutually independent random variables r=I where I is the n×n

identity matrix.
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Among others, an example worth mentioning is the joint Gaussian pdf of
two random variables X and Y. This is written
 

(11.70) 

where ρ is the correlation coefficient ρXY. The two-dimensional pdf (11.70)
is often encountered in engineering practice. When the correlation coefficient
is equal to zero it reduces to the product of two one-dimensional Gaussian
pdfs, meaning that—as has already been mentioned—in the Gaussian case
noncorrelation implies independence.

11.6 Some useful results: Chebyshev’s inequality and the
central limit theorem

Before considering two important aspects of probability theory, namely
Chebychev’s inequality and the central limit theorem, we will give some
results that can often be useful in practical problems. Let X be a random
variable with pdf pX(x). Since a deterministic relationship of the type f(X)—
where f is a reasonable function—defines another random variable Y=f(X),
we ask for its pdf. The simplest case is when f is a monotonic increasing
function. Then, given a value y,  whenever  where y=f(x). Moreover,
the function f–1 exists, is single valued and  Hence
 

(11.71a)
 

and pY(y) can be obtained by differentiation, i.e.
 

(11.72a)

If f is a monotonic decreasing function eq (11.71a) becomes
 

(11.71b)

 

and differentiating
 

(11.72b)
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Then, noting that df/dx is positive if f is monotonically increasing and
negative when f is monotonically decreasing, we can combine eq (11.72a)
and (11.72b) into the single equation
 

(11.73)

 

As a simple example, consider a random variable X with pdf 
 and let  Then  and

 so that
 

 
The reader is invited to sketch a graph of pX(x) and pY(x) and note that

the two curves are markedly different.
If f is not monotone, it can often be divided into monotone parts. The

considerations above are then applied to each part and the sum taken.
The case of two or more random variables can also be considered. Suppose

that we have a random n×1 vector  which is a function of
the basic random vector  i.e. Y=f(X), this symbol meaning
that  etc. Suppose further that
we know the joint pdf pX(x) and we ask for the joint pdf pY(y). Then, if the
inverse f–1 exists, we can obtain a result that resembles eq (11.73), i.e.
 

(11.74)

 

where J is the Jacobian matrix
 

(11.75)

 

Given two random variables X1 and X2 and their joint pdf, a problem of
interest is to determine the pdf of their sum, i.e. of the random variable

 Now, if we introduce the auxiliary variable  we can
adopt the vector notation that led to eq (11.74) and write the known pdf as

 In this case, we have
 

(11.76)
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and |det J|=1. By noting that  and  we can obtain the joint
pdf pY(Y) from eq (11.74), i.e.  and then arrive at the
desired result  by calculating it as the marginal pdf of the random
variable y1, that is
 

(11.77a)

 

or—since the definition of the auxiliary variable is arbitrary—we can set
 and obtain the equivalent expression

 

(11.77b)

 

If the two original variables are independent, then 
 and we get

 

(11.78)

 
which we recognize as the convolution integral of the two functions 
and  (e.g. eq (5.24)). So, when the two original random variables are
independent, we can recall the properties of Fourier transforms and infer
from eq (11.78) that the characteristic function of the sum random variable
Y1 is given by the product of the two individual characteristic functions of
X1 and X2, i.e.
 

 

where there is no 2π factor because no such factor appears in the definition
of characteristic function (eq (11.46a)).

In this regard it is worth mentioning—and it is not difficult to prove—
that if the two random variables X1 and X2 are individually normally
distributed, then their sum  is also normally distributed.
Furthermore, the reverse statement is also true when the two variables are
independent: if the pdf pY(y) is Gaussian and the two random variables are
independent, then X1 and X2 are individually normally distributed.

If, on the other hand, we now look for the pdf of the product of the two
variables X1 and X2, we can set  and  Then 
and since  we can obtain the desired result by integrating eq
(11.74) in dx1, that is
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(11.79a)

 
or, equivalently,
 

(11.79b)

 
Finally, we can consider the ratio of the two original random variables X1

and X2. In this case it is convenient to set  and  Then
and from eq (11.74) we get

 

(11.80)

 

If we now turn to expected values, it is a common problem to consider a
random variable Y which is a linear combination of n random variables

 i.e.
 

(11.81)

 

where the aj are real coefficients. The expected value E[Y] is easily
obtained as
 

(11.82)

 
while the variance  can be calculated as follows:
 

(11.83a)
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meaning that, if the variables are pairwise uncorrelated,
 

(11.83b)

 

Obviously, eq (11.83b) holds also for the stronger condition of mutually
independent Xjs.

Chebychev’s inequality

In practical circumstances, we often have to deal with random variables
whose distribution function is not known. Although we lack important
information, in these cases it would be nevertheless desirable to evaluate
approximately the probability that the variable in question assumes a value
in a given numerical range. An important result in this regard is given by
Chebychev’s inequality which can be stated as follows: let X be a random
variable with a finite variance  then for any positive constant c
 

(11.84a)

 

Two remarks can be made immediately: first of all, it is important to note
that eq (11.84) is valid for any probability distribution and, second, there is
no requirement that the mean value µX is finite because it is not difficult to
show that for a random variable with finite second-order moment—i.e.

—the first moment  is also finite.
If now we take the constant c in the form  (where a is a positive

constant) and rearrange terms, eq (11.84a) can also be expressed as

 

(11.84b)

 
or
 

(11.84c)

 
A typical application of the Chebychev’s inequality is illustrated in the

following simple example.

Example 11.7. Suppose the steel rods from a given industrial process have a
mean diameter of 20 mm and a standard deviation of 0.2 mm. Suppose
further that these are the only available data about the process in question.
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For the future, the management decides that the steel-rod production is
considered satisfactory if at least 80% of the rods produced have diameters
in the range 19.5–20.5 mm. Does the production process need to be changed?

Our random variable X is the rod diameter and the question is whether
 In this case we have  and

Chebychev’s inequality in the form of eq (11.84b) or (11.84c) leads to
 

 

so that, according to the management’s standards, the process can be
considered satisfactory and does not need to be changed.

In general, it must be noted that results of Chebychev’s inequality are
very conservative in the sense that the actual probability that X is in the
range  usually exceeds the lower bound 1–1/a2 by a significant
amount. For example, if it was known that our random variable follows a
Gaussian probability distribution we would have P[19.5<X<20.5]=0.988.

The central limit theorem

In science and technology we often assume implicitly that the phenomenon
or the process under investigation is affected by a large number of independent
random factors and that each one of them contributes by a very small amount
to the phenomenon or process as a whole. Furthermore, our interest lies in
the final result and not in the individual effects of all these factors, which, in
turn, cannot be known anyway in the majority of cases. In other words, the
experimenter observes the phenomenon or process as a whole, which consists
of the superposition of all these random effects. In these circumstances, the
problem arises to consider the behaviour of the sum of a large number of
independent random variables with unknown distribution functions assuming
that each one of them has a small contribution on the total sum.

The fundamental result in this regard is the central limit theorem which
can be stated as follows. Let  be a number of independent,
identically distributed random variables with mean value µ and variance σ2

and let
 

(11.85)

 

Then, the standardized variable
 

(11.86)
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is asymptotically normally distributed, i.e. for any value of z
 

(11.87)

 

meaning that, as n goes to infinity, the distribution function of Zn approaches
the standard normal distribution with zero mean and unit variance.

The proof of the theorem can be sketched as follows. We form the variables
 and expand their characteristic functions as in eq (11.49)

 

(11.88)

 

Now, since the n variables are independent it follows that
 

 

so that passing to the limit as  the higher-order terms go to zero and
since  we get
 

(11.89)

 

which we recognize as the characteristic function of the standard normal
variable (eq (11.50) where  and ).

A few observations deserve to be made at this point:
 
1. As a matter of convenience, the conclusion of the central limit theorem

is often replaced by the simpler statement that the variable is
asymptotically normal with a mean of µ and a variance of s2/n.

2. The assumption of identically distributed variables can be relaxed and the
theorem is still valid provided that the so-called Lindeberg condition is
satisfied. This condition is very general and, in essence, requires that the
contribution of each individual variable to the sum be sufficiently small.

3. There exists a multidimensional version of the central limit theorem.

(11.90)
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Issues 2 and 3, however, are beyond our scope and the reader is referred to
specific texts on probability theory (e.g. Gnedenko [1] Chistakov [2]).

In other words, the practical utility of the central limit theorem lies in the
fact that, for large samples, it allows the use of a Gaussian distribution for
overall measurements on effects of independently distributed causes,
regardless of the probability distribution of the individual causes themselves.

11.7 A few final remarks

When dealing with random data in practical situations, we always perform
a limited number of measurements which, in statistical terminology, form a
‘sample’ drawn from the entire ‘population’. Broadly speaking, the population
is the—finite or infinite, existent or conceptual—set of all possible
observations that, in principle, could be performed for the statistical problem
under investigation. By contrast, a sample is an existing entity, that is, a
(finite) subset of the population which represents the available information
that we collect when we perform our experiments.

Now, two types of problems arise; first, we are confronted with the fact
that the idea of distribution functions of probability theory applies to
populations, while all we have is one or more samples from the population
and, second, the most common situations of science and engineering practice
are those in which we either do not know at all or have a limited knowledge
of the underlying distribution of the population from which our sample was
taken. These problems bring us into the realm of mathematical statistics
which, starting from the information available in form of samples, has
developed methods and techniques to make inferences on the entire
population. These inferences, in turn, can concern either the form of the
underlying distribution function—if this is unknown—or some of its
parameters (for example, mean, variance, etc.) if prior knowledge on the
type of distribution function is available. As a matter of fact, finding answers
to questions like, for example, ‘What kind of distribution function can I use
to describe these data?’ or ‘Can I consider these data to be observations
from a population with such and such distribution function with such and
such mean and variance?’ is called statistical hypotheses testing and is a
specific subject of mathematical statistics. For obvious reasons, it is well
beyond the scope of this book to discuss these topics, and the interested
reader is referred to the wide body of available literature. However, for our
purposes it suffices to say that there exist a number of theorems which support
our intuitive feeling that the statistical characteristics obtained from a
(possibly large) sample can be used as reliable estimates for the corresponding
characteristics of the entire population. In more mathematical terms, these
theorems show that sampling characteristics (moments, just as an example)
converge in probability to the corresponding population characteristics.

Moreover, it may be worthy of notice the fact that mathematical statistics
also gives us the possibility to use distribution-free methods (the so-called
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‘nonparametric methods’) in which no assumption whatsoever is made about
the underlying probability distribution of the population when we make
inferences about parameters or test specific statistical hypotheses. These
methods can be particularly useful for small sample sizes.

The final remark that ends this chapter has to do with the central limit
theorem which, although important for many reasons, is not a panacea. For
some time in the past, because of this theorem, the approach often been
followed has consisted of assuming that the underlying distribution of the
data from an experiment was normal; then, all the subsequent statistical
analysis revolved about this assumption. Care must be exercised, however,
because the assumption of normality may often be reasonable but it is not
always justified. Again, we fall back into the preceding discussion of this
section in the sense that any assumption of normality (i.e. testing the
hypothesis that our data come from a normally distributed population) should
be checked by means of specific methods that belong to the discipline of
mathematical statistics in their own right.
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12 Stochastic processes and
random vibrations

12.1 Introduction

A large number of phenomena in science and engineering either defy any
attempt of a deterministic description or only lend themselves to a
deterministic description at the price of enormous difficulties. Examples of
such phenomena are not hard to find: the height of waves in a rough sea, the
noise from a jet engine, the electrical noise of an electronic component or, if
we remain within the field of vibrations, the vibrations of an aeroplane flying
in a patch of atmospheric turbulence, the vibrations of a car travelling on a
rough road or the response of a building to earthquake and wind loads.
Without doubt, the question as to whether any of the above or similar
phenomena is intrinsically deterministic and, because of their complexity,
we are simply incapable of a deterministic description is legitimate, but the
fact remains that we have no way to predict an exact value at a future
instant of time, no matter how many records we take or observations we
make. However, it is also a fact that repeated observations of these and
similar phenomena show that they exhibit certain patterns and regularities
that fit into a probabilistic description. This occurrence suggests taking a
different and more pragmatic approach, which has turned out to be successful
in a large number of practical situations: we simply leave open the question
about the intrinsic nature of these phenomena and, for all practical purposes,
tackle the problem by defining them as ‘random’ and adopting a description
in terms of probabilistic statements and statistical averages.

In other words, we base the decision of whether a certain phenomenon is
deterministic or random on the ability to reproduce the data by controlled
experiments. If repeated runs of the same experiment produce identical results
(within the limits of experimental error), then we regard the phenomenon in
question as deterministic; if, on the other hand, different runs of the same
experiment do not produce identical results but show patterns and regularities
which allow a satisfactory description (and satisfactory predictions) in terms
of probability laws, then we speak of random phenomenon.
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12.2 The concept of stochastic process

First of all a note on terminology: although some authors distinguish between
the terms, in what follows we will adopt the common usage in which
‘stochastic’ is synonymous with ‘random’ and the two terms can be used
interchangeably.

Now, if we refer back to the preceding chapter, it can be noted that the
concepts of event and random variable can be conveniently considered as
forming two levels of a hierarchy in order of increasing complexity: the
information about an event is given by a single number (its probability),
whereas the information about a random variable requires the knowledge
of the probability of many events. If we take a step further up in the hierarchy
we run into the concept of stochastic or random process.

Broadly speaking, any process that develops in time or space and can be
modelled according to probabilistic laws is a stochastic or random process.
More specifically, a stochastic process X(z) consists of a family of random
variables indexed by a parameter z which, in turn, can be either discrete or
continuous and varies within an index set Z, i.e.  In the former case
one speaks of a discrete parameter process, while in the latter case we speak
of a continuous parameter process.

For our purposes, the interest will be focused on random processes X(t)
that develop in time so that the index parameter will be time t varying within
a time interval T; such processes can also be generally indicated with the
symbol  In general, the fact that the parameter t varies
continuously does not imply that the set of possible values of X(t) is
continuous, although this is often the case. A typical example of a random
time record with zero mean (velocity in this specific example, although this
is not important for our present purposes) looks like Fig. 12.1, which was
created by using a set of software-generated random numbers.

Also note that a random process can develop in both time and space:
consider for example the vibration of a tall and slender structure under the
action of wind during a windstorm. The effect of turbulence will be random
not only in time but also with respect to the vertical space coordinate y
along the structure.

The basic idea of stochastic process is that for any given value of t e.g.
 is a random variable, meaning that we can consider its

cumulative distribution function (cdf)
 

(12.1a)
 

or its probability density function (pdf)
 

(12.1b)
 
where we write  and  to point out the fact that, in general,
these functions depend on the particular instant of time t0. Note, however,
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that if we adhere strictly to the notation of the preceding chapter we should
write  and  By the same token, we can have information on
the behaviour on the process X(t) at two particular instants of time t1 and t2

by considering the joint cdf
 

(12.2a)

 
and the corresponding joint pdf
 

(12.2b)

 
or, for any finite number of instants  we can consider the function
 

(12.3)

 

and its corresponding joint pdf so that, by increasing the value of n we can
describe the probabilistic structure of the random process in finer and finer
detail. Note that knowledge of the joint distribution function (12.3) gives
information for any  (e.g. the function of eq (12.2a) where m=2), since
these distribution functions are simply its marginal distribution functions.
Similarly, we may extend the concepts above by considering more than one

Fig. 12.1 Random (velocity) time record.

Copyright © 2003 Taylor & Francis Group LLC



stochastic process, say X(t) and Y(t´), and follow the discussion of Chapter
11 to define their joint pdfs for various possible sets of the index parameters
t and t’.

Now, since we can characterize a random variable X by means of its
moments and since, for a fixed instant of time  the stochastic process
X(t) defines a random variable, we can calculate its first moment (mean value) as
 

(12.4)

 

or its mth order moment
 

(12.5)

 

and the central moments as in eq (11.36). In the general case, all these
quantities now obviously depend on t because they may vary for different
instants of time; in other words if we fix for example two instants of time t1

and t2, we have 
Similarly, for two instants of time we have the so-called autocorrelation

function
 

and the autocovariance
 

(12.7)

 
which are related (eq (11.67a)) by the equation
 

(12.8)

 
Particular cases of eqs (12.6) and (12.7) occur when  so that we obtain,
respectively, the mean squared value and the variance
 

(12.9)

 
When two processes are studied simultaneously the counterpart of eq (12.6)
is the cross-correlation function
 

(12.10)

(12.6)
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which is related to the cross-covariance
 

(12.11)

 
by the equation
 

(12.12)

Consider now the idea of statistical sampling. With a random variable X we
usually perform a series of independent observations and collect a number of
samples, i.e. a set of possible values of X. Each observation xj is a number and
by collecting a sufficient number of observations we can get an idea of the
underlying probability distribution of the random variable X. In the case of a
stochastic process X(t) each observation xj(t) is a time record similar to the one
shown in Fig. 12.1 and our experiment consists of collecting a sufficient number
of time records which can be used to estimate probabilities, expected values etc.
A collection of a number—say n—of time records  is the
engineer’s representation of the process and is called an ensemble. A typical
ensemble of four time histories is shown in Fig. 12.2.

As an example, consider the vibrations of an aeroplane in a region of
frequent atmospheric turbulence given the fact that the same plane flies
through that region many times a year. During a specific flight we measure
a vibration time history x1(t), during a second flight in similar conditions we
measure x2(t) and so on, where, for instance, if the plane takes about 15 min

Fig. 12.2 Ensemble of four time histories for the stochastic process X(t).
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to fly through that region,  The statistical population for this
random process is the infinite set of time histories that, in principle, could be
recorded in similar conditions.

We are thus led to a two-dimensional interpretation of the stochastic
process which we can indicate, whenever convenient, with the symbol X(j,
t): for a specific value of t, say  is a random variable and

 are particular realizations, i.e. observed values, of X(j,
t0); on the other hand, for a fixed j, say  is simply a function of
time, i.e. a sample function xj0(t).

With the data at our disposal, the quantities of eqs (12.4)–(12.9) must be
understood as ensemble expected values, that is expected values calculated
across the ensemble. However, it is not always possible to collect an ensemble
of time records and the question could be asked if we can gain some
information on a random process just by recording a sufficiently long time
history and by calculating temporal expected values, i.e. expected value
calculated along the sample function at our disposal. An example of such a
quantity can be the temporal mean <x> obtained from a time history x(t) as
 

(12.13)

 

The answer to the question is that this is indeed possible in a number of
cases and depends on some specific assumptions that can often (reasonably)
be made about the characteristics of many stochastic processes of interest.

12.2.1 Stationary and ergodic processes

Strictly speaking, a stationary process is a process whose probabilistic
structure does not change with time or, in more mathematical terms, is
invariant under an arbitrary shift of the time axis. Stated this way, it is
evident that no physically realizable process is stationary because all processes
must begin and end at some time. Nevertheless the concept is very useful for
sufficiently long time records, where by the expression ‘sufficiently long’ we
mean here that the process has a duration which is long compared to the
period of its lowest spectral components.

There are many kinds of stationarity, depending on what aspect of the
process remains unchanged under a shift of the time axis. For example, a
process is said to be mean-value stationary if
 

(12.14a)
 
for any value of the shift r. Equation (12.14a) implies that the mean value is
the same for all times so that for a mean-value stationary process
 

(12.14b)
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Similarly, a process is second-moment stationary if
 

(12.15a)

 
for any value of the shift r. For eq (12.15a) to be true, it is not difficult to see
that the autocorrelation and covariance functions must not depend on the
individual values of t1 and t2 but only on their difference  so that
we can simply write
 

(12.15b)

 
By the same token, for two stochastic processes X(t) and Y(t) we can speak
of joint second-moment stationarity when  At this point
it is easy to extend these concepts and define, for a given process, covariant
stationarity and mth moment stationarity or, for two processes, joint covariant
stationarity, etc. It must be noted that stationarity always reduces the number
of necessary time arguments by one: i.e. in the general case the mean depends
on one time argument, while for a stationary process it does not depend on
time (zero time arguments); the autocorrelation depends on two time
arguments in the general case and only on one time argument ( ) in the
stationary case, and so on.

Other forms of stationarity are defined in terms of probability distributions
rather than in terms of moments. A process is first-order stationary if
 

(12.16)

 
for all values of x, t and r; second-order stationary if
 

(12.17)

 
for all values of  and r. Similarly, the concept can be extended to
mth-order stationarity, although the most important types in practical
situations are first- and second-order stationarities.

In general, a main distinction is made between strictly stationary processes
and weakly stationary processes, strict stationarity meaning that the process
is mth-order stationary for any value of m and weak stationarity meaning
that the process is mean-value and covariant stationary (note that some
authors define weak stationarity as stationarity up to order 2).

If we consider the interrelationships among the various types of stationarity,
for our purposes it suffices to say that mth order stationarity implies all
stationarities of lower order, while the same does not apply for mth moment
stationarity. Furthermore, mth-order stationarity also implies mth moment
stationarity so that, necessarily, an mth-order stationary process is also stationary
up to the mth moment. Note, however, that it is not always possible to establish
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a hierarchy among different types of stationarities: for example it is not possible
to say which is stronger between second-moment stationarity and first-order
stationarity because they simply correspond to different behaviours. First-order
stationarity certainly implies that all moments E[X

m
(t)]—which are calculated

by using pX(x, t)—are invariant under a time shift, but it gives us no information
about the relationship between X(t1) and X(t2) when 

Before turning to the issue of ergodicity, it is interesting to investigate
some properties of the functions we have introduced above. The first property
is the symmetry of autocorrelation and autocovariance functions, i.e.
 

(12.18)

 

which, whenever the appropriate stationarity applies, become
 

(12.19)

 

meaning that autocorrelation and autocovariance are even functions of .
Also, if we note that
 

 
 
we get  from
which it follows that
 

(12.20)
 
for all . Similarly, for all 
 

(12.21)
 
where the first equality is a direct consequence of the second of eqs (12.9)
where stationarity applies. Moreover, it is not difficult to see that eq (12.8)
now reads
 

(12.22a)
 
so that, as it often happens in vibrations, if the process is stationary with zero
mean, then  When  from eq (12.22a) it follows that
 

(12.22b)
 

Two things should be noted at this point: first (Chapter 11), Gaussian
random processes are completely characterized by the first two moments,
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i.e. by the mean value and the autocovariance or autocorrelation function.
In particular, for a stationary Gaussian process all the information we need
is the constant µX and one of the two functions RXX( ) or KXX( ). Second,
for most random processes the autocovariance function rapidly decays to
zero with increasing values of  (i.e. ) because, as can be
intuitively expected, at increasingly larger values of  there is an increasing
loss of correlation between the values of X(t) and  Broadly speaking,
the rapidity with which KXX( ) drops to zero as | | is increased can be
interpreted as a measure of the ‘degree of randomness’ of the process.

If two weakly stationary processes are also cross-covariant stationary, it
can be easily shown that the cross-correlation functions RXY( ) and RYX( )
are neither odd nor even; in general  but, owing to the
property of invariance under a time shift, they satisfy the relations
 

(12.23)

 

while eq (12.12) becomes
 

(12.24)
 

The final property of cross-correlation and cross-covariance functions of
stationary processes is the so-called cross-correlation inequalities, which we
state without proof:
 

(12.25)

 

(We leave the proof to the reader; the starting point is the fact that
 where a is a real number.)

Stated simply, a process is strictly ergodic if a single and sufficiently long
time record can be assumed as representative of the whole process. In other
words, if one assumes that a sample function x(t)—in the course of a
sufficiently long time T—passes through all the values accessible to it, then
the process can be reasonably classified as ergodic. In fact, since T is large,
we can subdivide our time record into a number n of long sections of time
length Θ so that the behaviour of x(t) in each section will be independent of
its behaviour in any other section. These n sections then constitute as good
a representative ensemble of the statistical behaviour of x(t) as any ensemble
that we could possibly collect. It follows that time averages should then be
equivalent to ensemble averages.

Assuming that a process is ergodic simplifies both the data acquisition
phase and the analysis phase. In fact, on one hand we do not need to collect
an ensemble of time histories—which is often difficult in many practical
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situations—and, on the other hand, the single time history at our disposal
can be used to calculate all the quantities of interest by replacing ensemble
averages with time averages, i.e. by averaging along the sample rather than
across the number of samples that form an ensemble. Ergodicity implies
stationarity and hence, depending on the process characteristic we want to
consider, we can define many types of ergodicity. For example, the process
X(t) is ergodic in mean value if the expression
 

(12.26)

 

where x(t) is a realization of X(t), tends to E[X(t)] as  Mean value
stationarity is obviously implied (incidentally, note that the reverse is not
necessarily true, i.e. a mean-value stationary process may or may not be
mean-value ergodic, and the same applies for other types of stationarities)
because the limit of (12.26) cannot depend on time and hence (eq (12.13))
 

(12.27)

 
Similarly, the process is second-moment ergodic if it is second-moment

stationary and
 

(12.28)

 
These ideas can be easily extended because, for any kind of stationarity, we can
introduce a corresponding time average and an appropriate type of ergodicity.

There exist theorems which give necessary and sufficient (or simply
necessary) conditions for ergodicity. We will not consider such mathematical
details, which can be found in specialized texts on random processes but
only consider the fact that in common practice—unless there are obvious
physical reasons not to do so—ergodicity is often tacitly assumed whenever
the process under study can be considered as stationary. Clearly, this is more
an educated guess rather than a solid argument but we must always keep in
mind that in real-world situations the data at our disposal are very seldom
in the form of a numerous ensemble or in the form of an extremely long
time history.

Stationarity, in turn—besides the fact that we can rely on engineering
common sense in many cases of interest—can be checked by hypothesis testing
noting that, in general, it is seldom possible to test for more than mean-
value and covariance stationarity. This can be done, for example, by
subdividing our sample into shorter sections, calculating sample averages
for each section and then examining how these section averages compare
with each other and with the corresponding average for the whole sample.
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On the basis of the amount of variation that we are willing to accept from
one section to another in order to accept the assumption of stationarity, the
statistical procedures of hypothesis testing provide us with the appropriate
means to make a decision.

For instance, in common engineering practice, the vibration from
continuous traffic is considered as a random stationary ergodic process and
the length of the time record depends on the statistical error we are willing
to accept. If, as generally happens, we accept a bias error of 4% and a
variance error of 10%, the time record length is given by [1]
 

 

where ζ is the modal damping and vn is the natural frequency of the nth mode
of the building. Also, as far as wind effects on structures are concerned, it
should be noted that the vast majority of available results based on wind tunnel
testing and/or analytical turbulence modelling are obtained under the assumption
that the atmospheric flow is stationary. Hurricane flows, however, are highly
nonstationary and some efforts to study nonstationary flow effects have been
recently reported (e.g. Adhikari and Yamaguchi [2]). For the interested reader,
it is worth mentioning that a technique which is becoming more and more
popular for the study of nonstationary processes is called ‘wavelet analysis’,
although in what follows we will be concerned with stationary processes (wide-
sense stationary processes at least, unless otherwise stated) only.

12.3 Spectral representation of random processes

We noted in preceding chapters that the vibration analysis of linear systems
can be performed either directly in the time domain or in the frequency
domain via the classical tool of the Fourier transform. The two descriptions,
in principle, are equivalent but the frequency domain is often preferred
because it provides a perspective which lends itself more easily to engineering
interpretation and synthesis of results. This is, indeed, the case also in the
field of random vibrations.

However, if we consider a general stochastic process X(t), two major
difficulties arise. First, the expression
 

 

defines a new stochastic process on the index set of possible ω values, meaning
that if we insert under the integral sign a particular realization x(t) of X(t)
we do not obtain a frequency representation of the process but only of one
member of it. Second, if the process is stationary (i.e. it goes on forever) the
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Dirichlet condition
 

(12.29)

 

is not satisfied and the sample function x(t) is not Fourier transformable.
These difficulties can be overcome by recalling the observation (Section 12.2.1)
that for a large number of stationary random processes of engineering interest
the autocorrelation tends to zero as the separation time  tends to infinity
(we assume, without loss of generality, processes with zero mean; when this
is not the case, the following discussion applies to the covariance function).

More specifically, the autocorrelation function of many processes is of
the form
 

(12.30)
 
where α is a positive constant and f( ) is a well-behaved function of .
Mathematically, this means that the autocorrelation function satisfies the
Dirichlet condition and hence is Fourier transformable. This leads to the
definition of the function 
 

(12.31a)

 

which is called the autospectral density, power spectral density (PSD, a term
that comes from electrical engineering) or simply spectral density of the process
X(t). If x(t) is a voltage signal, the units of the autocorrelation are volts squared
and SXX(ω) is expressed in volts squared per unit angular frequency; the
relationship with the spectral density expressed in terms of ordinary frequency

 is given by  and the units of 
Inverse Fourier transform of eq (12.31a) yields

 

(12.31b)

 

and the result expressed by eqs (12.31a and b) are the so-called Wiener-
Khintchine relations. Clearly, similar relations define the cross-spectral density
SXY(ω) between two stationary processes X(t) and Y(t) and we have

(12.32)
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Before proceeding further, let us consider some properties of these spectral
densities. First, the symmetry properties of the (real) autocorrelation and
cross-correlation functions (see eqs (12.19) and (12.23)) lead to
 

(12.33)

 

where the first equation states that the autospectral density is a real, even
function of ω, while the second equation tells us that, in general, the cross-
spectral density is a complex-valued function that can be separated into its
real and imaginary parts  and  which, in turn, are often
called the co-spectrum and the quad-spectrum, respectively. Also, the symmetry
property expressed by the first of eqs (12.33) implies that there is no loss of
information if we only consider the frequency range  This has led
to an alternative form of spectral density, the one-sided spectral density, which
is usually denoted GXX(ω) and is defined for positive frequencies only, as
 

(12.34)
 

The second consideration we want to make is that eq (12.31b) for 
gives
 

(12.35)

 

This property is often used for calculations of variance values and shows
that the variance of the stationary process can be obtained as the area under
the autospectral density curve.

If now we proceed in our discussion, the question may arise as to whether,
by Fourier transforming the correlation function, we are really considering
the frequency content of the original process. The answer is yes and the
following argument will provide some insight. Consider a stationary process
X(t) and a realization x(t) of infinite duration. Let us define the Fourier
transformable truncated version of x(t) as
 

(12.36)

 

we have  and we can consider the truncated realization
of the correlation function
 

(12.37)
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Now, if we call  the Fourier transform of xT(t) it is not difficult to
determine that
 

(12.38)

 

where, as usual,  indicates the Fourier transform of the quantity within
braces (recall the Fourier transform of a convolution product, (Chapter 2)).

In words, eq (12.38) states that the function —i.e. by definition
the Fourier transform of the truncated autocorrelation—equals 2π/T the
magnitude squared of the Fourier transform of the truncated process xT(t).
The desired result can now be obtained from eq (12.38) by taking the
ensemble average and passing to the limit as  under these operations
it is not difficult to see that  so that
 

(12.39a)

 

At this point, one might be tempted to argue that the ensemble average
should not be needed if the process is ergodic. However, this is not so: the
reason lies in the fact that the truncated function  which is an estimator
of the true spectral density, is not a ‘consistent’ estimator and its quality
does not improve even for very large T. Hence, the version of eq (12.39a)
without ensemble average, i.e.
 

(12.39b)

 

applies to deterministic signals only.
This short argument, besides confirming our point that Fourier

transforming the autocorrelation function preserves the frequency content
of the original stationary signal, also shows that the spectral density obtained
from a single sample is not a good estimator of the desired (and unknown)
SXX(ω). The typical approach to avoid this sampling difficulty is generally to
replace  by a ‘smoothed’ version  whose variance tend to zero as

 We will not go into more details here and refer the reader to specific
literature (e.g. Papoulis [3], Bendat and Piersol [4]).

12.3.1 Spectral densities: some useful results

This section gives some general results which can be particularly useful when
dealing with random processes. First of all, many transformations on random
processes are in the form of linear, time-invariant operators and can be
mathematically represented as an operator A which transforms a sample
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function x(t) into another function y(w), i.e.  where w may be
time as well (for example if A is the derivative operator) or another variable

 Here, we give without proof the following results (more details will
be given in subsequent sections):
 
• When the relevant quantities exist, the operator A and the operation of

ensemble averaging can be exchanged, i.e. 
• A weakly (strongly) stationary random process is transformed into a

weakly (strongly) stationary random process.
• The linear operator A transforms a Gaussian process into a Gaussian process.
 

A second useful result can be obtained if we consider the meaning of the
function  we have
 

(12.40a)

 

and also, since 
 

(12.40b)

 

so that eqs (12.40a and b) imply
 

(12.40c)

 

and only a little thought is needed to show that  is an odd function
of . The result of eq (12.40c) can also be obtained by noting that E[X2(t)]
is a constant for a correlation covariant process; this implies

 

In this regard, it is worth mentioning the often exploited fact that a maximum
value for RXX( ) corresponds to a zero crossing for  i.e. a zero
crossing for the cross-correlation between the processes X(t) and (t). By a
similar reasoning to the above we can show that

(12.41)
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and that the second derivative of RXX(t) is an even function of . Similarly,
we can obtain
 

(12.42)

 

Next, if we turn our attention to spectral densities we can start from the
basic relation
 

 

and by noting that it is legitimate to take the derivative under the integral
sign on the r.h.s., we can differentiate both sides to obtain
 

(12.43)

 

so that
 

(12.44)

 

and also
 

(12.45)
 

Moreover
 

(12.46)

showing that, if x(t) is a displacement time history, we can calculate the mean
square velocity and acceleration from knowledge of the spectral density SXX(ω).
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The final topic we want to consider in this section is the distinction that
is usually made between narrow-band and wide-band random processes,
these definitions having to do with the form of their spectral densities.
Working, in a sense, backwards we can investigate what kind of time histories
and autocorrelation functions result in narrow-band and wide-band processes.

Broadly speaking, a narrow-band process has a spectral density which is
very small except within a narrow band of frequencies: i.e.  except
in the neighbourhood of a frequency  A typical example is given by
the spectral density shown in Fig. 12.3, which is different from zero only in
an interval of width  centred at ω0 where it has the constant
value S0.

In order to obtain the autocorrelation function we can simplify the
calculations by noting that we are dealing with even functions of their
arguments; then the inverse Fourier transform of SXX(ω ) can be written as a
cosine Fourier transform and we get
 

(12.47)

which is plotted in Figs. 12.4(a) and (b) for the values 
 and S0=1. Figure 12.4(b) shows a detail of Fig.

12.4(a) in the vicinity of 

Fig. 12.3 Spectral density of narrow-band process.
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In essence, for a typical narrow-band process  so that the
autocorrelation graph is a cosine oscillation at the frequency 
enveloped by the slowly varying term

Fig. 12.4 Autocorrelation of narrow-band process.
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which decays to zero for increasing values of | |. In the limit of very
small values of ∆ω, the spectral density becomes a Dirac delta ‘function’

 at and
 

(12.48)

 

so that the correlation function is a simple sinusoid. It is not difficult to
show, for example, that such a correlation function can represent a process

 where A and ω0 are deterministic quantities but the
phase angle Θ is a random variable which can assume with equal probability
any value between zero and 2π (or, in other words, has a pdf 
for  and zero otherwise). In fact

By analogy, we can infer that a time history of the narrow-band process
whose correlation function is given by eq (12.47) is surely not a sinusoidal
function but, nonetheless, it may look ‘quite sinusoidal’ with a low degree of
randomness.

At the other extreme we find the so-called wide-band processes, whose
spectral densities are significantly different from zero over a broad band of
frequencies. An example can be given by a process with a spectral density as
in Fig. 12.3 but where now ω1 and ω2 are much more further away on the
abscissa axis. For illustrative purposes we can set  and

 (i.e. ) and draw a graph of the autocorrelation
function, which is still given by eq (12.47). This graph is shown in Fig. 12.5
where, again, we set S0=1.

The fictitious process whose spectral density is equal to a constant S0 over
all values of frequencies represents a mathematical idealization called ‘white
noise’ (by analogy with white light which has an approximately flat spectrum
over the whole visible range of electromagnetic radiation). For this process
it is evident that the spectral density is nonintegrable; however, we can once
more use the Dirac delta function and note that the Fourier transform of the
autocorrelation function

(12.50)

(12.49)
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yields the desired spectral density  A more realistic process, called
‘band-limited white noise’, has a constant spectral density from  up to
a cutoff frequency  In this case

 

(12.51)

 
and ideal white noise is obtained by letting  if now we define the
parameter  which tends to zero in the above limit, we get

 

(12.52)

 
because one of the representations of the delta function as a limit (Chapter 2)
is the Dirichlet or ‘diffraction peak representation’ which reads

 

 

The autocorrelation function of a band-limited white-noise signal (eq
(12.51)) is shown in Fig. 12.6, where  and S0=1.

Fig. 12.5 Autocorrelation of wide-band process.
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For obvious reasons, white-noise processes are also called ‘delta-correlated’,
where this term focuses the attention on the time-domain correlation rather
than on the flatness of the frequency-domain spectral density. At this point
it is not difficult to figure out that the time histories of such processes are
very erratic and show a high degree of randomness (e.g. Fig. 12.1), the reason
being the fact that the random variables X(t) and  are practically
uncorrelated even for small values of . This confirms the qualitative
statement of Section 12.2.1 that the rapidity with which the correlation
function decays to zero is a measure of the degree of randomness of the
process under investigation. Conversely, in the frequency domain some
quantities have been devised in order to assign a numerical value to the
concept of bandwidth of a random process. The interested reader is referred,
for example, to Lutes and Sarkani [5], or Vanmarcke [6].

12.4 Random excitation and response of linear systems

We are now in a position to start the investigation of how linear vibrating
systems respond to the action of one or more stochastic excitation inputs.
The situations we are going to consider are those in which a random (and
generally stationary, unless otherwise stated) input is fed into a deterministic
linear system to produce a random output. For our purposes, the fact that
the system is deterministic means that its physical characteristics—mass,
stiffness and damping—are well-defined quantities independent of time. A
higher level of sophistication is represented by the case in which these

Fig. 12.6 Autocorrelation of band-limited white noise.
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parameters are also considered as random variables and contribute to the
randomness of the output in their own right. In this regard it may be
interesting to mention the fact that the response of random parameters
systems to deterministic initial conditions and under the action of deterministic
loads is, as a matter of fact, a random quantity (e.g. Köylüoglu [7]). In our
approach, however, the systems characteristics are fully represented by the
impulse response functions h(t) in the time domain or by frequency response
functions H(ω) in the frequency domain.

The basic input-output relations can then be obtained as follows. Consider
a linear physical system subjected to a forcing function in the form of a
stationary random process F(t) and let its response be the random output
process X(t). The mental picture we need is one of a large number of
experiments where realizations f(t) of the input force excite our deterministic
system which, in turn, responds with realizations x(t) of the output. If we
refer back to Chapter 5 (eq (5.24)), the output of a typical sample experiment
can be written as the Duhamel (or convolution) integral
 

(12.53)

 
so that, if the mean input level is given by  the first thing we can
do is to calculate the mean output level E[X(t)] by taking the ensemble average
of both members of eq (12.53). Since it is legitimate to exchange the ensemble
average operator with integration (this is always possible for stable systems
subjected to random input provided that the mean square of the input is
finite) we get
 

(12.54)

 

Real and stable systems always possess some degree of damping which makes
the function h(t) decay to zero after some time. In these circumstances, eq
(12.54) shows that a stationary input produces a stationary output. If, for
example, our system is a simple damped SDOF system whose impulse
response function is given by the second of eqs (5.7a), it is not difficult to
determine that
 

(12.55)

 

showing that the mean input level is transmitted as any other static load.
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Incidentally, we note that we do not even need to calculate the integral in eq
(12.55); in fact, since  it follows that

 
(12.56)

 
and for an SDOF system (e.g. eq (4.42)) we have H(0)=1/k, which leads
precisely to the result of eq (12.55). More generally, eq (12.54) can also be
written as

 
(12.57)

 
Note that here and in what follows we represent the input as a force

signal and the output as a displacement signal because this is the
representation that we used for the most part of the book. It is evident that
this is merely a matter of convenience and it does not necessarily need to be
so. The essence of the discussions remains the same and only a small effort
is required to adjust to situations where different input and output quantities
are considered.

If now we assume without loss of generality that the input process has
zero mean value, we can turn our attention to the correlation function and
write, by virtue of eq (12.53)
 

 

Taking the ensemble average on both sides we get
 

(12.58)

 

because we assumed a covariant stationary input, meaning that its
autocorrelation depends only on the time interval 

 The immediate consequence is that the expected value on the
l.h.s.—the output autocorrelation—is a function of  only and the output
process is also covariant stationary. In particular, if the input is a unit delta-
correlated process
 

(12.59)
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the response autocorrelation becomes a single integral, i.e.
 

(12.60a)

 

Furthermore, the response variance is given by
 

(12.60b)

 

In the frequency domain, the rather intimidating double integral of eq
(12.58) turns into a simpler relationship. If we take the Fourier transform
on both sides of eq (12.58) we get
 

 

Then, in the integral within braces we make the change of variable
 so that  and the equation above becomes

 

 

which is the fundamental ‘single-input single-output’ relationship in the
frequency domain for stationary random processes. Explicitly,
 

(12.61b)

(12.61a)
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Also, by virtue of this last relationship we can obtain another expression
for the variance  by writing the equation

 

from which it follows that

 
(12.62)

 
Other quantities of interest are the cross-relationships between input and

output; from eq (12.53) we obtain

 
 

 
so that taking expectations on both sides and exploiting the covariance
stationarity of the input yields

 
(12.63)

 
Equation (12.63) can then be Fourier transformed to give

 
(12.64a)

 
which expresses the input-output cross-spectral density in terms of the input
autospectral density. Note that an important difference between the
autospectral densities (eq (12.61b)) and the cross-spectral densities relations
(eq (12.64)) is that the first is a real-valued relationship containing no phase
information, while the second is a complex-valued relationship which can
be broken down into a pair of equations to give both magnitude and phase
information. This latter statement is of great practical importance because it
means that the complete FRF of our system (i.e. magnitude and phase) can
be obtained when both SFX(ω ) and SFF(ω) are known, i.e.

 

(12.64b)

 
thus justifying the H1 FRF estimate of eq (10.28a), which was given in Chapter
10 without much explanation. (Note that eq (10.28a) is written in terms of
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one-sided spectral densities, the difference being only for practical purposes
because these are the quantities displayed by spectrum analysers.
Mathematically, the difference is irrelevant.)

By the same line of reasoning, it is now just a simple matter to obtain the
output-input cross-relationships
 

(12.65)

 

from which we can obtain another expression for H(ω). In fact, putting
together eq (12.61b) and the second of eqs (12.65) we have
 

 

from which it follows that
 

(12.66)

 
thus justifying the H2 FRF estimate of eq (10.29).

Example 12.1. SDOF system subjected to broad-band excitation. From
preceding chapters we know that the FRF of an SDOF system with parameters
m, k and c is given by
 

(12.67a)

 

so that
 

(12.67b)

 

Under the action of a random excitation with spectral density SFF(ω), the
system’s response in the frequency domain is given by eq (12.61b), i.e.
 

(12.68)

 
where, as usual, is the system’s natural frequency. If the excitation is in the
form of a broad-band process whose spectral density is reasonably flat over
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a broad range of frequencies, we can approximate it as an ‘equivalent’ white
noise by assuming  The reason for this assumption comes
from the fact that, for small damping, the function (12.67b) is sharply peaked
in the vicinity of ωn and small everywhere else—Fig. 12.7 being an example
for m=10, k=100 and  As a consequence, the product 
will also show a similar behaviour, thus justifying the approximation above.

In physical terms, our system acts as a band-pass filter which significantly
amplifies only the frequency components in the vicinity of its natural
frequency and produces a narrow-band process at the output.

The variance of the output process can then be obtained from eq (12.62) as
 

(12.69a)

 

where the last result can be obtained from tables of integrals. (Tables of
integrals for  where the FRF is of the type
 

 

and the Aj and Bj are real constants, are given, for example, in Newland [8].

Fig. 12.7 FRF magnitude squared (SDOF).
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In the light of this result, it is interesting to note that, since  we
can write
 

(12.70)

 
in which we note that  is simplyc  while the quantity 
can be interpreted as a ‘mean-square’ bandwidth. Both these quantities can
be easily obtained from a graph of |H(ω)| without necessarily knowing the
values of the parameters m, k and c. In essence, we obtain the area expressed
by the integral  by calculating the area of an ‘equivalent’
rectangle whose vertical and horizontal sides are given by the peak value of
|H(ω)|2 and by the mean-square bandwidth, respectively.

The reader should not be deceived by the simplicity of this example. In
practical situations it often happens that a specific mode of a structure—
occurring, say, at a frequency ωj—is subjected to a random forcing excitation
which has an almost flat spectral density over the range of frequencies in the
vicinity of ωj. If the mode is lightly damped and well separated from other
modes, we are in a situation which represents a good approximation of this
SDOF example.

As a final comment in this section, it is worth pointing out that the
expressions obtained above for the input-output relations refer to a steady-
state condition, i.e. a situation in which the input has been acting for a
while and the system has already had the time to adjust to its state of
motion. As a matter of fact, however, real systems need some time to reach
such a steady-state condition in which a stationary input produces a
stationary output. In engineering terminology, we did not consider the
transient part of the response, which occurs during a certain interval of
time immediately following the onset of the input and dies away later
because of the presence of damping.

During this period of time the response is obviously nonstationary. Now—
resorting once again to the case of an SDOF system under the action of a
white-noise excitation—we want to investigate how the variance of the
response varies before reaching its steady-state value given by eq (12.69a).

Without loss of generality, we assume that the excitation is turned on at
t=0, that has a zero mean value and that its autocorrelation is in the form

 This last condition implies that its white-noise spectral
density is given by 2πS0, where  There are different ways in which
we can proceed; we will follow a time-domain approach by noting that the
desired result can be obtained by rewriting eq (12.60b) as
 

(12.71a)
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or, explicitly,
 

(12.71b)

 

This integral can be slightly rearranged by making the change the variable
 so that

 

(12.71c)

 

Then, from a table of integrals we get
 

 

so that, being in our case  it only takes a little patience to
arrive at the final result
 

 

where we note that the term outside the braces is exactly the steady-state
value of eq (12.69a) and that
 

(12.73)

 
Considering an SDOF system with natural frequency  Fig.

12.8 shows a plot of the ratio  (i.e. the term within braces
of eq (12.72)) for two values of damping, namely  and  It is
evident the effect of the damping ratio on the rapidity with which the steady-
state value of variance is attained: the lower the damping ratio, the slower
the convergence of  to its asymptotic value 

12.4.1 One output and more than one random input

Consider first the case in which a linear system is subjected to two simultaneous
random stationary inputs f1(t) and f2(t) (i.e. realizations of the random
processes F1(t) and F2(t), respectively) and we measure one output x(t). This
may represent the common situation in which two excitations act at two

(12.72)
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different points of a structure (say, point A and point B) and we measure the
resulting state of motion at a third point C. The time-domain response can
obviously be written as

(12.74)

 
where h1(t) is the IRF between point A and point C and h2(t) is the IRF
between point B and point C. The response mean value is readily obtained as

(12.75a)

 

or also

(12.75b)

 
since  and  The response autocorrelation
can be obtained with some manipulations by calling α1 the variable of
integration in eq (12.74) and by writing

Fig. 12.8 Evolution towards steady state of the variance ratio W(t) for two values
of damping.
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so that we get the expression

 

which leads, after taking expectations on both sides, to  

(12.77)

showing that the output process is also stationary because its autocorrelation
depends on the variable  only.

As for the single input case, in the frequency domain we obtain a simpler
relationship. The autospectral density of the output process is obtained by
Fourier transforming both sides of eq (12.77). For the first double integral
we get

 

so that, by making the variable substitution  in the  integral

(12.76)
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within braces, we have

 

and similar results for the other three double integrals. Complete Fourier
transformation yields
 

(12.78a)

This important result can be readily extended to the case of N random inputs
by writing
 

(12.78b)

 
which, as expected, becomes exactly eq (12.61b) in the case of one single
input. (A word of caution about the notation: although the meaning is clear
from the context, it must be pointed out that here the FRF functions Hj(ω)
and Hk(ω) are not the jth and kth modal FRFs (which will come into play in
a later section) but they simply represent the physical coordinate FRFs
between the point of the system at which we measure the response and the
points at which, respectively, the excitations fj(t) and fk(t) are acting.
Obviously, the same applies to the IRFs h1(t) and h2(t) which appear in the
equations above and are not modal IRFs.)

Furthermore, if the various inputs are uncorrelated with each other the
cross-terms drop out and we get
 

(12.79)

 

The time-domain counterpart of eq (12.79) when N=2 is the somewhat
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more complicated expression
 

(12.80)

 

Knowledge of the output spectral density leads to the calculation of the
output variance according to eq (12.35): in the case of mutually uncorrelated
inputs, this reads
 

(12.81)

 

The last quantities we want to consider in this section concern the input-
output cross-relationships. For example, the cross-correlation between the first
input and the output can be obtained by first writing explicitly the product

 and then taking the ensemble average; these calculations lead to
 

(12.82)

 

If the inputs are uncorrelated and the excitation f1(t) is a white-noise
process with autocorrelation given by  eq (12.82)
becomes
 

(12.83)

 

showing that the cross-correlation between a white-noise input and the output
is just 2πS0 times the IRF between the input point and the output point of the
system. This result is also obviously true for the case of a single input (the first
of eqs (12.65)) and is sometimes used to obtain the IRF experimentally.

For the cross-spectral density, Fourier transformation of both sides of eq
(12.83) gives
 

(12.84)

 
which can immediately be extended to N inputs by writing the cross-spectral
density between the kth input and the output as
 

(12.85)
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For mutually uncorrelated inputs eq (12.85) becomes
 

(12.86)
 
with the consequence that a white-noise kth input results in a cross-spectral
density  which is proportional to the system’s FRF Hk(ω ). This last
statement is just the frequency-domain counterpart of eq (12.83) and is
the reason why uncorrelated broad-band processes (‘nearly white noise’
processes) are widely used as input excitations in many engineering
applications (for example, the technique of experimental modal analysis
described in Chapter 10).

One final comment worth making is that, in general, there is no simple
relationship between the probability distribution of the input process and
the probability distribution of the output process. One exception is given by
Gaussian processes: if the input is Gaussian the output of a linear system is
also Gaussian. Furthermore, in the case of multiple inputs and multiple
outputs, it can be shown that if the input processes are jointly Gaussian then
the output processes are jointly Gaussian as well. This property, together
with the central limit theorem, and the fact that a Gaussian process is
completely determined by its mean value and its autocorrelation (or its
autocovariance) function are the reasons why the assumption of normality—
unless there is strong evidence to the contrary—is so widely adopted and
extensively used in many practical engineering applications.

12.5 MDOF and continuous systems: response to random
excitation

The fundamental input-output relationships which have been obtained in
the preceding sections form the basis of the stochastic analysis of linear
systems. In order of increasing difficulty—although it is just a matter of
extending those ideas—we can now turn our attention to the response of
more complex systems.

If we consider a general system subjected to the action of n random inputs,
the time response at the jth point of the structure is given by a straightforward
extension of eq (12.74), i.e.
 

(12.87)

 

where we already know from preceding chapters that hjk(t) expresses, in
physical coordinates, the response at point j due to a Dirac delta function
excitation at point k. If, as is often the case, we model our system as an
assemblage of n masses connected by appropriate springs and dampers, we
are, in fact, dealing with a discrete n-DOF system whose response can be
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written in matrix form as
 

(12.88)

 

where h(t) is the (symmetrical) IRF matrix in physical coordinates and it is
evident that eq (12.87) is just the jth element of the n×1 vector x(t).

Now, before proceeding further, we make a short digression to extend the
ideas of Section 11.5 to random processes. In fact, we note that n generic
random processes  can be arranged in the n×1 matrix

 so that the correlation matrix (see also eq (11.69))
can be defined as
 

(12.89)

 
where—since this is the case of most interest for our purposes—we assume
that the n processes are stationary and with zero mean.

Then, returning to our main discussion we can write
 

(12.90)

 

so that, putting together eqs (12.88) and (12.90) to form the product
 and taking expectations on both sides we get the response

correlation matrix as
 

(12.91)

 

where RFF is the input correlation matrix. Explicitly, the jth diagonal element
of eq (12.91) represents the autocorrelation of the jth response and reads
 

(12.92)

 
Note that if we have two inputs and the jth response is the only output, then
eq (12.92) becomes eq (12.77).

At this point we can turn to the frequency domain by noting that the
spectral density matrix SXX(ω) is the Fourier transform of RXX( ). Fourier
transformation of both sides of eq (12.91) leads to
 

(12.93)

 
where  The diagonal elements of the matrix SXX(ω) are the
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response autospectral densities
 

(12.94a)

 
while the off-diagonal elements are the response cross-spectral densities
 

(12.94b)

 
and again, in the case of n inputs and one output, eq (12.94b) becomes eq
(12.78b). A word of caution is necessary to point out that the matrices RXX( )
and SXX(ω ) are sometimes called the autocorrelation matrix and the
autospectral density matrix although most of their elements are, as a matter
of fact, cross-correlation functions and cross-spectral density functions. Only
their diagonal elements are autocorrelation functions.

By similar arguments as above, we can now obtain the cross-correlation
matrix RFX( ) between the inputs and the outputs, i.e.
 

(12.95)

 
whose diagonal elements are the cross-correlations  while the off-
diagonal elements are the cross-correlation functions  with 

Both sides of eq (12.95) can be Fourier transformed to obtain the cross-
spectral density matrix
 

(12.96)

 
All the input-output relationships above have been obtained without

taking into account the fact that the equations of motion of an n-DOF
system can often be uncoupled into n SDOF equations. In Chapter 6 we
determined how and when this can be done depending on the form of the
damping matrix which, in common practice is sometimes neglected
altogether—in which case uncoupling is always possible—or often assumed
to be either ‘proportional’ (eq (6.141)) or in the ‘Caughey’ form of eq
(6.146). This possibility leads to the concept of ‘normal or modal
coordinates’ and, in the analysis of response to deterministic excitation
(Chapter 7), to the concepts of modal IRFs hj(t) and modal FRFs Hj( ω).
These latter functions, in turn, can be arranged in the form of diagonal
matrices, i.e. the matrices  and  which
are related to the IRF and FRF matrices in physical coordinates by the
relationships (7.37a) and (7.34a), i.e.
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(12.97)

 
where P is the n×n matrix of mass-orthonormal eigenvectors so that PTMP=I
and  In this light, we can now express the response
quantities of eqs (12.91), (12.93), (12.95) and (12.96) in terms of modal
characteristics. For example, eqs (12.91) and (12.93) become

 
(12.98)

 

and
 

(12.99)

 
where it should be noted that in eqs (12.98) and (12.99) we took into account
the symmetries  and the fact that P*=P because P
is a matrix of real eigenvectors. Note that, explicitly, the (jk)th element of
the spectral density matrix of eq (12.99) is written

 

(12.100)

 
where Hl(ω) and Hs(ω ) are the lth and sth modal FRFs, respectively. Suppose
now that the excitation is in the form of ‘nearly white noise’ processes, i.e.

 The sum of eq (12.100) will contain some terms where the
magnitudes squared of modal FRFs appear—say, for example  —
and other terms where the cross-products  appear, with  If—
as often happens for the lowest-order modes of many structures—the modes
of our system are well separated and lightly damped, then the magnitudes of
the terms of the latter type will generally be much smaller than those of the
former type and the contributions from cross-modal terms can be neglected
without a significant loss of accuracy. In other words, the spectral densities
on the l.h.s. of eq (12.100) will show peaks at the natural frequencies of the
system so that, for all practical purposes, we can say that our system behaves
as a selective filter which amplifies only the input contributions near its
natural frequencies.

If now we turn our attention to continuous systems, two general remarks
can be made before proceeding any further.

First of all, it is very common to model continuous systems as MDOFs
systems by lumping masses at a number of locations. In general, a higher
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number of degrees of freedom corresponds to a better approximation for
eigenvalues, eigenvectors and for the response characteristics of the real system
under investigation. In any case, whenever we decide to adopt a similar
approach it is evident that, in the case of random excitation, the above input-
output relationships apply.

The second remark is that—when we do not follow this approach and
we model our system as a truly continuous system—we must recall some
general observations made in Chapter 8. In that chapter we noted that the
behaviour of linear continuous systems bears noteworthy similarities to
the behaviour of linear MDOF systems when the mathematical framework
adopted to deal with these latter systems—i.e. finite-dimensional vector
spaces—is extended to the idea of infinite-dimensional vector spaces with
inner product, i.e. the so-called Hilbert spaces. The system’s matrices of
the MDOF case are replaced, in the continuous case, by appropriate
differential symmetrical operators, the finite sets of eigenvalues and
eigenvectors are replaced by countable infinite sets of eigenvalues and
eigenfunctions and the expansion theorem is replaced by a series expansion
in terms of eigenfunctions. Broadly speaking, we can say that the price we
must pay is a higher level of mathematical difficulty in ‘setting the stage’
for our analysis.

However, if we look at the problem from a practical point of view and note
that many fundamental concepts introduced in the case of MDOF systems
retain their validity, we may observe that the dynamical behaviour of our
system can still be described in terms of IRFs h(r, s, t) or FRFs H(r, s, ω ). The
symbols used here are very general and indicate, respectively, the response in
the direction of the unit vector er at the position identified by the vector r
(with respect to a fixed origin) due to a Dirac delta excitation applied (at t=0)
in the direction of the unit vector es at the point identified by the vector s and
the steady-state response at point r along the direction er due to a unit harmonic
excitation applied at s in the direction es. As usual, the following relations
hold between these two functions:
 

(12.101)

 
Therefore, if we are dealing, for example, with a one-dimensional

continuous system such as a string or a beam and let the realization f(xk, t)
of a stationary random process F(t) be the only excitation applied at point
x=xk, the autocorrelation and autospectral density functions of the response
w(x, t) (we are following the notation of Chapter 8: in this case, however,
w(x, t) represents a realization of the response process W(t) at point x) at
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the specified point x=xm can be directly obtained from eqs (12.58) and
(12.61b) as
 

 
then, the mean squared displacement response at x=xm can be obtained
(eq.12.35)), for example, from

 
(12.103a)

 
and the mean squared velocity response can be obtained from the first of eqs
(12.46), i.e.
 

(12.103b)

 
If now we extend our reasoning to the case of multiple (say n) inputs and

multiple outputs, we can be interested, for example, in the response
characteristics at the point x=xm. In the form of the output autospectral
density, the desired result is given by (eq (12.94a))

 
(12.104)

where, for  is the cross-spectral density between the two
inputs applied at x=xr and x=xs while, on the other hand, for r=s the function

 is the autospectral density of the input applied at
x=xr. If, on the other hand, we are interested in the cross-spectral density
between the outputs at points x=xm and x=xk, we get (eq (12.94b))

 

(12.105)

 
At this point, provided that damping is either neglected or is

‘proportional’, we can recall from Chapter 8 that the IRFs and FRFs in
physical coordinates can be expressed as series expansions in terms of the

(12.102)
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system mode shapes φj(x) and of modal IRFs or FRFs, respectively. These
relations are given by eqs (8.185b) and (8.190), which we rewrite here for
our present convenience:
 

(12.106)

 

When eqs (12.106) are substituted into the appropriate input-output
relations we obtain the response characteristics in terms of modal
contributions and, as a consequence, it is possible to include only the modes
of interest and exclude those that are not.

We end this section here by noting that we have limited our discussion of
continuous systems only to point excitations. The subject of distributed
random loads has not been discussed and the interested reader is referred to
specific literature on random vibrations, for example, Newland [8].

12.6 Analysis of narrow-band processes: a few selected topics

This section considers briefly some topics of general interest in many
applications. The choice is subjective and it has been made only with the
intention of introducing the reader to some concepts and ideas in the vast
and specialized field of random vibrations.

12.6.1 Stationary narrow-band processes: threshold crossing
rates

For isolated and lightly damped structural modes, we noted in preceding
sections that the system output to a broad-band excitation is a narrow-band
process X(t) whose spectral density has a significant amplitude only in a
limited range of frequencies in the vicinity of the mode natural frequency. Let
us consider a time history x(t) of such a process and ask if we can obtain
some information on the number of times that our sample function crosses
a given threshold level x=a in a given time interval T. More specifically, we
will be interested in the number of upward crossings—i.e. crossings with a
positive slope—in time T. Let  be the number of such crossings in a typical
sample function of duration T. Averaging over samples we obtain the number
 

(12.107)

and, since the process is stationary, we can easily expect that a sample
twice as long will contain twice as many upwards crossings. This leads to
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the conclusion that  is directly proportional to T so that we can write
 

(12.108)

 
where we interpret  as the average frequency of upward crossings of the
threshold x=a, i.e. the number of crossings per unit time. Now, by isolating
a short (say, of length dt, between the instants t0 and t0+dt) section of a
sample time history, let us consider a typical situation in which an upward
crossing is very likely to occur. The first condition to be met is that at the
beginning of the interval—i.e. at time t0—we must have x<a. The second
obvious condition is that the derivative dx/dt be positive. However, this is
not enough: if we want an upward crossing to occur within the interval we
must require that
 

(12.109)

 
which, in essence, means that the slope must be steep enough to arrive at the
threshold value within the time interval dt. Rearranging eq (12.109) we get
the equivalent condition 

Since t0 is arbitrary and the two conditions must be satisfied simultaneously,
we can obtain the probability  dt of an upward crossing within the interval
dt by expressing it as the double integral
 

(12.110)

 
where  is the joint pdf for the process X and its time derivative .
Now, since the interval dt is very small, it is reasonable to approximate the
integral in dx as
 

 

so that eq (12.110) becomes
 

 
and hence

(12.111)
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which is a general result valid for any probability distribution. A special
case of eq (12.111) which deserves particular attention is the case of a
Gaussian process, i.e. a process with distribution function
 

(12.112)

 

Substitution of eq (12.112) into eq (12.111) leads to
 

(12.113)

 

which is a result obtained by Rice [9].
In this regard we can, for example, calculate the quantity  for the SDOF

system of Example 12.1 when the input process is a stationary Gaussian
white noise with spectral density S0. From eq (12.69a) we have 
Then, the variance of the derived process  is obtained by combining the
results of eq (12.62) and the first of eqs (12.46) to get
 

 

where H(ω) is given by eq (12.67a) and the last result on the r.h.s. has been
obtained from tabulated integrals. Substitution in eq (12.113) gives
 

(12.114)

 
where ωn is the system natural frequency.

12.6.2 Stationary narrow-band processes: peak distributions

Consider again a sample function x(t) of duration T of a stationary random
process X(t). If we call  the peak probability density function, then the
probability that a peak chosen at random has an amplitude that exceeds the
amplitude a is given by

 
(12.115)

 
Now, since we are considering a narrow-band process, any time history

x(t) is generally well behaved and not very dissimilar from a sinusoidal
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oscillation with varying amplitude. In this circumstance it is reasonable to
assume that any upward crossing of the level x=a will result in one peak with
amplitude >a, so that the number of such peaks in the time interval T is given
by  Also, we can say that each upward crossing of the threshold x=0
corresponds to one ‘cycle’ of our smoothly varying time history, so that there
are, on average,  ‘cycles’ in the time interval T. (Note that these assumptions
are generally not true for a wide-band processes, which have highly erratic
time histories. In this circumstance it cannot be assumed that each upcrossing
of the threshold corresponds to one peak (or maximum) only.) Then, in the
same interval, the favourable fraction of peaks greater than a can be expressed
as the ratio  and
 

(12.116)

 

Differentiating both sides with respect to a gives the desired result, i.e. the
probability density function for the occurrence of peaks
 

(12.117)

 

If, in particular, the narrow-band process has a Gaussian distribution, we
can use eq (12.113) to obtain
 

(12.118)

 

where we took into account (eq (12.113)) that  The
distribution of eq (12.118) is well known in probability theory and is called
the Rayleigh distribution. From this result it is easy to determine the
probability that a peak chosen at random will exceed the level a: this is
 

(12.119a)

 
or the probability that a peak chosen at random is less than level a, i.e. the
Rayleigh cumulative probability distribution 

 
(12.119b)

 
Although the Rayleigh distribution is widely used in a large number of

practical problems, it must be noted that the distribution of peaks may differ
significantly from eq (12.118) if the underlying probability distribution of
the original process is not Gaussian. In these cases, the Weibull distribution
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generally provides better results. This distribution in its general form is a
two-parameter distribution and is often found in statistics books written as
 

(12.120a)

 
where α is a parameter which determines the shape of the distribution and β
is a scale parameter which determines the spread of the values. From eq
(12.120a) the Weibull probability density function can be obtained by
differentiating with respect to x (see the third of eqs (11.20))
 

(12.120b)

 
For our purposes, however, we can follow Newland and note that if we call

a0 the median (eq (11.45)) of the Rayleigh distribution (12.119b), we have
 

 
so that  from which it follows  Substitution of
this result into eq (12.119b) gives the Rayleigh distribution in the form
 

(12.121)

 

which, in turn, is a special case of the one-parameter Weibull distribution
(eq (12.120b) with  and ), i.e.
 

(12.122)

 

From eq (12.122) we obtain the Weibull pdf
 

(12.123)

 

which is sketched in Fig. 12.9 for three different values of k, the case k=2
representing the Rayleigh pdf.

(The reader is invited to sketch a graph of the Weibull cumulative
probability distributions of eq (12.122) for the same values of k.)

At this point we may ask about the highest peak which can be expected
within a time interval T. The average number of cycles in time T (and hence,
for a narrow-band process, the average number of peaks) is given by 
where  has been introduced above in this section. Noting that there is no
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loss of generality in considering the amplitude of peaks in median units, let
us call A the (unknown) maximum peak amplitude expected, on average, in
time T. In other words, we are putting ourselves in the situation in which the
equation  applies, which in turn implies
 

(12.124)

 

Furthermore, we know from eq (12.116) that
 

(12.125a)

 

and from eq (12.122) that
 

(12.125b)

 
so that, equating eqs (12.125a) and (12.125b) and taking (12.124) into
account, we get

Fig. 12.9 Weibull pdf for different values of k.
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from which it follows that
 

(12.126a)

 

Finally, noting that A expresses the maximum amplitude in median units
and can therefore be written as  where amax is the maximum
amplitude in its appropriate units, we get
 

(12.126b)

 

Equation (12.126b) is a general expression for narrow-band processes
when we can reasonably assume that any upcrossing of the zero level
corresponds to a full cycle (and hence to a peak), so that the average number
of cycles (peaks) in time T is given by  It is left to the reader to sketch
a graph of eq (12.126b) plotting  as a function of the number of
cycles 

For example, if the peak distribution of our process is a Weibull distribution
with k=1, eq (12.126b) shows that, on average, a peak with an amplitude
higher than four times the median can be expected every 16 cycles or, in
other words, one peak out of 16 peaks will exceed, on average, four times
the median. If, on the other hand, the peak distribution is a Rayleigh
distribution, the average number of cycles needed to observe one peak higher
than four times the median (i.e. ) is given by
 

 

or, in other words, one peak out of approximately 65 500 peaks will exceed
an amplitude of four times the median. Qualitatively, a similar result should
be expected just by visual inspection of Fig. 12.9, where we note that higher
values of k correspond to more and more strongly peaked probability density
functions in the vicinity of the median, and hence to lower and lower
probabilities for the occurrence of peak values significantly different from
a0. The interested reader can find further developments along this line of
reasoning, for example, in Newland [8] or Sólnes [10].

12.6.3 Notes on fatigue damage due to random excitation

Fatigue is the process by which the strength of a structural member is degraded
due to the cyclic application of load (stress) or strain so that the fatigue load
that a structure can withstand is often significantly less than the load it
would be capable of if the same load were applied only once. Broadly
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speaking, fatigue failure is caused by the gradual propagation of cracks in
regions of high stress and the whole process can be divided into three main
phases: crack initiation, crack growth and final failure. Although there exist
some general guidelines, there is no clear distinction between the various
phases and, as a matter of fact, traditional fatigue analysis makes no
distinction between fatigue crack initiation and crack growth to failure.
Moreover, it seems that none of the theories which have been developed to
describe the actual mechanism of crack initiation is universally accepted.

Experimentally, the most important techniques of fatigue testing are
performed by applying a constant amplitude and periodically varying load
to a test specimen of the material to be tested, and estimating its ‘fatigue life’
by counting the number of cycles to failure (Nf). In this situation, the fatigue
life depends significantly only on two characteristics of the stress time history:
the stress range (maximum stress minus minimum stress) and the mean stress
value, the effect of the former characteristic being generally more important
than the effect of the latter. If, as it is often the case, we assume for the
moment a zero mean stress value and consider only the stress range S and
the number of cycles to failure Nf, then a typical experimental test leads to
the so called S–N curve (or the Wöhler fatigue curve) which is essentially a
plot of log S versus log Nf. Analytical approximations of such graphs have
generally the form
 

(12.127)
 

where b and m are positive constants whose values depend on both the
material and the geometry of the specimen. More specifically, eq (12.127)
does not apply for all values of S and we can distinguish between two regimes
of material behaviour: high-cycle fatigue, in which eq (12.127) applies and
failure occurs in excess of approximately 103 cycles (e.g. ASTM Standard
E468 [11]) and low-cycle fatigue in which failure occurs in relatively few
cycles (<103). In the former case the deformations are small and within the
material’s elastic behaviour, while in the latter case crack growth is often
accompanied by large-scale plastic deformation. Furthermore, in high-cycle
fatigue testing, for many materials the value of Nf seems to go to infinity
when S is smaller than some particular value Se called the fatigue limit or
endurance limit of the material.

Finally, two other preliminary considerations should be made before
turning our attention to a stochastic approach to the problem. First, even
for a given material tested in the deterministic conditions described above,
fatigue tests often show appreciable scatter. This scatter is probably due to
a number of factors such as specimen preparation (surface finish, heat treating
etc.), specimen alignment, intrinsic material variability etc., and translates
into the fact that statistical methods must be applied to fatigue test data.
Second, the effect of mean stress value (when this is different from zero) is
generally taken into account by means of empirical formulas such as the
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Goodman or the Gerber formulas, just to name two of the most popular.
The Goodman correction, for example, assumes that the fatigue damage
done by a time-varying load x(t) with mean value xm and stress range S is
the same as would be done by another loading with zero mean and stress
range S’ such that
 

(12.128a)

 

where xu represents the ultimate stress capacity of the material. Similarly,
the Gerber formula reads
 

(12.128b)

 
and it has often been found to be in better agreement with experimental
data. The utility of eqs (12.128a and b) is evident and lies in the fact that the
experimenter can take into account both mean stress and stress range while
at the same time maintaining the simplicity of a one-dimensional S–N
relationship.

Now, despite the considerable practical utility of S–N plots in engineering
practice, it should be remembered that most structures are subjected to
loadings which are much more complicated than the deterministic periodic
loadings of laboratory fatigue testing. As a matter of fact, a large number of
these real-life loadings can be treated as random excitations which result in
randomly varying stress amplitudes. In these circumstances, it is evident that
the S–N curves cannot be used directly and some starting assumptions must
be made to deal with the problem and compensate for our incomplete
understanding of the basic mechanisms of fatigue.

In this light, we can introduce the concept of ‘accumulated damage’
described by a ‘damage function’ D(t) which is used to denote the progress
toward failure, whether this progress is physically observable or not. The
function D(t) is assumed to be a nondecreasing function of time that starts
at zero (or very near zero) for a new structure (t=0) and is normalized to
unity when failure occurs; the instant of time tf at which D(tf)=1 is obviously
called the failure time. This definition is rather vague indeed, but it has
nevertheless proven to be useful. In order to be more specific, let us call ∆Dj

the damage increment produced by the jth cycle and let N(t) be the number
of stress cycles up to time t. Then
 

(12.129)
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and also, from the definition of damage function,
 

(12.130)

 

where N(tf) is the number of cycles to failure. For a periodic loading at the
constant amplitude of stress S, the upper limit of the sum (12.130) is clearly
the number Nf obtained from the S–N curves and it is reasonable to assume
(linear damage assumption) that all the ∆Dj values are the same, meaning
that the damage increment per cycle is given by
 

(12.131)

 

and that the function D(t) increases linearly with time. If we further assume
that eq (12.129) retains its validity even in the case of more complex
nonperiodic excitations, the problem is to devise a scheme to appropriately
count the number of cycles and to determine an incremental damage ∆Dj for
each one of these cycles. For complicated time histories, one of the most
commonly adopted cycle identification scheme is called the ‘rainflow’ method
and can be found in specific literature (e.g. Dowling [12], Fuchs and Stephens
[13] or Downing and Socie [14]).

However, if for simplicity we limit ourselves to narrow-band processes,
the issue of cycles identification becomes relatively simple, we can use the
results of the preceding sections and we are only left with the problem of
appropriately choosing the quantities ∆Dj to be assigned to each cycle. In
order to tackle this problem, we adopt the Palmgren-Miner hypothesis which
generalizes eq (12.131) to the case of stress cycles with variable amplitude.
In essence, the Palmgren-Miner hypothesis can be formulated as follows: if
the jth cycle occurs at the level of stress at which—according to S–N curves—
Nj cycles cause failure, then the jth increment of damage is given by

(12.132)

 

In other words, if we group cycles of approximately equal amplitude
together, we will have a situation in which we can identify n1 cycles at the
stress level at which N1 cycles would cause failure, n2 cycles at the stress
level at which N2 cycles would cause failure, etc. Then, each one of these
groups will produce an incremental damage of  so that the failure
condition (12.130) now reads
 

(12.133)
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For a narrow-band process (for example, a resonant system subjected to
a broad-band excitation) we noted in Section 12.6.2 that, on average, there
will be  cycles in time T. Moreover, since  represents the probability
that a cycle will have a stress peak amplitude in the range between S and
S+dS, we will have  cycles within this amplitude range. Then, if
Nf(S) represents the number of cycles to failure at the stress level S, the
incremental damage produced by these cycles will be, according to the
Palmgren-Miner hypothesis
 

so that, summing on all possible stress peak levels, the total damage in time
T is given by
 

(12.134)

 

We can now determine the failure time tf by means of eq (12.130), i.e.

 

 

which gives
 

(12.135)

 
Clearly, the failure time given by eq (12.135) is intrinsically a statistical
quantity in which two types of error are typically involved. The first type—
the error due to the random nature of the excitation and response time
histories—can be reasonably reduced by analysing sufficiently long time
histories and by keeping the experiment within the limits of the high-cycle
fatigue regime for which the S–N curves apply (low to moderate stress
amplitudes and a structure which is not too lightly damped), while the
second type—the error due to our limited knowledge of materials fatigue—
cannot, for the moment, be eliminated and is probably the result of the
various assumptions made to arrive at the desired result. In fact, we must
remember that these assumptions, although reasonable and generally in
agreement with experimental results, form the basis of a ‘useful’ model of
fatigue damage rather than identifying a ‘true’ model of the physical
phenomenon of fatigue.
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12.7 Summary and comments

In the light of the preliminary results on probability and statistics given in
Chapter 11, this chapter has considered the subject of random vibrations.
Random vibrations arise in a number of situations in engineering practice.
More specifically, when it is not possible to give a deterministic description
of the vibratory phenomenon under investigation but repeated observations
show some underlying patterns and regularities, we resort to a description
in terms of statistical quantities and we speak of a ‘random (or stochastic)
process’. This is precisely the subject of Section 12.2, where we also note
that, in practical situations, the engineer’s representation of a random process
is an a so-called ‘ensemble’, i.e. a number of sufficiently long time histories
(samples) which can be used, by averaging across the ensemble at specific
instants of time, to calculate (or better ‘estimate’) all the quantities of interest.
Luckily, a large number of natural vibratory phenomena have—or can be
reasonably assumed to have—some properties that allow a noteworthy
simplification of the analysis. These properties are stationarity and ergodicity
(Section 12.2.1). There exist different levels of stationarity and ergodicity
but, broadly speaking, the first property has to do with the fact that certain
statistical descriptors of the process do not change with time, while the second
property refers to the circumstance in which a sufficiently long time record
can be considered as representative of the whole process. Furthermore,
ergodicity implies stationarity and, in practice, when there is evidence that
a given process is stationary, ergodicity is also tacitly assumed so that we
can (1) record only one (sufficiently long) time history and (2) describe the
process by taking time averages along this single sample rather than
calculating ensemble averages across a number of different samples, the two
types of averages being equal because of ergodicity. It should be noted,
however, that the assumption of ergodicity is, more often than not, an
educated guess rather than a proven fact.

Just as deterministic vibrations can be analysed in the time domain or in
the frequency domain, there is the possibility of doing the same with random
vibrations. However, some complications of mathematical nature do arise
and the problem is tackled by Fourier-transforming correlation functions
rather than the time signal itself (Wiener-Khintchine relations). This procedure
leads to the concept of spectral density, whose definition and properties are
the subject of Section 12.3, and to the notions of narrow-band and wide-
band random processes.

Then, with all the above results at our disposal, we can consider the
problem of determining the (random) response of a (deterministic) linear
system to a random stationary source of excitation. Proceeding in order of
increasing complexity—one input and one output, one output and more than
one input, MDOF and continuous systems—we do so in Sections 12.4 and
12.5, where we establish the fundamental input-output relationships for linear
systems and note that, once again, the system’s characteristics are represented
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in terms of IRFs in the time-domain FRFs in the frequency domain. Moreover,
also in this case, there is the possibility of expressing the output characteristics
in terms of modal IRFs and FRFs.

Also, in the final part of Section 12.4, we pay due attention to the fact
that the steady-state condition—in which a stationary input produces a
stationary output—is not reached immediately after the onset of the input,
but some time has to pass before the system, so to speak, adjusts to its new
state of motion. During this time, the response is clearly nonstationary because
its statistical characteristics (typically, its mean value if different from zero
and its variance) vary from zero to their stationary value.

Finally, in order to give the reader an idea of the richness of the subject
of random vibrations, which is now a specialized field of activity and
research in its own right, Section 12.6 deals with specific topics of
particular interest. Sections 12.6.1 and 12.6.2 are strictly related and
consider, respectively, the threshold crossing rates and peak distributions
of stationary narrow-band processes, while Section 12.6.3 introduces some
basic concepts of fatigue damage of engineering materials and gives a
brief account of how, based on our limited knowledge of the details of
material fatigue, we can attack the frequently encountered problem of
fatigue damage due to random excitation. In this circumstance, when
this excitation is in the form of a narrow-band random process, it is also
shown how we can use the results of Sections 12.6.1 and 12.6.2 to estimate
the mean time to failure.
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13 Basic concepts of
measurement and measuring
instruments

13.1 Introduction

The importance of making good measurements is readily understood when
considering that the effectiveness of any analysis is strongly determined by
the quality of the input data, which are typically obtained by measurement.
Since analysis and processing methods cannot add information to the
measurement data but can only help in extracting it, no final result can be
any better than such data originally are.

With the intention of highlighting correct measurement practice, this
chapter presents the fundamental concepts involved with measurement and
measuring instruments. The first two sections on the measurement process
and uncertainty form a general introduction. Then three sections follow which
describe the functional model of measuring instruments and their static and
dynamic behaviour. Afterwards, a comprehensive treatment of the loading
effect caused by the measuring instrument on the measured system is
presented, which makes use of the two-port models and of the
electromechanical analogy. Worked out examples are included. Finally, a
survey of the terminology used for specifying the characteristics of measuring
instruments is given.

This chapter is intended to be propaedeutic and not essential to the next
two chapters; the reader more interested in the technical aspects can skip to
Chapters 14 and 15 regarding transducers and the electronic instrumentation.

13.2 The measurement process and the measuring
instrument

Measurement is the experimental procedure by which we can obtain
quantitative knowledge on a component, system or process in order to
describe, analyse and/or exert control over it. This requires that one or more
quantities or properties which are descriptive of the measurement object,
called the measurands, are individuated. The measurement process then
basically consists of assigning numerical values to such quantities or, more
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formally stated, of yielding measures of the measurands. This should be
accomplished in both an empirical and objective way, i.e. based on
experimental procedures and following rules which are independent of the
observer. As a relevant consequence of the numerical nature of the measure
of a quantity, measures can be used to express facts and relationships involving
quantities through the formal language of mathematics.

The practical execution of measurements requires the availability and
proper use of measuring instruments. A measuring instrument has the ultimate
and essential role of extending the capability of the human senses by
performing a comparison of the measurand against a reference and providing
the result expressed in a suitable measuring unit. The output of a measuring
instrument represents the measurement signal, which in today’s instruments
is most frequently presented in electrical form.

The process of comparison against a reference may be direct or, more
often, indirect. In the former case, the instrument provides the capability of
comparing the unknown measurand against reference samples of variable
magnitude and detecting the occurrence of the equality condition (e.g. the
arm-scale with sample masses, or the graduated length ruler). In the latter
case, the instrument’s functioning is based on one or more physical laws and
phenomena embodied in its construction, which produce an observable effect
that is related to the measurand in a quantitatively known fashion (e.g. the
spring dynamometer).

The indirect comparison method is often the more convenient and
practicable one; think, for instance to the case of measurement of an intensive
quantity such as temperature. Motion and vibration measuring instruments
most frequently rely on an indirect measuring method.

Regardless of whether the measuring method is direct or indirect, it is
fundamental for achieving objective and universally valid measures that the
adopted references are in an accurately known relationship with some
conventionally agreed standard. Given a measuring instrument and a
standard, the process of determination and maintenance of this relationship
is called calibration. A calibrated and properly used instrument ensures that
the measures are traceable to the adopted standard, and they are therefore
assumed to be comparable to the measures obtained by different instruments
and operators, provided that calibration and proper use is in turn guaranteed.

If we refer back to the definition of measurement, it can be recognized
that measurement is intrinsically connected with the concept of information.
In fact, measuring instruments can be thought of as information-acquiring
machines which are required to provide and maintain a prescribed functional
relationship between the measurand and their output [1]. However,
measurement should not be considered merely as the collection of information
from the real world, but rather as the extraction of information which requires
understanding, skill and attention from the experimenter. In particular, it
should be noted that even the most powerful signal postprocessing techniques
and data treatment methods can only help in retrieving the information
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embedded in the raw measurement data, but have no capability of increasing
the information content. As such, they should not be misleadingly regarded
as substitutive to good measurements, nor a fix for poor measurement data.
Therefore, carrying out good measurements is of primary importance and
should be considered as an unavoidable need and prerequisite to any further
analysis. A fundamental limit to the achievable knowledge on the
measurement object is posed at this stage, and there is no way to overcome
such a limit in subsequent steps other than by performing better
measurements.

13.3 Measurement errors and uncertainty

After realizing the importance of making good measurements as a necessary
first step, we may want to be able to determine when measurements are
good or, at least, satisfying to our needs. In other words, we become concerned
with the problem of qualifying measurement results on the basis of some
quantifiable parameter which characterizes them and allows us to assess
their reliability. We are essentially interested in knowing how well the result
of the measurement represents the value of the quantity being measured.
Traditionally, this issue has been addressed by making reference to the concept
of measuring error, and error analysis has long been considered an essential
part of measurement science.

The concept of error is based on the reasonable assumption that a
measurement result only approximates the value of the measurand but is
unavoidably different from it, i.e. it is in error, due to imperfections inherent
to the operation in nonideal conditions. Blunders coming from gross defects
or malfunctioning in the instrumentation, or improper actions by the operator
are not considered as measuring errors and of course should be carefully
avoided.

In general, errors are viewed to have two components, namely, a random
and a systematic component. Random errors are considered to arise from
unpredictable variations of influence effects and factors which affect the
measurement process, producing fluctuations in the results of repeated
observation of the measurand. These fluctuations cancel the ideal one-to-
one relationship between the measurand and its measured value. Random
errors cannot be compensated for but only treated statistically. By increasing
the number of repetitions, the average effect of random errors approaches
zero or, more formally stated, their expectation or expected value is zero.

Systematic errors are considered to arise from effects which influence the
measurement results in a systematic way, i.e. always in the same direction
and amount. They can originate from known imperfections in the
instrumentation or in the procedure, as well as from unknown or overlooked
effects. The latter sources in principle always exist due to the incompleteness
of our knowledge and can only be hopefully reduced to a negligible level.
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Conversely, the former sources, as they are known, can be compensated for
by applying a proper correction factor to the measurement results. After the
correction, the expected value of systematic errors is zero.

Although followed for a long time, the approach based on the concept of
measurement error has an intrinsic inconsistency due to the impossibility of
determining the value of a quantity with absolute certainty. In fact, the true
value of a quantity is unknown and ultimately unknowable, since it could
only be determined by measurement which, in turn, is recognizably imperfect
and can only provide approximate results. As a consequence, the measurement
error is unknowable as well, since it represents the deviation of the
measurement result from the unknowable true value. As such, the concept
of error can not provide a quantitative and consistent mean to qualify
measurement results on a theoretically sound basis.

As a solution to the problem, a different approach has been developed in
the last few decades and is currently adopted and recommended by the
international metrological and standardization institutions [2]. It is based
on recognizing that when performing a measurement we obtain only an
estimate of the value of the measurand and we are uncertain on its correctness
to some extent. This degree of uncertainty is, however, quantifiable, though
we do not know precisely how much we are in error since we do not know
the true value. The term measurement uncertainty can be therefore introduced
and defined as the parameter that characterizes the dispersions of the values
that could be attributed to the measurand. In other words, the uncertainty
is an estimate of the range of values within which the true value of a
measurand lies according to our presently available knowledge. Therefore
uncertainty is a measure of the ‘possible error’ in the estimated value of a
measurand as obtained by measurement.

It is worth noting that the result of a measurement can unknowably be
very close to the value of the measurand, hence having a small error,
nonetheless it may have a large uncertainty. On the other hand, even when
the uncertainty is small there is no absolute guarantee that the error is small,
since some systematic effect may have been overlooked because it is unknown
or not recognized and, as such, not corrected for in the measurement result.

From this standpoint, a different meaning can be attributed to the term
true value in which the adjective ‘true’ loses its connotation of uniqueness
and becomes formally unnecessary. The true value, or simply the value, of a
measurand can be conventionally considered as the value obtained when the
measurement with lowest possible uncertainty according to the presently
available knowledge is performed, i.e. when an exemplar measuring method
which minimizes and corrects for every recognized influencing effect is used.

In practical cases, the idea of an exemplar method should be commensurate
with the accuracy needed for the particular application; for instance, when
we measure the length of a table with a ruler we consciously disregard the
influence of temperature on both the table and the ruler, since we consider
this effect to be negligible for our present measuring needs. We simply
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acknowledge that our result has an uncertainty which is higher than the best
obtainable, but is suitable for our purposes.

However, we may be in the situation of negligible uncertainty of the
instrument (the ruler in this case) compared to that caused by temperature on
the measurement object (the table), for which we are therefore able to detect
and measure the thermal expansion. The converse situation is that of negligible
uncertainty of the measurement object compared to that of the measuring
instrument and procedure. This is the case encountered when testing an
instrument by using a reference or standard of low enough uncertainty to be
ignored. Thus the value of the reference or standard can be conventionally
assumed as the true value, and the test thought of as a mean to determine the
errors of the measuring instrument and procedure. Quantifying such errors
and correcting those due to systematic effects is actually no different from
performing a calibration of the measuring instrument under test.

Summarizing, the introduction of the concept of uncertainty removes the
inconsistency of the theory of errors, and directly provides an operational
mean for characterizing the validity of measurement results. In practice, there
are many possible sources of uncertainty that, in general, are not independent,
for example: incomplete definition of the measurand, effect of interfering
environmental conditions and noise, inexact calibration and finite
discrimination capability of measuring instruments and variations in their
readings in repeated observations under apparently identical observations,
unconscious personal bias in the operation of the experimenter.

In principle, the influence of each conceivable source of uncertainty could
be evaluated by the statistics of repeated observations. In the practical cases
this is essentially impossible and, therefore, many source of uncertainty can
be more conveniently quantified a priori by analysing with scientific judgment
the pool of available information, such as tabulated data, previous
measurement results, instrument specifications. The results of the two
evaluation methods are called respectively type A and type B uncertainties,
which are classified as different according to their derivation but do not
differ in nature and, therefore, are directly comparable. A detailed treatment
of the methods used to evaluate uncertainty can be found in [2] and [3].

13.4 Measuring instrument functional model

Irrespective of the measured variable and the operating principle involved, a
measuring instrument can be represented by the block diagram of Fig. 13.1.
This is a simplified and general model which focuses on the very fundamental
features that, with various degrees of sophistication in the implementation,
are typical of every measuring instrument.

The measuring instrument can be seen as composed of three cascaded
blocks, which provide an information transfer path from the measurand
quantity to the observer. The first block, named the sensing element, is the

Copyright © 2003 Taylor & Francis Group LLC



stage being in contact with the measurand and interacting with it in order to
sense its value. This interaction should be perturbing as little as possible so
that negligible load is produced by the instrument on the measured object,
as discussed in Section 13.7. The output of the sensing element is in the form
of some physical variable which is in a known relationship with the
measurand. If we take, for example, a mercury glass thermometer, than the
sensing element is constituted by the mercury, and its output is the thermal
expansion of the fluid volume in the bulb. As we shall see, in electronic
instruments and systems the sensing element function is performed by sensors
and transducers.

The second block, named the variable-conversion stage, accepts the output
of the sensing element and converts it into another variable and/or
manipulates it with the general aim of obtaining a representation of the
signal more suitable to its presentation, yet preserving the original information
content. In our example of the glass thermometer the variable-conversion
stage is the capillary tube that transduces the volume expansion into the
elongation of the fluid column.

The third block, named the presentation stage, undertakes the final
translation of the measurement signal into a form which is perceived and
understood by humans, once again preserving the original information
content. The role of this stage is straightforward, but its importance should
not be overlooked. In fact, the degree of discrimination between closely spaced
values of the measurand that an instrument allows, i.e. the resolution, is
strongly related, among other factors, to the design and construction of its
presentation stage. This can be readily recognized if we think at our glass
thermometer for which the presentation stage is the gridmark pattern on the
capillary tube. Although the mercury expansion is a continuous function of
temperature, the discrete spacing of the gridmarks enables discrimination

Fig. 13.1 Functional model of (a) a measuring instrument and (b) an electronic
measuring system.
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no better than 0.1 °C to the naked eye, which is, nevertheless, all that is
needed in many applications.

It should be observed that the distinction between functional blocks does
not necessarily reflect a physical separation of such blocks in the real
instruments. On the contrary, there are many cases in which several functions
are somewhat distributed among different pieces of hardware so that it is
difficult, besides essentially useless, to distinguish and parse them.

Nowadays, most of the measurement tasks in any field are performed by
instruments and systems which measure physical quantities by electronic means.
Basically, the use of electronics in measuring instrumentation offers higher
performance, improved functionality and reduced cost compared to purely
mechanical systems. A very general block representation of an electronic
measuring instrument or system is given in Fig. 13.1(b), which is fairly similar
to that of Fig. 13.1(a) with some important differences. In this case the sensing
function is performed by sensors, or transducers, which respond to the physical
stimulus caused by the measurand with a corresponding electrical signal. Such
a signal is then amplified, possibly converted into a digital format and processed
in order to extract the information of interest contained in the sensor signal,
and filter out the unwanted spurious components. All such processing
operations are carried out in the electrical domain irrespective of the nature of
the measurand, and therefore they may take advantage of the high capabilities
of modern electronic elaboration circuitry.

The obtained results can then be presented to the observer through a
display stage, and/or possibly stored into some form of memory device, most
typically electronic or magnetic. The memory storage capability offered by
many electronic measuring instruments is of fundamental importance, as it
enables analysis, processing and comparisons on measurement data to be
performed offline, that is, arbitrarily later than the time when the data are
captured. Some instruments are optimized for extremely fast cycles of data
storage-retrieval-processing so that they can perform specialized functions,
such as filtering, correlation or frequency transforms, in real time, i.e. with
a delay inessential for the particular application.

Transducers and electronic signal amplification and processing will be
treated in Chapters 14 and 15 respectively.

A fundamental fact resulting from both block diagrams of Fig. 13.1 is that
the measuring instrument occupies the position at the interface between the
observer and the measurand. Moreover, all of them are under the global
influence of the surrounding environment. This influence is generally a cause
of interference on the information transfer path from the measurand to the
observer, producing a perturbing action which ultimately worsens the
measurement uncertainty. This fact may be represented by considering the
output y of a measuring instrument being a function not only of the measurand
x, as we ideally would like to happen, but also of a number of further quantities
qi related to the effects of the boundary conditions. Such quantities are named
the influencing or interfering quantities. Typical influencing quantities may
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be of an environmental nature, such as temperature, barometric pressure and
humidity, or related to the instrument operation, such as posture, loading
conditions and power supply.

Besides observing that y, x and the quantities qi are actually functions of
time y(t), x(t) and qi(t), we may even consider time itself as an influencing
quantity, since in the most general case the output of a real measuring
instrument depends to some extent on the time t at which the measurement
is performed. This means that the same input combination of measurand
and influencing quantities applied at different time instants of the instrument’s
operating life may, in general, produce different output values due to
instrument ageing and drift. Considered as an influencing quantity, time has
a peculiar nature due to the fact that, unlike what theoretically can be done
for the qis, the observer cannot exert any kind of control over it.

Developing a formal description of measuring instruments which globally
takes into account all the involved variables as functions of time with the
aim of deriving the time evolution of the output is a difficult task. Usually,
a more practicable approach is followed which, besides, provides a better
understanding of the instrument performances and a deeper insight into its
operation. It consists of distinguishing between static and dynamic behaviour,
each of which can be analysed separately. Operation under static conditions
can be analysed by neglecting the time dependence of the measurand and
the influencing quantities, therefore avoiding the solution of complicated
partial-derivative differential equations. The consequent reduction in
complexity enables a detailed description of the output-to-measurand
relationship and the evaluation of the impact due to influencing quantities.

On the other hand, the analysis of dynamic operation is essentially
performed by taking into account the time evolution of the measurand only
and the resultant time dependence of the instrument output, thereby requiring
only ordinary differential equations. The effect of the influencing quantities
on dynamic behaviour is generally evaluated by a semiquantitative extension
of the results obtained for the static analysis. Though this approach it is not
strictly rigorous, it offers a viable solution to an otherwise unmanageable
problem and, as such, it is of great practical utility.

13.5 Static behaviour of measuring instruments

Let us assume that the measurand x and the influencing quantities qis are
constant and independent of time. It should be noted that this assumption is
not in contradiction with regarding x and the qis as variables. In fact, we
consider that the x and the qis are subject to variations over a range of
values, but we do not take into account the time needed by such variations
to take place. In other words, we consider only the static combinations of
constant inputs once the transients have died out. Under such an assumption,
the relationship between the instrument output y and the measurand x, the
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qis and the time t at which the measurement is performed is given by the
following expression:
 

(13.1)
 
where fg is a function which defines the global conversion characteristic of
the measuring instrument.

The differential of y is given by
 

(13.2)

 

The quantities  and  represent the sensitivities of the
measuring instrument in response to the measurand x, the ith influence quantity
qi and the time t. The term  is responsible for the time stability of the
conversion characteristic or, better, of its instability. Higher values of 
imply a more pronounced ageing effect on the instrument and require a more
frequent calibration. An instrument for which  is called time-invariant.

The instrument is the more selective for x the lower the value of the terms
 are compared to  so that their effect on the output is negligible

with respect to the measurand. If all the terms  were ideally zero, the
instrument would respond to the measurand only and would be called specific
for x. In the real cases, given the desired level of accuracy and estimated the
ranges of variability of x and the qis, the comparison between  and
the  allows us to determine the influence quantities which actually
play a role and need to be taken into account in the case at hand.

In principle, the contribution of the significant influence quantities could be
experimentally evaluated by varying each of them in turn over a given interval,
while keeping the measurand and the other qis constant and monitoring the
instrument output. In practice, this is hardly possible and usually the contribution
is estimated partly from experimental data and partly from theoretical predictions.

Of course, it is expected that the instrument is mostly responsive to the
measurand x, and, therefore, the above procedure is primarily applied to the
experimental determination of the measurand-to-output relationship. The
curve obtained in this way is the static calibration or conversion characteristic
of the instrument under given conditions of the influencing quantities. Under
varying conditions, a family of calibration characteristics is obtained, which
contain information on the impact of the considered qis.

Assuming a reference condition for which the influencing quantities are
kept constant at their nominal or average values qoi, and ageing effects are
neglected, it follows that the output y depends on the measurand only and
eq (13.1) reduces to
 

(13.3)
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The function f represents the instrument’s static conversion characteristic in
the reference condition. For the instrument to be of practical utility, f(x)
should be monotonic so that its inverse function, which relates the instrument
reading with the measurand, is single-valued.

The term  is called the sensitivity of the instrument with respect
to the measurand x. In general, the sensitivity is not constant throughout the
measurand range but is itself a function of x, i.e. S=S(x). In most cases, however,
the instrument is built to ensure a relationship of proportionality between y
and x of the type  In these cases the instrument is said to be
linear if yo=0 and incrementally linear if  and the sensitivity S becomes
a constant given by the coefficient k, which is typically called the instrument
scale factor, calibration factor or conversion coefficient. The term yo is called
the instrument offset and represents the output at zero applied measurand.

Figure 13.2 shows the conversion characteristics for both an incrementally
linear and a nonlinear instrument. For incrementally linear instruments, the
variations in the coefficients k and yo about their reference values induced
by the influencing quantities are generally adopted to specify their effect.
Taking temperature as an example, we may therefore find widespread usage
of the terms temperature coefficient of the scale factor and of the offset,
meaning the temperature-induced variations in k and yo respectively.

It is very important to point out that nonlinear instruments may be
linearized by considering a small interval of the input x about an average
value xo, and approximating dy with S(xo)dx in such an interval. For suitably
small variations around xo the sensitivity can therefore assumed to be constant
equal to S(xo) and the instrument considered as locally linear. This procedure
is the so called small-signal linearization.

The property of linearity is extremely important for measuring instruments,
as it is for every system, since it implies the validity of the superposition
principle. Essentially, this means that a linear system responds to the sum of
two inputs with an output which is the sum of the two single responses
caused by each input when applied alone. As a consequence, linear systems,
and linear instruments in particular, produce an output which is a scaled
replica of the input, i.e. the readings of the instrument provide an undistorted
image of the measurand variations.

Fig. 13.2 Examples of (a) incrementally linear and (b) nonlinear conversion
characteristics.
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It is worth noting that for an instrument to have a linear conversion
characteristic there is no need that each of the blocks of Fig. 13.1 is linear. In
fact, this is only a sufficient condition for overall linearity, and we may as well
have several blocks with nonlinear behaviours which mutually cancel, giving
rise to a globally linear instrument. This property is very often exploited when
input or intermediate stages are intrinsically nonlinear, and such a nonlinearity
is compensated for within an additional conversion stage or even within the
presentation stage. As an example, you may think of an instrument that, to
correct a nonlinearity of some intermediate stages, uses a needle indicator
whose reading scale has unequally spaced marks, as happens in logarithmic
paper. Of course, an unfortunate drawback of this expedient is the possible
reduction of the indicator readability in some parts of its range.

13.6 Dynamic behaviour of measuring instruments

Let us consider that the measurand x is actually a function of time x(t) and
assume that the effect of the influencing quantities is negligible. Besides, suppose
that time ageing and drift phenomena are absent or, as generally happens,
very slow compared to the time evolution of the measurand signal, so that
they can be overlooked and the instrument considered as time-invariant.

Then we may rewrite eq (13.3) which now takes the form
 

(13.4)
 
F is conceptually different from f in eq (13.3), since F is an operator, in the
sense that it represents a correspondence between entities which are
themselves functions of time and not scalar values as for f. In eq (13.3) F
defines the dynamic conversion characteristic of the measuring instrument
and generally contains time derivatives and integrals of both x(t) and y(t),
giving rise to integrodifferential nonlinear equations.

We restrict the field of the many mathematical forms that F can take, by
assuming that it has the property of linearity and, therefore, we limit ourselves
to considering linear instruments.

Briefly, a linear dynamic system, and an instrument in particular, is one
for which the superposition principle is valid when input and output,
respectively considered as cause and effect, are regarded as functions of time.

It is worth pointing out that the linearity of F, which could be indicated
as dynamic linearity, is not equivalent to the linearity of f, that is the static
linearity described in the preceding section. In fact, they refer to two different
ideas of the concept of linearity, namely operational in the former case and
functional in the latter. Indeed, the dynamic linearity is a more restrictive
condition than static linearity. That is, we may have a system for which the
superposition principle holds for constant values of the input, and, on the
contrary, does not apply when the input is considered as a function of time.
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For example, a system for which the input-output relationship is given by
 is not linear in the dynamical sense, though it

is statically linear, since for x independent of time the output becomes y=bx.
Conversely, dynamic linearity implies static linearity.

For a time-invariant dynamically linear instrument for which input and
output are real functions of time, eq (13.4) takes the form of a linear ordinary
differential equation with constant coefficients, which can be generally
written as
 

  
(13.5)

The coefficients ai and bi are a combination of instrument parameters assumed
to be independent of time, and are therefore real and constant numbers.

Equations of the form of eq (13.5) are encountered in a wide number of
fields of engineering and science, and standard methods have been developed
for their solution. We will not go into details about this aspect, on which the
interested reader can find many exhaustive references, such as [4]. We would
rather like to point out the main lines of reasoning that can be followed to
approach the problem, and illustrate the modelling of measuring instruments
as dynamic systems [5, 6].

The first approach is that of directly solving eq (13.5) in the time domain.
It is well known that the general form of the solution y(t) is
 

(13.6)

 
where yf(t) is the forced response, and yi(t) is the free response determined
by the initial conditions. In turn, yf(t) is the sum of a steady-state term yfS(t)
and a transient term yfT(t).

The time-domain approach becomes rather complex unless low-order
systems with simple input functions are considered, and is therefore of limited
practical utility. Instead, it is very fruitful to take advantage of the property
of linearity and the consequent validity of superposition principle. The generic
input x(t) can be decomposed as a finite or infinite sum of elementary
functions for which eq (13.5) simplifies to a set of readily solvable algebraical
equations. The solutions of such equations are then summed to produce the
overall response y(t) to the original stimulus x(t). Depending on the type of
the elementary functions used as a decomposition basis, either complex
exponentials eiωt or damped complex exponentials  with α real, the
above procedure leads to the methods of Fourier and Laplace transform
respectively.
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In the Fourier transform method, solving eq (13.5) in the time domain
becomes equivalent to solving the following complex algebraical equation
in the frequency domain

 

(13.7)

 
where X(ω) and Y(ω) are complex functions of the angular frequency ω called
the Fourier (or ) transform of x(t) and y(t), given by

 
(13.8a)

 

(13.8b)

 
and T(ω) is called the frequency, or sinusoidal, response function of the system.
For a given angular frequency ω, T(ω) is a complex number whose magnitude
and argument respectively represent the gain and phase shift between the
sinusoidal input of angular frequency ω and the corresponding sinusoidal
output.

The Fourier transform method can be applied to the class of functions
of time for which the transform exists, i.e. the integral given in eq (13.8)
converges. In the most general case, such functions are suitably regular
nonperiodic functions with their transform being nonzero over a
continuous spectrum of frequencies. A subset of such functions is
represented by the periodic functions, for which the integral of eq (13.8)
becomes a summation over a discrete spectrum of frequencies and the

transform becomes the series of Fourier coefficients. The method of
analysis based on the expression of periodic functions of time as Fourier
series is called the harmonic analysis.

In the Laplace transform method, damped complex exponentials are used
as the elementary functions constituting the decomposition basis, thereby
extending the transform method to functions which are not transformable
but, nevertheless, have great practical importance, such as the linear ramp
and exponential functions. Again, solving eq (13.5) in the time domain
becomes equivalent to solving the following complex algebraical equation
in the domain of the complex angular frequency 

 
(13.9)
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where X(s) and Y(s) are complex functions being the Laplace (or -)
transforms of x(t) and y(t) given by
 

(13.10a)

 

(13.10b)

 

and the complex function T(s) is called the transfer function of the system.
As the -transform of the impulse function δ(t) is unity, T(s) is the -transform
of the system response when subject to an impulsive stimulus, sometimes
called a ballistic excitation.

As can be seen by comparing eqs (13.8) with eqs (13.10), the -transform is a
generalization of the transform based on substituting ω with  where
α is such that the integral converges. The Laplace transform method offers the
desirable advantage that it takes into account the initial conditions in a consistent
way, thereby being a powerful tool for dealing with transient problems.

The use of the transform method enables us to describe the dynamic
behaviour of a linear instrument by simply analysing its frequency response
function or its transfer function. In turn, they may be derived by defining
elementary blocks which compose the instrument and properly combining the
respective T( ω ) or T(s) of such blocks. As a rule, the frequency response or
transfer function of cascaded blocks is the product of the individual T( ω ) or
T(s). As a result a block representation of the instrument can be obtained,
which is shown in Fig. 13.3 for both the and -transforms.

It is important to point out that several relevant features of the system
under consideration can be analysed directly in the frequency domain by using
T( ω ) and T(s), without the need to formulate the problem in the time domain,
thereby avoiding the related difficulties. T( ω ) and T(s) can be experimentally
measured by monitoring the outputs generated by swept-sine and impulse
inputs respectively. In practice, it is sometimes preferable to use a step
excitation in place of the impulse, which may be more difficult to generate.
Since the unitary step function 1(t) is the integral of the impulse δ(t), if the

Fig. 13.3 Block-diagram representation of a measuring instrument in the (a) Fourier
and in (b) Laplace domains.
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system is linear the step response can be derived to obtain the impulse response
and, thereafter, the transfer function T(s).

Three main models of measuring instruments can be distinguished, which
differ in their dynamic behaviour according to the degree n of the denominator
of their respective transfer functions, alternatively seen as the order of the
differential equation in the time domain. They are the zeroth-, first- and
second-order instrument models.

For a zeroth-order instrument the input-output relationship in the time
domain is given by
 

(13.11)
 

which in the s-domain becomes
 

(13.12)

 

We can observe that, both in time- and frequency-domain representations,
the output is proportional to the input. This means that y(t) instantly follows
x(t) whatever its time evolution is, differing from it only by the scale factor

 which represents the instrument sensitivity. In particular, the step
response of a zeroth-order instrument is a step function itself as shown in
Fig. 13.4, and the sinusoidal frequency response T( ω ) is flat throughout the
frequency axis (Fig. 13.5). An example of a zeroth-order instrument is a
resistive potentiometer displacement transducer.

For a first-order instrument the input-output relationship in the time
domain is given by
 

(13.13)

 

which in the s-domain becomes
 

(13.14)

Fig. 13.4 Step response of a zeroth-order instrument.
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The static sensitivity is given by  Considering the expression of the transfer
function which has a pole at  and applying the Laplace method, the
step response can be determined. As shown in Fig. 13.6, the output y(t) is a
rising exponential function with a time constant  given by  and a steady-
state value given by  Therefore, the output lags the input when abrupt
variations take place, while it reaches the steady-state value after a characteristic
response time (after 5  the output is at 99% of its final value).

The frequency response function T( ω ) is plotted in Fig. 13.7, showing the
existence of a cutoff or corner frequency  at which the magnitude is
attenuated of  compared to the low-frequency value 
and after which it becomes to decrease with an asymptotic log-log slope of
–20 dB/decade. For  the phase shift is zero at 

Fig. 13.5 Frequency response of a zeroth-order instrument: (a) magnitude;
(b) phase.

Fig. 13.6 Step response of a first-order instrument ([6, p. 177], reproduced with
permission).
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at  and it asymptotically reaches  The system
then behaves as a first-order low-pass filter with a –3 dB bandwidth extending
from DC, i.e. zero frequency, to ωc. An example of a first-order instrument
is a thermometer with a finite thermal resistance and capacitance.

For a second-order instrument the input-output relationship in the time
domain is given by

 
(13.15)

 
which in the s-domain becomes
 

(13.16)

Fig. 13.7 Frequency response of a first-order instrument: (a) magnitude; (b) phase
([6, p. 122], reproduced with permission).
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Fig. 13.8 Step response of a second-order instrument ([6, p. 129], reproduced with
permission).

Fig. 13.9 Frequency response of a second-order instrument: (a) magnitude.
(b) phase ([6, p. 135], reproduced with permission).
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Second-order dynamic systems were extensively treated in Chapter 4, and
therefore we simply limit ourselves to few considerations here.

The static sensitivity is given by  Figure 13.8 shows the step response
which, depending on the damping ratio  follows a monotonic
or oscillatory trend toward the steady-state value  The ringing
approaches a constant amplitude oscillation at  when the
damping ratio ζ tends to zero. ω0 is called the undamped natural frequency.

The frequency response function T( ω) is plotted in Fig. 13.9. For ω around
ω0 the magnitude of T(ω) starts decreasing from its low-frequency value

 with a log-log slope of –40 dB/decade. The damping ratio ζ determines
the amount of peaking and the steepness of the phase curve in the region
around ω0. For  the magnitude attenuation at  is equal to

For  the phase shift is zero at  and
it asymptotically reaches –π for  The system then behaves as a second-
order low-pass filter with a bandwidth extending from DC to ω0, with the
extension of the flatness region, which depends on the amount of damping.
A typical example of a second-order instrument is a seismic accelerometer.

13.7 Loading effect

13.7.1 General considerations

Measurement is a transfer of information which implies an exchange of
energy. In fact, the measuring instrument interacts with the measurement
object and unavoidably perturbs it by altering its energetic equilibrium. As
a consequence of this perturbation, we are fundamentally unable to determine
the value of a quantity without simultaneously modifying it due to the action
of measuring. This effect, which is very important to understand and take
into account, is named the loading effect, as the measuring instruments loads
the measurement object. As will be illustrated shortly, if all relevant quantities
were exactly known the loading effect could be evaluated and therefore
compensated for as a systematic effect. In practice this is not generally feasible,
and it is a better practice to reduce loading as much as possible, in order to
minimize its quantitative impact.

In general, the perturbing actions caused by the instrument on the
measurement object can be divided into two categories. The first category
comprises those interactions which alter the measurand value and globally
modify the conditions of the system under measurement, which thereby assumes
a different configuration. For example, if a flowmeter is inserted into a tube to
measure fluid velocity, the presence of the meter not only alters the local value
of the flow but also distorts the overall flow field producing a global effect.

The case is different for the second category of interactions which can be
exemplified, for instance, by a mass-spring-damper vibrating system to which
an accelerometer is attached. It can be readily realized that the accelerometer
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adds its mass to the vibrating mass, causing a loading action which affects
both the amplitude and the frequency of vibration.

The difference between the two categories of interactions lies in the fact
that the former comprises situations typical of distributed-parameter systems,
whose analysis requires the solution of partial-derivative differential equations
and is therefore rather complicated, whereas the latter example represents
interactions that can be analysed by making reference to simplified lumped-
parameter systems and, as such, more easily treated and understood. However,
the second category is actually a particular subset of the first one. In fact, if
we suppose that the mass-spring-damper system represents the lumped-
parameter model of a continuous structure, then the real effect caused by the
accelerometer on such a structure might need to be considered in more detail.
Possibly, it may happen that the dimensions and/or the location of the
accelerometer on the structure are such that the mode shapes are appreciably
modified and the analysis based on a lumped-parameter model is no longer
appropriate. Eventually, an approach based on a distributed-parameter
representation of the structure-accelerometer system could be required.

13.7.2 The two-port representation

As far as the action of the instrument on the measurement object can be
represented as the interaction between two blocks modelled as lumped-
parameter systems, the correspondent loading effect can be analysed by
making use of the concept of two-port devices. A two-port device is a system
seen as a black box which exchanges energy with the external world through
two connections, named ports, positioned at its input and output. Irrespective
of the domain to which the input and output of a two-port device belong,
i.e. mechanical, electrical, thermal or other, the energy transfer across each
port is realized by means of a couple of variables, namely a flow or through
variable f, and an effort or across variable e. Flow and effort variables are
functions of time and are characterized by the feature that their product
P(t)=f(t)e(t) is the instantaneous power transferred across the port [1, 6].
Examples of flow variables are given by velocity, current and heat flux, and
the respective effort variables are force, voltage and temperature drop. A
block diagram of a two-port device is shown in Fig. 13.10.

The representation of a system as a two-port device is strongly related to
the physical behaviour of the system and to the configuration of its input and

Fig. 13.10 Two-port representation of a measuring instrument.

Copyright © 2003 Taylor & Francis Group LLC



output connections in their effect on the flow of energy. As such, it is
conceptually different and more descriptive then the functional representation
of Fig. 13.3, which is actually limited to the description of the flow of signals,
without direct reference to their physical nature.

Of the four variables involved in a two-port device, namely ei, fi, eo and fo,
only two can be independent. The remaining two variables are necessarily
dependent. The choice of which couple among the four variables should be
considered as independent is arbitrary from a formal point of view, but,
depending on the case at hand, it may be more convenient to choose one
representation or another among the six combinations available. One possible
choice which is convenient for analysing the loading effect is that of considering
ei and fo as independent variables, and eo and fi as dependent variables.

We will hereafter assume that the two-port is linear and time-invariant, and
indicate with  and Fo(s) the -transforms of  and fo. In
place of the -transforms, the transforms could be used as well, but since the

-transform method is actually a generalization of the transform method,
we will use -transforms in the following. Therefore, it can be written that
 

(13.17)

 

If the two-port is not linear we can linearize it locally, and the above equations
remain valid with each variable substituted by its incremental value and with
A(s), B(s), C(s) and D(s) becoming dependent on the point around which the
linearization is performed. Without loss of generality we may therefore make
reference to the eqs (13.17) for both linear and locally linear two-port devices.

The terms A(s), B(s), C(s) and D(s) are complex functions of s which
have the following meaning:
 

 

is the forward effort-transfer function under no load, i.e. with no power
drawn from the output port since Fo(s)=0.
 

 

is the generalized output impedance and Yo(s) is the generalized output
admittance. The minus sign comes from the choice of taking fo positive in the
outward direction, so that power is considered as positive when transferred
by the device to its output. Note that Zo and Yo are defined under the condition
of zero input effort, i.e. Ei(s)=0.
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is the generalized input admittance and Zi(s) is the generalized input
impedance. Note that Yi and Zi are defined under the condition of zero
output flow, i.e. Fo(s)=0.

 

is the reverse flow-transfer function under no load, i.e. with no power drawn
from the input port, since Ei(s)=0.

It should be carefully noted that in the definition of  the
no-load condition is identified in the first case with Fo(s)=0, and in the second
case with Ei(s)=0. This apparent contradiction is indeed consistent with the
variable taken as the output in the two cases, Eo(s) and Fi(s) respectively,
and with the requirement of zero power flow across the port which defines
the no-load situation. To differentiate between these two occurrences of the
no-load condition it may be helpful to borrow the terminology of electrical
circuits and call  the open-circuit forward effort-transfer function, and

 the short-circuit reverse flow-transfer function.
In the following we further assume that the reverse transfer is equal to

zero, i.e. in this case  therefore considering the two-port to be
unilateral. This assumption is quite reasonable for measuring instruments,
since the application of the measurand at the input produces an output, but
the opposite is obviously not true. It should be noticed that here we are not
referring to the behaviour of the instrument components, which may often
be bilateral when taken singularly (e.g. the piezoelectric or electrodynamic
elements), but to that of the whole instrument, which is generally designed
to be unilateral.

To simplify the notation, we will then drop the superscript F from 
by implicitly assuming that we hereafter refer to forward transfer functions
only. Therefore eqs (13.17) become
 

(13.18)

 

The same line of reasoning can be applied to the cases in which other couples
of variables, different from Ei, and Fo, are taken as independent. Since for
analysing the loading effect it is convenient that the couple of independent
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variables is formed by an input and an output variable, the following four
systems of equations resume all the possibilities for linear unilateral two-
port devices:
 

(13.19a)

 

(13.19b)

 

(13.19c)

 

(13.19d)

 
The terms  and Kfe(s) are the open-circuit effort-, short-
circuit flow-, short-circuit effort-to-flow- and open-circuit flow-to-effort-
transfer functions respectively. For a given device they are not mutually
independent, consistent with the fact that eqs (13.19a) to (13.19d) are just
different representations of the same unique system, and the following
relationships hold:  

(13.20)

Incidentally, it can be noticed that, while Ke and Kf are dimensionless numbers,
Kef and Kfe do have dimensions, and they are therefore sometimes called
hybrid transfer functions.

The representations of a two-port device can be particularized to the case
of a device having only two connecting terminals, called a one-port device. As
shown in Fig. 13.11, a one-port can be thought as a two-port with the output
terminals only, and therefore two variables, i.e. Eo and Fo, are sufficient to
describe it. They are linked by the one-port constitutive equations which, in
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the hypothesis of linearity, can take either one of the two following forms:
 

(13.21a)

 

(13.21b)

 
Equation (13.21a), called the Thevenin representation, expresses the output
effort Eo as a function of the flow Fo. Equation (13.21b), called the Norton
representation, expresses the output flow Fo as a function of the effort Eo.
The terms Eint and Fint represent an internal effort and flow source respectively,
which may be absent if the one-port is purely passive.

Since both eqs (13.21a) and (13.21b) are nothing but two different
representations of the same device they must be equivalent. Therefore, Eint

and Fint must be related by
 

(13.22)

 
where Zo is the generalized output, or internal, impedance.

In contrast to the two-ports, which behave as energy converters, one-
ports are energy sources or sinks, depending on the sign of Eint (or Fint), or
energy dissipating and/or storage elements if  with 

Two-port devices can be cascaded, as schematized in Fig. 13.12 provided
that each input quantity is homogeneous with the output quantity of the
preceding device and, as a special case, the first device of the chain may as
well be a one-port. As far as the interconnection with the following block is
concerned, this circumstance is indistinguishable from the more general
situation in which both blocks are two-ports and, as such, a single analysis
approach can be followed.

We can firstly assume that devices 1 and 2 are both represented by the form of
eqs (13.19a), or of eqs (13.21a) in the case of a one-port, i.e. they are thought

Fig. 13.11 Equivalent representations of one-ports: (a) Thevenin; (b) Norton.
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as effort devices. Considering that the cascade connection implies 
 and  after some simple algebra it can be concluded:

(13.23)

It can be observed that the overall effort-transfer function Ke12(s) is not
simply the product of Ke1(s) and Ke2(s) but it is scaled by the term

 which represents the loading exerted by the input port
of the device 2 on the output port of the device 1. This can be understood
by realizing that the output of device 1 is not working in an open-circuit
condition and, accordingly, its effective transfer function is different from
the open-circuit transfer function Ke1(s).

The term  which is in general a complex function of s,
determines an effort-divider action at the interconnection between the two
devices and can be called the effort loading factor Le(s). The effort loading
effect is minimized when Zo1(s) is negligible compared to Zi2(s), being ideally
zero either for  or  In such cases Le(s) is equal to zero
and 

A similar situation is encountered in the case where devices 1 and 2 are
both represented by the form of eqs (13.19b), i.e. they are thought as flow
devices. By taking into consideration that the cascade connection again implies

 and  we can write the equivalent of eqs (13.23):
 

(13.24)

Fig. 13.12 Cascade connection of two-port blocks.
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Again the overall flow-transfer function Kf12(s) is not simply the product of
Kf1(s) and Kf2(s) but it is scaled by the term  which
represents the loading exerted by the input port of the device 2 on the output
port of the device 1. In this case the output of device 1 is not working in a
short-circuit condition and, accordingly, its effective transfer function is
different from the short-circuit transfer function Kf1(s).

The term  which is in general a complex
function of s, determines a flow-divider action at the interconnection between
the two devices and can be called the flow loading factor Lf(s). The flow
loading effect is minimized when Yo1(s) is negligible compared to Yi2(s), being
ideally zero either for  or  In such cases Lf(s) is equal to
zero and 

The above analysis of the loading effect for the effort and the flow devices
is directly extendible to the case of effort-to-flow and flow-to-effort devices.
In fact, irrespective of the overall input and output quantities of the cascaded
devices, i.e. effort or flow, it can be realized that the loading effect of device
2 on device 1 will always be represented by one of the two cases already
discussed. Therefore the analysis necessarily reduces to taking into
consideration either the effort or the flow loading factor:
 
• The effort loading factor Le(s) needs to be as close to zero as possible in

each of the following three cascade configurations: effort/effort, effort/
effort-to-flow, flow-to-effort/effort.

• Conversely, the flow loading factor Lf(s) needs to be as close to zero as
possible in each of the remaining three cascade configurations: flow/
flow, flow/flow-to-effort, effort-to-flow/flow.

 
We therefore can conclude that, for a given pair of systems 1 and 2 represented
by linear unilateral two-port devices, the effort and flow loading factors Le and
Lf are parameters which enable to quantify the loading effect produced by
system 2 on system 1. Furthermore, it is worthwhile observing that Le and Lf

are not independent but are linked by the relationship  consistent
with the fact that they simply refer to different representations of the same
phenomenon of interaction between the two systems.

The foregoing conclusions can be directly applied to the analysis of the
measurement loading error by considering systems 1 and 2 as the measurement
object and the measuring instrument respectively. We will shortly show some
examples of application of this concept in the measurement of mechanical
dynamic quantities, such as displacement, velocity, acceleration and force. To
do this we first need to introduce a simplification in the description of the two-
port devices consisting of exploiting the so-called electromechanical analogy.

13.7.3 The electromechanical analogy

The electromechanical (EM) analogy is based on the fact that the linear
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differential equations describing mechanical systems and electrical circuits
are formally identical. Therefore, a correspondence can be established between
lumped mechanical components and lumped electrical elements, and the
formalism of electrical circuits can be used to describe mechanical systems
[7, 8]. Such a correspondence is not unique and, without defining any
requirement that it should satisfy, none of the choices is preferable with
respect to the others.

A consistent approach is firstly to agree on which quantities are taken as the
effort and flow variables in the mechanical and electrical domains. The choice of
mating force F with voltage V as the effort variables, and velocity u with current
I as the flow variables is that which renders the usual definitions of both the
mechanical impedance ZM=F/u and the electrical impedance ZE=V/I consistent
with that of the generalized impedance given by the effort/flow ratio.

Afterwards, in both domains the series connection can be defined as that
in which all elements are subjected to the same value of the flow variable,
while the parallel connection is that for which all elements see the same
value of the effort variable.

Therefore, in a series electrical circuit the same current I flows through
each element, while the total voltage drop V is the sum of the individual
voltage drops. In a parallel electrical circuit the voltage drop V is the same
across each element, while the total current I is the sum of the individual
currents.

Similarly, in a series mechanical circuit each element undergoes the same
velocity u, while the total force F is the sum of the forces acting on each
individual element. In a parallel mechanical circuit the same force F acts on
each element, while the total velocity u is the sum of the individual velocities.

Now, a correspondence criterion between series electrical and series
mechanical circuits can be established, giving rise to the direct EM analogy.
This is equivalent to considering the mechanical effort and flow variables
analogous to the electrical effort and flow variables. Thus V is analogous to
F, and I is analogous to u. It follows that the electrical resistance R, inductance
L and capacitance C are analogous to mechanical resistance Rm, mass m
and compliance 1/K respectively. Conversely, a correspondence between series
electrical and parallel mechanical circuits (and vice versa) can be established,
giving rise to the inverse EM analogy. This is equivalent to considering the
mechanical effort and flow variables analogous to the electrical flow and
effort variables in a cross-linked correspondence. Thus V is now analogous
to u, and I is analogous to F, leading to electrical impedance V/I being
analogous to mechanical mobility u/F. It follows the electrical resistance R,
inductance L and capacitance C are now analogous to 1/Rm, 1/K. and m
respectively. Both EM analogies are summarized in Fig. 13.13.

The main drawback of the inverse EM analogy is that the mechanical
and electrical impedances of the analogous components have opposite
behaviours versus the frequency, as opposed to the case of the direct analogy.
For example, a spring element has ZM=K/s but its inverse analogous inductor
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has ZE=sL, while its direct analogous capacitor has ZE=1/(sC). For this reason,
the direct EM analogy is more often preferred and will be adopted hereafter.

13.7.4 Examples

Example 13.1. Consider a series-connected mass-spring-damper system
excited by a force F, as shown in Fig. 13.14. Attention should be paid to the

Fig. 13.13 Summary of the electromechanical analogies.
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fact that, though the elements are in a ‘side-by-side’ configuration suggesting
the parallel connection, they are actually connected in series, since they
undergo the same velocity.

Suppose first that we want to measure the acceleration a, which is the
same for all the elements. To this purpose, an accelerometer of mass ma is
attached to the mass m as shown in Fig. 13.15(a).

Fig. 13.15 Measurement of acceleration on the mass-spring-damper system of Fig.
13.14 by an attached accelerometer of mass ma. (a) mechanical
representation; (b) analogous electrical circuit; (c) Norton repesentation.

Fig. 13.14 Series mass-spring-damper system excited by a force F treated in
Examples 13.1 and 13.2.
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By applying the direct EM analogy the system can be converted into the
electrical circuit of Fig. 13.15(b). The accelerometer is represented as a two-
port device with a mechanical velocity input ui and an electrical voltage
output Vo, as described by the following equations:
 

(13.25)

 

where  is the acceleration sensitivity in  is the
electrical output impedance, and  is the mechanical input impedance.

The system under measurement behaves as a one-port with the flow
variable, i.e. the velocity, being the integral of the measurand, the acceleration.
It is therefore more convenient to pass to the Norton representation shown
in Fig. 13.15(c), where the velocity  is the internal source variable,
and  is the internal impedance.

At this point it is very simple to derive the measurand-to-output transfer
function in the hypothesis of no electrical loading of the accelerometer, i.e.
Io=0:  

(13.26)

The term  represents the flow loading factor Lf, which in this
case is a velocity loading factor Lu. In the ideal case of ma=0 it results that
Lu=0, no loading error occurs and the output provides the measurand
acceleration a=suint.

The presence of the accelerometer mass ma causes  and brings about
two effects. The first effect is that at each fixed frequency so, the measured
acceleration differs from the real one by a factor Lu(so), and the resulting
error is of the order of ma/m. The second effect is that the resonant frequency
of the system is diminished, changing from  in the unperturbed
case to  in the loaded case. Both these loading effects are
of critical importance in vibration measurements in general and modal
analysis in particular, and should be carefully minimized by choosing an
accelerometer with a mass ma being as small as possible compared to the
system mass m. In other words, the measuring instrument, due to its
connection in series with the measuring system, should have a negligible
impedance compared to Zint of the measured structure.
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Example 13.2. Suppose now that we want to measure the displacement x of
the same system. For this purpose, we can use a spring-loaded transducer
modelled by a stiffness element Kx with negligible mass and damping, as
schematized in Fig. 13.16(a). The resulting analogue electrical circuit is shown
in Fig. 13.16(b). The system under measurement is the same one-port as
before, except that now the measurand, i.e. the displacement, is the integral
of the output flow variable, i.e. the velocity.

The transducer is modelled as a two-port governed by the following
equations:
 

(13.27)

 

where  is the displacement sensitivity in V/m, Zo is the electrical
output impedance, and  is the mechanical input impedance.

Again, we can pass to the Norton equivalent of the one-port as shown in
Fig. 13.16(c) and obtain the measurand-to-output transfer function under

Fig. 13.16 Measurement of displacement on the mass-spring-damper system of Fig.
13.14 by an attached displacement transducer of negligible mass and
damping, and stiffness Kx: (a) mechanical representation; (b) analogous
electrical circuit; (c) Norton representation.
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the hypothesis of no electrical loading of the displacement transducer, i.e.
Io=0:

(13.28)

The term  represents the flow loading factor Lf, which is now
determined by the stiffness of the measuring instrument. In case of static
displacement, i.e. for s=0, it reduces to  which shows that the loading
error increases the higher is the transducer stiffness Kx. The dynamic
behaviour is also affected. In particular, the resonant frequency of the system
is augmented by the measuring instrument stiffening action, changing from

 in the unperturbed case to  in the loaded case.
To reduce both these errors it is necessary to use a transducer as compliant
as possible, i.e. with a very low Kx, in order to ensure a negligible impedance
compared to Zint. Often, especially in the cases of small-sized and lightweight
systems, the only way to obtain such a condition is by adopting a noncontact
measuring method which ensures a Kx equal to zero.

Example 13.3. As a third example, consider the mass-spring-damper system
of Fig. 13.17 held in motion at a velocity u with respect to the reference
frame. It should be noted that, though the system elements are in a ‘stacked’
arrangement suggesting the series connection, they are connected in parallel,
since they are all subject to the same force F.

Fig. 13.17 Parallel mass-spring-damper system held in motion at a velocity u treated
in Example 13.3.
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Suppose that we are interested in measuring such a force and, to this
purpose, an elastic-element force transducer is adopted and attached to the
system as shown in Fig. 13.18(a). By applying the direct EM analogy the
system can be converted into the electric circuit of Fig. 13.18(b).

The force transducer is represented as a two-port device with a mechanical
force input Fi and an electrical voltage output Vo, as described by the following
equations:
 

(13.29)

 

where  is the force sensitivity in V/N, Zo is the electrical output
impedance, and  is the mechanical input impedance.

The system under measurement again behaves as a one-port but now the
effort variable, i.e. the force, is the measurand quantity. In this circumstance
it is advisable to pass to the Thevenin representation as shown in Fig. 13.18(c),

Fig. 13.18 Measurement of force on the mass-spring-damper system of Fig. 13.17
by a force transducer of stiffness KF: (a) mechanical representation;
(b) analogous electrical circuit; (c) Thevenin representation.
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where the force  is the internal source variable, and
 is the internal impedance.

Again assuming no electrical load for the transducer, i.e. Io=0, the
measurand-to-output transfer function can be determined:

(13.30)

This time, the stiffness KF of the measuring instrument determines the effort
loading factor Le represented by the term  The loading error is
now smaller the more rigid the transducer is, consistent with the fact that it
is connected in parallel with the system and, therefore, its mechanical
impedance should be much greater than Zint.

As a concluding comment, it should now be clear what we qualitatively
anticipated at the beginning of this section by saying that it is theoretically
possible to compute the loading error and compensate for it. In fact, it appears
to be sufficient to analyse the system with the method outlined above to
determine, depending on the case at hand, either Le or Lf. However, this
would require the generalized impedances of all the involved elements to be
exactly known, which is a situation that rarely occurs in practice. The
preferred and most used approach is that of properly choosing the instrument
in order to minimize its impact by maintaining Le (or Lf) as small as possible.

13.8 Performance specifications of measuring instruments

The quality of measurements taken and their suitability for our purposes
depend on the measuring instrument characteristics which, therefore, need
to be properly specified. Measuring instruments are complex systems, and
specifying their performance in a clear and consistent way is not a trivial
task. It is of fundamental importance that a suitable terminology is both
understood and adopted [9]. The reason is not merely a matter of formal
rigorousness, but rather lies in the substantial need to express concepts in a
concise and objective way, avoiding incompleteness and misinterpretations.

The following is a glossary of recommended terms which apply to
measuring instruments in general, irrespective of their operating principle
and construction. Though it is not exhaustive, it is intended to help the
reader in understanding the basic characteristics of an instrument to properly
chose and operate it.
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Range (input/output)  
The input range identifies the limits between which the measurand can be
applied with the instrument operating properly and in compliance with its
specifications. Such limits have the dimensions of the measurand.

The output range identifies the limits between which the instrument output
lies when the measurand is within the input range. Such limits have the
dimensions of the instrument output.
 
Span  
The span is the difference between the limits which define the range (either
input or output).
 
Full-scale value  
The full-scale value identifies the upper limit of the range (either input or
output). When the lower limit is zero, the full-scale value equals the span.
When this is not the case, full-scale value and span differ and, strictly speaking,
they should not be confused. However, it is common practice to pay little
attention to this subtle matter and in many occasions, such as when specifying
linearity or other parameters, full-scale value and span are used as synonyms.
 
Sensitivity  
The sensitivity S is the rate of change of the instrument output y with respect
to input measurand x, i.e. S=dy/dx. In the general case, the sensitivity is a
function of the measurand value x, i.e. S=S(x). For linear instruments the
sensitivity is constant throughout the range and takes the name of scale
factor, calibration factor or conversion coefficient.

When the measurand and the instrument output are functions of time
and linearity holds, they can be decomposed into a superposition of sinusoids
and the sensitivity becomes in general a complex function of frequency
representing the instrument frequency response function.
 
Linearity  
Linearity is the ability of the instrument to follow a prescribed linear
relationship between input and output, either in the case they are static
quantities or functions of time. The nonlinearity, or nonlinearity error, is the
maximum deviation of the instrument output, at any measurand value, from
that calculated assuming such a linear relationship. To properly quantify the
nonlinearity it is essential to specify which line is assumed as the reference.
The following two alternatives are generally adopted:
 
• End-point linearity: the reference line is the one passing through the

limiting points, or end points, of the instrument calibration characteristic.
• Least-squares linearity: the reference line is the one which best fits the

experimental points of the instrument calibration characteristic by the
method of the least squares.
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Usually, the nonlinearity is expressed as a percentage of the full-scale output
(%FSO or %FS) and it is, therefore, a dimensionless number.
 
Resolution  
Resolution identifies the minimum variation in the measurand which produces
a detectable variation at the instrument output. Such a minimum variation
is called resolution threshold or discrimination threshold. Therefore, the
resolution describes the ability of the instrument of discriminating small
changes in the measurand. An ideal instrument with unlimited discrimination
capability is said to have continuous or infinite resolution.

The resolution is specified by quoting the resolution threshold and may
be referred to the input or to the output. In the former case it is usually
expressed as an absolute value having the dimensions of the measurand
quantity; in the latter case it is mostly expressed as a percentage of full-scale
output (%FSO or %FS). Notice that the improper use of the term sensitivity
in place of resolution is sometimes encountered. Since sensitivity has a
markedly different significance, this misuse should be avoided.
 
Dynamic range  
Dynamic range is defined as the range of measurand values contained between
the minimum detectable level, given by the resolution, and the full-scale
value. The dynamic range DR is often expressed in decibel, that is DR (dB)=
20 log10DR. For a given full-scale value, the instrument with the highest
resolution (i.e. the highest discrimination capability) has the widest dynamic
range.
 
Repeatability  
Repeatability is the ability of an instrument of providing the same output
reading when the same value of the measurand is repeatedly applied in the
same conditions. It expresses the amount of random fluctuations that affect
the instrument output in the ideal condition of a perfectly defined and stable
measurand value.
 
Reproducibility  
Reproducibility is the ability of an instrument of providing the same output
reading when the same value of the measurand is subsequently applied in
different conditions, such as different time, observer, location.
 
Hysteresis  
Hysteresis is the effect by which an instrument provides, for each given value
of the measurand, two different outputs when such a value has been
approached by increasing or by decreasing the measurand, resulting in an
upward and a downward calibration characteristic. The hysteresis error is
the maximum difference between such upward and downward calibration
characteristics.
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The hysteresis error is usually expressed as a percentage of the full-scale
output (%FSO or %FS) and it is, therefore, a dimensionless number.
 
Stability  
Stability is the ability of an instrument of providing the same output reading
over time when a value of the measurand is applied and maintained constant.
To properly express the stability it is advisable to specify the duration of the
time interval to which it refers. To provide a qualitative reference, the terms
short-, medium- or long-time stability are often used.
 
Drift  
The drift of an instrument is its tendency to provide an output reading which
gradually changes over time without any relationship with the measurand.
Drift can be caused by lack of stability, by instrument ageing or by the action
of influencing quantities, e.g. the thermal drift related to temperature
fluctuations.
 
Temperature influence  
Temperature influence is the effect in which the instrument output for a
constant applied value of the measurand changes when the environmental
temperature changes. It is usually expressed as a temperature coefficient
defined as the output variation, absolute or fractional, for a unitary variation
of the temperature.
 
Bandwidth  
The bandwidth of a measuring instrument is the range of frequencies of the
input measurand for which the magnitude of the instrument frequency
response function is no lower than 3 dB of its peak value. A decrease of 3 dB
is equivalent to an attenuation of 
 
Response time  
The response time is the length of time required for the instrument output to
reach a specified percentage of its final value (typically 95% or 98%) when
subject to a step change in the measurand.
 
Time constant  
The time constant is the length of time required for the instrument output to
reach the 63.2% of the final value when subject to a step change in the
measurand. For a first-order instrument the time constant coincides with the
reciprocal of the transfer function –3 dB cutoff angular frequency ωc.
 
Accuracy  
The accuracy of an instrument is the extent to which its output may differ
from the true value of the measurand, with the significance given to the
term ‘true value’ discussed in Section 13.2. Therefore, high accuracy means
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low measurement uncertainty. Accuracy may be distinguished as static and
dynamic. The static accuracy, or better the inaccuracy, is determined by such
effects as nonlinearity, nonrepeatability, hysteresis, drift, instability and
environmental influences. The dynamic accuracy is influenced also by the
effects of bandwidth limitation and finite response time.

Accuracy may be expressed by quoting the associated uncertainty (for a
given confidence level) as an absolute interval, as a percentage of the reading
(%rdg) or as a percentage of the full-scale output (%FSO or %FS). In the
first case it has the dimensions of the measurand, while in the remaining two
it is a dimensionless number.
 
Precision  
The precision of an instrument has been long identified with its ability to
provide the same output reading when the same measurand value is applied
in the same conditions. A precise instrument therefore ensures a low scattering
of the readings. The term repeatability is currently preferred to define this
property, and the use of the term precision is discouraged by the international
metrological organizations. The term precision is definitely not synonymous
with accuracy, and should not be confused with it.

13.9 Summary

Measurement is the experimental procedure to assign numerical values to
real-world quantities called measurands, in order to describe them
quantitatively. To this purpose, measuring instruments are used. To allow
comparison between measurement results of the same quantity obtained by
different instruments they need to be calibrated against a reference which is
traceable to a conventionally agreed standard.

The extent to which the result of a measurement approximates the value
of the measurand has traditionally been evaluated with reference to the
concepts of random and systematic errors. This approach has the problem
that errors are defined with respect to the true value of the measurand which,
however, is an unknown and unknowable quantity. The inconsistency is
removed by introducing the concept of measurement uncertainty, which
represents a quantitative estimate of the range of values within which the
value of the measurand lies with a given confidence level when using a
particular instrument in specified conditions. The lower the measurement
uncertainty, the higher the accuracy.

Many traditional measuring instruments are nonelectronic, but most of
the measurement tasks are today performed by electronic measuring
instruments and systems. Compared to purely mechanical systems, they offer
higher performance, improved functionality and reduced cost.

Irrespective of its construction, the measuring instrument occupies the
position at the interface between the observer and the measurand and is
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under the influence of the environment. This influence generally produces a
perturbing action due to several influencing quantities which need to be
recognized and kept under control to avoid a detrimental effect on the
measurement accuracy.

The behaviour of a measuring instrument can be analysed both statically
and dynamically, depending on considering the measurand as a constant or
as a function of time. For linear instruments, the superposition principle
holds and the dynamic behaviour can be analysed making use of the Fourier-
and Laplace-transform methods.

During the measurement process, the measuring instrument interacts with
the measured system and unavoidably perturbs it by altering its energetic
equilibrium. As a consequence, the measurement result necessarily differs
from the unperturbed measurand value. This is called the loading effect caused
by the measuring instrument on the measured system.

To analyse the loading effect, linear instruments can be represented as
two-port devices with a proper choice of the effort, or across, and flow, or
through, variables. When mechanical systems are involved which lend
themselves to a lumped-element representation, it may be convenient to make
use of the electromechanical analogy to analyse the interaction between
instrument and system with the formalism of electrical circuits. This method
allows us to determine which parameters are responsible for the loading
effect and what can be done to reduce it to a minimum.

To properly choose and operate measuring instruments, and to effectively
exchange information with other people on the subject of measurement, it is
important to know and make use of the correct terminology. Striving to do
so as a habit helps to avoid incompleteness and misinterpretations, and
provides a deeper insight into the fundamental concepts related to
measurement and measuring instruments.
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14 Motion and vibration
transducers

14.1 Introduction

Transducers are the interface elements between the physical world and the
electronic measurement and/or control system [1–4]. Input transducers
convert physical quantities into electrical signals. Conversely, output
transducers produce a physical action in response to an electrical driving
stimulus. Typical examples of input and output transducers in the vibration
field are accelerometers and electromagnetic shakers, respectively. Input
transducers, or simply transducers, are also called sensors, even if, historically,
this term was preferred for indicating the primary sensing element, whereas
the term transducer was used for a composite measuring device incorporating
one or more sensors. Output transducers are also named actuators.

Sensors may be either active (self-generating), or passive (modulating).
Self-generating sensors, such as the piezoelectric accelerometer, provide an
electrical signal without the need for an electrical power supply, unless for
additional amplification or processing. Conversely, modulating sensors, such
as the resistive potentiometer, require an external source of energy in the
form of an excitation which is modulated by the measurand quantity and
produces the output signal.

In the present chapter, the main types of transducers which find application
in the measurement of structural and mechanical vibrations are illustrated.
The treatment is not intended to be exhaustive, nor deeply involved in the
analysis of the functioning principles for which the interested reader can
refer to the references given and to the manufacturers’ technical literature.
Instead, the approach is chiefly illustrative, basically oriented towards pointing
out the main features of the presented devices as an hopefully helpful aid to
their proper choice and use.

14.2 Relative- and absolute-motion measurement

The position of an object is defined by its coordinates in space with respect
to an assigned reference. The displacement indicates the difference of the
object coordinates from one position to another. If the initial coordinates of
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the still object are taken as the reference, then position and displacement
coincide and the two terms become interchangeable, although in the most
general case they are not. The variation of the object position means that
the displacement is a function of time, indicating the presence of motion.
Displacement may be linear or angular, i.e. the motion may be translational
or rotational, or a combination of the two. For both the linear and the angular
cases, the first and second time derivatives of displacement are the object
velocity and acceleration respectively.

There are two methods for measuring the motion of an object with
reference to a fixed point in space.
 
• Relative-motion method: the transducer is attached between the object

and the reference point fixed in space, then the motion is referred to such
a point. The kind of attachment may be of contact type, i.e. mechanical,
as well as of noncontact type, such as electromagnetic or optical.

• Absolute-motion method: a seismic transducer made by a mass-spring-
damper system is attached to the object and the motion of the object is
derived from the motion of the mass relative to the transducer base. In
this case, the fixed reference point is represented by the position in space
of the seismic mass and, consequently, of the object to which it is attached,
under the condition of absence of motion.

14.3 Contact and noncontact transducers

Contact transducers function by establishing a mechanical link between the
measured object and the fixed reference point. This fact unavoidably produces
a loading error which is more or less pronounced depending on the mechanical
output impedance of the object compared to the input impedance of the
transducer, as expressed by the generalized effort- and flow-loading factor
parameters Le(s) and Lf(s) illustrated in Chapter 13.

In high-precision prolonged measurements under variable temperature
conditions, the mechanical contact link may be an additional source of
problems due to thermal expansions in it and in the transducer mounting
fixture. On the other hand, in dynamic measurements of relatively short
duration these effects are usually not an issue, and the main point of concern
remains the loading effect with the possible alteration in the system frequency
response that it may cause. Moreover, it must be ensured that the reference
point is securely motionless, though in the practical cases this is hardly
completely achievable.

Noncontact transducers avoid the use of any mechanical link between
the measurement object and the fixed reference point. This fact has two
positive consequences that represent the main advantages of noncontact
transducers. Firstly, they generate no loading on the measured object and
are therefore best suited for small and lightweight structures. Secondly, the
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absence of mechanical links allows their use for measurements on rotating
parts such as shafts, motors and bearings.

Most noncontact transducers measure over an area of the target object,
hence their response can be somewhat dependent on the geometric properties
of the object surface, such as shape, roughness or presence of cracks, as well
as on its electrical characteristics. This is not the case with optical transducers,
which are capable of spot measurements on both insulating and conducting
target materials, but on the other hand they are affected by the surface optical
properties.

14.4 Relative-displacement measurement

14.4.1 Resistive potentiometers

A potentiometer is a three-terminal resistor with two fixed contacts and one
movable contact, named a wiper, connected to an accessible mechanical
termination called a cursor or slider. The potentiometer body is fixed at the
reference point, while the cursor normally terminates in a shaft attached to
the measured object. In place of the shaft a spring-tensioned wire is used in
the draw-wire models.

The position of the cursor along the stroke of the potentiometer determines
the ratio of the two resistances into which the overall resistance is divided,
and therefore the position can be indirectly determined by the measurement
of this resistance ratio. Potentiometers can be either linear or rotary, and
thus can be used for the measurement of both translation and rotation.

Potentiometers are passive transducers for which the measurement of
resistance is usually done indirectly. A common, but not the only, method
is shown in Fig. 14.1, where a voltage excitation VE is applied and the
correspondent voltage Vo is read between the cursor and one the other

Fig. 14.1 Readout scheme commonly adopted for resistive potentiometers. To ensure
linearity, the load resistance RL, representing the input resistance of the
readout instrument, should be much greater than R.
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terminals. If the resistance per unit length is constant, the output voltage Vo

is linearly related to the cursor position x.
Linearity is lost if the potentiometer is connected to a load resistor of

comparable or lower value than the transducer resistance R which, in order
to keep the power dissipation and the self-heating within tolerable limits, is
generally in the range of 100 Ω to 10 kΩ. Therefore, it is necessary to use
high-input-impedance reading instruments or amplifiers, which in turn may
cause problems of noise and interference pick-up when connected remotely
from the transducer by means of long wires.

Since Vo is proportional to VE, the excitation voltage determines the
transducer sensitivity and therefore it must guarantee a stable and precisely
known value. This is somewhat costly to obtain and it is often preferable to
use the ratiometric method, consisting of measuring both Vo and VE and then
electronically computing their ratio which is solely dependent on position x.

The mechanical sliding contact of the wiper along the resistor length and
the associated friction produce a gradual worsening of the electrical contact
through wear, possibly becoming intermittent, and the generation of spurious
signals in the form of noise. These unwanted effects are usually enhanced by
environmental factors, such as dirt, humidity and vibrations.

If the transducer resistor element is made of wirewound metal, the
resistance produced is a step-like function of cursor position as the wiper
slides from one wire turn to the next. This effect ultimately produces a limit
on the achievable resolution. The problem is much reduced with transducers
using continuous conductive tracks, such as carbon films or conductive
plastics, but generally at the expense of a higher track-to-wiper contact
resistance and a poorer temperature stability.

The typical overall accuracy obtainable with potentiometers is  FS.
When higher accuracy is required, different devices, such as linear variable
differential transformers (LVDT) or noncontact transducers described in the
following are to be preferred.

The potentiometer is essentially a zeroth-order instrument throughout the
frequency region in which its electrical impedance can be considered as purely
resistive. However, the transducer mechanical impedance can produce a
significant loading effect on the measured body which may appreciably alter
its dynamic behaviour, especially at high frequency. This is particularly true
when spring-loaded shaft potentiometers are used to ensure stable and
bounceless mechanical contact with the measured body. In this case, the
mechanical impedance includes the terms due to friction and mass plus a
relevant spring term. Therefore, potentiometers are not generally suitable
for use in dynamic measurements on lightweight structures, and in any case
not beyond a frequency of the order of 100 Hz.

14.4.2 Resistance strain gauges

Resistance strain gauges, or simply strain gauges, are small and lightweight
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resistive elements that are cemented on a structure of which they measure
the local deformation through the variation in resistance caused by elongation
or contraction.

Strain gauges function on a principle based on the expression 
which gives the resistance of a uniform conductor of resistivity ρ, length L
and cross-section area A.

The fractional change in resistance is then given by
 

(14.1)

 

where v is Poisson’s ratio of the conductor material, and  is the strain.
According to eq (14.1), strain gauges do not actually measure displacement

but strain, i.e. the average gauge elongation or contraction divided by the
gauge length. The parameter K is called the gauge factor, which accounts for
the resistance variations due to dimensional changes, represented by the term
(1+2v), and for those caused by the strain-induced resistivity variations

 This latter effect is called the piezoresistive effect.
Depending on the material of which the strain gauge is made, the gauge

factor assumes different values, ranging from close to 2 for nickel-copper
(constantan) and 2.1 nickel-chromium (karma) alloys, to about 3.5 for
isoelastic, to above 100 for semiconductors.

Metal alloy strain gauges are the most widely used and, as shown in Fig.
14.2, they typically have the form of grid foils of various dimensions and
geometry supported by an insulating backing carrier which allows them to
be bonded to the body under test. The backing carrier performs the
fundamental function of transferring the strain from the specimen to the
gauge with maximum fidelity.

The nominal values of resistance are normally 120, 350, 700 or 1000 Ω,
with strain-induced variations that are usually quite small, as low as few
parts per million (ppm), and therefore require special care in their
measurement. Moreover, the temperature appreciably influences both the
gauge resistance and the gauge factor, producing the so-called thermal output,
which is due to the temperature coefficient of resistance (TCR) and of gauge
factor (TCGF) combined with the thermal expansion of the specimen.

A typical solution is given by the use of the Wheatstone bridge configuration
with voltage or current excitation of either DC or AC type (Chapter 15 ).
Special arrangements including multiple active and/or dummy gauges are
used to maximize linearity and compensate for the thermal effects, and proper
wiring techniques allow for lead wire resistance cancellation in distant
connections between the bridge and the excitation and amplification circuitry.

With properly employed good-quality signal conditioning circuits, strain
levels in the microstrain range can be ordinarily detected and values lower
than 1 µ ε are possible. Such figures enable the use of strain gauges for stress
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analysis, i.e. determination of the stress in a structure by knowing the strain
and the elastic modulus, and for the measurement of microdisplacements
occurring in rigid structures.

Thanks to the fact that they are zeroth-order elements and they cause
negligible mechanical loading due to their reduced size and weight, strain gauges
have great potential for use in dynamic and shock measurements. In particular,
isoelastic gauges are typically preferred in these cases due to their high gauge
factor. In conditions of steep strain gradient the averaging effect over the gauge
length must be considered for proper selection of the gauge dimensions.
However, the process of instrumenting the structure under test by bonding the
gauges and connecting the wiring is time consuming, requires special precautions,
such as dirt removal and surface treatment, and it is therefore rather impractical
in spot tests. In some cases, strain gauges are permanently attached to structures
or machinery in order to allow for continuous or periodical monitoring, both
for functionality assessment and maintenance purposes.

Besides being used as transducers themselves, strain gauges are also widely
used as primary sensing elements in a large number of transducers for the
measurement of strain-related quantities, such as displacement, acceleration,
force, torque or pressure. Such transducers are called strain-gauge-based or
piezoresistive. In these cases, the strain gauges are not exclusively made by

Fig. 14.2 Etched metal foil resistance strain gauge (by courtesy of Measurements
Group, Inc.).

Copyright © 2003 Taylor & Francis Group LLC



metal foils bonded to the transducer structure, but may be of different
materials and construction. For instance, they may be conductors deposited
in thin- or thick-film technology, or integrated semiconductors, such as in
silicon micromachined sensors.

14.4.3 Linear variable differential transformers

The linear variable differential transformer (LVDT) is a transducer based on
the magnetic induction principle. It is made by a transformer with one primary
coil and two secondary coils with a movable core of ferromagnetic material
which is placed coaxially in the coils without touching them, as shown in
Fig. 14.3. The core terminates in a shaft or plunger which is attached to the
target object either by threading or spring loading. The transducer body
containing the primary and secondary coils is mounted in the reference
position. As the core moves, it produces a variation of the magnetic coupling
depending on its position along the coil axis. When the primary coil is excited
with a sinusoidal voltage of amplitude VE an induced voltage Vo is collected
across the secondary coils, which is linearly related to the core position
through the mutual inductance coefficient M. Since the secondary coils are
connected in series opposition, M equals zero when the core is centered and
it changes sign according to the sign of the core off-centre position. For the
rotary variable differential transformer (RVDT) the operating principle is
the same, with the difference that the rotary core movement allows the
measurement of angular rather than linear displacement.

A measure of the core displacement can then be obtained by rectifying
the voltage Vo while taking into account of its phase relative to VE. This
readout operation is typically carried out by dedicated electronic circuitry,
and is usually obtained by employing an oscillator and a phase-sensitive
demodulation stage followed by low-pass filtering (Chapter 15).

Fig. 14.3 Schematic diagram of linear variable differential transformer (LVDT).
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The oscillator signal for the primary coil excitation is preferably sinusoidal
to avoid the generation of harmonics, and often a particular frequency is
recommended by the transducer manufacturer for obtaining maximum
compensation of residual phase shift at null core position. In the case of
dynamic measurements, the oscillator frequency should be set at a value up
to ten times higher than the highest motion frequency, to avoid frequency
overlapping. Since the maximum recommended excitation frequencies of
typical LVDTs are in the order of 20 kHz, the useful measurement bandwidth
is generally limited to several kilohertz.

The mechanical input impedance of LVDTs is mainly given by the mass
associated with the core inertia in threaded-core types, with an added spring
effect when spring-loaded plunger-type cores are used. Friction is generally
almost absent, since there is no contact during the core motion within the
transducer. This fact offers an ideally unlimited resolution and virtually no
hysteresis, which represent fundamental advantages of LVDTs compared,
for instance, with resistive potentiometers. Practical devices can reach
resolutions better than 0.01% of the range, therefore submicron displacements
may be appreciated with transducers with a stroke of few millimetres.

These features, joined to a typically rugged construction and good
immunity to environmental factors and electromagnetic interference, makes
LVDTs the first choice for transducers in many precision measurement
applications. They are often considered the electrical equivalent of the
mechanical dial gauge, or micrometer.

As a drawback, LVDTs are not generally cheap and require dedicated
signal conditioning electronics, which is comparatively costly. In this respect,
some devices which include the excitation and amplification electronics within
the transducer case are particularly advantageous, providing a DC voltage
output signal ready to be acquired.

As a precaution, nonmagnetic materials such as aluminium or plastic
should be used for the mounting fixture in order not to alter the sensitivity.

Similar in shape to the LVDTs is a type of variable-inductance transducer
which includes only two series-connected coils in an autotransformer
configuration, i.e. analogous to the secondary windings of the LVDTs with
the primary absent. When the core is halfway between the coils their respective
inductances are equal, while they become different according to the amount
and sign of the core off-centre displacement. The transducer then essentially
works as an inductive potentiometer whose cursor is represented by the core,
with the advantage of no internal electrical contact. The inductance imbalance
can be measured by connecting the transducer in an AC-excited bridge and
reading the correspondent bridge output.

14.4.4 Inductive transducers

The functioning principle is based on the variable inductance of a coil wound
on a core caused by the changes in the magnetic flux reluctance when the
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distance from a ferromagnetic target varies. If the measured object is ferrous it
can act as the target, otherwise a ferromagnetic target must be attached to the
object. The inductance changes are usually measured in an AC bridge circuit,
or by making it part of a resonant circuit and detecting the resonant frequency
shift. Two geometries may be used, namely the closed-loop and open-loop
magnetic system, as shown in Fig. 14.4. In both cases, provided that the magnetic
permeability of both the core and the target are much greater than that of air
practically equal to that of vacuum  (hence the
requirement for a ferromagnetic target) the coil inductance L may be
approximated by
 

(14.2)

 

where A is the area of the core facing the target, N is the number of coil
turns and d is the distance from the target.

It can be observed that the relationship between L and d is nonlinear,
therefore these transducers are best suited for use as proximity sensors rather
than distance measuring devices. To obtain linear operation, electronic
linearization circuitry is generally added, often within the sensor housing,
and typical residual linearity errors are in the order of ±1% FS.

This type of transducer is inherently sensitive to stray magnetic fields,
and to ferromagnetic materials in proximity of the sensing coil (especially in
the open-loop magnetic geometry), therefore attention should be paid to
this aspect in its positioning and mounting.

14.4.5 Eddy-current transducers

When a coil is driven by an alternating voltage it generates an electromagnetic
field. If an electroconductive object is placed in proximity of the coil, the

Fig. 14.4 Schematic diagrams of inductive displacement transducers based on
variable reluctances: (a) closed magnetic loop design, (b) open magentic
loop design.
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electromagnetic field induces eddy currents (the name comes from the circular
nature of their flow within the object). Such eddy currents in turn produce
an electromagnetic field which opposes to the original field, and has the
ultimate effect of changing both the inductance and the quality factor, i.e.
the losses, of the coil. Therefore, from the measurement of the coil impedance,
the distance from the object can be derived.

The principle is generally applied by making use of a two-coil arrangement,
which includes a driving coil and a sensing coil both oriented with their axis
perpendicular to the target, as shown in Fig. 14.5. Both shielded and
unshielded constructions exist, which differ in that the former provides a
more directional field that ensures a higher immunity from stray effects caused
by metallic objects near the sides of the transducer. When two or more
transducers need to be mounted in close proximity, the shielded construction
is preferred to minimize mutual interference.

Eddy-current inductive sensors are responsive to both the magnetic
permeability µ and the electrical conductivity s of the target material but, as
opposed to the variable-reluctance type, they do not require that the magnetic
permeability is high. Therefore, they operate properly even with non-
ferromagnetic yet conductive target materials, or at temperatures higher than
the Curie temperature of ferromagnetic materials.

As a drawback, different target materials give different sensitivities and,
therefore, require different calibrations. Moreover, the thickness of the target
is also influential on the sensitivity, since the eddy currents have a finite
penetration depth δ in the material which depends on its µ and s and on the
field frequency f through the relationship
 

(14.3)

Fig. 14.5 Inductive displacement transducer based on eddy currents: (a) schematic
diagram of the two-coil configuration; (b) shielded design; (c) unshielded
design ([4, p. 279], reproduced with permission).
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On the basis of this formula it is possible to use eddy-current probes to
measure the thickness of metal foils or coatings and to detect material cracks.

Eddy-current sensors are almost always provided with built-in or external
signal-conditioning electronic circuits which drive the coil, amplify the signal
and linearize it to a typical value of ±1% FS.

A resolution as high as ±0.1% FS can be obtained. Typically, with small-
size short-range devices with 5 mm of probe diameter and 0–1 mm measuring
distance, submicron resolutions can be achieved. The time and temperature
stability can be very high making eddy-current sensors very suitable for long-
term operation even in harsh and dirty environments.

A frequency response typically ranging from zero to several kilohertz or
a few tens of kilohertz and the absence of mechanical loading because of
their noncontact operation make eddy-current sensors ideal for the
measurement of vibration. For instance, they are well suited and widely used
for measuring the vibrations and the eccentricity of rotating shafts, or the
looseness of bearings.

As far as the mounting is concerned, attention should be paid to ensuring
that the lateral dimensions of the target are at least two to three times the
probe diameter and the target surface is as flat as possible. Especially for the
unshielded version, the side-mounting of more transducers or the use of metallic
fixtures may perturb the sensitivity and, therefore, the recommendations of the
manufacturer should be followed to keep distances at safe values.

14.4.6 Capacitive transducers

Capacitive transducers are based on the principle that the capacitance of
two electrical conductive bodies (armatures) separated by a dielectric medium
varies if either the dielectric constant of the medium or the system geometry
vary. The change in the dielectric properties of the separating medium is
exploited, for instance, in liquid level or air humidity sensors. The change of
geometry is well suited to use in dimensional measurements, such as linear
and rotational displacement sensing. For instance, the principle can be applied
in devices where an armature terminating in a shaft is guided to move between
fixed armatures in a cylindrical geometry, giving rise to a capacitive linear
potentiometer.

The capacitive effect is well suited to noncontact displacement
measurements according to the expression of the capacitance C of two parallel
plates of area A separated by an air gap d given by

(14.4)

 
where ε is the dielectric constant of air practically equal to that of vacuum
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With reference to the above formula, two alternative methods may be
used, as illustrated in Fig. 14.6, namely the variation of the distance d between
the armatures and the variation of the area of overlap A.

The noncontact capacitive probes are based on the former principle, i.e.
they use capacitance variations to measure the air-gap d between two parallel
conductive plates, of which one is the fixed reference and the second is
attached to the moving object. If the object material is conductive it may act
as the electrode, otherwise it may be equipped with a metal target or made
conductive with the aid of conductive paint or rubbed graphite. As opposed
to the eddy-current probes, the conductivity value of the target is not
influential on the sensitivity. Capacitive transducers for nonconductive targets
are also on the market, but their sensitivity typically depends on the target
material and are mostly suited to proximity detection.

Equation (14.4) shows that the capacitance between two conductor plates
varies nonlinearly with the plate spacing d. The problem may be partially
overcome by operating the transducer over a reduced portion of its usable
range to approach linearity. A better and elegant solution is given by employing
an electronic readout scheme which provides an output signal proportional
to the modulus of the transducer impedance |Z|. Since 
the output signal is proportional to d at a fixed frequency ω.

A further limitation to linearity comes from the fringing effect caused by
the electric field lines diverging from parallel at the border of the plates due
to their finite extension. As shown in Fig. 14.7, this problem may be solved
with the help of the so-called guard electrode which encircles the moving
armature and, by an electronic active driving circuitry, is kept at its same
potential without, however, establishing any physical short-circuit between
the two. In this way, the fringing effect is moved to the external border of
the guard electrode, while the inner field lines in the region facing the sensitive
electrode are steered to be perfectly parallel.

Fig. 14.6 Variable-distance and variable-area methods for measuring displacement
along the direction x making use of a parallel-plate capacitive transducer.

Copyright © 2003 Taylor & Francis Group LLC



Capacitive transducers with air-gap dielectric are passive transducers with
high internal impedance, hence they are prone to interference pick-up and
therefore require special shielding precautions. Since the capacitance values
are typically small (few tens of picofarads or less), they could be swamped
by the capacitance of coaxial cables of even moderate length. For these
reasons, the signal-conditioning electronics needs to employ special readout
techniques and is usually located in close proximity with the sensing head or
often integrated in the sensor housing.

Extremely high resolutions can be obtained, essentially limited by the signal-
to-noise ratio in the electronics (Chapter 15), and high temperature and time
stability is ensured by the stable dielectric properties of air. However, air humidity
can be significantly influential and should be as low as possible to avoid the
occurrence of condensation. With dust-free electrodes made of high-quality
corrosion-protected materials, such as invar steel, having low surface roughness,
displacements of some hundredths of a micron may be detected.

Because the capacitive transducer is a zeroth-order instrument, the
measurement frequency range is virtually limited only by the conditioning
electronics. The market offers devices with a bandwidth exceeding 40 kHz
which is a value well suited to vibration measurements. Nevertheless,
capacitive probes are essentially special-purpose devices for high-end
applications, and, even for reasons of cost, their use is still not as widespread
as their high potential might suggest.

14.4.7 Optical transducers

Displacement transducers based on optical detection methods have the
advantage of not requiring any particular electrical or dimensional
characteristic in the target object, and of being essentially immune to

Fig. 14.7 Electric field lines in a capacitive displacement transducer: (a) without
guarding electrode; (b) with guarding electrode.
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electromagnetic interference. On the other hand, they are typically sensitive
to the optical properties of the target object, such as colour, reflectivity, surface
roughness, presence of dirt or dust, and of the optical path between the
sensor and the object. Therefore, their use is generally confined to clean
environments.

A very simple principle makes use of a light source, such as a light-emitting
diode (LED), coupled to a light detector in a side-by-side arrangement
contained in a single unit which is positioned in front of the target object.
The amount of reflected light collected by the photosensor depends on the
target distance. The method is simple and cheap but gives a limited range of
linearity, and suffers from a significant dependence on the optical properties
of the target.

Transducers based on the triangulation method employ the configuration
depicted in Fig. 14.8. The light beam emitted by a visible or infrared light
source, such as an LED or a semiconductor laser diode, is reflected by the
target object and reaches a linear position-sensitive detector (PSD) at a
particular point x of its length. Such a point is related to the target distance
by trigonometric relationships, therefore the properly processed signal from
the PSD gives a measure of the distance. Triangulation transducers typically
have a working range of few millimetres around a stand-off distance that
can be as high as several centimetres. The resolution is in the micron range
with a frequency response no wider than few hundred hertz which is generally
inversely dependent on the resolution.

The method with the highest performance and cost is that based on the
laser interferometer. A Michelson configuration is generally adopted in which
the laser light beam is split into two beams which travel along different
paths. One path has a fixed length and works as the reference, while the
other one comprises the distance from the light source to the measurand
object usually equipped with a mirrored reflecting target. The two beams
recombine in a photodetector and, due to the high coherence of the laser
light, produce a neat interference pattern whose number of fringes can be
counted and related to the target distance. The achievable resolution can be
as high as 1 nm, and the frequency response extends from DC to tens of
kilohertz or more. Such performance makes the laser interferometer the

Fig. 14.8 The optical triangular method for noncontact displacement measurement.
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preferred instrument where high-quality displacement and vibration
measurements are needed, such as for laboratory calibration purposes or for
highly demanding applications.

14.5 Relative-velocity measurement

14.5.1 Differentiation of displacement

In principle, the output signal from any displacement sensor can be differentiated
with respect to time to obtain a velocity signal. This may be done either
electronically, by making use of differentiation circuits cascaded to the transducer
output, or as a postprocessing step on the recorded data. This indirect approach,
however, has possible problems with the fact that the process of differentiation
inherently enhances the high-frequency components in a signal, since the
amplitude of each sinusoidal component at a frequency ω results multiplied by
a factor ω. Therefore, any spurious high-frequency component in the displacement
signal is amplified to a level which may impair the detectability of the true
velocity signal. The situation may be critical, for instance, with wire wound
potentiometers, due to their staircase characteristic which causes stepping output
signals under rapid cursor movement, as well as with AC excited transducers,
such as the LVDTs, due to possible residual ripple in the output signal.

Although the differentiating method may prove satisfying in several
noncritical situations, the choice which provides a more general applicability
and is therefore often preferred is to make use of velocity measuring
transducers.

14.5.2 Electrodynamic transducers

The operating principle is based on the Faraday-Lenz law of magnetic
induction for which the electromotive force (EMF), i.e. the voltage E,
generated in a closed circuit is equal to the time derivative of the magnetic
flux Φ linked with such a circuit. That is,  with the minus sign
representing the fact that the magnetic flux generated by the induced current
caused by E opposes to the original flux Φ. On this principle, it is possible
to develop self-generating sensors where velocity is converted into variations
of the magnetic flux concatenated with a coil, and therefore produces a
proportional output voltage signal.

A simple and effective method is that of making use of a permanent bar
magnet positioned inside a coil and free to move relative to it. There are two
alternatives, called the moving-coil and the moving-magnet designs, differing
in that the former has the element fixed to the reference point, while the
latter has it attached to the moving object.

The moving-magnet geometry is widely used for linear velocity transducers
which generally base on the two-coil configuration shown in Fig. 14.9. The
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two coils are mounted in series opposition and are needed to generate a net
output voltage related to the magnitude and sign of the magnet velocity.
Otherwise, with a single coil, the voltage induced by the movement of one
end of the magnet would cancel that generated by the opposite end, with a
zero net effect. It can be observed that the design of Fig. 14.9 is similar to
that of an LVDT or a variable-inductance transducer (Section 14.4.3), but in
this case a permanent magnet is used instead of the ferromagnetic core.

Electrodynamic velocimeters have the advantage of a noncontact and thus
frictionless movement of the magnet with respect to the coils, and provide a
high-level output with a typical sensitivity in the order of 10 mV/(mm/s). A
method to increase sensitivity is to increase the number of coil turns, but
this raises the coil resistance, thereby requiring more care in the design of
the readout electronics and possibly limiting the high-frequency response.
Typically, they can operate up to several kilohertz. The minimum detectable
velocity, i.e. the resolution threshold, generally depends on the noise floor,
especially for electromagnetic noise transmitted by nearby AC high-current
equipment. Moreover, the presence of magnetic fields is another important
source of interference which can perturb the sensitivity.

The electrodynamic principle, either in the moving-coil or moving-magnet
designs, is widely and successfully adopted within the absolute velocity
transducers based on the seismic instrument, as described in Section 14.7.3.

As a further application of the electrodynamic principle, it is possible that
both the magnet and the coil are fixed, while the target object moves in
front of them. In this case, the magnetic flux variation is produced by the
velocity of the object, which needs to be ferromagnetic. Typical examples of
such a configuration are given by the pick-ups of the electric guitars which
sense the vibrations of the nickel-wound strings and convert them into a
voltage signal, or by the toothed-rotor tachometers for the measurement of
velocity of rotating members.

Fig. 14.9 Schematic diagram of an electrodynamic relative-velocity transducer.
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14.5.3 Laser velocimeters

The laser velocimeters are based on the Doppler effect, for which a light wave
of frequency f reflected by a target moving at a velocity υ relative to the light
source becomes shifted to a frequency  where ∆f depends on the ratio v/
c, and  is the speed of light in vacuum. The magnitude and
sign of v can then be determined by measuring the difference between the
frequencies of the emitted and reflected laser beams. Laser velocimeters are
specialized and costly instruments which have the advantage of providing a
noncontact measuring method. They are used for instance to measure vibrations
in rotating blades or acoustic emitting surfaces, such as loudspeakers.

14.6 Relative-acceleration measurement

Ideally, acceleration may be derived by time-differentiating velocity or by
doubly differentiating displacement, either electronically on the signals or
numerically on the recorded data. However, it should be noted that the
double-differentiation process is still more sensitive to high-frequency spurious
components than the single differentiation is. Therefore, obtaining reliable
acceleration data from displacement readings is hardly feasible except for
very smooth signals. Starting from velocity signals may be less problematic
depending on the particular case.

In general, given the availability of reliable and high-performance
transducers which directly measure acceleration, as illustrated in the following
section, it is common practice to make use of such devices, and the application
of the differentiation techniques can be considered as an exception.

14.7 Absolute-motion measurement

14.7.1 The seismic instrument

Consider a single-degree-of-freedom mass-spring-damper system mounted
within a case, as shown in Fig. 14.10, which is subject to motion when
rigidly attached to a vibrating structure. Motion is assumed to be directed
along the instrument sensitive axis, which is oriented vertically in the figure.
The coordinate x0 gives the position of the transducer base with respect to
a motionless absolute reference, indicated as ground, while z0 and y0 give
the position of the mass with respect to the same reference and to the base,
respectively. The variations of x0, z0 and y0 from their initial unperturbed
values are indicated by x, z and y, which therefore represent the displacements
referenced to ground, for x and z, and to the transducer base, for y.

The mass m is called the proof or seismic mass. The term seismic comes
from the fact that vibrating the transducer base puts in motion the mass, in the
same way as buildings are acted on through their foundations by earthquakes.
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The force equilibrium condition for the proof mass m requires that the elastic
force fk, the damping force fc and the force fg due to gravity balance the
inertial force  Considering that z=x+y, this condition is expressed by the
relationship
 

(14.5)

 
Passing to the transforms X, Y and Fg, eq (14.5) becomes:

(14.6)

where  is the transducer natural frequency, and  is
the damping ratio.

If the masses of the case and of the structure to which the transducer is
attached were taken into account, the value of ω 0 would increase to the so-
called mounted resonant frequency. The mounted resonant frequency tends
to ω 0 for an infinite mass of the measuring structure. Therefore, ω 0 provides
a useful conservative estimate of the mounted resonant frequency and

Fig. 14.10 Mechanical model of the seismic instrument.
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approximates it well when, as generally happens, the transducer seismic mass
m is negligible compared to that of the measuring structure.

Equation(14.6) shows that the transducer absolute displacement X causes
a mass-base relative displacement Yx which depends on frequency and on
the transducer mechanical parameters.

Additionally, Y includes the term Yg caused by the force due to gravity. If, as
assumed in Fig. 14.10, the sensitive axis is oriented vertically and the transducer
spans a limited altitude, Fg is nothing but the transform of the constant proof
mass weight mg, where g=0.981m/s2 is the gravity acceleration, i.e. 
Therefore, the resulting term Yg seen in the time domain produces only a static
displacement  (For the mathematical details on the fact that the

transform of a constant k is given by kδ(ω) the reader can refer to Chapter
2.) If, however, the transducer’s sensitive axis has a different orientation, fg and
in turn yg change accordingly both in magnitude and sign, being zero for a
perfectly horizontal orientation. This implies that if the transducer happens to
experience a motion with a nonzero rotational component in a vertical plane,
then yg is no longer a constant but depends on time and, as such, it becomes a
signal source indistinguishable from that due to the absolute displacement x(t).
Failing to recognize such an orientation-dependent effect may cause significant
errors in measurement using seismic transducers.

The transducers working on the seismic principle employ an internal
method to measure the relative displacement y(t), or some related quantity,
and infer the absolute motion represented by x(t) or its time derivatives on
the basis of eq (14.6). The internal relative displacement is measured by a
secondary sensor, the type of which can vary depending on the construction
technology, and which provides the electrical output of the whole transducer.

14.7.2 Seismic displacement transducers

Assume that the contribution due to gravity is constant and directed in the
negative x0 direction (Fig. 14.10), so that the antitransform of the term Yg in
eq (14.6) reduces to the static displacement 

With reference to eq (14.6), the expression of Yx is 
where Td(ω) is given by
 

(14.7)

Td(ω) can be called the displacement frequency response function. The
magnitude and phase curves of Td( ω) are shown in Fig. 14.11. The damping
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Fig. 14.11 (a) Magnitude and (b) phase of the displacement frequency response
function of a seismic instrument.
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ratio ζ controls the peaking of the magnitude and the steepness of the phase
around ω0. For frequencies higher than  approaches unity and
therefore the relative displacement yx becomes equal to the displacement x.
Since z=x+y, this means that above ω0 the mass remains still at z=–yg.

Considering x(t) as a pure sinusoidal displacement represented by the
complex exponential  then 

The sinusoidal transfer function or sensitivity function  of the
displacement secondary sensor can now be introduced, where the minus sign
is taken for notation convenience. According to eq (14.6) the electrical output
e(t) of the transducer is then given by
 

(14.8)

Provided that ke(ω) is constant in the region  where Td(ω) is unitary,
the first term results in an output time signal which, in such a frequency
range, is proportional to x(t). Since Td(0)=0, the system is not sensitive to
static displacements, therefore it is only capable of motion measurements.
The second term represents the gravity-induced electrical signal. Since for
nonvertical orientations such a signal would vary, in the absence of motion
the transducer behaves as an inclinometer referenced to the gravity axis. It
is worth noting that if ke(0)=0, i.e. if the secondary transducer is not sensitive
to static displacement (as for instance in piezoelectric elements), then the
gravity term is cancelled. This occurrence has no detrimental consequences
on the sensitivity to x(t), which is already zero at DC due to Td(0)=0.

The displacement sensitivity function Sd(ω) of the overall transducer is
therefore given by
 

(14.9)

 
In practical transducer designs, the secondary sensing element which converts
displacement into an electrical signal may be based on resistive potentiometers,
LVDTs or noncontact displacement sensors. Alternatively, strain gauges bonded
to a flexible member which behaves as the spring element, may be used.

To extend the useful bandwidth towards the low frequencies, the natural
frequency ω0 should be as low as possible. This requires low stiffness and
high mass, which however imply reduced robustness and possibly higher
cross-sensitivity, and unavoidably increase size and loading effect.

14.7.3 Seismic velocimeters

One possible way to measure velocity is by electronically differentiating the
signal from a seismic displacement transducer. The possible problems related
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to the time differentiation operation are essentially the same as those already
discussed for the case of the relative-displacement transducers in Section 14.5.1.

A more efficient and widely used solution is that of equipping the seismic
system of Fig. 14.10 with a secondary sensor inherently sensitive to relative
velocity, rather than displacement.

To analyse this solution, assume a purely sinusoidal displacement represented
by the complex exponential  so that  and a
fixed orientation in space, so that the gravity term yg is constant. Therefore,
the relative velocity is given by 

Introducing the sensitivity function  of the velocity sensor, the
electrical output e(t) of the transducer is given by
 

(14.10)
 
Therefore, the velocity sensitivity function Sv(ω) of the overall transducer
results
 

(14.11)

 
It can be observed that as long as the secondary sensor sensitivity ke is
independent of frequency, the frequency response of the system as a velocity
transducer is again given by the displacement response function Td(ω), and
therefore it may be analysed by referring back to Fig. 14.11. In particular,
even in the case of ke extending to DC, that is the secondary sensor being
responsive to constant velocity, the overall sensitivity Sv(ω) has a low-frequency
cutoff given by the natural frequency ω0, which poses an inferior limit to the
usable measurement bandwidth.

The most widely used method to convert relative velocity into an electrical
signal is the electrodynamic principle, either in the moving coil or moving
magnet variant. Seismic velocimeters of this kind are often called vibrometers
or, in the case of transducers with very low resonant frequency (typically
below 1 Hz), seismometers. Electrodynamic transducers have their main
advantages in their self-generating nature with a high-level output, significant
sensitivity (typical values range from 1 to 10V/(m/s) and reliability of
operation due to the absence of electrical contact and friction in the secondary
sensor.

The drawbacks are that they are susceptible to magnetic fields, even if
magnetically shielded versions are on the market, and tend to be sensitive to
their orientation, since the damping and stiffness of the seismic system are
somewhat influenced by the gravity force.

Regarding the frequency response, extending the bandwidth towards the
low frequencies requires ω0 to be as low as possible, but, as discussed for the
seismic displacement transducers, this is usually obtained at the expense of
an increased mass loading and reduced robustness. By setting the damping
factor ζ typically close to 0.7, with oil filling or some other means, the usable
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bandwidth can be extended slightly below the resonant frequency ?0 without
appreciable phase distortion. The high-frequency limit is often posed by the
first contact resonance between the transducer case and the structure and it
is therefore dependent on the mounting method. Overall, the typical extension
of the usable bandwidth is from few hertz to few kilohertz.

Seismic velocimeters are becoming less widely used due to the availability
of reliable and high-performance accelerometers, but still find their way into
those applications where low-frequency signals of interest are mixed with
extraneous high-frequency components which would possibly cause an
overrange condition in an accelerometer.

14.7.4 Seismic accelerometers

Suppose we are now interested in measuring the absolute acceleration (t),
whose transform is given by  With reference to eq (14.6),
the term Yx can be written as  where Ta(ω) is given by
 

(14.12)

Ta(ω) can be called the acceleration frequency response function, which can
be recognized as the characteristic response function of a second-order system.

The magnitude and phase curves of Ta(ω) for various values of the damping
ratio ζ are shown in Fig. 14.12. For frequencies from zero to around  is
equal to (1/ω0)2 and, therefore, in this frequency region the relative displacement
yx, except for the sign reversal, is proportional to the absolute acceleration .

Assume a purely sinusoidal acceleration (t) represented by the complex
exponential  so that  and that the
contribution due to gravity is constant, so that the antitransform of the term
Yg in eq (14.6) reduces to the static displacement 

The secondary sensor is chosen to be responsive to displacement, with
 being its sensitivity function. In this way, the electrical output e(t) of

the transducer results to be given by
 

(14.13)

Provided that ke(ω) is constant in the region  where Ta(ω) is
constant, the first term results in an output signal which in such a frequency
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Fig. 14.12 (a) Magnitude (b) phase of the displacement frequency response function
of a seismic instrument.
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range is proportional to the measurand acceleration (t). The second term
is due to the effect of gravity on the relative displacement y. If ke(0)=0 the
transducer is not responsive to gravity and static accelerations. If on the
contrary  in the absence of motion it works as an inclinometer.

The acceleration sensitivity function Sa(ω) of the overall transducer is given by
 

(14.14)
 

Due to the fact that the low-frequency value of Ta(ω) decreases with increasing
ω0, a trade-off between sensitivity and high-frequency response is required.
Depending on the damping value, the flat-band region, i.e. the range of
frequencies where the sensitivity is constant and therefore the shape of the
input signal spectrum is not distorted, extends more or less towards ω0. Since
the damping ratio depends on the particular accelerometer construction, the
manufacturer’s specification must be consulted for the case at hand. Typically,
operation below 0.2ω0 would ensure negligible sensitivity variations even for
lightly damped transducers.

Usually, the unit used for acceleration is not the m/s2 SI unit, but the
gravitational acceleration g=9.81 m/s2. Therefore, in the case of an accelerometer
with voltage output, the sensitivity may be expressed in volts per g.

Seismic accelerometers are probably the most widely used transducer for
the measurement of vibrations, and they are well suited to the measurement
of both continuous vibrations and transients, or shocks. Their functioning
principle requires a high resonant frequency to obtain a wide measuring
bandwidth, therefore they tend to have high stiffness and small mass. This
makes them typically rugged and small size devices, especially in the high-
frequency versions, thereby ensuring a reduced loading effect.

The demand for a high-sensitivity secondary sensor to detect the
correspondingly small internal relative displacements is satisfied by several sensing
methods, which result in diverse accelerometer types and construction technologies,
as discussed in the following section. Depending on such sensing methods, the
readout of the electrical output may require some precautions and special circuitry,
but generally high-level signals with good linearity over a wide dynamic range
may be obtained at moderate price. This, in turn, makes affordable the ever-
increasing use of several devices in a multipoint test on the same structure.

In many cases, accelerometers prove useful in providing displacement and
velocity signals by means of time integration, which is a technique intrinsically
insensitive to noise and high-frequency disturbances due to its averaging nature.

14.8 Accelerometer types and technologies

14.8.1 Piezoelectric

Piezoelectric elements are insulators which become electrically polarized when
subject to mechanical stress (direct piezoelectric effect), and conversely
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elongate or contract when electrically excited by the application of a voltage
(reverse piezoelectric effect) [5].

Materials exhibiting the piezoelectric effect fall in two categories. The
natural piezoelectrics, such as quartz (SiO2), are intrinsically piezoelectric
due to their structure. The artificial piezoelectrics are ferroelectric materials
in which the piezoelectric effect is permanently induced by a poling process
at the manufacturing stage. Poling consists of applying a high-intensity electric
field to align the electric dipoles.

The reverse piezoelectric effect can be used for actuating purposes, such as
in the case of ultrasound generation transducers. The direct piezoelectric effect
can be exploited for sensing all those mechanical quantities which ultimately
produce a stress on the piezoelectric element, such as force, torque or pressure.
Piezoelectric sensors are self-generating. In piezoelectric accelerometers, the
piezoelectric material has the role of the relative displacement secondary sensor.
It behaves as a continuous elastic element generating an output charge Q
proportional to the strain induced in the element itself by the inertial force of
an overlying seismic mass. In some designs the seismic mass may be missing,
leaving only the distributed mass of the piezoelectric element itself, which
therefore embodies both the seismic system and the secondary sensor.

The proportionality factor between relative displacement and output charge
is given by the charge sensitivity function kQ(ω), which depends on the elastic
properties and dimensions of the piezoelectric element, and by its intrinsic
charge piezoelectric coefficient d, usually expressed in picocoulombs per
newton. As will be discussed shortly, different piezoelectric materials have
different values of d. Generally, in the region of interest, the charge sensitivity
function kQ(ω) can be considered as independent of frequency. Therefore,
according to eq (14.14), the overall charge sensitivity SQa(ω) is given by
 

(14.15)
 

The charge sensitivity is usually expressed in picocoulombs per g (pC/g)
and its frequency behaviour is determined by Ta(ω).

As shown in the equivalent circuit of Fig. 14.13, the charge 
generated by an acceleration (ω) is developed across the capacitor C, which
is formed by the portion of the piezoelectric material delimited by the two
electrode faces. Piezoelectrically generated charges do not last indefinitely but

Fig. 14.13 Equivalent circuit of a piezoelectric accelerometer. (ω) is the
acceleration, SQa(ω) and SVa(ω) indicate the charge and voltage
sensitivity respectively.
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tend to neutralize due to the fact that the material is an imperfect insulator,
with losses represented by the resistance R in the equivalent circuit. These
losses are responsible for an intrinsic discharging effect of the capacitor C.
As a consequence, if the voltage V is taken as the electrical output quantity
and the voltage sensitivity function kV(ω) is introduced, it follows that

 Similarly to SQa(ω ), the overall voltage sensitivity
SVa(ω) can then be defined, expressed in volt per g, which obeys the expression
 

(14.16)

 

From the comparison of the expressions for SQa(ω ) and SVa(ω ) follows a
very important fact regarding piezoelectric accelerometers. A low-frequency
limit exists given by  under which the voltage sensitivity SVa(ω )
drops, and at zero frequency SVa(0)=0. That is, piezoelectric accelerometers
are not able to respond with their output voltage to DC acceleration. In
particular, they are not sensitive to gravity acceleration and orientation. Seen
in the time domain, this implies that the response to a step-changing
acceleration is a decreasing exponential with a discharge time constant (DTC)
given by 

The problem is virtually absent if the output charge is considered. However,
in practice, the charge has to be extracted from the piezoelectric material in
some way to be measured, and this in turn necessarily involves the presence
of a time constant which is nothing but the product of the equivalent Req

and Ceq of the electronic circuit used for the charge readout (Section 15.4.2).
By properly choosing Req and Ceq the low-frequency cutoff limit can be varied
with respect to 

Charge- and voltage-output readout schemes also differ when the presence
of the connecting cable is considered, which contributes with its equivalent
capacitance CS in parallel to the sensor capacitance C. As will be discussed
in more detail in Chapter 15, the presence of CS has essentially no
consequences on the sensitivity SQa(ω) when charge amplification is employed.
On the other hand, when voltage readout is adopted, the shunting action of
CS determines a diminution in the voltage sensitivity from its open-circuit
expression SVa(ω) of a factor proportional to CS/C, and a corresponding
variation in the low-frequency limit. In order to keep the value of CS constant
and as low as possible, the voltage readout is generally accomplished by
inserting the amplifier within the transducer case, giving rise to the so-called
low-impedance voltage-output transducers. Both charge- and low-impedance
voltage-output piezoelectric accelerometers are on the market, with the former
indicated more for laboratory use or where high operating temperatures
would damage the built-in electronics, and the latter commonly used more
for general purpose field applications.

At the high-frequency end, both SQa(ω) and SVa(ω) are limited in the same
way by the behaviour of Ta(ω), i.e. by the natural frequency  The
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damping is typically low, resulting in a narrow region of resonance and in a
steep phase change. Usually, the flat-band region is individuated by the upper
and lower limiting frequencies where the voltage sensitivity is within 5% of
its midband value given by  When proper mounting is adopted,
operation up to f0/3 and f0/5 typically ensures a deviation from the midband
sensitivity of 12% (1 dB) and 6% (0.5 dB) respectively.

Piezoelectric materials typically used in acceleration sensors are either
quartz, or poled ceramics mainly of the lead zirconate-titanate or barium
titanate family. For high temperatures tourmaline or lithium niobate are used.
Quartz has a crystalline structure, is highly stable both thermally and over
time, and it offers good repeatability. It represents, therefore, the best solution
for transducers used for continuous monitoring over prolonged durations at
temperatures between –190 and 240°C and for calibration reference
standards. It has a piezoelectric coefficient d of 2.3 pC/N, which is a rather
low value and, as such, the charge sensitivity SQa is not very high. On the
other hand, since its dielectric constant is comparatively low, such a charge
produces a rather high value of the open-circuit voltage sensitivity SVa.

Poled ceramics have a piezoelectric coefficient which is much higher than
quartz, reaching a typical value of 350 pC/N for lead zirconate-titanate (PZT).
This causes a very high charge sensitivity, even if, by properly tailoring the
material composition to keep its dielectric constant low, significant values of
the voltage sensitivity can also be obtained. However, poled ceramics are
polycrystalline materials and, as such, they are typically less stable then quartz.
They tend to depolarize over time in a process called time depoling, and
typically suffer from a significant sensitivity to temperature. Moreover, they
generally suffer from a significant pyroelectric effect, consisting of the
generation of charge under temperature variations which adds unwantedly
to the piezoelectric signal of interest. In general, they lack stability when
exposed to extreme mechanical or thermal shocks, even though
accelerometers based on ceramics can operate between –190 and 400°C.

Irrespective of the material employed, the piezoelectric accelerometer
construction basically conforms to one of the three configurations shown in
Fig. 14.14. The compression mounting is the traditional and simplest
construction where the piezoelement operates with the electrodes placed
perpendicular to the transducer sensitivity axis. Generally, it includes a
preloading spring and offers a moderately high sensitivity-to-mass ratio.
However, it is rather sensitive to base bending and thermally induced inputs.
Its typical use is in shock tests, where the signals are high, or in controlled
laboratory environments for calibration purposes.

In the shear mounting the piezoelement operates with the electrodes placed
parallel to the transducer sensitivity axis. This configuration generally offers
a high sensitivity-to-mass ratio and a good thermal stability. Moreover, it
gives a reduced sensitivity to base strain and a minimal cross-sensitivity,
which makes the shear configuration the best choice as a general purpose
accelerometer.

Copyright © 2003 Taylor & Francis Group LLC



In the flexural beam configuration the piezoelement is shaped as a clamped
beam which bends under the action of the acceleration. This configuration
offers low cost with high output signal in a small size. Additionally, it has
low sensitivity to base strain, thermal transients and transverse motion.
However, the natural frequency is typically rather low, and it is therefore
best suited to applications such as structural testing.

Independently of their configuration, piezoelectric accelerometers are
reliable and rugged transducers which are durable, since they do not have
moving parts. They present high stiffness and low mass, and therefore have
high natural frequency and enhanced survivability to overloads up to a limit
as high as 105 g. The sensitivity can be very high with low cross-sensitivity,

Fig. 14.14 Piezoelectric accelerometer designs: (a) shear, (b) compression ([6, p. 100],
reproduced with permission) and (c) flexural beam (by courtesy of PCB
Piezotronics, Inc.) configurations.
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and dynamic ranges as wide as 1:1000 are attainable, which are especially
helpful around structural antiresonances where the motion is virtually absent
and the signal is low compared to background noise. As a limitation, they
are not sensitive to static acceleration and have a low frequency cutoff, but
this in turn may be an advantage in those applications where it is required
to have independence from sensor spatial orientation.

General purpose accelerometers may have a frequency range from 1 to 5
kHz or more, with a voltage sensitivity of up to 100 mV/g. High-frequency
and shock types are available that work well beyond 10 kHz; however, these
yield few millivolts per g. Low-frequency and low-acceleration level applications
such as in vibration of bridges and large structures are addressed by the seismic-
range accelerometers, which have large size and weight but can provide typically
1 V/g from a tenth of a hertz up to several hundred hertz.

Some manufacturers sell multifunction transducers which incorporate a
piezoelectric accelerometer plus an additional sensing function, such as
temperature or velocity/displacement obtained through electronic integration,
in a single unit.

When talking about piezoelectric materials it is worth mentioning the
piezofilms. They are polymers mostly derived from polyvinylidene fluoride
(PVDF) shaped in thin flexible layers coated with metal electrodes. The
piezoelectric coefficient d of PVDF is about 20 pC/N which is ten times greater
than quartz and an order of magnitude lower than PZT. Piezofilms are very
light and can be bent and deformed a great amount, which makes it possible
to directly bond them even to small and irregularly shaped structures to detect
vibrations. However, since the deformation pattern can be very complex, it is
not very easy to determine exactly the motion direction. Though piezofilms
have great potential in specialized applications as embedded sensors and have
even been used as sensing elements in lightweight low-cost accelerometers,
they are hardly suitable to be employed in precision vibration measurements.

14.8.2 Combined linear-angular

The flexural bending of piezoelectric beams can be exploited for the
simultaneous measurement of both translational and rotational accelerations
with a single device. The Translational-Angular PiezoBEAM® (TAP) sensor1

accomplishes this task by making use of two clamped-free beams [7]. Each
beam is actually a flexure bimorph made by two bonded piezoelectric layers
electrically connected. The signals from the two beams are both summed and
subtracted, providing two separate outputs. The beams are mounted in such
a geometry that a translational acceleration produces a signal at the summing
output, while a rotational acceleration determines a signal at the difference
output, thereby producing separate information on both components without
any appreciable cross-sensitivity.

1 PiezoBEAM® is a trademark of Kistler Instrumentation.
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These are very compact devices basically suited to low-frequency low-
level applications such as modal testing. When three sensors are attached to
a point with orthogonal orientations of the sensitive axes, the motion at
such a point can be measured with respect to all six of its degrees of freedom.

14.8.3 Piezoresistive

Piezoresistive accelerometers are based on bending elements sustaining a
seismic mass, whose relative displacement is detected by strain gauges
properly located on the bending element. The more simple configurations
use a seismic mass at the end of a clamped-free cantilever beam, equipped
with strain gauges close to the clamping where the strain is maximum, as
shown in Fig. 14.15. More sophisticated designs employ suspended bridge
or diaphragm geometries which increase robustness and overload
survivability, and reduce cross-sensitivity.

Piezoresistive sensors are passive, or modulating, sensors and therefore
they require a source of excitation to provide an electrical output. They
typically employ multiple strain gauges connected in a Wheatstone bridge
configuration, which will be discussed in more detail in the following chapter
on electronics. This allows us to maximize sensitivity by taking advantage
of more than a single active gauge, and to virtually cancel the errors due to
temperature-induced resistance variations.

In the case of a raw sensor bridge, the sensitivity Sa(ω) is usually given as
fractional bridge imbalance, i.e. bridge imbalance voltage divided by the
bridge excitation voltage, per unit of acceleration, that is (mV/V)/g. There
are, however, many sensors on the market with built-in signal conditioning
electronics which offer high-level outputs in several voltage or current ranges
and, in such cases, the sensitivity is expressed accordingly.

A fundamental property of strain gauges is sensitivity to static strain.
Therefore, according to eq (14.14), ke(ω) and in turn, the sensitivity Sa(ω ),

Fig. 14.15 Simplified structure of a piezoresistive accelerometer adopting strain
gauges bonded to an elastic bending element which sustains the seismic
mass ([8, p. 12.20], reproduced with permission).
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include DC. That is, piezoresistive accelerometers are capable of responding
to static accelerations and, in particular, to gravity.

Traditionally, piezoresistive accelerometers have been manufactured using
bonded metal foil strain gauges on properly machined elastic elements. As
usual, high sensitivity requires massive and compliant structures which end
up having a low natural frequency and are prone to breakage. To avoid this
occurrence, they often employ some method for increasing damping, such as
filling the case with oil, and include mechanical stops. As an alternative
method to improve the sensitivity, semiconductor strain gauges are used,
since they provide a higher gauge factor. Overall, the traditional
manufacturing method is labour intensive, costly and demands special
precautions in the critical process of bonding the strain gauges; therefore it
tends to be confined to special applications and its use is likely to decrease
in the future.

The state-of-the-art piezoresistive accelerometers, and piezoresistive sensors
in general, are instead made in silicon by the so-called silicon micromachining
technology, which now represents a great portion of the market. This
technology is based on the mature semiconductor processes used for the
fabrication of microelectronic integrated circuits, and currently is extending
to the development of so-called microelectromechanical systems (MEMS),
which include electronic circuitry as well as sensing and actuating capabilities
on the same chip. By making use of photomasking and chemical etching,
silicon micromachining allows for the fabrication of three-dimensional
suspended structures, such as bridges and diaphragms, with typical dimensions
of few micrometres. Silicon has excellent elastic behaviour and mechanical
properties and, by adding dopant impurities, it allows the creation of strain
gauges, or piezoresistors, embedded in the structure bulk without bonding.
Properly dimensioned air-filled spacings surrounding the elastic microstructure
provide a controlled amount of damping by the so-called ‘squeeze film’ effect.
This technological opportunity leads to batch manufacturing of low-cost
miniaturized sensors which typically also integrate the signal-conditioning
electronics in the same package or even on the same silicon substrate. In
some cases, both filtered and unfiltered outputs are available so that the
user can take advantage of either wide bandwidth or reduced noise according
to the application.

Silicon integrated piezoresistive accelerometers are tiny, lightweight, have
a generally high sensitivity because they include amplification and the gauge
factor of semiconductor strain gauge is intrinsically high, and are capable of
good high-frequency response. As a drawback, they generally cannot operate
at temperatures higher than 100–120°C and, within the operating range,
they tend to be sensitive to temperature. Compared to the piezoelectric
accelerometers, the piezoresistive ones have a generally smaller dynamic range
and resolution. They are generally used in applications where extreme high-
frequency response is not demanded and, conversely, DC sensitivity is
required, such as in vehicle dynamics and biomedical motion analysis.
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14.8.4 Capacitive

Capacitive seismic accelerometers measure the internal relative displacement
y by detecting the capacitance change between a stationary armature and an
armature attached to the seismic mass. The principle is that of the noncontact
capacitive displacement sensors already illustrated in this chapter.

Most often, a differential configuration is employed by incorporating two
capacitances which, under the motion of the seismic mass, undergo changes
of the same magnitude but of opposite sign in a push-pull fashion. By
measuring the difference of the two capacitances, the acceleration-induced
displacements can be detected, while offset and drift are virtually cancelled.

Due to the fact that both dynamic and static displacements cause a
capacitance change, capacitive accelerometers are capable of DC
measurements, i.e. their sensitivity extends to zero frequency.

Despite their apparently simplistic structure, capacitive accelerometers
require high-precision and low-tolerance manufacturing methods, in order
to ensure high sensitivity, suitable ruggedness and overload survivability at
a reasonable size and weight.

As in the case of piezoresistive sensors, also for capacitive accelerometers
the technology of silicon micromachining offers the way to obtain high-
performance and low-cost integrated sensors, and represents the leading
technology in the field. Silicon capacitive accelerometers are based on
suspended elastic elements incorporating electrodes, closely faced to fixed
plates at typical distances of few microns. The geometry of the suspended
element may be planar, giving rise to a variable-gap capacitor, or employ
more elaborate comb-like configurations to increase sensitivity-to-size ratio.

Typically, silicon capacitive accelerometers also include the signal
conditioning and amplification electronics, resulting in tiny and lightweight
integrated sensors with a high-level output signal. Some manufacturers offer
the bare sensor without the electronics, which comes in an external unit to
be located close to the sensing head. This is due to the fact that capacitive
sensing elements may operate at comparatively high temperatures (in the
order of 150°C), unless limited by the working range of the electronics
(generally no more than 120°C).

Silicon capacitive accelerometers with integrated microelectronics have
typically a voltage output with sensitivity in the range of 100 mV/g to 1 V/g
accompanied by low noise and high resolution and a mass of few grams. The
bandwidth is a few kilohertz or less, and its upper limit is governed by the
natural frequency of the seismic structure but is sometimes electronically reduced
by internal filtering stages. As a very important and convenient feature, some
devices incorporate a self-test feature, consisting of internally applying a fixed
voltage to the sensing element which produces an electrostatic deflection of the
elastic element corresponding to a preselected value of DC acceleration.

Typical applications of integrated capacitive accelerometers are in aircraft
and automobile testing where they can withstand very high shocks, and they
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are rapidly replacing purely mechanical devices in car airbag deployment
systems. Besides, their choice must be considered in all those cases where
they are competitors of piezoresistive accelerometers in providing DC response
with a high-level output signal.

14.8.5 Force-balance or servo

Force-balance accelerometers use the null method for quantifying the relative
displacement of the seismic mass, as opposed to the sensors we have described
so far, which rely on the deflection method. Force-balance accelerometers
are feedback, or servo, systems which incorporate an electromagnetic or
electrostatic actuator that continuously acts on the seismic mass in such a
way to impede its relative motion as sensed by a position detector. Therefore,
instead of measuring the seismic mass deflection caused by the acceleration,
the motion is nulled by the proportional restoring force generated by the
actuator which essentially works as an electrically controlled spring. The
electrical input of the actuator is a measure of such a balancing force, and
is therefore taken as the transducer output signal.

Since the mass remains essentially still, the influence of friction and
mechanical hysteresis is virtually eliminated. Moreover, both the damping
and, to some extent, the resonant frequency can be electrically set within the
feedback loop, rendering them more controllable versus temperature and
influence factors in general. The requirements set on the position detector
are not particularly stringent, since the seismic mass experiences extremely
reduced excursions around the neutral position.

For all these reasons, servo accelerometers are generally precision-class
and costly devices which can reach a 0.1% FS overall accuracy. Their
sensitivity and resolution are typically very good with a frequency response
including DC. Therefore, they are often used to measure tilt in special versions
called servo inclinometers, or in inertial navigation systems for avionics and
military industry.

14.8.6 Multiaxial accelerometers

There are some applications which require the simultaneous measurement
at a single point of the acceleration components in an orthogonal coordinate
system. The market offers two kinds of solution to the problem, namely the
multiaxial arrangement of monoaxial accelerometers, and the intrinsically
multiaxial accelerometers.

In the former case, several manufacturers offer tridimensional mounting
fixtures and slotted blocks to which up to three accelerometers are fitted in
an orthogonal configuration. This solution is convenient and cost-effective,
since it uses ordinary monoaxial sensors and gives the opportunity of
mounting less than three devices on a block when sensor availability or cost
are a factor. As the drawbacks, it increases the mass load on the measured
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structure due to the mass of the mounting fixture, and is somewhat critical
with respect to mounting, since it typically tends to worsen the high-frequency
response of the sensors due to the presence of an intermediate body between
the accelerometers and the test object. Moreover, the mutliple output
connectors and cables may cause problems when space is tight.

Essentially all of the above limitations are overcome by the intrinsically
multiaxial accelerometers, which incorporate up to three orthogonal sensors
sealed in a single housing. They are optimized for minimum mass load,
reduced cross-axis sensitivity and usable bandwidth, with the output provided
on a single multipolar wire or multipin connector. The cost of this solution
should be carefully considered according to the application and budget, since
a triaxial unit is probably cheaper than a monoaxial triplet plus mounting
block, but the second approach offers more flexibility and reusability.

Multiaxial accelerometers generally are either piezoelectric, piezoresisitive
or capacitive, with the respective features already illustrated for monoaxial
sensors. The miniaturization capability of the silicon micromachining
technology has recently brought onto the market a ±50 g biaxial capacitive
accelerometer with electronics all integrated in tiny package like those
ordinarily used for integrated circuits [9]. Such devices are factory calibrated
and temperature compensated, and due to their low cost and size can be
used for instance in permanent monitoring systems for machinery and
structures [10].

14.9 Accelerometer choice, calibration and mounting

14.9.1 Choice

As can be expected, none of the above illustrated principles and technologies
for accelerometers is generally the best choice for every application. On the
contrary, the preferred solution should be individuated by taking into account
the accelerometer characteristic features, and how they globally match with
the requirements of the particular application. The main factors influencing
the choice are listed and briefly commented upon in the following.

Measurement range

For measuring high-level accelerations up to several thousand g, such as in
shock tests, piezoelectric or piezoresisitive sensors are generally used. The
second type may be less sensitive, but in some cases is more lightweight.

For medium-level accelerations, such as those encountered in most
vibration measurements and in modal tests on average-sized machinery and
structures, the choice widens to essentially all the sensor types illustrated,
and generally involves the consideration of several concurring factors, such
as sensitivity, bandwidth and operating conditions.
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For low-level accelerations in the sub-g range, such as in vibration tests
on large structures or buildings, piezoelectric seismic-range types or force-
balance transducers are typically used.

Sensitivity, resolution and dynamic range

These three parameters have been grouped together, since they are actually
mutually correlated, though they represent different concepts, as discussed in
Chapter 13. High sensitivity means a large output amplitude for a given
measurand level, but the minimum detectable level is set by the resolution
limit. The dynamic range is the range of input levels that the transducer can
measure, usually expressed as the maximum-to-minimum ratio. Accelerometers
manufactured using different technologies may provide the same sensitivity
value, which is typically higher in devices with lower bandwidth. However, not
all the accelerometers are the same as far as the dynamic range and resolution
are concerned. This fact may become an issue when there is the need of detecting
low-level signals riding on a high-level background, or when both structural
resonances and antiresonances must be detected neatly as in modal testing.

Piezoelectric accelerometers have typically the widest dynamic range
compared to piezoresistive and capacitive types.

Frequency response

As a general rule for seismic accelerometers, stiff and lightweight sensors
have high natural frequency and moderate sensitivity, while compliant and
massive sensors increase sensitivity but have lower bandwidth.

When no DC response is required, piezoelectric types are generally
preferred. Several manufacturers provide different configurations and
sensitivity values in the frequency range of interest for modal testing, i.e.
below 10 kHz, and even for shock measurements at frequency of several
tens of kilohertz or beyond. Piezoelectric accelerometers can extend their
low frequency limit below 1 Hz by properly tailoring the discharge time
constant within the electronic preamplifier (Chapter 15). However, this
practice can prove detrimental in the presence of thermal transients which
generate low-frequency signals due to the pyroelectric effect.

When true DC response is needed, piezoresistive or capacitive
accelerometers are generally adopted, though this does not mean that high
frequency cannot be measured with these types of sensors. Indeed,
piezoresistive silicon accelerometers are on the market with specified
frequency limits as high as 150 kHz. When extremely low frequencies are
involved, the sensors are typically required to have a significant sensitivity,
since the displacements, and hence the acceleration levels, are necessarily
limited. In these cases, force-balance sensors may be used, or highly amplified
and noise-filtered piezoresistive and capacitive integrated sensors when size
and weight is at a premium.
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Environmental factors

The environmental factor of main concern is normally the temperature. In
general, silicon microeletronic circuits cannot operate above 100–120°C or
below –25°C (or, in special cases, –50°C). Therefore, those sensors which
incorporate electronics have more stringent temperature limitations compared
to those without internal amplification.

Charge-output piezoelectric accelerometers are those which can reach the
widest temperature operating range (from –269 to 750°C), while
piezoresisitive types tend to be the most temperature sensitive with respect
to both sensitivity and damping characteristics. In some cases, thermal jackets
can be fitted to the sensor to shield thermal transients. In cases of operation
in a humid or wet environment, hermetically sealed sensors should be used,
and attention should be paid to the perfect insulation of electrical connectors.
If any leakage exists, significant variations in the low-frequency response
may result, especially with charge-output piezoelectric accelerometers.

A factor which is often overlooked is the acoustic sensitivity of
accelerometers, i.e. their unwanted responsivity to sound pressure fields which
often accompany vibration phenomena. Piezoelectric sensors based on the
shear configuration are generally less prone to acoustic interference than
compression or flexure types.

The choice of sensors with metal housings for electromagnetic shielding
purposes is suggested as often as possible, but it becomes mandatory in the
presence of high electromagnetic interference (EMI), such as in contact or
proximity of electric motors or machinery switching high-level currents.

Special working conditions, such as operation in high magnetic or ionizing
radiation fields, are addressed by special purpose transducers supplied by
some manufacturers.

Mass loading effect

Mass loading may become a problem in those structures with low effective
mass of vibration, and in these cases lightweight accelerometers must be
used. As a rule of thumb, the mass of the accelerometer should be no greater
than one tenth of the structure equivalent mass to reduce the shift in both
sensitivity and resonant frequency to negligible levels.

Unfortunately, it is not always easy to know the structural mass which
is actually contributing to a particular vibration mode. Therefore, of
practical utility is the method of inspecting the signal from an accelerometer
located at a point of the structure, and compare it with the signal obtained
when a second identical sensor is positioned in close proximity or, when
possible, firmly attached to the first one. If significant differences are evident
between the two responses, it means that the structure at that point is
particularly sensitive to mass loading and the measurements will be affected
by errors.
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When performing modal analysis on lightweight structures by subsequently
moving accelerometers around the structure, inconsistencies in data may arise
due to the variable mass loading resulting. Moreover, during the time needed
to take all the measurements, the modal parameters may vary due to change in
the environmental factors determining the failing of the time invariance
assumption. These problems are partially overcome by taking simultaneous
measurements with several lightweight transducers placed on the structure. In
this way test times shorten, and the mass load is minimal and evenly distributed.

Cost

When the application requires a large number of transducers to carry out
the test, cost becomes an important factor. In particular, for modal analysis
of complex structures with multichannel systems the low-cost piezoelectric
modal array transducers are a good solution. The future trend is the use of
smart accelerometers compliant with the IEEE 1451 standard, which have
onboard memory to store calibration and identification parameters in a
transducer electronic data sheet (TEDS).

Silicon micromachined sensors offer cost reduction as one of the major
benefits, and for this reason they are increasingly installed permanently on
machinery for routine monitoring and online fault diagnosis.

14.9.2 Calibration

The calibration of an accelerometer consists of accurately determining by
experimental methods its sensitivity within the frequency range of interest.
Calibration methods may be basically divided into comparison and absolute
methods. Comparison methods involve checking the response of the
accelerometer to be calibrated against that of a reference transducer, which
is usually traceable to the primary standards maintained by the national
metrological laboratories. Absolute methods are those in which the
acceleration levels applied to the transducer under test are accurately
determined through derivation from basic units.

The two most common comparison methods are based on harmonic
excitation, and on gravimetric transient (or shock) excitation. The harmonic
excitation method is also known as the back-to-back method, since it consists
of mounting the accelerometer under test on the top side of the reference
accelerometer whose opposite side is firmly attached to an electromagnetic
vibration shaker. The shaker driving signal is swept in frequency and
magnitude within the range of interest, and the output signals from both
transducers are recorded. The sensitivity of the accelerometer to be calibrated
is then derived with respect to that of the reference. Attention must be paid
to ensuring a rigid mechanical coupling between the accelerometers, which
is usually made easier by the provision of mounting holes and flattened surface
on the reference transducer. Moreover, if the mass of the sensor to be
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calibrated is not negligible compared to the equivalent mass of the shaker
plus the reference transducer, a significant loading error may result which is
generally frequency dependent.

The typical obtainable accuracy with the back-to-back method, taking
into account a 1–5% uncertainty in the calibration of the reference, is 5–
10%. Electromagnetic shakers can usually operate from few hertz to few
tens of kilohertz. For extremely low frequencies where calibration along
linear strokes would imply inpractically large displacements, the modulation
of the centrifugal acceleration of a rotating platform can be exploited [11].

As a variant of the harmonic excitation method, a broad-band noise signal
can be applied to the shaker, resulting in a random vibration excitation. The output
signals from the two transducers are then fed to a dual-channel FFT analyser
which calculates the frequency response function. This gives the relative magnitude
and phase of the sensitivity of the unknown transducer versus frequency.

A simplified version of the harmonic excitation method is implicitly used
also in handheld calibration exciters. They are battery-powered units which
provide fixed and precalibrated vibration levels to test accelerometers in a
rapid and convenient way and are particularly useful in the field.

The gravimetric transient (or shock) method, sometimes called the drop-
test method, consists of mounting the accelerometer to be calibrated on a
steel mass which experiences a free-fall motion guided by a vertical tube. At
the bottom of the tube is mounted a force sensor which detects the impulsive
signal caused by accelerometer-plus-mass system impacting the sensor and
stopping its fall. The signals from both the force transducer and the
accelerometer are recorded with a digital-storage oscilloscope.

By Newton’s law of motion, the impact force is the impact acceleration
multiplied by the carriage mass inclusive of that of the accelerometer.
Therefore, the unknown accelerometer sensitivity can be readily derived with
reference to the values of the mass and of the force transducer sensitivity.
Alternatively, the output signal from the force transducer with the static
weight of accelerometer-plus-mass system applied can be previously measured
and used as a scaling factor. In this way, the unknown accelerometer sensitivity
becomes referred only to the local value of gravity acceleration g, but depends
on the accuracy of the measurement of the static weight output.

To avoid exciting resonances in the transducers, the surface exposed to
the impact is generally covered with a damping material working as a cushion.
The gravimetric method is relatively simple and permits shock calibration
from a few hundred to several thousand g, over a frequency range which
depends on the particular system used.

Coming to the absolute calibration methods, probably the most simple one
is that which uses the gravity field static acceleration. It simply consists of
measuring the output signal of the accelerometer to be calibrated before and
after rotating it by 180° along the vertical direction, i.e. perpendicularly to the
earth’s surface. The sensitivity is readily derived by taking the difference of
the signals in the upward and downward orientations and dividing by 2g.
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The method offers the advantage that gravity acceleration is available
everywhere and its value g=9.8062 m/s2 at sea level and 45° lat. changes by
only 0.4% over the entire planet. As a drawback, it is only suited to
accelerometers having true DC response, therefore it cannot normally be
applied to piezoelectric sensors. Moreover, it gives no information on
transducer linearity and frequency response. When attention is paid to
ensuring a turnover rotation of precisely 180°, the typically obtainable
accuracy is 1–2%. Alternatively, the 1g-step obtained by sudden free fall
can be exploited.

The most sophisticated and high-quality absolute calibration method is
that based on laser interferometry. Normally it uses a Michelson
interferometer configuration to measure the displacement of the vibration
shaker to which the accelerometer to be calibrated is mounted. The frequency
of the sinusoidal signal exciting the shaker is measured by an electronic
counter. Therefore, the generated acceleration can be calculated by the values
of the motion displacement and frequency. This method offers very high
accuracy and significant flexibility in varying the level and frequency of the
test vibration. On the other hand, the cost is high and the typical use is
confined to the laboratory calibration of primary standard transducers, or
of transfer standard transducers of the highest quality and stability.

Though sensitivity is normally the most important parameter to be
considered in accelerometer calibration, other relevant quantities may need
to be checked. The transverse sensitivity may be determined by mounting
the accelerometer on top of the reference transducer on the shaker with an
inclination angle of 90°, and then monitoring the corresponding output.

The dynamic linearity is checked by exciting the accelerometer at various
levels and verifying the amount of sensitivity variations. It can be also done
indirectly by measuring the harmonic distortion.

The frequency response can be typically determined by sweeping the
excitation frequency and monitoring the variation in sensitivity with respect to
a reference frequency. Such frequency is chosen to be adequately distant from
power line frequency and its harmonics to avoid interference, and it is normally
100 Hz in the USA and 160 Hz in Europe. The latter value has the advantage
of being equal to 1000 rad/s, which simplifies calculations when integrations
are involved. An estimate of the transducer natural frequency and damping
can be obtained by suspending the accelerometer by the signal wire and tapping
the case while recording the output signal. The frequency of the resulting damped
oscillation is approximately equal to the transducer natural frequency, and the
decay time of the envelope gives an indication of the damping.

The discharge time constant of piezoelectric accelerometers can be
measured by turning the transducer upside-down while recording the output
with a digital storage oscilloscope. The resulting signal has a stepping rising
edge caused by the sudden application of a 2g input, followed by an
exponential decay. The time required to the signal to fall to 37% of its initial
amplitude is the discharge time constant.
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14.9.3 Mounting

The importance of properly mounting the accelerometer to the structure
under test should not be overlooked. Ideal mounting should allow vibrations
to be transferred with maximum fidelity from the structure to the transducer.
To this purpose it must be ensured that neither the frequency bandwidth nor
the dynamic range of the accelerometer are limited by its poor mounting.
Additionally, the attachment of the accelerometer to the structure must not
appreciably alter the vibration characteristics compared to the unloaded
conditions.

Insufficiently tight coupling due to poor mounting results in an equivalent
spring interposed between the transducer and the structure, which produces
mounting resonances and alters the frequency response and the sensitivity
by an unknown amount.

The preferred mounting method is to use a threaded stud which is screwed
into the structure and provides a rigid support for the accelerometer. The
surfaces must be as flat as possible and before fastening the accelerometer it
is advisable to add a thin film of silicone grease to improve high-frequency
coupling. The stud method cannot be applied to those structures where drilling
a hole is not possible or allowed, or when the transducer is not suitable for
stud mounting. In such cases the transducer can be glued with fast-setting
cyanoacrylate adhesives (ensuring thin glue lines), epoxy adhesives or dental
cement for highest coupling stiffness. These bonding methods are permanent;
once installed, the transducer cannot easily be removed and reused.

When temporary mounting is required, double-sided adhesive tape or self-
adhesive discs can be employed. Mounting wax is also a possibility, but, due
to the soft, unpredictable and temperature-dependent coupling action
provided, its use should be confined to cases where no viable alternatives
exist. When the test surface is made of ferromagnetic metal, the use of
magnetic mounting adapters is convenient, especially when the accelerometer
needs to be repeatedly moved to different places on the structure. For
applications where measurement rapidity and convenience are more
important than accuracy, the accelerometer can be mounted on handheld
probes whose tip is kept by the operator in contact with the test structure.
This quick-test method can give only indicative results, since the frequency
response is heavily affected and the repeatability is poor.

In every case, the contacting surfaces of both the structure and the
accelerometer should be smooth, and must be cleaned to eliminate every
trace of dirt or grease. The location of the accelerometer on the structure
should be carefully chosen, preferable on flat surfaces and avoiding nodal
points when their position is known in advance. Attention should be paid to
selecting positions with minimum transverse motion, which otherwise would
cause measurement errors through the transducer cross-axis sensitivity.

When high-level shocks and transients are present which can mask weaker
vibrations of interest at lower frequency, mechanical low-pass filters can be
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used. They consist of suitably dimensioned metal bodies which are stud-mounted
between the accelerometer base and the test structure and provide a controlled
damping action. The accelerometer becomes protected against high-frequency
overloading, so that a transducer with smaller range and higher sensitivity can
be used, which provides a better resolution in the useful frequency range.

Since the metal housing of most piezoelectric accelerometers is tied to the
common side of the output signal circuit, problems of ground loops may
arise when the transducer is attached to a point at nonzero potential or is
providing a ‘dirty’ ground, such as on electrical machines (Section 15.5). In
these cases, the use of mica washers or electrical isolation mounting bases
may prove useful or necessary. For maximum accuracy, the effect of the
isolation base on the accelerometer sensitivity can be determined by performing
a previous calibration of the transducer with the isolation base fitted.

The connecting cable should be taped or clamped to the test structure in
the vicinity of the accelerometer to relieve the transducer of cable-induced
stresses and to avoid spurious signals caused by cable motion. In moist or
wet environments it is advisable to arrange the cable in a recessed drip loop
to prevent water from draining towards the connector side.

14.10 General considerations about motion measurements

When considering vibration problems in theory, it appears to be irrelevant
which of the kinematic parameters displacement, velocity and acceleration
is actually measured, since they are all related through subsequent time
differentiation and in principle they all contain the same information.
However, each vibration phenomenon has its own energy distribution along
the frequency spectrum. Therefore, to maximize resolution and reduce the
dynamic range requirements of the instrumentation, it is preferred in practice
to measure the parameter which gives the most flat response over the
frequency band of interest for the case at hand.

In vibration phenomena, appreciable displacement generally occurs only
at low frequency, since increasingly high energies are required to excite high
amplitudes at rising frequencies. Normally, displacement is measured in large
structures vibrating at low frequency, such as buildings, ships or bridges.
Another typical situation where displacement is measured is in testing of
rotating elements such as shafts. In such cases a noncontact transducer, for
instance an eddy-current probe, is generally a good choice. When a fixed
reference point is not available to perform a relative measurement, a seismic
vibration sensor can be mounted to the measured structure and its output
electronically integrated to yield displacement.

Velocity is directly related to vibration energy and therefore the
measurement of this parameter is indicated for vibration severity assessment.
Additionally, velocity measurements are useful, for instance, in balancing
rotating machinery. If the frequencies are not too high and the structure can
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tolerate the mass loading, a moving-coil seismic velocimeter is the traditionally
preferred transducer.

As an alternative, a piezovelocity sensor can be used, consisting of a
piezoelectric accelerometer with built-in or external integration circuitry.
Compared to moving-coil velocimeters the piezovelocity sensors are lighter
and thus provide a lower loading error, have possibly a higher resolution
and a typically wider frequency response. In addition, they offer lower cross-
sensitivity and are not influenced by mounting orientation.

As a further solution, a noncontact electrical or optical method can be
adopted depending on operative conditions and budget.

The measurement of acceleration is privileged in terms of sensitivity when
high-frequency components are of interest, such as in modal testing of
comparatively small structures, in machinery monitoring, or in transient and
pyroshock tests. Besides, acceleration is probably the most versatile parameter
to be measured, since accelerometers can provide high dynamic and frequency
ranges which permit velocity and displacement to be derived by signal
integration. However, integration may be a problem with transient and shock
signals, for which its use should be avoided, and when small offsets are
present which would determine a drift in the integrated signal.

In some special cases involving failure monitoring where information is
at very high frequency it can be useful to measure jerk, which is the time
derivative of acceleration. Though dedicated jerk meters can be developed
and exist, jerk is almost always obtained by electronically differentiating the
signal from an accelerometer having a good high-frequency response.

14.11 Force transducers

14.11.1 Functioning principle

In vibration testing, force transducers, sometimes called load cells, are
typically employed to measure the force exerted on a structure which is
necessary to put it in a particular state of motion. By the simultaneous
measurement of some characteristic parameter of the motion, for instance
the acceleration, the frequency response function (FRF) of the structure
between the excitation and detection points can be determined. If these two
points are differently located on the structure a transfer FRF is derived,
whereas if they coincide a driving-point FRF results.

A force transducer can be represented by the two-degree-of-freedom system
of Fig. 14.16(a). The masses m1 and m2 represent the front, i.e. the face in
contact with the structure under test at side 1, and the back mass at side 2.
The front and back masses are separated by an elastic element of stiffness k
and damping c. The applied forces f1 and f2 determine the elongation or
contraction  of the elastic element which are proportionally
converted into an electrical output by some internal sensing element.
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Force transducers used in vibration measurements are generally operated
in one of three ways: attached to a fixed base in a rigidly backed configuration,
fitted to an impact hammer, or mounted between an exciter and the structure
under test. Each of the three configurations has different boundary conditions
at sides 1 and 2, and therefore is characterized by different measurement
transfer functions. The three configurations can be analysed by deriving the
corresponding mechanical equations, as is done for instance in [12]. We
propose here a different approach based on the direct (voltage-force)
electromechanical analogy discussed in Chapter 13. The electrical circuit
analogue of the force transducer is shown in Fig. 14.16(b), where all the
quantities are expressed in the Laplace domain as functions of the complex
angular frequency s.

For the rigidly backed configuration, the displacement x2 at side 2 is zero.
Therefore, the equivalent circuit becomes that shown in Fig. 14.17(a), and
solving the circuit for X0(s) as a function of F1(s) yields
 

(14.17)

Fig. 14.16 Schematic representation of a force transducer: (a) mechanical model;
(b) electromechanical analogue circuit.

Copyright © 2003 Taylor & Francis Group LLC



It can be noticed that the static behaviour is determined by spring constant
k and that the system resonates at  Often, the parameter

 is specified by the manufacturer and called the rigidly mounted
resonant frequency.

For the hammer mounting configuration, m1 is the mass of the hammer
impact head and tip, while m2 is that of the hammer body including optional
extenders. At side 2 it is present only the inertia of m2 and no external force
is applied, hence F2 is zero. Therefore, the equivalent circuit is that shown in
Fig. 14.17(b), and it follows that
 

(14.18)

where  is the system effective mass. It can be noticed
that now the displacement is scaled by the factor  at low
frequency, and the system resonates at  which is higher than ω1.

For the case of the transducer mounted on an exciter, a force F2 is applied
on the exciter (side 2), producing a reaction force F1 which depends on the
mechanical impedance Z(s) of the structure at the excitation point. Therefore,
with reference to the equivalent circuit of Fig. 14.17(c), we have
 

 (14.19)

where A(s) is the structure accelerance, i.e. acceleration divided by force, at
the measurement point. Two important facts can be observed in eq (14.19).
Firstly, there is no resonance due to the transducer but only a high-frequency
filtering action. Secondly, the term (1+A(s)m1) introduces an error dependent
on the unknown characteristics of the measured structure which becomes
particularly large in the vicinity of the structural resonances. Methods for
compensation of such an error are described for instance in [12].

14.11.2 Piezoelectric force transducers

Though several principles, such as the piezoresisitive and capacitive, are
adopted for measuring the elastic element elongation in the construction of
general purpose load cells, the most widely used force transducers in vibration
tests are of the piezoelectric type. Piezoelectric force transducers offer
essentially the same advantages of piezoelectric accelerometers. They have
high resolution over a wide frequency range, high stiffness, good time and
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Fig. 14.17 Electromechanical analogue circuit for a force transducer under different
operating conditions. (a) Rigidly backed configuration at side 2 with
force F1 applied at side 1. (b) Hammer mounting at side 2 with F1 being
the impact force at side 1. (c) Exciter mounting at side 2 with F2 being
the force generated by the exciter, F1 the force transmitted to the test
structure and Z its mechanical impedance.
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temperature stability, rugged construction and reliable operation. Quartz is
often used as the piezoelectric material due to its high stiffness which is
comparable to that of steel. High resolution and dynamic range are important
requisites that piezoelectric transducers satisfy, since the testing of a structure
around its resonances, which is often a situation of interest, involves the
detection of weak excitation forces.

Piezoelectric force transducers are supplied in different design geometries,
such as rings or washers, and low-profile disc and axial links, depending on
application, mounting requirements and range. Multiaxial units are also
available. In Fig. 14.18 is shown the structure of a general purpose
piezoelectric force transducer for tension-compression-impact use. Typically,
some form of preloading of the piezoelement is internally provided in order
to allow linear operation in both compression and tension.

The electrical output primarily generated by the piezoelectric element is a
charge Q proportional to the experienced displacement x0. The
proportionality factor kQ depends on the material piezoelectric coefficient
and geometry, and in the region of interest can be considered independent of
frequency. When charge output is considered, the force sensitivity SQf is
generally expressed in picocoulombs per newton (pC/N) and in the Laplace
domain is given by
 

(14.20)

where the mechanical transfer function  has the expressions given
in eqs (14.17), (14.18) and (14.19) respectively for the rigidly backed, hammer
and exciter mounting.

Fig. 14.18 Structure of a tension-compression piezoelectric force transducer with
internal electronic amplification (by courtesy of PCB Piezotronics, Inc.).
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The generated charge Q injected across the parallel of the piezoelement
capacitance C and resistance R develops an open circuit voltage V that can
be taken as the output signal. When voltage output is considered, the force
sensitivity SVf in volts per newton (V/N) is given by
 

(14.21)

where again  depends on the mounting configuration. Both eqs
(14.20) and (14.21) can be expressed in the Fourier domain by replacing s
with iω. It can then be observed that the voltage sensitivity SVf(ω) is zero at
DC, therefore piezoelectric force transducers are not suitable for the
measurement of static forces such as weight.

Similarly to what happens for accelerometers, the voltage sensitivity can
significantly decrease from its open-circuit value when the signal cable is
connected, due to the cable capacitance CS which adds in parallel to C (Section
14.8.1). To overcome this problem, several manufacturers integrate a
miniaturized voltage amplifier within the transducer housing which enables
one to drive long cables without signal degradation (Section 15.4.3). These
internally amplified transducers are generally defined as a low-impedance
voltage-output type and are widely used in most applications. Alternatively,
charge-output transducers are on the market which need to be coupled to
charge amplifiers, but they are more suited to use in a laboratory environment.

14.11.3 Impedance heads

As an all-in-one device for driving-point FRF measurements, in particular
for mechanical impedance testing, the impedance head transducer is available.
It consists of a mechanical element incorporating a piezoelectric force
transducer and an accelerometer mounted in such a way that their sensitivity
axes are collinear. Impedance heads are useful and convenient because they
combine both the measurement parameters of interest in the same instrument
and referred to a single point. They tend, however, to have a comparatively
large mass, and therefore attention should be paid with light structures to
the possible loading error.

14.12 Summary

Input transducers, or sensors, convert physical quantities into electrical signals.
Conversely, output transducers, or actuators, produce a physical action in
response to an electrical driving stimulus. Self-generating sensors, such as
the piezoelectric accelerometer, provide an electrical signal without the need
for electrical power supply, unless for additional amplification or processing.
Modulating sensors, such as the resistive potentiometer, require an external
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excitation which is modulated by the measurand quantity to give rise to the
output signal.

When considering the means to measure the motion of an object, there
are two methods that can be followed. In the relative-motion method the
transducer is attached between the object and a reference point fixed in
space, then the motion is referred to such a point. In the absolute-motion
method a seismic transducer made by a mass-spring-damper system is
attached to the object and the motion of the object is derived from the motion
of the mass relative to the transducer base. In this case, the reference point
is represented by the position in space of the system in the absence of motion.

In relative-motion measurement the attachment between the transducer
and the measured object can be either of a contact or a noncontact type.

The most widely used contact displacement transducers are the resistive
potentiometer and the linear variable differential transformer (LVDT). The
resistance strain gauge can be also considered in the same category, even if
it is somewhat different in that it actually measures strain and it generates a
typically negligible loading error.

Noncontact transducers avoid the use of any mechanical link and,
therefore, they generate no loading on the measured object and are suitable
for measurements on rotating parts.

Noncontact, displacement transducers can be inductive, capacitive or
optical. The first two kinds require particular electromagnetic properties in
the target material, such as high magnetic permeability or conductivity. The
third kind is typically sensitive to the optical properties of the target object,
such as colour, reflectivity, surface roughness, presence of dirt or dust, and
of the optical path between the sensor and the object.

Velocity may be in principle derived indirectly by time differentiating a
displacement signal. This is, however, a noise-enhancing process of limited
practical applicability. Typically the direct measurement of relative velocity
is carried out making use of electrodynamic transducers in either the moving-
magnet or moving-coil configuration. For high-end applications demanding
high performance irrespective of cost, laser velocimeters can be used.

There is no widely used method dedicated to the measurement of relative
acceleration, given the availability of reliable absolute accelerometers.

Absolute-motion transducers are based on the seismic instrument, which
comprises a mass-spring-damper system mounted within a case rigidly
attached to the vibrating structure. The motion of the seismic mass relative
to the case is measured by an internal secondary sensor which provides the
output electrical signal. With a displacement secondary sensor, the transducer
output is proportional to absolute displacement in the range of frequencies
higher than the natural frequency of the seismic system. In the same frequency
range, the transducer output is proportional to absolute velocity if a velocity
secondary sensor is adopted. Again with a displacement secondary sensor
but in the range of frequencies lower than the natural frequency of the seismic
system, the transducer output is proportional to absolute acceleration.
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Accelerometers are probably the most widely used seismic transducers
due to their typically high sensitivity over a wide frequency range, small size
and moderate cost. Piezoelectric accelerometers have a wide dynamic range
and bandwidth, are well suited to both the measurement of vibration and
shock, whereas they cannot measure constant accelerations. They are available
either as charge-output or as low-impedance voltage-output transducers.

Piezoresistive and capacitive accelerometers are capable of DC response,
can be manufactured by silicon micromachining and often have built-in
amplification electronics. Sensitivity and bandwidth are very much dependent
on the fabrication technology and are subject to wide differences. Force-
balance accelerometers are capable of high accuracy and are suited to low-
frequency and DC measurements.

Several vendors supply mutiaxial accelerometers which provide the
measurement of acceleration at a point along three orthogonal directions.

Accelerometer calibration can be performed by either a comparison or an
absolute method. Comparison methods involve checking the response of the
accelerometer to be calibrated against that of a reference transducer, such as
in back-to-back or in gravimetric transient calibration. In absolute methods
the acceleration levels applied to the transducer under test are accurately
determined through derivation from basic units, such as when gravity field
static acceleration or a laser interferometer is used.

To obtain the maximum performance from an accelerometer it is necessary
to properly mount it on the structure under test to ensure that vibrations are
transferred with the highest fidelity to the transducer. Several mounting
methods are available and, when possible, the one providing the highest
mounting rigidity should be used.

Though displacement, velocity and acceleration are all related through
subsequent time differentiation and in principle they all contain the same
information, it is preferred in practice to try and measure the parameter
which gives the most flat response over the frequency band of interest for the
case at hand. In the case of motion of large structures or with low-frequency
vibrations, the measurement of displacement can the best choice, in either
the contact or noncontact mode. For medium-frequency analysis, for instance
in vibration severity assessment or balancing of rotating machinery, the
measurement of velocity can prove the most useful. The measurement of
acceleration is privileged in terms of sensitivity when high-frequency
components are of interest, such as in modal testing of comparatively small
structures, in machinery monitoring, or in transient and pyroshock tests.
Moreover, the measurement of acceleration has the advantage that in many
cases it allows velocity and displacement to be derived by signal integration.

Force transducers used in vibration measurements are generally operated
in one of three ways: attached to a fixed base in a rigidly backed configuration,
fitted to an impact hammer, or mounted between an exciter and the structure
under test. In all cases, they are employed to measure the force exerted on
a structure which is necessary to put it in a particular state of motion. For
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this purpose piezoelectric force transducers are used almost invariably, and
can be built in several shapes to satisfy different mounting and range
requirements. As with piezoelectric accelerometers, both charge-output and
low-impedance voltage-output force transducers are on the market, the latter
ones being generally preferred for field applications. For driving-point
measurements, the impedance head transducer can be used, which
incorporates a piezoelectric force transducer and an accelerometer mounted
with their sensitivity axes aligned.
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15 Signal conditioning and data
acquisition

15.1 Introduction

The role of the electronic chain starting at the transducers’ output and ending
at the data acquisition and analysis instruments is that of collecting the often
weak and barely detectable measurement signals from sensors and enhancing
the useful information content that they carry, while discarding the
background components of no interest. This is primarily carried out in the
signal-conditioning stage, which is often erroneously regarded as a piece of
electronic circuitry which essentially increases the measurement sensitivity
by signal amplification. This is only partly true, since the role of the signal-
conditioning circuits is not merely that of amplifying the signal, but rather
that of augmenting the signal magnitude over the background noise.

As an example, imagine you are sitting in the audience of a theatre and
are tape-recording the music played by an orchestra on the stage. If your
neighbours are speaking loud enough that their voices are picked up by the
recorder’s microphone and obscure the music, you do not gain any advantage
in merely turning up the recording level. In fact, this operation would increase
both the desired music and the unwanted background voices by the same
amount, with no net improvement in the music intelligibility. To change the
situation and solve the problem you may either get closer to the stage, i.e.
increase the signal level, or ask people around you to be quieter, i.e. reduce
the noise, or both. This is essentially what the signal-conditioning stage is
designed to do, that is to provide selective and specifically tailored
amplification to improve the signal-to-noise ratio. When dealing with
measurement signals, this is equivalent to increasing the achievable resolution
and, ultimately, the amount of information that can be extracted by the
measurement process. Such information then needs to be carefully acquired,
processed and made available and understandable to the human operator
by further stages in order to make it useful for the purpose of interest.

Following this outline, this chapter is devoted to the electronic chain from
transducers to readout instruments and is intended to provide the reader
with some basic information on its typical functionality, capability and use.
The coverage is principally aimed at signals and systems encountered in
vibration measurements, but the approach is rather general and several of
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the concepts introduced are suitable to be extended to cases different to
those explicitly treated.

The concept of signal-to-noise ratio is firstly illustrated, then some
examples on how it can be improved by both signal amplification and noise
reduction are described. Then the subject of analogue-to-digital conversion
is introduced, and its main features are presented.

Finally, the instruments and systems for data acquisition and signal analysis
are briefly illustrated as far as their functioning and basic use are concerned.
No emphasis is given to the signal-analysis techniques and data-processing
methods that such systems and instruments enable to perform, since they
are outside the scope of this book. The interested reader is invited to consult
the references on the topic listed in the further reading section.

15.2 Signals and noise

The term noise in electronic systems is used, in analogy with sound, to indicate
spurious fluctuations of a signal around its average value due to various
interfering causes which obscure the information of interest in the signal [1,
2]. It can be distinguished as an intrinsic noise, called electronic noise, which
is caused by phenomena occurring in electronic components and amplifiers
and is inherent to their operation and construction. Electronic noise can be
minimized but not completely cancelled, since it depends on fundamental
laws of nature governing the operation of electronic components.

In addition to electronic noise, there is generally present an amount of
interference noise caused by external sources of disturbance, such as nearby
power electrical machines, radiowave transmitters, or cables carrying
significant amount of time-variant current. Therefore, interference noise
results from nonideal experimental conditions and, in contrast to electronic
noise, can be virtually eliminated if all the external sources of disturbance
are identified and neutralized.

Noise may be of a random or deterministic nature depending on the
phenomena which cause it. Electronic noise is typically random, while
interference noise may often show up as deterministic to some degree.
Deterministic interference noise can be caused by external sources generating a
disturbing action with a somewhat regular and predictable behaviour, such as
for fluorescent lamps or mains transformers which generate noise at the mains
frequency and its harmonics. After these introductory considerations, we will
simply use the term noise, as is customarily done in practice, to include both
the electronic noise and the interference, differentiating between the two
contributors only when required by the specific context in which they are treated.

Focusing attention on random noise, the fluctuations which are
superimposed on the average signal and constitute noise cannot be represented
by a definite function of time, since the instantaneous values are unknown
and cannot be predicted. Random noise is in fact a stochastic process that
can only be described in terms of its statistical properties, as discussed in
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Chapter 12. Usually, it is assumed that the noise amplitude probability
distribution is Gaussian with zero mean, and that the stochastic process is
stationary and ergodic, so that the ensemble averages are equivalent to time
averages of any particular process realization.

Therefore, indicating with xS(t) a signal, such as a voltage or a current,
and with xN(t) the amplitude of the superimposed noise fluctuations so that

 it follows that the noise average value  is
 

(15.1)
 

and that the noise mean-square  value is given by Parseval’s theorem
and is equal to
 

(15.2)

 

where SN(f) is the monolateral (i.e. considering the frequency f varying from
0 to ) power spectral density of the noise.

If SN(f) is a constant independent of frequency, the noise is called white
noise, in analogy with white light which is composed of an even mixture of
all the frequencies. Examples of electronic noise which are white over a
large frequency range are the thermal, also called Nyquist or Johnson, noise
of resistors and the shot, or Schottky, noise of semiconductors. A kind of
noise which is encountered in a wide variety of systems, from electronic, to
mechanical, thermal and biological, is one for which SN(f) varies with
frequency as  with α usually very close to unity. This kind of noise is
normally called 1/f noise, but other popular terms are low-frequency, flicker
or pink noise. The 1/f noise is very important in measurement systems of
slowly variable quantities, because it mainly affects the low-frequency region
where the signal of interest is located.

We are now in a position to introduce the signal-to-noise (S/N) ratio, which
can be defined as the ratio between the mean square values of the signal and
the noise. To make this definition consistent, it is important that both the
signal and the noise are considered at the same point in the system. Usually, all
the noise contributions present in the system are divided by the appropriate
gain factors and referred to the system input. The referred-to-input (RTI) noise
and the input signal are then directly comparable and undergo the same
amplification toward the system output. Assuming that xN(t) is the RTI noise,
the S/N ratio, which is usually expressed in decibels (dB), is given by
 

(15.3)

where SS(f) is the signal monolateral power spectral density.
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In practical cases, eq (15.3), which has a general theoretical validity,
modifies for two aspects. Firstly, real signals are necessary band-limited
between, say, fmin and fmax, with  outside such a frequency range.
Secondly, every real system has a finite bandwidth extending from f1 to f2,
with f1=0 in the case of a DC-responsive system. Of course, f1 and f2 must be
chosen so that  and  to include the signal into the system
bandwidth. Therefore, eq (15.3) in practice becomes
 

(15.4)

This result points out the importance of properly tailoring the system
bandwidth according to both the signal and the noise characteristics.

If the noise is white or has significant components outside the signal
bandwidth, it is desirable to reduce the system bandwidth  as close as
possible to  by proper filtering, since this operation has the effect of
maximizing the S/N ratio. On the other hand, keeping the system bandwidth
much wider than the signal bandwidth is useless and has the only detrimental
effect of collecting more noise. Unfortunately, the portion of the noise which
resides within the signal bandwidth cannot be directly removed without
affecting the signal as well. Special techniques can be used in these cases,
such as the modulation which will be briefly presented later in this chapter.

15.3 Signal DC and AC amplification

15.3.1 The Wheatstone bridge

The Wheatstone bridge represents a classical and very widespread method
for measuring a small resistance variation ∆R superimposed on a much higher
average value R. This situation represents a rather typical occurrence in
transducers, and is for instance encountered in strain-gauge-based sensors,
where ∆R/R can be as low as 1 part per million (ppm), and other resistive
sensors such as resistive temperature detectors (RTD).

The Wheatstone bridge consists of four resistors arranged as two resistive
dividers connected in parallel to the same excitation source, as shown in Fig.
15.1. Such a source can be either constant or a function of time, and either
made by a current or a voltage generator. In the following, we shall consider
a constant voltage excitation VE, which is the most frequently used in practice.

The bridge output voltage Vo is given by:
 

(15.5)
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When the condition  is satisfied, it follows that Vo=0 and the
bridge is said to be balanced. It should be noted that the balance condition
is independent of the excitation voltage VE.

The bridge can be operated in two modes, namely balance and deflection
operation. In balance operation, one of the bridge resistors, say R1, is the
unknown resistor, and R2 and R4 are constant while R3 is adjusted, either
manually or automatically, until the bridge is balanced. At that point, R1

can be calculated from the balance condition and the known values of the
remaining three resistors. Deflection operation is more often used in
transducer design and consists of letting the bridge work in the off-balance
condition. The imbalance voltage Vo is then measured and related to the
resistance variations of one or more resistors in the bridge.

Suppose that  and  with  This
condition is named the quarter-bridge configuration; R1 is the active resistor
and R2, R3 and R4 are the bridge completion resistors. In this condition the
bridge output voltage is given by
 

(15.6)

That is, the voltage output is proportional to the fractional resistance variation
∆R/R (provided it is sufficiently small) which can be determined by measuring
Vo and knowing VE. Equation (15.6) contains the essence of the bridge
deflection approach to the measurement of small resistance variations. Instead
of measuring  and then requiring the subtraction of the offset R to
retrieve the value of ∆R, the bridge intrinsically performs the subtraction
and directly outputs the variation ∆R.

In piezoresistive sensors, the active resistor R1 is a strain gauge. Almost
always, multiple strain gauges are used and connected in pairs properly
located on the elastic structure, so that one element in the pair elongates
while the other one contracts by an equal or proportional amount. If one or
two tension-compression pairs are used, the corresponding configurations
are named the half- or full-bridge configuration respectively.

Fig. 15.1 The Wheatstone bridge with a DC voltage excitation.
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A survey of the possible configurations is given in Fig. 15.2. The bridge
imbalance voltage can be generally expressed as
 

(15.7)
 

where γ is the bridge fractional imbalance which is approximately equal to
∆R/(4R), and exactly equal to ∆R/(2R) and ∆R/R in the quarter-, half- and
full-bridge respectively.

It can be observed that the use of tension-compression pairs increases the
sensitivity over the quarter-bridge. Moreover, the nonlinearity inherent in
the quarter-bridge configuration is removed since the current in each arm is
constant. Another advantage of making use of the configurations
incorporating multiple piezoresistors is the intrinsic temperature compensation
provided. In fact, if all the strain gauges have the same characteristics and
are located closely so that they experience the same temperature, their
thermally induced resistance variations are equal and, as such, they do not
contribute any net imbalance voltage. The same result can hardly be obtained
in the quarter-bridge configuration, because the strain gauge and the

Fig. 15.2 Wheatstone bridge configurations for resistive measurements: (a) quarter
bridge; (b) half bridge; (c) full bridge.
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completion resistors normally have different thermal coefficients of resistance
(TCR) and, moreover, are subject to different temperatures.

In practical cases, the excitation voltage VE is in the range of few volts
and the bridge imbalance voltage Vo can be as low as few microvolts, and
therefore it requires amplification. This is generally accomplished by a
differential voltage amplifier, called an instrumentation amplifier (IA), with
an accurately set gain typically ranging from 100 to 2000, and a very high
input impedance in order not to load the bridge output by drawing any
appreciable current.

Since Vo is proportional to VE, any fluctuation in VE directly reflects on
Vo causing an apparent signal. To overcome this problem, a ratiometric
readout scheme is sometimes used in which the ratio  is electronically
produced within the signal conditioning unit, thereby providing a result which
is only dependent on γ . In turn, γ is related to the input mechanical quantity
to be measured through the gauge factor and the material and geometrical
parameters of the elastic structure.

The Wheatstone bridge can be also used with resistance potentiometers.
In this case, with reference to Fig. 15.1, one side of the bridge, say the left,
is made by the potentiometer so that R1 and R2 represents the two resistances
into which the total potentiometer resistance RP is divided according to the
fractional position x of the cursor. That is  and  with

 Then, the system works in the half-bridge configuration and,
assuming  according to eqs (15.5) and (15.7) the bridge fractional
imbalance is given by 

The Wheatstone bridge with DC excitation may be critical in terms of S/
N ratio when the signal γ is in the low-frequency region. In fact, in this case
the bandwidth of the bridge output voltage Vo becomes superimposed with
that of the system low-frequency noise, which is typically the largest noise
component in real systems.

Moreover, an additional spurious effect comes from the DC electromotive
forces (EMF) arising across the junctions between different conductors present
in the bridge circuit, and from their slow variation due to temperature called
the thermoelectric effect. This causes a low-frequency fluctuation of the bridge
imbalance indistinguishable from the signal of interest.

Both problems may be greatly reduced by adopting an AC carrier
modulation technique, as illustrated in the following section.

15.3.2 AC bridges and carrier modulation

If reactive components have to be measured instead of resistors, such as for
capacitive or inductive transducers, the bridge configuration of Fig. 15.1 can
again be adopted with the resistors now substituted by the impedances Z1, Z2,
Z3 and Z4.

Since the impedance of inductors and capacitors at DC is either zero or
infinite, the bridge now requires an AC excitation, which we can assume to

Copyright © 2003 Taylor & Francis Group LLC



be a sinusoidal voltage expressed in complex exponential notation as
 An expression equivalent to eq (15.5) can then be written

for the bridge output Vo(t), leading to:
 

(15.8)

Similarly to the resistive bridge, the balance condition is given by
 which, however, involves complex impedances and hence

actually implies two balance requirements, one for the magnitude and one
for the phase. The balance condition is independent of the excitation
amplitude VE but, in general, does depend on the frequency ωE.

Equation (15.8) also describes the bridge deflection operation, with the
term
 

 

representing the bridge fractional imbalance γ introduced in eq (15.7) which
is now a complex function of the excitation frequency. In general, both the
amplitude and the phase of Vo(t) depend on γ and, as such, they may vary
with frequency. Therefore, the determination of γ from Vo(t) for a given
known excitation VE(t) can be rather involved.

Fortunately, there are several cases of practical interest where the situation
simplifies considerably. Suppose, for instance, that Z1 and Z2 represent the
impedances of the two coils of an autotransformer inductive displacement
transducer as described at the end of Section 14.4.3, or alternatively, the
impedances of the two capacitors of a differential (push-pull) configuration
used for the measurement of the seismic mass displacement in capacitive
accelerometers, as mentioned in Section 14.8.4. In both cases, it can be readily
shown that  and  where x is the fractional
variation of impedance induced by the measurand around the average value
Z. If the completion impedances Z3 and Z4 are chosen so that 
which is most typically accomplished by using equal resistors

 then γ reduces to a real number which equals x/2.
In this circumstance, eq (15.8) may be rewritten avoiding the complex

exponential notation with  yielding
 

(15.9)

 

which is equivalent to the resistive half-bridge configuration. It can be noticed
that the output voltage Vo(t) becomes a cosinusoidal signal synchronous with
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the excitation voltage with an amplitude controlled by the bridge fractional
imbalance γ. Hence, VE(t) behaves as the carrier waveform over which γ
exerts an amplitude modulation.

The process of extracting γ from Vo(t) is called demodulation. To properly
retain the sign of γ, i.e. to preserve its phase, it is necessary to make use of a
so-called phase-sensitive (or coherent, or synchronous) demodulation method.
In fact, if pure rectification of Vo(t) were adopted then both +γ and –γ would
result in the same rectified signal, thereby losing any information on the
measurand sign.

A typically adopted method to implement phase-sensitive demodulation
employs a multiplier circuit. Such a component accepts two input voltages
VM1(t) and VM2(t) and provides an output given by 
where KM is the multiplier gain factor.

With reference to the block diagram of Fig. 15.3(a), the bridge output
voltage is first amplified by a factor A, then is band-pass filtered around
2ωE, for a reason that will be shortly illustrated, and then fed to one of the
multiplier inputs, while the other one is connected to the excitation voltage
VE(t). The multiplier output VMo(t) is then given by
 

(15.10)

In eq (15.10) can be observed the fundamental fact that, due to the
nonlinearity of the operation of multiplication, VMo(t) includes a constant
component proportional to the input signal x. The oscillating component at
2ωE can be easily removed by low-pass filtering, and the overall output Vout(t)
becomes a DC voltage proportional to x given by:

 

(15.11)

 

To maximize accuracy, both the excitation amplitude VEm and the gains A
and KM need to be kept at constant and stable values. The excitation frequency
ωE is instead not critical, since it does not appear in eq (15.11).

The configuration schematized in Fig. 15.3(a) for either inductive or
capacitive transducers can also be adopted for resistive sensors connected in
any variant of the Wheatstone bridge.

Moreover, the method of AC excitation followed by phase-sensitive
demodulation also represents a typical readout scheme used for LVDTs (Section
14.4.3), as illustrated in Fig. 15.3(b). In this case, for the particular transducer
used, ωE is usually chosen equal to the value which zeroes the parasitic phase-
shift between the voltages at the primary and the secondary at null core position.
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It is worth pointing out that the main advantage of the AC amplification
method followed by synchronous demodulation lies in the fact that a constant
input signal is displaced in frequency from DC to ωE. Conversely, most of
the noise and interference contributions as well as the main sources of errors
of the input stage, such as contact EMFs and the amplifier offset voltages,
are located in the low frequency region. Therefore, they can be efficiently
filtered out without affecting the signal which is ‘safely’ positioned at ωE.
This is exactly what is done by the aforementioned band-pass filter inserted
after the input amplifier in Fig. 15.3(a) and (b). By means of the following
multiplication and low-pass filtering, the signal is then brought back to DC
which is now a ‘cleaner and quieter’ region after most of the noise and
disturbances have been removed.

This same line of reasoning can be applied without significant differences
to the most general case when the input signal x is not constant but has a
certain frequency spectrum, as shown for instance in [3] and [4]. If the carrier
frequency ω E is chosen adequately higher than the maximum frequency of

Fig. 15.3 The amplification method based on amplitude carrier modulation
followed by phase-sensitive detection. (a) Block diagram in case of an
AC excited bridge formed by either inductive, capacitive or resistive
transducers. (b) Block diagram for the case of an LVDT. (c) Qualitative
shape of the signal and noise spectra in relevant positions of the above
systems.
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the signal, usually ten times greater, and the bandwidths of the band-pass
and low-pass filters are properly set, then the output Vout(t) reproduces the
input signal without frequency distortions.

15.4 Piezoelectric transducer amplifiers

15.4.1 Voltage amplifiers

In Section 14.8.1 piezoelectric accelerometers were discussed, and the
equivalent electrical circuit of Fig. 14.13 was derived in which the sensor is
modelled as a charge generator proportional to acceleration in parallel with
the internal resistance R and capacitance C. This model generally applies to
all piezoelectric transducers, such as accelerometers, force or pressure
transducers, and accounts for the fact that piezoelectric sensors are self-
generating.

Depending on the strength of the mechanical input signal and the value
of C, the voltage developed across the sensor terminals may sometimes be
directly detectable by a recording instrument, such as an oscilloscope or a
spectrum analyser, without any amplification. However, due to the finite
internal impedance of the transducer  the input impedances
of the readout instrument and of the connecting cable itself generally cause
significant loading of the transducer output in the case of direct connection.
Therefore, the measured voltage can be considerably reduced compared to
the open-circuit voltage, and the sensitivity is diminished by a factor which
is neither constant nor controllable. Moreover, the direct connection is prone
to interference pick-up which may significantly degrade the signal.

Avoiding these effects requires voltage amplification to raise the signal
level, and impedance conversion to decrease the loading by the cable and
the readout instrument. This may be accomplished by making use of a voltage
amplifier, whose ideal features are infinite input impedance, zero output
impedance and gain G independent of frequency. Figure 15.4(a) shows the
circuit diagram inclusive of the equivalent capacitances and resistances of
the sensor (C, R), the sensor-to-amplifier cable  the input stage of a
real voltage amplifier  and the amplifier-to-instrument cable plus
the instrument input 

The voltage amplifier may be as simple as a single operational amplifier
(OA) in the noninverting configuration as shown in Fig. 15.4(b) for which
the gain G is equal to  [5]. If G is made equal to one, it becomes
a unity-gain or buffer amplifier, also called a voltage follower, since the output
follows the input signal without any gain added.

The voltage at the readout instrument input, in the Laplace domain, is
given by
 

(15.12)
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where Q is the generated charge, and  and 
are the total capacitance and resistance seen in parallel with the transducer
charge generator. Even if we are dealing with a voltage amplifier, it makes
sense to regard the charge Q as the quantity actually sensed because, assuming
that we are in the frequency region below the transducer natural frequency
ω0, the charge is proportional to the mechanical input signal. For a
piezoelectric accelerometer, in particular, we had already shown in Section
14.8.1 how the output charge is given by  where (ω) is
the acceleration and SQa(ω) is the charge sensitivity.

In Fig. 15.5 is plotted the magnitude in decibel of the charge-to-voltage
transfer function Vo/Q versus frequency in logarithmic scale called the Bode
plot of the amplifier. The gain curve has a low-frequency cutoff limit at

 where  is the effective discharge time constant (DTC)
of the transducer-cable-amplifier system. For angular frequencies higher than

 the gain curve is flat and eq (15.12) simplifies to

 

(15.13)

Fig. 15.4 (a) Voltage amplifier configuration. (b) Voltage amplifier implemented
with an operational amplifier.
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The ratio  gives the midband gain or amplification, usually
expressed in volts per picocoulomb (V/pC). It should be noticed that the
amplification is critically dependent on the capacitances CS and Ci. For
ordinary coaxial cables CS is typically of the order of 100 pF per metre and
in most cases it dominates Ci. Therefore, for a given amplifier, cable type or
length cannot be changed without affecting the calibration constant. For
transducers based on piezoceramics this effect is less evident than with quartz,
due to the fact that the internal capacitance C is generally much higher in
the former case and may eventually dominate CS. The cable should be of the
low-noise type, that is it must be coaxial with the outer shield devoted to
blocking the radio-frequency and electromagnetic interference (RFI and EMI)
and it must not suffer from the triboelectric effect. This effect consists in
charge generation across the cable inner insulator due to friction when the
cable is bent or twisted. Such a spurious charge appears across the cable
capacitance and is directly added to the signal charge Q, therefore it may
impair its detectability. The tribolectric effect can be minimized by choosing
a cable of noise-free construction incorporating a lubricant layer between
the insulator and the shield and, anyway, preventing cable movement by
securing it in a fixed position by cable clamps or adhesive tape.

The connection of an extra capacitor, sometimes called a ranging capacitor,
in parallel with the amplifier input increases CT and produces a decrease in
amplification that may be adjusted to scale down the sensitivity to the desired
level without acting on the amplifier gain G.

For a good low-frequency response the discharge time constant (DTC)
 must be high. A possible method would seem that of making CT very

high, but this is not a good choice since it decreases the midband gain
according to eq (15.13). It is better to increase RT as much as possible by
choosing a high input resistance amplifier and by paying attention to any
possible cause of loss of insulation in cabling and connectors, such as dirt or

Fig. 15.5 Gain magnitude versus frequency for the voltage amplifier configuration.
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humidity. In the ideal case of a perfect cable and amplifier, the DTC would
reduce to that intrinsic of the transducer given by RC.

As voltage amplifiers, and OAs in particular, have virtually zero output
impedance, to first order the presence of Co and Ro causes no loading effect,
as demonstrated by the fact that they do not appear in eqs (15.12) and
(15.13). In practice, the output of a voltage amplifier can typically drive
sufficiently long cables; however the high-frequency response drops the higher
the capacitive load and, therefore, the longer the cable as qualitatively shown
in Fig. 15.5. As a significant cost advantage over the use of costly low-noise
cable, ordinary coaxial cable can be used at the output. In fact, the virtually
zero output impedance of the amplifier shunts the cable impedance and the
input impedance of the readout instrument, therefore it prevents the tribolectric
charge developing a spurious voltage at the instrument terminals.

Voltage amplifiers are most usually sold as in-line units that must be
connected as near as possible to the transducer and, occasionally, can fit on
top of its case. In the former case, it should be remembered that the length
of the input cable must be kept fixed to preserve calibration.

15.4.2 Charge amplifiers

The role of a charge amplifier is not that of augmenting the charge generated
by the sensor, which is impossible to attain since such a charge is fixed by
the strength of the mechanical input. Instead, charge amplifiers behave as
charge converters which are able to transform the input charge into a voltage
output through a gain factor that is virtually independent of both the sensor
and the cable impedance.

The circuit diagram of a charge amplifier is shown in Fig. 15.6(a). It can
be noticed the presence of a voltage amplifier having a negative voltage gain
–A, which is usually very high and assumed to be ideally infinite, and the
parallel connection of the capacitor Cf and the resistance Rf which provide
a feedback path from the output to the input. Again, the equivalent resistances
and capacitances of the sensor, of the cables and of the input stage of the
real amplifier are taken into account by inserting the corresponding lumped
elements in the circuit diagram. This scheme is most often implemented in
practice by making use of an OA in the inverting configuration [5], as shown
in Fig. 15.6(b).

By applying Kirchhoff’s current law at the amplifier input node and
remembering that the current entering an ideal voltage amplifier is zero due
its infinite input impedance, it can be written that

 

(15.14)

 
with  and  By considering that 
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it can be shown that
 

(15.15)

from where the voltage output Vo becomes
 

(15.16)

Fig. 15.6 (a) Charge amplifier configuration. (b) Charge amplifier implemented
with an operational amplifier.
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If A is made sufficiently high so that 
which, neglecting the resistances which are usually very high, reduces to

 it follows that eq (15.16) simplifies to
 

(15.17)

 

It can be observed that eq (15.17) is equivalent to eq (15.12) valid for a
voltage amplifier. The differences are that Rf and Cf now replace RT and CT,
the voltage gain G is absent, and the presence of the minus sign determines
an inversion of the output voltage with respect to the input charge.

It is important to notice that, as long as A is sufficiently high so that eq
(15.16) can be replaced by eq (15.17), the voltage output is now insensitive
to the sensor internal impedance, the cable impedance, and the amplifier
voltage gain and input impedance. The charge-to-voltage transfer function,
whose magnitude Bode plot is shown in Fig. 15.7, is only dependent on Rf

and Cf, which are external components that may be properly chosen to set
both the low-frequency limit  or equivalently the DTC given
by  and the midband amplification –1/Cf expressed in volts per
picocoulomb (V/pC).

The sometimes-encountered statement that charge amplifiers have a high
input impedance is not correct. In fact, it is the voltage amplifier around
which the charge amplifier is built that has a high input impedance. On the
contrary, owing to the negative feedback, the charge amplifier actually works
as a virtual short-circuit to ground, which presents an ideally zero input
impedance to the transducer. In fact,  for  It is for this reason
that a charge amplifier has the fundamental capability of bypassing the
transducer and cable impedances and drawing all the generated charge Q.
For signal frequencies beyond ωL such a charge is then conveyed into Cf,
developing a proportional output voltage Vo.

The condition of a high value of the voltage gain A is usually well satisfied
with OAs, which typically provide a voltage gain in the order of 105 at low

Fig. 15.7 Gain magnitude versus frequency for the charge amplifier configuration.
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frequency. This figure is so high that OAs are usually said to have virtually
infinite gain. However, A usually drops in real amplifiers for increasing
frequencies, hence for accurate prediction of the output voltage in the high-
frequency region the exact expression of eq (15.16) needs to be considered
rather than the simplification of eq (15.17). This is still more true when Cf

is chosen low to obtain a high gain.
To extend the low-frequency response, Rf can be made very large. However,

Rf cannot be infinite since, in such a case, the input voltage and current
offsets of the real amplifier would charge Cf causing the output Vo to steadily
drift toward a saturation level determined by the circuit power supply.

The DTC can be made virtually infinite only momentarily by using a
switch in place of Rf. With the switch open, the circuit works without Rf

and, as such, no low-frequency limit exists and a DC response is obtained.
However, the circuit must be periodically reset by closing the switch to
discharge Cf, to bring Vo back to zero and prevent output saturation.
Amplifiers employing this method are sometimes denoted electrostatic
amplifiers. They can provide a quasistatic response, which enables the
measurement of phenomena lasting up to several minutes. Their most typical
use is for quasi-DC calibration of piezoelectric transducers (generally made
with thermally stable quartz or shear-geometry ceramics to minimize thermal
drift), but they are not suitable for continuous amplification of time-variable
signals owing to the need for a periodical reset.

A fundamental feature of charge amplifiers is that the sensitivity is, to
first order, unaffected by changing the sensor-to-amplifier cable type or length,
since neither RS nor CS enters the expression of eq (15.17). However, the
longer the cable and the higher its capacitance the worse the system high-
frequency response, as can be understood if the exact expression of eq (15.16)
is taken into consideration, remembering that for real amplifiers A tends to
decrease with frequency.

Moreover, it could be demonstrated that the intrinsic electronic noise of
the amplifier appears at the output amplified by a factor proportional to the
cable capacitance CS. Therefore, augmenting the cable capacitance has the
overall effect of decreasing the S/N ratio. The situation is rather similar for
a voltage amplifier, since rising CS does not influence the noise; however, it
decreases the signal amplification (eq (15.13)) and, as a consequence, the S/
N ratio again worsens. To avoid introducing further disturbances in the
measurement chain, the input cable needs to be of the low-noise kind as for
the case of voltage amplifiers, i.e. free from the triboelectric effect and well
shielded against RFI and EMI, and should be prevented from moving during
the measurement.

On the output side, since charge amplifiers have a voltage output with
ideally zero output impedance, Co and Ro cause no loading effect to first
order. In practice, the loading effect is mostly due to Co and is more evident
at high frequency, causing the gain to drop with increasing the output cable
capacitance and length, as happens for voltage amplifiers. Generally, the
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high-frequency gain roll-off due to the capacitive load tends to be more
pronounced in charge amplifiers than in voltage amplifiers, therefore attention
should be paid to consulting the manufacturer’s specifications for the
maximum bandwidth available when the amplifier needs to be positioned at
some distance from the readout system. Ordinary coaxial cable can be used
at the output, since the low output impedance of the amplifier swamps the
triboelectric charge possibly generated in the cable.

In general, the main advantages offered by charge amplifiers over voltage
amplifiers are that both the sensitivity and the low-frequency limit can be
set within the amplifier independently from the sensor and cable impedance.
This is particularly valuable for laboratory use, where it is generally
advantageous to use a single unit capable of adjusting its amplification and
dynamic range to interface with transducers having different sensitivity,
providing standardization of the system output.

Charge amplifiers are well suited to ceramic piezoelectric transducers,
which generally have a high charge sensitivity but a significant internal
capacitance that would cause considerable signal attenuation if voltage
amplification were adopted. They are also useful for remote connection to
transducers operating at high temperatures, since the electronics can be
positioned at some distance in a less hostile environment without signal
degradation due to the connecting cable. In humid and dirty environments,
attention should be paid to adequately sealing the cable and connectors to
prevent any loss of insulation, which would cause low-frequency drifts.

Charge amplifiers are typically sold either as rack-mounted instruments
or as in-line units. Rack-mounted charge amplifiers are designed for
laboratory use and are very versatile since they generally include in a single
unit several signal treatment options, such as coarse and fine adjustment of
the amplification to accurately match with the transducer sensitivity (the so-
called ‘dial-in sensitivity’ feature), setting of the bandwidth, additional gain
and filtering stages, integration for velocity and displacement, peak hold
capability, overload indication, and optional remote control by personal
computer through RS-232 or IEEE-488 interfaces.

In-line units are compact and rugged devices which are connected relatively
close to the transducer and are suited to field operation. In most cases they
have fixed amplification and bandwidth, but some models have trimmable
gain, giving the provision for adjusting to the characteristics of different
transducers for the standardization of system sensitivity. As an advantage,
they are less costly than rack units. Additionally, since they are generally
battery powered, they may sometimes offer a higher resolution as they do
not suffer from power-line-induced noise.

15.4.3 Built-in amplifiers

As seen in the two preceding sections, to reduce the influence of the input
cable on sensitivity and noise it is necessary to keep its length to a minimum
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by bringing the amplifier maximally close to the piezoelectric sensing element.
In-line amplifiers serve this purpose by being able to drive the possibly long
cable to the readout instrument by means of a low-impedance voltage output,
while the distance travelled by the weak and high-impedance signal of the
transducer is minimized. As a limiting case, such a distance can be reduced
to zero by enclosing a microelectronic amplifying circuit directly within the
transducer case. This operation advantageously turns a raw high-impedance
piezoelectric transducer into an amplified low-impedance voltage-output
sensing unit. Moreover, it strongly enhances immunity to interference, since
the metal housing of the transducer provides an effective shielding action.

The problem of supplying the power to the built-in amplifier and extracting
the output signal in an effective way can be solved by adopting a constant-
current loop in which the voltage is modulated by the signal, as shown in
the symbolic representation of Fig. 15.8. This approach enables both the
power supply and the signal to be carried on the same two wires, which
most often are the conductor and shield of an ordinary coaxial cable.

The external power supply unit provides the transducer with a constant
current IB to bias the internal amplifier. As a consequence, the output voltage
at zero mechanical input settles at a bias level VB that depends on the
transducer and the value of IB. The piezoelectric charge is converted into a
voltage signal VoQ that superimposes on VB, producing an overall voltage
output Vo given by 

The readout instrument, represented by its input resistance R, can be
connected to Vo either by DC coupling or AC coupling. In the former case,
the instrument input voltage  is equal to Vo and therefore the piezoelectric
signal of interest rides on the bias voltage VB. In the latter case, the decoupling

Fig. 15.8 Symbolic diagram of the built-in amplification scheme based on constant
supply current and variable output voltage (ICP® concept).

Copyright © 2003 Taylor & Francis Group LLC



capacitor C removes the offset VB and causes  to be equal to Vo Q, therefore
referencing the piezoelectric signal to ground.

Based on the above-illustrated concept for the built-in amplification of
piezoelectric transducers, there are many products from different
manufacturers which are essentially identical in operation, such as ICP® (by
PCB Piezotronics Inc.), ISOTRON® (by Endevco Co.), PIEZOTRON® (by
Kistler Instruments), DeltaTron® (by Bruel & Kjaer), LIVM® (by Dytran
Instruments Inc.) to name a few [6–8]. Presumably for market reasons, the
ICP has become an industry standard so that, currently, many vibration
equipment manufacturers and users simply employ the term ICP as a short
form for generally indicating a built-in amplification scheme based on
constant current and variable voltage.

Coming to the practical implementation of the internal amplifier, there
are two possibilities, namely voltage amplifier or charge amplifier. The
simplified circuit diagrams of both versions are shown respectively in Fig.
15.9(a) and (b). The voltage amplifier makes use of metal-oxide-semiconductor
field-effect transistor (MOSFET) working in the source follower configuration,

Fig. 15.9 Different implementations of built-in amplification schemes: (a) MOSFET-
based voltage amplifier; (b) JFET-based charge amplifier.
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which provides an almost unitary voltage gain G (this is why this
configuration is often indicated as a voltage follower) and a low-output
impedance. RT and CT include the impedance of the transducer, of the
amplifier input and of the ranging capacitor if present. The product RTCT

gives the system DTC, and  sets the low-frequency limit. With
reference to eqs (15.12) and (15.13) with G now equal to one, for frequencies
higher than ωL the output voltage Vo is given by

 
(15.18)

 
The charge amplifier is based on a junction-field-effect transistor (JFET)

with Rf and Cf forming the negative feedback network. The system DTC and
the low-frequency limit are given by  and  According to eq
(15.17), for frequencies higher than ωL. the output voltage Vo is then given by

 
(15.19)

 
The voltage-sensing scheme is mostly used for low-capacitance quartz

elements, while charge sensing is best suited to high-charge-output
piezoceramic transducers. In both cases, the amplification  rated in
volts per picocoulomb (V/pC) is fixed internally and cannot be modified
unless by adding following amplification (or attenuation) stages. The voltage-
sensing method generally allows for a higher frequency response than the
charge amplifiers at parity of operating conditions. Irrespective of the
amplification method, the DTC may range from few seconds in most cases,
to several thousand seconds in extended low-frequency response transducers.
Both circuits have a low output impedance (in the order of 100 Ω) and can
then drive a considerable length of ordinary coaxial cable without appreciable
signal degradation. The output connectors commonly adopted by the majority
of the transducer manufacturers are either the standard 10–32 threaded male
microdot coaxial connector, or the two-contact MIL-C-5015 socket.

The power unit generally consists of a DC voltage supply, coming either
from a battery pack (usually two or three PP3 9 V cells) or from rectified
mains, in series with a constant-current diode which fixes the current in the
loop at IB. The value of the DC voltage supply VDC determines the upper
limit of the output dynamic range, while the lower one is set by the value of
the bias voltage VB. Typically, VB is between 8 and 14 V, and VDC is between
18 and 30 V, while the commonly adopted nominal output ranges are ±3 V,
±5 V or ±10 V. The bias current IB may range from 2 to 20 mA depending
on the application. Generally, higher values of IB are needed to preserve
high-frequency response when driving longer cables at significant voltage
levels. This is caused by a nonlinear phenomenon occurring in the amplifier,
called slew-rate limiting. The manufacturer’s specifications should be
consulted to determine the maximum allowed frequency for the case at hand.
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As typical values, a current IB=5 mA allows for a fmax=150kHz with about
300 m of a 100 pF/m coaxial cable and a ±1 V signal swing. It is not advisable
to use high IB values unless necessary, since this causes overheating of the
amplifier which increases thermal drifts and the electronic noise level, reducing
the resolution.

The voltmeter VM is often included in the power unit to continuously
monitor VB and allow the detection of a short in cables or connectors (the
reading is zero), a cable-open (the reading is about VDC) or a low-battery
condition (with no transducer connected the reading is lower than the nominal
VDC value). In some cases, further voltage amplification may be provided
inside the power supply unit.

When the readout instrument is AC coupled, the decoupling capacitor C
and the instrument resistance R form a high-pass filtering network at the
output which adds to that due to the DTC of the transducer plus amplifier,
hence the overall circuit becomes a dual time-constant system. As will be
discussed in the following section, the presence of the output time constant
RC may result in a bandwidth limitation on the low-frequency side.

For this reason, when the maximum low-frequency response allowed by
the transducer DTC needs to be exploited, DC coupling is to be adopted at
the expense of having a nonzero-referenced output signal. Alternatively, some
power units incorporate a level shifting circuit based on the use of a difference
amplifier to subtract the bias voltage VB from Vo, therefore providing a DC-
coupled zero-referenced output without the insertion of a second time constant.

Built-in amplification is commonly adopted for all types of piezoelectric
transducers, such as accelerometers, force and pressure sensors. The general
advantages include good resolution independent of cable length (up to several
hundred metres) or type (no low-noise cable required), sensitivity and
bandwidth set at the manufacturing stage, rugged and sealed construction,
low per-channel cost. The fundamental limitations come from the limited
temperature operating range and shock survivability compared to the charge-
output sensors, owing to the presence of the internal electronics, which cannot
withstand temperatures more than typically 120°C, or extreme mechanical
shock.

15.4.4 Frequency response of amplified piezoelectric
accelerometers

Making reference to Section 14.8.1, and considering a piezoelectric
accelerometer followed by either a voltage or a charge amplifier, the general
expression of the output voltage as a function of the angular frequency is
 

 (15.20)
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where Q(ω) is the charge, GQ(ω) is the electrical gain function, with GQo

indicating the midband gain, (ω) is the acceleration and  is
the transducer charge sensitivity, with kQ being the charge sensitivity
coefficient and Ta(ω) the acceleration frequency response function of the
seismic system. For a voltage amplifier (Section 15.4.1)  with
G being the amplifier gain and CT the total capacitance at the input, and

 is the DTC. The product
 

 

reduces to the transducer open-circuit voltage sensitivity SV(ω) in the ideal
case of infinite cable and amplifier impedance. For a charge amplifier (Section
15.4.2)  and  is the DTC.

For constant-current internally-amplified transducers (Section 15.4.3) with
DC output coupling, eq (15.20) is again valid, with the only difference that
Vo now includes the bias voltage VB instead of being ground-referenced. In
the case of AC output coupling, two time constants are involved and the eq
(15.20) becomes
 

(15.21)

 

with  being the output time constant caused by the decoupling
capacitor C and the input resistance R of the readout instrument, as shown
in Fig. 15.18.

Both eqs (15.20) and (15.21) show that on the high-frequency side the
signal from an amplified accelerometer reflects the behaviour of Ta(ω) (Section
14.7.4) with its resonance peak at the transducer natural frequency ω0.
Nonidealities in the amplifiers, such as nonzero output impedance or the
influence of the output cable, or poor transducer mounting also affect the
high-frequency response (as discussed in the preceding sections) in addition
to the fundamental limitation posed by Ta(ω).

The low-frequency response is determined by the time constant 1,
representing the DTC of the transducer, and by 2 if present. Such time
constants introduce a high-pass filtering action and the system is not
responsive to DC acceleration. If only the DTC 1 is present, at 
the overall gain is attenuated by –3 dB with respect to its midband value,
and it decreases at a 20 dB/decade (or 6 dB/octave) rate for  The
phase shift is π/2 at low frequency  becomes π/4 at ω1, and tends to
zero for 

If both 1 and 2 are present owing to AC output coupling, it is important
to consider their relative magnitude. If  then at  the gain
attenuation is –6 dB and the roll-off rate is –40 dB/decade (or –12 dB/ octave)
for  The phase shift is p at low frequency, equals π/2 at ω12, and tends
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to zero for  If 1 and 2 are not equal the exact calculations are rather
involved. However, it can be shown that the dual time-constant behaviour
can be approximated by that due to a single effective time constant teff given
by  This is to say that the low-frequency response is
essentially dominated by the lowest between the  and the output
time constant  Typically, C is of the order of 10 µF and R can range
from 10 kΩ to 1 MΩ, yielding to a time constant between 0.1 and 10 s. By
properly choosing the value of C for a given instrument resistance R, RC can
be made smaller than the transducer DTC, resulting in  when it
is desired to filter out unwanted low-frequency components, such as thermal
drifts. On the other hand, when, as often happens, it is not desired that the
output time constant should limit the transducer intrinsic low-frequency
response, 2 is chosen, say, ten times greater then 1 resulting in 

To summarize, the generalized transfer function valid for amplified
accelerometers is plotted in Fig. 15.10, where the low-frequency behaviour
is assumed to be due to a single time constant LF. For DC coupling this
assumption is exact with  For AC coupling it represents a convenient
approximation which is valid for 

15.4.5 Time response of amplified piezoelectric accelerometers

The time behaviour of the output voltage Vo(t) caused by a transient input
acceleration can be in principle calculated by expressing the eqs (15.20) and
(15.21) in the Laplace domain and then antitransforming the resulting output
voltage Vo(s). However, considerable insight is gained in trying to analyse
and predict the time response to elementary excitation waveforms by starting
from the system frequency response.

We have seen that the high-frequency response is affected by the
combination of Ta(ω ) and the possible amplifier and mounting nonidealities,
while at low frequency the system behaves as (or can be approximated by) a
high-pass network with a single time constant LF. Therefore, fast time signals
with sharp edges involving high-frequency components will be ultimately

Fig. 15.10 Magnitude of the generalized transfer function of amplified piezoelectric
accelerometers.
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limited by the time response of Ta assuming that nonidealities are absent,
whereas slowly varying and static signals will be attenuated or blocked
according to the combined action of the transducer DTC and of the output
time constant if present.

These considerations can well be applied to the analysis of the voltage
output caused by a step input acceleration. The initial abrupt change in the
input excites the high frequencies and, as such, it involves Ta. For a duration
of the order of 1/ω0, where ω0 is the transducer natural frequency, the output
voltage follows the general behaviour of Fig. 13.8 with the rise time and
amount of ringing determined by ω0 and the damping factor ζ. As time t
elapses, the initial transient dies out and only the static excitation remains
active. When t becomes comparable to LF the system low-frequency response
becomes involved.

The normalized output voltage then behaves as plotted in Fig. 15.11(a).
After an initial step whose finite rise time is not distinguishable in the figure
due to the abscissa scale factor, it follows a decreasing exponential that will
diminish to essentially zero after 5 LF. Therefore, to accurately measure the
step amplitude, Vo(t) needs to be read before it droops appreciably and causes
a significant error. Considering that the exponential decay is approximately
linear to about 0.1 LF, then to obtain a 1% accuracy the reading should be
taken within 1% of LF. This explains the importance of having a very long
time constant when quasistatic measurements need to be performed accurately.

When the input acceleration is a square pulse of duration T the normalized
output voltage takes the form plotted in Fig. 15.11(b). The amplitudes of
the rising and falling steps are equal since they depend on the high-frequency
response. As a consequence, in correspondence to the downward transition
at T, Vo undergoes a negative undershoot equal to the voltage loss accumulated
during the discharge time T, then it finally approaches zero by following a
rising exponential trend. This behaviour is justified by the fact that a system
with no DC response, such as a piezoelectric transducer, excited by an input
of finite duration responds with an output whose time average, i.e. the DC
value, is equal to zero. In other words, the area subtended by the positive
and negative portions of the function Vo(t) are equal.

The qualitative behaviour described for the square pulse is observed also
for other pulse shapes of interest in vibration measurements, such the
triangular and half-sine pulse. In general, the amount of undershoot depends
on the relative magnitude of the pulse duration T and the system time constant

LF, becoming increasingly accentuated the longer T is compared to LF. As
a conservative rule of thumb, the percentage relationship can be used for
undershoot estimation for any pulse shape, leading to an undershoot value
of x% for an x% value of the ratio T/ LF (with x lower than 10).

The pulsed input can be generalized to a pulse-train excitation where
pulses are assumed to repeat at intervals of TP. If TP is of the same order of
magnitude of LF the corresponding output signal is shown in Fig. 15.11(c).
Due to the lack of DC response, Vo(t) shows a decaying trend with exponential
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envelope which causes a baseline shift and ultimately produces a zero-average
output for a nonzero-average input. To avoid the baseline shift phenomenon,
which is particularly detrimental in slow transient measurements, some signal
conditioners incorporate special nonlinear circuits called zero-clamps or DC
restorers that are capable of recovering the average value of the input, as
shown in Fig. 15.11(d).

Fig. 15.11 Time-response of amplified piezoelectric accelerometers with the low-
frequency behaviour of overall transfer function assumed to be determined
by a single time constant: (a) step response; (b) square-pulse response; (c)
pulse-train response; (d) pulse-train response after a DC restorer circuit.
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15.4.6 Electronic integrating networks

Accelerometers provide high-resolution signals over a wide frequency range,
making it possible to electronically integrate such signals to obtain velocity
and displacement measurements with a dynamic range and bandwidth often
unattainable with dedicated transducers, as discussed in Section 14.10. Time
integration corresponds in the Fourier and Laplace domains to division for
the terms iω  and s respectively. Therefore, an integrating network should
have a sinusoidal transfer function of the form 1/iω. A simple network which
is generally exploited for the purpose and is inserted in many amplifiers and
conditioning units consists of the RC circuit shown in Fig. 15.12(a). Its transfer
function has the expression
 

(15.22)

 

which has the same form as a first-order system (Section 13.6). For high
frequencies, so that  eq (15.22) becomes
 

(15.23)

 

which exactly corresponds to integration, apart from the scaling factor
1/(RC) that can be accounted for in calibration.

Fig. 15.12 The RC low-pass filter circuit as an approximate integrator: (a) circuit
diagram; (b) magnitude of the frequency response characteristic ([9, p.
13.4], reproduced with permission).
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Therefore, the RC circuit is an integrator which is called approximate,
since it approximates true integration for sufficiently high frequencies,
whereas at low frequency and DC it simply passes the input signal without
attenuation. This is shown in Fig. 15.12(b), which shows the magnitude
characteristic of the circuit which, seen in the frequency domain, behaves as
a first-order low-pass filter with cutoff angular frequency 

For signal frequencies below ωA no integration takes place, while above
ωB correct integration is performed. For normal accuracy requirements on
repetitive signals, the limiting frequencies ωA and ωB can be considered to be

Fig. 15.13 Example of integration and double integration of an acceleration pulse
made by one period of a 100 Hz sinusoid, for comparison between
approximate integration with different values of the limiting frequency

 and ideal integration: (a) input acceleration signal; (b)
velocity signal after single integration; (c) displacement signal after double
integration ([9, p. 13.5], reproduced with permission).
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distant from ωc by a factor of 3 to 5. Therefore for accurate integration of
a signal with minimum frequency component ωi it must be ensured that

Extremely low values of ωc are difficult to obtain with this circuit and DC
integration is not performed. This may be a source of significant inaccuracies
when dealing with transient inputs, which deserve great attention when
integration is carried out. In fact, a transient is a nonperiodic function of time
and, as such, it has a continuous frequency spectrum which can extend to
considerably low frequencies. In general, the shorter the transient duration
the wider the involved frequency range. The portion of the range which falls
below ωB is not correctly integrated and therefore causes an output signal that
departs from the ideal behaviour. When double integration is performed by
connecting two RC stages in cascade to obtain displacement from acceleration,
this problem becomes still more evident due to error accumulation.

As shown in the example of Fig. 15.13 dealing with an acceleration pulse
made by a single-period sinusoid, it is of fundamental importance to choose
the integration limiting frequency ωB properly to determine the peak values
of velocity and displacement with suitable accuracy. As a practical guideline,
it should be ensured that  for single integration and

 for double integration, where tp is the time taken by
the input pulse to reach its peak (2.5 ms in the example).

15.5 Noise and interference reduction

15.5.1 Ground noise and ground loops

Consider the case encountered in many practical situations where the signal
from a transducer needs to be sent to a receiving unit located at some distance.
The following sections will deal with the aspects concerning the different
wiring connections that may be used for this purpose, and their effect on the
system immunity to electrical interference [10, 11].

In general, the signal source may be either an unamplified self-generating
sensor or a sensor unit incorporating amplification. In both cases, it is assumed
the output signal to be voltage, as it most frequently happens, hence a
Thevenin equivalent representation can be used. The receiving unit, in turn,
is a voltage-input device that might be a signal amplifier or a readout
instrument. The input resistance Ri of the receiver is ideally infinite and in
practice very high (in the range of hundreds or thousands of kilohms).

The most simple kind of connection is the one shown in Fig. 15.14, where a
single wire is used from the transducer to the receiver. The wire resistance Rc is
included in the scheme for completeness, though it is usually very low (in the
range of few tenths of an ohm for 10 m of signal wire approximately). The
signal return path is provided by connecting the low terminals of both the
transducer and the receiver to the common ground. In the most general sense,
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the ground need not be the earth ground but it might be any structural or
mechanical part made of electrically conductive material, such as the metallic
frame of a machine or the chassis of a car, that has the function of closing
the electrical circuit.

This solution of Fig. 15.14 is of utmost simplicity but, however, it may
cause severe problems of interference pickup. In fact, the material making
the ground is not an ideal conductor and, in practice, it has low but finite
resistance and inductance values. In addition the ground path generally carries
significant current flow coming for instance from power return paths of
equipment or machinery which share the same physical part of the ground
conductor.

The combination of these two facts causes an important consequence
that has to be remembered as a fundamental property of real grounds. As
opposed to ideal zero-resistance paths which behave as short circuits, a ground
connection cannot be considered as perfectly equipotential. On the contrary,
across different points of the ground conductor there will be present in general
spurious voltages of unpredictable amplitude and time behaviour reflecting
the random nature of the ground currents. This is called the ground noise,
which is of higher intensity the more the ground is electrically ‘dirty’ and the
longer the distance separating the connection points.

In the scheme of Fig. 15.14 can be observed the presence of the ground
noise voltage VG that appears across the ground connections G1 and G2 at
the transducer and receiver sides, which are also shown graphically different
to emphasize that they are not truly equipotential. It becomes evident that
VG is directly summed to the signal voltage VS in contributing to the received
voltage Vi. Under the usually satisfied condition  the result is
that  and the S/N ratio at the receiver input is thus severely
degraded. In the extreme case of low-level signal, particularly dirty ground
and transducer and receiver very distant from each other, VG can completely
swamp VS causing the signal information in Vi to be totally obscured by
noise. Therefore, the wiring scheme of Fig. 15.14 should be in general avoided
unless the signal is of high level, the travelled distance is short, the ground is
‘clean’ and the measurement accuracy is not of fundamental importance.

Fig. 15.14 Voltage transmission between transducer and readout unit with the
signal return path made by the ground conductor.
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Now consider the case of Fig. 15.15(a) in which the signal return path is
provided by a second wire, again of resistance Rc, connected between G1
and G2. This is a very common situation in practice, and it is often thought
that grounding both the source and the receiver at the respective locations is
a good practice to generally avoid interferference pick-up. Actually, this is
far from true. In fact, it can be readily realized from Fig. 15.15(a) that in
this case again the ground noise VG is directly summed to the signal VS in
developing the received voltage Vi. As the return wire resistance Rc is low
but cannot be made exactly zero, the ground noise VG is not shunted and
prevented to appear across the receiver input terminals.

As a matter of fact, the effective solution to the ground noise problem is
that of avoiding the voltage VG being concatenated within the same loop of
the signal VS and the receiver input terminals. That is, no more than one
ground connection should exist within the signal circuit, and loops including
multiple ground points, called ground loops, must be broken.

This can be obtained in the circuit of Fig. 15.15(a) by disconnecting from
ground either the transducer or the receiver, depending on which solution is
more practical in each application. It should be noticed that the same
operation cannot be made on the circuit of Fig. 15.14, since the ground
conductor is an integral part of the signal loop and breaking it would interrupt
the return path.

Fig. 15.15 Two-wire voltage transmission between transducer and readout unit.
(a) Ground noise VG affects the readout voltage Vi due to ground-loop
problem. (b) Ground loop elimination by one-point connection to
ground.
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Then, starting from Fig. 15.15(a) and assuming that the transducer side
is the one that can be lifted off ground, the resulting situation is depicted
in Fig. 15.15(b). Now the ground noise VG, though still present, no longer
influences the signal loop and, for  the readout signal Vi

equals VS.

15.5.2 Inductive coupling

The preceding section has pointed out that a two-wire connection with a
single-sided ground is advantageous to avoid ground loops. However, the
existence of a signal loop of finite area automatically implies a degree of
susceptibility to inductively coupled interference. In fact, consider a magnetic
field which couples into the circuit as happens, for instance, when a current
carrying cable runs parallel to the signal wires, as depicted in Fig. 15.16(a).
The wire resistances Rc have been omitted in the circuit diagram because
they are inessential to the following discussion.

If IExt is the current in the external cable, the magnetic field induction B
generated at a distance h from the cable is  where K is a
proportionality constant. Then a magnetic flux  is
coupled with the circuit, where ho is the average distance between the cable
and the signal loop and A is the loop area. Now for the Faraday-Lenz law
of magnetic induction a spurious electromotive force, i.e. an interference
voltage VM, is generated into the signal loop given by

 

 
Therefore, if A, ho or IExt varies with time then a noise voltage is coupled
into the signal circuit adding to Vi a noise term given by  For
a given geometry, external current IExt and receiver resistance Ri, the
inductively coupled noise decreases the higher is the source resistance RS.
Striving to keep constant the parameters determining the flux F is not a
viable way to eliminate VM, since at least the current IExt is unpredictable
and out of control.

One thing that can be effective is the use of magnetic shields made of
materials with high magnetic permittivity, but due to cost this practice is
mostly limited to neutralization of particularly strong magnetic sources such
as transformers. In general, positioning cables carrying time-varying currents
of high intensity close to signal wires should be avoided. In particular, avoid
running them parallel; if power cables and signal wires have to cross it is
preferred that they do it at right angles. In fact, the flux concatenated in
the loop is orientation dependent and, when possible, it is desirable to vary
the cable position until the condition of minimum pickup is achieved. This
operation, besides, is helpful to assess if the nature of the interference

Copyright © 2003 Taylor & Francis Group LLC



phenomenon is magnetic induction, in which case it should be significantly
orientation dependent, or not. A rule of more general applicability is that of
keeping the area A of the loop as small as possible by avoiding loose wiring
and preferring to run the two signal cables as close as possible to each other.

The best results in terms of immunity from inductively coupled noise are
obtained by using the trick of twisting the two signal conductors as shown
in Fig. 15.16(b) to form a multitude of tight loops. Voltages induced in
adjacent loops have opposite signs (since the loop axis switches by 180°)
and virtually equal magnitude, hence they cancel. Therefore, the overall effect
on VM is ideally null, as if the effective loop area were zero.

Twisted-pair cables are then highly recommended in environments subject
to potentially high inductively coupled interference, such as close to electrical
power lines, motors and machinery switching high currents, particularly if
the signal of interest is of low level.

15.5.3 Capacitive coupling

Let us now consider what happens in the two-wire configuration with single-
sided ground when an external voltage source VExt is present near to the
circuit, so that the two stray capacitances CH and CL exist between the source
and the signal wires, as shown in Fig. 15.17(a). VExt can be due to a number

Fig. 15.16 Two-wire voltage transmission between transducer and readout unit:
(a) inductive coupling of interference; (b) reduction of inductive coupling
by use of a twisted-pair cable.
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of causes such as power lines, electrical machines or even parts of the same
electronic circuit or system that we are considering such as, for instance,
adjacent conductors at varying voltage or the power supply transformer.

It can be readily recognized that the interfering voltage VExt is coupled
into the signal circuit via the capacitive effect solely due to CH. Conversely,
CL is virtually uninfluential, since it shunts VExt directly to ground without
affecting the receiver input signal Vi. The unwanted contribution of VExt to
Vi is given by
 

 
which shows that VExt is coupled to the circuit through a term decreasing
with frequency and vanishing at DC, consistent with the fact that we are
dealing with a capacitive effect. For a given geometry (determining the value
of CH), external voltage VExt and receiver resistance Ri, the capacitively
coupled noise decreases the lower the source resistance RS.

The simpler way to minimize the capacitive pickup is again given by
rearranging the circuit geometry in order to minimize the stray capacitances,
in particular CH. This can be done by keeping sensitive signal circuits,

Fig. 15.17 Two-wire voltage transmission between transducer and readout unit:
(a) capacitive coupling of interference; (b) reduction of capacitive coupling
by use of a differential-input receiver.
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especially if involving high impedance sources, far from regions where high
time-varying voltages are present.

A different approach of high effectiveness is that of passing from a receiver
with a single-ended input as in Fig. 15.17(a) where the signal Vi is ground-
referenced, i.e. the low terminal is tied to ground, to the differential input
configuration of Fig. 15.17(b). The single-ended and differential configuration
will be compared in Section 15.5.5. The impedances Z in Fig. 15.17(b) are
typically very high so that in most cases they can be neglected and the input
considered floating. Including them in the diagram in the present case,
however, helps to better visualize the circuit operation.

It can be observed that now CL is no longer uninfluential but it intervenes
in coupling VExt towards the low input terminal L, while CH does the same
thing towards the high input terminal H. The idea is that if CH and CL are
made equal the circuit becomes symmetrical, therefore the amounts of noise
coupled to H and L are equal and, as such, they are cancelled by the
differential input. In such a case it is said that the noise is transformed into
a purely common-mode contribution, i.e. equal at the H and L inputs, while
the differential-mode, or normal-mode, noise is virtually zero. In general,
the stray capacitances CH and CL can be made as equal as possible by keeping
the signal wires very close to each other and possibly twisting them to increase
symmetry.

Another approach that can be successfully followed even without making
use of a differential input at the receiver, though this would be of additional
advantage, is that of using an electrostatic shield.

15.5.4 Electrostatic shielding

The charge distribution and relative potentials of bodies encircled by a closed
surface made of electrically conductive material are not influenced by charges
and electric potentials present outside such a closed surface. This is the
Faraday cage concept and the conductive shell is called an electrostatic shield
or screen.

The principle can be advantageously applied to reducing capacitive
coupling from external voltages by using a two-conductor shielded cable
and by enclosing both the source and the receiver within metal housings, as
shown in Fig. 15.18(a). It can be noticed how the connection of the cable
shield to both the source and the receiver housings creates a unique screen
which completely surrounds the signal path. To be maximally effective, the
electrostatic shield has to be connected to the point representing the zero
reference of the signal, the terminal L in our circuit, which in turn is tied to
ground. In this case, the external voltage source VExt can only couple its
interference into the cable shield through the stray capacitance CS which
routes the spurious current to ground, without any perturbation induced
into the signal circuit.

Copyright © 2003 Taylor & Francis Group LLC



It should be noticed that the shield must be tied to ground at one point
only and this must be at the signal zero-reference ground, which is at the
receiver side G1 in the example of Fig. 15.18(a). Otherwise, a significant
fraction of the ground noise VG can be coupled into the signal circuit by
means of the cable shield itself. Therefore, the recommended practice in this
case is to leave the transducer housing electrically floating as shown.

To save cable cost, the two-conductor-plus-shield cable, often called twin
axial, can be replaced by a one-conductor-plus-shield, or coaxial cable, as
shown in Fig. 15.18(b). Again the shield drives the stray currents due to VExt

to ground but, since now the shield coincides with the return conductor of
the signal, the noise immunity of this unbalanced configuration is typically
less than that of the balanced configuration of Fig. 15.18(a). In this case it
is imperative that the transducer case is electrically isolated from its local
ground G2, otherwise the ground noise VG becomes directly hooked into the
signal circuit, causing severe noise problems. This is a point of fundamental

Fig. 15.18 Electrostatic shielding: use of (a) twinaxial and (b) coaxial shielded
cable.
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importance which is a direct consequence of the unbalanced link using the
coaxial cable, and is often a cause of ground-loop problems in practical
installations of metal-case transducers.

To help avoid the problem, a double shield is sometimes provided within
the transducer, as for instance in many piezoelectric accelerometers. An
internal shield screens the sensing element and is shorted to the signal return
terminal, while it is isolated from the outer shield made by the external
housing which can be thus safely connected to the local ground.

Figure 15.19(a) shows how the double shielding concept is generally
applied with internally amplified piezoelectric accelerometers. The receiver
in this case can be either the readout instrument or the constant-current
supply unit. The use of a two-conductor twisted and shielded cable gives the
system an industrial grade protection, and makes it most noise immune even
in factory environments where a high level of interference is typically present.
Note that the cable shield is left floating at the source side to avoid ground
loops. In less demanding applications, the general purpose solution of using
a standard coaxial cable as shown in Fig. 15.19(b) is typically adequate and
less costly.

A point that is worth remembering about shielding is that unless the shield
is made of material with high magnetic permeability, which is rarely the case
due to cost, shielded cables do not screen inductively coupled noise. Cable
twisting is needed for that purpose.

Fig. 15.19 Typical shielding schemes used for piezoelectric transducers with built-in
amplifiers: (a) double-shielding with twisted-shielded cable; (b) shielding
with coaxial cable.
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However, shielded cable and metal enclosures give effective protection
against electromagnetic and radiofrequency interference (EMI and RFI). Both
phenomena may arise when the frequency of the interfering sources is
sufficiently high so that electromagnetic waves are generated which can couple
into some part of the signal circuit that, due to its dimensions and location,
happens to work as a receiving antenna. Fortunately, electromagnetic waves
are screened by conducting surfaces. Therefore, a well designed and connected
screen is also effective in reducing EMI and RFI.

In practice, the screen surface need not be perfectly closed but can include
flaws and openings, such as required for instance with ventilation holes in
instrument metal cabinets. However, in order to guarantee the full
effectiveness of the shielding action, the dimensions of such openings should
be made less than the wavelength of the incoming interference.

15.5.5 Single-ended and differential connection

So far, the problem of possible ground loops has been tackled by suggesting
that the source reference terminal be disconnected from its local ground and
the receiver side be grounded. There are cases, however, where the transducer
is intrinsically ground-referenced and cannot be floated. A solution is then
float the receiver side by using a receiver with a differential input as shown
in Fig. 15.20. The input signal Vi is taken as the voltage difference between
the input H and L terminals respectively, none of which is ground connected.
Strictly speaking, there are very high impedances Z connecting H and L to
ground G1, as previously shown in Fig. 15.17(b), but for the present
discussion they can be neglected. Then we have passed from a single-ended
ground-referenced input to a differential floating input.

It can be observed from Fig. 15.20 that now the ground loop is broken at
the receiver side. As a consequence, the ground noise VG appears as a
common-mode input which is therefore rejected by the differential input
receiver.

The capability to respond to the difference of the input signals only,
irrespective of their common-mode value is expressed by the common-mode

Fig. 15.20 Readout unit with a differential input: the ground noise VG does not
affect the readout voltage Vi.
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rejection ratio (CMRR) of the receiver, defined as the ratio of the differential
gain over the common mode gain. High CMRR means close-to-ideal
differential behaviour.

For real differential receivers or amplifiers the range of input values over
which they can operate correctly and without damage is limited both in the
difference and in the common mode. The differential input range (DIR)
defines the maximum acceptable difference between the input voltages, while
the common-mode input range (CMIR) sets the maximum allowed value of
their average. Typically, the CMIR is larger than the DIR and is limited by
the power supply voltages.

As a general rule, the differential configuration is more noise immune
than the single ended, since every disturbance which is induced equally in
the two signal wires appears as a common-mode input at the receiver and is
then rejected. With a differential receiver, the strategy for reduction of noise
pickup should then be aimed at obtaining the maximum symmetry in the
circuit, in order to leave the signal of interest as the only differential
contribution.

Besides the noise immunity aspects, the use of a differential configuration
at the receiver is necessary when interfacing to differential output transducers,
such as for Wheatstone bridges excited with a ground-referenced supply.
The typical situation is depicted in Fig. 15.21 where the differential input of
the receiver, with the input resistance Ri considered infinite, is capable of
reading the bridge imbalance voltage as a floating voltmeter. Conversely,
using a single-ended input would essentially make the bridge configuration
vanish by short-circuiting R3.

Another case where the differential input is very advantageous is in
cancelling cable resistance effects with remotely powered transducers.
Consider, for instance, the example of Fig. 15.22(a) illustrating the three-
wire connection of a resistive potentiometer excited by the constant current
IE coming from the receiver site, where the signal is read in a single-ended
way. The cable resistances Rc1 and Rc2 are uninfluential on the voltage output
due to current excitation and the infinite input impedance of the receiver.
Conversely, Rc3 causes a voltage drop  which might be neither small
nor constant and is unwantedly read as a signal. Instead, with the four-wire

Fig. 15.21 Benefits of using a differential-input receiver with Wheatstone bridge
transducers.
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differential configuration of Fig. 15.22(b) the voltage drop  is
transformed into a common-mode signal which is then rejected.

15.5.6 Optical, magnetic and capacitive isolation

There are situations where it is impossible to float either the source or the
receiver, therefore in order to avoid ground-loop problems it is necessary to
create an intermediate break in the circuit. The single circuit comprising the
source and the receiver referred to their respective local grounds should be
replaced by two circuits, between which some sort of coupling has to exist
in order to pass the signal but any direct current flow must be impeded.
That is, the two-half circuits should be signal coupled but galvanically
isolated. Such an isolation should have a low ohmic leakage and a high
dielectric breakdown voltage, i.e. should behave as close as possible to an
open circuit at DC over an extended voltage range. There are essentially
three methods to accomplish this result which make use of magnetic,
capacitive or optical isolation.

Magnetic isolation makes use of a transformer with the primary coil
connected to the source and the secondary to the receiver. No electrical contact
exists between the coils, hence the galvanic isolation is ensured. The signal
is transferred from the source to the receiver scaled according to the
transformer turn ratio. Since transformers do not transfer DC signals, the
method cannot be applied if the source signal is constant or varying at low

Fig. 15.22 Connection of a resistive potentiometer to a readout unit having (a) a
single-ended input and (b) a differential input.
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frequency. The solution in this case is to of use modulation to shift the signal
bandwidth to a frequency region where the magnetic transmission is effective,
and then demodulate the transformer output to recover the original signal.
Magnetic isolation can be very effective, but transformers tend to be bulky
and costly.

Capacitive isolation makes use of one or more high-quality capacitors to
couple the signal from the source to the receiver circuit. Since capacitors do
not pass DC currents, the galvanic isolation is straightforward but, again,
constant and slowly-varying signals cannot be transmitted without resorting
to modulation. Capacitive isolation is compatible with a significant degree
of miniaturization, which enables this technique to be implemented in an
integrated circuit, including the capacitors and the modulation/demodulation
stages in the same package.

In optical isolators the source signal is transformed into a light intensity
by means of a light-emitting diode (LED) which is mounted facing a
photodiode, or a phototransistor, that generates an output current
proportional to the incoming light and feeds it to the receiver. Therefore, the
signal is transferred by means of light, without any electrical contact required.
Optical coupling in principle allows DC signals to be transmitted, since they
are converted into a constant light intensity and in turn transformed into a
constant signal at the receiver. However, due to unavoidable offset currents
in the photodetectors, the operation at DC can be in practice problematic
except for simple on/off signals, such as in switches, or digital signals. For
analogue signals it is again typically preferred to use modulation. Generally
the LED, the photodetector and the driver circuits are all included in the
same package sold as a single unit called an optoisolator or optocoupler.

All the three methods can achieve very high degrees of isolation which,
depending on size and technology, may be up to several thousand volts. This
makes isolators useful not only for eliminating problems with multiple
grounds, but also as a means to acquire signals of moderate magnitude riding
on much higher average levels without damaging the readout unit or amplifier.
For instance, signals of a fraction of a volt superimposed on a background
of hundreds of volts can be directly extracted and referenced to the receiver
ground. In other words, isolators allow the common-mode input range of
the readout unit to be extended significantly beyond the level which, in the
case of direct connection, would cause its failure or destruction.

Isolation amplifiers also find application in medical instrumentation, such
as electrocardiographs, where for safety reasons it is necessary that no
galvanic continuity exists between the electrodes on the patient and the
equipment connected to the power lines.

Somewhat related to isolators, though different in intended applications,
are the noncontact transmission links. When transducer and receiver must
operate in a condition of relative motion incompatible with cable connection,
such as with sensors mounted on rotating shafts, there is the need for methods
for extracting the signal without interfering with the motion. Traditionally,
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sliding contacts called sliprings have been adopted, but they suffer from
poor contact quality and wear due to friction. Superior performance is
obtained by noncontact methods, typically based on radio frequency,
inductive or optical coupling, which transfer the signal from the moving
transducer to the steady receiver. Since such noncontact methods imply
galvanic isolation, they are insensitive to ground-loop problems.

15.5.7 Current signal transmission

Some significant advantages in signal integrity and system cost can be obtained
by using current transmission instead of voltage for connecting transducers
to remote receiving units. As shown in the general scheme of Fig. 15.23, the
signal voltage VS is converted into a current IS by the V/I converter circuit
placed close to or within the transducer. The current IS is sent to the receiver
where it is made to flow in a drop resistance Rd and converted into the readout
voltage Vi. The commonly adopted standard range for the current IS is from
4 to 20 mA, and the connection scheme is called the 4–20 mA current loop.
Rd is usually 200–500 Ω to give a voltage Vi in the range of volts.

The current transmitter is powered by the unregulated DC voltage Vsupply

which is usually located at the receiver site. The current Isupply is the sum of
the signal current IS and the current IP required to power the converter and,
on occurrence, to excite the sensor, such as for strain-gauge bridges. The
return path for IP is provided by wire number 3 in the figure, and the resulting
scheme is called a three-wire current loop. Often IP is suitably low, so that
the 4 mA offset in IS is sufficient to cover the power current demand. In
these cases, wire number 3 is dropped and the resultant scheme is called a
two-wire current loop.

The current transmission is not affected by the cable resistances Rc, since
the resultant voltage drops are not reflected in Vi, which is in any case given
by  Therefore, distant transmission up to some kilometres can be
accomplished without signal degradation.

As opposed to voltage-transmitting circuits, current loops are low-
impedance circuits due to the small value of Rd compared to Ri. As a
consequence, they are very immune to electrostatic crosstalk coming through

Fig. 15.23 Block diagram of a 4–20 mA current transmitter.
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the capacitive coupling, so no expensive shielded cables are generally required.
On the other hand, they tend to be slightly sensitive to inductively coupled
noise, but this can be typically suppressed easily by inexpensive twisted-pair
cables. With the 4–20 mA standard, a fault condition caused by a broken
wire (0 mA) can be readily distinguished from a zero signal (4 mA), which
is a benefit not offered by voltage transmission. Current transmission is also
minimally affected by ground noise problems and, though not shown in Fig.
15.23, the transducer can also be tied to its local ground without typically
compromising the system accuracy. However, it should be considered that,
particularly when transmission distances are long, the voltages across different
ground points can be very high, especially on a transient basis, therefore it
is often preferable to include an isolation stage.

The current value inferred by the measurement of the voltage across the
drop resistor Rd can only be as accurate as the resistor itself. Therefore, it is
always preferable for this function to use high-stability and low-tolerance
metal-film resistors as opposed to less stable carbon ones.

Current transmission is not very widespread in vibration-measuring
transducers, though it is not totally absent, while it is more typically used
for slowly varying quantities, such as temperature, pressure and weight, for
process control in plants and factory environments.

15.5.8 Basics of low-noise amplification

So far we have been concerned with the reduction of interference, i.e. of that
kind of noise which is not intrinsic in the operation of the circuit components
but comes from the surrounding environment and, as such, could be virtually
eliminated under ideal experimental conditions.

We now briefly consider intrinsic electronic noise, which is related to the
active and passive electronic components making the measurement chain.
Part of this noise, called the excess noise, is due to deficiencies and
imperfections in the components and could in principle be eliminated by
using better devices, though this may not be possible practically. However,
most of the intrinsic electronic noise is unavoidably present due to
fundamental laws of nature, hence all we can do is understand its features
in order to minimize its unwanted effects.

A real amplifier of gain A with its intrinsic noise sources can be modelled as
in Fig. 15.24(a) [1, 2, 4]. All the noise contributions can be referred to the
amplifier input (RTI) and condensed into the equivalent voltage and current
noise generators VN and IN which are assumed to be uncorrelated. The respective
unilateral voltage- and current-power spectral densities can be indicated with
SVN(f) and SIN(f). The noise generators are followed by a noiseless amplifier
having a voltage gain A. The noise spectra SVN(f) and SIN(f) depend on the
particular amplifier both in their magnitude and in their frequency dependence.
Most typically SIN(f) is almost white, while SVN(f) may have a more or less
pronounced 1/f component superimposed on a white background.
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Such an equivalent model can be in principle applied to each amplifier in
the measurement chain. However, it is generally sufficient to consider only
the noise of the input amplifier, since it handles the signal at its lowest level.
The noise contributions of all the subsequent stages are of decreasing
importance as the signal becomes increasingly amplified. Therefore the input
amplifier needs to have the best low-noise characteristics in the chain, as it
ultimately determines the noise performance of the whole system.

It is important to point out that the overall noise contribution of an
amplifier is not only determined by its own generators VN and IN but also
depends on the signal source for two reasons. Firstly, the signal source may
add its own noise contribution. Secondly, its internal impedance affects the
way in which VN and IN combine to give rise to the overall output noise.

As an example, consider a noisy amplifier connected to a real voltage
source as shown in Fig. 15.24(b). The source resistance RS has its own thermal
noise represented by an equivalent voltage generator VNS with unilateral
power spectral density given by 4kTRS, where  is the
Boltzmann constant and T the absolute temperature.

By making the simplifying assumption that the amplifier has a rectangular-
shaped bandwidth of width ∆f, for each noise source of power density Sx(f)
it can be calculated the corresponding mean-square value  as

 

(15.24)

Fig. 15.24 Electronic noise in amplifiers: (a) equivalent representation of a noisy
amplifier with voltage and current noise sources at the input of a
noiseless amplifier; (b) noisy amplifier connected to a transducer for
which the thermal noise VNS due to the internal resistance RS is
considered.
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The output noise voltage  is then obtained by quadratically adding the
terms, leading to
 

(15.25)

 
Referring  to the input and taking the root gives the RTI root-mean-
square voltage noise
 

 

which represents the minimum value of the signal VS which can be
distinguished from noise, that is the value for which the S/N ratio is one.
This sets the minimum detection limit or the resolution of the system.

Equation (15.25) shows that, for a given amplifier, the voltage noise is
minimum for RS=0. This consideration is, however, not of great help, since RS

is typically fixed by the sensing element, being for instance the leakage resistance
of a piezoelectric accelerometer. On the other hand, for a given value of RS

the amplifier which adds the minimum possible noise to the unavoidable
thermal noise of RS can be found. This is equivalent to calculating the S/N
ratio at the input and at the output and taking their ratio, called the noise
figure (NF), and searching for the minimum of NF. From equation (15.25) it
can be easily derived that this minimum condition happens for an amplifier
for which  that is said to be noise-matched to the source.

15.5.9 Filtering

Filters are mostly linear processing blocks which provide a frequency-selective
behaviour. This property can be exploited for attenuating unwanted frequency
components in a signal while passing those of interest. In particular, filtering
is of fundamental importance to reduce the residual amount of noise and
interference which, for technical or economical reasons, it has not been
possible to prevent entering the measurement system. It is important to realize
that filtering should not be erroneously thought capable of totally suppressing
noise by repairing any possible deficiency and imperfection of the
experimental equipment and method. Indeed, the use of filtering for noise
reduction can only be effective if done in conjunction with the noise
prevention techniques described in the preceding sections, not in substitution.

A filter may be either analogue or digital. The distinction between the
analogue and digital domains will be illustrated in the Section 15.6. Plainly
speaking, analogue filters are characterized by the property that they handle
signals represented by continuous functions of time. Conversely, digital filters
are processing blocks that handle data resulting from the conversion of the
signal to be filtered into a stream of numbers which represent its values at
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discrete time instants. We will limit our discussion to analogue filters, while
the topic of digital filtering is beyond our scope.

An analogue filter is characterized by its frequency response function H(ω).
Assuming that we consider voltage as the processed quantity, calling Vi(ω) and
Vo(ω) the transform of the filter input and output respectively, it holds that

(15.26)
 

The filtering action works on the basis that, depending on the shape of H(ω),
some frequencies are enhanced or passed without alteration, and others are
attenuated. Passing to the input and output power spectral densities SVi(ω)
and SVo(ω) which can represent either signal or noise, it follows that

(15.27)
 

Therefore, the knowledge of the gain function |H(ω)| of the filter and the
power spectral density of the signal or noise at the input allows us to determine
the mean-square value of the corresponding quantity at the filter output.

The term equivalent noise bandwidth (ENBW) is typically used to define
the rectangular bandwidth ∆ω N whose area is the same of that subtended by

 so that for white noise at the input the rms output noise is
proportional to 

Four categories of filters can be distinguished according to the shape of
their frequency response, namely the low-pass (LP), high-pass (HP), band-
pass (BP) and band-reject (BR) or notch filters. The gain functions |H(ω)| of
each of them are graphically shown in Fig. 15.25. A simple example of a LP
filter is the RC network discussed in Section 15.4.6 with regard to its time-
integration capability.

In all the plots of Fig. 15.25 can be distinguished a frequency region called
the passband where |H(ω)| does not vary and the signal is simply multiplied
by a constant gain |HB|, a region where attenuation takes place called the
stopband, and a boundary region between the two called the transition band.
If |HB| is unity the filter can be built with passive components and is termed
passive, while if a gain greater than one is needed then active stages providing
amplification must be included and the filter is named active.

The limiting frequency separating the passband from the transition region
is called the cutoff or breakpoint frequency ωc of the filter and is typically
defined on a conventional basis. Typically, it is assumed to be the frequency
where the attenuation reaches –3 dB.

Filters can be fixed or tunable. The latter ones provide the capability to
vary the cutoff frequency (for LP and HP types), or the centre frequency and
possibly the bandwidth (for BP and BR types). Some BP tunable filters have
an auxiliary input for a synchronization signal, such as a trigger pulse from
rotating speed sensor on a rotating part, which is directly used to control the
filter centre frequency. This feature makes sure that the filter bandwidth is
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constantly tracking the frequency of the signal of interest even if it varies,
such as in machine run-up or coast-down.

An ideal filter would have perfectly flat passband and complete attenuation
outside, with infinitely sharp boundaries separating the two regions. This
rectangular shape is not realizable in practical filters but can only be
approximated. The roll-off slope of |H(ω)| in the transition regions is related
to the filter order n, which is the number of poles of H(ω), and amounts to
n20 dB per decade of frequency or, equivalently, to n6 dB per octave. Filters
of high order, for instance 5 or more, are available providing in many cases
a satisfactory approximation of infinitely sharp edges. However, the higher
the filter order the higher the tendency of |H(ω)| to ripple within the passband
causing an uneven transmission of the signal frequencies. Moreover, the phase
response due to Ph[H(ω)] is also a point to be considered, since it may cause
significant signal distortion by adding different delays to each frequency
component and causing a variation of the signal shape. It can be shown that
in order to ensure no distortion the filter phase shift should vary linearly
with the frequency. Sometimes, a so-called all-pass (AP) filter can be added
which gives a unitary |H(ω)| but a specific phase response tailored to equalize
the overall phase behaviour and minimize distortion. Another point worth
remembering is that, in general, the smaller the filter passband, i.e. the more

Fig. 15.25 Frequency response of filter types: (a) low-pass (LP); (b) high-pass (HP);
(c) band-pass (BP); (d) band-reject (BR) or notch.

Copyright © 2003 Taylor & Francis Group LLC



the filter is selective, the longer the settling time, defined as the time needed
by the output to return to zero after the input has been removed.

The potential of filters to reduce the noise lies in the fact that if signal and
noise are at distinct frequencies then the noise can be selectively attenuated
without affecting the signal. To this purpose the filter should be centred on
the signal and dimensioned in order to leave out the noise, as shown in Fig.
15.26(a). The higher the filter order the better its capability to reduce the
noise while retaining the maximum of the signal bandwidth.

If not filtered out, both wideband noise and interference at a discrete
frequency which reside within the bandwidth of the measuring system would
be uselessly amplified with the only detrimental effect of reducing the S/N
ratio (Section 15.2). Therefore, the system bandwidth should be narrowed
as much as possible around the signal bandwidth.

As an example, if you are interested in measuring the vibration amplitude
of a light part oscillating at say 500 Hz, it is advisable to insert a BP filter
centred on such a frequency with a suitable bandwidth to suppress wideband
noise and possible interference components such as mains frequency (50
Hz in Europe, 60 Hz in the USA) or stray pickup. The point of the measuring
chain where such a filtering stage is positioned is not in practice
uninfluential, though it is theoretically irrelevant under the assumption of

Fig. 15.26 Filtering as a mean for passing the signal and rejecting noise and
interference. (a) Negligible overlap of signal and noise spectra, therefore
a BP filter centred on the signal spectrum removes most of the noise and
retains the signal. (b) Substantial overlap of signal and noise spectra,
therefore a BP filter centred on the signal spectrum would pass a
significant amount of noise.
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perfect linearity. As a guideline, it is recommended to filter as close as
possible to the signal source, i.e. in the first stages of the receiving unit, in
order to maximize the S/N ratio from the beginning and avoid the possibility
that particularly large amounts of interference, if not removed, cause
saturation of the amplifiers.

When the signal and noise bandwidths overlap as shown in Fig. 15.26(b),
the simple frequency discrimination achieved by filtering loses effectiveness,
since a significant amount of noise cannot be removed without at the same
time attenuating the signal. This situation is typical in the measurement of
low-frequency and DC signals which have to compete with the ubiquitous
and often intense 1/f noise. A possible solution is to make use of modulation
as illustrated in Section 15.3.2. Other methods can provide the equivalent of
a bandwidth narrowing effect by taking advantage of the fact that the signal
repeats itself over time, so that some sort of averaging can be carried out.

15.5.10 Averaging

Filtering is most immediately regarded as a process carried out in the
frequency domain; however, due to the frequency-time duality it has a direct
correspondence in the time domain. The fact that in the frequency domain
the output of a linear filter (as of any linear system in general) is given by
the multiplication of the input for the frequency response, as expressed by
eq (15.26), has its counterpart in the convolution operation.

Indicating with υi(t) and υo(t) the filter input and output voltages now
expressed as functions of time, it holds that
 

(15.28)

 

where h(t) is the filter impulse response, equal to the Fourier antitransform of
the frequency response function H(ω). The symbol * is used to indicate the
convolution operation. Equation (15.28) states that the output υo at time t
can be obtained by the multiplication of the input υi by a time-reversed and
shifted version of h, and the product be integrated over the entire time axis.

Equivalently, the output υo can be regarded as the time average of the
input υi weighted by a function  which depends on the
difference  between the time instants when the output is observed and
when the input is considered. Since in causal systems the effect cannot occur
before the cause,  is zero for  and the upper integration limit in
eq (15.28) could be as well substituted by t.

This latter perspective helps to realize the important fact that filtering in
the frequency domain can be associated with the process of a running, or
moving, average in the time domain. The shape and nature of the weighting
function w(t, ) determines the effective length of time over which the input
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is averaged to produce the output at present time t, and the amount of
importance given to the past history of the input in each instant 

For example, consider again the simple first-order low-pass filter made with
the RC network of Fig. 15.27(a). Since the pulse response is 
the output is given by an exponentially weighted running average of the past
input values. The longer the time constant RC, the wider the moving time
window over which averaging is performed. This translates into an increased
capability of the circuit to smooth sudden input variations, resulting in a low-
pass filtering action as illustrated in Fig. 15.27(b). It is important to observe
how a high value of RC necessarily implies a slow response with a long output
tail, meaning that in fact the system keeps a memory of the input for a time
of the order of 5RC. If it is desired to preserve the signal shape, the positioning
of the cutoff frequency, and hence the amount of the filtered out noise, reflects
a necessary trade-off on the achievable S/N ratio.

If h(t)=1(t) then the output becomes the time integral of the input, i.e. the
time average of all its past history with each instant equally weighted. This is
the limiting case of the exponential weighting obtained for RC going to infinity.

If we now consider applying to the integrator a constant input  to
which a white noise υiN is superimposed, the following fundamental result can
be derived. The signal υiK steadily accumulates over time leading to an output
υoK increasing proportionally to t. On the other hand, the noise υiN randomly
adds and subtracts from its immediately previous value resulting in an mean
output amplitude equal to zero. Only the mean-square value  actually
accumulates, leading to a mean-square output noise  which increases
proportionally to t. As a positive consequence, the S/N ratio at the output
given by  increases as  where Tint is the integration time.

Therefore, it can be concluded that time averaging by signal integration
gives basically the same advantage gained by performing repeated
measurements of the same quantity, with the only difference that
measurements are taken over a continuous time interval. As a matter of fact
the input signal accumulates at the output, while the noise on average cancels.

In the case of an input noise which is not completely uncorrelated, i.e.
has some amount of periodicity, the S/N ratio improvement with increasing
the integration time is accordingly less than  If the input noise is periodic
with a frequency fN, such as for power-line interference, it can be entirely
suppressed by making an integer number of noise periods fall within the
integration time, i.e. by choosing Tint equal to or multiple of 1/fN.

In practice, a circuit capable of providing a continuous output which
instantaneously represents the average of the input over the past duration
Tint is rather difficult to implement. Commonly, a somewhat different
processing scheme is used where the output is made available only at the
end of the integration time Tint, after which the system may either pause in
a hold condition or restart another integration cycle.

When the input signal is not constant, the extension of the concept of S/N
ratio improvement due to averaging deserves some attention. The fundamental
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Fig. 15.27 Example on the R–C low-pass filter. (a) Derivation of the step response
as the convolution of the input signal with the filter impulse response
h(t). (b) Time convolution and frequency multiplication are related by
the Fourier transform.
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point in all the above discussion is that a constant input repeats itself exactly so
it experiences a cumulative effect, while the noise is random. Therefore, when
considering the theoretical situation in which the input signal is made by a
succession of infinitesimally short pulses of equal height immersed in noise as
shown in Fig. 15.28(a), the integration has to be performed in such a way to
include just the signal pulses and leave out the time intervals where only the
noise is present. This is equivalent to saying that the integration can no longer
be free-running, but must be gated synchronously with the input signal. As a
result, the integration time Tint is no longer made up of contiguous time instants,
but is a sum of gating intervals relative to subsequent signal pulses. The signal
adds synchronously, while the uncorrelated noise adds randomly as it would
do over a continuous duration and hence it is again averaged out.

The gated integrator is an example of time-variant filter, that is a filter whose
response is dependent on the time of arrival of the input. Time-invariant filters,

Fig. 15.28 Averaging over subsequent signal repetitions. The linked arrows indicate
the signal portions which are averaged together. (a) Averaging of pulses
immersed in noise (gated integration). (b) Averaging of sliding portions
of a signal (boxcar integration). To obtain three averages of the complete
triangular waveform, 3n repetitions are required, where n is the signal
duration divided by the gate time TG. (c) All n signal portions are averaged
in parallel (waveform averaging). To obtain three averages, only three
signal repetitions are sufficient.
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such as the RC circuit, can be entirely represented by the impulse response
h dependent only on the difference  and equivalently analysed either
in the time domain or in the frequency domain by means of the frequency
response H(ω). Conversely, time-variant filters have h dependent on both

 and  which poses problems in determining H(ω) and makes preferable
the description in the time domain in terms of the weighting function w(t, t).

The concept of the gated integrator can be readily extended from the
particular case of a succession of infinitesimally short pulses to any repetitive
waveform, which in fact can be regarded as a series of adjacent pulses of
different height. The averaging can be carried out as shown in Fig. 15.28(b),
where the gate is first positioned at the beginning of the signal and then the
average is taken over a number of signal repetitions (three in the figure).
Afterwards, the gate is slid further by a time TG equal to the gate width and
the average is taken over the next signal repetitions. The process then goes
on by ‘slicing’ the input waveform into adjacent portions which are averaged
with the correspondent ones of subsequent signal repetitions. This method,
which is sometimes called the boxcar integrator, since the rectangular gate
pulse sliding along the signal waveform resembles a car moving on a road,
is effective but is lengthy. In fact, many repetitions are needed to collect a
reasonable number of averages on signals of significant duration compared
to the gate width TG. At the same time, TG cannot be made long, otherwise
the signal would be averaged with its adjacent portions, resulting in an
unwanted low-pass filtering effect.

The solution comes from the waveform averaging method illustrated in
Fig. 15.28(c). Now all the slices of the input signal are acquired simultaneously
from each signal repetition and averaged with the corresponding ones of the
next incoming signal. Waveform averaging can be thought of as a set of
gated integrators working in parallel, each one making a processing channel
devoted to a particular time portion of the input signal. The improvement in
speed is evident, since m signal repetitions are now sufficient to collect m
averages of the entire waveform.

All the above considerations are based on the assumptions that the input
signal is repetitive and the examples of Fig. 15.28 assume in particular that
it is periodic. The repetitiveness is a necessary condition; the periodicity,
however, is not a fundamental requirement. All that is needed is a method to
synchronize the averaging process with the incoming signal, in order to avoid
that corresponding signal slices from subsequent repetitions scroll over
different gating intervals causing an error in the determined average.

If the signal is intrinsically repetitive, or periodic in particular, this can be
achieved by triggering the start of the averaging at a fixed point of the signal
repetition interval or, if the noise level is relatively low, at the instant when
the input reaches a given threshold value. Attention should be paid to the
fact that any interfering component which is exactly time-correlated with
the signal, i.e. shares the same periodicity, cannot be reduced by averaging
but it is actually enhanced as it adds in phase over different repetitions. In
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such a case, if allowed, it is advisable either to change the rate of the signal
repetitions or force them to happen at irregular instants, or to filter the
interfering frequency if it falls out of the signal bandwidth.

If the signal is not repetitive, it can in most cases be made repetitive by
repeatedly exciting the phenomenon that causes it, such as when several
impact responses from an accelerometer are obtained by subsequent hammer
blows and are waveform-averaged together. As long as the noise can be
considered uncorrelated, the time of occurrence of the blows and their time
separation are unifluential and only their total number, i.e. the number of
averages, determines the S/N ratio at the output.

As a concluding observation, it should be realized that synchronous
averaging is actually a bandwidth-narrowing technique. The measurement
bandwidth increasingly reduces at a rate proportional to the integration time
Tint or, equivalently, to the number of averages m and shrinks on the signal
while leaving out the noise. As opposed to filtering in the frequency domain,
the signal harmonic components need not be adjacent for the method to be
effective but may as well be separated. The averaging process is able to
detect them and enhance their amplitude over wideband noise by selectively
concentrating the energy accumulated from signal repetitions.

15.6 Analogue-to-digital conversion

Analogue signals take their name from the fact that their time behaviour is
analogous to, i.e. an exact replica of, that of the real-world quantity that
they represent. Analogue signals, therefore, are continuous functions of time
and can assume an infinite number of values within a range. Conversely,
digital signals, also called numerical signals, have defined values only at
discrete time instants and can assume only a finite number of stepping values
within a range.

For instance, if we measure the temperature of a room with an electronic
thermometer and continuously plot the results on a strip-chart recorder, we
obtain an example of an analogue signal or, better stated, an analogue
representation of the temperature as a function of time. In contrast, if we
decide to take the measurement once every hour and to round-off the readings
to a resolution of say 1°C, we obtain a sequence of data pairs, i.e. the time of
measurement and the corresponding reading, which represent the temperature
over time in a digital form. It is important to notice that, as the above example
illustrates, the digital representation of a signal implies both a time
discretization, called sampling, and an amplitude value round-off, called
quantization. Sampling and quantizing are fundamental steps in passing from
analogue to digital signals, i.e. in performing an analogue-to-digital conversion.

It is important to note that a time-discrete signal is not necessarily a digital
signal unless amplitude quantization also occurs. On the other hand, it is
essentially impossible to quantize a signal without acquiring its value for a
time interval, however short. Therefore, practical amplitude quantization
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involves time sampling. In digital signals the time sampling most invariably
occurs at regularly spaced instants; the interval between successive samples
is called the sampling interval and the number of samples per unit time is
called the sample rate.

The quantized values of digital signals are usually coded into binary format,
that is they are expressed as numbers in base 2. The binary numeration
system makes use of two symbols, 0 and 1, which are called bits from the
contraction of ‘BInary digiT’ The choice of the base-2 coding is motivated
by the fact that it is particularly easy and convenient to obtain electronic
circuits which use two voltage or current levels to represent the equivalent
of binary digits 1 and 0. In contrast, it would be rather difficult and inefficient
to obtain ten different voltage or current levels necessary to implement the
decimal coding. The numeration in base 10 is well suited to humans, but
rather problematic for adoption by machines.

Binary-coded signals obey the formal rules of the Boolean logic, which is
based on the two states ‘false’ and ‘true’ that can be made to correspond to
binary levels 0 and 1. For this reason, binary-coded digital systems are usually
called logic systems. Most often digital signals are represented by voltage levels.
When the absence of signal, i.e. a voltage level low, is coded as 0 and the
signal presence, i.e. a voltage level high, is coded as 1 the logic is said to be
positive. When the inverse correspondence applies, the logic is called negative.

Most of today’s electronic instrumentation makes an extensive use of digital
circuitry and processing techniques to manipulate signals. In fact, due to the
advent and widespread diffusion of microprocessors, microcontrollers, and
digital signal processors (DSP) this is accomplished in an efficient an convenient
way. Moreover, thanks to the availability of memory circuits and devices,
digital signals are more easily stored and retrieved without degradation.

On the other hand, the real world variables are typically analogue in
nature. Therefore, the need is always present for devices capable of converting
signals from the analogue to the digital domain and vice versa. They are
respectively called analogue-to-digital converters (ADC), and digital-to-
analogue converters (DAC). In the present section we will mainly concentrate
on ADCs, even if many presented concepts apply equally well to DACs.

15.6.1 Quantization: resolution, number of bits, conversion time

We will consider the input of an ADC as an analogue voltage signal vi(t)
which, for sake of simplicity, is supposed to be always greater than zero, i.e.
unipolar and positive. Each ADC has an input range represented by the
fullscale value VFS which specifies the maximum input level acceptable for
conversion. When  the ADC output code is the maximum possible.

The number of intervals into which VFS is divided is 2n, where n is the number
of bits used to represent the output in digital format. The AD conversion is
performed by assigning the value of the input signal amplitude to the
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corresponding interval identified by a digital code. The resolution of an ADC
is the smallest increment in the input vi which causes the output code to change
by a unitary step. For example, an 8-bit ADC divides VFS into 28=256 intervals
numbered as 00000000, 00000001,…, 11111111. Thus the resolution of an
8-bit ADC is one part in 256, equivalent to 0.39% of VFS, which for VFS=10 V
corresponds to 39 mV. A set of eight bits grouped to represent a single number
is called a byte. The rightmost and leftmost bits are respectively called the
least-significant bit (LSB) and the most-significant bit (MSB).

Therefore, resolution and number of bits are equivalent terms defining
the same concept, i.e. the width of the discretization interval referred to the
full scale. Related to the resolution is the dynamic range, usually expressed
in dB as 20 log102n where n is the number of bits. This leads to approximately
6 dB per bit, hence an 8-bit ADC has a dynamic range of 48 dB.

Depending on the conversion method and the technology, ADCs with
markedly different resolutions are available. For general purpose applications
12–14 bits are typical, and for slowly varying signals 16 bits are achievable
with 20 bits and beyond encountered in top-end instrumentation.

For illustration purposes, the ideal conversion characteristic of a 3-bit
ADC is shown in Fig. 15.29. The staircase output resulting from amplitude
discretization is responsible for the quantization error, representing the
intrinsically unavoidable difference between the converted output and the
corresponding input. The quantization error has a typical sawtooth shape
with maximum amplitude of ±0.5 LSB. This can be treated as a random
noise, called quantization noise, superimposed on the input with a resulting
rms value equal to  If a sinusoidal signal of peak amplitude
VFS/2 is taken as a reference, the S/N ratio can be calculated as the ratio
between the rms signal and rms quantization noise, yielding

 

(15.29)

An ideal ADC would be limited only by the associated quantization error,
that is by the resolution, which is, however, more a design parameter rather
than a performance specification. Real ADCs are affected by additional non-
idealities, such as offset and scale errors, nonlinearity errors, possible missing
codes and temperature-induced errors, which overall combine in worsening
the actual conversion accuracy and decrease the S/N ratio below the ideal
limit set by the quantization error given by eq (15.29).

The quantization process is not instantaneous but takes some time to be
carried out. This time is called quantization or conversion time and usually
depends on the type of the ADC and sometimes also on the signal amplitude.
The reciprocal of the conversion time is called conversion rate.

For the AD conversion to be carried out accurately it is important that
the input signal be constant within the conversion time. Some ADCs are
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particularly sensitive to this potential problem, hence they are often preceded
by a stage called sample and hold (SH), which has the function of taking a
snapshot of the input signal and holding the value for a time sufficiently
long for the quantization to be performed.

15.6.2 Sampling: sampling theorem, aliasing

Sampling consists of the time discretization of a continuous signal. When
performing repeated AD conversions on a signal we at least have to allocate
the conversion time between successive quantizing operations, hence we
cannot expect to have a continuous flow-rate of digitized values. The
theoretical superior limit of such a flow-rate is the conversion rate, even if
in practice it is always less. As a consequence, sampling is inherently present

Fig. 15.29 (a) Ideal characteristic and (b) associated quantization noise of a 3-bit
ADC.
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in a real quantization process, although it should be realized that it does not
necessarily imply that quantization occurs.

In this section we are primarily concerned with sampling itself for its
effect on the processing of time-varying signals. The fact that the sampled
signal is subsequently quantized to perform an AD conversion is not important
to the following considerations.

Taking again as an example the measurement of the temperature in a
room, imagine that we have monitored the temperature during a period of
24 h. Then we are unable to ascertain if there have been temperature variations
between daytime and nighttime if we have not taken at least two readings at
a 12 h distance. Similarly, we cannot determine possible temperature
fluctuation during a single 12 h daylight period if we do not take at least two
readings at a 6 h interval. That is, to catch the presence of a periodicity in a
continuous signal we need to sample it at a rate which is at least twice such a
periodicity. The principle intuitively suggested by this example is formalized
in the sampling theorem by Shannon (previously implicitly formulated by
Nyquist), which states that to reconstruct a continuous signal having its highest
frequency component at fM from its sampled version, the sampling frequency
fS must be at least two times fM, that is it must be ensured that  The

Fig. 15.30 The aliasing phenomenon seen in the time domain: (a) absence of
aliasing; (b) presence of aliasing.
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frequency fM is sometimes called the Nyquist frequency of the signal. Thus,
the minimum allowed sampling rate, called the Nyquist rate, is twice the
Nyquist frequency.

The concept is illustrated in Fig. 15.30 showing the sampling of a sinusoidal
signal. If fS satisfies the Nyquist condition  the sampled signal is a
faithful representation of the continuous signal with no information lost in
the sampling, since the original waveform can be readily recovered by
interpolating the sampled values. Of course, the higher fS the more the sampled
waveform resembles the continuous signal, but practical limits necessarily
impede an arbitrary increase of fS. On the other hand, if  the sampled
values are no longer uniquely representative of the original signal. In
particular, it can be observed how they may as well be attributed to the
dashed waveform, which is completely different from the original signal and
actually nonexistent at the input. Such a spurious waveform resulting from
undersampling (i.e. insufficient sampling rate) is called an ‘alias’ and the
phenomenon is named ‘aliasing’.

Aliasing can be better understood if the sampling process is analysed in
the frequency domain. The sampling operation is actually the multiplication
of the continuous time signal by a series of pulses equally spaced by 1/fS,
where fS is the sampling frequency [12]. This, seen in the frequency domain,
corresponds to the fact that the spectrum of the sampled signal is a periodic
repetition of that of the underlying continuous waveform at a regularly spaced
distance given by fS, as shown in Fig. 15.31. This follows from the fact that
sampling is basically equivalent to amplitude modulation.

If  as in Fig. 15.31(b) the frequency bands of adjacent spectrum
repetitions are separated and the original signal can be reconstructed by
low-pass filtering the sampled signal. Conversely, if  as in Fig. 15.31(c)
the frequency bands of adjacent repetitions overlap, since each component
at a frequency  is folded back at a frequency f–fS superimposing on
the spectrum of the original signal. This is the aliasing condition and no
linear filtering can recover the original signal from the sampled version.

The aliasing phenomenon finds practical applications for instance in the
stroboscope, where a pulsed light illuminates a rotating or vibrating object.
If the frequency fS of the light pulses is made equal to that of the moving
target fM, the latter appears still. Furthermore, if fS is slightly greater than fM

a negative frequency alias is produced which manifests as an apparent
inversion of the target motion. Stroboscopes can then be used to determine
the unknown frequency fM in a noncontact way by tuning fS until the motion
apparently stops.

Aliasing can only be avoided by sampling fast enough. In practical cases,
the bandwidth of the input signal is not always known in advance to properly
choose the sampling frequency. In addition, high-frequency interference and
wide bandwidth noise can unpredictably enter the system and appear at the
sampler input. All these circumstances may harmfully cause aliasing, which is
generally very difficult to detect when the actual input signal is unknown. To
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avoid the problem it is typically desirable to deliberately limit the bandwidth
at the sampler input by inserting a filter in front of it, called an antialiasing
filter.

An ideal antialiasing filter would have a rectangular shape with flat
passband, infinitely sharp roll-off and no transmission in the stopband.
Practical antialiasing filters are high-order analogue filters (6–8 poles is
typical) with a cutoff frequency fc set to include the expected signal bandwidth,
and they have a finite transition region. For these reasons, a sampling
frequency higher than the theoretical Nyquist limit given by 2fc is usually
adopted. Typical oversampling factors may range from 3 to 5.

After the signal has been properly sampled, amplitude quantization can be
performed to carry out a complete AD conversion of a time-varying analogue
input. In practice, a sample cannot be acquired instantaneously but it takes a
finite time, often called the aperture time of the sampler. Therefore the
digitization time of an ADC, i.e. the time from the start of the sampling of an
input value to the availability of the correspondent digital number at the output,
is determined by the combination of the sampler aperture time and the quantizer
conversion time. Actual ADC circuits incorporate both the sampler and the
quantizer functions, which, however, often may not be quite distinct depending
on the functioning principle of each particular device.

Fig. 15.31 The aliasing phenomenon seen in the frequency domain: (a) spectrum of
the input signal; (b) absence of aliasing; (c) presence of aliasing as shown
by spectrum overlapping.

Copyright © 2003 Taylor & Francis Group LLC



The antialiasing filter, if present, is a separate circuit. Its performance
specification can be somewhat relaxed compared to the ideal requirements
by taking advantage of the finite quantization resolution. In fact, all the
residual aliasing components falling below the rms quantization noise level
are of no concern, since they are not converted.

15.6.3 Main ADC types

The functioning principles of the principal ADCs types are briefly illustrated
and their main characteristics are collected in Table 15.1.

Parallel or flash

The analogue input is applied simultaneously to a set of voltage comparators
with equally spaced thresholds derived by a voltage reference at VFS and a
multiple resistive divider. The output levels from all the comparators are
then processed by an encoding block which yields a quantized representation
of the input in binary format.

This technique is the fastest available, since all the bits are determined in
parallel at the same time instant. For this reason, flash ADCs may reach
conversion rates of several hundred megahertz and find typical application
in transient digitizers and digital oscilloscopes. On the other hand, the method
leads to rather complex and expensive hardware, since for n bits of resolution
(2n–1) comparators are required. This is why flash ADCs are typically
available with a maximum of 8 bits, corresponding to 255 comparators.

Successive approximation

The analogue input signal is applied to a single comparator which confronts it
with the output from an internal digital-to-analogue converter (DAC). At the
start of conversion the DAC begins a strategy of binomial search by operating
subsequent bisections of its output from the initial values VFS/2 guided by the
comparator output levels. At the end of the search, which lasts n clock pulses,

Table 15.1 Typical values of speed range and resolution for most common ADC
types

* For line frequency rejection.
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where n is the number of bits of the ADC, the input of the DAC represents the
analogue input in digital form and is then taken as the output of the ADC.

Successive approximation ADCs are relatively fast, since they only need
n comparisons to produce a n-bit output, enabling conversion rates up to 1
MHz. This fact, coupled with moderate cost, makes them general purpose
devices extensively used in most data acquisition (DA) boards. As a drawback,
they tend to be very sensitive to input sudden changes or spikes and then
typically require a sample-and-hold stage to freeze the input during the n
clock cycles needed for the conversion.

Integrating

The input voltage is converted into a current which is used to charge an internal
capacitor at a reference voltage. The time interval necessary to complete the
charging is measured by a digital counter which provides a quantized
representation of the input averaged over the integration time. The most popular
version is the dual-slope ADC which actually charges the capacitor with the
input signal for a fixed amount of time, and then measures the variable time
required to discharge the capacitor at a constant reference current.

Dual-slope ADCs are able to provide resolutions as high as 20 bits and
more; however, they are slow due to their inherent integrating nature. Most
often the integration time is set equal to, or to a multiple of, the power-line
period (20 ms at 50 Hz, and 16.66 ms at 60 Hz) in order to average out
possible interference and increase to overall noise immunity. As a consequence,
the highest conversion rate is 50 or 60 Hz, and even less if multiple cycle
integration is adopted.

They tend to be more expensive than successive approximation ADCs,
and their typical use is in digital voltmeters, or in DA boards dedicated to
the measurement of slowly-varying signals such as temperature, static pressure
or weight.

Voltage/frequency conversion

The analogue input signal is converted into a pulse train with frequency
proportional to the input voltage. The frequency is then measured by a digital
counter, which counts the number of pulses within a fixed time interval.
Such a pulse number is then taken as the ADC output.

ADCs based on V/f conversion can reach resolutions as high as 24 bits,
and are very immune to noise since the input is actually integrated over the
counting time. On the other hand, they are slow since, as in dual slope ADCs,
the quantization scheme inherently requires the input signal to be acquired
for a significant time duration. As a consequence, V/f ADCs are not suitable
for dynamic signals and especially find application in remote sensing of
slowly-varying quantities. In such cases, the V/f conversion can be done at
the remote sensor location and the frequency signal transmitted to the counter,
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in this way offering a markedly higher noise immunity than is achievable
when sending analogue amplitude signals over long distances.

In this regard, it is often affirmed that the frequency conversion provides
a digital representation of a signal. This is incorrect, since the frequency of
a signal is a continuous function of time and no quantization actually takes
place until such a frequency is converted into a number by counting. The
fact that a frequency signal often has the form of squarewave should not be
misleadingly regarded as indicating a digital nature. It simply means that
information is carried analogically in the time scale rather than in the signal
amplitude, which is the exact reason why frequency signals are particularly
insensitive to amplitude fluctuations due to noise.

15.7 Data acquisition systems and analysis instruments

15.7.1 Vibration meters

Vibration meters are portable instruments which connect to accelerometers
or handheld probes and provide the measurement and display of one or
more vibration parameters. Some units are pocket-sized for on-the-spot tests.
Often they measure velocity, but most frequently they measure acceleration
and extract velocity and displacement by integration. The result is usually
displayed on an analogue needle indicator or on a digital liquid crystal display
(LCD), or frequently on both.

In general, vibration meters measure the amplitude of the vibration
parameter of interest over a range of frequencies, therefore giving an integral
result related to the measurement bandwidth, which is generally user-
selectable. By inserting a tunable narrow band-pass filter (also called a
resonant filter) at the input, a selective frequency analysis can be performed
by sweeping the filter frequency and taking the corresponding readings. Some
units have the tunable filter internally. Typically the displayed reading is
related to the rms value of the measured quantity, but almost always the
instrument may also indicate the peak value or the crest factor, i.e. the ratio
of peak-to-rms value.

Depending on the model, some additional features may be present, such
as input charge-mode or constant-current-mode amplifiers for piezoelectric
accelerometers, an interface to a personal computer or printer, relay contacts
to activate external controls or alarms on occurrence of threshold trespassing.

Vibration meters are suitable for the measurement of continuous vibration
levels, but not for transients. They are most typically used for machinery
inspection and maintenance, often coupled to handheld probes. In particular,
they find wide application in tests on rotating machines in a frequency range
which is generally between 10 Hz and 10 kHz. Several models can be directly
used to perform vibration severity and exposure measurements in accordance
to ISO 2954, 2631 and 8041. Some manufacturers offer special versions
usable as human hand-arm vibration meters in compliance with ISO 5349.
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15.7.2 Tape recorders

Tape recorders enable the acquisition, storage and playback of electrical
signals coming from transducers by converting them into the magnetization
of a ferromagnetic tape. There are two types of tape recorder, differing in
the format in which the signals are transferred and stored, namely the
analogue and the digital recorders.

Analogue

The input signal is recorded by modulating the tape magnetization as a
continuous function of time. To this purpose, two alternative methods are
adopted, which are the direct recording (DR) and the frequency modulation
(FM) methods. In the DR mode the input signal amplitude as a function of
time directly modulates the degree of magnetization of the tape along its
length. In the FM mode, the input amplitude is converted into a frequency
signal which is used to magnetize the tape at the saturation levels, resulting
in the information being contained in the number of magnetization inversions
for unit tape length.

The two methods have similarities and differences. They are similar in
the fact that they can use the same tape, standard audio or VHS cassettes,
and, as such, several recorder models use both DR and FM and provide the
option to choose between the two techniques. For both methods, the
frequency response increases with the tape speed, which can also be different
between recording and playback. As a consequence, for a given tape length,
higher frequency response implies shorter available recording times.

As for the differences, the DR mode cannot record and reproduce DC
signals while, on the other hand, its upper frequency limit can be considerably
high. The typical frequency response obtainable with VHS cassette recorders
is from 20 Hz to well above 100 kHz. Since the degree of magnetization of
the tape can change over time due to tape deterioration and ambient
conditions, the DR mode provides poor preservation of the recorded
information.

The FM mode has the advantage that it can record DC signals, as they
correspond to a magnetization at a constant frequency, but it has an upper
frequency limit generally around 50 kHz which is typically lower than
achievable with DR. Moreover, for a given upper frequency limit it requires
a faster tape speed than DR, hence the available recording time is consequently
less. The preservation of information on tapes recorded with FM is good.

An important characteristic of tape recorders is the dynamic range or,
equivalently, the S/N ratio. In this regard, the FM method tends to be
superior to the DR on a wide-frequency-range basis. However, since the
former method has typically a smaller bandwidth than the latter, the actual
comparison on the same narrow band can provide somewhat different
results. Anyway, the average S/N ratio achievable is around 50–60 dB. In
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general, for both the RD and the FM recording methods the accuracy in
the tape transport mechanism is a fundamental limiting factor of the
achievable performances.

Analogue multichannel tape recorders are on the market that can acquire
up to 24 signals and have an auxiliary channel connected to a microphone
for memo recording. In tests on rotating machines one channel is usually
dedicated to the signal from a one-per-revolution sensor, in order to provide
a reliable synchronizing signal for averaging on playback.

An important feature which characterizes analogue recording and
differentiates it from digital is that the bandwidth of a multichannel unit is
only dependent on the tape speed irrespective of the number of channels.
Additionally, the intrinsic low-pass characteristic during recording related
to the adopted tape speed can be exploited as an effective antialiasing filter
for signal to be subsequently converted into digital form.

Digital

In digital recording the analogue input signal is converted into a digital data
stream by an ADC and then transferred into the tape magnetization by means
of a pulse-coded modulation (PCM) technique [13]. Digital audio tape (DAT)
recorders are very versatile and powerful instruments, and with all the features
offered by the digital techniques they are increasingly replacing analogue
units.

They have no problem from the tape transport mechanism, since the
synchronization of recording and playback depends on the accurately set
sampling frequency. The dynamic range is very high and, depending on the
number of bits of the ADC used, which is typically 14 or 16, the S/N ratio
is of the order of 75–80 dB. DATs allow the simultaneous recording on
many channels with a phase difference among different channels typically as
low as 1°. As a typical property of digital sampling instruments, the
bandwidth available on each channel depends, for a given unit, on the number
of channels activated. The total bandwidth given by the individual channel
bandwidth multiplied by the number of channels is a constant for a given
tape speed, hence doubling the channel number halves the individual channel
bandwidth.

Most units employ a multiple speed technique for different recording and
playback times for optimizing tape usage, and give the user the opportunity
to select the channel-frequency configuration most suitable to the application,
with often the possibility of assigning different bandwidths to different
channels. In general, the upper frequency limit of DATs can be satisfactorily
high but tends to be lower than achievable with DR analogue recorders at
parity of channel number. As an example of the achievable performance, a
16-channel unit, expandable to 32, can typically acquire all the channels
with a 16-bit resolution and a frequency response from 0 to 20 kHz on each
channel.
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The problem of the large quantity of data to be stored has been one of
the limiting factors of DATs, but its relevance continuously decreases as
technology progresses. Currently, there are units on the market which provide
a tape storage capability of 25 Gbytes, corresponding to an available
recording time that, even at the highest sample rates, is generally sufficient
for most applications. Limiting the bandwidth from DC to 5 kHz on 16
channels, the available recording time can be several hours.

DATs invariantly come with an interface for connection to digital
computers for data analysis and automatic operation control, and in most
cases are portable units which can be used conveniently in the field.

15.7.3 Computer-based data acquisition boards and systems

In a large number of applications requiring the measurement, processing and
storage of signals from multiple transducers the use of data acquisition systems
(DASs) employing an analogue-to-digital (AD) board interfaced to a personal
computer (PC) represent the preferred solution, from both technical and cost
points of view. Traditionally, such systems used to be limited to quasi-static or
low-frequency signals. However, due to the significant improvements in
computer performance, including computational power, speed and memory
storage capability, and the availability of microcontrollers and digital signal
processor (DSP) chips of ever increasing performance and reduced price, they
have currently become well suited to dynamic signals as well, such as are
encountered in vibration tests. As a matter of fact, the vibration measurement
applications where a good multichannel DAS based on a fast AD board
interfaced to a PC proves unsatisfactory are increasingly few. Moreover, the
presence of the PC represents a great advantage, especially for field operation,
since it incorporates in a single unit the functions of measuring instrument,
and data analysis and storage system. Some manufacturers, for instance, use
this kind of architecture comprising a dynamic DAS and a notebook PC with
dedicated software to implement a completely portable modal testing system.
In general, state-of-the-art PC-based dynamic DAS, also called waveform
digitizers, can offer better resolutions than the typical 8 bits of a digital storage
oscilloscope (DSO), and longer recording times than the usually more expensive
transient recorders.

The simplified block diagram of a multichannel dynamic DAS is shown
in Fig. 15.32. Each input signal firstly enters a dedicated antialiasing filter to
remove the frequency components beyond half the sampling rate. In low-
frequency AD systems the antialiasing filters are typically absent, but dynamic
boards most invariantly have them either internally or as add-on modules.
Antialiasing filters generally have a very sharp roll-off and a variable cutoff
frequency related to the selected sampling frequency. They may optionally
be bypassed entirely to provide visualization of the signal without any possible
distortion and delay introduced by the filter, but in such cases, of course,
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possible aliasing problems may occur. It should be noted that antialiasing
filters are necessarily analogue as they must come before the sampling stage,
while digital filters cannot be used for the purpose even if they may be useful
after conversion to smooth the data or reduce noise.

Since using an ADC for each channel would be very costly, the solution
usually adopted is to use a single ADC to serve multiple channels sequentially
connected at its input by means of a multiplexer (MUX). A multiplexer is a
circuit capable of connecting upon command one among several inputs to a
single output, and is essentially equivalent to an electronically controlled
rotary switch.

Multiplexers can be either made using multiple relay switches or transistor-
based electronic switches. The former have extremely low resistance (0.01 Ω)
in the closed position, negligible parasitic capacitive effects and high survivability
to overvoltages, but they are costly and, most of all, very slow with a maximum
switching rate lower than 1 kHz. Therefore, dynamic systems invariably use
electronic multiplexers as their switching rate can be several orders of magnitude
higher. On the other hand, they have higher resistance (10 Ω), are more sensitive
to voltage overloads and tend to suffer from charge injection and parasitic
capacitive effects which can cause settling problems and crosstalk between
adjacent channels. To minimize settling time, some systems use voltage buffers
in front of the MUX.

The MUX output is then fed to a programmable-gain amplifier (PGA)
which provides different gain values according to a digital control code,
hence allowing optimal matching of signal levels from different transducers
to the ADC input range. At slow rates such a control code could be generated
by software from the PC and varied between successive commutations of
the MUX in order to set a different gain and range for each scanned channel.
This procedure is, however, unsuitable for dynamic signals because of its
slowness and time unpredictability due to software delays. In particular, it is
not compatible with a subsequent data analysis using the fast-Fourier-
transform (FFT) algorithm which instead requires equidistant samples. The
commonly used solution employs a dedicated sequencer on the board which
can be programmed with the number of channels to be scanned by the MUX,

Fig. 15.32 Block diagram of a multichannel dynamic data acquisition system.
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the scan order and the relative gain settings of the PGA, thereby ensuring
maximum speed and time accuracy. This feature is called programmable
channel-gain list or queue. Following the PGA there is the sample-and-hold
(SH) stage followed by the ADC. Most often the ADC is of the successive
approximation type for its good speed compared to the number of bits, which
is typically from 12 to 16.

The SH and ADC are properly synchronized by the controlling logic on
the board to operate at the selected sampling rate. Generally, several options
are possible to trigger the AD conversion, including hardware (preferred)
and software triggering. Most often the system incorporates a ring memory
buffer where data are stored continuously but retained and visualized only
in relation to the triggering event, hence allowing for pre-, post- and about-
trigger acquisition.

It is of fundamental importance to realize that the use of a single ADC
working at a sampling rate fS multiplexed across n channels limits the rate
at which the signal from each individual channel can be sampled and
converted into digital form. In fact, as the channels are scanned sequentially
each of them is actually sampled at rate equal to fS/n. The quantity fS is
called the aggregate sampling rate (or frequency), and the manufacturer
specifies its highest value, expressed in samples/s or hertz, as an indication
of the maximum conversion speed achievable while using a single channel.
For example, a DAS with a maximum aggregate sampling rate of 200
ksample/s can digitize the signals from eight multiplexed channels at no
more than 25 ksample/s per channel. The aggregate sampling rate
specification should not be confused with the system bandwidth, which
refers to a different concept related to the analogue domain and defines
the highest signal frequency which can be passed into the channel without
being attenuated.

A fundamental limitation of the multiplexed ADC connection is that it
introduces time skews between different channels due to the readings being
not taken at the same instants but sequentially. This is particularly detrimental
with fast signals, especially when preserving the phase relationship among
different channels is required, as typically happens in vibration analysis. A
possible solution is that of using a dedicated ADC for each channel but this
is very costly and then rarely adopted. Alternatively, there exist methods for
time skew correction by intervening on the digitized data, but they are of
limited applicability, especially with transients.

The preferred approach consists of performing simultaneous sampling on
all the channels by employing multiple sample-and-hold blocks, as shown in
Fig. 15.33. In this way, the samples from all the channels that are sequentially
converted by the ADC are always relative to the same instants, therefore the
corresponding digitized signals become synchronized. Simultaneous-sampling
DASs should be generally preferred for dynamic applications, and become
essential for performing high-quality vibration measurements, such as in
modal testing.
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After AD conversion the digital data are temporarily memorized and then
transferred to the PC under the control of dedicated logic circuitry which
supervises and coordinates all the system functions. Ever more often, dynamic
DASs incorporate DSP chips, as shown in Fig. 15.33, which enormously
extend the onboard computational power and enable real-time data
processing and analysis without burdening the PC.

In relation to the type of connection to the PC, DASs can be classified as
plug-in boards or external systems. Plug-in boards are mounted inside the
computer cabinet and directly connect to the PC bus, which ultimately
determines the maximum allowed data transfer speed to the computer
memory. External systems are more convenient but their transfer speed might
be limited by the interface used for connection to the PC. However, both the
PCMCIA and the enhanced parallel port (EPP) interfaces can currently ensure
significantly high transfer rates and hence they are increasingly adopted as
connection links to external DAS, which consequently are becoming more
popular.

The characteristics which specify the performances of a DAS can be divided
into static (DC) and dynamic specifications. Static specifications include ADC
resolution (number of conversion bits) and DC accuracy. It should be kept in
mind that resolution and accuracy are different, with the former being the
theoretically achievable limit of the latter when no errors other than the
conversion error are present. High-quality systems have a DC accuracy very
close to their resolution limit: on the other hand, beware systems which claim
an attractively high resolution without specifying accuracy. In such cases
what often happens is that the resolution is used to measure ‘accurately’ the
system errors, such as amplifier gain and offset errors or thermal drift.

DC accuracy can be specified as a number of bits, as a percentage of the
reading (%rdg) plus a number of bits, or as a percentage of the conversion
range. Resolution and DC accuracy are insufficient to describe the DAS
performances under dynamic operation, such as the errors resulting from
multiplexer settling time, signal distortion caused by the antialiasing filter,

Fig. 15.33 Block diagram of a multichannel dynamic data acquisition system with
simultaneous sample-and-hold on each channel.

Copyright © 2003 Taylor & Francis Group LLC



amplifier bandwidth limitations, or sample-and-hold and ADC nonidealities
especially influential when multiple channels are scanned with different gains.
Moreover, a high DC accuracy does not necessarily imply good dynamic
performance.

A global figure of merit of DAS performance under dynamic operation
which is often taken as the parameter to specify the overall dynamic accuracy
is the equivalent (or effective) number of bits (ENOB). The ENOB is the
number of bits n which satisfies eq (15.29) when the S/N ratio is not the
ideal one resulting from quantization noise only, but is the one determined
from actual measurements on the systems under dynamic conditions.
According to this definition, the ENOB is given by

 
(15.30)

 
For example, a hypothetical 12-bit system with a ENOB of 11 can be ‘trusted’
under dynamic operation to one part over 2048=211, and not to one over
4096=212.

When generically referring to the speed of a DAS the term throughput is
often used. The throughput actually specifies the rate at which a signal can
be converted and the resultant data transferred to the computer memory.
Therefore, it takes into account both the digitization time, depending on the
selected sampling frequency and number of channels, and the data transfer
time. For high-speed systems the latter factor can be as important as the
former or even dominant.

The data transfer method can be based on programmed input/output (PIO),
either software-controlled or interrupt-driven, or make use of direct memory
access (DMA). PIO is too slow to support the typical requirements of dynamic
applications, while DMA, as it is hardware-controlled, can be very fast and
is therefore the generally adopted method.

It is generally advisable to ascertain if the specified throughput refers to
burst or continuous transfer rates, which may be significantly different in
value. The fastest systems have onboard memory for temporary storage of
the data when they are acquired faster than transferred to the computer, so
that no data are lost and the DAS performance is not limited by the speed
of the computer bus.

When dealing with dynamic signals it is not only important how fast the
data can be acquired, but also for how long. Long recording times require
the computer to have enough random access memory (RAM) and fast access
routines to a high-capacity hard-disk for continuous data streaming.

DASs generally come with several optional features, such as onboard
counters and digital I/Os, or the capability to connect to expansion boards
to increase the channel count, usually, however, at the expense of speed.
One of the most important features present in high-quality dynamic DASs is
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an internal DAC to output a signal usable for driving a vibration shaker or
actuator for excitation purposes. Typically, several DAC signal options are
provided including sine, random, user-defined and playback of acquired data.

15.7.4 Frequency and dynamic signal analysers

The analysis of signals in the frequency domain is an extremely powerful tool
to investigate the nature of dynamic phenomena and mechanical vibrations in
particular. The evaluation of the frequency content of a complex signal may
often reveal signal features and details otherwise undetectable with an analysis
in the time domain. Moreover, the majority of the signal characteristics
observable in the time domain become more clearly identifiable and quantifiable
when seen in the frequency domain, for instance with resonances.

When processing the signals analogically, as done in the past, different
instruments need to be used for analysis in the time domain and in the
frequency domain. Today, a single instrument can convert the incoming signals
into digital form and then perform both types of analysis thanks to the
progress in electronics and digital signal processing.

In the following paragraphs we will give a brief description of analogue and
digital frequency analysers, with an emphasis on the latter due to their higher
capabilities for vibration measurements and widespread usage in this field.

Analogue frequency analyzers

Analogue frequency analysers are also called analogue spectrum analysers.
The basic functioning principle consists of passing the input signal through
a bank of selective band-pass (BP) filters centred at adjacent frequencies and
measuring the power at the output of each filter to determine the signal
component at the corresponding frequency. To obtain good frequency
resolution the filters must be highly selective, i.e. have a narrow passband,
therefore to cover a suitably wide measuring span a large number are required
and the consequent cost is excessive. An alternative could be that of using a
tunable filter which can be swept in frequency across the signal bandwidth
to successively measure the power level at each frequency component.
However, tunable filters of suitably high quality are difficult to obtain.

The preferred and commonly adopted solution is that of using a single BP
filter of high selectivity at a fixed frequency fF, and then sliding the signal
along the frequency axis to intersect the filter passband with different portions
of the translated signal bandwidth.

This process of translation of the signal bandwidth is called heterodyning
and is commonly used, for instance, in radio receivers. Heterodyning is carried
out in practice by multiplying the input signal with a sinusoidal signal of
fixed amplitude coming from a local oscillator of frequency fL. This is no
different from the amplitude modulation concept described in Section 15.3.2
where amplitude multiplication in time corresponds to frequency translation,
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therefore each signal component at a frequency fi becomes shifted at 
By properly sweeping the frequency fL of the local oscillator, the translated
signal frequency crosses the filter frequency fF and then for every frequency
fi contained in the signal the corresponding power can be measured. The
results are then presented on an XY display such as that of an oscilloscope.

Analogue spectrum analysers only provide the measurement of the signal
amplitude spectrum with no phase information, since each frequency
composing the signal is actually measured at different times because of the
frequency sweeping. Moreover, as the readings only refer to the frequency
components present in the signal at the corresponding measuring instants
along the sweep time, they are not suitable for nonstationary signals such as
transients.

Analogue spectrum analysers have been traditionally widely employed in
acoustics for fraction-of-octave analysis over a limited frequency range, and
currently find common application for very-high-frequency signals (up to
the gigahertz range) such as encountered in telecommunications.

Digital frequency analysers

Digital frequency analyzers work in a completely different way with respect
to their analogue counterpart. The fundamental difference is that in this case
the analogue input signal is first converted into digital form and memorized,
then all the analysis work is actually carried out on the data representing the
sampled and quantized signal, rather than on the original signal itself.

This conversion step brings about many significant advantages basically
connected with the opportunity of processing and examining the signal from
different points of view to better extract the desired information. In fact,
once a signal has been acquired it can be subject to either time or frequency
analysis, and very often also octave and order analysis are available in a
single instrument. Due to this flexibility, digital frequency analysers have
earned the more general name of dynamic signal analysers (DSAs).

To perform the analysis in the frequency domain a DSA starts from the
input signal in the time domain and calculates its Fourier transform which,
as the signal is sampled, is actually a discrete-Fourier transform (DFT). The
DFT is, however, very computation-intensive, as a time record of N samples
requires N2 calculations. The solution comes from the fast-Fourier transform
(FFT) algorithm proposed in 1965 by Cooley and Tukey [14] which has
revolutionized the application of Fourier techniques in instrumentation. The
FFT enables us to calculate the transform in Nlog2N steps, thereby gaining
a considerable reduction in computation time as N increases. As a
consequence, the FFT is universally adopted in dynamic signal analysers
which, for this reason, are also named FFT analysers.

The simplified block diagram of an FFT analyser is shown in Fig. 15.34.
The input signal x(t) is firstly antialiasing-filtered and then converted into
digital form, resulting in a sequence of data separated in time by a constant
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interval  where fS is the sampling frequency. The data sequence is
broken into blocks corresponding to time records made by a given number
of samples N, which is usually 1024 or 2048. For the moment we ignore in
Fig. 15.34 parts 1 and 2 enclosed within the dotted lines, which will be
illustrated along the way, and consider the ADC output as if it were directly
connected to the FFT processor.

Since the signal x(t) is sampled in time, its spectrum X(f) is periodic in
frequency with a period equal to fS. Therefore, the FFT calculated on N
samples gives N points in the frequency domain within the band

 As the signal x(t) is real, its spectrum X(f) is even in
magnitude and odd in phase, i.e. is a conjugate even function of frequency.
Therefore, it is sufficient to retain N/2 points in frequency, the remaining
ones adding no further information, and as such the resulting frequency
bandwidth is [0, fS/2].

As the antialiasing filter cannot have an ideal brick-wall shape, at frequencies
close to fS/2 there is some distortion, and therefore it is usually chosen to
visualize a number of frequency points NV lower than N/2 corresponding to
a visualized bandwidth accordingly narrower than [0, fS/2], For example, for
N=1024 and fS=128 kHz the value of NV can be 400 and the visualized
bandwidth equal to [0, 51.2 kHz].

It is important to point out that the data output by the FFT algorithm are
complex numbers which retain information on both amplitude and phase,
the latter being generally referred to the start of the time record. Hence they
represent a complex spectrum which can be visualized on an XY display in
various forms, such as magnitude and phase or real and imaginary parts
versus frequency. The frequency values in which the FFT is calculated are
called bins, and the distance between adjacent bins is equal to fS/N which
gives the resolution in frequency achieved in the spectrum estimation. This
has the fundamental consequence that, for a given value of the sampling
frequency fS, and hence of the visualized bandwidth, the FFT resolution is
inversely proportional to the length N of the time record and, therefore, to
the measurement time. Thus an arbitrary high resolution can be in principle
obtained by acquiring the signal for a sufficiently long time, but this in turn
requires an exceedingly large memory, which is not practically feasible.

Fig. 15.34 Block-diagram of a FFT dynamic signal analyser.
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Moreover, special attention must be paid to nonstationary signals whose
features may change significantly within the measurement time.

When the analysis can be restricted to only the lower part of the bandwidth,
this can be done at an increased resolution by diminishing the value of fS.
This operation, however, must be accompanied by a corresponding reduction
in the cutoff frequency of the antialiasing filter. To achieve this purpose
modern FFT analysers use a clever trick called the fixed sample rate method,
consisting of operating the ADC at its maximum sampling rate and setting
the antialiasing filter accordingly. Then any reduction of the effective sampling
rate is obtained by a digital low-pass filter at the ADC output in which one
sample out of P is retained, as shown in the dotted part 1 of Fig. 15.34. This
process is called decimation and P is named the filter decimation factor. The
result is an effective sampling rate of fS/P with no aliasing, and a corresponding
frequency resolution of fS/PN. In practice, the frequency span has been
decreased and the record length augmented by the same factor P. This method
works fine but is limited by the fact that the lower end of the frequency span
is constrained to be zero, i.e. DC.

To translate the frequency span at other than DC the heterodyning method
is adopted, as already encountered in the analogue spectrum analyser. The
difference is that now the modulation operation is performed digitally by
multiplying the acquired data by a complex exponential sequence of the
form  where fC is the centre frequency at which the bandwidth will
be translated and the integer n spans the record length. This is shown in the
dotted part 2 of Fig. 15.34.

The combination of bandwidth narrowing by sample decimation and
centre frequency translation by heterodyning is usually referred as a zoom
operation, since the displayed frequency window can be expanded around
the region of interest.

The strength of modern FFT analysers is that for input signals of
considerably high frequency all the computations involved are done in less
time than necessary to acquire the data record. In this condition there is no
dead time, hence no data is lost and the analyser is said to work in real time.
The real-time bandwidth (RTBW) is the maximum bandwidth of the input
signal that the analyser can process in real time. Typical values of RTBW are
of some tens of kilohertz but in excess 100 kHz is possible, depending on the
instrument and also on the kind and amount of processing that it performs
on the data.

Most analysers have an overlap feature which consists of calculating the
next FFT spectrum without actually waiting for a complete data record to
be acquired but using some data of the previous one, hence gaining in speed,
particularly in narrow-span analysis.

Concerning the usage of the FFT analyser, it should be firstly pointed out
that the amount of information gained by the visualization of the signal
already in the time domain can be considerable. For example, the presence
of backlash or free play in mechanical parts can be readily detected by the
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presence of harmonics which, due to their phase relationship, give a particular
shape to the time signal. The frequency spectrum of the same signal would
clearly make evident the presence of harmonics, but the evaluation of their
phase to figure out if malfunctioning is present is much less immediate. In
time-analysis mode, most FFT analysers can be externally triggered and
provide pre-, post- and about-trigger visualization.

Sometimes, when inspecting a signal in the time domain the antialiasing filter
can be turned off to eliminate its associated distortion, which typically manifests
on the phase of the highest frequency components. In such cases, it should be
ensured that no aliasing takes place to avoid misinterpreting the results.

The presence of aliasing can be possibly identified by an analysis in the
frequency domain in one of the following ways:
 
• Increase the sampling rate, if possible, and see what happens to the

spectrum. If some frequency components appear to change position along
the frequency axis while the input signal does not change, they are most
likely due to aliasing.

• Alternatively, when possible, the frequency of the input signal can be
changed, for instance increased. Then the nonaliased components will
move to the right along the frequency axis, and the aliased ones, if
present, will move to the left.

• If the signal has sharp edges this determines high-frequency harmonics
with an amplitude typically decreasing with frequency. Conversely, if
aliasing occurs, the folded-back harmonics appear with an increasing
amplitude trend.

 
Most FFT analysers used for vibration measurements are two-channel
instruments. In particular, the two-channel FFT analyser is a fundamental
tool for modal testing, as both the signal from the excitation source, hammer
or shaker, and that from the accelerometer can be acquired simultaneously.
The analyser then allows the complex frequency response function to be
determined, i.e. including magnitude and phase, by computing the auto- and
cross-spectra of the signals, and provides visualization of the coherence
function representing the proportion of the output signal actually due to the
input excitation (Chapter 10). The usage of FFT-analysers for modal testing
is illustrated in detail elsewhere (the interested reader should consult the
further reading list), and will not be covered here.

One of the points where the attention and understanding of the
experimenter is mostly required when performing frequency analysis with
an FFT instrument is that related to the problem of spectral leakage. The
problem arises from the fact that the input data record is limited in length
as it refers to a finite duration during which acquisition is performed. But an
intrinsic characteristic of the FFT algorithm is to assume that the input signal
is periodic, with the period given by the data record length. If such a
periodicity does not exist, as often happens when the data record is a limited

Copyright © 2003 Taylor & Francis Group LLC



portion of a signal initiated before the acquisition start and continuing after
the acquisition stop, then the FFT algorithm attributes the signal
discontinuities between the first and last samples in the record to the presence
of frequency components outside the signal bandwidth. Such extraneous
frequencies are displayed in the spectrum, which then smears along the
frequency axis attenuating or even totally obscuring the components due to
the signal. The spectral leakage, or smearing, caused by the time record
truncation can be prevented by three methods:
 
• When possible make the signal periodic within the record length, that is

change the signal frequency in order to fit the time record with an integer
number of signal periods.

• For transient signals increase the record length by zooming, so that the
signal has the time to extinguish and return to zero without suffering
any truncation.

• Deliberately force the signal to be zero at both extremes of the time
record by multiplying it by appropriate weighting functions centred in
the middle of the record length having a bell shape and tapered ends.
Such functions are called windows and the method is named windowing.

 
Time windows act like filters in the frequency domain. The more the window
is tapered in the time domain the more the filter side-lobes are low, hence
the spectral leakage is reduced and the amplitude accuracy of the spectrum
is increased. At the same time, however, lower filter side-lobes imply a wider
centre-lobe which results in a loss of frequency resolution.

The choice of the window is then always a matter of trade-off between
amplitude accuracy gained by leakage reduction, and frequency resolution
lost due to the enlargement of the window centre-lobe. The most commonly
used windows in order of decreasing resolution and increasing amplitude
accuracy are the following:
 
• Rectangular, or uniform, or boxcar window (meaning that all the data

in the records are multiplied by unity)
• Hamming
• Hanning
• Blackman/Harris
 
As a practical rule, when using tapered windows the signal portion of interest
should be in the middle of the time record for the leakage suppression to be
maximally effective without appreciably distorting the signal shape.

Another aspect where the proper choice of a window can be useful is in
reducing the scallop or picket-fence effect. These terms indicate the amplitude
error occurring for those frequencies of the signal which do not fall exactly
on a frequency bin, but lie between two adjacent bins. In this case, it is as if
the signal spectrum were observed through the openings of a picket-fence
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which may possibly screen the true signal peak. In this circumstance, the use
of a window of the flat-top family offers a good trade-off between leakage
suppression and sufficiently wide centre-lobe to reduce the picket-fence effect.

As we illustrated in Section 15.5.10, an improvement in the measurement
S/N ratio can be obtained by averaging. FFT analysers generally offer two
averaging options, namely time-domain or frequency-domain averaging. In
time-domain averaging, the corresponding sample points of repeated time
records are summed together and then divided by the number of repetitions.
For this process to be effective, the repetitions must be triggered so that they
are synchronized to one another and the time records exactly overlap. In
this way the signal is enhanced, while the noise and the interfering components
uncorrelated with the signal average out eventually to zero.

This method has its exact counterpart in frequency-domain vectorial
averaging, in which the spectra of signal repetitions are summed as complex
functions, i.e. by taking into account of both the magnitude and the phase.
Again, noise can be averaged out if the signal is properly triggered.

In frequency-domain rms averaging, the rms spectra of signal repetitions
are summed hence ignoring the phase information. This method smooths
fluctuations in the signal, which does not need to be triggered any more, but
does not reduce the noise. Indeed, rms averaging can be used to obtain a good
estimation of the random noise floor present in the measurement bandwidth.

Usually, for both time- and frequency-domain averaging, we can choose
between three modes of calculating the average. Let us indicate with Xi and
Yi respectively the ith input and ith output of the averaging process performed
on n repetitions. In the linear or additive averaging mode, the averaged output
Yn is given by
 

(15.31)

 

Most often used is the following recursive formula which allows us to update
the displayed data along with the averaging calculation, without having to
wait until the last repetition is acquired:
 

(15.32)

 

Linear averaging works well for stationary signals. For tracking the trend of
nonstationary signals, exponential averaging is more suitable, as given by
the following expression:
 

(15.33)
 

The term k with  is a weighting factor expressing how much of the
past signal history enters the average computation.
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The last is the peak-hold mode, which is not really an averaging mode. It
simply means that each signal repetition is compared with the previous one
on a point-to-point basis and the highest value is retained and memorized
for comparison with the subsequent repetition. The data available at the
end of the process represent the envelope of the occurred peaks and may be
particularly useful for determining infrequent events which otherwise would
be averaged out.

15.8 Summary

This chapter has been devoted to the description of the electronic measuring
chain starting at the transducers’ output and ending at the data acquisition
and analysis instrument.

Section 15.1 introduces the role of the signal conditioning stage as a mean
to selectively amplify the signal of interest over the unwanted disturbing
components called noise, and of the acquisition instrument for collecting,
processing and displaying the measurement signal.

Section 15.2 discusses how the term noise can be generally used to indicate
both the intrinsic random fluctuations which are unavoidably present in the
signal due to fundamental laws of nature, and the interfering disturbances
which result from nonideal experimental conditions and could be virtually
eliminated in a ‘perfect’ environment. The concept of signal-to-noise (S/N)
ratio is introduced, and it is anticipated how the S/N ratio can be enhanced
by properly tailoring the measuring system bandwidth in order to amplify
the signal and reduce the noise.

Section 15.3 deals with the basic methods for the amplification of DC and
AC signals. It is shown how the Wheatstone bridge allows the measurement
of very small resistance variations superimposed on high stationary values,
such as encountered in strain-gauge based transducers. The AC excitation of
bridges is then illustrated to be adopted with reactive transducers, as LVDTs
and capacitive elements. The important concepts of amplitude modulation
and phase-sensitive detection are then presented as fundamental methods to
extract the signal from AC bridges and achieve a high S/N ratio.

Section 15.4 is dedicated to the amplifier options for piezoelectric
transducers. The voltage and charge amplifiers are presented both as
standalone units and in their built-in versions, and it is shown how the built-
in amplifiers generally offer many advantages especially for field use. Both
the time and the frequency responses of amplified piezoelectric transducers
are then discussed, and the simple and widely used RC integrating network
is presented, pointing out how its region of true integration has a low
frequency limitation.

Section 15.5 is dedicated to the basic methods and techniques for the
reduction of noise, of both of the interference and intrinsic types. Firstly the
possible interference problems related to the connection of a transducer to a
readout unit are explained and discussed, including those deriving by ground
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loops, inductive and capacitive couplings. Then some remedies are presented
including the use of electrostatic shielding, differential versus single-ended
connection scheme, galvanic isolation and current signal transmission.
Afterwards, there is a brief treatment of the problem of the reduction of intrinsic
noise by low-noise amplification, showing how the overall noise depends on
both the contribution of the amplifier and the transducer internal resistance.

Then the basics of analogue filters are illustrated with reference to their
use in removing noise without affecting the signal. A general discussion of
the concept of averaging then follows, especially oriented towards pointing
out analogies and differences with respect to filtering and giving indications
on when to use the former or the latter method to enhance the measurement
S/N ratio. While filtering is a powerful tool for improving the detectability
of the signal over the noise if the respective frequency bandwidths are
separated, synchronous averaging applied to a repetitive signal is a powerful
bandwidth-narrowing technique virtually capable of extracting a signal from
any noise or disturbance, provided that they are uncorrelated with the signal
and that enough averages are taken.

Section 15.6 is dedicated to analogue-to-digital conversion and explains
how it implies both a time discretization called sampling, and an amplitude
quantization called quantizing. The resolution of an analogue-to-digital
converter (ADC) is expressed by the number of bits n of the ADC and is
equal to one part over 2n of the conversion range. The AD conversion error
has an associated noise called the quantization noise due to the finite number
of intervals used to represent a signal which actually spans a continuous
range. The quantization noise is the ideal accuracy limit achievable by an
ADC; real ADCs have additional sources of errors which worsen the accuracy.

Sampling must satisfy the theorem by Shannon, which states that to
reconstruct a continuous signal having its highest frequency component at
fM from its sampled version, the sampling frequency fS must be 
The frequency 2fM is the minimum allowed sampling rate and is called the
Nyquist rate.

If a signal is undersampled, i.e. sampled at a frequency below the Nyquist
rate, the phenomenon of aliasing occurs, where the samples are not able to
uniquely represent the original analogue signal. Aliasing can be prevented
by an antialiasing low-pass filter in front of the ADC to remove any frequency
component greater than half the sampling frequency fS.

Section 15.7 deals with the main instruments and systems for the
acquisition and analysis of dynamic signals. Vibration meters are briefly
described, then analogue and digital tape recorders are illustrated and
compared.

Afterwards, attention is focused on computer-based data acquisition
systems and boards whose characteristics are described in some detail. Such
systems can currently perform the majority of the measurement usually
required in vibration testing, with the additional advantage that the associated
PC is exploitable for data storage, processing and analysis.
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Finally, the importance of the analysis in the frequency domain is
introduced and the frequency and dynamic signal analysers are presented.
Firstly, the analogue spectrum analysers are briefly described. Secondly, the
digital dynamic signal analyser (DSA) is presented which enables frequency
analysis to be performed in real time by implementing the fast-Fourier-
transform (FFT) algorithm. Since FFT analysers represent the most universally
used instruments for measuring dynamic signals and vibrations in particular,
their principle of operation and capabilities are illustrated in some detail
and some hints are given for their practical usage.
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A Finite-dimensional vector
spaces and elements of matrix
analysis

A.1 The notion of finite-dimensional vector space

The fact that finite-dimensional vector (or linear) spaces are the fundamental
setting of matrix theory is probably known to the reader. On the other hand,
it is also true that—by simply considering a matrix as an array of numbers—
many aspects of matrix theory and manipulation can be examined without
ever even mentioning the notion of linear space. In the writer’s opinion, this
kind of approach tends to conceal the important interplay between matrices
and linear transformations (or operators) defined on vector spaces—typically

n or n—in which a matrix is just a particular representation of a linear
transformation and different matrices may represent the same linear operator.
It is in this light that we approach the subject by giving some basic concepts
and definitions of finite-dimensional vector spaces.

Underlying a vector space is a field , or set of scalars, which for our
purposes will always be the field of real numbers  or the field of complex
numbers  with the usual operations of addition and multiplication.

A vector (or linear) space V over a field  is a set of objects (called vectors)
where two operations are defined: addition between elements of the set and
multiplication by elements of the field . The vector space is closed under
these two operations which, in turn, must satisfy the following properties.
 
1. Addition:

(a) for every
(b) for every
(c) There exists a unique null vector  such that  for every

(d) For every  there exists a unique element –x such that

2. Multiplication by a scalar:
 

(a) for every
(b) for every
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(c) for every
(d) for every

 
In 2(d) it is understood that 1 is the multiplicative unity of the scalar field.
Also, from the above properties it is evident that we will indicate vectors with
boldface letters while scalars will be indicated either by Greek or Latin letters.

Example A.1. For a fixed positive integer n, the set of all n-tuples of real (or
complex) numbers  forms a vector space on the real
(complex) field when we define the addition of vectors and multiplication
by a scalar as
 
1.

2.

Depending on whether  or  we obtain the vector spaces n or
 which are the basic vector spaces in a large number of applications in

physics and engineering.

Example A.2. The reader is invited to verify that the set  of all m×n
matrices with elements in the field is a vector space where addition is defined
as ordinary element-wise addition and multiplication by a scalar is ordinary
multiplication of a matrix by a real or a complex number.

Moreover, we also leave to the reader the proof of the following theorem.

Theorem A.1. let V be a vector space on the field, then
 
1.
2.
3.
 
where 0 is the null element of the scalar field.

Other basic definitions are as follows:
We call a subspace U of a vector space V a subset of V that is, by itself,

a vector space over the same scalar field with respect to the same operations
(addition and multiplication by a scalar) defined in V.

A set of vectors  is said to be linearly dependent if there
exists a set of scalars  (not all zero) such that
 

(A.1)
 

where this definition implies that at least one of the vectors ui can be written as
a linear combination of the other vectors. A set of vectors which is not linearly
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dependent is called linearly independent and in this case the relationship
 

 

implies 
A finite set  of elements of a vector space V is said to span V

if every  can be written in the form
 

(A.2)

 

for some  Moreover, a set of elements  is
said to be a basis of V if and only if (1) the set spans V and (2) the set is
linearly independent.

The number of elements (i.e. vectors) that form a basis is called the
dimension of V or, in other words, V is said to be n-dimensional if n linearly
independent elements can be found in V, but any n+1 elements of V are
linearly dependent. If n linearly independent elements can be found in V for
every n, then V is said to be infinite-dimensional; however, we will not
consider such cases in this appendix (some examples of infinite-dimensional
linear spaces are given in Chapter 2).

It must be noted that if some basis of a vector space V consists of a finite
number (say n) of elements, then all bases have the same number of elements
or, stated differently, although the dimension of a space is fixed, it is possible
to construct many different bases.

If  (or, for short,  is a basis for V then eq
(A.2) holds for any vector  and the coefficients αi ai are called the
components (or coordinates) of x relative to the basis  obviously, the
components change with a change of basis.

Example A.3. Consider the space 3 and the ‘standard’ basis 
 Obviously, the vector  has

components (2, 0, 3) relative to this basis. However, if we choose the basis
 then it is left to the reader to show

that (1)  is a set of three linearly independent vectors and that (2) the
components of x with respect to this basis are (1, 2, –1).

The way in which the components of a vector change under a change of basis
can be obtained as follows. Consider two bases  and  each vector
of the second basis can be expressed as a linear combination of the vectors of
the first basis and we can write

(A.3a)
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where the n2 elements ckj form the elements of the so-called transformation
matrix. Now, since an arbitrary vector x can be written as
 

(A.3b)

where the coefficients a and b, respectively, are the components of x relative
to the first and second basis, then—by taking eq (A.3a) into account—the
second of eqs (A.3b) can be written as
 

 

from which it is evident (from the first of eqs (A.3b)) that
 

(A.4a)

 

This relation, in turn, is equivalent to the matrix equation
 

(A.4b)

 
where
 

 

Note that the components transform differently than the basis vectors
(compare eq (A.3a) with (A.4a)).

We anticipated here some basic notions on matrices with which the reader
should already have some familiarity; however, before turning our attention
to matrices, two important concepts need to be introduced: the concept of
inner product and the concept of linear operator on a vector space.

The structure of a vector space is greatly enriched by the introduction of
a numerical function, the inner product, which allows us to generalize such
notions as the length of a vector and the angle between two vectors.
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Mathematically, the definition of inner product has already been given in
Section 2.5: with reference to that section, given a complex linear space V,
an inner product is a function defined on V×V (i.e. the set of ordered pairs
of elements of V) with values in  (i.e.  that satisfies axioms
1 to 4. If the underlying scalar field is R, the relevant axioms to be satisfied
are 1´ to 4´. With the notion of inner product at our disposal, two vectors x,
y are said to be orthogonal if
 

(A.5)

 
where it is evident that this is just a generalization of the concept of
perpendicular vectors encountered in basic physics. Particularly important
in inner product spaces are the so-called orthonormal bases; an orthonormal
basis being a set of linearly independent vectors which span the space, have
unit length and are mutually orthogonal. Since a vector of unit length is a
vector for which  an orthonormal basis  is a basis which
satisfies
 

(A.6)

 
Given an arbitrary (nonorthonormal) basis in an inner product linear space,

it is always possible to obtain an orthonormal basis for the same space.
Although this task can be accomplished in many different ways, there exists
a simple and far-reaching algorithm which is called the Gram-Schmidt
(orthonormalization) process. Here, we will outline it briefly. Let  be
an arbitrary basis and let us call  the set of mutually orthonormal
vectors to be determined. Let us define  and choose
 

(A.7a)

 
so that u1 is a vector of unit length. Next, define  (note
that, with this definition, y2 is orthogonal to u1) and choose

 
(A.7b)

 
which makes u2 a vector of unit length. Proceeding along this line of reasoning
and assuming that  have been determined, let
 

  (A.7c)
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so that yk is orthogonal to  and again choose
 

(A.7d)

 

The process is then continued until the desired n orthonormal vectors
 have been obtained. Two things should be noted about this process:

 
1. At each step, the orthonormal vectors  are a linear

combination of the original independent vectors  only.
2. It can be applied to any finite or countable—not necessarily linearly

independent—set of vectors. If the set is not independent, the process
will produce a vector yk=0 for the least value of k for which 
is a linearly dependent set. In this case xk is a linear combination of

 Substitution of  for xk and continuation of the
process can answer such questions as: what is a basis for, or the dimension
of, or the span of 

 
Let us now consider two vector spaces, U and V, over the same scalar field.

. Any mapping  such that

 
(A.8a)

(A.8b)

 
is called a linear operator from U to V.

Among the set of linear operators in a vector space, many different classes
can be distinguished according to some specific features. Here, we only
mention the class of isomorphisms: an operator is said to be an isomorphism
(from the Greek meaning ‘same structure’) if it is injective and surjective
(see any book of linear algebra for these definitions). Broadly speaking, the
importance of this particular class lies in the fact that two isomorphic spaces
can be considered as equal for all practical purposes. Furthermore, in this
regard, an important theorem states that two finite-dimensional vector spaces
over the same scalar field are isomorphic if and only if they have the same
dimension and it follows as a corollary to this theorem that any n-dimensional
real vector space is isomorphic to n and any n-dimensional complex vector
space is isomorphic to  More specifically, if V is n-dimensional over a
scalar field  with specified basis  then,
since any element  can be written uniquely as  we
may associate x with the n-tuple  In other words, for
any fixed basis , the mapping  is an isomorphism between V and

 and this is the reason why we can manipulate and operate on vectors by
dealing with their components with respect to a given basis.
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A.2 Matrices

Basically speaking, matrices are rectangular array of scalars from a field .
When we speak of an m×n matrix the number m refers to the number of
rows and the number n to the number of columns. If m=n the matrix is said
to be square. Matrix operations are probably quite familiar to the reader
and we give here a brief account.

The addition of two matrices is written A+B, is defined entry-wise for
arrays of the same dimension and inherits commutativity and associativity
from the scalar field; moreover, the matrix whose entries are all zero is the
identity under addition. In other words, given two m×n matrices A=[aij] and
we have 

 
(A.9a)

 
where C is also a m×n matrix whose elements cij are given by

 
(A.9b)

 
and A+0=A.

Matrix multiplication of an m×n matrix A by a p×q matrix B is only
possible when their sizes are compatible, that is when p=n (the number of
columns of the first matrix equals the number of rows of the second matrix).
The result of multiplication is a m×q matrix C, i.e.

 
(A.10a)

 
whose elements are given by
 

(A.10b)

 

For example, the product of the 2×3 matrix
 

 

by the 3×2 matrix
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is the 2×2 matrix C obtained as
 

 

In general, matrix product is not commutative and  provided
that the two expressions have a meaning. However, within the set  of
all square n×n matrices, the product can be commutative when restricted to
certain subsets which are worthy of study in their own right.

Matrix multiplication is associative and distributive over matrix addition,
i.e. when the following products are defined, we have
 

(A.11)
 

and
 

(A.12)

 

but it should be noted that, in general:
 
1. AB=0 does not imply A=0 or B=0.
2. AB=CB does not imply A=C (even if the reverse is true, i.e. A=C does

imply AB=CB for all possible B for which the product is defined).
 
At this point, some basic definitions are in order. Given a general m×n matrix

 we call its transpose the n×m matrix  which is obtained by
interchanging rows and columns of the original matrix; for example, if
 

 

then
 

 

and a (square) matrix for which A=AT is called symmetrical.
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The Hermitian adjoint of a matrix A=[aij]—denoted by the symbol AH—is
the matrix  whose elements are the complex conjugates of AT; clearly,
if the elements of A are all real then  A (square) matrix with complex
entries for which the property A=AH holds is called Hermitian (or self-adjoint)
and it is evident that Hermitian matrices with real entries are symmetrical;
by contrast, a symmetrical matrix with complex entries is not Hermitian.

Both the transpose and the Hermitian adjoint obey the ‘reverse-order law’
which reads
 

(A.13)

 

Note that, however, for complex conjugation there is no reversing, i.e.
 

 

Our attention will be mainly focused on square n×n matrices and in this
light some other matrices which are given special names according to some
property that they satisfy are as follows:
 
1. if A=–AT (i.e.  the matrix is called skew symmetrical.
2. if A=–AH (i.e.  the matrix is called skew Hermitian.
3. if  the matrix is called orthogonal.
4. if  the matrix is called unitary (a unitary matrix with

real entries is an orthogonal matrix).
 
The symbol I indicates the unit matrix, that is the matrix whose only nonzero
elements are all ones and lie on the main diagonal; for example, the 3×3 unit
matrix is

 

The matrix I, in turn, is a special case of diagonal matrix, i.e. a matrix
whose only nonzero elements are on the main diagonal. Also, triangular
matrices are worthy of mention: a matrix A=[aij]  is said to be upper triangular
if  whenever j<i and strictly upper triangular if  whenever 
Similarly, A is lower triangular (or strictly lower triangular) if its transpose
is upper triangular (or strictly upper triangular).

A more general class of matrices is the class of normal matrices: a square
matrix is called normal if it commutes with its Hermitian adjoint, that is if
 

(A. 14)
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In this regard it is not difficult to show that:
 
1. All unitary matrices are normal (therefore all unitary matrices with real

entries, i.e. orthogonal matrices, are normal).
2. All Hermitian matrices are normal (therefore all Hermitian matrices with

real entries, i.e. symmetrical matrices, are normal).
3. All skew-Hermitian matrices are normal (therefore all skew-Hermitian

matrices with real entries, i.e. skew-symmetrical matrices, are normal).
4. The matrix
 

 

is normal but it does not fall in any of the above categories.
 
Before closing this section, we point out an aspect which is worthy of notice:
the so-called partitioning of matrices. We mean by this term the fact that
matrix manipulations are often simplified by subdividing a matrix into a
(convenient) number of submatrices, where a submatrix is obtained by
including only the elements of certain rows and columns of the original
matrix. Consider for example the 3×5 matrix
 

 

if we take into account the only constraint that a line of partitioning must
always run completely across the original matrix, one possible way of
partitioning the matrix A is
 

 

where
 

 

Obviously, the same matrix can be partitioned in other different ways
and the submatrices above, in turn, can be further partitioned. However, the
point we want to make is that—besides the fact that partitioning has often
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the advantage of saving computer storage—using partitioned matrices we
can add, subtract or multiply as if the submatrices were ordinary matrix
elements, provided that the original matrices to be added, subtracted or
multiplied have been partitioned in such a way that it is permissible to perform
the prescribed operation. In other words, partitioning is a device to facilitate
matrix manipulations and does not change any results. To this end, the reader
is invited to calculate the simple product AB where, as an example
 

 

and we partition A into the four submatrices
 

 

and B into the two submatrices
 

 

Then, it is not difficult to see that the above partitioning is consistent with
matrix multiplication and to determine that
 

 

A.2.1 Trace, determinant, inverse and rank of a matrix

If we restrict our attention to square n×n matrices, two important scalar
quantities which can be evaluated from the entries of a matrix are the trace
and the determinant. The trace of a matrix is usually indicated by tr(A) and
is the sum of its diagonal elements, i.e.
 

(A.15)

 

By contrast, the determinant of a (square) matrix A—usually denoted by
det(A) or |A|—can be calculated by means of the so-called Laplace expansion

Copyright © 2003 Taylor & Francis Group LLC



(A. 16)

 
where the matrix Aij is the (n–1)×(n–1) matrix obtained by deleting the ith
row and the jth column of A. The first sum of eq (A. 16) is the Laplace
expansion along the ith row, while the second sum is the Laplace expansion
along the jth column. For any choice of row or column, either expansion
yields the determinant.

More specifically, the definition of determinant proceeds by induction by
defining the determinant of a 1×1 matrix to be the value of its single entry,
i.e. we have
 

 

 

etc. Many properties and theorems are associated with the use of determinants
and the interested reader can refer to a number of excellent books. For our
purposes, one of the most important properties of determinants is that it is
multiplicative, i.e. given two square matrices A and B we have
 

(A.17)

 
which is a useful property in many numerical applications in which a given
matrix is factorized—or ‘decomposed’—into a product of (typically two or
three) matrices. Also, it is straightforward to show that the determinant of
a diagonal or triangular matrix is given by the product of its diagonal
elements.

Now we turn our attention to the inverse A–1 of a (square) matrix A, and
define A–1 as that matrix which satisfies  Not all square
matrices possess an inverse and the ones that do are called nonsingular (and
the inverse is unique!); by contrast, a matrix which does not possess an inverse
is called singular. When the inverses of two matrices A and B exist, it is not
difficult to prove that the ‘reverse-order law’ applies also in this case, i.e.

 
(A.18)

 
The existence of an inverse matrix is strictly connected both to the value

of the determinant (more precisely, if it zero or different from zero) and to
the rank of a matrix (indicated by rank(A)), this latter quantity being the
largest number of columns of A that constitute a linearly independent set.
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This set of columns is not unique but the rank is, indeed, unique. Also worthy
of notice is the fact that
 

(A.19)
 
so that the rank may be equivalently defined in terms of linearly independent
rows. In other words, we can write ‘row rank=column rank’.

As might be expected, the various ideas that have been considered up to
this point are mutually interrelated and, for example, we can alternatively
define the rank of a matrix A as the largest submatrix of A with a nonzero
determinant. In the light of these interrelationships, we close this section by
summarizing without proofs (which can be found on any book on matrices)
a number of important results. If A is a square n×n matrix, the following
statements are equivalent:
 
1. A–1 exists (i.e. A is nonsingular).
2.

3. rank(A)=n (i.e. the matrix has a full rank).
4. The rows of A are linearly independent.
5. The columns of A are linearly independent.
 
Also, referring to other aspects which will not be considered here or will be
considered in later sections, for completeness it can be said that there are
three other statements which are also equivalent to 1–5:
 
6. The only solution to the linear system Ax=0 is x=0 (where x indicates

here an n×1 vector of unknowns).
7. The linear system Ax=b has a unique solution for each n×1 vector b
8. Zero is not an eigenvalue of A.

A.3 Eigenvalues and eigenvectors: the standard eigenvalue
problem

As before, let  be the set of all n×n matrices on a given field of
scalars , usually the real numbers  or the complex numbers . The
following discussion is in general valid in the set of complex-entried matrices
but it will seldom make a substantial difference if the material is interpreted
in terms of real numbers. However, a major difference between  and 
which should be kept in mind is that the complex field is algebraically closed
and therefore it may often be useful to think of real matrices as complex
matrices with restricted entries.

Given a square n×n matrix A and a nonzero vector  let us consider
the equation
 

(A.20)
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where  is a scalar. If a scalar  and a nonzero vector x satisfy eq (A.20),
then  is called an eigenvalue of A and x is called an eigenvector of A
associated with .

The set of all  that are eigenvalues of A is called the spectrum of A
and is often denoted by σ(A).

Three observations can be made immediately: first, if x is an eigenvector
of A associated with the eigenvalue , then any nonzero scalar multiple of x
is also an eigenvector (meaning that eigenvectors are determined to within a
multiplicative constant and some kind of ‘normalization’ is required); second,
if  are both eigenvectors associated to the eigenvalue , then any
nonzero linear combination of x and y is also an eigenvector corresponding
to  and, third,  is singular if and only if zero is one of its eigenvalues,
i.e. if and only if  ( see also statement 8 at the end of Section A.2.1).

It should be noted that eq (A.20) defines what is called a ‘standard’
eigenvalue problem, whereas a ‘generalized’ eigenvalue problem (the type of
eigenvalue problem frequently encountered in engineering vibrations) involves
two matrices and reads  In what follows, in order to present a
central set of fundamental results, we will only consider the eigenvalue
problem in its standard form for three reasons: (1) a generalized eigenvalue
problem can always be recast in standard form; (2) the fundamental concepts,
ideas and results remain essentially the same; and (3) specific aspects of the
generalized problem are given in the main chapters whenever needed in the
course of the discussion.

If now we want to characterize the eigenvalues of a given matrix we can
rewrite eq (A.20) as
 

(A.21)
 

so that  if and only if  is a singular matrix, i.e.
 

(A.22)

 
From the Laplace expansion of the determinant, we note that 

is a polynomial of degree n in —which is called the characteristic polynomial
of A—so that from eq (A.22) it follows that the set of its roots (i.e. the roots
of the characteristic equation) coincides with σ(A). Then, from the
fundamental theorem of algebra (a polynomial of degree n with complex
coefficients has exactly n zeroes, counting multiplicities, among the complex
numbers) it follows that every n×n matrix has, among the complex numbers,
exactly n eigenvalues, counting multiplicities. Two observations are in order
at this point:
 
1. The last statement depends heavily on the fact that the complex field is

algebraically closed; for matrices in other fields (typically ) little can be
said about the number of eigenvalues in that field.
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2. Here, the term multiplicity refers to the ‘algebraic multiplicity’ (a.m. for
short), that is the number of times that a given eigenvalue appears as a
zero of the characteristic polynomial; later, the concept of ‘geometric
multiplicity’ will be defined.

 
Given the definitions above, it is now not difficult to prove the following

results:
 
1. The eigenvalues of AT are the same as those of A, counting multiplicities

(in fact, note that 
2. The eigenvalues of AH are the complex conjugates of the eigenvalues of

A, counting multiplicities (in fact, note that 

Note that nothing has been said about eigenvectors because, although A
and AT have the same eigenvalues, their eigenvectors corresponding to the
same eigenvalue are, in general, different. In this regard, however, there exists
an important property of eigenvectors which is worthy of notice; consider
the eigenvalue problem (eq (A.20)) for the matrix AT and let yj be the
eigenvector corresponding to the eigenvalue j. We have  or,
equivalently
 

(A.23)

so that—owing to eq (A.23)—yj is also called a left eigenvector of A. On the
other hand, let xk be an ordinary (right) eigenvector of A corresponding to k,
where  This means  Now, premultiply this last equation by 
postmultiply eq (A.23) by xk and subtract one resulting equation from the other.
The final result is
 

(A.24)
 

meaning that yj and xk are mutually orthogonal. Equation (A.24) expresses
the so-called biorthogonality condition stating that left and right eigenvectors
belonging to distinct eigenvalues are orthogonal (note, however, that since
xk and/or yj may be complex vectors,  is not an inner product as it is
usually understood; see also Chapter 2). Furthermore, taking eq (A.24) into
account, we can premultiply the equation  and obtain the
additional orthogonality condition

 
(A.25)

 
which, in words, can be stated by saying that the eigenvectors yj and xk are
also A-orthogonal.

Copyright © 2003 Taylor & Francis Group LLC



Clearly, the biothogonality conditions (A.24) and (A.25) do not extend to
eigenvectors corresponding to the same eigenvalue so that, for example, by
enforcing the normalization  we get
 

(A.26)

 

In the light of the above results, it now takes only a small effort to prove
that
 

(A.27)

where, since xk and/or yj are complex,  is an inner product in the usual
sense.

Now, before turning our attention to symmetrical and Hermitian matrices
which—besides deserving special attention in their own right—have played
a major role in this book, we make some preliminary considerations.

First, as far as eigenvalues are concerned, it turns out that the theory
becomes much simpler when the n eigenvalues are distinct. Let us denote
them by the symbols  with  if  The first result that
can be shown (e.g. the classical reference by Wilkinson [1]) is that in this
case each eigenvalue is associated with a unique (to within a constant arbitrary
multiplier) eigenvector and, in addition, the eigenvectors are linearly
independent. By the same token, the eigenvectors of AT are also unique and
linearly independent.

Second, since the n left eigenvectors can be arranged in an n×n matrix Y
(in such a way that the components of yj form the jth column of Y) and the
n right eigenvectors can similarly be arranged in an n×n matrix X, the first
of eqs (A.26) implies  i.e.  and the second of eqs (A.26)
implies
 

(A.28)
 

This circumstance can be used to introduce two issues of fundamental
importance in the theory: the concept of similar matrices and the concept of
diagonalizable matrices. The definitions are as follows:
 
1. A n×n matrix B is said to be similar to a n×n matrix A when there exists

a nonsingular n×n matrix S (the similarity matrix) such that
 

(A.29)
 

so that the transformation  is called a similarity
transformation and one often writes  to mean that ‘B is similar to A’.
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In this regard, it is worthy of notice that similarity is an equivalence relation
(i.e. a reflexive, symmetrical and transitive relation) on the set of all square
n×n matrices Mn×n. The direct consequence is that the similarity relation
partitions Mn×n into disjoint equivalence classes, each equivalence class being
the set of all n×n matrices similar to a given matrix which, in turn, is
representative of the whole class and can be chosen in a particularly
convenient (a so-called ‘canonical’) form. Then, noting that diagonal matrices
are of a particularly simple form we say that:
 
2. If a matrix A is similar to a diagonal matrix, then A is said to be

diagonalizable.
 
The considerations above can then be summarized in the following
theorems:

Theorem A.2. If  has n distinct eigenvalues, then it is diagonalizable.

Things may not be so simple if A has one or more multiple eigenvalues
(i.e. eigenvalues with algebraic multiplicity >1 or, in the terminology of
physicists and engineers, if one or more eigenvalues are ‘degenerate’) even if
it may still be possible that there is a similarity transformation which reduces
A to diagonal form. In this regard, we state without proof the following
theorem:

Theorem A.3. Let  Then A is diagonalizable if and only if there is
a set of n linearly independent vectors, each of which is an eigenvector of A.

If we examine this theorem more closely, we can introduce the concept of
geometric multiplicity (g.m. for short) of a multiple eigenvalue j as the
dimension of the subspace generated by all vectors xj satisfying the equation

 (or, in other words, the minimum number of linearly independent
eigenvectors associated with j) and note that, since always g.m. ≤ a.m., A
is diagonalizable if and only if the algebraic multiplicity of each multiple
eigenvalue is the same as its geometric multiplicity. In this case A is called
nondefective whereas, when for some multiple eigenvalue of A we have g.m.
< a.m., the matrix is said to be defective. As an example, the matrix

 

 

is defective because the double eigenvalue  has a.m.=2 and g.m.=1. In
this light, Theorem A.3 states that A is diagonalizable if and only if it is
nondefective.
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Now, the final result we need to close the present discussion is the
following:

Theorem A.4. If  and  then they have the same
characteristic polynomial.

The proof is easy and it is left to the reader but, more important, a corollary
to Theorem A. 3 is that

Corollary to Theorem A.4. If  and  then they have the
same eigenvalues, counting multiplicity.

In other words, the eigenvalues of a matrix are invariant under a similarity
transformation (however, note that having the same eigenvalues is a necessary,
but not sufficient condition for similarity, i.e. two matrices can have the
same eigenvalues without being similar).

A.3.1 Hermitian and symmetrical matrices

Symmetrical matrices with real entries arise in a large number of practical
cases. As a matter of fact, they have also played a predominant role
throughout this book whenever eigenvalue problems have been considered.
From the point of view of the theory, however, it should be pointed out that
symmetrical matrices with complex entries do not, in general, have many of
the desirable properties of real symmetrical matrices. In order to extend the
results to complex-entried matrices one must consider Hermitian matrices,
i.e. matrices for which AH=A, and not simply AT=A. Conversely, one could
present the discussion in terms of Hermitian matrices and note that real
symmetrical matrices can be considered as Hermitian matrices with real
entries.

The first important result is that the eigenvalues of a Hermitian matrix
are all real. In fact, if  then  where xHx (being an inner
product) is always real and positive for any nonzero vector x; moreover,
since  implies that the scalar xHAx is real, it follows that

 is real also.
From this consideration it also follows that a real symmetrical matrix has

real eigenvalues; however, note that real eigenvalues imply real eigenvectors
for a real symmetrical matrix but, in general, it is not so for a complex
Hermitian matrix. If now we take a step further it is not difficult to show
that left and right eigenvectors of a Hermitian matrix are the same and we
obtain the orthogonality condition
 

(A.30a)
 

which states that eigenvectors belonging to distinct eigenvalues are orthogonal.
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This fact, together with the normalization  (normalization, we repeat,
is arbitrary, but this normalization to unity is one of the most common) leads to
 

At this point—in the light of the preceding section and of eq (A.30b)—we
can conclude that if the Hermitian matrix A has n distinct eigenvalues it
also has a set of n linearly independent and mutually orthogonal eigenvectors.
In this case, we can arrange these eigenvectors as the columns of a n×n
matrix X and rewrite eqs (A.30b) and (A.30c) in matrix form as
 

 

which in turn imply:
 
1.  i.e. X is unitary (orthogonal if the same line of reasoning is

followed by starting with a matrix A which is symmetrical with real
entries).

2. The matrix A is unitarily (‘orthogonally’ for real symmetrical matrices)
similar to the diagonal matrix of eigenvalues.

 
The reader should note that similarity via a unitary matrix is not only simpler
(XH is much easier to evaluate than X–1) than general similarity but also that
unitary similarity is an equivalence relation that partitions Mn×n into finer
equivalence classes because (see also next section) it corresponds to an
orthonormal change of basis.

Example A.4. The reader is invited to perform the calculations for this
example. Let A be the real symmetrical matrix

 

Its characteristic polynomial p( ) is obtained from

(A.30b)

(A.30c)

(A.31a)

(A.31b)
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so that  is the characteristic equation which, in our specific case, reads
 

Then, the eigenvalues are the roots of this characteristic equation and we
obtain, in increasing order
 

 

Next, the mutually orthogonal eigenvectors (normalized to unity, i.e. so that
they satisfy the relations  can be determined; they are
 

 

and the similarity matrix is therefore

 

At this point it is not difficult to verify that
 
1. X is orthogonal (i.e. )
2.  where
 

 

 

Now, the question could be asked as to what happens if A is Hermitian but
has one or more multiple eigenvalue or, more specifically, what happens if A
is defective. The answer to this question leads to one of the most important
properties of Hermitian matrices: it does not matter if a Hermitian matrix has
multiple eigenvalues because, even in this case, it is unitarily similar to the
matrix diag( j). In other words, a Hermitian matrix is always nondefective.

If we want to be more mathematically rigorous, we can say that the
statement above is one of the consequences of the following theorem.
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Theorem A.5. If  has eigenvalues  the following
statements are equivalent:
 
1. A is normal.
2. A is unitarily diagonalizable.
3.
4. There is a orthonormal set of n eigenvectors of A.
 
The equivalence of 1 and 2 in Theorem A.5 is often called the spectral theorem
for normal matrices. For our present purposes we recall that a Hermitian
matrix is just a special case of normal matrix and we stress that—as
expected—the statement of the theorem says nothing about A having distinct
eigenvalues (and in fact, two or more eigenvalues could be equal).

Then, summarizing the results of the preceding discussion we can say
that a complex Hermitian matrix (or a real symmetrical matrix) A:
 
1. has real eigenvalues;
2. is always nondefective (which means that—regardless of the existence

of multiple eigenvalues—there always exists a set of n linearly
independent eigenvectors, which, in addition are mutually orthogonal);

3. is unitarily (orthogonally) similar to the diagonal matrix of eigenvalues
diag( j). Moreover, the unitary (orthogonal) similarity matrix is the
matrix X of eigenvectors in which the jth column is the jth eigenvector.

 
We close this section by briefly considering special classes of Hermitian
matrices. A n×n Hermitian matrix A is said to be positive definite if
 

(A.32a)
 
for all nonzero vectors  If the strict equality in eq (A.32a) is weakened
to
 

(A.32b)
 
then A is said to be positive semidefinite. Moreover, by simply reversing the
inequalities in eqs (A.32a) and (A.32b), we can define the concept of negative
definite and negative semidefinite matrices.

Note that, if A is Hermitian, the definitions above tacitly imply that the
term xHAx—which is called the Hermitian form generated by A—is always
a real number and so we can also speak of positive definite Hermitian form
(eq (A.32a)) or positive semidefinite Hermitian form (eq (A.32b)).

The real counterparts of Hermitian forms are called quadratic forms and
are expressions of the type xTAx, where A is a real symmetrical matrix.
Quadratic forms arise naturally in many branches of physics and engineering,
and—as we also saw throughout many chapters of this book—the subject of
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engineering vibrations is no exception. Clearly, the appropriate definition of
a positive definite matrix reads in this case
 

(A.33)
 
for all nonzero vectors  Similarly, the relation  for all nonzero
vectors  defines a positive semidefinite matrix.

For our purposes, the following result will suffice and we refer the
interested reader to specialized literature for more details.

Theorem A.6. A Hermitian matrix  is positive semidefinite if and
only if all its eigenvalues are nonnegative. It is positive definite if and only
if all its eigenvalues are positive (clearly, this same theorem applies for real
symmetrical matrices).

Finally, it is left to the reader to show that the trace and the determinant
of a positive definite matrix are also positive.

A.4 Matrices and linear operators

Some aspects of the strict relationship between linear operators on a vector
space and matrices have been somehow anticipated in Section A.1. Given a
basis  in an n-dimensional vector space V on a scalar field , the statement
that the mapping  (i.e. the mapping that associates the vector to
its components relative to the chosen basis ) is an isomorphism constitutes
a fundamental result which allows us to manipulate vectors by simply
operating on their components. In fact, according to these developments,
we saw in Section A.1 how the components of a vector change when we
choose a different basis in the same vector space (in mathematical terminology,
the sentence ‘  is an isomorphism but it is not a canonical isomorphism’
translates this fact that  is indeed injective and surjective, but the coordinates
of a given vector change under a change of basis and therefore depend on
the choice of the basis).

In a similar way, when we have to deal with linear operators on a vector
space, it can be shown that—after a basis has been chosen in the space V—
any given linear operator  is represented by a n×n matrix and it can
also be shown that—given a basis in V—the mapping that associates a given
linear operator with its representative matrix relative to the chosen basis is
an isomorphism between the vector space of linear operators from V to V
and the vector space of square matrices  Simple examples of such
mapping are the null operator—i.e. the operator  for which Zx=0
for all —which is represented by the null matrix and the identity
operator—i.e. the operator  for which Ix=x for all —which is
represented by the unit matrix.

In general, however, when a different basis is chosen in V, the same linear
operator is represented by a different matrix. So, the question arises: since
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different matrices may represent the same linear operator, what is the
relationship between any two of them? The answer to this question is that
any two matrices which represent the same linear operator are similar. Let
us examine these points in more detail.

First of all we must determine what we mean by a matrix representation of a
given linear operator. To this end, let V be a n-dimensional vector space and let

 be a linear transformation on V. If we choose a basis  in the
vector space, the action of T on any vector  is determined once one knows
the vectors  because any x has a unique representation

 and linearity implies  Now, since
every vector Tui, in turn, can be written as a linear combination
 

(A.34)

 

the n2 coefficients t
ki
 can be arranged in a square matrix T, which is called

the matrix representation of the operator T relative to the basis  The
entries of the matrix clearly depend on the chosen basis and this fact can be
emphasized by indicating this matrix by [T]

u
 so that, by choosing a different

basis  in V, we will obtain the matrix representation [T]
v
 of T.

At this point, before examining the relationship between two different
representations of T we need a preliminary result: we will show that—in a
given n-dimensional vector space in which two basis  and  have
been chosen—the ‘change-of-basis’ matrix is always nonsingular. In fact,
since we can write
 

(A.35)

 

where i=1, 2,…, n in the first equation (and the n2 coefficients c
ji
 can be arranged

in a square matrix which is the change-of-basis matrix from the basis 
to  and j=1, 2,…,n in the second equation (and the n2 coefficients 

ijcan be arranged in a square matrix which is the change-of-basis matrix from
the basis  to  Then from eqs (A.35) we get

 

and since any vector can be expressed uniquely as a linear combination of
the vectors  the term within brackets must satisfy
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(A.36a)

 
By the same token, it can also be shown immediately

 
(A.36b)

 
Equations (A.36a) and (A.36b) in matrix form read, respectively
 

(A.37)

 

meaning that  (or, equivalently, ). Therefore, a change-of-
basis matrix C is always nonsingular.

Also, with a slight change of notation, we can re-express the result of
Section A.1 by noting that, since any vector  can be written as

 

(A.38)

 
we can substitute the first of eqs (A.35) into the first of eqs (A.38) to obtain
 

 

which is equivalent to the matrix equation
 

(A.39)

 
where the notation [x]v means that we are considering the components of x
relative to the basis  Similarly, [x]u indicates the components of x
relative to the basis  and  indicates the change-of-basis matrix
from  to 

The rather cumbersome (but self-explanatory) notation of eq (A.39) will
now serve our purposes in order to obtain the relation between two matrix
representations of the same linear operator. In fact, in terms of components
the action of a linear operator T on a vector x can be written
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(A.40)

 

where we defined  Now, substituting eq (A.39) and its counterpart
for the vector y into the second of eqs (A.40) yields

 

 
so that premultiplying both sides by the matrix  we get
 

which implies (compare with the first of eqs (A.40))
 

(A.41)

 
that is, the matrices [T]u and [T]v are similar, the similarity matrix being the
change-of-basis matrix C.

 
Example A.5. As a simple example in 2, let us consider the two bases

 

 

and
 

 

 

Explicitly, the first of eqs (A.35) now reads

 

 

and we can immediately obtain  so that
we can form the change-of-basis matrix
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Similarly, from the second of eqs (A.35) we obtain the change-of-basis matrix
 

 

so that, as expected (eqs (A.35))  or, according to the more
cumbersome notation above,
 

 
Now, consider the linear transformation  which acts on a vector

 as follows:
 

 

(the proof of linearity is left to the reader). The representative matrix of T
relative to the basis  is obtained from the equations
 

from which it follows that
 

 

and finally we get from eq (A.39)
 

 

which is exactly, as can be directly verified from the equations
 

 

the representative matrix of T relative to the basis 

If, in addition, the two bases that we consider in the complex (real) linear
space V are orthonormal bases—this obviously implies that an inner product
has been defined in V—the similarity matrix is unitary (orthogonal).
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In fact, let for example V be a real n-dimensional linear space and let
 and  be two orthonormal basis in V. Then, from the first of eqs

(A.35) and from the orthogonality condition  we get  

 

so that the equality  reads in matrix form
 

(A.42)
 
which implies  and shows that, in a real linear space, we pass from
one orthonormal basis to another orthonormal basis by means of an
orthogonal change-of-basis matrix. In terms of linear operators, this means
that two different matrix representations A and B of the same linear operator

 are orthogonally similar and B=CTAC, where C is the change-of-
basis matrix.

Clearly, if V is a complex linear space, we get CHC=I (i.e. C is unitary;
recall that the inner product in a complex space is not homogeneous in one
of the slots) and the matrices A and B are unitarily similar, that is B=CHAC.

We will not go into further details here, but a final observation is in order:
specific properties of linear operators are reflected by specific characteristics
of the matrices which may represent such operators; these characteristics, in
turn, are generally invariant under a similarity transformation. As an
illustrative example of this situation, it can be shown that if a square matrix
A is Hermitian, then SHAS is Hermitian for all  this is because a
Hermitian matrix represents a Hermitian operator and another matrix
representing the same operator must necessarily retain this characteristic
(the definition of Hermitian operator is beyond our scopes and the interested
reader is referred to specific literature). Also recall the corollary to Theorem
A.4 stating that eigenvalues are invariant under a similarity transformation:
this circumstance reflects the fact that eigenvalues are intrinsic characteristics
of a given linear operator and do not change when different matrices are
used for its representation.

In the light of these considerations, we may recall the discussion on n-
DOF systems (see Chapters 6 and 7, and also Chapter 9 for some important
results on the characterization of eigenvalues) and note that the stiffness and
mass of a given vibrating system can be envisioned as (symmetrical) linear
operators on the system’s n-dimensional configuration space. Then, the
essence of the modal approach consists of finding the orthogonal basis—the
basis of eigenvectors—in which such operators have a diagonal representation.
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Solving the eigenvalue problem is the process by which we determine the
basis of eigenvectors. The inconvenience of dealing with a generalized
eigenvalue problem rather than with a standard eigenvalue problem translates
into the fact that we have to diagonalize simultaneously two matrices instead
of diagonalizing a single matrix. As stated before, however, this is only a
minor inconvenience which does not significantly modify the essence of the
mathematical treatment.
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B Some considerations on the
assessment of vibration
intensity

B.1 Introduction

In a number of circumstances one of the main tasks of vibration analysis is
to ‘assess the vibration intensity’. This phrase, which is rather vague, can be
interpreted as assigning to a specific vibration phenomenon a ‘figure of merit’
which can be used to predict the potential damaging effects, if any, of such
a phenomenon. In these cases, one also speaks of ‘assessment of vibration
severity’.

Given the very large number of possible practical situations, it is obvious
that the primary factors to be considered are, broadly speaking, the type,
nature and duration of the excitation and the physical system which is affected
by the vibration. Accordingly, there exist a number of specialized fields of
investigation which study different aspects of the problem and consider, for
example, the effect of shocks and vibrations on humans, buildings, various
types of structures, electronic components etc. In this appendix, also in the
light of the fact that it can be extremely difficult to categorize a complex
phenomenon with a single number (as a matter of fact, there seems to exist
no internationally accepted standard), we will obviously limit ourselves to
some general considerations.

B.2 Definitions

In order to ‘assess vibration intensity’, the first definition we consider is the
so-called Zeller’s power (or strength) of vibration, which takes into account
the acceleration amplitude a, in cm/s2, and the frequency v and is defined by
the relation
 

(B.1)

 

Zeller’s power is in units of cm2/s3 and in the second expression on the r.h.s.
of eq (B.1) we call x (in cm) the displacement amplitude.
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From Zeller’s power, another two quantities can be calculated: the first is
the so-called vibrar unit, the strength S of a vibration in vibrar units being
given by
 

(B.2)

 

where the reference value Z0 is taken as 0.1 cm2/s3. The second quantity is
called the pal and the strength in pal (according to the original definition
given by Zeller[1]) is calculated as
 

(B.3)

 
where the second and third expressions on the r.h.s. are obtained from the
fact that  Another definition of pal dates back to the German
standard DIN 4150 of 1939 (current version 1986 [2]) and defines the
strength of vibration in terms of velocity ratios, i.e.
 

(B.4)

 
where  and vrms is the vrms mean square value of the
measured vibration velocity. Note that we use the symbol  to indicate the
strength according to the DIN definition because this is different from Zeller’s
definition of eq (B.3).

The current German standard DIN 4150, Part 2 [2] deals with the effects
of vibrations on people in residential buildings and considers the range of
frequency from 1 to 80 Hz. In this standard, the measured value of principal
harmonic vibration is used to calculate a factor of intensity perception KB
by means of the formula
 

(B.5)

 
where d is the displacement amplitude in millimetres and v is the principal
vibration frequency in hertz. The calculated KB value (in mm/s) is then
compared with an acceptable reference value which takes into account such
factors as: use of the building, frequency of occurrence, duration of the
vibration and time of day. For example, for small office buildings and office
premises and a continuous or repeated source of vibration, the acceptable
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KB level is 0.4 mm/s in the daytime and 0.3 mm/s during the night, while the
levels of 12.0 mm/s during the day and 0.3 mm/s during the night apply for
a source of infrequent vibration.

If now, in the light of the above definitions, we turn our attention to the
classifications that have been given, we can rate vibration phenomena in order
of increasing effects on people and buildings. For example, a vibration with a
Zeller power of 2 cm2/s3 is rated as ‘very light’, Z=50 is ‘measurable’ and
produces small plaster cracks, Z=250 is ‘fairly strong’, Z=1000 is ‘strong’ and
defines the beginning of the danger zone, Z=5000 is ‘very strong’ and produces
serious cracking, Z=2×104 is ‘destructive’, Z=105 is ‘devastating’ and so on.
On the other hand, according to the DIN definition of pal, a vibration intensity
up to 5 pal is ‘just perceptible’, 10 pal is ‘clearly perceptible’, 10–20 pal is
‘annoying’ and 40 pal is ‘unpleasant’.

B.2.1 Effects of vibrations on buildings

As far the effects of vibrations on buildings are concerned, engineers are generally
interested in the possibility of structural damage and the vibrar scale has been
used by some researchers in order to give some general guidelines. So, a vibration
up to 30 vibrar covers the ‘light’ and ‘medium’ ranges and no damaging effects
should be expected; the ‘strong’ range is from 30 to 40 vibrar and there is the
possibility of light damage (cracks in rendering, etc.); 40 to 50 vibrar is the
‘heavy’ vibration range with possible severe damage and more than 50 vibrar
is the ‘very heavy’ range in which destructive effects should be expected.

Also, an alternative intensity unit called the damage figure (DF) has been
proposed. This is expressed in mm2/s3 and is related to Zeller’s power by
 

(B.6)
 
where Z, as usual, is expressed in cm2/s3. In this light, damage figures in the
range 50–500 mm2/s3 are likely to produce small cracks in rendering (so-
called ‘minor’ or ‘cosmetic’ damage), damage figures in the 500–2000 mm2/
s3 range are likely to produce occasional light cracks in walls and damage
figures in the 2000–7000 range produce serious cracks which extend to main
walls. It is not difficult to determine that the damage figure and the vibrar
strength are related by the equation

All these classifications—although useful in many practical circumstances—
should clearly be used with judgement and the engineer should always refer
both to his/her national standards and to his/her or other professional engineers’
previous experience. For example, the German standard DIN 4150, Part 3 [2]
deals with the effects of vibrations on structures and so does the Italian standard
UNI 9916. (see also the list of further reading at the end of this appendix.)
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Furthermore, it is worth noting that the most severe conditions to which
a structure may be subjected are caused by earthquakes. In this regard, a
scale of macroseismic intensity is a quantity which is used to evaluate the
severity of shock on the basis of human perceptions and on the effects on
humans and structures. Historically, many of such scales have been proposed
through the centuries: the Gastaldi scale (1564), the Pignataro scale (1783)
and the Rossi-Forel scale (1883). Nowadays, a modified version of the
Mercalli-Cancani-Sieberg (MCS) scale is widely used in Europe: it is called
the modified Mercalli (MM) scale and consists of 12 levels of intensity, from
level 1 (hardly perceptible) to level 12 (total destruction). Other scales in use
are the Medvedev-Sponheuer-Karnik (MSK), with 12 levels, and the eight-
level scale of the Japanese Meteorological Agency. Since these scales are
based on visible effects and on human perceptions, it is not always clear
how they relate to one another and this fact has led to the definition of the
magnitude M [3], which is the commonly adopted measure of the energy
released during an earthquake. The basic definition is
 

(B.7)

 
where A is the maximum amplitude (in micrometres) recorded by a Wood-
Anderson seismograph at a distance of 100 km from the epicentre. For
practical purposes, however, different definitions are used because of local
effects of the earth’s crust on seismic waves. So, for example, for California
earthquakes, one has
 

(B.8a)

 
while in Japan one has
 

(B.8b)

 
where a (in micrometres) is the ground amplitude of motion and ∆ (in
kilometres) is the distance from the epicentre. It should be noted that the
Richter’s magnitude does not apply for earthquakes which are measured at
very large distances from the epicentre, where superficial waves are
predominant and different relations are needed.

B.2.2 Effects of vibrations on humans

Although some vibration phenomena may not cause any structural damage,
they can be annoying to the occupants of residential buildings, offices, etc.
In this regard, it should be noted that the human body is extremely sensitive
to vibrations and amplitudes as low as 0.1 µm may be detected by the
fingertips.
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Broadly speaking, some of the factors which influence ‘human sensitivity’
to vibrations are:
 
• position (standing, sitting, lying down);
• direction of incidence with respect to the spine;
• age and sex;
• personal activity (resting, working, walking, running, etc.);
• frequency of occurrence and time of day.

 
The ‘intensity of perception’ depends on:

 
• displacement, velocity and acceleration amplitudes;
• duration of exposure;
• vibration frequency.
 
Results from various researchers indicate that human perceptibility is
proportional to acceleration in the 1–10 Hz range and proportional to velocity
in the 10–100 Hz range.

In the low-frequency range (say 1–80 Hz) the human body can reasonably
be modelled as an assemblage of masses, springs and dampers (whose
characteristic values, however, are difficult to determine) and research has
shown that there exists a resonant region in the 3–6 Hz range due to the
thorax-abdomen subsystem and a further resonance in the 20–30 Hz range
due to the head-neck-shoulder subsystem. Vibrations under 1–2 Hz, on the
other hand, seem to affect the whole body and produce effects such as
kinetosis (motion sickness), which are completely different in character from
those produced at higher frequencies. For these vibrations, moreover, there
seems to be a number of external factors (age, sex, activity, etc.) which have
a significant influence on human reactions.

Above the threshold of about 80 Hz, the sensations and effects are
extremely dependent on local conditions at the point of application (position,
local damping due to clothing or footwear, etc.).

The International Standard ISO 2631 [4] applies to vibrations in both
vertical and horizontal directions and deals with random and shock vibration
as well as harmonic vibration. In this standard, three levels of human
discomfort are considered: the ‘reduced comfort boundary’, the ‘fatigue-
decreased proficiency boundary’ and the ‘exposure limit’.

A completely different situation arises in the study of hand-arm vibrations
induced by the use of working tools in heavy industry such as hammer drills,
chainsaws, etc. High vibration levels and long exposure periods may lead, in
the long run, to serious effects and also to permanent damage. In the hope
of preventing such harmful effects, this important and interesting field of
research at the boundary between engineering and medicine is currently being
investigated in even greater detail.
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