
www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

C# 5.0 PROGRAMMER’S REFERENCE

INtROduCtION . xxxiii

▶ PARt I thE C# ECOSyStEM

ChAPtER 1 The C# Environment . 3

ChAPtER 2 Writing a First Program . 11

ChAPtER 3 Program and Code File Structure . 27

▶ PARt II C# LANGuAGE ELEMENtS

ChAPtER 4 Data Types, Variables, and Constants . 53

ChAPtER 5 Operators . 99

ChAPtER 6 Methods . 121

ChAPtER 7 Program Control Statements . 151

ChAPtER 8 LINQ . 169

ChAPtER 9 Error Handling . 205

ChAPtER 10 Tracing and Debugging . 231

▶ PARt III ObjECt-ORIENtEd PROGRAMMING

ChAPtER 11 OOP Concepts . 245

ChAPtER 12 Classes and Structures . 269

ChAPtER 13 Namespaces . 303

ChAPtER 14 Collection Classes . 317

ChAPtER 15 Generics . 343

▶ PARt IV INtERACtING wIth thE ENVIRONMENt

ChAPtER 16 Printing . 359

ChAPtER 17 Configuration and Resources . 393

ChAPtER 18 Streams . 411

ChAPtER 19 File System Objects . 425

ChAPtER 20 Networking . 445

Continues

www.EBooksWorld.ir

www.hellodigi.ir

▶ PARt V AdVANCEd tOPICS

ChAPtER 21 Regular Expressions . 469

ChAPtER 22 Parallel Programming . 485

ChAPtER 23 ADO .NET . 509

ChAPtER 24 XML . 533

ChAPtER 25 Serialization . 563

ChAPtER 26 Reflection . 581

ChAPtER 27 Cryptography . 601

▶ PARt VI APPENdICES

APPENdIx A Solutions to Exercises . 625

APPENdIx b Data Types . 733

APPENdIx C Variable Declarations . 737

APPENdIx d Constant Declarations . 741

APPENdIx E Operators . 743

APPENdIx F Method Declarations . 749

APPENdIx G Useful Attributes . 753

APPENdIx h Control Statements . 757

APPENdIx I Error Handling . 761

APPENdIx j LINQ . 763

APPENdIx K Classes and Structures . 773

APPENdIx L Collection Classes . 777

APPENdIx M Generic Declarations . 783

APPENdIx N Printing and Graphics . 785

APPENdIx O Useful Exception Classes . 799

APPENdIx P Date and Time Format Specifiers . 803

APPENdIx Q Other Format Specifiers . 807

APPENdIx R Streams . 813

APPENdIx S Filesystem Classes . 821

APPENdIx t Regular Expressions . 835

APPENdIx u Parallel Programming . 843

www.EBooksWorld.ir

www.hellodigi.ir

APPENdIx V XML . 849

APPENdIx w Serialization . 859

APPENdIx x Reflection . 865

INdEx . 877

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Programmer’s reference

c# 5.0

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

www.EBooksWorld.ir

www.hellodigi.ir

Rod Stephens

Programmer’s reference

c# 5.0

www.EBooksWorld.ir

www.hellodigi.ir

c# 5.0 Programmer’s reference

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-84728-2
ISBN: 978-1-118-84697-1 (ebk)
ISBN: 978-1-118-84729-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014930410

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wiley.com
http://www.wiley.com/go/permissions
http://book-support.wiley.com
http://book-support.wiley.com
http://www.wiley.com

AbOut thE AuthOR

ROd StEPhENS started out as a mathematician, but while studying at MIT, he
discovered how much fun programming is and has been programming profes-
sionally ever since. During his career, he has worked on an eclectic assortment
of applications in such fields as telephone switching, billing, repair dispatching,
tax processing, wastewater treatment, concert ticket sales, cartography, and
training for professional football players.

Rod has been a Microsoft Visual Basic Most Valuable Professional (MVP)
for more than 10 years and has taught introductory programming at ITT Technical Institute.
He has written more than two dozen books that have been translated into languages from all
over the world, and more than 250 magazine articles covering C#, Visual Basic, Visual Basic for
Applications, Delphi, and Java.

Rod’s popular C# Helper website (www.CSharpHelper.com) receives almost a million post visits per
year and contains thousands of pages of tips, tricks, and example programs for C# programmers, as
well as example code for this book. His VB Helper website (www.vb-helper.com) contains similar
material for Visual Basic programmers.

You can contact Rod at RodStephens@CSharpHelper.com or RodStephens@vb-helper.com.

AbOut thE tEChNICAL EdItOR

bRIAN hOChGuRtEL has been doing .NET development for more than 10 years, and actually started
his .NET experience with Rod Stephens when they wrote the Wiley book Visual Basic .NET and
XML in 2002. Currently Brian works with C#, SQL Server, and SharePoint at Riverside Technology
in Fort Collins, CO.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.CSharpHelper.com
http://www.vb-helper.com
mailto:RodStephens@CSharpHelper.com
mailto:RodStephens@vb-helper.com

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

ExECutIVE EdItOR
Robert Elliott

PROjECt EdItOR
Adaobi Obi Tulton

tEChNICAL EdItOR
Brian Hochgurtel

PROduCtION EdItOR
Daniel Scribner

COPy EdItOR
San Dee Phillips

MANAGER OF CONtENt
dEVELOPMENt ANd ASSEMbLy
Mary Beth Wakefield

dIRECtOR OF COMMuNIty MARKEtING
David Mayhew

MARKEtING MANAGER
Ashley Zurcher

buSINESS MANAGER
Amy Knies

VICE PRESIdENt ANd
ExECutIVE GROuP PubLIShER
Richard Swadley

ASSOCIAtE PubLIShER
Jim Minatel

PROjECt COORdINAtOR, COVER
Todd Klemme

COMPOSItOR
Craig Woods, Happenstance Type-O-Rama

PROOFREAdER
Nicole Hirschman

INdExER
Johnna VanHoose Dinse

COVER dESIGNER
Wiley

COVER IMAGE
©iStockphoto .com/W6

CREdItS

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

ACKNOwLEdGMENtS

thANKS tO Bob Elliott, Adaobi Obi Tulton, John Mueller, San Dee Phillips, Daniel Scribner, and
all the others who worked so hard to make this book possible.

Thanks also to technical editor Brian Hochgurtel for giving me the benefit of his valuable experience.

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

CONtENtS

IntroductIon xxxiii

PARt I: thE C# ECOSyStEM

ChAPtER 1: thE C# ENVIRONMENt 3

Visual studio 3
The c# compiler 4
The cLr 6
The .neT framework 8
summary 9
exercises 10

ChAPtER 2: wRItING A FIRSt PROGRAM 11

Types of Projects 11
console applications 14
Windows forms applications 16
WPf applications 19
Windows store applications 21
summary 23
exercises 24

ChAPtER 3: PROGRAM ANd COdE FILE StRuCtuRE 27

Hidden files 28
Preprocessor Directives 31

#define and #undef 31
#if, #else, #elif, and #endif 33
#warning and #error 34
#line 34
#region and #endregion 35
#pragma 36

code file structure 37
The using Directive 38
The namespace Statement 40
Class Definitions 42

CONtENtS

IntroductIon xxxiii

Who should read This Book xxxiv
approach xxxiv
Which edition of Visual studio should You Use? xxxv
How This Book Is organized xxxvi
How to Use This Book xxxvii
necessary equipment xxxviii
conventions xxxviii
source code xxxix
errata xl
p2p.wrox.com xl
Important UrLs xli

PARt I: thE C# ECOSyStEM

thE C# ENVIRONMENt 3

Visual studio 3
The c# compiler 4
The cLr 6
The .neT framework 8
summary 9
exercises 10

wRItING A FIRSt PROGRAM 11

Types of Projects 11
console applications 14
Windows forms applications 16
WPf applications 19
Windows store applications 21
summary 23
exercises 24

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

xvi

CONTENTS

comments 43
End-of-line and Multiline Comments 43
XML Comments 45

summary 48
exercises 48

PARt II: C# LANGuAGE ELEMENtS

ChAPtER 4: dAtA tyPES, VARIAbLES, ANd CONStANtS 53

Data Types 54
Value Versus Reference Types 57
The var Keyword 58

Variable Declaration syntax 59
Name 62
Attributes 62
Accessibility 63
Static, Constant, and Volatile Variables 64

Initialization 65
Classes and Structures 66
Arrays 67
Collections 68

Literal Type characters 69
Data Type conversion 72

Implicit Conversion 73
Casting 74
Using the as Operator 76
Casting Arrays 77
Parsing 77
Using System .Convert 78
Using System .BitConverter 78
ToString 79

scope 79
Block Scope 79
Method Scope 80
Class Scope 81
Restricting Scope 81

Parameter Declarations 82
By Value 82
By Reference 83
For Output 84
Unusual Circumstances and Exceptions 85

www.EBooksWorld.ir

www.hellodigi.ir

xvii

CONTENTS

Properties 86
enumerations 88
nullable Types 92
Delegates 93
summary 95
exercises 96

ChAPtER 5: OPERAtORS 99

arithmetic operators 100
Result Data Type 100
Shift Operators 101
Increment and Decrement Operators 101

comparison operators 102
Logical operators 103
Bitwise operators 105
conditional and null-coalescing operators 106
assignment operators 107
operator Precedence 108
The stringBuilder class 110
DateTime and Timespan operations 111
operator overloading 112

Comparison Operators 113
Logical Operators 115
Type Conversion Operators 115

summary 117
exercises 118

ChAPtER 6: MEthOdS 121

method Declarations 122
Attributes 122
Accessibility 124
Modifiers 124
Name 128
Return Type 128
Parameters 129
Implementing Interfaces 133

extension methods 135
Lambda expressions 136

Expression Lambdas 136
Statement Lambdas 137
Async Lambdas 138

www.EBooksWorld.ir

www.hellodigi.ir

xviii

CONTENTS

Variance 139
asynchronous methods 140

Calling EndInvoke Directly 140
Handling a Callback 141
Using Async and Await 144

summary 146
exercises 147

ChAPtER 7: PROGRAM CONtROL StAtEMENtS 151

Decision statements 151
if-else Statements 152
switch Statements 153
Enumerated Values 156
Conditional and Null-coalescing Operators 157

Looping statements 157
for Loops 157
Noninteger for Loops 159
while Loops 160
do Loops 161
foreach Loops 161
Enumerators 163
Iterators 164
break Statements 165
continue Statements 165

summary 166
exercises 166

ChAPtER 8: LINQ 169

Introduction to LInQ 171
Basic LInQ Query syntax 173

from 173
where 174
orderby 175
select 175
Using LINQ Results 177

advanced LInQ Query syntax 178
join 178
join into 179
group by 179
Aggregate Values 181

www.EBooksWorld.ir

www.hellodigi.ir

xix

CONTENTS

Set Methods 182
Limiting Results 183

other LInQ methods 184
LInQ extension methods 185

Method-Based Queries 185
Method-Based Queries with Lambda Functions 187
Extending LINQ 188

LInQ to objects 189
LInQ to XmL 189

XML Literals 190
LINQ into XML 191
LINQ out of XML 192

LInQ to aDo.neT 194
LINQ to SQL and LINQ to Entities 194
LINQ to DataSet 195

PLInQ 198
summary 200
exercises 201

ChAPtER 9: ERROR hANdLING 205

Bugs Versus Undesirable conditions 206
Catching Bugs 206
Code Contracts 209
Catching Undesirable Conditions 213
Global Exception Handling 216

try catch Blocks 220
Exception Objects 223
Throwing Exceptions 224
Rethrowing Exceptions 226
Custom Exceptions 227

summary 229
exercises 229

ChAPtER 10: tRACING ANd dEbuGGING 231

The Debug menu 232
The Debug ➪ Windows submenu 234
The Breakpoints Window 235
The Immediate Window 237
Trace Listeners 238
summary 240
exercises 241

www.EBooksWorld.ir

www.hellodigi.ir

xx

CONTENTS

PARt III: ObjECt-ORIENtEd PROGRAMMING

ChAPtER 11: OOP CONCEPtS 245

classes 245
encapsulation 248
Inheritance 250

Inheritance Hierarchies 251
Refinement and Abstraction 252
 Has-a and Is-a Relationships 257
Adding and Modifying Class Features 257
Hiding and Overriding 258
abstract 261
sealed 262

Polymorphism 263
summary 266
exercises 266

ChAPtER 12: CLASSES ANd StRuCtuRES 269

classes 270
attributes 270
accessibility 271
abstract | sealed | static 272
partial 273

structures 275
Value Versus Reference Types 275
Memory Requirements 276
Heap and Stack Performance 277
Object Assignment 277
Parameter Passing 277
Boxing and Unboxing 281

constructors 282
structure Instantiation Details 285
garbage collection 286

Destructors 286
Dispose 288

events 290
Declaring Events 290
Raising Events 292
Catching Events 292
Using Event Delegate Types 292
Using Static Events 296

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

xxi

CONTENTS

Hiding and Overriding Events 296
Raising Parent Class Events 296
Implementing Custom Events 297

static methods 298
summary 300
exercises 301

ChAPtER 13: NAMESPACES 303

collisions in .neT 304
The using Directive 304

Project Templates 307
Item Templates 309

The Default namespace 311
making namespaces 311
resolving namespaces 313
The global namespace 314
summary 315
exercises 315

ChAPtER 14: COLLECtION CLASSES 317

arrays 318
Dimensions 318
Lower Bounds 318
Resizing 319
Speed 320
Other Array Class Features 320

system.collections 321
ArrayList 321
StringCollection 324
NameValueCollection 325

Dictionaries 326
ListDictionary 327
Hashtable 328
HybridDictionary 329
StringDictionary 329
SortedList 329

collectionsUtil 331
stacks and Queues 331

Stack 331
Queue 333

www.EBooksWorld.ir

www.hellodigi.ir

xxii

CONTENTS

generic collections 335
collection Initializers 337
Iterators 338
summary 339
exercises 340

ChAPtER 15: GENERICS 343

advantages of generics 344
Defining generics 344

Generic Constructors 345
Multiple Types 346
Constrained Types 348
Default Values 352

Instantiating generic classes 352
generic collection classes 352
generic methods 352
generics and extension methods 353
summary 354
exercises 355

PARt IV: INtERACtING wIth thE ENVIRONMENt

ChAPtER 16: PRINtING 359

Windows forms Printing 359
Basic Printing 360
Drawing Basics 365

WPf Printing 380
Using a Paginator 381
Creating Documents 385

summary 390
exercises 390

ChAPtER 17: CONFIGuRAtION ANd RESOuRCES 393

environment Variables 394
Setting Environment Variables 394
Using System .Environment 395

registry 397
configuration files 402

www.EBooksWorld.ir

www.hellodigi.ir

xxiii

CONTENTS

resource files 405
Application Resources 405
Embedded Resources 406
Localization Resources 407

summary 408
exercises 408

ChAPtER 18: StREAMS 411

stream 412
filestream 414
memorystream 415
Binaryreader and BinaryWriter 416
Textreader and TextWriter 418
stringreader and stringWriter 419
streamreader and streamWriter 421
exists, openText, createText, and appendText 422
custom stream classes 423
summary 423
exercises 424

ChAPtER 19: FILE SyStEM ObjECtS 425

filesystem Permissions 426
.neT framework classes 426

Directory 426
File 428
DriveInfo 430
DirectoryInfo 431
FileInfo 432
FileSystemWatcher 434
Path 436

Using the recycle Bin 438
Using the FileIO .FileSystem Class 438
Using API Functions 439
Using Shell32 .Shell 440

summary 443
exercises 444

www.EBooksWorld.ir

www.hellodigi.ir

xxiv

CONTENTS

ChAPtER 20: NEtwORKING 445

networking classes 446
Downloading Information 448

Downloading with WebClient 448
Downloading with WebRequest 451

Uploading Information 455
Uploading with WebClient 455
Uploading with WebRequest 455

getting fTP Information 456
sending e-mail 458
sending Text messages 460
summary 462
exercises 463

PARt V: AdVANCEd tOPICS

ChAPtER 21: REGuLAR ExPRESSIONS 469

Building regular expressions 470
Character Escapes 471
Character Classes 472
Anchors 473
Grouping Constructs 474
Quantifiers 475
Alternation Constructs 476
Sample Regular Expressions 476

Using regular expressions 478
Matching Patterns 479
Finding Matches 480
Making Replacements 481
Parsing Input 482

summary 483
exercises 483

ChAPtER 22: PARALLEL PROGRAMMING 485

Interacting with the User Interface 488
BackgroundWorker 491

TPL 492
Parallel .For 492
Parallel .ForEach 494
Parallel .Invoke 495

www.EBooksWorld.ir

www.hellodigi.ir

xxv

CONTENTS

Tasks 496
Threads 498
coordinating Tasks 499

Race Conditions 499
Deadlocks 501

Thread-safe objects 503
summary 504
exercises 505

ChAPtER 23: AdO.NEt 509

selecting a Database 510
Using Bound controls 511

Making a Data Source 511
Making a DataGridView Interface 516
Making a Details Interface 518
Making a DataGrid Interface 518

Loading Datasets 525
Using aDo.neT 527
summary 530
exercises 531

ChAPtER 24: xML 533

Basic XmL syntax 534
Writing XmL Data 538

XmlWriter 538
Document Object Model 541
XML Literals 547

reading XmL Data 547
XmlTextReader 547
Document Object Model 550

related Technologies 551
XPath 552
XSLT 555

summary 559
exercises 559

ChAPtER 25: SERIALIzAtION 563

XmL serialization 564
Performing Serialization 565
Controlling Serialization 569

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

xxvi

CONTENTS

Json serialization 573
Performing Serialization 574
Controlling Serialization 575

Binary serialization 576
summary 578
exercises 578

ChAPtER 26: REFLECtION 581

Learning about classes 582
getting and setting Properties 585
getting assembly Information 589
Invoking methods 591
running scripts 593
summary 597
exercises 597

ChAPtER 27: CRyPtOGRAPhy 601

cryptographic operations 602
randomness 603

Using Random Numbers for Encryption 604
Using Encryption for Random Numbers 604
Cryptographically Secure Randomness 604
Generating Random Numbers 605

symmetric Key encryption 608
Simple Encryption and Decryption 608
Keys and Initialization Vectors 612
Generating Key and IV Values 613

asymmetric Key encryption 614
Creating, Saving, and Retrieving Keys 615
Encrypting Data 616
Decrypting Data 616
Example Encryption 617

summary 619
exercises 619

PARt VI: APPENdICES

APPENdIx A: SOLutIONS tO ExERCISES 625

chapter 1 625
chapter 2 626

www.EBooksWorld.ir

www.hellodigi.ir

xxvii

CONTENTS

chapter 3 627
chapter 4 629
chapter 5 631
chapter 6 635
chapter 7 638
chapter 8 642
chapter 9 648
chapter 10 655
chapter 11 659
chapter 12 665
chapter 13 667
chapter 14 668
chapter 15 673
chapter 16 678
chapter 17 682
chapter 18 685
chapter 19 689
chapter 20 694
chapter 21 702
chapter 22 706
chapter 23 711
chapter 24 713
chapter 25 720
chapter 26 725
chapter 27 728

APPENdIx b: dAtA tyPES 733

casting and converting Values 734
Widening and Narrowing Conversions 735
Converting Objects 735
The as Operator 735
Casting Arrays 736

Parsing Values 736

APPENdIx C: VARIAbLE dECLARAtIONS 737

Initialization expressions 738
Using 739
enumerated Type Declarations 739

www.EBooksWorld.ir

www.hellodigi.ir

xxviii

CONTENTS

APPENdIx d: CONStANt dECLARAtIONS 741

APPENdIx E: OPERAtORS 743

arithmetic operators 743
comparison operators 744
Logical operators 744
Bitwise operators 745
assignment operators 745
conditional and null-coalescing operators 745
operator Precedence 745
DateTime and Timespan operators 747
operator overloading 748

APPENdIx F: MEthOd dECLARAtIONS 749

methods 749
Property Procedures 750
Lambda functions and expressions 750
extension methods 751

APPENdIx G: uSEFuL AttRIbutES 753

Useful XmL serialization attributes 753
Useful Json serialization attributes 754
Binary serialization attributes 754
other Useful attributes 755

APPENdIx h: CONtROL StAtEMENtS 757

Decision statements 757
if-else Statements 757
switch 757
Conditional and Null-coalescing Operators 758

Looping statements 758
for Loops 758
while Loops 759
do Loops 759
foreach Loops 759
Enumerators 760
Iterators 760
break and continue Statements 760

www.EBooksWorld.ir

www.hellodigi.ir

xxix

CONTENTS

APPENdIx I: ERROR hANdLING 761

Throwing exceptions 762

APPENdIx j: LINQ 763

Basic LInQ Query syntax 763
from 763
where 764
orderby 764
select 764
join 765
group by 765
Aggregate Values 766
Limiting Results 766

LInQ functions 767
LInQ to XmL 768

XML Literals 768
LINQ into XML 768
LINQ out of XML 769

LInQ to aDo.neT 770
PLInQ 771

APPENdIx K: CLASSES ANd StRuCtuRES 773

classes 773
structures 774
constructors 774
Destructors 774
events 775

APPENdIx L: COLLECtION CLASSES 777

arrays 777
Simple Arrays 777
Array Objects 778

collections 779
Specialized Collections 779
Generic Collections 779
Collection Initializers 780

Iterators 780

www.EBooksWorld.ir

www.hellodigi.ir

xxx

CONTENTS

APPENdIx M: GENERIC dECLARAtIONS 783

generic classes 783
generic methods 784

APPENdIx N: PRINtING ANd GRAPhICS 785

Windows forms Printing 785
Printing Steps 785
Graphics Namespaces 786
Drawing Graphics 787

WPf Printing 795
Using a Paginator 795
Creating Documents 796

APPENdIx O: uSEFuL ExCEPtION CLASSES 799

standard exception classes 799
custom exception classes 802

APPENdIx P: dAtE ANd tIME FORMAt SPECIFIERS 803

standard format specifiers 803
custom format specifiers 804

APPENdIx Q: OthER FORMAt SPECIFIERS 807

standard numeric format specifiers 807
custom numeric format specifiers 809
numeric formatting sections 809
composite formatting 810
enumerated Type formatting 811

APPENdIx R: StREAMS 813

stream class summary 813
stream 814
Binaryreader and BinaryWriter 815
Textreader and TextWriter 817
stringreader and stringWriter 818
streamreader and streamWriter 818
Text file stream methods 818

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

xxxi

CONTENTS

APPENdIx S: FILESyStEM CLASSES 821

framework classes 821
Directory 821
File 823
DriveInfo 825
DirectoryInfo 826
FileInfo 827
FileSystemWatcher 829
Path 830

special folders 832
recycle Bin 832

FileIO .FileSystem 833
API Functions 833
Shell32 .Shell 834

APPENdIx t: REGuLAR ExPRESSIONS 835

creating regular expressions 835
Character Escapes 835
Character Classes 836
Anchors 836

regular expression options 837
Grouping Constructs 838
Quantifiers 838
Alternation Constructs 838
Sample Regular Expressions 839

Using regular expressions 839
Matching Patterns 840
Finding Matches 840
Making Replacements 841

APPENdIx u: PARALLEL PROGRAMMING 843

Interacting with the User Interface 843
PLInQ 843
BackgroundWorker 844
TPL 844

Parallel .For 845
Parallel .ForEach 845
Parallel .Invoke 845

Tasks 845
Threads 847

www.EBooksWorld.ir

www.hellodigi.ir

xxxii

CONTENTS

APPENdIx V: xML 849

special characters 849
Writing XmL Data 849

XmlWriter 850
Document Object Model 851
XML Literals 854

reading XmL Data 854
XmlTextReader 854
Document Object Model 856

related Technologies 856
XPath 857
XSLT 858

APPENdIx w: SERIALIzAtION 859

XmL serialization 859
Controlling Serialization 860

Json serialization 861
Performing Serialization 861
Controlling Serialization 862

Binary serialization 863

APPENdIx x: REFLECtION 865

Type 865
memberInfo 870
eventInfo 870
methodInfo 871
fieldInfo 873
PropertyInfo 874
ParameterInfo 874

Index 877

www.EBooksWorld.ir

www.hellodigi.ir

INtROduCtION

whEN It COMES tO PROGRAMMING, a little learning can indeed be a dangerous thing. If you
read a book like C# 5.0 All-in-One for Dummies (Bill Sempf et al., 2013, For Dummies) or my
book Stephens’ C# Programming with Visual Studio 2010 24-Hour Trainer (Rod Stephens, 2010,
Wrox), after only a few weeks you can easily think you know everything there is to know about
programming.

I clearly remember when I finished my first programming class. The language we used was UCSD
Pascal, and after only one class, I knew it quite well. I knew how to use the language, how to draw
simple graphics, and how to read and write files. I was quite sure that with enough work I could
write just about any program imaginable.

Since then I’ve had plenty of opportunities to realize just how wrong I was. I’ve worked on projects
in about a dozen different programming languages, each with its own strengths and idiosyncra-
sies. I’ve worked on elegantly architected systems where adding new features was a breeze, and I’ve
worked on badly designed 50,000 plus line monstrosities where you might need to study the code for
a week before changing a single line for fear of breaking everything else. Since then I’ve also studied
complexity theory and learned that there are literally thousands of provably hard (NP-complete) pro-
grams that you cannot solve in a reasonable amount of time. (I talk about some of them in my book
Essential Algorithms: A Practical Approach to Computer Algorithms, Rod Stephens, 2013, Wiley.)

Even by itself, C# is a complex and powerful programming language. It includes all the language fea-
tures that you would expect in any high-level language such as structures and classes, methods, com-
plex error handling (try, catch, and finally), branching statements (if-then and switch), several
kinds of loops (for, foreach, and while), and several ways to break out of loops (break and return).

In addition to the complexities of the language itself, C# provides many auxiliary features that make
it even more powerful and more complicated. Features let you execute query-like operations on arrays,
use parallel processing, serialize and deserialize objects, and let a program inspect pieces of code to
learn about the objects that it is using.

Finally, the environment that contains C# brings its own complexity. The .NET Framework contains
more than 10,000 classes that give you access to libraries for cryptography, expression matching,
interacting with the operating system, networking, and much more.

This book describes as much of that complexity as possible. It explains the pieces of the C# language
in detail. It explains the syntax, data types, and control statements that go into C# applications. This
book also describes some of the pieces of the .NET Framework that are most useful for building com-
plex applications.

This book does not cover every possible topic related to C#, but it does cover the majority of the
technologies that developers need to build sophisticated applications.

www.EBooksWorld.ir

www.hellodigi.ir

xxxiv

INTRODUCTION

whO ShOuLd REAd thIS bOOK

This book is intended for intermediate and advanced programmers who have already programmed
in C# or some other language. This book describes C# in detail but it does so quickly and assumes
you already understand basic programming concepts. If you’re a beginner, you can still use this
book to learn to program in C#, but it will be a bit harder. If you get stuck, feel free to e-mail me
at RodStephens@CSharpHelper.com and I’ll try to put you back on the right track.

One of the main reasons this book assumes you know programming basics is it’s hard to find a
simple order in which to present topics in depth. For example, declaring and using variables is one
of the most basic concepts in programming. (This book covers that early in Chapter 4, “Data Types,
Variables, and Constants.”) However, in C# variable declarations are different depending on whether
they are inside a class’s method. (In some languages methods are also called procedures, subproce-
dures, routines, subroutines, or functions.) If you already know what a method is, then the book
can cover variables in depth. If you are unfamiliar with methods, a book can present only the basics
of variable declarations, then cover classes, and finally return to the topic of variables. This book
assumes you know basics such as what a variable is and what methods are, so it can quickly move
through topics without a lot of repeating and backtracking.

If fundamentals such as variable declarations, data types, classes, and arrays are familiar to you, you
should have no problem with this book. The index and reference appendices should be particularly
useful in helping you remember the syntax for performing various C# tasks such as creating a class or
making a generic method.

If you don’t know what data types are, what a for loop is, and what an if statement does, you
can probably pick those things up as you go along, but you may need to go back and reread a few
chapters after you get the hang of things.

APPROACh

A program can interact with the user in many ways. It can read and write text in a console window.
It can use Windows Forms and controls to provide a more graphical interface. A program can use
Windows Presentation Foundation (WPF) controls to build an interface that is even more richly
graphical and interactive than Windows Forms interfaces. Recently, a Windows Store program can
use controls similar to those used in a WPF application to run in the Windows 8 operating system.
Some programs provide no interface for the user and instead provide tools and services for other
programs to use behind the scenes.

Building applications that use these different approaches takes a lot of work. The steps you take to
build a WPF application are different from those you use to build a console application. However,
no matter which kind of application you build, behind the user interface sits a bunch of good old
C# code. You use the same syntax to create classes, loops, methods, and variables whether you’re
building Windows Forms applications or WPF applications. The same C# language enables you
to build applications to run in a console window, on the Windows desktop, in Windows 8, in a
browser, or even in Windows Phone.

www.EBooksWorld.ir

www.hellodigi.ir

mailto:RodStephens@CSharpHelper.com

xxxv

INTRODUCTION

This book focuses on the C# programming language rather than on user interface design and con-
struction. Chapter 2, “Writing a First Program,” explains how to start with different kinds of applica-
tions so that you can make applications to test the code, but the main focus is on the code behind the
user interface.

NOtE The main exception to this is Chapter 16, “Printing,” because printing
works differently in the different kinds of applications.

This book also describes methods a program can use to interact with its environment. For example,
the techniques and classes a program uses to create printouts or manipulate files aren’t actually part
of the C# language, but they are essential for many applications.

Finally, this book describes some advanced subjects that are useful in many applications. These include
such topics as using regular expressions to match patterns, parallel programming, serialization, XML,
databases, and cryptography.

whICh EdItION OF VISuAL StudIO ShOuLd yOu uSE?

Visual Studio is the integrated development environment that is most often used to write C# pro-
grams. Because this book focuses on the C# language and not on user interface issues, you can use
it with any edition of Visual Studio. You can use one of the free Express editions or one of the more
complete Professional, Premium, or Ultimate editions.

NOtE To read about or download one of the Visual Studio Express Editions,
go to www.visualstudio.com/products/visual-studio-express-vs.

For a comparison of the different Visual Studio editions, go to
www.visualstudio.com/products/compare-visual-studio-products-vs.

The examples that go with this book, and that are available for download on this book’s website,
were written in Visual Studio Express 2012 for Windows Desktop and were tested in Windows 8.
I picked the Windows Desktop version because writing desktop applications is generally easier than
writing Windows Store or Windows Phone applications. I picked the 2012 edition because a lot of
people already have that version installed. Programs written in the 2012 edition should also be com-
patible with Visual Studio 2013 so you should be able to open them in the 2013 edition. If you have
trouble opening the project, please let me know.

You can use other editions of Visual Studio to study C# programming. For example, you could use
Visual Studio Express 2013 for Windows, which can build Windows Store applications. If you do,
the C# code you write behind the scenes will be the same as the code you would write for Windows
Desktop but building the user interface will be very different.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.visualstudio.com/products/visual-studio-express-vs
http://www.visualstudio.com/products/compare-visual-studio-products-vs
http://www.hiva-network.com/

xxxvi

INTRODUCTION

The C# language and the .NET Framework change from time to time but the basics remain the
same. That means much of this book’s material applies to other versions of C# as well as different
editions of Visual Studio. For example, there are some differences between C# 4.0 and C# 5.0, but
the two versions are mostly the same. That means you can use this book even if you have an older
version of Visual Studio installed, such as Visual Studio 2010, as long as you understand that a few
things may not work. (The async and await keywords are the biggest differences.)

hOw thIS bOOK IS ORGANIzEd

The chapters in this book are divided into five parts plus appendices.

Part I: the C# Ecosystem
Chapters 1 through 3 explain how C# programs fit into the Visual Studio environment. They explain
how C# code is converted into code that the computer can execute and how that conversion happens.
They also explain what files go into a C# application and what those files contain.

Chapter 2 briefly explains how you can write simple console, Windows Forms, and WPF applica-
tions that can invoke C# code. The rest of the book focuses on that code and mostly ignores user
interface issues.

Part II: C# Language Elements
Chapters 4 through 10 explain the bulk of the C# language and the objects that support it. They
explain data types (string, float, and arrays), operators (+, *, and %), program control statements
(if, while, and for), and error handling. They also explain how to edit and debug C# code.

Although Language-Integrated Query (LINQ) it is not strictly part of the C# language, it is closely tied
to the language, so Chapter 8, “LINQ,” covers it. That chapter also covers Parallel LINQ (PLINQ), a
parallel version of LINQ that can provide improved performance on multicore systems.

Part III: Object-Oriented Programming
Chapters 11 through 15 explain fundamental concepts in object-oriented programming (OOP)
with C#. They explains how to define classes and inheritance hierarchies, use collection classes,
and build generic classes and methods.

Part IV: Interacting with the Environment
Chapters 16 through 20 explain how an application can interact with its environment. They show
how the program can create printouts, use configuration files, manipulate the filesystem, and down-
load information from the Internet.

www.EBooksWorld.ir

www.hellodigi.ir

xxxvii

INTRODUCTION

Part V: Advanced topics
Chapters 21 through 27 cover more advanced topics that are useful in many advanced applications.
They include such topics as recognizing patterns in text, parallel programming, using databases,
serialization, reflection, and encrypting and decrypting data.

Part VI: Appendices
Appendix A, “Solutions to Exercises,” provides outlines of solutions to the exercises described at
the end of each chapter. Programs that implement many of the solutions are available for download
on the book’s website. This appendix shows the most interesting parts of many of the programs,
but to save space I omitted some of the less interesting details. Download the examples from
www.wrox.com/go/csharp5programmersref to see all the code.

The book’s other appendices provide a categorized reference of the C# language. You can use them
to quickly review the syntax of a particular command or refresh your memory of what a particular
class can do. The chapters earlier in the book give more context, explaining how to perform specific
tasks and why one approach might be better than another. The appendices provide a brief summary.

hOw tO uSE thIS bOOK

If you are an advanced C# programmer, you may want to skim the language basics covered in the first
parts of the book. You still may find a few new details, so you might not want to skip these chapters
entirely, but most of the basic language features are the same as in previous versions of C#.

Each chapter ends with a set of exercises you can use to test your understanding of the material
covered in the chapter. Sometimes exercises point to more in-depth topics that don’t fit well in the
chapter’s text. Even if you’re an advanced C# developer, you may want to read the exercises to
make sure you didn’t miss anything.

Intermediate programmers and those with less C# experience should take these chapters a bit more
slowly. The chapters in Part III, “Object-Oriented Programming,” cover particularly tricky topics.
Learning all the variations on inheritance and interfaces can be rather confusing. If you are unfamil-
iar with these topics, plan to spend some extra time on those chapters.

Particularly if you have experience with some other programming language but not C#, you should
spend some extra time on these first ten or so chapters because they set the stage for the material that
follows. It will be a lot easier for you to follow a discussion of file management or regular expressions
if you are not confused by the error-handling code that the examples take for granted.

Programming is a skill best learned by doing. You can pick up the book and read through it quickly
if you like (well, as quickly as you can, given how long it is), but the information is more likely to
stick if you open Visual Studio and experiment with some programs of your own.

Throughout your work, you can refer to the appendices to get information on specific classes, controls,
and syntax. For example, you can turn to Appendix R, “Streams,” to quickly find classes you can use

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

xxxviii

INTRODUCTION

to manipulate files and directories. If you need more information, you can go back to Chapter 19, “File
System Objects,” or check the online help. If you just need to refresh your memory of the basic classes
and their methods, however, scanning Appendix R will be faster.

NECESSARy EQuIPMENt

To build C# programs, you need a copy of Visual Studio. To download different editions, go to
www.visualstudio.com/downloads/download-visual-studio-vs.

To run Visual Studio, you need a reasonably modern, fast computer with a lot of memory. The exact
requirements depend on the version and edition of Visual Studio you are using. To get the details,
see the download page for the version you want to use. (I use a dual-core 64-bit 1.60 GHz Intel Core
i5-4200U system with 8 GB of memory and 1 TB of hard disk space running Windows 8. It has a
Windows Experience Index of 5.6 and handles Visual Studio with no problems.)

NOtE Technically, you can build C# programs without Visual Studio. It’s
uncommon, harder than using Visual Studio, and doesn’t let you use Visual
Studio’s amazing programming and debugging features, so this book doesn’t dis-
cuss it. For more information, search the Internet for C# without Visual Studio.

Much of C# 5 is compatible with earlier versions of C#, so if you’re using an older version of Visual
Studio, you may be able to make most of this book’s examples work with your system. You cannot
load the example programs directly into your version of Visual Studio, however. You need to open
the source code files in an editor such as WordPad and copy and paste the significant portions of the
code into your program.

CONVENtIONS

To help you get the most from the text and keep track of what’s happening, I used a number of
conventions throughout the book.

For styles in the text:

➤➤ Important words are italicized when they are introduced.

➤➤ Keyboard strokes are shown like this: Ctrl+A.

➤➤ Filenames, URLs, and code within the text are shown like this: persistence.properties.

➤➤ Code is presented in the following two different ways:

I use a monofont type for code examples.
I use bolded type to emphasize code that's particularly important in the present
context.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.visualstudio.com/downloads/download-visual-studio-vs

xxxix

INTRODUCTION

SOuRCE COdE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. Many of the examples in the text
show only the code that is relevant to the current topic and may be missing some of the extra details
that you need to make the example work properly.

All the source code used in this book is available for download at

www.wrox.com/go/csharp5programmersref

You can also search for the book at www.wrox.com to find the code. When at the site, simply locate the
book’s title (either by using the Search box or by using one of the title lists) and click the Download
Code link on the book’s detail page to obtain all the source code for the book.

NOtE Because many books have similar titles, you may find it easiest to locate
the book by its ISBN: 978-1-118-84728-2.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

wARNING File Explorer can open compressed files and let you browse them as
if they were normal files and that can sometimes lead to confusion. People often
open a compressed file in this way and double-click on a .sln or .csproj file to
open it in Visual Studio. This is probably the most common reason why people
cannot run downloaded code.

Unfortunately Visual Studio doesn’t really understand how to work inside a com-
pressed directory. When you try to load the project, you will usually see an error
similar to the following.

One or more projects in the solution were not loaded correctly.

Occasionally the project will seem to load but if you try to edit the code or run
the program you’ll get an error similar to the following. The name of the missing
file may differ for different programs.

The item ‘Program.cs’ does not exist in the project directory. It may have
been moved, renamed, or deleted.

Visual Studio is confused because it cannot find some file that was not extracted
from the compressed files. To avoid these problems, always extract the files from
the compressed download before you try to open a project.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

xl

INTRODUCTION

ERRAtA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of my books, like a spelling mistake
or faulty piece of code, I would be grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping me provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent edi-
tions of the book.

P2P.wROx.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and to interact
with other readers and technology users. The forums offer a subscription feature to e-mail you top-
ics of interest of your choosing when new posts are made to the forums. Wrox authors and editors,
other industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com you can find a number of different forums that can help you not only as you read
this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

jOIN thE FuN

You can read messages in the forums without joining P2P, but to post your own
messages, you must join.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com
http://www.wrox.com/misc-pages/
http://www.wrox.com/contact/techsupport
http://www.hiva-network.com/

xli

INTRODUCTION

After you join, you can post new messages and respond to messages other users post. You can
read messages at any time on the web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Using the P2P forums allows other readers to benefit from your questions and any answers they
generate. I monitor my book’s forums and respond whenever I can help.

If you have other comments, suggestions, or questions that you don’t want to post to the forums,
you can e-mail me at RodStephens@CSharpHelper.com. I can’t promise to solve all your problems
but I’ll try to help you if I can.

IMPORtANt uRLS

Here’s a summary of important URLs related to this book:

➤➤ www.CSharpHelper.com—My C# website. Contains thousands of tips, tricks, and examples
for C# developers.

➤➤ p2p.wrox.com—Wrox P2P forums.

➤➤ www.wrox.com—The Wrox website. Contains code downloads, errata, and other information.
Search for the book by title or ISBN.

➤➤ RodStephens@CSharpHelper.com—My e-mail address. I hope to hear from you!

www.EBooksWorld.ir

www.hellodigi.ir

mailto:RodStephens@CSharpHelper.com
http://www.CSharpHelper.com
http://www.wrox.com
mailto:RodStephens@CSharpHelper.com
http://p2p.wrox.com

www.EBooksWorld.ir

www.hellodigi.ir

Part I
the C# Ecosystem

 ▶ ChAPtER 1: The C# Environment

 ▶ ChAPtER 2: Writing a First Program

 ▶ ChAPtER 3: Program and Code File Structure

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

The c# environment
whAt’S IN thIS ChAPtER

➤➤ IL and the CLR

➤➤ JIT compiling

➤➤ Programs and assemblies

➤➤ The .NET Framework

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

A C# program cannot exist in isolation. You can’t write C# programs without using other tools.
You can’t even run a compiled C# program without libraries that provide runtime support.

This chapter describes the tools that you need in the Windows environment to write, compile,
and execute C# programs. Most of the time those tools work smoothly behind the scenes, so
you don’t need to be aware of their presence. It’s still worth knowing what they are, however,
so you know how all the pieces of the C# environment fit together.

VISuAL StudIO

You can write a C# program in a text editor and then use a command-line interface to com-
pile the program. (For example, see “Working with the C# 2.0 Command Line Compiler”
at http://msdn.microsoft.com/library/ms379563.aspx for more information.)

That approach is a lot of work, however, so most C# programmers use Visual Studio.

1

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://msdn.microsoft.com/library/ms379563.aspx
http://www.hiva-network.com/

4 ❘ ChAPtER 1 The C# environmenT

Visual Studio is a powerful integrated development environment (IDE) that includes code editors,
form and window designers, and flexible debugging tools. Some versions also include testing, profil-
ing, team programming, and other tools.

The Visual Studio code editors provide IntelliSense help, which displays prompts and descriptions
of items you need to enter into the code. The code editor’s features such as IntelliSense make writing
correct C# programs much easier than it is with a simple text editor.

If you haven’t already installed Visual Studio, you should probably do it now. It takes a while, so be
sure you have a fast Internet connection.

To learn about and download one of the Visual Studio Express Editions, go to www.visualstudio
.com/products/visual-studio-express-vs.

To learn about the other Visual Studio editions, go to www.microsoft.com/visualstudio/eng/
products/compare.

While Visual Studio is downloading and installing, you can read further.

The most important tool integrated into Visual Studio is the compiler, which turns C# code into a
compiled executable program—well, sort of.

thE C# COMPILER

The C# compiler doesn’t actually compile code into a truly executable program. Instead it translates
your C# code into an assembly-like language called Intermediate Language (IL).

whAt’S IN A NAME?

While under development, the intermediate language was called Microsoft
Intermediate Language (MSIL). When .NET was released, the name was changed
to IL.

The international standards organization Ecma created the Common Language
Infrastructure (CLI) standard that defines a Common Intermediate Language (CIL).

To summarize the alphabet soup, MSIL is the old name for Microsoft’s intermediate
language; IL is the current name; and CIL is the name for the non-Microsoft standard.
There are some differences between IL and CIL but many .NET developers use MSIL,
IL, and CIL interchangeably.

PROGRAMS ANd ASSEMbLIES

The C# compiler doesn’t compile only programs; it can also compile other kinds of
assemblies. An assembly is the smallest possible piece of compiled code. Assemblies
include programs, code libraries, control libraries, and anything else you can compile.
An executable program consists of one or more assemblies.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.visualstudio.com/products/visual-studio-express-vs
http://www.microsoft.com/visualstudio/eng/products/compare
http://www.visualstudio.com/products/visual-studio-express-vs
http://www.microsoft.com/visualstudio/eng/products/compare

The c# compiler ❘ 5

Consider the following C# code.

static void Main(string[] args)
{
 foreach (string arg in args) Console.WriteLine(arg);
 Console.WriteLine("Press Enter to continue");
 Console.ReadLine();
}

The C# compiler translates this into the following IL code.

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 51 (0x33)
 .maxstack 2
 .locals init ([0] string arg,
 [1] string[] CS$6$0000,
 [2] int32 CS$7$0001,
 [3] bool CS$4$0002)
 IL_0000: nop
 IL_0001: nop
 IL_0002: ldarg.0
 IL_0003: stloc.1
 IL_0004: ldc.i4.0
 IL_0005: stloc.2
 IL_0006: br.s IL_0017
 IL_0008: ldloc.1
 IL_0009: ldloc.2
 IL_000a: ldelem.ref
 IL_000b: stloc.0
 IL_000c: ldloc.0
 IL_000d: call void [mscorlib]System.Console::WriteLine(string)
 IL_0012: nop
 IL_0013: ldloc.2
 IL_0014: ldc.i4.1
 IL_0015: add
 IL_0016: stloc.2
 IL_0017: ldloc.2
 IL_0018: ldloc.1
 IL_0019: ldlen
 IL_001a: conv.i4
 IL_001b: clt
 IL_001d: stloc.3
 IL_001e: ldloc.3
 IL_001f: brtrue.s IL_0008
 IL_0021: ldstr "Press Enter to continue"
 IL_0026: call void [mscorlib]System.Console::WriteLine(string)
 IL_002b: nop
 IL_002c: call string [mscorlib]System.Console::ReadLine()
 IL_0031: pop
 IL_0032: ret
} // end of method Program::Main

www.EBooksWorld.ir

www.hellodigi.ir

6 ❘ ChAPtER 1 The C# environmenT

dISPLAyING IL

You can use the ildasm program to view a compiled program’s IL code. (Ildasm is
pronounced “eye-ell-dazm” so it rhymes with “chasm.” The name stands for “IL
disassembler.”) For information about ildasm, see http://msdn.microsoft.com/
library/f7dy01k1.aspx.

The IL code is fairly cryptic; although, if you look closely you can see the method’s declaration and
calls to Console.WriteLine and Console.ReadLine.

IL code looks a lot like assembly language but it’s not. Assembly language is a (barely) human-readable
version of machine code that can run on a specific kind of computer. If the program were translated
into assembly or machine code, it could run only on one kind of computer. That would make sharing
the program on different computers difficult.

To make sharing programs on multiple computers easier, IL provides another layer between C# code
and machine code. It’s like a virtual assembly language that still needs to be compiled into executable
machine code. You can copy the IL code onto different computers and then use another compiler to
convert it into machine code at run time. In .NET, the Common Language Runtime (CLR) performs
that compilation.

thE CLR

CLR is a virtual machine component of the .NET Framework that translates IL into native machine
code when you run a C# program. When you double-click a C# program’s compiled executable pro-
gram, the CLR translates the IL code into machine code that can be executed on the computer.

The CLR uses a just-in-time compiler (JIT compiler) to compile pieces of the IL code only when
they are needed. When the program is loaded, the loader creates a stub for each method. Initially,
that stub points to the method’s IL code.

When the program invokes the method, the JIT compiler translates its IL code into machine code,
makes the stub point to it, and then runs the machine code. If the program calls the method again
later, its stub already points to the machine code, so the method doesn’t need to be compiled again.

Figure 1-1 shows the process graphically.

Usually, the time needed to compile a method is small, so you don’t notice the tiny bits of extra time
used as each method is called for the first time. After a method is compiled, it runs a tiny bit faster
when it is called later.

If a method is never called by the program, it is never compiled by the JIT compiler, so the compiler
saves some time.

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/f7dy01k1.aspx
http://msdn.microsoft.com/library/f7dy01k1.aspx

The cLr ❘ 7

C#
Program

Visual Basic
Program

Other Language
Program

IL

Native
Method

Native
Method

Native
Method

Program

C# Compiler Other CompilerVisual Basic
Compiler

JIT
Compiler

JIT
Compiler

JIT
Compiler

FIGuRE 1-1: Compilers translate C# code (and code in other
languages) into IL code . At run time, the JIT compiler translates
methods from IL code into machine code as needed .

AhEAd-OF-tIME COMPILING

Normally .NET programs use the JIT compiler, but if you want to, you can use the
NGen.exe program to precompile a program into native code. Then when you run
the program, it is already compiled, so each method doesn’t need to be compiled
just in time.

This might not save you as much time as you would think. Hard drives are slow
compared to operations performed in memory, so loading the compiled methods
from disk may take much longer than the time saved precompiling the program.

You can speed things up if you give an assembly a strong name and install it in the
system’s Global Assembly Cache (GAC, pronounced “gack”). In that case, multiple
programs that share the assembly may not need to load the compiled assembly from
disk. The whole process is rather involved and only useful under specialized condi-
tions, so it’s not described in any greater detail here. For more information about
NGen and the JIT compiler, see “Compiling MSIL to Native Code” at http://
msdn.microsoft.com/library/ht8ecch6.aspx. For more information about
using NGen and the GAC to improve performance, see “The Performance Benefits
of NGen” at http://msdn.microsoft.com/magazine/cc163610.aspx.

In addition to providing JIT compilation, the CLR also provides some low-level services used by
programs such as memory management, thread management, and exception handling. (Chapter 12,
“Classes and Structures,” describes the .NET memory management model. Chapter 6, “Methods,”

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/ht8ecch6.aspx
http://msdn.microsoft.com/library/ht8ecch6.aspx
http://msdn.microsoft.com/magazine/cc163610.aspx

8 ❘ ChAPtER 1 The C# environmenT

and Chapter 22, “Parallel Programming,” discuss using multiple threads. Chapter 9, “Error
Handling,” describes exception handling in C#.)

thE .NEt FRAMEwORK

The .NET Framework includes the CLR and a large library of powerful tools that make C# pro-
gramming simpler. Those tools include just about everything you normally use in a C# program that
isn’t part of the C# language itself. Some of the tools included in the .NET Framework enable you to

➤➤ Add attributes to classes and their members to give extra information to runtime tools.

➤➤ Use collections such as lists, dictionaries, and hash tables.

➤➤ Work with databases.

➤➤ Find the computer’s physical location using methods such as GPS, Wi-Fi triangulation, and
cell tower triangulation.

➤➤ Interact with system processes, event logs, and performance data.

➤➤ Create sophisticated two-dimensional drawings.

➤➤ Interact with Active Directory.

➤➤ Provide globalization so that programs use appropriate text and images in different locales.

➤➤ Use LINQ (described in Chapter 8, “LINQ”).

➤➤ Create and use message queues.

➤➤ Work with the filesystem.

➤➤ Play audio and video.

➤➤ Get information about and manage devices.

➤➤ Interact with networks and the Internet.

➤➤ Print documents.

➤➤ Examine the code entities defined by the program or another compiled assembly.

➤➤ Serialize and deserialize objects.

➤➤ Control program security.

➤➤ Support speech recognition.

➤➤ Run multiple threads of execution simultaneously.

➤➤ Process XML and JSON files.

➤➤ Encrypt and decrypt files.

➤➤ Much more.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

summary ❘ 9

By using all of these tools, you can build standalone programs to run on desktop systems, phone or
tablet applications, websites, networked applications, and all sorts of other programs.

A compiled C# program needs the CLR to execute, and most programs also need the .NET Framework.
That means to run a program, a computer must have the .NET Framework installed.

If Visual Studio is installed on the computer, the .NET Framework is also installed. That means you
can usually copy a compiled C# application onto the computer and it will run. (Of course, you should
never copy a compiled program from a source you don’t trust! This method works if you want to
share a program with your friends, but don’t just grab any old compiled C# program off the Internet.)

Most installers also install the .NET Framework if needed, so if you use an installer, the .NET
Framework will be installed if it’s not already on the machine. For example, ClickOnce deployment
installs the .NET Framework if necessary.

You can also install the .NET Framework manually by downloading an installer or by using a web
installer. To find the latest installers, go to Microsoft’s Download Center at www.microsoft.com/
download/default.aspx and search for .NET Framework.

CLICKONCE

To use ClickOnce deployment, select Build ➪ Publish, and let the Publish Wizard
guide you through the process. The wizard enables you to determine

➤➤ The location where the distribution package should be built

➤➤ Whether the user will install from a website, a file, or a CD or DVD

➤➤ Whether the application should check for updates when it runs

For more information on ClickOnce deployment, see http://msdn.microsoft
.com/library/142dbbz4.aspx.

Most of the .NET Framework features are backward compatible, so usually you can install the most
recent version, and programs built with older versions will still run. If you do need a particular version
of the .NET Framework, search the Download Center for the version you need.

SuMMARy

A C# program cannot stand completely alone. To create, compile, and run a C# program, you need
several tools. You can create a C# program in a text editor, but it’s much easier to use Visual Studio
to write and debug programs. After you write a program, the C# compiler translates the C# code
into IL code. At run time, the CLR (which is part of the .NET Framework) uses JIT compilation to
translate the IL code into native machine code for execution.

You can use NGen to precompile assemblies and install them in the GAC, so they don’t need to be
compiled at run time by the JIT compiler. In many cases, however, that won’t save much time. If the

www.EBooksWorld.ir

www.hellodigi.ir

http://www.microsoft.com/download/default.aspx
http://msdn.microsoft.com/library/142dbbz4.aspx
http://www.microsoft.com/download/default.aspx
http://msdn.microsoft.com/library/142dbbz4.aspx

10 ❘ ChAPtER 1 The C# environmenT

program’s methods are called when the user performs actions such as clicking buttons and invoking
menu items, the small additional overhead probably won’t be noticeable.

All that happens behind the scenes when you build and execute a C# program. The next
chapter explains how you can start to build C# programs. It explains the most common types
of C# projects and explains how you can use several of them to test C# code as you work
through the rest of this book.

ExERCISES

 1. Draw a diagram showing the major steps that Visual Studio performs when you write a
C# program and press F5 to run it.

 2. Suppose you have two applications. The first uses 50 methods to perform tasks as the user
selects them. The second uses the same 50 methods to perform all the tasks when it starts.
How will the performance of the two applications differ? How do NGen and the GAC apply
to this situation?

 3. For which of the following scenarios would NGen and the GAC be most useful?

 a. An interactive application that displays forms on the screen

 b. A code library that defines methods for performing tasks that your other programs use

 c. A control library that defines custom buttons, scroll bars, and other controls

 d. A console application that writes output to a console window

 4. Suppose your program uses 100 methods as the user performs various actions. You add a
parameter to each method, so you can tell it to return without doing anything. Then when
the program starts (while the splash screen displays), the code calls every method telling it to
return without doing anything. How would the CLR handle those methods?

www.EBooksWorld.ir

www.hellodigi.ir

Writing a first Program
whAt’S IN thIS ChAPtER

➤➤ Solutions and projects

➤➤ Creating console, Windows Forms, WPF, and
Windows Store applications

➤➤ Naming conventions

➤➤ How the CLR starts programs

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Unless you plan to edit C# files in a text editor and then use the command-line interface to
compile them, you will probably end up using Visual Studio to write and build C# programs.
Because of that, this book does cover Visual Studio to some extent.

The book’s goal, however, is to cover the C# language. This chapter explains the most common
kinds of applications that you can build in C#. It shows how you can build programs that provide
buttons or other methods for executing your C# code.

Visual Studio enables you to build many different kinds of applications. This chapter explains
how to start with four of those types: console, Windows Forms, WPF, and Windows Store
applications.

tyPES OF PROjECtS

A Visual Studio solution contains the files that you need to create some sort of result. Typically,
the result is a single executable application; although, it could be a suite of related applications
together with documentation and other related items.

2

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

12 ❘ ChAPtER 2 WriTing a FirsT Program

The solution is defined by two files with .sln and .suo extensions. The .sln file stores information that
defines the solutions and the projects it contains. The .suo file keeps track of customizations to the
Visual Studio IDE.

A solution typically contains one or more projects. A project usually defines a compiled result such
as a program, library, or custom control.

Simple applications often consist of a single solution that contains a single project that defines an
executable program.

To create a new project in a new solution, select File ➪ New Project to display the New Project dia-
log. (To add a new project to an existing solution, select File ➪ Add ➪ New Project.)

The New Project dialog displays a hierarchical set of categories on the left and the associated
project templates on the right. The appearance of the dialog and the templates that it contains
depends on the version of Visual Studio that you run. Figure 2-1 shows the New Project dia-
log for Visual Studio Express 2012 for Windows Desktop. In Figure 2-1 the selected category is
Installed ➪ Templates ➪ Visual C#, and only four templates are available for that category.

FIGuRE 2-1: Visual Studio Express 2012 for Windows Desktop includes only a few
C# project templates .

The following list summarizes the project types that are easiest to use with this book.

➤➤ Windows Forms—A program that uses Windows Forms controls and that runs on
the Windows desktop

➤➤ WPF (Windows Presentation Foundation)—A program that uses WPF controls and that
also runs on the Windows desktop

➤➤ Console—A program that reads text input and displays text output in a console window

➤➤ Windows Store—A Windows Store app

www.EBooksWorld.ir

www.hellodigi.ir

Types of Projects ❘ 13

tIP For a more complete list of available project templates, see “Creating
Projects from Templates” at msdn.microsoft.com/library/0fyc0azh.aspx.

Both WPF and Windows Store applications use extensible markup language (XAML) code to define
the WPF controls that make up their user interfaces. WPF controls are more flexible and graphically
powerful than Windows Forms controls. For example, WPF controls can display gradient backgrounds,
scale or rotate images, play video, and use animation to change their appearance over time, all things
that are hard for Windows Forms controls.

However, WPF controls use more resources than Windows Forms controls, so the designers that let
you edit WPF and Windows Store applications are slower. Taking full advantage of WPF capabilities
also requires a lot of effort, so Windows Forms applications are usually easier to build.

Console applications have only a text interface, so they are even simpler, as long as you don’t need
graphical features such as a drawing surface or the mouse.

As you can see in Figure 2-1, Visual Studio Express 2012 for Windows Desktop enables you to make
Windows Forms, WPF, and console applications.

Visual Studio Express 2012 for Windows 8 enables you to make Windows Store applications but not
Windows Forms, WPF desktop, or console applications. (Both of these editions include a few other
project types such as class libraries and control libraries.)

If you have a more full-featured version of Visual Studio than the Express edition, you can see other
project templates. Figure 2-2 shows the New Project dialog for Visual Studio 2012 Ultimate. If you
look closely you can see that the dialog includes all the templates provided by both of the Express
editions plus many more.

FIGuRE 2-2: Visual Studio Ultimate 2012 includes many more project templates than the
Express edition does .

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/0fyc0azh.aspx
http://www.hiva-network.com/

14 ❘ ChAPtER 2 WriTing a FirsT Program

This book focuses on the C# language and not on user interface design, so it doesn’t say too much
more about creating fully functional applications. However, it is worth knowing a bit more about
how the different kinds of projects work. The following sections provide a bit more information on
the four main application project types: console, Windows Forms, WPF, and Windows Store.

CONSOLE APPLICAtIONS

When you make a console application, Visual Studio creates a file called Program.cs that defines a
class named Program. The following code shows the initial Program class created by Visual Studio
Express 2012 for Windows Desktop.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MyConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

NOtE When you create a new project in Visual Studio Express 2012 for
Windows Desktop, the New Project dialog makes you enter a project name.
When you first save the project by using the File menu’s Save All command,
Visual Studio prompts you for the directory in which to save the project.

When you create a new project in other versions of Visual Studio 2012, the
New Project dialog makes you enter the project’s name and the directory where
it should be stored. When you click OK to create the new project, the project is
created in that location.

By default, when you run the program, Visual Studio searches for a static method named Main
and executes it. Initially, there’s only one such method, so there’s no problem.

NOtE If you have previous programming experience, you probably know all
about classes, objects, instances, and methods. If you don’t, you can learn all about
them in Part III, “Object-Oriented Programming,” of this book.

However, if you create another class and give it a static method named Main, Visual Studio cannot
figure out which one to launch. You can resolve that problem in a couple ways. First, you can rename
all but one of the Main methods, so Visual Studio can figure out which one to execute.

www.EBooksWorld.ir

www.hellodigi.ir

console applications ❘ 15

Another approach is to select Project ➪ Properties to open the application properties window, as
shown in Figure 2-3. Open the Startup Object drop-down, and select the class that contains the
Main method that Visual Studio should execute.

FIGuRE 2-3: The application properties window enables you to specify
the application’s startup class .

Inside the Main method, you can add whatever code you need the program to execute. For example,
the following code displays a message and then waits for the user to press the Enter key.

static void Main(string[] args)
{
 Console.WriteLine("Press Enter to continue");
 Console.ReadLine();
}

Figure 2-4 shows the running program. When you press the Enter key, the Console.ReadLine
statement finishes and the Main method exits. When that method exits, the program ends and the
console window disappears.

FIGuRE 2-4: A console application runs in a text-only console window .

www.EBooksWorld.ir

www.hellodigi.ir

16 ❘ ChAPtER 2 WriTing a FirsT Program

wARNING A console application ends as soon as the Main method exits. If the
code doesn’t include a Console.ReadLine statement or some other statement
that pauses execution, the program may disappear before the user has a chance
to read any output it produces.

Because console applications have no user interfaces, many C# books write all their examples as
console applications. However, Windows Forms applications look nicer and have greater flexibility.
For example, a Windows Forms application can display images, draw graphics, and display results
in controls such as combo boxes or lists.

wINdOwS FORMS APPLICAtIONS

Figure 2-5 shows Visual Studio Express 2012 for Windows Desktop after it has created a new
Windows Forms application.

1

2

3

4

5

FIGuRE 2-5: After creating a new Windows Forms application, Visual Studio displays the
default form Form1 .

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms applications ❘ 17

The following list describes the numbered areas on Visual Studio, as shown in Figure 2-5.

 1. Solution Explorer—This area lists the files associated with the project. Double-click a file to
open it in the designer area.

 2. Designer—This area contains designers that enable you to edit different kinds of files. For
example, the Code Editor enables you to edit C# code, and the Form Designer enables
you edit forms. Figure 2-5 shows the Form Designer editing the user interface for the form
defined by the file Form1.cs.

 3. Toolbox—While you are editing a form, you can click a control in the Toolbox to select it.
Then you can click and drag to place an instance of that control on the form.

 4. Properties—If you select a control in the Window Designer, this area displays that control’s
properties and enables you to edit them. In Figure 2-5 the form is selected, so this area is
showing the form’s properties. For example, you can see in the Properties Window that the
form’s Text property is set to Form1. In the Form Designer, you can see that the form dis-
plays its text at the top.

 5. Other windows—This area typically holds other windows such as the Error List and Output
Window. The program shown in Figure 2-5 does not currently have any errors, so the Error
List is empty.

NOtE Visual Studio is extremely configurable. You can hide or show windows,
drag windows into new positions, dock windows next to other windows, and
make multiple windows share the same area as tabs. If you rearrange things,
your Visual Studio installation may not look much like the figures in this book.

The goal in this book is to let you build enough of a program to execute C# code behind the scenes.
In a Windows Forms application, objects such as controls can execute code when events occur. For
example, when the user clicks a button, the program can execute a Click event handler.

To create a button, click the Button tool in the Toolbox. Then click and drag in the Window
Designer to place a button on the window. If you like, you can use the Properties window to set
the button’s properties. For example, you can set its caption by setting the Text property to some-
thing like Click Me.

Scroll to the top of the Properties Window to set the control’s Name property. For example, if the
button says Click Me, you might make its name clickMeButton.

To create a Click event handler for the button, double-click it in the Form Designer. When you do,
Visual Studio creates the following empty Click event handler and opens it in the Code Editor.

private void clickMeButton_Click(object sender, EventArgs e)
{

}

www.EBooksWorld.ir

www.hellodigi.ir

18 ❘ ChAPtER 2 WriTing a FirsT Program

C# NAMING CONVENtIONS

The naming convention used by many C# developers uses Pascal Case for class
names and CamelCase for instance names.

In Pascal Case, words are run together with the first letter of each word capitalized.
For example, a class that holds detail information for customer orders might be
called CustomerOrderDetail.

CamelCase is similar to Pascal Case except the first letter is not capitalized. For
example, an instance of the CustomerOrderDetail class representing a new item
in an order might be called newCustomerOrderDetail.

Therefore, for the current example a button labeled Click Me has the name
clickMeButton.

Now you can add whatever code you want the event handler to execute inside the braces. For example,
the following code changes the button’s caption to Clicked.

private void clickMeButton_Click(object sender, EventArgs e)
{
 clickMeButton.Text = "Clicked";
}

Recall from the previous section that a console application starts by executing the Program class’s
Main method. If you look closely at Figure 2-5, you can see that a Windows Forms program also
includes a file named Program.cs. If you double-click that file, the Code Editor opens and displays
the following code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace MyWindowsFormsApplication
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

WPf applications ❘ 19

If you skip down a bit to the first indented line of code, you can see that this file defines a Program
class that is somewhat similar to the one created for console applications. Like the version used by
the console application, this Program class defines a static Main method. As before, when you run
the program, Visual Studio executes this method.

In a Windows Forms application, the Main method initializes some visual style text rendering attri-
butes. It then executes the Application.Run method passing it a new instance of the Form1 class.
This is how the program displays its main form. The Application.Run method displays the form it
is passed as a parameter and enters an event loop where it processes messages until the form closes.

When the form closes, the call to Application.Run finishes. That is the last statement in the Main
method, so Main exits. As is the case with a console application, when the Main method exits, the
application ends.

tIP Some C# developers build Windows Forms applications by creating a
console application and then adding code similar to the previous code to dis-
play a form. That seems like a lot of unnecessary work. If you want to make a
Windows Forms application, you may as well create one and let Visual Studio
do some of the work for you.

wPF APPLICAtIONS

Creating a WPF application is similar to creating a Windows Forms application. Select File ➪ New
Project, select the WPF Application template, and enter a project name. If you do not use Visual Studio
Express 2012 for Windows Desktop, enter a project location. Then click OK to create the project.

Figure 2-6 shows a newly created WPF application. If you compare Figures 2-6 and 2-5, you can
see many of the same windows. The center of Visual Studio contains a Window Designer similar to
the Form Designer in Figure 2-5. The Solution Explorer and Properties Window are on the right.
(Although, there are many differences between the two versions of the Properties Window.) The
Error List appears at the bottom of both figures.

One notable difference between the two displays is the XAML code window at the bottom of the
Window Designer. The window’s controls and appearance are determined by the XAML code
in this area. When you add controls to the window, the XAML code updates to reflect the new
controls.

Conversely, if you modify the XAML code, the Window Designer updates to display your changes.

A second major difference between Figures 2-5 and 2-6 is the Document Outline to the left of the
Window Designer in Figure 2-6. This window shows a hierarchical view of the structure of the win-
dow. In Figure 2-6, the main Window object contains a single Grid object. You would add new controls
to the Grid.

If you look at the bottom of the Document Outline, you can see three tabs labeled Database...
(“Explorer” is cut off), Toolbox, and Document... (“Outline” is cut off). You can click the Toolbox
tab to get a toolbox similar to the one shown in Figure 2-5. Then you can add a button to the

www.EBooksWorld.ir

www.hellodigi.ir

20 ❘ ChAPtER 2 WriTing a FirsT Program

program much as you added one to the Windows Forms application. Click the button tool to select
it. Then click and drag to create a button on the window.

FIGuRE 2-6: After creating a new WPF application, Visual Studio displays the default
window MainWindow .

Use the Properties Window to set the button’s properties. Note that in WPF applications the but-
ton’s Content property determines its caption or other contents, not the Text property used by a
Windows Forms button.

To associate an event handler with the button, double-click it as you would for a Windows Forms
application. The following code shows the initial empty Click event handler.

private void clickMeButton_Click(object sender, RoutedEventArgs e)
{

}

This is similar to the previous Windows Forms Click event handler. The only difference is the second
parameter has the type RoutedEventArgs instead of EventArgs.

www.EBooksWorld.ir

www.hellodigi.ir

Windows store applications ❘ 21

Add whatever code you want to execute when the button is pressed. For example, the following code
changes the button’s caption to Clicked.

private void clickMeButton_Click(object sender, RoutedEventArgs e)
{
 clickMeButton.Content = "Clicked";
}

If you look at the Solution Explorer in Figure 2-6, you won’t find the Program.cs class file created
for a Windows Form application. Instead you find an App.xaml file.

If you double-click App.xaml, Visual Studio opens the file in the XAML editor. The following code
shows an initial App.xaml file.

<Application x:Class="MyWpfApplication.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

The Application element’s StartupUri attribute indicates that the program should initially display
the window defined in the MainWindow.xaml file.

The App.xaml file is marked read-only, so you shouldn’t change the startup window by editing
it. Instead select Project ➪➤Properties as you would for a Windows Forms application. This opens
an application properties window similar to the one shown in Figure 2-3. Use the Startup Object
drop-down to select the window that you want to display at startup.

wINdOwS StORE APPLICAtIONS

Windows Store applications are programs designed to run in Windows 8. They support the look
and feel of Windows 8 applications. For example, they can display tiles on the start screen and can
update those tiles at runtime to tell the user what they are doing. (For more information about the
Windows Store, go to www.windowsstore.com.)

To create a Windows Store application, select File ➪ New Project, select one of the Windows Store
templates, enter a project name, and enter a project location. Then click OK to create the project.

Figure 2-7 shows a newly created Windows Store application in Visual Studio Express 2012 for
Windows 8. Initially, the file App.xaml.cs displays in the code editor.

To add a button to the application, double-click MainPage.xaml in Solution Explorer to open the
MainPage class in the designer. The MainPage class is similar to the MainWindow used by the WPF
applications described in the previous section, and you can use the designer to edit them similarly. Use
the Toolbox to place a button on the page. Use the Properties Window to set the button’s properties.
Double-click the button to create an event handler for the button, and add whatever code you like to it.

www.EBooksWorld.ir

www.hellodigi.ir

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.windowsstore.com

22 ❘ ChAPtER 2 WriTing a FirsT Program

FIGuRE 2-7: After creating a new Windows Store application, Visual Studio displays App .xaml .cs .

The way a Windows Store application starts is a bit more complicated than the way the previous
kinds of applications start. The App.xaml.cs file defines a class named App. That class includes some
startup code including the following OnLaunched method, which executes when the application
starts normally.

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate
 // to the first page
 rootFrame = new Frame();

 if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

www.EBooksWorld.ir

www.hellodigi.ir

summary ❘ 23

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a
 // navigation parameter
 if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();
}

If the application’s Frame is null, the code creates a new Frame.

Then if the Frame’s content was null, the bold line of code uses the Frame’s Navigate method to
navigate to a new instance of the MainPage class. (If the Frame’s content is not null, it is a previously
created instance of the MainPage class and it is reused.)

Finally, the code activates the current window, and at that point the MainPage appears.

SuMMARy

Unless you plan to edit C# files in a text editor and then use the command-line interface to compile
them, you will end up using Visual Studio to write and build C# programs. Because of that, the book
does cover Visual Studio to some extent.

The book’s goal, however, is to cover the C# language. This chapter explains the most common
kinds of applications that you can build in C#. It shows how you can build programs that provide
buttons or other methods for executing your C# code.

Visual Studio enables you to build many different kinds of applications. This chapter explains how
to start with four of those types: console, Windows Forms, WPF, and Windows Store applications.
The remainder of this book assumes you can create one of those kinds of applications so that you
can run C# code.

Although this book doesn’t explain user interface programming or Windows Forms, WPF, and
Windows Store applications in more detail, you should look into them when you have a chance.
C# code alone enables you to produce some amazing results, but you need a great user interface
to actually show them off.

When you create a new program, Visual Studio creates all sorts of files to represent forms, win-
dows, code, resources, and other data associated with the project. Chapter 3, “Program and
Code File Structure,” describes the most common kinds of files associated with C# projects.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

24 ❘ ChAPtER 2 WriTing a FirsT Program

ExERCISES

 1. Create a new console application named ConsoleShowArgs and enter the following code
into its main method.

foreach (string arg in args) Console.WriteLine(arg);
Console.WriteLine("Press Enter to continue");
Console.ReadLine();

This code displays any command-line arguments passed to the program when it executes.

 a. Save the program in a directory and run it. What happens?

 b. Next, select Project ➪ Properties, open the Debug tab, and in the Command Line
Arguments text box, enter Red Green Blue. Run the program again. What happens
this time?

 2. Use File Explorer to find the compiled executable program that was created for the program
you built in Exercise 1. (It is probably in the project’s bin\Debug directory and is named
after the project with a .exe extension.) Double-click the program to run it. What happens?

 3. Right-click File Explorer or the desktop, and select New ➪ Shortcut. Browse to set the
shortcut’s target to the location of the executable program you built. Add the text Apple
Banana Cherry after the target’s path. For example, on my system I used the following
target (all on one line and the double quotes are included):

"D:\Rod\Writing\Books\C# Prog Ref\Src\847282ch02src\
ConsoleShowArgs\bin\Debug\ConsoleShowArgs.exe" Apple Banana Cherry

Double-click the shortcut to run the program. What happens?

 4. Open a command window, navigate to the executable program’s directory, type the pro-
gram’s name, and press Enter to run the program. What happens?

Now run the program with command-line arguments by typing in the following text at the
command prompt.

ConsoleShowArgs Ant Bear Cat

What happens this time?

 5. Repeat Exercise 1 with a Windows Forms application named WindowsFormsShowArgs.
Place a ListBox named argsListBox on the form and set its Dock property to Fill.
Double-click the form (not the ListBox) and add the bold code in the following snippet to
the form’s Load event handler.

private void Form1_Load(object sender, EventArgs e)
{
 foreach (string arg in Environment.GetCommandLineArgs())
 argsListBox.Items.Add(arg);
}

What do you think will happen when you run the program? Run the program to find out.
Then define the command-line arguments as described in Exercise 1 and run the program
again. What actually happens?

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 25

 6. Repeat Exercise 2 for the program you built in Exercise 5. What do you think will happen
when you run the program? What actually happens?

 7. Repeat Exercise 3 for the program you built in Exercise 5. What do you think will happen
when you run the program? What actually happens?

 8. You’ve probably got the hang of this by now, but if you want to try WPF (or if you skipped
the previous exercises because you care about only WPF), repeat Exercise 1 with a WPF
application named WPFShowArgs. Place a ListBox named argsListBox on the form and
set its Height and Width properties to Auto. Click the form (not the ListBox) to select it.
In the Properties window, click the Event button (the lightning bolt) and double-click in
the box to the right of the Loaded event. Add the bold code in the following snippet to the
form’s Load event handler.

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 foreach (string arg in Environment.GetCommandLineArgs())
 argsListBox.Items.Add(arg);
}

What do you think will happen when you run the program? Run the program to find out.
Then define the command-line arguments as described in Exercise 1 and run the program
again. What actually happens?

 9. Repeat Exercise 2 for the program you built in Exercise 8. What do you think will happen
when you run the program? What actually happens?

 10. Repeat Exercise 3 for the program you built in Exercise 8. What do you think will happen
when you run the program? What actually happens?

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Program and code file structure
whAt’S IN thIS ChAPtER

➤➤ Project files, including hidden files

➤➤ Changing project properties, references, resources, and assembly
information

➤➤ Preprocessor directives

➤➤ The using directive and namespace statements

➤➤ End-of-line, multiline, and XML comments

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

A C# solution contains one or more related projects. A project includes all the files related to
whatever output it produces. That output might be an executable program, a custom control,
or a code library that other programs can use. The files relating to the output might include files
full of C# code, documentation, data files, and any other files you want to include in the project.

This chapter describes the structure of a typical C# project and explains the purposes of some
of the most common types of files you can find in a C# project. This chapter also describes the
basic structure of C# source code files. It explains how you can use regions and namespaces
to group related pieces of code. It also describes some typographic features such as comments,
XML comments, and line labels that you can use to make C# code easier to understand.

3

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

28 ❘ ChAPtER 3 Program and Code File sTruCTure

hIddEN FILES

Figure 3-1 shows the Solution Explorer window for a solution named
TurtleSolution that contains two projects named TurtleLib and
TurtleTest.

Each project contains a Properties folder that represents the project’s
properties. Each project also contains a References item that repre-
sents references to libraries used by the project.

In addition to the Properties and References items, the projects con-
tain files related to the project. In this example, the TurtleLib project
includes the class definition file Turtle.cs, and the TurtleTest project
contains the form definition file Form1.cs.

In the TurtleTest project the Show All Files button has been clicked
(the button third from the right at the top of the figure) so that you
can see all the project’s files. The TurtleLib project has similar files,
but they are hidden by default.

These files are generated by Visual Studio for various purposes. For
example, the bin and obj directories contain files generated when the
projects are compiled.

The following list describes the items contained in the TurtleTest
project, as shown in Figure 3-1. The exact files you see for an applica-
tion may be different from those shown here, but this list should give
you an idea of what’s involved in building a project. Note that most
of these files are generated automatically by Visual Studio, and you
shouldn’t edit them manually. If you change them directly, you are
likely to lose your changes when Visual Studio rebuilds them. You may
even confuse Visual Studio so it can’t load the project.

➤➤ TurtleTest—This item represents the entire project. You can expand or collapse it to show
and hide the project’s details.

➤➤ Properties—This item represents the project’s properties. To change the properties, either
right-click this item and select Open or select Project ➪ Properties. Figure 3-2 shows the
TurtleTest project’s properties pages.

➤➤ AssemblyInfo.cs—This file contains information about the project’s assembly. Instead of
editing this file directly, select Project ➪ Properties to open the project’s properties page,
and then on the Application tab, click the Assembly Information button. Figure 3-3 shows
the TurtleTest project’s assembly information.

➤➤ Resources.Designer.cs—This file contains definitions of project resources such as strings and
images. Instead of editing this file directly, select Project ➪ Properties to open the project’s
properties page and then go to the Resources tab.

➤➤ Settings.Designer.cs—This file contains definitions of project settings. Instead of editing this
file directly, select Project ➪ Properties to open the project’s properties page and then go to
the Settings tab.

FIGuRE 3-1: A solution
contains one or more projects
that contain files related to
the project .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Hidden files ❘ 29

FIGuRE 3-2: A project’s properties pages lets you set project properties, resources,
and settings .

FIGuRE 3-3: A project’s assembly
information lets you specify values such
as the project’s name, copyright information,
and version .

www.EBooksWorld.ir

www.hellodigi.ir

30 ❘ ChAPtER 3 Program and Code File sTruCTure

➤➤ References—This item lists references to external components such as libraries and
COM components. In this example, the TurtleTest project uses the Turtle class defined
in the TurtleLib project, so its References section includes a reference to the TurtleLib
library. (To add a reference, right-click the References item, and select Add Reference.
Alternatively, you can select Project ➪ Add Reference.)

➤➤ bin—This folder is used to build the application before it is executed. The Debug or Release
subfolder contains the compiled .exe file (depending on whether this is a debug or release build).

➤➤ obj—This folder and its Debug and Release subfolders are used to build the application
before it is executed.

➤➤ App.config—This file contains configuration settings that the application reads when it starts.

➤➤ Form1.cs—This is a form code file. It contains the C# code you write that goes into the
form. This includes event handlers for the form and its controls, and any other methods
you add to the form’s code. If you double-click this file in Solution Explorer, Visual Studio
opens the form in the Form Designer.

➤➤ Form1.Desginer.cs—This file contains designer-generated C# code that builds the form.
It initializes the form when it is created, creates the controls you placed on the form in the
Form Designer, and sets the controls’ properties. It also registers any event handlers that you
have defined for the form and its controls. Instead of editing this file, use the Form Designer
to modify the form and its controls.

➤➤ Form1—This entry represents the code behind Form1. If you double-click this file in
Solution Explorer, Visual Studio opens the form’s code in the code editor.

➤➤ Program.cs—This file contains the automatically generated Main method that Visual Studio
executes to start the program.

RESOuRCES ANd SEttINGS

Resources are chunks of data distributed with the application but that are not
intended to be modified by the program. These might include prompt strings, error
message strings, icons, pictures, and sound files.

Settings are values that control the execution of the application. These might
include flags telling the program what options to display or how to perform certain
tasks. For example, you could build different profiles to provide settings that make
the program run in a restricted demo mode or in a fully licensed mode.

If you expand code items such as Form1 and Program, Solution Explorer lists the program elements
contained inside. That includes variables, methods, event handlers, and other class-level items defined
inside the class. You can double-click one of these items to open its definition in the Code Editor.

If you look closely at the bottom of Figure 3-1, you can see that the Solution Explorer window has
three tabs. The first tab displays the Solution Explorer, which lists the files that make up the project.
In Figure 3-1 that tab is selected so Solution Explorer is displayed.

www.EBooksWorld.ir

www.hellodigi.ir

Preprocessor Directives ❘ 31

The second tab opens Team Explorer, a tool that helps you man-
age your work in a team environment. For more information, see
msdn.microsoft.com/library/hh500420.aspx.

The third tab opens the Class View. This tool enables you to view
the classes defined by your projects. You can expand the classes to
learn about their inheritance hierarchies. If you click a class, the bot-
tom of the window shows you the class’s properties, methods, and
events. If you double-click one of these items, Visual Studio opens
the code that defines it in the Code Editor.

Figure 3-4 shows the Class View displaying information about the
Turtle class defined in the TurtleLib project.

Some projects may have other hidden files. For example, when you
add controls to a form, the designer adds a resource file to the form
to hold any resources needed by the controls.

Normally, you do not need to work directly with the hidden files,
and doing so can mess up your application. At best, the changes
you make will be lost. At worst, you may confuse Visual Studio, so
it can no longer load your project.

Instead you should use other tools to modify the hidden files
indirectly. For example, the files holding resources used by a
form are automatically updated when you modify the form and
its controls.

PREPROCESSOR dIRECtIVES

Preprocessor directives are commands for the C# compiler. They tell the compiler such things as
which pieces of code to include in compilation and how the Code Editor should group lines of code.

The following sections describe the most useful C# preprocessor directives.

#define and #undef
The #define directive defines a preprocessor symbol that you can then use with the #if, #else,
#elif, and #endif directives described next. Preprocessor symbols are either defined or not defined.
They do not have values like constants inside the code do.

NOtE A program can create variables and constants with the same names as
defined preprocessor symbols.

The #undef directive removes the definition of a defined symbol.

The #define and #undef directives must come before any programming statements including using
directives. They apply for the entire file that contains them.

FIGuRE 3-4: The Class View
lets you examine the classes
defined by a project .

www.EBooksWorld.ir

www.hellodigi.ir

32 ❘ ChAPtER 3 Program and Code File sTruCTure

why #uNdEF?

If all #define and #undef directives must appear at the beginning of the file, you
may wonder why you would ever use #undef. After all, if you’re going to undefine
something you just defined, why bother defining it in the first place?

The answer is in the program’s property pages. If you select Project ➪ Properties
and then go to the Build tab, you see the property page, as shown in Figure 3-5.

By default, Visual Studio defines the DEBUG and TRACE symbols. Uncheck the
appropriate boxes if you don’t want them defined.

You can also add your own symbols by typing their names in the Conditional
Compilation Symbols text box.

The #undef directive enables you to define symbols on the Build property page and
then undefine them as needed in specific files.

FIGuRE 3-5: The Build property page lets you define conditional compilation symbols .

Visual Studio defines different sets of compilation symbols for different build configurations. The
two standard configurations are Debug and Release. By default, Visual Studio defines the DEBUG
and TRACE symbols for Debug builds and defines only the TRACE symbol for Release builds.

To change these values, use the Configuration Manager (found by selecting Build ➪ Configuration
Manager) to select the Debug or Release build. Then use the Build property page to determine which
symbols are defined.

www.EBooksWorld.ir

www.hellodigi.ir

Preprocessor Directives ❘ 33

The DEBUG and TRACE symbols play a special role in program debugging. The Debug and Trace
classes provide tools that make it easier to tell what a program is doing as it runs. The Debug class’s
methods execute only if the DEBUG symbol is defined. Similarly, the Trace class’s methods execute
only if the TRACE symbol is defined. By defining or not defining these symbols, you can easily turn
the Debug and Trace methods on and off. Chapter 10, “Tracing and Debuging,” says more about
these classes.

#if, #else, #elif, and #endif
These statements enable you to use compilation symbols to decide which code is included in the
program when it is compiled.

For example, the following code displays a different message box depending on which symbols
are defined.

 private void Form1_Load(object sender, EventArgs e)
 {
#if DEBUG_LEVEL1
 MessageBox.Show("Debug level is 1");
#elif DEBUG_LEVEL2
 MessageBox.Show("Debug level is 2");
#else
 MessageBox.Show("Debug level is undefined");
#endif

 ...
 }

In this example, if the symbol DEBUG_LEVEL1 is defined, the first message box displays. If that symbol is
not defined but DEBUG_LEVEL2 is defined, the second message box displays. If neither of those symbols
is defined, the third message box displays.

Visual Studio evaluates compilation symbols while you write code and grays out code that won’t be
included in the compilation, so it’s easy to see what code will be used.

In addition to the simple tests shown in the preceding code snippet, the #if and #elseif directives
can include parentheses and the !, &&, and || boolean operators. For example, the following code dis-
plays a message if SKIP_DEBUG is defined, or DEBUG_LEVEL1 and DEBUG_LEVEL2 are both undefined.

#if SKIP_DEBUG || (!DEBUG_LEVEL1 && !DEBUG_LEVEL2)
 MessageBox.Show("Don't display debugging messages.");
#endif

You can also use the != and == operators to compare symbols to the values true and false. For
example, the following code displays a message box if the symbol SHOW_GREETING is defined.

#if SHOW_GREETING == true
 MessageBox.Show("Hello!");
#endif

The syntax #if SHOW_GREETING is simpler and usually easier to read, so most developers use
that approach.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

34 ❘ ChAPtER 3 Program and Code File sTruCTure

dEbuGGING LEVELS

Sometimes, it’s helpful to easily adjust the level of diagnostic output a program
generates. You could define a set of conditional compilation symbols named DEBUG_
LEVEL1, DEBUG_LEVEL2, and so forth. The program would then send diagnostic
messages to the Output Window or to a log file depending on the debug level.

For example, you might place level 1 Debug statements in major subroutines, level 2
statements in secondary routines, and level 3 statements throughout important
routines to provide step-by-step information. Then you can define the debug level
symbols to quickly give you the amount of information you want.

This is particularly useful when you test and debug a program. Instead of removing
test code from the program, you can surround it with #if #endif directives, so you
can reactivate it later if you find bugs in the code.

For more information on debugging C# applications, see Chapter 10.

Note that the code not included by the conditional compilation statements is completely omitted from
the executable program. That means excluded code doesn’t take up space in the executable program.

That also means Visual Studio doesn’t check the correctness of code that isn’t included. Visual
Studio won’t warn you if excluded code contains typographical errors and invalid C# code.

#warning and #error
The #warning directive generates a level 1 warning. It is listed in the Error List but won’t stop the
program from compiling. One reason to do this is to flag deprecated code so that developers know
they are using old code, as in the following example.

#if OLD_VERSION
#warning You are using an old version of this library
#endif

The #error directive is similar to the #warning directive except it generates an error instead of a
warning. An error prevents Visual Studio from compiling the program.

#line
The #line directive enables you to control the file’s line number and name for reporting purposes.
This directive can take one of the three forms described in the following list.

➤➤ #line number [file]—This sets the line number and optionally the filename for the fol-
lowing line. If a #warning or #error directive follows this directive, it reports the given line
number and file. If it is included, the file must be enclosed in double quotes.

➤➤ #line hidden—This hides the lines that follow from the debugger until the next #line
directive is reached.

➤➤ #line default—This restores the file’s line number and name to their true values.

www.EBooksWorld.ir

www.hellodigi.ir

Preprocessor Directives ❘ 35

The following example demonstrates the #line directives.

#if OLD_VERSION

#line 10 "Tools Module"
#warning This code is deprecated.
#endif

#line hidden
 ... lots of code omitted ...
#line default

If the symbol OLD_VERSION is defined, this code’s first #line directive sets the line number to 10
and the filename to "Tools Module". Then the #error directive displays a message in the Error List
that says there’s an error on line 10 in the file Tools Module.

The #line hidden directive hides the omitted code from the debugger. If you try to step through
the code in the debugger, the Code Editor skips over those lines. They are still executed, but you
can’t step through them.

The final #line default directive restores the file to normal line numbering, name, and ends
line hiding.

wARNING In some versions of Visual Studio, the Code Editor doesn’t seem to
completely end line hiding until it reaches a #line default directive.

#region and #endregion
Some code constructs such as class and method definitions define regions that you can collapse in
the Visual Studio Code Editor. If you look closely at a class statement, you can see a minus sign
to the left in the Code Editor. If you click the minus sign, the editor collapses the class into a single
line and changes the minus sign to a plus sign. Click the plus sign to expand the class again.

In Figure 3-6, the Person class and the PrintInvoice method in the Customer class are collapsed.

The #region directive enables you define other sections of code
that you can collapse and expand in a similar manner. The section
of code extends to a corresponding #endregion directive.

The #region and #endregion directives can be followed by a
string that identifies them. You can use that string to identify the
region, so you can make sure the directives match up. However,
the Code Editor completely ignores that string, so if a #region
directive’s string doesn’t match the string used in the correspond-
ing #endregion directive, Visual Studio doesn’t care.

For example, suppose an Employee class contains a lot of code for calculating payroll. You could
place the payroll-related properties, methods, and other code in a region. Then you could hide that

FIGuRE 3-6: The Code Editor
lets you expand and collapse
blocks of code such as classes
and methods .

www.EBooksWorld.ir

www.hellodigi.ir

36 ❘ ChAPtER 3 Program and Code File sTruCTure

region so that it doesn’t get in the way while you work on other code in the class. The following
code snippet shows how you could define this kind of region.

public class Employee : Person
{
 #region PayrollCode

 ... Payroll-related code here ...

 #endregion PayrollCode

 ... Other Employee code ...
}

Sometimes, it may be easier to move related pieces of code into separate files. For example, if a
class becomes so large it’s hard to find things in it, it may be easier to move sections of the class
into separate files. The partial keyword described in the section “Class Definitions’ later in this
chapter enables you to place parts of a class in different files. For example, you could move the
Employee class’s payroll-related code into a partial piece of the Employee class in a separate file.

#pragma
The #pragma directive gives special information to the compiler. This directive comes in two basic
forms: #pragma warning and #pragma checksum.

The #pragma warning directive comes in the two forms described in the following list.

➤➤ #pragma warning disable [warning_list]—This disables warnings for a
comma-separated list of warning codes. If you omit the warning codes, this disables
all warnings.

➤➤ #pragma warning restore [warning_list]—This re-enables warnings for a comma-
separated list of warning codes. If you omit the warning codes, this re-enables all warnings.

For example, suppose you have XML documentation enabled. (This is described in the section
“XML Comments” later in this chapter.) In that case, all public classes and all their public members
should have XML comments describing them. If any of those comments are missing, Visual Studio
displays an error message.

If you have XML documentation enabled, you should probably supply all those comments. If you
want to omit a comment for a particular method, however, you can use #pragma warning disable
to disable the warning on that method.

For example, consider the following Employee class.

 /// <summary>
 /// Represents an employee.
 /// </summary>
 public class Employee
 {
#pragma warning disable 1591
 public void PrintTimesheet()

www.EBooksWorld.ir

www.hellodigi.ir

code file structure ❘ 37

 {
 ...
 }
#pragma warning restore 1591

 ...
 }

The class begins with an XML comment, so it doesn’t cause a warning. The PrintTimesheet
method does not have an XML comment, so it would cause a warning if the #pragma warning
disable directive didn’t disable the error.

After the PrintTimesheet method ends, the code restores the warning, so the compiler can report it
for the class’s later public members.

The #pragma checksum directive has the following format.

#pragma checksum "file" "{guid}" "bytes"

This directive is useful for debugging ASP.NET applications. It’s outside the scope of this book, so
it isn’t described here. For more information, see msdn.microsoft.com/library/ms173226.aspx.

FINdING wARNING NuMbERS

Unfortunately, the Error List doesn’t display the warning numbers you need to
use with the #pragma warning directive. One way to find a warning number is to
right-click the warning in the Error List and select Show Error Help. That opens a
web page that describes the warning and gives the warning number.

You can find a summary of compiler errors and warnings at msdn.microsoft
.com/library/vstudio/ms228296.aspx, although the warnings are listed by
number and not name, so that won’t help you find the number you want.

COdE FILE StRuCtuRE

The following code shows the file Form1.cs from a newly created program named
WindowsFormsApplication1. This is a Windows Forms program created in Visual Studio
Express 2012 for Windows Desktop.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

www.EBooksWorld.ir

www.hellodigi.ir

38 ❘ ChAPtER 3 Program and Code File sTruCTure

using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 }
}

The following sections describe three key pieces of this program that are typical of C# programs:
the using directive, the namespace statement, and class definitions.

the using directive
In .NET, namespaces are used to identify related classes, structures, interfaces, and other program-
ming items. Namespaces can be nested within other namespaces, so they form a hierarchical system
that categorizes programming items.

For example, the Form class is defined in the Forms namespace, which is inside the Windows namespace,
which in turn is inside the System namespace. You can specify the complete path through a series of
namespaces by separating them with dots. For example, the fully qualified path to the Form class is
System.Windows.Forms.Form.

A using directive enables you to use a class without including its full namespace path. The previous
code begins with a series of using directives that let the code refer to classes within the indicated
namespaces without using the namespaces.

wARNING Don’t confuse the using directive with the using statement. The
using directive provides a short way to refer to namespaces. The using statement
makes it easier to call an object’s Dispose method. You learn more about the
using statement in Chapter 12, “Classes and Structures.”

For example, the following statement shows the final using directive in the previous code.

using System.Windows.Forms;

This statement enables the program to use classes defined in the System.Windows.Forms namespace
without giving the namespace path. Later the code uses the following statement.

public partial class Form1 : Form

This statement refers to the Form class without providing its full namespace path.

The using directive can also create an alias for a namespace or type. For example, the following
statement makes the alias d2d represent the System.Drawing.Drawing2D namespace.

using d2d = System.Drawing.Drawing2D;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

code file structure ❘ 39

uNNECESSARy NAMESPACES

The initial program shown earlier includes nine using directives, but the only one
that is actually used by the code is the one that includes the System.Windows.Forms
namespace.

When you compile a program, Visual Studio includes only the libraries that it actually
needs, so the extra using directives don’t affect the compiled assembly.

However, when Visual Studio compiles a program, it may need to search several
namespaces to resolve class names. For example, when Visual Studio sees the refer-
ence to the Form class in the previous code, it cannot find a definition for that class
in the local code, so it searches the namespaces included by using directives. If the
program includes lots of unnecessary using directives, Visual Studio may waste
some time fruitlessly searching those namespaces before it finds the right one.

The end result is the same, but removing unnecessary using directives can make
compiling faster.

Removing unneeded namespaces can also prevent namespace pollution, a situation
in which two namespaces define classes or other items with the same names.

To easily remove unneeded using directives, open a file in the Code Editor, right-
click the code, and select Organize Usings. That item’s subitems include three self-
explanatory commands: Remove Unused Usings, Sort Usings, and Remove and Sort.

The code could then use the following statement to declare a variable named matrix that has type
System.Drawing.Drawing2D.Matrix.

d2d.Matrix matrix;

Usually using directives are placed at the beginning of a file, but you can also place them inside
namespace statements. If you place a using directive in a namespace, it must come before all elements
in the namespace and applies only to that instance of the namespace. If you have another piece of code
that defines part of the same namespace, in the same file or in another one, then the using statement
does not apply to the other piece of the namespace.

For example, the following code includes two namespace statements with some omitted code
in between. Both declare statements that define classes that inherit from the Form class, so both
include the using System.Windows.Forms directive.

namespace MyNamespace
{
 using System.Windows.Forms;

 class EmployeeForm : Form
 {
 ...
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

40 ❘ ChAPtER 3 Program and Code File sTruCTure

... Omitted code ...

namespace MyNamespace
{
 using System.Windows.Forms;

 class CustomerForm : Form
 {
 ...
 }
}

the namespace Statement
You can use the namespace statement to create your own namespaces. You can use namespaces to
group related classes and other program elements. By placing different classes in separate namespaces,
you allow pieces of code to include only the namespaces they are actually using. That makes it easier
to ignore classes that a piece of code isn’t using. It also allows more than one namespace to define
items that have the same names.

For example, you could define an Accounting namespace that contains the AccountsReceivable and
AccountsPayable namespaces. Each of those might contain a class named Invoice. The program
could select one version or the other by using either Accounting.AccountsReceivable.Invoice or
Accounting.AccountsPayable.Invoice.

tIP Different namespaces can define classes with the same names, but if you
give classes different names, you reduce the chance of confusion.

The following example defines the Accounting namespace. That namespace defines the CustomerType
enumeration and the two classes PayableItem and ReceivableItem. It also contains the nested
namespace OrderEntry, which defines the OrderEntryClerk class. All the classes and namespaces
could define other items.

namespace Accounting
{
 public enum CustomerType
 {
 CashOnly,
 Credit30,
 Credit90
 }

 public class PayableItem
 {
 ...
 }

 public class ReceivableItem
 {
 ...

www.EBooksWorld.ir

www.hellodigi.ir

code file structure ❘ 41

 }

 namespace OrderEntry
 {
 public class OrderEntryClerk
 {
 ...
 }

 ...
 }
}

If a file includes a using directive to indicate that it is using a namespace, it does not need to explicitly
identify the namespace to use the classes and other items it defines. You only need to explicitly use the
namespace if multiple included namespaces define items with the same name.

All program elements in a C# program must be inside a namespace. By default, any code files you
create include a namespace named after the project you initially created. For example, if you create
an application named OrderEntrySystem, by default its code is contained in the OrderEntrySystem
namespace.

You can view and modify the project’s default namespace by selecting Project ➪ Properties and look-
ing on the Application tab. Figure 3-7 shows the Application tab for the WindowsFormsApplication1
project. The default namespace is WindowsFormsApplication1.

FIGuRE 3-7: A project’s property pages let you view and change the project’s
default namespace .

www.EBooksWorld.ir

www.hellodigi.ir

42 ❘ ChAPtER 3 Program and Code File sTruCTure

If you change the project’s default namespace, any classes that you create in the future are placed in
the new namespace.

Class definitions
The WindowsFormsApplication1 example program shown earlier included the following
class definition.

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 }
}

Chapter 12 has a lot more to say about classes. For now you should know that all classes (and
structures, enumerations, and other program elements) must be declared inside some namespace.

One last fact about classes is worth mentioning here during the discussion of program and code file
structure. If you look at the previous class definition, you see that it includes the partial keyword.
That keyword means that this is only part of the class’s definition and that other class statements
may contain more pieces of the class.

tIP Usually a code file includes a single namespace and that defines some or
all of a single primary class. The namespace may also include helper structures,
classes, and other elements used by the primary class. You can define as many
namespaces and classes as you like in a single file, but then managing the file
becomes harder.

If you use the Project menu’s Add Class and other commands to create new
classes, you’ll get one class per file.

In this example, the form’s controls are defined in the file Form1.Desginer.cs. If you look at that file,
you can see the following code (with some code omitted).

namespace WindowsFormsApplication1
{
 partial class Form1
 {
 ... Code omitted ...
 }
}

This code begins with the same namespace statement used in the file Form1.cs. That means the code
in this file is in the same namespace as the code in the other file.

Inside the namespace statement is a partial class statement that adds more code to the Form1 class.

If a class is split into multiple pieces, then all the pieces must use the partial keyword. That means
if you see a class declared with that keyword, you know there are other pieces somewhere.

www.EBooksWorld.ir

www.hellodigi.ir

comments ❘ 43

COMMENtS

Comments can help other developers (or you at a later date) understand the program’s purpose,
structure, and method. Although comments aren’t executed by the program, they can make the
code easier to understand. That makes the code easier to debug and modify over time.

C# provides three kinds of comments: end-of-line comments, multiline comments, and
XML comments.

End-of-line and Multiline Comments
An end-of-line comment begins with the two characters // that are not inside a quoted string. This
kind of comment extends to the end of the current line of code.

A multiline comment begins with the characters /* and ends with the characters */. The compiler
ignores everything between those sets of characters.

The following code demonstrates end-of-line and multiline comments.

/* This class defines a student. It includes contact information,
 * billing information, past and current courses, and past and
 * current intramural activities.
 */
public class Student
{
 // The student's name.
 public string FirstName { get; set; }
 public string LastName { get; set; }

 // The student's contact information.
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; } // ZIP+4.
}

This code begins with a multiline comment containing a short paragraph describing the class.
Many developers begin each line of a multiline comment with an asterisk, so you can tell that the
line is part of a comment even if the /* and */ characters are scrolled off the screen at the time.
Actually, Visual Studio automatically adds the asterisk if you press Enter while the cursor is inside
a multiline comment.

After the class’s opening brace, the code includes an end-of-line comment that says, “The student’s
name.” It then defines the FirstName and LastName properties.

Next, the code includes another end-of-line comment followed by the definition of the Street, City,
State, and Zip properties. The line defining the Zip property also includes an end-of-line comment.

Although many developers begin each line in a multiline comment with an asterisk, that is not
required, so you can use multiline comments to quickly comment out large sections of code. For

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

44 ❘ ChAPtER 3 Program and Code File sTruCTure

example, the following code shows the previous example with all the code inside the Student
class commented out with a multiline comment.

/* This class defines a student. It includes contact information,
 * billing information, past and current courses, and past and
 * current intramural activities.
 */
public class Student
{
 /*
 // The student's name.
 public string FirstName { get; set; }
 public string LastName { get; set; }

 // The student's contact information.
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; } // ZIP+4.
 */
}

tIP In addition to using a multiline comment to comment out large chunks of
code, you could also use an #if directive. The following code shows the previous
example with the Student class’s body removed by this approach.

 /* This class defines a student. It includes contact
information,
 * billing information, past and current courses, and past and
 * current intramural activities.
 */
 public class Student
 {
#if false
 // The student's name.
 public string FirstName { get; set; }
 public string LastName { get; set; }

 // The student's contact information.
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; } // ZIP+4.
#endif
 }

Visual Studio’s Standard toolbar also includes command and uncomment tools. Click and drag to
select lines of code. Then click the Comment tool to add the // characters at the beginning of each
of the selected lines. Click the Uncomment tool to remove the initial // characters from each line.
(You can also find those commands in the Edit ➪ Advanced menu.)

Use comments to make your code clear. Comments do not slow the executable program down (some
superstitious developers think they must slow the code because they make the file bigger), so there’s
no good reason to avoid them.

www.EBooksWorld.ir

www.hellodigi.ir

comments ❘ 45

xML Comments
A normal comment is just a piece of text that gives information to a developer trying to read your code.
XML comments enable you to add some context to a piece of code. For example, you can preface a
method with a brief description of the method, its parameters, and the meaning of its return result.

If you want it to, Visual Studio can automatically extract XML comments to build an XML file
describing the project. This file displays the hierarchical shape of the project, showing comments for
the project’s namespaces, classes, and other elements. The result is not particularly easy to read, but
you can use it to automatically generate more useful documentation such as reports or web pages. For
example, third-party tools such as NDoc (ndoc.sourceforge.net) and Sandcastle (shfb.codeplex
.com) can process the XML comments to produce documentation. You can also write your own pro-
grams to process XML comments, for example, by using XSLT as described in Chapter 24, “XML.”

You can place a block of XML comments before code elements that are not contained in methods.
These include such items as classes, structures, enumerations, properties, methods, and events.

To begin a comment block, place the cursor on the line before the element you want to describe and
type ///. Visual Studio automatically inserts a template for an appropriate XML comment block. If
the element that follows takes parameters, it includes sections describing the parameters, so it is in
your best interest to completely define the parameters before you create the XML comment block.
(Otherwise you need to add the appropriate comment sections by hand later.)

The following code shows the XML comment block created for the CreateStudent method. It
includes a summary section where you can describe the method and two param sections where you
can describe the method’s parameters.

/// <summary>
///
/// </summary>
/// <param name="firstName"></param>
/// <param name="lastName"></param>
public void CreateStudent(string firstName, string lastName)
{
}

Note that XML elements can span multiple lines, as the summary element does in this example.

If you start a new line between XML comment entries, Visual Studio automatically adds /// to the
beginning of the new line. If you then type <, IntelliSense presents a list of standard XML comment
sections. You can select one or you can type a new section of your own. For example, the following
code adds some content for the comments in the previous code and an extra WrittenBy element that
contains a date attribute:

/// <summary>
/// Create a new student record in the database.
/// </summary>
/// <param name="firstName">The student's first name.</param>
/// <param name="lastName">The student's last name.</param>
/// <WrittenBy date="4/1/2020">Rod Stephens</WrittenBy>
public void CreateStudent(string firstName, string lastName)
{
}

www.EBooksWorld.ir

www.hellodigi.ir

46 ❘ ChAPtER 3 Program and Code File sTruCTure

COMMENt CONVENtIONS

I just made up the WrittenBy element and its date attribute—they’re not part of
some XML comment standard. You can put anything you want in there; although,
the comments will be most useful if you use standard elements such as param and
remarks whenever possible.

To allow Visual Studio to create XML documentation from the XML comments, select Project ➪
Properties and go to the Build tab. If the whole tab isn’t visible, scroll to the bottom and check the
XML Documentation File box, as shown in Figure 3-8. If you don’t want the documentation file to
have its default name, you can change that, too.

FIGuRE 3-8: Check the XML Documentation File box to create XML documentation .

In addition to providing documentation for your use, XML comments let IntelliSense provide addi-
tional information about your code. Figure 3-9 shows IntelliSense displaying information about
the CreateStudent method. At this point, I had typed the method call’s open parenthesis, so
IntelliSense displays information about the firstName parameter.

When you compile the application, Visual Studio extracts
the XML comments and places them in an XML file with
the name indicated on the Build property page. The result
isn’t readable, but you can use it to generate more palatable
documentation.

The following text shows a sample result. (I’ve added a
few line breaks in long lines.) The bold lines show the
information defined by XML comments.

<?xml version="1.0"?>
<doc>
 <assembly>

FIGuRE 3-9: IntelliSense uses XML
comments to display information about
methods and their parameters .

www.EBooksWorld.ir

www.hellodigi.ir

comments ❘ 47

 <name>WindowsFormsApplication1</name>
 </assembly>
 <members>
 <member name="F:WindowsFormsApplication1.Form1.components">
 <summary>
 Required designer variable.
 </summary>
 </member>
 <member name="M:WindowsFormsApplication1.Form1.Dispose(System.Boolean)">
 <summary>
 Clean up any resources being used.
 </summary>
 <param name="disposing">true if managed resources should be disposed;
 otherwise, false.</param>
 </member>
 <member name="M:WindowsFormsApplication1.Form1.InitializeComponent">
 <summary>
 Required method for Designer support - do not modify
 the contents of this method with the code editor.
 </summary>
 </member>
 <member name="M:WindowsFormsApplication1.Program.Main">
 <summary>
 The main entry point for the application.
 </summary>
 </member>
 <member name="T:WindowsFormsApplication1.Student">
 <summary>
 This class defines a student. It includes contact information,
 billing information, past and current courses, and past and
 current intramural activities.
 </summary>
 </member>
 <member name="M:WindowsFormsApplication1.Student.CreateStudent(
 System.String,System.String)">
 <summary>
 Create a new student record in the database.
 </summary>
 <param name="firstName">The student's first name.</param>
 <param name="lastName">The student's last name.</param>
 <WrittenBy date="4/1/2020">Rod Stephens</WrittenBy>
 </member>
 <member name="T:WindowsFormsApplication1.Properties.Resources">
 <summary>
 A strongly-typed resource class, for looking up localized
 strings, etc.
 </summary>
 </member>
 <member name="P:WindowsFormsApplication1.Properties.Resources.
 ResourceManager">
 <summary>
 Returns the cached ResourceManager instance used by this class.
 </summary>
 </member>
 <member name="P:WindowsFormsApplication1.Properties.Resources.Culture">

www.EBooksWorld.ir

www.hellodigi.ir

48 ❘ ChAPtER 3 Program and Code File sTruCTure

 <summary>
 Overrides the current thread's CurrentUICulture property for all
 resource lookups using this strongly typed resource class.
 </summary>
 </member>
 </members>
</doc>

SuMMARy

A Visual Studio solution contains a hierarchical arrangement of items. At the top level, it contains
one or more projects. Each project contains files that define such items as forms, application settings,
and resources. This chapter explained the purposes of the most common of these types of files.

This chapter also explained preprocessor directives such as #define, #if, and #region that you can
include in a C# source file to control the way Visual Studio and the C# compiler manage the file. It also
explained some basic elements of code file structure such as the using and namespace statements, class
declarations, and different kinds of comments.

Now that you understand the basic elements that make up a C# project and code file, you can
start learning about the language itself. The chapters in the next part of the book describe
the basic elements of the C# programming language. Chapter 4, “Data Types, Variables, and
Constants,” begins by explaining data types, variables, and constants that hold information
while a program manipulates it.

ExERCISES

The exercises for this chapter are actually things you should practice rather than questions to test
your understanding. Take a few minutes to give them a try. These exercises and the rest of the book
assume you use Visual Studio 2012 Express for Windows Desktop. If you prefer to use some other
version of Visual Studio, you may need to adapt the exercises and their solutions somewhat.

For exercises 1 through 5, follow these steps to build a test application:

 1. Create a new Windows Forms application.

 2. Add a button and give it these property values:

 a. Name = setBackgroundProperty

 b. Text = Set Background

 c. Anchor = None

 d. Make the button big enough to display its text.

 3. Use the Format ➪ Center in Form menu to position the button in the middle of the form.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 49

 4. Open Project ➪ Properties and select the Resources tab. Open the Add Resources drop-
down (click to the right on its drop-down arrow) and add a picture to the project. Use any
picture you like.

 5. Create the button’s Click event handler and insert the following line of code, replacing dog
with the name of the resource you added as it appears on the Resources tab.

BackgroundImage = Properties.Resources.dog;

Use the program to answer the following questions.

 1. Resize the form.

 a. What happens to the button’s position?

 b. What happens if you change the button’s Anchor property to Top, Left?
(Experiment a bit with the graphical editor for setting this property.)

 c. What if Anchor is Bottom, Right?

 d. What if Anchor is Top, Bottom, Left, Right?

 2. Set the button’s Anchor property to Top, Bottom, Left, Right.

 a. What happens to the button if you make the form small?

 b. Can you still “click” the button by pressing Enter?

 c. Change the button’s MinimumSize property to 50, 15. Now what happens if you
make the form small?

 3. Click the button.

 a. What happens when you click the button?

 b. What happens if you change the form’s BackgroundImageLayout property to None?

 c. What if BackgroundImageLayout is Center?

 d. What if BackgroundImageLayout is Stretch?

 e. What if BackgroundImageLayout is Zoom?

 4. Add the following lines of code to the button’s Click event handler. What happens when
you click the button now?

setBackgroundButton.BackColor = Color.Yellow;
setBackgroundButton.ForeColor = Color.Red;

 5. Use a multiline comment to comment out the code you entered for Exercise 4 and add the
following code. What happens now when you click the button?

BackColor = Color.Red;
ForeColor = Color.Blue;

www.EBooksWorld.ir

www.hellodigi.ir

50 ❘ ChAPtER 3 Program and Code File sTruCTure

 6. Suppose you have the following code that includes nested multiline comments.

/*
Comment.

/*
Inner comment.
*/

*/

How do you think Visual Studio will interpret this code?

 7. Suppose you have the following code that defines two overlapping regions.

#region Region1
// Code Block 1 ...
#region Region2
// Code Block 2 ...
#endregion Region1
// Code Block 3 ...
#endregion Region2

 a. What happens if you collapse Region1? (Try to figure it out by using what you know
about regions. Then try it to see if you’re correct.)

 b. What happens if you collapse Region2?

www.EBooksWorld.ir

www.hellodigi.ir

Part II
C# Language Elements

 ▶ ChAPtER 4: Data Types, Variables, and Constants

 ▶ ChAPtER 5: Operators

 ▶ ChAPtER 6: Methods

 ▶ ChAPtER 7: Program Control Statements

 ▶ ChAPtER 8: LINQ

 ▶ ChAPtER 9: Error Handling

 ▶ ChAPtER 10: Tracing and Debugging

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Data Types, Variables,
and constants

whAt’S IN thIS ChAPtER

➤➤ Value versus reference types

➤➤ Variable initialization

➤➤ Widening and narrowing conversions

➤➤ Passing parameters by value, by reference, and for output

➤➤ Nullable types

➤➤ Enumerations and delegates

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

A variable is a program element that stores a value. Some of the values that a variable might
contain include a number, string, character, date, or object representing something complex
such as a customer or business report.

A program uses variables to hold and manipulate values. For example, if some variables hold
numbers, the program can apply arithmetic operations to them. If the variables hold strings,
the program can use string operations on them such as concatenating them, searching them
for particular substrings, and extracting substrings from them.

Four factors determine a variable’s exact behavior:

➤➤ Data type determines the kind of the data the variable can hold (integer, character,
string, and so forth).

4

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.hiva-network.com/

54 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

➤➤ Scope defines the code that can access the variable. For example, if you declare a variable inside
a for loop, only other code inside the loop can use the variable. If you declare a variable at the
top of a method, only the code in the method can use the variable.

NOtE Methods are described in greater detail in Chapter 6, “Methods.” For
now you can think of a method (sometimes called a function, routine, subroutine,
or procedure) as a piece of code wrapped in a package, so it’s easy to invoke from
multiple places in the program.

➤➤ Accessibility determines what code in other modules can access the variable. If you declare
a variable inside a class at the class level (outside of any method in the class) and you use
the private keyword, only the code in the class (or derived classes) can use the variable. In
contrast, if you declare the variable with the public keyword, code in other classes can use
the variable, too.

➤➤ Lifetime determines how long the variable’s value is valid. For example, a variable declared
inside a method is created when the method begins and is destroyed when it exits. If the
method runs again, it creates a new copy of the variable and its value is reset.

Visibility is a concept that combines scope, accessibility, and lifetime. It determines whether a
certain piece of code can use a variable. If the variable is accessible to the code, the code is within
the variable’s scope, and the variable is within its lifetime (has been created and not yet destroyed),
then the variable is visible to the code.

This chapter explains the syntax for declaring variables in C#. It explains how you can use different
declarations to determine a variable’s data type, scope, accessibility, and lifetime. It discusses some
of the issues you should consider when selecting a type of declaration and describes some concepts,
such as anonymous and nullable types, that can complicate variable declarations. This chapter also
explains ways you can initialize objects, arrays, and collections quickly and easily.

Constants, parameters, and properties all have concepts of scope and data type that are similar to
those of variables, so they are also described here.

dAtA tyPES

The smallest piece of data a computer can handle is a bit, a single value that can be either 0 or 1.
(Bit is a contraction of “binary digit.”)

Eight bits are grouped into a byte. Computers typically measure disk space and memory space in
kilobytes (1,024 bytes), megabytes (1,024 kilobytes), gigabytes (1,024 megabytes), and terabytes
(1,024 gigabytes).

Multiple bytes are grouped into words that may contain 2, 4, or more bytes depending on the computer
hardware. Most computers these days use 4-byte (32-bit) words, although 8-byte (64-bit) computers are
becoming more common.

www.EBooksWorld.ir

www.hellodigi.ir

Data Types ❘ 55

C# also groups bytes in different ways to form data types with a greater logical meaning. For
example, it uses 4 bytes to make an integer, a numeric data type that can hold values between
−2,147,483,648 to 2,147,483,647.

The following table summarizes C#’s elementary data types.

NAME tyPE SIzE VALuES

Boolean bool 2 bytes True or False .

Byte byte 1 byte 0 to 255 .

Signed byte sbyte 1 byte −128 to 127 .

Character char 2 bytes 0 to 65,535 .

Short integer short 2 bytes −32,768 to 32,767 .

Unsigned short
integer

ushort 2 bytes 0 through 65,535 .

Integer int 4 bytes −2,147,483,648 to 2,147,483,647 .

Unsigned integer uint 4 bytes 0 through 4,294,967,295 .

Long integer long 8 bytes −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 .

Unsigned long
integer

ulong 8 bytes 0 through 18,446,744,073,709,551,615 .

Decimal decimal 16 bytes 0 to +/−79,228,162,514,264,337,593,543,9
50,335 with no decimal point; 0 to +/−7 .9
228162514264337593543950335 with 28
places to the right of the decimal place .

Single-precision
floating point
number

float 4 bytes −3 .4028235E+38 to −1 .401298E-45
(negative values); 1 .401298E-45 to
3 .4028235E+38 (positive values) .

Double-precision
floating point
number

double 8 bytes −1 .79769313486231570E+308 to
−4 .94065645841246544E-324 (negative
values); 4 .94065645841246544E-324 to
1 .79769313486231570E+308 (positive
values) .

String string varies Depending on the platform, a string can
hold approximately 0 to 2 billion Unicode
characters .

continues

www.EBooksWorld.ir

www.hellodigi.ir

56 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

NAME tyPE SIzE VALuES

Date and time DateTime 8 bytes January 1, 0001 0:0:00 to December 31,
9999 11:59:59 pm .

Object object 4 bytes Points to any type of data .

Class class varies Class members have their own ranges .

Structure struct varies Structure members have their own
ranges .

tIP Because the decimal data type has greater precision and a smaller range
than the float and double data types, Microsoft recommends that you store
currency values with the decimal data type.

Many of these data types are actually C#-style shorthand for types defined in the System namespace.
For example, sbyte is the same as System.SByte and ulong is the same as System.UInt64.

tIP Some of the types defined in the System namespace explicitly include their
sizes. For example, the UInt64 type occupies 64 bits. Whenever possible you
should use the less specific type name ulong and let Visual Studio figure out how
to map that to the more specific type UInt64. That way if later versions of C#,
perhaps running on 128-bit computers, redefine ulong to be a 128-bit unsigned
integer, you won’t need to rewrite your code to work properly.

Normally in a program you can think of the char data type as holding a single character. That could
be a simple Roman letter or digit, but C# uses 2-byte Unicode characters, so the char type can also
hold more complex characters from other alphabets such as Greek, Kanji, and Cyrillic.

The int data type usually provides the best performance of the integer types, so you should stick with
int unless you need the extra range provided by long and decimal, or you need to save space with the
smaller char and byte types. In many cases, the space savings you get using the char and byte data
types isn’t worth the extra time and effort, unless you work with a large array of values.

Note that you cannot safely assume that a variable’s storage requirements are exactly the same as its
size. In some cases, the program may move a variable so that it begins on a boundary that is natural
for the hardware platform. For example, if you make a structure containing several short (2-byte)
variables, the program may insert 2 extra bytes between them so that they can all start on 4-byte
boundaries because that may be more efficient for the hardware. For more information on structures,
see Chapter 12, “Classes and Structures.”

Some data types also come with some additional overhead. For example, an array stores some extra
information about each of its dimensions.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Data Types ❘ 57

ALIGNMENt AttRIbutES

Actually, you can use the StructLayout attribute to change the way C# allocates
the memory for a structure. In that case you may determine exactly how the
structure is laid out. This is a fairly advanced topic and is not covered in
this book. For more information, see http://msdn.microsoft.com/system
.runtime.interopservices.structlayoutattribute.aspx.

Value Versus Reference types
There are two kinds of variables in C#: value types and reference types.

A value type is a relatively simple data type such as an int or float that represents the data it con-
tains directly. If you declare an int variable named numItems and assign it the value 27, the pro-
gram allocates a chunk of memory and stores the value 27 in it.

In contrast, a reference type variable contains a reference to another piece of memory that actually
contains the variable’s data. For example, suppose you define an OrderItem class that has PartNumber,
PriceEach, and Quantity properties. Now suppose your program creates an OrderItem object named
item1 that has PartNumber = 3618, PriceEach = 19.95, and Quantity = 3. The program allocates
a chunk of memory to hold those property values. It also creates another piece of memory that is a
reference to the first piece of memory. The variable named item1 is actually this reference and not the
memory containing the properties.

Figure 4-1 shows how the two variables numItems and item1 are stored in memory. The dark box
on the right shows the pieces of memory that are part of the object referred to by item1.

Most of the types described in the previous
section that hold a single piece of data are
value types. Those include the numeric types,
bool, and char.

Class and structure data types hold mul-
tiple related values so, looking at Figure 4-1,
you might assume they are reference types.
Actually, classes are reference types but
structures are value types. That’s one of the
biggest differences between the two. Chapter
12 has lots more to say about classes, struc-
tures, and their differences.

The DateTime data type is a structure that holds information about a date and time. Like other
structures, it is a value type.

Perhaps the most unexpected fact about value and reference types is that the string class is a
reference type. A string variable contains a reference to some information that describes the
actual textual value.

27

*

numItems:

item1:

3618

19.95

3

FIGuRE 4-1: Value type variables hold their values
directly . Reference type variables hold references to
their data .

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/system.runtime.interopservices.structlayoutattribute.aspx

58 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

the var Keyword
The var keyword is like a special data type that makes Visual Studio determine the data type that a
variable should have based on the value that it is assigned. For example, the following code uses the
var keyword to declare the variable numTypes.

var numTypes = 13;

This code assigns the value 13 to the variable numTypes. Because C# interprets the literal value 13 as
an int, the program makes numTypes an int.

StRING StRuCtuRE

In C# (and other .NET languages), strings are immutable. That means when a
string has been assigned a value, it can never be changed. Of course, a program
might like to create a string variable and change its value many times.

To get around this seeming inconsistency, string is a reference type that refers to a
location called the intern pool where the string’s value is actually kept.

Only one instance of a given piece of text exists and is stored in the intern pool. If
two string variables represent the same piece of text, they both refer to the same
location in the intern pool. This saves space if the program uses many variables that
contain the same text; although, it does make things a bit more confusing.

When you set a string variable to a new value, the program doesn’t actually place
the new value inside the string. Instead it looks for the new value in the intern
pool. If the value isn’t in the intern pool, the program adds it. It then makes the
variable point to the entry in the intern pool.

For most purposes, you can ignore the intern pool and pretend a string variable
actually holds its text.

You can only use the var keyword inside methods, and you must assign a value to the variable when
you declare it (so Visual Studio can figure out what type it should be).

The var keyword is powerful because it can handle all sorts of data types. For example, the following
code uses var to declare an array of int and an object with an anonymous type.

var values = new[] { 1, 2, 3 };
var person = new { FirstName = "Rod", LastName = "Stephens" };

Some programmers use the var type extensively. Unfortunately, to correctly understand the code,
you need to easily determine the data type that Visual Studio assigns to the variable. For example,
see if you can quickly determine the data types assigned to each of the following variables.

var value1 = 100;
var value2 = 1000000000;
var value3 = 10000000000;
var value4 = 100000000000000000000;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Variable Declaration syntax ❘ 59

var value5 = 1.23;
var value6 = new { Description= "Pencils", Quantity = 12, PriceEach = 0.25m };

ExPOSING thE ANONyMOuS

If you want to know the actual name of an anonymous type created by a var decla-
ration, you can use a statement similar to the following.

Console.WriteLine(person.GetType().Name);

For the preceding definition of the person variable, this returns the unwieldy type
name <>f__AnonymousType0`2.

The first five data types are int, int, long (because int is too small), syntax error (because this value
is too big to fit in a long but Visual Studio won’t automatically promote it to a float), and double.

It’s not too hard to figure out that last value is an object with the three fields Description, Quantity,
and PriceEach. What’s less obvious is that this object has a class type and not a structure type. Even
worse, suppose the program later uses the following code.

var value7 = new { Description= "Notepad", Quantity = "6", PriceEach = 1.15m };

This code is similar to the previous code, but here the Quantity value is a string, not an int. If you
don’t notice that the two declarations have slightly different formats, you won’t know that the two
variables have different data types.

To avoid possible confusion, I generally use explicit data types except where var is necessary. In
particular, the data types created by LINQ expressions can be weird and hard to discover, so for
LINQ using var makes sense. Chapter 8 says more about LINQ.

VARIAbLE dECLARAtION SyNtAx

Inside a method, the syntax for declaring a variable is simple.

«const» type«[]» name «= value»;

SyNtAx CONVENtIONS

In syntax definitions for this book, items enclosed in double brackets « » are optional.

Italicized items should be replaced by actual values. Depending on the item, the
actual values might come from a list of allowed choices or they might be names that
you invent.

The | symbol means you can use one of the choices on either side. For example, «A
| B» means you can optionally include either A or B (but not both).

www.EBooksWorld.ir

www.hellodigi.ir

60 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

The pieces of this declaration are

➤➤ const—If you include this, the variable is a constant and its value cannot be changed later.
Use the value to assign the constant a value.

➤➤ type—The data type you want the variable to have.

➤➤ []—Include empty square brackets [] to make an array.

➤➤ name—The name you want the variable to have.

➤➤ = value—The value you want the variable to initially have.

For example, the following snippet declares two variables, an int initialized to 13 and an array
of bool.

int numPlayers = 13;
bool[] isActive;

To create multidimensional arrays, include commas to indicate the number of dimensions. For
example, the following code declares a two-dimensional array.

int[,] values;

You would access a value in this array as in the following code.

values[1, 2] = 1001;

You can include as many commas as you like to create higher-dimensional arrays.

ARRAyS OF ARRAyS

In addition to creating multidimensional arrays, you can also create arrays of
arrays. The following code declares an array of arrays of integers.

int[][] values;

You would access a value in this array as in the following code.

values[1][2] = 987;

Declaring a variable that is not inside a method is slightly more complicated because the declaration
can include attributes, access specifiers, and other modifiers. The following text shows the syntax
for declaring a variable inside a class but not inside any method.

«attributes» «accessibility»
 «const | readonly | static | volatile | static volatile»
 type«[]» name «= value»

www.EBooksWorld.ir

www.hellodigi.ir

Variable Declaration syntax ❘ 61

FIELdS

A variable that is declared at the class level, outside of any method, is called a field.
Most developers recommend that you use properties instead of fields. Properties are
described in the section “Properties” later in this chapter.

The pieces of this declaration are

➤➤ attributes—One or more attributes that specify extra properties for the variable. The fol-
lowing section, “Attributes,” describes attributes in more detail.

➤➤ accessibility—This determines which code can access the variable. The section
“Accessibility” later in this chapter describes accessibility values in more detail.

➤➤ const—If you include this, the variable is a constant and its value cannot be changed later.
Use the value to assign the constant a value.

➤➤ readonly—If you include this, the variable is similar to a constant except its value can be
set either with a value clause or in the class’s constructor.

➤➤ static—This keyword indicates the variable is shared by all instances of the class.

➤➤ volatile—This keyword indicates the variable might be modified by code running in multiple
threads running at the same time.

➤➤ type—The data type you want the variable to have.

➤➤ []—Include empty square brackets [] to make an array.

➤➤ name—The name you want the variable to have.

➤➤ = value—The value you want the variable to initially have.

For example, the following code defines a publically visible constant int variable named NumSquares
and initializes it to the value 8.

public const int NumSquares = 8;

The section “Static, Constant, and Volatile Variables” later in this chapter provides more detail on
the static, const, readonly, and volatile keywords.

You can define and even initialize multiple variables of the same type in a single statement. The
following statement declares and initializes two int variables.

public int value1 = 10, value2 = 20;

tIP Many developers prefer not to initialize multiple variables in the same state-
ment to keep the code easier to read.

www.EBooksWorld.ir

www.hellodigi.ir

62 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

Name
A variable’s name must be a valid C# identifier. It should begin with a letter, underscore, or @ symbol.
After that it can include letters, numbers, or underscores. If the name begins with @, it must include
at least one other character.

Identifier names cannot contain special characters such as &, %, #, and $. They also cannot be the
same as C# keywords such as if, for, and public. The following table lists some examples.

NAME VALId?

numEmployees Valid

NumEmployees Valid

num_employees Valid

_manager Valid (but unusual)

_ Valid (but confusing)

1st_employee Invalid (doesn’t begin with a letter, under-
score, or @ symbol)

#employees Invalid (contains the special character #)

return Invalid (keyword)

The @ character is mainly used to allow a program to have a variable with the same name as a key-
word. For example, you could define a variable named @for. The @ symbol tells the compiler that
this is not a keyword. However, the compiler ignores the @ symbol after it decides it isn’t the begin-
ning of a keyword. For example, if you declare a variable named @test, then the program considers
test and @test to be the same name.

You can avoid a lot of potential confusion if variable names aren’t keywords, don’t use the @
symbol, and aren’t weird combinations such as _, ____, and _1_2_. For a list of C# keywords,
go to http://msdn.microsoft.com/library/x53a06bb.aspx.

Attributes
The optional attribute list is a series of attribute objects that provide extra information about the
variable. An attribute further refines the definition of a variable to give more information to the
compiler, the runtime system, and other tools that need to manipulate the variable.

dELIGhtFuL dECORAtIONS

Applying an attribute to a class, variable, method, or other code entity is sometimes
called decorating the entity.

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/x53a06bb.aspx

Variable Declaration syntax ❘ 63

Attributes are fairly specialized and address issues that arise when you perform specific program-
ming tasks. For example, serialization is the process of converting objects into a textual representa-
tion. When you write code to serialize and deserialize data, you can use serialization attributes to
gain more control over the process.

The following code defines the OrderItem class. This class declares three public variables: ItemName,
Price, and Quantity. It uses attributes to indicate that ItemName should be stored as text, Price
should be stored as an XML attribute named Cost, and Quantity should be stored as an XML attri-
bute with its default name, Quantity.

[Serializable()]
public class OrderItem
{
 [XmlText()]
 public string ItemName;

 [XmlAttribute(AttributeName = "Cost")]
 public decimal Price;

 [XmlAttribute()]
 public int Quantity;
}

(These attributes are defined in the System.Xml.Serialization namespace, so the program uses the
statement using System.Xml.Serialization, although that statement isn’t shown in the code here.)

The following code shows the XML serialization of an OrderItem object.

<OrderItem Cost="1.25" Quantity="12">Cookie</OrderItem>

Chapter 25, “Serialization,” says more about serialization. Because attributes are so specialized,
they are not described in more detail here. For more information, see the sections in the online help
related to the tasks you need to perform. For information on attributes in general, see these web
pages:

➤➤ Attributes (C# and Visual Basic), http://msdn.microsoft.com/library/z0w1kczw.aspx.

➤➤ Attributes Tutorial, http://msdn.microsoft.com/library/aa288454.aspx.

➤➤ Attribute Hierarchy, http://msdn2.microsoft.com/2e39z096.aspx.

Accessibility
A variable declaration’s accessibility clause can take one of the following values (in order of decreasing
accessibility):

➤➤ public—Indicates the variable should be available to all code inside or outside of the variable’s
class. This allows the most access to the variable.

➤➤ internal—Indicates the variable should be available to all code inside or outside of the
variable’s class within the same assembly only. The difference between this and public is
that public allows code in other assemblies to access the variable. The internal keyword

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/z0w1kczw.aspx
http://msdn.microsoft.com/library/aa288454.aspx
http://msdn2.microsoft.com/2e39z096.aspx
http://www.hiva-network.com/

64 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

is useful, for example, if you write a library for use by other assemblies and you want some
of the variables inside the library to be visible only inside the library.

➤➤ protected—Indicates the variable should be accessible only to code within the same class
or a derived class. The variable is available to code in the same class or a derived class, even
if the instance of the class is different from the one containing the variable. For example,
one Employee object can access a protected variable inside another Employee object.

➤➤ internal protected—This is the union of the internal and protected keywords. It
indicates a variable is accessible only to code within the same class or a derived class and
only within the same assembly.

➤➤ private—Indicates the variable should be accessible only to code in the same class or struc-
ture. The variable is available to other instances of the class or structure. For example, the
code in one Customer object can access a private variable inside another Customer object.

If you omit the accessibility, a declaration is private by default. In the following code, the two
variables value1 and value2 are both private.

private int value1;
int value2;

Static, Constant, and Volatile Variables
A variable declaration can include any of the following keywords:

➤➤ const

➤➤ readonly

➤➤ static

➤➤ volatile

➤➤ static volatile

The const keyword indicates the value cannot be changed after it is created. The variable’s declaration
must include an initialization statement to give the constant a value. If you don’t include an initializa-
tion or if the code tries to change the constant’s value, Visual Studio flags the statement as an error.

The readonly keyword makes the variable similar to a constant except its value can be set in its
declaration or in a class constructor. The following code shows how you could create a Car class
with a readonly MilesPerGallon variable.

class Car
{
 public readonly float MilesPerGallon = 40f;

 public Car()
 {
 MilesPerGallon = 20;
 }

www.EBooksWorld.ir

www.hellodigi.ir

Initialization ❘ 65

 public Car(float milesPerGallon)
 {
 MilesPerGallon = milesPerGallon;
 }
}

The class starts by declaring MilesPerGallon, initially setting it to the somewhat optimistic value 40.

Next, a parameterless constructor sets MilesPerGallon to 20. When the program uses this con-
structor to create a new Car instance, its MilesPerGallon value is set to 20.

A second constructor takes a float value as a parameter and sets the new instance’s MilesPerGallon
value to the parameter’s value. Because all the class’s constructors set MilesPerGallon, the declara-
tion of the variable doesn’t need to give it a value, too. (Chapter 12 covers classes and constructors in
greater detail.)

No other code either inside the class or outside of it can modify the readonly variable’s value.

NOtE You cannot use the var keyword with a const or readonly declaration.
If you use const or readonly, you must include an explicit data type.

The static keyword indicates the variable is shared by all instances of the class. If a variable is not
declared static, each instance of the class has its own copy of the variable.

For example, suppose you build a Car class to represent a fleet of identical cars. Each Car object
needs its own Miles property because each car may have driven a different number of miles.
However, if all the cars get the same number of miles per gallon, they can share a MilesPerGallon
property. The following code shows how you might create this class.

class Car
{
 public static float MilesPerGallon;
 public float Miles;
}

Because all the instances of the Car class share the same MilesPerGallon variable, if the code in
any instance of the class changes this value, all the instances see the new value.

The volatile keyword indicates the variable might be modified by code running in multiple
threads running at the same time. This prevents the compiler from optimizing the variable in a way
that would prevent code on a separate thread from modifying the value. For more information on
this keyword, see http://msdn.microsoft.com/library/x13ttww7.aspx.

INItIALIzAtION

The final (and optional) part of a variable declaration is initializing it.

If you do not initialize a variable, it takes a default value that depends on its data type. Numeric and
char variables take the value 0, and bool variables take the value false.

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/x13ttww7.aspx

66 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

Structures are also value types. When a structure is declared, each of its properties and fields takes
its default value. For example, if a structure has a int field, it is set to 0.

Reference values (including class variables and strings) get the special value null, which means
“this reference doesn’t point to anything.”

If you don’t want a variable to take its default value, you can include an initialization. Follow the
variable’s name with an equal sign and the value you want it to take. For simple types such as
int and bool, this is straightforward. For example, the following code declares the bool variable
ready and initializes it to the value false.

bool ready = false;

For more complex data types such as classes, structures, arrays, and lists, initialization is a bit more
complicated. The following sections explain how to initialize variables of those types.

Classes and Structures
There are two main ways to initialize an object that has a class or structure type. (The steps are the
same for classes and structures, so the following text assumes you are working with a class.)

First, you can use a new statement to create the new object and follow it with a list of property or
field initializers. Each initializer consists of the property’s or field’s name, an equal sign, and the
value that it should receive.

For example, suppose you define the following Person class.

class Person
{
 public string FirstName, LastName;
}

Now the program can use the following code to create and initialize an instance of the class.

Person rod = new Person() { FirstName = "Rod", LastName = "Stephens" };

The properties (or fields) do not need to be listed in the order in which they are defined in the class.

The second way to initialize an instance of a class is to give the class a constructor that takes
parameters it can use to initialize the object. For example, consider the following Person class.

class Person
{
 public string FirstName, LastName;

 public Person(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }
}

This code uses the firstName and lastName parameters to initialize the object’s FirstName and
LastName fields.

www.EBooksWorld.ir

www.hellodigi.ir

Initialization ❘ 67

Now the program can use the following code to create and initialize an instance of the class.

Person rod = new Person("Rod", "Stephens");

With this approach, the new statement must provide the parameters in the order expected by the
constructor.

INtELLISENSE INItIALIzAtION

Visual Studio’s IntelliSense provides useful feedback when you use either of these
methods of initializing an object. If you type new Person(, IntelliSense lists the
parameters that the class’s constructors can accept. If you type new Person() {
and a space, IntelliSense lists the class’s properties and fields so you can pick one.

Arrays
When you declare an array, a C# program doesn’t automatically create the array. After declaring the
array, there are two ways you can initialize it.

First, you can follow the variable name with the equal sign, the new keyword, the array items’
data type, and the number of items you want the array to hold surrounded by square brackets.
The following code uses this method to create an array of 10 decimal values.

decimal[] salaries = new decimal[10];

All array indices start with 0, so this creates an array with values salaries[0] through salaries[9].

Initially array entries take on their default values. For example, the salaries array initialized in the
preceding code would be filled with 10 copies of the value 0. The code can then loop through the array
and initialize each entry.

Instead of initializing each array entry separately, you can use the second method for initializing an
array. For this method, follow the variable’s name with the equal sign and a comma-delimited list of
values surrounded by braces. For example, the following code declares a decimal array and fills it
with four values.

decimal[] salaries =
{
 32000m,
 51700m,
 17900m,
 87300m,
};

tIP The comma after the final item in the initialization list is optional.

When you use this method for initializing an array, the program determines the number of items in
the array by looking at the values you supply.

www.EBooksWorld.ir

www.hellodigi.ir

68 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

If you are initializing an array of objects, the items inside the braces would be values of the appropri-
ate type. For example, the following code declares and initializes an array containing four Person
references, the last of which is initialized to null.

Person[] customers =
{
 new Person() { FirstName="Ann", LastName="Archer"},
 new Person() { FirstName="Ben", LastName="Blather"},
 new Person() { FirstName="Cindy", LastName="Carver"},
 null,
};

To initialize a multidimensional array, include an array initializer for each entry. For example, the
following code declares and initializes a two-dimensional array.

int[,] values =
{
 {1, 2, 3},
 {4, 5, 6},
};

Note that you must provide a consistent number of items for each of the array’s dimensions. For
example, the following declaration is invalid because the array’s first row contains three elements,
but the second row contains only two elements.

int[,] values =
{
 {1, 2, 3},
 {4, 5},
};

To initialize an array of arrays, make an array initializer where each item is a new array. The follow-
ing code declares and initializes an array of arrays holding values similar to those in the preceding
two-dimensional array.

int[][] values2 =
{
 new int[] {1, 2, 3},
 new int[] {4, 5, 6},
};

Collections
Collection classes that provide an Add method (such as List, Dictionary, and SortedDictionary)
have their own initialization syntax that is similar to a combination of the two kinds of array initial-
izers. After the variable’s name, include the equal sign and a new object as you would for any other
class. Follow that with a comma-delimited list of values that should be added to the collection sur-
rounded by braces.

For example, the following code declares and initializes a List<string> (a list of strings).

List<string> pies = new List<string>
{
 "Apple", "Banana", "Cherry", "Coconut Cream"
};

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Literal Type characters ❘ 69

NOtE The syntax List<string> creates a List object that manipulates
strings. List is a generic class and in this example string is its generic param-
eter. Chapter 14, “Collection Classes,” says more about generic collection classes.

The items inside the braces must include all the values needed by the collection’s Add method. For
example, the Dictionary class’s Add method takes two parameters giving a key/value pair that should
be added. That means each entry in the initializer should include a key and value.

The following code initializes a Dictionary<string, string> (dictionary with keys that are
strings and associated values that are strings). The parameters to the class’s Add method are an
item’s key and value so, for example, the value 940-283-1298 has the key Alice Artz. Later you could
look up Alice’s phone number by searching the Dictionary for the item with the key "Alice Artz".

Dictionary<string, string> directory = new Dictionary<string, string>()
{
 {"Alice Artz", "940-283-1298"},
 {"Bill Bland", "940-237-3827"},
 {"Carla Careful", "940-237-1983"}
};

INItIALIzING wIthOut Add

Some collection classes such as Stack and Queue don’t have an Add method, so this
kind of initializer doesn’t work for them. Fortunately, they have constructors that
take a parameter that can be an enumerable type such as a list or array. That means
you can pass the constructor an array of values to be added to the Stack or Queue
as in the following code.

Stack<int> stack = new Stack<int>(new int[] { 1, 2, 3, 4 });
Queue<int> queue = new Queue<int>(new int[] { 4, 3, 2, 1 });

LItERAL tyPE ChARACtERS

If your code includes a literal value such as a number, C# uses a set of rules to interpret the value.
For example, the value 2000000000 fits in the int data type, so when a C# program sees that
value, it assumes it is an int.

In contrast, the value 3000000000 does not fit in the int data type, so the program assumes this
value is a uint, which is big enough to hold the value. A uint cannot hold a negative value, how-
ever, so if the program contains the value –3000000000, C# makes it a long.

When a value looks like an integer, the program tries to interpret it as the smallest integer data type
at least as large as int (so it doesn’t consider byte, sbyte, short, or ushort).

When a value includes a decimal point, the program assumes it is a double.

www.EBooksWorld.ir

www.hellodigi.ir

70 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

For the smaller integer data types, the program automatically converts integer values if possible. For
example, consider the following statement.

short count = 15000;

This statement declares a variable named count that has type short. The program considers the
literal value 15000 to be an int. Because the value 15000 can fit in a short, the program converts
the int into a short and stores the result in the variable.

Often this all works without any extra work on your part, but occasionally it can cause problems.
The following code demonstrates one of the most common of those.

float distance = 1.23;

This statement declares a variable named distance that has type float. The program considers the
literal value 1.23 to be a double. Because all double values cannot necessarily fit in a float, the pro-
gram flags this as an error at design time and displays this error:

Literal of type double cannot be implicitly converted to type ‘float’; use an ‘F’ suffix to create a
literal of this type

One way to avoid this problem is to use a literal type character to tell C# what type the literal should
have. The following code solves the preceding code’s problem. The f at the end of the literal tells the
program that the value 1.23 should be treated as a float instead of a double.

float distance = 1.23f;

The following table lists C#’s literal type characters.

ChARACtER dAtA tyPE

U uint

L long

UL, LU ulong

F float

D double

M decimal

You can use uppercase or lowercase for literal type characters. For example, 1.23f and 1.23F both
give a float result. For the UL and LU characters, you can even mix case as in 10uL; although, that
might make the code more confusing than necessary.

tIP Because the lowercase letter l looks a lot like the numeral 1, Visual Studio
marks a line with warning if you use the lowercase l in a literal type character as
in 10l or 10lu.

www.EBooksWorld.ir

www.hellodigi.ir

Literal Type characters ❘ 71

C# also lets you precede an integer literal with 0x or 0X (in both cases, the first character is a zero
not the letter O) to indicate that it is a hexadecimal (base 16) value. For example, the following two
statements set the variable flags to the same value. The first statement uses the decimal value 100
and the second uses the hexadecimal value 0x64.

flags = 100; // Decimal 100.
flags = 0x64; // Hexadecimal 0x64 = 6 * 16 + 4 = 100.

bASE CONVERSIONS

You can use the Convert.ToInt32 method to convert between bases other than deci-
mal and hexadecimal. See http://msdn.microsoft.com/library/sf1aw27b.aspx.

Surround string literals with double quotes and char literals with single quotes, as shown in the
following code.

string name = "Rod";
char ch = 'a';

Within a string or char literal, a character that follows the \ character has a special meaning. For
example, the combination \n represents a new line. These combinations are called escape sequences.
The following table lists C#’s escape sequences.

ESCAPE SEQuENCE ChARACtER

\’ Single quote

\” Double quote

\\ Backslash

\0 Null

\a Alert (bell)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\v Vertical tab

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/sf1aw27b.aspx

72 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

For example, the following code defines a string that contains four column headers’ values separated
by tabs.

string header = "Item\tPrice Each\tQuantity\tTotal";

If a string contains backslashes but no escape sequences, it can be cumbersome to represent
each backslash with \\. For example, Windows file paths such as C:\Temp\Projects\CurrentWork\
project.txt may include a lot of backslashes. The following code shows how you would assign this
value to a string variable.

string filename = "C:\\Temp\\Projects\\CurrentWork\\project.txt";

In C# you can place an @ symbol in front of a string to make working with this kind of text easier.
In that case the string ignores all escape sequences and includes the characters between its quotes as
they appear.

string filename = @"C:\Temp\Projects\CurrentWork\project.txt";

This kind of string continues until it reaches its closing " and can even span multiple lines.

If you need the string to contain a " character, you can’t simply type it in the text because the pro-
gram would think it represented the end of the string. You also cannot use \" because this kind of
string ignores escape sequences.

Instead of adding a " character to the string, double up the character. The following code initializes
a string variable to hold a two-line string that contains double quotes and then displays it in the
Console window.

 string greeting = @"Welcome to Project
""Do What I Meant""";
 Console.WriteLine(greeting);

The following text shows the result.

Welcome to Project
"Do What I Meant"

dAtA tyPE CONVERSION

Normally, you assign a value to a variable that has the same data type as the value. For example,
you assign a string value to a string variable, you assign an integer value to an int variable, and so
forth. Often, however, a program must convert a value from one data type to another. For example,
it might need to convert an int into a float or it might need to convert a string containing a
numeric value into a decimal.

www.EBooksWorld.ir

www.hellodigi.ir

Data Type conversion ❘ 73

The following sections discuss several ways you can convert data from one to another. Those
methods include

➤➤ Implicit conversion

➤➤ Casting

➤➤ Using the as operator

➤➤ Parsing

➤➤ Using System.Convert

➤➤ Using System.BitConverter

Implicit Conversion
Suppose a program needs to save a value in a variable. If the variable can hold any value that the
program might want to use, then the program can safely store the value in the variable.

For example, suppose the program creates an int variable and puts some value in it. It then wants to
save the value in a long variable. A long variable can hold any value that an int variable can hold,
so this is guaranteed to succeed.

Storing a value in a variable of a different type that is guaranteed to hold the value is called a widening
conversion. Storing an int value in a long is an example of a widening conversion. (If you think of
the variables as envelopes or boxes, this makes sense. You can put a smaller value in a wider envelope
without trouble.)

In contrast, a narrowing conversion is one in which the source value cannot necessarily fit in the desti-
nation variable. For example, suppose a program has an int variable and wants to copy its value into
a byte variable. This may or may not succeed depending on the value. For example, if the value is 10,
this succeeds because 10 will fit in a byte variable. However, if the value is 900, this fails because 900
cannot fit in a byte.

A C# program can make widening conversions implicitly. For example, the following code saves an
int value in a long variable.

int theInt = 1337;
long theLong = theInt;

A C# program will not perform implicit narrowing conversions. For example, the following code is
not allowed even though the value stored in theLong would fit in an int variable.

long theLong = 100;
int theInt = theLong;

In this case, Visual Studio displays the following error message:

Cannot implicitly convert type ‘long’ to ‘int’. An explicit conversion exists (are you missing a cast?)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

74 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

LOSS OF PRECISION

Some widening conversions can still result in a loss of precision. For example, a
decimal variable can store more significant digits than a float can. A float can
hold any value that a decimal can but not with the same precision. If you assign a
decimal value to a float variable, you may lose some precision.

For example, consider the following code.

decimal dPrice = 1.2345678901234567890m;
Console.WriteLine(dPrice);

float fPrice = (float)dPrice;
Console.WriteLine(fPrice);

The following text shows the result in the Console window.

1.2345678901234567890
1.234568

Microsoft considers the decimal to float conversion widening because the decimal
value will fit in a float, just possibly with some loss of precision. A C# program can-
not perform that conversion implicitly, however.

If you need to perform a narrowing conversion, then you must use one of the explicit conversion
methods described in the following sections. The most common of those methods, and the one
suggested by the error message, is casting.

For a table listing C#’s implicit numeric conversions, see http://msdn.microsoft.com/library/
y5b434w4.aspx.

For a table listing C#’s explicit numeric conversions, see http://msdn.microsoft.com/library/
aa288039.aspx.

Casting
A cast operator explicitly tells a program to convert a value from one type to another type. To cast
a value into a type, place the type surrounded by parentheses in front of the value. For example, the
following code casts a long value into an int variable. The bold text shows the cast operator.

long theLong = 100;
int theInt = (int)theLong;

The following sections provide more detail about casting numbers and casting objects.

casting numbers
If the long value fits in the int variable, then this cast succeeds. If the value does not fit, then the
cast fails. By default, C# does not warn you that the cast failed. Instead the converted value causes
an overflow or underflow and leaves garbage in the int variable.

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/y5b434w4.aspx
http://msdn.microsoft.com/library/aa288039.aspx
http://msdn.microsoft.com/library/y5b434w4.aspx
http://msdn.microsoft.com/library/aa288039.aspx

Data Type conversion ❘ 75

You can protect the code by enclosing it in a checked block. If an integer cast overflows or under-
flows while inside a checked block, the program throws a System.OverflowException. (A program
throws different kinds of exception objects to signal runtime errors. Chapter 9, “Error Handling,”
has more to say about exceptions and how to handle them.) The following code shows the preceding
example rewritten to use a checked block.

checked
{
 theLong = 3000000000;
 theInt = (int)theLong;
}

Now the program can catch the exception as described in Chapter 9.

Unfortunately a checked block does not throw an exception if the program tries to convert a double
value into a float and the value won’t fit. For example, the following code tries to squeeze the value
–1e200 into a variable of type float.

float theFloat;
double theDouble = -1e200;

theFloat = (float)theDouble;

The value –1e200 is too small to fit in a float so this cast fails. The program doesn’t throw an
exception, and a checked block will not detect this error.

If the value is too large or small, the program sets the variable’s value to positive or negative
infinity. The float class provides the methods IsPositiveInfinity, IsNegativeInfinity, and
IsInfinity to determine whether a variable is holding one of these special values. The following
code shows the preceding example rewritten to deal with values that are too big or too small to
fit in a float.

float theFloat;
double theDouble = -1e200;

theFloat = (float)theDouble;
if (float.IsInfinity(theFloat)) ... Do something about it ...

CAStING A FLOAt tO AN INtEGER

If you cast a floating point value into an integer type, the value is truncated. For
example, the expression (int)99.9 gives the value 99.

If you want to round the value to the nearest integer instead of truncating it, use
the System.Convert class’s ToInt32 method (which is described in the section
“Using System.Convert” later in this chapter) or the Math.Round method instead.

www.EBooksWorld.ir

www.hellodigi.ir

76 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

casting objects
Converting an object to an ancestor class is a widening conversion. For example, suppose the
Student class inherits from the Person class. In that case, all Students are Persons so convert-
ing a Student into a Person is a widening conversion. That means the following implicit con-
version works.

Student student = new Student();
Person person;

person = student;

A variable of an ancestor class can hold objects of a derived class. For example, a Person variable
can hold a Student object because a Student is a type of Person. However, not all Person objects
are Students. That means casting a Person to a Student is a narrowing conversion and may or
may not succeed depending on whether the Person actually is a Student or something else such as
a Teacher or Janitor.

The following code demonstrates two narrowing object conversions.

Person personA = new Student();
Person personB = new Janitor();
Student student;

student = (Student)personA;
student = (Student)personB;

The first conversion casts personA into a Student. Variable personA happens to hold a Person
object, so this works.

The second conversion casts personB into a Student. Variable personB happens to hold a Janitor.
A Janitor is not a kind of Student so this fails at run time with a System.InvalidCastException.

One way to determine whether a cast from one object type to another is valid is to try it and catch
the InvalidCastException if it occurs. Another method is to use the is operator. The is operator
determines whether an object is compatible with a given type.

For example, suppose the variable person holds a reference to an object that might be a Student
or a Janitor. The following code tests whether that object can be cast into a Student before per-
forming the conversion.

if (personB is Student)
{
 student = (Student)personB;

 // Do something with the Student...
}

using the as Operator
The as operator provides a shorthand for converting objects from one type to another. The following
code converts the value in variable person into a Student and saves it in variable student.

student = person as Student;

www.EBooksWorld.ir

www.hellodigi.ir

Data Type conversion ❘ 77

This is similar to a cast if the variable person holds a value that can be converted into a Student. If
the value cannot be converted into a Student (for example, if it is a Janitor), then the as operator
returns the special value null. That leaves the variable student referring to no object.

Casting Arrays
Casting lets you convert values between primitive and object types. It also lets you cast arrays
of objects.

For example, in some sense an array of Student objects is also an array of Person objects because a
Student is a type of Person. That means a C# program can implicitly convert an array of Student into
an array of Person, and it can explicitly convert an array of Person into an array of Student. The fol-
lowing code demonstrates those implicit and explicit conversions.

// Make an array of Students.
Student[] students = new Student[10];

// Implicit cast to an array of Persons.
// (A Student is a type of Person.)
Person[] persons = students;

// Explicit cast back to an array of Students.
students = (Student[])persons;

Parsing
Each of the fundamental data types (except for string) has a Parse method that tries to convert a
string into that type. For example, the following code saves the value 112358 in a string variable.
It then uses the int class’s Parse method to convert that string into an int.

string text = "112358";
int value = int.Parse(text);

Some of these parsing methods can take additional parameters to control the conversion. For
example, the numeric methods can take a parameter that gives the international number style
the string should have.

If the string passed to the Parse method doesn’t make sense, the method throws an exception. A pro-
gram can catch the exception as described in Chapter 9. Alternatively, the code can use a correspond-
ing TryParse method. Each class’s TryParse method attempts to parse a string much as Parse does.
Unlike Parse, TryParse returns the parsed value through an output parameter, and the method’s
return value is true if parsing was successful and false otherwise. The following code shows how a
program might use TryParse.

string text = "112358";
int value;
if (int.TryParse(text, out value))
{
 // Do something with value ...
}

www.EBooksWorld.ir

www.hellodigi.ir

78 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

tIP Many programs use the Parse and TryParse methods to convert values
entered by the user into numbers. For example, if priceTextBox is a TextBox
where the user enters a price, the following code reads the value, parses it, and
saves the result in the variable price.

decimal price;
if (!decimal.TryParse(priceTextBox.Text, out price))
{
 MessageBox.Show("Error parsing price value " +
 priceTextBox.Text);
 return;
}

// Do something with price...

This code declares the variable price. It then uses TryParse to attempt to parse
the text in the TextBox’s Text property. If the parsing fails (TryParse returns
false), the code displays an error message and returns from the method.

If the parsing succeeds, the code continues to do whatever is appropriate
with price.

using System.Convert
The Convert class has a variety of methods that convert values from one data type to another. For
example, the following code uses the ToInt64 method to convert the string “61” into a 64-bit integer.

long value = Convert.ToInt64("61");

These methods are easy to understand so they make the code simple to read. Unfortunately, they work
with particular data type sizes such as 32- or 64-bit integers rather than with the system’s default inte-
ger size, so they may require you to change your code in the future. If a later version of C# assumes
that long means 128-bit integer, you may need to update your calls to Convert.ToInt64.

using System.bitConverter
The System.BitConverter defines methods that convert values to and from arrays of bytes.

The GetBytes method returns an array of bytes representing a value. Methods such as ToInt32 and
ToDouble convert values stored in byte arrays back into specific data types.

Often these methods are used to convert values returned by API functions into more usable types.
For example, an API function might return two 16-bit integer values packed into the halves of a
single 32-bit value. You could use these methods to convert the 32-bit value into an array of 4 bytes
and then convert the two pairs of bytes into 16-bit values.

The BitConverter class’s methods are quite specialized, so they are not described further here.
For more information, see “BitConverter Class” at msdn.microsoft.com/library/system
.bitconverter.aspx.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

scope ❘ 79

toString
The ToString method is so useful it deserves special mention. Every object has a ToString method
that returns a string representation of the object. For example, the following code converts the decimal
value totalCost into a string and saves the result in the variable totalString.

string totalString = totalCost.ToString();

The value returned by ToString depends on the object. Simple objects such as the primitive data
types (byte, int, long, decimal, string, and so on) return their values. More complicated objects
often return their class names rather than their values. (You can override a class’s ToString method
to make it return something more useful if that makes sense. For example, you could make the
Person class’s ToString method return the person’s first and last names.)

The ToString method can take as a parameter a format string to change the way the method formats
its result. For example, the following code displays the value of the decimal variable cost with two
digits after the decimal point.

MessageBox.Show(cost.ToString("0.00"));

Appendix P, “Date and Time Format Specifiers,” and Appendix Q, “Other Format Specifiers,”
describe format specifiers in greater detail.

SCOPE

A variable’s scope determines which other pieces of code can access it. For example, if you declare a
variable inside a method, only code within that method can access the variable. The three possible
levels of scope are (in increasing size of scope) block, method, and class.

block Scope
A block is a series of statements enclosed in braces. If you declare a variable within a block of
code, the variable has block scope, and only other code within that block can access the variable.
Furthermore, only code that appears after the variable’s declaration can see the variable.

Variables declared in the block’s opening statement are also part of the block. Note that a variable
is visible within any subblock contained within the variable’s scope.

For example, consider the following code snippet.

for (int i = 1; i <= 5; i++)
{
 int j = 3;
 if (i == j)
 {
 int sum = i + j;
 Console.WriteLine("Sum: " + sum);
 }
 else
 {

www.EBooksWorld.ir

www.hellodigi.ir

80 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

 int product = i * j;
 Console.WriteLine("Product: " + product);
 }

 int k = 123;
 Console.WriteLine("k: " + k);
}

This code uses a for loop with the looping variable i declared in the for statement. The scope of
variable i is the block defined by the for loop. Code inside the loop can see variable i, but code out-
side of the loop cannot.

Inside the loop, the code declares variable j. This variable’s scope is also the for loop’s block.

If i equals j, the program declares variable sum and uses it. This variable’s scope includes only the
two lines between the if and else statements.

If i doesn’t equal j, the code declares variable product. This variable’s scope includes only the two
lines between the else statement and the closing brace.

The program then declares variable k. This variable also has block scope, but it is available only
after it is declared, so the code could not have accessed it earlier in the for loop.

Other code constructs that define blocks include the following:

➤➤ switch statements—All the case statements exist within the block defined by the switch
statement.

➤➤ try catch finally statements—The try section, catch sections, and finally section all
define separate blocks. Note also that the exception variable used by each catch statement is
in the block defined by its catch statement. (That means they can all have the same name.)

➤➤ while loops—Variables declared inside the loop are local to the loop.

➤➤ using statements (not using directives)—Resources acquired by the block and variables
declared inside the block are local to the block.

Because block scope is the most restrictive, you should use it whenever possible to reduce the
chances for confusion. The section “Restricting Scope” later in this chapter talks more about
restricting variable scope.

Method Scope
If you declare a variable inside a method but not within a block, the variable is visible to any code
inside the procedure that follows the declaration. The variable is not visible outside of the method.
In a sense, the variable has block scope where the block is the method.

A method’s parameters also have method scope. For example, in the following code, the scope of the
order and item parameters is the AddOrderItem method.

public void AddOrderItem(Order order, OrderItem item)
{
 order.OrderItems.Add(item);
}

www.EBooksWorld.ir

www.hellodigi.ir

scope ❘ 81

Class Scope
A variable with class (or structure) scope is available to all code in its class (or structure) even if the
code appears before the variable’s declaration. For example, the following code works even though
the DisplayLoanAmount method is declared before the LoanAmount variable that it displays.

public class Lender
{
 public void DisplayLoanAmount()
 {
 MessageBox.Show(LoanAmount.ToString());
 }

 private decimal LoanAmount;
 ...
}

Depending on its accessibility keyword, the variable may be visible outside of the class. For example,
if you declare the variable with the public keyword, it is visible to all code outside of the class. See
the section “Accessibility” earlier in this chapter for more information.

Restricting Scope
There are several reasons why you should give variables the most restrictive scope possible that still
lets them do their jobs.

Limited scope keeps the variable localized, so programmers cannot use the variable incorrectly in far
off code that is unrelated to the variable’s main purpose.

Having fewer variables with wide scope (such as public) means programmers have less to remember
when they work on the code. They can concentrate on their current work, rather than worry about
what an object’s p and q fields mean.

Limiting scope keeps variables closer to their declarations, so it’s easier for programmers to check
the declaration. One of the best examples of this situation is when a for loop declares its looping
variable right in the for statement. A programmer can easily see that the looping variable is an
integer (for example) without scrolling to the top of the method hunting for its declaration. It is
also easy to see that the variable has block scope, so other variables with the same names can be
used outside of the loop.

Finally, limited scope means a programmer doesn’t need to worry about whether a variable’s old
value will interfere with the current code or whether the final value after the current code exits will
later interfere with some other code This is particularly true for looping variables. If a program
declares variable i at the top of a method and then uses it many times in various loops, you might
need to do a little thinking to be sure the variable’s past values won’t interfere with new loops. If
you declare i separately in each for statement, each loop has its own version of i, so there’s no
way they can interfere with each other.

www.EBooksWorld.ir

www.hellodigi.ir

82 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

PARAMEtER dECLARAtIONS

A parameter declaration for a method defines the names and types of the parameters passed into it.
Parameters always have method scope. C# creates parameter variables when a method begins and
destroys them when the method ends. The method’s code can access the parameters, but code outside
of the method cannot.

For example, the following method takes an integer named id as a parameter. Code within the
method can access id, and code outside of the method cannot.

public void DisplayEmployee(int id)
{
 ...
}

A parameter’s basic scope is straightforward (method scope), but parameters have some special
features that complicate the situation. Although this isn’t exactly a scoping issue, it’s related closely
enough to scope that it’s worth covering here.

There are three ways you can pass values into a method: by value, by reference, and for output.

by Value
By default a parameter’s value is passed into the method by value. That means the method receives
a copy of the parameter’s value. If the method modifies the parameter, it modifies only the copy, so
the value in the calling code remains unchanged.

For example, consider the following code.

private void DoubleTest()
{
 int value = 10;
 DoubleIt(value);
 Console.WriteLine("DoubleTest: " + value.ToString());
}

private void DoubleIt(int number)
{
 number *= 2;
 Console.WriteLine("DoubleIt: " + number.ToString());
}

The DoubleTest method creates variable value and initializes it to 10. It then calls the DoubleIt
method, passing it value as an argument. (In the calling code, a value passed to a method is called
an argument.)

The DoubleIt method receives the value as the parameter number. (When a method receives a value, it
is called a parameter.) Notice that the parameter’s name doesn’t need to be the same as the argument.
Actually, often the argument isn’t a simple variable as it is in this case. The DoubleTest method could
have used an arithmetic statement as an argument as in DoubleIt(value / 3).

The DoubleIt method doubles the value of its parameter and displays the result in the Console
window. Control then returns to the DoubleTest method.

www.EBooksWorld.ir

www.hellodigi.ir

Parameter Declarations ❘ 83

Because the parameter was passed to the DoubleIt method by value, the original variable value in
the DoubleTest method is unchanged.

If you run this code, the following text appears in the Console window.

DoubleIt: 20
DoDouble: 10

by Reference
One alternative to passing a value into a method by value is to pass it by reference. In that case
the method receives a reference to the argument’s value, not a copy of the value. That means if the
method changes the parameter, the argument in the calling code is also changed.

whEN ShOuLd yOu PASS by REFERENCE?

You should pass a parameter by reference whenever you want a method to both use
and update the parameter.

For example, suppose you wrote a method that takes as parameters the X and Y
coordinates where it should print some text on a printout. When it is finished, the
method should update those coordinates to indicate the position where the next
piece of text should be printed so it doesn’t overlap the current piece of text. This
could be at a new position on the same line (a new X value but the same Y value),
or it could be on a new line (new X and Y values).

In this case, you could pass the coordinates into the method by reference so the
method can read their values and update them.

To pass a value by reference, add the keyword ref before the parameter declaration. If a parameter is
declared with the ref keyword, the argument in the calling code must also include the ref keyword
to make it obvious that you are passing the value by reference. That will hopefully prevent you from
being surprised when the calling code modifies the argument’s value. (Actually, you wouldn’t declare
a parameter with the ref keyword unless you intended the method to modify it.)

The following code shows the previous example with the method’s parameter passed by reference. The
ref keywords are shown in bold.

private void DoubleTest()
{
 int value = 10;
 DoubleIt(ref value);
 Console.WriteLine("DoubleTest: " + value.ToString());
}

private void DoubleIt(ref int number)
{
 number *= 2;
 Console.WriteLine("DoubleIt: " + number.ToString());
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

84 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

If you run the code now, the following text appears in the Console window.

DoubleIt: 20
DoDouble: 20

This time the DoubleIt method doubled its parameter, and the change was reflected in the value
argument in the calling code.

For Output
The final way you can pass a value into a method uses the out keyword. This keyword means the
parameter is intended to be an output parameter. The argument is passed into the method by reference
so the method can set its value. The method does not assume the value has been initialized before it is
passed into the method, and the method assigns a value to the parameter before it returns.

whEN ShOuLd yOu PASS FOR OutPut?

You should pass parameters for output whenever you want a method to initialize a
parameter but the method doesn’t need to use the parameter’s initial value.

For example, suppose a method fetches data about a particular model of car and
uses output parameters to return information about the model such list price, miles
per gallon, horsepower, and number of cup holders. In that case, the method initial-
izes those values before it returns but doesn’t use any values that those parameters
might have on input, so the parameters should be declared for output.

If you have the choice between declaring a parameter by reference or for output,
declare it for output because that is more restrictive and may help you catch bugs.
When you declare a parameter for output, Visual Studio does not require the calling
code to initialize the parameter passed into the method. It also flags any code that
uses the parameter’s input value as an error because marking the parameter for out-
put indicates that its input value is not needed.

As is the case for the ref keyword, if you add the out keyword to a parameter declaration, you must
also include it with the argument. The following code shows the previous example modified to use
the out keyword.

private void DoubleTest()
{
 int value;
 DoubleIt(out value);
 Console.WriteLine("DoubleTest: " + value.ToString());
}

private void DoubleIt(out int number)
{
 number = 50;
 Console.WriteLine("DoubleIt: " + number.ToString());
}

www.EBooksWorld.ir

www.hellodigi.ir

Parameter Declarations ❘ 85

Because the DoubleIt method doesn’t require that its parameter be initialized, the DoubleTest
method does not initialize its value variable. The DoubleIt method sets the parameter’s value and
displays it. Because the parameter is declared out, the value returns to the calling code, so in the
DoubleTest method value becomes 50.

The following text shows the result.

DoubleIt: 50
DoubleTest: 50

unusual Circumstances and Exceptions
Even if you know how to pass arguments by value, by reference, and for output, there are situations
that can be confusing. Recall that some variables are value types and others are reference types.
When you pass a value type variable by value, the method receives a copy of the value and all is as
you would expect.

If you pass a reference variable by value, the method receives a copy of the reference, not a copy of
the reference’s data. That means the method cannot change the reference (because it was passed by
value) but it can change the data associated with the reference.

For example, consider the following method.

private void SetCity(Person person)
{
 person.City = "Bugsville";
 person.Zip = 12345;
}

This method takes a Person parameter passed by value, changes the object’s City and Zip values,
and ends.

If Person is a class, it is a reference type so the method receives a copy of the reference. That means
the parameter refers to the same object as the argument in the calling code, so any changes to the
object’s properties are also changes to the original object.

In the calling code, the Person object hasn’t changed but its City and Zip values have.

Now consider the following version of the SetCity method.

private void SetCity(Person person)
{
 person = new Person() { City = "Programmeria", Zip = 54321 };
}

This version sets the person parameter to a new Person object. Because the parameter was passed
by reference, however, the calling code’s Person object isn’t changed. You can make the calling code
receive the new value by declaring the parameter ref or out.

A similar phenomenon occurs when you pass arrays into a method. If the array is passed by value,
the method can change its values, but if it sets the parameter equal to a new array, the change does
not return to the calling code. If the array parameter is declared ref or out, the method can set the
parameter equal to a new array, and the change returns to the calling code.

Chapter 6 has more to say about methods.

www.EBooksWorld.ir

www.hellodigi.ir

86 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

PROPERtIES

In C# a property is similar to a field in a class except it is implemented by accessor methods instead
of as a simple variable. A property’s get and set accessors allow the program to get and set the
property’s value.

The following code shows a simple Name property.

private string _Name;
public string Name
{
 get
 {
 return _Name;
 }
 set
 {
 _Name = value;
 }
}

The code begins by declaring a private string variable _Name. Sometimes this private variable is
called the property’s backing field because it holds the value for the property.

The next statement begins the definition of the public Name property. The get accessor simply returns
the value in the _Name variable.

The set accessor sets the _Name variable equal to the special value parameter. The value parameter
is implicitly declared for the set accessor. It acts like any other parameter except you don’t need to
define it.

A program could use these methods exactly as if there were a public field. For example, if this code
is in the Employee class, the following code shows how a program could set and then get the Name
property for an Employee object named emp.

emp.Name = "Rod Stephens";
Console.WriteLine(emp.Name);

You might want to use properties instead of public fields for several reasons. First, the accessors
give you extra control over how the program stores and retrieves the property’s value. For example,
the set accessor could use code to validate the value before saving it in the backing field. The code
could verify that a postal code or phone number has the proper format and throw an exception if
the value is badly formatted.

You can also set breakpoints in property methods. Suppose your program is crashing because a
piece of code is setting a value incorrectly. The crash doesn’t occur right away, so the value may have
been set long before the crash. If you implement the value with a property, you can set a breakpoint
in the set accessor and stop whenever the program sets the value.

www.EBooksWorld.ir

www.hellodigi.ir

Properties ❘ 87

Properties also enable you to set and get values in formats other than those you want to actually use
to store the value. For example, the following code defines a Name property that saves a full name in
first and last name variables.

private string _FirstName, _LastName;
public string Name
{
 get
 {
 return _FirstName + " " + _LastName;
 }
 set
 {
 _FirstName = value.Split(' ')[0];
 _LastName = value.Split(' ')[1];
 }
}

Here the get accessor returns the concatenation of the _FirstName and _LastName fields. The set
accessor uses the string class’s Split method to split the new value into two pieces delimited by a
space character. It saves the first part of the value in _FirstName and the second part in _LastName.

Finally, you can use properties to create read-only and write-only values. The following code shows
how to make a read-only NumEmployees property method and a write-only NumCustomers property
method. (Write-only property methods are unusual but legal.)

private int _NumEmployees;
public int NumEmployees
{
 get
 {
 return _NumEmployees;
 }
}

private int _NumCustomers;
public int NumCustomers
{
 set
 {
 _NumCustomers = value;
 }
}

To make a property read-only or write-only, the code simply omits the accessor that it doesn’t need.
The properties’ backing fields are still visible to code inside the class so that code can get and set the
values as needed.

NOtE A property must define at least one of the get and set accessors.
Otherwise it’s not much use.

www.EBooksWorld.ir

www.hellodigi.ir

88 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

A backing field isn’t the only way you can store a property’s value. For example, you could store the
value in a database, text file, or configuration setting. Still, backing fields are quite popular. They’re
so popular that C# provides auto-implemented properties that use backing fields behind the scenes.

To create an auto-implemented property, simply omit the body of the accessors as in the following
example.

public string Name { get; set; }

NOtE Auto-implemented properties must include both get and set accessors.

The advantage of auto-implemented properties is that you don’t need to write as much code. The
disadvantage is that you can’t set breakpoints in the accessors.

ENuMERAtIONS

An enumeration (also called an enumerated type or simply an enum) is a discrete list of specific values
called enumerators. You define the enumeration and the values allowed. Later, you can declare a vari-
able of the enumeration’s type so it can take only those values.

For example, suppose that you build a large application where users can have one of three access
levels: clerk, supervisor, and administrator. You could define an enumeration named AccessLevels
that contains the enumerators Clerk, Supervisor, and Administrator. Now, if you declare a vari-
able to be of type AccessLevels, C# allows the variable to take only those values.

The following code shows a simple example.

// Define the access level values.
public enum AccessLevels
{
 Clerk,
 Supervisor,
 Administrator,
}

// The user's access level.
private AccessLevels Level;

// Set supervisor access level.
public void MakeSupervisor()
{
 Level = AccessLevels.Supervisor;
}

This code defines the AccessLevels type and declares the variable Level of the type. Later the
MakeSupervisor method sets Level to the value AccessLevels.Supervisor. (Note that the value
is prefixed with the enumerated type’s name.)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

enumerations ❘ 89

The syntax for declaring an enumerated type is as follows:

«attributes0» «accessibility» name
 «: type»
{
 «attributes1» name1 «= value1»,
 «attributes2» name2 «= value2»,
 ...
}

The pieces of this declaration are

➤➤ attributes0—Attributes that specify extra properties for the enumeration. See the section
“Attributes” earlier in this chapter for more information.

➤➤ accessibility—This determines which code can access the variable. See the section
“Accessibility” earlier in this chapter for more information.

➤➤ name—The name you want to give the enumeration.

➤➤ : type—All enumerations are stored internally as integer values. By default, an enumera-
tion’s type is int. You can use this part of the declaration to change the underlying type to
byte, sbyte, short, ushort, int, uint, long, or ulong. (Any integer type except char.)

➤➤ attributes1, attributes2—Attributes that specify extra properties for the enumerators.

➤➤ name1, name2—The names of the enumerators.

➤➤ value1, value2—The integer value that should be used to store this enumerator. By default,
the first enumerator is represented by 0 and the values of subsequent enumerators are
increased by 1.

The following code provides a more complicated example.

public enum Meal : sbyte
{
 Breakfast = 1,
 Lunch = Breakfast * 10,
 Dinner = 100,
 Supper = Dinner,
}

This code defines an enumeration named Meal that stores its enumerators with the sbyte data type.
The enumerator Breakfast is represented by the value 1, Lunch is represented by 10 times the value
of Breakfast, and Dinner is represented by the value 100.

The enumerator Supper is defined to be the same as the enumerator Dinner. Both are stored as the
value 100 internally, so the program cannot distinguish between the two values.

Usually, all that’s important about an enumeration is that its values are distinct, so you don’t need to
change the underlying data type or initialize the values.

Normally, a program should set a variable’s value to one of the allowed enumerators as in the state-
ment Level = AccessLevels.Supervisor. If for some reason you need to set the value to a calculated

www.EBooksWorld.ir

www.hellodigi.ir

90 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

result, you can cast the result into the enumeration’s type. For example, the following code sets the Meal
variable food to the value 1 cast into a Meal.

Meal food = (Meal)1;

INVALId ENuMERAtORS

If you cast a value to an invalid enumerator value, the invalid value is stored. For
example, using the previous Meal enumeration, the following sets the variable meal
to the invalid value 3.

Meal meal = (Meal)3;

The program happily stores this value and may lead to problems later when you try
to use the value. This kind of bug can be hard to track down because the code that
causes it by saving the invalid value may be far from the code that tries to use the
invalid value.

To avoid this kind of bug, don’t cast values into an enumeration type unless you
absolutely must.

You can declare an enumeration inside a class or namespace.

If you define an enumeration inside a namespace, code within the namespace can refer to it by its
name. If the enumeration’s accessibility level permits, code outside the namespace can refer to it by
giving the namespace and the enumeration. For example, suppose the Meal enumeration is defined
in the FoodStuff namespace. Then a piece of code in some other namespace could use the enumera-
tion as in the following code.

FoodStuff.Meal meal = FoodStuff.Meal.Breakfast;

tIP If a using directive refers to the namespace containing the enumeration,
you don’t need to include the namespace when you refer to the enumeration.

If you define an enumeration inside a class and its accessibility permits, code outside of the class can
refer to the enumeration by including the class name. If the code is in another namespace, it should
add that, too.

For example, suppose the FoodStuff namespace contains the Oven class, which defines the Meal enu-
meration. The following code shows how a method inside the Oven class could use the enumeration.

Meal meal = Meal.Breakfast;

The following code shows how a method outside of the Oven class but inside the FoodStuff
namespace could use the enumeration.

Oven.Meal meal = Oven.Meal.Breakfast;

www.EBooksWorld.ir

www.hellodigi.ir

enumerations ❘ 91

The following code shows how a method in another namespace could use the enumeration.

FoodStuff.Oven.Meal meal = FoodStuff.Oven.Meal.Breakfast;

Enumerations have several advantages. First, they encourage you to use meaningful values instead
of “magic numbers” in your code. Instead of using the potentially confusing value 1, you can use
the value Breakfast.

Second, enumerations allow Visual Studio to provide IntelliSense help. If you type Meal meal =
IntelliSense provides the choice Meal. If you select it and type a period, IntelliSense displays the
possible enumerators.

A final benefit of enumerations is that they provide a ToString method that returns the textual
name of the value. For example, the following code displays the message “Breakfast.”

Meal meal = Meal.Breakfast;
Console.WriteLine(meal.ToString());

(Actually the Console.WriteLine method calls the ToString method for any object that it is
passed, so you could write the second statement as Console.WriteLine(meal).)

If you have a variable that can take only a fixed number of values, you should probably make it
an enumerated type. Also, if you discover that you have defined a series of constants to represent
related values, you should consider converting them into an enumerated type. Then you can gain
the benefits of the improved type checking and IntelliSense.

FLAGS

If you decorate an enumeration with the Flags attribute, the enumeration represents
a combination of values. The code can use the bitwise operators to combine values.

To make the enumeration work properly, you should explicitly give the enumerators
values that are powers of 2 so that they can be combined in any arrangement.

For example, the following code defines a Direction enumeration to let the program
specify any combination of Up, Down, Left, and Right. The code also creates a value
None to represent no value and a value All to represent every value.

[Flags] enum Direction
{
 None = 0,
 Up = 1,
 Down = 2,
 Left = 4,
 Right = 8,
 All = Up | Down | Left | Right,
}

continues

www.EBooksWorld.ir

www.hellodigi.ir

92 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

The following code creates a variable to represent moving in the upper-right
direction.

Direction direction = Direction.Up | Direction.Right;Normally, you use
| (bitwise “or”) to combine values but you can also use & (bitwise “and”) and ~ (bit-
wise “not”). The following code sets the variable direction to all the Direction
values except Right.

Direction direction = Direction.All & ~Direction.Right

This expression on the right side of the equal sign sets direction to the value All.
The expression ~Direction.Right creates a value that has bits set where those in the
value Direction.Right are clear and vice versa. The & operator makes direction’s
final value have bits set where they are set in Direction.All and also in ~Direction
.Right (which are all the bits except the one representing Right). The result
direction has bits set for Up, Down, and Left.

NuLLAbLE tyPES

Most relational databases have a concept of a null data value. A null value indicates that a field does
not contain any data. It lets the database distinguish between valid zero or blank values and non-
existing values. For example, a null bank balance would indicate that there is no known balance,
whereas a 0 would indicate that the balance was 0.

You can create a nullable variable in C# by adding a question mark after the variable’s data type.
The following code declares a nullable int variable.

int? count;

bEhINd NuLLAbLE

Behind the scenes, a nullable type is implemented by the generic Nullable struc-
ture. For example, the type int? is actually implemented as Nullable<int>. You
can even declare variables to have the type Nullable<int> if you like; although,
the ? syntax is easier to write and read.

To make a nullable variable “null,” set it equal to null. To give a variable a non-null value, simply
set it equal to the value. The following code sets variable count to null and then 1337.

int? count;
count = null;
count = 1337;

continued

www.EBooksWorld.ir

www.hellodigi.ir

Delegates ❘ 93

To determine whether a nullable variable contains a value, either use its HasValue property or simply
compare it to null. The following code determines whether the variable count holds a value in a
couple different ways.

if (count.HasValue) Console.WriteLine("count = " + count);
else Console.WriteLine("count = null");
if (count != null) Console.WriteLine("count = " + count);
if (count == null) Console.WriteLine("count = null");

The first line of code uses the variable’s HasValue property. If count has a value, the code displays it.

The else statement on the next line displays “count = null” if the variable has no value.

The next two lines use != and == to compare the variable to the value null.

The syntax used by nullable variables makes them remarkably easy to use and understand. There’s
only one slightly complex issue: null propagation. When you perform a calculation with a nullable
variable that holds no value, its “nullness” propagates into the result. For example, if a nullable integer
contains no value, it probably doesn’t make sense to add another number to it. (What is null + 11?)

If any of the operands in an expression contains a null value, the result is a null value. Any time
you need to use a nullable value, you should first check to see whether it is null or a usable value.

dELEGAtES

A delegate is a special data type that refers to a method. The method can be an instance method
provided by an object or a static method defined by a class. Like other types such as classes and
enumerations, delegates can be defined in namespaces and classes but not inside methods.

A delegate variable acts as a pointer to a method. Delegate variables are sometimes called type-safe
function pointers.

The delegate keyword defines a delegate type and specifies the parameters and return type of the
method to which the delegate refers.

After you have defined a delegate type, you can declare variables that are of that type. You can set
those variables equal to methods that match the delegate’s parameters and return value.

For example, the following code defines a delegate type named ShowMessageType. This delegate
represents methods that take a single string as a parameter and that don’t return any result.

private delegate void ShowMessageType(string msg);

The following defines a ShowInConsoleWindow method, which simply displays a message in the
Console window.

// Display a message in the Console window.
private void ShowInConsoleWindow(string message)
{
 Console.WriteLine(message);
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

94 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

The ShowInConsoleWindow method takes a single string parameter and returns no result, so it
matches the ShowMessageType delegate.

The following code creates a delegate variable and makes it refer to the ShowInConsoleWindow
method.

// Create a delegate variable holding a
// reference to the ShowInConsoleWindow method.
ShowMessageType say = ShowInConsoleWindow;

Now that the delegate variable refers to a method, the code can invoke that method by using the vari-
able. The following code shows how a program can invoke the method referred to by the say variable.

// Invoke the method.
say("Hello");

dELEGAtES thE EASy wAy

The .NET Framework defines two families of delegates that you can use instead of
writing your own delegate types in many cases. These two kinds of delegates are
named Action and Func.

An Action delegate represents a method that takes between 0 and 16 parameters
and returns no value. These are generic delegates, so you need to specify the data
types of the method’s parameters.

Generics are described in detail in Chapter 15. For now an example should make
this clear. The following code creates a delegate variable that represents a method
that takes a string as a parameter and returns no result.

Action<string> say = ShowInConsoleWindow;

The generic parameter <string> indicates the delegate takes a string as a
parameter.

The predefined Func delegates represent methods that take 0 to 16 parameters and
return a value. The delegate’s initial generic types indicate the types of the method’s
parameters. The final generic type gives the method’s return type.

The following code declares a delegate variable that takes as parameters two
floats and returns a double.

Func<float, float, double> mapping;

Delegate variables are similar to any other kind of variable and the same rules apply to them. You
can change their values, pass them as arguments into methods, and use them as members of classes
and structures. (Chapter 12 says more about creating classes and structures.)

www.EBooksWorld.ir

www.hellodigi.ir

summary ❘ 95

For a more interesting example, consider the following ProcessApplicant method.

// Process a job applicant.
private void ProcessApplicant(Person applicant, ShowMessageType status)
{
 status("Processing applicant " + applicant.Name);

 // Process the applicant ...

 status("Done processing applicant " + applicant.Name);
}

This method takes as parameters a Person object to process and a method of type ShowMessageType.
It starts by calling the method to display status information saying it is starting to process the appli-
cant. The method then does whatever it needs to do to process the applicant. It finishes by calling the
status method again to say it is done processing the applicant.

Depending on what you want to do with the status information, you can pass different status
methods to ProcessApplicant. For example, the following code passes ProcessApplicant
the method ShowInConsoleWindow to make the status messages appear in the Console window.

ProcessApplicant(person, ShowInConsoleWindow);

The following code uses the ShowInMessageBox method to make the status messages appear in
message boxes.

ProcessApplicant(person, ShowInMessageBox);

You could define other methods to write status messages into a log file, save messages in a database,
e-mail messages to someone, or ignore the messages completely. The main program can pass any of
these methods into the ProcessApplicant method to make it handle the messages differently.

SuMMARy

Two of the most important things you control with a variable declaration are its data type and its
visibility. Visibility combines scope (the piece of code that contains the variable such as a for loop,
method, or class), accessibility (the code that is allowed to access the variable determined by keywords
such as private, public, and protected), and lifetime (when the variable has been created and not
yet destroyed).

To avoid confusion, explicitly declare the data type whenever possible and use the most limited
scope possible for the variable’s purpose.

Code that uses LINQ (described in Chapter 8) complicates matters somewhat. The results of LINQ
expressions often have weird data types, and it can be extremely difficult to use those exact types. In
that case you can use the var data type to let the program determine the true data type at runtime.

Now that you know how to declare variables, you can learn how to combine them. Chapter 5,
“Operators,” explains the symbols (such as +, *, and %) that you can use to combine variables to
produce new results.

www.EBooksWorld.ir

www.hellodigi.ir

96 ❘ ChAPtER 4 daTa TyPes, variables, and ConsTanTs

ExERCISES

 1. Suppose the variable student has type Student, the variable person has type Person, and
the Student class inherits from the Person class. Use an if statement and the is operator
to write code that is equivalent to the following statement but without the as operator.

student = person as Student;

 2. Write a statement that declares an int array named fibonacci that holds values 1, 1, 2, 3,
5, 8, 13, 21, 34, 55, and 89.

 3. Write a statement that declares an 8 × 8 array named board that holds instances of the
Person class where each entry is initially null.

 4. Repeat Exercise 2 using an array of arrays.

 5. Create a Person class with text fields FirstName, LastName, Street, City, and State. Also
give the class a numeric Zip field that is just big enough to hold five-digit ZIP codes. Define
the fields so all code can see them.

 6. Write a statement that declares a 2 × 2 array containing objects of the Person class you
created for Exercise 5. Initialize them to hold the names Ann Archer, Ben Baker, Cindy
Cant, and Dan Deevers.

 7. Write a statement that declares and initializes a three-dimensional 2 × 2 × 3 array of
strings where each entry gives its position in the array. For example, values[0, 1, 1]
should hold the value “011.”

 8. Write a method that takes a ref parameter. What happens if you try to pass in an argument
that has not been initialized in the calling code?

 9. Modify the method you wrote for Exercise 8 so that it uses an out parameter instead of a
ref parameter. What happens if the calling code does not initialize the argument before
passing it into the method? What if it does initialize the argument?

 10. What happens if you modify the method you wrote for Exercise 8 so that it doubles its
parameter when it starts?

 11. What happens if you modify the method you wrote for Exercise 8 so that it does nothing
with its parameter?

 12. What happens if you try to pass an expression such as 12 * 3 into a method that takes an
int parameter by reference?

 13. Make an Oven class that has TempFahrenheit and TempCelsius properties to get and set
the temperature in degrees Fahrenheit and Celsius, respectively. Store the temperature in
a single private variable. (You decide whether to store the temperature in Fahrenheit or
Celsius.) Use the following equations to convert from one to the other.

F = C × 9⁄5 + 32

C = (F - 32) × 5⁄9

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 97

 14. Make two methods Combine1 and Combine2 that both take two ints as parameters and
return a string. The first should return the values concatenated as in “(12, 34).” The sec-
ond should return them concatenated as in “R12C34.”

Next declare a delegate variable named combiner to hold a reference to these methods. Use
combiner to test the methods as in the following code.

combiner = Combine1;
Console.WriteLine(combiner(1, 2));
combiner = Combine2;
Console.WriteLine(combiner(1, 2));

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

operators
whAt’S IN thIS ChAPtER

➤➤ Arithmetic, concatenation, comparison, logical, and bitwise
operators

➤➤ Operator precedence

➤➤ DateTime and TimeSpan operators

➤➤ Operator overloading

➤➤ Type conversion operators

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

An operator is a basic code element that performs some operation on one or more values to create
a result. The values the operator acts upon are operands. For example, in the following statement,
the operator is + (addition), the operands are B and C, and the result is assigned to the variable A.

A = B + C

C# operators fall into five categories: arithmetic, concatenation, comparison, logical, and bitwise.
This chapter first explains these categories and the operators they contain; it then discusses other
operator issues such as precedence, assignment operators, and operator overloading.

5

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

100 ❘ ChAPtER 5 oPeraTors

ARIthMEtIC OPERAtORS

The following table lists the arithmetic operators provided by C#. Most of these should be familiar
to you.

OPERAtOR PuRPOSE ExAMPLE RESuLt

++ Increment x++ or ++x Sets x = x + 1

-- Decrement x-- or --x Sets x = x - 1

– Negation -x Sets x = -x

+ Unary plus +x Sets x = +x (leaves x unchanged)

* Multiplication 2 * 3 6

/ Division 3.0 / 2 1.5

% Modulus 17 mod 5 2

+ Addition 2 + 3 5

- Subtraction 3 - 2 1

<< Bit left shift 10110111 << 1 01101110

>> Bit right shift 10110111 >> 1 01011011

The % operator returns the remainder after dividing its first operand by its second. For example,
17 % 5 = 2 because 17 = 3 × 5 with a remainder of 2.

Result data type
An operator’s result data type depends on the operands’ data types. If an expression combines values
with different data types, those with narrower types (smaller ranges) are automatically promoted to
the type with the wider type (greater range). For example, consider the following expression.

var x = 1.2 + 3;

The operands 1.2 and 3 are a double and an int, respectively. Because the result may not fit in an int,
the value 3 is promoted to a double. The calculation is then performed and the final result is a double.

The / operator performs both integer and floating point division. If the operands are both integers, the
/ operator performs integer division and discards any remainder. If either of the operands has a float-
ing point type, the / operator performs floating point division. The following code shows examples.

float x = 9 / 10; // Result 0.0.
float y = 9f / 10; // Result 0.9.
float z = 9 / 10f; // Result 0.9.

www.EBooksWorld.ir

www.hellodigi.ir

arithmetic operators ❘ 101

The + symbol represents both numeric addition and string concatenation. The following code shows
an example of string concatenation.

string firstname = "Rod";
string lastname = "Stephens";
string name = firstname + ' ' + lastname; // Result "Rod Stephens"

The third line of code in this example uses the + operator to combine the string firstname, a space
character, and the string lastname.

If one of the + operator’s operands is a string, then the result is a string and the other operand is
converted into a string if necessary. For example, the following code concatenates a string, double,
string, and bool.

string message = "Data point " + 37.2 + " is " + false;

The result in this example is the string “Data point 37.2 is False.”

Shift Operators
The << operator shifts the bits of an integer value to the left, padding the empty bits on the right
with zeros. For example, the byte value with bits 10110111 shifted 1 bit to the left gives 01101110.
The leftmost bit doesn’t fit in the byte so it is dropped.

The >> operator shifts the bits of a value to the right, padding the empty bits on the left with zeros.
For example, the byte value with bits 10110111 shifted 1 bit to the right gives 01011011.

Unfortunately, you can’t put binary literals such as 10110111 in your code. Instead, you must write
this value as 0xB7 in hexadecimal or 183 in decimal.

CALCuLAtOR CLEVERNESS

The Calculator application that comes with Windows enables you to easily convert
between binary, octal, hexadecimal, and decimal. In newer versions of the calcu-
lator, open the View menu and select Programmer. If your version doesn’t have
Programmer mode, open the View menu and select Scientific. Now you can click
the Bin, Oct, Dec, or Hex radio buttons to select a base, enter a value in that base,
and then select another base to convert the value into the new base.

Increment and decrement Operators
The statements ++x and x++ both increment the value of the variable x but they have slightly dif-
ferent side effects. These two forms of the increment operator are sometimes called pre-increment
and post-increment operations, respectively. (This discussion also applies to the pre-decrement and
post-decrement operators --x and x--.)

www.EBooksWorld.ir

www.hellodigi.ir

102 ❘ ChAPtER 5 oPeraTors

The pre-increment operator ++x increments x and then returns its new value. The post-increment opera-
tor x++ returns x’s original value and then increments x. The difference is small and in simple calcula-
tions isn’t important. For example, many programs use one or the other of these operators to increment
a variable and nothing more. The following code simply increments the variable numProcessed.

numProcessed++;

These operators are also often used in for loops as in the following code. The post-increment operator
is highlighted in bold.

for (int i = 0; i < 5; i++) Console.WriteLine("i: " + i);

In both these examples, the increment operation takes place on its own, so it doesn’t matter whether
you use the pre-increment or post-increment version. In more complicated calculations, however, the
difference can be important.

For example, suppose a bill-of-sale application has variables priceEach and numItems. The user
clicks a button to add a new item to the sale, and the program uses the following code to update
the total cost.

decimal totalCost = numItems++ * priceEach;

Because this code uses the post-increment operator, the calculation uses the current value numItems
and then increments it afterward. This gives an incorrect result because the calculation uses the old
value for numItems. For example, suppose priceEach is 10 and numItems is 1 when this statement
executes. The code calculates totalCost = 10 * 1 = 10 and then increments numItems to 2.

The following version uses the pre-increment operator.

decimal totalCost = ++numItems * priceEach;

This version increments numItems and then performs the calculation so it gets the correct result.
If priceEach is 10 and numItems is 1 when this statement executes, the code first increments
numItems to 2 and then calculates totalCost = 10 * 2 = 20, which is the correct result.

tIP Often the pre- and post-increment operators are easy enough to understand.
If they make the program confusing, you can rewrite the code to make things
easier to understand. The following code does what the preceding example does,
but it separates the increment operator from the calculation to reduce confusion.

++numItems;
decimal totalCost = numItems * priceEach;

COMPARISON OPERAtORS

Comparison operators compare one value to another and return a boolean value (true or false),
depending on the result. The following table lists the comparison operators provided by C#. The
first six (==, !=, <, <=, >, and >=) are relatively straightforward. Note that the logical negation

www.EBooksWorld.ir

www.hellodigi.ir

Logical operators ❘ 103

operator ! is not a comparison operator, so it is not listed here. It is described in the next section,
“Logical Operators.”

OPERAtOR PuRPOSE ExAMPLE RESuLt

== Equals A == B true if A equals B

!= Not equals A != B true if A does not equal B

< Less than A < B true if A is less than B

<= Less than or equal to A <= B true if A is less than or equal
to B

> Greater than A > B true if A is greater than B

>= Greater than or equal to A >= B true if A is greater than or
equal to B

is Object is or inherits from
a certain type

obj is Manager true if obj is an object that
inherits from Manager

When its operands are reference types, the == and != operators compare the operands, not the val-
ues to which they refer. For example, the following code defines two Person objects and sets them
equal to the same value.

Person person1 = new Person();
Person person2 = person1;

After this code executes, person1 and person2 refer to the same Person object so the == operator
reports them as equal.

The following code creates two different Person objects.

Person person1 = new Person() { FirstName = "Zaphod", LastName = "Beeblebrox" };
Person person2 = new Person() { FirstName = "Zaphod", LastName = "Beeblebrox" };

These are two separate objects even though they happen to have the same FirstName and LastName
values. Even if all the objects’ properties and fields have the same values, these are still two separate
objects so the == operator reports them as different.

LOGICAL OPERAtORS

Logical operators combine two boolean values and return true or false, depending on the result.
The following table summarizes C#’s logical operators.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

104 ❘ ChAPtER 5 oPeraTors

OPERAtOR PuRPOSE ExAMPLE RESuLt

! Negation !A true if A is false

& And A & B true if A and B are both true

| Or A | B true if A or B or both are true

^ Xor (Exclusive Or) A ^ B true if A is true or B is true but both
are not true

&& And with short-circuit
evaluation

A && B true if A and B are both true (see the
following notes)

|| Or with short-circuit
evaluation

A || B true if A or B or both are true
(see notes)

The operators !, &, and | are relatively straightforward.

“Xor” stands for “exclusive or,” and the Xor operator returns true if one but not both of its operands
is true. The expression A ^ B is true if A is true or B is true but both are not true.

Xor is useful for situations in which exactly one of two things should be true. For example, suppose
you run a small software conference with two tracks, so two talks are going on at any given time. Each
attendee should sign up for one talk in each time slot but cannot sign up for both because they’re at the
same time. You might use code similar to the following to check whether an attendee has signed up for
either talk 1a or talk 1b but not both:

if (talk1a ^ talk1b)
{
 // This is okay
 ...
}

The && and || operators are similar to the & and | operators, except that they provide short-circuit
evaluation. In short-circuit evaluation, C# is allowed to stop evaluating operands if it can deduce
the final result without them. For example, consider the expression A && B. If C# evaluates the value
A and discovers that it is false, the program knows that the expression A && B is also false no
matter what value B has, so it doesn’t need to evaluate B.

Similarly for the expression A || B, if A is true, then the entire expression is true no matter what
value B has, so the program doesn’t need to evaluate B.

Whether the program evaluates both operands doesn’t matter much if A and B are simple bool-
ean variables. However, assume that they are time-consuming methods. For example, the
TimeConsumingFunction routine might need to look up values in a database or download data
from a website. In that case, not evaluating the second operand might save a lot of time.

if (TimeConsumingFunction("A") && TimeConsumingFunction("B"))
{
 ...
}

www.EBooksWorld.ir

www.hellodigi.ir

Bitwise operators ❘ 105

Because && and || do the same thing as & and | but are sometimes faster, you might wonder why you
would ever use & and |. The main reason is that the operands may have side effects. A side effect is
some action a method performs that is not obviously part of the method. For example, suppose that
the NumEmployees method opens an employee database and returns the number of employee records,
leaving the database open. The fact that this method leaves the database open is a side effect.

Now, suppose that the NumCustomers function similarly opens the customer database, and then
consider the following statement.

if ((NumEmployees() > 0) && (NumCustomers() > 0))
{
 ...
}

After this code executes, you cannot be certain which databases are open. If NumEmployees returns
0, the && operator’s first operand is false, so it doesn’t evaluate the NumCustomers method, and
that method doesn’t open the customer database.

The && and || operators can improve application performance under some circumstances. However,
to avoid possible confusion and long debugging sessions, do not use && or || with operands that have
side effects.

AVOId SIdE EFFECtS

Side effects in general make the code harder to understand, so you should avoid them
whenever possible. In the preceding example, you could pull the database opening
features of the NumEmployees and NumCustomers methods and put them in separate
methods. The following code is slightly longer than the previous version but avoids
confusing side effects.

OpenEmployeeDatabase();
OpenCustomerDatabase();
if ((NumEmployees() > 0) && (NumCustomers() > 0))
{
 ...
}

bItwISE OPERAtORS

Bitwise operators work much like logical operators do, except they compare integer values one bit at
a time.

Many programs use bitwise operators for a variety of purposes. Some of the most common include:

➤➤ Reading and setting bit fields—Here the bits in a single number have specific meanings. For
example, suppose you want to store a value indicating whether an object should be attached
to the left, right, top, and bottom edges of its container. You could store that information
with four separate boolean values, or you could store it as four bits in a single value.

www.EBooksWorld.ir

www.hellodigi.ir

106 ❘ ChAPtER 5 oPeraTors

➤➤ Working with devices—Many devices such as communications ports use bits to get and set
information about the device.

➤➤ Encryption and compression—These operations often need to work with bits.

➤➤ Graphics—Many graphics algorithms use bits to represent colors and other important val-
ues. For example, different bits in a single number may represent a pixel’s red, green, and
blue color components.

The bitwise negation operator ~ flips the bits in its operand from 1 to 0 and vice versa. The following
shows an example:

 ~10110111
= 01001000

The bitwise And operator & places a 1 in a result bit if both of its operands have a 1 in that position.
The following shows an example:

 10101010
& 00110110
= 00100010

The bitwise Or operator | places a 1 in the result if either of its operands has a 1 in the corresponding
position. The following shows an example:

 10101010
| 00110110
= 10111110

The bitwise Xor operator ^ places a 1 bit in the result if exactly one of its operands, but not both,
has a 1 in the corresponding position. The following shows an example:

 10101010
^ 00110110
= 10011100

There are no bitwise equivalents for the && and || operators.

CONdItIONAL ANd NuLL-COALESCING OPERAtORS

The conditional operator ?:, which is sometimes called the ternary operator, takes three operands.
The first operand is a boolean value. If that value is true, the operator returns its second operand.
If the first operand is false, the operator returns its third operand.

For example, suppose the variable amount holds a dollar value and you want to display it in the Label
control named amountLabel. If amount is negative, you want to display its value in red. If amount is
not negative, you want to display its value in blue. The following code sets the amountLabel control’s
text and color appropriately.

amountLabel.Text = amount.ToString("c");
amountLabel.ForeColor = (amount < 0) ? Color.Red : Color.Blue;

www.EBooksWorld.ir

www.hellodigi.ir

assignment operators ❘ 107

FORMAttING CuRRENCy

If you pass the ToString method the parameter "C" or "c", it uses a currency format
that is appropriate for the computer’s locale. In the United States, it formats positive
values as in $123.45 and negative values as in ($123.45).

One way you might use the conditional operator is to set one variable equal to another variable’s
value or some default value if the second variable’s value is null.

For example, suppose a sales program is trying to place an order. If the order is for an existing cus-
tomer, the variable customer is a Customer object representing the customer. If this is a new customer,
then customer is null. The following code uses the conditional operator to set variable orderedBy to
either the existing customer or a new Customer object.

Customer orderedBy = (customer != null) ? customer : new Customer();

This code essentially sets orderedBy equal to customer or a default value (a new Customer object)
if customer is null. This is a common enough procedure that C# provides a special operator to do
just this.

The null-coalescing operator ?? takes two operands. It returns its left operand if its value is not null.
If the left operand is null, it returns its right operand. The ?? operator’s left operand can be any value
that might be null including a reference variable or a nullable type such as int?.

The following code shows the preceding example rewritten to use the ?? instead of ?:.

Customer orderedBy = customer ?? new Customer();

ASSIGNMENt OPERAtORS

A fairly common operation in C# programs is to set a variable equal to its value after performing
some operation on it. For example, the following code adds 10 to the value x.

x = x + 10;

To make this sort of operation easier, C# provides a set of assignment operators. These consist of
a normal operator followed by =. For example, the following statement shows the preceding code
rewritten to use the += assignment operator.

x += 10;

This operator basically means, “Set x equal to its current value plus 10.”

The complete list of assignment operators is: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=.

www.EBooksWorld.ir

www.hellodigi.ir

108 ❘ ChAPtER 5 oPeraTors

OPERAtOR PRECEdENCE

When C# evaluates a complex expression, it must decide the order in which to evaluate the operators.
For example, consider the expression 1 + 2 * 3 / 4 + 2. The following text shows three orders in
which you might evaluate this expression to get three different results.

1 + (2 * 3) / (4 + 2) = 1 + 6 / 6 = 2
1 + ((2 * 3) / 4) + 2 = 4
((1 + 2) * 3) / (4 + 2) = 1

Precedence determines which operator C# executes first. For example, the C# precedence rules say the
program should evaluate multiplication and division before addition, so the second equation above is
the correct interpretation.

The following table lists the operators in order of precedence. When evaluating an expression, the
program evaluates an operator before it evaluates those lower than it in the list.

OPERAtOR dESCRIPtION

() Grouping (parentheses)

x++

x--

Post-increment

Post-decrement

+

-

!

~

++x

--x

(T)

Unary plus

Numeric negation

Logical negation

Bitwise negation

Pre-increment

Pre-decrement

Casting

*

/

%

Multiplication

Division

Modulus

+

+

-

Concatenation

Addition

Subtraction

<<

>>

Left shift

Right shift

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

operator Precedence ❘ 109

OPERAtOR dESCRIPtION

<

>

<=

>=

is

Less than

Greater than

Less than or equal to

Greater than or equal to

Inherits from

==

!=

Equals

Does not equal

& Logical And

^ Logical Xor

| Logical Or

&& Conditional And

|| Conditional Or

?? Null-coalescing

?: Conditional

=

+=

-=

 . . .

Assignment operators

When operators are in the same section in the table, or if an expression contains more than one
instance of the same operator, the program evaluates them in left-to-right order.

For example, % and * are in the same section in the table, so the expression 17 % 5 * 5 is evaluated
as (17 % 5) * 5 = 10 not as 17 % (5 * 5) = 17.

Parentheses are not actually operators, but they do have a higher precedence than the true operators,
so they’re listed to make the table complete. You can always use parentheses to explicitly dictate the
order in which C# performs an evaluation.

PLENtIFuL PARENthESES

If there’s the slightest doubt about how C# will evaluate an expression, add paren-
theses to make it obvious. Even if you can figure out what an expression means,
parentheses often make the code even easier to read and understand. There’s no extra
charge for using parentheses, and they may avoid some unnecessary confusion.

www.EBooksWorld.ir

www.hellodigi.ir

110 ❘ ChAPtER 5 oPeraTors

thE StRINGbuILdER CLASS

The + operator is useful for concatenating a few strings together, but if you must combine a large
number of strings, you may get better performance by using the StringBuilder class. This class
is optimized for performing long sequences of concatenations to build big strings.

The following code compares the performance of string concatenation and the StringBuilder class.

const int numTrials = 10000;
System.Diagnostics.Stopwatch watch =
 new System.Diagnostics.Stopwatch();

// Test +=.
watch.Start();
for (int i = 0; i < numTrials; i++)
{
 string test = "";
 for (int j = 0; j < 1000; j++) test += "A";
}
watch.Stop();
Console.WriteLine("Using += took " +
 watch.Elapsed.TotalSeconds.ToString("0.00") + " seconds");

// Test StringBuilder.
watch.Reset();
watch.Start();
for (int i = 0; i < numTrials; i++)
{
 StringBuilder builder = new StringBuilder();
 for (int j = 0; j < 1000; j++) builder.Append("A");
 string test = builder.ToString();
}
watch.Stop();
Console.WriteLine("Using StringBuilder took " +
 watch.Elapsed.TotalSeconds.ToString("0.00") + " seconds");

This code performs 10,000 trials using string concatenation and the StringBuilder class. For each
trial, it builds a string containing the character A 1,000 times.

To test string concatenation, the program enters a loop that uses the += operator 1,000 times. To
test the StringBuilder class, the program creates a StringBuilder object and calls its Append
method 1,000 times.

After each test, the program displays the elapsed time in the Console window. The following text
shows a sample output.

Using += took 6.10 seconds
Using StringBuilder took 0.19 seconds

For small pieces of code, the difference between concatenation and using StringBuilder is negligible.
If you need to concatenate a dozen or so strings once, using a StringBuilder won’t make much dif-
ference in run time, will make the code more confusing, and may even slow performance slightly.

However, if you make huge strings built up in pieces, or if you build simpler strings but many times
in a loop, StringBuilder may make your program run faster.

www.EBooksWorld.ir

www.hellodigi.ir

DateTime and Timespan operations ❘ 111

dAtEtIME ANd tIMESPAN OPERAtIONS

The DateTime data type is fundamentally different from other data types. When you perform an
operation on most data types, you get a result that has the same type or that is at least of some
compatible type. For example, if you subtract two ints, the result is an int.

In contrast, if you subtract two DateTime variables, the result is not a DateTime. For example, what’s
August 7 minus July 20? It doesn’t make sense to think of the result as a date.

Instead, C# defines the difference between two DateTimes as a TimeSpan, a data type that represents
an elapsed time. In this example, August 7 minus July 20 is 18 days. (And yes, TimeSpans know all
about leap years.)

The following equations define DateTime and TimeSpan arithmetic.

DateTime – DateTime = TimeSpan
DateTime + TimeSpan = DateTime
TimeSpan + TimeSpan = TimeSpan
TimeSpan – TimeSpan = TimeSpan

The TimeSpan class also defines unary negation (timespan2 = -timespan1), but other operations
(such as multiplying a TimeSpan by a number) are not defined. In some cases you can still perform
the calculation if you must.

For example, the following code makes variable timespan2 twice as long as timespan1.

TimeSpan timespan2 = new TimeSpan(timespan1.Ticks * 2);

This code takes the number of ticks in timespan1, multiplies that value by 2, and passes the result
into a TimeSpan class constructor to make the new TimeSpan value. (A tick is 100 nanoseconds or
100 billionths of a second.)

Sometimes using operators to combine DateTime and TimeSpan values can be a bit cumbersome.
For example, the following statement adds 7 days to the current date. (As you can probably guess,
DateTime.Now returns a DateTime that represents the current date and time.)

DateTime nextWeek = DateTime.Now + new TimeSpan(7, 0, 0, 0, 0);

To make these sorts of calculations easier to read, DateTime provides methods for performing
common operations.

The Add method returns a new DateTime representing a DateTime’s value plus the duration represented
by a TimeSpan. (DateTime also provides a Subtract method that subtracts a TimeSpan.) For example,
the following code returns the current date and time plus 7 days.

DateTime.Now.Add(new TimeSpan(7, 0, 0, 0, 0));

This isn’t a great improvement in readability over the previous version, but the other DateTime
methods are easier to read. Each adds a given number of a specific time unit to a DateTime. For
example, the following code uses the AddDays method to add 7 days to the current date and time.

DateTime.Now.AddDays(7);

This code does the same thing as the previous two examples but is easier to read.

www.EBooksWorld.ir

www.hellodigi.ir

112 ❘ ChAPtER 5 oPeraTors

The DateTime methods that add durations are AddYears, AddMonths, AddDays, AddHours,
AddMinutes, AddSeconds, AddMilliseconds, and AddTicks.

DateTime does not provide methods for subtracting specific kinds of durations such as SubtractDays.
Fortunately, you can pass a negative value into the other methods. For example, the following statement
returns the date and time 7 days before the current date and time.

DateTime.Now.AddDays(-7);

OPERAtOR OVERLOAdING

C# defines operators for expressions that use standard data types such as int and bool. It defines
a few operators such as is for object references, but operators such as * and % don’t make sense for
objects in general.

However, you can define those operators for your structures and classes by using the operator
statement. This is a more advanced topic, so if you’re relatively new to C#, you may want to skip this
section and come back to it later, perhaps after you have read Chapter 12, “Classes and Structures.”

To overload an operator in a class, create a static method that returns the appropriate data type.
Instead of giving the method a name, use the keyword operator followed by the operator symbol
you want to overload. Next, define the parameters that the operator takes. Finally, write the code
that the operator should return.

For example, suppose you want to define a Complex class to represent complex numbers. The following
code shows the beginning of the class. Here Re holds the number’s real part and Im holds the number’s
imaginary part. (If you don’t remember how complex numbers work, see http://en.wikipedia.org/
wiki/Complex_number.)

public class Complex
{
 public double Re = 0, Im = 0;
}

You could define methods such as Add and Multiply to add and multiply Complex objects, but
the + and * operators would be much more intuitive and easy to read.

The following code overrides the + operator for this class.

public static Complex operator +(Complex operand1, Complex operand2)
{
 return new Complex()
 {
 Re = operand1.Re + operand2.Re,
 Im = operand1.Im + operand2.Im
 };
}

The operator’s declaration indicates that the + operator takes two Complexes as parameters and returns
a Complex. The code creates a new Complex object and uses object initialization syntax to set its Re and
Im fields equal to the sums of the operands’ Re and Im values. It then returns the new object.

www.EBooksWorld.ir

www.hellodigi.ir

http://en.wikipedia.org/

operator overloading ❘ 113

The following code shows a * operator for this class.

public static Complex operator *(Complex operand1, Complex operand2)
{
 return new Complex()
 {
 Re = operand1.Re * operand2.Re - operand1.Im * operand2.Im,
 Im = operand1.Re * operand2.Im + operand1.Im * operand2.Re
 };
}

Some operators such as unary negation (-x) and unary plus (+x) take only one operand. To overload
an operator that has only one operand, give the operand only one parameter.

The following code shows a unary negation operator for the Complex class.

public static Complex operator -(Complex operand1)
{
 return new Complex()
 {
 Re = -operand1.Re,
 Im = -operand1.Im
 };
}

Unary operators that you can overload include: +, -, !, ~, ++, --, true, and false. Binary operators
that you can overload include: +, -, *, /, %, &, |, ^, <<, and >>. Note that the second operand for the
shift operators << and >> must be an int.

The assignment operators are automatically overloaded if you overload the corresponding operator.
For example, if you overload *, then C# overloads *= for you.

The following sections provide some extra detail about different kinds of overloaded operators.

Comparison Operators
Comparison operators that you can overload include ==, !=, <, >, <=, and >=. These operators must be
overloaded in pairs. For example, if you overload <, you must also overload >. The pairs are < and >,
and <= and >=, and == and !=. Similarly the true and false operators come as a pair.

There are two notions of equality for objects. Reference equality means two references point to the
same object. Value equality means two objects contain the same values.

For example, if two Person objects refer to the same object, they have reference equality. If they
refer to different objects that happen to have the same properties and fields, they have value equality.

Normally the == and != operators test reference equality, so if that’s the kind of test you want, you
don’t need to overload these operators.

For the Complex class, two instances of the class that represent the same number should be treated
as equal, so the class should implement value equality and therefore the == and != operators.

If you overload those operators, Visual Studio also expects you to override the Equals and
GetHashCode methods (which all classes inherit from the ultimate base class, Object).

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

114 ❘ ChAPtER 5 oPeraTors

To summarize, if you want a class to provide value equality, you must overload == and !=, and you
must override Equals and GetHashCode. This is some work but it’s not quite as bad as it sounds.

The following code shows the overridden Equals method.

public override bool Equals(object obj)
{
 if (obj == null) return false;
 if (!(obj is Complex)) return false;

 Complex complex = obj as Complex;
 return ((this.Re == complex.Re) && (this.Im == complex.Im));
}

This is an instance method so there is some instance of the Complex class for which the code is running.
The this keyword provides a reference to that object. (Again if this is too confusing, come back to it
after you read Chapter 12.)

The method starts by checking the input parameter. If that parameter is null, it cannot equal
the object referred to by this so the method returns false. (The object this cannot be null.
Otherwise for what object is the code running?)

Next if the parameter is not a Complex, for example, if it’s a Person or Frog, the method returns null.

If the method has not already returned by this point, you know the parameter is a Complex and is
not null. In that case the method returns true if the real and imaginary parts of the parameter are
the same as those for the this object.

The following code shows the GetHashCode method.

public override int GetHashCode()
{
 return (Re.GetHashCode() + Im).GetHashCode();
}

This method must return a hash code for use by algorithms and data structures such as the one
provided by the HashTable class. This method invokes the real part’s GetHashCode method. It
adds the imaginary part to the result and invokes the sum’s GetHashCode method.

The following code shows the == operator.

public static bool operator ==(Complex operand1, Complex operand2)
{
 // If both refer to the same object (reference equality), return true.
 if ((object)operand1 == (object)operand2) return true;

 // If one is null but not the other, return false.
 if (((object)operand1 == null) || ((object)operand2 == null)) return false;

 // Compare the field values.
 return (operand1.Re == operand2.Re) && (operand1.Im == operand2.Im);
}

The code first compares the two operands to see if they refer to the same object. It first casts both
operands to the generic object type, so the program doesn’t try to use the == operator that we are

www.EBooksWorld.ir

www.hellodigi.ir

operator overloading ❘ 115

currently defining to compare them. Without these casts, this statement recursively calls this same
== operator, which calls the same == operator, and so on until the recursive calls fill the stack and
the program crashes.

If the operands don’t have reference equality, the code checks whether one of them is null. If they
were both null, they would have reference equality, so the method would already have returned
true. If that didn’t happen and either of the operands is null, one is null and the other is not, so
the method returns false.

If the method has not yet returned, both operands are not null. In that case the method returns
true if their real and imaginary parts match.

The following code shows the != operator.

public static bool operator !=(Complex operand1, Complex operand2)
{
 return !(operand1 == operand2);
}

This operator simply uses the == operator to compare the operands and negates the result.

Logical Operators
The true and false operators are a bit confusing. The true operator should return the boolean
value true if its operand should be regarded as true. Similarly, the false operator should return
the boolean value true if its operand should be regarded as false.

Note that an operand might be neither true nor false depending on what it represents. For example,
an object reference might be null, in which case you might not want to consider it true or false.

If you define the true and false operators, objects of the class can control tests such as those used
by the if statement and while loops.

For example, suppose you consider a Complex object to be true if either its real or imaginary part is
non-zero. Then if the variable complex is a Complex, the following code would work.

if (complex) Console.WriteLine("complex is true");

You cannot overload the && and || operators, but if you overload true, false, &, and |, these are
defined for you and they use short-circuit evaluation.

type Conversion Operators
Type conversion operators enable the program to convert values from one type to another. For
example, you can regard any complex number as a real number with imaginary part 0. That means
you can convert a float, double, or other numeric value into a Complex.

The reverse is not always true. Not all complex numbers are also real numbers. To use terminology
defined in Chapter 4, “Data Types, Variables, and Constants,” converting from a double to a Complex
is a widening conversion and converting from a Complex to a double is a narrowing conversion.

www.EBooksWorld.ir

www.hellodigi.ir

116 ❘ ChAPtER 5 oPeraTors

To define a widening conversion, create an operator overload where the operator’s name is the new
data type. Use the keyword implicit to indicate that this is a widening conversion, so the code
doesn’t need to explicitly cast to make the conversion.

The following code shows an implicit conversion operator that converts a double to a Complex.

public static implicit operator Complex(double real)
{
 return new Complex() { Re = real, Im = 0 };
}

This operator returns a new Complex with the real part equal to the double parameter and
imaginary part 0.

After you define this operator, you can implicitly convert a double into a Complex as in the fol-
lowing code.

Complex complex = 12.3;

Note that C# already knows how to implicitly convert from int, long, float, and other numeric
types to double so it can convert those types into a Complex. For example, the following statement
converts the character value 'A' into the double 65.0. (65 is the Unicode value for A.) It then uses
the conversion operator to convert that into a Complex.

Complex complex = 'A';

To define a narrowing conversion, create an operator overload as before, but replace the implicit
keyword with the keyword explicit. The following code shows an explicit conversion operator that
converts from Complex to double.

public static explicit operator double(Complex complex)
{
 return complex.Re;
}

After you define this operator, you can explicitly convert a Complex into a double as in the
following code.

Complex complex = new Complex() { Re = 13, Im = 37 };
double real = (double)complex;

Although you normally cannot make two versions of a method that differ only in their return types,
you can do that for conversion operators. When the program tries to make a conversion, it can tell
by the type of the result which conversion operator to use. For example, the following code defines
a conversion from Complex to int.

public static explicit operator int(Complex complex)
{
 return (int)complex.Re;
}

www.EBooksWorld.ir

www.hellodigi.ir

summary ❘ 117

In this case it may be better to just have one conversion to double and let the program convert the
double to int.

It is easy to get carried away with operator overloading. Just because you can define an operator
for a class doesn’t mean you should. For example, you might concoct some meaning for + with the
Employee class, but it would probably be a counterintuitive operation. It would probably be better
to write a method with a meaningful name instead of an ambiguous operator such as + or >>.

SuMMARy

A program uses operators to manipulate variables, constants, and literal values to produce new
results. In most cases, using operators is straightforward and intuitive.

Operator precedence determines the order in which C# applies operators when evaluating an
expression. In cases in which an expression’s operator precedence is unclear, add parentheses to
make the order obvious. Even if you don’t change the way that C# handles the statement, you can
make the code more understandable and avoid possibly time-consuming bugs.

Because the string type is a reference type that usually acts like a value type, performing long
sequences of concatenations can be inefficient. The StringBuilder class makes that kind of string
processing faster. If your program works only with a few short strings, using the string data type
will probably be fast enough and will make your code easier to read. However, if your application
builds enormous strings or concatenates a huge number of strings, you may save a noticeable amount
of time by using StringBuilder.

The DateTime data type also behaves differently from other types. Normal operators such as + and –
have different meanings for this class. For example, subtracting two DateTimes gives a TimeSpan as a
result, not another DateTime. These operations generally make sense if you think carefully about what
dates and time spans are.

Addition, subtraction, and other operations have special meaning for DateTime and TimeSpan values.
Similarly, you can override operators to perform special operations on your classes. Defining / or >>
may not make much sense for the Employee, Customer, or Order classes but in some cases custom
operators can make your code more readable.

A program uses operators to combine variables to create new results. A typical program may perform
the same set of calculations many times under different circumstances. For example, a point-of-sales
program might need to add up the prices of the items in a customer order in many different parts of
the program. Instead of performing that calculation every time it needed, you can move the calculation
into a method and then call the method to perform the calculation. Chapter 6, “Methods,” explains
how you can use methods to break a program into manageable pieces that you can then reuse to make
performing the calculations simpler, more consistent, and easier to debug and maintain.

www.EBooksWorld.ir

www.hellodigi.ir

118 ❘ ChAPtER 5 oPeraTors

ExERCISES

 1. Can you use both the pre- and post-increment operators on the same variable as in ++x++?
If you can’t figure it out, try it and try to understand what Visual Studio tells you about it.

 2. Sometimes the conditional and null-coalescing operators can make the code confusing, par-
ticularly if their operands are complicated expressions. Rewrite the following code to use if
statements instead of ?: and ??.

amountLabel.ForeColor = (amount < 0) ? Color.Red : Color.Blue;
Customer orderedBy = customer ?? new Customer();

 3. In the section “Comparison Operators” the code for the overloaded == operator does not
check whether both operands are null. Why does it not need to do that?

 4. Create a subtraction operator for the Complex class described in this chapter.

 5. Create a Fraction class and define the * and / operators for it.

 6. Create a conversion operator to convert Fraction to double. Is this a widening or
narrowing conversion?

 7. Create a > operator for the Fraction class.

 8. Create an == operator for the Fraction class.

 9. Calculate the result of each of the following statements.

 a. 1 + 2 * 3 - 4 / 5

 b. 9 * 5 / 10

 c. 2 * 5 / 10

 d. 2 / 10 * 5

 e. 12 / 6 * 4 / 8

 10. Add parentheses to the following expressions to make them true.

 a. 4 * 4 - 4 / 4 + 4 = 19

 b. 4 * 4 - 4 / 4 + 4 = 16

 c. 4 * 4 - 4 / 4 + 4 = 11

 d. 4 * 4 - 4 / 4 + 4 = 4

 e. 4 * 4 - 4 / 4 + 4 = 0

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 119

 11. Before each of the following statements, int variable x holds the value 11. What are the
values of x and y after each of the following statements?

 a. int y = x / 4;

 b. int y = x++ / 4;

 c. int y = ++x / 4;

 d. float y = x / 4;

 e. double y = x / 4f;

 12. If x is an int variable holding the value 7, then the statement float y = x / 2 sets y equal
to 3.0. Give three ways to modify this statement to make y equal 3.5.

 13. If x is an int variable holding the value 7, why does the statement float y = x / 2.0
raise an error? How could you fix it?

 14. C# provides |= and &= operators but does not provide ||= or &&= operators. If those operators
existed, what would they do? Would they provide any additional benefit?

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

methods
whAt’S IN thIS ChAPtER

➤➤ Method declarations

➤➤ Optional and named parameters

➤➤ Method overloading

➤➤ Extension methods

➤➤ Lambda expressions

➤➤ Covariance and contravariance

➤➤ Asynchronous method execution

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Methods enable you to break an otherwise unwieldy chunk of code into manageable pieces.
They enable you to extract code that you may need to use under more than one circumstance
and place it in a single location where you can call it as needed.

This enables you to maintain and update the code in a single location. If you later need
to modify the code, you need to do it only in one place, so you don’t need to keep multiple
copies of the code synchronized.

MEthOd tERMINOLOGy

Methods that don’t return a value (have a void return type) are sometimes called
subroutines, routines, procedures, or subprocedures. Methods that return a value
are sometimes called functions.

6

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

122 ❘ ChAPtER 6 meThods

This chapter describes methods and explains the syntax for declaring them. It also provides some
tips for making methods more maintainable.

MEthOd dECLARAtIONS

In C# all methods must be inside a class. The syntax for creating a method follows:

«attributes» «accessibility» «modifiers» return_type name(«parameters»)
{
 code...
}

Many of these pieces of the declaration are similar to those described for declaring variables. For
example, variable declarations can also include attributes and accessibility keywords. See the cor-
responding sections in Chapter 4, “Data Types, Variables, and Constants,” for basic information
about those features.

The following sections provide extra information about the pieces of a method declaration.

Attributes
The optional attribute list is a series of attribute objects that provide extra information about the
method. An attribute further refines the definition of a method to give more information to the com-
piler, the runtime system, and other tools that need to manipulate the method.

Attributes are specialized and address issues that arise when you perform specific programming
tasks. For example, the System.Diagnostics.Conditional attribute means a (method) is condi-
tional upon the definition of some preprocessor symbol. If the symbol is not defined, then the method
is silently ignored.

For example, consider the following code snippet.

#define INTERACTIVE
...
[Conditional("INTERACTIVE")]
private void DisplayGreeting()
{
 MessageBox.Show("Hello");
}
...
private void Form1_Load(object sender, EventArgs e)
{
 DisplayGreeting();
}

The code first defines the preprocessor symbol INTERACTIVE. Later it uses the Conditional attribute
in the definition of the DisplayGreeting method. That method displays a message box.

The form’s Load event handler calls the DisplayGreeting method. If the INTERACTIVE constant
is defined, the method executes and displays its message box. If INTERACTIVE is not defined, the
method call is ignored and the program continues.

www.EBooksWorld.ir

www.hellodigi.ir

method Declarations ❘ 123

See the section “Attributes” in Chapter 4 for more detail on attributes in general, including some
links you can follow to get more information.

The following list describes some of the most useful method attributes. Many of these apply to
property methods (see the section “Properties” in Chapter 4) and fields. Most of them are in the
System.ComponentModel namespace. Check the online help for more detail.

➤➤ AttributeUsage—If you build your own custom attribute, this attribute tells how your attri-
bute can be used. For example, it determines whether an item can have multiple instances of
your attribute, whether your attribute can be inherited by a derived class, and the kinds of
things that can have your attribute (assembly, class, method, and so forth).

➤➤ Browsable—This indicates whether a property or event should be displayed in an editor
such as the Properties window or a PropertyGrid control.

➤➤ Category—This indicates the grouping that should hold the property or event in a visual
designer such as the Properties window or a PropertyGrid control.

➤➤ DefaultEvent—This gives a class’s default event name. If the class is a control or component
and you double-click it in the Form Designer, the code editor opens to this event’s handler.

➤➤ DefaultProperty—This gives a class’s default property name.

➤➤ DefaultValue—This gives a property a default value. If you right-click the property in the
Properties window and select Reset, the property is reset to this value.

➤➤ Description—This gives a description of the item. If a property has a Description and
you select the property in the Properties window, the window displays the description text
at the bottom.

➤➤ Localizable—This determines whether a property should be localizable, so you can easily
store different versions of the property for different languages and locales.

➤➤ MergableProperty—This indicates whether the property can be merged with the same
property provided by other components in the Properties window. If this is true and you
select multiple controls with the same value for this property, the Properties window dis-
plays the value. If you enter a new value, all the controls are updated.

➤➤ ParenthesizePropertyName—This indicates whether editors such as the Properties window
should display parentheses around the property’s name.

➤➤ ReadOnly—This indicates whether designers should treat this property as read-only.

➤➤ RecommendedAsConfigurable—This indicates that a property should be tied to the config-
uration file. When you select the object at design time and expand the (Dynamic Properties)
item, the property is listed. If you click the ellipsis to the right, a dialog box appears that
enables you to map the property to a key in the configuration file.

➤➤ RefreshProperties—This indicates how an editor should refresh the object’s other proper-
ties if this property is changed. The value can be Default (do not refresh the other properties),
Repaint (refresh all other properties), or All (requery and refresh all properties).

➤➤ Conditional—This indicates that the method is ignored if a preprocessor symbol is undefined.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

124 ❘ ChAPtER 6 meThods

➤➤ DebuggerHidden—This tells debuggers whether a method should be debuggable.
If DebuggerHidden is true, the debugger skips over the method and does not stop at
breakpoints inside it.

➤➤ DebuggerStepThrough—This tells debuggers whether to let the developer step into a method
in the debugger. If the DebuggerStepThrough attribute is present, the IDE does not step into
the method.

➤➤ ToolboxBitmap——This tells the IDE where to find a control or component’s Toolbox
bitmap. This can be a file, or it can be a type in an assembly that contains the bitmap and
the bitmap’s name in the assembly. It’s awkward but essential if you’re developing controls
or components.

➤➤ Obsolete—This indicates that the item (class, method, property, or whatever) is obsolete.
Optionally, you can specify the message that the code editor should display to the developer
if code uses the item (for example, “Use the NewMethod instead”). You can also indicate
whether the IDE should treat using this item as a warning or an error.

Accessibility
The method’s accessibility value can be one of public, internal, protected, internal protected,
and private. These have the same meanings as the same keywords when used to declare variables.
See the section “Accessibility” in Chapter 4 for more information.

Modifiers
The method’s modifiers give more information about the method. The following sections describe
the allowed keywords.

new
A derived class can define a method with the same name as a method it inherits from the parent class.
In that case, the new version of the method hides the parent’s version. This is allowed but Visual
Studio flags it with a warning. The new keyword tells Visual Studio that this is not an accident and
suppresses the warning.

For example, suppose the Person class includes FirstName, LastName, Street, City, State, and
Zip fields. It also provides the following Address method that returns those values formatted as an
address string.

public string Address()
{
 return FirstName + " " + LastName + '\n' +
 Street + '\n' +
 City + " " + State + " " + Zip;
}

www.EBooksWorld.ir

www.hellodigi.ir

method Declarations ❘ 125

Now suppose the Employee class is derived from Person. The Employee class adds a new Office
field and provides the following new Address method that includes the Office value.

public new string Address()
{
 return FirstName + " " + LastName + ", " + Office + '\n' +
 Street + '\n' +
 City + " " + State + " " + Zip;
}

Without the new keyword, this would raise the warning.

static
As Chapter 4 explained, a variable declared with the static keyword is shared by all instances of
the class. Similarly, a static method applies to all instances of the class. In that case, the method
applies to the class itself rather than to a particular instance of the class.

For example, suppose the Person class has a LookupPerson method that looks up a person’s name in
a database and returns a Person object representing that person. It wouldn’t make sense to require
you to create a Person object just to invoke its LookupPerson method. Instead you can make this a
static method.

To invoke a static method, use the class name as in Person.LookupPerson("Eddie Russett").

virtual and override
The virtual keyword and override keywords go together.

Suppose the Person and Employee classes have Address methods as described in the previous
sections. The Employee class’s version of Address hides the Person class’s version. Now consider
the following code.

Employee employee = new Employee { FirstName = "Rod", ... };
Console.WriteLine("Employee:\n" + employee.Address());
Console.WriteLine();

Person person = employee;
Console.WriteLine("Person:\n" + person.Address());

The code creates an Employee object and displays the result of its Address method in the Console win-
dow. This includes the object’s FirstName, LastName, Office, Street, City, State, and Zip values.

Next the code sets a Person variable equal to the same Employee. This is allowed because an
Employee is a kind of Person. The code then displays the result of the Person object’s Address
method. Because this is a Person object, its Address method doesn’t include the object’s Office
value. Even though this object is actually an Employee, the Person class’s version of the Address
method doesn’t include the Office value. The following text shows the result.

Employee:
Rod Stephens, B-24
1337 Leet St
Bugsville HI 98765

www.EBooksWorld.ir

www.hellodigi.ir

126 ❘ ChAPtER 6 meThods

Person:
Rod Stephens
1337 Leet St
Bugsville HI 98765

However, there is a way to let the object use its “native” Address method instead of the one given by
the type of the variable holding it. In this case, the Employee object would use its Address method
even if it were represented by a Person variable.

To do this, add the virtual keyword to the Person class’s version of the method as in the
following code.

public virtual string Address()
{
 return FirstName + " " + LastName + '\n' +
 Street + '\n' +
 City + " " + State + " " + Zip;
}

The virtual keyword tells C# that a derived class may replace this method with a version of its own.

Next add the override keyword to the Employee class’s Address method as in the following code.

public override string Address()
{
 return FirstName + " " + LastName + ", " + Office + '\n' +
 Street + '\n' +
 City + " " + State + " " + Zip;
}

This tells the program to replace the Address method for Employee objects with this version, even if
they are referred to by a Person variable.

The following text shows the new result.

Employee:
Rod Stephens, B-24
1337 Leet St
Bugsville HI 98765

Person:
Rod Stephens, B-24
1337 Leet St
Bugsville HI 98765

sealed
If you override a method, you can also add the keyword sealed to indicate that no further derived
class can override the method. For example, suppose the Person class defines the virtual method
Address and the Employee class defines the following overridden version of the method.

public override sealed string Address()
{
 return FirstName + " " + LastName + ", " + Office + '\n' +

www.EBooksWorld.ir

www.hellodigi.ir

method Declarations ❘ 127

 Street + '\n' +
 City + " " + State + " " + Zip;
}

Now if the Manager class inherits from the Employee class, it cannot override this method because it
is sealed.

tIP The Manager class cannot override the Address method, but it can hide it
with a new version that is declared with the new keyword.

abstract
The abstract keyword prevents a program from making instances of the class. Instead the program
must make instances of other classes derived from it. If a class contains an abstract member, then
the class must also be marked abstract.

For example, a class might include an abstract method. In that case derived classes must provide a
body for the abstract method. This lets a class determine what its derived classes should do but not
how they work.

A class with an abstract method is incomplete. If you were to create an instance of the class, you
could not invoke the method because the class has not provided an implementation for it. To avoid
this conundrum, C# does not let you create an instance of a class that has an abstract method.

The following code shows an abstract Person class.

abstract class Person
{
 public string FirstName = "", LastName = "",
 Street = "", City = "", State = "", Zip = "";

 public abstract string Address();
}

The following code shows a Student class that inherits from Person and implements the Address
method.

class Student : Person
{
 public override string Address()
 {
 return FirstName + " " + LastName + ", " +
 Street + '\n' +
 City + " " + State + " " + Zip;
 }
}

extern
The extern keyword indicates that the method is defined outside of the assembly. This keyword
is often used to declare methods defined in libraries. For example, the following code declares the

www.EBooksWorld.ir

www.hellodigi.ir

128 ❘ ChAPtER 6 meThods

external SendMessage function. The DllImport attribute tells the program to look for the method
in the user32.dll library.

[System.Runtime.InteropServices.DllImport("user32.dll")]
public static extern int SendMessage(
 IntPtr hWnd, uint Msg, int wParam, int lParam);

The following code shows how a program could use SendMessage to make the button dangerButton
display the User Access Control (UAC) shield.

private void Form1_Load(object sender, EventArgs e)
{
 const Int32 BCM_SETSHIELD = 0x160C;

 // Give the button the flat style and make it display the UAC shield.
 dangerButton.FlatStyle = System.Windows.Forms.FlatStyle.System;
 SendMessage(dangerButton.Handle, BCM_SETSHIELD, 0, 1);
}

This code defines the constant BCM_SETSHIELD. The value
0x160C is a message code that means a control should display
the UAC shield.

The code then sets the button’s FlatStyle property to System.
Finally, it calls SendMessage to send the button the BCM_
SETSHIELD message, which makes it display the shield. Figure 6-1
shows the result.

Name
The method’s name must be a valid C# identifier. It should begin with a letter, underscore, or @
symbol. After that it can include letters, numbers, or underscores. If the name begins with @, it
must include at least one other character. The name cannot include special characters such as &,
%, #, and $. It also cannot be the same as C# keywords such as if, for, and public.

Most developers use CamelCase when naming a method so a method’s name consists of several
descriptive words with their first letters capitalized. A good method for generating method names is
to use a short phrase beginning with a verb and describing what the method does. Some examples
include LoadData, SaveNetworkConfiguration, and PrintExpenseReport.

Return type
A method’s return_type is the type of the value the method returns. To return a value, use the
return keyword followed by the value the method should return. For example, the following
method multiplies two values and returns the result.

private float Multiply(float value1, float value2)
{
 return value1 * value2;
}

FIGuRE 6-1: The external
SendMessage function can
make a button display the
UAC shield .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

method Declarations ❘ 129

If the method doesn’t return any value, set the return type to void. If you want the method to return
before its last line of code, you can use the return statement with no following value. For example,
the following method asks the user whether it should delete a file. If the user clicks No, the method
returns. Otherwise the method deletes the file.

private void DeleteFile(string filename)
{
 // Make the user confirm.
 if (MessageBox.Show("Are you sure you want to delete "
 + filename + "?",
 "Delete File?",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question)
 == DialogResult.No)
 return;

 // Delete the file.
 //...
}

Parameters
A method’s parameter declaration defines the names and types of the parameters passed into it.
Parameter lists are somewhat similar to variable declarations, so they are described in the section
“Parameter Declarations” in Chapter 4. See that section for more information.

Two new features that don’t apply to variables and are therefore not described in Chapter 4 are optional
arguments and named arguments.

Optional parameters must come at the end of the parameter list, after any required parameters. To
make a parameter optional, follow its declaration with an equal sign and a default value. The calling
code can omit any of the optional arguments at the end of the parameter list, and those parameters
take their default values. The code cannot include arguments that follow missing arguments, at least
without using argument names.

Named arguments allow calling code to explicitly indicate the argument values by name. That makes
the code more readable, particularly if the method has a long argument list and if some arguments
are optional. It also lets the calling code give the arguments in any order and omit any optional argu-
ments without omitting those that follow in the parameter list. To use an optional parameter, the
calling code includes the parameter’s name, a colon, and the parameter’s value.

The following code defines a FindOverdueAccounts method that looks for overdue customer accounts
and takes appropriate action.

private void ListOverdueAccounts(
 int daysPastDue, decimal amount = 50.00m,
 bool disconnect = false, bool printInvoices = false)
{
 ...
}

www.EBooksWorld.ir

www.hellodigi.ir

130 ❘ ChAPtER 6 meThods

The method takes four parameters. The daysPastDue parameter is required but the others are optional.

The following code shows several ways the program might call this method.

// daysPastDue = 90, other parameters take defaults.
ListOverdueAccounts(90);

// daysPastDue = 90, amount = $100.00, other parameters take defaults.
ListOverdueAccounts(90, 100.00m);

// daysPastDue = 90, disconnect = true, other parameters take defaults.
// This version is not allowed because you cannot include an argument
// after a missing argument.
ListOverdueAccounts(90, , true);

// daysPastDue = 90, disconnect = true, other parameters take defaults.
// This version is allowed because it uses named arguments.
ListOverdueAccounts(90, disconnect: true);

// daysPastDue = 30, amount = $100.00. Other parameters take defaults.
ListOverdueAccounts(30, amount: 100);

// All arguments specified in new order.
ListOverdueAccounts(disconnect: true, amount: 100,
 printInvoices: false, daysPastDue: 60);

The third call to ListOverdueAccounts is not allowed because it provides an argument after an
omitted argument. The fourth call provides the same arguments. That version works because it
uses named arguments.

optional Versus overloading
A C# program can define multiple methods with the same name but that differ in their parameter
lists. This is called method overloading. For example, the following code defines two versions of the
FireEmployee method.

private void FireEmployee(string name)
{
 ...
}

private void FireEmployee(string name, string reason)
{
 ...
}

At compile time, the compiler uses the arguments passed into a method call to decide which version
of the method to use.

Overloaded methods cannot differ only in optional parameters. Otherwise if a call to the method
omitted the optional parameters, the program would be unable to tell which version of the
method to use.

www.EBooksWorld.ir

www.hellodigi.ir

method Declarations ❘ 131

The following code shows a single version of the FireEmployee method that uses optional parameters
instead of overloading.

private void FireEmployee(string name, string reason = "Unknown reason")
{
 ...
}

Different developers have varying opinions on whether it is better to use optional parameters or
overloaded methods under different circumstances.

One argument in favor of optional parameters is that overloaded methods might duplicate a lot of
code. However, it is easy to make each version of the method call another version that allows more
parameters, passing in default values. For example, in the following code the first version of the
FireEmployee method simply invokes the second version:

private void FireEmployee(string name)
{
 FireEmployee(name, "Unknown reason");
}

private void FireEmployee(string name, string reason)
{
 ...
}

Overloading is generally better when the different versions of the method need to do something dif-
ferent or when they take completely different parameters. For example, the following code shows
two versions of the FireEmployee method, one that takes the employee’s name as a parameter and
one that takes an Employee object as a parameter.

private void FireEmployee(string name)
{
 ...
}

private void FireEmployee(Employee employee)
{
 ...
}

In this case, it would probably be confusing to make a single method with optional name and
employee parameters and require the calling code to pass in only one of those values. (These two
methods would probably also do a lot of the same work, so they should probably both invoke a
third method to do that common work.)

Parameter arrays
Sometimes it’s useful to have methods that can take any number of parameters. For example, a
method might take as parameters a message and a series of e-mail addresses. It would send the
message as an e-mail to each of the addresses.

www.EBooksWorld.ir

www.hellodigi.ir

132 ❘ ChAPtER 6 meThods

One approach would be to give the method a long list of optional string parameters with the
default value null. The method would examine each of the parameters and send the message to
those that were not null.

Unfortunately, the method would need to use separate code to process each address separately.
The number of parameters would place an upper limit on the number of e-mail addresses that
could be included.

A better solution is to use the params keyword to make the method’s final argument a parameter
array. A parameter array contains an arbitrary number of parameter values. At run time, the method
can loop through the array to process the parameter values. The following code shows an example.

private void SendEmails(string message, params string[] addresses)
{
 if (addresses != null)
 {
 foreach (string address in addresses)
 Console.WriteLine("Send " + message + " to " + address);
 }
}

The SendEmails method takes two parameters, a string called message and a parameter array
of strings holding e-mail addresses. The code first checks whether the parameter array is null. If
the array is not null, the code loops through it and displays each e-mail address and the message
in the Console window. (A real application would send the message to each e-mail address.)

The following code shows how the program could use this method to send a message to two e-mail
addresses.

SendEmails("I need C# help!",
 "RodStephens@CSharpHelper.com",
 "RodStephens@vb-helper.com"
);

Parameter arrays are subject to the following restrictions:

➤➤ A method can have only one parameter array, and it must come last in the parameter list.

➤➤ Parameter lists cannot be declared with the ref or out keywords.

➤➤ The calling code may pass the value null in the place of the parameter array. (That’s why
the code in the previous example checked whether the array was null before using it.)

➤➤ The calling code can provide any number of values for the parameter array including zero.

➤➤ All the items in the parameter array must have the same data type. However, you can use an
array that contains the generic object data type and then it can hold just about anything.

The program can also pass an array of the appropriate data type in place of a series of values. The
following code passes an array of strings into the SendEmails method.

string[] addresses =
{
 "RodStephens@CSharpHelper.com",

www.EBooksWorld.ir

www.hellodigi.ir

mailto:RodStephens@CSharpHelper.com
mailto:RodStephens@vb-helper.com
mailto:RodStephens@CSharpHelper.com

method Declarations ❘ 133

 "RodStephens@vb-helper.com",
};
SendEmails("I need C# help!", addresses);

Implementing Interfaces
An interface defines a set of properties, methods, and events that a class implementing the interface
must provide. An interface is a lot like a class with all its properties, methods, and events declared
with the abstract keyword. Any class that inherits from the base class must provide implementations
of those properties, methods, and events. Similarly, a class that implements an interface must provide
the properties, methods, and events defined by the interface.

NAMING CONVENtION

Developers often begin the name of interfaces with a capital I so that it’s obvious
that it’s an interface. Actually, it’s such a common practice and has no disadvan-
tages that it should practically be a requirement. Start interface names with “I” so
that other developers know they are interfaces.

The following code defines the IDrawable interface.

public interface IDrawable
{
 void Draw(Graphics gr);
 Rectangle GetBounds();
 bool IsVisible { get; set; }
}

The IDrawable interface defines a Draw method, a GetBounds function, and a bool property
named IsVisible.

To indicate that a class implements an interface, add a colon followed by the interface’s name after
the class’s name. The following code shows the declaration for a DrawableRectangle class that
implements the IDrawable interface.

public class DrawableRectangle : IDrawable
{

}

If you build an empty class such as this one that includes the : IDrawable clause, you can right-
click the interface name and select the Implement Interface submenu. The submenu has two choices:
Implement Interface and Implement Interface Explicitly. When you select one of those commands,
Visual Studio adds empty properties, methods, and events to the class to implement the interface. How
the class uses those items depends on whether you implement the interface implicitly or explicitly.

www.EBooksWorld.ir

www.hellodigi.ir

mailto:RodStephens@vb-helper.com
http://www.hiva-network.com/

134 ❘ ChAPtER 6 meThods

Implicit Implementation
The following code shows the DrawableRectangle class with code added by Visual Studio for
implicit implementation.

public class DrawableRectangle : IDrawable
{
 public void Draw(Graphics gr)
 {
 throw new NotImplementedException();
 }

 public Rectangle Bounds()
 {
 throw new NotImplementedException();
 }

 public bool IsVisible
 {
 get
 {
 throw new NotImplementedException();
 }
 set
 {
 throw new NotImplementedException();
 }
 }
}

You should edit this code to replace the throw statements with whatever code is necessary.

If a class implements an interface implicitly, you can use its members just as you would for any other
class’s members. For example, consider the following code.

DrawableRectangle rect = new DrawableRectangle();
Console.WriteLine(rect.GetBounds());

IDrawable drawable = rect;
Console.WriteLine(drawable.GetBounds());

This code creates a DrawableRectangle. It then invokes its GetBounds method and displays the
result in the Console window.

Next, the code creates an IDrawable variable and makes it refer to the same DrawableRectangle.
This works because a DrawableRectangle is a kind of IDrawable.

The code then displays the result of the IDrawable’s GetBounds method.

www.EBooksWorld.ir

www.hellodigi.ir

extension methods ❘ 135

explicit Implementation
If you select Implement Interface Explicitly, Visual Studio also creates the necessary code, but it
adds the interface’s name to each item. The following code shows this form of the Draw method
with the interface name highlighted.

void IDrawable.Draw(Graphics gr)
{
 throw new NotImplementedException();
}

If a class implements an interface explicitly, the program cannot access the interface’s members from
a variable of that class’s type. Instead it must use a variable of the interface’s type.

Consider again the following code, which was shown earlier for the implicit interface implementation.

DrawableRectangle rect = new DrawableRectangle();
Console.WriteLine(rect.GetBounds()); // Doesn’t work.

IDrawable drawable = rect;
Console.WriteLine(drawable.GetBounds());

With the explicit implementation, the first call to GetBounds doesn’t work. Because the class imple-
ments the interface explicitly, the code must use the IDrawable variable to use the interface’s members.

ExtENSION MEthOdS

Extension methods enable you to add new methods to an existing class without rewriting it or
deriving a new class from it. To make an extension method, place a static method in a static
class. Add the keyword this before the method’s first parameter and give that parameter the type
that you want to extend.

For example, the following code defines a RemoveNonLetters extension method for the string class.

public static class StringExtensions
{
 public static string RemoveNonLetters(this string text)
 {
 string result = "";
 foreach (char ch in text)
 if (((ch >= 'a') && (ch <= 'z')) ||
 ((ch >= 'A') && (ch <= 'Z')))
 result += ch;
 else
 result += "?";

 return result;
 }
}

The code is defined in the static StringExtensions class.

www.EBooksWorld.ir

www.hellodigi.ir

136 ❘ ChAPtER 6 meThods

tIP If you name static extension classes as in StringExtensions, it’s easy to
tell which class you are extending and that this is an extension class.

The static RemoveNonLetters method’s first parameter uses the this keyword, so you know this
is an extension method. The parameter following this has type string so this extension method
extends the string class.

The method’s code loops through a string’s characters and replaces any that are not letters with
question marks. It then returns the result.

The following code shows how a program might use this method.

string text = "When in worry or in doubt, run in circles scream and shout";
Console.WriteLine(text.RemoveNonLetters());

This code creates a string variable. It then invokes the RemoveNonLetters method just as if that
were a normal method defined by the string class.

LAMbdA ExPRESSIONS

Lambda expressions are methods defined within the flow of the program’s code instead of as
separate methods. Often they are defined, used, and forgotten in a single statement without ever
being given a name.

You can use normal methods instead of lambda expressions, but sometimes lambda expressions
make the code simpler and easier to read. Many LINQ queries (described in Chapter 8, “LINQ”)
use functions to select values that meet certain criteria. You can write those functions as separate
methods but they may only be used once inside the LINQ query so making them separate methods
clutters the code unnecessarily.

The following sections group lambda expressions into three categories: expression lambdas, state-
ment lambdas, and async lambdas.

Expression Lambdas
An expression lambda consists of a list of zero or more parameters, the => operator, and a single
expression that evaluates to some result. The lambda expression returns the result of the expression.

The following code uses a simple expression lambda (in bold).

Action note = () => MessageBox.Show("Hi");
note();

Recall from the section “Delegates” in Chapter 4 that Action is a type that represents a method that
takes no parameters and returns void. The code creates a variable note with that type. It sets that
variable equal to the expression lambda defined by () => MessageBox.Show("Hi"). This lambda

www.EBooksWorld.ir

www.hellodigi.ir

Lambda expressions ❘ 137

takes no parameters and executes the expression MessageBox.Show("Hi"). (The empty parentheses
are required as a placeholder if the lambda expression takes no parameters.)

The following code modifies the previous expression lambda so that it takes a parameter.

Action<string> note = message => MessageBox.Show(message);
note("Hello");

This expression lambda takes a string parameter and passes it to MessageBox.Show.

The two examples shown so far call MessageBox.Show, which returns void. The following example
shows how an expression lambda can return a value.

Func<float, double> root = value => Math.Sqrt(value);
Console.WriteLine(root(13));

The variable root has type Func<float, double> so it represents a method that takes a float
parameter and returns a double result. The code sets root equal to an expression lambda that uses
Math.Sqrt to take the square root of its input parameter. The lambda’s return result is the result of
that expression.

Statement Lambdas
An expression lambda executes a single statement and returns its result. A statement lambda is similar
except it can execute multiple statements. To group the statements, this kind of lambda uses braces. It
also uses the return statement to return its result.

The following code demonstrates a statement lambda.

Func<int, int, int, int> middle = (v1, v2, v3) =>
 {
 // Sort the items.
 int[] values = { v1, v2, v3 };
 Array.Sort(values);

 // Return the middle item.
 return values[1];
 };
Console.WriteLine(middle(2, 3, 1));

This code sets middle to a lambda that picks the middle of three integers. The lambda copies its
three parameters into an array, sorts the array, and returns the middle item.

The code then calls the lambda to pick the middle of the values 2, 3, and 1.

NOt SO LIttLE LAMbdAS

A statement lambda can be quite long but at some point it just makes the code
more confusing. If the lambda is too long, consider making it a separate named
method instead.

www.EBooksWorld.ir

www.hellodigi.ir

138 ❘ ChAPtER 6 meThods

Async Lambdas
The section “Using Async and Await” later in this chapter discusses one method for running meth-
ods asynchronously. At this point it’s worth briefly explaining how that technique works with
lambda expressions.

In brief, you can use the async keyword to indicate that a method can run asynchronously. The
program can then use the await keyword to wait for an async method to complete. Usually, you use
async with named methods but you can also use it to make lambda expressions asynchronous, too.

ASyNChRONICIty

When a method runs asynchronously, it runs on a separate thread of execution
while the main program continues running on the main thread. If the computer has
multiple processors, the two threads may be able to run on different processors so
they truly run at the same time.

Even if the computer has only a single processor, the result may be faster if one thread
is blocked waiting for some resource. For example, the method’s thread might need to
fetch data from a database on a hard drive, which can take a lot longer than perform-
ing calculations in memory. While the method’s thread is waiting, the main program
can continue.

The following Form Load event handler uses an asynchronous statement lambda.

private void Form1_Load(object sender, EventArgs e)
{
 countButton.Click += async (button, args) =>
 {
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine(i);
 await System.Threading.Tasks.Task.Delay(1000);
 }
 };
}

This code adds an event handler to the countButton’s control’s Click event. The event handler is
defined by the lambda expression. The expression’s declaration includes the async keyword so it
can run asynchronously.

The statement lambda makes variable i loop from 1 to 5. For each value of i, the lambda displays
the value of i in the Console window and then waits for 1 second.

If you add this code to a Windows Forms program with a button named countButton and click the
button, the statement lambda executes and displays its count in the Console window. Because
the lambda is asynchronous, you can click the button several times to see several counts running
at the same time.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Variance ❘ 139

VARIANCE

Suppose the Student class is derived from the Person class. In that case you can save a Student
value in a Person variable as in the following code because a Student is a kind of Person.

Person person = new Student();

It should come as no surprise that you can do something similar with method parameters and return
types. For example, suppose the EnrollStudent method takes a Person as a parameter, creates nec-
essary database records to enroll that Person in school, and returns a new Student object represent-
ing the new student. The following code shows the method’s signature.

private Student EnrollStudent(Person person)
{
 ...
}

The calling code might save the result in some variable. The code could save the result in a
Student variable. Because a Student is a kind of Person, the code could also save the result
in a Person variable.

The method’s parameter has type Person. Because a Student is a type of Person, the calling code
could pass a Student into the method. (Although you might want the method to prevent that so that
you don’t enroll the same student twice.)

The following code shows how the program could call this method without matching the method’s
parameter and return types.

Student student = new Student();
...
Person person = EnrollStudent(student);

None of this should come as a big surprise.

Similarly, you can store a reference to a method in a delegate variable with parameters and return
type that don’t exactly match those used by the method.

For example, the following code defines a delegate representing methods that take a Student
parameter and return a Person.

private delegate Person ReturnsPersonDelegate(Student student);

A program could use the delegate as in the following code.

ReturnsPersonDelegate del = EnrollStudent;

The EnrollStudent method doesn’t return a Person as the delegate type requires, but it returns a
Student, which is a type of Person. The fact that you can assign a method to a delegate when the
method returns a more derived type than the delegate is called covariance.

The EnrollStudent method also doesn’t take a Student parameter as the delegate type requires.
Instead it takes a Person parameter. A Student is a kind of Person so the program could call the
method with a Student as an argument. The fact that you can assign a method to a delegate when
the method has parameters of a less derived type than the delegate is called contravariance.

www.EBooksWorld.ir

www.hellodigi.ir

140 ❘ ChAPtER 6 meThods

ASyNChRONOuS MEthOdS

Normally a program calls a routine and control passes to that routine. When the routine finishes
executing, control returns to the calling code, which resumes executing its own code. All this happens
synchronously, so the calling code waits until the called routine finishes all its work before it continues.

C# provides several methods that you can use to execute code asynchronously. In those cases a calling
piece of code can launch a routine in a separate thread and continue executing before the routine fin-
ishes. If your computer has multiple cores or CPUs, the calling code and the asynchronous routine may
both be able to execute simultaneously on separate processors, potentially saving a lot of time.

The following sections describe three of the more manageable approaches to executing methods
asynchronously.

Calling EndInvoke directly
This method uses a delegate’s BeginInvoke method to start a routine executing asynchronously.
Later the code calls EndInvoke to wait for the routine to finish and to process the result.

To use this method, first define a delegate that represents the routine that you want to run asynchro-
nously. Call the delegate’s BeginInvoke method, passing it whatever parameters the method needs
plus two additional parameters: a callback method and a parameter to pass to the callback method.
For this technique, set the extra parameters to null so the routine does not invoke a callback when
it completes. (The following section explains how to use the callback.)

The call to BeginInvoke launches the asynchronous code on its own thread and then returns
immediately so the calling code can perform other tasks.

After the calling code has done as much as it can before the asynchronous thread finishes, it should
invoke the delegate’s EndInvoke method. That method waits until the asynchronous thread finishes
(if it isn’t already finished) and returns the result of the original method.

ALwAyS CALL ENdINVOKE

It is important that the code calls EndInvoke even if the thread executes a void
method, and the calling code doesn’t care about any returned result. The call to
EndInvoke lets the program free resources used by the asynchronous thread.

The BeginInvoke example program, which is available for download on the book’s website, uses the
following simple Count method.

private void Count(int max)
{
 for (int i = 1; i <= max; i++)
 {
 System.Threading.Thread.Sleep(1000);
 Console.WriteLine("Count: " + i);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

asynchronous methods ❘ 141

This method counts to an indicated value displaying numbers in the Console window and sleeping
1 second between each number.

The following code runs the Count method asynchronously.

// Start the Count method on a new thread.
Action<int> countDelegate = Count;
IAsyncResult result = countDelegate.BeginInvoke(5, null, null);

// Count to 3.
for (int i = 1; i <= 3; i++)
{
 System.Threading.Thread.Sleep(1000);
 Console.WriteLine("Main: " + i);
}

// Wait for the other thread to complete.
countDelegate.EndInvoke(result);
Console.WriteLine("Main: done");

This code creates a delegate of type Action<int> to represent a method that takes an int parameter
and has void return type. It sets the variable equal to the Count method.

The code then calls the delegate variable’s BeginInvoke method, passing it the parameter 5 (to send
to the Count method) and two null parameters. It saves the result returned by BeginInvoke, which
is an IAsynchResult object.

Next, the code counts to 3, pausing 1 second between values.

The code then calls the delegate’s EndInvoke method passing it the IAsyncResult value it got from
BeginInvoke. That call makes the main program wait until the delegate finishes running.

Finally when the delegate’s other thread finishes and EndInvoke returns, the code displays a
completion message.

The following text shows the result of one trial.

Main: 1
Count: 1
Main: 2
Count: 2
Main: 3
Count: 3
Count: 4
Count: 5
Main: done

In a real application, the main program and the asynchronous thread would perform time-consuming
tasks instead of just sleeping.

handling a Callback
The technique described in the previous section directly calls EndInvoke to make the main user inter-
face thread wait until its asynchronous threads have finished before the main program continues.

www.EBooksWorld.ir

www.hellodigi.ir

142 ❘ ChAPtER 6 meThods

Another approach is to let the main program continue without waiting for the threads to complete
and then have the threads invoke a callback method when they finish.

This approach lets the main program ignore the asynchronous threads for most purposes, but it
does make the flow of execution less predictable. While the threads are running, the user can do
other things, perhaps even starting new threads that duplicate those that are already running.
When a thread finishes, the callback routine executes, possibly interrupting whatever the user is
doing at the time.

There’s one important catch to working with callbacks: Only the thread that created the user
interface (called the UI thread) can directly interact with the controls in the user interface. That
means the asynchronous threads cannot directly assign images to PictureBoxes, display text
in Labels or TextBoxes, move controls around, or otherwise manipulate the controls. Because
the threads invoke the callback methods, those methods cannot directly interact with the con-
trols, either.

You can get around this restriction by using the form’s Invoke method. Invoke executes one of the
form’s methods on the UI thread.

The HandleCallback example program, which is available for
download on the book’s website, uses a callback instead of calling
EndInvoke in the program’s main flow of execution. This program,
which is shown in Figure 6-2, uses a callback to let the main pro-
gram know when the asynchronous thread has finished.

The main program displays a count in the Label while the thread
displays its count in the Console window. (You could use Invoke
to make it display its count in the Label but this is complicated
enough without that.)

The program uses the following code to start the thread and display its count.

// Start the countDelegate method on a new thread.
Func<int, int> countDelegate = Count;
IAsyncResult result = countDelegate.BeginInvoke(5,
 new AsyncCallback(CountCallback), "Thread: ");

// Count to 3.
for (int i = 1; i <= 3; i++)
{
 System.Threading.Thread.Sleep(1000);
 countLabel.Text = i.ToString();
 countLabel.Refresh();
}

// Display a finished message.
countLabel.Text = "Main: done";

First, the code creates a delegate variable to hold a reference to the Count method described shortly.
This version of Count takes an int parameter and returns an int result.

FIGuRE 6-2: The HandleCallback
example program uses a callback
instead of EndInvoke .

www.EBooksWorld.ir

www.hellodigi.ir

asynchronous methods ❘ 143

Next, the code calls the delegate’s BeginInvoke method. This time it passes the method the value
that should be passed to the Count method (5), a new AsyncCallback object initialized to represent
the CountCallback method, and a value to be passed to the callback (the string Thread:). At this
point, a new thread starts running the Count method.

The code then enters its own loop where it displays the numbers 1 through 3 in the form’s Label
control, pausing for 1 second between numbers. Notice that the code refreshes the Label each time
it displays a new value. If the code didn’t do this, the Label would not refresh until the code finished
so the user would not see the count. After it finishes its count, the code displays the message Main:
done in the Label.

Meanwhile the other thread has been running the following Count method.

// Count pausing 1 second between numbers.
// Return the final value displayed.
private int Count(int max)
{
 for (int i = 1; i <= max; i++)
 {
 System.Threading.Thread.Sleep(1000);
 Console.WriteLine("Count: " + i);
 }
 return max;
}

This method displays a count in the Console window and then returns the largest number it displayed.
Notice that this method doesn’t know anything about the callback.

When the method finishes, the following callback (which was registered in the call to
BeginInvoke) executes.

// The asynchronous thread finished.
private void CountCallback(IAsyncResult iresult)
{
 // Get an AsyncResult.
 AsyncResult result = (AsyncResult)iresult;

 // Get the delegate that ran.
 Func<int, int> caller = (Func<int, int>)result.AsyncDelegate;

 // Get the parameter we passed to BeginInvoke.
 string parameter = (string)result.AsyncState;

 // Get the method's return value.
 int value = (int)caller.EndInvoke(result);

 // Use Invoke to display the result.
 Action<string> updater = SetLabel;
 string message = parameter + value;
 this.Invoke(updater, message);
}

The callback method receives as a parameter an IAsyncResult object that gives information about
the method that finished running.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

144 ❘ ChAPtER 6 meThods

The method first casts the IAsyncResult parameter into an AsyncResult object. (AsyncResult is
defined in the System.Runtime.Remoting namespace. The program includes a using directive to
simplify the code.)

Next, the code casts the result’s AsyncDelegate property into a delegate that represents the method
that ran asynchronously.

The result’s AsyncState property contains the parameter that was given to the BeginInvoke
method to pass on to the callback. In this example, that was the string Thread:. This example
simply passes a fixed string in this value, but more generally you can use this value to identify
different asynchronous calls to the same method. The code gets this value and casts it into a
string to recover the original value.

Next, the code calls the delegate’s EndInvoke method passing it the result object. This frees the
resources used by the thread and lets the program retrieve the method’s returned result. In this example,
the Count method returns an int so the code casts the value returned by EndInvoke into an int.

At this point the callback would like to display a success message in the form’s Label. Unfortunately,
the callback is executing in the asynchronous thread rather than the UI thread, so it cannot directly set
the Label’s Text property.

To work around this problem, the callback creates a delegate to represent the SetLabel method
described next. It composes a message and calls the form’s Invoke method passing it the delegate
and the message. This makes the form run the SetLabel method on its UI thread.

The following code shows the SetLabel method.

// Set the Label's text.
private void SetLabel(string text)
{
 countLabel.Text = text;
}

The SetLabel method simply sets the Label’s Text property. (This is the only simple part of the
whole process.)

using Async and Await
Calling EndInvoke directly in the UI thread makes the code relatively simple, but it means the pro-
gram is blocked until the asynchronous thread finishes running. Using a callback allows the main
UI thread to finish before the threads do so the user interface can interact with the user, but the code
is more complex, particularly if the callback must manipulate controls, so it needs to use the form’s
Invoke method.

C# provides two keywords that make it easier to use the callback approach without actually writing
callbacks and calling Invoke yourself.

The async keyword indicates that a routine may have parts that should run asynchronously. You
should apply this keyword to event handlers and other methods that will start tasks asynchronously
and then wait for them.

The await keyword makes the program wait until a particular task has finished running asyn-
chronously. When it sees the await keyword, C# essentially converts the rest of the method into a

www.EBooksWorld.ir

www.hellodigi.ir

asynchronous methods ❘ 145

callback that it automatically invokes when the task has finished. One really nice feature of this “vir-
tual callback” is that it executes on the UI thread so it can manipulate controls directly without using
the form’s Invoke method.

The AsyncAwait example program, which is available for download on this book’s website, is
similar to the HandleCallback example program, but it uses the async and await keywords
instead of a callback.

The following code shows the event handler that executes when you click the program’s Count
button. The async and await keywords are highlighted in bold.

// Count on a separate thread.
private async void countButton_Click(object sender, EventArgs e)
{
 // Disable the button.
 countButton.Enabled = false;
 countLabel.Text = "";
 countButton.Refresh();
 countLabel.Refresh();

 // Start the Count method on a new thread.
 Func<object, int> countDelegate = Count;
 Task<int> task = new Task<int>(countDelegate, 5);
 task.Start();

 // Count to 3.
 for (int i = 1; i <= 3; i++)
 {
 System.Threading.Thread.Sleep(1000);
 countLabel.Text = i.ToString();
 countLabel.Refresh();
 }

 // Display a finished message.
 countLabel.Text = "Main: done";

 // Enable the button.
 countButton.Enabled = true;

 // Wait for the task to complete.
 int result = await task;

 // Display the result message.
 countLabel.Text = "Thread: " + result;
}

Because this event handler has parts that run asynchronously, its declaration includes the async
keyword.

After some preliminaries, the code creates a delegate that refers to the Count method. The Task
class used next can pass a state value to the method, but Task expects that value to be of the generic
object class, so the countDelegate variable is declared to represent methods that take an object
parameter and return an int.

www.EBooksWorld.ir

www.hellodigi.ir

146 ❘ ChAPtER 6 meThods

Next, the code creates a Task object for the method represented by the countDelegate variable.
The Task constructor takes as parameters the delegate and the value 5 that it should pass to the
delegate’s method.

The code then calls the Task’s Start method to start the task running on a new thread.

The program then performs its own count on the UI thread. When it finishes it displays a message
in the Label and re-enables the program’s Button.

Having finished its work, the code uses the await keyword to wait for the Task to finish and saves
the result returned in the variable result.

The code finishes by displaying the result it received from the asynchronous thread.

The following code shows the new version of the Count method.

// Count pausing 1 second between numbers.
// Return the final value displayed.
private int Count(object maxObj)
{
 int max = (int)maxObj;
 for (int i = 1; i <= max; i++)
 {
 System.Threading.Thread.Sleep(1000);
 Console.WriteLine("Count: " + i);
 }
 return max;
}

This is similar to the earlier versions except its parameter is declared as an object instead of an
int. It must then convert the object into an int before it starts its loop.

At first this example may seem similar to the BeginInvoke example described earlier. Both start
an asynchronous thread, do some counting on the UI thread, and then wait for the asynchronous
thread to finish before continuing.

The difference is that the BeginInvoke example is blocked while it waits for the asynchronous thread
to finish. In contrast, the AsyncAwait example returns as soon as the code uses the await keyword.
Later when the asynchronous thread finishes, it invokes a hidden callback and execution returns to
the main program right after the await keyword. This lets the UI thread remain responsive while
it’s waiting for the other thread to finish.

SuMMARy

Methods let you break an application into manageable, reusable pieces. This chapter explained how
to declare methods that define how objects behave. It also explained techniques related to methods,
such as how to create extension methods and use covariance and contravariance.

This chapter also explained some of the ways you can execute pieces of code simultaneously on
different threads of execution. If your computer has multiple cores or CPUs, that may allow you
to greatly improve performance.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 147

The chapters so far have not explained how to write anything other than straight-line code that
executes one statement after another with no deviation. Some examples have used loops and other
constructs, but up until now this book hasn’t explained the details of how to use those statements.

Most programs need to follow more complex paths of execution than simply executing a series of
statements. They may need to perform some statements only under certain conditions and repeat
other statements many times. Chapter 7, “Program Control Statements,” describes the statements
that a C# program uses to control the flow of code execution. These include decision statements
(if-else and switch) and looping statements (for, foreach, while, and do-while).

ExERCISES

 1. Create an IContactable interface that specifies a method Contact that takes a string
parameter and returns a bool. (In a real application, this method would try to contact
someone via e-mail, text message, or some other method and return true to indicate success
or false to indicate failure.)

 2. Create an Emailable class that implicitly implements the interface you built for Exercise 1.
First, do it by hand. Then use Visual Studio’s Implement context menu command to do it
again. (You don’t need to give the method a real body. Just make it return true.)

 3. Create a Textable class that explicitly implements the IContactable interface you built for
Exercise 1. First, do it by hand. Then use Visual Studio’s Implement context menu command
to do it again.

 4. Create a Contactable class that you could use instead of the IContactable interface you
built for Exercise 1.

 5. Create a non-abstract Mailable class that inherits from the Contactable class you built for
Exercise 4.

 6. Create a double extension method named Root that uses Math.Sqrt to return the square
root of a number.

 7. The Math class’s Sqrt method returns a number’s square root, but the class has no method
that returns other roots such as the third root. However, the Math class’s Pow method returns
a number raised to a power, and you can use that method to calculate roots. For example,
the third root of a number would be Math.Pow(number, 1.0 / 3.0). Write an overloaded
version of the Root extension method you built for Exercise 6 that takes the root’s base as a
parameter and uses Math.Pow to calculate the result.

 8. Suppose you’re building a checkers program and you want a Piece class to represent a piece.
The King class inherits from Piece and represents a piece that has been crowned. The Piece
class defines a CanMoveTo method that takes a row and column number as inputs and returns
true or false to indicate whether the piece can move to that position. The King class must
replace this method with a new version. Finally, you want to represent all pieces whether
crowned or not by Piece objects. For example, to keep track of the pieces’ positions, the pro-
gram will use an array defined by the following code.

Piece[] Board = new Piece[8, 8];

www.EBooksWorld.ir

www.hellodigi.ir

148 ❘ ChAPtER 6 meThods

Create simple Piece and King classes. For testing purposes, make the Piece class’s
CanMoveTo method always return false and make the King class’s version always
return true.

 9. Suppose a program has the inheritance hierarchy Person ➪ Employee ➪ Manager ➪
Executive. Define a delegate type named ManagersFromEmployeesDelegate to repre-
sent methods that take an array of Employees as an input and that return an array of
Managers. Create a Promote method that has the same signature and make a variable to
hold that method.

 10. Use covariance and contravariance to make a new Promote2 method that is as dif-
ferent as possible from the Promote method you built for Exercise 9. Create a new
ManagersFromEmployeesDelegate variable and make it hold a reference to the
new method.

 11. (Hard) Make an application similar to the one shown in Figure 6-3. (You can’t tell from the
picture in this book, but the upper-left image uses shades of red, the upper-right image uses
shades of green, the lower-left image uses shades of blue, and the lower-right image uses shades
of gray.)

FIGuRE 6-3: The ColorizeBitmap example program creates red,
green, blue, and gray versions of an image synchronously and
asynchronously .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 149

The File menu has two commands: Open (opens an image file) and Exit (closes the pro-
gram). The Process menu also has two commands: Synchronously (processes images syn-
chronously) and Asynchronously (processes images asynchronously).

You can use the following enumeration and ProcessBitmap method.

// The colorization types.
private enum ColorizationType
{
 Red,
 Green,
 Blue,
 Gray,
}

// Process a Bitmap.
private void ProcessBitmap(Bitmap bm, ColorizationType colorType)
{
 for (int y = 0; y < bm.Height; y++)
 {
 for (int x = 0; x < bm.Width; x++)
 {
 Color color = bm.GetPixel(x, y);
 int average = (color.R + color.G + color.B) / 3;
 if (colorType == ColorizationType.Red)
 bm.SetPixel(x, y, Color.FromArgb(average, 0, 0));
 else if (colorType == ColorizationType.Green)
 bm.SetPixel(x, y, Color.FromArgb(0, average, 0));
 else if (colorType == ColorizationType.Blue)
 bm.SetPixel(x, y, Color.FromArgb(0, 0, average));
 else
 bm.SetPixel(x, y, Color.FromArgb(average, average, average));
 }
 }
}

When the user selects the Synchronously command, use the ProcessBitmap method to pro-
cess four copies of the loaded image and display the results.

When the user selects the Asynchronously command, use BeginInvoke and EndInvoke to
perform the same tasks asynchronously.

Use the System.Diagnostics.Stopwatch class to time the two techniques.

 12. Would there be any advantage to modifying the program you wrote for Exercise 11 so it
uses a callback or async and await?

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Program control statements
whAt’S IN thIS ChAPtER

➤➤ The if-else and switch statements

➤➤ The ?: and ?? operators

➤➤ The for, while, do, and foreach loops

➤➤ Enumerators

➤➤ The break and continue statements

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Program control statements tell an application which other statements to execute under
different circumstances. They control the path that execution takes through the code. They
include commands that tell the program to execute some statements but not others and to
execute certain statements repeatedly.

The two main categories of control statements are decision statements (or conditional statements)
and looping statements. The following sections describe in detail the decision and looping state-
ments provided by C#.

dECISION StAtEMENtS

A decisions statement or conditional statement represents a branch in the program. It
marks a place where the program can execute one set of statements or another, or possibly
no statements at all, depending on some condition. These include several kinds of if state-
ments and switch statements.

7

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

152 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

if-else Statements
The if-else statement has the following syntax:

if (condition1) statement1;
else if (condition2) statement2;
else if (condition3) statement3;
...
else statementElse;

The conditions are logical expressions that evaluate to either true or false. The statements are the
statements that should be executed if the corresponding condition is true.

The program evaluates each of the conditions until it finds one that is true. It then evaluates the
corresponding statement and skips all the rest of the series of else and if statements.

ShORt CIRCuItING IFS

Because the program skips any remaining else and if statements, a series of if-else
statements provides short-circuit evaluation similar to the behavior given by the ||
operator. In particular, the program doesn’t evaluate the conditions used by those
statements. Normally, that’s okay and saves the program some time, but it can be a
problem if those conditions invoke methods with side effects.

For example, suppose a condition calls the EmployeeExists method. If that
method opens an employee database and leaves it open, that is a side effect. If you
don’t know whether that condition will be checked, after the series of if-else
statements finishes, you won’t know whether the database has been opened.

The best way to avoid this issue is to not write methods that have unexpected side
effects. For more on side effects, see the discussion of the && and || operators in the
section “Logical Operators” in Chapter 5.

If none of the conditions are true, the program executes statementElse.

For example, consider the following code snippet.

string greeting = "";

if (DateTime.Now.DayOfWeek == DayOfWeek.Monday)
 greeting = "Sorry, it's Monday.";
else if (DateTime.Now.DayOfWeek == DayOfWeek.Friday)
 greeting = "Finally, it's Friday!";
else
 greeting = "Welcome to " + DateTime.Now.DayOfWeek.ToString();

MessageBox.Show(greeting);

The code starts by creating the string variable greeting and initializing it to a blank string. It then
begins a series of if-else statements.

If it’s Monday, the program sets greeting to "Sorry, it's Monday."

www.EBooksWorld.ir

www.hellodigi.ir

Decision statements ❘ 153

If it’s not Monday and it is Friday, the program sets greeting to "Finally, it's Friday!"

If it’s neither Monday nor Friday, the program sets greeting to "Welcome to" followed by the
current day of the week.

After the series of if-else statements, the program displays the greeting in a message box.

The final else section is optional. If you don’t include it and none of the conditions are true, the
program doesn’t execute any of the corresponding statements.

All the else if statements are also optional. If the code includes only an if statement, either the
program executes the statement that follows or it doesn’t, depending on the value of the condition.

For example, the following code uses a single if statement to display a message box only if it’s
Monday. If it’s any other day of the week, the program does nothing.

if (DateTime.Now.DayOfWeek == DayOfWeek.Monday)
 MessageBox.Show("Sorry, it's Monday.");

The “statement” that the program executes when a condition is true can actually be a block of
statements surrounded by braces. The following shows the syntax.

if (condition1)
{
 statement1;
}
else if (condition2)
{
 statement2;
}
else if (condition3)
{
 statement3;
}
...
else
{
 statementElse;
}

You can place as many statements as you like between the braces.

switch Statements
The switch statement lets a program execute one of several pieces of code depending on a single
value. The result is similar to a series of if-else statements that compare a single value to a series
of other values.

The basic syntax is as follows:

switch (value)
{
 case expression1:
 statements1;
 break;
 case expression2:

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

154 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

 statements2;
 break;
 ...
 «default:
 statementsDefault
 break;»
}

Here the program compares value to the expressions until it finds one that matches or it runs out of
expressions to test. The expressions must be constant statements and cannot duplicate each other.

If the program finds a match, it executes the corresponding code. If the program runs out of
expressions, it executes the statements in the default section (if it is present).

EASy-tO-REAd dEFAuLtS

The default section of a switch statement does not need to be at the end of the
list, but it’s usually easier to read there than buried in the middle.

You can place multiple case statements in a group to make them all execute the same code. However,
you cannot allow the code from one case section to fall through to the next. If the first section con-
tains lines of code, it must end with a break statement before the next case begins.

thE NEEd FOR SPEEd

If a switch statement includes a long sequence of case sections, the C# compiler con-
verts it into a lookup table. Finding items in a lookup table is very fast, so the switch
statement is often faster than a corresponding sequence of if-then-else statements.

However, the switch statement is less flexible. A switch statement only compares a
single value to a collection of other values, but a sequence of if-else statements can
perform all sorts of tests. Unless the code is executed many times inside a loop, the dif-
ference in time will probably be small anyway. For that reason, you should generally
use the approach that makes the code easiest to read and understand.

The following code is similar to the previous code that checks the day of the week except this
version adds extra code for Saturday and Sunday.

string greeting = "";

switch (DateTime.Now.DayOfWeek)
{
 case DayOfWeek.Monday:
 greeting = "Sorry, it's Monday.";
 break;
 case DayOfWeek.Friday:
 greeting = "Finally, it's Friday!";

www.EBooksWorld.ir

www.hellodigi.ir

Decision statements ❘ 155

 break;
 case DayOfWeek.Saturday:
 case DayOfWeek.Sunday:
 greeting = "Yay! The weekend!";
 break;
 default:
 greeting = "Welcome to " + DateTime.Now.DayOfWeek.ToString();
 break;
}

MessageBox.Show(greeting);

GIVE bREAK A bREAK

Actually each case section in a switch statement does not need to end with a break
statement. Rather it must end in a statement that cannot allow control to pass by to
the next case section. The break statement satisfies that condition, but a few other
statements do, too.

For example, consider the following code.

switch (choice)
{
 case 1:
 // Do something...
 throw new ArgumentException();

 case 2:
 for (; ;)
 {
 // Do something...
 }

 case 3:
 int i = 1;
 while (i > 0)
 {
 // Do something (that doesn't modify i) ...
 }
}

The first case section ends by throwing an exception. Because control cannot get
past that statement, this is okay.

The second case section contains an infinite loop. The C# compiler is smart enough
to know that the loop never ends, so control cannot get past, which is also okay.

The third case section ends in a loop that will be infinite as long as the code inside
the loop doesn’t modify variable i. The compiler isn’t smart enough to realize that
this loop never ends, so it doesn’t allow this.

www.EBooksWorld.ir

www.hellodigi.ir

156 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

This code initializes the greeting variable and then executes a switch statement. Depending on the
values of DateTime.Now.DayOfWeek, the program executes the code in the appropriate case section.

The values DayOfWeek.Monday and DayOfWeek.Friday have their own sections. The two values
DayOfWeek.Saturday and DayOfWeek.Sunday both execute code that sets greeting to "Yay!
The weekend!"

If DateTime.Now.DayOfWeek is not any of those values, the default section sets greeting equal to
"Welcome to" followed by the day of the week.

Enumerated Values
The switch statement works naturally with lists of discrete values because each case statement can
handle one value.

Enumerated types also work with discrete values, so they work well with switch statements. The
enumerated type defines the values and the switch statement uses them, as shown in the following
code fragment.

private enum JobStates
{
 Pending,
 Assigned,
 InProgress,
 ReadyToTest,
 Tested,
 Released,
}
private JobStates JobState;
...
switch (JobState)
{
 case JobStates.Pending:
 ...
 break;
 case JobStates.Assigned:
 ...
 break;
 case JobStates.InProgress:
 ...
 break;
 case JobStates.ReadyToTest:
 ...
 break;
 case JobStates.Tested:
 ...
 break;
 case JobStates.Released:
 ...
 break;
}

www.EBooksWorld.ir

www.hellodigi.ir

Looping statements ❘ 157

To catch bugs when changing an enumerated type, many developers include a default section
that throws an exception. If you later add a new value to the enumerated type but forget to add
corresponding code to the switch statement, the default section throws an exception, so you
can fix the code.

For more information on enumerated types, see the section “Enumerations” in Chapter 4.

Conditional and Null-coalescing Operators
The conditional or ternary operator ?: evaluates a boolean expression and returns one of two val-
ues, depending on whether the expression is true or false. For example, the following code exam-
ines an Employee object’s IsManager property. If IsManager is true, the code sets the employee’s
Salary to 90,000. If IsManager is false, the code sets the employee’s Salary to 10,000.

emp.Salary = emp.IsManager ? 90000 : 10000;

This is equivalent to the following if-else statement.

if (emp.IsManager) emp.Salary = 90000;
else emp.Salary = 10000;

The null-coalescing operator ?? examines a reference value. It returns that value if it is not null. It
returns its second argument if the first value is null. For example, the following code sets variable
orderedBy equal to customer if customer is not null. If customer is null, the code sets orderedBy
equal to a new Customer object.

Customer orderedBy = customer ?? new Customer();

This is equivalent to the following if-else statement.

Customer orderedBy;
if (customer != null) orderedBy = customer;
else orderedBy = new Customer();

For more information on the conditional and null-coalescing operators, see the section “Conditional
and Null-coalescing Operators” in Chapter 5.

LOOPING StAtEMENtS

Looping statements make the program execute a series of statements repeatedly. C# provides four
kinds of loops: for loops, while loops, do loops, and foreach loops.

for Loops
A for loop has the following syntax.

for («initialization»; «test»; «increment») statement;

www.EBooksWorld.ir

www.hellodigi.ir

158 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

The parts of the loop are as follows:

➤➤ initialization—This piece of code can initialize the loop. Usually it declares and initializes
the looping variable; although, you can place other code here as well.

➤➤ test—Each time the program is about to execute the code inside the loop, it evaluates this
as a boolean expression. If the result is true, the loop continues. If the result is false, the
loop ends. (Note that this means the loop might not execute even once if the condition is
false when the loop starts.)

➤➤ increment—After the program has executed the code inside the loop but before it checks
test again, it executes this code. Usually this code increments the looping variable.

➤➤ statement—This is the piece of code that is executed repeatedly as long as test is true.
You can make the loop include multiple statements by enclosing them in braces.

LOOP SCOPE

Variables declared inside a loop, including those created in the loop’s initialization
section, have scope equal to the loop. That means code outside of the loop cannot see
them. If you need the code after the loop to see a variable, declare it before the loop,
not inside the loop.

It’s a good practice to declare the looping variable inside the for statement. That
limits the variable’s scope, so you don’t need to remember what the variable means in
other pieces of code. It keeps the variable’s declaration and initialization close to the
code where it is used, so it’s easier to remember the variable’s data type and value. It
also lets you more easily reuse counter variables in other loops without confusion.

The following code shows a simple for loop.

for (int i = 1; i <= 10; i++)
{
 Console.WriteLine(i);
}

The initialization part of the for statement declares integer variable i and sets it equal to 1. The
test part of the loop determines whether i is less than or equal to 10. The increment part of the loop
increases i by 1. Taken together, these pieces of the for statement make the loop run for values i = 1,
i = 2, i = 3, ..., i = 10. For each value of i, the program executes the Console.WriteLine statement
to display the value of i.

Usually the loop’s initialization piece declares and initializes a single value as in the previous code.
If the looping variable has already been declared, you can leave this section blank or only initialize the
variable. For example, the following code declares the looping variable i outside of the loop.

int i;
for (i = 1; i < 10; i++)
{
 Console.WriteLine(i);
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Looping statements ❘ 159

Out OF CONtROL

Your code can change the value of looping variables inside the loop, but that’s gener-
ally not a good idea. A for loop’s intent is usually to make one variable (or at most
a few variables) loop over specific values. If you change the value inside the loop, the
result can be confusing. If you must modify looping variables in complicated ways,
consider using the while or do loop instead. Then programmers reading the code
won’t expect a simple incrementing loop.

The initialization section can also declare and initialize multiple variables of the same type,
and the increment section can execute multiple commands separated by commas. For example, the
following code shows a for loop that uses three looping variables: a, b, and c.

for (int a = 0, b = 1, c = 1; a < 1000; a = b, b = c, c = a + b)
{
 Console.WriteLine("a: " + a);
}

In this example, the initialization code declares and initializes the three looping variables, the
test section makes the loop run as long as a < 1000, and the increment section updates all three
variables.

If you omit the test entirely, the loop runs indefinitely. In that case the loop’s code usually contains
a return or other statement to break out of the loop. For example, the following code enters an
infinite loop. Each time through the loop, it does something and then asks the user whether it should
continue. If the user clicks No, the loop’s return statement makes the program exit the method that
contains the loop.

for (; ;)
{
 // Do something ...

 if (MessageBox.Show("Continue?", "Continue?", MessageBoxButtons.YesNo)
 == DialogResult.No) return;
}

Noninteger for Loops
Usually a for loop’s control variable has an integral data type such as a int or long. Because you
can do all sorts of strange things inside a for loop’s initialization and increment sections, you aren’t
restricted to integer looping variables. For example, the following code uses a float variable to dis-
play the values 1.0, 1.5, 2.0, 2.5, and 3.0.

for (float x = 1f; x <= 3f; x += 0.5f)
 Console.WriteLine(x.ToString("0.0"));

www.EBooksWorld.ir

www.hellodigi.ir

160 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

Because floating-point numbers cannot exactly represent every possible value, these data types are sub-
ject to rounding errors that can lead to unexpected results in for loops. The preceding code works as
you would expect, at least on my computer. The following code, however, has problems. Ideally, this
code would display values between 1 and 2, incrementing them by 1/7. Because of rounding errors,
however, the value of x after seven trips through the loop is approximately 1.85714316. The program
adds 1/7 to this and gets 2.00000024. This is greater than the stopping value 2, so the program exits
the loop and the Console.WriteLine statement does not execute for x = 2.

for (float x = 1; x <= 2; x += 1f / 7f)
{
 Console.WriteLine(x);
}

One solution to this type of problem is to convert the loop into one that uses an integer control
variable. Integer variables don’t have the same problems with rounding errors that floating-point
numbers have, so you get more precise control over the values used in the loop.

The following code does roughly the same thing as the previous code. However, this version uses an
integer control variable, so this loop executes exactly eight times as desired. The final value printed
into the Console window by the program is 2.

float x = 1;
for (int i = 1; i <= 8; i++, x += 1f / 7f)
{
 Console.WriteLine(x);
}

while Loops
A while loop has the following syntax.

while (test)
 statement;

As long as the test evaluates to true, the loop executes its statement. Note that this means the loop
might not execute even once if the test is false when the loop starts.

You cannot omit the test but you can set it to true to make the while loop repeat indefinitely. If
you want to execute more than one statement inside the loop, enclose them in braces. Usually the code
inside the loop makes something change so the test eventually evaluates to false and stops the loop.

For a simple example of a while loop, suppose values is an array of integers. The following code
uses a while loop to search the array for the value 37.

int index = 0;
while ((index < values.Length) && (values[index] != 37))
 index++;

The code initializes the variable index to 0. Then as long as index is a valid index in the array and
the values[index] entry isn’t 37, the loop increments index. (After the loop finishes, if index is
equal to the length of the array, the value wasn’t found.)

www.EBooksWorld.ir

www.hellodigi.ir

Looping statements ❘ 161

do Loops
A do loop has the following syntax.

do
 statement;
while (test);

A do loop is similar to a while loop except it performs its test after the loop has executed instead of
before it executes. That means a do loop always executes at least once.

The following code shows a do loop version of the previous example that searches an array for the
value 37.

int index = -1;
do
 index++;
while ((index < values.Length) && (values[index] != 37));

As is the case for a while loop, if you want to execute multiple statements in a do loop, you should
enclose them in braces.

foreach Loops
A foreach loop iterates over the items in a collection, array, or other container class that supports
foreach loops. A foreach loop has the following syntax.

foreach (variable in group)
 statement;

Here, group is a collection, array, or other object that supports foreach. As in for loops, the looping
variable must be declared either in or before the foreach statement.

ENAbLING ENuMERAtORS

To support foreach, the group object must implement the System.Collections
.IEnumerable interface. This interface defines a GetEnumerator method that returns
an enumerator. For more information, see the next section, “Enumerators.”

The following code shows a simple foreach loop.

foreach (Employee employee in employees)
{
 Console.WriteLine(employee.Name);
}

Each time through the loop, the program sets the variable employee equal to the next item in the
employees array. The code inside the loop displays the employee object’s Name in the Console window.

www.EBooksWorld.ir

www.hellodigi.ir

162 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

The looping variable must be of a data type compatible with the objects contained in the group.
If the group contains Employee objects, the variable could be an Employee object. It could also be
a generic object or any other class that readily converts into an Employee object. For example, if
Employee inherits from the Person class, the variable could be of type Person.

C# doesn’t automatically understand what kinds of objects are stored in a collection or array until it
tries to use them. If the looping variable’s type is not compatible with a value in the collection, the pro-
gram throws an InvalidCastException when it tries to assign the looping variable to that value.

That means if a collection or array contains more than one type of object, the looping variable must
be of a type that can be converted into all the objects’ types. If the objects in a collection do not
inherit from a common ancestor class, the code must use a control variable of type object.

LIMItING SCOPE

As is the case with for loops, declaring the looping variable in the foreach state-
ment is a good practice. That limits the variable’s scope, so you don’t need to
remember what the variable means in other pieces of code. It keeps the variable’s
declaration and initialization close to the code where it is used, so it’s easier to
remember the variable’s data type and value. It also lets you easily reuse counter
variables in other loops without confusion.

Your code can change the value of the looping variable inside the loop, but that has no effect on the
loop’s progress through the collection or array. The loop resets the variable to the next object and
continues as if you had never changed the variable’s value. To avoid confusion, don’t bother.

The program cannot modify the collection itself while the loop is executing. For example, if the
code is looping over a list of Employee objects, the code inside the loop cannot add or remove
objects from the list. (That could be confusing, so this probably wouldn’t be a good idea even if
it were allowed.)

CREAtIVE COLLECtIONS

If you must modify a collection while looping through it, create a new collection and
modify that one instead. For example, suppose you want to loop through the original
collection and remove some items. Make the new collection and then loop through
the original, copying the items that you want to keep into the new collection.

In complicated situations, you may need to use a while loop and some careful
indexing instead of a foreach loop.

One common scenario when dealing with collections is examining every item in the collection and
removing some of them. A foreach loop won’t let you remove items while you’re looping over them
so that’s not an option.

www.EBooksWorld.ir

www.hellodigi.ir

Looping statements ❘ 163

One approach that seems like it might work (but doesn’t) is to use a for loop, as shown in the
following code.

for (int i = 0; i < employees.Count; i++)
{
 if (employees[i].ShouldBeRemoved) employees.RemoveAt(i);
}

Unfortunately, if the code removes an object from the collection, the loop skips the next item
because its index has been reduced by one and the loop has already passed that position in
the collection.

One solution to this problem is to use a for loop to examine the collection’s objects in reverse order,
as shown in the following example.

for (int i = employees.Count - 1; i >= 0; i--)
{
 if (employees[i].ShouldBeRemoved) employees.RemoveAt(i);
}

In this version, the code never needs to use an index after it has been removed because the code is
counting backward. The index of an object in the collection also doesn’t change unless that object
has already been examined by the loop. The loop examines every item exactly once, no matter
which objects are removed.

Enumerators
An enumerator is an object that lets you move through the objects contained by some sort of container
class. For example, collections, arrays, and hash tables provide enumerators. This section discusses
enumerators for collections, but the same ideas apply for these other classes.

You can use an enumerator to view the objects in a collection but not to modify the collection
itself. You can use the enumerator to alter the objects in the collection (for example, to change
their properties), but you can generally not use it to add, remove, or rearrange the objects in
the collection.

Initially, an enumerator is positioned before the first item in the collection. Your code should use
the enumerator’s MoveNext method to step to the next object in the collection. MoveNext returns
true if it successfully moves to a new object or false if there are no more objects in the collection.

The Reset method restores the enumerator to its original position before the first object, so you can
step through the collection again.

The Current method returns the object that the enumerator is currently reading. Invoking Current
throws an exception if the enumerator is not currently reading any object. That happens if the enu-
merator is before the first object or after the last object.

The following example uses an enumerator to loop through the items in a list named employees.

IEnumerator<Employee> enumerator = employees.GetEnumerator();
while (enumerator.MoveNext())
{
 Console.WriteLine(enumerator.Current.Name);
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

164 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

This code creates an enumerator to enumerate over Employee objects. It then enters a while loop.
If enumerator.MoveNext returns true, the enumerator has successfully moved to the next object
in the collection. As long as it has read an object, the program uses enumerator.Current to get the
current object and displays that object’s Name property in the Console window.

When it reaches the end of the employees list, the enumerator’s MoveNext method returns false
and the loop ends.

A foreach loop provides roughly the same access to the items in a container class as an enumerator.
Under some circumstances, however, an enumerator may provide a more natural way to loop through
a container class than a foreach loop. For example, an enumerator can skip several items without
examining them closely. You can also use an enumerator’s Reset method to restart the enumeration.
To restart a foreach loop, you would need to start the loop over.

The IEnumerable interface defines the features needed for enumerators, so any class that implements
the IEnumerable interface provides enumerators. Any class that supports foreach must also imple-
ment the IEnumerable interface, so any class that supports foreach also supports enumerators. A few
of the classes that implement IEnumerable include the following:

Array HybridDictionary SqlDataReader

ArrayList ListDictionary Stack

Collection MessageQueue String

CollectionBase OdbcDataReader StringCollection

ControlCollection OleDbDataReader StringDictionary

DataView OracleDataReader TableCellCollection

DictionaryBase Queue TableRowCollection

DictionaryEntries ReadOnlyCollectionBase XmlNode

Hashtable SortedList XmlNodeList

Iterators
An iterator is similar in concept to an enumerator. It also provides methods that enable you to step
through the items in some sort of container object. Iterators are more specialized than enumerators
and work with particular classes.

For example, a GraphicsPath object represents a series of connected lines and curves.
A GraphicsPathIterator object can step through the line and curve data contained in a
GraphicsPath object.

Iterators are much more specialized than enumerators. How you use them depends on what you
need to do and on the kind of iterator, so they are not described in detail here.

www.EBooksWorld.ir

www.hellodigi.ir

Looping statements ❘ 165

break Statements
Each type of loop has a normal termination condition. For example, a while loop continues to execute
as long as the test in the while statement is true. When the test becomes false, the loop ends.

In addition to a loop’s standard method for ending, there are a few other ways a program can leave
a loop.

One way to break out of a loop early is to execute a return statement. When the program encounters a
return statement, the method immediately exits, even if that means breaking out of one or more loops.

The break statement immediately stops the innermost loop containing the statement and passes
control to the end of the loop. For example, suppose the Machine class represents the machines in
a workshop. The following code searches the array machines for a machine that isn’t busy.

Machine idleMachine = null;
foreach (Machine machine in machines)
{
 if (machine.IsIdle)
 {
 idleMachine = machine;
 break;
 }
}

if (idleMachine != null)
{
 // Assign work to the machine.
}

First, the program declares the variable idleMachine and initializes it to null. It then loops
through the Machines array. If it finds an object in the array with IsIdle property true, it saves
that machine in the variable idleMachine and uses the break statement to end the loop.

After the loop finishes, the code checks idleMachine to see if it found an idle machine.

A loop can also end early if it encounters an exception and doesn’t include code to handle it. In that
case, the loop ends and control passes to an enclosing try catch finally block if there is one.
If the loop isn’t enclosed in a try catch finally block, control leaves the executing method and
passes up the call stack to the method that called it. If there is an active try catch finally block
at that level, it handles the exception. If there is still no try catch finally block, control contin-
ues to pass up the call stack until the exception is handled or control pops off the stack, in which
case the program crashes. (For more information about try catch finally blocks, see Chapter 9,
“Error Handling.”)

continue Statements
The continue statement lets a program skip the rest of its current pass through a loop and start the
next pass early.

www.EBooksWorld.ir

www.hellodigi.ir

166 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

For example, suppose you need to process a collection of Employee objects. If an employee is not
exempt, you need to perform some overtime calculations for that employee. The following code
shows how a program could use the continue statement to do this.

foreach (Employee employee in employees)
{
 if (employee.IsExempt) continue;

 // Process the employee.
 ...
}

Inside the loop, the code checks the Employee object’s IsExempt property. If IsExempt is true, the
program uses the continue statement to skip the rest of the loop and process the next Employee.

SuMMARy

Control statements form the heart of any program. Decision statements determine what commands
are executed, and looping statements determine how many times they are executed.

The if and switch statements are the most commonly used decision statements in C#. The ?: and
?? are less common operators that act as decision statements.

C# provides the for, while, do, and foreach looping statements. Some container classes also support
enumerators that let you step through the items in the container. An enumerator provides more flex-
ibility and can sometimes be more natural than a foreach loop.

Using the looping statements described in this chapter, you can perform complex searches over
collections of objects. For example, you can loop through an array of numbers to find their maxi-
mum, minimum, and average values. The next chapter explains how you can use database-like
query syntax to perform similar operations more easily. It tells how you can use LINQ to select,
filter, and arrange data taken from lists, collections, arrays, and other data structures.

ExERCISES

 1. Suppose person is a variable of type Person. The Person class has a Type property of the
enumeration type PersonType. The enumeration includes the values Customer, Employee,
and Manager. How are the following two blocks of code different?

// Block 1.
if (person.Type == PersonType.Customer)
{
 ...
}
else if (person.Type == PersonType.Employee)
{
 ...
}

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 167

else if (person.Type == PersonType.Manager)
{
 ...
}

// Block 2.
if (person.Type == PersonType.Customer)
{
 ...
}
if (person.Type == PersonType.Employee)
{
 ...
}
if (person.Type == PersonType.Manager)
{
 ...
}

 2. Rewrite the previous code in Block 1 to use a switch statement instead of if statements.

 3. Suppose the Person class has a GetBirthMonth method that looks a person up in a data-
base and returns the person’s birth month as a number between 1 and 12. Your program
should use that method to determine the person’s birthstone. Should you use a series of if
statements or a switch statement? Why?

 4. Write a series of if statements and a switch statement with roughly the same performance
to find birthstones as described in Exercise 3.

 5. Suppose you want to assign a letter grade depending on a student’s test score: 90–100 = A,
80–89 = B, 70–79 = C, 60–69 = D, 0–59 = F. Should you use a switch statement or a series
of if statements? Why? Write the code using your chosen approach.

 6. The section “for Loops” in this chapter used the following code as an example.

for (int a = 0, b = 1, c = 1; a < 1000; a = b, b = c, c = a + b)
{
 Console.WriteLine("a: " + a);
}

This code works but it’s rather confusing because its initialization and increment sections
contain so many statements. Rewrite this loop to move the initialization out of the loop and
the increment statements inside the loop.

 7. Write a for loop that adds up the numbers in the array values.

 8. Write a while loop that adds up the numbers in the array values.

 9. Write a do loop that adds up the numbers in the array values.

 10. Write a for loop that uses a char looping variable to display the letters A through Z.

www.EBooksWorld.ir

www.hellodigi.ir

168 ❘ ChAPtER 7 Program ConTrol sTaTemenTs

 11. The following code sets an overdue Bill object’s Penalty property to $5 or 10 percent of
the outstanding balance, whichever is greater.

bill.Penalty = bill.Status == BillStatus.Overdue ?
 bill.Balance < 50m ? 5m : bill.Balance * 0.1m : 0m;

Rewrite this code so that it doesn’t use the ?: operator.

 12. Rewrite the following code so that it doesn’t use the ?? operator.

Student student = GetStudent("Steward Dent") ?? new Student("Steward Dent");

 13. Write a for loop that displays the multiples of 3 between 0 and 100 in largest-to-
smallest order.

 14. What values does the following loop display?

for (int i = 1; i < 100; i += i) Console.WriteLine(i);

 15. Write a program that displays the dates that are Friday the 13ths starting at the beginning
of the current year. Display dates one year at a time as long as the user clicks Yes in a dialog
asking if the program should continue for the next year.

 16. Rewrite the following foreach loop so that it doesn’t use the continue statement.

foreach (Employee employee in employees)
{
 if (employee.IsExempt) continue;

 // Process the employee.
 ...
}

What advantage does the continue statement have over your solution? When would it be
even more useful?

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

LInQ
whAt’S IN thIS ChAPtER

➤➤ LINQ query syntax

➤➤ Grouping and aggregating results

➤➤ Creating new LINQ extension methods

➤➤ Method-based queries

➤➤ LINQ to Objects, LINQ to XML, and LINQ to ADO .NET

➤➤ Parallel LINQ

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Language Integrated Query or LINQ (pronounced “link”) is a data retrieval mechanism that
enables programs to filter, select, and group data in much the same way a program can gather
data from a database. The difference is that LINQ enables the program to select data from all
kinds of data sources, not just databases. LINQ enables a program to select data from arrays,
lists, collections, XML data, relational databases, and a wide variety of other data sources.

LINQ enables a program to use a (sort of) natural query language to make complex data
selections with little code. For example, suppose you want to search a collection of customer
records, find those with balances greater than $50 that are overdue by at least 30 days, and
display the list sorted by balance. You could easily write code to loop through the collection
to find the appropriate customers and copy them into a new collection. You could then write
code to sort that collection. This isn’t terribly hard, but it does take a moderate amount of
code that would give you several opportunities to make mistakes.

8

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

170 ❘ ChAPtER 8 linQ

LOtS OF LINQ

This chapter describes the standard LINQ providers that a C# program can use to
select data from such sources as arrays, lists, XML data, and relational databases.
However, you can build providers to let LINQ interact with just about any data
source. There are providers that select data from Amazon.com, Active Directory,
Excel, Flickr, Google, JSON, JavaScript, MySQL, Oracle, SharePoint, and many
other sources. For a list of some of the many providers available, see Charlie
Calvert’s blog post “Link to Everything: A List of LINQ Providers” at blogs
.msdn.com/b/charlie/archive/2008/02/28/link-to-everything-a-list-of-

linq-providers.aspx.

In contrast, a LINQ query can define this search and sort operation concisely. The program can then
execute the query to get the results with little code and little chance to make mistakes. The result may
not be as fast as optimized C# code, but LINQ is often much simpler and easier to implement.

LINQ provides dozens of extension methods that apply to all sorts of objects that can hold data such as
arrays, dictionaries, and lists. (For more information on extension methods, see the section “Extension
Methods” in Chapter 6, “Methods.”) For example, an array of integers by itself is basically just a chunk
of memory that holds a bunch of numbers. LINQ adds extension methods to integer arrays that let you
perform such tasks as the following:

➤➤ Finding the minimum, maximum, and average value

➤➤ Converting the array into an enumerable list of float or some other data type

➤➤ Concatenating the array with another array

➤➤ Determining whether the array contains a particular value

➤➤ Counting the number of values that meet some condition

➤➤ Returning the first value that meets some condition

➤➤ Returning the distinct values (the values without duplicates)

➤➤ Grouping the values by some criterion

➤➤ Finding the items that are in the array that are also in another array

➤➤ Sorting the items in the array

➤➤ Reversing the order of the items in the array

➤➤ Returning the sum of the items in the array

C# provides a syntax that converts queries into LINQ extension method calls to select, order, and
otherwise manipulate the data and return a result.

The standard LINQ tools are divided into the following three broad categories:

➤➤ LINQ to Objects—LINQ methods that interact with C# objects such as arrays, dictionaries,
and lists.

www.EBooksWorld.ir

www.hellodigi.ir

Introduction to LInQ ❘ 171

➤➤ LINQ to XML—LINQ features that read and write XML data. LINQ lets you easily move
data between XML hierarchies and other C# objects.

➤➤ LINQ to ADO.NET—LINQ features that let you write LINQ-style queries to extract data
from relational databases.

The following section provides an intuitive introduction to LINQ. Many of LINQ’s details are so
complex and technical that they can be quite confusing if they’re stated precisely. However, the basic
ideas are mostly straightforward and easy to understand with a few examples. To make things as
easy to understand as possible, this chapter relies heavily on examples.

The next section, “Basic LINQ Query Syntax,” describes the most useful LINQ query commands.
These enable you to perform queries that select, filter, and arrange data. The section after that,
“Advanced LINQ Query Syntax,” describes additional LINQ query commands that you are likely
to use less frequently.

The section “Other LINQ Methods” describes methods provided by LINQ but not supported by
C#’s LINQ query syntax. To use these methods, you must invoke them as methods for the arrays,
dictionaries, lists, and other objects that they extend.

After describing the tools provided by LINQ, most of the rest of the chapter describes the three
main categories of LINQ: LINQ to Objects, LINQ to XML, and LINQ to ADO.NET. The chapter
finishes by describing Parallel LINQ (PLINQ).

LINQ to Objects is a bit easier to understand than LINQ to XML and LINQ to ADO.NET because
it doesn’t require special knowledge beyond C#. To understand LINQ to XML properly, you need to
understand XML, which is a complex topic in its own right. Similarly, to get the most out of LINQ
to ADO.NET, you need to understand relational databases such as SQL Server, a huge topic about
which many books have been written.

Because LINQ to Objects is easiest to cover, this chapter focuses on it, and most of the examples in
this chapter use LINQ to Objects. Similar concepts apply to the other forms of LINQ as well. The
final sections of the chapter provide some information about LINQ to XML and LINQ to ADO.
NET, however, to give you an idea of what is possible in those areas.

INtROduCtION tO LINQ

The LINQ extension methods add new features to data stored in various data structures such as
arrays and lists. C# provides a higher-level query syntax that makes it easier to use the lower-level
extension methods. These higher-level query expressions define the data that should be selected
from the data source and the way it should be arranged. LINQ query syntax is somewhat similar
to the standard database Structured Query Language (SQL) so it should seem familiar if you have
worked with relational databases.

For example, suppose a program defines a Customer class with properties such as Name, Phone,
Street, City, State, Zip, Balance, and so forth. Suppose also that the customers array holds all
of the application’s Customer objects. Then the following expression defines a query that selects

www.EBooksWorld.ir

www.hellodigi.ir

172 ❘ ChAPtER 8 linQ

customers with negative account balances. It orders the results by balance in ascending order, so cus-
tomers with the most negative balances (who owe the most) are listed first.

var overdue =
 from customer in customers
 where customer.Balance < 0
 orderby customer.Balance ascending
 select new { customer.Name, customer.Balance };

Behind the scenes, C# transforms the query expression into calls to the LINQ API and fetches the
selected data. The program can then loop through the results as shown in the following code:

foreach (var customer in overdue)
 Console.WriteLine(customer.Name + ": " + customer.Balance);

There are a couple of interesting things to note about this code. First, the previous code fragments do
not declare an explicit data type for the overdue query expression or the looping variable customer in
the foreach loop. C# automatically infers the data type for both of these variables. If you use a state-
ment such as Console.WriteLine(overdue.GetType().Name) for the overdue and customer vari-
ables, you’ll discover that they have the following ungainly type names:

WhereSelectEnumerableIterator`2
<>f__AnonymousType0`2

Because these data types have such awkward names, you don’t want to try to guess them. It’s much
easier to use the var data type and let C# figure out the data types for you.

A second interesting fact about this code is that the program doesn’t actually fetch any data when the
query expression is defined. It accesses the data source (in this case the customers array) when the code
tries to access the result in the foreach loop.

Many programs don’t need to distinguish between when the expression is declared and when it is
executed. In this example, if the code iterated through the results right after defining the query, there
wouldn’t be much difference. However, if it may be a long time between defining the query and using
it or if the query takes a long time to execute, the difference may matter.

Third, if you have any experience with relational databases, you’ll notice that the select clause is
in a different position from where it would be in a SQL statement. In SQL the SELECT clause comes
first but in LINQ it comes at the end. (This placement is due to issues Microsoft encountered while
implementing IntelliSense for LINQ.)

INtELLISENSE dEFERREd

Basically IntelliSense doesn’t know what “fields” you can select until it knows what
fields are available. In the preceding example, the from clause indicates that the data
will be selected from the customers, an array of Customer objects. It isn’t until after
the from clause that IntelliSense knows that the select statement can pick from the
Customer class’s properties.

The following sections explain the most useful LINQ keywords supported by C#.

www.EBooksWorld.ir

www.hellodigi.ir

Basic LInQ Query syntax ❘ 173

bASIC LINQ QuERy SyNtAx

The following text shows the typical syntax for a LINQ query:

from ... where ... orderby ... select ...

The following sections describe these four standard clauses. The sections after those describe some
of the other most useful LINQ clauses.

from
The from clause tells where the query should get the data and defines the name by which it is known
within the LINQ query. Its basic form is

from queryVariable in dataSource

Here queryVariable is a variable that you are declaring to manipulate the items selected from
dataSource. This is similar to declaring a looping variable in a for or foreach statement.

You can supply a data type for queryVariable if you know its type; although, because of the
anonymous types used by LINQ, it’s often easiest to let LINQ infer the data type automatically.
For example, the following query explicitly indicates that the query variable customer is from the
Customer class:

var query = from Customer customer in customers select customer.Name;

A query can include multiple from clauses to select values from multiple data sources. For example,
the following query selects data from the customers and orders arrays.

var customerOrders =
 from customer in customers
 from order in orders
 select new { customer.Name, order.OrderId };

In database terms, this query returns the cross-product of the two arrays. In other words, it returns
every possible {Customer, Order} pair from the two arrays. For every Customer in the customers
array, it returns that Customer plus every Order in the orders array.

If the customers array contains Art, Betty, and Carl, and the orders array contains orders
numbered 1, 2, and 3, then this query selects the following nine results:

Art 1
Art 2
Art 3
Betty 1
Betty 2
Betty 3
Carl 1
Carl 2
Carl 3

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

174 ❘ ChAPtER 8 linQ

Usually, you include a where clause to connect the objects selected from the two lists. For example,
if customers and orders are related by a common CustomerId property, you might use the following
query to select customers together with their corresponding orders rather than all orders:

var customerOrders =
 from customer in customers
 from order in orders
 where order.CustomerId == customer.CustomerId
 select new { customer.Name, order.OrderId };

If Art, Betty, and Carl have CustomerId values 1, 2, 3, and the three orders have the corresponding
CustomerId values, the preceding query would return the following results:

Art 1
Betty 2
Carl 3

where
The where clause filters the records selected by the from clause. It can include tests involving the
objects selected and properties of those objects. The last example in the preceding section shows a
particularly useful kind of query that joins objects from two data sources that are related by common
property values. The where clause often performs simple tests and comparisons, but it can also execute
methods on the selected objects and properties to decide if they should be included in the results.

For example, suppose the Customer class has Balance and PaymentIsLate properties, and suppose
the PreferredCustomer class inherits from Customer. Also suppose the customers array contains
both Customer and PreferredCustomer objects.

The OwesALot method defined in the following code returns true if a Customer owes at
least $50. The query that follows selects objects from customers where the object is not a
PreferredCustomer, has a PaymentIsLate value of true, and for which function OwesALot
returns true.

private bool OwesALot(Customer customer)
{
 return customer.Balance <= -50m;
}
...
var query =
 from customer in customers
 where !(customer is PreferredCustomer) &&
 customer.PaymentIsLate &&
 OwesALot(customer)
 select customer;

The where clause can include just about any boolean expression, usually involving the selected objects
and their properties. As the preceding example shows, it can include !, is, &&, and method calls.

Expressions can use any of the arithmetic, date, string, or other comparison operators. The following
query selects Order objects from the orders array where the OrderDate property is after April 1, 2015:

var query =
 from order in orders

www.EBooksWorld.ir

www.hellodigi.ir

Basic LInQ Query syntax ❘ 175

 where order.OrderDate > new DateTime(2015, 4, 1)
 select order;

orderby
The orderby clause sorts a query’s results. Usually the values used to sort the results are properties of
the objects selected. For example, the following query selects Customer objects from the customers
array and sorts them by their Balance properties:

var query =
 from customer in customers
 orderby customer.Balance
 select customer;

This query sorts the customers by their Balance properties in ascending order.

If an orderby clause includes more than one field, the results are sorted by the first value and any ties
are broken by the remaining fields. For example, the following query selects customers ordered by
Balance. If two customers have the same Balance, they are ordered by LastName. If two customers
have the same Balance and LastName, they are ordered by FirstName.

var query =
 from customer in customers
 orderby customer.Balance, customer.LastName, customer.FirstName
 select customer;

To arrange items in descending order, simply add the keyword descending after an ordering
expression. Each expression can have its own descending keyword, so you can arrange them
independently. For example, you could order customers by Balance ascending, FirstName
descending, and LastName descending.

An orderby clause can include calculated values. For example, suppose the Order class has Subtotal,
Tax, and Shipping properties. The following query orders its results by the sum of those values.

var query =
 from order in orders
 orderby order.Subtotal + order.Tax + order.Shipping
 select order;

Note that the values used for ordering results are not necessarily the values selected by the query.
For example, the preceding query selects all the Order objects in the orders array, not those objects’
total costs. The next section explains the select clause.

select
The select clause lists the fields that the query should select into its result. This can be an entire
object taken from a data source or it can be one or more fields taken from multiple data sources.
It can include the results of methods or calculations performed on the object’s fields. It can even
include more complicated things such as the results of nested queries.

www.EBooksWorld.ir

www.hellodigi.ir

176 ❘ ChAPtER 8 linQ

The following query selects the concatenated first and last names of the Customer objects in the
customers array.

var query =
 from customer in customers
 orderby customer.FirstName + " " + customer.LastName
 select customer.FirstName + " " + customer.LastName;

If you want to select more than one field from the query’s objects, use the new keyword followed
by the values enclosed in braces. For example, the following query selects Customer objects’ con-
catenated first and last names plus their Balance values.

var query =
 from customer in customers
 orderby customer.FirstName + " " + customer.LastName
 select new
 {
 Name = customer.FirstName + " " + customer.LastName,
 customer.Balance
 };

This technique creates objects of an anonymous type that has properties holding the selected values.

If you select a simple property from a query object, the anonymous type’s property has the same name.
In this example, the value customer.Balance is stored in the anonymous object’s Balance property.

If you select a calculated value, you must specify a name for the anonymous type’s property. In this
example, the calculated value customer.FirstName + " " + customer.LastName is stored in a
property called Name.

duPLICAtE NAMES

If you select values with the same name from multiple objects, you must give a new
name to at least one of them so that the anonymous type doesn’t have two properties
with the same name.

Later you can use the anonymous type’s property names when you process the results. The follow-
ing code shows how a program might display the results from the preceding query.

foreach (var obj in query)
 Console.WriteLine(obj.Name + ": " + obj.Balance);

The queries shown so far return objects of an anonymous type. If you like, you can define a type to
hold the results and then create new objects of that type in the select clause. For example, suppose
the BalanceInfo class has Name and Balance properties. The following query selects the same data
as the preceding query but this time saves the results in new BalanceInfo objects:

var query =
 from customer in customers
 orderby customer.FirstName + " " + customer.LastName

www.EBooksWorld.ir

www.hellodigi.ir

Basic LInQ Query syntax ❘ 177

 select new BalanceInfo
 {
 Name = customer.FirstName + " " + customer.LastName,
 Balance = customer.Balance
 };

thE NAME GAME

If you like, you can give new names to noncalculated values selected from the query
objects. For example, the following query selects the concatenated name and bal-
ance from Customer objects. It calls the concatenated name Name and it calls the
balance OutstandingBalance.

var query =
 from customer in customers
 orderby customer.FirstName + " " + customer.LastName
 select new
 {
 Name = customer.FirstName + " " + customer.LastName,
 OutstandingBalance = customer.Balance
 };

The result contains BalanceInfo objects instead of objects with an anonymous type. That means
the program can use an explicitly typed BalanceInfo object to loop through the result as shown
in the following code.

foreach (BalanceInfo info in query)
 Console.WriteLine(info.Name + ": " + info.Balance);

You can also use a class’s constructors to select a new instance of the class. For example, suppose
the BalanceInfo class has a constructor that takes a name and account balance as parameters. The
following code shows how you could modify the previous query to use that constructor.

var query =
 from customer in customers
 orderby customer.FirstName + " " + customer.LastName
 select new BalanceInfo(
 customer.FirstName + " " + customer.LastName,
 customer.Balance);

using LINQ Results
A LINQ query expression returns an IEnumerable containing the query’s results. A program can
iterate through this result and process the items that it contains.

To determine what objects are contained in the IEnumerable result, you need to look carefully at
the select clause. If this clause picks a simple value such as a string or int, the result contains
those simple values.

www.EBooksWorld.ir

www.hellodigi.ir

178 ❘ ChAPtER 8 linQ

For example, the following query selects customer first and last names concatenated into a single
string. The result is a string, so the query’s IEnumerable result contains strings and the foreach
loop can treat them as strings.

var query =
 from customer in customers
 select customer.FirstName + " " + customer.LastName;

foreach (string name in query)
 Console.WriteLine(name);

Often the select clause picks some sort of object. The following query selects the Customer objects
contained in the customers array. The result contains Customer objects, so the code can use an
explicitly typed Customer for its looping variable.

var query =
 from customer in customers
 select customer;

foreach (Customer customer in query)
 Console.WriteLine(customer.FirstName + " " + customer.LastName);

AdVANCEd LINQ QuERy SyNtAx

So far this chapter has described basic LINQ commands that you might expect to use regularly, but
there’s much more to LINQ than these simple queries. The following sections describe some of the more
advanced LINQ commands that are less intuitive and that you probably won’t need to use as often.

join
The join keyword selects data from multiple data sources matching up corresponding fields. The
following pseudocode shows the join clause’s syntax:

from variable1 in dataSource1
join variable2 in dataSource2
 on variable1.field1 equals variable2.field2

For example, the following query selects Customer objects from the customers array. For each
Customer object, it selects Order objects from the orders array where the two records have the
same CustomerId value.

var query =
 from customer in customers
 join order in orders on customer.CustomerId equals order.CustomerId
 select new { customer, order };

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

advanced LInQ Query syntax ❘ 179

FINICKy jOINS

The syntax for the join clause is fairly finicky. The on portion must list the “from”
variable first and the “join” variable second. It must also include the equals keyword
and you cannot include other operators such as ==, <=, or !=.

If you need to use an operator such as !=, try using a where clause instead of a join.

join into
You can add an into clause to the join clause to group the joined values into a list with a specified
new name. For example, consider the following query. (The new elements are shown in bold.)

var query =
 from customer in customers
 join order in orders on customer.CustomerId equals order.CustomerId
 into CustomerOrders
 select new { customer, CustomerOrders };

This query selects Customer and Order data much as the previous query did. This time, however,
the Order items selected by the join clause are placed in a list named CustomerOrders. The select
clause then selects each Customer object plus its CustomerOrders list.

The following code shows how a program could loop through the results.

foreach (var group in query)
{
 Console.WriteLine(group.customer.FirstName + " " + group.customer.LastName);
 foreach (Order order in group.CustomerOrders)
 Console.WriteLine(" Order: " + order.OrderId);
}

For each group object in the results, the program displays that group’s customer name. It then loops
through the group’s CustomerOrders list, displaying each Order object’s OrderId. The following
text shows some sample output.

Art Anderson
 Order: 1
 Order: 2
Betty Baker
 Order: 3
Carl Carter

In this example, customer Art Anderson had two orders with OrderId values 1 and 2, Betty Baker
had one order with OrderId 3, and Carl Carter had no orders.

group by
Like join into, group by enables a program to gather related values together into groups. It also
returns an IEnumerable that holds objects, each containing another IEnumerable.

www.EBooksWorld.ir

www.hellodigi.ir

180 ❘ ChAPtER 8 linQ

The following code shows an example.

var query =
 from order in orders
 group order by order.CustomerId;

This query selects Order objects from the orders array. The group order part of the query means
you want to select the order objects and you want to group them. The by order.CustomerId part
of the query means the objects should be grouped by their CustomerId properties.

The result is a list of objects representing the groups. Each of those objects has a Key property that
gives the value that was used to build that group. In this example, the Key is the value of the objects’
CustomerId values.

Each of the objects is also enumerable so the program can loop through the objects that are in its group.

The following code shows how a program could display the results of this query.

foreach (var group in query)
{
 Console.WriteLine("Customer " + group.Key + ":");
 foreach (Order order in group)
 Console.WriteLine(" Order: " + order.OrderId);
}

This code loops over the groups in the query’s results. For each group object, the program displays
the group’s Key. It then loops through the group displaying its Order objects.

If you add an into clause after the group by section, you can give the group data a name that you
can use later in a select clause. For example, consider the following query.

var query =
 from order in orders
 group order by order.CustomerId into CustomerOrders
 select new { ID = CustomerOrders.Key, Orders = CustomerOrders };

Like the previous example, this query selects Order objects grouped by CustomerId. It gives the
grouped data the name CustomerOrders. The select clause then uses that name to select the grouped
data’s Key and the grouped data itself.

The following code shows how a program could display the results.

foreach (var group in query)
{
 Console.WriteLine("Customer " + group.ID + ":");
 foreach (Order order in group.Orders)
 Console.WriteLine(" Order: " + order.OrderId);
}

This code is similar to the previous version except it uses the names ID and Orders that the select
clause used to name the selected pieces of data.

www.EBooksWorld.ir

www.hellodigi.ir

advanced LInQ Query syntax ❘ 181

Aggregate Values
When you group data, you can use aggregate methods to select combined values. For example, suppose
you select Order objects grouped by CustomerId so each group in the result contains the orders placed
by a single customer. Then you could use the Sum method to calculate the sum of the prices of the orders
in each group. The following query shows an example with the Sum method highlighted in bold.

var query =
 from order in orders
 group order by order.CustomerId into Orders
 select new
 {
 ID = Orders.Key,
 Orders,
 TotalPrice = Orders.Sum(order => order.Price)
 };

This query selects Order objects from the orders array, groups them by CustomerId, and gives the
name Orders to the groups.

The select clause selects each group’s Key (which is the CustomerId value used to create the group)
and the group itself.

For a final selection, the query takes the Orders group and calls its Sum extension method. The Sum
method takes as a parameter a method that it should use to select a numeric value from the objects
over which it is taking the sum, in this case the Order objects in the group. This example uses a
lambda expression that simply returns an Order object’s Price property. (For information on lambda
expressions, see the section “Lambda Expressions” in Chapter 6.)

The following code shows how a program can display the results.

foreach (var group in query)
{
 Console.WriteLine("Customer " + group.ID + ": " +
 group.TotalPrice.ToString("C"));
 foreach (Order order in group.Orders)
 {
 Console.WriteLine(" Order " + order.OrderId + ": " +
 order.Price.ToString("C"));
 }
}

This code loops over the groups returned by the query. For each group, it displays the group’s ID
(which holds the CustomerId used to build the group) and the group’s TotalPrice (which was
calculated by the Sum method). The code then loops through the Order objects that make up the
group and displays the objects’ OrderId and Price properties.

The following text shows some sample output.

Customer 1: $41.50
 Order 1: $16.00
 Order 3: $25.50
Customer 2: $13.20
 Order 2: $13.20

www.EBooksWorld.ir

www.hellodigi.ir

182 ❘ ChAPtER 8 linQ

The following list summarizes LINQ’s aggregate methods.

➤➤ Aggregate—Uses a method that you specify to perform some calculation on the values

➤➤ Average—Returns the average of the values

➤➤ Count—Returns the number of items that satisfy a condition

➤➤ Sum—Returns the sum of the values

➤➤ LongCount—Returns the number of items that satisfy a condition as a long

➤➤ Max—Returns the maximum value

➤➤ Min—Returns the minimum value

Set Methods
Set methods modify a set of items. For example, the Union method creates the union of two sets.
C# does not provide a special syntax for including these methods in a LINQ query, so you must
invoke the methods directly. Fortunately these methods are easy to use.

For example, suppose the ordersPaid and ordersDue arrays contain Order objects representing
customer orders that have been paid and that are due, respectively. The following statement uses
the Union method to create a new array containing all the orders in both arrays.

Order[] allOrders = ordersPaid.Union(ordersDue).ToArray();

The result of the Union method is an iterator that you could loop over with a foreach statement.
This example calls the result’s ToArray method to convert it into an array.

You can apply these methods to the results of a query. For example, the following query examines
the orders array and selects the Order objects’ CustomerId values. The code then uses the Distinct
method to restrict the result to only distinct values. The following foreach statement displays the
distinct values.

var query =
 (from order in orders select order.CustomerId).Distinct();
foreach (int id in query)
 Console.WriteLine(id);

The following list summarizes LINQ’s set methods.

Concat—Returns two result sets concatenated

Distinct—Returns a set without duplicates

Except—Returns the items in one set except those that are also in a second set

Intersect—Returns the items that are in both of two set

Union—Returns the items that are in either of two set

www.EBooksWorld.ir

www.hellodigi.ir

advanced LInQ Query syntax ❘ 183

Limiting Results
The following list summarizes methods that LINQ provides for limiting the results returned by a query.

➤➤ First—Returns the first result and discards the rest. If the result includes no values, this
throws an exception.

➤➤ FirstOrDefault—Returns the first result and discards the rest. If the query contains no
results, it returns a default value.

➤➤ Last—Returns the last result and discards the rest. If the result includes no values, this
throws an exception.

➤➤ LastOrDefault—Returns the last result and discards the rest. If the query contains no
results, it returns a default value.

➤➤ Single—Returns the single item selected by the query. If the query does not contain exactly
one result, this throws an exception.

➤➤ SingleOrDefault—Returns the single item selected by the query. If the query contains no
results, this returns a default value. If the query contains more than one item, this throws
an exception.

➤➤ Skip—Discards a specified number of results and keeps the rest.

➤➤ SkipWhile—Discards results as long as some condition is true and then keeps the rest.
(The condition is given by a method, often a lambda expression.)

➤➤ Take—Keeps a specified number of results and discards the rest.

➤➤ TakeWhile—Keeps results as long as some condition is true and then discards the rest.

For example, the following query selects Customer objects in order of increasing Balance prop-
erty. The expression Take(10) selects the first 10 values and discards the rest. (If the result holds
fewer than 10 values, the statement takes them all.) The result is a list of the 10 customers with
the smallest balances.

var query =
 (from customer in customers
 orderby customer.Balance
 select customer).Take(10);

The following query uses the TakeWhile method to select all Customer objects with Balance
properties less than –50.

var query =
 (from customer in customers
 orderby customer.Balance
 select customer).TakeWhile(customer => customer.Balance < -50m);

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

184 ❘ ChAPtER 8 linQ

OthER LINQ MEthOdS

LINQ provides several other extension methods that are not supported by C#’s query syntax. You
cannot use them in queries, but you can apply them to the results of queries.

The following list describes some of the more useful remaining LINQ extensions that aren’t supported
by C#’s query syntax.

➤➤ Contains—Returns true if the result contains a specific value.

➤➤ DefaultIfEmpty—If the query’s result is not empty, returns the result. If the result is empty,
returns an IEnumerable containing a default value.

➤➤ ElementAt—Returns the element at a specific position in the query’s result. If there is no
element at that position, this throws an exception.

➤➤ ElementAtOrDefault—Returns the element at a specific position in the query’s result. If
there is no element at that position, this returns a default value.

➤➤ Empty—Creates an empty IEnumerable.

➤➤ Range—Creates an IEnumerable containing a range of integer values. For example,
Enumerable.Range(100, 5) returns five numbers starting at 100: 100, 101, 102, 103,
and 104.

➤➤ Repeat—Creates an IEnumerable containing a value repeated a specified number of times.

➤➤ SequenceEqual—Returns true if two sequences are identical.

LINQ also provides methods that convert results into new data types. The following list summarizes
these methods.

➤➤ AsEnumerable—Converts the result into a typed IEnumerable<T>

➤➤ AsQueryable—Converts an IEnumerable into an IQueryable

➤➤ OfType—Removes items that cannot be cast into a specified type

➤➤ ToArray—Returns an array containing the results

➤➤ ToDictionary—Places the results in a Dictionary using a selector function to set each
item’s key

➤➤ ToList—Returns a List<T> containing the results

➤➤ ToLookup—Places the results in a System.Linq.Lookup (one-to-many dictionary) using a
selector function to set each item’s key

Note that the ToArray, ToDictionary, ToList, and ToLookup functions force the query to execute
immediately instead of waiting until the program accesses the results.

www.EBooksWorld.ir

www.hellodigi.ir

LInQ extension methods ❘ 185

INtROduCtION tO GENERICS

Chapter 15, “Generics,” explains generics, but they play a big role in LINQ, so you
should at least have some idea of what they are before continuing. A generic class or
method takes a data type as a generic parameter. Its code can then create variables
of that type and manipulate them.

For example, the AsEnumerable method described in the preceding list con-
verts a result into a typed IEnumerable<T>. This is an object that implements
the IEnumerable<T> interface, an interface that takes a generic parameter.
The actual result could be IEnumerable<int>, IEnumerable<decimal>, or
IEnumerable<Person> depending on what kind of data you pass into the
AsEnumerable method.

In this chapter, you can mostly ignore these generic parameters, and LINQ will use
the type that’s appropriate for your data. See Chapter 15 for more on generics.

LINQ ExtENSION MEthOdS

As was mentioned earlier in this chapter, C# doesn’t actually execute LINQ queries. Instead it con-
verts them into a series of method calls (provided by extension methods) that perform the query.
Though C#’s LINQ query syntax is generally easier to use, it is sometimes helpful to understand
what those method calls look like.

The following sections explain the general form of these method calls. They explain how the
method calls are built, how you can use these methods directly in your code, and how you can
extend LINQ to add your own query methods.

Method-based Queries
Suppose a program defines an array of Customer objects named customers and then defines the
following query.

var query =
 from customer in customers
 where customer.Balance < 0
 orderby customer.Balance
 select new
 {
 CustName = customer.FirstName + " " + customer.LastName,
 CustBalance = customer.Balance
 };

This query finds customers that have Balance less than zero, orders them by Balance, and returns a
result that can enumerate their names and balances.

www.EBooksWorld.ir

www.hellodigi.ir

186 ❘ ChAPtER 8 linQ

To perform this selection, C# converts the query into a series of function calls to form a method-
based query that performs the same tasks as the original query. For example, the following
method-based query returns roughly the same results as the original LINQ query:

var query =
 customers.Where(OwesMoney).
 OrderBy(OrderByAmount).
 Select(MakeObject);

This code calls the customers list’s Where method. It passes that method the OwesMoney method,
which returns true if a Customer object has a negative account balance.

The code then calls the OrderBy method of the result returned by Where. It passes OrderBy the
OrderByAmount method, which returns a decimal value that OrderBy can use to order the results
of Where.

Finally, the code calls the Select method of the result returned by OrderBy. It passes Select the
MakeObject method. That method creates a CustInfo object that has CustName and CustBalance
properties.

The exact series of method calls generated by C# to evaluate the LINQ query is somewhat differ-
ent from the one shown here. The version shown here uses the OwesMoney, OrderByAmount, and
MakeObject methods defined in the program to help filter, order, and select data. The method-based
query generated by C# uses automatically generated anonymous types and lambda expressions, so it
is much uglier.

The following code shows the OwesMoney, OrderByAmount, and MakeObject methods.

// Return true if this Customer has Balance < 0.
private bool OwesMoney(Customer customer)
{
 return customer.Balance < 0;
}

// Return the Customer's balance. This is used to order results.
private decimal OrderByAmount(Customer customer)
{
 return customer.Balance;
}

// A class to hold selected Customer information.
class CustInfo
{
 public string CustName { get; set; }
 public decimal CustBalance{ get; set; }
}

// Create a new CustInfo object.
private CustInfo MakeObject(Customer customer, int index)
{
 return new CustInfo()
 {
 CustName = customer.FirstName + customer.LastName,

www.EBooksWorld.ir

www.hellodigi.ir

LInQ extension methods ❘ 187

 CustBalance = customer.Balance
 };
}

This code defines the methods that are passed as parameters to the query’s Where, OrderBy, and
Select calls, but where are Where, OrderBy, and Select defined? They are called as if they are
methods provided by customers, but customers is simply an array of Customer objects and it
doesn’t define those methods.

It turns out that Where, OrderBy, and Select are extension methods added to the IEnumerable
interface by the LINQ library. Arrays implement that interface so they gain these extension methods.

Similarly, LINQ adds other extension methods to the IEnumerable interface such as Any, All,
Average, Count, Distinct, First, GroupBy, OfType, Repeat, Sum, Union, and many more.

Method-based Queries with Lambda Functions
Lambda expressions make building method-based queries somewhat easier. When you use lambda
expressions, you don’t need to define separate methods to pass as parameters to LINQ methods such
as Where, OrderBy, and Select. Instead, you can pass a lambda expression directly into the method.

The following code shows a revised version of the previous method-based query. Here the method
bodies have been included as lambda expressions.

var query =
 customers.Where(customer => customer.Balance < 0).
 OrderBy(customer => customer.Balance).
 Select(customer => new CustInfo()
 {
 CustName = customer.FirstName + " " + customer.LastName,
 CustBalance = customer.Balance
 }
);

This is more concise because it doesn’t require you to build separate methods, but it can be a
lot harder to read and understand. Passing a simple lambda expression to the Where or OrderBy
method may not be too confusing, but if you need to perform complex tests, you may be better
off making separate methods.

Whether you use methods or lambda expressions, the standard LINQ query syntax is usually
easier to understand, so you may prefer to use that version whenever possible. Unfortunately,
many references describe the LINQ extension methods as if you are going to use them in method-
based queries rather than in LINQ queries. For example, the description of the OrderBy method
at msdn.microsoft.com/library/bb534966.aspx includes the following definition:

public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(
 this IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
)

www.EBooksWorld.ir

www.hellodigi.ir

188 ❘ ChAPtER 8 linQ

This declaration is quite confusing, but you can figure it out of you must. In this case the declaration
means the following:

➤➤ The method is named OrderBy.

➤➤ It takes two generic type parameters: TSource and TKey.

➤➤ The method’s return value has type IOrderedEnumerable<TSource>.

➤➤ The method extends IEnumerable<TSource>.

➤➤ The method takes as a parameter a Func<TSource, TKey>.

For more information on extension methods, see the section “Extension Methods” in Chapter 6. For
more information on generics, see Chapter 15.

As previously mentioned, C#’s LINQ query syntax is usually easier to understand. One time when
you need to use the more confusing method-style syntax is when you want to add your own LINQ
extensions. The following section explains how you can write extension methods to add new fea-
tures to LINQ.

Extending LINQ
LINQ queries return some sort of IEnumerable object. (Actually, they return some sort of
SelectIterator creature but the result implements IEnumerable.) The items in the result may be
simple types such as int, string, or Customer objects, or they may be of some bizarre anonymous
type that groups several selected fields together. Whatever the items are, the result is some sort of
IEnumerable.

Because the result is an IEnumerable, you can add new methods to the result by creating extension
methods for IEnumerable.

For example, the following code defines a standard deviation function. It extends the
IEnumerable<decimal> interface so it applies to the results of a LINQ query that fetches
decimal values.

public static class MyLinqExtensions
{
 // Return the standard deviation of
 // the values in an IEnumerable<decimal>.
 public static decimal StdDev(this IEnumerable<decimal> source)
 {
 // Get the total.
 decimal total = source.Sum();

 // Calculate the mean.
 decimal mean = total / source.Count();

 // Calculate the sums of the deviations squared.
 var deviationsSquared =
 from decimal value in source
 select (value - mean) * (value - mean);
 decimal totalDeviationsSquared = deviationsSquared.Sum();

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

LInQ to XmL ❘ 189

 // Return the standard deviation.
 return (decimal)Math.Sqrt((double)
 (totalDeviationsSquared / (source.Count() - 1)));
 }
}

NONStANdARd StANdARdS

There are a couple different definitions for standard deviation. This topic is out-
side the scope of this book so it isn’t explored here. For more information, see
mathworld.wolfram.com/StandardDeviation.html.

Now the program can apply this method to the result of a LINQ query that selects decimal values.
The following code uses a LINQ query to select Balance values from the customers array where
the Balance is less than zero. It then calls the StdDev extension method and displays the result.

var query =
 from customer in customers
 where customer.Balance < 0
 select customer.Balance;
Console.WriteLine(query.StdDev());

The following code performs the same operations without storing the query in an intermediate
variable:

Console.WriteLine(
 (from customer in customers
 where customer.Balance < 0
 select customer.Balance).StdDev());

LINQ tO ObjECtS

LINQ to Objects refers to methods that let a program extract data from objects that are extended
by LINQ extension methods. These methods extend IEnumerable so that they apply to any class
that implements IEnumerable including arrays, Dictionary, HashSet, LinkedList, Queue,
SortedDictionary, SortedList, Stack, and others.

All the examples shown previously in this chapter use LINQ to Objects, so this section says no more
about them. See the previous sections for more information and examples.

LINQ tO xML

LINQ to XML refers to methods that let a program move data between XML objects and other data-
containing objects. For example, using LINQ to XML you can select customer data from arrays and
use it to build an XML document. Chapter 24 explains general ways a C# program can manipulate
XML data. The sections that follow describe LINQ to XML methods.

www.EBooksWorld.ir

www.hellodigi.ir

190 ❘ ChAPtER 8 linQ

LINQ comes with its own assortment of XML elements. These classes, which are contained in
the System.Xml.Linq namespace, correspond to similar classes in the System.Xml namespace;
although their names begin with X instead of Xml. For example, the System.Xml.Linq.XElement
class corresponds to System.Xml.XmlElement.

The LINQ versions of the XML classes provide many of the same features as the System.Xml versions,
but they also provide support for LINQ features.

The following section explains how you can easily include XML data in your program. The two
sections after that describe methods for using LINQ to move data into and out of XML objects.

xML Literals
C# does not support XML literals so you cannot type XML data directly into your program. You
can, however, pass an XML object’s Parse method a string containing XML data. If you prefix the
string with the @ character, the string can even span multiple lines.

For example, the following code creates an XElement object containing an <Employees> element
that holds three <Employee> elements.

// Read the XElement.
XElement xelement = XElement.Parse(
@"<Employees>
 <Employee FirstName=""Ann"" LastName=""Archer""/>
 <Employee FirstName='Ben' LastName='Baker'/>
 <Employee>
 <FirstName>Cindy</FirstName>
 <LastName>Cant</LastName>
 </Employee>
 </Employees>
");

The three <Employee> elements demonstrate three ways to give the elements FirstName and
LastName values. The first uses two sets of double quotes to represent quotes in the data. When the
C# compiler sees two pairs of double quotes inside a quoted string, it places a single double quote in
the string’s data.

The second <Employee> delimits its name values with single quotes. XML data can use single or
double quotes to delimit values. Using single quotes makes the C# code a lot easier to read than
using pairs of double quotes.

The first two <Employee> elements hold their FirstName and LastName values in attributes. The
third <Employee> holds its values in sub-elements.

Building the same XML hierarchy by using System.Xml objects would take a lot more work.
You would need to write code to create the <Employees> element. Then you would need to write
code to create each of the <Employee> elements. You would need to add code to set the first two
<Employees> elements’ FirstName and LastName properties, and you would need to add code to
create the final <Employee> element’s FirstName and LastName child elements.

This is all reasonably straightforward but it is cumbersome. Parsing a string is much easier. Because
the string shows the XML data’s structure, parsing is also more intuitive.

www.EBooksWorld.ir

www.hellodigi.ir

LInQ to XmL ❘ 191

LINQ into xML
LINQ’s XML classes provide constructors that let you build XML documents relatively easily. Each
constructor’s parameter list ends with a parameter array so you can pass any number of items into it.

The constructors also know what to do with parameters of different types. For example, if you pass an
XElement into another XElement’s constructor, then the first element becomes a child of the second. If
you pass an XAttribute object into an XElement’s constructor, then the XAttribute object becomes
an attribute of the XElement.

This lets you build XML structures in a fairly intuitive manner. The following code shows how you
could use constructors to build the previous XML fragment.

XElement employees = new XElement("Employees",
 new XElement("Employee",
 new XAttribute("FirstName", "Ann"),
 new XAttribute("LastName", "Archer")
),
 new XElement("Employee",
 new XAttribute("FirstName", "Ben"),
 new XAttribute("LastName", "Baker")
),
 new XElement("Employee",
 new XElement("FirstName", "Cindy"),
 new XElement("LastName", "Cant")
)
);

The code starts by creating the <Employees> element. It passes that object’s constructor three
<Employee> XElement objects so they become its children in the XML document.

The code passes the constructors for the first and second <Employee> elements two XAttribute
objects so those objects become attributes of the elements.

The third <Employee> element’s constructor takes as parameters two additional XElement objects
so that element stores its FirstName and LastName values as separate elements.

This technique of building an XML document by using constructors is called functional
construction.

The result is the same as the result given by parsing XML
text in the previous section. Figure 8-1 shows a message box
displaying the results of the employees object’s ToString
method.

Functional construction is reasonably straightforward, but
it’s still not quite as easy as parsing XML text, as demon-
strated in the previous section. Functional construction does
offer one advantage, however. If you pass an XML class’s
constructor an object that implements IEnumerable, the con-
structor enumerates it and adds all the items it contains to the
XML hierarchy in an appropriate manner. That means you
can use a LINQ query to create pieces of the XML structure.

FIGuRE 8-1: Functional construction
enables you to build XML documents
relatively easily and intuitively .

www.EBooksWorld.ir

www.hellodigi.ir

192 ❘ ChAPtER 8 linQ

For example, suppose a program has an array named employees that contains Employee objects.
The following code uses LINQ and functional construction to build an XML fragment containing
elements for each of the Employee objects.

// Use LINQ to create a list of <Employee> elements.
var makeEmployees =
 from employee in employees
 select new XElement("Employee",
 new XAttribute("FirstName", employee.FirstName),
 new XAttribute("LastName", employee.LastName));

// Create the XML document.
XElement document = new XElement("Employees", makeEmployees);

The code starts with a LINQ query that selects information from the employees array. For each
Employee in the array, the query creates an XElement. It uses the Employee object’s FirstName and
LastName properties to create XAttribute objects for the XElement.

You can even include the LINQ query directly inside the top-level constructor, as shown in the
following code.

XElement document2 = new XElement("Employees",
 from employee in employees
 select new XElement("Employee",
 new XAttribute("FirstName", employee.FirstName),
 new XAttribute("LastName", employee.LastName)));

LINQ out of xML
The LINQ XML objects provide a standard assortment of LINQ methods that make moving data
from those objects into IEnumerable objects simple. Using these functions, it’s about as easy to
select data from the XML objects as it is from IEnumerable objects such as arrays and lists.

XML objects represent hierarchical data. To make using that data easier, the XML classes also
provide methods to help you search those data hierarchies. For example, the XElement object pro-
vides a Descendants method that searches the object’s descendants for elements of a certain type.

For example, the following code searches the XElement named document for descendants named
“Employee” and displays their FirstName and LastName attributes.

var selectEmployee =
 from employee in document.Descendants("Employee")
 select new
 {
 FirstName = employee.Attribute("FirstName").Value,
 LastName = employee.Attribute("LastName").Value
 };
foreach (var obj in selectEmployee)
 Console.WriteLine(obj.FirstName + " " + obj.LastName);

The LINQ query selects objects from document.Descendants("Employee"). Each of the objects
returned by the Descendants method is an XElement. The query uses that object’s Attribute method
to get the object’s FirstName and LastName attributes. Those attributes are XAttribute objects, so

www.EBooksWorld.ir

www.hellodigi.ir

LInQ to XmL ❘ 193

the code uses their Value properties to get the attribute values. Finally, the query creates a new object
of an anonymous type holding the FirstName and LastName attribute values.

The following table describes other methods supported by XElement that a program can use to
navigate through an XML hierarchy. Most of these methods return IEnumerable objects that you
can use in LINQ queries.

FuNCtION REtuRNS

Ancestors IEnumerable containing all ancestors of the element .

AncestorsAndSelf IEnumerable containing this element followed by all of
its ancestors .

Attribute The element’s attribute with a specific name .

Attributes IEnumerable containing the element’s attributes .

Descendants IEnumerable containing all descendants of the element .

DescendantsAndSelf IEnumerable containing this element followed by all of
its descendants .

DescendantNodes IEnumerable containing all descendant nodes of the element .
These include all nodes such as XElement and XText .

DescendantNodesAndSelf IEnumerable containing this element followed by all its
descendant nodes .

Element The first child element with a specific name .

Elements IEnumerable containing the immediate children of the element .

ElementsAfterSelf IEnumerable containing the siblings of the element that come
after this element .

ElementsBeforeSelf IEnumerable containing the siblings of the element that come
before this element .

Nodes IEnumerable containing the nodes that are immediate
children of the element . These include all nodes such as
XElement and XText .

NodesAfterSelf IEnumerable containing the sibling nodes of the element that
come after this element .

NodesBeforeSelf IEnumerable containing the sibling nodes of the element that
come before this element .

Most of the methods that return an IEnumerable take an optional parameter that indicates the
names of the elements to select. For example, if you pass the Descendants function the parameter
“Customer,” the function returns only the descendants of the element that are named “Customer.”

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

194 ❘ ChAPtER 8 linQ

LINQ tO AdO.NEt

LINQ to ADO.NET provides tools that let you apply LINQ-style queries to objects used by ADO.
NET to store and interact with relational data. LINQ to ADO.NET includes three components: LINQ
to SQL, LINQ to Entities, and LINQ to DataSet. The following sections briefly give additional details
about these three pieces.

LINQ to SQL and LINQ to Entities
LINQ to SQL and LINQ to Entities are object-relational mapping (O/RM) tools that build strongly
typed classes for modeling databases. They generate classes to represent the database and the tables that
it contains. LINQ features provided by these classes allow a program to query the data model objects.

For example, to build a database model for use by LINQ to SQL, select Project ➪ Add New Item
command and add a new LINQ to SQL Classes item. This opens a designer where you can define
the database’s structure.

If you have SQL Server installed and running, you can drag SQL Server database objects from the
Server Explorer to build the database model. If you drag all the database’s tables onto the designer,
you should see all the tables and their fields, primary keys, relationships, and other structural infor-
mation. (Alternatively, you can use the designer’s tools to build the data model yourself instead of
building a model from the database’s structure.)

As you create the data model, LINQ to SQL creates corresponding classes to represent the
database and its tables. For example, it defines a class that inherits from DataContext to rep-
resent the database. If you named the data model SalesInfo, LINQ to SQL defines the class
SalesInfoDataContext to represent the database.

Now suppose the program creates an instance of that class named db. Then the following code
selects all the records from the database’s Customers table ordered by name:

var query =
 from customer in db.Customers
 orderby customer.FirstName, customer.LastName
 select new { customer.FirstName, customer.LastName };

Microsoft intends LINQ to SQL to be a tool for quickly building LINQ-enabled classes for use with
SQL Server databases. The designer can take a SQL Server database, build a model for it, and then
create the necessary classes.

LINQ to Entities provides support for writing queries against Entity Framework data models. The
Entity Framework is intended for use in more complicated enterprise scenarios than LINQ to SQL.
It allows extra abstraction that decouples a data object model from the underlying database. For
example, the Entity Framework allows you to store pieces of a single conceptual object in more
than one database table.

Building and managing SQL Server databases and the Entity Framework are topics too large to
cover in this book so LINQ to SQL and LINQ to Entities are not described in more detail here. For

www.EBooksWorld.ir

www.hellodigi.ir

LInQ to aDo.neT ❘ 195

more information, consult the online help or Microsoft’s website. Some of Microsoft’s relevant web
pages include:

➤➤ LINQ to SQL (msdn.microsoft.com/bb386976.aspx)

➤➤ LINQ to Entities (msdn.microsoft.com/library/bb386964.aspx)

➤➤ LINQ to SQL: .NET Language-Integrated Query for Relational Data (msdn.microsoft
.com/bb425822.aspx)

➤➤ Data Developer Center ➪ Learn ➪ Entity Framework (msdn.microsoft.com/en-US/data/ef)

LINQ to dataSet
LINQ to DataSet lets a program use LINQ-style queries to select data from DataSet objects.
A DataSet contains an in-memory representation of data contained in relational tables.

A DataSet can hold data and provide query capabilities whether the data was loaded from SQL
Server, from some other relational database, or by the program’s code.

The DataSet object itself doesn’t provide many LINQ features. It is mostly useful because it holds
DataTable objects that represent groupings of items, much as IEnumerable objects do.

The DataTable class does not directly support LINQ either, but it has an AsEnumerable method
that converts the DataTable into an IEnumerable, which you already know supports LINQ.

whERE’S IENuMERAbLE?

Actually, the AsEnumerable method converts the DataTable into an
EnumerableRowCollection object but that object implements IEnumerable.

The LinqToDataSetScores example program, which is available for download on the book’s web-
site, demonstrates several LINQ to DataSet techniques. This program builds a DataSet that holds
two tables. The Students table has fields StudentId, FirstName, and LastName. The TestScores
table has fields StudentId, TestNumber, and Score. The tables’ StudentId fields provide the link
between the two tables.

The program uses the following code to get references to the DataTable objects that represent
the tables.

// Get references to the tables.
DataTable studentsTable = testScoresDataSet.Tables["Students"];
DataTable scoresTable = testScoresDataSet.Tables["TestScores"];

The program then uses the following code to select the names of students with LastName before
“F” alphabetically:

var namesBeforeFQuery =
 from student in studentsTable.AsEnumerable()
 where (student.Field<string>("LastName").CompareTo("F") < 0)

www.EBooksWorld.ir

www.hellodigi.ir

196 ❘ ChAPtER 8 linQ

 orderby student.Field<string>("LastName")
 select new
 {
 FirstName = student.Field<string>("FirstName"),
 LastName = student.Field<string>("LastName")
 };
namesBeforeDDataGrid.DataSource = namesBeforeFQuery.ToList();

There are only a few differences between this query and previous LINQ queries. First, the from
clause calls the DataTable object’s AsEnumerable method to convert the table into something that
supports LINQ.

Second, the syntax student.Field<string>("FirstName") lets the query access the LastName
field in the student object. (The student object is a DataRow within the DataTable.)

Finally, the last line of code in this example sets a DataGrid control’s DataSource property equal
to the result returned by the query to make the control display the results. The DataGrid control
cannot display the IEnumerable result. so the code calls the ToList method to convert the result
into a list, which the DataGrid can use.

The following list summarizes the key differences between a LINQ to DataSet query and a normal
LINQ to Objects query:

➤➤ The LINQ to DataSet query must use the DataTable object’s AsEnumerable method to
make the object queryable.

➤➤ The code can access the fields in a DataRow, as in student.Field<string>("LastName").

➤➤ If you want to display the results in a bound control such as a DataGrid or ListBox, use the
query’s ToList method.

If you understand these key differences, the rest of the query is similar to those used by LINQ to
Objects. The following code shows a second query demonstrated by the program:

// Select all students and their scores.
var allScoresQuery =
 from student in studentsTable.AsEnumerable()
 join score in scoresTable.AsEnumerable()
 on student.Field<int>("StudentId") equals score.Field<int>("StudentId")
 orderby student.Field<int>("StudentId"), score.Field<int>("TestNumber")
 select new
 {
 ID = student.Field<int>("StudentId"),
 Name = student.Field<string>("FirstName") + " " +
 student.Field<string>("LastName"),
 Test = score.Field<int>("TestNumber"),
 Score = score.Field<int>("Score")
 };
allScoresDataGrid.DataSource = allScoresQuery.ToList();

This query selects records from the Students table, joins them with the corresponding records
in the TestScores table, and orders the results by student ID and test number. It selects student

www.EBooksWorld.ir

www.hellodigi.ir

LInQ to aDo.neT ❘ 197

ID, first and last names, test number, and score. It then displays the result of the query in the
allScoresDataGrid control.

The following code shows a more complicated example.

// Make a function to convert a numeric grade to a letter grade.
Func<double, string> letterGrade = score =>
{
 if (score >= 90) return "A";
 if (score >= 80) return "B";
 if (score >= 70) return "C";
 if (score >= 60) return "D";
 return "F";
};

// Display names, averages, and grades for A students.
var aStudents =
 from student in studentsTable.AsEnumerable()
 join score in scoresTable.AsEnumerable()
 on student.Field<int>("StudentId") equals score.Field<int>("StudentId")
 group score by student into studentGroup
 where studentGroup.Average(s => s.Field<int>("Score")) >= 90
 orderby studentGroup.Average(s => s.Field<int>("Score")) descending
 select new
 {
 Name = studentGroup.Key.Field<string>("FirstName") + " " +
 studentGroup.Key.Field<string>("LastName"),
 Average = studentGroup.Average(s => s.Field<int>("Score")),
 Grade = letterGrade(studentGroup.Average(s => s.Field<int>("Score")))
 };
aStudentsDataGrid.DataSource = aStudents.ToList();

This code starts by defining a Func<double, string> delegate and setting it equal to a statement
lambda that converts a numeric grade into a letter grade.

Next, the code defines a query that selects corresponding records from the Students and TestScores
tables. It groups the records by student, so the records for a particular student are gathered in a
group called studentGroup.

The where clause uses the studentGroup’s Average method to calculate the average of the Score
values in the group. (The items in studentGroup are the TestScore records for a student. This
statement takes the average of the Score fields in those TestScore objects.) The where clause then
picks the records where the average of the student’s test scores is at least 90.

The orderby clause orders the results by the students’ average scores.

Finally, the select clause selects the students’ first and last names, average test score, and average
test score converted into a letter grade.

The snippet finishes by displaying the results in the aStudentsDataGrid control. Figure 8-2 shows
the program displaying this information.

www.EBooksWorld.ir

www.hellodigi.ir

198 ❘ ChAPtER 8 linQ

FIGuRE 8-2: Example program LinqToDataSetScores
displays (among other things) name, test score
average, and letter grade for A students .

LINQ to DataSet not only allows you to pull data out of a DataSet but also provides a way to
put data into a DataSet. If the query selects DataRow objects, then the query’s CopyToDataTable
method converts the query results into a new DataTable object that you can then add to a DataSet.
The following code demonstrates this technique.

// Make a new table.
var newTableQuery =
 from student in studentsTable.AsEnumerable()
 where student.Field<string>("LastName").CompareTo("D") < 0
 select student;
DataTable newDataTable = newTableQuery.CopyToDataTable();
newDataTable.TableName = "NewTable";
testScoresDataSet.Tables.Add(newDataTable);
newTableDataGrid.DataSource = newDataTable;

This code selects records from the Students table for students with last name that come before “D”
alphabetically. It then uses CopyToDataTable to convert the result into a DataTable. It gives the table a
name and adds it to the DataSet. It finishes by displaying the results in the newTableDataGrid control.

PLINQ

Parallel LINQ (PLINQ pronounced “plink”) allows a program to execute LINQ queries across
multiple processors or cores in a multicore system. If you have multiple cores or CPU’s and a nicely
parallelizable query, PLINQ may improve your performance considerably.

So what kinds of queries are “nicely parallelizable?” The short, glib answer is, “It doesn’t really
matter.” Microsoft has gone to great lengths to minimize the overhead of PLINQ, so using PLINQ
may help for some queries and shouldn’t hurt you too much for queries that don’t parallelize nicely.

Simple queries that select items from a data source often parallelize well. If the items in the source
can be examined, selected, and otherwise processed independently, then the query is parallelizable.

Queries that must use multiple items at the same time do not parallelize as efficiently. For example,
adding an orderby clause to the query forces the program to gather all the results and sort them so
that part of the query at least will not benefit from PLINQ.

Adding parallelism to LINQ is remarkably simple. Simply add a call to AsParallel to the enu-
merable object that you’re searching. The FindPrimes example program, which is available for

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

PLInQ ❘ 199

download on the book’s website, uses PLINQ to find prime numbers. The program uses the fol-
lowing IsPrime method.

private static bool IsPrime(int number)
{
 if (number % 2 == 0) return false;
 for (int i = 3; i * i <= number; i += 2)
 if (number % i == 0) return false;
 return true;
}

thE NEEd FOR SPEEd

Some feel that adding parallelism to LINQ is kind of like giving caffeine to a snail. A
snail is slow. Giving it caffeine might speed it up a bit (or perhaps kill it), but you’d get
a much bigger performance gain if you got rid of the snail and got a cheetah instead.

Similarly, LINQ isn’t all that fast. Adding parallelism will speed it up, but you’ll
probably get a larger speed improvement by moving the data into a database or
using special-purpose algorithms designed to manage your particular data.

This argument is true, but you don’t use LINQ because it’s fast; you use it because
it’s convenient, easy to use, and flexible. Adding parallelism makes it a bit faster
and is so easy that it doesn’t cost you much effort.

If you really need significant performance improvements, you should consider
moving the data into a database or more sophisticated data structure, but if you’re
using LINQ anyway, you may as well take advantage of PLINQ when you can.

The program uses the IsPrime method in the following PLINQ query. The call to AsParallel
is highlighted in bold.

var primes =
 from number in Enumerable.Range(2, maxNumber).AsParallel()
 where IsPrime(number)
 select number;

The program times this query with and without the call to AsParallel. On my dual-core system,
this query without AsParallel takes approximately 12.38 seconds to find all the primes between 2
and 10 million. Using PLINQ the program takes only 7.34 seconds. This is more than one-half the
time for the nonparallel version because there’s some overhead in managing the parallel threads. It’s
still a nice speed improvement for little extra typing.

PuzzLING PARALLELISM

For small enumerable objects (lists containing only a few items) and on computers
that have only a single CPU, the overhead of using AsParallel may actually slow
down execution slightly.

www.EBooksWorld.ir

www.hellodigi.ir

200 ❘ ChAPtER 8 linQ

SuMMARy

LINQ lets you perform SQL-like queries in C# code. Depending on which form of LINQ you use,
the development environment may provide strong type checking and IntelliSense support.

LINQ to Objects lets you query arrays, lists, and other objects that implement the IEnumerable
interface.

LINQ to XML and the LINQ XML classes let you use LINQ to extract data from XML hierarchies.
You can generate XML documents by parsing text or by using functional construction.

LINQ to ADO.NET (which includes LINQ to SQL, LINQ to Entities, and LINQ to DataSet) allows
a program to perform queries on objects representing data in a relational database. Together these
LINQ tools allow a program to select data in powerful new ways.

If you have a multicode system, PLINQ can sometimes speed up your LINQ queries with little effort
on your part.

For much more information on the various LINQ technologies, see the online help and the web.
The following list includes several useful Microsoft web pages that you can visit to learn more
about LINQ. Some are a bit old but they still provide valuable information.

➤➤ Getting Started with LINQ in C#—msdn.microsoft.com/library/bb397933.aspx.

➤➤ Hooked on LINQ (a wiki with some useful “5 Minute Overviews”)—www.hookedonlinq

.com/LINQtoSQL5MinuteOverview.ashx.

➤➤ LINQ to Objects—msdn.microsoft.com/library/bb397919.aspx.

➤➤ LINQ to XML—msdn.microsoft.com/library/bb387098.aspx.

➤➤ LINQ to SQL—msdn.microsoft.com/bb386976.aspx.

➤➤ 101 C# LINQ Samples—code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b.

➤➤ LINQ jump page—msdn.microsoft.com/bb397926.aspx.

➤➤ Querying DataSets—Introduction to LINQ to DataSet (by Erick Thompson, ADO.
NET Program Manager, in the ADO.NET team blog) — blogs.msdn.com/adonet/
archive/2007/01/26/querying-datasets-introduction-to-linq-to-dataset.aspx.

➤➤ LINQ to SQL: .NET Language-Integrated Query for Relational Data—msdn.microsoft

.com/bb425822.aspx.

➤➤ Entity Framework Overview—msdn.microsoft.com/library/bb399567.aspx.

➤➤ Parallel LINQ (PLINQ)—msdn.microsoft.com/dd460688.aspx.

The LINQPad tool available at www.linqpad.net helps you interactively write LINQ queries
and can execute them against a database without compiling a program. It comes in free, pro, and
premium editions.

Using the C# statements and techniques described in Chapters 4 through 8, you can build applications
that are extremely powerful and complex. Actually, you can build applications that are so complex it’s
hard to ensure that they work correctly. Even a relatively simple application can run into problems and
large applications are practically guaranteed to contain bugs. Chapter 9, “Error Handling,” explains

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hookedonlinq.com/LINQtoSQL5MinuteOverview.ashx
http://www.linqpad.net
http://www.hookedonlinq.com/LINQtoSQL5MinuteOverview.ashx

exercises ❘ 201

how you can protect an application from unexpected errors and let it take action to correct problems,
or at least to avoid crashing.

ExERCISES

 1. Write a program that uses functional construction to build an XElement representing the
following XML volleyball league data.

<League Night='Wednesday'>
 <Teams>
 <Team Name='Bling'>
 <Players>
 <Player FirstName='Anthony' LastName='Bell' />
 <Player FirstName='Jacqueline' LastName='Walker' />
 </Players>
 </Team>
 <Team Name='Flying Dolphins'>
 <Players>
 <Player FirstName='Steve' LastName='Foster' />
 <Player FirstName='Phyllis' LastName='Henderson' />
 </Players>
 </Team>
 </Teams>
 <Matches>
 <Match>
 <Team Name='Bling' Score='25'/>
 <Team Name='Flying Dolphins' Score='19'/>
 </Match>
 </Matches>
</League>

If root is the name of the root XElement, display the data by using the statement
Console.WriteLine(root.ToString()).

 2. The VolleyballTeams example program has an XmlString method that returns a string
containing XML data similar to the data shown in Exercise 1 but with more teams, play-
ers, and match data. Download that program and modify it so it parses the data to build an
XML hierarchy and displays the result.

 3. Copy the program you build for Exercise 2 and modify it to use LINQ to XML to display
the teams and their players. The result should look like the following:

Bling
 Anthony Bell
 Jacqueline Walker
 ...
Flying Dolphins
 Steve Foster
 Phyllis Henderson
 ...
...

www.EBooksWorld.ir

www.hellodigi.ir

202 ❘ ChAPtER 8 linQ

 4. Copy the program you build for Exercise 2 and modify it to use LINQ to XML to display
the teams and the numbers of points they won in each of their matches. The result should
look like the following:

Team Points
==== ======
Bling 25
Bling 25
Bling 14
Bling 19
Bling 25
Flying Dolphins 19
Flying Dolphins 25
Flying Dolphins 22
Flying Dolphins 14
Flying Dolphins 19
...

 5. Copy the program you build for Exercise 4 and modify it to display each team’s total number
of wins (assume a team wins if it got 25 points in a match) and total number of points. Order
the results by total wins followed by total points, both descending so the best teams come
first. The result should look like the following:

Name Wins Points
==== ==== ======
Sand Crabs 4 119
Golden Spikers 4 117
Bling 3 108
The Wee Free People 2 95
Flying Dolphins 1 99
Hurricanes 1 95

 6. Copy the program you build for Exercise 2 and modify it to use LINQ to DataSet to create
a volleyball league DataSet. The DataSet should hold three DataTables with the following
structure:

Teams
 TeamName string
Players
 FirstName string
 LastName string
 TeamName string
Matches
 TeamName string
 VersusTeamName string
 Score int

 7. Copy the program you build for Exercise 6. Modify it to repeat Exercise 3 but using LINQ
to DataSet instead of LINQ to XML.

 8. Copy the program you build for Exercise 6. Modify it to repeat Exercise 4 but using LINQ
to DataSet instead of LINQ to XML.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 203

 9. Copy the program you build for Exercise 6. Modify it to repeat Exercise 5 but using LINQ
to DataSet instead of LINQ to XML.

 10. In actual volleyball leagues, teams are ranked by their win percentage (in case teams don’t
all play the same number of games). If two teams have the same win percentage, their point
differentials (total points “for” minus total points “against”) break any ties, not simply the
teams’ total points.

Copy the program you build for Exercise 9 and modify it so it displays each team’s name,
wins, losses, win percentage, points “for,” points “against,” and point differential. Order
the results by team rankings.

The result should look like the following:

Name Won Lost Win % Pts+ Pts- Diff
==== === ==== ===== ==== ===== ====
Golden Spikers 4 1 80.00 117 88 29
Sand Crabs 4 1 80.00 119 97 22
Bling 3 2 60.00 108 108 0
The Wee Free People 2 3 40.00 95 108 -13
Hurricanes 1 4 20.00 95 110 -15
Flying Dolphins 1 4 20.00 99 122 -23

 11. Copy the program you build for Exercise 10. Modify it to insert a Standings element inside
the League XML element. Use LINQ to XML to insert Team elements in the Standings
element to record the standings. If root is the root of the XML hierarchy, use Console
.WriteLine(root.ToString()) to verify that the result looks like the following:

<League>
 <Teams>
 ...
 </Teams>
 <Matches>
 ...
 </Matches>
 <Standings>
 <Team Name="Golden Spikers" Wins="4" Losses="1" WinPercent="80"
 PointsFor="117" PointsAgainst="88" PointDifferential="29" />
 <Team Name="Sand Crabs" Wins="4" Losses="1" WinPercent="80"
 PointsFor="119" PointsAgainst="97" PointDifferential="22" />
 <Team Name="Bling" Wins="3" Losses="2" WinPercent="60"
 PointsFor="108" PointsAgainst="108" PointDifferential="0" />
 <Team Name="The Wee Free People" Wins="2" Losses="3" WinPercent="40"
 PointsFor="95" PointsAgainst="108" PointDifferential="-13" />
 <Team Name="Hurricanes" Wins="1" Losses="4" WinPercent="20"
 PointsFor="95" PointsAgainst="110" PointDifferential="-15" />
 <Team Name="Flying Dolphins" Wins="1" Losses="4" WinPercent="20"
 PointsFor="99" PointsAgainst="122" PointDifferential="-23" />
 </Standings>
</League>

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

www.EBooksWorld.ir

www.hellodigi.ir

error Handling
whAt’S IN thIS ChAPtER

➤➤ Understanding bugs and unexpected conditions

➤➤ Using assertions and code contracts to detect bugs

➤➤ Handling exceptions with try-catch-finally

➤➤ Creating custom exception classes

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Although it is theoretically possible to write a program that perfectly predicts every conceivable
situation that it might encounter, in practice that’s difficult for nontrivial programs. For large
applications, it’s practically impossible to plan for every eventuality. Errors in the program’s
design and implementation can introduce bugs that give unexpected results. Even if you correctly
anticipate every normal condition, users, corrupted databases, and unreliable network communi-
cations may give the application values that it doesn’t expect.

Similarly, changing requirements over time may introduce data that the application was never
intended to handle. The Y2K bug is a good example. When engineers wrote accounting, auto
registration, financial, inventory, and other systems in the 1960s and 1970s, they never dreamed
their programs would still be running in the year 2000. At the time, disk storage and memory
were relatively expensive, so they stored years as 2-byte values (for example, 89 meant 1989).
When the year 2000 rolled around, the applications couldn’t tell whether the value 01 meant the
year 1901 or 2001. In one humorous case, an auto registration system started issuing horseless
carriage license plates to new cars because it thought cars built in 00 must be antiques. The Y2K
problem wasn’t actually a bug. It was a case of software used with data that wasn’t part of its
original design.

9

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

206 ❘ ChAPtER 9 error handling

This chapter explains different kinds of exceptional conditions that can arise in an application.
These range from unplanned data (as in the Y2K problem), to unexpected inputs (as when the user
types “ten” into a numeric field), to bugs where the code is just plain wrong. With some advance
planning, you can build a robust application that can keep running gracefully, even when the unex-
pected happens.

buGS VERSuS uNdESIRAbLE CONdItIONS

Several different types of unplanned conditions can derail an otherwise high-quality application. How
you should handle these conditions depends on their nature.

For this discussion, a bug is a mistake in the application code. Some bugs become apparent right away
and are easy to fix. These usually include simple typographic errors in the code and cases in which
you misuse an object (for example, by using the wrong property). Other bugs are subtler and may be
detected only long after they occur. For example, a data-entry routine might place invalid characters
into a rarely used field in a Customer object. Only later when the program tries to access that field will
you discover the problem. This kind of bug is difficult to track down and fix, but you can take some
proactive steps to make these sorts of bugs easier to find.

buGS thROuGhOut hIStORy

On a historical note, the term “bug” has been used since at least the time of the tele-
graph to mean some sort of defect. Probably the origin of the term in computer sci-
ence was an actual moth that was caught between two relays in an early computer in
1947. For a bit more information, including a picture of this first computer bug, see
www.jamesshuggins.com/h/tek1/first_computer_bug.htm.

An undesirable condition is some predictable condition that you don’t want to happen, but that
you know could happen despite your best efforts. For example, there are many ways that a simple
printing operation can fail. The printer might be unplugged, disconnected from its computer, dis-
connected from the network, out of toner, out of paper, experiencing a memory fault, clogged by a
paper jam, or just plain broken. These are not bugs because the application software is not at fault.
There is some condition outside of the program’s control that must be fixed.

Another common undesirable condition occurs when the user enters invalid data. You may want
the user to enter a value between 1 and 10 in a text box, but the user might enter 0, 9999, or
“lunch” instead.

You can’t fix undesirable conditions but you can try to make your program handle them gracefully
and produce some meaningful result instead of crashing.

Catching bugs
By definition, bugs are unplanned. No reasonable programmer sits down and thinks, “Perhaps I’ll
put a bug in this variable declaration.”

www.EBooksWorld.ir

www.hellodigi.ir

http://www.jamesshuggins.com/h/tek1/first_computer_bug.htm

Bugs Versus Undesirable conditions ❘ 207

Because bugs are unpredictable, you cannot know ahead of time where a bug will lie. However,
you can watch for behavior in the program that indicates that a bug may be present. For example,
suppose that you have a method that sorts a purchase order’s items by cost. If the method receives
an order with 100,000 items, something is probably wrong. If one of the items in the order is a
computer keyboard with a price of $73 trillion, something is probably wrong. If the customer who
placed the order doesn’t exist, something is probably wrong.

This method could go ahead and sort the 100,000 items with prices ranging from a few cents to
$73 trillion. Later, the program would try to print a 5,000-page invoice with no shipping or billing
address. Only then would the developers realize that there was a problem.

Rather than trying to work around the weird data and continue running, it would be better if the
program immediately told developers that something was wrong so that they could start looking
for the problem. Bugs are easier to find the sooner they are detected. This bug will be easier to find
if the sorting method notices it, rather than waiting until the application tries to print an invalid
invoice. Your methods can protect themselves and the program as a whole by proactively validating
inputs and outputs, and reporting anything suspicious to developers.

Some developers object to making methods spend a lot of time validating data that they “know”
is correct. After all, one method generated this data and passed it to another, so you know that it is
correct because the first method did its job properly. That’s only true if every method that touches
the data works perfectly. Because bugs are by definition unexpected, you cannot safely assume that
all the methods are perfect and that the data remains uncorrupted.

AutOMAtEd buG CAtChERS

Many companies use automated testing tools to try to flush out problems early.
Regression testing tools can execute code to verify that its outcome isn’t changed
when you make modifications to other parts of the application. If you build a suite
of testing routines to validate data and method results, you may work them into an
automated testing system, too.

To prevent validation code from slowing down the application, you can use the System.Diagnostics
.Debug class’s Assert method to check for strange conditions. The idea is that the method asserts that
some statement is true.

The Debug.Assert method comes in several overloaded versions. The simplest form takes two
parameters, a boolean expression and a string. If the boolean expression evaluates to false, the
assertion fails and the method displays an error message.

The Debug class’s Fail method is similar to the Assert method except it always displays an error
message. Normally, you would use C# code to determine when to call this method. For example, if
a switch statement has case sections to handle all the possible values of an enumerated type, you
could add a default section that calls Debug.Fail. Then if an unexpected value appears, the pro-
gram tells you.

When you debug the program, Debug.Assert and Debug.Fail statements immediately notify you
if an assertion fails. When you make a release build to send to customers, the Debug.Assert and

www.EBooksWorld.ir

www.hellodigi.ir

208 ❘ ChAPtER 9 error handling

Debug.Fail code is automatically removed from the application. That makes the application faster
and doesn’t inflict cryptic error messages on the user.

You can also use the DEBUG and TRACE preprocessor symbols to add other input and output valida-
tion code. By default, both of these symbols are defined in debug builds. Only TRACE is defined in
release builds.

Example program UseDebug, which is available for download from the book’s website, uses the fol-
lowing code to validate a method’s inputs. (This program doesn’t actually do anything; it just dem-
onstrates input and output validation code.)

 // Sort an order's items.
 // Use the Debug class to validate inputs and outputs.
 private void SortOrderItems(Order order)
 {
 // Validate inputs.
 Debug.Assert(order.Customer != null, "No customer");
 Debug.Assert(order.Items != null, "No Items list");
 Debug.Assert(order.Items.Count > 0, "Empty Items list");
 Debug.Assert(order.Items.Count < 100, "Too many order items");

 // Sort the items.
 //...
 Console.WriteLine(order.ToString());

 // Validate outputs.
#if DEBUG
 // Verify that the items are sorted.
 for (int i = 1; i < order.Items.Count; i++)
 {
 OrderItem order_item1 = order.Items[i - 1];
 OrderItem order_item2 = order.Items[i];
 Debug.Assert(order_item1.Price <= order_item2.Price,
 "Order items not properly sorted");
 }
#endif
 }

dEbuG ANd tRACE

The Trace class provides methods similar to those provided by the Debug class. For
example, it includes Trace.Assert and Trace.Fail methods.

The Debug class’s methods do nothing if the DEBUG preprocessor symbol is not defined,
which is the default case for release builds. Similarly, the Trace class’s methods do
nothing if the TRACE preprocessor symbol is not defined.

If you want to use these methods only in debug builds, use Debug.Assert and
Debug.Fail. If you want to use these methods in both debug and release builds,
use Trace.Assert and Trace.Fail.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Bugs Versus Undesirable conditions ❘ 209

The method starts by validating its inputs. It verifies that the Order object’s Customer property and
Items collection are not null. It also verifies that the order contains at least 1 and fewer than 100
items. If a larger order comes along during testing, developers can increase this number to 200 or
whatever value makes sense, but there’s no need to start with an unreasonably large default.

After the method sorts the order’s items (that code isn’t shown), it uses the directive #if DEBUG
to make its output validation code disappear from release builds. If this is a debug build, the code
loops through the sorted items and verifies that each item’s Price is at least as large as the Price
of the preceding item in the list.

After you have tested the application long enough, you should have discovered most of the errors
that are caused by incorrect program logic. When you make the release build, the compiler automat-
ically removes the validation code, making the finished executable smaller and faster.

Code Contracts
The .NET Framework version 4.0 added the Contract class to formalize the idea of using assertions
to validate method inputs and outputs.

INStALLING CONtRACtS

Code contracts don’t work for the Visual Studio Express editions. If you use an
Express edition, you may want to skip or skim this section. You can still use Debug
and Trace methods as described in the preceding section.

If you use some other edition of Visual Studio, you still need to install code contracts
to make them work. Even though the .NET Framework includes the Contract class,
the class won’t do anything until you install the library.

To use code contracts, go to the DevLabs site at msdn.microsoft.com/devlabs
and search for “Code Contracts for .NET. Download” and install the latest version
of the library.

Microsoft has also released extensions for the code editor to help when writ-
ing contracts. For example, the extension adds information to tooltips and
IntelliSense. To install the extension, go to the DevLabs site and search for
“Code Contracts Editor Extensions.”

The idea is for a method to begin with a contract stating preconditions, things that must be true
when the method is called, and postconditions, things that the method guarantees are true when it
finishes. The program can also define invariant conditions that should remain true while the program
is running.

Preconditions and Postconditions
The Contract class’s Requires method represents a precondition that the method requires to be
true when it starts. The Ensures method represents a postcondition that the method guarantees to
be true when it finishes.

www.EBooksWorld.ir

www.hellodigi.ir

210 ❘ ChAPtER 9 error handling

Example program UseCodeContracts, which is available for download from the book’s website, uses
the following code to validate a method’s inputs and outputs.

// Sort an order's items.
// Use the Debug class to validate inputs and outputs.
private void SortOrderItems(Order order)
{
 // Preconditions.
 Contract.Requires(order.Customer != null, "No customer");
 Contract.Requires(order.Items != null, "No Items list");
 Contract.Requires(order.Items.Count > 0, "Empty Items list");
 Contract.Requires(order.Items.Count < 100, "Too many order items");

 // Postconditions.
 Contract.Ensures(OrderItemsAreSorted(order),
 "Order items not properly sorted");

 // Sort the items.
 //...
 Console.WriteLine(order.ToString());
}

// Return true if the items in this list are sorted.
[Pure()]
private bool OrderItemsAreSorted(Order order)
{
 for (int i = 2; i < order.Items.Count; i++)
 {
 OrderItem order_item1 = order.Items[i - 1];
 OrderItem order_item2 = order.Items[i];
 if (order_item1.Price > order_item2.Price) return false;
 }
 return true;
}

This program is similar to the UseDebug program described in the preceding section except it uses
code contracts instead of the Debug.Assert method to validate preconditions and postconditions.

Notice that the code places all the contract’s preconditions and postconditions at the beginning of the
method. This makes it easier to find all the required conditions. For example, if you use Debug.Assert
statements to validate outputs, they must go at the end of the method and any other place where the
method might exit. When you use code contracts, all the conditions are at the beginning.

Placing the conditions at the beginning of the method also encourages test-driven development. Here
developers write tests to verify a method’s correctness before they write its code. That makes it more
likely that the tests will be effective and thorough. When developers write the method before the
tests, they often skip some tests because they “know” that the method handles those cases properly.

Also notice that this version handles its postcondition slightly differently from the previous version.
The UseDebug program described in the preceding section looped through the order’s items and used
Debug.Assert to verify that their prices were in order. The Contract.Ensures method examines a
single boolean value so that it cannot perform a loop.

www.EBooksWorld.ir

www.hellodigi.ir

Bugs Versus Undesirable conditions ❘ 211

To work around this problem, the new version of the program makes Contract.Ensures call the
OrderItemsAreSorted method. That method performs the loop and returns a boolean result that
the Contract.Ensures method can use.

If the Contract.Ensures method invokes another method, in this case OrderItemsAreSorted,
Visual Studio issues a warning unless that method is marked with the Pure attribute. That attribute
indicates that the method does not modify any objects while it is examining them. You need to write
your code so that the method has this property. (This makes some sense. It would be confusing if
the method verifying a postcondition is modifying the object it is verifying.) In this example, the
OrderItemsAreSorted method examines an object’s order items but it doesn’t modify the order or
its items.

making contracts Work
Unfortunately, even if you put all this code in your program, contracts don’t work automatically.

Just as the Debug and Trace classes don’t do anything unless the DEBUG and TRACE preprocessor
symbols are defined, most of the Contract class’s methods don’t do anything unless the CONTRACTS_
FULL preprocessor symbol is defined.

If you use a #define directive to define that symbol, the Contract class’s methods will work but
they won’t work properly. If you think about how postconditions work, you’ll understand part of
the problem. A postcondition should be verified before the method exits, but the contract in the pre-
vious example places the Contract.Ensures call before the main body of the method’s code. The
method must verify the postcondition before it exits, not just when it starts.

To move the postcondition checks to their correct location and otherwise prepare the contract for
use, you need to invoke the rewriter tool ccrewrite.exe. That tool rearranges the IL code generated
by the C# compiler so that contracts work properly. If you try to run the program without using the
rewriter, the first call to a Contract method fails.

Fortunately there’s an easier way to make contracts work. Don’t bother with the CONTRACTS_FULL
preprocessor symbol in your code. Instead select Project ➪ Properties to open the project’s property
pages. Select the Code Contracts tab to see the page shown in Figure 9-1. Click the Perform Runtime
Contract Checking box to enable contracts. This defines the CONTRACTS_FULL preprocessor symbol for
you and makes Visual Studio automatically invoke the rewriter after it compiles your program.

You can explore the Code Contracts property page to change the way contracts are verified. For
example, you can use the drop-down to the right of the Perform Runtime Contract Checking box
to check only preconditions and postconditions, or to check only preconditions.

Now if you step through the program’s code in the debugger, you can see it execute the Contract
class’s method calls. The code first steps through the preconditions, then the method’s body, and
finally the postcondition defined by the Contract.Ensures method.

Invariants
An invariant is some condition that should remain true throughout an object’s lifetime. To create a
code contract invariant for a class, give the class a method that checks whatever the variant condi-
tions are and decorate that method with the ContractInvariantMethod attribute.

www.EBooksWorld.ir

www.hellodigi.ir

212 ❘ ChAPtER 9 error handling

FIGuRE 9-1: Use the Code Contracts property page to turn on code contracts .

Now whenever the program executes a public method from outside of the class’s code, it checks the
invariant after that method call returns to make sure the invariant property is still true.

For example, suppose the Order class has a Customer property and that property should never be
null throughout the lifetime of the Order object. The following code shows how you might use a
contract to enforce that condition in the Order class.

class Order
{
 public List<OrderItem> Items = new List<OrderItem>();

 public Customer Customer { get; set; }

 public Order(Customer customer)
 {
 Customer = customer;
 }

www.EBooksWorld.ir

www.hellodigi.ir

Bugs Versus Undesirable conditions ❘ 213

 [ContractInvariantMethod]
 private void CustomerIsNotNull()
 {
 Contract.Invariant(this.Customer != null);
 }
}

Here the CustomerIsNotNull method returns true if the Customer property is not null. Now
any time the main program calls one of the Order class’s public methods, the code contract invokes
CustomerIsNotNull to see if this invariant has been violated.

The basic process for using an invariant is straightforward, but there are a couple important details.

First, code contracts check invariants only when code outside of the class invokes one of the class’s
methods. In this example, the Order class could have methods that set the Customer property to
null and the invariant wouldn’t notice.

Actually, if one of the class’s public methods calls a second of the class’s methods, the invariant is
not verified after the call to the second method. The idea is that the second method may need to
temporarily violate the invariant property and the original method call will fix things up before
it returns. In other words, if code outside of the class calls one of the class’s public methods, the
variant property is verified only after the outermost call finishes.

The second important detail about invariants is that they apply only to public methods. In this example,
the Order class’s Customer value is implemented as a property with get and set accessors. Because the
accessors are methods, the code contract system can verify the invariant after they execute.

If the Customer value were implemented as a public field, the code contract system could not verify
the invariant after its value was changed.

For more information about code contracts, see the Code Contracts User Manual at
research.microsoft.com/projects/contracts/userdoc.pdf.

Catching undesirable Conditions
Although you don’t want undesirable conditions to happen, with some careful thought, you can often
predict where one might occur. Typically, these situations arise when the program must work with
something outside of its own code. For example, when the program needs to access a file, printer, web
page, floppy disk, or CD-ROM, that item may be unavailable. Similarly, whenever the program takes
input from the user, the user may enter invalid data.

Notice how this differs from the bugs described in the previous section. After sufficient testing, you
should have found and fixed most of the bugs. No amount of testing can remove the possibility of this
kind of undesirable condition. No matter what code you use, the user may still remove a flash drive
from the computer before the program is ready or unplug the printer while your program is using it.

Whenever you know that an undesirable condition might occur, you should write code to protect
the program. It is generally better to test for these conditions ahead of time before you perform an
action that might fail rather than simply attempt to perform the action and then catch the error
when the program fails.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

214 ❘ ChAPtER 9 error handling

Testing for problem conditions generally gives you more complete information about what’s wrong
because you know what the program is trying to do at that point. It’s also usually faster than catching
an error because try catch blocks (described in the section “try catch Blocks” later in this chapter)
come with considerable overhead.

For example, the following statement sets an integer variable to the value entered in a text box:

int numItems = int.Parse(numItemsTextBox.Text);

The user might enter a valid value in the text box. Unfortunately, the user may also enter something
that is not a number, a value that is too big to fit in an integer, or a negative number when you are
expecting a positive one. The user may even leave the field blank.

Often you can make error handling easier and more uniform by writing a validation method. The fol-
lowing method validates an integer value. It takes as parameters an output variable to hold the result,
the TextBox holding the text, the value’s name, and the minimum and maximum allowed values.

private bool IsValidInteger(out int result, TextBox txt, string name,
 int min = int.MinValue, int max = int.MaxValue)
{
 // Give result an initial value.
 result = int.MinValue;

 // Get the text.
 string text = txt.Text;

 // If there is something wrong, build an error message.
 string message = "";
 if (text.Length == 0) message = "Please enter " + name + ".";
 else if (!int.TryParse(text, out result))
 message = "Error parsing " + name + " '" + text + "'";
 else if ((result < min) || (result > max))
 message = name + " must be between " +
 min.ToString() + " and " + max.ToString() + ".";

 // See if we have an error message.
 if (message.Length > 0)
 {
 // Display the message, select the TextBox's text,
 // give it focus, and return false.
 MessageBox.Show(message, name + " Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 txt.Select(0, text.Length);
 txt.Focus();
 return false;
 }

 // The value is okay.
 return true;
}

This method initializes the output value to the minimum possible int value. It then gets the text in
the TextBox.

www.EBooksWorld.ir

www.hellodigi.ir

Bugs Versus Undesirable conditions ❘ 215

Next, the code tests the text to see if it is valid. If the text is blank, cannot be parsed by int.TryParse,
or is outside the allowed range, the method composes an appropriate error message.

After it finishes its test, the method checks to see if it has a nonblank error message. If the message
is nonblank, the method displays the error message, selects the text in the TextBox, sets focus to the
TextBox, and returns false to tell the calling code that the value was invalid.

If the error message is blank, the method returns true to tell the calling code that the value was valid.

Example program ValidateInteger, as shown in Figure 9-2, and available for download on the
book’s website, uses the IsValidInteger method to validate the values in three TextBoxes.

FIGuRE 9-2: The ValidateInteger example program validates
the values in three TextBoxes .

The following code shows how the ValidateInteger program uses the IsValidInteger method.

// Validate the values.
private void validateButton_Click(object sender, EventArgs e)
{
 int oneToTen, year, positive;

 // Validates the entries.
 if (!IsValidInteger(out oneToTen, oneToTenTextBox, "Value", 1, 10)) return;
 if (!IsValidInteger(out year, yearTextBox, "Year", 2000, 2020)) return;
 if (!IsValidInteger(out positive, positiveTextBox, "Positive Value", 1))
 return;

 // In a "real" application, you would perform other processing here.
 // ...

 MessageBox.Show("OK");
}

This code calls IsValidInteger three times and returns if any of those calls returns false. If
all the calls to IsValidInteger return true, all the values are valid, so the program continues
processing them.

You can write similar methods to validate other types of data fields such as phone numbers, e-mail
addresses, street addresses, and so forth.

www.EBooksWorld.ir

www.hellodigi.ir

216 ❘ ChAPtER 9 error handling

Global Exception handling
Normally, you should try to catch an error as close as possible to the place where it occurs. An error
is easiest to fix if you catch it right away in the method where it happens.

However, bugs often arise in unexpected places. Unless you protect every method with error-handling
code (a fairly common strategy), a bug may arise in code that you have not protected.

ERRORS, ERRORS, EVERywhERE

Some sources of errors are completely beyond your control. For example, power
surges, static electricity, intermittent short circuits, or even stray radiation striking
exactly the right part of a chip can make the computer’s hardware misbehave, so
code that should work correctly fails. There’s little you can do to anticipate these
kinds of errors but you can use global error handling to try to recover from them.

Of course, that doesn’t excuse you from rigorously checking your code for errors.
The vast majority of bugs are due to real mistakes in the code or data rather than to
magical cosmic rays flipping a single bit on a memory chip.

When you write a global exception handler, you probably won’t know where the exception will
occur, so it’s hard to figure out how to keep the program running effectively. You can log the error,
save data if necessary, and possibly display a message for the user before closing the program. You
can make the program attempt to ignore the error and continue running, but it may be difficult to
actually fix the problem.

LEt thE uSER ESCAPE

If you decide to make the program ignore the error and keep running, display a
message first and give the user a chance to close the program. Otherwise, the pro-
gram might get stuck in an infinite loop where it ignores the error and then retries
whatever operation caused the error in the first place.

How you install a global error handler depends on the type of program you run. The following
sections explain how to install global exception handlers for Windows Forms, WPF, and console
applications.

Note that global exception handlers don’t work inside Visual Studio. In all three kinds of programs,
if the program throws an unhandled exception, Visual Studio springs into action and catches the
error. To test the programs, you need to run a compiled executable program outside of Visual Studio.

Windows forms applications
To catch unhandled exceptions in a Windows Forms application, add an event handler to the
Application object’s ThreadException event. The WindowsFormsGlobalException example

www.EBooksWorld.ir

www.hellodigi.ir

Bugs Versus Undesirable conditions ❘ 217

program, which is available for download on this book’s website, uses the following code to install
its event handler.

// Install the global exception handler.
private void Form1_Load(object sender, EventArgs e)
{
 Application.ThreadException += ThreadException;
}

The following code shows the example program’s ThreadException event handler.

// Handle global exceptions.
private static void ThreadException(object sender, ThreadExceptionEventArgs e)
{
 try
 {
 string message = e.Exception.Message + '\n' +
 "Do you want to try to continue?";
 if (MessageBox.Show(message, "Unhandled Exception",
 MessageBoxButtons.YesNo, MessageBoxIcon.Stop) == DialogResult.No)
 {
 Application.Exit();
 }
 }
 catch
 {
 Application.Exit();
 }
}

The event handler does all its work inside a try catch block. If anything goes wrong, the code simply
closes the application.

The code builds and displays a message that describes the exception and asks the user if the program
should try to continue. (You might also want to log the error, including a stack trace, into a log file
or a system log.) If the user clicks No, the method calls Application.Exit to end the program.

If the user clicks Yes, the program continues running.

When you click the program’s Throw Exception button, the following code executes.

// Throw an exception.
private void throwExceptionButton_Click(object sender, EventArgs e)
{
 throw new ArgumentException();
}

This code simply throws an ArgumentException. Because this code doesn’t use a try catch block,
the global exception handler catches it.

WPf applications
To catch unhandled exceptions in a WPF application, add an event handler to the Application
.Current object’s DispatcherUnhandledException event. The WpfGlobalException example

www.EBooksWorld.ir

www.hellodigi.ir

218 ❘ ChAPtER 9 error handling

program, which is available for download on the book’s website, uses the following code to install
its event handler.

// Install the global exception handler.
private void Window_Loaded(object sender, RoutedEventArgs e)
{
 Application.Current.DispatcherUnhandledException += UnhandledException;
}

The following code shows the example program’s UnhandledException event handler.

// Handle global exceptions.
private void UnhandledException(object sender,
 DispatcherUnhandledExceptionEventArgs e)
{
 try
 {
 string message = e.Exception.Message + '\n' +
 "Do you want to try to continue?";
 if (MessageBox.Show(message, "Unhandled Exception",
 MessageBoxButton.YesNo, MessageBoxImage.Stop) == MessageBoxResult.No)
 {
 Application.Current.Shutdown();
 }
 e.Handled = true;
 }
 catch
 {
 Application.Current.Shutdown();
 }
}

This event handler is similar to the one used by the previous example. Most of the differences are in
the constants and method calls this version uses to perform the same tasks as the previous version.

One important difference is the following statement.

e.Handled = true;

This statement tells the program that the event has been handled and the program doesn’t need
to close. In a Windows Forms application, continuing is the default action. In a WPF application,
closing is the default action.

When you click the program’s Throw Exception button, the following code executes.

// Throw an exception.
private void throwExceptionButton_Click(object sender, RoutedEventArgs e)
{
 throw new ArgumentException();
}

This is similar to the code in the Windows Forms example. The only difference is that this version
takes as its second parameter a RoutedEventArgs object instead of an EventArgs object.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Bugs Versus Undesirable conditions ❘ 219

console applications
To catch unhandled exceptions in a console application, add an event handler to the
AppDomain.CurrentDomain object’s UnhandledException event. The Main method used by
the ConsoleGlobalException example program, which is available for download on the book’s
website, installs its event handler and enters a loop that runs until the program ends.

static void Main(string[] args)
{
 // Install the event handler.
 AppDomain.CurrentDomain.UnhandledException += UnhandledException;

 // Loop forever.
 for (; ;)
 {
 Console.WriteLine("1 - Continue, 2 - Throw exception, 3 - Exit");
 Console.Write("> ");
 string text = Console.ReadLine();
 int choice = int.Parse(text);

 switch (choice)
 {
 case 1:
 // Continue.
 Console.WriteLine("Continuing...\n");
 break;

 case 2:
 // Throw an exception.
 Console.WriteLine("Throwing exception...\n");
 throw new ArgumentException();

 case 3:
 // Exit.
 return;
 }
 }
}

The method installs the program’s event handler and then enters an infinite loop. Each time through
the loop, the method displays a prompt and then waits for the user’s input. It parses the input and
uses a switch statement to decide what to do next.

If the user enters 1, the program displays a message and continues its loop. If the user enters 2, the
program throws an exception. If the user enters 3, the program exits the Main method and ends.

The following code shows the example program’s UnhandledException event handler.

// Handle an exception.
private static void UnhandledException(object sender,
 UnhandledExceptionEventArgs e)
{
 Console.WriteLine("Caught exception:");
 Exception exception = (Exception)e.ExceptionObject;

www.EBooksWorld.ir

www.hellodigi.ir

220 ❘ ChAPtER 9 error handling

 Console.WriteLine(exception.Message);
 Console.WriteLine("\n\n\nPress Enter to close the application");
 Console.ReadLine();
}

This event handler is different from the previous two in two main ways. First, this is a console applica-
tion so, instead of displaying messages boxes, it communicates to the user through the console window.

Second, this event handler cannot prevent the application from ending. (Although you could use a
try catch block in the Main method to catch exceptions and try to keep the program running there.)

Figure 9-3 shows the ConsoleGlobalException example program after it has caught an exception.
Initially, the event handler displayed the information starting at Throwing Exception and ending
with Press Enter to Close the Application. When you press Enter, the system automatically displays
the following text and the ConsoleGlobalException Has Stopped Working dialog.

FIGuRE 9-3: An UnhandledException event handler cannot prevent a
console application from closing .

tRy CAtCh bLOCKS

The try catch block provides structured error handling for C# programs. The syntax is as follows.

try
{
 tryStatements...
}
catch (exceptionType1 variable1)
{
 exceptionStatements1...
}

www.EBooksWorld.ir

www.hellodigi.ir

try catch Blocks ❘ 221

catch (exceptionType2 variable2)
{
 exceptionStatements2...
}
...
catch
{
 finalExceptionStatements...
}
finally
{
 finallyStatements...
}

The program executes the code in the tryStatements block. If any of that code throws an exception,
the program jumps to the first catch block.

If the exception matches exceptionType1, the program executes the code in exceptionStatements1.
The exception type might match the catch statement’s exception class exactly, or it might be a sub-
class of the listed class.

For example, suppose the tryStatements block performs an integer calculation that divides by
zero. That raises a DivideByZeroException. That class inherits from the ArithmeticException
class, which inherits from SystemException, which inherits from Exception. That means the
code would stop at the first catch statement it finds that looks for DivideByZeroException,
ArithmeticException, SystemException, or Exception.

CAtCh CONtROL

Arrange catch statements so the most specific comes first. Otherwise, a more
general statement catches errors before a more specific statement has a chance. For
example, the generic Exception class matches all other exceptions, so if the first
catch statement catches Exception, no other catch statement ever executes.

If two catch statements are unrelated, neither catches the other’s exceptions, so put
the exception more likely to occur first. That makes the code more efficient because
it looks for the most common problems first. It also keeps the code most likely to
execute near the top where it is easier to read.

If the raised exception does not match the first exception type, the program checks the next catch
statement. The program keeps comparing the exception to catch statements until it finds one that
applies, or it runs out of catch statements.

If no catch statement matches the exception, the exception “bubbles up” to the next level in the call
stack, and C# moves to the method that called the current one. If that method has appropriate error-
handling code, it deals with the error. If that method can’t catch the error, the exception bubbles up
again until C# eventually either finds error-handling code that can catch the exception or runs off the
top of the call stack. If it runs off the call stack, C# calls the global UnhandledException event handler

www.EBooksWorld.ir

www.hellodigi.ir

222 ❘ ChAPtER 9 error handling

described in the previous sections, if one exists. If there is no UnhandledException event handler, the
program crashes.

If you include a catch statement with no exception type, that block matches any exception. If
the raised exception doesn’t match any of the previous exception types, the program executes the
finalExceptionStatements block of code. Note that the statement catch (Exception ex) also
matches all exceptions, so it’s just as good as catch by itself. It also gives you easy access to the
exception object’s properties and methods.

You can figure out what exception classes to use in catch statements in several ways. First, you can
spend a lot of time digging through the online help. An easier method is to let the program crash
and then look at the error message it produces.

Figure 9-4 shows the error message a program throws when it tries to use the Integer.Parse
method to convert the non-numeric string Hello into an integer. The first line in the dialog makes
it obvious that the program should catch FormatException.

FIGuRE 9-4: When a program crashes, the message it
generates tells you the type of exception it threw .

Another way to decide what types of exceptions to catch is to place a final generic catch (Exception
ex) statement at the end of the catch list. Place code inside that catch block to display the exception’s
type name, as shown in the following code.

try
{
 ...
}

... Catch blocks ...

catch (Exception ex)
{
 MessageBox.Show("Unexpected exception " + ex.GetType().Name);
}

www.EBooksWorld.ir

www.hellodigi.ir

try catch Blocks ❘ 223

When the final catch block reports a new exception type, you can create a new catch block to
handle it.

CAtCh CAtAStROPhES

It may not be possible to take meaningful action when you catch certain excep-
tions. For example, if a program uses up all the available memory, C# throws an
OutOfMemoryException. If there is no memory available, you may have trouble
doing anything useful. Similarly, if there’s a problem with the filesystem, you may
be unable to write error descriptions into a log file.

After it finishes running the code in tryStatements and it executes any necessary exception code in
a catch block, the program executes the code in finallyStatements. The statements in the finally
section execute whether the code in tryStatements succeeds or fails.

A try catch block must include at least one catch section or a finally section; although, those
sections do not need to contain any code. For example, the following try catch block calls method
DoSomething and uses an empty catch section to ignore any errors that occur.

try
{
 DoSomething();
}
catch
{
}

Exception Objects
When a catch statement catches an exception, its exception variable contains information about the
error that raised the exception.

REPEAtEd VARIAbLES

The try, catch, and finally sections define their own scopes, so they can use
variables with the same names without interfering with each other. Many program-
mers always give exception variables the name ex.

Different exception classes may provide different features, but they all provide the basic features
defined by the Exception class from which they are all derived. The following table lists the most
commonly used Exception class properties and methods.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

224 ❘ ChAPtER 9 error handling

ItEM PuRPOSE

InnerException The exception that caused the current exception . For example, suppose
that you write a tool library that catches an exception and then throws a
new custom exception describing the problem in terms of your library .
You should set InnerException to the exception that you caught
before you throw the new exception .

Message Returns a brief message that describes the exception .

Source Returns the name of the application or object that threw the exception .

StackTrace Returns a string containing a stack trace giving the program’s location
when the error occurred .

TargetSite Returns the name of the method that threw the exception .

ToString Returns a string describing the exception and including the stack trace .

Example program ShowExceptionInfo, which is available for download on this book’s website,
displays an exception’s Message, StackTrace, and ToString values.

At a minimum, the program should log or display the Message value for any unexpected exceptions
so that you know what exception occurred. The program might also log the StackTrace or the result
of ToString so that you can see where the exception occurred.

The StackTrace and ToString values can help developers find a bug, but these values can be intimidat-
ing to end users. Even the abbreviated format used by the exception’s Message property is usually not
useful to a user. When the user clicks the Find Outstanding Invoices button, the message “Attempted
to Divide by Zero” doesn’t actually tell the user what the problem is or what to do about it.

When a program catches an exception, a good strategy is to record the full ToString message in a
log file or e-mail it to a developer. Then display a message that restates the error message in terms
the user can understand. For example, the program might say the following.

Unable to total outstanding invoices. A bug report has been sent to the development team.

The program should then try to continue as gracefully as possible. It may not be able to finish this
calculation, but it should not crash, and it should allow the user to continue working on other tasks
if possible.

throwing Exceptions
In addition to catching exceptions, your program may need to generate its own exceptions. Because
handling an exception is called catching it, raising an exception is called throwing it. (This is just a
silly pun. People also catch lions and colds, but I don’t think many people throw them. It’s as good
a term as any, however.)

To throw an exception, the program creates an instance of the type of exception it wants to generate,
passing the constructor additional information describing the problem. The program can then set

www.EBooksWorld.ir

www.hellodigi.ir

try catch Blocks ❘ 225

other exception fields if wanted. For example, it might set the exception’s Source property to tell the
code that catches the error where it originated. The program then uses the throw statement to throw
the exception. If an error handler is active somewhere in the call stack, C# jumps to that point and
the error handler processes the exception.

Example program DrawableRect, which is available for download on this book’s website, uses the
following code to show how the DrawableRectangle class protects itself against invalid input.

class DrawableRectangle
{
 public DrawableRectangle(int x, int y, int width, int height)
 {
 // Verify that new_width > 0.
 if (width <= 0)
 {
 throw new ArgumentException(
 "DrawableRectangle width must be greater than zero",
 "width");
 }

 // Verify that new_height > 0.
 if (height <= 0)
 {
 throw new ArgumentException(
 "DrawableRectangle height must be greater than zero",
 "height");
 }

 // Save the parameter values.
 //...
 }

 // Other code for this class omitted.
 //...
}

The class’s constructor takes four arguments: an X and Y position, and a width and height. If the
new object’s width is less than or equal to zero, the program creates a new ArgumentException
object. It passes the exception’s constructor a description of the error and the name of the argument
that is invalid. After creating the exception object, the program uses the throw statement to raise the
exception. The code checks the new object’s height similarly.

The following code shows how a program might use a try catch block to protect itself while creating
a new DrawableRectangle object.

try
{
 DrawableRectangle rect = new DrawableRectangle(10, 20, 0, -100);
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

www.EBooksWorld.ir

www.hellodigi.ir

226 ❘ ChAPtER 9 error handling

When your application needs to throw an exception, it’s easiest to use an existing exception
class. There are a few ways to get lists of exception classes so that you can find one that makes
sense for your application. Appendix O, “Useful Exception Classes,” lists some of the more
useful exception classes. The online help topic “Introduction to Exception Handling in Visual
Basic” at msdn.microsoft.com/aa289505.aspx also has a good list of exception classes at the
end. Microsoft’s web page msdn.microsoft.com/system.exception_derivedtypelist.aspx
provides a long list of exception classes derived from the System.Exception class.

Another method for finding exception classes is to open the Object Browser (select View ➪ Object
Browser) and search for Exception.

When you throw exceptions, you must use your judgment about selecting these classes. For example,
C# uses the System.Reflection.AmbiguousMatchException class when it tries to bind a method
call to an object’s method and it cannot determine which overloaded method to use. This happens at
a lower level than your program will act, so you won’t use that class for exactly the same purpose,
but it still may be useful to throw that exception. For example, if your program parses a string and,
based on the string, cannot decide what action to take, you might use this class to represent the
error, even though you’re not using it exactly as it was originally intended.

Be sure to use the most specific exception class possible. Using more generic classes such as
Exception makes it much harder for developers to understand and locate an error. If you can-
not find a good, specific fit, create your own exception class, as described in the section “Custom
Exceptions” later in this chapter.

Rethrowing Exceptions
Sometimes when you catch an exception, you cannot completely handle the problem. In that case,
it may make sense to rethrow the exception so that a method higher up in the call stack can take a
crack at it.

To rethrow an error exactly as you caught it, just use the throw keyword, as in the following example.

try
{
 // Do something hard here.
 ...
}
catch (ArithmeticException ex)
{
 // We can handle this exception. Fix it.
 ...
}
catch
{
 // We don't know what to do with this one. Re-throw it.
 throw;
}

If your code can figure out more or less why an error is happening but it cannot fix it, it’s sometimes
a good idea to rethrow the error as a different exception type. For example, suppose a piece of code
causes an ArithmeticException but the underlying cause of the exception is an invalid argument.

www.EBooksWorld.ir

www.hellodigi.ir

try catch Blocks ❘ 227

In that case it is better to throw an ArgumentException instead of an ArithmeticException
because that can provide more specific information higher up in the call stack.

At the same time, however, you don’t want to lose the information contained in the original
ArithmeticException. The solution is to throw a new ArgumentException but to place the
original ArithmeticException in its InnerException property so that the code that catches
the new exception has access to the original information.

The following code demonstrates this technique.

try
{
 // Do something hard here.
 ...
}
catch (ArithmeticException ex)
{
 // This was caused by an invalid argument.
 // Re-throw it as an ArgumentException.
 throw new ArgumentException("Invalid argument X in function Whatever. ", ex);
}
catch
{
 // We don't know what to do with this one. Re-throw it.
 throw;
}

Custom Exceptions
When your application needs to throw an exception, it’s easiest to use an existing exception class.
Reusing existing exception classes makes it easier for developers to understand what the exception
means. It also prevents exception proliferation, where the developer needs to watch for dozens or
hundreds of bizarre types of exceptions.

Sometimes, however, the predefined exceptions don’t fit your needs. For example, suppose that you
build a class that contains data that may exist for a long time. If the program tries to use an object
that has not refreshed its data for a while, you want to raise some sort of “data expired” exception.
You could squeeze this into the System.TimeoutException class, but that exception doesn’t quite
fit this use. In that case, you can build a custom exception class.

Building a custom exception class is easy. Make a new class that inherits from the System.Exception
class. Then, provide constructor methods to let the program create instances of the class. That’s all
there is to it.

By convention, an exception class’s name should end with the word Exception. Also by convention,
you should provide at least three overloaded constructors for developers to use when creating new
instances of the class. (For more information on what constructors are and how to define them, see
the section “Constructors” in Chapter 12, “Classes and Structures.”)

The first constructor takes no parameters and initializes the exception with a default message
describing the general type of error.

www.EBooksWorld.ir

www.hellodigi.ir

228 ❘ ChAPtER 9 error handling

The other two versions take as parameters an error message, and an error message plus an inner
exception object. These constructors pass their parameters to the base class’s constructors to initialize
the object appropriately.

For completeness, you can also make a constructor that takes as parameters a SerializationInfo
object and a StreamingContext object. This version can also pass its parameters to a base class con-
structor to initialize the exception object, so you don’t need to do anything special with the param-
eters. (This constructor is useful if the exception will be serialized and deserialized. If you’re not
sure whether you need this constructor, you probably don’t. If you do include it, however, you need
to import the System.Runtime.Serialization namespace in the exception class’s file to define the
SerializationInfo and StreamingContext classes.)

Example program CustomException, which is available for download on the book’s website, uses
the following code to define the ObjectExpiredException class.

class ObjectExpiredException : Exception
{
 // No parameters. Use a default message.
 public ObjectExpiredException()
 : base("This object has expired")
 {
 }

 // Set the message.
 public ObjectExpiredException(string message)
 : base(message)
 {
 }

 // Set the message and inner exception.
 public ObjectExpiredException(string message, Exception innerException)
 : base(message, innerException)
 {
 }

 // Include SerializationInfo object and StreamingContext objects.
 public ObjectExpiredException(SerializationInfo info,
 StreamingContext context)
 : base(info, context)
 {
 }
}

After you have defined the exception class, you can throw and catch it just as you can throw
and catch any exception class defined by C#. For example, the following code throws an
ObjectExpiredException.

throw new ObjectExpiredException("This Customer object has expired.");

The parent class System.Exception automatically handles the object’s Message, StackTrace, and
ToString properties, so you don’t need to implement them yourself.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 229

SuMMARy

In practice, it’s extremely difficult to anticipate every condition that might occur within a large
application. You should try to predict as many incorrect situations as possible, but you should also
plan for unforeseen errors. You should write error-checking code that makes bugs obvious when
they occur and recovers from them if possible. You may not anticipate every possible bug, but with
a little thought you can make the program detect and report obviously incorrect values.

You should also look for unplanned conditions (such as the user entering a phone number in a Social
Security number field) and make the program react gracefully. Your program cannot control every-
thing in its environment (such as the user’s actions, printer status, and network connectivity), but it
should be prepared to work when things aren’t exactly the way they should be.

You may never remove every last bug from a 100,000-line program, but you can make any remaining
bugs relatively harmless and appear so rarely that the users can do their jobs in relative safety.

Visual Studio provides a rich set of tools for debugging an application. Using the development envi-
ronment, you can stop the program at different lines of code and examine variables, change variable
values, look at the call stack, and call methods to exercise different pieces of the application. You can
step through the program, executing the code one statement at a time to see what it is doing. You can
even make some modifications to the source code and let the program continue running. Chapter 10,
“Tracing and Debugging,” describes tools and techniques you can use to debug applications.

ExERCISES

 1. Consider the following Student class.

public class Student
{
 public string Name;
 public List<Course> Courses = new List<Course>();

 // Constructor.
 public Student(string name)
 {
 Name = name;
 }
}

Add Debug.Assert statements to the class to require the following conditions.

➤➤ The Name property must always be at least 1 character long.

➤➤ The Courses value can never be null. (Although the list can be empty.)

 2. Repeat Exercise 1 using code contract preconditions and postconditions instead of Debug
.Assert statements. (Put in postconditions even though you “know” they’re unnecessary.)

 3. Repeat Exercise 1 using code contract invariants instead of preconditions, postconditions,
or Debug.Assert statements.

www.EBooksWorld.ir

www.hellodigi.ir

230 ❘ ChAPtER 9 error handling

 4. Suppose you anticipate occasions when the main program might try to violate the conditions
listed for Exercise 1. Instead of using Debug.Assert or code contracts to catch these occasions
during testing, you want to raise exceptions and let the main program catch them. Repeat
Exercise 1 so it does that.

 5. The section “Console Applications” earlier in this chapter showed a console application that
throws an exception if you enter the value 2 in the console window. Can you think of any
other ways to make the program throw an exception?

 6. Rewrite the program described in Exercise 5 so that it can handle any input without throwing
an exception (except the input 2, which is supposed to throw an exception).

 7. The program described in the section “Console Applications” earlier in this chapter uses
an UnhandledException event handler to catch unhandled exceptions. However, all the
code in a console application runs directly or indirectly from the Main method. That means
you could put a try catch block in that method to catch all exceptions that aren’t handled
anywhere else.

Rewrite the example shown in that section to use this technique. What are the advantages and
disadvantages of this method compared to using an UnhandledException event handler?

 8. Suppose the Factorial program uses the following code.

// Calculate the entered number's factorial.
private void calculateButton_Click(object sender, EventArgs e)
{
 long number = long.Parse(numberTextBox.Text);
 resultLabel.Text = Factorial(number).ToString();
}

// Return number!
private long Factorial(long number)
{
 long result = 1;
 for (long i = 2; i <= number; i++) result *= i;
 return result;
}

What kinds of error-handling statements would be appropriate in this example? Would
it make sense to use Debug.Assert? Code contracts? Add the appropriate error-handling
statements to this code.

www.EBooksWorld.ir

www.hellodigi.ir

Tracing and Debugging
whAt’S IN thIS ChAPtER

➤➤ Breakpoints

➤➤ The Watches and Autos windows

➤➤ Breakpoint conditions, hit counts, and filters

➤➤ Enabling and disabling breakpoints

➤➤ Debug and trace listeners

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Visual Studio’s code editor includes tools that help you avoid bugs. Some of the things the
editor does to help you include

➤➤ Providing IntelliSense to help you use methods and parameters correctly

➤➤ Identifying variables that are used before initialization or that are declared but never used

➤➤ Detecting unreachable code

➤➤ Flagging methods with a non-void return type that don’t return a value on all code paths

➤➤ Providing a renaming tool so that you can easily rename objects without missing
references

Despite those tools, however, bugs are as certain in programming as death and taxes. Although
it is theoretically possible for a program to be bug-free, chances are good that any nontrivial
program contains bugs. Actually, in some testing strategies it’s an axiom that the program

10

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

232 ❘ ChAPtER 10 TraCing and debugging

contains bugs. The goal is not to fix every bug but to fix so many of the bugs that those that remain
occur extremely rarely.

Although this book is about the C# language and not Visual Studio, any reasonably complete
C# book should provide some coverage of debugging tools and techniques. This chapter briefly
describes some of the tools Visual Studio provides to help you track down and eliminate bugs. It
also explains tracing methods that you can use to figure out what a program is doing and hopefully
what it is doing wrong.

thE dEbuG MENu

The Debug menu contains commands that are generally useful when you debug a program. They
include commands to set and clear breakpoints, one of Visual Studio’s most useful features.

A breakpoint is a spot in the code that is marked to suspend execution. When the program reaches
a line marked with a breakpoint, execution pauses so that you can examine the program’s status.
While execution is paused, you can hover over variables to see their values, enter expressions in the
Immediate window to evaluate them, and change values by setting variables equal to new values in
the Immediate window. You can even edit the code to some extent and then continue running.

To set a breakpoint, place the cursor in the code editor on the line where you want to pause execution.
Then press F9 or click in the margin to the left of the line of code to create the breakpoint. To remove
a breakpoint, place the cursor on the line, and press F9 or click in the margin again.

The commands that are visible in the Debug window change depending on several conditions, such
as the type of file you have open, whether the program is running, the line of code that contains the
cursor, and whether that line contains a breakpoint. The following list briefly summarizes the most
important items available in the Debug menu while execution is stopped at a breakpoint.

➤➤ Windows—This submenu’s commands display other debugging-related windows. The
following section describes this menu’s most useful commands.

➤➤ Continue (F5)—This command makes the program continue execution until it finishes or it
reaches another breakpoint.

➤➤ Break All (Ctrl+Break)—This command pauses the program’s execution. You can then
examine the program’s state, examine and change variables’ values, and modify the code
before you resume execution.

➤➤ Stop Debugging (Ctrl+Alt+Break)—This command stops the program and ends its debugging
session. Note that this stops the program immediately, so it doesn’t get a chance to run form
closing event handlers and any other cleanup code that it would run if it halted normally.

➤➤ Step Into (F8 or F11)—This command makes the debugger execute the current line of code.
If that code calls a method, the debugger steps into that method.

➤➤ Step Over (Shift+F8 or F10)—This command makes the debugger execute the current line
of code. If that code calls a method, the debugger steps over that method. (If the method
contains a breakpoint, execution pauses there.)

www.EBooksWorld.ir

www.hellodigi.ir

The Debug menu ❘ 233

➤➤ Step Out (Ctrl+Shift+F8)—This command makes the debugger run until it leaves the method
it is currently executing (or until it reaches a breakpoint). Execution pauses when the program
reaches the line of code that called this method.

➤➤ QuickWatch (Shift+F9)—This command displays a dialog box that gives information about
the selected code object. If the object is a variable, the dialog enables you to reevaluate it or
change its value. Click the Add Watch button to add the value to a watch window. (See the
entry “Watch” in the next section for more information on watch windows.)

➤➤ Exceptions (Ctrl+Alt+E)—This command displays the dialog box shown in Figure 10-1. Use
the dialog to make the debugger stop the program when a particular kind of exception is
thrown or unhandled.

FIGuRE 10-1: The Exceptions dialog box enables you to determine how the
debugger handles exceptions .

➤➤ Toggle Breakpoint (F9)—This command toggles whether the current code line contains a
breakpoint.

➤➤ New Breakpoint—This submenu’s single command Break At Function (Ctrl+B) displays a
dialog box that enables you to specify a function and a line within that function where the
program should break.

➤➤ Delete All Breakpoints (Ctrl+Shift+F9)—This command removes all breakpoints from the
entire solution.

➤➤ Enable All Breakpoints—This command enables all disabled breakpoints.

➤➤ Disable All Breakpoints—This command disables all breakpoints but leaves them in the
solution so that you can re-enable them later. (You can disable individual breakpoints by
right-clicking the breakpoint’s margin and selecting Disable Breakpoint.)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

234 ❘ ChAPtER 10 TraCing and debugging

thE dEbuG ➪ wINdOwS SubMENu

The Debug menu’s Windows submenu contains commands that display debugging-related win-
dows. The following list briefly describes the most useful of these windows. The sections that fol-
low this one provide more detail about the Breakpoints, Command, and Immediate windows.

➤➤ Immediate (Ctrl+G)—This window enables you to examine variable and execute C# state-
ments. The section “The Immediate Window” later in this chapter describes this window in
more detail.

➤➤ Locals (Ctrl+Alt+V, L)—This window displays the values of variables defined in the local
context. To change a value, click it and enter the new value. Click the plus and minus signs
to the left of a complex value such as an object to expand or collapse it.

➤➤ Breakpoints (Ctrl+Alt+B)—This window, which is shown in Figure 10-2, displays the
solution’s breakpoints, their locations, and their conditions. Use the toolbar to create a
new function breakpoint, delete a breakpoint, delete all breakpoints, enable or disable all
breakpoints, go to a breakpoint’s source code, and change the columns displayed by the
dialog box. Select or clear the check boxes on the left to enable or disable breakpoints.
Right-click a breakpoint to change its properties. See the section “The Breakpoints
Window” later in this chapter for more detail.

FIGuRE 10-2: The Breakpoints window helps you manage breakpoints .

➤➤ Output—This window displays output produced by Console statements.

➤➤ Autos (Ctrl+Alt+V, A)—This window displays the values of local and global variables used
in the current and previous lines of code.

➤➤ Call Stack (Ctrl+L)—This window lists the methods that have called other methods to reach
the program’s current point of execution. Double-click a line to jump to the corresponding
code in the program’s call stack.

➤➤ Watch—The Watch submenu contains the commands Watch 1, Watch 2, Watch 3,
and Watch 4. These commands display four different watch windows that display the
values of variables and expressions when the program is paused. When you create a
watch using the QuickWatch command described in the preceding section, the new watch
is placed in the Watch 1 window. You can click and drag a watch from one watch win-
dow to another to make a copy of the watch in the second window.

www.EBooksWorld.ir

www.hellodigi.ir

The Breakpoints Window ❘ 235

➤➤ Modules—This window displays information about the DLL and EXE files used by the
program. It shows each module’s filename and path; whether it is optimized; whether it is
your code (rather than an installed library); and whether debugging symbols are loaded. It
also shows each module’s load order (lower-numbered modules are loaded first), version,
and timestamp.

Often it is useful to make the visible debug windows occupy separate tabs in the same area at the
bottom of the IDE. That enables you to switch between them quickly and easily without them
taking up too much space.

thE bREAKPOINtS wINdOw

The Breakpoints window lists all the breakpoints. If you double-click a breakpoint in the list, you
can easily jump to the code that holds it.

The icons to the left of the breakpoints shown in Figure 10-2 give information about their properties.
The following list describes the icons.

➤➤ Solid red circle—This indicates an ordinary breakpoint.

➤➤ White plus sign—This indicates the breakpoint is modified by a condition, hit count, or
filter. The following text describes these.

➤➤ Diamond—This indicates the breakpoint performs some special action when it is
reached. Normally, the action prints a message in the Immediate window showing
values that you specify.

➤➤ Hollow circle or diamond—This indicates the breakpoint has been disabled.

Right-click a breakpoint and select Condition to display the dialog box shown in Figure 10-3. By
default, a breakpoint pauses execution whenever it is reached. You can use this dialog box to add an
additional condition that determines whether the breakpoint pauses the program when it is reached.
In Figure 10-3, the breakpoint pauses execution if the expression (number < 10) && (i > 5) is
true when the code reaches the breakpoint.

FIGuRE 10-3: The Breakpoint Condition dialog box
enables you to specify a condition that determines
whether execution pauses at the breakpoint .

www.EBooksWorld.ir

www.hellodigi.ir

236 ❘ ChAPtER 10 TraCing and debugging

NOtE Specifying a breakpoint condition can slow execution considerably
because the debugger must evaluate the condition frequently.

Right-click a breakpoint and select Hit Count to display the Breakpoint Hit Count dialog box, as
shown in Figure 10-4. Each time the code reaches a breakpoint, it increments the breakpoint’s hit
count. You can use this dialog box to make the breakpoint interrupt execution when it has been
reached a specific number of times, a multiple of some number of times, or at least a certain number
of times.

FIGuRE 10-4: The Breakpoint Hit Count dialog
box enables you to make a breakpoint’s activation
depend on the number of times the code has
reached it .

Right-click a breakpoint and select Filter to display the Breakpoint Filter dialog box, shown in
Figure 10-5. You can enter a filter expression to make the breakpoint pause execution only for
certain machines, processes, or threads.

FIGuRE 10-5: The Breakpoint Filter dialog box
enables you to make a breakpoint’s activation
depend on the machine, process, or thread .

www.EBooksWorld.ir

www.hellodigi.ir

The Immediate Window ❘ 237

Right-click a breakpoint and select When Hit to display the When Breakpoint Is Hit dialog box,
as shown in Figure 10-6. Here you can specify the actions the debugger takes when the breakpoint
is activated. Select the Print a Message check box to make the program display a message in the
Immediate window. Select the Continue Execution check box to make the program continue run-
ning without stopping after it displays its message.

FIGuRE 10-6: The When Breakpoint Is Hit dialog box
enables you to make a breakpoint display a message
when it is hit .

thE IMMEdIAtE wINdOw

The Immediate window enables you to evaluate expressions and execute commands while the program
is stopped in the debugger. One of the more useful commands displays a variable’s or expression’s
value. Simply type the variable or expression and press Enter to see its value.

You can also set a variable’s value in the Immediate window. Simply type the variable’s name, the
equal sign, and its new value. For example, the statement Width = 300 sets Width equal to 300. If
the code is running in a Windows Form, and no other variable named Width is defined, this would
set the form’s width to 300.

In addition to viewing and modifying variable values, the Immediate window enables you to
execute methods so that you can easily test them. For example, suppose you have written a
CheckPrinter method. Then you could type the statement CheckPrinter() in the Immediate
window to execute that method.

Executing methods in the Immediate window enables you to test them quickly and easily without
writing user interface code to handle all possible situations. You can call a method passing it differ-
ent parameters to see what happens. If you set breakpoints within the method, the debugger pauses
execution there.

The Debug and Trace classes provide several methods such as Write and WriteLine for displaying
output. They let your program display information about what it is doing.

www.EBooksWorld.ir

www.hellodigi.ir

238 ❘ ChAPtER 10 TraCing and debugging

When you initially configure Visual Studio for C#, that information is written into the Immediate
window. You can change that behavior in two ways. First, you can select Tools ➪ Options, go
to Debugging, and select General. If you uncheck the “Redirect All Output Window text to the
Immediate Window” option, the Debug and Trace writing methods send output to the Output
window instead of the Immediate window. (Even though that option says it redirects all output, it
actually redirects only Debug and Trace output, not output generated by Console writing methods
such as Console.WriteLine.)

The second method for changing where Debug and Trace output goes is to implement trace listeners.
This is a useful and complicated enough technique that it is described in the following section.

tRACE LIStENERS

The breakpoints described in the previous sections are extremely useful for figuring out what a
program is doing. They let you step through the code as it executes to see what steps the program
executes and to see what values are contained in variables.

However, sometimes a breakpoint can interfere with the program’s operation, so it prevents you from
observing its normal behavior. For example, if the program uses event handlers to track the mouse’s
position, a breakpoint stops the event handlers so that the program can’t track the mouse anymore.

Sometimes it’s hard to predict when an error will occur. For example, if a program encounters
a bug only after running for several hours, it may be impractical to step through the code until a
mistake occurs.

In those cases, it may be better to record events as they occur in a log or text file and then look
at the record later. By default the Trace and Debug classes send their output to the Immediate or
Console window. However, those classes share a Listeners collection that keeps track of listener
objects that should receive that output.

Initially, that collection holds the DefaultTraceListener object, but you can remove that object
or add new listeners if you like. Other listeners can send output to other locations such as log files,
system event logs, or text files.

The .NET Framework provides the following three kinds of trace listener classes.

➤➤ ConsoleTraceListener—Sends output to the Console window

➤➤ EventLogTraceListener—Sends output to an event log

➤➤ TextWriterTraceListener—Sends output to a stream such as a FileStream

The TraceIntoTextFile example program, which is available for download on the book’s website,
uses the following code to demonstrate a trace listener.

private void Form1_Load(object sender, EventArgs e)
{
 // Create the trace output file.
 Stream stream = File.Create("DebugLog.txt");

 // Create a TextWriterTraceListener for the trace output file.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Trace Listeners ❘ 239

 Debug.Listeners.Add(new TextWriterTraceListener(stream));

 // Write a startup note into the trace file.
 Debug.WriteLine(DateTime.Now.ToString() + ": Debugging session started");
}

// Create and process a Student.
private void processButton_Click(object sender, EventArgs e)
{
 Student student = new Student()
 {
 FirstName = firstNameTextBox.Text,
 LastName = lastNameTextBox.Text,
 Street = streetTextBox.Text,
 City = cityTextBox.Text,
 State = stateTextBox.Text,
 Zip = zipTextBox.Text
 };
 ProcessStudent(student);
}

// Process a student.
private void ProcessStudent(Student student)
{
 Debug.WriteLine("ProcessStudent");
 Debug.Indent();
 Debug.WriteLine("Name: " + student.FirstName + " " + student.LastName);
 Debug.WriteLine("Address: " + student.Street);
 Debug.WriteLine(" " + student.City + " " + student.State + " " +
 student.Zip);
 Debug.Unindent();

 ///... Process the student here...
}

// Close the Debug trace file.
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 Debug.WriteLine(DateTime.Now.ToString() + ": Debugging session ended");
 Debug.Close();
}

When the form loads, the program creates a file named DebugLog.txt. It uses that file’s stream to
create a new TextWriterTraceListener and adds it to the Debug object’s Listeners collection.

The program then uses Debug.WriteLine to write a start message. Because the Debug object’s
Listeners collection contains the default listener in addition to the new TextWriterTraceListener,
the message is displayed in the Immediate window and written into the file.

If you enter information about a student in the form’s TextBoxes and then click the Process button,
the processButton_Click event handler executes. It creates a new Student object and passes it to the
ProcessStudent method.

www.EBooksWorld.ir

www.hellodigi.ir

240 ❘ ChAPtER 10 TraCing and debugging

The ProcessStudent method uses Debug statements to display the Student’s information in
the Immediate window and to write it into the listener file. The method uses Debug.Indent and
Debug.Unindent to indent the Student’s information.

When you later close the form, the Form1_FormClosing event handler uses Debug.WriteLine to
display an ending message. It then calls Debug.Close to flush any output that hasn’t been written
into the listener file and to close the file. If you skip this step, some of the output is likely to be lost.

AutOFLuSh

If you set the Debug or Trace class’s AutoFlush property to true, then the class
automatically flushes its output every write time you use the object’s write methods.

The following text shows sample output written into the listener file.

4/1/2014 3:06:25 PM: Debugging session started
ProcessStudent
 Name: Rod Stephens
 Address: 1337 Leet St
 Bugsville AZ 87654
4/1/2014 3:06:27 PM: Debugging session ended

You can make a couple of useful changes to the previous program. First, you can open the listener
file for appending instead of writing over previous output. Second, you can allow sharing when you
open the file, so other programs such as Microsoft Word and Notepad can view the file while the
program is still running. (If you allow sharing, you need to flush output every time you write or set
AutoFlush to true. Otherwise the other program won’t see the latest items written into the file.)

The following code shows how you can open the listener file and allow sharing.

// Open the trace output file. Allow sharing and use AutoFlush.
Stream stream = File.Open("DebugLog.txt",
 FileMode.Append, FileAccess.Write, FileShare.Read);
Debug.AutoFlush = true;

SuMMARy

C# and Visual Studio cannot debug your programs for you, but they do provide the tools you need
to do it yourself. Breakpoints are particularly useful. They enable you to pause execution at selected
lines of code, so you can examine the program’s variables and step through execution line by line to
see what the program is doing, and hopefully what it is doing wrong. You can place conditions on
breakpoints, so they stop the program only under certain conditions, such as when a breakpoint has
been reached a certain number of times or when a variable contains a particular value.

The Debug and Trace classes provide methods that the program can use to display diagnostic informa-
tion in the Immediate window. By adding trace listeners to those classes, you can save information in
other places such as event logs or text files without interrupting the program. Later you can analyze
that information to see what the program did.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 241

The chapters in Part II, “C# Language Elements,” of this book focus on small-scale programming
issues. They explain how to create variables, perform calculations, and overload operators; how to
control program flow with statements such as if, switch, for, and while; how to select and arrange
data with LINQ; and how to use debugging and tracing tools to understand what a program is doing
and find bugs.

The chapters in Part III, “Object-Oriented Programming,” move to a higher level and describe object-
oriented concepts. They explain key object-oriented concepts, how to build structures and classes, how
to use collection classes, and how to use generics to make one class work with many data types.

ExERCISES

 1. The following code shows a recursive implementation of a Factorial function. (Recursive
means it calls itself.)

private long Factorial(long number)
{
 if (number <= 1) return 1;
 return number * Factorial(number - 1);
}

Use the Debug class’s methods to trace this method’s execution. Each call to the Factorial
method should indicate when it is called and with what parameter. Before returning, each
call should display its result. Use indentation to make it easier to match calls and results. For
example, the following text shows the output while calculating Factorial(4).

Factorial(4)
 Factorial(3)
 Factorial(2)
 Factorial(1)
 Result: 1
 Result: 2
 Result: 6
Result: 24

 2. Modify the program you wrote for Exercise 1 so that each call to the Factorial method
displays its parameter and result as in the following text.

Factorial(1) = 1
Factorial(2) = 2
Factorial(3) = 6
Factorial(4) = 24

 3. Can you modify the program you wrote for Exercise 2 to efficiently use Debug statements
to display each call and its result in the order in which they are called? For example, can
you make the program display the following trace when calling Factorial(4)?

Factorial(4) = 24
Factorial(3) = 6
Factorial(2) = 2
Factorial(1) = 1

www.EBooksWorld.ir

www.hellodigi.ir

242 ❘ ChAPtER 10 TraCing and debugging

 4. Suppose your customer insists that you produce an output similar to the one described in
Exercise 3. Modify the Factorial method to produce this kind of display. (Hint: You may
want to make larger changes to the method, for example, changing its parameter list or
return value.)

 5. The Debug and Trace classes let a program provide different levels of output depending on
whether the DEBUG and TRACE preprocessor symbols are defined. Create a PrintMessage
method that takes two parameters: a debugging level and a message. If the debugging level is
less than or equal to a corresponding preprocessor symbol, display the message in the Console
window. (For example, if the symbol DEBUG2 is defined and the method’s debugging level is
less than or equal to 2, display the message.)

Compare this method to the Debug and Trace classes. How could you improve this method?

 6. Build a program that writes Debug and Trace messages into the file Messages.txt instead
of displaying them in the Console or Immediate window. Open the file for append, allow
read-only sharing, automatically flush the log files, and include the time with each message.
Write a few messages using Debug, Trace, and Console. Before the program closes the file,
open the file with Microsoft Word and Notepad to verify that you can do it.

 7. One limitation to the Debug and Trace classes is that they share the same Listeners collec-
tion, so you can’t send Debug output to one location and Trace output to another. Write a
method called LogMessage that takes two parameters: a filename and a message. The method
should append the current time plus the message to the indicated file. (Chapter 19, “File System
Objects,” has a lot to say about reading and writing files. For now just use System.IO.File
.AppendAllText to add text to the file.) Then rewrite the program you wrote for Exercise 6 to
use that method to write messages into the files DebugLog.txt and TraceLog.txt.

www.EBooksWorld.ir

www.hellodigi.ir

Part III
Object-Oriented Programming

 ▶ ChAPtER 11: OOP Concepts

 ▶ ChAPtER 12: Classes and Structures

 ▶ ChAPtER 13: Namespaces

 ▶ ChAPtER 14: Collection Classes

 ▶ ChAPtER 15: Generics

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

www.EBooksWorld.ir

www.hellodigi.ir

ooP concepts
whAt’S IN thIS ChAPtER

➤➤ Properties, methods, and events

➤➤ Inheritance, refinement, and abstraction

➤➤ Hiding and overriding

➤➤ Encapsulation, information hiding, and polymorphism

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

This chapter describes the basic concepts behind object-oriented programming (OOP). It
explains how to define classes and how to derive one class from another. It also describes the
three fundamental features of OOP programming languages: encapsulation, inheritance, and
polymorphism. It explains how C# provides those features and what benefits you can gain
from using them properly.

CLASSES

A class is a programming entity that packages the data and behavior of some sort of
programming abstraction. It encapsulates the idea that it represents in a package that has
a well-defined interface to code that lies outside of the package. The interface determines
how other pieces of code can interact with objects defined by the class. The interface deter-
mines which pieces of data are visible outside of the class and which pieces of data are
hidden inside the class.

11

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

246 ❘ ChAPtER 11 ooP ConCePTs

The three main sets of characteristics of a class are the properties, methods, and events that it
defines. The public (externally visible) properties, methods, and events let the program work with
the class:

➤➤ A property is some sort of data value. It may be a simple value (such as a string or int), or
it may be a more complex item (such as an array, list, or object containing its own properties,
methods, and events). Properties determine some feature of an object such as its name, color,
or behavior.

➤➤ A method is a routine that performs some action. A method makes an object defined by the
class do something.

➤➤ An event provides notification that something happened to an object defined by the class. An
event can invoke other pieces of code to tell other parts of the program that something has
happened to the object.

For a concrete example, imagine a Job class that represents a piece of work to be done by an
employee. This class might have the properties shown in the following table.

PROPERty PuRPOSE

JobDescription A string describing the job .

EstimatedHours The number of hours initially estimated for the job .

ActualHours The actual number of hours spent on the job .

Status An enumeration giving the job’s status (New, Assigned,
InProgress, or Complete) .

ActionTaken A string describing the work performed, parts installed, and
so forth .

Customer An object of the Customer class that describes the customer for
whom the job is performed . (That class has properties such as
Name, Address, PhoneNumber, and ContractNumber .)

AssignedEmployee An object of the Employee class that describes the employee
assigned to the job . (That class has properties such as Name,
PhoneNumber, EmployeeId, and SocialSecurityNumber .)

The JobDescription, EstimatedHours, ActualHours, Status, and ActionTaken properties are
relatively simple string and numeric values. The Customer and AssignedEmployee properties
are objects themselves with their own properties, methods, and events.

This Job class might provide the methods shown in the following table.

www.EBooksWorld.ir

www.hellodigi.ir

classes ❘ 247

MEthOd PuRPOSE

AssignJob Assigns the Job to an Employee

PrintInvoice Prints an invoice for the Customer after the job is completed

EstimatedCost Calculates and returns an estimated cost based on the customer’s
service contract type and EstimatedHours

The class could provide the events shown in the following table to keep the main program informed
about the job’s progress.

EVENt PuRPOSE

Created Occurs when the Job is first created

Assigned Occurs when the Job is assigned to an Employee

Rejected Occurs if an Employee refuses to do the job, perhaps because the
Employee doesn’t have the right skills or equipment to do the work

Canceled Occurs if the Customer cancels the job before it is started

Finished Occurs when the job is completed

The class packages the data and behavior of some programming abstraction such as a Job, Employee,
Customer, Menu, SquashMatch, SoftwareProject, or anything else you might want to manipulate as
a single entity.

After you have defined a class, you can create as many instances of the class as you like. An instance
of the class is an object of the class type. For example, the Job class represents jobs in general. After
you have defined the Job class, you can make instances of the class to represent specific jobs. You
could create instances to represent building a brick wall, planting a tree, or repairing a telephone
switch. The process of creating an instance of a class is called instantiation.

There are a couple common analogies to describe instantiation. One compares the class to a blueprint.
After you define the class, you can use it to create any number of instances of the class, much as you
can use the blueprint to make any number of similar houses (instances).

The different houses have much in common. For example, the blueprint defines the number, size, and
relative placement of the houses’ rooms. These are analogous to features defined by the class that apply
to all the instances. (In the Job class example, all instances have a PrintInvoice method that prints
an invoice. Although exactly what is printed depends on the instance’s properties.)

The houses can also have differences such as different colors, front doors, and appliances. Those
correspond to the class’s property values. For example, a House class could define ExteriorColor
and ExteriorTrim properties that determine the color of each instance of the class.

www.EBooksWorld.ir

www.hellodigi.ir

248 ❘ ChAPtER 11 ooP ConCePTs

A second analogy compares a class definition to a cookie cutter. After you create the cookie cutter, you
can use it to make any number of cookies (instances). The cookie cutter (class) defines the cookies’ size
and shape. Specific instances might have different properties such as thickness, dough type (chocolate
chip, sugar, gingerbread, and so on), and frosting type (none, single color, and patterned).

CLASSES, CLASSES EVERywhERE

The .NET Framework is full of classes. Every type of control and component (Form,
TextBox, Label, Timer, Window, and so forth) is a class. Their parent classes Control
and Component are classes. The Framework also includes classes that represent con-
tainers, queues, messages, random number generators, web pages, XML documents,
XPS documents, cryptographic functions, printers, operating system features, and all
sorts of other things.

Even Object, from which all other classes derive, is a class. Whenever you work
with any of these (getting or setting properties, calling methods, and responding to
events), you are working with instances of classes. In total, the .NET Framework
contains somewhere on the order of 10,000 public classes.

Actually, every piece of code you write in C# must be contained in a class. There’s
no escaping classes!

Because all classes ultimately derive from the Object class, every instance of every class is in some
sense an Object, so they are often simply called objects. If you don’t know or don’t care about an
item’s class, you can simply refer to it as an object.

OutStANdING ObjECtS

When you read the section “Polymorphism” later in this chapter, you’ll see that this
makes technical, as well as intuitive, sense. Because all classes eventually derive from
the Object class, all instances of all classes are actually Objects.

The following sections provide more details about the more important features provided by OOP
languages in general and C# in particular.

ENCAPSuLAtION

A class’s public interface is the set of properties, methods, and events that are visible to code outside of
the class. The class may also have private properties, methods, and events that it uses to do its job. For
example, the Job class described in the previous section provides an AssignJob method. That method
might call a private FindQualifiedEmployee method that looks through an employee database to
find someone who has the skills and equipment necessary to do the job. That routine is not used out-
side of the class, so it can be declared private.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

encapsulation ❘ 249

PRIVAtE PROPERty

Many developers underestimate the value of private properties and simply use
private variables (fields) instead. Just because a value is private, doesn’t mean you
won’t get any benefit from making it a property. Property accessors let you validate
new values, perhaps with code contracts or the Debug.Assert method. If a value
is being set incorrectly, you can also set a breakpoint in a property accessor to see
when the value is changing. (See Chapter 9, “Error Handling,” for information
about code contracts and Debug.Assert.)

The FindQualifiedEmployee method should be declared private to hide it from code outside of
the class. That makes the interface easier to understand and use. Making FindQualifiedEmployee
public would clutter the interface (and IntelliSense) with unnecessary information.

The class may also include private properties and events. These hidden properties, methods, and
events are not part of the class’s public interface.

The class encapsulates the programming abstraction that it represents (a Job in this ongoing example).
Its public interface determines what is visible to the application outside of the class. It hides the ugly
details of the class’s implementation from the rest of the world. Because the class hides its internals in
this way, encapsulation is also sometimes called information hiding.

By hiding its internals from the outside world, a class prevents exterior code from messing around
with those internals. It reduces the dependencies between different parts of the application, allowing
only those dependencies that are explicitly permitted by its public interface.

Removing dependencies between different pieces of code makes the code easier to modify and maintain.
If you must change the way the Job class assigns a job to an employee, you can modify the AssignJob
method appropriately. The code that calls the AssignJob routine doesn’t need to know that the details
have changed. It simply continues to call the method and leaves the details up to the Job class.

Removing dependencies also helps break the application into smaller, more manageable pieces.
A developer who calls the AssignJob method can concentrate on the job at hand, rather than on
how the method works. This makes developers more productive and less likely to make mistakes
while modifying the encapsulated code.

To make using a class as easy and safe as possible, you should hide as much information as possible
about the class’s internals while still allowing outside code to do its job. If the external code doesn’t
need to know something about how the class works, it shouldn’t.

To make public properties, methods, and events easy to use, you should make them simple (at least
as seen from outside of the class) and tightly focused. A set of small methods that do a single simple
task each is easier to use than a single method that can do a huge number of different things depend-
ing on its parameters.

For example, the Graphics class provides methods to draw and fill various shapes. The DrawEllipse,
DrawRectangle, DrawLine, and DrawPolygon methods outline different kinds of shapes. Similarly, the
FillEllipse, FillRectangle, FillRegion, and FillPolygon methods fill different kinds of shapes.

www.EBooksWorld.ir

www.hellodigi.ir

250 ❘ ChAPtER 11 ooP ConCePTs

You could probably replace all those methods with a single DrawShape method that draws and outlines
or fills various kinds of shapes depending on the parameters that it received. That would make the code
harder to understand because you would have to carefully study the parameters in a specific call to fig-
ure out what it was doing. By using separate methods, the class makes the code obvious. If the program
calls DrawRectangle, it is drawing a rectangle.

dON’t OVERGENERALIzE

Creating methods that try to do too much is sometimes called the “kitchen sink”
approach because the method contains everything “including the kitchen sink.”
Sometimes it’s easy to slip into this approach by trying to generalize a method
unnecessarily.

For example, suppose you need a method to print an invoice. Some other part of the
program needs to print an employee timesheet. Because they both involve printing,
you might try to make a single method to do both. That’s probably a mistake. The
two tasks both involve printing and may require common printer setup code, but
they don’t have much in common logically. (The fact that you might want to name
the method something confusing like PrintInvoiceOrTimeSheet is a hint that the
method is being asked to do too much.)

A better approach would be to make separate PrintInvoice and PrintTimeSheet
methods. If they share a lot of common code, then you can move that code into a
PrintMethods class that handles printing details. For example, that class might
provide SelectPrinter, InitializePrinter, and FinishPrinting methods.

When you are working on the PrintInvoice method, you will be focused on
printing, so calling SelectPrinter, InitializePrinter, and FinishPrinting
makes sense.

When other pieces of code need to print an invoice, they simply call PrintInvoice
and the details of setting up the printer are hidden.

Making methods perform a single, tightly focused task can be a difficult concept for beginning
programmers. Adding more features seems like it would give developers more power, so you might
think it would make their jobs easier. However, it often makes development more confusing and
difficult. Instead of thinking in terms of giving the developer more power, you should think about
the fact that this approach gives the developer more things to worry about and more ways to make
mistakes. Ideally, you should not expose any more features than the developer actually needs.

INhERItANCE

Inheritance lets you derive a child class from a parent class. The child class inherits all the proper-
ties, methods, and events defined by the parent class. It can then modify, add to, or subtract from
the parent class. Making a child class inherit from a parent class is also called deriving the child
class from the parent, and subclassing the parent class to form the child class.

www.EBooksWorld.ir

www.hellodigi.ir

Inheritance ❘ 251

For example, suppose you define a Person class that includes properties named FirstName,
LastName, Street, City, State, Zip, Phone, and Email. It might also include a PrintEnvelope
method that prints an envelope addressed to the person represented by the Person object.

Now you could derive the Employee class from Person. The Employee class inherits the FirstName,
LastName, Street, City, State, Zip, Phone, and Email properties. It then adds new EmployeeId,
SocialSecurityNumber, OfficeNumber, Extension, and Salary properties.

The Employee class might override the Person class’s PrintEnvelope method, so it addresses the
envelope to the employee’s office instead of the home address.

Now you can derive other classes from those classes to create a whole hierarchy of classes. You could
derive the Manager class from the Employee class and add fields such as Secretary that would refer
to another Employee object that represents the manager’s secretary. Similarly, you could derive a
Secretary class from Employee that includes a reference to a Manager object. You could derive
ProjectManager, DepartmentManager, and DivisionManager from the Manager class; Customer
from the Person class; and so on for other types of people that the application needs to use. Figure 11-1
shows an inheritance hierarchy containing these classes.

Project
Manager

Department
Manager

Division
Manager

Manager C#
Developer

Secretary

EmployeeConsultant

Preferred
Customer

Customer

Person

FIGuRE 11-1: You can derive classes from other classes to form
complex inheritance relationships .

Inheritance hierarchies
One of the key benefits of inheritance is code reuse. When you derive a class from a parent class, the
child class gets to reuse the code you wrote for the parent class. For example, all the classes referred
to in Figure 11-1 inherit their FirstName, LastName, Street, City, State, Zip, Phone, and Email
properties from the Person class, so they don’t need to implement those properties separately.

The Consultant, Employee, Customer, and PreferredCustomer classes also inherit the
PrintEnvelope method defined by the Person class. The Employee class overrides that method,
so it doesn’t get to reuse the Person class’s version. However, the new version does something dif-
ferent from the original version, so you have no choice but to write new code. In addition, the six
classes that inherit from Employee get to reuse the new version.

www.EBooksWorld.ir

www.hellodigi.ir

252 ❘ ChAPtER 11 ooP ConCePTs

Code reuse not only saves you the effort needed to write the same code multiple times but also saves you
time for debugging and maintenance. For example, if you find a bug in the PrintEnvelope method,
you need to fix it only in one place instead of in each of the classes that inherits it. That saves time and
prevents you from fixing the bug in one class but forgetting to fix it in another.

Code reuse also helps you make modifications. Suppose you decide to change the Zip property to
store ZIP codes with the ZIP+4 format instead of the original 5-digit format. In that case you need
to change only the representation in the Person class, and all the other classes inherit the change.

Of course, then you’ll probably want to change the PrintEnvelope method to use the new Zip format.
Again, you have to make the change only in the Person class and the other classes inherit the change.

Similarly, if you need to add, modify, or delete a property or method, you need to make the change
only in the class where it is defined, not in all the classes that inherit it. If you want to add a SendEmail
method, you need to add it only to the Person class.

Refinement and Abstraction
You can think about the relationship between a parent class and its child classes in a top-down or
bottom-up way. Those two points of view lead to the ideas of refinement and abstraction.

refinement
Using a top-down view of inheritance, you can think of the child classes as refining the parent class.
They provide extra detail that differentiates among different types of the parent class.

For example, suppose that you start with a class that covers a broad category such as Person.
The Person class would need general fields that apply to all people such as FirstName, LastName,
Address, and PhoneNumber.

Some kinds of people might need additional fields that don’t apply to every kind of person. For
example, a school’s instructors might also need Title, CoursesAssigned, Advisees, Office, and
OfficeHours properties. Students might need StudentId, Year, CoursesTaken, and GPA fields.

You could add all these fields to the Person class, but that would force the class to play two differ-
ent roles. That would be complicated and confusing. It would also be somewhat wasteful because a
Person acting as an instructor wouldn’t use any of the student properties, and a Person acting as a
student wouldn’t use any of the instructor properties.

A better solution is to derive new Instructor and Student classes that refine the Person class’s
definition and add their new properties. Now each class represents a specific kind of person.

abstraction
Using a bottom-up view of inheritance, you can think of the parent as abstracting the features of
its children. The parent class gathers together the common features of the child classes. Because the
parent class is more general than the child classes (it includes a larger group of objects), abstraction
is sometimes called generalization.

For example, suppose you’re making a drawing application and you define various classes to rep-
resent shapes such as Circle, Rectangle, Ellipse, and Polygon. When you build the program,

www.EBooksWorld.ir

www.hellodigi.ir

Inheritance ❘ 253

you may discover that these classes have a lot in common. For example, at times the program may
need to find bounding rectangles for each of the objects. You may find that the objects have com-
mon ForegroundColor and BackgroundColor properties. You may want each class to provide a
PointIsOver method that returns true if the given point is over the shape. You might also want
to make each class raise a Clicked event when the user clicks on its shape.

MuLtIPLE INhERItANCE

Some languages allow multiple inheritance, where a class can have multiple parent
classes. For example, suppose that you create a Boat class that defines properties of
boats (NumberOfPassengers, Draft, MaximumSpeed, HasGps, and so forth) and a
House class that defines properties of living spaces (SquareFeet, NumberOfBedrooms,
NumberOfBathrooms, and so forth). Using multiple inheritance, you could derive a
HouseBoat class that inherits from both the Boat and House classes. This class would
have the properties, methods, and events of both of the classes. (You would also need
a tie-breaking scheme to figure out what to do if, for example, the Boat and House
classes both had a Price property.)

C# does not allow multiple inheritance. A class can have as many child classes as
you like, but it can have at most one parent class. That means relationships such
as those shown in Figure 11-1 form a treelike inheritance hierarchy.

An alternative to multiple inheritance is interface inheritance. Instead inheriting
from multiple parent classes, the child inherits from one class and implements other
features defined by an interface. For example, the HouseBoat class might inherit
from Boat and implement an IHouse interface. Although a class can have only one
parent, it can implement as many interfaces as you like.

Unfortunately, you need to write the code to implement the interface because you
can’t inherit it. You lose the benefit of code reuse, but at least you keep the benefits
of polymorphism (described in the section “Polymorphism” later in this chapter).

You can also use delegation to provide a form of code reuse. Suppose you create
an IHouse interface and a House class that implements the interface. Now you can
place an instance of the House class inside the HouseBoat class, perhaps as a private
variable. Now when you implement the IHouse interface, you can delegate all the
work to the House instance. This isn’t as easy as multiple inheritance, but it does
give you most of the same code reuse.

(For more information on interfaces, see the section “Implementing Interfaces” in
Chapter 6, “Methods.”)

After you realize that these classes have so much in common, you might decide to extract those
common features and move them into a common parent class named Drawable. That class would
define the common features that the other classes need to implement. For example, the Drawable
class could implement the ForegroundColor and BackgroundColor properties for the other classes
to inherit.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

254 ❘ ChAPtER 11 ooP ConCePTs

Some of the child classes might override the default implementations in the Drawable class. It might
even be impossible for the Drawable class to provide some of the features it defines. For example,
each type of shape would need a different PointIsOver method because you need to use different
techniques to determine whether a point is over a rectangle, circle, or polygon. You could give the
Drawable class a default implementation, perhaps making it treat its shape as a rectangle, but you
wouldn’t gain much by doing that. You would still need to override that method in every class except
Rectangle. Providing the default implementation would also incorrectly imply that the method is
useful for something other than a single child class.

In this case you’re probably better off marking the method as abstract and not providing a method
body so that the child classes are required to override it. (For more information on the abstract
keyword, see the section “abstract” in Chapter 6.)

A FAMILy NAME

To make the relationship among child classes more obvious, you can give them similar
names. For the drawing example, you could call the child classes DrawableRectangle,
DrawableCircle, DrawablePolygon, and so forth. This makes it easier to remember
that the classes are all types of Drawables. It also helps differentiate them from .NET
Framework classes such as Rectangle, Ellipse, and Polygon.

Making a Drawable parent class also allows the program to treat all drawing objects uniformly as
Drawables. For example, it can create a collection named AllDrawables to hold the current picture’s
drawing objects. Then when the user moves the mouse, the program could loop through the collection
calling each object’s PointIsOver method to determine whether the mouse was over an object. The
section “Polymorphism” later in this chapter provides more details.

Using refinement and abstraction
Often a program’s classes are defined by using refinement. You know the general categories of things
the program needs such as Person, Report, and Job. As you go through the project requirements,
you can refine those to create the specific kinds of objects the program will need. Person becomes
Employee, Manager, Secretary, Programmer, Customer, and Contractor. Report becomes
TimeSheet, JobRequirements, ProgressReport, and Invoice.

During the project’s design phase, the classes tend to map naturally to the requirements, so it’s
relatively easy to imagine their relationships.

Abstraction often arises during development. As you define and work with the classes, you may
discover they have unexpected things in common. For example, suppose you’re working with the
Person class and the descendant classes described earlier. After a while you realize that Manager
and Programmer are salaried positions but Secretary is hourly. You could add a Salary property
to Manager and Programmer, and add HourlyRate to Secretary. Unfortunately, that would require
a duplicate Salary property. It would also mean you couldn’t treat Manager and Programmer
objects uniformly.

www.EBooksWorld.ir

www.hellodigi.ir

Inheritance ❘ 255

The solution is to create a new SalariedEmployee class
to act as a new parent for the Manager and Programmer
classes. Figure 11-2 shows the new class hierarchy.

Refinement is an important technique for building
inheritance hierarchies, but it can sometimes lead to
unnecessary refinement or over-refinement. For example,
suppose that you define a Vehicle class. You then refine
this class by creating Auto, Truck, and Boat classes. You
refine the Auto class into Wagon and Sedan classes and
further refine those for different drive types (four-wheel
drive, automatic transmission, and so forth). If you really
go crazy, you could define classes for specific manufactur-
ers, body styles, and colors.

The problem with this hierarchy is that it captures a lot
more detail than you need. If you’re building a program to
manage a fleet of delivery vehicles, then you probably need
to know the vehicle’s capacity, but you probably don’t
need to keep track of its manufacturer, transmission type, and color. You may want to track some
of that information so that you can identify each vehicle properly, but you don’t need to make these
separate classes.

As far as a delivery scheduling application is concerned, the color is irrelevant. Creating lots of unnec-
essary classes makes the object model harder to understand and can lead to confusion and mistakes.

Avoid unnecessary refinement by refining a class only when doing so lets you capture new information
that the application actually needs to know.

Just as you can take refinement to ridiculous extremes, you can also overdo abstraction. Because
abstraction is driven by code rather than intuition, it sometimes leads to unintuitive inheritance
hierarchies.

For example, suppose that your application needs to mail purchase orders to vendors and invoices
to customers. If the PurchaseOrder and Invoice classes have enough in common, you might
decide to create a more abstract MailableItem class that contains the code needed to create and
mail a document to someone.

At some point you may discover that you also need to e-mail items to vendors or customers, so you
create the idea of an EmailableItem class. The MailableItem and EmailableItem classes probably
share some common features because they both represent sending something to someone, so you
may then be tempted to create an even more abstract SendableItem class.

Although all this makes a sort of weird sense from a coding point of view, it doesn’t make much
intuitive sense. That means programmers need to spend extra time figuring out what the classes
are for and how to use them. It also means programmers are more likely to make mistakes that
can slow development and create annoying bugs.

SecretaryProgrammer

CustomerEmployee

Manager

Salaried
Employee

Person

FIGuRE 11-2: You can derive classes
from other classes to form complex
inheritance relationships .

www.EBooksWorld.ir

www.hellodigi.ir

256 ❘ ChAPtER 11 ooP ConCePTs

CONtExt IS KING

The classes mentioned here probably don’t make sense for most programs, but some
may make perfect sense in the proper context. If you’re building a program to manage
a mailroom, you may want classes to represent things that you can mail.

If a class makes intuitive sense, it’s probably a reasonable class. If the program
doesn’t need to treat the instances of a class differently than it treats instances of
child or parent classes, it’s probably unnecessary. And you should take a long look
at a class if its name makes developers scratch their heads, make funny faces, and
ask, “What on Earth is that for?”

You can sometimes avoid over-abstraction by moving common features into libraries instead of
creating separate classes to represent them. For example, you could make a library containing
methods to send items via e-mail or postal mail. Then the program can call those methods as
needed. Unless the program is some sort of a message tracking system, it probably doesn’t need
an object to represent e-mails and letters.

Over-refinement and over-abstraction sometimes lead to inflated inheritance hierarchies. Sometimes
the hierarchy grows tall and thin. Other times the design might include many separate but small
inheritance hierarchies, a parent class with a single child, or a class that is never used.

If your inheritance hierarchy starts to take on one of these odd forms, you should spend some time
to reevaluate your classes. Make sure each adds something meaningful to the application and that
the relationships are reasonably intuitive. Too many classes with confusing relationships can drag a
project to a halt as developers spend more time trying to understand the hierarchy than they spend
writing code.

hORRIbLE hIERARChIES

I’ve worked on a few projects that failed because of overly complicated object models.
Their class hierarchies were so confusing that developers couldn’t understand how to
use the classes to get anything done.

In one case the hierarchy was designed with all sorts of useful abstraction and
refinement, but the classes were so non-intuitive that only the person who made
the design could figure out how they all fit together.

In another case, the hierarchy grew up over time as pieces were added to the system.
Eventually, the hierarchies grew so deep and confusing that no one but the person
who had created the hierarchy could figure out how anything worked.

If you are unsure whether you should add a new class, leave it out. You can add it later if you
discover that it is necessary after all. Usually it’s easier to add a new class than it is to remove an
unnecessary class after developers have started using it.

www.EBooksWorld.ir

www.hellodigi.ir

Inheritance ❘ 257

 has-a and Is-a Relationships
In refinement you create child classes to differentiate among different kinds of objects. In abstraction
you create a parent class to represent features that are common between two or more child classes.
Both of these techniques create parent/child relationships between classes.

Another concept that sometimes masquerades as a parent/child relationship is containment. In
containment, one object contains another object as an attribute.

The ideas of inheritance and containment are sometimes referred to as is-a and has-a relationships.

For example, a Student is-a specific type of Person object. The is-a relation maps naturally into
inheritance hierarchies. Because a Student is-a Person, it makes sense to derive the Student class
from the Person class.

In contrast a Person object has-a street address, city, state, and ZIP code. The has-a relation maps
most naturally to embedded items. For example, you could give the Person class the Street, City,
State, and Zip properties.

To see why the difference between the is-a and has-a relationships is important, suppose
your program works with the Person and Student classes. Suppose it also works with
FinancialAidPayment, RegistrationFee, and other classes that have street, city, state, and ZIP
code information. Using abstraction, you might make a HasPostalAddress class that contains
those values. Then you could derive the Person, FinancialAidPayment, and RegistrationFee
classes as children of HasPostalAddress. Unfortunately, that makes a rather unintuitive inheri-
tance hierarchy. Deriving all those classes from the same parent class also makes them seem
closely related when they are actually related only coincidentally.

A better solution is to encapsulate the postal address data in its own Address class and then include
an instance of that class in the Person, FinancialAidPayment, and RegistrationFee classes.

You make a parent class through abstraction in part to avoid duplication of code. The parent class
contains a single copy of the common variables and code, so the child classes don’t need to have their
own separate versions for you to debug and maintain. Placing an instance of the Address class in
each of the other classes provides the same benefit without complicating the inheritance hierarchy.

Sometimes you can use either is-a or has-a to describe a relationship. For example, a Person has-an
address, but at the same time a Person is-a thing that has an address. In cases like this, you need to
use your common sense and intuition to decide which makes more sense. One hint is that it is easy
to describe something that “has an address” but the phrase “is a thing that has an address” is more
awkward and ill-defined.

You can also think about how a relationship might affect other classes. Are the Person,
FinancialAidPayment, and RegistrationFee classes truly closely related? Or do they just
share some common information?

Adding and Modifying Class Features
Adding new properties, methods, and events to a child class is easy. You simply declare them as you
would in any other class. The parent class knows nothing about them, so the new items are added
only to the child class.

www.EBooksWorld.ir

www.hellodigi.ir

258 ❘ ChAPtER 11 ooP ConCePTs

The following code shows how you could implement the Person and Employee classes in C#.

// A general person.
public class Person
{
 public string FirstName, LastName, Street, City, State, Zip, Phone, Email;

 // Dial the phone.
 public void DialPhone()
 {
 // Dial the number Phone...
 }
}

// An employee.
public class Employee : Person
{
 public string EmployeeId, SocialSecurityNumber, OfficeNumber, Extension;
 public decimal Salary;

 // Print a timesheet for the employee.
 public void PrintTimesheet()
 {
 // Print the timesheet...
 }
}

The Person class defines name and address values. For simplicity, they are implemented as fields,
but in practice you might want to make them properties. This class also defines a DialPhone
method that dials the person’s phone number.

The Employee class is derived from the Person class. (That’s what “: Person” means at the end of the
class declaration.) This class adds some new values and then defines a new PrintTimesheet method.

There are two ways a child class can modify the behavior of a method defined in its parent class
(or any ancestor class): hiding and overriding.

hiding and Overriding
First, the child class can hide the parent class’s version of a method. To do that, add the keyword
new to indicate that you want to use a new version of the method. The following code shows how
the Employee class could hide the DialPhone method to create a new version that includes the
Employee’s Extension. The new keyword is highlighted in bold.

// Dial the phone + extension.
public new void DialPhone()
{
 // Dial the number Phone + Extension...
}

The second way a child class can modify a parent method is to override it.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Inheritance ❘ 259

This method requires some cooperation from the parent class. The parent class must mark the method
with the virtual or abstract keyword. (The parent class can also have overridden the method. In
that case, some ancestor class declared the original method with the virtual or abstract keyword.)

The following code shows the new version of the Person class’s DialPhone method with the virtual
keyword highlighted in bold.

// Dial the phone.
public virtual void DialPhone()
{
 // Dial the number Phone...
}

The virtual keyword indicates that this method can be overridden by descendant classes. The
following code shows how the Employee class could override the DialPhone method.

// Dial the phone + extension.
public override void DialPhone()
{
 // Dial the number Phone + Extension...
}

Overriding a method in this way is a powerful technique. When you invoke an overridden method
for an object, you get the version defined by the object’s true class, even if you are referring to the
object with a variable of an ancestor class.

In contrast, when you hide a method, you get only that version if you use a variable of the class that
defined the new version.

These are confusing concepts, so here’s a detailed example. Consider the following stripped-down
Person and Employee classes.

public class Person
{
 public string Name;

 public virtual void IsVirtual()
 {
 Console.WriteLine(Name + ": Person.IsVirtual");
 }

 public void HideMe()
 {
 Console.WriteLine(Name + ": Person.HideMe");
 }
}

public class Employee : Person
{
 public override void IsVirtual()
 {
 Console.WriteLine(Name + ": Employee.IsVirtual");
 }

www.EBooksWorld.ir

www.hellodigi.ir

260 ❘ ChAPtER 11 ooP ConCePTs

 public new void HideMe()
 {
 Console.WriteLine(Name + ": Employee.HideMe");
 }
}

The Person class defines two methods. The IsVirtual method is defined with the virtual keyword.
The HideMe method is defined without the virtual keyword.

The Employee class overrides IsVirtual and hides HideMe.

All four of these methods simply display their object’s name, the method’s class, and the method’s
name in the Console window.

Now consider the following code that uses these methods.

Person ann = new Person() { Name = "Ann" };
Employee bob = new Employee() { Name = "Bob" };
Person person = bob;

ann.IsVirtual();
bob.IsVirtual();
person.IsVirtual();
Console.WriteLine();
ann.HideMe();
bob.HideMe();
person.HideMe();

The code creates a Person object and an Employee object. It then creates a Person variable and
makes it refer to the Employee object it just created. (You can do that because an Employee is a
kind of Person.)

Next, the code calls each of the objects’ IsVirtual methods. The object ann is a Person, so it
calls the Person version of IsVirtual. The object bob is an Employee, so it calls the Employee
version of IsVirtual.

The person object has type Person, but it actually refers to the Employee object bob. Because the
Employee class overrode the definition of this method, the person object uses the version defined
by the object’s true class, in this case Employee. Even though it looks like the code is invoking
Person.IsVirtual, it actually invokes Employee.IsVirtual.

The case with the HideMe method is somewhat simpler. As before, the ann and bob objects call their
respective class’s versions of the method.

The person object has type Person. Because this method is hidden in the Employee class, the
Person class doesn’t know anything about that version. When the code calls the Person object’s
HideMe method, it gets the Person class’s version.

The following text shows the code’s output.

Ann: Person.IsVirtual
Bob: Employee.IsVirtual
Bob: Employee.IsVirtual

www.EBooksWorld.ir

www.hellodigi.ir

Inheritance ❘ 261

Ann: Person.HideMe
Bob: Employee.HideMe
Bob: Person.HideMe

The object person invokes the Employee class’s version of IsVirtual (the third line of output) but it
invokes the Person class’s version of HideMe (the last line of output).

tIP Hiding and overriding are important but confusing concepts. If the difference
isn’t clear, you should reread this section.

There are two other keywords that affect overriding: abstract and sealed.

abstract
An abstract method is one that doesn’t have a method body. It defines the name, parameters, and
return type of the method but doesn’t provide an implementation. (This is similar to the way interfaces
define method signatures but don’t provide an implementation.)

If you give a class an abstract method, there’s a sort of placeholder in the class for the method. Because
the placeholder is empty, you cannot create an instance of the class because it is incomplete. For that
reason, if a class contains an abstract method, you must also mark the class as abstract.

Note that the class could define other non-abstract properties, methods, and events. (Some people
call a non-abstract method, class, or other item concrete.) If it contains even one abstract method,
then the class must be abstract.

AbSOLutELy AbStRACt

You can also mark a class abstract to prevent someone from creating an instance
of it even if it doesn’t contain any abstract methods.

An abstract method is also considered virtual, so a child class can override it to give it a method
body. Then the child class can be concrete and you can create instances of it.

For an example, consider the following code.

public abstract class Report
{
 public abstract void GenerateReport();
 public abstract void DistributeReport();
}
public abstract class PersonnelReport : Report
{
 public override void DistributeReport()
 {
 // Code to distribute the report to the personnel department...
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

262 ❘ ChAPtER 11 ooP ConCePTs

public class Timesheet : PersonnelReport
{
 public override void GenerateReport()
 {
 // Code to generate a timesheet.
 }
}

The idea here is that the Report class defines broad features that should be provided by any
report. The class defines two abstract methods: GenerateReport and DistributeReport.
Because the class contains an abstract method, it must also be abstract. (In this case that’s okay.
The Report class doesn’t represent a specific kind of report, so it doesn’t make sense to create an
instance of one anyway.)

The PersonnelReport class derived from Report represents a report that should be sent to everyone
in the personnel department. It overrides the DistributeReport method to send the report to every-
one in the department. The class still contains an abstract method (GenerateReport) so it must be
marked abstract.

The Timesheet class derived from PersonnelReport overrides the GenerateReport method to
actually create a report. This class has no abstract methods so this can be a concrete class.

sealed
The final keyword that affects overriding is sealed. If you mark an overridden method as sealed in
a child class, then further descendant classes cannot override that method.

Sealed methods have a couple of odd quirks. First, you cannot seal a method in the class where it
is originally defined, only in a class that overrides it. Second, you cannot override a sealed method
in a descendant class but you can hide it, so sealing a method doesn’t completely protect it from
later tampering.

For example, consider the following code.

public abstract class Animal
{
 public abstract string FoodType();
}

public class Herbivore : Animal
{
 public override sealed string FoodType()
 {
 return "Vegetation";
 }
}

public class Koala : Herbivore
{
 public new string FoodType()
 {

www.EBooksWorld.ir

www.hellodigi.ir

Polymorphism ❘ 263

 return "Eucalyptus";
 }
}

The Animal class defines an abstract FoodType method.

The Herbivore class derived from Animal overrides FoodType to return the string "Vegetation".

The Herbivore class marks the method sealed so the Koala class, which is derived from Herbivore,
cannot override FoodType. It can, however, use the new keyword to hide the Herbivore implementa-
tion of the method with a new version.

RESPECt thE SEAL

If a method is marked sealed, it’s probably for a good reason, so you shouldn’t
hide that method. Don’t hide a sealed method unless you really must.

By the same token, it’s hard to predict what future developers will need to do with
a method, so it’s hard to know they will never need to override it. Don’t seal a
method unless you’re certain no one will ever need to override it.

POLyMORPhISM

Loosely speaking, polymorphism is the ability to treat one object as if it were an object of a dif-
ferent type. In OOP terms, it means that you can treat an object of one class as if it were from an
ancestor class.

For example, suppose Employee and Customer are both derived from the Person class. Then you
can treat Employee and Customer objects as if they were Person objects because, in a sense, they
are. They are specific types of Person objects. They inherited all the properties, methods, and
events of a Person object, so they should act as Person objects.

C# enables you to make a variable of one class refer to an object of a derived class. In this example,
you can use a Person variable to hold a reference to an Employee or Customer object, as shown in
the following code.

Employee employee = new Employee(); // Make an Employee
Customer customer = new Customer(); // Make a Customer
Person person = new Person(); // Make a Person.

person = employee; // Okay because an Employee is a type of Person.
person = customer; // Okay because a Customer is a type of Person.
employee = person; // Not okay because a Person is not necessarily an Employee.

One common reason to use polymorphism is to treat a collection of objects in a uniform way that
makes sense in the context of the parent class. For example, suppose that the Person class defines
the FirstName and LastName properties. The program could define a collection named AllPeople

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

264 ❘ ChAPtER 11 ooP ConCePTs

and add references to Customer and Employee objects to represent all the people that the program
needs to manage. The code could then loop through the collection, treating each object as a Person,
as shown in the following code.

foreach (Person person in AllPeople)
{
 Console.WriteLine(person.FirstName + " " + person.LastName);
}

When you use an object polymorphically, you can access only the features defined by the type of
variable you actually use to refer to an object. For example, if you use a Person variable to refer to
an Employee object, you can use only the features defined by the Person class, not those added by
the Employee class.

If you know an object has a specific type, you can convert the object into that type before you work
with it. For example, the following code loops through the AllPeople list and takes special action
for objects that are Employees.

foreach (Person person in AllPeople)
{
 if (person is Employee)
 {
 // Do something Employee-specific with the person.
 Employee employee = person as Employee;
 ...
 }
}

The code uses the statement if (person is Employee) to determine whether the variable person can
be treated as an Employee object. It is important to realize that this doesn’t mean person actually is an
Employee. It means person is an Employee or a class derived from Employee, so it can be treated as
an Employee. For example, if the Manager class is derived from Employee, then person is Employee
returns true for Manager objects.

The code uses the following statement to convert the Person looping variable into an Employee
variable.

Employee employee = person as Employee;

The as keyword converts the variable person into an Employee if possible. If person cannot
be converted into an Employee, then as returns null. (In this example, you know person can be
converted into an Employee because the code just checked.) The as statement is roughly equivalent
to the following code.

Employee employee = null;
if (person is Employee) employee = (Employee)person;

Sometimes you might want to invoke the base class’s version of an overridden method. For example,
suppose you override the Person class’s ToString method but you also want to be able to call the

www.EBooksWorld.ir

www.hellodigi.ir

Polymorphism ❘ 265

version defined in the Object class from which Person is derived. In that case you could add the
following BaseToString method to the Person class.

public string BaseToString()
{
 return base.ToString();
}

OVERRIdING tOStRING

A particularly useful combination of overriding and polymorphism involves the
ToString method. This method is declared virtual by the Object class. Because
Object is the ultimate granddaddy of all classes, all classes inherit it. The default
implementation returns the object’s class name.

Because this method is declared virtual, you can override it. For example, the
following code shows how you might override ToString in the Person class.

public class Person
{
 public string Name, FirstName, LastName;

 public override string ToString()
 {
 return FirstName + " " + LastName;
 }
}

Now when you call a Person object’s ToString method, you get the new version.
Polymorphism means you get the new version even if the variable referring to the
Person object is of some other class such as Object. The following code demonstrates
this type of override.

Object alice = new Person()
 { FirstName = “Alice”, LastName = "Almer" };
Console.WriteLine(alice.ToString());

The code makes an Object variable refer to a Person object. It then calls the
object’s ToString method and displays the result. Even though the variable is of
type Object, polymorphism lets it use the Person class’s version of ToString.

Here the keyword base tells the program to use the version of ToString defined in the parent class.
Now the program can use the Object class’s version of ToString by calling the BaseToString method.

The code inside the Person class can invoke the parent class’s version of ToString as shown here,
but there is no way for the program to invoke an object’s overridden base class methods directly.
If you don’t define a method similar to BaseToString, the program cannot call the Object class’s
version of the method.

Also note that there is no way to call further up the inheritance chain.

www.EBooksWorld.ir

www.hellodigi.ir

266 ❘ ChAPtER 11 ooP ConCePTs

SuMMARy

Classes are programming abstractions that group data and related behavior in tightly encapsulated
packages. After you define a class, you can create instances of that class.

Inheritance lets you derive a child class from a parent class, possibly adding, hiding, or overriding
the parent’s behavior. The new, virtual, abstract, override, and sealed keywords give you a fair
amount of control over how methods are inherited and modified.

Interfaces give you another method for defining behavior that doesn’t follow an inheritance hierarchy.
Like an abstract class, an interface lets you determine a class’s behavior without providing an implemen-
tation. Because interfaces don’t need to follow a derivation hierarchy, you can use them to implement
nonhierarchical relationships such as multiple inheritance (interface inheritance).

Polymorphism enables you to treat an object as if it were of an ancestor’s type. For example, the
following text shows the inheritance hierarchy for the Windows Forms PictureBox control.

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Windows.Forms.Control
 System.Windows.Forms.PictureBox

This means you can treat a PictureBox as if it is a PictureBox, Control, Component,
MarshalByRefObject, or Object.

This chapter described these features and briefly mentioned how you can implement many of them
in C#. The next chapter explains the syntax for creating classes and structures in greater detail. It
also explains the differences between the two and how to decide when to use classes and when to
use structures.

ExERCISES

For the exercises that require you to build an inheritance hierarchy, draw abstract classes with
dashed outlines and concrete classes with solid outliines.

 1. Consider the inheritance hierarchy shown Figure 11-2. Suppose you decide you also need a
PartTimeProgrammer class to represent programmers who are paid hourly. How would you
update the hierarchy?

 2. Consider the following code.

foreach (Person person in AllPeople)
{
 if (person is Employee)
 {
 // Do something Employee-specific with the person.
 Employee employee = person as Employee;
 ...
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 267

Rewrite the code so that it doesn’t use is. (Hint: Place the as statement before the new if
statement.) Which version is better?

 3. Draw an inheritance hierarchy for a pet store application that includes the classes shown
in the following table. Add parent classes as needed. (Hint: If you include the properties
defined by each class, there shouldn’t be a lot of duplication.)

CLASS PROPERtIES

Janitor Name, Address, EmployeeId, Hours, HourlyPay

ShiftManager Name, Address, EmployeeId, Hours, Salary

Customer Name, Address, CustomerId, Pets

Groomer Name, Address, Hours, HourlyRate

Supplier Name, Address, SupplierId, Products

StoreManager Name, Address, EmployeeId, Hours, Salary

SalesClerk Name, Address, EmployeeId, Hours, HourlyPay

Trainer Name, Address, Classes, Hours, HourlyRate

Are there some classes that should be abstract? Why? How would you make them abstract?

 4. Build a program that implements the hierarchy you designed for Exercise 3. For properties with
non-obvious data types such as Pets and Classes, use string as a placeholder. (If you’re not
sure how to build the classes, read the next chapter and then come back to this exercise.)

 5. Suppose you’re building a fantasy role-playing game. Each player has one of three races:
Human, Elf, or Dwarf. Each player also has a weapon. Right now you have defined Sword,
Bow, and Wand, but you plan to add other weapons later such as other bladed weapons (Spear,
Dagger, and Axe), missile weapons (Sling, Atlatl, and Dart), and magic weapons (Potion,
Pendant, and VoodooDoll).

How would you design the Player class to handle all this? Draw an inheritance hierarchy to
show the relationships among the classes.

 6. Suppose you decide to modify the game described in Exercise 5 so that players have a profes-
sion. The basic professions are Fighter and MagicUser. A player can be one of the basic pro-
fessions or can be a specialist. The initial Fighter specialties are Knight, Ranger, and Archer.
The initial MagicUser specialties are Illusionist, Witch, and Chemist. How would you
modify the definition of the Player class? Draw the class inheritance hierarchy.

 7. Suppose software developers are assigned to departments. They may also be assigned to a
primary development project and up to two secondary projects. How would you design the
Developer class to handle this?

www.EBooksWorld.ir

www.hellodigi.ir

268 ❘ ChAPtER 11 ooP ConCePTs

 8. Suppose you’re building a program for a college and you need the classes and properties
shown in the following table.

CLASS PROPERtIES

Student Name, Address, StudentId, CurrentClasses,
PastClasses

Instructor Name, Address, EmployeeId, CurrentClasses,
PastClasses

TeachingAssistant Name, Address, StudentId, EmployeeId,
CurrentClasses, PastClasses,
CurrentClassesTaught, PastClassesTaught

ResearchAssistant Name, Address, StudentId, EmployeeId, Sponsor

(The Sponsor property is the Instructor for whom a ResearchAssistant works.)

How would you implement these classes? Draw the inheritance hierarchy. (Hint: Change the
names of some properties if that helps.)

 9. Build a program that implements the hierarchy you designed for Exercise 8. For properties
with non-obvious data types such as CurrentClasses, use string as a placeholder. (If you’re
not sure how to build the classes, read the next chapter and then come back to this exercise.)
Make classes that implement an interface do so directly without delegation.

 10. Modify the classes you built for Exercise 9 so that they use delegation to implement the
IStudent interface. What are the advantages and disadvantages of the approaches used
in Exercises 9 and 10?

 11. In Exercise 10, why shouldn’t you make the Student class implement the IStudent interface
directly and then make the TeachingAssistant and ResearchAssistant classes delegate the
interface to a Student object?

 12. In the model you built for Exercises 10 and 11, suppose you want to derive the LabAssistant
class from ResearchAssistant. How would the new class handle the IStudent interface?

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

classes and structures
whAt’S IN thIS ChAPtER

➤➤ Defining classes and structures

➤➤ Value and reference types

➤➤ Memory requirements, and heap and stack performance

➤➤ Boxing and unboxing

➤➤ Constructors and destructors

➤➤ Garbage collection and Dispose

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

A variable holds a single value. It may be a simple value, such as an int or string, or a reference
to a more complex entity such as a class or structure.

Classes and structures are both container types. They group related data values and methods
into a convenient package that you can manipulate as a group.

For example, a Recipe class would contain fields or properties holding information about a
recipe such as ingredients, temperature, instructions, and number of servings. It could also
include methods to convert measurements between English and metric, to scale the recipe
for different numbers of servings, and to print the recipe.

If you make an instance of the Recipe class and fill it with the data for a particular recipe,
you can move the object around as a single unit instead of passing around separate variables
holding the ingredients, temperature, instructions, and number of servings. The object also

12

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

270 ❘ ChAPtER 12 Classes and sTruCTures

contains methods for manipulating the recipe, so you don’t need to write a separate module con-
taining methods to convert measurements, scale the recipe, and print. The class keeps all these
things together, so they’re easy to find.

This chapter explains how to define and instantiate classes and structures. It explains the key
differences between classes and structures and provides some recommendations about which to
use under different circumstances.

Classes and structures provide almost exactly the same features. For example, both can have properties,
methods, and events. The following sections start by describing classes. As you read about classes, be
aware that most of those features also apply to structures. Sections later in the chapter explain where
the two differ.

CLASSES

A class packages data and related behavior. The Recipe class described earlier is an example.
It contains information about a recipe and methods for manipulating its data.

Here’s the syntax for declaring a class.

«attributes» «accessibility» «abstract|sealed|static» «partial»
 class name «inheritance»
{
 statements
}

The only thing all class declarations require is the class clause (including the class’s name). Everything
else is optional. The following code describes a valid (albeit not very interesting) class.

class Person
{
}

The following sections describe the pieces of the general declaration in detail.

attributes
The optional attributes section is a list of attributes that apply to the class. An attribute further refines
the definition of a class to give more information to the compiler and the runtime system.

Attributes are rather specialized and address issues that arise when you perform specific program-
ming tasks. For example, if you need to copy instances of the class from one application to another,
you can mark the class with the Serializable attribute. This isn’t something you need to do for
every class. Actually, some attributes are so specialized that you may never use them.

Because attributes are so specialized, they are not described in detail here. (Although Chapter 25,
“Serialization,” says more about serialization.) For more information, consult the Internet and the
online help.

www.EBooksWorld.ir

www.hellodigi.ir

classes ❘ 271

For more information on attributes, go to these web pages:

➤➤ Attributes (C# and C#) (msdn.microsoft.com/library/z0w1kczw.aspx)

➤➤ Attributes Tutorial (msdn.microsoft.com/library/aa288454.aspx)

For a list of 578 attributes that you can use, go to Microsoft’s “Attribute Class” web page at
msdn.microsoft.com/system.attribute.aspx and look at the “Inheritance Hierarchy” section
at the bottom.

accessibility
If a class is declared directly within a namespace, its accessibility clause must be either public or
internal. You can also omit accessibility, in which case the default is internal.

If a class is declared inside a structure, its accessibility clause can be public, private, or
internal. If the class is declared within a class, the clause can also take the values protected
and protected internal.

The following table summarizes the meanings of these values and when they are allowed.

KEywORd ALLOwEd IN MEANING

public namespace

structure

class

The class is visible to all code inside or outside of
the class’s assembly .

internal namespace

structure

class

The class is visible only to code inside the
class’s assembly .

private structure

class

The class is visible only to code inside the
containing namespace, structure, or class .

protected structure

class

The class is visible only to code inside the
containing structure or class, or in a class derived
from the containing class .

protected internal structure

class

Combines protected and internal .

For example, the following code defines a Person class.

namespace OrderProcessor
{
 public class Person
 {

www.EBooksWorld.ir

www.hellodigi.ir

272 ❘ ChAPtER 12 Classes and sTruCTures

 internal struct Address
 {
 public string Street, City, State, Zip;
 }

 public string FirstName, LastName;
 internal Address PostalAddress;
 }
}

The Person class is defined at the namespace level. It is declared public, so all code can see its
definition.

The Person class defines the Address structure. It is declared internal, so this structure is visible
only to code within the assembly. If you use the Person class from code in another assembly, that
code won’t see the definition of the Address structure.

After defining the Address class, the Person class defines FirstName, LastName, and PostalAddress
fields. The PostalAddress field is declared internal, so it’s not visible to code outside the assembly. If
you use the Person class from code in another assembly, that code won’t see the PostalAddress field.

abstract | sealed | static
If a class’s declaration includes the abstract keyword, you cannot make instances of the class. To
make use of the class’s features, you must derive another class from it. You can then make instances
of the derived class.

If a class’s declaration includes the sealed keyword, you cannot derive other classes from it.

If a class’s declaration includes the static keyword, you cannot derive other classes from it or create
instances of it. You invoke the members of a static class by using the class’s name instead of an instance.
Note that all members of a static class must also be declared static.

For example, consider the following LogTools class.

public static class LogTools
{
 public static void RecordMessage(string message)
 {
 Console.WriteLine(message);
 }
}

This static class defines a static RecordMessage method. In this example, the method writes a
message to the Console window, although, you could modify it to write the message into a log file.

The following code shows how a program can invoke the RecordMessage method.

LogTools.RecordMessage("Started " + DateTime.Now.ToString());

Notice how the code invokes the method by using the class’s name (highlighted in bold).

www.EBooksWorld.ir

www.hellodigi.ir

classes ❘ 273

ExtENSION tENSION

You can add an extension method to a class even if it is declared sealed. If you add
features that don’t match the class’s original purpose, you can make the class more
confusing and harder to use correctly. Adding new features to a sealed class also
violates the idea that the class is in some sense “finished.” To avoid confusion, don’t
add extension methods to a sealed class unless you must.

For more information on extension methods, see the section “Extension Methods”
in Chapter 6, “Methods.”

partial
The partial keyword tells C# that the current declaration defines only part of the class. The following
code shows the Person class broken into two pieces.

partial class Person
{
 public string FirstName, LastName;
}

partial class Person
{
 public string Street, City, State, Zip;
}

You can break a class into any number of pieces. (If you do break a class into pieces, all of them
must include the partial keyword.) At compile time, C# finds the pieces and combines them to
define the class.

Normally, you wouldn’t break a class into pieces within a single module. In fact, it’s not a good idea to
break a class into pieces unless you must. Keeping all the class’s code in one piece makes it easier to find.

PICKING uP thE PIECES

The reason partial classes were introduced was to hide automatically generated
code from developers.

For example, when you create a form in a Windows Forms application, the project
contains a lot of code to create and initialize the form’s controls. That code is confus-
ing, and if you modify it, you can break the form so that it won’t work anymore.

To help protect that code from accidental breakage, Visual Studio places it in a
separate module with a name similar to Form1.Designer.cs. Any code you add to
the form goes into the similarly named file Form1.cs. The partial keyword lets
both of these pieces of code help define the Form1 class.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

274 ❘ ChAPtER 12 Classes and sTruCTures

Keeping all the pieces together makes it easier to find the pieces, but there are a few circumstances in
which splitting a class may make sense. Some of those times include

➤➤ To separate automatically generated code from code written by developers

➤➤ To split a large class so that multiple developers can work on it simultaneously

➤➤ To break the class into pieces that each focus on some aspect of the class’s behavior

➤➤ To place the implementations of different interfaces in different files

All the pieces of a class must have the same accessibility and parent class. You only need to declare
those in one of the pieces, but if you declare them multiple times, they must agree. For example, you
cannot make one piece of the HonorStudent class inherit from Student while another piece inherits
from Person.

You can make different pieces of the class implement different interfaces. For example, the following
code is legal.

public partial class Student : Person, Interface1
{
 ...
}

partial class Student : Interface2
{
 ...
}

CONSIStENCy IS KING

Using different accessibility and inheritance clauses can be confusing. Remember,
at any given moment, you may be working with only one piece of the class. To make
the code as obvious as possible, make the declarations for every piece of a class look
exactly the same.

inheritance
If it is included, the class’s inheritance clause can include a parent, one or more interfaces, or both a
parent class and interfaces. If the declaration includes a parent class and interfaces, the parent class
must come first.

For example, the following code defines a Student class that inherits from the Person class and that
implements the IComparable and IFormattable interfaces.

class Student : Person, IComparable, IFormattable
{
 ...
}

www.EBooksWorld.ir

www.hellodigi.ir

structures ❘ 275

The class automatically inherits its parent’s properties, methods, and events but is responsible for
providing implementations for its interfaces. (For more information on implementing interfaces,
see the section “Implementing Interfaces” in Chapter 6.)

Recall from Chapter 11, “OOP Concepts,” that C# allows a class to inherit from at most one parent
class and to implement any number of interfaces. See the sidebar “Multiple Inheritance” in Chapter 11
for more information.

StRuCtuRES

In many respects, structures are similar to classes. They let you group properties, methods, events,
fields, and other members in a package that you can manipulate as a group.

One of the most obvious differences between structures and classes is that structures do not support
inheritance. You cannot derive one structure from another. (You also cannot derive a structure from
a class or vice versa.)

Structures can implement interfaces much as classes can.

The fact that structures don’t support inheritance is reflected in the following declaration syntax.

«attributes» «accessibility» «partial» struct name «interfaces»
{
 statements
}

The structure’s attributes and accessibility clauses and the partial keyword work the same way
they do for classes. The interfaces section is similar to a class’s inheritance section except it supports
only interfaces not inheritance. See the earlier sections discussing these pieces of the class declara-
tion for details.

There is one other huge difference between structures and classes: structures are value types but
classes are reference types. This is an important but confusing issue, so the following sections spend
quite a bit of time explaining what that difference means.

Value Versus Reference types
The biggest difference between a structure and a
class is in how each allocates memory for its data.
Classes are reference types. That means an instance
of a class is actually a reference to the object’s storage
in some other part of memory.

In contrast, structures are value types. An instance
of a structure contains the data inside the structure
rather than simply points to it. Figure 12-1 illustrates
the difference.

The following sections describe some of the more
important consequences of the way value and refer-
ence types allocate memory.

Structure
FirstName

LastName

Street

City

State

Zip

Class Object
(Reference)

FirstName

LastName

Street

City

State

Zip

FIGuRE 12-1: A structure holds its data,
but a class holds a reference to its data .

www.EBooksWorld.ir

www.hellodigi.ir

276 ❘ ChAPtER 12 Classes and sTruCTures

Memory Requirements
The difference in the amount of memory required by classes and struc-
tures is small when you consider only a single object. In Figure 12-1, the
class needs to allocate only one additional memory location to hold the
reference. (The reference takes 4 bytes on 32-bit systems or 8 bytes on
64-bit systems.)

However, the difference can add up in an array. An array of structures
contains only the data in the structures. An array of objects requires ref-
erences in addition to the memory used by the objects. If the array con-
tains 1,000 items, then it uses 4,000 more bytes of memory (assuming a
32-bit system).

When an array is first allocated, however, its entries are initially set to
null, so they don’t refer to any objects. At that point the array uses
only the memory required by its references. Figure 12-2 compares an
array of structures to an empty array of objects.

For example, suppose a structure or object requires 1 KB of memory.
An array containing 1,000 structures occupies 1 MB. When an array
of objects is first created, it occupies 4 KB for its null references.
When the array is full, it occupies 1 MB for its data plus 4 KB for its
(no longer null) references.

Suppose a program needs to use a large array of items. If relatively
few of the items will be allocated at any given moment, an array of
objects will use relatively little memory. If the program needs many
of the items to be allocated at the same time, an array of structures
will use slightly less memory because it doesn’t need to allocate
references.

PERFORMANCE ANxIEty

In theory, an array of structures might also be slightly faster than an array of objects,
particularly if you want items initialized to their default values. The structure array
will be allocated in a single step. Its memory will be contiguous, which may reduce
paging in some applications. It will also be allocated and freed in a single step instead
of in a series of allocations, one for each object in an object array.

The garbage collector can also mark an array of structures as in use in a single
step. In contrast, it must follow the references in an array of objects to mark them
all individually. (Garbage collection is described in detail in the section “Garbage
Collection” later in this chapter.)

In practice, however, the difference in performance between using an array of struc-
tures and using an array of objects is small enough that you probably shouldn’t use
performance as the deciding factor. Usually, you should pick the technique that
makes the most logical sense and not worry about a slight difference in performance.

Structure
Array

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

FirstName

LastName

Street

City

State

Zip

Object
Array
<null>

<null>

<null>

FIGuRE 12-2: An array
of structures uses lots of
memory even before it is
initialized . An array of
objects uses little memory
until its entries refer
to objects .

www.EBooksWorld.ir

www.hellodigi.ir

structures ❘ 277

heap and Stack Performance
C# programs allocate variables from two pools of memory called the stack and the heap. Memory
for value types (such as int and double) comes from the stack. Memory for reference types comes
from the heap.

Any number of references can point to the same piece of memory in the heap. That complicates
garbage collection and other heap-management issues, so working with reference types can be
slightly slower than working with value types.

Note that arrays are themselves reference types derived from the Array class. That means all arrays
are allocated from the heap even if the values they contain are allocated from the stack.

Object Assignment
One of the most important functional differences between
structures and objects lies in object assignment.

When you set a value variable equal to another value vari-
able, the program copies the data in
one variable into the other. If you change the data in one
variable, the other variable is unchanged because it is a copy
residing in its own memory.

Figure 12-3 shows this situation. Initially, variable A holds
the values Sherlock and Holmes. Variable B holds blank
values. When you execute the statement B = A, the program
copies the values stored in variable A into variable B.

In contrast, when you set a reference variable equal to another reference variable, the program makes
both variables point to the same memory. If you change the data in one reference, the change is reflected
in the other because they both point to the same object.

Figure 12-4 shows this situation. Initially variable A holds the values Sherlock and Holmes. Variable B
is null. When you execute the statement B = A, the program makes variable B point to the same object
pointed to by variable A.

Parameter Passing
The difference between value and reference type variables
can be particularly confusing when you consider parameter
passing methods. For example, assume Employee is a class
and consider the following method declaration.

public void SelectEmployee(Employee employee)
{
 ...
}

Initially
SherlockA:

Holmes

B:

After B = A
SherlockA:

Holmes

SherlockB:

Holmes

FIGuRE 12-3: When you set one
value type variable equal to another,
the program copies the data .

Initially
Sherlock

<null>

A:

Holmes

B:

After B = A
Sherlock

Holmes

A:

B:

FIGuRE 12-4: When you set one
reference type variable equal to another,
the program makes them both refer
to the same object .

www.EBooksWorld.ir

www.hellodigi.ir

278 ❘ ChAPtER 12 Classes and sTruCTures

The parameter employee is passed by value, so it is a copy of
the argument used in the calling code. (Here parameter refers to the
value inside the method and argument refers to the value passed into
the method in the calling code.) The parameter has type Employee,
so the argument and parameter are reference types. That means the
parameter employee contains a copy of the reference to the actual
Employee object. Figure 12-5 shows conceptually how the argument
and parameter are arranged in memory.

In this example, the parameter refers to the same object as the
argument. If you use the parameter to change the Employee object’s
properties (for example, if you execute the statement employee
.FirstName = "Linda"), the calling code sees that change because
the argument points to the same object.

If you change the parameter to make it point to a new Employee object, the parameter and the
argument will refer to two separate objects. The calling code will not see that change.

Now consider the following modified version of the SelectEmployee method.

public void SelectEmployee(ref Employee employee)
{
 ...
}

Here the ref keyword means the argument is passed into the method by reference. (The out keyword
would also pass the argument by reference.) Now the employee parameter is a reference to the argu-
ment, which is a reference to an Employee object. Figure 12-6 shows this situation conceptually.

Now the parameter is a reference to the argument
not to the Employee object. If you use the parame-
ter to change the Employee object’s properties (for
example, if you execute the statement employee
.FirstName = "Linda"), the calling code sees
that change as before.

If you change the parameter to make it point to
a new Employee object, you are actually changing
the argument. That means the calling code sees
the change.

Because structures are value types, they behave differently than objects when you pass them into
a method by reference or by value. For example, suppose Address is a structure and consider the
following code.

public void PrintAddress(Address address)
{
 ...
}

Argument in
calling method

(Reference) Employee
object

FirstName

LastName
Parameter
in method

(Reference)
employee:

FIGuRE 12-5: When you pass
a reference type by value, the
parameter contains a copy of
the reference .

Parameter
in method

(Reference)
employee:

Employee
object

FirstName

LastName

(Reference)

Argument in
calling method

FIGuRE 12-6: When you pass a reference type
by reference, the parameter is a reference to a
reference to the object .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

structures ❘ 279

The parameter address is passed by value, so it is a copy of the argument used in the calling
code. Because structures are value types, all the data in the structure is copied into the parameter.
Figure 12-7 shows conceptually how the argument and parameter are arranged in memory.

The parameter holds a completely separate copy of all the argu-
ment’s data. If you change the parameter’s data (for example, if
you execute the statement address.Street = "1337 Leet St"),
the argument is unaffected, so the calling code doesn’t see the
change. If you set the parameter equal to a new Address struc-
ture, the argument is still unaffected, so the calling code doesn’t
see that change either.

Basically, nothing you do to the parameter will affect the calling
code. This is different from the behavior you get when you pass
an object into the method. In that case changes to the object’s
properties are visible to the calling code.

Now consider the following modified version of the PrintAddress method.

public void PrintAddress(ref Address address)
{
 ...
}

Here the ref keyword means the argument is passed into the method by reference. Now the
address parameter is a reference to the argument. Figure 12-8 shows this situation conceptually.

The parameter is a reference to the argument. If you use the param-
eter to change the Address structure’s properties (for example, if you
execute the statement address.Street = "1337 Leet St"), the
calling code sees that change.

If you change the parameter itself to make it point to a new
Address structure, you are actually changing the argument.
That means the calling code sees the change.

Remember that arrays are reference types. An array variable is
a reference to the block of memory that contains the items in
the array. If those items are also reference types, for example, in
an array of Employee objects, then you have a reference to a block of memory containing references.
If you then pass the array by references, you get a reference to a reference to a block of memory con-
taining references. Figure 12-9 shows conceptually how the memory is arranged when you pass an
array of Employee objects named employees into a method by reference.

Fortunately, you usually don’t need to worry about the mess shown in Figure 12-9. The only
thing you need to remember is that any changes to the employees parameter are reflected in
the argument.

Argument in
calling method

Street

City

State

Zip

Parameter in
method

Street
address:

City

State

Zip

FIGuRE 12-7: When you pass a
structure by value, the parameter
contains a copy of the structure
and all its data .

Parameter in
calling method

Street

City

State

Zip

Parameter in
method

(Reference)
address:

FIGuRE 12-8: When you pass
a structure by reference, the
parameter is a reference to
the structure .

www.EBooksWorld.ir

www.hellodigi.ir

280 ❘ ChAPtER 12 Classes and sTruCTures

Parameter
inside

method

(Reference)
employees:

Memory for
array

(Reference)

(Reference)

(Reference)

(Reference)

Employee
objects

Employee

Employee

Employee

Employee

(Reference)

Array in
calling

method

FIGuRE 12-9: An array passed by reference is actually a reference
to a reference to a block of memory containing references .

The following table summarizes how changes to a parameter affect the argument in the calling code
for reference and value types passed by value or by reference.

ARGuMENt tyPE PASSEd by EFFECtS

Value type (int) Value Changing the parameter does not change
the argument .

Value type (int) Reference Changing the parameter changes the argument .

Structure (Address) Value Changes to the structure’s properties are not
seen in the calling code .

Setting the parameter to a new value does not
change the argument in the calling code .

Structure (Address) Reference Changes to the structure’s properties are seen
in the calling code .

Setting the parameter to a new object
changes the argument in the calling code .

Reference type (Employee) Value Changes to the object’s properties are seen in
the calling code .

Setting the parameter to a new value does not
change the argument in the calling code .

Reference type (Employee) Reference Changes to the object’s properties are seen in
the calling code .

Setting the parameter to a new object
changes the argument in the calling code .

www.EBooksWorld.ir

www.hellodigi.ir

structures ❘ 281

ARGuMENt tyPE PASSEd by EFFECtS

Array (Employee[]) Value Changes to an array entry’s properties are
seen in the calling code .

Setting an entry in the array to a new
value affects the values in the array in the
calling code .

Setting the parameter to point to a new
array or null does not affect the array in the
calling code .

Array (Employee[]) Reference Changes to an array entry’s properties are
seen in the calling code .

Setting an entry in the array to a new
value affects the values in the array in the
calling code .

Setting the parameter to point to a new array
or null changes the array in the calling code .

Passing objects and structures by value or reference can also affect performance. When you pass
an object by value, the program passes only a copy of a reference to the method. When you pass a
structure by value, the program must copy all the structure’s data. If the structure is large, that will
take a bit longer.

boxing and unboxing
C# allows a program to treat any variable as if it were an object. For example, consider the
following method.

public void ShowStringValue(object obj)
{
 Console.WriteLine(obj.ToString());
}

This method can take any kind of object as a parameter.

Now suppose you call this method with the statement ShowStringValue(13). The number 13 is an
int, not an object. To allow the method to work, the program wraps the value 13 in an object and
passes the object to the method.

The process of wrapping a value type such as an int in an object is called boxing. Later, if the program
needs to use the int as a value type again, the program unboxes it.

Because structures are value types, the program must box and unbox them whenever it treats them
as objects.

www.EBooksWorld.ir

www.hellodigi.ir

282 ❘ ChAPtER 12 Classes and sTruCTures

Some operations that require boxing and possibly unboxing include assigning a structure to an object
variable, passing a structure to a routine that takes an object as a parameter, or adding a structure to
a collection class that holds objects. Note that this last operation includes adding a structure to a col-
lection used by a control or other object. For example, adding a structure to a ListBox control’s Items
collection requires boxing.

Because arrays are reference types, treating an array as an object doesn’t require boxing.

Boxing and unboxing add some overhead to a program. If the program needs to box and unbox
only a few items, the difference is small. If the program must box and unbox a huge number of
items, the extra time can add up.

ChOOSING bEtwEEN CLASSES ANd StRuCtuRES

Microsoft provides some recommendations at msdn.microsoft.com/library/
ms229017.aspx. It recommends that you consider using a structure if instances are
short-lived or commonly embedded in other objects. It also says to use a structure
only if the type has all of the following characteristics:

➤➤ It logically represents a single value.

➤➤ It occupies fewer than 16 bytes.

➤➤ It is immutable.

➤➤ It will not have to be boxed and unboxed frequently.

All of these rules are designed to prevent you from shuffling large amounts of data
around accidentally. For example, if you pass a 100 KB structure to a method by
value, the program makes a 100 KB copy to pass to the method.

Many developers use classes exclusively. That has the advantage that you don’t need
to remember how a variable was defined to understand how it is passed to methods.
Using only classes means you lose the memory allocation features of structures but
it may be worth it to avoid possible confusion.

CONStRuCtORS

Chapter 4, “Data Types, Variables, and Constants,” briefly mentioned constructors. A constructor is
special method that has no name and that returns the type of the class or structure that contains it.
(Alternatively, you can think of a constructor as having the same name as its class and returning no
type, not even void.)

www.EBooksWorld.ir

www.hellodigi.ir

constructors ❘ 283

You can overload constructors by giving different versions different signatures, just as you can
overload any other method. For example, the following code shows a simple Person class with
two constructors highlighted in bold.

public class Person
{
 string FirstName { get; set; }
 string LastName { get; set; }

 public Person()
 {
 FirstName = "unknown";
 LastName = "unknown";
 }

 public Person(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }
}

A CONStRuCtOR by ANy OthER NAME

A constructor with no parameters is called a parameterless constructor or some-
times an empty constructor.

Whenever the program creates a new instance of a class or structure, the program invokes a construc-
tor. The program uses the parameters in the new statement to determine which constructor to use. For
example, the following code creates a new Person object. Because the new statement uses two string
parameters, the program uses the previous code’s second constructor.

Person person = new Person("Rufus", "Firefly");

If you do not provide any constructors for a class or structure, C# automatically provides a
default parameterless constructor. If you create any constructors of your own, C# does not create
a default constructor.

You can use that fact to ensure that the program initializes new objects or structures with required val-
ues. For example, if the previous version of the Person class did not include a parameterless construc-
tor, then the program would be forced to use the other constructor, which takes first and last names as
parameters. The program could not create a Person object without giving it first and last name values.
(Although it could still mess things up by setting those values to blank strings or null. You could mod-
ify the constructor to check for that.)

You can define your own parameterless constructors for classes. Structures cannot have explicitly
defined parameterless constructors.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

284 ❘ ChAPtER 12 Classes and sTruCTures

As is the case with other methods, you can give constructors optional parameters. For example, the
following constructor can take zero, one, or two parameters.

public Person(string firstName = "unknown", string lastName = "unknown")
{
 FirstName = firstName;
 LastName = lastName;
}

Constructors have two additional options that are not available to methods in general. First, a con-
structor can use the this keyword to automatically invoke another constructor. For example, con-
sider the following code.

public Person(string firstName, string lastName)
{
 FirstName = firstName;
 LastName = lastName;
}

public Person()
 : this("(Unknown)", "(Unknown)")
{
}

This code defines a constructor that takes first and last names as parameters. That constructor saves
its input parameters in the object’s FirstName and LastName properties.

The code then defines another constructor. The this clause highlighted in bold invokes the first
constructor, passing it the values (Unknown) and (Unknown) as parameters.

In the second option that is unavailable to other methods, a constructor uses the base keyword to
invoke a constructor in the parent class. For example, consider the following Employee class derived
from the Person class.

public class Employee : Person
{
 public int EmployeeId { get; set; }

 public Employee(string firstName, string lastName, int employeeId)
 : base(firstName, lastName)
 {
 EmployeeId = employeeId;
 }

 public Employee(string firstName, string lastName)
 : this(firstName, lastName, 0)
 {
 }
}

The first constructor takes a first name, last name, and employee ID as parameters. The base clause
highlighted in bold invokes a Person class constructor, passing it the first and last names as parameters.
The constructor then saves the employee ID.

www.EBooksWorld.ir

www.hellodigi.ir

structure Instantiation Details ❘ 285

The Employee class’s second constructor uses this to invoke the first constructor, passing it the first
and last names, and the employee ID 0.

StRuCtuRAL dIFFERENCES

There are a few differences between constructors for classes and structures.

As mentioned earlier, structures cannot have explicitly declared parameterless
constructors.

Because structures do not support inheritance, their constructors cannot use the
this or base clauses.

StRuCtuRE INStANtIAtION dEtAILS

Structures handle instantiation somewhat differently from classes. When you declare a reference
variable, C# does not automatically allocate the object to which the variable points. In contrast,
when you declare a value type such as a structure, C# automatically allocates space for the variable’s
data. That means you don’t need to use the new keyword to instantiate a structure.

For example, the following code creates an Address structure and initializes its Street property.

Address address;
address.Street = "711 Maple Street";

Although you don’t need to use the new keyword to instantiate a structure, you can if you want.
That’s a useful way to reinitialize a structure and set its data to default values. For example, consider
the following code.

// Create an Address.
Address address;
address.Street = "711 Maple Street";
...
// Reinitialize the Address.
address = new Address();
address.Street = "742 Evergreen Terrace";
...

This code creates an Address structure and sets its Street property. It works with the structure
for a while and then uses new to reinitialize the structure. It then sets the Street property to a new
value and continues using the structure.

You can also use the new keyword if you want to use initialization syntax to initialize the structure.
For example, the following code uses new to create an Address structure and set its Street property.

Address address = new Address() { Street = "1313 Mockingbird Lane" };

www.EBooksWorld.ir

www.hellodigi.ir

286 ❘ ChAPtER 12 Classes and sTruCTures

GARbAGE COLLECtION

When a program starts, the system allocates a chunk of memory for the program called the man-
aged heap. When it allocates data for reference types (class objects), C# uses memory from this heap.

Suppose your program creates a Person object and then later sets the only reference to that object
equal to null. The program can no longer access the object, so its heap memory is “lost.”

The garbage collector (GC) is in charge of recycling that lost memory. At some later point, the gar-
bage collector’s optimizing engine may decide that there is too much lost memory in the heap, so it
decides to clean house.

Exactly how garbage collection works is fairly complicated and not terribly important for most
applications, so this section provides only an overview. For more precise details, see the web page
“Garbage Collection” at msdn.microsoft.com/library/0xy59wtx.aspx.

Basically when it runs, the garbage collector marks all the heap memory as not in use. It then examines
all the program’s reference variables, parameters that are object references, CPU registers, and other
items that might point to heap objects. For each of those references, the garbage collector marks the
object to which the reference points as in use.

Next, the garbage collector compacts heap memory that is still in use and updates program references
so that they can find any items that it moved. The garbage collector then updates the heap itself so that
the program can allocate memory from the unused portion.

thE FINAL wORd IN FINALIzAtION

Because you can’t tell when garbage collection will occur, this process is called
nondeterministic finalization.

When it destroys an object, the garbage collector frees the object’s memory and any managed resources
it contains. It may not free unmanaged resources, however. You can determine when and how an object
frees its managed and unmanaged resources by using destructors and the Dispose method.

destructors
When it destroys an object, the garbage collector automatically frees any managed resources used
by that object. For example, suppose an unused object contains a reference to an open file stream.
When the garbage collector runs, it notices that the file stream is inaccessible to the program, so it
destroys the file stream, as well as the object that refers to it.

However, suppose that the object uses an unmanaged resource that is outside of the scope of
objects that C# understands. For example, suppose the object holds an integer representing a file
handle, network connection, or channel to a hardware device that C# doesn’t understand. In that
case, the garbage collector doesn’t know how to free that resource.

In that case, you can give the class a destructor, a method that runs when objects are destroyed.
Before it permanently destroys an object, the garbage collector calls that object’s destructor so the
destructor can clean up unmanaged resources.

www.EBooksWorld.ir

www.hellodigi.ir

garbage collection ❘ 287

Note that there are no guarantees about exactly when the garbage collector calls this method, or
the order in which different objects’ destructors are called. Two objects’ destructors may be called
in either order even if one contains a reference to the other or if one was freed long before the other.
That means a destructor cannot use any references to objects created outside of the destructor
because those objects may no longer exist.

To create a destructor, create a method named after the class with a ~ character in front of it. For
example, the following code shows a destructor for the Person class.

~Person()
{
 // Free unmanaged resources here.
 ...
}

FINALIzAtION ANd dEStRuCtION

Technically, the program doesn’t really call the destructor. Instead Visual Studio
translates the destructor into a method named Finalize that overrides the parent
class’s Finalize method. The Finalize method performs whatever actions you put
in the destructor and then calls its parent class’s Finalize method.

For example, consider the following destructor.

~Person()
{
 // Free unmanaged resources here.
 ...
}

This code is converted into the following Finalize method.

protected override void Finalize()
{
 try
 {
 // Free unmanaged resources here.
 ...
 }
 finally
 {
 base.Finalize();
 }
}

Because the program actually calls the Finalize method, not the destructor, the
destruction of a .NET object is called finalization.

When a program ends normally, it calls the destructors for all the objects that were created. If the
program crashes or you halt it abnormally, for example, by using the Debug menu’s Stop Debugging

www.EBooksWorld.ir

www.hellodigi.ir

288 ❘ ChAPtER 12 Classes and sTruCTures

command, the program doesn’t run the destructors. Sometimes that may leave unmanaged resources
locked or otherwise unavailable to the operating system. For example, a file editing program may
leave open files locked if it crashes.

dispose
Because C# doesn’t keep track of whether an object is reachable at any given moment, it doesn’t
know when it can permanently destroy the object until the program ends or the garbage collector
reclaims it. That means the object’s memory and resources may remain unavailable for quite a while.

Unavailable memory itself isn’t a big issue. If the program’s heap runs out of space, the garbage
collector runs to reclaim the unused memory. However, if an object contains a reference to a
resource (managed or unmanaged), that resource isn’t freed until the object is destroyed, and that
can sometimes have dire consequences. You generally don’t want control of a file, network con-
nection, scanner, or other scarce system resource left to the whims of the garbage collector.

By convention, the Dispose method frees an object’s resources. Before a program frees an object that
contains important resources, it can call that object’s Dispose method to free the resources explicitly.

To handle the case in which the program doesn’t call Dispose, the class should also free any
unmanaged resources that it holds in its destructor. Because the destructor is executed regardless
of whether the program calls Dispose, the class must be able to execute both the Dispose method
and the destructor without harm. For example, if the program shuts down some piece of unusual
hardware, it probably should not shut down the hardware twice.

To make Dispose methods a little more consistent, C# defines the IDisposable interface, which
declares the Dispose method. If a class implements this interface, then the using statement will
automatically call an object’s Dispose method, so you don’t need to do it explicitly.

Finally, if the Dispose method has freed all the object’s resources, there’s no need to invoke the
destructor when the object is eventually destroyed. You can make destruction a bit more efficient
by having the Dispose method call GC.SuppressFinalize to tell the garbage collector to skip the
object’s destructor.

The following list summarizes the key destruction issues.

➤➤ The destructor is called automatically when an object is destroyed.

➤➤ The destructor cannot refer to managed objects because they may have already been
destroyed. In particular, the destructor cannot free managed resources because they may
have already been destroyed.

➤➤ The destructor must free unmanaged resources. This is the last chance the object has for
freeing those resources.

➤➤ Instead of making the program wait an unknowable amount of time for the destructor to
execute, you can provide a Dispose method that disposes of all resources when the object
is done with them.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

garbage collection ❘ 289

➤➤ If you implement the IDisposable interface, the using statement calls Dispose automatically.

➤➤ Either it must be safe for the Dispose method and the destructor to both run, or you can
ensure that they both can’t run by making the Dispose method call GC.SuppressFinalize.

The following code defines a UseResources class that uses both managed and unmanaged resources.

// A class with managed and unmanaged resources.
public class UseResources : IDisposable
{
 // Code to initialize and use resources.
 ...

 // Destructor.
 // Cannot free managed resources.
 // Must free unmanaged resources.
 ~UseResources()
 {
 // Free unmanaged resources here.
 ...
 }

 // Dispose.
 // Frees managed and unmanaged resources.
 // Suppresses the destructor.
 public void Dispose()
 {
 // Free managed resources here.
 ...

 // Free unmanaged resources here.
 ...

 // Suppress the destructor.
 GC.SuppressFinalize(this);
 }
}

The class implements IDisposable so the using statement will automatically call the Dispose method.

The bulk of the class’s code, which initializes and uses the resources, isn’t shown here.

The class’s destructor frees the unmanaged resources.

The Dispose method frees both managed and unmanaged resources. It then calls
GC.SuppressFinalize to prevent the destructor from running and freeing the unmanaged
resources again.

The parameter to GC.SuppressFinalize is the object for which the destructor should not be
called. The code passes this to that method so the current object’s destructor isn’t called.

In this class, either the Dispose method or the destructor is called but not both.

www.EBooksWorld.ir

www.hellodigi.ir

290 ❘ ChAPtER 12 Classes and sTruCTures

dISPOSE ONCE

If you study the UseResources class, you’ll see that it contains code to dispose of
unmanaged resources in two places: in the destructor and in the Dispose method.
Both of those pieces of code won’t execute for a given object, but the class still con-
tains duplicated code.

You can avoid that duplication by moving the code that frees unmanaged resources
into a new method. Then you can make the destructor and the Dispose method
call the new method.

Many developers use a more complicated approach in which the new method frees
both managed and unmanaged resources. In that case, the new method needs to
know whether it is being called by the destructor or the Dispose method so it knows
whether to free managed resources. That approach can be a bit more confusing, but
it achieves the same goals as the version shown here.

EVENtS

Chapter 4 explained how to create properties, and Chapter 6 explained how to make methods. In
some sense properties and methods let program code outside of a class communicate with an object.
Properties let the program view and modify the object’s data. Methods let the program make the
object do something.

Events do the reverse: They let the object send information back to the program when something
interesting occurs. The object raises an event to tell the main program about a situation so the main
program can decide what to do about it.

For example, some of the most common events are button and menu Click events. When the
user selects a menu item or clicks a button, the menu item or button raises a Click event. The
main program catches that event and takes appropriate action.

The following sections describe events. They explain how a class declares events and how other parts
of the program can catch them.

declaring Events
An object can raise events whenever it needs to notify the program of changing circumstances.
The class declares the event using the event keyword. The following text shows the event state-
ment’s syntax.

«attributes» «accessibility» «new|virtual|override|abstract|sealed» «static»
 event delegate name;

www.EBooksWorld.ir

www.hellodigi.ir

events ❘ 291

The following list describes the declaration’s pieces.

➤➤ attributes—Attributes provide extra information about the event for use by the compiler,
the runtime system, and other tools.

➤➤ accessibility—This can be public, private, protected, internal, or protected internal
and is similar to the accessibility for other items such as classes, properties, and methods. The
keywords have the following meanings:

➤➤ public—The event can be caught by any code.

➤➤ private—The event can be caught only by code inside the class.

➤➤ protected—The event can be caught only by code inside the class or a derived class.

➤➤ internal—The event can be caught only by code inside the class’s assembly.

➤➤ protected internal—The event can be caught only by code inside the class or a
derived class within the class’s assembly.

➤➤ new|virtual|override|abstract|sealed—These are similar to the keywords used by
methods described in Chapter 6. They have the following meanings:

➤➤ new—Hides an event with the same name defined in an ancestor class.

➤➤ virtual—If you mark an event as virtual, you can later replace it in a derived class
by overriding it.

➤➤ override—If an ancestor class defines a virtual event, you can use the override
keyword to override it.

➤➤ abstract—This keyword indicates the event is abstract, so derived classes must over-
ride the event to give it an implementation. As is the case with abstract methods, a
class that contains an abstract event must be abstract and cannot be instantiated.

➤➤ sealed—This keyword indicates the event is no longer virtual so it cannot be
overridden in derived classes.

➤➤ static—This indicates the class itself raises the event rather than instances of the class.

➤➤ delegate—This is a delegate type that defines the parameters that will be passed to event
handlers for the event.

➤➤ name—This is the name you want to give the event.

Much of this should seem familiar to you from similar keywords used with methods. In fact, events
seem a lot like methods. The class that defines the event “invokes” it much as you invoke a method,
and the event handler that catches the event is just a method.

However, there are some major differences between events and methods. The following sections
provide some more detail about events and explain the reasons why events are more than simply
methods in disguise. Those sections also include some examples that show how to declare, raise,
and catch events.

www.EBooksWorld.ir

www.hellodigi.ir

292 ❘ ChAPtER 12 Classes and sTruCTures

Raising Events
To raise an event, the code must first determine whether any other pieces of code have registered to
catch the event. It does that by comparing the event to null. (This is a fairly odd syntax but that’s
the way C# does it.)

If the event handler isn’t null, the code “invokes” it, passing it any required parameters. The program
then invokes each of the registered event handlers in turn, passing them those parameters.

For example, suppose the Student class defined a GradeChanged event. Then the following snippet
inside the Student class raises the event, passing it the current Student object as a parameter.

if (GradeChanged != null) GradeChanged(this);

Catching Events
To subscribe to an event, a program uses the += operator to “add” the event handler to the event.

For example, suppose the Person class defines a NameChanged event. Suppose the main program
creates an instance of the Person class named MyPerson. Finally, suppose the main program defines
an event handler named MyPerson_NameChanged to handle that event. Then the main program
could use the following code to subscribe to the event.

MyPerson.NameChanged += MyPerson_NameChanged;

If the program executes this code multiple times, then when the event is raised, the event handler will
be called multiple times.

To unsubscribe from an event, use the -= operator. The following code shows how a program might
unsubscribe from the Person class’s NameChanged event.

MyPerson.NameChanged -= MyPerson_NameChanged;

(This example is described further in the next section.)

1 – 2 = 0

A program can unsubscribe from an event more times than it subscribed to it without
causing any harm. For example, if the program uses += to subscribe to the event three
times and then uses -= to unsubscribe from it four times, nothing bad happens. The
program just doesn’t catch the event.

using Event delegate types
The delegate part of the event declaration is a delegate type that defines the parameters that the
event handler takes when it catches the event. You can create your own delegate type, use a pre-
defined Action delegate type, or use the special EventHandler delegate type.

www.EBooksWorld.ir

www.hellodigi.ir

events ❘ 293

The EventHandler type defines an event that gives the handler two parameters. The first is an
object that represents the object that raised the event. The second parameter is another item that
gives information about the event. Microsoft recommends that you make the second parameter an
object with a name that starts with the name of the event and ends in EventArgs.

For example, the PersonEvent example program, which is available for download on this
book’s website, defines a Person class with a Name property. When the Name property changes,
the Person object raises a NameChanged event. That event handler’s second parameter is a
NameChangedEventArgs object.

Figure 12-10 shows the PersonEvent program in action. Enter a new name in the text box and click
Set Name. This displays a message box asking you to confirm the name change. If you click Yes, the
program updates the name and displays the new name in the bottom text box.

FIGuRE 12-10: The PersonEvent example program
demonstrates event handling .

The following code shows the example’s NameChangedEventArgs class.

public class NameChangedEventArgs
{
 public string OldName, NewName;
 public bool Cancel;

 public NameChangedEventArgs(string oldName, string newName)
 {
 OldName = oldName;
 NewName = newName;
 Cancel = false;
 }
}

This class has three fields. The OldName and NewName fields tell the main program what the Person
object’s name is being changed from and to. The Cancel property lets the main program cancel the
name change.

The NameChangedEventArgs class also defines a constructor that the Person class can use to initialize
the old and new name values.

The following code shows the Person class.

class Person
{
 // Raised when the person's name changes.
 public event EventHandler<NameChangedEventArgs> NameChanged;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

294 ❘ ChAPtER 12 Classes and sTruCTures

 // The Name property.
 private string _Name = "";
 public string Name
 {
 get { return _Name; }
 set
 {
 // Prepare the argument object.
 NameChangedEventArgs args =
 new NameChangedEventArgs(_Name, value);

 // If any code is registered to receive the event, raise the event.
 if (NameChanged != null) NameChanged(this, args);

 // If the code didn't cancel the change, make the change.
 if (!args.Cancel) _Name = value;
 }
 }
}

The class starts by declaring its NameChanged event. The EventHandler<NameChangedEventArgs>
part of the declaration indicates that this event will pass its event handlers the object that is raising
the event and a NameChangedEventArgs object.

Next, the class defines a Name property. The set accessor starts by creating a NameChangedEventArgs
object and initializing its name values.

To raise an event, the code must first determine whether any other pieces of code have registered to
catch the event. It does that by comparing the event to null.

If the event handler isn’t null, the code “invokes” it, passing it a reference to the object raising the
event (this) and the NameChangedEventArgs object. That makes the program raise the event for
each of the program elements that are registered to catch it. The same NameChangedEventArgs
object is passed to each of the registered event handlers in turn.

Next, the accessor checks the NameChangedEventArgs object’s Cancel field to see if the event
handlers set that value to true. If Cancel is false, the accessor sets the property’s backing field
_Name to the new name value.

The program’s main form uses the following code to declare and initialize a Person object.

// A Person.
private Person MyPerson = new Person();

The following code shows the program’s NameChanged event handler.

// The event handler.
private void MyPerson_NameChanged(object sender, NameChangedEventArgs e)
{
 e.Cancel =
 MessageBox.Show(
 "Change the name from " + e.OldName + " to " + e.NewName + "?",
 "Change Name?",

www.EBooksWorld.ir

www.hellodigi.ir

events ❘ 295

 MessageBoxButtons.YesNo)
 == System.Windows.Forms.DialogResult.No;
}

The event handler takes two parameters. The first is an object named sender that refers to the
Person object that is raising the event. The second parameter is the NameChangedEventArgs object
created by the Person object when it raises the event.

The event handler displays a message box telling the user the NameChangedEventArgs object’s old
and new names, and asking if the change should be allowed. It sets the NameChangedEventArgs
object’s Cancel value to indicate whether the user clicks Yes or No.

The following code shows the program’s Load event handler.

private void Form1_Load(object sender, EventArgs e)
{
 // Set and display an initial name.
 MyPerson.Name = "Ann";
 nameTextBox.Text = MyPerson.Name;

 // Register the event handler.
 MyPerson.NameChanged += MyPerson_NameChanged;
}

This code initializes the Person object’s Name property and displays the name in the nameTextBox.
At that point, no event handler is registered with the object so the event isn’t raised.

The code then registers the MyPerson_NameChanged method to catch the NameChanged event.

The final piece to the program is the following Click event handler, which executes when the user
clicks the Set Name button.

// Change the person's name.
private void setNameButton_Click(object sender, EventArgs e)
{
 MyPerson.Name = newNameTextBox.Text;
 nameTextBox.Text = MyPerson.Name;
}

When the user clicks the button, this code sets the Person object’s Name property to the value
entered in the nameTextBox.

The following list shows the complete sequence of events that occur when you click the button.

➤➤ The main program sets the Person object’s Name property to a new value.

➤➤ The Person object’s set accessor raises the NameChanged event.

➤➤ The main program’s MyPerson_NameChanged event handler catches the event and displays a
message box asking you to confirm the change.

➤➤ The Person object’s set accessor checks the NameChangedEventArgs object’s Cancel value
to see whether it should cancel the name change. If Cancel is false, the accessor saves the
new name value.

www.EBooksWorld.ir

www.hellodigi.ir

296 ❘ ChAPtER 12 Classes and sTruCTures

using Static Events
Static events are mostly like nonstatic events except the event is provided by the class itself rather
than an instance of the class.

The StaticEvent example program, which is available for download on this book’s website, defines a
ReportManager class that provides a static ReportError event.

The main program uses the following code to subscribe to the event. Notice how it uses the class
instead of an instance to identify the event.

ReportManager.ReportError += MyReportManager_ReportError;

One important difference between static and nonstatic events has to do with the way objects are
destroyed and recycled by the garbage collector. When one object registers for a second object’s
event, the second object keeps a reference to the first object. For example, suppose the Form1 class’s
code registers to catch a Person object’s NameChanged event. In that case, the Person object holds a
reference to the Form1 object.

Now if the program removes all references to those Form1 and Person objects, the garbage collector
can reclaim them as usual.

However, suppose NameChanged is a static event provided by the Person class. In that case, when the
Form1 object registers to receive the event, the Person class receives a reference to the Form1 object.
Later if the program doesn’t need the Form1 object any more, the garbage collector cannot reclaim it
because the Person class still holds a reference to it. The Form1 object’s memory is lost forever.

You can avoid this situation by using the -= operator to unregister the event handler before releasing
the Form1 object. (You can also avoid this problem if you don’t use static events.)

hiding and Overriding Events
Events are a bit unusual because they are not inherited the same way properties and methods are.
A derived class cannot raise the events declared by its ancestors.

For example, suppose the BankAccount class defines the Overdrawn event, and suppose
the OverdraftAccount class is derived from the BankAccount class. Then the code in the
OverdraftAccount class cannot raise the Overdrawn event.

The OverdraftAccount class can use the new keyword to hide the Overdrawn event with a new version.

If the BankAccount class declares the event with the virtual keyword, then the OverdraftAccount
class can use the override keyword to override the event with a new version.

The new, virtual, and override keywords work much as they do for methods. See the sections
“new” and “virtual and override” in Chapter 6 for more information.

Raising Parent Class Events
As the previous section mentioned, a derived class cannot raise an event declared by one of its ancestors.
However, sometimes you might like to do just that. The derived class cannot invoke the ancestor class’s
event, but it can invoke code in the ancestor class and that code can invoke the event.

www.EBooksWorld.ir

www.hellodigi.ir

events ❘ 297

The solution is to give the ancestor a method that raises the event. The derived class can then call that
method. By convention that method is usually named after the event with On added at the beginning.

To continue the previous example, you might like the OverdraftAccount class to raise the Overdrawn
method defined by the BankAccount class instead of create a new event of its own that hides or over-
rides the BankAccount version. It cannot raise that event directly, but you can add an OnOverdrawn
method to raise the event.

For example, you could create the following OnOverdrawn method.

protected void OnOverdrawn(decimal value)
{
 if (Overdrawn != null) Overdrawn(this, value);
}

Now when it needs to raise the Overdrawn event, the OverdraftAccount class invokes the
OnOverdrawn method.

Implementing Custom Events
You can use code similar to the following to create an auto-implemented property.

public string Name { get; set; }

Behind the scenes, Visual Studio creates get and set accessors to support the property.

Similarly, the following statement declares a simple event.

public event EventHandler<NameChangedEventArgs> NameChanged;

This time Visual Studio creates event accessors that add and remove event handlers from a list of event
handlers. These are similar to the get and set accessors provided for auto-implemented properties
except they are named add and remove.

You can explicitly implement a property if you want to add extra features beyond those provided by
auto-implemented properties. Similarly, you can explicitly implement add and remove event accessors if
you want. If you take that approach, you must also write code to invoke any registered event handlers.

For example, consider the following code.

// A private event to represent the public event.
private EventHandler<VoteEventArgs> VoteEvent;

// The event.
public event EventHandler<VoteEventArgs> Vote
{
 add
 {
 VoteEvent += value;
 }
 remove
 {
 VoteEvent -= value;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

298 ❘ ChAPtER 12 Classes and sTruCTures

This code declares a private event named VoteEvent. It then defines a Vote event. That event’s add
and remove accessors delegate their jobs to the private event.

Later, the class can use code similar to the following to raise the event.

// Make the event args object.
VoteEventArgs args = new VoteEventArgs(this.Description);

// Call the event handlers.
if (VoteEvent != null) VoteEvent(this, args);

This code creates a VoteEventArgs object to provide information about the event. (Don’t worry
about the details. What’s important is that it creates the object.) It then raises the private event
named VoteEvent. Because the add and remove accessors simply passed add and remove requests
to the private event, that event invokes any registered event handlers.

This example simply passes event requests to a private event so it actually doesn’t add anything. It
does basically the same thing as an auto-implemented public Vote event.

However, you could modify the program to do other things. For example, the custom event could
delegate to an object contained in this class. Suppose the Car class has a Crashed event and suppose
the Driver class has a Car property that represents the driver’s car. Then the Driver class could
make its own Crashed event that delegates to the Car object’s event.

StAtIC MEthOdS

Static methods are a bit less intuitive than static variables. Like static variables, you access static
methods by using the class itself rather than an instance of the class. For example, consider the
following Student class.

public class Student
{
 public int StudentId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 ...

 // Make a Student.
 public static Student LookupStudent(int id)
 {
 // Look up the student ID in the database and create object theStudent.
 ...

 return theStudent;
 }
}

The class starts with some property declarations. It then defines the static LookupStudent method.
This method takes a student’s ID as a parameter, looks the student up in a database (that code isn’t
shown), and returns a Student object representing the student.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

static methods ❘ 299

This kind of method that creates a new instance of a class is called a factory method because it acts
as a factory that creates objects on demand.

wORK At thE FACtORy

Factory methods enable a program to work with multiple classes that have a com-
mon ancestor without needing to know the details about which subclass it is using.
It enables you to move the details of creating the particular subclass into the method
and remove it from the main program.

For example, suppose a program needs to work with a database. The DbConnection
class represents a connection to a database at a high level. Child classes, such as
OdbcConnection, OleDbConnection, OracleConnection, and SqlConnection,
represent connections to specific kinds of databases.

In this scenario, you could write a factory method that creates a database connection
and returns a DbConnection object that the program can use. Later, if you decide to
change the kind of database you’re using, you can modify the factory method so it
creates the new kind of connection object. The main program would still work with
the parent class DbConnection so its code wouldn’t need to change.

By convention, the names of factory methods usually end in Factory as in
DbConnectionFactory.

The following code shows how a program might use the LookupStudent method.

// Get the ID.
int id = int.Parse(lookupIdTextBox.Text);

// Get the student.
Student student = Student.LookupStudent(id);
if (student == null)
{
 firstNameTextBox.Clear();
 lastNameTextBox.Clear();
 idTextBox.Clear();
}
else
{
 firstNameTextBox.Text = student.FirstName;
 lastNameTextBox.Text = student.LastName;
 idTextBox.Text = student.StudentId.ToString();
}

This code gets an ID from a text box. It calls the LookupStudent method to find the student in the
database and then either clears its result text boxes or displays the student’s ID and name properties.

www.EBooksWorld.ir

www.hellodigi.ir

300 ❘ ChAPtER 12 Classes and sTruCTures

You could use a constructor instead of a factory method. In this example, the constructor would
take the student’s ID as a parameter, look up the student’s record in the database, and initialize the
Student object’s properties.

Unfortunately, if the student didn’t appear in the database, the constructor could throw an exception,
but it couldn’t return a null value. A factory method can return null if appropriate.

Even if you define a factory method, the main program could still create a Student object that didn’t
represent a student in the database. You can prevent that by giving the class a private constructor.
Then code outside of the class cannot create an instance of the class, so it must use the factory method.
(Because the factory method is inside the class, it can use the constructor if that helps.)

One restriction on static methods is that they cannot use instance properties or methods. That
makes sense because a static method doesn’t depend on a particular instance, so what instance’s
properties or methods would it use?

For example, the static LookupStudent method couldn’t access the FirstName property because that
property is defined only for instances of the class and not for the class itself. (Of course, the method
could make an instance of the class and then use that instance’s FirstName property. That’s how the
factory method creates a new Student object.)

SuMMARy

Classes and structures are similar. Both are container types that group related variables, methods,
and events in a single entity.

Many developers use only classes, mostly because they are more familiar with classes, but there
are some important reasons why you might pick one over the other. For example, structures don’t
support inheritance.

Structures are also value types and classes are reference types. This makes them behave differently
when you define, initialize, and pass values into methods. The concepts described in this chapter
should help you decide which of the two types is better in different situations.

Whether you use structures or classes, if you build large enough programs or collections of pro-
grams, you may run into naming conflicts. Names such as Person, Customer, and Order are so
intuitive that developers working on different parts of the application may want to use the same
names. Having two Customer classes around can cause confusion and lead to programs that don’t
work well together.

Namespaces help solve this problem by letting you categorize code and differentiate classes with
the same names. For example, if you define separate billing, personnel, and order processing
namespaces, all those namespaces can define their own Person, Employee, and Customer classes
without conflict.

The next chapter describes namespaces in detail. It explains how to create namespaces and how to
use them to refer to classes created in different assemblies.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 301

ExERCISES

 1. Draw a diagram similar to Figure 12-9 showing the memory layout used by the following
Customer class, assuming Address and Order are structures.

public class Customer
{
 public Address MailingAddress, BillingAddress;
 public Order[] Orders;
}

(You don’t need to show how it would be passed into a method. Just show how an object
is laid out.)

 2. Repeat Exercise 1 assuming Address and Order are classes instead of structures.

 3. Consider the Customer classes used in Exercises 1 and 2. How large is the difference
between the two structures if you pass a Customer object into a method by value? By ref-
erence? Would the differences be larger or smaller if Customer were a structure instead
of a class?

 4. Download the PersonEvent example program. What happens if the Person class’s Name
property’s set accessor doesn’t check whether NameChanged is null and simply “invokes”
the event handler?

 5. Create a BankAccount class that has a Balance property. If Balance is set to a negative
amount, the set accessor should raise an Overdrawn event and not save the new value.
Write a program to test the class. If the program tries to reduce the balance to less than
$0.00, display a message box.

 6. Create an OverdraftAccount class that is derived from the BankAccount class you built for
Exercise 5. Override the Overdrawn event. Also override the Balance property so that the
set accessor only raises the event if the balance is set to a value less than –$100.00.

 7. Modify the program you wrote for Exercise 6 so that the OverdraftAccount class raises the
BankAccount class’s Overdrawn event instead of overrides that event.

 8. Modify the program you wrote for Exercise 6 so that the OverdraftAccount class hides
the Overdrawn event. Make the main program use code similar to the following to create
its OverdraftAccount object.

private BankAccount Account = new OverdraftAccount();

What happens when you run the program? Why does it do that?

 9. Write a program that uses the custom event handler described in the section “Implementing
Custom Events.” Make a BallotIssue class that provides the Vote event. That event passes
the event handlers a VoteEventArgs object that has a boolean field named IsVetoed.

Also give the BallotIssue class a boolean IsVetoed method. When the program calls that
method, the class should raise its Vote event. The idea is that any of the registered event
handlers could veto the BallotIssue.

www.EBooksWorld.ir

www.hellodigi.ir

302 ❘ ChAPtER 12 Classes and sTruCTures

Give the main program three different event handlers that use a message box to ask if you
want to veto the issue.

Unfortunately, the way the BallotIssue class delegates the event requires it to invoke
every event handler even if one vetoes the issue. That means a later event handler could
reset e.Cancel to false even if an earlier event handler set it to true.

To prevent that, make each event handler check e.Cancel. If the value is true, the event
handler should return without doing anything.

 10. The problem with the program you wrote for Exercise 9 is that a later event handler can
override the veto choice of an earlier event handler, essentially vetoing the veto.

Write a program that avoids this problem by making the BallotIssue class store its event
handlers in a private List<EventHandler<VoteEventArgs>> instead of delegating to a
private event.

To raise the event, the new version should loop through the list of event handlers. After it
calls each, the code can check e.Cancel. If e.Cancel is true, it can break out of the loop
so later event handlers cannot reset e.Cancel.

 11. Make a program that defines a Student class that has a LookupStudent factory method
similar to the one described in the section “Static Methods.” Instead of using a database,
place arrays containing first and last names in the method and use the student’s ID as an
index into the arrays. If the user enters an ID that is outside of the arrays’ bounds, return
null. Finally, give the class a private constructor and make the factory method use it.

www.EBooksWorld.ir

www.hellodigi.ir

namespaces
whAt’S IN thIS ChAPtER

➤➤ Namespace collisions

➤➤ The using directive

➤➤ Project and item templates

➤➤ Making and resolving namespaces

➤➤ Default and global namespaces

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

In large applications, name collisions are fairly common. A developer working on a billing system
might create a Customer class. Meanwhile another developer working on a customer complaint
tracking system might define a different Customer class. Each class will have different properties,
methods, and events that are useful for its application.

Having two classes with the same name like this won’t cause any problems until you try to
integrate the two programs. At that point, the program won’t be able to tell which kind of
Customer class to use under different circumstances.

This situation in which multiple items have the same name is called a namespace collision or
namespace pollution.

Namespaces enable you to group code so that you can tell the program where to find a
particular class. For example, the developer working on the billing system might use the
Billing namespace and the developer working on the complaint tracking system might use
the CustomerSatisfaction namespace.

13

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.hiva-network.com/

304 ❘ ChAPtER 13 namesPaCes

Now when you glue code from the two programs together in one mega-program, you can refer to
the two classes as Billing.Customer and CustomerSatisfaction.Customer and the two classes
can peacefully coexist.

Namespaces can contain other namespaces, so you can build a hierarchical structure that groups
different entities. You can divide the Billing namespace into pieces such as OverdueAccounts and
PaidAccounts to give developers working on that project some isolation from each other.

Namespaces can be confusing at first, but they are fairly simple. They just group the code in
manageable pieces so that you can tell different chunks of code apart from each other.

This chapter describes namespaces. It explains how to use namespaces to categorize programming
items and how to use them to select the right versions of items with the same name.

COLLISIONS IN .NEt

Name collisions are uncommon in the .NET Framework because the designers were careful to give
classes with similar purposes different names. If no two classes have the same name, then there’s
no problem.

For example, the System.Data namespace includes several subnamespaces such as Odbc and OleDb to
work with different kinds of databases (in this case, ODBC and OLE DB databases). Those namespaces
contain similar classes, but their names are prefixed with the namespace name so that they don’t con-
flict. For example, those namespaces contain the OdbcConnection and OleDbConnection classes.

However, there are a few cases in which classes have exactly the same names. For example,
the System.Windows.Forms, System.Windows.Controls, and System.Web.UI.WebControls
namespaces all define Label, TextBox, and Button classes.

Those namespaces represent different ways of building user interfaces (Windows Forms, WPF/XAML,
and web page) so it is quite unusual for a program to include more than one of those kinds of controls.
If you ever do, however, you’ll need to use namespaces to indicate which you are using in different
parts of the code.

thE uSING dIRECtIVE

Visual Studio defines thousands of classes, constants, and other entities to provide tools for your
applications. It categorizes them in namespaces to prevent name collisions and to make it easier
for you to find the items you need.

The .NET Framework root namespaces are named Microsoft and System.

The Microsoft namespace includes namespaces that support different programming languages and
tools. For example, typical namespaces include CSharp, JScript, and VisualBasic, which contain
types and tools that support the C#, JScript, and Visual Basic languages. The Microsoft namespace
also includes the Win32 namespace, which includes classes that handle operating system events and
that manipulate the registry.

www.EBooksWorld.ir

www.hellodigi.ir

The using Directive ❘ 305

The System namespace contains a huge number of useful programming items, including many nested
namespaces. For example, the System.Drawing namespace contains classes related to drawing;
System.Data contains classes related to databases; System.Threading holds classes dealing with
multithreading; and System.Security includes classes for working with security and cryptography.

Note that these namespaces are not necessarily available to your program at all times. For example,
by default, the Microsoft.JScript namespace is not available to C# programs. To use it, you must
first add a reference to the Microsoft.JScript.dll library.

Visual Studio includes so many programming tools that the namespace hierarchy is truly enormous.
Namespaces are refined into subnamespaces, which may be further broken into more namespaces
until they reach a manageable size. Although this makes it easier to differentiate among all the dif-
ferent programming entities, it makes the fully qualified names of some classes rather cumbersome.

For example, the following code draws a rectangle with a dashed border. Notice the long series of
namespaces used by the Dash enumeration value (highlighted in bold).

private void Form1_Paint(object sender, PaintEventArgs e)
{
 using (Pen pen = new Pen(Color.Blue))
 {
 pen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dash;
 e.Graphics.DrawRectangle(pen, 10, 10, 100, 50);
 }
}

You can use a using directive at the top of the file to make using namespaces easier. For example,
suppose the program begins with the following statement.

using System.Drawing.Drawing2D;

Now the program can use the following simpler code to draw the dashed rectangle.

private void Form1_Paint(object sender, PaintEventArgs e)
{
 using (Pen pen = new Pen(Color.Blue))
 {
 pen.DashStyle = DashStyle.Dash;
 e.Graphics.DrawRectangle(pen, 10, 10, 100, 50);
 }
}

The using directive tells the compiler where to look for classes, structures, enumerations, and other
items that are not defined locally. When it sees the value DashStyle.Dash, the compiler tries to locate
DashStyle in the current file. When it doesn’t find it, the compiler searches the namespaces listed in
using directives. In this example, it eventually finds DashStyle in the System.Drawing.Drawing2D
namespace.

If a program contains two using directives for namespaces that define classes with the same names,
C# may become confused and give you an Ambiguous Reference error. To fix the problem, the code
must use fully qualified names to select the right versions.

www.EBooksWorld.ir

www.hellodigi.ir

306 ❘ ChAPtER 13 namesPaCes

OVERuSING uSING

A code file can include any number of using directives without affecting the
size of the compiled executable program. The compiler includes only items in
namespaces that it actually uses, so extra using directives don’t make any differ-
ence to the end result.

However, when the compiler needs to figure out where some symbol is defined,
it searches the namespaces listed in using statements. If the file includes lots of
unused namespaces, the compiler may waste a lot of time searching them.

For example, a typical Windows Forms application might include the following
using directives by default in a new application.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

A program that draws a dashed rectangle needs only the following three using
directives.

using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Drawing2D;

You can help the compiler find symbols more efficiently by removing unnecessary
using directives. An easy way to do that is to right-click the code editor and open
the Organize Usings context menu item. That menu contains the following three
commands.

Remove Unused Usings—This command removes using directives for namespaces
that are not needed by the code.

Sort—This command sorts using directives alphabetically.

Remove and Sort—This command removes unnecessary using directives and then
sorts them.

For example, the following code creates two Customer objects, one using the class defined in the
Billing namespace and one using the class defined in the CustomerSatisfaction namespace.

Billing.Customer customer1 = new Billing.Customer();
CustomerSatisfaction.Customer customer2 = new CustomerSatisfaction.Customer();

www.EBooksWorld.ir

www.hellodigi.ir

The using Directive ❘ 307

Sometimes, including a fully qualified namespace can make the code unwieldy and hard to read. In
this example, the CustomerSatisfaction namespace makes the second statement so long it barely
fits on a single line. In other cases, such as with the System.Drawing.Drawing2D.DashStyle.Dash
value used earlier, deeply nested namespaces makes the code awkward.

In addition to including a namespace for the compiler to use, the using directive can define an alias
to make using long namespaces easier. For example, the following using directives define aliases for
the System.Drawing.Drawing2D and CustomerSatisfaction namespaces.

using D2D = System.Drawing.Drawing2D;
using CS = CustomerSatisfaction;

The following code shows how you could use those aliases.

pen.DashStyle = D2D.DashStyle.Dash;
CS.Customer customer2 = new CS.Customer();

AbStRuSE AbbREVIAtIONS

Be sure your abbreviations aren’t more confusing than the original namespace names.
In the previous example, D2D and CS are too short to be descriptive, so they may cause
confusion unless you use them often enough to get used to them. Abbreviations such
as Draw2D and Satisfaction would be longer but more intuitive.

Project templates
When you create a new project, Visual Studio includes whatever using directives are defined by the
project’s template. The included directives were chosen by the Microsoft development team because
it thought those directives would be useful under many common situations, but the results may not
suit your needs.

If the template doesn’t do exactly what you need, it’s easy to add a few using directives manually.
It’s even easier to remove unwanted directives by using the Remove Unused Usings context menu
command. (See the tip “Overusing Using” earlier in this chapter.)

However, if you build a large number of projects or add a lot of modules that need the same directives,
you can make the process a bit easier by defining your own templates.

To create a project template, start a new project. Add any forms, windows, or other modules that you
want the template to have, and edit them so they contain the wanted using directives. When you have
the project the way you want it, use the File menu’s Export Template command to open the Export
Template Wizard, as shown in Figure 13-1.

To create a project template, select the Project Template option, and click Next to display the page
shown in Figure 13-2. Enter a name and description for the template. If you want, you can also
define an icon for Visual Studio to display and a preview image. When you finish, click Finish to
create the template.

www.EBooksWorld.ir

www.hellodigi.ir

308 ❘ ChAPtER 13 namesPaCes

FIGuRE 13-1: The Export Template Wizard enables you to build project or
item templates .

FIGuRE 13-2: Specify a name and description for the new template . You can
also define an icon and preview image if you like .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

The using Directive ❘ 309

Now when you start a new project, the New Project dialog includes your template, as shown in
Figure 13-3.

FIGuRE 13-3: The New Project dialog includes your templates .

When you create a new project based on your template, the new project includes whatever files you
included in the template, and those files contain the using directives that you included.

MORE POwERFuL tEMPLAtES

Templates can not only define the modules and using directives that are initially
included in a project but also define other code. For example, you could make tem-
plates that include standard splash screen code or that contain standard menu items.

Item templates
When you add a new form or other modules to a project, Visual Studio uses an item template to
determine what code and what using directives are added. Just as you can define new project
templates, you can define new item templates.

For example, create a form that includes the using directives you want. Then select the File menu’s
Export Template command to display the Export Template Wizard as before. On the wizard’s first
page, select Item Template and click Next to display the page shown in Figure 13-4.

Check the parts of the program that you want to include in the template and click Next to display
the page shown in Figure 13-5.

www.EBooksWorld.ir

www.hellodigi.ir

310 ❘ ChAPtER 13 namesPaCes

FIGuRE 13-4: An item template lets you export various pieces of a
program such as forms or settings .

FIGuRE 13-5: An item template lets you include references to
system libraries .

Check the references that you want to include, and click Next to display the page shown in Figure 13-2.
Enter the template name and description as before, and click Finish to create the template.

Now when you select the Project menu’s Add New Item command, you can select the item you defined.

www.EBooksWorld.ir

www.hellodigi.ir

making namespaces ❘ 311

thE dEFAuLt NAMESPACE

Every project has a default namespace, and every item in the project is contained directly or indirectly
within that namespace.

Initially, the default namespace has the same name as the project. For example, if you create a project
named OrderExplorer, then every module’s code is initially contained in the OrderExplorer namespace.

To view or change the project’s default namespace, use Project ➪ Properties to open the project’s
property pages, and select the Application page, as shown in Figure 13-6. You can view and change
the default namespace in the Default Namespace text box.

FIGuRE 13-6: Use the Application property page to change an
application’s default namespace .

If you change the default namespace, any modules you add to the project in the future use that
namespace.

MAKING NAMESPACES

You can create new namespaces nested within the default namespace to further categorize your code.
Simply add a namespace statement to the code.

You can create a namespace outside of any other namespace. You can also place a namespace inside
another namespace at the top level (not inside any class, structure, or other code item). For example,
consider the following code.

namespace OrderExplorer
{
 public class Person

www.EBooksWorld.ir

www.hellodigi.ir

312 ❘ ChAPtER 13 namesPaCes

 {
 public CustomerData.Customer customer;
 }

 namespace CustomerData
 {
 public class Customer : Person
 {
 public Person person;
 }
 }
}

namespace DrawingTools
{
 public class Shape
 {
 public OrderExplorer.CustomerData.Customer customer;
 }
}

This code defines two top-level namespaces: OrderExplorer and DrawingTools. The OrderExplorer
namespace contains the CustomerData namespace.

The code inside a namespace can refer to items defined in that namespace or any enclosing namespace
without explicitly giving a namespace path. For example, in the previous code, the Customer class can
refer to the Person class without indicating that its fully qualified namespace path is OrderExplorer
.CustomerData.

In contrast, the Person class must refer to the Customer class as CustomerData.Customer because
the Person class is not contained in the CustomerData namespace. Similarly, the Shape class must
refer to the Customer class as OrderExplorer.CustomerData.Customer.

A using directive can change this behavior. For example, if the module contains the following
using directive, then all the classes in this example could refer to the Customer class without any
namespace information.

using OrderExplorer.CustomerData;

A program can place code in a namespace in multiple places by using multiple namespace statements.
For example, two modules could use the statement namespace DrawingTools to add code to the
DrawingTools namespace.

NAMESPACES GONE wILd

Scattering pieces of a namespace throughout your code will probably confuse other
developers. One case in which it might make sense to break a namespace into pieces
would be if you want to put different classes in different code files, either to prevent
any one file from becoming too big or to allow different programmers to work on
the files at the same time. In that case, it might make sense to place related pieces
of the application in the same namespace but in different files.

www.EBooksWorld.ir

www.hellodigi.ir

resolving namespaces ❘ 313

RESOLVING NAMESPACES

Normally, C# does a good job of resolving namespaces, so you don’t need to worry too much about
the process. You can insert a using directive and then omit the namespace in the declarations that
you use. If you don’t include a using directive, you can still use fully qualified declarations. You can
even create a namespace alias so that you can specify the namespace without typing it out in full.

However, there are some in-between cases that can be confusing. To understand them, it helps to
know a bit more about how C# resolves namespaces.

When the compiler sees a reference that uses a fully qualified namespace, it looks in that namespace for
the item it needs and that’s that. It either succeeds or fails. For example, the following code declares a
variable of type System.Collections.Hashtable. The compiler looks in the System.Collections
namespace and tries to find the Hashtable class. If the class is not there, the declaration fails.

System.Collections.Hashtable hashtable = new System.Collections.Hashtable();

When the compiler finds a reference to a qualified namespace, it initially assumes the namespace is
fully qualified. If it cannot resolve the reference as described in the preceding paragraph, it assumes
the reference is partially qualified, and it looks in the current namespace for a resolution. For example,
suppose you declare a variable as shown in the following code.

CustomerData.Customer customer;

In this case, the compiler searches the cur-
rent namespace for a nested namespace called
CustomerData. If it finds such a namespace, it looks
for the Customer class in that namespace.

If the compiler cannot resolve a namespace using
these methods, it moves up the namespace hierar-
chy and tries again. Movement up the namespace
hierarchy can sometimes be confusing. It may lead
the compiler to resolve references in an ancestor of
the current namespace, in some sort of uncle/aunt
namespace, or in a cousin namespace.

For example, consider the namespace hierar-
chy shown in Figure 13-7. The clouds represent
namespaces and the boxes represent classes.

Suppose the Customer class includes the following
declaration.

public Employee SalesRep { get; set; }

The Customer class is in the BusinessClasses namespace. That namespace defines an Employee
class so that’s the class the compiler uses for the SalesRep property.

Now suppose the Customer class uses the following declaration instead of the preceding one.

public AssignmentTools.Employee SalesRep { get; set; }

Employee Customer

BusinessClasses

ContractBuilder

Employee

AssignmentTools

FIGuRE 13-7: To resolve namespace references,
the C# compiler may search far across the
namespace hierarchy .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

314 ❘ ChAPtER 13 namesPaCes

In this case, the compiler first assumes AssignmentTools.Employee is a fully qualified name. It looks
at the root of the namespace hierarchy for the AssignmentTools namespace, but it doesn’t find one.

Next, the compiler looks in the current namespace BusinessClasses to see if it contains a
namespace AssignmentTools. The compiler doesn’t find such a namespace, so it moves up
the hierarchy to the ContractBuilder namespace.

The compiler looks again for an AssignmentTools namespace and this time finds it. The compiler
looks in the new namespace for the Employee class and finds it, so its search is over.

If you understand how the compiler resolves namespaces, you can eventually figure out that the
property in this example has type ContractBuilder.AssignmentTools.Employee. If you add
using directives to the code, things can get more confusing.

Suppose the program includes the following directives.

using BusinessClasses;
using AssignmentTools;

Now if a piece of code in the ContractBuilder namespace declares a variable of type Employee,
the compiler won’t know which version to use. At that point it gives up and reports an Ambiguous
Reference error.

You can come up with combinations of using directives, namespace aliases, and fully or partially
qualified namespace paths to make the code do exactly what you want, but the result can be con-
fusing. In this example, you would probably be better off rearranging the namespaces and possibly
renaming one of the Employee classes to make things more obvious.

whICh NAMESPACE?

If you aren’t sure which namespace the compiler has decided to use in a particular
situation, right-click the type (for example, Employee) and select Go to Definition. If
the type is defined in your code, the code editor jumps to that definition. If the type is
defined in a library, Visual Studio opens the Object Browser to the type’s definition.

thE GLObAL NAMESPACE

Different namespaces can contain program items that have the same names. One namespace might
define a class named Shutdown; another might create an enumeration named Shutdown; and a third
might define a structure named Shutdown. As long as you use the right namespaces, you can use any
of the versions.

One situation in which this can cause problems is if a namespace defines a symbol that hides a
symbol in the global namespace. For example, suppose you define the following Player class for
a game program.

public class Player
{
 public string Name { get; set; }

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 315

 private ConsoleTyes Console { get; set; }

 // Display the Person's name.
 public void ShowName()
 {
 Console.WriteLine(Name);
 }
}

The intent is for the Console property to store the player’s console type. Unfortunately, when the
compiler sees Console in the ShowName method, it finds the property, not the class, that displays
messages in the Console window.

If you place global:: in front of a namespace, the compiler begins searching for the symbol in the
global namespace instead of looking for it locally. That means you can use the following statement
to correctly find the Console.WriteLine method.

global::System.Console.WriteLine(Name);

Usually it is better to avoid names that conflict with the system namespaces. For example, if you
change the property’s name to ConsoleType, there’s no confusion.

SuMMARy

Namespaces are everywhere in C#. Every piece of code you write is contained in some namespace,
even if it is only the application’s root namespace. Despite the pervasiveness of namespaces, many
developers never need to use them explicitly, so they find them somewhat mystifying.

Namespaces are quite simple. They merely divide programming items into a hierarchy to prevent name
collisions, and they enable you to group related items.

The using directive lets a program refer to items in a namespace without using fully qualified
names. The using directive can also define an alias for a namespace, so you can refer to it by using
a short abbreviation. This is particularly useful for resolving names that appear in more than one
of the namespaces that your program uses.

The .NET Framework contains hundreds of namespaces, some of which are more useful than
others. The next chapter describes classes that are in two of the most useful namespaces: System
.Collections and System.Collections.Generic. The classes in those namespaces let you arrange
and manage objects in particularly useful ways such as in stacks, queues, lists, and dictionaries.

ExERCISES

 1. Suppose you are writing a program that uses the System.Security.Cryptography
.SHA512Managed class but you (understandably) don’t want to type all that out. Give two
methods for shortening this in your code. What are the advantages and disadvantages of each?

 2. Suppose your program needs to use the System.Windows.Controls.Calendar control
and the System.Globalization.Calendar class. Give three methods for differentiating
between the two classes in your code. What are the advantages and disadvantages of each?

www.EBooksWorld.ir

www.hellodigi.ir

316 ❘ ChAPtER 13 namesPaCes

For Exercises 3 through 8 use the namespace hierarchy shown in Figure 13-8. (No, I don’t
recommend this kind of design.)

Employee Customer

OrderClasses

OrderTools

Order

Algorithms

Order

Ful�llment

CustomerTools

OrderTracker

Invoice

Billing

FIGuRE 13-8: Clouds represent namespaces and rectangles represent classes .

 3. Without any using directives, what is the shortest way code in the Algorithms namespace
can refer to the Order classes in both the OrderClasses and Fulfillment namespaces?

 4. Without any using directives, what is the shortest way code in the OrderTools namespace
can refer to the Order classes in both the Fulfillment and OrderClasses namespaces?

 5. What using directives would you create to allow code in the Algorithms namespace to
refer to either of the Order classes with an alias? Show code that uses those aliases to define
objects of the two classes.

 6. What is the most concise way for the Customer class to include both kinds of Order objects?
Show code that defines objects of both classes.

 7. What is the easiest way to allow code throughout the namespace hierarchy to use the
Invoice class?

 8. How could you improve the design shown in Figure 13-8?

www.EBooksWorld.ir

www.hellodigi.ir

collection classes
whAt’S IN thIS ChAPtER

➤➤ Arrays and array objects

➤➤ Collection classes

➤➤ Generic collections

➤➤ Collection initialization

➤➤ Iterators

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Many applications must store and manipulate groups of objects. For example, an application
might need to manage a group of Customers, Orders, Students, or Invoices.

An array lets you store a group of objects. Unfortunately, arrays don’t let you easily rearrange
the objects. For example, to add an object at the end of an array in C#, you need to create a new
array that’s one position bigger than the old array, copy the existing items into the new array,
add the new item, and then set the reference to the old array equal to the new one. Adding or
removing an item from the beginning or middle of an array is even more time-consuming.

Because these sorts of operations are common, many algorithms have been devised over the
years to make them easier. The .NET Framework includes an assortment of collection classes
that implement those algorithms, so you don’t have to do it yourself.

This chapter describes collection classes provided by the Framework. It explains how you can
use them to store and manipulate groups of objects and provides tips for selecting the right

14

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

318 ❘ ChAPtER 14 ColleCTion Classes

collection for different purposes. The following section starts by describing the simplest kind
of collection: the array.

ARRAyS

C# provides two basic kinds of arrays. First, it provides the normal arrays that you get when you use
the new keyword and brackets surrounding the number of items the array should hold. For example, the
following code declares an array of int named squares and initializes it to contain 10 entries.

int[] squares = new int[10];

The C# Array class provides another kind of array. This kind is actually an object that provides
methods for managing the items stored in the array.

The following code shows the previous version of the code rewritten to use an Array object:

Array squares = Array.CreateInstance(typeof(int), 10);

This version creates the array by passing to the static Array.CreateInstance method the data type
the array should contain and the number of items that it should hold.

One of the nice features of the Array class is that it provides methods that also work on normal arrays.
For example, if values is an ordinary array of strings, then the statement Array.Sort(values) sorts
the strings in the array.

The following sections provide more details about arrays and the Array class.

dimensions
Both normal arrays and Array objects can support multiple dimensions. The following statement
declares a three-dimensional array with 10 items in the first dimension, 5 in the second, and 20 in
the third. It then sets the value for the item in position (1, 2, 3).

int[, ,] values = new int[10, 5, 20];
values[1, 2, 3] = 123;

The following code does the same thing with an Array object.

Array values = Array.CreateInstance(typeof(int), 10, 5, 20);
values.SetValue(123, 1, 2, 3);

Lower bounds
A normal array always has lower bound 0 in every dimension. For example, the previous array had
dimensions 0 through 9, 0 through 4, and 0 through 19.

You can pretend an array has nonzero lower bounds, but it requires extra work on your part. You
must add or subtract an appropriate amount from each index to map the indexes you want to use to
the underlying zero-based indexes.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

arrays ❘ 319

Array objects can handle nonzero lower bounds for you. Pass the CreateInstance method
the array’s data type, an array giving the lengths of each dimension, and an array giving each
dimension’s lower bounds.

For example, suppose you want to store quarterly sales data for the years 2001 through 2010. The
following code creates a two-dimensional array with indexes ranging from 2001 to 2010 in the first
dimension and 1 to 4 in the second dimension.

int[] lengths = {10, 4};
int[] lowerBounds = {2001, 1};
Array sales = Array.CreateInstance(typeof(decimal), lengths, lowerBounds);
sales.SetValue(10000m, 2005, 3);

The code first defines an array containing the number of elements for each dimension (10 in the
first dimension and 4 in the second). Next, it creates an array containing the lower bounds for each
dimension. (The first dimension starts with index 2001 and the second starts with index 1.)

The code then calls Array.CreateInstance, passing it the int data type, the array of lengths,
and the array of lower bounds. The code finishes by setting the value for the third quarter in the
year 2005 to 10,000.

Resizing
To resize an array, you need to allocate a new array, copy any items that you want to preserve into
it, and then set the reference to the original array equal to the new one. For example, the following
code adds the value 5 to the end of an array.

// Create the initial array.
int[] values = { 0, 1, 2, 3, 4 };

// Add the value 5 at the end.
int[] newValues = new int[6];
for (int i = 0; i < values.Length; i++)
 newValues[i] = values[i];
newValues[5] = 5;
values = newValues;

Like a normal array, an Array object cannot resize. However, the Array class’s CopyTo method
makes it relatively easy to copy items from one Array to another. For example, the following code
is similar to the preceding code except it uses Array objects instead of ordinary arrays.

// Create the initial array.
Array values = Array.CreateInstance(typeof(int), 5);
for (int i = 0; i < values.Length; i++) values.SetValue(i, i);

// Add the value 5 at the end.
Array newValues = Array.CreateInstance(typeof(int), 6);
values.CopyTo(newValues, 0);
newValues.SetValue(5, 5);
values = newValues;

www.EBooksWorld.ir

www.hellodigi.ir

320 ❘ ChAPtER 14 ColleCTion Classes

The Array class’s static Copy method allows you even greater control. It lets you specify the index
in the source array where the copy should start, the index in the destination array where the items
should be copied, and the number of items to be copied.

One of the nice things about the Array class’s methods is that many of them also work with normal
arrays. For example, the following code shows the earlier code for extending a normal array, but this
version uses the Array.Copy method (highlighted in bold) instead of copying items with a for loop.

// Create the initial array.
int[] values = { 0, 1, 2, 3, 4 };

// Add the value 5 at the end.
int[] newValues = new int[6];
Array.Copy(values, newValues, 5);
newValues[5] = 5;
values = newValues;

This code is still rather long, but the Array.Copy method is quite fast, so the code is fairly efficient.

Speed
There’s no doubt that arrays of variables are much faster than Array objects. In one test, setting and
getting values in an Array object took more than 20 times as long as performing the same operations
in a variable array.

Microsoft has also optimized one-dimensional arrays, so they are faster than multidimensional arrays.
The difference is much less dramatic than the difference between arrays and the Array class, however.

If your application performs only a few hundred array operations, the difference is unimportant. If
your application must access array values many millions of times, you may need to consider using
an array of variables even if the Array class would be more convenient for other reasons (such as
nonzero lower bounds).

Example program ArraySpeeds, which is available for download
on this book’s website, compares the speeds of variable arrays and
Array objects. Enter the number of items that you want to use
in the arrays, and click Go. The program builds one- and two-
dimensional arrays and Array objects holding the same number
of integers. It then fills the arrays for a large number of trials and
displays the elapsed time.

Figure 14-1 shows the results. Variable arrays are much faster than
Array objects, and one-dimensional variable arrays generally seem
to be slightly faster than two-dimensional arrays.

Other Array Class Features
The Array class provides several other useful static methods that work with both arrays and
Arrays. For example, the IndexOf and LastIndexOf methods return the position of a particular
item in an Array.

The following table summarizes some of the most useful Array class methods.

FIGuRE 14-1: Variable arrays are
faster than Array objects .

www.EBooksWorld.ir

www.hellodigi.ir

system.collections ❘ 321

PROPERty/MEthOd PuRPOSE

BinarySearch Returns the index of an item in the previously sorted array . The
items must implement the IComparable interface, or you must
provide an IComparer object .

Clear Removes all the items from the array .

ConvertAll Converts an array of one type into an array of another type .

Copy Copies some or all the items from a position in one array to a
position in another .

Exists Determines whether the array contains a particular item .

IndexOf Returns the index of the first item with a given value .

LastIndexOf Returns the index of the last item with a given value .

Resize Resizes the array .

Reverse Reverses the order of the items in the array .

Sort Sorts the items in the array . The items must implement the
IComparable interface, or you must provide an IComparer object .

SyStEM.COLLECtIONS

The collection classes in the System.Collections namespace basically hold items and don’t provide
a lot of extra functionality. Other classes described later in this chapter are more powerful, so you
should generally use them.

The following sections describe the ArrayList, StringCollection, and NameValueCollection
classes.

ArrayList
The System.Collections.ArrayList class represents a resizable array implemented internally
as a list. You can add and remove items from any position in the list and it resizes itself accordingly.
The following table describes some of the class’s more useful properties and methods.

PROPERty/MEthOd PuRPOSE

Add Adds an item at the end of the list .

AddRange Adds the items in an object that implements the ICollection interface
to the end of the list .

continues

www.EBooksWorld.ir

www.hellodigi.ir

322 ❘ ChAPtER 14 ColleCTion Classes

PROPERty/MEthOd PuRPOSE

BinarySearch Returns the index of an item in the previously sorted list . The items must
implement the IComparable interface, or you must provide the method
with an IComparer object .

Capacity Gets or sets the number of items that the list can hold .

Clear Removes all the items from the list .

Contains Returns true if a specified item is in the list .

CopyTo Copies some of the list or the entire list into a one-dimensional Array
object .

Count Returns the number of items currently in the list . This is always less than
or equal to Capacity .

GetRange Returns an ArrayList containing the items in part of the list .

IndexOf Returns the zero-based index of the first occurrence of a specified item in
the list .

Insert Adds an item at a particular position in the list .

InsertRange Adds the items in an object that implements the ICollection interface
to a particular position in the list .

Item Returns the item at a particular position in the list .

LastIndexOf Returns the zero-based index of the last occurrence of a specified item in
the list .

Remove Removes the first occurrence of a specified item from the list .

RemoveAt Removes the item at the specified position in the list .

RemoveRange Removes the items in the specified positions from the list .

Reverse Reverses the order of the items in the list .

SetRange Replaces the items in part of the list with new items taken from an
ICollection object .

Sort Sorts the items in the list . The items must implement the IComparable
interface, or you must provide the method with an IComparer object .

ToArray Copies the list’s items into a one-dimensional array . The array can
be an array of objects, an array of a specific type, or an Array object
(holding objects) .

TrimToSize Reduces the list’s allocated space so that it is just big enough to hold its
items . This sets Capacity = Count .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

system.collections ❘ 323

why bOthER?

If the classes described later are generally better, why would you bother with these
simpler classes? Sometimes, you need to use the simpler classes because some other
object or method returns them to your code. For example, suppose you want to add an
array of strings to an application’s settings. You can use Project ➪ Properties to open
the project’s property pages and open the Settings page, as shown in Figure 14-2.

FIGuRE 14-2: The Settings property page doesn’t support arrays of strings but it
does support the StringCollection type .

The Settings page doesn’t support the string[] type, but it does support the
StringCollection type. If you click the ellipsis in the Value column, the String
Collection Editor opens and lets you edit the strings. After you close the editor,
you can select the text in the Value field and copy it to the clipboard. If you then
paste it into a text editor, you’ll see XML code similar to the following.

<?xml version="1.0" encoding="utf-16"?>
<ArrayOfString xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <string>Hello</string>
 <string>Good morning</string>
 <string>Greetings</string>
</ArrayOfString>

At run time, the program can use code similar to the following to display one of the
values in the StringCollection named greetings.

StringCollection greetings = Properties.Settings.Default.Greetings;
MessageBox.Show(greetings[0]);

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.hiva-network.com/

324 ❘ ChAPtER 14 ColleCTion Classes

A single ArrayList object can hold objects of many different kinds. For example, the following
code creates an ArrayList, adds several items of different types to it, and then loops through the
list displaying the values.

ArrayList list = new ArrayList();
list.Add("What?");
list.Add(this);
list.Add(7331);
list.Add(new Bitmap(32, 32));
foreach (object obj in list)
 Console.WriteLine(obj.ToString());

The following text shows the result.

What?
WindowsFormsApplication1.Form1, Text: Form1
7331
System.Drawing.Bitmap

StringCollection
The System.Collections.Specialized namespace’s StringCollection class is similar to
ArrayList, except that it can hold only strings. Because it works only with strings, this class provides
some extra type checking that the ArrayList does not. For example, if your program tries to add an
Employee object or Bitmap to a StringCollection, the collection throws an exception.

A StringCollection can hold duplicate values and null values.

The following code shows how the UseStringCollection example program, which is available for
download on the book’s website, demonstrates a StringCollection.

// The values.
private StringCollection Values = new StringCollection();

// Add a value to the collection.
private void addButton_Click(object sender, EventArgs e)
{
 Values.Add(valueTextBox.Text);
 valueTextBox.Clear();
 valueTextBox.Focus();
 ListValues();
}

// Display the name/values groups.
private void ListValues()
{
 valueListBox.Items.Clear();
 foreach (string value in Values)
 {
 valueListBox.Items.Add(value);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

system.collections ❘ 325

The code starts by creating a new StringCollection. When you enter a string in the TextBox
and click Add, the button’s Click event handler adds the value to the StringCollection and
calls the ListValues method to display the collection’s values. The ListValues method loops
through the collection’s values and displays them in the program’s ListBox.

To take advantage of this extra error checking, you should always use a StringCollection
instead of an ArrayList if you are working with strings. Of course, if you need other features
(such as the fast lookups provided by a Dictionary), you should use one of the classes described
in the following sections.

NameValueCollection
The System.Collections.Specialized namespace’s NameValueCollection class is a collection
that can hold more than one string value for a particular key (the value’s “name”). For example,
you might use people’s names as keys. The strings associated with a particular key could include
the postal address, phone number, e-mail address, and so forth.

Of course, you could also store the same information by putting the postal address, phone number,
e-mail address, and other fields in an object or structure, and then storing the objects or structures in
some sort of collection class such as an ArrayList. A NameValueCollection, however, is useful if
you don’t know ahead of time how many strings will be associated with each key.

The following code shows how the UseNameValueCollection example program, which is available
for download on the book’s website, demonstrates a NameValueCollection.

// The NameValueCollection.
private NameValueCollection Values = new NameValueCollection();

// Add a new name/value.
private void addButton_Click(object sender, EventArgs e)
{
 Values.Add(nameTextBox.Text, valueTextBox.Text);
 valueTextBox.Clear();
 valueTextBox.Focus();
 ListValues();
}

// Display the name/values groups.
private void ListValues()
{
 valueListBox.Items.Clear();
 foreach (string key in Values.AllKeys)
 {
 valueListBox.Items.Add(key + ": " + Values[key]);
 }
}

The code starts by declaring a NameValueCollection. If you enter name and value in the program’s
TextBoxes and click Add, the program’s Click event handler adds the name/value pair to the collec-
tion. It then calls the ListValues method to display the current list of names and values.

www.EBooksWorld.ir

www.hellodigi.ir

326 ❘ ChAPtER 14 ColleCTion Classes

The ListValues method loops through the keys in the collection and displays them together with their
values. The values are shown separated by commas. For example, if you add the values Eggs, Toast, and
Juice to the name Breakfast, then the ListBox displays the text “Breakfast: Eggs,Toast,Juice.”

The following table describes some of the NameValueCollection class’s most useful properties
and methods.

PROPERty/MEthOd dESCRIPtION

Add Adds a new name/value pair to the collection . If the collection already
holds an entry for the name, it adds the new value to that name’s values .

AllKeys Returns a string array holding all the key values .

Clear Removes all names and values from the collection .

CopyTo Copies items starting at a particular index into a one-dimensional
Array object . This copies only the items, not the keys .

Count Returns the number of keys in the collection .

Get Gets the items for a particular index or name as a comma-separated
list of values .

GetKey Returns the key for a specific index .

GetValues Returns a string array containing the values for a specific name
or index .

HasKeys Returns true if the collection contains any non-null keys .

Keys Returns a collection containing the keys .

Remove Removes a particular name and all its values .

Set Sets the item for a particular name .

Note that there is no easy way to remove a particular value from a name. For example, if a person’s
name is associated with a postal address, phone number, and e-mail address, it is not easy to remove
only the phone number. Instead you must remove the name and add it again omitting the value you
want to remove.

dICtIONARIES

A dictionary is a collection that associates keys with values. You look up a key, and the dictionary
provides you with the corresponding value. This is similar to the way a NameValueCollection works,
except a dictionary’s keys and values need not be strings, and a dictionary associates each key with a
single value.

www.EBooksWorld.ir

www.hellodigi.ir

Dictionaries ❘ 327

The System.Collections.Specialized namespace contains several different kinds of dictionary
classes that are optimized for different uses. Their differences come largely from the ways in which
they store data internally. Although you don’t need to understand the details of how the dictionaries
work internally, you do need to know how they behave so that you can pick the best one for a par-
ticular purpose.

Because all the dictionary classes provide the same service (associating keys with values), they have
roughly the same properties and methods. The following table describes the most useful.

PROPERty/MEthOd dESCRIPtION

Add Adds a key/value pair to the dictionary .

Clear Removes all key/value pairs from the dictionary .

Contains Returns true if the dictionary contains a specific key .

CopyTo Copies the dictionary’s data starting at a particular position
into a one-dimensional array of DictionaryEntry objects . The
DictionaryEntry class has Key and Value properties .

Count Returns the number of key/value pairs in the dictionary .

Item Gets or sets the value associated with a key .

Keys Returns a collection containing all the dictionary’s keys .

Remove Removes the key/value pair with a specific key .

Values Returns a collection containing all the dictionary’s values .

You can index a dictionary much as you can index an array. For example, the following code creates
a ListDictionary, adds the value Apple pie with the key dessert, and then displays that value in a
message box.

ListDictionary dict = new ListDictionary();
dict["dessert"] = "Apple pie";
MessageBox.Show((string)dict["dessert"]);

Notice how the code uses ["dessert"] as the index for the dictionary.

The dictionary treats all its keys and values as plain objects, so the code must convert the result
into a string before displaying it in the message box.

The following sections describe different dictionary classes in more detail.

Listdictionary
A ListDictionary is a dictionary that stores its data in a linked list. In a linked list, each item is
held in an object that contains its data plus a reference (or link) to the next item in the list.

www.EBooksWorld.ir

www.hellodigi.ir

328 ❘ ChAPtER 14 ColleCTion Classes

Figure 14-3 illustrates a linked list. This list contains the key/value pairs Appetizer/Salad, Entrée/
Sandwich, Drink/Water, and Dessert/Cupcake. The link out of the Dessert/Cupcake item is set to
null, so the program can tell when it has reached the end of the list. A reference variable inside the
ListDictionary class, labeled Top in Figure 14-3, points to the first item in the list.

Appetizer
Salad

Entrée
Sandwich

Drink
Water

Dessert
Cupcake

Top

FIGuRE 14-3: Each item in a linked list holds a reference to the next
item in the list .

The links in a linked list make adding and removing items relatively easy. The ListDictionary
simply rearranges the links to add or remove objects. For example, to add a new item at the top of
the list, you create the new item, set its link to point to the item that is currently at the top, and then
make the list’s Top variable point to the new item. Other rearrangements are almost as easy. (For
more information on how linked lists work, see a book on algorithms and data structures such as
my book Essential Algorithms: A Practical Approach to Computer Algorithms, Wiley, 2013.)

Unfortunately, if the list grows long, finding items in it can take a long time. To find an item in the
list, the program starts at the top and works its way down, following the links between items, until
it finds the one it wants. If the list is short, that doesn’t take long. If the list holds 100,000 items,
this means potentially a 100,000-item crawl from top to bottom. That means a ListDictionary
object’s performance degrades if it contains too many items.

If you need to store only a few hundred items in the dictionary and you don’t need to access them
frequently, a ListDictionary is fine. If you need to store a huge number of entries, or if you need to
access the dictionary’s entries an enormous number of times, you may get better performance using
a fancier class such as a Hashtable. A Hashtable has more overhead than a ListDictionary but is
faster at accessing its entries.

hashtable
A Hashtable looks a lot like a ListDictionary on the outside, but internally it stores its data in a
different way. Rather than using a linked list, this class uses a hash table to hold data.

A hash table is a data structure that allows extremely fast access to items using their keys. Exactly
how hash tables work is interesting but outside the scope of this book. (For more information, see
a book on algorithms and data structures such as my book Essential Algorithms.)

You don’t need to know how to create your own hash table to use one, but to use hash tables effec-
tively, you do need to know a little bit about how they work. Hash tables provide extremely fast
lookup but they require a fair amount of extra space. If a hash table becomes too full, it starts to
slow down, taking longer than normal to store and retrieve values. To improve performance, the
hash table must resize itself and rearrange the items it contains. Resizing a hash table can take
some time, so the Hashtable class provides some extra tools to help you avoid resizing.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Dictionaries ❘ 329

One overloaded version of the Hashtable’s constructor takes a parameter that tells how many items the
table should initially be able to hold. If you know you are going to load 1,000 items into the Hashtable,
you might initially give it enough room to hold 1,500 items. Then the program could add all 1,000
items without filling the table too much, so it would still give good performance. If you don’t set an
initial size, the hash table might start out too small and need to resize itself many times before it could
hold 1,000 items, and that will slow it down.

Another version of the constructor lets you specify the hash table’s load factor. The load factor is
a number between 0.1 and 1.0 that gives the largest fraction of the table that can be used before the
Hashtable enlarges itself. For example, if the load factor is 0.8, then the Hashtable will resize itself
if it is more than 80 percent full.

The following code creates a Hashtable, adds the value Apple pie with the key dessert, and then
displays that value in a message box.

Hashtable dict = new Hashtable();
dict["dessert"] = "Apple pie";
MessageBox.Show((string)dict["dessert"]);

This code is the same as the code shown earlier that demonstrates a ListDictionary except it uses
a Hashtable.

For high-performance lookups, the Hashtable class is a great solution as long as it doesn’t resize too
often and doesn’t become too full.

hybriddictionary
A HybridDictionary is a cross between a ListDictionary and a Hashtable. If the dictionary
is small, the HybridDictionary stores its data in a ListDictionary. If the dictionary grows too
large, the HybridDictionary switches to a Hashtable.

If you know that you will need only a few items, use a ListDictionary. If you know you will
need to use lots of items, use a Hashtable. If you are unsure whether you will have few or many
items, you can hedge your bet with a HybridDictionary. It’ll take a bit of extra time to switch
from a list to a Hashtable if you add a lot of items, but you’ll save time in the long run if the list
does turn out to be enormous.

Stringdictionary
The StringDictionary class uses a hash table to manage keys and values that are strings. Its
methods are strongly typed to require strings, so they provide extra type checking that can make
finding potential bugs a lot easier. For that reason, you should use a StringDictionary instead
of a generic ListDictionary or Hashtable if you are working with strings.

SortedList
The SortedList class acts as a combination of a Hashtable and an Array. When you access a value
by a key, it acts as a hash table. When you access a value by an index, it acts as an array containing
items sorted by key value.

www.EBooksWorld.ir

www.hellodigi.ir

330 ❘ ChAPtER 14 ColleCTion Classes

StRONG tyPING

A strongly typed method is one that uses specific data types such as string,
DateTime, or Student. In contrast, a weakly typed method uses ambiguous data
types such as interfaces, parent classes, or the object type.

Strongly typed methods are generally safer because Visual Studio and the .NET
Framework can ensure that your program calls them only with the correct data
types. For example, the Hashtable class is weakly typed, so it will allow you to
add anything to its table. Even if you intend a Hashtable named Employees to hold
Employee objects, the program could add Employees, Customers, strings, and
even other Hashtables to it. You can even add a Hashtable to itself as its own key.
(Although I’m hard pressed to think why.)

Strongly typed methods are also usually more efficient than weakly typed ones
because you don’t need to convert items to and from the weak type. For instance,
the example earlier in the section “Dictionaries” used the following code to display the
dessert value stored in the ListDictionary dict.

MessageBox.Show((string)dict["dessert"]);

Because the ListDictionary stores objects, the code must convert the result from
an object into a string, and that conversion slows the program.

The moral of the story is that you should use strongly typed collections when you
can. The section “Generic Collections” later in this chapter describes several collec-
tions that provide strong typing.

For example, suppose you add a number of Job objects to a SortedList named jobs using their pri-
orities as keys. Then jobs.GetByIndex(0) always returns the job with the smallest priority value.

The following code shows how the SortedJobs example program, which is available for download
on the book’s website, demonstrates a SortedList.

// The list of jobs.
private SortedList Jobs = new SortedList();

// Add a job.
private void addButton_Click(object sender, EventArgs e)
{
 Jobs.Add(priorityNumericUpDown.Value, jobTextBox.Text);
 ListJobs();
}

// List the jobs in priority order.
private void ListJobs()
{
 jobsListBox.Items.Clear();
 for (int i = 0; i < Jobs.Count; i++)
 {

www.EBooksWorld.ir

www.hellodigi.ir

stacks and Queues ❘ 331

 jobsListBox.Items.Add(Jobs.GetKey(i) + ": " + Jobs.GetByIndex(i));
 }
}

Enter a job name, select a priority, and click Add. The program adds the new job to the SortedList
and calls the ListJobs method to list the jobs in their sorted order.

The ListJobs method loops through the indices of the items in the list and displays their keys
and values.

A SortedList is more complicated (and hence slower) than a Hashtable or an array, so you should
use it only if you need its special properties.

COLLECtIONSutIL

Normally, Hashtables and SortedLists are case-sensitive. The CollectionsUtil class provides two
shared methods, CreateCaseInsensitiveHashtable and CreateCaseInsensitiveSortedList,
which create Hashtables and SortedLists that are case-insensitive.

If you can use case-insensitive Hashtables and SortedLists, you may be better off using them
because they will prevent the program from accidentally adding the same item twice with different
capitalization.

StACKS ANd QuEuES

Stacks and queues are specialized data structures that are useful in many programming applications
that need to add and remove items in a particular order. The .NET Framework Stack and Queue
classes implement stacks and queues.

The difference between a stack and a queue is the order in
which they return the items stored in them. The following
two sections describe stacks and queues and explain the
ways in which they return items.

Stack
A stack returns items in last-in-first-out (LIFO, pro-
nounced life-o) order. Because of its LIFO behavior, a
stack is sometimes called a LIFO list or simply a LIFO.

Adding an item to the stack is called pushing the item
onto the stack and removing an item is called popping
the item off the stack. These operations have the names
push and pop because a stack is like a spring-loaded stack
of plates in a cafeteria or buffet. You push new plates
down onto the top of the stack and the plates sink into the
counter. You pop the top plate off and the stack rises to
give you the next plate. Figure 14-4 illustrates this kind
of stack.

Push Pop

FIGuRE 14-4: A Stack lets you remove
items in last-in-first-out (LIFO) order .

www.EBooksWorld.ir

www.hellodigi.ir

332 ❘ ChAPtER 14 ColleCTion Classes

You can also think of a stack as a stack of papers on a desk. You can add things on the top and take
them off of the top, but you can’t pull papers out of the middle or the bottom of the stack without
the whole thing toppling over.

Normally, you use the Stack class’s Push and Pop methods to add and remove items from a stack,
but the class also provides a few methods that let you cheat by peeking at the top item without
removing it or by converting the Stack into an array.

The following table describes the Stack class’s most useful properties and methods.

PROPERty/MEthOd PuRPOSE

Clear Removes all the items .

Contains Returns true if the Stack contains a particular object .

CopyTo Copies some or all of the Stack’s objects into a one-
dimensional array .

Count Returns the number of items in the Stack .

Peek Returns a reference to the Stack class’s top item without removing it
from the Stack .

Pop Returns the Stack class’s top item and removes it from the Stack .

Push Adds an item to the top of the Stack .

ToArray Returns a one-dimensional array containing references to the objects
in the Stack . The Stack class’s top item is placed first in the array .

A Stack allocates memory to store its items. If you Push an object onto a Stack that is completely
full, the Stack must resize itself to make more room and that slows things down.

Like the Hashtable class, the Stack class provides overloaded constructors that let you determine
how much memory should initially be allocated. The first constructor takes no parameters and
allocates a default amount of memory.

The second constructor takes as a parameter the number of items the Stack should initially hold.
If you know that you will add 10,000 items to the Stack, you can avoid a lot of resizing by initially
allocating room for 10,000 items.

The third version of the constructor takes as a parameter an object that implements the ICollection
interface. The constructor allocates enough room to hold the items in the ICollection and copies
them into the Stack.

The following short example demonstrates a Stack.

Stack stack = new Stack();
stack.Push("Apple");
stack.Push("Banana");
stack.Push("Cherry");
Console.WriteLine(stack.Pop());

www.EBooksWorld.ir

www.hellodigi.ir

stacks and Queues ❘ 333

Console.WriteLine(stack.Pop());
Console.WriteLine(stack.Pop());

This code creates a Stack and pushes three strings onto it. It then pops the three values back off the
Stack, displaying the results in the Console window. The following text shows the results.

Cherry
Banana
Apple

Notice that the items are popped off the Stack in last-in-first-out order.

The UseStack example program enables you push and pop items interactively. Download the exam-
ple to see how it works.

Queue
A queue returns items in the opposite of the order used by a stack. A queue returns its items in
first-in-first-out (FIFO, pronounced fife-o) order. Because of its FIFO behavior, a queue is some-
times called a FIFO list or simply a FIFO.

A queue is similar to a line at a customer service desk. The first person in line is the first person to
leave it when the service desk is free. Figure 14-5 shows the idea graphically.

Customer enters queue here

Service
Desk

Next customer served

FIGuRE 14-5: Customers leave a queue in first-in-first-out (FIFO) order .

Queues are particularly useful for processing items in the order in which they were created. For
example, an order-processing application might keep orders in a queue so that orders placed first
are fulfilled first.

Historically, the routines that add and remove items from a queue are called enqueue and dequeue.
The following table describes the most useful properties and methods provided by the Queue class.

PROPERty/MEthOd PuRPOSE

Clear Removes all the items .

Contains Returns true if the Queue contains a particular object .

CopyTo Copies some or all of the Queue’s objects into a one-dimensional array .

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

334 ❘ ChAPtER 14 ColleCTion Classes

PROPERty/MEthOd PuRPOSE

Count Returns the number of items in the Queue .

Dequeue Returns and removes the item at the front of the Queue .

Enqueue Adds an item to the back of the Queue .

Peek Returns a reference to the item at the front of the Queue without
removing it .

ToArray Returns a one-dimensional array containing references to the objects
in the Queue . The item at the front of the Queue is placed first in
the array .

TrimToSize Frees any empty space in the Queue .

Like Stacks, Queues must resize themselves if they become full and that slows things down. Also like
Stacks, Queues provide overloaded constructors that let you determine how big the Queue is initially.

The first constructor takes no parameters and allocates a default initial capacity. If the Queue is full,
it enlarges itself by a default growth factor.

The second constructor takes as a parameter the Queue’s initial capacity. If you know that you will
add 1,000 items to the Queue, you can save some time by initially allocating room for 1,000 items.
With this constructor, the Queue also uses a default growth factor.

The third constructor takes as a parameter an object that implements the ICollection interface. The
constructor allocates enough room to hold the items in the ICollection and copies them into the
Queue. This version also uses a default growth factor.

The final version of the constructor takes as parameters an initial capacity and a growth factor
between 1.0 and 10.0. A larger growth factor means the Queue resizes itself less often, but also
means it may contain a lot of unused space.

The following short example demonstrates a Queue.

Queue queue = new Queue();
queue.Enqueue("Apple");
queue.Enqueue("Banana");
queue.Enqueue("Cherry");
Console.WriteLine(queue.Dequeue());
Console.WriteLine(queue.Dequeue());
Console.WriteLine(queue.Dequeue());

This code creates a Queue and adds three strings to it. It then dequeues the three values, displaying
the results in the Console window. The following text shows the results.

Apple
Banana
Cherry

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

generic collections ❘ 335

Notice that the items are removed from the Queue in first-in-first-out order.

The UseQueue example program enables you enqueue and dequeue items interactively. Download
the example to see how it works.

GENERIC COLLECtIONS

A generic class or method is one that takes a data type as a parameter. The class or method can then
use that type as if it were any other type.

For example, the Dictionary class is a generic collection class. It takes two type parameters giving
the types of the dictionary’s keys and values.

In C# you specify a class’s generic parameters after the class name and enclosed in pointy brackets.
The following code declares and instantiates a Dictionary that uses keys that are strings and values
that are ints. It then sets the value for the key “Mark” equal to 23. It finishes by getting the value for
the key “Mark” from the Dictionary and storing it in an int variable.

Dictionary<string, int> ages = new Dictionary<string, int>();
ages["Mark"] = 23;
int age = ages["Mark"];

The System.Collections.Generic namespace includes several generic collection classes that you
can use to build strongly typed collections. These collections work with one or more specific data
types that you supply in a variable’s declaration (as shown in the preceding code).

You cannot directly modify a generic collection class, but you can add extension methods to it. For
example, suppose you have defined a Person class. Then the following code creates an AddPerson
extension method for the generic List<Person> class. This method takes as parameters a first and
last name, uses those values to make a Person object, adds it to the list, and returns the new Person.

static class GenericExtensions
{
 public static Person AddPerson(this List<Person> list,
 string firstName, string lastName)
 {
 Person person = new Person()
 { FirstName = firstName, LastName = lastName };
 list.Add(person);
 return person;
 }
}

The following code shows how a program could use this extension method.

List<Person> people = new List<Person>();
people.AddPerson("Rod", "Stephens");

(For more information on extension methods, see the section “Extension Methods” in Chapter 6,
“Methods.”)

www.EBooksWorld.ir

www.hellodigi.ir

336 ❘ ChAPtER 14 ColleCTion Classes

You can also derive a class from a generic class. For example, the following code defines an
EmployeeList class that inherits from the generic List<Employee> class. The code adds an over-
loaded version of the Add method that takes first and last names as parameters.

public class EmployeeList : List<Employee>
{
 public Employee Add(string firstName, string lastName)
 {
 Employee employee = new Employee()
 { FirstName = firstName, LastName = lastName};
 base.Add(employee);
 return employee;
 }
}

NO OVERLOAdS ALLOwEd

Extension methods cannot overload a class’s methods. If you want multiple versions
of the Add method, as in this example, you need to use a derived class.

The following table lists some of the most useful collection classes defined by the
System.Collections.Generic namespace.

COLLECtION PuRPOSE

Comparer Compares two objects of a specific type and returns –1, 0, or 1
to indicate whether the first is less than, equal to, or greater than
the second

Dictionary A strongly typed dictionary

LinkedList A strongly typed linked list

LinkedListNode A strongly typed node in a linked list

List A strongly typed list

Queue A strongly typed queue

SortedDictionary A strongly typed sorted dictionary

SortedList A strongly typed sorted list

Stack A strongly typed stack

www.EBooksWorld.ir

www.hellodigi.ir

collection Initializers ❘ 337

StAy tuNEd FOR MORE GENERICS

Chapter 15, “Generics,” explains how you can build and use generic classes of
your own to perform similar actions for objects of various types. For example,
you could build a Tree class that makes a tree holding any kind of object. Then,
for example, you could build a tree containing Employee objects to represent an
organizational hierarchy.

COLLECtION INItIALIzERS

Initializers allow you to easily add items to collection classes that have an Add method. To initialize a
collection, follow the variable’s instantiation with the items you want to add to it surrounded by braces.

For example, suppose you have defined an Author class that has a constructor that takes first and
last names as parameters. Then the following code creates and initializes a List<Author>.

List<Author> authors = new List<Author>()
{
 new Author("Terry", "Pratchett"),
 new Author("Jasper", "Fforde"),
 new Author("Tom", "Holt"),
};

If a collection’s Add method takes more than one parameter, simply include the appropriate values for
each item inside its own sets of braces. For example, each of the Dictionary class’s entries includes a
key and a value. The following code initializes a Dictionary that matches names with phone numbers.

Dictionary<string, string> phoneNumbers = new Dictionary<string, string>()
{
 {"Arthur", "808-567-1543"},
 {"Betty", "808-291-9838"},
 {"Charles", "808-521-0129"},
 {"Debbie", "808-317-3918"},
};

The same technique works for other collections that need two values such as ListDictionary,
Hashtable, HybridDictionary, StringDictionary, and SortedList.

Unfortunately, you cannot use this method to initialize the Stack and Queue classes because this
kind of initialization requires the class to have an Add method. For historical reasons, the methods
in those classes that add new items are called Push and Enqueue instead of Add.

Fortunately, those classes have constructors that can take IEnumerable objects as parameters. That
means, for example, that you can pass the constructors an array holding the objects that should be

www.EBooksWorld.ir

www.hellodigi.ir

338 ❘ ChAPtER 14 ColleCTion Classes

added to the collection. The following code uses that technique to initialize a Stack and Queue of
Author objects.

Stack<Author> authorStack = new Stack<Author>(
 new Author[]
 {
 new Author("Terry", "Pratchett"),
 new Author("Jasper", "Fforde"),
 new Author("Tom", "Holt"),
 }
);

Queue<Author> authorQueue = new Queue<Author>(
 new Author[]
 {
 new Author("Terry", "Pratchett"),
 new Author("Jasper", "Fforde"),
 new Author("Tom", "Holt"),
 }
);

ItERAtORS

One advantage of collection classes is that you can use a foreach loop to enumerate over their items.

C# also allows you to write iterators. An iterator is a method that yields a sequence of results. The
program can use a foreach loop to enumerate the values the iterator yields. In that sense iterators
resemble collections; although they don’t need to store items in some sort of data structure.

The easiest way to make an iterator is to create a method that returns IEnumerable or a generic
type such as IEnumerable<String>. The method should generate its values and use a yield
return statement to return them to the code that is looping over the enumeration.

For example, the following iterator yields a list of prime numbers between startNumber
and stopNumber.

// Enumerate prime numbers between startNumber and stopNumber.
public IEnumerable Primes(int startNumber, int stopNumber)
{
 // Define a lambda expression that tests primality.
 Func<int, bool> isPrime = x =>
 {
 if (x == 1) return false; // 1 is not prime.
 if (x == 2) return true; // 2 is prime.
 if (x % 2 == 0) return false; // Even numbers are not prime.
 for (int i = 3; i * i <= x; i += 2)
 if (x % i == 0) return false;
 return true;
 };

 for (int i = startNumber; i <= stopNumber; i++)
 {

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

summary ❘ 339

 // If this number is prime, enumerate it.
 if (isPrime(i)) yield return i;
 }
}

This code makes a delegate variable named isPrime to hold a lambda expression that returns
true if a number is prime. The iterator then loops through the numbers between startNumber and
stopNumber, calls the isPrime for each, and uses yield return to return the values that are prime.

The following code shows how a program could use the iterator to display prime numbers.

foreach (int i in Primes(1, 100)) primesListBox.Items.Add(i);

This code iterates over the sequence generated by calling Primes(1, 100). That call invokes the
iterator and makes it produce the sequence of prime numbers between 1 and 100. The program adds
each value in the sequence to the primesListBox control’s items.

hOw dOES yIELd wORK?

When the iterator reaches the yield return statement, the program saves its state
and returns the new value to the foreach loop. The loop processes the value, and then
the program resumes running the iterator right after the yield return statement.

An iterator can use the yield break statement to end an enumeration.

For more information on iterators, see “Iterators (C# and Visual Basic)” at msdn.microsoft.com/
library/dscyy5s0.aspx.

SuMMARy

This chapter explained several types of collection classes. Even the simplest of these, an array of
variables, can be extremely useful. An array itself doesn’t provide many features, but the Array
class has a lot of useful methods, such as Reverse and Sort, that can manipulate arrays.

The Array class also lets you build multidimensional arrays with nonzero lower bounds. The per-
formance isn’t as good as that of arrays of values, but in some applications the convenience may be
worth reduced performance.

Other collection classes store data in different ways. A StringCollection is a simple collection of
strings. A NameValueCollection associates string keys with multiple string values. A Dictionary
associates keys (of any type) with a single value each (also of any type).

A Stack provides access to items in last-in-first-out (LIFO) order. A Queue gives access to items in
first-in-first-out (FIFO) order.

Although these classes have different features for adding, removing, finding, and ordering objects,
they share some common traits. For example, those that provide an Add method support collection

www.EBooksWorld.ir

www.hellodigi.ir

340 ❘ ChAPtER 14 ColleCTion Classes

initialization and all of them support enumeration by foreach statements. They also support the
methods used by LINQ to make queries possible.

This chapter explained how you can use the generic collection classes provided by the System
.Collections.Generic namespace. The next chapter explains how you can build generic classes of
your own. Generics let you build strongly typed classes that manipulate objects of any data type.

ExERCISES

 1. A palindrome is a string that is the same forward as backward, ignoring capitalization and
punctuation: “Taco cat” and “nurses run.” Write a program that indicates whether a string
entered by the user is a palindrome. (Hint: Don’t use loops. Instead use the following facts.)

➤➤ You can treat a string as an IEnumerable<char>.

➤➤ IEnumerable provides a Reverse method.

➤➤ IEnumerable provides a ToArray method.

➤➤ The string class’s constructor has a version that takes a char[] as a parameter.

➤➤ Convert to lowercase and remove spaces, but assume the user won’t type any other
punctuation characters.

 2. Write a program that uses a dictionary of lists to store book titles grouped by author. (The
dictionary’s keys should be author names. Its values should be lists of book titles.) Use ini-
tialization code to create data for at least three authors with two books each. When the user
enters or selects an author, display that author’s books. (Hint: Use LINQ to get the values
you need. In a Windows Forms application, you can set a ListBox’s DataSource property
to an array.)

 3. Modify the program you wrote for Exercise 2 so that it uses a NameValueCollection
instead of a dictionary of lists. (Hint: You may find the string class’s Split method useful.)

 4. Write a program similar to the one shown in Figure 14-6 that lists information about cars.

 a. First, create a Car class with the properties Name, Price, Horsepower, and SixtyTime
(the time in seconds to go from 0 to 60 mph). Create and initialize an array of Car
objects. (Look up data on the Internet or just make some up if you prefer.) Override
the class’s ToString method so that it returns an object’s concatenated values.

 b. Display the car data in a ListBox.

 c. Place four RadioButtons on the form labeled Name, Price, Horsepower, and 0–60
Time. When the user clicks one of the buttons, the program should sort the car data
based on the selected criterion and redisplay the list.

 d. To sort the data, create a CarComparer class that implements IComparer<Car>.
Give the class a ComparisonTypes enumeration that defines the possible comparison
types. Give the class a ComparisonType property of the type ComparisonTypes to
tell which type a comparer object should use. Make the Compare method required
by the IComparer interface use the ComparisonType property to decide how to
compare two Car objects.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 341

 e. Finally, to put it all together, when the user clicks one of the RadioButtons, make
the program create a CarComparer, set its ComparisonType property, and use the
comparer to sort the car data. Then make the ListBox display the sorted data.

FIGuRE 14-6: The CarList example program sorts
car data by name, price, horsepower, or 0–60 time .

SORtING IN A LIStVIEw

The ListView control provides a nicer display than the ListBox because it can
display data in rows and columns. It can also sort the data for you if you set its
ListViewItemSorter property to an IComparer object.

This doesn’t have much to do with generic collections, so I’m not including it as an
exercise, but if you’re up for a challenge, try repeating Exercise 4 with a ListView
instead of a ListBox. Instead of using RadioButtons, let the user click the ListView’s
column headers to indicate which column should be used for sorting. For bonus
points, if the user clicks a column twice, switch the sort from ascending to descending
or vice versa. The CarListView example program, which is available for download on
this book’s website, shows one solution.

 5. Write a program that initializes a List<char> to hold the characters A, B, C, D, and E.
Reverse the items to create a new List<char> by using these methods:

 a. Use LINQ. (Hint: Convert the result into an array and pass it to the string con-
structor to make a string holding the list’s characters.)

 b. Copy the list and use the copy’s Reverse method. (Hint: Pass the original list into a
constructor to make the list copy.)

 c. Use a stack.

 6. How is an iterator different from a method that returns a collection such as an array or
List? In other words, couldn’t you make a method that returns the items in a List and use
a foreach loop to enumerate them instead of using an iterator?

www.EBooksWorld.ir

www.hellodigi.ir

342 ❘ ChAPtER 14 ColleCTion Classes

 7. Make the Primes iterator shown in the section “Iterators” more efficient by making it
handle the value 2 and other even numbers outside of its loop. Make a program similar
to the one shown in Figure 14-7 to test the iterator.

FIGuRE 14-7: The ListPrimes
example program uses an
iterator to enumerate
prime numbers .

 8. Make an AllPrimes iterator that yields prime numbers starting at 2 and continuing indefi-
nitely. Modify the program you wrote for Exercise 1 so that it uses this new iterator. It also
won’t need the start number because the iterator starts at 2. (Hint: Make the foreach loop
end when it has enumerated the required values. Don’t make it run forever!)

www.EBooksWorld.ir

www.hellodigi.ir

generics
whAt’S IN thIS ChAPtER

➤➤ Defining generic classes and methods

➤➤ Constraining generic types

➤➤ Instantiating generic classes

➤➤ Using generic collection classes

➤➤ Defining generic extension methods

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Chapter 11, “OOP Concepts,” describes a class as like a blueprint or cookie cutter for creating
objects. After you define a class, you can use it to create any number of objects with similar
general characteristics but different details.

Similarly, a generic is like a cookie cutter for creating classes. After you define a generic, you
can use it to create any number of classes that have similar features.

For example, the System.Collections.Generic namespace described in the preceding chapter
defines a generic List class. That class lets you create lists of strings, lists of integers, lists of
Employee objects, or lists of just about anything else.

This chapter explains how you can define and use your own generic classes.

15

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.hiva-network.com/

344 ❘ ChAPtER 15 generiCs

AdVANtAGES OF GENERICS

A generic class takes one or more data types as parameters. When you create an instance of a generic
class, those parameters are filled in with specific data types such as string, int, or Employee. Tying
the class to specific data types gives it several advantages over nongeneric classes:

➤➤ Strong typing—Methods can take parameters and return values that have the class’s
instance type instead of a nonspecific object type. For example, a List<string> can hold
only string values; its Add method can add only strings to the list; and its Item method
returns string values. This makes it more difficult to accidentally add ints, Employees, or
other incorrect types of objects to the list.

➤➤ IntelliSense—By providing strong typing, a class built from a generic lets Visual Studio
provide IntelliSense. If you make a List<Employee>, Visual Studio knows that the items
in the collection are Employee objects, so it can give you appropriate IntelliSense.

➤➤ No boxing—Because the class manipulates objects with a specific data type, your program
doesn’t need to convert items to and from the nonspecific object data type. For example, if
a program stores TextBox controls in a nongeneric collection, the program must convert the
TextBox controls to and from the object class when it adds and uses items in the collection.
Avoiding these steps makes the code more efficient.

➤➤ Code reuse—You can use a generic class with more than one data type. For example, if you
have built a generic PriorityQueue class, you can make PriorityQueues holding Student,
Applicant, MotorVehicle, or Donor objects. Without generics, you would need to build
four separate classes to build strongly typed priority queues for each of these types of objects.
Reusing this code makes it easier to write, test, debug, and maintain the code.

The main disadvantage to generics is that they are slightly more complicated and confusing than non-
generic classes. If you know that you will only ever need to provide a class that works with a single
type, you can simplify things slightly by not using a generic class. If you think you might want to
reuse the code later for another data type, it’s easier to just build the class generically from the start.

dEFINING GENERICS

C# allows you to define generic classes, structures, interfaces, methods, and delegates. The basic
syntax for all those is similar, so when you know how to make generic classes, making generic
structures, interfaces, and the others is fairly easy.

To define a generic class, make a class declaration as usual. After the class name, add one or more
type names for data types surrounded by brackets. The type names are similar to the parameters
names you would define for a method except they are types, not simple values. The class’s code can
use the names to refer to the types associated with the instance of the generic class. This may sound
confusing, but an example should make it fairly easy to understand.

www.EBooksWorld.ir

www.hellodigi.ir

Defining generics ❘ 345

Suppose you want to build a binary tree that can hold any kind of data in its nodes. The following
code shows how you could define a BinaryNode class to hold the tree’s data. The type name T is
highlighted in bold where it appears.

public class BinaryNode<T>
{
 public T Value;
 public BinaryNode<T> LeftChild, RightChild;
}

The class’s declaration takes a type parameter named T. (Many developers use the name T for the
type parameter. If the class takes more than one type parameter separated by commas, they start
each name with T as in TKey and TData.)

The class defines a public field named Value that has type T. This is the data that is stored in the node.

The class also defines two fields that refer to the node’s left and right children in the binary tree. Those
fields are references to objects from this same class: BinaryNode<T>.

The following code shows how a program could use this class to build a small binary tree of
Employee objects.

// Define the tree's root node.
BinaryNode<Employee> root = new BinaryNode<Employee>();
root.Value = new Employee("Ben", "Baker");

// Create the root's left child.
root.LeftChild = new BinaryNode<Employee>();
root.LeftChild.Value = new Employee("Ann", "Archer");

// Create the root's right child.
root.RightChild = new BinaryNode<Employee>();
root.RightChild.Value = new Employee("Cindy", "Carter");

This code first creates a new BinaryNode<Employee> to represent the tree’s root. It sets that node’s
Value property to a new Employee object representing Ben Baker.

Next, the code sets the root’s LeftChild equal to a new BinaryNode<Employee>. It sets that node’s
Value to a new Employee object representing Ann Archer.

Finally, the code uses similar steps to give the root a right child holding an Employee object repre-
senting Cindy Carter.

Generic Constructors
Like any other class, generic classes can have constructors. For example, the following constructor
initializes a BinaryNode object’s LeftChild and RightChild references.

// Set this node's value and children.
public BinaryNode(T value,
 BinaryNode<T> leftChild = null,
 BinaryNode<T> rightChild = null)

www.EBooksWorld.ir

www.hellodigi.ir

346 ❘ ChAPtER 15 generiCs

{
 Value = value;
 LeftChild = leftChild;
 RightChild = rightChild;
}

Notice how this code can use the type T without defining it. That type variable was defined in the
class declaration, so it can be used throughout the class’s code.

To use the constructor, the main program adds normal parameters after the type parameters in the
object declaration. The following code uses the new constructor to create a binary tree similar to
the previous one.

// Define the child nodes.
BinaryNode<Employee> leftChild =
 new BinaryNode<Employee>(new Employee("Ann", "Archer"));
BinaryNode<Employee> rightChild =
 new BinaryNode<Employee>(new Employee("Cindy", "Carter"));

// Define the tree's root node.
BinaryNode<Employee> root = new BinaryNode<Employee>
(
 new Employee("Ben", "Baker"),
 leftChild,
 rightChild
);

This code uses the constructor to create the left and right child nodes. It doesn’t pass children into
those constructor calls, so the child nodes’ left and right children are set to null.

The code then creates the root node, this time passing the constructor the root’s left and right children.

NOtE The BinaryTree example program, which is available for download on
this book’s website, demonstrates this code.

Multiple types
If you want the class to work with more than one type, you can add other types to the declaration
separated by commas. For example, suppose that you want to create a dictionary that associates keys
with pairs of data items. Example program GenericPairDictionary uses the following code to define the
generic PairDictionary class. This class acts as a dictionary that associates a key value with a pair of
data values. The class declaration includes three data types named TKey, TValue1, and TValue2.

// A Dictionary that associates a pair of data values with each key.
public class PairDictionary<TKey, TValue1, TValue2>
{
 // A structure to hold paired data.
 public struct ValuePair
 {
 public TValue1 Value1;
 public TValue2 Value2;

www.EBooksWorld.ir

www.hellodigi.ir

Defining generics ❘ 347

 public ValuePair(TValue1 value1, TValue2 value2)
 {
 Value1 = value1;
 Value2 = value2;
 }
 }

 // A Dictionary to hold the paired data.
 private Dictionary<TKey, ValuePair> ValueDictionary =
 new Dictionary<TKey, ValuePair>();

 // Return the number of data pairs.
 public int Count
 {
 get { return ValueDictionary.Count; }
 }

 // Add a key and value pair.
 public void Add(TKey key, TValue1 value1, TValue2 value2)
 {
 ValueDictionary.Add(key, new ValuePair(value1, value2));
 }

 // Remove all data.
 public void Clear()
 {
 ValueDictionary.Clear();
 }

 // Return True if PairDictionary contains this key.
 public bool ContainsKey(TKey key)
 {
 return ValueDictionary.ContainsKey(key);
 }

 // Return a data pair.
 public void GetValues(TKey key, out TValue1 value1, out TValue2 value2)
 {
 ValuePair pair = ValueDictionary[key];
 value1 = pair.Value1;
 value2 = pair.Value2;
 }

 // Set a data pair.
 public void SetValues(TKey key, TValue1 value1, TValue2 value2)
 {
 ValueDictionary[key] = new ValuePair(value1, value2);
 }

 // Return a collection containing the keys.
 public Dictionary<TKey, ValuePair>.KeyCollection Keys
 {
 get { return ValueDictionary.Keys; }
 }

www.EBooksWorld.ir

www.hellodigi.ir

348 ❘ ChAPtER 15 generiCs

 // Remove a particular entry.
 public void Remove(TKey key)
 {
 ValueDictionary.Remove(key);
 }
}

The PairDictionary class defines a ValuePair class to hold pairs of data values. The ValuePair
class has two public fields of types TValue1 and TValue2. Its only method is a constructor that makes
initializing the values easier.

Notice that the ValuePair class is not generic. It uses the TValue1 and TValue2 types defined by
the PairDictionary class’s declaration, but it doesn’t define any generic types of its own.

Next, the PairDictionary class declares a generic Dictionary<TKey, ValuePair> object named
ValueDictionary. The class delegates its Count, Add, Clear, ContainsKey, GetValues, SetValues,
Keys, and Remove methods to ValueDictionary.

The following code creates an instance of the generic PairDictionary class that uses integers as
keys and strings for both data values. It adds three entries to the PairDictionary and then retrieves
and displays the entry with key value 82.

// Create the PairDictionary and add some data.
PairDictionary<int, string, string> dictionary =
 new PairDictionary<int, string, string>();
dictionary.Add(21, "Arthur", "Ash");
dictionary.Add(82, "Betty", "Barter");
dictionary.Add(13, "Charlie", "Carruthers");

// Display the values for key value 82.
string value1, value2;
dictionary.GetValues(82, out value1, out value2);
Console.WriteLine(value1 + " " + value2);

NOtE The GenericPairDictionary example program, which is available for
download on this book’s website, demonstrates this code.

Constrained types
To get the most out of your generic classes, you should make them as general as possible. Depending
on what the class is for, however, you may need to constrain the class’s generic types.

For example, suppose you want to make a generic SortedBinaryNode class similar to the BinaryNode
class described earlier but that keeps its values sorted. The node’s Add method should insert a new value
in the proper position in the tree.

When you call a node’s Add method, the method compares the node’s value to the new value. It then
passes the new value to its left or right child depending on whether the new value is greater than or
less than the node’s value.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Defining generics ❘ 349

For example, suppose node A contains the value 20 and you pass its Add method the new value 15.
The value 15 is less than 20, so node A sends the new value into its left subtree.

If node A has a left child, it calls that child’s Add method to add the child somewhere in that subtree.

If node A has no left child, it creates a new node to hold the value 15 and takes that node as its
new left child.

Determining whether a new value belongs in a node’s left or right subtree is straightforward if the
node holds ints or strings, but there’s no obvious way to determine whether one Employee object
should be placed before another. The SortedBinaryNode class works only if the data type of its
objects allows comparison.

One way to ensure you can compare objects is to require that the type of the items implements the
IComparable interface. Then the program can use the CompareTo method to see whether one item
is greater than or less than another item.

To require that a generic type implements an interface, add a where clause after the class’s declaration,
as shown in the following code.

public class SortedBinaryNode<T> where T : IComparable<T>
{
 ...
}

This code requires that type T implements IComparable<T>.

The SortedBinaryTree example program, which is available for download on this book’s website, uses
the following complete SortedBinaryNode class.

public class SortedBinaryNode<T> where T : IComparable<T>
{
 public T Value;
 public SortedBinaryNode<T> LeftChild, RightChild;

 // Set this node's value and children.
 public SortedBinaryNode(T value,
 SortedBinaryNode<T> leftChild = null,
 SortedBinaryNode<T> rightChild = null)
 {
 Value = value;
 LeftChild = leftChild;
 RightChild = rightChild;
 }

 // Add a new value to this node's subtree.
 public void Add(T newValue)
 {
 // See if it belongs in the left or right child's subtree.
 if (newValue.CompareTo(Value) < 0)
 {
 // Left subtree.
 if (LeftChild == null)
 // Add it in a new left child.

www.EBooksWorld.ir

www.hellodigi.ir

350 ❘ ChAPtER 15 generiCs

 LeftChild = new SortedBinaryNode<T>(newValue);
 else
 // Add it in the existing left subtree.
 LeftChild.Add(newValue);
 }
 else
 {
 // Right subtree.
 if (RightChild == null)
 // Add it in a new right child.
 RightChild = new SortedBinaryNode<T>(newValue);
 else
 // Add it in the existing right subtree.
 RightChild.Add(newValue);
 }
 }
}

The program uses an Employee class that implements IComparable<Employee>. Its CompareTo
method, which is required by the interface, compares two Employee objects’ full names and returns
a value indicating which one comes first alphabetically.

The SortedBinaryTree example’s main program uses the following code to build a small sorted tree
of Employee objects.

// Create some Employees.
Employee jody = new Employee("Jody", "Adams");
Employee wanda = new Employee("Wanda", "Cortez");
Employee george = new Employee("George", "McGee");
Employee dom = new Employee("Dom", "Hall");
Employee linda = new Employee("Linda", "Brock");

// Create the root node.
SortedBinaryNode<Employee> root = new SortedBinaryNode<Employee>(jody);

// Add some other Employees to the tree.
root.Add(wanda);
root.Add(george);
root.Add(dom);
root.Add(linda);

The code first creates some Employee objects. It then makes a
root node holding the Employee representing Jody Adams.

The program then calls the root node’s Add method, passing it
various Employee objects. You can follow each Employee as it is
added to the tree. For example, Wanda Cortez comes alphabeti-
cally after Jody Adams, so the wanda Employee is added to the
root node’s right subtree. If you follow each of the Employee
objects, you’ll get the tree shown in Figure 15-1. Dom Linda

George Wanda

Jody

FIGuRE 15-1: Example
program SortedBinaryTree builds
this tree of Employee objects .

www.EBooksWorld.ir

www.hellodigi.ir

Defining generics ❘ 351

A generic type’s where clause can include one or more of the following elements.

ELEMENt MEANING

struct The type must be a value type .

class The type must be a reference type .

new() The type must have a parameterless constructor .

«baseclass» The type must inherit from baseclass .

«interface» The type must implement interface .

«typeparameter» The type must inherit from typeparameter .

For example, the following code defines the StrangeGeneric class. This class takes three type
parameters. Type T1 must implement the IComparable<T1> interface and must provide a parameter-
less constructor. Type T3 must inherit from the Control class. Type T2 must inherit from type T3.

public class StrangeGeneric<T1, T2, T3>
 where T1 : IComparable<T1>, new()
 where T3 : Control
 where T2 : T3
{

}

The following code creates an instance of the StrangeGeneric class.

StrangeGeneric<int, Panel, ScrollableControl> strange =
 new StrangeGeneric<int, Panel, ScrollableControl>();

The int class implements IComparable<int> and has a parameterless constructor. The
ScrollableControl inherits from Control and Panel inherits from ScrollableControl.
The full inheritance hierarchy for the Panel class is

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Windows.Forms.Control
 System.Windows.Forms.ScrollableControl
 System.Windows.Forms.Panel

Constraining a type gives C# more information about that type, so it lets you use any known
properties and methods. In the previous code, for example, the StrangeGeneric class knows that
type T3 inherits from the Control class so you can safely use Control properties and methods
such as Anchor, BackColor, and Font.

www.EBooksWorld.ir

www.hellodigi.ir

352 ❘ ChAPtER 15 generiCs

default Values
The new() constraint requires a generic type to provide a parameterless constructor so the class’s
code can create a new instance of the type. For example, if the type’s name is T, the class could
execute the following statement.

T newValue = new T();

In addition to making a new instance of the type T, it may also be useful to set a variable of type T
to a default value. Unfortunately, you can’t know what a type’s default value is until you know the
type. For example, the default value for int is 0, the default value for a struct is an uninitialized
structure, and the default value for a string or other reference type is null.

Fortunately, C# provides the default keyword, to let generic classes assign default values. The
following statement creates a new variable of type T and sets it equal to whatever is the default
value for that type.

T newValue = default(T);

INStANtIAtING GENERIC CLASSES

The previous sections have already shown a few examples of how to instantiate a generic class. The
program declares the class and includes whatever data types are required inside brackets. The fol-
lowing code shows how a program might create a generic list of strings.

List<string> names = new List<string>();

To pass normal parameters to a generic class’s constructor, simply add them inside the parentheses
after the brackets.

GENERIC COLLECtION CLASSES

The System.Collections.Generic namespace defines several generic classes. These are basically col-
lection classes that use generics to work with specific data types. See the section “Generic Collections”
in Chapter 14, “Collection Classes,” for more information and a list of the more useful predefined
generic collection classes.

GENERIC MEthOdS

Generics are usually used to build classes that are not data type-specific such as the generic col-
lection classes. You can also give a class (generic or otherwise) a generic method. Just as a generic
class is not tied to a particular data type, the parameters of a generic method are not tied to a
specific data type.

To make a generic method, include type parameters similar to those you would use for a generic class.

www.EBooksWorld.ir

www.hellodigi.ir

generics and extension methods ❘ 353

Example program Switcher uses the following code to define a generic Switch method.

public static class Switcher
{
 // Switch two values.
 public static void Switch<T>(ref T value1, ref T value2)
 {
 T temp = value1;
 value1 = value2;
 value2 = temp;
 }
}

The Switch method takes a generic type T. It also takes two parameters of type T. It creates a
temporary variable of type T and uses it to swap the two values.

The following code shows how the main program uses the Switch method.

string value1 = value1TextBox.Text;
string value2 = value2TextBox.Text;
Switcher.Switch<string>(ref value1, ref value2);
value1TextBox.Text = value1;
value2TextBox.Text = value2;

This code gets two string values from TextBoxes. It uses the Switch method to swap their values
and displays the results.

tyPE NOt REQuIREd

In this example, Visual Studio is smart enough to infer the type parameter because
the program is passing two string values into the method. In cases such as this, the
code can omit the type parameter as in the following code.

Switcher.Switch(ref value1, ref value2);

You may want to include the type parameter anyway to make the code more
self-documenting.

Note that the Switcher class is not generic but it contains a generic method. You can also create
generic classes that contain both generic and nongeneric methods.

GENERICS ANd ExtENSION MEthOdS

Extension methods let you add new features to existing classes, whether they’re generic or nongeneric.
For example, suppose you have an application that uses a List<Student>. This class is a generic col-
lection class defined in the System.Collections.Generic namespace. It’s not defined in your code
so you can’t modify it. However, you can add extension methods to it.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

354 ❘ ChAPtER 15 generiCs

The following code adds an AddStudent method to List<Student> that takes as parameters a first
and last name, uses those values to make a Student object, and adds it to the list.

public static class ListExtensions
{
 public static void AddStudent(this List<Student> students,
 string firstName,string lastName)
 {
 students.Add(new Student()
 { FirstName = firstName, LastName = lastName });
 }
}

This example works specifically with the Student type. It relies on the fact that this is the
List<Student> class when it uses the Student class’s constructor.

Sometimes, you can make a generic extension method that works with more general classes. For
example, the following code adds a generic NumDistinct method to the generic List<T> class.

public static int NumDistinct<T>(this List<T> list)
{
 return list.Distinct().Count();
}

This method doesn’t need to know what kind of objects the list contains. It just invokes the list’s
Distinct method, calls the Count method on the result, and returns the value given by Count.

For more information on extension methods, see the section “Extension Methods” in Chapter 6.

SuMMARy

A class is an abstraction that defines the properties, methods, and events that should be provided by
instances of the class. After you define a class, you can make any number of instances of it, and they
will all have the features defined by the class.

Generics take abstraction one level farther. A generic class abstracts the features of a set of
classes. After you have defined a generic class, you can make any number of objects that have
similar behaviors but that may work with different data types. Similarly, you can make generic
structures, interfaces, methods, and delegates that can work with multiple data types.

Generics let you reuse the same code while working with different data types. They provide
strong type checking, which lets you avoid boxing and unboxing. They also let Visual Studio
provide IntelliSense support, which makes writing code easier and faster.

For more information on generics including some of their more esoteric syntax, see “An Introduction
to C# Generics” at msdn.microsoft.com/library/ms379564.aspx.

The chapters so far have focused on programs that are relatively self-contained. They generate
their own data or take input from the user, perform some calculations, and display the results on
the program’s user interface or in the Console window.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 355

The chapters in the next part of the book describe techniques a program can use to interact with the
outside system. They explain how to print documents, save settings that persist when the program
isn’t running, work with files and directories, and interact with networks. The next chapter starts
the new focus by explaining how to generate output on a printer.

ExERCISES

 1. Make a generic PriorityQueue class that associates keys with objects. Its Dequeue method
should return the key/object pair with the lowest key value and remove that value from
the queue. Make a program that uses a PriorityQueue<int, string>. (Hint: Use a
List<KeyValuePair> to hold the items. Make the Dequeue method loop through the list
to find the lowest key value.)

 2. Make a generic IncreasingQueue class that stores objects in a queue and requires each
object to be larger than the one before it in the queue. Make the class’s constructor take as
a parameter a lower bound for all entries. (In other words, all entries must be larger than
the lower bound and added in increasing order.) Make a test program that demonstrates an
IncreasingQueue<float>.

 3. Write a generic BoundValues method that takes an array as a parameter and ensures that
all its values are between a lower and upper bound. For example, if prices is an array of
decimal, then BoundValues(prices, 0, 1000) would set any values in the array that are
smaller than 0 to 0 and any values in the array that are larger than 1000 to 1000.

 4. Repeat Exercise 3 but this time make the BoundValues method process an IEnumerable
instead of an array and return a List.

 5. Write a generic MiddleValue method that takes three values as parameters and returns the
one in the middle.

 6. Create a CircularQueue class. The Enqueue method adds an item to the end of the queue. The
NextItem method returns the next item in the queue. If the object reaches the end of its queue,
it starts over at the beginning. For example, if the queue contains the values A, B, and C, then
repeatedly calling NextItem will return the values A, B, C, A, B, C, A, B, C, and so forth.
(Hint: Use a List to hold the queue’s values.)

 7. Create a Bundle class that uses a List to hold items. Create an Add method so that the
program can add items to a Bundle. Override its ToString method to return a string holding
the items in the bundle separated by semicolons. For example, if the bundle contains the
values “hello” and 13, the ToString method should return hello;13.

 8. The Bundle class you built for Exercise 7 can delegate methods to the List object that it
contains. At a minimum you need to give it an Add method so the program can put items in
the Bundle. Unfortunately, the List<T> class supports more than 80 properties and methods
that you could delegate. Delegating them all would be a huge amount of work.

Fortunately, there’s an easier solution: Make Bundle<T> inherit from List<T>. Repeat
Exercise 7 using this technique.

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Part IV
Interacting with the Environment

 ▶ ChAPtER 16: Printing

 ▶ ChAPtER 17: Configuration and Resources

 ▶ ChAPtER 18: Streams

 ▶ ChAPtER 19: File System Objects

 ▶ ChAPtER 20: Networking

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Printing
whAt’S IN thIS ChAPtER

➤➤ Windows Forms printing

➤➤ Print previews

➤➤ GDI+ drawing basics

➤➤ Printing a booklet

➤➤ WPF printing with paginators, FlowDocuments, and FixedDocuments

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Windows Forms and WPF applications take two different approaches to printing. In a Windows
Forms application, the program starts the printing process, and then a document object raises
events to ask the program what it should draw on each printed page. A WPF application builds
a document object that contains other objects representing printed items, such as text, images,
and shapes.

The first part of this chapter describes printing in Windows Forms applications. The second
part explains how to generate and print documents in WPF applications.

wINdOwS FORMS PRINtING

Although Windows Forms applications have some good printing tools, the basic process seems
somewhat backward for many programmers. Instead of executing commands to tell a printer
object what to print, the program must respond to events when a document object asks what it
should print.

16

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

360 ❘ ChAPtER 16 PrinTing

When you master the basic concepts, printing is mostly a matter of learning how to draw graphics.
Drawing graphics in a Windows Forms application is practically the same whether you’re drawing
on a form, PictureBox, or printed page.

The following section describes the basic process. The sections after that explain how to print specific
items, such as text, images, and shapes. The final Windows Forms example shows how to display
page numbers, change margins for odd and even pages, and split paragraphs across multiple pages.

basic Printing
The heart of the printing process in Windows Forms applications is the PrintDocument object. As
its name implies, it represents a document to be printed.

You might expect the PrintDocument class to provide methods that you call to draw text, images,
lines, and other items on the document. The process actually works in reverse. The program cre-
ates a PrintDocument object. It then directly or indirectly tells the object that it wants to generate a
print preview or an actual printout. The PrintDocument then raises events asking the program what
it should draw on each page of the printout. The program responds with drawing commands that
determine the results.

PERCEPtIVE PRINtING

This process of the PrintDocument object raising event seems backward but it’s
actually fairly clever. The PrintPage event, which is described in detail shortly,
passes the program a Graphics object on which to draw. This is the same kind
of Graphics object that a program uses to draw on a Form, PictureBox, Bitmap,
or anything else in .NET. By giving you a Graphics object, the PrintPage event
enables you to use the same kind of code you use to draw anywhere else.

In fact, if you design the program properly, you can use the same code to draw on
a Form, PictureBox, and printout. If you place all your drawing commands in a
method that takes a Graphics object as a parameter, you can use that method to
generate results for the screen or the printer.

When a PrintDocument object must perform printing-related tasks, it raises four key events:

➤➤ BeginPrint—The PrintDocument raises its BeginPrint event when it is about to start
printing. The program can initialize data structures, load data, connect to databases, and
otherwise get ready to print.

➤➤ QueryPageSettings—Before it prints a page, the PrintDocument object raises this event.
The program can catch this event and make changes that are specific to the page it is about
to print. For example, if you are printing a booklet, the program can adjust the margins to
leave extra space on the side of the page where the staples will be.

➤➤ PrintPage—The PrintDocument object raises the PrintPage event to generate a page.
The program catches this event and uses the e.Graphics parameter to generate output. After
it finishes printing the page, the program should set the value e.HasMorePages to true or
false to tell the PrintDocument whether there are more pages to print after this one.

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 361

➤➤ EndPrint—When it finishes printing, the PrintDocument object raises its EndPrint
event. The program can catch this event to clean up any resources it used while printing.
It can free data structures, close data files and database connections, and perform any
other necessary cleanup chores.

A SAFE dEFAuLt

The PrintPage event handler’s e.HasMorePages value is initially false, so you need
to set only its value if you want to print more pages. That way if you forget to set its
value, the program won’t just keep spitting out an endless stream of blank pages.

After you create a PrintDocument and attach the
event handlers that you want to use, you can do
three things with it. First, you can call the object’s
Print method to immediately start the printing
process. The PrintDocument object raises its events
as necessary and sends the result to the currently
selected printer.

Second, you can set a PrintPreviewDialog con-
trol’s Document property to the PrintDocument
object and then call the dialog box’s ShowDialog
method. The PrintPreviewDialog makes the
PrintDocument generate a printout and displays
it in a print preview dialog similar to the one shown
in Figure 16-1.

PREVIEw dON’t PRINt

Displaying print preview dialogs is easy in C#, so you may want to display previews
instead of send output directly to the printer. Particularly when you debug pro-
grams or work through exercises, there’s no reason to waste trees printing results
you don’t need to keep.

The print preview dialog’s printer button on the left sends the printout to the currently selected
printer. The magnifying glass button displays a drop-down that lets you select different scales. The
next five buttons let the user display one, two, three, four, or six of the printout’s pages at the same
time. The Close button closes the dialog box and the Page up/down arrows let you move through the
printout’s pages.

The PrintPreviewControl displays a print preview much as the PrintPreviewDialog control
does, except that it sits on your form. It does not provide all the buttons that the dialog box does,
but it does provide methods that let you implement similar features. For example, your program
can set the zoom level and the number of columns in the display.

FIGuRE 16-1: The PrintPreviewDialog
lets the user zoom in and out, view the
printout’s various pages, and send the printout
to a printer .

www.EBooksWorld.ir

www.hellodigi.ir

362 ❘ ChAPtER 16 PrinTing

PRINtOut REGENERAtION

When you click the PrintPreviewDialog’s print button, the PrintDocument regener-
ates the printout using its events and sends the result to the printer instead of to the
print preview dialog box. It doesn’t reuse the previously created preview document.

The third thing you can do with a PrintDocument is assign it to a PrintDialog object’s Document
property and then call the dialog’s ShowDialog method. This displays a dialog box that lets you
select the printer and set its properties. For example, you can set the printer’s landscape or portrait
orientation. When you click the dialog’s Print button, the dialog uses the PrintDocument object to
send the printout to the printer.

PREVIEw POSSIbILItIES

Your results could look different from those shown here. The print preview adjusts
its appearance based on such factors as the type of printer you use, its settings, the
size of the paper you use, and the paper’s orientation.

The PrintShapes example program, which is available for download on this book’s website, dis-
plays a preview in a PrintPreviewControl, sends a printout directly to a printer, and displays
the print preview dialog shown in Figure 16-1. At design time, I added a PrintPreviewControl,
PrintDocument, and PrintPreviewDialog to the form. I set the Document properties for the pre-
view control and the preview dialog to the PrintDocument object.

When the program starts, the PrintPreviewControl automatically generates and displays
its preview.

The following code shows how the program sends a printout to the printer.

// Send the printout to the currently selected printer.
private void printButton_Click(object sender, EventArgs e)
{
 samplePrintDocument.Print();
}

The following code shows how the program displays the preview dialog.

// Display a print preview.
private void previewButton_Click(object sender, EventArgs e)
{
 samplePrintPreviewDialog.ShowDialog();
}

Finally, the following code shows the most interesting part of the program in which the PrintDocument
generates the printout.

// The next page number to print.
private int NextPage = 0;

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 363

// Start with page number 0.
private void samplePrintDocument_BeginPrint(object sender,
 System.Drawing.Printing.PrintEventArgs e)
{
 NextPage = 0;
}

// Print a page.
private void samplePrintDocument_PrintPage(object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
{
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;

 // Draw the margin bounds.
 e.Graphics.DrawRectangle(Pens.Orange, e.MarginBounds);

 // Draw a shape.
 int xmid = (e.MarginBounds.Left + e.MarginBounds.Right) / 2;
 int ymid = (e.MarginBounds.Top + e.MarginBounds.Bottom) / 2;
 switch (NextPage)
 {
 case 0: // Triangle.
 Point[] trianglePoints =
 {
 new Point(xmid, e.MarginBounds.Top),
 new Point(e.MarginBounds.Right, e.MarginBounds.Bottom),
 new Point(e.MarginBounds.Left, e.MarginBounds.Bottom),
 };
 e.Graphics.DrawPolygon(Pens.Red, trianglePoints);
 break;
 case 1: // Diamond.
 Point[] diamondPoints =
 {
 new Point(xmid, e.MarginBounds.Top),
 new Point(e.MarginBounds.Right, ymid),
 new Point(xmid, e.MarginBounds.Bottom),
 new Point(e.MarginBounds.Left, ymid),
 };
 e.Graphics.DrawPolygon(Pens.Green, diamondPoints);
 break;
 case 2: // Ellipse.
 e.Graphics.DrawEllipse(Pens.Blue, e.MarginBounds);
 break;
 }

 // Page 2 is the last page.
 e.HasMorePages = (++NextPage <= 2);
}

The code first defines the NextPage variable that it uses to keep track of which page it is printing.

The BeginPrint event handler executes before the PrintDocument starts to generate the printout.
In this example, this event handler sets NextPage to 0 so that the program knows it is about to
print the first page.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

364 ❘ ChAPtER 16 PrinTing

The PrintPage event handler does all the drawing. It starts by setting the Graphics object’s
SmoothingMode property to make drawn shapes smoother. (Download the example, and comment
this out to see what the difference is.)

dRAwING dEtAILS

The SmoothingMode values and many other useful values for specifying graphics
characteristics such as dash style and join style are defined in the System.Drawing
.Drawing2D namespace. In a program in which you do a lot of drawing, you will
probably want to include the following directive.

using System.Drawing.Drawing2D;

Next, the program draws an orange rectangle showing the page’s margin bounds. Normally, any-
thing you draw should be inside the margin bounds. (Don’t worry too much yet about how to draw
shapes. The following sections explain drawing basics.)

Depending on the page number, the code then draws a triangle, diamond, or ellipse. The event
handler finishes by incrementing NextPage and setting e.HasMorePages to true if the next page
has a number less than or equal to 2.

Out OF bOuNdS

The e.MarginBounds value tells you where you should print to leave a reasonable
margin around the edges of the page, but most printers can print outside of those
bounds.

The e.PageBounds value gives the size of the paper, but most printers cannot print
all the way up to the edges of the paper.

The e.PageSettings.PrintableArea value gives the area on which the printer
should print, at least in theory.

All three of these areas are measured in hundredths of inches.

The following table shows the values for my printer.

VALuE x y wIdth hEIGht

e.MarginBounds 100 100 650 900

e.PageBounds 0 0 850 1100

e.PageSettings

.PrintableArea
25 6 .833333 800 1042 .667

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 365

The following sections provide a bit more information about how the Graphics object’s drawing
methods work.

drawing basics
The previous section explains how the PrintShapes example program draws some simple shapes.
It focuses mostly on the PrintPage event and glosses over exactly how the graphics are drawn.

A program uses three things to draw shapes: a Graphics object, pens, and brushes. It uses those
things whether it is drawing on a Form, PictureBox, Bitmap, or print document.

NOtE The classes that you use to draw in Windows Forms applications are con-
tained in GDI+, the .NET version of the Graphics Device Interface (GDI) library.

The following sections describe Graphics objects, pens, and brushes.

graphics objects
A Graphics object represents a drawing surface. You can think of it as the canvas or paper on
which the program will draw.

The Graphics class provides many methods for drawing lines, rectangles, curves, and other
shapes. The following table summarizes these methods.

MEthOd dESCRIPtION

DrawArc Draws an arc of an ellipse .

DrawBezier Draws a Bézier curve .

DrawBeziers Draws a series of Bézier curves .

DrawClosedCurve Draws a smooth closed curve that joins a series of points, connect-
ing the final point to the first point .

DrawCurve Draws a smooth curve that joins a series of points but doesn’t con-
nect the final point to the first point .

DrawEllipse Draws an ellipse . (To draw a circle, draw an ellipse with equal
width and height .)

DrawIcon Draws an icon .

DrawIconUnstretched Draws an icon without scaling . If you know that you will not resize
the icon, this is faster than DrawIcon .

DrawImage Draws an image . Bitmap is a subclass of Image, so you can use this
method to draw a Bitmap .

continues

www.EBooksWorld.ir

www.hellodigi.ir

366 ❘ ChAPtER 16 PrinTing

MEthOd dESCRIPtION

DrawImageUnscaled Draws an image without scaling . If you know that you will not
resize the image, this is faster than DrawImage .

DrawLine Draws a line .

DrawLines Draws a series of connected lines . This is much faster than using
DrawLine repeatedly .

DrawPath Draws a GraphicsPath object .

DrawPie Draws a pie slice taken from an ellipse .

DrawPolygon Draws a polygon . This is similar to DrawLines except it connects
the last point to the first point .

DrawRectangle Draws a rectangle with horizontal and vertical sides . (In other
words, it can’t draw rotated rectangles .)

DrawRectangles Draws a series of rectangles . This is much faster than using
DrawRectangle repeatedly .

DrawString Draws text .

The methods listed in the preceding table draw the outline of something such as a line, rectangle,
or ellipse. The Graphics class provides corresponding methods that fill many of these shapes. For
example, the DrawRectangle method outlines a rectangle, and the corresponding FillRectangle
method fills a rectangle. The filling methods include FillClosedCurve, FillEllipse, FillPath,
FillPie, FillPolygon, FillRectangle, and FillRectangles.

The Draw methods take a pen as a parameter and use that pen to determine how the outline is drawn.
In contrast, the Fill methods take a brush as a parameter and use the brush to determine how to fill
the area.

The one exception is the DrawString method, which uses a brush to fill text even though its name
begins with Draw.

The sections “Pens” and “Brushes” later in this chapter describe pens and brushes in greater detail.

See the online help for specific information about the Graphics class’s drawing and filling
methods. You can find links to the pages describing these methods at the Graphics class’s web
page msdn.microsoft.com/library/system.drawing.graphics.

obtaining graphics objects
There are several ways a program can obtain a Graphics object on which to draw. You’ve already
seen that the PrintDocument’s PrintPage event handler provides an e.Graphics parameter.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 367

Similarly, a Form, PictureBox, or other control can provide a Paint event that includes an
e.Graphics parameter on which a program can draw. The Paint event is raised when a control needs
to redraw some or all of itself.

Note that the Graphics object included in a Paint event handler may clip its drawing methods, so
it redraws only the parts of the control that actually need to be redrawn. That means any graphics
drawn outside of those areas are ignored. You don’t need to do anything special to make this work.
Just be aware that some of your graphics may not actually be drawn.

For example, if you want to redraw an entire PictureBox to cover it with random circles, you need to
refresh the entire PictureBox to ensure that everything you draw appears. (You can refresh a control
by calling its Refresh method.)

The last common way to obtain a Graphics object is to create one that is associated with a
Bitmap. The program can then use the Graphics object to draw on the Bitmap. The following
code demonstrates this technique.

private void Form1_Load(object sender, EventArgs e)
{
 // Make a Bitmap.
 Bitmap bitmap = new Bitmap(100, 100);
 using (Graphics graphics = Graphics.FromImage(bitmap))
 {
 // Draw an ellipse on it.
 graphics.DrawEllipse(Pens.Brown, 0, 0, 99, 99);
 }

 // Display it on the form.
 this.BackgroundImage = bitmap;
}

This code creates a 100 × 100 pixel Bitmap. (Coordinates for all graphics in .NET are in pixels.) It
then uses the Graphics.FromImage method to create a Graphics object associated with the Bitmap.
The Graphics class provides a Dispose method, so the program includes a using statement to
ensure that the method is called when the program is done with the object.

Next, the code uses the Graphics object’s DrawEllipse method to draw a brown ellipse on the
Bitmap. The code finishes by displaying the Bitmap in the form’s BackgroundImage property.

Pens
The Pen object determines how lines are drawn. It determines a line’s color, thickness, dash style,
join style, and end cap style.

A program can explicitly create Pen objects, but often it can simply use one of the more than 280
stock pens that are predefined by the Pens class. For example, the following code draws a rectangle
using a hot pink line that’s one pixel wide.

gr.DrawRectangle(Pens.HotPink, 10, 10, 50, 50)

www.EBooksWorld.ir

www.hellodigi.ir

368 ❘ ChAPtER 16 PrinTing

The following table summarizes the Pen class’s constructors.

CONStRuCtORS dESCRIPtION

Pen(brush) Creates a pen of thickness 1 using the indicated Brush

Pen(color) Creates a pen of thickness 1 using the indicated color

Pen(brush, thickness) Creates a pen with the indicated thickness (a float) using a Brush

Pen(color, thickness) Creates a pen with the indicated thickness (a float) using the
indicated color

The following table describes some of the Pen class’s most useful properties and methods.

PROPERty OR MEthOd PuRPOSE

Brush Determines the Brush used to fill a line .

Color Determines the line’s color .

CompoundArray Lets you draw lines that are striped lengthwise .

CustomEndCap Determines a line’s end cap .

CustomStartCap Determines a line’s start cap .

DashCap Determines the cap drawn at the ends of dashes . This can be
Flat, Round, or Triangle .

DashOffset Determines the distance from the start of a line to the start of its
first dash .

DashPattern An array of floats that specifies a custom dash pattern . The array
entries tell how many pixels to draw, skip, draw, skip, and so forth .
These values are scaled if the pen is not one pixel wide .

DashStyle Determines the line’s dash style . This value can be Dash, DashDot,
DashDotDot, Dot, Solid, or Custom . If you set the DashPattern
property, this value is automatically set to Custom . The dashes and
gaps between them are scaled if the pen is not one pixel wide .

EndCap Determines the cap used at the end of the line . This can be
ArrowAnchor, DiamondAnchor, Flat, NoAnchor, Round,
RoundAnchor, Square, SquareAnchor, Triangle, and Custom .
If LineCap is Custom, you should use a CustomLineCap object
to define the cap .

LineJoin Determines how lines are joined by methods that draw connected
lines such as DrawLines and DrawPolygon . This value can be
Bevel, Miter, and Round .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Windows forms Printing ❘ 369

PROPERty OR MEthOd PuRPOSE

SetLineCap Specifies the pen’s StartCap, EndCap, and LineJoin properties
at the same time .

StartCap Determines the cap used at the start of the line .

Width The pen’s width .

The PaintForm example program, which is available for download on this book’s website, uses the fol-
lowing code to demonstrate some of these properties as it draws two shapes on the program’s form.

private void Form1_Paint(object sender, PaintEventArgs e)
{
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;

 // Draw a dashed ellipse.
 using (Pen ellipsePen = new Pen(Color.Black, 5))
 {
 ellipsePen.DashStyle = DashStyle.DashDotDot;
 e.Graphics.DrawEllipse(ellipsePen, 50, 50, 150, 100);
 }

 // Draw a polygon.
 using (Pen polygonPen = new Pen(Color.Gray, 10))
 {
 polygonPen.LineJoin = LineJoin.Bevel;
 Point[] points =
 {
 new Point(20, 20),
 new Point(200, 20),
 new Point(100, 50),
 new Point(260, 250),
 new Point(20, 170),
 };
 e.Graphics.DrawPolygon(polygonPen, points);
 }
}

The code creates a black pen of thickness 5. It sets the pen’s
DashStyle property to DashDotDot and draws an ellipse
with it.

Next, the code creates a gray pen of thickness 10. It sets the
pen’s LineJoin property to Bevel and draws a polygon with
it. Figure 16-2 shows the result.

You can learn more about the pen class at msdn
.microsoft.com/library/system.drawing.pen.

FIGuRE 16-2: The PaintForm
example program demonstrates
dashed lines and beveled
line joins .

www.EBooksWorld.ir

www.hellodigi.ir

370 ❘ ChAPtER 16 PrinTing

Brushes
The Brush object determines how shapes are filled when you draw them using Graphics methods
such as FillClosedCurve, FillEllipse, and FillRectangle. Different types of Brushes fill areas
with solid colors, hatch patterns, color gradients, and images.

The Brush class is an abstract class, so you cannot make instances of the Brush class itself. Instead,
you must create instances of one of the derived classes SolidBrush, TextureBrush, HatchBrush,
LinearGradientBrush, and PathGradientBrush. The following table briefly describes these classes.

CLASS PuRPOSE

SolidBrush Fills areas with a solid color

TextureBrush Fills areas with a repeating image

HatchBrush Fills areas with a repeating hatch pattern

LinearGradientBrush Fills areas with a linear gradient of two or
more colors

PathGradientBrush Fills areas with a color gradient that follows
a path

The BrushSamples example program, which is available for download on this book’s website, uses
the following code to demonstrate four kinds of brushes.

private void Form1_Paint(object sender, PaintEventArgs e)
{
 Rectangle rect = new Rectangle(10, 10, 120, 120);
 using (Brush solidBrush = new SolidBrush(Color.LightGray))
 {
 e.Graphics.FillRectangle(solidBrush, rect);
 }

 rect.Y += 130;
 using (Brush gradientBrush = new LinearGradientBrush(
 rect, Color.Black, Color.White, 45.0f))
 {
 e.Graphics.FillRectangle(gradientBrush, rect);
 }

 rect = new Rectangle(140, 10, 120, 120);
 using (Brush textureBrush = new TextureBrush(Properties.Resources.Smiley))
 {
 e.Graphics.FillRectangle(textureBrush, rect);
 }

 rect.Y += 130;
 using (Brush hatchBrush = new HatchBrush(
 HatchStyle.DiagonalBrick, Color.Black, Color.White))
 {

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 371

 e.Graphics.FillRectangle(hatchBrush, rect);
 }
}

The code first creates a light gray solid brush and fills a rectangle.

Next, it moves the rectangle down 130 pixels and creates a linear
gradient brush. The brush fills the rectangle starting with the
color black and shading smoothly to the color white. The gradi-
ent’s direction is 45° so the colors shade from black in the upper-
left corner to white in the lower-right corner. After creating the
brush, the program fills the rectangle with it.

The program then creates a new rectangle. It makes a texture
brush, passing the brush’s constructor the image stored in the
program’s Properties.Resources.Smiley resource. (Use the
Project ➪ Properties menu, and select the Resources page to add
image resources.) When the program uses the texture brush, the
rectangle is filled with repeating copies of the image.

Finally, the program creates a HatchBrush that uses a diagonal
brick pattern with a black foreground and white background. It
finishes by filling a rectangle with the hatch brush. Figure 16-3
shows the result.

You can learn more about the brush classes at msdn.microsoft.com/library/system
.drawing.brush.

Drawing Text
Many printing applications draw text more than anything else, so the DrawString method is par-
ticularly important. This method has six overloaded versions. All take a string to draw, the font to
draw it with, and a brush to determine the text’s appearance as
their first three parameters.

Different versions let you specify the location for the text as X
and Y float coordinates, a PointF (which has X and Y coordi-
nates), or a RectangleF (which has top, left, width, and height
values, again as floats).

The final variation in the overloaded versions is that some
let you include a StringFormat object to determine the
way the text is laid out. For example, the Alignment and
LineAlignment properties determine the text’s horizontal and
vertical alignment, respectively.

The DrawText example program, which is shown in Figure 16-4 and available for download on this
book’s website, uses the following code to demonstrate two of the overloaded versions of DrawString.

private void Form1_Paint(object sender, PaintEventArgs e)
{

FIGuRE 16-3: The BrushSamples
example program fills four
rectangles with different kinds
of brushes .

FIGuRE 16-4: The DrawText
example program draws text at a
point and centered in a rectangle .

www.EBooksWorld.ir

www.hellodigi.ir

372 ❘ ChAPtER 16 PrinTing

 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;

 // Make a font.
 using (Font font = new Font("Times New Roman", 20))
 {
 // Draw text in the upper left corner.
 e.Graphics.DrawString("DrawText", font, Brushes.Black, 10, 10);
 e.Graphics.DrawLine(Pens.Black, 7, 7, 13, 13);
 e.Graphics.DrawLine(Pens.Black, 7, 13, 13, 7);

 // Draw text centered on the form.
 using (StringFormat sf = new StringFormat())
 {
 // Center vertically and horizontally.
 sf.Alignment = StringAlignment.Center;
 sf.LineAlignment = StringAlignment.Center;

 // Draw the text.
 Rectangle rect = new Rectangle(10, 50, 250, 100);
 e.Graphics.DrawRectangle(Pens.Black, rect);
 e.Graphics.DrawString("DrawText", font,
 Brushes.Gray, rect, sf);
 }
 }
}

After setting the SmoothingMode, the program creates a large font. It then draws the string “DrawText”
using the font and a black brush at the point (10, 10). The DrawString method draws the text so its
upper-left corner is just below that point.

The code then draws two lines to make an X over the point (10, 10) so you can see how the text is
arranged with respect to this point.

Next, the program makes a StringFormat object. The object’s Alignment and LineAlignment
properties can take the values Near (left or top alignment), Center (centered), or Far (right or
bottom alignment). This program sets both properties to center the text.

The code then creates a Rectangle, draws the Rectangle, and then draws the text using the
StringFormat object to center the text in the Rectangle.

Printing Images
The Graphics class’s DrawImage method draws an image. This method has 30 different overloaded ver-
sions. Some take the coordinates of a point where the image should be drawn. Others take rectangles or
arrays of points to indicate which part of the image should be drawn at which location on the Graphics
object. A few interesting versions let you map a rectangle to a parallelogram, possible flipping or skew-
ing the image.

One of the more explicit versions takes a source rectangle that indicates the part of the image to
print, and a destination rectangle that indicates where to print it.

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 373

The PrintImage example program, which is available for download on this book’s website, uses the
following PrintPage event handler to print an image centered on a page.

private void imagePrintDocument_PrintPage(object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
{
 Bitmap bm = Properties.Resources.GrandCanyon;

 // The source rectangle includes the whole picture.
 Rectangle sourceRect = new Rectangle(0, 0, bm.Width, bm.Height);

 // Center the destination rectangle.
 int x = e.MarginBounds.Left + (e.MarginBounds.Width - bm.Width) / 2;
 int y = e.MarginBounds.Top + (e.MarginBounds.Height - bm.Height) / 2;
 Rectangle destRect = new Rectangle(x, y, bm.Width, bm.Height);

 // Draw the image.
 e.Graphics.DrawImage(Properties.Resources.GrandCanyon,
 destRect, sourceRect, GraphicsUnit.Pixel);

 // There are no more pages.
 e.HasMorePages = false;
}

The code starts by setting the variable bm equal to the
image resource named GrandCanyon. (Use the Project ➪
Properties menu, and select the Resources page to add
image resources.) The code could work directly with
the image. The variable bm is just used to make the code
easier to read.

Next, the program defines a source rectangle that includes
the entire image. It then defines a destination rectangle
that is the same size as the image and centered within the
page’s margins.

The code then uses the DrawImage method to draw the
entire image in the destination rectangle. It finishes by
setting e.HasMorePages to false. Figure 16-5 shows
the program’s print preview.

a Booklet example
The examples in this chapter so far have drawn simple
shapes or text samples. This section describes a more
complete and potentially useful example that prints a
long series of paragraphs that may each use a different
font size.

The PrintBooklet example program, which is available for download on this book’s website, breaks
text into pages. It assumes you will print the pages double-sided and then staple the pages into a

FIGuRE 16-5: The PrintImage example
program draws an image centered within
the page’s margins .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

374 ❘ ChAPtER 16 PrinTing

booklet. To allow extra room for the staples, the program adds a gutter to the margin of each page
on the side where the staples will be. The program assumes the first page goes on the outside of the
booklet, so it adds the gutter to the left margin on odd-numbered pages and to the right margin on
even-numbered pages. Finally, the program displays a page number in the upper corner opposite
the gutter.

In addition to demonstrating event handlers for the PrintDocument class’s events, this example shows
how to use StringFormat objects to align text and break lines at word boundaries, wrap text within a
target rectangle, and measure text to see how much will fit in a target rectangle.

Figure 16-6 shows the PrintBooklet program’s print preview dialog, so you can understand the goals.
The figure isn’t big enough for you to read the text. The text (other than the headings) is gibberish
anyway. It’s just there so that you can see the shape of the document.

FIGuRE 16-6: The PrintBooklet example program breaks text across pages,
places a gutter on alternate sides, and draws page numbers on the side opposite
the gutter .

If you look closely, you can see that the gutters are placed on alternate sides in odd and even pages.
You can also see that the page numbers are in the upper corner on the side that doesn’t have the gutter.

The program uses the following ParagraphInfo structure to store information about the text it
will print.

// Information about the paragraphs to print.
private struct ParagraphInfo
{
 public int FontSize;
 public string Text;
 public ParagraphInfo(int fontSize, string text)
 {
 FontSize = fontSize;
 Text = text;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 375

The following code shows how the program prepares the text it will print.

// The paragraphs.
private List<ParagraphInfo> AllParagraphs, ParagraphsToPrint;
private int PagesPrinted;

// Load the paragraph info.
private void Form1_Load(object sender, EventArgs e)
{
 // Make the text to print.
 AllParagraphs = new List<ParagraphInfo>();
 AllParagraphs.Add(new ParagraphInfo(45, "Chapter 16: Printing"));
 AllParagraphs.Add(new ParagraphInfo(16,
 "This example uses \"Lorem Ipsum\" text. For more information," +
 "see http://www.lipsum.com/."));
 ... Code to initialize other ParagraphInfo structures omitted ...
}

This code declares two List<ParagraphInfo> objects. The AllParagraphs list holds all the text
to be printed. The ParagraphsToPrint list holds the text that hasn’t yet been printed while the
program prints.

The Form1_Load event handler creates the AllParagraphs list and fills it with ParagraphInfo
structures to print.

At design time I added a PrintDocument and PrintPreviewDialog to the program’s form as
usual. When you click the program’s button Print Preview button, the program calls the dialog’s
ShowDialog method to start the printing process. When printing starts, the following BeginPrint
event handler executes.

// Prepare to print.
private void bookletPrintDocument_BeginPrint(object sender, PrintEventArgs e)
{
 // We have not yet printed any pages.
 PagesPrinted = 0;

 // Make a copy of the text to print.
 ParagraphsToPrint = AllParagraphs.ToList();
}

dOdGING dESIGN tIME

The examples in this chapter use PrintDocument, PrintPreviewDialog, and other
objects created at design time and place them on a form. However, you can create
those objects with code at run time instead if you prefer. Actually, some developers
prefer to do just that because objects added to a form take up memory and resources
even if they are never used. In contrast your code can create objects only as needed
and can destroy them when it’s done with them.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.lipsum.com/

376 ❘ ChAPtER 16 PrinTing

This code sets PagesPrinted to 0 because no pages have been printed yet during this round of print-
ing. It then copies the ParagraphInfo structures from the AllParagraphs list (which holds all the
data) into the ParagraphsToPrint list (which holds those paragraphs that have not yet been printed).

Before it prints each page, the PrintDocument object raises its QueryPageSettings event. The
program uses the following code to catch this event and prepare the next page for printing.

// Set the margins for the next page.
private void bookletPrintDocument_QueryPageSettings(object sender,
 QueryPageSettingsEventArgs e)
{
 // Use a 1 inch gutter. (Printer units are 1/100th inch).
 const int gutter = 100;

 // See if the next page will be the first, odd, or even.
 if (PagesPrinted == 0)
 {
 // The first page. Increase the left margin.
 e.PageSettings.Margins.Left += gutter;
 }
 else if ((PagesPrinted % 2) == 0)
 {
 // It's an odd page. Shift the margins right.
 e.PageSettings.Margins.Left += gutter;
 e.PageSettings.Margins.Right -= gutter;
 }
 else
 {
 // It's an even page. Shift the margins left.
 e.PageSettings.Margins.Left -= gutter;
 e.PageSettings.Margins.Right += gutter;
 }
}

This code positions the new page’s gutter. If this is the first page, then the page’s margins have their
default values and do not include a gutter. In that case, the code increases the left margin to add a
1-inch gutter.

If this isn’t the first page, the code determines whether it is an odd or even page. If this is an even page,
then the previous page was odd, so the gutter is currently on the left. To move the gutter to the right
side of the page, the code adds 1 inch to the left margin and subtracts 1 inch from the right margin.

Similarly, if this is an even page, the code subtracts 1 inch from the left margin and adds 1 inch to
the right margin.

After the QueryPageSettings event finishes, the PrintDocument object raises its PrintPage event
to generate the next printed page. The program’s PrintPage event handler is fairly long, so the fol-
lowing paragraphs describe it in pieces. (Download the example to see it all in one chunk.)

The following code shows how the event handler starts.

private void bookletPrintDocument_PrintPage(object sender, PrintPageEventArgs e)
{
 // Increment the page number.

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 377

 PagesPrinted++;

 // Draw the margins (for debugging).
 //e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds);

 // Print the page number right justified
 // in the upper corner opposite the gutter
 // and outside of the margin.
 int x;
 using (StringFormat sf = new StringFormat())
 {
 // See if (this is an odd or even page.
 if ((PagesPrinted % 2) == 0)
 {
 // This is an even page.
 // The gutter is on the right and
 // the page number is on the left.
 x = (e.MarginBounds.Left + e.PageBounds.Left) / 2;
 sf.Alignment = StringAlignment.Near;
 }
 else
 {
 // This is an odd page.
 // The gutter is on the left and
 // the page number is on the right.
 x = (e.MarginBounds.Right + e.PageBounds.Right) / 2;
 sf.Alignment = StringAlignment.Far;
 }

 // Print the page number.
 using (Font font = new Font("Times New Roman", 20,
 FontStyle.Regular, GraphicsUnit.Point))
 {
 e.Graphics.DrawString(PagesPrinted.ToString(),
 font, Brushes.Black, x,
 (e.MarginBounds.Top + e.PageBounds.Top) / 2,
 sf);
 }

The event handler starts by incrementing the number of pages printed so far. It then includes
commented code to draw a rectangle around the page’s margins. Drawing this rectangle often
makes debugging printing routines easier because it lets you see how your printing relates to the
page’s margins.

Next, the code prepares to print the page number. It starts by creating a StringFormat object to align
the page number. It sets the object’s Alignment property to left-justify page numbers in the left mar-
gin and to right-justify page numbers in the right margin. The code also calculates an X coordinate to
place the page number halfway between the margin and the page’s bounds.

The code then creates the page number font and prints the page number at the point with the cal-
culated X coordinate and halfway between the page’s upper margin and page bounds. Depending
on the alignment, the text is arranged so that it is to the left or right of that point.

www.EBooksWorld.ir

www.hellodigi.ir

378 ❘ ChAPtER 16 PrinTing

The following code shows how the program prepares to print text.

 // Draw the rest of the text left justified,
 // wrap at words, and don't draw partial lines.
 sf.Alignment = StringAlignment.Near;
 sf.FormatFlags = StringFormatFlags.LineLimit;
 sf.Trimming = StringTrimming.Word;

 // Draw some text.
 ParagraphInfo paragraphInfo;
 int ymin = e.MarginBounds.Top;
 RectangleF layoutRect;
 SizeF textSize;
 int charsFitted, linesFilled;
 while (ParagraphsToPrint.Count > 0)
 {
 // Print the next paragraph.
 paragraphInfo = ParagraphsToPrint[0];
 ParagraphsToPrint.RemoveAt(0);

 // Get the area available for this paragraph.
 layoutRect = new RectangleF(
 e.MarginBounds.Left, ymin,
 e.MarginBounds.Width,
 e.MarginBounds.Bottom - ymin);
 // Work around bug where MeasureString
 // thinks characters fit if (height <= 0.
 if (layoutRect.Height < 1) layoutRect.Height = 1;

 // See how big the text will be and
 // how many characters will fit.
 // Get the font.
 using (Font font = new Font("Times New Roman",
 paragraphInfo.FontSize, FontStyle.Regular, GraphicsUnit.Point))
 {
 textSize = e.Graphics.MeasureString(
 paragraphInfo.Text, font,
 new SizeF(layoutRect.Width, layoutRect.Height),
 sf, out charsFitted, out linesFilled);

This code resets the StringFormat object’s properties to draw the text left-justified. Setting
FormatFlags to LineLimit makes the program stop drawing when a complete line of text won’t
fit in the formatting rectangle. By default, a line would be drawn even if its bottom edge would
stick out of the rectangle.

Setting Trimming to Word makes drawing stop when a complete word won’t fit on a line. (Other
settings let you stop at the nearest character and add an ellipsis after the final word or character if
there’s more text that wouldn’t fit.)

The program sets ymin to the page’s top Y coordinate and then enters a loop that runs as long as
there are more paragraphs to print.

Inside the loop, the program gets the next paragraph to print and removes it from the
ParagraphsToPrint list. It then creates a layout rectangle that contains the remaining space

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Windows forms Printing ❘ 379

that is available for printing. Vertically this rectangle starts at the current Y coordinate ymin and
extends to the bottom of the page. Horizontally the rectangle covers the width of the page.

Next, the code creates a font of the appropriate size for the paragraph. It then calls the e.Graphics
.MeasureString method. The overloaded version of the method used by the program takes the para-
graph’s text and font, a size, and the StringFormat object as input parameters. It returns through
output parameters the number of characters and lines that will fit in the indicated size. The program
uses that information to determine how much of the paragraph will fit in the formatting rectangle.

Having determined how much text will fit in the available space, the program uses the following
code to print it.

 // See if any characters will fit.
 if (charsFitted > 0)
 {
 // Draw the text.
 e.Graphics.DrawString(paragraphInfo.Text,
 font, Brushes.Black,
 layoutRect, sf);

 // Debugging: Draw a rectangle around the text.
 //e.Graphics.DrawRectangle(Pens.Green,
 // layoutRect.Left,
 // layoutRect.Top,
 // textSize.Width,
 // textSize.Height);

 // Increase the Y coordinate where the next
 // piece of text can start.
 // Add a little interparagraph spacing.
 ymin += (int)(textSize.Height +
 e.Graphics.MeasureString("M", font).Height / 2);
 }
 } // font

If any text fits in the layout rectangle, the program uses the DrawString method to print it. Commented
out code lets you draw a rectangle around the text, again for debugging purposes.

The code then increases the available Y coordinate ymin by the height of the printed text plus half of
an M character’s height (for paragraph spacing).

At this point, the program has printed as much of the current paragraph as will fit in the available
space. When the page first starts printing, that is probably the entire paragraph. It’s only near the
bottom of the page that a partial paragraph may be printed.

The following code shows how the program finishes printing the page.

 // See if (some of the paragraph didn't fit on the page.
 if (charsFitted < paragraphInfo.Text.Length)
 {
 // Some of the paragraph didn't fit.
 // Prepare to print the rest on the next page.
 paragraphInfo.Text = paragraphInfo.Text.
 Substring(charsFitted);

www.EBooksWorld.ir

www.hellodigi.ir

380 ❘ ChAPtER 16 PrinTing

 ParagraphsToPrint.Insert(0, paragraphInfo);

 // That's all that will fit on this page.
 break;
 }
 } // while
 } // sf

 // If we have more paragraphs, we have more pages.
 e.HasMorePages = (ParagraphsToPrint.Count > 0);
}

If some of the paragraph’s characters did not fit, the program resets the ParagraphInfo structure’s
text so that it holds whatever text did not fit. It then inserts the ParagraphInfo at the beginning
of the ParagraphsToPrint list so that it is printed first on the next page. It then breaks out of the
while loop so that it stops printing paragraphs on this page.

If all the paragraph’s text did fit, the while loop continues printing the next paragraph. After the
while loop ends, either because a paragraph didn’t fit completely or because all the paragraphs have
been printed, this page is done. The code sets e.HasMorePages to true if there are more paragraphs
in the ParagraphsToPrint list.

When the last page has been printed, the PrintDocument object raises its EndPrint event. The
following code shows the EndPrint event handler.

private void bookletPrintDocument_EndPrint(object sender, PrintEventArgs e)
{
 ParagraphsToPrint = null;
}

In this program, the EndPrint event handler simply sets the ParagraphsToPrint list to null so
that the garbage collector can later recycle its memory. In this program, the list doesn’t occupy much
space, so freeing it is a small matter. In a program that allocated more elaborate data structures,
cleaning up in this event handler might be more important.

wPF PRINtING

WPF programs have some big advantages over Windows Forms applications. For example, WPF
controls are infinitely scalable. That means no matter how far you zoom in on a WPF control, the
result is smooth and not pixelated.

WPF’s approach to printing makes particularly good use of this infinite scalability. To create a
printout, a WPF application creates objects that represent whatever needs to be printed. The pro-
gram can scale those objects as necessary to fit the printout and the result takes advantage of the
printer’s capabilities.

There are several ways a WPF application can produce printouts. The following sections describe
two of the more useful: using a paginator and creating documents.

www.EBooksWorld.ir

www.hellodigi.ir

WPf Printing ❘ 381

using a Paginator
A paginator is an object that generates a printout’s pages. To create a printout by using a paginator,
you derive a new class from the DocumentPaginator class and override its GetPage method to create
the document’s pages. You also need to override a few other methods to let the paginator know how
many pages it will produce.

PAPERLESS PREVIEwS

WPF does not provide a print preview control. To view a printout without printing
it and wasting paper, print to the Microsoft XPS Document Writer. The writer lets
you pick the file where it will save the printout in XPS (XML Paper Specification)
or OXPS (Open XPS) format.

Later, you can use Microsoft Reader to view the file. If you save the printout in the
XPS format, you can also view the file by opening it in Internet Explorer.

The WpfPrintShapes example program, which is available for download on this book’s website,
uses a paginator to create a printout. Figure 16-7 shows the program’s three pages displayed in
Microsoft Reader.

FIGuRE 16-7: The WpfPrintShapes example program
prints three pages .

www.EBooksWorld.ir

www.hellodigi.ir

382 ❘ ChAPtER 16 PrinTing

When the WpfPrintShapes example program executes, it displays a Print button. When you click the
button, the following code executes.

private void printButton_Click(object sender, RoutedEventArgs e)
{
 PrintDialog pd = new PrintDialog();
 if (pd.ShowDialog() == true)
 {
 // Print.
 pd.PrintDocument(
 new ShapesPaginator(
 new Size(pd.PrintableAreaWidth, pd.PrintableAreaHeight)),
 "Shapes");
 }
}

This code creates a PrintDialog object and calls its ShowDialog method to display it. If the user
selects a printer and clicks Print, the ShowDialog method returns true. In that case, the program calls
the dialog’s PrintDocument method, passing it a new ShapesPaginator object and a description of
the document being printed.

When the program creates the ShapesPaginator object, it passes the constructor a Size structure
representing the page’s printable area.

The ShapesPaginator object does all the interesting work of generating the document’s printed
pages. The following code shows the ShapesPaginator class, except for the GetPage method, which
is described shortly.

public class ShapesPaginator : DocumentPaginator
{
 // The area in which to print.
 private Size MyPageSize;

 // Save the page size.
 public ShapesPaginator(Size pageSize)
 {
 MyPageSize = pageSize;
 }

 // Create and return the requested page.
 public override DocumentPage GetPage(int pageNumber)
 {
 ...
 }

 // If pagination is in progress and PageCount is not final, return false.
 // If pagination is complete and PageCount is final, return true.
 // In this example, there is no pagination to do.
 public override bool IsPageCountValid
 {
 get { return true; }
 }

 // The number of pages paginated so far.

www.EBooksWorld.ir

www.hellodigi.ir

WPf Printing ❘ 383

 // This example has exactly 3 pages.
 public override int PageCount
 {
 get { return 3; }
 }

 // The suggested page size.
 public override Size PageSize
 {
 get { return MyPageSize; }
 set { MyPageSize = value; }
 }

 // The element currently being paginated.
 public override IDocumentPaginatorSource Source
 {
 get { return null; }
 }
}

The ShapesPaginator class inherits from DocumentPaginator. The class starts by declaring a pri-
vate MyPageSize variable to hold the available printing area. The class’s constructor takes a Size
parameter and saves it in MyPageSize.

To produce a printout, the class overrides the following four properties.

➤➤ IsPageCountValid—Some programs may need to paginate all the printout’s pages before
the final PageCount value is correct. In that case, this property should return false while
pagination is occurring and true after PageCount is set to its final correct value.

➤➤ PageCount—Returns the number of pages that have been formatted.

➤➤ PageSize—Gets or sets the suggested size of the printed page.

➤➤ Source—Returns the element being paginated.

The WpfPrintShapes example just prints three pages, so these overridden properties are relatively
simple. The program doesn’t need to format all the pages to determine how many pages there will
be, so IsPageCountValid always returns true, PageCount always returns 3, PageSize returns the
size saved by the class’s constructor, and Source returns null.

In a Windows Forms application, a PrintDocument raises a PrintPage event to generate a printed
page. Similarly, when a WPF application uses a paginator, it calls the paginator’s GetPage method
to get objects representing a printed page. The following code shows the GetPage method used by
the ShapesPaginator class.

// Create and return the requested page.
public override DocumentPage GetPage(int pageNumber)
{
 // Create a grid.
 Grid grid = new Grid();
 grid.Width = MyPageSize.Width;
 grid.Height = MyPageSize.Height;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

384 ❘ ChAPtER 16 PrinTing

 // Outline the drawing area.
 Rectangle rectangle = new Rectangle();
 rectangle.Width = MyPageSize.Width;
 rectangle.Height = MyPageSize.Height;
 rectangle.Stroke = Brushes.Orange;
 rectangle.StrokeThickness = 10.0;
 grid.Children.Add(rectangle);

 // Display the page number.
 TextBlock textBlock = new TextBlock();
 textBlock.Text = pageNumber.ToString();
 textBlock.FontSize = 300;
 textBlock.HorizontalAlignment = HorizontalAlignment.Center;
 textBlock.VerticalAlignment = VerticalAlignment.Center;
 grid.Children.Add(textBlock);

 // Generate the appropriate page.
 switch (pageNumber)
 {
 case 0: // Triangle.
 Polygon triangle = new Polygon();
 triangle.Stroke = Brushes.Red;
 triangle.StrokeThickness = 10.0;

 PointCollection triangle_pts = new PointCollection();
 triangle_pts.Add(new Point(MyPageSize.Width / 2, 0));
 triangle_pts.Add(new Point(MyPageSize.Width, MyPageSize.Height));
 triangle_pts.Add(new Point(0, MyPageSize.Height));
 triangle.Points = triangle_pts;
 grid.Children.Add(triangle);
 break;

 case 1: // Diamond.
 Polygon diamond = new Polygon();
 diamond.Stroke = Brushes.Green;
 diamond.StrokeThickness = 10.0;

 PointCollection diamond_pts = new PointCollection();
 diamond_pts.Add(new Point(MyPageSize.Width / 2, 0));
 diamond_pts.Add(new Point(MyPageSize.Width, MyPageSize.Height / 2));
 diamond_pts.Add(new Point(MyPageSize.Width / 2, MyPageSize.Height));
 diamond_pts.Add(new Point(0, MyPageSize.Height / 2));
 diamond.Points = diamond_pts;
 grid.Children.Add(diamond);
 break;

 case 2: // Ellipse
 Ellipse ellipse = new Ellipse();
 ellipse.Stroke = Brushes.Blue;
 ellipse.StrokeThickness = 10.0;
 ellipse.Width = MyPageSize.Width;
 ellipse.Height = MyPageSize.Height;

www.EBooksWorld.ir

www.hellodigi.ir

WPf Printing ❘ 385

 grid.Children.Add(ellipse);
 break;
 }

 // Make the grid arrange itself and its controls.
 Rect rect = new Rect(new Point(0, 0), MyPageSize);
 grid.Arrange(rect);

 // Wrap the grid in a DocumentPage and return it.
 return new DocumentPage(grid);
}

The code starts by creating a Grid control and making it fit the available print area.

Next, the program creates a Rectangle and makes it fit the available area. It sets the Rectangle’s
Stroke properties to draw an orange outline 10 pixels wide and adds the Rectangle to the Grid’s
children.

The code then creates a TextBlock to display the page number. It sets the object’s text, font size,
and alignment. It then adds the TextBlock to the Grid’s children.

By now you can probably see the pattern. The code creates a new object to represent some output,
sets its properties, and adds the object to the Grid’s children.

Now, depending on the page number, the code creates a polygon representing a triangle, a polygon
representing a diamond, or an ellipse.

After creating the content controls, the method calls the Grid’s Arrange method to make it arrange its
controls. It finishes by returning a new DocumentPage object. It passes the DocumentPage constructor
the root visual object that it should contain (the Grid in this example).

Creating documents
By using paginator objects as described in the preceding section, you can produce just about any
document you like, at least in theory. In practice creating a layout for a complicated multipage
printout with paragraphs flowing around pictures, tables, and charts would be a huge amount
of work. The FlowDocument and FixedDocument classes make this sort of complex layout task
much easier.

flowDocuments
A FlowDocument object holds other objects that represent graphical output such as text, images,
and shapes. It arranges its objects to take best advantage of whatever space is available, much as
a web browser rearranges its contents when it is resized.

There isn’t room here to completely cover XAML, and all the objects that can be contained in a
FlowDocument, but the WpfFlowDocument program, which is shown in Figure 16-8 and available
for download on this book’s website, can serve as a small example.

www.EBooksWorld.ir

www.hellodigi.ir

386 ❘ ChAPtER 16 PrinTing

FIGuRE 16-8: A FlowDocument rearranges its contents
much as a web browser does when it is resized .

The following code shows the XAML used by the WpfFlowDocument program.

<Window x:Class="WpfFlowDocument.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WpfFlowDocument" Height="350" Width="525">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="30"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Button Grid.Row="0"
 Content="Print" Click="printButton_Click"
 Width="100" Height="30" VerticalAlignment="Top"/>
 <FlowDocumentReader Grid.Row="1" VerticalAlignment="Top">
 <FlowDocument Name="sampleFlowDocument">
 <Paragraph FontSize="20" FontWeight="Bold">
 Chapter 1. Lorem Ipsum
 </Paragraph>

 <Paragraph FontSize="16" FontWeight="Bold">
 Dolor Sit Amet
 </Paragraph>

 <Paragraph>
 <Floater HorizontalAlignment="Right">
 <Paragraph>
 <Grid Width="100" Height="100">
 <Border BorderBrush="Black" BorderThickness="1"/>
 <Polygon
 Points="50,5 95,50 50,95 5,50"
 Stroke="Black" StrokeThickness="5" />

www.EBooksWorld.ir

www.hellodigi.ir

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

WPf Printing ❘ 387

 </Grid>
 </Paragraph>
 </Floater>
 Consectetur adipiscing elit ...
 </Paragraph>

 <Paragraph>
 Nullam dapibus dapibus ...
 </Paragraph>

 <Paragraph>
 Etiam lacus eros ...
 </Paragraph>

 </FlowDocument>
 </FlowDocumentReader>
 </Grid>
</Window>

The XAML code begins with a Window element that represents the program’s window. That element
contains a Grid with two rows: one that is 30 pixels tall and one that occupies the Grid’s remaining
vertical space.

Next, the code defines a Print Button in the Grid’s first row. The code then defines a
FlowDocumentReader to display the FlowDocument.

The FlowDocument element contains a sequence of Paragraph elements. The first two Paragraphs
define headings. The third includes a Floater element. A Floater represents content that can be
moved if necessary and around which other text can flow. In Figure 16-8 you can see how the text
flows around the Floater on the right.

In this example, the Floater contains a Paragraph that holds a Grid. The Grid contains a Border
and a Polygon.

The Floater is followed by more text in the same Paragraph.

Finally, the FlowDocument contains two other Paragraphs.

Printing a FlowDocument involves the following short but confusing sequence of steps.

 1. Display a PrintDialog as usual.

 2. Make an XpsDocumentWriter associated with the PrintDialog’s selected printer’s queue.

 3. Cast the FlowDocument into an IDocumentPaginatorSource.

 4. Use the XpsDocumentWriter’s Write method to write into the print queue. Pass the method
a paginator obtained by calling the FlowDocument’s DocumentPaginator property.

The following code shows how the WpfFlowDocument example prints.

private void printButton_Click(object sender, RoutedEventArgs e)
{
 PrintDialog pd = new PrintDialog();
 if (pd.ShowDialog() == true)

www.EBooksWorld.ir

www.hellodigi.ir

388 ❘ ChAPtER 16 PrinTing

 {
 // Make an XPS document writer for the print queue.
 XpsDocumentWriter xpsWriter =
 PrintQueue.CreateXpsDocumentWriter(pd.PrintQueue);

 // Turn the FlowDocument into an IDocumentPaginatorSource.
 IDocumentPaginatorSource paginatorSource =
 (IDocumentPaginatorSource)sampleFlowDocument;

 // Write into the writer using the document's paginator.
 xpsWriter.Write(paginatorSource.DocumentPaginator);
 }
}

fixedDocuments
Like a FlowDocument, a FixedDocument holds graphical objects. Instead of rearranging its objects
as space permits, a FixedDocument always places its objects in the same positions. This is similar to
the way a PostScript document displays items at fixed positions.

The WpfFixedDocument example program, which is shown in Figure 16-9, and available for
download on this book’s website, displays and prints a FixedDocument.

FIGuRE 16-9: A FixedDocument
positions its contents in set positions
on a fixed page .

The code to print a FixedDocument is similar to the code shown in the preceding section for print-
ing a FlowDocument.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

WPf Printing ❘ 389

To display a FixedDocument in XAML code, include a DocumentViewer to hold the FixedDocument.
Give the FixedDocument one or more PageContent elements to represent the printed pages. Each of
those should hold a FixedPage element to generate content for the pager.

The following code shows the piece of XAML code used by the WpfFixedDocument example program
to display its contents.

<DocumentViewer Grid.Row="1">
 <FixedDocument Name="sampleFixedDocument">
 <PageContent Width="850" Height="1100">
 <FixedPage Width="850" Height="1100" Margin="100">
 ... Page 1 content elements ...
 </FixedPage>
 </PageContent>
 <PageContent Width="850" Height="1100">
 <FixedPage Width="850" Height="1100" Margin="100">
 ... Page 1 content elements ...
 </FixedPage>
 </PageContent>
 </FixedDocument>
</DocumentViewer>

The details about how the program generates its content are long and not very interesting, so they
aren’t included here. They just use a long sequence of StackPanel, TextBlock, Grid, and other
controls to create the output. Download the example and look at the code to see how it works.

FIxEddOCuMENtS NEEd FIxING

There is a well-known bug in Visual Studio’s XAML designer that prevents it
from correctly displaying XAML code that contains a FixedDocument. If you load
XAML code into the designer, Visual Studio reports errors such as the following.

Property 'Pages' does not support values of type 'PageContent.'

The property 'Pages' is set more than once.

The specified value cannot be assigned. The following type was expected:
"PageContentCollection."

If the XAML code is properly formed, however, the program compiles and runs
without problems.

This has been a bug since the first version of WPF, so Microsoft doesn’t seem to
be rushing to fix this. I suspect it intends for programmers to use code to generate
these objects at run time instead of using XAML code at design time. That cer-
tainly works but is more work and is outside the scope of this book.

www.EBooksWorld.ir

www.hellodigi.ir

390 ❘ ChAPtER 16 PrinTing

SuMMARy

Windows Forms and WPF take different approaches to printing. In a Windows Forms application, a
PrintDocument object represents a printout. It raises events such as BeginPrint and PrintPage to
let the program determine what is printed. In the PrintPage event handler, you use Graphics, Pen,
and Brush objects to produce output.

WPF applications use objects more directly to represent items to be printed. When you use a pagina-
tor, you derive a class from DocumentPaginator and you override the class’s GetPage method to
produce output. That output takes the form of a DocumentPage object containing other objects such
as TextBlock, Rectangle, and Polygon objects that generate printed results.

If you prefer to use a FlowDocument or FixedDocument to produce output, you also use objects such
as TextBlock, Rectangle, and Polygon to generate printed results. If you place the FlowDocument
or FixedDocument inside a FlowDocumentReader or DocumentViewer, you can even use them as
previews for the printout they will produce.

The programs described before this chapter interact only with the user. Printing is one way a pro-
gram can interact with some other part of the system. The next chapter describes some other ways
that a C# program can interact with the system by storing configuration and resource values for
later use. These techniques let a program store and recover information between runs.

ExERCISES

To save paper, you may want to make all printing programs display print previews instead of printing.

 1. Write a Windows Forms program that uses 20-pixel-wide blue lines to draw five-, seven-,
and nine-pointed stars centered on three pages, as shown in Figure 16-10.

FIGuRE 16-10: For Exercise 1, make
a program that prints five-, seven-, and
nine-pointed stars .

Hint: You can use the following code to generate points for the stars.

private List<PointF> StarPoints(float centerX, float centerY,
 float radius, int numPoints)
{

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 391

 // Calculate the difference in angles between points.
 double dtheta = (2 * Math.PI / numPoints) * (int)(numPoints / 2);

 // Generate the points.
 List<PointF> points = new List<PointF>();
 double theta = -Math.PI / 2;
 for (int i = 0; i < numPoints; i++)
 {
 double x = centerX + radius * Math.Cos(theta);
 double y = centerY + radius * Math.Sin(theta);
 points.Add(new PointF((float)x, (float)y));
 theta += dtheta;
 }

 return points;
}

 2. Make a Windows Forms program that draws your name as large as possible centered inside
the page’s margins. (Hint: Use the Graphics object’s MeasureString method to see how big
the string will be when drawn with a particular font. Try fonts of different sizes until you find
the largest that works. You only need to try integral font sizes.)

 3. Make a Windows Forms program that generates prime numbers and prints them one per line
in a 12-point font until it reaches the bottom of the page. Draw the margin bounds to verify
that your text doesn’t go beyond them. (Hints: Use 1.2 times the height of an M for the spac-
ing between lines. To generate primes, use the AllPrimes iterator you built for Exercise 8 in
Chapter 14, “Collection Classes.”)

 4. Repeat Exercise 1 with a WPF program that uses a paginator.

 5. Repeat Exercise 1 with a WPF program that uses a FixedDocument. Hint: You don’t need
to create the stars at design time in XAML code. When the window loads, use code to add
pages containing the stars to the FixedDocument. (This book doesn’t explain how to build
WPF interfaces in code, but you should be able to figure it out with a little experimenta-
tion. Create new PageContent, FixedPage, Grid, and Polygon objects. Add them to the
appropriate objects’ Pages or Children collections. If you get stuck, look at the solution in
Appendix A “Solutions to Exercises,” and download the program described there.)

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

configuration and resources
whAt’S IN thIS ChAPtER

➤➤ Environment variables

➤➤ The registry

➤➤ Configuration files

➤➤ Resource files

➤➤ Localization

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Most applications can take different actions depending on circumstances. Some applications
decide how to act based on input provided by the user. Other applications use configuration
information to determine how to behave.

For example, an application might display different kinds of data for different kinds of users.
Data entry clerks, supervisors, managers, and billing specialists would all see different views of
the same database. Similarly, you might configure an application for different levels of support.
You might have different configurations for trial, basic, professional, and enterprise versions.

An application may also need to save state information between sessions. It might remember the
types of forms that were last running, their positions, and their contents. The next time the pro-
gram runs, it can restore those forms so that the user can get back to work as quickly as possible.

The .NET Framework provides many tools for storing and using application configuration and
resource information. This chapter describes some of the most useful of those tools. It explains
how an application can use environment variables, the registry, configuration files, resource
files, and the Application object to save and restore configuration information.

17

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.hiva-network.com/

394 ❘ ChAPtER 17 ConFiguraTion and resourCes

FILE NOt FOuNd

Configuration and resource files store information in files with specific formats.
This chapter doesn’t discuss more general uses of files. Reading and writing files,
manipulating the filesystem, working with databases (which may be stored in files),
and working with XML files are all topics covered by later chapters.

ENVIRONMENt VARIAbLES

Environment variables give information about the operating system environment in which the pro-
gram runs. They hold information such as the computer’s name, the user’s login name, the location
of the system’s temporary directory, the number of processors the system has, and the program’s
current working directory. You can also store configuration information in environment variables
for your programs to use.

There are three types of environment variables that apply at the system, user, and process levels.
System-level variables apply to all processes started on the system; user-level variables apply to
processes started by a particular user; and process-level variables apply to a particular process
and any other processes that it starts.

Environment variables are loaded when a process starts, and they are inherited by any process launched
by the initial process. During program development, variables are loaded when you start Visual Studio.
Their values are inherited by the program you are working on when you start it. If you make changes
to the system’s environment variables, you need to close and reopen Visual Studio before your program
can see the changes.

A program can also create temporary process-level variables that are inherited by any processes you
launch. Those values disappear when the original process ends.

A C# program can use the System.Environment class to read and write environment values. Before
you learn how to use that class, however, you should learn how the operating system sets environment
variables’ values.

Setting Environment Variables
Environment variables are normally set on a systemwide basis before the program begins. In older
operating systems, batch files such as autoexec.bat set these values. More recent systems provide
Control Panel tools to set environment variables.

Newer systems also use an autoexec.nt file to set environment variables that apply only to command-
line (console) applications, so they don’t affect GUI applications. Sometimes, you can use this fact to
your advantage by giving different kinds of applications different environment settings.

www.EBooksWorld.ir

www.hellodigi.ir

environment Variables ❘ 395

To set environment variables in newer versions of
Windows, open the Control Panel, and search for the
keyword “environment.” In Windows 8, open the
search tool, and search the Settings category for “envi-
ronment.” This search should produce two matches.

If you click the Edit the System Environment Variables
choice, you should see the System Properties tool’s
Advanced tab. Now click the Environment Variables
button to see the dialog, as shown in Figure 17-1.

If you click the Edit Environment Variables for Your
Account choice, you should see a dialog similar to the
one shown in Figure 17-1 except the bottom controls that
modify the system’s environment variables are disabled.

Use system variables when a value should apply to all
processes started by all users. User user-level variables
when a value should apply to all processes started by a
particular user.

REFRESh REMINdER

Remember that Visual Studio won’t see environment variable changes that you
make after it is running. You need to close and reopen Visual Studio before your
program will see the changes.

using System.Environment
The System.Environment class provides methods for getting and setting process-level environment
variables. It also provides properties and methods for working with many other items in the applica-
tion’s environment. The following table describes the Environment object’s most useful properties.

PROPERty PuRPOSE

CommandLine Returns the process’s command line .

CurrentDirectory Gets or sets the fully qualified path to the current directory .

ExitCode Gets or sets the processes’ exit code .

HasShutdownStarted Returns true if the Common Language Runtime is shutting down .

Is64BitOperatingSystem Returns true if this is a 64-bit operating system .

Is64BitProcess Returns true if the current process is a 64-bit process .

FIGuRE 17-1: You can use system tools to
set environment variables .

continues

www.EBooksWorld.ir

www.hellodigi.ir

396 ❘ ChAPtER 17 ConFiguraTion and resourCes

PROPERty PuRPOSE

MachineName Returns the computer’s NetBIOS name .

NewLine Returns the environment’s defined new line string . For example,
this might be a carriage return followed by a line feed .

OSVersion Returns an OperatingSystem object containing information
about the operating system . This object provides the properties
ServicePack (name of the most recent service pack installed),
Version (includes Major, Minor, Build, and Revision; ToString
combines them all), VersionString (combines the operating sys-
tem name, version, and most recent service pack), and Platform,
which can be UNIX, Win32NT (Windows NT or later), Win32S
(runs on 16-bit Windows to provide access to 32-bit applications),
Win32Windows (Windows 95 or later), or WinCE .

ProcessorCount Returns the number of processors on the computer .

StackTrace Returns a string describing the current stack trace .

SystemDirectory Returns the system directory’s fully qualified path .

TickCount Returns the number of milliseconds that have elapsed since the
system started .

UserDomainName Returns the current user’s network domain name .

UserInteractive Returns true if the process is interactive . This only returns false
if the application is a service process or web service .

UserName Returns the name of the user who started the process .

Version Returns a Version object describing the Common Language
Runtime . This object provides the properties Major, Minor,
Build, and Revision . Its ToString method combines them all .

WorkingSet Returns the amount of physical memory mapped to this process
in bytes .

The following table describes the System.Environment object’s most useful methods.

MEthOd PuRPOSE

Exit Ends the process immediately . FormClosing and
FormClosed event handlers do not execute .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

registry ❘ 397

MEthOd PuRPOSE

ExpandEnvironmentVariables Replaces environment variable names in a string with their
values . For example, the following code displays the name
of the user and the computer:

MessageBox.Show(Environment
.ExpandEnvironmentVariables("I am
%username% on %computername%."))

GetCommandLineArgs Returns an array of strings containing the application’s
command-line arguments . The first entry (with index 0) is
the name of the program’s executable file .

GetEnvironmentVariable Returns an environment variable’s value .

GetEnvironmentVariables Returns an IDictionary object containing the names and
values of all environment variables . An optional parameter
lets you determine whether you want to list variables defined
for the machine, user, or process .

GetFolderPath Returns the path to a system folder . This method’s parame-
ter is a SpecialFolder enumeration value such as Cookies,
Desktop, SendTo, or Recent . See the online help for a com-
plete list of available folders .

GetLogicalDrives Returns an array of strings containing the names of the
logical drives on the current computer .

SetEnvironmentVariable Creates, modifies, or deletes an environment variable .

The SetEnvironmentVariable method lets you set environment variables at the system, user,
and process levels. If you set a variable’s value to null, this method deletes the variable. For sys-
tem and user values, it updates the registry appropriately to set the values. For more information
on the SetEnvironmentVariable method, see msdn.microsoft.com/library/96xafkes.aspx.

NOtE A program needs privilege to write to the registry to set a system-level
environment variable.

REGIStRy

The system registry is a hierarchical database that stores values for applications on the system. The
hierarchy’s root is named Computer and is divided into the several subtrees called hives. Which hives
are available depends on your operating system. The following table summarizes the most commonly
available hives. (The “HKEY” part of each name stands for “hive key.”)

www.EBooksWorld.ir

www.hellodigi.ir

398 ❘ ChAPtER 17 ConFiguraTion and resourCes

REGIStRy bRANCh CONtAINS

HKEY_CLASSES_ROOT Definitions of types of documents and properties associated with
those types .

HKEY_CURRENT_CONFIG Information about the system’s current hardware configuration .

HKEY_CURRENT_USER The current user’s preferences (such as environment variable
settings, program group information, desktop settings, colors,
printers, network connections, and preferences specific to appli-
cations) . Each user has a separate HKEY_CURRENT_USER hive .

HKEY_DYN_DATA Performance data for Windows 95, 98, and Me . (Yes, this is a bit
outdated but this hive is still there .)

HKEY_LOCAL_MACHINE Information about the computer’s physical state including bus
type, system memory, installed hardware and software, and net-
work logon and security information .

HKEY_USERS Default configuration information for new users and the current
user’s configuration .

Depending on your operating system, the registry may also contain the unsupported keys
HKEY_PERFORMANCE_DATA, HKEY_PERFORMANCE_NLSTEXT, and HKEY_
PERFORMANCE_TEXT.

Many applications store information in the registry. The HKEY_CURRENT_USER subtree is
particularly useful for storing individual users’ preferences and other configuration information.

Lately, the registry has gone out of style for saving configuration information. Microsoft now recom-
mends that you store this kind of data locally within a user’s data storage area. This makes sense
because it makes it easier to copy the settings (they’re just files), helps reduce clutter in the registry,
and reduces the chances that mistakes will corrupt the registry. (If the registry is corrupted badly
enough, the system may become unbootable.) Instead of using the registry, you can store this informa-
tion in configuration files (see the section “Configuration Files” later in this chapter) or XML files (see
Chapter 24, “XML”).

The keys to manipulating the registry are the Registry and RegistryKey classes in the Microsoft
.Win32 namespace.

The Registry class provides static fields that return RegistryKey objects representing the registry’s
hives. The following list describes the Registry class’s hive fields.

FIELd hKEy EQuIVALENt

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYN_DATA

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

registry ❘ 399

FIELd hKEy EQuIVALENt

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

Each registry key can contain values, subkeys, both, or neither. The RegistryKey class provides
properties and methods that you can use to manipulate the key’s values and subkeys. The following
table summarizes the most useful RegistryKey properties and methods.

PROPERty OR MEthOd PuRPOSE

Close Closes the key and flushes its data to the disk if it was modified

CreateSubKey Creates a new subkey or opens an existing subkey for writing

DeleteSubKey Deletes a subkey

DeleteSubKeyTree Deletes a subkey and its subtree

DeleteValue Deletes a value from the key

Dispose Frees the object’s resources

Flush Writes the key’s data to the disk

GetAccessControl Returns access control security information for the key

GetSubKeyNames Returns an array holding the key’s subkey names

GetValue Returns a value

GetValueKind Returns a RegistryValueKind enumeration that indicates a
value’s type such as binary, multistring, or string

GetValueNames Returns an array holding the key’s value names

OpenSubKey Opens a subkey

Name Returns the key’s name

SetAccessControl Changes the key’s access control security settings

SetValue Sets a value for the key

SubKeyCount Returns the key’s number of subkeys

ValueCount Returns the key’s number of values

Using the Registry and RegistryKey classes is reasonably easy. Use a Registry field to get the
hive you want to use. Use the OpenSubKey and CreateSubKey methods to create or open existing

www.EBooksWorld.ir

www.hellodigi.ir

400 ❘ ChAPtER 17 ConFiguraTion and resourCes

keys. Use GetValue and SetValue to get and set values. When you finish modifying a key, use its
Close method to close it and ensure that the changes are written to disk.

POwERFuL PRIVILEGES

Windows protects the registry so that you cannot inadvertently damage critical
values. If you mess up some values, you can wreak havoc on the operating system,
and even make the system unbootable. To prevent possible chaos, newer versions of
Windows don’t let you edit some parts of the registry without elevated privileges.

Although the process is easy, it’s also fairly awkward. You can make the process easier if you write
GetRegistryValue and SetRegistryValue methods as shown in the following code.

public static class RegistryTools
{
 // Get a registry value.
 public static T GetRegistryValue<T>(RegistryKey hive,
 string subkeyName, string valueName, T defaultValue)
 {
 using (RegistryKey subkey = hive.OpenSubKey(subkeyName, false))
 {
 if (subkey == null) return defaultValue;
 T result = (T)subkey.GetValue(valueName, defaultValue);
 subkey.Close();
 return result;
 }
 }

 // Set a registry value.
 public static void SetRegistryValue<T>(RegistryKey hive,
 string subkeyName, string valueName, T value)
 {
 RegistryKey subkey = hive.OpenSubKey(subkeyName, true);
 if (subkey == null) subkey = hive.CreateSubKey(subkeyName);

 subkey.SetValue(valueName, value);
 subkey.Close();
 subkey.Dispose();
 }
}

A GENERIC tIP

These methods use a generic type parameter to make using them a bit more flexible.
For example, when you invoke the GetRegistryValue method, the program can
infer the data type T by the type of the final parameter. The method can then return
the appropriate data type, so the program doesn’t need to cast the result into the
correct data type.

www.EBooksWorld.ir

www.hellodigi.ir

registry ❘ 401

The following code uses the GetRegistryValue method to retrieve the value Left from the
Software\C# Projects\SaveRegistrySettings\Settings key in the HKEY_CURRENT_
USER hive.

int left = RegistryTools.GetRegistryValue(Registry.CurrentUser,
 @"Software\C# Projects\SaveRegistrySettings\Settings",
 "Left", 0);

Notice that the code specifies the complete path to the key. The code doesn’t need to slowly move
down through the registry hierarchy one key at a time.

Here I picked the location Software\C# Projects\SaveRegistrySettings\Settings somewhat
arbitrarily. The HKEY_CURRENT_USER hive already contains a Software key. I added the subkey
C# Projects to hold values saved by my C# projects. Inside that the subkey SaveRegistrySettings
holds values saved by the SaveRegistrySettings example program, which is available for download on
this book’s website. The final subkey, Settings, holds setting values for the program.

Even the preceding code is somewhat more verbose than really needed by the example program
because every call to get or set a registry value will use the same hive and key. To make things even
easier, the program defines the following two helper methods.

// Get a registry value.
private T GetValue<T>(string name, T defaultValue)
{
 return RegistryTools.GetRegistryValue(Registry.CurrentUser,
 @"Software\C# Projects\SaveRegistrySettings\Settings",
 name, defaultValue);
}

// Save a registry value.
private void SetValue<T>(string name, T value)
{
 RegistryTools.SetRegistryValue(Registry.CurrentUser,
 @"Software\C# Projects\SaveRegistrySettings\Settings",
 name, value);
}

These methods simply call the methods defined in the RegistryTools class, passing them the correct
hive and subkey path.

The program provides two buttons that let you set the form’s foreground and background colors. Then
when the program starts and stops, it gets and sets the saved colors plus the form’s size and position.
The following code shows how the program saves these values when the form is about to close.

// Save the current settings.
private void Form1_FormClosing(object sender,
 System.Windows.Forms.FormClosingEventArgs e)
{
 SetValue("Width", this.Width);
 SetValue("Height", this.Height);
 SetValue("Left", this.Left);
 SetValue("Top", this.Top);
 SetValue("BackColor", this.BackColor.ToArgb());
 SetValue("ForeColor", this.ForeColor.ToArgb());
}

www.EBooksWorld.ir

www.hellodigi.ir

402 ❘ ChAPtER 17 ConFiguraTion and resourCes

The following code shows how the program restores those values when it next starts.

// Restore saved settings.
private void Form1_Load(object sender, EventArgs e)
{
 // Allow the form to position itself.
 this.StartPosition = FormStartPosition.Manual;

 this.Width = GetValue("Width", this.Width);
 this.Height = GetValue("Height", this.Height);
 this.Left = GetValue("Left", this.Left);
 this.Top = GetValue("Top", this.Top);
 this.BackColor = Color.FromArgb(
 GetValue("BackColor", this.BackColor.ToArgb()));
 this.ForeColor = Color.FromArgb(
 GetValue("ForeColor", this.ForeColor.ToArgb()));
}

NEAtNESS COuNtS

As part of its uninstallation procedure, a program should remove any registry entries
it has made. All too often, programs leave the registry cluttered with garbage. This
not only makes it harder to figure out what real values the registry contains but can
also slow the system down.

In an attempt to combat this problem, Microsoft is promoting Xcopy compatibility,
where applications store values in configuration files instead of the registry. Then
you can easily copy and remove these files rather than modify the registry.

CONFIGuRAtION FILES

A configuration file stores information for a program to use at run time. You can change the values
in the configuration file and restart the program to make it use the new values. That lets you modify
the application’s behavior without needing to recompile the executable program.

The easiest way to use configuration files is through dynamic properties. Your program automatically
loads dynamic properties at run time from the configuration file.

To define the settings you need to bind to the dynamic properties, use Project ➪ Properties, and
click the Settings tab to see the property page shown in Figure 17-2. Use this page to define the
configuration settings to load at run time.

If you give a setting the Application scope, its value is shared by all users. Settings with User scope
are stored separately for each user, so different users can use and modify their own values.

After you define the settings, add a control to a form and select it. In the Properties window, expand
the ApplicationSettings entry at the top, click the PropertyBinding subitem, and click the ellipsis to
the right to display a list of the control’s properties.

www.EBooksWorld.ir

www.hellodigi.ir

configuration files ❘ 403

FIGuRE 17-2: Use the Settings page to define values that are stored in a
configuration file .

Select a property that you want to load
dynamically, and click the drop-down arrow
on the right to see a list of defined settings that
you might assign to the property. Figure 17-3
shows the Application Settings dialog box with
this drop-down list displayed for a control’s
ForeColor property. From the list, select the
setting that you want to assign to the property.

Visual Studio adds the setting to the pro-
gram’s configuration file. If you open Solution
Explorer and double-click the app.config entry,
you see the dynamic properties.

The following text shows the configuration
setting sections of an App.config file. The
userSettings section defines the settings
shown in Figure 17-2.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 ...
 </configSections>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
 </startup>
 <userSettings>
 <DynamicSettings.Properties.Settings>
 <setting name="GreetingText" serializeAs="String">
 <value>Welcome to the DynamicSettings program!</value>
 </setting>

FIGuRE 17-3: Use the drop-down list to assign a
setting to a dynamic property .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

404 ❘ ChAPtER 17 ConFiguraTion and resourCes

 <setting name="GreetingFont" serializeAs="String">
 <value>Comic Sans MS, 15.75pt, style=Bold</value>
 </setting>
 <setting name="GreetingForeColor" serializeAs="String">
 <value>Blue</value>
 </setting>
 <setting name="GreetingBackColor" serializeAs="String">
 <value>255, 255, 128</value>
 </setting>
 </DynamicSettings.Properties.Settings>
 </userSettings>
</configuration>

When you build the program, Visual Studio copies the App.config file into the executable directory
and gives it the same name as the program with .config added at the end. For example, the config file
for the DynamicSettings example program, which is available for download on this book’s website,
is called DynamicSettings.config. When the program starts, it loads the config file if it is present,
reads the settings, and assigns their values to any properties bound to them.

So far, this is just a roundabout way to set the control’s property values. The real benefit of this
method comes later when you want to change a setting. Simply edit the config file in the program’s
executable directory and make any changes you want. Now when you run the program, it uses the
new settings. Instead of recompiling the whole application, you only need to change the config file.
If you have distributed the application to a large number of users, you only need to give them the
revised configuration file and not a whole new executable.

Your program can also access the program’s settings as shown in the following code.

MessageBox.Show(Properties.Settings.Default.GreetingText);

MuLtIPLE CONFIGuRAtION FILES

You could define multiple config files and load them separately. For example, you
might use one config file to hold properties used in one part of a program and use
a second file to hold properties used by another part of the program.

However, loading config files manually takes some extra work and you don’t gain
much. Configuration files are just specially formatted XML files. Instead of using
config files, you could store settings in some other XML file or in a serialization
file. Chapter 24 explains how you can read XML files. Chapter 25, “Serialization,”
explains how to serialize and deserialize objects in files.

All the settings you defined are available in Properties.Settings.Default, and all are strongly
typed, so you don’t need to convert them from strings or objects into their correct types.

The Properties.Settings.Default object provides two other methods that can be useful for
working with settings. First, the Reload method reloads the settings from the config file. This is
useful if the program has modified the settings and you want to reload their original values.

www.EBooksWorld.ir

www.hellodigi.ir

resource files ❘ 405

Second, the Save method saves any changes the program has made into the config file. This method
can save only settings that have User scope. Settings with Application scope are read-only.

When a program closes, it automatically saves any changes to User scope settings. However, if the
program crashes, it does not have a chance to save any changes. If you want to be sure changes are
saved, call Properties.Settings.Default.Save after the settings have been changed.

RESOuRCE FILES

Like config files, resource files contain values that the application loads at run time. Config files are
intended to let you tweak one or two settings. The intent of resource files is to let you easily replace
a whole set of resources with another without recompiling.

One of the most common uses of resource files is to provide different resources for different lan-
guages. To create installation packages for different languages, you simply ship the executable and
a resource file that uses the right language. Alternatively, you can ship resource files for all the
languages you support and then let the application pick the appropriate file at run time based on
the user’s computer settings.

Resource files are not intended to store application configuration information and settings. They
are intended to hold values that you might want to change, but only infrequently. You should store
frequently changing data in configuration files or the system registry rather than in resource files.

The distinction is small and frankly somewhat arbitrary. Both configuration files and resource files
store data that you can swap without recompiling the application. Rebuilding resource files can be a
little more complex, however, so perhaps the distinction that configuration and setting data changes
more frequently makes some sense.

Resource files can also be embedded within a compiled application. In that case, you cannot swap
the resource file without recompiling the application. Although this makes embedded resource files
less useful for storing frequently changing information, they still give you a convenient place to group
resource data within the application. This is particularly useful if several parts of the application must
use the same pieces of data. For example, if every form should display the same background image, it
makes sense to store the image in a common resource file that they can all use.

The following sections describe the three most common types of resources: application, embedded,
and localization.

Application Resources
To create application resources in C#, select Project ➪ Properties, and click the Resources tab. Use the
drop-down on the left to select one of the resource categories: Strings, Images, Icons, Audio, Files, or
Other. Figure 17-4 shows the application’s Resources tab displaying the application’s images.

To add an existing file to the program’s resources, click the Add Resource drop-down list, and select
Add Existing File. Use the drop-down’s Add New String, Add New Icon, or Add New Text File
commands to add new items from scratch. The drop-down’s New Image item opens a cascading
submenu that lets you create new PNG, BMP, GIF, JPEG, and TIFF images.

www.EBooksWorld.ir

www.hellodigi.ir

406 ❘ ChAPtER 17 ConFiguraTion and resourCes

FIGuRE 17-4: Use the Resources tab to define images
and other resources used by the application .

When you create application resources, Visual Studio automatically generates code that adds
strongly typed resource properties to the Properties.Resources class. Your program can use
those resources as needed. For example, the ApplicationResources example program, which is
available for download on this book’s website, uses the following code to make its form display
the image resource named HalfJack2.

private void Form1_Load(object sender, EventArgs e)
{
 this.BackgroundImage = Properties.Resources.HalfJack2;
}

Embedded Resources
Normally, when you add a resource to a program, Visual Studio stores it in the file Resources.resx.
(You can see that file in Project Explorer if you expand the Properties entry. Double-clicking that file
opens the Resources property page.)

You can also add other resource files to the application. Select Project ➪ Add New Item. Pick the
Resources File template, give the file a meaningful name, and click OK.

After you add a resource file to the project, you can double-click it in Solution Explorer to open it
in the resource editor. Then you can add resources to the file exactly as you do for the application’s
resource file.

Just as it generates strongly typed properties for application resources, Visual Studio generates sim-
ilar code for other embedded resource files. You can access these properties by adding the resource
file’s name after the resource file’s name. For example, to use the image resource named Logo from
the Images resource file, the program would use Images.Logo.

www.EBooksWorld.ir

www.hellodigi.ir

resource files ❘ 407

Localization Resources
One of the most important reasons for inventing resource files was to allow localization: supporting
different text, images, and other items for different languages and cultures. Resources make localiza-
tion in Visual Studio .NET easy.

First, create a form using whatever language you typically use from day to day. For me, that’s English
as spoken in the United States. Open the form in the form designer and give it whatever controls you
need. Set the form’s and controls’ properties as usual.

Next, set the form’s Localizable property to true and set the form’s Language property to the
first language you want to support other than the default language that you have been working
with so far. Modify the controls’ properties for the new language.

As you modify a form, Visual Studio saves the changes you make to a new resource file attached to
the form. If you open Solution Explorer and expand the form’s entry, you can see these resource files
below the form’s file.

Example program Localized uses default settings for United States English. It also includes localiza-
tions for generic German (as opposed to German as spoken in Switzerland, Germany, Liechtenstein,
or some other country). If you expand the form’s entry in Solution Explorer, you’ll find the files
Form1.resx holding the default settings and Form1.de.resx holding the German settings.

When you build the program, Visual Studio compiles the resources and saves them in a DLL file
named Localized.resources.dll in a directory named after the locale. (The “Localized” part of the file’s
name comes from the program’s name.) At run time, the application automatically checks the com-
puter’s regional settings and selects the resource file that matches most closely.

For example, suppose your computer is configured for the German/Switzerland (de-CH) locale.
The program first looks for Localized.resources.dll in a subdirectory named de-CH. If it doesn’t
find the DLL, it looks for the generic German resources DLL in the subdirectory de (the code for
generic German). If the program still can’t find a resource DLL, it uses the default implementation
that is included in the form itself.

Later, if you need to modify the resources for a locale, you can rebuild the application and then copy
the new Localized.resources.dll into the appropriate subdirectory.

Normally, you should let the application pick the appropriate resource file automatically, but you
can explicitly select a resource file for testing purposes. To do that, open the form’s code file and
add the following using directives.

using System.Threading;
using System.Globalization;

Next, find the form’s constructor and add the bold lines shown in the following code.

public Form1()
{
 // Set the culture and UI culture to German.
 Thread.CurrentThread.CurrentCulture = new CultureInfo("de-DE");
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("de-DE");

 InitializeComponent();
}

www.EBooksWorld.ir

www.hellodigi.ir

408 ❘ ChAPtER 17 ConFiguraTion and resourCes

Now when the form is created, it loads the resources for the German de-DE localization. (The
Localized example program includes these lines commented out. Uncomment them to make the pro-
gram load the German localization.)

CuLtuRE COMES FIRSt

The program must set the culture and user interface culture before it calls
InitializeComponent because InitializeComponent is where the program
sets the form and control properties.

For a list of culture codes, see msdn.microsoft.com/library/ee825488.aspx.

SuMMARy

Visual Studio provides many ways to store application configuration and resource information.
Some of the most useful of these methods include environment variables, the registry, configuration
files, and resource files.

The registry and configuration files generally hold user-specific information that changes relatively
often. You can use them to store information such as user preferences and form layout.

You can store less volatile resources that determine the application’s appearance in resource files. You
can use embedded resource files to hold images, strings, audio, and other resources.

If you will distribute the application in multiple languages, localized resource files make displaying
locale-appropriate resources easier. If necessary, you can change the data stored in configuration and
resource files and redistribute them to your users without rebuilding the entire application.

Using all these techniques, you can make your application easily configurable. You can satisfy the
needs of different kinds of users and customize the application without recompiling it.

This chapter explained ways that a program can save configuration and resource information using
tools such as the registry, environment variables, and resource files. Generally, these kinds of data
are of relatively limited size. If an application needs to store larger amounts of data, it should prob-
ably use a database or file.

The next chapter explains classes that a C# application can use to work with stream data in general
and files in particular. Using streams attached to files, a program can read and write large amounts
of data without cluttering up the registry, environment variables, or resource files.

ExERCISES

 1. Write a program that lists all the environment variables at the machine, user, and
process levels.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 409

 2. Write a program that displays the version of Visual Studio that it is running. (Hint: Look
through the environment variables until you find the one you need.) What happens if you
run the program by double-clicking the compiled executable? Why does that happen?

 3. If you type the name of a program at a command prompt, the operating system checks
the locations defined by the PATH environment variable to try to find the program. Write
a program that displays the paths listed in the PATH variable.

 4. Write a program that has TextBoxes for first name, last name, street, city, and ZIP code.
Also give it a ComboBox for selecting a state. Make the program load and save the con-
trols’ values when it starts and stops. (Hint: You don’t need to save and restore each value
separately. Instead loop through the form’s Controls collection and save and restore the
value for TextBoxes and ComboBoxes.)

 5. Write a program that displays a label with the font loaded from a configuration file. Initially,
use 20-point Times New Roman and run the program. Then manually edit the config file
to use 30-point Comic Sans MS and run the compiled executable. What happens if you then
run the program from Visual Studio? What happens if you delete the config file and run the
compiled executable? What happens if you then run the program from Visual Studio?

 6. Localization lets you localize control properties, but you can use a similar technique to local-
ize resources that are not stored in control properties. Create a program, add a new resource
file named MyStrings.resx, and give it a string resource named Greeting with value
“Hello.” Now create a second resource file named MyStrings.fr.resx, and give it a string
resource named Greeting with value Salut. In the form’s Load event handler, display the
value in a message box. What happens when your program loads the French locale (fr-FR)?
What localization directories and files does Visual Studio create?

 7. Setting the current thread’s culture does more than make the program load the right local-
ized resources. It also makes locale-aware methods such as those that use standard number,
currency, and date formats display results that are appropriate for the locale.

Write a program that displays the locale, current date, and the currency amount 12,345.67
in each of the following locales: fr-FR, de-DE, de-CH, es-MX, es-ES, en-US, and en-GB.
(Hint: Set the CurrentCulture as shown in the section “Localization Resources.” Use the
ToShortDateString method to format the date. Use ToString("C") to format the cur-
rency value.)

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

streams
whAt’S IN thIS ChAPtER

➤➤ Stream, FileStream, and MemoryStream classes

➤➤ Stream readers and writers

➤➤ Opening text files

➤➤ Special stream classes

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

At a basic level, all pieces of data are just collections of bytes. The computer doesn’t actually store
invoices, employee records, and recipes. At its most basic level, the computer stores bytes of infor-
mation. (Or even bits, but the computer naturally groups them in bytes.) It is only when a pro-
gram interprets those bytes that they acquire a higher-level meaning that is valuable to the user.

Usually it’s not helpful to treat high-level data as undifferentiated bytes, but there are times when
it’s useful to ignore the higher-level structure of the data and treat it as just a bunch of bytes.

One important way of thinking about data is the stream, an ordered series of bytes. Files, data
flowing across a network, messages moving through a queue, and even the memory in an array
can all fit this description.

Defining the abstract idea of a stream lets applications handle these different types of objects
uniformly. For example, a cryptographic algorithm can process the bytes in a stream without
knowing whether they represent employees, prescription information, or an image.

Visual Studio provides several classes for manipulating different kinds of streams. It also
provides higher-level classes for working with streams that represent specific kinds of data.
For example, it includes classes for working with streams that represent text files.

18

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

412 ❘ ChAPtER 18 sTreams

This chapter describes some of the classes you can use to manipulate streams. It explains lower-level
classes that you may use only rarely and higher-level classes that let you read and write strings and
files relatively easily.

The following table summarizes the most useful stream classes.

CLASS uSE

Stream The parent class of other stream classes . Tools that
manipulate streams in the most general way work with
Stream objects .

FileStream Read and write bytes in a file .

MemoryStream Read and write bytes in memory .

BinaryReader, BinaryWriter Read and write specific data types in a stream .

StringReader, StringWriter Read and write text with or without new lines in a string .

StreamReader, StreamWriter Read and write text with or without new lines in a stream
(usually a file stream) .

tIP All these classes are in the System.IO namespace, so if you use them, you
may want to include the following using directive in your code.

using System.IO;

The following sections describe some of these classes in greater detail.

StREAM

The Stream class defines properties and methods that derived stream classes must provide. These let
the program perform relatively generic tasks with streams such as determining whether the stream
allows writing and deciding when the stream has reached its end.

The following table describes the Stream class’s most useful properties.

PROPERty PuRPOSE

CanRead True if the stream supports reading .

CanSeek True if the stream supports seeking to a particular position in the stream .

CanTimeout True if the stream supports timing out of read and write operations .

CanWrite True if the stream supports writing .

www.EBooksWorld.ir

www.hellodigi.ir

stream ❘ 413

PROPERty PuRPOSE

Length The number of bytes in the stream .

Position The stream’s current position . For a stream that supports seeking, the pro-
gram can set this value to move to a particular position .

ReadTimeout The number of milliseconds that a read operation waits before timing out .

WriteTimeout The number of milliseconds that a write operation waits before timing out .

The following table describes the Stream class’s most useful methods.

MEthOd PuRPOSE

BeginRead Starts an asynchronous read .

BeginWrite Starts an asynchronous write .

Close Closes the stream and releases its resources .

Dispose Releases the stream’s resources .

EndRead Waits for an asynchronous read to finish .

EndWrite Ends an asynchronous write .

Flush Flushes data from the stream’s buffers into the underlying
storage such as a file or piece of memory .

Read Reads bytes from the stream and advances its position by
that number of bytes .

ReadByte Reads a byte from the stream and advances its position by
one byte .

Seek If the stream supports seeking, sets the stream’s position .

SetLength Sets the stream’s length . If the stream is currently lon-
ger than the new length, it is truncated . If the stream is
shorter than the new length, it is enlarged . The stream
must support both writing and seeking for this method
to work .

Write Writes bytes into the stream and advances the current
position by this number of bytes .

WriteByte Writes 1 byte into the stream and advances the current
position by 1 byte .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

414 ❘ ChAPtER 18 sTreams

PROPER CLEANuP

Because the Stream class has a Dispose method, you should use it when you are
done with the object. You can use the using statement to make disposing of the
object automatic.

To clean up properly, the Dispose method flushes any buffered output and closes
the stream. That means if you call Dispose, you don’t need to call Flush or Close.

For more information about the Stream class, see msdn.microsoft.com/system.io.stream.aspx.

FILEStREAM

The FileStream class represents a stream associated with a file. Its parent class Stream defines most of
its properties and methods. See the preceding section for descriptions of those properties and methods.

FileStream adds two useful new properties to those it inherits from Stream. First, IsAsync returns
true if the FileStream was opened asynchronously. Second, the Name property returns the name of
the file passed into the object’s constructor.

The class also adds two new, useful methods to those it inherits from Stream. The Lock method
locks the file, so other processes can read it but not modify it. Unlock removes a previous lock.

Overloaded versions of the FileStream class’s constructor let you specify the following.

➤➤ A filename or file handle

➤➤ File mode (Append, Create, CreateNew, Open, OpenOrCreate, or Truncate)

➤➤ Access mode (Read, Write, or ReadWrite)

➤➤ File sharing (Inheritable, which allows child processes to inherit the file handle; None;
Read; Write; or ReadWrite)

➤➤ Buffer size

➤➤ File options (Asynchronous, DeleteOnClose, Encrypted, None, RandomAccess,
SequentialScan, or WriteThrough)

Example program WriteIntoFileStream, which is available for download on this book’s website, uses
the following code to create and write into a text file.

string filename = filenameTextBox.Text;
using (FileStream filestream = new FileStream(filename, FileMode.Create))
{
 byte[] bytes = new UTF8Encoding().GetBytes(textTextBox.Text);
 filestream.Write(bytes, 0, bytes.Length);
}

www.EBooksWorld.ir

www.hellodigi.ir

memorystream ❘ 415

This code gets the file’s name from the filenameTextBox. It passes the name and the file access
parameter Create to the FileStream constructor.

The UTF8Encoding object represents UTF-8 encoded characters. The code creates such an object
and uses its GetBytes method to create a byte array representing the text in textTextBox.

The code then writes the bytes into the file stream. The using statement ensures that the stream is
disposed, and that flushes and closes the stream.

NOtE The 8-bit UTF encoding is the most popular type on the web; although,
there are other encoding formats such as UTF-7 and UTF-16. For additional
information, see unicode.org/faq/utf_bom.html and en.wikipedia.org/
wiki/Unicode.

As this example demonstrates, the FileStream class provides only low-level methods for reading
and writing files. These methods let you read and write bytes, but not integers, strings, or the other
types of data that you are more likely to want to use.

The BinaryReader and BinaryWriter classes make it easier to work with binary data. Similarly,
the StringReader and StringWriter classes make it easier to work with strings. See the sections
“BinaryReader and BinaryWriter” and “StringReader and StringWriter” later in this chapter
for more information on those classes.

MEMORyStREAM

The MemoryStream class represents a stream with data stored in memory. Like the FileStream
class, it provides relatively primitive methods for reading and writing data. Usually, you’ll want to
attach a higher-level object to the MemoryStream to make it easier to use.

Example program WriteIntoMemoryStream, which is available for download on this book’s website,
uses the following code to write and read from a MemoryStream object.

// Create the stream.
MemoryStream stream = new MemoryStream();

// Write into the stream.
BinaryWriter writer = new BinaryWriter(stream);
writer.Write(textTextBox.Text);

// Read from the stream.
stream.Seek(0, SeekOrigin.Begin);
BinaryReader reader = new BinaryReader(stream);
MessageBox.Show(reader.ReadString());

// Clean up.
writer.Dispose();
reader.Dispose();
stream.Dispose();

www.EBooksWorld.ir

www.hellodigi.ir

416 ❘ ChAPtER 18 sTreams

The code first creates a MemoryStream. It then creates a BinaryWriter associated with the stream
and uses its Write method to write a string into it.

Next, the code uses the Seek method to rewind the stream to the beginning of the data. It then creates
a BinaryReader associated with the stream, uses its ReadString method to read a string from the
stream, and displays the string in a message box.

The code finishes by disposing of the objects it used. This is a bit more confusing than usual
because the reader and writer are associated with the stream. When the program disposes of the
reader or writer, those objects automatically close their underlying stream. That means you cannot
dispose of the writer before you finish with the reader. If you are careful, you can use a properly
ordered sequence of using statements, but this example seems simpler if you just dispose of the
objects all at once at the end.

bINARyREAdER ANd bINARywRItER

The BinaryReader and BinaryWriter classes are helper classes that work with stream classes.
They provide an interface that makes it easier to read and write data in a stream. For example, the
BinaryReader class’s ReadInt32 method reads a 4-byte (32-bit) signed integer from the stream.
Similarly, the ReadUInt16 method reads a 2-byte (16-bit) unsigned integer.

These classes still work at a relatively low level, and you should generally use higher-level classes to
read and write data if possible. For example, you shouldn’t tie yourself to a particular representation
of an integer (32- or 16-bit) unless you must.

Both the BinaryReader and BinaryWriter classes have a BaseStream property that returns a
reference to the underlying stream. Note that their Close and Dispose methods automatically
close their underlying streams.

The following table describes the BinaryReader class’s most useful methods.

MEthOd PuRPOSE

Close Closes the BinaryReader and its underlying stream .

PeekChar Reads the stream’s next character but does not advance
the reader’s position .

Read Reads characters from the stream and advances the read-
er’s position .

ReadBoolean Reads a bool from the stream and advances the reader’s
position by 1 byte .

ReadByte Reads a byte from the stream and advances the reader’s
position by 1 byte .

www.EBooksWorld.ir

www.hellodigi.ir

Binaryreader and BinaryWriter ❘ 417

MEthOd PuRPOSE

ReadBytes Reads a specified number of bytes from the stream into
a byte array and advances the reader’s position by that
number of bytes .

ReadChar Reads a char from the stream and advances the reader’s
position appropriately for the stream’s encoding .

ReadChars Reads a specified number of chars from the stream, returns
the results in a char array, and advances the reader’s posi-
tion appropriately for the stream’s encoding .

ReadDecimal Reads a decimal value from the stream and advances the
reader’s position by 16 bytes .

ReadDouble Reads an 8-byte double from the stream and advances
the reader’s position by 8 bytes .

ReadInt16 Reads a 2-byte short from the stream and advances the
reader’s position by 2 bytes .

ReadInt32 Reads a 4-byte int from the stream and advances the
reader’s position by 4 bytes .

ReadInt64 Reads an 8-byte long from the stream and advances the
reader’s position by 8 bytes .

ReadSByte Reads a signed sbyte from the stream and advances the
reader’s position by 1 byte .

ReadSingle Reads a 4-byte float from the stream and advances the
reader’s position by 4 bytes .

ReadString Reads a string from the current stream and advances the
reader’s position past it .

ReadUInt16 Reads a 2-byte unsigned ushort from the stream and
advances the reader’s position by 2 bytes .

ReadUInt32 Reads a 4-byte unsigned uint from the stream and
advances the reader’s position by 4 bytes .

ReadUInt64 Reads an 8-byte unsigned ulong from the stream and
advances the reader’s position by 8 bytes .

www.EBooksWorld.ir

www.hellodigi.ir

418 ❘ ChAPtER 18 sTreams

The following table describes the BinaryWriter class’s most useful methods.

MEthOd PuRPOSE

Close Closes the BinaryWriter and its underlying stream .

Flush Writes any buffered data into the underlying stream .

Seek Sets the position within the stream .

Write Writes a value into the stream . This method has many
overloaded versions to write char, char[], int, string,
ulong, and other data types into the stream .

For more information about these classes, see msdn.microsoft.com/system.io.binarywriter
.aspx and msdn.microsoft.com/system.io.binaryreader.aspx.

tExtREAdER ANd tExtwRItER

Like the BinaryReader and BinaryWriter classes, the TextReader and TextWriter classes provide
an interface for an underlying stream. As you can probably guess from their names, these classes
provide methods for working with text.

TextReader and TextWriter are abstract classes, so you cannot create instances of them. They define
behaviors for the derived classes that you can instantiate.

For example, the StringWriter and StreamWriter classes derived from TextWriter let a program
write characters into a string or stream, respectively.

Normally, you would use these derived classes to read and write text, but you might want to use
the TextReader or TextWriter classes to manipulate the underlying classes more generically.
You may also find .NET Framework methods that require a TextReader or TextWriter object
as a parameter. In that case, you could pass the method either a StringReader/StringWriter
or a StreamReader/StreamWriter. (For more information on these classes, see the sections
“StringReader and StringWriter” and “StreamReader and StreamWriter” later in this chapter.)

The following table describes the TextReader class’s most useful methods.

MEthOd PuRPOSE

Close Closes the reader and releases its resources .

Peek Reads the next character from the input without chang-
ing the reader’s state, so other methods can read the
character later .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

stringreader and stringWriter ❘ 419

MEthOd PuRPOSE

Read Reads data from the input . Overloaded versions of this
method read a single char or an array of char up to a
specified length .

ReadBlock Reads data from the input into an array of char .

ReadLine Reads a line of characters from the input and returns the
data in a string .

ReadToEnd Reads any remaining characters in the input and returns
them in a string .

The TextWriter class has three useful properties. Encoding specifies the text’s encoding (ASCII,
UTF-8, Unicode, and so forth).

The FormatProvider property returns an object that controls formatting. For example, you can build
a FormatProvider object that knows how to display numbers in different bases (such as hexadecimal
or octal).

The NewLine property gets or sets the string used by the writer to end lines. Usually, this value is
something similar to a carriage return or a carriage return plus a line feed.

The following table describes the TextWriter class’s most useful methods.

MEthOd PuRPOSE

Close Closes the writer and releases its resources .

Flush Writes any buffered data into the underlying stream .

Write Writes a value into the stream . This method has many
overloaded versions that write char, char[], int, string,
ulong, and other data types .

WriteLine Writes data into the output followed by the new-line
sequence .

For more information about the TextWriter and TextReader classes, see msdn.microsoft.com/
system.io.textwriter.aspx and msdn.microsoft.com/system.io.textreader.aspx.

StRINGREAdER ANd StRINGwRItER

The StringReader and StringWriter classes let a program read and write text in a string.

These classes are derived from TextReader and TextWriter, so they inherit most of their properties
and methods from those classes. See the preceding section for details.

www.EBooksWorld.ir

www.hellodigi.ir

420 ❘ ChAPtER 18 sTreams

The StringReader class provides methods for reading lines, characters, or blocks of characters
from a string. The StringReader class’s constructor takes as a parameter the string that it should
process. Its ReadToEnd method returns the part of the string that has not already been read.

The StringWriter class lets an application build a string. It provides methods to write text into
the string with or without a new-line sequence afterward. Its ToString method returns the string
represented by the object.

The StringWriter stores its string in an underlying StringBuilder object. The StringBuilder class
is designed to make incrementally building a string more efficient than building a string by concat-
enating a series of values onto a string variable. For example, if an application needs to build a large
string by concatenating a series of long substrings, it may be more efficient to use a StringBuilder
rather than add the strings to a normal string variable by using the + operator. StringWriter pro-
vides a simple interface to the StringBuilder class.

The most useful method provided by StringWriter that is not defined by the TextWriter parent
class is GetStringBuilder. This method returns a reference to the underlying StringBuilder object
that holds the object’s data.

Example program StringWriterAndReader, which is available for download on this book’s website,
uses the following code to demonstrate the StringWriter and StringReader classes.

// Use a StringWriter to write into a string.
using (StringWriter writer = new StringWriter())
{
 // Write the strings entered by the user.
 writer.WriteLine(textBox1.Text);
 writer.WriteLine(textBox2.Text);
 writer.WriteLine(textBox3.Text);

 // Display the result.
 string result = writer.ToString();
 MessageBox.Show(result);

 // Read the result with a StringReader.
 using (StringReader reader = new StringReader(result))
 {
 // Read one line.
 MessageBox.Show(reader.ReadLine());
 // Read the rest.
 MessageBox.Show(reader.ReadToEnd());
 }
}

The code starts by creating a StringWriter and using its WriteLine method three times to add the
text entered by the user in TextBoxes to the string.

The code then saves the StringWriter’s underlying string into the variable result and displays it
in a message box.

Next, the code creates a StringReader associated with the result string. It uses the reader’s
ReadLine method to read one line from the string and displays it. The program finishes by using
the ReadToEnd method to read and display the rest of the string.

www.EBooksWorld.ir

www.hellodigi.ir

streamreader and streamWriter ❘ 421

StREAMREAdER ANd StREAMwRItER

The StreamReader and StreamWriter classes let a program read and write data in a stream, usually
a FileStream. You can pass a FileStream into these classes’ constructors, or you can pass a filename
and the object creates a FileStream automatically.

The StreamReader class provides methods for reading lines, characters, or blocks of characters
from the stream. Its ReadToEnd method returns any parts of the stream that have not already been
read. The EndOfStream property is true when the StreamReader has reached the end of its stream.

Example program ReadLines, which is available for download on this book’s website, uses the
following code fragment to read the lines from a file and add them to a ListBox control.

using (StreamReader reader = new StreamReader("Animals.txt"))
{
 // Read until we reach the end of the file.
 do
 {
 animalListBox.Items.Add(reader.ReadLine());
 }
 while (!reader.EndOfStream);
}

The StreamWriter class provides methods to write text into the stream with or without a new-line
character.

StreamReader and StreamWriter are derived from the TextReader and TextWriter classes and
inherit most of their properties and methods from those classes. See the section “TextReader
and TextWriter” earlier in this chapter for a description of those properties and methods.

The StreamWriter class adds a new AutoFlush property that determines whether the writer flushes
its buffer after every write. This is useful if the program periodically writes to the same file and you
want to make sure the contents are flushed. For example, a program could write into a log file every
few minutes. If you set AutoFlush to true, then the output is always written into the file, so you can
use Notepad or some other program to look at the file and see the latest entries.

Example program WriteLog, which is available for download on this book’s website, uses the following
code to demonstrate the StreamWriter class’s AutoFlush property.

// The log file stream.
private StreamWriter Writer;

// Open the log file.
private void Form1_Load(object sender, EventArgs e)
{
 Writer = new StreamWriter("Log.txt", true);
 Writer.AutoFlush = true;
}

// Write an entry into the log.
private void writeButton_Click(object sender, EventArgs e)
{
 Writer.WriteLine(DateTime.Now.ToString() + ": " + entryTextBox.Text);

www.EBooksWorld.ir

www.hellodigi.ir

422 ❘ ChAPtER 18 sTreams

 entryTextBox.Clear();
 entryTextBox.Focus();
}

// Close the log file.
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 Writer.Dispose();
}

The program’s Form_Load event handler opens the log file and sets the StreamWriter’s AutoFlush
property to true.

When you click its Write button, the program adds the current time and the text you entered in the
TextBox to the log file.

The program’s FormClosing event handler disposes of the StreamWriter.

While the program is running, use Notepad to view the log file and see the most recent entries.
Comment out the code that sets AutoFlush to true and run the program again to see what happens.

ExIStS, OPENtExt, CREAtEtExt, ANd APPENdtExt

The System.IO.File class provides four shared methods that are particularly useful for working with
StreamReader and StreamWriter objects associated with text files. The following table summarizes
these four methods.

MEthOd PuRPOSE

Exists Returns true if a file with a given path exists

OpenText Returns a StreamReader that reads from an existing
text file

CreateText Creates a new text file, overwriting the file if it exists,
and returns a StreamWriter that lets you write into the
new file

AppendText Opens or creates the file and returns a StreamWriter that
lets you append text at the end of the file

MAKE SuRE It ExIStS

Before you try to open a file, use File.Exists to see if it’s there. Testing to see
whether the file exists is faster and more proactive than using a try catch block.

Of course, you should still probably use a try catch block in case you cannot
open the file, for example, if it is locked by another program.

www.EBooksWorld.ir

www.hellodigi.ir

summary ❘ 423

CuStOM StREAM CLASSES

The .NET Framework also provides a few other stream classes with more specialized uses.

The CryptoStream class applies a cryptographic transformation to the data passing through it.
For example, if you attach a CryptoStream to a file, the CryptoStream can automatically encrypt
or decrypt the data as it reads or writes to the file. (Chapter 27, “Cryptography,” has more to say
about cryptography.)

The NetworkStream class represents a socket-based stream over a network connection. You can use
this class to make different applications communicate over a network. For more information about this
class, see msdn.microsoft.com/library/system.net.sockets.networkstream.aspx.

Three special streams represent a program’s standard input, standard output, and standard error.
Console applications define these streams for reading and writing information to and from the
console. Applications can also interact directly with these streams by accessing the Console class’s
In, Out, and Error properties. A program can change those streams to new stream objects such as
StreamReaders and StreamWriters by calling the Console class’s SetIn, SetOut, and SetError
methods. For example, a program could redirect the error stream into a file. For more information
on these streams, see msdn.microsoft.com/library/system.console.aspx.

StANdARd NAMES

Sometimes programmers refer to the standard output, input, and error streams by
their traditional names: stdin, stdout, and stderr.

SuMMARy

Streams let a program treat a wide variety of data sources in a uniform way. That’s useful for gen-
eralizable methods such as cryptographic algorithms or data compression routines, but in practice
you often want to use specialized classes that make working with particular kinds of data easier.

For example, the StringReader and StringWriter classes read and write text in strings, and the
StreamReader and StreamWriter classes read and write text in streams (usually files). The File
class’s Exists, OpenText, CreateText, and AppendText methods are particularly useful for working
with StreamReader and StreamWriter objects associated with text files.

Stream classes let a program interact with files. The next chapter explains other classes that you can
use to interact with the filesystem. These classes let a program examine, rename, move, and delete
files and directories.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

424 ❘ ChAPtER 18 sTreams

ExERCISES

 1. The WriteIntoMemoryStream example program uses Dispose statements to free its
MemoryStream, BinaryWriter, and BinaryReader objects. Rewrite the code with using
statements instead. Which version is easier to read?

 2. What happens if you don’t dispose of a stream attached to a file? A memory stream? Which
case is worse?

 3. Write a program that reads and uses File class methods and streams to save and restore
some text when it starts and stops. When it starts, the program should open a text file (if
it exists) and display its contents in a multiline TextBox. When it is closing, the program
should save the TextBox’s contents into the file, overwriting its previous contents.

 4. One way a solution to Exercise 3 can save text is by using a StreamWriter’s Write or
WriteLine method. Which of those methods should you use and why?

 5. Modify the program you wrote for Exercise 3 to prompt the user to ask if it should overwrite
the file. Take appropriate action when the user clicks Yes, No, or Cancel.

 6. Write a program that indicates whether the lines in a file are in alphabetical order. Assume
the file is huge, so the program must read the file one line at a time and compare each line
to the previous one. (That way it needs to store only two lines of text at any given time. It
can also stop if it ever finds two lines out of order.)

 7. Modify the program you wrote for Exercise 14-8 so that it writes the primes into the file
Primes.txt in addition to displaying them in a ListBox.

 8. Modify the program you wrote for Exercise 7 so that it saves the primes in a binary file
named Primes.dat. When the program starts, it should read that file (if it exists) and
display the saved values in the ListBox. (Hint: The BinaryReader class doesn’t have
an EndOfStream property. To let it know how many values to read, save the number of
primes at the beginning of the file.)

www.EBooksWorld.ir

www.hellodigi.ir

file system objects
whAt’S IN thIS ChAPtER

➤➤ Directory and File classes

➤➤ DriveInfo, DirectoryInfo, and FileInfo classes

➤➤ FileSystemWatcher and Path classes

➤➤ Managing the recycle bin

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

The preceding chapter described stream classes that you can use to read and write files. (It also
described the File class, which isn’t a stream class but is just too useful to ignore when you use
streams.) Those classes are handy but even those like StreamWriter that work at the highest
levels still represent only the contents of files. They don’t give you any tools for working with the
filesystem. Some of their methods can create a file, but they cannot rename or delete a file, or cre-
ate or delete a directory.

This chapter describes classes that represent the filesystem. They allow you to create, rename,
and delete files and directories. The final section in this chapter explains another important
file-managing topic: how to use the recycle bin (wastebasket).

uSING SyStEM.IO

All these classes are in the System.IO namespace, so if you use them, you may want
to include the following using directive in your code.

using System.IO;

19

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

426 ❘ ChAPtER 19 File sysTem objeCTs

FILESyStEM PERMISSIONS

A program cannot perform a task unless the user has the appropriate permissions. Although this
is true of every application, it’s a particular issue for those that work with files. Users need the
appropriate permissions to read, write, create, and delete files and directories.

A common mistake is for developers to build and test an application from an account that has a
lot of privileges. The program runs fine from the developer’s account, but normal users can’t use it
because they don’t have the necessary privileges.

To ensure that users can use a program, you should always test it from an account that has typical
user privileges.

.NEt FRAMEwORK CLASSES

The System.IO namespace provides several classes for working with the filesystem. The
DirectoryInfo and FileInfo classes let you work with specific filesystem objects. For example,
a FileInfo object represents a particular file and provides methods to create, rename, delete,
and get information about that file.

The Directory and File classes provide static methods that you can use to manipulate the filesystem
without creating instances of helper objects. For example, the Directory class’s Delete method lets
you delete a directory without creating a DirectoryInfo object associated with the directory.

The following sections describe these and the other classes that the .NET Framework provides to
help you work with the filesystem.

directory
The Directory class provides static methods for working with directories. These methods let you
create, rename, move, and delete directories. They also let you enumerate the files and subdirectories
within a directory, and get and set directory information such as the directory’s creation and last
access times.

The following table describes the Directory class’s static methods.

MEthOd PuRPOSE

CreateDirectory Creates a directory . This method creates ancestor directories if
necessary .

Delete Deletes a directory and its contents . This method can remove the
entire directory tree .

Exists Returns true if a path points to an existing directory .

GetCreationTime Returns a directory’s creation date and time .

www.EBooksWorld.ir

www.hellodigi.ir

.neT framework classes ❘ 427

MEthOd PuRPOSE

GetCreationTimeUtc Returns a directory’s creation date and time in Coordinated
Universal Time (UTC) .

GetCurrentDirectory Returns the application’s current working directory .

GetDirectories Returns an array of strings holding the fully qualified names of a
directory’s subdirectories .

GetDirectoryRoot Returns the directory root for a path, for example, C:\ .

GetFiles Returns an array of strings holding the fully qualified names of a
directory’s files . Optionally, you can search for files that match
a pattern and you can search subdirectories .

GetFileSystemEntries Returns an array of strings holding the fully qualified names
of a directory’s files and subdirectories . Optionally, you can
search for files and directories that match a pattern and you
can search subdirectories .

GetLastAccessTime Returns a directory’s last access date and time .

GetLastAccessTimeUtc Returns a directory’s last access date and time in UTC .

GetLastWriteTime Returns the date and time when a directory was last modified .

GetLastWriteTimeUtc Returns the date and time in UTC when a directory was last
modified .

GetLogicalDrives Returns an array of strings listing the system’s logical drives as in
A:\ . The list includes only drives that are attached . For example,
it lists an empty floppy drive and a connected flash drive but
doesn’t list a flash drive after you disconnect it .

GetParent Returns a DirectoryInfo object representing a directory’s parent .

Move Moves a directory and its contents to a new location on the same
disk volume .

SetCreationTime Sets a directory’s creation date and time .

SetCreationTimeUtc Sets a directory’s creation date and time in UTC .

SetCurrentDirectory Sets the application’s current working directory .

SetLastAccessTime Sets a directory’s last access date and time .

SetLastAccessTimeUtc Sets a directory’s last access date and time in UTC .

SetLastWriteTime Sets a directory’s last write date and time .

SetLastWriteTimeUtc Sets a directory’s last write date and time in UTC .

www.EBooksWorld.ir

www.hellodigi.ir

428 ❘ ChAPtER 19 File sysTem objeCTs

SPECIAL dIRECtORIES

The System.Environment.SpecialFolder enumeration defines
SpecialFolder objects representing folders such as MyDocuments, History, and
CommonProgramFiles. Use a SpecialFolder object’s ToString method to get the
folder’s name. Use Environment.GetFolderPath to get the directory’s path.

The ListSpecialFolders example program, which is available for download on this
book’s website, uses the following code to list the special directories.

private void Form1_Load(object sender, EventArgs e)
{
 foreach (Environment.SpecialFolder folderType
 in Enum.GetValues(typeof(Environment.SpecialFolder)))
 {
 txtFolders.AppendText(
 String.Format("{0,-25}{1}\r\n",
 folderType.ToString(),
 Environment.GetFolderPath(folderType)
)
);
 }
 txtFolders.Select(0, 0);
}

The only special trick here is the way the program uses the Enum.GetValues
method to enumerate the values defined by the Environment.SpecialFolder
enumeration.

File
The preceding chapter mentioned the File class and specifically its Exists method. This class
provides many other static methods for working with files. These methods let you create, rename,
move, and delete files. They also make working with file streams a bit easier.

The following table describes the File class’s most useful static methods.

MEthOd PuRPOSE

AppendAllLines Adds text to the end of a file, creating it if it doesn’t exist .

AppendText Opens a file for appending UTF-8 encoded text and returns a
StreamWriter object attached to it .

Copy Copies a file .

Create Creates a new file and returns a FileStream attached to it .

CreateText Creates or opens a file for writing UTF-8 encoded text and
returns a StreamWriter object attached to it .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

.neT framework classes ❘ 429

MEthOd PuRPOSE

Delete Permanently deletes a file .

Exists Returns true if the specified file exists .

GetAttributes Gets a file’s attributes . This is a combination of FileAttributes
flags that can include Archive, Compressed, Device, Directory,
Encrypted, IntegrityStream, Hidden, Normal, NoScrubData,
NotContextIndexed, Offline, ReadOnly, ReparsePoint,
SparseFile, System, and Temporary .

GetCreationTime Returns a file’s creation date and time .

GetCreationTimeUtc Returns a file’s creation date and time in UTC .

GetLastAccessTime Returns a file’s last access date and time .

GetLastAccessTimeUtc Returns a file’s last access date and time in UTC .

GetLastWriteTime Returns a file’s last write date and time .

GetLastWriteTimeUtc Returns a file’s last write date and time in UTC .

Move Moves a file to a new location .

Open Opens a file and returns a FileStream attached to it . Parameters
let you specify the mode (Append, Create, CreateNew, Open,
OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite),
and sharing (Read, Write, ReadWrite, or None) settings .

OpenRead Opens a file for reading and returns a FileStream attached to it .

OpenText Opens a UTF-8-encoded text file for reading and returns a
StreamReader attached to it .

OpenWrite Opens a file for writing and returns a FileStream attached to it .

ReadAllBytes Returns a file’s contents in an array of bytes .

ReadAllLines Returns a file’s lines in an array of strings .

ReadAllText Returns a file’s contents in a string .

Replace Takes three file paths as parameters, representing a source file,
a destination file, and a backup file . If the backup file exists, this
method permanently deletes it . It then moves the destination file to
the backup file, and moves the source file to the destination file .

SetAttributes Sets a file’s attributes . This is a combination of flags defined by
the FileAttributes enumeration . (See the GetAttributes
method’s entry for the possible values .)

continues

www.EBooksWorld.ir

www.hellodigi.ir

430 ❘ ChAPtER 19 File sysTem objeCTs

MEthOd PuRPOSE

SetCreationTime Sets a file’s creation date and time .

SetCreationTimeUtc Sets a file’s creation date and time in UTC .

SetLastAccessTime Sets a file’s last access date and time .

SetLastAccessTimeUtc Sets a file’s last access date and time in UTC .

SetLastWriteTime Sets a file’s last write date and time .

SetLastWriteTimeUtc Sets a file’s last write date and time in UTC .

WriteAllBytes Creates or replaces a file, writes an array of bytes into it, and
closes the file .

WriteAllLines Creates or replaces a file, writes an array of strings into it, and
closes the file .

WriteAllText Creates or replaces a file, writes a string into it, and closes the file .

driveInfo
A DriveInfo object represents one of the computer’s drives. The following table describes the
properties provided by this class. Note that some of these properties are available only when
the drive is ready, as indicated in the following table’s Must Be Ready column. If you try to
access them when the drive is not ready, C# throws an exception.

PROPERty PuRPOSE MuSt bE REAdy

AvailableFreeSpace Returns the amount of free space available on
the drive in bytes .

Yes

DriveFormat Returns the name of the filesystem type such
as NTFS (NT File System) or FAT32 (32-bit File
Allocation Table) . (For a comparison of these,
see www.ntfs.com/ntfs_vs_fat.htm .)

Yes

DriveType Returns a DriveType enumeration value indi-
cating the drive type . This value can be CDRom,
Fixed, Network, NoRootDirectory, Ram,
Removable, or Unknown .

No

IsReady Returns true if the drive is ready . No

Name Returns the drive’s name . This is the drive’s root
name (as in A:\ or C:\) .

No

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.ntfs.com/ntfs_vs_fat.htm

.neT framework classes ❘ 431

PROPERty PuRPOSE MuSt bE REAdy

RootDirectory Returns a DirectoryInfo object representing
the drive’s root directory . (See the following
section “DirectoryInfo” for more information
on this class .)

No

TotalFreeSpace Returns the total amount of free space on the
drive in bytes .

Yes

VolumeLabel Gets or sets the drive’s volume label . Yes

The DriveInfo class also has a public static GetDrives method that returns an array of DriveInfo
objects describing the system’s drives.

directoryInfo
A DirectoryInfo object represents a directory. You can use its properties and methods to create
and delete directories and to move through a directory hierarchy. The following table describes the
most useful public properties and methods provided by the DirectoryInfo class.

PROPERty OR MEthOd PuRPOSE

Attributes Gets or sets the directory’s attributes . This is a combination of
FileAttributes flags that can include Archive, Compressed,
Device, Directory, Encrypted, IntegrityStream, Hidden,
Normal, NoScrubData, NotContextIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary .

Create Creates the directory . (Create a DirectoryInfo object, passing its
constructor the fully qualified name of a directory that doesn’t exist,
and then use the Create method to create the directory .)

CreateSubdirectory Creates a subdirectory within the directory and returns a
DirectoryInfo object representing it . The subdirectory’s path is
relative to the DirectoryInfo object’s directory, but can contain
intermediate subdirectories .

CreationTime Gets or sets the directory’s creation time .

CreationTimeUtc Gets or sets the directory’s creation time in UTC .

Delete Deletes the directory if it is empty . A parameter lets you tell the
object to delete its contents, too, if it isn’t empty .

Exists Returns true if the directory exists .

continues

www.EBooksWorld.ir

www.hellodigi.ir

432 ❘ ChAPtER 19 File sysTem objeCTs

PROPERty OR MEthOd PuRPOSE

Extension Returns the extension part of the directory’s name . Normally, this is
an empty string for directories .

FullName Returns the directory’s fully qualified path .

GetDirectories Returns an array of DirectoryInfo objects representing the directo-
ry’s subdirectories . An optional parameter gives a pattern to match .
This method does not recursively search the subdirectories .

GetFiles Returns an array of FileInfo objects representing files inside the
directory . An optional parameter gives a pattern to match . This
method does not recursively search subdirectories .

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects, repre-
senting subdirectories and files inside the directory . The items in
the array are DirectoryInfo and FileInfo objects (both of which
inherit from FileSystemInfo) . An optional parameter gives a pattern
to match . This method does not recursively search subdirectories .

LastAccessTime Gets or sets the directory’s last access time .

LastAccessTimeUtc Gets or sets the directory’s last access time in UTC .

LastWriteTime Gets or sets the directory’s last write time .

LastWriteTimeUtc Gets or sets directory’s last write time in UTC .

MoveTo Moves the directory and its contents to a new path .

Name The directory’s name without the path information .

Parent Returns a DirectoryInfo object, representing the directory’s
parent . If the directory is its file system’s root (for example, C:\),
this returns null .

Refresh Refreshes the DirectoryInfo object’s data .

Root Returns a DirectoryInfo object representing the root of the
directory’s file system .

ToString Returns the directory’s fully qualified path and name .

FileInfo
A FileInfo object represents a file. You can use its properties and methods to create and delete
files. The following table describes the most useful public properties and methods provided by the
FileInfo class.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

.neT framework classes ❘ 433

PROPERty OR MEthOd PuRPOSE

AppendText Returns a StreamWriter that appends text to the file .

Attributes Gets or sets the file’s attributes . This is a combination of
FileAttributes flags that can include Archive, Compressed,
Device, Directory, Encrypted, IntegrityStream, Hidden,
Normal, NoScrubData, NotContextIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary .

CopyTo Copies the file and returns a FileInfo object, representing the new
file . A parameter lets you indicate whether the copy should overwrite
an existing file . If the destination path is relative, it is relative to the
application’s current directory, not to the FileInfo object’s directory .

Create Creates the file and returns a FileStream object attached to it . (Create
a FileInfo object, passing its constructor the name of a file that
doesn’t exist, and then call the Create method to create the file .)

CreateText Creates the file and returns a StreamWriter attached to it . (Create
a FileInfo object, passing its constructor the name of a file that
doesn’t exist, and then call the CreateText method to create the file .)

CreationTime Gets or sets the file’s creation time .

CreationTimeUtc Gets or sets the file’s creation time in UTC .

Delete Deletes the file .

Directory Returns a DirectoryInfo object representing the file’s directory .

DirectoryName Returns the name of the file’s directory .

Exists Returns true if the file exists .

Extension Returns the extension part of the file’s name . For example, the exten-
sion for scores.txt is .txt .

FullName Returns the file’s fully qualified path and name .

IsReadOnly Returns true if the file is marked read-only .

LastAccessTime Gets or sets the file’s last access time .

LastAccessTimeUtc Gets or sets the file’s last access time in UTC .

LastWriteTime Gets or sets the file’s last write time .

LastWriteTimeUtc Gets or sets the file’s last write time in UTC .

Length Returns the number of bytes in the file .

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

434 ❘ ChAPtER 19 File sysTem objeCTs

PROPERty OR MEthOd PuRPOSE

MoveTo Moves the file to a new location . If the destination uses a relative path,
it is relative to the application’s current directory, not to the FileInfo
object’s directory . When this method finishes, the FileInfo object is
updated to refer to the file’s new location .

Name The file’s name without the path information .

Open Opens the file with various mode (Append, Create, CreateNew, Open,
OpenOrCreate, or Truncate), access (Read, Write, or ReadWrite),
and sharing (Read, Write, ReadWrite, or None) settings . This method
returns a FileStream object attached to the file .

OpenRead Returns a read-only FileStream attached to the file .

OpenText Returns a StreamReader with UTF-8 encoding attached to the file
for reading .

OpenWrite Returns a write-only FileStream attached to the file .

Refresh Refreshes the FileInfo object’s data .

Replace Takes three file paths as parameters, representing a source file,
a destination file, and a backup file . If the backup file exists, this
method permanently deletes it . It then moves the destination file to
the backup file, and moves the source file to the destination file .

ToString Returns the file’s fully qualified name .

FileSystemwatcher
The FileSystemWatcher class keeps an eye on part of the file system and raises events to let your
program know if something changes. For example, a FileSystemWatcher can monitor a directory
and raise an event when a new file appears so your program can process the file.

The FileSystemWatcher class’s constructor takes parameters that tell it which directory to watch
and that give it a filter for selecting files to watch. For example, the filter *.txt makes it watch for
changes to text files. The default filter is *.*, which catches changes to all files that have extensions.

The following table describes the FileSystemWatcher class’s most useful properties.

PROPERty PuRPOSE

EnableRaisingEvents Determines whether the watcher is enabled . (This property is
false by default, so the watcher does not raise any events until
you set it to true .)

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

.neT framework classes ❘ 435

PROPERty PuRPOSE

Filter Determines the files for which the watcher reports events .
(You cannot watch for multiple file types as in *.txt and *.dat .
Instead use multiple FileSystemWatchers .)

IncludeSubdirectories Determines whether the object watches subdirectories below
the main directory .

InternalBufferSize Determines the size of the internal buffer . If the watcher is
monitoring a very active directory, a small buffer may overflow .

NotifyFilter Determines the types of changes that the watcher reports . This is
a combination of values defined by the NotifyFilters enumer-
ation and can include the values Attributes, CreationTime,
DirectoryName, FileName, LastAccess, LastWrite, Security,
and Size .

Path Determines the path of the directory to watch .

The FileSystemWatcher class provides only two useful methods. The first method, Dispose, releases
resources used by the component. As usual, be sure to call Dispose when you are done with the object
(or use a using statement).

The second method, WaitForChanged, waits for a change synchronously (with an optional timeout).
When a change occurs, the method returns a WaitForChangedResult object, giving information
about the change that occurred.

When the FileSystemWatcher detects a change asynchronously, it raises an event to let the program
know what has happened. The following table describes the class’s events.

NAME dESCRIPtION

Changed A file or subdirectory has changed .

Created A file or subdirectory was created .

Deleted A file or subdirectory was deleted .

Error The watcher’s internal buffer overflowed .

Renamed A file or subdirectory was renamed .

dESIGN tIME wAtChERS

The FileSystemWatcher class is a component that appears in the Toolbox when
you build a Windows Forms application. That means you can add one to a form
and give it event handlers at design time.

www.EBooksWorld.ir

www.hellodigi.ir

436 ❘ ChAPtER 19 File sysTem objeCTs

Path
The Path class provides static properties and methods that you can use to manipulate paths. Its
methods return the path’s filename, extension, directory name, and so forth.

Other methods provide values that relate to system-generated paths. For example, they can give you
the system’s temporary directory path or the name of a temporary file.

The following table describes the Path class’s most useful public properties.

PROPERty PuRPOSE

AltDirectorySeparatorChar Returns the alternative character used to separate direc-
tory levels in a hierarchical path . Typically, this is / .

DirectorySeparatorChar Returns the character normally used to separate directory
levels in a hierarchical path . Typically, this is \ (as in C:\
Users\Rod\PhoneProjects\MrBones.sln) .

InvalidPathChars Returns a character array that holds characters that are not
allowed in a path string . Typically, this array includes charac-
ters such as “, <, >, and |, as well as nonprintable characters
such as those with ASCII values between 0 and 31 .

PathSeparator Returns the character used to separate path strings in
environment variables . Typically, this is a semicolon (;) .

VolumeSeparatorChar Returns the character placed between a volume letter and
the rest of the path . Typically, this is a colon (:) as in C:\ .

The following table describes the Path class’s most useful methods.

MEthOd PuRPOSE

ChangeExtension Changes a path’s extension .

Combine Returns two path strings concatenated .

GetDirectoryName Returns a path’s directory .

GetExtension Returns a path’s extension .

GetFileName Returns a path’s filename and extension .

GetFileNameWithoutExtension Returns a path’s filename without the extension .

GetFullPath Returns a path’s fully qualified value .

GetInvalidFileNameChars Returns an array listing characters that are invalid in
filenames .

www.EBooksWorld.ir

www.hellodigi.ir

.neT framework classes ❘ 437

MEthOd PuRPOSE

GetInvalidPathChars Returns an array listing characters that are invalid in
file paths .

GetPathRoot Returns a path’s root directory string .

GetRandomFileName Returns a random filename .

GetTempFileName Creates a uniquely named, empty temporary file and
returns its fully qualified path . Your program can open
that file for scratch space, do whatever it needs to do,
close the file, and then delete it . A typical filename might
be C:\Users\Rod\AppData\Local\Temp\tmpD4F0.tmp .

GetTempPath Returns the path to the system’s temporary folder .
This is the path part of the filenames returned by
GetTempFileName .

HasExtension Returns true if a path includes an extension .

IsPathRooted Returns true if a path is an absolute path . This includes
C:\Tests\Logs.txt and \Clients\Litigation, but not
LostFiles\Peter.txt or .\Jokes .

PAth COMbINAtIONS

The Combine method just tacks two paths together, adding a separator if neces-
sary. For example, the statement Path.Combine(@"C:\Projects", @"Test\
ListFiles") produces the result C:\Projects\Test\ListFiles.

You can also use this method to combine a path with a relative path such as ..,
which represents the directory above the current directory. The result is simply a path
with the relative part attached. For example, the statement Path.Combine(@"C:\
Projects\Tests", @"..") produces the result C:\Projects\Tests\...

This isn’t useful until you realize that you can pass it to a Path class’s GetFullPath
method to resolve the relative path. For example, this statement

Path.GetFullPath(Path.Combine(@"C:\Projects\Tests", @".."))

produces the following result:

C:\Projects

This gives you an easy method for resolving relative paths without parsing the paths
yourself.

www.EBooksWorld.ir

www.hellodigi.ir

438 ❘ ChAPtER 19 File sysTem objeCTs

uSING thE RECyCLE bIN

Unfortunately, C# doesn’t include methods for working with the recycle bin. However, you can
use a combination of three different techniques: using the FileIO.FileSystem class, using API
functions, and using Shell32.Shell.

thE API bENEAth It ALL

The FileIO.FileSystem class and Shell32.Shell are layered on top of the API,
so you could do all the work in the API. However, the FileIO.FileSystem class
and Shell32.Shell are easier to use, so the following sections use the easiest tool
for each task.

The ManageRecycleBin example program, which
is available for download on this book’s website,
demonstrates the techniques described in the following
sections. Enter a file or directory name and click the
corresponding Delete button to move that item into
the recycle bin. Click Refresh to refresh the list of files
in the recycle bin. Click Empty to permanently remove
all the files from the recycle bin. Finally, right-click
a file in the recycle bin to see a context menu giving
commands you can apply to that file, as shown in
Figure 19-1.

You may want to download the ManageRecycleBin
example program so that you can refer to it as you
read the following sections.

using the FileIO.FileSystem Class
The Microsoft.VisualBasic.FileIO namespace includes a FileSystem class that provides
DeleteDirectory and DeleteFile methods. Those methods can take an optional parameter that
indicates whether you want to move the directory or file into the recycle bin, or whether you want
to delete the directory or file permanently. (They can also take a parameter that lets you decide
whether the methods should display progress dialogs.)

Some C# developers prefer not to use classes defined in the Microsoft.VisualBasic namespace,
feeling they are somehow not C#ish enough. Personally, I think that’s just plain silly. If the
Microsoft.VisualBasic namespace includes tools that you can use to make your life easier,
you’re only hurting yourself by ignoring them. This class is in the .NET Framework, so it’s not
like you’re sneaking around using some sort of substandard back alley code.

FIGuRE 19-1: The ManageRecycleBin
example program lets you view and
manipulate the files in the recycle bin .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Using the recycle Bin ❘ 439

The following code shows the event handlers the ManageRecycleBin program executes when you
click one of its Delete buttons.

// Delete a file.
private void deleteFileButton_Click(object sender, EventArgs e)
{
 FileSystem.DeleteFile(fileTextBox.Text,
 UIOption.OnlyErrorDialogs, RecycleOption.SendToRecycleBin);
 fileTextBox.Clear();
 ListFiles();
}

// Delete a directory.
private void deleteDirectoryButton_Click(object sender, EventArgs e)
{
 FileSystem.DeleteDirectory(directoryTextBox.Text,
 UIOption.OnlyErrorDialogs, RecycleOption.SendToRecycleBin);
 directoryTextBox.Clear();
 ListFiles();
}

The first event handler deletes a file. It calls the FileSystem class’s DeleteFile method, passing it the
name of the file to delete, a UIOption flag indicating the method should display only error messages
(not animations or confirmation dialogs), and a RecycleOption value indicating the file should be
moved to the recycle bin.

The code then clears the TextBox holding the file’s name and calls the ListFiles method. The
ListFiles method uses Shell32.Shell, which is described shortly in the section “Using
Shell32.Shell.”

REFERENCES REQuIREd

To use the FileIO namespace, you must add a reference to Microsoft.VisualBasic
to your program.

To use Shell32.Shell, you need add a reference to “Microsoft Shell Controls And
Automation” on the Reference Manager’s COM tab.

using API Functions
The FileIO.FileSystem class lets you easily move directories and files into the recycle bin, but it
doesn’t give you any other tools for working with the recycle bin. It doesn’t let you determine the num-
ber or sizes of the items in the recycle bin, restore items from the recycle bin, or empty the recycle bin.

Fortunately, you can use the SHEmptyRecycleBin API function to empty the recycle bin relatively
easily. This API function takes a parameter that is of the RecycleFlags enumerated type. (Actually,

www.EBooksWorld.ir

www.hellodigi.ir

440 ❘ ChAPtER 19 File sysTem objeCTs

the function itself takes a uint as a parameter, but the enumeration makes it easier for your code to
specify the wanted options.) The following code shows the enumeration’s definition.

[Flags]
private enum RecycleFlags : uint
{
 SHERB_NOCONFIRMATION = 0x1,
 SHERB_NOPROGRESSUI = 0x2,
 SHERB_NOSOUND = 0x4
}

The following code shows the API function’s declaration.

[DllImport("shell32.dll")]
static extern int SHEmptyRecycleBin(
 IntPtr hWnd, string pszRootPath, uint dwFlags);

Here shell32.dll is the library that contains the SHEmptyRecycleBin API function. This is different
from the Shell32.Shell techniques described in the next section.

The ManageRecycleBin program uses the following EmptyRecycleBin method, which wraps the
call to SHEmptyRecycleBin.

public static void EmptyRecycleBin(bool showProgress, bool playSound,
 bool confirm)
{
 RecycleFlags options = 0;
 if (!showProgress) options |= RecycleFlags.SHERB_NOPROGRESSUI;
 if (!playSound) options |= RecycleFlags.SHERB_NOSOUND;
 if (!confirm) options |= RecycleFlags.SHERB_NOCONFIRMATION;

 SHEmptyRecycleBin(IntPtr.Zero, null, (uint)options);
}

This method uses its parameters to create an appropriate RecycleFlags value. It then simply invokes
the API function.

When you click the Empty button, the program uses the following code to invoke the
EmptyRecycleBin method.

// Empty the recycle bin.
private void emptyButton_Click(object sender, EventArgs e)
{
 // Empty with sounds and making the user confirm.
 EmptyRecycleBin(false, true, true);

 // Refresh the list.
 ListFiles();
}

using Shell32.Shell
Shell32.Shell is an interface for working with the Windows shell. One of the things you can do
with the Shell interface is interact with virtual objects representing such things as remote printers
and the recycle bin.

www.EBooksWorld.ir

www.hellodigi.ir

Using the recycle Bin ❘ 441

MORE AbOut ShELL

Shell and other Windows shell items are interfaces representing COM (Component
Object Model) objects, which are not the same as .NET objects. (That’s why the text
refers to them as interfaces.)

For more information about working with the Windows shell, see “Windows Shell”
at msdn.microsoft.com/library/windows/desktop/bb773177.aspx.

The files in the recycle bin are represented by FolderItems. To work with the files, the
ManageRecycleBin program needs to keep track of those FolderItems. To do so, it stores
information about the files in the following RecycleItemInfo class.

// A class to hold a FolderItem and return its name.
private class RecycleItemInfo
{
 public FolderItem Item;
 public RecycleItemInfo(FolderItem item)
 {
 Item = item;
 }
 public override string ToString()
 {
 return Item.Name;
 }
}

This class simply holds a FolderItem. It provides a constructor for easy initialization and overrides
its ToString method to return the name of the file it represents.

The following code shows the ManageRecycleBin program’s ListFiles method.

// List the files in the recycle bin.
private void ListFiles()
{
 const int RECYCLE_BIN_NAMESPACE = 10;

 Shell shell = new Shell();
 Folder bin = shell.NameSpace(RECYCLE_BIN_NAMESPACE);

 // List the files.
 filesListBox.Items.Clear();
 foreach (FolderItem item in bin.Items())
 {
 filesListBox.Items.Add(new RecycleItemInfo(item));
 }
}

The method creates a new Shell interface and uses its NameSpace method to get a Folder inter-
face representing the recycle bin. The parameter, which has value 10, is simply the “magic num-
ber” that represents the recycle bin.

www.EBooksWorld.ir

www.hellodigi.ir

442 ❘ ChAPtER 19 File sysTem objeCTs

Next, the method empties the file ListBox and loops through the FolderItems returned by the
recycle Folder’s Items method. For each FolderItem, the program creates a RecycleItemInfo
object and adds it to the ListBox.

Because the RecycleItemInfo class’s ToString method returns the FolderItem’s Name property,
that is what is displayed by the ListBox.

The following code shows how the program responds when you right-click a file’s entry in the ListBox.

// On right-mouse down, display the item's verbs in a menu.
private void filesListBox_MouseDown(object sender, MouseEventArgs e)
{
 // Make sure it's the right button.
 if (e.Button != MouseButtons.Right) return;

 // Find the item under the mouse.
 int index = filesListBox.IndexFromPoint(e.Location);
 if (index < 0) return;

 // Select that item.
 filesListBox.SelectedIndex = index;

 // Get the item's RecycleItemInfo.
 RecycleItemInfo info = filesListBox.SelectedItem as RecycleItemInfo;

 // Get the item's FolderInfo object.
 FolderItem item = info.Item;

 // Make the context menu.
 ContextMenu menu = new ContextMenu();
 foreach (FolderItemVerb verb in item.Verbs())
 {
 MenuItem menuItem = new MenuItem(verb.Name, ContextMenuItem_Click);
 menuItem.Tag = verb;
 menu.MenuItems.Add(menuItem);
 }
 menu.Show(filesListBox, e.Location);
}

This code creates a context menu appropriate for the item that the user right-clicked. First, the
method exits if the button pressed isn’t the right mouse button.

Next, the program uses the ListBox’s IndexFromPoint method to get the index of the item under
the mouse. If there is no item there, the method exits. If there is an item below the mouse, the code
selects it.

The code then converts the selected item into the RecycleItemInfo object that is stored in the
ListBox and gets the FolderItem stored inside the object.

The method then creates a ContextMenu and loops through the list returned by the FolderItem’s
Verbs method. Each of those items is a FolderItemVerb interface that represents something the
FolderItem can do.

www.EBooksWorld.ir

www.hellodigi.ir

summary ❘ 443

The code creates a new MenuItem representing each verb. The MenuItem displays its verb’s name and
is associated with the ContextMenuItem_Click event handler. The code stores the FolderItemVerb
in the MenuItem’s Tag property.

After it has created the ContextMenu and the verbs’ MenuItems, the program displays the ContextMenu.

The following code shows the ContextMenuItem_Click event handler.

// Perform some action on a file.
private void ContextMenuItem_Click(object sender, EventArgs e)
{
 // Get the MenuItem.
 MenuItem menuItem = sender as MenuItem;

 // Get the verb.
 FolderItemVerb verb = menuItem.Tag as FolderItemVerb;

 // Invoke the verb.
 verb.DoIt();

 // Redisplay the files.
 ListFiles();
}

First, this code gets the MenuItem that was clicked. It gets the corresponding FolderItemVerb from the
MenuItem’s Tag property. The code invokes the FolderItemVerb’s DoIt method to make it perform
whatever action it should take. It finishes by calling ListFiles to refresh the file list in case the verb
changed the files in the recycle bin, for example, by restoring a file.

Download the ManageRecycleBin program to see additional details. The program isn’t exactly simple,
but it does demonstrate techniques you can use to work with the recycle bin.

SuMMARy

The System.IO namespace offers many classes that let you manipulate files and directories. Classes
such as Directory, DirectoryInfo, File, and FileInfo make it easy to create, examine, move,
rename, and delete directories and files. The File class’s ReadAllText and WriteAllText methods
make it particularly easy to read or write an entire file.

The FileSystemWatcher class lets an application keep an eye on a file or directory and take action
when it is changed. For example, a program can watch a spooling directory and take action when a
new file appears in it.

The Path class provides miscellaneous support for working with paths. For example, it provides
methods you can use to combine paths and resolve relative paths.

There is considerable overlap among these tools, so you don’t need to feel that you have to use them
all. Take a good look so that you know what’s there, and then pick the tools that you find the most
comfortable.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

444 ❘ ChAPtER 19 File sysTem objeCTs

Finally this chapter explained techniques you can use to manage the recycle bin. Some of them are
fairly complex, but at least the FileIO.FileSystem class makes moving a file or directory into the
recycle reasonably simple.

So far the chapters in this book have explained how to do things locally on the user’s computer.
The next chapter explains how a program can move off of the local computer to download files
from the Internet.

ExERCISES

 1. Write a program that lets the user select a directory and displays its creation, last access,
and last write times.

 2. Write a program that lets the user select a file and displays its creation, last access, and last
write times. Let the user change the times and then set them for the file.

 3. Write a program that lets the user get and set a file’s attributes. Use CheckBoxes to display
and let the user specify attributes.

 4. Write a program that uses File.ReadAllText and File.WriteAllText to save and restore
the contents of a text file when it starts and stops. Compare your solution to the solution for
Exercise 18-3.

 5. Write a program that sorts the lines in a file. (Hint: Use File.ReadAllLines to get the
lines, sort them, and then use File.WriteAllLines to write them back into the file.)

 6. Write a program that lists the computer’s drives and whatever drive information is available
from the DriveInfo class.

 7. Modify the program you wrote for Exercise 6 so that it displays sizes in KB, MB, GB, or
TB as appropriate.

 8. Write a program that displays the name of the directory two levels higher than the directory
where the program is executing. What happens if you run the program near the top of the
directory hierarchy, for example, in C:\?

 9. Write a program that lets the user enter a directory path and a pattern. When the user clicks
the Search button, the program should search the directory and its subdirectories for files
matching the pattern.

 10. Modify the program you wrote for Exercise 9 so that it shows the selected filenames (with-
out paths) and their sizes.

 11. Write a program that uses a FileSystemWatcher to watch the directory where the program
is executing for changes. When a change occurs, the program should display the date and
time, the type of change, and the changing file’s name.

 12. Write a program that lets the user enter a filename and then uses the FileIO class to move
the file into the recycle bin. (That’s all many programs need to do anyway. You can use the
recycle bin on your desktop to manage its contents.)

www.EBooksWorld.ir

www.hellodigi.ir

networking
whAt’S IN thIS ChAPtER

➤➤ Networking overview

➤➤ Uploading and downloading data

➤➤ Getting remote file information with FTP

➤➤ Sending e-mail and text messages

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Networking is a complicated topic. Understanding all the protocols, addresses, routing, data
layers, network hardware, and everything else that goes into building a network is a difficult
task and outside the scope of this book.

Fortunately, most programs use only a few main networking techniques such as:

➤➤ Upload a file

➤➤ Download a file

➤➤ Get information about a file

➤➤ Get a directory listing

➤➤ Post information to a form

➤➤ Send e-mail

20

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

446 ❘ ChAPtER 20 neTWorking

Rather than trying to cover all there is to know about network programming in detail, this chapter
explains how to perform these common chores.

If you want to get into network programming, you should look for a book that focuses on just
that. If you search your favorite online bookstore for C# Networking, you should find a few good
choices. You can also look at the following articles.

➤➤ “Network Programming in the .NET Framework” msdn.microsoft.com/
library/4as0wz7t.aspx

➤➤ “An Introduction to Socket Programming in .NET Using C#” www.codeproject.com/
Articles/10649/An-Introduction-to-Socket-Programming-in-NET-using

➤➤ “Network Programming Samples” msdn.microsoft.com/library/vstudio/ee890485.aspx

NEtwORKING CLASSES

The .NET Framework defines several namespaces containing networking classes. Most of those
namespaces, and some of the most useful classes, are contained in the System.Net namespace.

At the lower levels, the System.Net.Sockets namespace provides classes that manipulate Windows
sockets (Winsock). These let you create and manage sockets, which provide relatively low-level access
to the network. Sockets let you accept incoming connection requests, connect to remote hosts, and
send and receive datagrams.

dAtAGRAM

A datagram is a basic unit of data sent over a packet-switched network (a network
that packages data into datagrams). Datagrams may not arrive in the order in which
they were sent.

Typically, a large message might be split into several datagrams that are sent
separately. Higher protocol levels reassemble the datagrams to recover the origi-
nal message.

The HttpListener class lets you create a listener that responds to HTTP requests. Using a listener, you
can make a program that runs on a server and responds to incoming requests from other programs.

httP

HyperText Transfer Protocol (HTTP) is a protocol that defines how messages
are formatted and transmitted. It sits at a higher level than sockets and datagram
communications.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.codeproject.com/Articles/10649/An-Introduction-to-Socket-Programming-in-NET-using

networking classes ❘ 447

The WebRequest and WebResponse classes are abstract classes that define a request/response model
for fetching URIs. A program uses a class derived from WebRequest to request a URL (for example, a
web page). When the file returns from the network, the program receives a WebResponse object fulfill-
ing the request (if nothing went wrong). Classes derived from WebRequest include FileWebRequest,
FtpWebRequest, and HttpWebRequest. Similarly classes derived from WebResponse include
FileWebResponse, FtpWebResponse, and HttpWebResponse.

uRLS, uRNS, ANd uRIS

A Uniform Resource Location (URL) is an address that specifies where a resource
is and the protocol that is its primary means of access. For example, http://
www.CSharpHelper.com/howto_index.html is a URL that refers to the web page
located at the address www.CSharpHelper.com/howto_index.html and obtain-
able with HTTP. This is the kind of address that is most familiar to Internet users.
Other URLs may refer to files in a directory hierarchy, or relative paths to web
documents or files on a filesystem.

A Uniform Resource Name (URN) is a name that identifies something but doesn’t
necessarily refer to a “physical” location. For example, urn:isbn:978-1118847282
is a URN that uses the International Standard Book Number (ISBN) to refer to
this book. There are many copies of this book, so the URN cannot be the address
of a physical copy of the book. A URL corresponding to this URN might give you
the street address and shelf location of a copy of the book in a particular bookstore.

A more confusing use of URNs is to create a universally unique name that will
never change. For example, a new WPF application starts with the following code.

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>

 </Grid>
</Window>

The two pieces of text highlighted in bold are URNs that identify namespaces used
by the program. Even though these look like URLs, if you try to open them in a
browser, you’ll find that there are no files there. They are URNs but not URLs.

Note that a URL is a URN because it is both a location and a name for something.

Uniform Resource Identifiers (URIs) includes both URLs and URNs.

People often confuse URIs for URLs. In practice, they often mean URLs.

The WebClient class provides some of the same features as the request/response classes but at a
higher level. It’s not quite as flexible, but it’s much easier to use.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.CSharpHelper.com/howto_index.html
http://www.CSharpHelper.com/howto_index.html
http://www.CSharpHelper.com/howto_index.html
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

448 ❘ ChAPtER 20 neTWorking

The System.Net.Mail namespace includes classes for sending e-mail messages to a Simple Mail
Transfer Protocol (SMTP) server so that they can be forwarded to the recipient(s).

The following sections explain how you can use these classes to download and upload information,
get information about remote files and directories, and send e-mail.

dOwNLOAdING INFORMAtION

The following sections explain how to download data using WebClient and WebRequest classes. It’s
easier to use WebClient, so I recommend that you try that approach first. The WebRequest class gives
you more control over cookies, request and response headers, and other details that don’t matter for
simple file uploads and downloads.

downloading with webClient
The WebClient class provides four sets of methods for downloading data from a URL into a file,
string, byte array, or stream. Each set has one synchronous and two asynchronous methods. The
following sections describe these four sets of methods.

Downloading files
The WebClient class’s first set of methods downloads the data at a URL into a local file. Its
methods are DownloadFile, DownloadFileAsync, and DownloadFileTaskAsync. The synchro-
nous method, DownloadFile, is remarkably easy to use. Simply create a new object and call
the method, passing it the URL of the file you want to download and the name of the file
where you want to place the result. The following code shows an example.

WebClient client = new WebClient();
client.DownloadFile(
 "http://www.csharphelper.com/howto_index.html",
 "howto_index.html");

This code downloads the web page http://www.csharphelper.com/howto_index.html and stores
it in the local file howto_index.html. The new file is placed in the program’s current directory,
which by default is its startup directory.

The DownloadFileAsync method starts an asynchronous file download. You can catch the
WebClient’s DownloadProgressChanged event to monitor the download’s progress. Catch
the DownloadFileCompleted event to get the result of the download. While the download is in
progress, you can cancel it by calling the WebClient’s CancelAsync method.

The second asynchronous file download method is DownloadFileTaskAsync. Like
DownloadFileAsync, this method starts an asynchronous download. The difference is that this
method uses a separate task to start the download, so you can use the await keyword to wait
for the method to finish downloading the file. The code runs asynchronously and then execution
resumes after the await keyword when the asynchronous task has finished. (For more informa-
tion on await, see the section “Using async and await” in Chapter 6, “Methods.”)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.csharphelper.com/howto_index.html
http://www.csharphelper.com/howto_index.html
http://www.hiva-network.com/

Downloading Information ❘ 449

Downloading strings
The WebClient class’s second set of downloading methods is similar to the first set, except it down-
loads data into a string instead of a file. The string downloading methods are DownloadString,
DownloadStringAsync, and DownloadStringTaskAsync.

As is the case when you download a file asynchronously, you can catch the DownloadProgressChanged
event to monitor the download’s progress, and you can use the CancelAsync method to cancel the
download. Catch the DownloadStringCompleted event to get the downloaded string.

The DownloadStringAsync example program, which is available for download on this book’s
website, uses code similar to the following to download a web page as a string. (The code isn’t
exactly the same because the program has some extra user interface code that makes the program
easier to use, but that isn’t part of the download process.)

// The WebClient. (Needed for canceling.)
private WebClient Client = null;

// Start downloading.
private void downloadButton_Click(object sender, EventArgs e)
{
 // Make a Uri.
 Uri uri = new Uri(urlTextBox.Text);

 // Start the download.
 Client = new WebClient();
 Client.DownloadProgressChanged += Client_DownloadProgressChanged;
 Client.DownloadStringCompleted += Client_DownloadStringCompleted;
 Client.DownloadStringAsync(uri);
}

// Report on download progress.
private void Client_DownloadProgressChanged(object sender,
 DownloadProgressChangedEventArgs e)
{
 downloadProgressBar.Value = e.ProgressPercentage;
 downloadStatusLabel.Text = e.ProgressPercentage.ToString() + "%";
}

// The download has finished.
void Client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 // See what the result was.
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 else if (e.Cancelled)
 {
 MessageBox.Show("Canceled");
 }
 else
 {

www.EBooksWorld.ir

www.hellodigi.ir

450 ❘ ChAPtER 20 neTWorking

 // Display the downloaded file.
 MessageBox.Show(e.Result);
 }

 Client.Dispose();
}

// Cancel the download.
private void cancelButton_Click(object sender, EventArgs e)
{
 // Cancel.
 Client.CancelAsync();
}

The program declares a WebClient at the module level, so it is visible to all the program’s methods,
in particular the methods that start and cancel the download.

When you click the program’s Download button, the downloadButton_Click event handler starts
the download. It first creates a Uri object to represent the URL to download. (The Async methods
take a Uri object as a parameter. The synchronous and TaskAsync methods can take either a string
or a Uri as a parameter.)

This is a bit different from the DownloadFile method, which can take the URL as a string
parameter. The DownloadString method requires a Uri object.

The code creates a new WebClient object, associates event handlers with the
DownloadProgressChanged and DownloadStringCompleted events, and then calls
the DownloadStringAsync method to start the download.

The DownloadProgressChanged event handler updates a ToolStripProgressBar and a
ToolStripStatusLabel to keep the user informed of the progress. The e.ProgressPercentage
parameter is an int holding the percentage of the download that is complete.

The DownloadStringCompleted event handler checks the result to see if there was an error or if
the download was canceled. If the download completed successfully, the result string is stored in the
e.Result parameter.

If the user clicks the program’s Cancel button before the download completes, the cancelButton_
Click event handler calls the WebClient’s CancelAsync method.

Figure 20-1 shows the DownloadStringAsync example program displaying a web page from the
C# Helper website.

Downloading byte arrays
The WebClient class’s third set of downloading methods is similar to the first two except it
downloads data into a byte array. Its methods are DownloadData, DownloadDataAsync, and
DownloadDataTaskAsync.

As before, when you download data asynchronously, you can catch the DownloadProgressChanged
event to monitor the download’s progress, and you can use the CancelAsync method to cancel the
download. Catch the DownloadDataCompleted event to get the downloaded bytes.

www.EBooksWorld.ir

www.hellodigi.ir

Downloading Information ❘ 451

FIGuRE 20-1: The DownloadStringAsync example program lets you download
and view web pages .

Downloading streams
The WebClient class’s final set of downloading methods is somewhat similar to the others, but the
fact that these methods download data in a stream lead to some differences. This group’s methods
are OpenRead, OpenReadAsync, and OpenReadTaskAsync.

The asynchronous methods do not fire the DownloadProgressChanged event, so you cannot monitor
the download’s progress, but you can still use the CancelAsync method to cancel the download.

Catch the OpenReadCompleted event to process the stream. If the download was successful, the
e.Result parameter contains the stream.

downloading with webRequest
To download data with a WebRequest object, use the WebRequest class’s Create method to create a
new object. This method takes as a parameter either a URL or a Uri object. The method examines its
parameter and returns an appropriate object of a class that inherits from WebRequest. For example, if
the URL string begins with http://, the Create method returns an HttpWebRequest object. Usually,
you can ignore the specific class and just treat the result as a WebRequest.

After you create the request object, set its Method property to indicate the type of operation you want
to perform. The WebRequestMethods namespace defines the three classes Http, Ftp, and File that
provide strings that define methods that you can use. For example, WebRequestMethods.Http.Get
represents a download command that uses the HTTP protocol.

www.EBooksWorld.ir

www.hellodigi.ir

452 ❘ ChAPtER 20 neTWorking

REQuESt tyPES

The WebRequest class’s Create method understands the prefixes http://, https://,
ftp://, and file://. You can derive other classes from WebRequest to support
custom request types. Creating request objects to support custom request protocols is
outside the scope of this book. For more information, see “Programming Pluggable
Protocols” at msdn.microsoft.com/library/1f6c88af.aspx.

The following table briefly summarizes the HTTP methods, which are the most confusing.

MEthOd PuRPOSE

Connect Represents an HTTP CONNECT command for use with a proxy .

Get Represents an HTTP GET command, which downloads a resource .

Head Represents an HTTP HEAD command . This is similar to a GET command
except it returns only headers and not the actual resource .

MkCol Represents an HTTP MKCOL command, which creates a new collection (for
example, a collection of pages) .

Post Represents an HTTP POST command, which basically creates a new resource .

Put Represents an HTTP PUT command, which can create or update a resource .

The Ftp and File methods are more self-explanatory. The following list shows the Ftp methods.

➤➤ AppendFile

➤➤ DeleteFile

➤➤ DownloadFile

➤➤ GetDateTimeStamp

➤➤ GetFileSize

➤➤ ListDirectory

➤➤ ListDirectoryDetails

➤➤ MakeDirectory

➤➤ PrintWorkingDirectory

➤➤ RemoveDirectory

➤➤ Rename

➤➤ UploadFile

➤➤ UploadFileWithUniqueName

www.EBooksWorld.ir

www.hellodigi.ir

Downloading Information ❘ 453

The WebRequestMethods.File class defines only two methods, both of which have self-explanatory
names: DownloadFile and UploadFile.

After you create the WebRequest object and set its Method property, call the request’s GetResponse
method to get a WebResponse object.

wEbRESPONSES

The GetResponse method returns one of the WebResponse subclasses
HttpWebResponse, FtpWebResponse, or FileWebResponse. Usually you can
ignore the specific type and treat it as a WebResponse.

You can examine the response’s properties to get information about the response. For example,
you can look at the ContentLength and ContentType properties to learn about the response’s
contents. The IsFromCache property indicates whether the contents were loaded from cache or
from the original source.

The response’s GetResponseStream method returns a stream that contains the requested content (if
nothing went wrong). Now you can write code to use this stream to process the content appropriately.

The following list summarizes the steps for using a WebRequest.

 1. Use WebRequest.Create to create the request object.

 2. Set the request’s Method property.

 3. Call the request’s GetResponse method to get a WebResponse.

 4. Call the response’s GetResponseStream method to get the response stream.

 5. Process the stream.

wARNING Be sure to close the stream when you finish using it so that it can
free its system resources.

The WebRequestDownloadData example program, which is available for download on this book’s
website, uses the following code to download an image file from an http:// URL.

try
{
 // Make the WebRequest.
 WebRequest request = WebRequest.Create(urlTextBox.Text);

 // Use the Get method to download the file.
 request.Method = WebRequestMethods.Http.Get;

 // Get the response.
 WebResponse response = request.GetResponse();

 // Get the image from the response stream.

www.EBooksWorld.ir

www.hellodigi.ir

http://URL
http://www.hiva-network.com/

454 ❘ ChAPtER 20 neTWorking

 // (You must close the stream when finished.)
 using (Stream stream = response.GetResponseStream())
 {
 Bitmap bitmap = new Bitmap(stream);

 // Display the result.
 imagePictureBox.Image = bitmap;
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

Most of this code follows the basic steps fairly closely. The only new part is the code that processes
the stream. In this example, the program passes the stream to the Bitmap class’s constructor to create
a copy of the downloaded image. The code then displays the Bitmap in a PictureBox.

Figure 20-2 shows the WebRequestDownloadData example program displaying an image downloaded
from the Internet.

FIGuRE 20-2: The WebRequestDownloadData
example program downloads and displays
images from the Internet .

wEbCLIENt VERSuS wEbREQuESt

The WebRequest class certainly works, but for a simple download such as this one, the
WebClient class also works and is simpler. When you need to download (or upload) a
resource, consider the WebClient class first and see if it can get the job done.

www.EBooksWorld.ir

www.hellodigi.ir

Uploading Information ❘ 455

uPLOAdING INFORMAtION

You can use the WebClient and WebRequest classes to upload data as well as download it. The
process is fairly similar to the steps you follow for downloading resources, with a few changes
to the methods you use. The following sections explain how you can use the WebClient and
WebRequest classes to upload data.

uploading with webClient
Using a WebClient to upload a file is similar to using a WebClient to download a file. One big
difference, however, is security.

Most of the Internet’s material is freely available for download, but to upload anything you usually need
a username and password for the destination server. In most cases you can supply those by setting the
WebRequest’s Credentials property to a NetworkCredential object.

The following code shows how a program could use a WebClient to upload a file.

WebClient client = new WebClient();
client.Credentials = new NetworkCredential(username, password);
client.UploadFile(url, filename);

The WebClient class’s UploadFile, UploadData, and UploadString methods correspond to
their downloading counterparts. They also come in the asynchronous versions UploadFileAsync,
UploadDataAsync, and UploadStringAsync.

The OpenWrite and OpenWriteAsync methods open streams into which the program can write.
(These correspond to the OpenRead and OpenReadAsync methods that open streams for reading
downloaded data.)

The UploadValues and UploadValuesAsync methods send a name/value collection for the server to
process in some way.

NEVER INCLudE PASSwORdS!

You should never include passwords in a program, its resources, or its configuration
files. Otherwise, a cyber-villain could read the program’s IL code or look at the con-
figuration or resource files and easily recover the passwords.

Always require the user to enter any password your program needs.

uploading with webRequest
When you use a WebRequest object to download data, you get a stream from a WebResponse object
and then process the data in the stream. To use a WebRequest object to upload data, you get a stream
and write data into it.

www.EBooksWorld.ir

www.hellodigi.ir

456 ❘ ChAPtER 20 neTWorking

The following list summarizes the steps for using a WebRequest to upload a file.

 1. Use the WebRequest object’s Create method to create a WebRequest object.

 2. Set the WebRequest’s Method property to indicate the method that you want to perform.

 3. Set the WebRequest’s Credentials property to specify the username and password you
want to use on the server.

 4. Call the WebRequest’s GetRequestStream method to get a stream.

 5. Write the data into the stream.

The following code shows how a program might use a WebRequest object to upload a byte array
(highlighted in bold).

// Make the WebRequest.
WebRequest request = WebRequest.Create(url);

// Use the UploadFile method.
request.Method = WebRequestMethods.Ftp.UploadFile;

// Set network credentials.
request.Credentials = new NetworkCredential(username, password);

// Write the bytes into the request stream.
using (Stream stream = request.GetRequestStream())
{
 stream.Write(bytes, 0, bytes.Length);
}

From here, you can upload a file, string, image, or other data by converting it into a byte array
and then using similar code to upload the array.

GEttING FtP INFORMAtION

File Transfer Protocol (FTP) defines protocols for transferring files from one host to another on a
Transmission Control Protocol (TCP) network such as the Internet.

These transfers are more storage-oriented than a typical Internet user’s browser uses. A user typically
uses a web browser to request a file and the browser displays it. FTP transfers typically move files, for
example, between your computer and a host somewhere on the Internet.

FTP also allows you to ask a server file-related questions. For example, it lets you ask a server for a
file’s size or for a directory listing.

In addition to letting you upload and download files, the WebRequest class also lets you perform
FTP queries. The steps are similar to those you use to download files.

 1. Use WebRequest.Create to create the request object.

 2. Set the request’s Method property, in this case to an FTP method.

www.EBooksWorld.ir

www.hellodigi.ir

getting fTP Information ❘ 457

 3. Set the object’s Credentials property.

 4. Call the request’s GetResponse method to get a WebResponse.

 5. Call the response’s GetResponseStream method to get the response stream.

 6. Process the stream.

The FtpGetFileInfo example program, which is available for download on this book’s website, uses
the following code to get the length of a file.

// Use FTP to get a remote file's size.
private long FtpGetFileSize(string url, string username, string password)
{
 // Make a FtpRequest object.
 WebRequest request = WebRequest.Create(url);
 request.Method = WebRequestMethods.Ftp.GetFileSize;

 // Set network credentials.
 request.Credentials = new NetworkCredential(username, password);

 using (WebResponse response = request.GetResponse())
 {
 // Return the size.
 return response.ContentLength;
 }
}

This code simply follows the steps outlined earlier.

The program uses the following code to get a file’s last modification time.

// Use FTP to get a remote file's timestamp.
private DateTime FtpGetFileTimestamp(string uri, string username, string password)
{
 // Get the object used to communicate with the server.
 WebRequest request = WebRequest.Create(uri);
 request.Method = WebRequestMethods.Ftp.GetDateTimestamp;

 // Get network credentials.
 request.Credentials = new NetworkCredential(username, password);

 // Return the last modification time.
 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())
 {
 return response.LastModified;
 }
}

This code also follows the previously described steps but with one twist. The LastModified property
is defined in the FtpWebResponse class, not in the WebResponse parent class. That means the code
must cast the generic WebResponse returned by the GetReponse method into its true identity: an
FtpWebResponse object.

www.EBooksWorld.ir

www.hellodigi.ir

458 ❘ ChAPtER 20 neTWorking

ANONyMOuS ACCESS

There are two ways you will probably access FTP servers. First, you can use a normal
username and password.

In contrast, some FTP servers allow anonymous downloads, uploads, or both. In
that case, you should still create network credentials, but you should set the user-
name to “anonymous” or “ftp.” Some servers accept “Anonymous” but others are
case-sensitive and require a lowercase username.

You can set the password to anything. Sometimes people use the password “guest.”
Many websites request that you use your e-mail address as the password so that
they have a log of who’s using their sites. Some sites require an e-mail address so
that they won’t allow “guest” as a password; although, they don’t actually verify
the e-mail address.

While you are testing FTP programs, you may want to find an anonymous FTP
server. The examples provided in this chapter and the solutions to the exercises use
the anonymous FTP server directory ftp://nssdcftp.gsfc.nasa.gov/photo_
gallery/hi-res/astro, which contains high-resolution NASA astronomy photo-
graphs. If you point your browser at this URL, you can see a listing of the directory.

Figure 20-3 shows the FtpGetFileInfo example program displaying information about a file on an
anonymous FTP server.

FIGuRE 20-3: The FtpGetFileInfo example program
displays information about files on FTP servers .

Other FTP commands such as DeleteFile, ListDirectory, and ListDirectoryDetails work
more or less the same way; although, they return different results in their response streams.

SENdING E-MAIL

The System.Net.Mail namespace includes classes that let you send e-mail. The process is straight-
forward but somewhat cumbersome because there are a lot of options that can go along with an
e-mail message. A message can have

➤➤ Subject

www.EBooksWorld.ir

www.hellodigi.ir

ftp://nssdcftp.gsfc.nasa.gov/photo_gallery/hi-res/astro
http://www.hiva-network.com/

sending e-mail ❘ 459

➤➤ Sender name and e-mail address

➤➤ Multiple primary, CC, and BCC recipient names and e-mail addresses

➤➤ Message body

➤➤ Multiple attachments

➤➤ Different priorities

➤➤ Delivery notification options

➤➤ Reply to addresses

Fortunately, these features are fairly easy to use. You simply create a MailMessage object and set its
properties to provide all the necessary information.

The SendEmail example program, which is available for download on this book’s website, uses the
following SendEmailMessage method to send a simple e-mail message.

// Send an email.
private void SendEmailMessage(string toName, string toEmail,
 string fromName, string fromEmail,
 string host, int port, bool enableSsl, string password,
 string subject, string body)
{
 // Make the mail message.
 MailAddress fromAddress = new MailAddress(fromEmail, fromName);
 MailAddress toAddress = new MailAddress(toEmail, toName);
 MailMessage message = new MailMessage(fromAddress, toAddress);
 message.Subject = subject;
 message.Body = body;

 // Get the SMTP client.
 SmtpClient client = new SmtpClient()
 {
 Host = host,
 Port = port,
 EnableSsl = enableSsl,
 UseDefaultCredentials = false,
 Credentials = new NetworkCredential(fromAddress.Address, password),
 };

 // Send the message.
 client.Send(message);
}

The method starts by creating two MailAddress objects to represent the sender’s name and e-mail
address and the recipient’s name and e-mail address. It then uses those objects to make a MailMessage
object representing an e-mail message from the sender to the recipient. The code finishes preparing the
MailMessage by setting its Subject and Body properties.

Next, the code creates an SmtpClient object to send the message. It sets the object’s Host and Port
properties to indicate the mail server that will process the message.

www.EBooksWorld.ir

www.hellodigi.ir

460 ❘ ChAPtER 20 neTWorking

SMtP

Simple Mail Transfer Protocol (SMTP) is an Internet protocol for transmitting
e-mail messages across an Internet Protocol (IP) network.

The code sets the SmtpClient’s EnableSsl property to enable or disable Secure Sockets Layer (SSL)
to encrypt the connection with the host. The example program enables SSL.

hOStS, PORtS, ANd SSL

The SMTP host and port you use depends on your mail server. The SendEmail
example program sets Host to smtp.gmail.com and the Port to 587, which works
for sending e-mail from Gmail accounts.

For Hotmail accounts, try setting Host to smtp.live.com and Port to 587.

For other mail servers, search the Internet or your mail server’s website for the correct
host and port settings.

Note also that many mail servers require that you enable SSL.

To prevent an evildoer from using your e-mail account to send spam about Nigerian oil money to
everyone in North America, you must use a NetworkCredential object to log in to the mail server.
The program creates this object using the sender’s e-mail address and the password entered on the
example program’s form. Enter the password that you use to access your e-mail account.

Finally, when the SmtpClient object knows all the details about how it should send the message, the
code simply calls its Send method, passing it the MailMessage that it should send.

SENdING tExt MESSAGES

When you know how to write a program that sends e-mail, it’s not too hard to write one that sends
SMS text messages. To send an SMS message, send an e-mail message to an e-mail address with the
format number@gateway where

➤➤ number is the recipient’s telephone number with no special characters such as -, (,), or +.

➤➤ gateway is the SMS e-mail gateway used by the recipient’s telephone carrier.

SMS

Short Message Service (SMS) uses standardized protocols to send text messages
to phones.

www.EBooksWorld.ir

www.hellodigi.ir

sending Text messages ❘ 461

For example, the following e-mail address would send a text message to the phone number 1-234-
567-8901 assuming that phone number’s carrier is Air Fire Mobile.

12345678901@sms.airfiremobile.com

The following web page contains a long list of telephone carriers and their SMS e-mail gateways.

https://github.com/cubiclesoft/email_sms_mms_gateways/blob/master/

sms_mms_gateways.txt

Unfortunately, this method still requires you to know the recipient’s telephone carrier so that you
can look up the SMS gateway address. (I don’t know how to learn the carrier automatically from
just the phone number. If you figure it out, please e-mail me at RodStephens@CSharpHelper.com.
For bonus points, write a program to e-mail me the information.)

As you do for any e-mail message, you need to include a mail host and port, and a sender e-mail
address and password. The message body and subject define the message that the recipient receives.
On my phone, a typical message might look like the following:

thesender@somemailserver.com / This is the subject / This is the message body.

IMPLEMENtING NOtIFICAtION MESSAGES

A program that sends SMS messages can have more uses than simply annoying your
friends. Suppose you write a service process that runs on a computer and monitors
some long-running process. For example, it might track the number of files in a spool
directory and process them somehow. If the directory starts to grow large, that might
indicate a problem with the processing application. In that case, the monitor might
send you an SMS message telling you about the problem.

Unfortunately, this approach would require the program to know your password on
the mail server and, as mentioned earlier in this chapter, you should never include a
password in a program.

Similarly, the program would need to know your phone number and telephone carrier,
two things that you probably don’t want some hacker to stumble across.

You can mitigate the problem somewhat by obfuscating these sensitive values.
You can store the values in some sort of encrypted or scrambled format and then
make the program decode them. Of course, a determined hacker could easily
study the IL code to see how the program decodes this information.

A better approach would be to start the program interactively and provide your
e-mail address, password, phone number, and gateway server at that time. Then
those values are never stored inside the program’s code or configuration information.

You can also create a separate e-mail account just for this purpose. Then if a hacker
gets hold of your e-mail address and password, you can stop using that account.

Finally, you should run the program (and store its code) only on a trusted computer.
A hacker who can’t find your program can’t decode your information.

www.EBooksWorld.ir

www.hellodigi.ir

mailto:12345678901@sms.airfiremobile.com
https://github.com/cubiclesoft/email_sms_mms_gateways/blob/master/sms_mms_gateways.txt
mailto:RodStephens@CSharpHelper.com
mailto:thesender@somemailserver.com

462 ❘ ChAPtER 20 neTWorking

SuMMARy

The WebClient class makes uploading and downloading files relatively simple. In situations in
which the WebClient class doesn’t give you enough control, you can use the WebRequest and
WebResponse classes to move data to and from a network with streams.

The SmtpClient, MailMessage, and MailAddress classes let you send e-mails quite easily. By sending
a message to the proper e-mail address, you can send SMS text messages to a phone.

Together these classes provide some powerful tools for interacting with networks such as the Internet.

In addition to describing these classes, this chapter also defined a bunch of terms and abbreviations.
The following table recaps those definitions.

tERM MEANING

datagram A basic unit of data sent over a packet-switched
network . Datagrams may arrive out of order .

HTTP (HyperText Transfer Protocol) A protocol that defines how messages are for-
matted and transmitted . It sits at a higher level
than socket and datagram communications .

URL (Uniform Resource Location) An address that specifies where some resource
is located . Typical web addresses that you open
with a browser are URLs .

URN (Uniform Resource Name) A name that identifies something but doesn’t
necessarily refer to a “physical” resource location .

ISBN (International Standard Book Number) A unique value that identifies a book . Because
an ISBN does not tell you where to find a par-
ticular copy of the book, an ISBN is a URN but
not a URL .

URI (Uniform Resource Identifier) Includes both URLs and URNs .

TCP (Transmission Control Protocol) One of the protocols used by the Internet that
specifies how to move data from one point in
the network to another . TCP provides reliable
delivery of data in its correct order . TCP and
IP are used together so frequently that they are
often called TCP/IP .

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 463

tERM MEANING

IP (Internet Protocol) One of the protocols used by the Internet that
specifies how to move data from one point in
the network to another . IP ensures delivery of
data based on an addressing scheme . TCP and
IP are used together so frequently that they are
often called TCP/IP .

FTP (File Transfer Protocol) Defines protocols for transferring files from one
host to another on a TCP network such as the
Internet .

SMTP (Simple Mail Transfer Protocol) An Internet protocol for transmitting e-mail
messages across an IP (Internet Protocol)
network .

SSL (Secure Sockets Layer) Encrypts communications between Internet
locations such as between an e-mail client and
an e-mail server .

SMS (Short Message Service) A service that uses standardized protocols to
send text messages to phones .

When your program sends e-mails or text messages, you might like to parse the addressing informa-
tion to see if it makes sense. For example, you cannot send e-mail to the address this@is@a@test.com
and you cannot send an SMS message to the phone number 1-111-111.

Depending on the patterns you need to recognize, parsing values can be difficult. The following
chapter describes regular expressions, a powerful tool you can use to make this sort of pattern
recognition easier.

ExERCISES

 1. Write a program that uses the WebClient’s DownloadFile method to download the
file http://www.csharphelper.com/howto_index.html and save it as the local file
howto_index.html.

 2. Write a program that uses the WebClient’s DownloadString method to download the file
http://blog.csharphelper.com/2010/07/02/draw-a-filled-chrysanthemum-curve-

in-c.aspx. For bonus points, display it in a WebBrowser control.

Hints: To display HTML text in a WebBrowser control, first add the following code to the
form’s Load event handler to initialize the WebBrowser.

webBrowser1.Navigate("about:blank");

Then use code similar to the following to display the HTML stored in the string variable
html in the control.

webBrowser1.Document.Body.InnerHtml = html;

www.EBooksWorld.ir

www.hellodigi.ir

mailto:this@is@a@test.com
http://www.csharphelper.com/howto_index.html
http://blog.csharphelper.com/2010/07/02/draw-a-filled-chrysanthemum-curve-in-c.aspx
http://www.hiva-network.com/

464 ❘ ChAPtER 20 neTWorking

 3. Download the DownloadStringAsync example program (or write your own version) and
modify it so that it uses the DownloadStringTaskAsync method.

Hints: Use the following statement to start the download.

string result = await client.DownloadStringTaskAsync(uri);

You can still use a DownloadStringCompleted event handler if you like, but you don’t need
to because you can move its code right after the call to DownloadStringTaskAsync (with a
few error handling modifications).

 4. The main benefit of using await in Exercise 3 is that it simplifies the code by allowing you
to remove the DownloadStringCompleted event handler. How large is the benefit in this
case? How could you increase the benefit?

 5. Write a program that uses the WebClient’s OpenStream method to download an image
file and display it in a PictureBox. Test the program by downloading the file http://
www.csharphelper.com/howto_filled_chrysanthemum_curve.png. (Hint: The Bitmap
class has a constructor that takes a stream as an argument.)

 6. Modify the program you wrote for Exercise 5 so that it uses the DownloadStreamAsync
method. Allow the user to cancel the download, but remember that this method doesn’t fire
the DownloadProgressChanged event.

 7. Write a program that uses the WebClient’s DownloadData method to download an image
file and display it in a PictureBox. Test the program by downloading the file http://
www.csharphelper.com/howto_filled_chrysanthemum_curve.png. (Hint: The
MemoryStream class has a constructor that takes a byte[] as an argument.)

 8. Write a program that uses the WebRequest class’s Http.Get method to download and dis-
play an image file. Test the program on the file http://www.csharphelper.com/howto_
vortex_fractal_smooth4.png.

 9. Write a program that uses the WebClient’s UploadFile method to upload a file to a web
server. (You need to provide your own server, username, and password.)

 10. Write a program that uses the WebClient’s UploadString method to upload a string into a
file on a web server. (You need to provide your own server, username, and password.)

 11. Write a program that uses the WebRequest class to upload a file to a web server. (You need to
provide your own server, username, and password.) (Hint: Write an UploadBytesIntoFile
method that uploads a byte array. Then write an UploadFile method that reads a file into a
byte array and then calls UploadBytesIntoFile to do the real work.)

 12. Write a program that uses the WebRequest class to upload a string to a web server. (You need
to provide your own server, username, and password.) (Hint: Use the UploadBytesIntoFile
method you wrote for Exercise 11.)

 13. Write a program that uses the ListDirectory FTP command to list the files in an FTP
directory. (For testing, you can use the anonymous FTP directory ftp://nssdcftp.gsfc
.nasa.gov/photo_gallery/hi-res/astro.)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.csharphelper.com/howto_filled_chrysanthemum_curve.png
http://www.csharphelper.com/howto_filled_chrysanthemum_curve.png
http://www.csharphelper.com/howto_filled_chrysanthemum_curve.png
http://www.csharphelper.com/howto_filled_chrysanthemum_curve.png
http://www.csharphelper.com/howto_vortex_fractal_smooth4.png
ftp://nssdcftp.gsfc.nasa.gov/photo_gallery/hi-res/astro

exercises ❘ 465

 14. Modify the program you wrote for Exercise 13 so that it uses the ListDirectoryDetails
FTP command.

 15. Modify the program you wrote for Exercise 14 so that it displays the results ordered by file
size. (Hint: This isn’t as simple as you might like because different FTP servers may return
the information in different formats. For this exercise, don’t worry about a general solution.
Pick a specific FTP directory such as the NASA server listed in Exercise 13 and parse the
data from that directory.)

 16. Modify the SendEmail example program so that you can add one CC recipient. (Hint: Add
a new MailAddress object to the MailMessage object’s CC collection.)

Note that some mail servers are clever enough to combine multiple copies of the same message
sent to the same recipient. In this exercise, for example, if you use your own e-mail address
as both the recipient and the CC recipient, your mail server may combine the two copies and
you’ll receive only one of them.

To test your solution, use my e-mail address RodStephens@CSharpHelper.com for one of
the addresses. I’ll send you a reply saying I got it. (Please try to send me only one message
when you have the program debugged. Don’t spam me with dozens of messages while you’re
working on early versions of the program.)

 17. Modify your solution to Exercise 16 so that you can enter a comma-delimited series of
e-mail addresses and the program sends BCC copies of the message to them. (Hint: Use
the MailMessage’s Bcc collection.)

NOtE BCC stands for Blind Carbon Copy. BCC recipients receive a copy of
the mail message, but other recipients don’t see the BCC recipients’ names or
e-mail addresses.

 18. Write a program that sends your phone an SMS text message.

www.EBooksWorld.ir

www.hellodigi.ir

mailto:RodStephens@CSharpHelper.com

www.EBooksWorld.ir

www.hellodigi.ir

Part V
Advanced topics

 ▶ ChAPtER 21: Regular Expressions

 ▶ ChAPtER 22: Parallel Programming

 ▶ ChAPtER 23: ADO .NET

 ▶ ChAPtER 24: XML

 ▶ ChAPtER 25: Serialization

 ▶ ChAPtER 26: Reflection

 ▶ ChAPtER 27: Cryptography

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

regular expressions
whAt’S IN thIS ChAPtER

➤➤ Regular expression syntax

➤➤ Using regular expressions to detect matches, find matches, and
make replacements

➤➤ Using regular expressions to parse input

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Many applications enable the user to type information but the information should match
some sort of pattern. For example, the string 784-36λ9 is not a valid phone number and
Rod@Stephens@C#Helper.com is not a valid e-mail address.

One approach for validating this kind of input is to use string methods. You could use the string
class’s IndexOf, LastIndexOf, Substring, and other methods to break the input apart and see if
the pieces make sense. For all but the simplest situations, however, that would be a huge amount
of work.

Regular expressions provide another method for verifying that the user’s input matches a
pattern. A regular expression is a string that contains characters that define a pattern. For
example, the regular expression ^\d{3}-\d{4}$ represents a pattern that matches three
digits followed by a hyphen followed by four more digits as in 123-4567. (This isn’t a great
pattern for matching U.S. phone numbers because it enables many invalid combinations such
as 111-1111 and 000-0000.)

The .NET Framework includes classes that can use regular expressions to see if an input string
matches the pattern. They also provide methods for locating patterns within input text and for
making complex substitutions.

21

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

470 ❘ ChAPtER 21 regular exPressions

This chapter provides an introduction to regular expressions. It explains how to create regular expres-
sions and how to use them to see if a complete string matches a pattern, find matches within a string,
use patterns to make replacements, and parse inputs.

thE REGuLARExPRESSIONS NAMESPACE

The .NET regular expression classes as in the System.Text.RegularExpressions
namespace so, while you work with regular expressions, you may want to include
that namespace in your program with a using directive.

NOt ALL REGuLAR ExPRESSIONS ARE EQuAL

Different programming languages and environments may use different regular
expression formats. For example, C++ running on a Linux system uses a different
regular expression language than the one used by .NET. The languages use similar
symbols so that they are often close enough to be confusing.

When you search the Internet for regular expression patterns to match a particular
format such as UK phone numbers or Canadian postal codes, be certain the patterns
you find use the .NET syntax and not some other syntax.

The following section explains the regular expression syntax used by .NET. The sections after that
one explain how to determine whether a string matches a pattern, find matches within a string, and
make replacements.

buILdING REGuLAR ExPRESSIONS

Before you can write code to see if an input string matches a pattern, you need to know how to build
a regular expression to represent that pattern.

A regular expression can contain literal characters that the input must match exactly and characters
that have special meanings. For example, the sequence [0-9] means the input must match a single
digit 0 through 9.

Regular expressions can also contain special character sequences called escape sequences that match
specific patterns or that control the behavior of a regular expression class. For example, the escape
sequence \d makes the pattern match a single digit just as [0-9] does.

If you want to include a special character such as \ or [in a regular expression without it taking on
its special meaning, you can “escape it” as in \\ or \[.

www.EBooksWorld.ir

www.hellodigi.ir

Building regular expressions ❘ 471

The tools you use to build regular expressions can be divided into six categories: character escapes,
character classes, anchors, grouping constructs, quantifiers, and alternation constructs. The following
sections describe those categories. The section after that describes some example regular expressions
that match common input patterns such as telephone numbers.

ESCAPING ESCAPES

Remember that C# programs also use the \ character to begin escape sequences
within strings. For example, \n represents a newline character and \t represents a
tab character. That makes using \ as an escape in a regular expression awkward.

For example, suppose you want to match \ followed by a digit followed by \. The
regular expression is \\\d\\. As if this weren’t confusing enough, if you want to
include this expression in a string defined inside your code, you need to escape the
\ characters, so you get a mess similar to the following code.

string pattern = "^\\\\\\d\\\\$";

You can make your code easier to read by using the @ symbol to define any pattern
strings in your code. The following statement initializes the same string as before,
but it uses the @ symbol to make things slightly easier to read.

string pattern = @"^\\\d\\$";

The backslashes still make this somewhat confusing, but it’s a lot easier to read
than the first version.

Character Escapes
A character escape matches special characters such as [Tab] that you cannot simply type into a
string. The following table lists the most useful character escapes.

ESCAPE MEANING

\t Matches the tab character

\r Matches the return character

\n Matches the newline character

\nnn Matches a character with ASCII code given by the two or three octal digits nnn

\xnn Matches a character with ASCII code given by the two hexadecimal digits nn

\unnnn Matches a character with Unicode representation given by the four hexadecimal
digits nnnn

www.EBooksWorld.ir

www.hellodigi.ir

472 ❘ ChAPtER 21 regular exPressions

For example, the regular expression \u00A7 matches the section symbol § (because 00A7 is that
character’s hexadecimal Unicode value).

Character Classes
A character class matches one of the items in a set of characters. For example, \d matches a digit 0
through 9. The following table lists the most useful character class constructs.

CONStRuCt MEANING

[chars] Matches one of the characters inside the brackets . For example,
[aeiou] matches a single lowercase vowel .

[^chars] Matches a character that is not inside the brackets . For example,
[^aeiouAEIOU] matches a single nonvowel character such as Q,
?, or 3 .

[first-last] Matches a character between the character first and the
character last . For example, [a–z] matches any lowercase
letter between a and z . You can combine multiple ranges as in
[a-zA-Z], which matches uppercase or lowercase letters .

. This is a wildcard that matches any single character except \n .
(To match a period, use the \. escape sequence .)

\w Matches a single “word” character . Normally, this is equivalent to
[a-zA-Z_0-9], so it matches letters, the underscore character,
and digits .

\W Matches a single nonword character . Normally, this is equivalent
to [^a-zA-Z_0-9] .

\s Matches a single whitespace character . Normally, this includes
[Space], [Form feed], [Newline], [Return], [Tab], and
[Vertical tab] .

\S Matches a single nonwhitespace character . Normally, this
matches everything except [Space], [Form feed], [Newline],
[Return], [Tab], and [Vertical tab] .

\d Matches a single decimal digit . Normally, this is equivalent
to [0-9] .

\D Matches a single character that is not a decimal digit . Normally,
this is equivalent to [^0-9] .

www.EBooksWorld.ir

www.hellodigi.ir

Building regular expressions ❘ 473

dAShING dAShES

If you want to include a dash character inside a bracketed group, place it at the
beginning or end so that it’s not confused with the dash used to make a range of
characters. For example, the patterns [-a-z] and [a-z-] both match the dash
character – or a lowercase letter a through z.

For example, the regular expression [A-Z]\d[A-Z] \d[A-Z]\d matches a Canadian postal code of
the form A1A 1A1 where A represents a letter and 1 represents a digit.

NO jOKE

The Canadian postal service Canada Post gave Santa Claus his own postal code:
H0H 0H0.

Anchors
An anchor (also called an atomic zero-width assertion) represents a state that the input string
must be in at a certain point to achieve a match. Anchors have a position in the string but do not
use up characters.

For example, the ^ and $ characters represent the beginning and ending of a line or the string,
depending on whether you work on multiline or single-line input.

The following table lists the most useful anchors.

ANChOR MEANING

^ Matches the beginning of the line or string

$ Matches the end of the string or before the \n at the end of the line or string

\A Matches the beginning of the string

\Z Matches the end of the string or before the \n at the end of the string

\z Matches the end of the string

\G Matches where the previous match ended

\B Matches a nonword boundary

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

474 ❘ ChAPtER 21 regular exPressions

REGEx OPtIONS

The Framework’s regular expression classes provide options to let you change the
way they process input strings. For example, options enable you to specify whether a
class should treat a multiline input string as a series of lines that should be matched
separately or as a single, long string that happens to contain multiple lines.

You can specify regular expression options in three ways.

First, you can pass a RegexOptions parameter to a Regex object’s constructor or
pattern matching methods such as IsMatch.

Second, you can use the syntax (?options) to include inline options within a regular
expression. These options, which are described shortly, can include any of the values i,
m, n, s, or x. If the list begins with a – character, then the following options are turned
off. The options remain in effect until a new set of inline options reset their values.

Third, you can use the syntax (?options:subexpression) within a regular expres-
sion. In this case, options is as before, and subexpression is the part of a regular
expression during which the options should apply.

The following table lists the available options.

OPtION MEANING

i Ignore case .

m Multiline . Here ^ and $ match the beginning and end-
ing of lines instead of the beginning and ending of the
whole input string .

s Single-line . Here . matches all characters including \n .

n Explicit capture . This makes the method not capture
unnamed groups . See the following section “Grouping
Constructs” for more information on groups .

x Ignore unescaped whitespace in the pattern and enable
comments after the # character .

For more information on these options, see “Regular Expression Options” at msdn.microsoft
.com/library/yd1hzczs.aspx.

Grouping Constructs
Grouping constructs enables you to define capture groups within matching pieces of a string. For
example, in a U.S. Social Security number with the format 123-45-6789, you could define groups
to hold the pieces 123, 45, and 6789. The program could later refer to those groups either with
C# code or later inside the same regular expression.

www.EBooksWorld.ir

www.hellodigi.ir

Building regular expressions ❘ 475

Parentheses create groups. For example, consider the expression (\w)\1. The parentheses create a
numbered group that in this example matches a single word character. Later in the expression, the
text \1 refers to group number 1. That means this regular expression matches a word character fol-
lowed by itself. If the string is “book,” then this pattern would match the “oo” in the middle.

GROuP INdExES

In regular expressions, numbered groups are numbered starting at 1, not 0.

There are several kinds of groups, some of which are fairly specialized and confusing. The two most
common are numbered and named groups.

To create a numbered group, simply enclose a subexpression in parentheses as shown in the pre-
vious example.

To create a named group, use the syntax (?<name>subexpression) where name is the name you
want to assign to the group and subexpression is a subexpression.

To use a named group in a regular expression, use the syntax \k<name>.

For example, the expression (?<twice>\w)\k<twice> is equivalent to the previous expression
(\w)\1 except the group is named twice.

Quantifiers
A quantifier makes the regular expression engine match the previous element a certain number of
times. For example, the expression \d{3} matches any digit exactly 3 times. The following table
describes regular expression quantifiers.

QuANtIFIER MEANING

* Matches the previous element 0 or more times

+ Matches the previous element 1 or more times

? Matches the previous element 0 or 1 times

{n} Matches the previous element exactly n times

{n,} Matches the previous element n or more times

{n,m} Matches the previous element between n and m times (inclusive)

If you follow one of these with ?, the pattern matches the preceding expression as few times as
possible. For example, the pattern BO+ matches B followed by 1 or more Os, so it would match
the BOO in BOOK. The pattern BO+? also matches a B character followed by 1 or more Os, but it
matches as few Os as possible, so it would match only the BO in BOOK.

www.EBooksWorld.ir

www.hellodigi.ir

476 ❘ ChAPtER 21 regular exPressions

Alternation Constructs
An alternation construct uses the | character to allow a pattern to match either of two subexpressions.
For example, the expression ^(true|yes)$ matches either true or yes.

For a more complicated example, the pattern ^(\d{3}-\d{4}|\d{3}-\d{3}-\d{4})$ matches 7-digit
U.S. phone numbers of the form 123-4567 and 10-digit U.S. phone numbers of the form 123-456-7890.

Sample Regular Expressions
The following list describes several useful regular expressions.

➤➤ ^\d{3}-\d{4}$

This is a simple 7-digit phone number format and allows several illegal phone num-
bers such as 111-1111 and 000-0000.

^—Match the start of the string, so the phone number must start at the beginning of
the string.

\d—Match any digit.

{3}—Repeat the previous (match any digit) 3 times. In other words, match 3 digits.

- —Match the - character.

\d—Match any digit.

{4}—Match 4 digits.

➤➤ ^[2-9][0-9]{2}-\d{4}$

This matches a 7-digit U.S. phone number more rigorously. The exchange code at the
beginning must match the pattern NXX where N is a digit 2-9 and X is any digit 0-9.

➤➤ ^[2-9][0-8]\d-[2-9][0-9]{2}-\d{4}$

This pattern matches a 10-digit U.S. phone number with the format NPA-NXX-
XXXX where N is a digit 2-9, P is a digit 0-8, A is any digit 0-9, and X is any digit 0-9.

➤➤ ^([2-9][0-8]\d-)?[2-9][0-9]{2}-\d{4}$

This pattern matches a U.S. phone number with an optional area code such as
202-234-5678 or 234-5678. The part of the pattern ([2-9][0-8]\d-)? matches
the area code. The ? at the end means the preceding group can appear 0 or 1
times, so it’s optional. The rest of the pattern is similar to the earlier pattern that
matches a 7-digit U.S. phone number.

➤➤ ^\d{5}(-\d{4})?$

This pattern matches a U.S. ZIP code with optional +4 as in 12345 or 12345-6789.

➤➤ ^[A-Z]\d[A-Z] \d[A-Z]\d$

This pattern matches a Canadian postal code with the format A1A 1A1 where A is
any capital letter and 1 is any digit.

www.EBooksWorld.ir

www.hellodigi.ir

Building regular expressions ❘ 477

➤➤ ^[a-zA-Z0-9.-]{3,16}$

This pattern matches a username with 3 to 16 characters that can be dashes, letters,
digits, periods, or underscores. You may need to modify the allowed characters to fit
your application.

➤➤ ^[a-zA-Z][a-zA-Z0-9._-]{2,15}$

This pattern matches a username that includes a letter followed by 2 to 15 dashes,
letters, digits, periods, or underscores. You may need to modify the allowed charac-
ters to fit your application.

➤➤ ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9._%+-]+\.[a-zA-Z]{2,4}$

This pattern matches an e-mail address.

The sequence [a-zA-Z0-9._%+-] matches letters, digits, underscores, %, +, and
–. The plus sign after that group means the string must include one or more of
those characters.

Next, the pattern matches the @ symbol.

The pattern then matches another letter one or more times, followed by a ., and
then between two and four letters.

For example, this pattern matches RodStephens@CSharpHelper.com. This pattern
isn’t perfect but it matches most valid e-mail addresses.

➤➤ ^[+-]?[a-fA-F0-9]{3}$

This pattern matches a 3-digit hexadecimal value with an optional sign + or – as
in +A1F.

➤➤ ^(https?://)?([\w-]+\.)+[\w-]+$

This pattern matches a top-level HTTP web address such as http://www
.csharphelper.com.

The pattern (https?://)? matches http, followed by an s zero or one times,
followed by ://. The whole group is followed by ?, so the whole group must
appear zero or one times.

The pattern ([\w-]+\.)+ matches a word character (letter, digit, or underscore) or
dash one or more times followed by a period. This whole group is followed by + so
the whole group must appear one or more times.

The final piece [\w-]+ matches one or more letters, digits, underscores, or dashes
one or more times.

This pattern isn’t perfect. In particular it doesn’t validate the final part of the
domain, so it would match www.something.whatever.

➤➤ ^(https?://)?([\w-]+\.)+[\w-]+(/(([\w-]+)(\.[\w-]+)*)*)*$

This pattern matches an HTTP web URI such as http://www.csharphelper.com/
howto_index.html. It starts with the same code used by the preceding pattern. The
new part is highlighted in bold.

www.EBooksWorld.ir

www.hellodigi.ir

mailto:RodStephens@CSharpHelper.com
http://www.csharphelper.com
http://www.something.whatever
http://www.csharphelper.com/
http://www.csharphelper.com

478 ❘ ChAPtER 21 regular exPressions

The entire new piece is surrounded by parentheses and followed by *, so the whole
thing can appear zero or more times.

The new piece begins with a /, so the text must start with a / character.

The rest of the new piece is surrounded with parentheses and followed by *, so that
part can appear zero or more times. This allows the URL to end with a /.

The rest of the pattern is ([\w-]+)(\.[\w-]+)*). The first part ([\w-]+) requires
the string to include one or more letters, digits, underscores, or dashes. The second
part (\.[\w-]+)*) requires the string to contain a period followed by one or more
letters, digits, underscores, or dashes. This second part is followed by *, so it can
appear zero or more times. (Basically this piece means the URL can include charac-
ters separated by periods but it cannot end with a period.)

Again, this pattern isn’t perfect and doesn’t handle some more advanced URLs such
as those that include =, ?, and # characters, but it does handle many typical URLs.

Notice that all these patterns begin with the beginning-of-line anchor ^ and end with the end-of-line
anchor $, so each pattern matches the entire string not just part of it. For example, the pattern ^\d{5}
(-\d{4})?$ matches complete strings that look like ZIP codes such as 12345. Without the ^ and $,
the pattern would match strings that contain a string that looks like a ZIP code such as x12345x.

tEStING REGuLAR ExPRESSIONS

Using the techniques described in the following sections, you can write C# programs
to use and test regular expressions. However, tools are available that let you test regu-
lar expressions without building programs around them. For example, you can use
the following tools.

➤➤ regexhero.net/tester

➤➤ derekslager.com/blog/posts/2007/09/a-better-dotnet-regular-

expression-tester.ashx

➤➤ www.myregextester.com/

Remember that some programming languages have slightly different regular
expressions syntax. For example, in JavaScript regular expressions don’t allow
named groups so a tool that uses JavaScript would not be able to use the expression
(?<double>.)\k<double> to detect double letters. Be sure the tool you pick uses
the syntax used by .NET.

uSING REGuLAR ExPRESSIONS

The Regex class provides objects that you can use to work with regular expressions. The following
table summarizes the Regex class’s most useful methods.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.myregextester.com/
http://www.hiva-network.com/

Using regular expressions ❘ 479

MEthOd PuRPOSE

IsMatch Returns true if a string satisfies a regular expression .

Match Searches a string for the first part of it that satisfies a regular
expression .

Matches Returns a collection giving information about all parts of a string
that satisfy a regular expression .

Replace Replaces some or all the parts of the string that match a regular
expression with a new value . (This is much more powerful than the
string class’s Replace method .)

Split Splits a string into an array of substrings delimited by pieces of the
string that match a regular expression .

Many of the methods described in the table have multiple overloaded versions. In particular,
many take a string as a parameter and can optionally take another parameter that gives a
regular expression. If you don’t pass the method a regular expression, then the method uses the
expression you passed into the object’s constructor.

The Regex class also provides static versions of these methods that take both a string and a
regular expression as parameters. For example, the following code determines whether the text
in inputTextBox satisfies the regular expression in patternTextBox.

if (Regex.IsMatch(inputTextBox.Text, patternTextBox.Text))
 resultLabel.Text = "Match";
else
 resultLabel.Text = "No match";

The static methods make simple regular expression testing easy.

The following sections explain how to use the Regex class to perform common regular expression
tasks such as finding matches, making replacements, and parsing input strings.

Matching Patterns
The Regex class’s static IsMatch method gives you an easy
way to determine whether a string satisfies a regular expres-
sion. The MatchPattern example program, which is avail-
able for download and shown in Figure 21-1, uses this
method to determine whether a string matches a pattern.

When you modify the regular expression or the string, the
program executes the following code.

// See if the text matches the pattern.
private void CheckForMatch()

FIGuRE 21-1: The MatchPattern
example program determines
whether a string satisfies a
regular expression .

www.EBooksWorld.ir

www.hellodigi.ir

480 ❘ ChAPtER 21 regular exPressions

{
 try
 {
 if (Regex.IsMatch(inputTextBox.Text, patternTextBox.Text))
 resultLabel.Text = "Match";
 else
 resultLabel.Text = "No match";
 }
 catch (Exception ex)
 {
 resultLabel.Text = ex.Message;
 }
}

The code passes the Regex.IsMatch method the string to validate and the regular expression. The
method returns true if the string satisfies the expression. The program then displays an appropriate
message in resultLabel.

This example uses a try catch block to protect itself from improperly formed regular expressions.
For example, suppose you want to use the expression (.)\1 to detect repeated characters. At one
point while you’re typing you will have entered just (, which is not a valid regular expression.

Finding Matches
The MatchPattern example program described in the preceding
section determines whether a string satisfies a regular expression.
For example, it can use the pattern (.)\1 to verify that the string
bookkeeper contains a double letter. However, that program
won’t tell you where the double letter is. In this example, book-
keeper contains three double letters: oo, kk, and ee.

The Regex class’s Matches method can give you information
about places where a string matches a regular expression. The
FindMatches example program, which is available for download
and shown in Figure 21-2, displays the parts of a string that
match a pattern.

The FindMatches program uses the following code to locate matches.

// Display matches.
private void FindMatches()
{
 try
 {
 // Make the regex object.
 Regex regex = new Regex(patternTextBox.Text);

 // Find the matches.
 string matches = "";
 foreach (Match match in regex.Matches(inputTextBox.Text))
 {

FIGuRE 21-2: The FindMatches
example program finds the parts
of a string that match a pattern .

www.EBooksWorld.ir

www.hellodigi.ir

Using regular expressions ❘ 481

 // Display the matches.
 matches += match.Value +" ";
 }
 resultLabel.Text = matches;
 }
 catch (Exception ex)
 {
 resultLabel.Text = ex.Message;
 }
}

This code creates a Regex object, passing its constructor the regular expression pattern. It then
calls the object’s Matches method, passing it the input string. It loops through the resulting collec-
tion of Match objects and adds each match’s Value to a result string. When it is finished, it displays
the results in resultLabel.

The following table lists the Match class’s most useful properties.

PROPERty PuRPOSE

Groups Returns a collection of objects representing any groups captured by
the regular expression . The Group class has Index, Length, and Value
properties that describe the group .

Index The index of the match’s first character .

Length The length of the text represented by this match .

Value The text represented by this match .

Making Replacements
The Regex class’s static Replace method lets you replace the parts of a string that match a pattern
with a new string. The MakeReplacements example program, which is available for download and
shown in Figure 21-3, replaces parts of a string that match a pattern with a new string.

FIGuRE 21-3: The MakeReplacements example
program replaces matching parts of a string with
a new value .

www.EBooksWorld.ir

www.hellodigi.ir

482 ❘ ChAPtER 21 regular exPressions

The following code shows how the MakeReplacements program makes replacements.

// Make the replacements.
private void replaceButton_Click(object sender, EventArgs e)
{
 resultTextBox.Text = Regex.Replace(
 inputTextBox.Text,
 patternTextBox.Text,
 replaceWithTextBox.Text);
}

This code simply calls the Replace method, passing it the input string, the pattern to match, and the
replacement text.

Parsing Input
In some situations, you can use a Regex object to
parse an input string by using capture groups. After
matching a string, you can loop through a Regex
object’s Matches collection to find parts of the string
that matched the expression. You can then use each
Match’s Groups collection, indexed by number or
name (if the groups are named), to get the pieces of
the match in the groups.

The ParsePhoneNumber example program, which
is available for download and shown in Figure 21-4,
uses a Regex object to find the pieces of a 10-digit
phone number.

The ParsePhoneNumber program uses the following code to find the phone number’s pieces.

// Find matching groups.
private void parseButton_Click(object sender, EventArgs e)
{
 groupsListBox.Items.Clear();

 Regex regex = new Regex(patternTextBox.Text);
 foreach (Match match in regex.Matches(inputTextBox.Text))
 {
 groupsListBox.Items.Add("NPA: " + match.Groups["NPA"]);
 groupsListBox.Items.Add("NXX: " + match.Groups["NXX"]);
 groupsListBox.Items.Add("XXXX: " + match.Groups["XXXX"]);
 }
}

This code clears its ListBox and then creates a Regex object, passing its constructor the pattern to
match. It then calls the Matches method, passing it the input string, and loops through the resulting
collection of matches.

If the input string contains a single phone number, there will be only one match in the Matches
collection. In fact, the pattern shown in Figure 21-4 can contain at most one match.

FIGuRE 21-4: The ParsePhoneNumber
example program parses out the pieces of
a phone number .

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 483

For each match, the code uses the Groups collection to get the text in the named groups NPA, NXX,
and XXXX. It adds the values it finds to the result ListBox.

SuMMARy

The string class provides methods that you can use to examine a string to see if it matches a partic-
ular pattern. Unfortunately, using those methods can be a lot of work if the pattern is complicated.

The Regex class provides another approach that is often much easier. Instead of breaking a string
apart to see if it matches a pattern, the Regex class lets you define a regular expression and then see
whether the string satisfies the expression. The class’s methods also let you find parts of a string that
match the expression, make replacements, and parse a string to find pieces that match parts of a
regular expression.

Chapter 8, “LINQ,” described PLINQ, which lets you perform multiple LINQ queries in parallel.
PLINQ isn’t the only way a program can perform multiple tasks at the same time. The following
chapter explains other methods in which you can use parallelism to improve performance on
multiple CPU or multicore systems.

ExERCISES

 1. Write a program that takes an input string, removes leading and trailing whitespace, and
replaces sequences of multiple whitespace characters with single spaces. For example, with
the input string “ This is a test. ” the program should produce the result “This is
a test.”

 2. Write a program that uses Regex.Split to list the words in a string.

 3. Modify the FindMatches example program shown in Figure 21-2 so that it displays matches
in a ListBox. Then run the program with the regular expression \w* and the input string
abc;def;;;ghi;;. Why doesn’t the program display only the three strings abc, def, and
ghi? How can you make it display only those strings?

 4. The ParsePhoneNumber example program shown in Figure 21-4 cannot match a phone
number that is missing the area code. It can parse 800-555-1337 but cannot parse 555-
1337. What regular expression can you use to parse phone numbers with or without an
area code? What does the program do if a phone number is missing the area code?

 5. Modify the ParsePhoneNumber example program so that it parses multiple phone numbers
in a multiline string. Display each phone number’s pieces on a separate line in the ListBox
as in NPA: 800, NXX: 555, XXXX: 1337.

Hints: When you create the Regex object, use the Multiline option. That makes the ^ and
$ characters match the start and end of each line instead of the entire string. Also note that
the Regex object considers [Newline] to mark the end of a line but a TextBox uses the
[Return][Newline] combination to mark the end of a line. Modify the regular expression
so it can remove the [Return] characters as needed.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

484 ❘ ChAPtER 21 regular exPressions

 6. Write a regular expression that matches integers with digit grouping such as –1,234 and
+91. Use the MatchPattern example program shown in Figure 21-1 to check your result.

 7. Write a regular expression that matches floating-point numbers such as –1234.56 and
+65.43. If a number has a decimal point, require at least one digit after it.

 8. Write a regular expression that matches floating-point numbers with digit grouping such
as –1,234.5678.

 9. Replacement patterns let the Regex.Replace method use groups and other parts of a match
in replacement text. For example, within the replacement text, you can use $1 to represent
the text in the first match group.

Write a program that lets you type a series of names of the form Ann Archer. When you click
the Rearrange button, make the program use replacement patterns to rewrite the names in
the form Archer, Ann.

Hints: Remember to remove the trailing [Return] character from each line. Use replacement
patterns to restore it in the result so each name appears on a separate line.

www.EBooksWorld.ir

www.hellodigi.ir

Parallel Programming
whAt’S IN thIS ChAPtER

➤➤ Advantages of multithreading

➤➤ PLINQ, BackgroundWorker, TPL, tasks, and threads

➤➤ Interacting with the UI thread

➤➤ Race conditions and deadlock

➤➤ Thread-safe classes and collections

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

One way to improve a program’s performance is to run it on a faster computer, but there’s a
limit to how many instructions per second even a fast CPU can execute.

Another approach is to run different parts of the program on different processors. Some
computers have multiple processors and many these days have multiple cores, separate central
processing units (CPUs) on a single chip. Two core systems are the norm these days and pro-
cessors with four, eight, or even more cores are available.

To execute commands on different CPUs, a .NET application creates multiple threads. A thread
is the smallest unit of code to which an operating system allocates CPU time. In multithreading,
a single process has multiple threads of execution. If the system has multiple CPUs, the threads
can run in parallel on different CPUs.

22

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

486 ❘ ChAPtER 22 Parallel Programming

MuLtIthREAdING AdVANtAGES

Multithreading has other advantages in addition to executing code in parallel. For
example, many programs perform tasks that take a long time to finish. Perhaps the
program needs to check a dozen websites to get pricing information for a particular
product. If the program does everything in a single thread, then the main program
is blocked until the web search finishes. That means the user interface is stuck and
the user can’t do anything except watch the screen refuse to refresh. If you run the
user interface and the web search on separate threads, the program can remain
responsive even while the search is still running.

Multithreading can also sometimes simplify your code. Suppose a program needs
to monitor several processes. Perhaps it needs to periodically check a collection
of websites for news and stock prices. You could write a program that repeatedly
loops through each of the websites to check them one after another. That might be
somewhat complicated because the code to deal with each website would be inter-
mingled with the code needed to loop through the sites, handle timeouts, and deal
with other potential problems on each site.

Another approach would be to assign a separate thread to each website and let each
thread run independently. Now each thread’s code can focus on a single website.
Also if one thread’s website is having problems, it won’t affect the performance of
the other threads.

The .NET Framework provides several methods for multithreading including the following.

➤➤ PLINQ—You saw this in Chapter 8, “LINQ.”

➤➤ BackgroundWorker—This component executes code on a separate thread. It uses events to
communicate with the main user interface thread (the UI thread).

➤➤ Task Parallel Library (TPL)—These tools let you easily run multiple methods in different
threads or run multiple instances of the same method with different parameters.

➤➤ Tasks—The Task class lets you create and run threads. The Task class defines some methods
to make certain typical operations easier such as creating and starting a task in a single step,
waiting for a group of tasks to finish, or waiting until any one of a group of tasks finishes.

➤➤ Threads—The Thread class gives you lower level access to threads. These are more
complicated that using other methods but they provide greater control.

This chapter explains how you can use BackgroundWorker, TPL, threads, and tasks to execute code on
multiple threads simultaneously. (See the section “PLINQ” in Chapter 8 for information about PLINQ.)

www.EBooksWorld.ir

www.hellodigi.ir

Parallel Programming ❘ 487

Multiprocessing is a big topic so this chapter provides only an overview of the most common parallel
programming techniques. Threads are particularly complicated, so this chapter doesn’t cover them
exhaustively. PLINQ, the BackgroundWorker component, TPL, and the Task class are much simpler
than threads and provide much of the same basic functionality.

Before you can learn how to use those tools, however, you need to learn a bit about how threads
can interact with the user interface’s controls. The following section explains those interactions.
The sections after that describe BackgroundWorker, TPL, and threads.

thE NEEd FOR SPEEd

Actually, there are several other ways you can improve a program’s performance in
addition to multithreading.

If performance is limited by disk speed, you can buy faster disks. Many programs,
particularly database applications and data-oriented programs, are limited by how
fast the program can move data to and from storage rather than how fast the code
executes. In that case, faster disks can greatly improve performance. Fast hard
drives, solid state disks, and hybrid drives (which combine hard drives and solid state
memory) can greatly improve performance over slower drives. Redundant arrays of
independent disks (RAID) can also improve performance by distributing data across
several physical disks. This is sort of like parallel processing for disk storage.

If the application is limited by available memory, you can buy more memory. If a
computer’s applications use up all its physical memory, the computer must page
some applications’ memory to disk so that it can use that memory for other pro-
grams. When the paged program is ready to run again, its memory must be paged
back from disk into memory. Paging is extremely slow compared to normal memory
access, so this degrades the performance of the entire system. Buying more memory
(and you can buy memory with different access speeds) can eliminate paging and
greatly improve performance.

Many applications are limited by critical sections of code. Although parts of the
application may be fast enough, other parts may limit overall performance. In that
case it may be worth spending some extra time writing an algorithm to optimize
the critical sections of code. (For information about some interesting algorithms,
see my book Essential Algorithms: A Practical Approach to Computer Algorithms,
Rod Stephens, Wiley, 2013.)

The history of the drive to improve transistor density and processor speed is also
fascinating. See en.wikipedia.org/wiki/Moore's_law for information about
Moore’s Law, the trend that the number of transistors on integrated circuits roughly
doubles every 2 years. Gordon E. Moore made this observation in 1965 and it has
proven amazingly accurate ever since.

www.EBooksWorld.ir

www.hellodigi.ir

488 ❘ ChAPtER 22 Parallel Programming

INtERACtING wIth thE uSER INtERFACE

Windows Forms controls are not thread-safe. That means they can safely be manipulated only by the
thread that created them: the UI thread. If a program runs multiple threads, only the UI thread can
safely interact with the controls. If a non-UI thread tries to manipulate a control, it might succeed
sometimes but often it crashes the program.

Sometimes, a thread might need to interact with the user interface to provide information to the
user. For example, a thread that monitors stock prices might need to display a new price or draw a
graph showing prices over time.

A non-UI thread cannot directly modify the UI controls, but it can modify them indirectly. To inter-
act with the UI controls, a thread should follow these steps.

 1. Check the InvokeRequired property for a control that was created in the UI thread. This
property is true if that control was created on a thread other than the thread that is calling
InvokeRequired. (Typically a thread checks the form’s InvokeRequired property, so the
property is true if the thread is not the UI thread.)

 2. If InvokeRequired is true, the thread should call the control’s Invoke method, passing it a
delegate. The Invoke method then executes the delegate on the thread that created the con-
trol. (Again the control is typically the form, so Invoke executes the delegate on the UI thread
because it created the form.)

 3. The delegate executes on the control’s thread. Because it is running in the control’s thread,
the delegate can safely interact with the control. (Typically, the control was created in the
UI thread, so the delegate can interact with all the UI controls.)

If this seems a bit confusing, that’s because it is. The Invoke example program, which is available for
download on this book’s website, provides a simple example that uses two techniques to update two
different labels. (Unfortunately, even a simple example such as this one can be fairly confusing.)

This example uses a Timer component created at design time to update a label to show the current
time. At design time I set the Timer’s Enabled property to true so that the Timer starts running auto-
matically. I also set its Interval property to 500 so that it fires its Tick event every 500 milliseconds
(every one-half second).

The following code shows the Timer’s Tick event handler.

// Update the first clock.
private void clock1Timer_Tick(object sender, EventArgs e)
{
 clock1Label.Text = DateTime.Now.ToString("T");
}

The Tick event handler runs in the UI thread so that it can access the clock1Label control directly.
That makes this nice and simple.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Interacting with the User Interface ❘ 489

tIMER ISN’t MuLtIthREAdING

I didn’t count the Timer component as an option for multithreading because it doesn’t
let you use multiple processors. The Tick event runs on the UI thread, so all the work
done by the Timer is done in the UI thread, not in a separate thread.

The following code shows how the program creates and launches a thread to update its second
clock label.

// Start a thread to update the second clock.
private void Form1_Load(object sender, EventArgs e)
{
 // Create the thread.
 Thread thread = new Thread(UpdateClock2);

 // Start the thread.
 thread.Start();
}

The form’s Load event handler declares and instantiates the thread variable, passing its constructor
the method that the thread should execute: UpdateClock2. It then calls the object’s Start method
to start the thread.

The following code shows the UpdateClock2 method that the thread executes.

// The method that the thread executes.
private void UpdateClock2()
{
 // Loop forever.
 for (; ;)
 {
 // This doesn't work.
 //clock2Label.Text = DateTime.Now.ToString("T");

 // This works.
 if (this.InvokeRequired)
 this.Invoke(new Action(DoUpdateClock2));

 // Sleep for 1/2 second.
 Thread.Sleep(500);
 }
}

The method enters an infinite loop. Inside the loop, commented code tries to directly set the text
displayed by the clock2Label control. Because that control was created by the UI thread, this code
fails. If you uncomment this statement, you’ll get the following exception message.

An unhandled exception of type ‘System.InvalidOperationException’ occurred in
System.Windows.Forms.dll.

www.EBooksWorld.ir

www.hellodigi.ir

490 ❘ ChAPtER 22 Parallel Programming

Additional information: Cross-thread operation not valid: Control ‘clock2Label’
accessed from a thread other than the thread it was created on.

After the commented code, the method checks InvokeRequired to see if the code is executing on a
non-UI thread. (Actually in this example we know for certain that the code is executing on a non-UI
thread, so you could skip this check and just call Invoke.) If InvokeRequired is true, the program
calls Invoke, passing it the method that should be invoked, in this case DoUpdateClock2.

After invoking DoUpdateClock2, the loop sleeps for one-half a second before the next update.

SELF-INVOCAtION

Some programmers use a single method to perform an action from the UI thread
or from some other thread. The method checks InvokeRequired to see if it is
executing on a non-UI thread. If InvokeRequired is true, the method invokes
itself. If InvokeRequired is false, the method performs whatever action it needs
to take on the UI thread.

This technique lets you use one method instead of two, but it may be confusing.
Use whichever technique you find easiest to understand.

The following code shows the DoUpdateClock2 method that updates the second clock label on the
UI thread.

// Perform the update for the second clock.
private void DoUpdateClock2()
{
 clock2Label.Text = DateTime.Now.ToString("T");
}

This method runs on the UI thread, so it simply sets the clock2Label control’s Text property directly.

There’s one more complication to using the thread in this way. When you close the main form, the
thread keeps running. The form closes but the application doesn’t end.

There are a couple ways you can handle this. First, you can stop the thread in either the form’s
Closing or Closed event handler. If you declare the thread variable at the class level, the event
handler can call the thread’s Abort method to make it stop.

You can also make the Closing or Closed event handler call Environment.Exit. This ends the
application immediately, stopping all threads.

A better solution is to set the thread’s IsBackground property to true. When all foreground threads
end, the application stops any background threads and terminates. Initially the main form’s UI thread
is the only foreground thread. If you don’t create any others, then when you close the main form, its
UI thread stops, so the application stops.

www.EBooksWorld.ir

www.hellodigi.ir

BackgroundWorker ❘ 491

The following code shows the full version of the Invoke example program’s Load event handler. The
code that sets the IsBackground property is highlighted in bold.

// Start a thread to update the second clock.
private void Form1_Load(object sender, EventArgs e)
{
 // Create the thread.
 Thread thread = new Thread(UpdateClock2);
 thread.IsBackground = true;

 // Start the thread.
 thread.Start();
}

bACKGROuNdwORKER

Understanding how to use InvokeRequired and Invoke is one of the harder parts of using threads.
Compared to accessing UI controls from other threads, using BackgroundWorker is relatively simple.

The BackgroundWorker component provides a relatively simple way to run a separate thread of
execution. The basic process follows.

 1. Create a BackgroundWorker. Because this is a component, you can place one on a form at
design time if you want.

 2. To make the worker start running, call its RunWorkerAsync method. This starts a new thread
and raises the worker’s DoWork event handler on that thread.

 3. The worker must catch its DoWork event. This event handler is where the worker executes
its code. This event handler runs on a separate thread, so it and the UI thread may run on
different processors.

If you like, the BackgroundWorker can provide feedback to the main UI thread. To do that, add
these steps to those described in the preceding list.

 1. Before starting the BackgroundWorker, set its WorkerReportsProgress property to true.

 2. Catch the worker’s ProgressChanged event. This event handler runs in the UI thread, so it can
manipulate the user interface controls without messing with InvokeRequired and Invoke.

If you want the main program to stop the worker, follow these steps.

 1. Before starting the BackgroundWorker, set its WorkerSupportsCancellation property
to true.

 2. To stop the worker, call its CancelAsync method.

 3. In the DoWork event handler, periodically check the worker’s CancellationPending
property. If that property is true, the event handler should exit. If you like, the code can
set the e.Cancel parameter to indicate that the work was canceled.

www.EBooksWorld.ir

www.hellodigi.ir

492 ❘ ChAPtER 22 Parallel Programming

If you declare the BackgroundWorker in code instead of adding it to a form at design time, you must
keep a reference to it at the class level so that the code can call its CancelAsync method in step 2.

The worker raises its RunWorkerCompleted event if the DoWork event handler ends, if the DoWork
event handler throws an exception, or if the worker is stopped by a call to its CancelAsync method.

If the DoWork event handler exits, the worker stops. The event handler can set its e.Result parameter
to return a value to the RunWorkerComplete event handler.

tPL
The BackgroundWorker component uses events to interact with the UI thread without the hassle of
using InvokeRequired and Invoke. Because it uses event handlers, it breaks the code up into pieces
that cannot be easily run in a sequence.

For example, suppose you want to perform several complicated calculations and display the
results to the user. You could use a separate BackgroundWorker to calculate each of the results.
Unfortunately, the main method that created the workers would then need to end. The program
would later catch the workers’ RunWorkerCompleted events. It would then need to figure out
when all the workers had finished and display the combined result. If the program needed to use
the results to calculate further results, the whole process might start again. The finished code
would be filled with event handlers and code to coordinate them.

TPL provides much better methods for performing multiple calculations on separate threads
and waiting for them all to complete. Those methods are Parallel.For, Parallel.ForEach, and
Parallel.Invoke.

Parallel.For
The Parallel.For method takes as parameters a starting value, an ending value, and a delegate. It
invokes the delegate for each of the values between the starting value (including that value) and the
ending value (not including that value). The method blocks until all the calls to the delegate have
completed and then the code continues.

The ParallelFor example program, which is available for download on this book’s website, uses the
following code to calculate Fibonacci numbers.

// Use recursion (the slow way) to calculate Fibonacci(N).
private long Fibonacci(long N)
{
 if (N <= 1) return 1;
 return Fibonacci(N - 1) + Fibonacci(N - 2);
}

This code simply implements the following recursive definition of Fibonacci numbers.

F0 = 1

F1 = 1

FN = FN-1 + FN-2

www.EBooksWorld.ir

www.hellodigi.ir

BackgroundWorker ❘ 493

This isn’t the most efficient way to calculate Fibonacci numbers. This example uses it because it’s
simple and slow enough to show a benefit from multithreading.

The program uses the following code to calculate four Fibonacci numbers at the same time.

// Arrays for holding N and results.
private long[] Numbers = new long[4];
private long[] Results = new long[4];

// Calculate a Fibonacci number and save it in Results[index].
private void FindFibonacci(int index)
{
 Results[index] = Fibonacci(Numbers[index]);
}

First, the code declares the Numbers array to hold the index of the Fibonacci numbers to calculate.
For example, if Numbers[0] is 10, the program should calculate F10. (The code that initializes the
Numbers array isn’t shown here.)

Next, the code declares the Results array to hold results. If Numbers[0] is 10, the program will
store the value F10 in Results[0].

The FindFibonacci method takes as a parameter the index of the value in the Numbers and Results
arrays that it should calculate. It calls the Fibonacci method described earlier to perform the calcula-
tion and saves the result in the correct position in the Results array.

The following code shows how the example program calculates four Fibonacci numbers in parallel.

Parallel.For(0, 4, FindFibonacci);

The Parallel.For method calls the FindFibonacci method four times, passing it the parameters
0, 1, 2, and 3. Each call receives 0, 1, 2, or 3 as a parameter and looks in the appropriate Numbers
array entry to see which value it should calculate. It performs its calculations and save its results in
the Results array.

After the call to Parallel.For finishes, the program resumes execution as it would if it had called
FindFibonacci four times in sequence.

If the computer has multiple CPUs available, the four calls to FindFibonacci may run on separate
threads, possibly saving time.

Figure 22-1 shows the ParallelFor program after it has
calculated four Fibonacci numbers sequentially and then in
parallel. If you look at the figure you’ll see that calculating
the values sequentially took 12.39 seconds and calculating
them in parallel took 7.57 seconds.

My computer has two cores, so performing the calculations
on separate threads did save some time. The parallel trial
used a bit more than one-half as long as the sequential trial
because the system uses some time starting and coordinat-
ing the threads. Still the parallel trial took only 61 percent as
long as the sequential trial.

FIGuRE 22-1: The ParallelFor example
program uses Parallel.For to
calculate Fibonacci numbers in parallel .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

494 ❘ ChAPtER 22 Parallel Programming

A tPL dRAwbACK

There is one small drawback to using TPL methods such as Parallel.For: The
program is blocked and cannot provide feedback while the method is running.
The sequential code in the ParallelFor example program displays each value as
soon as it is calculated. The parallel code must wait until all the calculations are
finished and then displays them all at once. The total time spent is smaller, but
the user doesn’t get to see any partial results.

Parallel.ForEach
The Parallel.For method invokes a method passing it the values between starting and ending
values. This is analogous to how a for loop works, assuming the loop uses a simple integer as a
looping variable.

The Parallel.ForEach method is analogous to a foreach loop. It also invokes a method sev-
eral times in different threads. Instead of passing the method different integer values in each call,
Parallel.ForEach passes the method different items from some sort of group of objects.

The ParallelForEach example program, which is available for download on this book’s website, uses
this technique to calculate Fibonacci numbers in parallel.

Because Parallel.ForEach passes the method items from a collection, the example program must
create some sort of item to hold information about the Fibonacci calculations. This example uses the
following simple class to hold that information.

private class FibInfo
{
 public long N, Result;
}

The N field holds the index of the Fibonacci number to calculate. When the program performs the
calculation, it stores the Fibonacci number in the object’s Result field.

The following code shows this example’s version of the FindFibonacci method.

private void FindFibonacci(FibInfo info)
{
 info.Result = Fibonacci(info.N);
}

This method takes a FibInfo object as a parameter. It calls the Fibonacci method, which is the
same as the version used in the ParallelFor example program, passing it the FibInfo object’s N field.
It stores the result in the object’s Result field.

The following code shows the part of the program that uses Parallel.ForEach.

// Save the numbers N.
FibInfo[] infos = new FibInfo[4];

www.EBooksWorld.ir

www.hellodigi.ir

BackgroundWorker ❘ 495

for (int i = 0; i < OutputTextBoxes.Length; i++)
{
 infos[i] = new FibInfo() { N = long.Parse(InputTextBoxes[i].Text) };
}

// Calculate.
Parallel.ForEach(infos, FindFibonacci);

// Display the results.
for (int i = 0; i < OutputTextBoxes.Length; i++)
{
 OutputTextBoxes[i].Text = infos[i].Result.ToString();
}

The code creates an array of FibInfo objects and sets their N fields from the values in the TextBoxes
in the InputTextBoxes array. (That array is initialized when the program starts.)

The code then calls Parallel.ForEach, passing it the array of FibInfo objects and the
FindFibonacci method that it should call.

The code then displays the results in the TextBoxes in the OutputTextBoxes array (which is also
initialized when the program starts).

Parallel.Invoke
The Parallel.For and Parallel.ForEach methods invoke the same delegate for different parame-
ters. Sometimes you might want to invoke several different methods. The Parallel.Invoke method
lets you do that. Simply pass the method one or more action delegates for the method to execute.

The ParallelInvoke example program, which is available for download on this book’s website, uses
the following code to calculate four Fibonacci values in parallel.

Parallel.Invoke(
 FindFibonacci0,
 FindFibonacci1,
 FindFibonacci2,
 FindFibonacci3
);

The following code shows the FindFibonacci0 method.

private void FindFibonacci0()
{
 Results[0] = Fibonacci(Numbers[0]);
}

The other methods are similar.

NOtE The performance of Parallel.For, Parallel.ForEach, and
Parallel.Invoke are roughly the same.

www.EBooksWorld.ir

www.hellodigi.ir

496 ❘ ChAPtER 22 Parallel Programming

tASKS

The System.Threading.Tasks.Task class lets you create threads and run them asynchronously.
If the system has multiple CPUs, then Tasks may run simultaneously.

The following table summarizes the Task class’s most useful properties.

PROPERty PuRPOSE

Exception Returns an AggregateException object containing information about
any exceptions that caused the Task to end early .

Factory Provides access to TaskFactory class methods that you can use to
create Tasks . (This is explained in more detail shortly .)

IsCanceled Returns true if the Task was canceled .

IsCompleted Returns true if the Task has finished processing .

IsFaulted Returns true if the Task stopped because of an unhandled exception .

Status Returns the Task’s status . This can be one of Canceled, Created,
Faulted, RanToCompletion, Running, WaitingForActivation,
WaitingForChildrenToComplete, or WaitingToRun .

The following table lists the Task class’s most useful methods.

MEthOd PuRPOSE

ConfigureAwait Configures an “awaiter” object that you can use with the await keyword
to wait for the Task to complete .

ContinueWith Creates a continuation Task that executes when a target Task finishes .

Delay Creates a Task that completes after a specified amount of time
has passed .

Run This static method creates a Task and queues it to start running . (This
is basically a simplified version of Task.Factory.StartNew, which is
described later in this section .)

RunSynchronously Runs a Task synchronously .

Start Starts a Task that was previously created .

Wait Waits for the Task to complete .

WaitAll This static method waits until all the Tasks in a set complete .

www.EBooksWorld.ir

www.hellodigi.ir

Tasks ❘ 497

MEthOd PuRPOSE

WaitAny This static method waits until any one of the Tasks in a set completes .

WhenAll Creates a Task that completes when all the specified Tasks complete .

WhenAny Creates a Task that completes when any one of the specified Tasks
completes .

There are several ways you can create and start a Task. First, you can use a Task class constructor
to create a Task and then call its Start method to start it.

Second, you can use a TaskFactory object. The Task class’s Factory method returns a TaskFactory
object that you can use to create different kinds of Tasks. The Task.Factory.StartNew method cre-
ates and starts a Task in a single step. This method has many overridden versions that let you specify
various options.

Third, you can call Task.Run. This is basically a simplified version of Task.Factory.StartNew.
It has fewer options so it is less flexible, but the reduced number of options also makes it a bit less
confusing.

In addition to the StartNew method, the TaskFactory class provides two methods that create
continuation Tasks that start running when other Tasks complete. The ContinueWhenAll method
creates a Task that starts when all of a set of Tasks completes. The ContinueWhenAny method cre-
ates a Task that starts when any one of a set of Tasks completes.

The FiboTasks example program demonstrates the more cumbersome method for using Tasks. The
following code shows how the program creates four tasks and then waits for them to complete.

// Start four tasks.
Task task0 = new Task(FindFibonacci, 0);
task0.Start();
Task task1 = new Task(FindFibonacci, 1);
task1.Start();
Task task2 = new Task(FindFibonacci, 2);
task2.Start();
Task task3 = new Task(FindFibonacci, 3);
task3.Start();

// Wait for the tasks to complete.
task0.Wait();
task1.Wait();
task2.Wait();
task3.Wait();

The code creates each Task and calls its Start method to start it running. After it starts the fourth
Task, the program calls each Task’s Wait method to wait for the Task to complete.

The rest of the example program is similar to the Fibonacci number examples described in the earlier
section “TPL.”

www.EBooksWorld.ir

www.hellodigi.ir

498 ❘ ChAPtER 22 Parallel Programming

thREAdS

The System.Threading.Thread class gives you more control over threads than you can get from
the other techniques described in this chapter. Using threads is more complicated, however, so nor-
mally you should try to use one of the other methods first. In most cases a Task object is a better
choice than a thread.

The following table lists the Thread class’s most useful properties.

PROPERty MEANING

IsAlive Returns true if the thread has been started and has not ended or
aborted .

IsBackground Determines whether the thread is a background thread .

Priority Determines the thread’s priority . This can be Highest, AboveNormal,
Normal, BelowNormal, or Lowest .

ThreadState Returns the thread’s state . This can be a combination of the values
Aborted, AbortRequested, Background, Running, Stopped,
StopRequested, Suspended, SuspendRequested, Unstarted, and
WaitSleepJoin .

The following table lists the Thread class’s most useful methods.

MEthOd PuRPOSE

Abort Raises a ThreadAbortException on the thread to make it terminate .

Join Blocks the thread on which the method is called until the thread termi-
nates . (This is how programs normally wait for a thread to finish .)

ResetAbort Cancels an Abort for the current thread .

Sleep This static method suspends a thread for a specified amount of time .

Start Starts the thread .

Yield Yields execution to another thread if one is ready to run .

Using a simple thread typically involves the following steps.

 1. Create the Thread object.

 2. Call the Start method to start the thread.

 3. To stop the thread, call its Abort method.

 4. To wait for the thread, call its Join method.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

coordinating Tasks ❘ 499

Creating and managing Threads takes some overhead, so you should use only Threads if you have
multiple large calculations that you want to run on multiple CPUs.

COORdINAtING tASKS

All the examples used so far in this chapter have been rigged for success. Each computation running
in parallel worked only with its own data and never tried to look at the data used by any other com-
putation. Each computation used InvokeRequired and Invoke to safely interact with the UI thread.

If you can arrange your computations in this way so that they never interfere with each other, then
concurrent programming is relatively simple. Unfortunately in some applications different computa-
tions must access the same resources. In that case several conflicts can arise. Two of the most com-
mon of these are race conditions and deadlocks.

Race Conditions
A race condition can occur when two concurrent computations try to read and update the same value at
roughly the same time. For example, suppose threads A and B each perform a random search trying to
find the best possible solution to some difficult problem. When they finish their calculations, they must
check variable BestSolution and update it if they find a better solution (one that is a larger integer).

The following code shows how a thread might perform this operation in C#.

if (mySolution > BestSolution)
{
 BestSolution = mySolution;
}

For this example, suppose BestSolution is initially 10, thread A finds a solution with value 15,
and thread B finds a solution with value 20. Now consider the sequence of events shown in the
following table.

thREAd A StEPS thREAd b StEPS

Get BestSolution value (10)

Get BestSolution value (10)

20 > 10 so set BestSolution = 20

15 > 10 so set BestSolution = 15

Thread A starts execution and gets the value of BestSolution, which is initially 10.

The system then switches execution to thread B. Thread B gets the value of BestSolution, which
is still 10. Thread B compares its solution value 20 to BestSolution. Because 20 > 10, thread B’s
solution is an improvement, so it saves its solution and sets BestSolution to 20.

www.EBooksWorld.ir

www.hellodigi.ir

500 ❘ ChAPtER 22 Parallel Programming

Next, the system switches execution back to thread A. Thread A compares its solution value 15 to
the value it saved for BestSolution, which is 10. Because 15 > 10, thread A thinks its solution is an
improvement, so it updates BestSolution to 15.

In this example, thread B has the better solution, but thread A overwrites thread B’s solution.
Thread A “wins” the race by setting its value second.

RACE FRuStRAtION

The maddening thing about race conditions is that they happen only when exactly
the right sequence of events occurs. In this example, there is no problem if thread
A reads and updates BestSolution before thread B does, or vice versa. The pro-
gram may work 99 times in a row. Just when you think everything is debugged
and working perfectly, you run the 100th test, the race condition occurs, and you
get the wrong solution. (In this example, you might not even know that a better
solution was discarded and be unaware that there is a problem!)

You can avoid race conditions by ensuring that the critical sequence of steps is performed atomi-
cally. In this example if each thread reads and updates variable BestSolution atomically, the other
thread cannot interfere and cause a race condition.

AtOMIC SEQuENCE OF StEPS

An atomic sequence of events is one that cannot be subdivided. The steps are marked
so they must be run together without being interrupted by another process.

You can use the lock statement to prevent race conditions. The lock statement marks a section as a
critical region that cannot be interrupted by other concurrent paths of execution.

The lock statement uses an instance of an object to mark the region. When a thread enters the region,
it obtains an exclusive lock on the object. Other threads cannot lock that object until it is released so
they cannot enter a similar critical region until the first thread has finished and released its lock.

The following code shows how you might revise the preceding code to use the lock statement.

// Create and initialize BestSolution.
private int BestSolution = 10;

// Create the lock object.
private object UpdateLock = new object();

...

// Thread A updates BestSolution
lock (UpdateLock)
{

www.EBooksWorld.ir

www.hellodigi.ir

coordinating Tasks ❘ 501

 if (mySolution > BestSolution)
 {
 BestSolution = mySolution;
 }
}

When the program starts, it creates and initializes BestSolution. It also creates an object named
UpdateLock to use for locking critical regions of code. This object is declared at the class level so all
code in the class can use it.

Later when thread A needs to update BestSolution, it uses a lock statement to obtain an exclusive
lock on the object UpdateLock. Now thread B cannot enter its critical section of code because it
cannot lock the object until thread A is done with it.

deadlocks
A deadlock occurs when two or more threads are all stuck waiting for resources that are held by the
other threads. For example, suppose thread A and thread B both need to access resources M and N.
The resources might be files that the threads need to lock, variables that must be accessed within
critical regions to prevent race conditions, or anything else that the threads must access exclusively.

Now suppose thread A has locked resource M and thread B has locked resource N. Thread A can-
not continue because it cannot get resource N and thread B cannot continue because it cannot get
resource M. The two are deadlocked and neither can continue.

In this simple example there’s a simple solution: Both threads can try to lock the resources in the
same order. When both try to lock resource M, one succeeds and one is blocked waiting. Whichever
succeeds can then lock resource N and continue. When that thread has finished, it releases its locks,
the other thread locks both resources, and it can continue.

If you can, you should structure the code so deadlocks are impossible. That’s not hard in this
example. If you have many threads possibly written by different programmers all trying to
update a large set of objects in different orders, it can sometimes be hard to figure out if a dead-
lock might occur.

One way to break deadlocks is to use a timeout on operations that might cause trouble. For example,
the Monitor class’s TryEnter method tries to obtain an exclusive lock on an object much as the lock
statement does, but the TryEnter method also allows you to specify a timeout period. If the method
acquires the lock, it returns true. If the method times out, it returns false.

When a thread is finished with a critical region, it should call the Monitor class’s Exit method to
release its lock on the lock object.

The following code shows how a thread could attempt to enter a critical section of code that might
cause a deadlock with other threads.

// Create the lock object.
private object UpdateLock = new object();
...
// Try to lock the lock object.
if (Monitor.TryEnter(UpdateLock, 500))

www.EBooksWorld.ir

www.hellodigi.ir

502 ❘ ChAPtER 22 Parallel Programming

{
 try
 {
 // Critical code goes here ...
 }
 finally
 {
 Monitor.Exit(UpdateLock);
 }
}
else
{
 // Do something if we time out.
}

The code creates the lock object UpdateLock as before. Later it uses Monitor.TryEnter to try to
enter the critical region of code. If TryEnter succeeds, the thread enters its critical region and does
whatever it needs to do with the resources. The finally section of the try finally block ensures
that the code calls Monitor.Exit when it is done with the critical region.

If the call to TryEnter returns false, the thread timed out and failed to obtain the lock. In that
case the code should do something to recover, possibly trying again to obtain the lock.

LIMItEd dO-OVERS

If your code fails to obtain a lock, you may want to limit the number of times it can
try again. If a thread becomes permanently stuck inside the critical region, it will
block any other thread that must access that region.

Of course, if the program is in that situation, it may be impossible to get anything
done, and you may want close it and start over.

The following table lists the most useful Monitor class methods.

MEthOd PuRPOSE

Enter Acquires an exclusive lock on an object .

Exit Releases an exclusive lock on an object .

IsEntered Returns true if the current thread has a lock on a specific object .

TryEnter Tries to acquire an exclusive lock on an object .

Wait Releases the lock on an object and then blocks until it reacquires a
lock on that object . This is useful if the thread needs to allow another
thread to take some action before it can continue .

www.EBooksWorld.ir

www.hellodigi.ir

Thread-safe objects ❘ 503

OthER LOCKING CLASSES

The .NET Framework provides a few other primitive classes that you can use to
provide locking mechanisms. Usually the lock statement and the Monitor class are
easier to use, so you should use those if possible.

The Mutex class lets a process acquire a lock much as the Monitor class does. One
big difference between Mutex and Monitor is that a Mutex can wait for a named
mutex that is defined systemwide. That means you can use Mutex to coordinate
among threads running in different programs.

The SpinLock structure is like a high-performance Monitor class. Obtaining and
managing locks involves some overhead, so creating and using a Monitor object
can slow a thread down. Instead of creating a Monitor object, when a thread uses
a SpinLock to enter a critical region, it enters a loop and spins until it can acquire
the lock. This can improve performance if the thread will acquire the lock quickly.
If the thread must spin for a long time (more than a few dozen milliseconds), then
its loop will use up more CPU cycles than a Monitor object would, so the SpinLock
will degrade the performance of other threads.

The ReaderWriterLockSlim class is useful if a writer object needs exclusive write
access to a resource and any number of reader objects need nonexclusive read access
to the resource.

The Semaphore class is similar to the Mutex class. The difference is that the
Mutex class allows only one thread to access a critical region at one time, whereas
a Semaphore allows a fixed number of threads to access a critical region at one
time. For example, you could use a Semaphore to allow up to four threads to
access a resource at the same time. Both Mutex and Semaphore let you lock
threads locally within the same program or systemwide.

For more information on these and a few even more exotic synchronization classes,
see “Overview of Synchronization Primitives” at msdn.microsoft.com/library/
ms228964.aspx.

thREAd-SAFE ObjECtS

An object is thread-safe if it is safe for it and other objects of that class or other classes to run on differ-
ent threads at the same time. For example, in the race condition example described earlier, the objects
running in threads A and B were not thread-safe because they tried to read and update the same vari-
able in an unsafe manner.

If a class accesses only its own instance variables and no other class accesses those variables, then it
is thread-safe.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

504 ❘ ChAPtER 22 Parallel Programming

PRIVAtE ISN’t ALwAyS SAFE

Making instance variables private does not guarantee that a class is thread-safe.
Different instances of a class can access each other’s private variables so they could
interfere with each other. However, if the instances don’t mess with each other’s
variables, the class is thread-safe.

At some point most threads need to somehow get information from the main program or send the
main program results. To be thread-safe, you need to ensure that those operations are performed
safely. If each thread interacts with the main program through variables assigned to it alone, then
they are probably safe, as long as the main program doesn’t interfere with those variables.

If multiple threads (including the main program’s thread) need to manipulate the same variables,
you should use locking mechanisms to coordinate them.

Writing your own thread-safe classes isn’t too hard if you’re careful to write the classes so that objects
won’t interfere with each other when running on other threads. One situation that some programmers
overlook is the case in which their class uses another class that is not thread-safe.

For example, the List<> class is not thread-safe. That means if two threads try to share information
in the same List<>, they may cause race conditions.

The System.Collections.Concurrent namespace defines several collection classes that are
thread-safe. The following table lists these concurrent classes.

COLLECtION PuRPOSE

BlockingCollection<T> A thread-safe collection .

ConcurrentDictionary<TKey, TValue> A thread-safe dictionary class .

ConcurrentQueue A thread-safe queue .

ConcurrentStack A thread-safe stack .

ConcurrentBag A thread-safe bag (unordered collection
of objects) .

SuMMARy

This chapter explained several classes that you can use to perform different kinds of tasks in parallel.
The BackgroundWorker component performs a task and uses events to return progress and comple-
tion information. If you set its WorkerSupportsCancellation property to true, the program can
interrupt a worker before it finishes.

TPL provides methods that let you easily perform operations in parallel and wait for them to
finish. The Task class lets you perform multiple tasks simultaneously with greater flexibility than

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 505

the BackgroundWorker or TPL. Finally, the Thread class provides even more options and flexibil-
ity; although, it’s more complicated than the Task class.

These classes let you write programs that perform operations separately. Treating each operation
individually often makes the code simpler than it would be if you tried to handle every operation in
a single piece of code. These classes also let you run pieces of code truly in parallel, if the computer
has multiple CPUs.

Parallel programming is a huge topic, and this chapter scratched only the surface. For more informa-
tion on parallel programming, find a good book on the subject or search the Internet. You can start
with the following links.

➤➤ “Parallel Programming in the .NET Framework” at msdn.microsoft.com/library/
dd460693.aspx

➤➤ “Parallel Programming with .NET blog” at blogs.msdn.com/b/pfxteam

Parallel programming can sometimes make a program faster if it is CPU-bound. Distributing
calculations across multiple CPUs can improve performance. However, that won’t work if the
program is limited by resources other than CPU power.

For example, if the program spends most of its time reading and writing to disk, multiple threads of
execution probably won’t improve performance much. Database applications are often disk-bound
in this manner. The program spends most of its time waiting for user input or reading and writing
data to the database. The next chapter provides an introduction ADO.NET, one of the tools you can
use to write database programs in C#.

ExERCISES

 1. The System.Threading.Timer class provides a timer similar to the System.Windows.Forms
.Timer component that you can place on a form. Write a program that uses the former to
display an updating clock.

Hint: Create the Timer as in the following code.

System.Threading.Timer timer =
 new System.Threading.Timer(TimerTick, null, 0, 500);

Here TimerTick is the name of the callback method the Timer should invoke periodically;
null is a parameter that the Timer will pass to the callback method; 0 is the delay in millisec-
onds before the callback method is first invoked; and 500 is the delay in milliseconds between
calls to the callback method.

 2. Modify the FiboTasks example program so that it uses the Task.WaitAll method to wait
for all the tasks to complete.

 3. The Task.Factory.StartNew method creates a new Task and starts it. Modify the program
you wrote for Exercise 2 so that it uses this method to create and start its tasks instead of
performs those actions in two steps.

www.EBooksWorld.ir

www.hellodigi.ir

506 ❘ ChAPtER 22 Parallel Programming

 4. Modify the program you wrote for Exercise 3 so that it uses Task.WaitAny instead of
Task.WaitAll. Run the program several times to find different Fibonacci values until you
understand the program’s behavior. When one of the tasks finishes, what happens to the
other tasks?

 5. Modify the ParallelFor example program so that it uses lambda expressions instead of the
FindFibonacci method.

 6. Suppose a program creates four Tasks (or threads) and then waits for them all to complete.
Does it matter in what order the program waits for the Tasks?

 7. The Task class has a generic version that takes as a parameter the kind of result the task
returns. For example, a Task<long> represents a thread that executes a method that returns
a long result. When you use this kind of Task, its Result property returns the result.

Modify the program you wrote for Exercise 3 so that it uses Task<long>.Factory.StartNew
to run the Fibonacci function without using the FindFibonacci method or the Results array.

 8. Modify the FiboTasks example program so that it uses Threads instead of Tasks. Is there a
difference in performance?

 9. The DeadLock example program, which is available for download on this book’s website,
uses two Task objects to execute the following two methods at the same time.

// Task A.
private void TaskA()
{
 Console.WriteLine("TaskA: Locking A");
 lock (LockObjectA)
 {
 Thread.Sleep(500);
 Console.WriteLine("TaskA: Locking B");
 lock (LockObjectB)
 {
 // Update the value.
 BestValue = ValueA;
 }
 }
}

// Task B.
private void TaskB()
{
 Console.WriteLine("TaskB: Locking B");
 lock (LockObjectB)
 {
 Thread.Sleep(500);
 Console.WriteLine("TaskB: Locking A");
 lock (LockObjectA)
 {
 // Update the value.
 BestValue = ValueB;
 }
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 507

The following text shows the program’s Console window output.

TaskA: Locking A
TaskB: Locking B
TaskA: Locking B
TaskB: Locking A

Explain briefly why the Tasks are now in deadlock and how they got into that state. Then
download and rewrite the program so that it uses the Monitor class to avoid the deadlock.
Use the Console.WriteLine method to indicate when each Task attempts to get a lock,
fails to get a lock, and updates the variable BestValue.

How many times do the Tasks fail to obtain a lock? Can you think of a way to reduce the
number of failures?

Can you think of better ways to avoid the deadlock?

 10. Modify the program you wrote for Exercise 9 so that the two Tasks try to lock objects in
the same order. What is the result?

 11. What happens if a Task calls Monitor.Exit for an object that it didn’t lock?

 12. What happens if a Task doesn’t call Monitor.Exit for an object that it locked?

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

aDo.neT
whAt’S IN thIS ChAPtER

➤➤ Connecting to databases

➤➤ Bound controls

➤➤ DataGridView, DataGrid, and detail interfaces

➤➤ DataSets

➤➤ ADO .NET

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Databases play an important role in many software applications. A large percentage of business
applications use databases to store, arrange, and otherwise manipulate data.

Because databases play such an important role in so many programs, companies such as
Microsoft have spent a huge amount of time building database tools. As a consequence,
there are several methods you can use to work with databases. Some of the most recent
methods include the Entity Framework and LINQ to ADO.NET, which includes LINQ to
SQL, LINQ to Entities, and LINQ to DataSet. Those techniques were covered briefly in
Chapter 8, “LINQ.”

This chapter provides a brief introduction to ADO.NET, a set of classes that provide more
direct access to the underlying database. It also shows how you can use bound database com-
ponents and controls to quickly build simple applications that let you create, edit, and delete
database records.

23

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

510 ❘ ChAPtER 23 ado.neT

RELAtIONAL INtRO

Relational databases are particularly common because they are relatively intuitive
and because they map naturally to the data used by many businesses.

A relational database stores data in tables. Each table contains a collection of records
or rows. Each record contains fields that hold values that belong to a record.

The “relational” part of the name “relational database” refers to the fact that fields
within the tables define relationships among the tables. Typically, records in one
table correspond to records in another table where the two sets of records share
some common value.

For example, this chapter’s examples and exercises use the SchoolData.accdb
Access database file, which is available for download on this book’s website. That
database contains two tables: Students and TestScores.

The Students table has three fields: StudentId, FirstName, and LastName. The
TestScores table also has three fields: StudentId, TestNumber, and Score.

The StudentId field provides the relational link between the two tables. For example,
suppose the student Dean Diamond has the StudentId value 4. Then the Students
table contains a single record with StudentId value 4 that contains Dean’s first and
last names. The TestScores table contains one or more records with StudentId
value 4 that contain Dean’s test scores.

The SchoolData.accdb database also includes some integrity checks. For example, it
won’t let you create a TestScores record with a StudentId that doesn’t exist in the
Students table. (You can’t make test scores for a student that doesn’t exist.) The data-
base also verifies that Score values are between 0 and 100. (Sorry, no extra credit.)

The examples in Chapter 8 also worked with databases built inside the program’s code so they
didn’t work with databases stored on the computer’s hard drive. The examples in this chapter show
how you can load and query databases stored on disk. When you know how to load data from a
database, you can modify the examples described in Chapter 8 to select data from the database.
This chapter won’t make you a database expert, but it will at least get you started writing database
programs and enable you to use LINQ to query databases.

SELECtING A dAtAbASE

Because database applications are so important, a lot of companies have created databases and
database tools. A small sampling of databases includes Microsoft SQL Server, Microsoft SQL Server
Express, Microsoft Access, MySQL, MariaDB, PostgreSQL, SQLite, Oracle, SAP, dBASE, FoxPro,
IBM DB2, LibreOffice Base, and FileMaker Pro. Some of these are expensive, whereas others are

www.EBooksWorld.ir

www.hellodigi.ir

Using Bound controls ❘ 511

free. Some are designed for large volumes of data and many concurrent users, whereas others are
designed for more limited use by a single user. You can search the Internet for database comparisons
and recommendations.

Four databases that I’ve used in C# programs are SQL Server, SQL Server Express, MySQL
Community Edition, and Access. SQL Server and MySQL are designed to handle large amounts
of data and concurrent users. Both have free versions with limited features (SQL Server Express
and MySQL Community Edition). The full-featured versions are similar to the free editions, so
many developers start with the free editions and later upgrade if necessary.

Access is more suited for smaller desktop applications. One advantage it has over SQL Server is
that Access databases are stored in simple files, and a C# program can open them without any
additional tools (other than database drivers, which are needed for any database). In contrast, to
use a SQL Server database, you need to have the database server installed and running on your
computer. SQL Server can store data in a separate file, but you can’t distribute it to other comput-
ers unless they have SQL Server installed.

You can use the Microsoft Access database product to create Access database files and modify their
structures. For example, Access lets you build tables, add fields to tables, and create relational con-
straints between tables. A C# program can use those database files even if you don’t have Access
installed. You can write programs to manipulate the data and copy the program and its Access files
to another computer without needing to install Access on the destination computer.

For those reasons, the examples in this chapter use Access database files. You can download them
from this book’s website and use them in your programs. You do need database drivers to let your
program connect to the database, but they may have already been installed by Visual Studio and
are relatively easy to install if they’re missing. The feature “Connecting Rejection” in the section
“Making a Data Source later in this chapter says more about installing missing drivers.

uSING bOuNd CONtROLS

One approach to using a database is to use controls bound to the data. As you move through the
data, the bound controls update to display pieces of the data. For example, when the program visits
an Employee record, bound TextBoxes might display the employee’s first name, last name, employee
ID, and other values.

Before you can use bound controls, you need to create a data source that can connect to the database.
The following section explains how you can make that data source. The sections after that explain
how you can quickly build some simple programs that use bound controls.

Making a data Source
You can use Visual Studio to make a data source at design time. This has the advantage that you
can test the connection right away to make sure the program can connect to the database. It also lets
you define a DataSet to hold data loaded from the data source. You can then bind data components
to the DataSet. This lets you quickly build simple database applications with very little code.

www.EBooksWorld.ir

www.hellodigi.ir

512 ❘ ChAPtER 23 ado.neT

FINdING thE dAtA

Some of this chapter’s example programs use relative paths to find their databases
at run time. If you preserve the directory structure of this chapter’s files, they
should work without modification.

However, some of the examples use database connections that were built interac-
tively at design time. Their database connection strings are tied to locations on my
computer that probably won’t match the database’s location on your computer. If
you try to run these programs without modifying them, they will look for their
databases, fail to find them, and halt with runtime errors. These examples include
the programs:

➤➤ AddStudent

➤➤ BoundControls

➤➤ BoundControlsDataGrid

➤➤ BoundControlsDataGridView

➤➤ BoundControlsDetails

➤➤ LinqTestScores

➤➤ ListStudentNames

Fortunately you should be able to modify the programs to work without rebuilding
them from scratch.

Load one of the programs, open Solution Explorer, and double-click the App.config
file. That file should contain a connectionString element similar to the following.
(I’ve added some new lines to make the element fit in this book, but in the App.config
file it will be on one long line.)

connectionString="Provider=Microsoft.ACE.OLEDB.12.0;
Data Source="C:\Users\Rod\Work\Writing\Books\
C# Prog Ref\Src\847282ch23src\SchoolData.accdb""

Within the Data Source part of the connectionString, replace the bold text with
the location of the database on your system. Now when you run the program, it
will load the database from that location.

The following steps explain how to create a data source, database connection, and DataSet.

 1. Start a new C# project. (This example assumes you’re making a Windows Forms
application.)

 2. Open the Data Sources window. (If you can’t find it, select View ➪ Other Windows ➪ Data
Sources.)

 3. Click the Add New Data Source button (in the upper-left corner) to open the Data Source
Configuration Wizard.

www.EBooksWorld.ir

www.hellodigi.ir

Using Bound controls ❘ 513

 4. The wizard’s first page lets you select a data source type from the choices Database, Service,
and Object. Select Database and click Next.

 5. The wizard’s next page lets you pick a database model from the choices Dataset and Entity
Data Model. Select Dataset and click Next.

 6. The wizard’s next page, which is shown in Figure 23-1, lets you pick a database connection.
If Visual Studio already knows about database connections, you can select one from the
drop-down list.

FIGuRE 23-1: This page in the Data Source Configuration
Wizard lets you select a data connection .

 7. If you need to create a new connection, follow these steps.

 a. Click New Connection to display the dialog shown in Figure 23-2. Select the data
source type you want to use.

FIGuRE 23-2: The Choose Data Source dialog lets
you select the kind of database you will use .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

514 ❘ ChAPtER 23 ado.neT

 b. For this example, select Microsoft Access Database File. (Note that the description
says this data source will use an OLE DB data provider.) Click Continue to display
the dialog shown in Figure 23-3.

 c. Enter or select the database file’s name. If the database is password protected, enter
a username and password.

 d. Click Test Connection to see if Visual Studio can connect to the database.

 e. If the connection test works, click OK.

 8. After you create the connection, a dialog displays the following self-explanatory message.

The connection you selected uses a local data file that is not in the current project. Would
you like to copy the file to your project and modify the connection?

CONNECtION REjECtION

Step 7d, where you test the connection, is the first place things are likely to go seriously
wrong. There are several reasons why you might be unable to connect to the database.
Here are some things you can try to fix the problem.

If you use SQL Server, make sure SQL Server is installed and running.

If you use a 64-bit computer (which is common these days), you may not have the
best database drivers. In some 64-bit systems, only 32-bit Access drivers are installed
by default. In that case a program targeted for 64-bit systems won’t connect to Access
databases. You can try two approaches to solve this problem.

First, you can target the application for x86 (32-bit) computers only. The program
can still run on a 64-bit system, but it will use the 32-bit Access database drivers.
To do this, follow these steps:

 1. Select Build ➪ Configuration Manager. (If Configuration Manager isn’t visible
in the Build menu, select Tools ➪ Options ➪ Projects and Solutions ➪ General
and check the Show Advanced Build Configurations box.)

 2. In the Active Solution Platform drop-down, select <New…>.

 3. In the upper platform drop-down, select x86 and click OK.

 4. In the Configuration Manager, make sure the new x86 configuration is
selected and click Close.

I have used this approach successfully on some systems; although, it didn’t work on
my newest Windows 8 system. For that system, the second approach worked.

For the second approach, download and install the 2007 Office System Driver:
Data Connectivity Components at www.microsoft.com/download/confirmation
.aspx?id=23734. That package installs 64-bit drivers for Access databases so that
the program can target x86 or 64-bit systems.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.microsoft.com/download/confirmation

Using Bound controls ❘ 515

If you copy the data file to your project, it will be copied to the project’s output directory
each time you run the application. Press F1 for information on controlling this behavior.

Copying the database file into the project’s executable location can be helpful for testing.
Your program can modify the data, and when you run it again, it starts with a fresh copy
of the database.

FIGuRE 23-3: The Add Connection dialog
lets you select the kind of database you
will use .

 9. Next the Data Source Configuration Wizard asks if you want to save the connection string in
the application’s configuration file. This makes it easier to change the location of the database
later. For this example, check the Yes, Save the Connection As box and click Next.

SENSItIVE dAtA

If you refer to Figure 23-1, you can see two disabled radio buttons that enable you to
decide whether the connection string should include sensitive data. If the database in
this example were password protected, those radio buttons would be enabled.

If you click the second radio button and you include the username and password in
the Add Connection dialog (refer to Figure 23-3), the connection string will include
the username and password. If you then decide to save the connection string in the
configuration file, that file will contain the username and password.

In general it’s not a good idea to save usernames and passwords in configuration
files because anyone can read them. To make the program safer, edit the configu-
ration file and replace the username and password with the tokens USERNAME
and PASSWORD. Then at run time, ask the user for the necessary values and use
string methods to replace the tokens with the values the user entered.

www.EBooksWorld.ir

www.hellodigi.ir

516 ❘ ChAPtER 23 ado.neT

 10. Now the wizard displays the screen shown in Figure 23-4 to let you select the database objects
you want to include in the data source. Check the tables and views (if they are defined by the
database) that you want to include. Enter the name you want to give the new DataSet and
click Finish.

FIGuRE 23-4: This screen lets you pick the database objects that will
be included in the data source .

Figure 23-5 shows the Data Sources window after I created a data
source to work with the SchoolData.accdb database that is included
in this chapter’s downloads. The DataSet shows the tables that it con-
tains, and the tables show the fields they contain.

Now that you’ve created a data source, you can use it to build simple
data-bound user interfaces. The following two sections explain how
you can use drag-and-drop to build DataGridView and detail style
interfaces. The section after that describes a third approach that lets
you view multiple tables in a DataGrid.

Making a dataGridView Interface
To make a DataGridView display, open the Data Sources window, right-
click the table you want to display, and select DataGridView, as shown in
Figure 23-6.

FIGuRE 23-5: The Data
Sources window shows
the new DataSet and its
selected tables .

www.EBooksWorld.ir

www.hellodigi.ir

Using Bound controls ❘ 517

FIGuRE 23-6: The Data
Sources window can create
DataGridView or Details
views for a table .

Now click and drag the table onto the form to make Visual Studio automatically add the following
components to the form.

➤➤ A DataGridView to display and edit the data.

➤➤ A DataSet to hold the data.

➤➤ A BindingSource to bind the DataSet to the DataGridView.

➤➤ A TableAdapter to move data between the DataSet and the database.

➤➤ A TableAdapterManager to manage the table adapter.

➤➤ A BindingNavigator to provide a user interface allowing simple navigation through the data.

Many of these components sit in the component tray
below the form designer. Only the DataGridView
control and the BindingNavigator are visible on
the form itself.

Together these components create the user
interface shown in Figure 23-7. (I rearranged
the DataGridView so it fills the form.) You
can use the DataGridView to modify the data.
You can use either the DataGridView or the
BindingNavigator at the top of the form to navi-
gate through the data and add or delete records.
Click the BindingNavigator’s Save Data button
(which looks like a floppy disk) to save changes.

Visual Studio also automatically adds code behind
the scenes to load the data when the program
starts and to save any changes when you click the
BindingNavigator’s Save Data button.

FIGuRE 23-7: You can drag-and-drop a
table from the Data Sources window onto
a form to quickly build a grid-style program
to edit a table’s data .

www.EBooksWorld.ir

www.hellodigi.ir

518 ❘ ChAPtER 23 ado.neT

If the database defines constraints, it verifies those constraints when you try to save changes. For
example, if a field must contain a value between 0 and 100 and you try to set its value to 200, the
program throws an exception when you try to save the data.

This program is rather primitive and is missing some features that you would want to include if you
were going to give it to a customer. For example, if you close the program without saving changes,
the changes are lost. The program also doesn’t provide validation to prevent you from entering
invalid values, and it doesn’t handle the exceptions that occur if you try to save changes that violate
the database’s constraints

Still this program is easy to build. You might not want to give this program to a customer, but if you
just need an easy way to edit the records in a table, this program may suffice.

Making a details Interface
To make a details view interface, create the data source as before. Open the Data Sources window and
right-click the table you want to display. This time select the Details option shown in Figure 23-6.

Now click and drag the table onto the form as before.
Visual Studio automatically adds the same components as it
did for the DataGridView display, but this time it includes a
series of Labels and TextBoxes instead of a DataGridView
control. Figure 23-8 shows the result.

Use the BindingNavigator’s buttons to navigate through the
records or to add and remove records. Use the TextBoxes to view
and edit the records’ field values.

This simple program has the same advantages and disadvantages
that the grid view does. It’s missing some important features (such
as warning you if you try to close when there are unsaved changes)
and doesn’t handle exceptions, but it’s also easy to create. You might not want to give it to a cus-
tomer, but it may be good enough to let you manage a database table.

Making a dataGrid Interface
The two previous techniques have the disadvantage that they let you view data from only one
table at a time. There are ways you can make a form work with multiple tables (the section “Using
ADO.NET” later in this chapter describes one method), but they’re more work.

Another approach that can be useful is to display a DataSet’s data in a DataGrid control. The
DataGrid control can display data from multiple tables linked by the relationships defined by the
database. To use this method, follow these steps.

 1. Create the data source and DataSet as before.

 2. Add some controls and components that you will need to the Toolbox.

 a. Open the form and the Toolbox window.

FIGuRE 23-8: Use the
BindingNavigator to navigate
through the records in a
details view .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Using Bound controls ❘ 519

 b. In the General section at the bottom of the Toolbox, right-click and select
Choose Items.

 c. On the .NET Framework Components tab, select DataGrid (System.Windows.Forms)
and OleDbDataAdapter. Then click OK to add those components to the Toolbox.

 3. Create a data adapter for the Students table.

 a. Double-click the OleDbDataAdapter tool in the Toolbox to start the Data Adapter
Configuration Wizard shown in Figure 23-9. Select the connection you created earlier
and click Next.

FIGuRE 23-9: Select or create the database connection that
you want to use .

AbANdONEd AdAPtERS

When you double-click the OleDbDataAdapter tool in the Toolbox, Visual Studio
adds the adapter to the form. It then launches the Data Adapter Configuration
Wizard to let you configure the adapter.

If you cancel the wizard, the adapter is still on the form. In that case, you may want
to remove it.

 b. On the wizard’s next page, shown in Figure 23-10, select Use SQL Statements and
click Next.

www.EBooksWorld.ir

www.hellodigi.ir

520 ❘ ChAPtER 23 ado.neT

FIGuRE 23-10: Select the method you want the adapter
to use to access the database .

 c. On the wizard’s next page, shown in Figure 23-11, enter the SQL query that you
want to use to select data from the table. To select all the Student table’s data, use
the query SELECT * FROM Students. (You can also use Query Builder to create the
SQL query if you like. Query Builder isn’t described here, but it’s fairly easy to use,
so you can probably figure it out with some experimentation.)

FIGuRE 23-11: Enter a SQL select statement or click
Query Builder and use the Query Builder to create a
select statement .

 d. After you enter the SQL select statement, you can click Finish to finish creating the
data adapter, or you can click Next to see the summary shown in Figure 23-12. In
this case the summary indicates that the wizard configured the adapter to give it the

www.EBooksWorld.ir

www.hellodigi.ir

Using Bound controls ❘ 521

tools it needs to modify the data. After you view the summary, click Finish to create
the data adapter and close the wizard.

 e. Use the Properties window to change the new data adapter’s name to
studentsDataAdapter.

FIGuRE 23-12: The Data Adapter Configuration Wizard’s
summary screen tells you what the wizard will do when it
creates a data adapter .

 4. Repeat the previous steps to create a data adapter for the TestScores table named
testScoresDataAdapter.

 5. Add a DataSet to the form.

 a. Expand the Toolbox’s Data section and double-click the DataSet tool.

 b. On the Add Dataset dialog shown in Figure 23-13, click the “Typed dataset” option
and select the DataSet type you created while making the original data source, and
click OK.

FIGuRE 23-13: Use the Add Dataset dialog to create an
instance of a DataSet .

www.EBooksWorld.ir

www.hellodigi.ir

522 ❘ ChAPtER 23 ado.neT

SQL

Structured Query Language (SQL) is a command language with an English-like syn-
tax that lets you insert, select, update, and delete data in a relational database such as
SQL Server or Access. The syntax is somewhat similar to LINQ, or actually LINQ is
somewhat similar to SQL because SQL has been around since the early 1970s.

Although SQL is easy to use, it’s also a fairly large language, so there isn’t room to
cover it in detail here. The SELECT statement, which is one of the most commonly
used commands, has the following basic syntax:

SELECT fields FROM tables WHERE condition ORDER BY order_by_fields

Here:

fields—The database fields for which you want to select data. If you use multiple
tables that have fields with the same names, use the table name to differentiate them
as in TestScores.StudentId. You can set fields to * to select all of a table’s fields.

tables—The table(s) from which you want to select data. If you use multiple
tables, you probably also want to use a WHERE clause to indicate how records
from the tables are combined.

condition—A condition that specifies how records in multiple tables are com-
bined or that filters the results. For example, this could be Students.StudentId =
TestScores.StudentId or Score < 60.

order_by_fields—The fields that should be used to sort the results.

For example, the following query selects all student and test score data. The WHERE
clause matches Students records with the corresponding TestScores records.

SELECT Students.StudentId, FirstName, LastName, TestNumber, Score
FROM Students, TestScores
WHERE Students.StudentId = TestScores.StudentId
ORDER BY FirstName, LastName

In this example you set the first data adapter’s query to SELECT * FROM Students.
This statement has no WHERE clause, so it selects all the records in the Students table.
It has no ORDER BY clause, so the results are not returned in any particular order.

SQL is case-insensitive; although, many developers write the SQL keywords in ALL
CAPS, so they are easy to distinguish from field and table names.

For more information on SQL, search online. For example, see the SQL tutorial at
www.w3schools.com/sql/default.asp.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3schools.com/sql/default.asp

Using Bound controls ❘ 523

 6. Create the DataGrid control.

 a. In the Toolbox’s General section, double-click the DataGrid control.

 b. Arrange the control as you want it, perhaps docking it to fill the form or setting its
Anchor property.

 c. In the Properties window, select the DataGrid’s DataSource property and open the
drop-down, as shown in Figure 23-14. Expand the drop-down’s options until you
find the DataSet and select it. (This actually sets the DataSource to a new binding
source for the DataSet, not to the DataSet itself. This is just another layer between
the control and the DataSet.)

FIGuRE 23-14: Use the Properties
window to set the DataGrid’s
DataSource property .

 7. Give the form a Load event handler and add the following code to it.

private void Form1_Load(object sender, EventArgs e)
{
 // Use the connection string stored in App.config.
 oleDbConnection1.ConnectionString =
 Properties.Settings.Default.SchoolDataConnectionString;

 studentsDataAdapter.Fill(schoolDataDataSet1.Students);
 testScoresDataAdapter.Fill(schoolDataDataSet1.TestScores);
}

This code starts by setting the OLE DB connection object’s connect string to the value saved
in the App.config file. You don’t need to do this if the database is at the same location it was
when you built the program, but it enables you to easily change the database’s location.

Next the code makes the data adapters load the data from their respective database tables
into the DataSet.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

524 ❘ ChAPtER 23 ado.neT

 8. Give the form a FormClosing event handler and add the following code to it.

private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 studentsDataAdapter.Update(schoolDataDataSet1.Students);
 testScoresDataAdapter.Update(schoolDataDataSet1.TestScores);
}

This code makes the data adapters save any changes in the DataSet back into the database.

Figure 23-15 shows the finished program. You can click the links to navigate from a Students
record to the corresponding records in the TestScores table.

FIGuRE 23-15: A DataGrid control
provides links between records in
related tables .

bOuNd ExAMPLES

The BoundControls directory in this chapter’s downloads contains a program
that defines a data source for working with the SchoolData.accdb database. The
BoundControlsDataGridView, BoundControlsDetails, and BoundControlsDataGrid
directories contain copies of that program that have been modified to demonstrate
the three methods described in the preceding sections.

These examples show only a few ways you can bind controls to data in a Windows Forms applica-
tion. There are so many other ways to use data binding that you would need a whole book to cover
them all. For more information about data binding, look through some books on database program-
ming or search the Internet. The following links can help get you started.

➤➤ “Displaying Data Overview” at msdn.microsoft.com/library/2b4be09b(v=vs.90).aspx

➤➤ “Binding Controls to Data in Visual Studio” at msdn.microsoft.com/library/
ms171923.aspx

www.EBooksWorld.ir

www.hellodigi.ir

Loading Datasets ❘ 525

LOAdING dAtASEtS

The previous examples displayed data in bound controls. Sometimes, you might want a program to
use data without binding it to controls. For example, you might want to loop through a customer
database and print out invoices for customers with outstanding balances. In that case, there’s no
need to display the data in bound controls. You can write this kind of program by loading the data
into a DataSet and then examining it there.

The example described in the preceding section, which displays from multiple tables in a DataGrid
control, does almost exactly what you need for this kind of program. When the program starts, it
loads data into a DataSet and displays the data in a DataGrid control. The only difference is that
the new type of program doesn’t need the DataGrid.

To build the new kind of program, follow the same steps described in the previous section but skip
step 6, which creates the DataGrid control. If you don’t need to save any changes to the database,
you can also skip step 8, which uses the form’s Closing event handler to save changes when the
program is closing.

After the form’s Load event handler loads the data, the program can use the DataSet and the
tables it contains to examine the data. For example, you can use the LINQ to DataSet techniques
described in Chapter 8 to select data from the DataSet and display the results.

The ListStudentNames program, which is available for download on this book’s website, uses a
DataSet and data adapter to load the Students table in the SchoolData.accdb database. It uses
the following code to load and display the students’ names.

private void Form1_Load(object sender, EventArgs e)
{
 // Load the data.
 studentsDataAdapter.Fill(schoolDataDataSet1);

 // Display the students' names.
 ListStudents();
}

// List the students.
private void ListStudents()
{
 studentsListBox.Items.Clear();

 // Display the students' names.
 foreach (DataRow row in schoolDataDataSet1.Students.Rows)
 {
 string name =
 row.Field<string>("FirstName") + " " +
 row.Field<string>("LastName");
 studentsListBox.Items.Add(name);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

526 ❘ ChAPtER 23 ado.neT

The code starts by calling the data adapter’s Fill method to
load data into the DataSet’s Students table. It then calls the
ListStudents method to display the students’ names.

The ListStudents method loops through the table’s rows.
The code gets each row’s FirstName and LastName values
and concatenates them to form the student’s name. It then
adds the name to the studentsListBox control.

Using similar techniques you can write programs that load
and manipulate data. If you need to save changes, simply call
the data adapters’ Update methods.

The AddStudent example program, which is shown in
Figure 23-16 and available for download on this book’s web-
site, lets you add new students to the Students table.

When the program starts, its Form_Load event handler loads
the student data and displays student names just as the
ListStudentNames example program did.

If you enter a new first and last name and click Add, the following code executes.

// Add the new student.
private void addButton_Click(object sender, EventArgs e)
{
 // Create the new row.
 DataRow row = schoolDataDataSet1.Students.NewRow();
 row.SetField<string>("FirstName", firstNameTextBox.Text);
 row.SetField<string>("LastName", lastNameTextBox.Text);

 // Add the new row to the Students table.
 schoolDataDataSet1.Students.Rows.Add(row);

 // Clear the TextBoxes.
 firstNameTextBox.Clear();
 lastNameTextBox.Clear();

 // Redisplay the data.
 ListStudents();
}

This code uses the Students table’s NewRow method to create a new DataRow object that has the
right fields to make a row in that table. It sets the row’s FirstName and LastName values and adds
the new row to the table’s Rows collection.

The code finishes by clearing the TextBoxes and redisplaying the list of students.

If you click Save, the following code saves any new rows into the database.

// Save the data.
private void saveButton_Click(object sender, EventArgs e)
{

FIGuRE 23-16: This example
adds new students to the
Students table .

www.EBooksWorld.ir

www.hellodigi.ir

Using aDo.neT ❘ 527

 studentsDataAdapter.Update(schoolDataDataSet1);
}

This code simply uses the data adapter’s Update method to save the changes.

uSING AdO.NEt

This chapter’s examples so far used wizards to create and con-
figure data adapters and DataSets to load, manipulate, and
save data. Behind the scenes, the wizards created ADO.NET
code to handle all the details. (ADO.NET is the .NET ver-
sion of ADO, which stands for ActiveX Data Objects.) Instead
of using the wizards and the objects they create, you can use
ADO.NET directly.

The program first makes a database connection that it can
use to interact with the database. It then creates a command
object associated with the connection. The command’s meth-
ods let the program execute SQL commands that manipulate
the database.

The TestScoreListBoxes example program, which is shown in
Figure 23-17 and available in this chapter’s downloads, uses
ADO.NET to display student and test score data.

The program uses classes in the System.IO and System.Data.OleDb namespaces, so it includes using
directives for them.

When the program starts, it uses the following code to display the students’ names.

// The database connection.
private OleDbConnection Connection = null;

// Load the data.
private void Form1_Load(object sender, EventArgs e)
{
 // Use a relative path to the database.
 string dbPath = Path.GetFullPath(Path.Combine(
 Application.ExecutablePath,
 @"..\..\..\.."));
 string connectString =
 @"Provider=Microsoft.ACE.OLEDB.12.0;" +
 @"Data Source='" + dbPath + @"\SchoolData.accdb';" +
 @"Persist Security Info=True;";

 // Create the database connection.
 Connection = new OleDbConnection(connectString);

 // Create a command object to select student names.
 string query =
 "SELECT StudentId, FirstName, LastName " +

FIGuRE 23-17: The
TestScoreListBoxes example
program uses ADO .NET to
display student and test
score data .

www.EBooksWorld.ir

www.hellodigi.ir

528 ❘ ChAPtER 23 ado.neT

 "FROM Students " +
 "ORDER BY FirstName, LastName";

 // Open the connection.
 Connection.Open();

 // Execute the command.
 using (OleDbCommand command = new OleDbCommand(query, Connection))
 {
 // Execute the command.
 using (OleDbDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 int studentId = reader.GetInt32(0);
 string firstName = reader.GetString(1);
 string lastName = reader.GetString(2);
 studentsListBox.Items.Add(studentId.ToString() + "\t" +
 firstName + "\t" + lastName);
 }
 }

 // Close the connection.
 Connection.Close();
 }
}

The code first declares an OldDbConnection object. It declares this object outside of any method so
all the form’s code can use it.

The form’s Load event handler defines a connection string that it can use to connect to the database.
Figuring out exactly what needs to be in this string can be tricky because the requirements vary
depending on the type of database you are using. One method for building this string is to make a
data source at design time and use the connection string created by the Data Source Configuration
Wizard. If you refer to Figure 23-1, you can see a connecting string that works with this example’s
database. I modified the code slightly to make the database’s location relative to the example pro-
gram’s executable directory.

After defining the connection string, the program uses it to initialize the connection object. That
gives the new connection the information it needs to connect to the database, but it doesn’t yet
open the connection.

The program then defines the SQL query it will execute. In this example the query selects the
StudentId, FirstName, and LastName fields from the Students table and orders the result by
FirstName and LastName.

Next, the code opens the database connection. It then makes a new OleDbCommand object, passing
its constructor the query string and the connection.

This query selects multiple rows of data, so the program uses the command’s ExecuteReader
method to execute the query and retrieve an object that can read the returned results.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Using aDo.neT ❘ 529

ExECutING COMMANdS

This example uses a query that returns multiple rows of data, so it uses the command’s
ExecuteReader method. Other types of SQL commands can select a single value (in
which case you would use the command’s ExecuteScalar method) or perform actions
without selecting data (in which case you would use the ExecuteNonQuery method).

The program now uses the reader to loop the returned results. The reader’s Read method advances
the reader to the next row of results and returns true if such a row exists. (In other words, it
returns true if the reader has not reached the end of the results.)

For each returned row, the program gets the row’s StudentId, FirstName, and LastName values.
It concatenates them and adds the result to the studentsListBox.

When it finishes processing the returned results, the program closes the database connection.

When you select a student from the upper ListBox, the following event handler displays that student’s
test scores in the lower ListBox.

// Display the selected student's scores.
private void studentsListBox_SelectedIndexChanged(object sender, EventArgs e)
{
 // Clear the ListBox.
 scoresListBox.Items.Clear();

 // Get the selected student's ID.
 string studentId = studentsListBox.SelectedItem.ToString().Split('\t')[0];

 // Create a command object to select student names.
 string query =
 "SELECT TestNumber, Score " +
 "FROM TestScores " +
 "WHERE StudentId=" + studentId.ToString() + " " +
 "ORDER BY TestNumber";

 // Open the connection.
 Connection.Open();

 // Execute the command.
 using (OleDbCommand command = new OleDbCommand(query, Connection))
 {
 // Execute the command.
 using (OleDbDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 int testNumber = reader.GetInt32(0);
 int score = reader.GetInt32(1);

 scoresListBox.Items.Add(testNumber.ToString() + "\t" +

www.EBooksWorld.ir

www.hellodigi.ir

530 ❘ ChAPtER 23 ado.neT

 score.ToString());
 }
 }
 }

 // Close the connection.
 Connection.Close();
}

This code is similar to the code the program uses to display the students’ names. The biggest dif-
ference is that it uses a different query to select a specific student’s test scores. For example, if you
select the student with StudentId equal to 1, the program uses the following query.

SELECT TestNumber, Score FROM TestScores WHERE StudentId=1 ORDER BY TestNumber

The code follows these steps:

 1. Open the database connection.

 2. Create a command to use the query on the connection.

 3. Execute the query and get a reader to fetch the returned records.

 4. For each record, display the record’s data in a ListBox.

 5. Close the database connection.

This technique of using ADO.NET directly is more work than using drag-and-drop to build simple
interfaces. It’s also more work to debug and maintain over time, but it gives you a lot more control
and flexibility.

SuMMARy

Because database programming is such an important topic for so many businesses, there are a huge
number of tools, databases, and books available. No book, not even one solely dedicated to database
programming, can cover everything there is to know about databases and database programming.
This chapter barely scratches the surface. It doesn’t include enough material to make you an expert,
but it explains some techniques you can use to build a quick interface to let you manage a database.
It also explains how you can use ADO.NET to build more complicated database programs. You can
use the Internet and database programming books to learn more.

The databases used in this chapter are relational databases that store data in tables containing rows,
but there are other kinds of databases. For example, hierarchical databases store data that is arranged
in tree-like structures (such as an organizational chart).

XML files can also store hierarchical data. Related technologies such as XPath and XSL provide
additional database-like features such as searching and the capability to transform XML data into
other forms such as HTML, text documents, or rearranged XML. The next chapter provides an
introduction to XML and explains how you can use it to store and manipulate XML data in your
C# programs.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 531

ExERCISES

 1. Write a program similar to the one shown in Figure 23-18 that uses a DataSet and LINQ
to display test score data. Hint: Follow the steps described in the section “Making a
DataGridView interface” to make a DataSet and data adapters. When the program starts,
use data adapters to load a DataSet. Then use LINQ code similar to the code used by the
LinqToDataSetScores example program in Chapter 8 to select and display the required data.

FIGuRE 23-18: This program uses LINQ to select and
display test score data .

 2. In the AddStudent example program described in the section “Loading DataSets,” what
happens if you add a student and then close the program without clicking Save?

 3. Programs that use data adapters to load and save data in DataSets load all the data when
the program starts and save changes before the program ends (or when the user clicks a Save
button). The ADO.NET examples described in this chapter load data as it is needed. Does
one approach seem better than the other? Does the size or location of the database matter?
What about the number of users?

 4. An ADO.NET program can execute many more SQL statements than just SELECT. For
example, it can create tables, insert new records, modify or delete existing records, and
drop tables.

Write a program that connects to the SchoolData.accdb database and performs the follow-
ing tasks by using the indicated SQL statements.

➤➤ Create an Instructors table.

CREATE TABLE Instructors (InstructorId int, FirstName varchar(255),
 LastName varchar(255), Department varchar(255))

www.EBooksWorld.ir

www.hellodigi.ir

532 ❘ ChAPtER 23 ado.neT

➤➤ Insert a new record into the Instructors table.

INSERT INTO Instructors (InstructorId, FirstName, LastName, Department)
 VALUES (1001, 'Fred', 'Flourite', 'Mathematics')

➤➤ Fetch and display the data in the Instructors table.

SELECT InstructorId, FirstName, LastName, Department FROM Instructors

➤➤ Update the record in the Instructors table.

UPDATE Instructors SET FirstName='Fran' WHERE InstructorId=1001

➤➤ Fetch and display the data in the Instructors table again.

SELECT InstructorId, FirstName, LastName, Department FROM Instructors

➤➤ Drop the Instructors table.

DROP TABLE Instructors

Hints: Use the command object’s ExecuteNonQuery method to execute commands that
don’t fetch data.

Does the database warn you when you try to drop a table that isn’t empty?

 5. What happens if a program tries to open a database connection that is already open? How
does this affect programs that create a connection at the module level and then use the con-
nection in multiple methods?

 6. Modify the program you wrote for Exercise 4 so that it inserts three records into the
Instructors table. What happens if you omit the UPDATE statement’s WHERE clause? Hint:
You can simplify the program by creating an InsertInstructorsRecord method.

 7. Write a program that lets the user enter an SQL SELECT statement and execute it to see
results in a ListBox. Test the program by executing the following queries:

SELECT * FROM Students, TestScores
 WHERE Students.StudentId = TestScores.StudentId

SELECT FirstName, LastName, AVG(Score)
 FROM Students, TestScores
 WHERE Students.StudentId = TestScores.StudentId
 GROUP BY FirstName, LastName

Hints: Use error handling in case the SQL statement is incorrectly formed. Use the
OleDbDataReader’s GetValues method to fetch all the values for a row. Use those
values’ ToString methods to convert the values into text.

Note that you generally shouldn’t execute SQL statements entered by the user because the
user could enter malicious code that damages the database. For example, the user could
enter a DROP TABLE statement. This sort of tool should be available only to trusted users
who understand SQL.

www.EBooksWorld.ir

www.hellodigi.ir

XmL
whAt’S IN thIS ChAPtER

➤➤ XML syntax

➤➤ XmlWriter, XmlReader, and the DOM

➤➤ XPath and XSLT

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Relational database engines such as SQL Server, Access, and MySQL let you store data that
includes records grouped into tables. They use indexes to let you select records based on criteria,
join records from multiple tables, and order the results.

Sometimes you might not need the features a relational database provides. If you just want to
store some data and you don’t need to search, join, or sort it, then a relational database is overkill.

eXtensible Markup Language (XML) is a data storage language that uses a hierarchical
collection of elements to represent data. You can write data into an XML file. Later you can
read the file to recover the data. Because this is an industry-standard language, other pro-
grams possibly running on different operating systems can read, write, and share XML files.

Like all the topics in this part of the book, XML is a big topic. In fact, entire books have
been written about it. (I even coauthored one: Visual Basic .NET and XML: Harness the
Power of XML in VB.NET by Rod Stephens and Brian Hochgurtel, Wrox, 2002.)

There isn’t room in this chapter to cover every detail of XML, so I won’t try. This chapter
explains the basics of XML, so you can use it in your programs to save and restore data and
to read data stored by other programs. For additional details, find a good book about these
languages or search the Internet.

24

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.hiva-network.com/

534 ❘ ChAPtER 24 xml

SERIALIzAtION dEFERREd

Serialization is the process of converting an object such as a Book or Employee into
a stream representation, usually in the form of text. Deserialization is the process
of converting a serialization back into the object it represents.

You can use XML to serialize and deserialize objects. Serialization and deserialization
are somewhat specialized, but they are quite useful in many applications. Rather than
trying to squeeze them into this chapter, they are explained in the next chapter.

The following section explains XML syntax. The sections after that explain how you can use XML
in your C# programs.

bASIC xML SyNtAx

Each element is represented by an opening tag and a corresponding closing tag. Opening tags are
enclosed in brackets < and >. Closing tags look like opening tags except they begin with </ instead
of just <.

For example, the following XML code stores information about two students.

<Students>
 <Student>
 <FirstName>Larry</FirstName>
 <LastName>Liverpool</LastName>
 </Student>
 <Student>
 <FirstName>Miranda</FirstName>
 <LastName>McQuaid</LastName>
 </Student>
</Students>

RIGhtSPACE

Methods that process XML ignore whitespace including newlines, tabs, and
spaces. You can insert any whitespace you like to make an XML file easier to read.
For example, you can use indentation to show which elements are contained inside
other elements.

Elements are sometimes called nodes, particularly when you want to emphasize the hierarchical
tree-like nature of the data.

www.EBooksWorld.ir

www.hellodigi.ir

Basic XmL syntax ❘ 535

Elements must be properly nested. For example, the following is not valid XML because the
FirstName and LastName elements overlap.

<Student>
 <FirstName>
 Larry
 <LastName>
 Liverpool
 </FirstName>
 </LastName>
<Student>

Note that the names of the elements are completely up to you. You can define them on the fly as you
build the file if you like. There’s nothing special about the elements Students, Student, FirstName,
and LastName used in the previous examples. They can use Pascal case as in this example, be all
lowercase, or use whatever casing scheme you like.

An element’s value is whatever is contained inside its opening and closing tags. In addition to a value,
an element can have attributes. An attribute gives additional information about an element. To make
an attribute, insert its name, an equal sign, and the value it should have within quotes all inside the
opening tag.

For example, consider the following XML.

<Students>
 <Student StudentId="128977">
 <FirstName>Larry</FirstName>
 <LastName>Liverpool</LastName>
 <StudentId>3981</StudentId>
 </Student>
 <Student StudentId="348722">
 <FirstName>Miranda</FirstName>
 <LastName>McQuaid</LastName>
 <StudentId>2711</StudentId>
 </Student>
</Students>

In this code, the Student elements have nested FirstName and LastName elements. The StudentId
attribute gives each Student’s ID number.

You can mix and match nested elements and attributes in any way you like to make the XML code
easier to read and process.

If an element contains no nested elements, you can omit the closing tag if you end it with /> instead of
the usual >. For example, the following code shows a Contact element with no nested subelements.

<Contact Phone="800-555-1234" />

www.EBooksWorld.ir

www.hellodigi.ir

536 ❘ ChAPtER 24 xml

CONCISE xML

If you store values in attributes instead of nested elements, you can omit closing
tags and make the XML code more concise. For example, the following code holds
the same data as the previous student code, but it uses only attributes.

<Students>
 <Student FirstName="Larry" LastName="Liverpool"
 StudentId="128977" />
 <Student FirstName="Miranda" LastName="McQuaid"
 StudentId="348722" />
</Students>

This code is certainly more concise. You may also find it easier to read.

Which version you use is largely a matter of preference. The only real restriction is
that any code that writes the data must use the same arrangement as any code that
must later read the data.

You can include a comment in XML code by starting it with <!-- and ending it with --> as in the
following code.

<!-- This is an XML comment -->

Because XML is a hierarchical language, all the data in an XML file must be contained within a
single top-level node that has no parent node called the root node. However, there is one important
exception to this rule. Many XML files begin with a single XML declaration that gives information
about the file itself. That declaration begins with <? and ends with ?>. For example, the following
code shows the App.config file for a C# program.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
 </startup>
</configuration>

The directive at the top of the code indicates that this file uses XML version 1.0 and contains
characters from the UTF-8 character encoding.

Just as you sometimes want to include special characters such as \ in a C# string as in \n, you might
want to include special characters in XML code. XML defines the five special characters listed in
the following table.

ChARACtER COdE

< <

> >

& &

www.EBooksWorld.ir

www.hellodigi.ir

Basic XmL syntax ❘ 537

ChARACtER COdE

' '

" "

For example, the following code represents the equation 17 < 21.

<equation>17 < 21</equation>

There’s one other way you can include special characters inside XML code: a CDATA section.
A CDATA section begins with <![CDATA[and includes all the following text until it reaches the
closing sequence]]>. The CDATA can include carriage returns, ampersands, quotes, and other
special characters.

That’s all there is to basic XML. There are plenty of other details, some of which will be explained
later in this chapter, but this is enough to let you save and restore data in XML files.

The following text shows an XML file that demonstrates the features described so far.

<?xml version="1.0" encoding="utf-8" ?>
<Students>
 <Description>
 <![CDATA[This is some text that describes the XML file.
It's a multi-line description.
< > ' " &
This is its last line.]]>
 </Description>
 <!-- This Student's data is stored in sub-elements. -->
 <Student>
 <FirstName>Arthur</FirstName>
 <LastName>Andrews</LastName>
 <StudentId>83746</StudentId>
 </Student>
 <!-- This Student's data is stored in attributes. -->
 <Student FirstName="Bethany" LastName="Bechtold" StudentId="12653" />
</Students>

NOtE Several of the examples described later in this chapter create or read this
XML data.

The code is relatively straightforward so I won’t describe it line by line.

One thing worth mentioning is that the CDATA element contains special characters and multiple
lines. The content starts right after the <![CDATA[. If the content began on the following line, it
would contain the initial new line after the <![CDATA[.

Similarly, the CDATA content ends immediately before the]]>. If the]]> were on the following
line, the content would include a final new line.

The following sections explain several ways you can write XML data into a file. The sections after
that explain how you can read XML data from files or strings.

www.EBooksWorld.ir

www.hellodigi.ir

538 ❘ ChAPtER 24 xml

wRItING xML dAtA

The .NET Framework provides two main ways to write XML data: the XmlWriter class and the
XML Document Object Model. The following two sections describe these approaches.

uSING NAMESPACES

The classes that read and write XML files are in the System.Xml and System.Xml
.Linq namespaces. When you write code that manipulates XML data, you may want
to include one or both of the following using directives.

using Systen.Xml;
using Systen.Xml.Linq;

xmlwriter
The XmlWriter class provides methods for writing the pieces of an XML file. To use an XmlWriter to
write XML data into a file, call the class’s Create method to create the file. Then use the other methods
to write the pieces of the XML document into the file. For example, the WriteComment method adds a
comment to the file and the WriteStartElement method writes an element’s starting tag into the file.

The following table lists the most useful XmlWriter methods.

MEthOd PuRPOSE

Close Closes the writer’s underlying stream .

Create Creates an XmlWriter associated with a file, stream,
StringBuilder, or other object .

Dispose Frees the writer’s resources . (You can use the using statement
to ensure that the writer is disposed .)

Flush Flushes output to the underlying stream .

WriteAttributeString Writes an attribute with a specified name and value .

WriteCData Writes CDATA .

WriteComment Writes a comment .

WriteElementString Writes an element with a specified name and text value .

WriteEndAttribute Ends an attribute started with WriteStartAttribute .

WriteEndDocument Ends the document .

WriteName Writes a name .

WriteStartAttribute Starts an attribute .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Writing XmL Data ❘ 539

MEthOd PuRPOSE

WriteStartDocument Starts the document .

WriteStartElement Starts an element .

WriteString Writes a string, escaping special characters such as < and > if
necessary .

WriteValue Writes a value such as a bool, int, or double .

The UseXmlWriter example program, which is available for download on this book’s website, uses
the following code to create an XML file holding the student data shown earlier.

 // Create the writer.
 using (XmlWriter writer = XmlWriter.Create(fileTextBox.Text))
 {
 // Write the start element.
 writer.WriteStartDocument();

 writer.WriteStartElement("Students"); // <Students>
 writer.WriteStartElement("Description"); // <Description>

 // Write the Description's content.
 string cdata = @"This is some text that describes the XML file.
It's a multi-line description.
< > ' "" &
This is its last line.";
 writer.WriteCData(cdata);

 writer.WriteComment("This Student's data is stored in sub-elements.");
 writer.WriteStartElement("Student"); // <Student>
 writer.WriteElementString("FirstName", "Arthur");
 writer.WriteElementString("LastName", "Andrews");
 writer.WriteElementString("StudentId", "83746");
 writer.WriteEndElement(); // </Student>

 writer.WriteComment("This Student's data is stored in attributes.");
 writer.WriteStartElement("Student"); // <Student>
 writer.WriteAttributeString("FirstName", "Bethany");
 writer.WriteAttributeString("LastName", "Bechtold");
 writer.WriteAttributeString("StudentId", "12653");
 writer.WriteEndElement(); // </Student>

 writer.WriteEndElement(); // </Description>
 writer.WriteEndElement(); // </Students>
 }

This code is fairly straightforward. The only thing worth special mention is the way the program uses
a multiline string to create CDATA. Recall that a C# string literal begins with @" and includes all
characters including new lines up to the closing " character. Because this example needs to include a
" character within the CDATA, the code doubles the character in the string literal to place a single
instance of the character in the string.

www.EBooksWorld.ir

www.hellodigi.ir

540 ❘ ChAPtER 24 xml

Figure 24-1 shows the UseXmlWriter program displaying the resulting XML file in a TextBox. Notice
that the file’s text is all run together with no whitespace except the whitespace included within strings
such as the Description element’s CDATA content. Other programs can read the file with no prob-
lems but this is hard for a human to read.

FIGuRE 24-1: The UseXmlWriter example program
builds and displays an XML file .

The XmlTextWriter class, which inherits from XmlWriter, works much as XmlWriter does, but it
can produce nicely indented output.

The FormatXml example program, which is available for download on this book’s website, is shown
in Figure 24-2.

FIGuRE 24-2: The FormatXml example program
uses an XmlTextWriter object to produce
nicely indented XML code .

To produce indented XML code, the FormatXml example program creates an XmlTextWriter
instead of an XmlWriter. It sets the XmlTextWriter’s Formatting property to Indented and then
creates the XML file exactly as before.

www.EBooksWorld.ir

www.hellodigi.ir

Writing XmL Data ❘ 541

The following code shows the statements that create the XmlTextWriter and set its Formatting
property.

// Create the writer.
using (XmlTextWriter writer = new XmlTextWriter(fileTextBox.Text, null))
{
 // Make it pretty.
 writer.Formatting = Formatting.Indented;

 // Generate the XML code as before...
}

The XmlWriter class is a fast tool for writing XML output. It works “forward only” so after it has
written something, you can’t go back and change it.

It’s also noncached so it doesn’t remember what it wrote in the past. The writer keeps track of the path
it took to get to its current position but that’s all. For example, it might know that it took the following
path to get to a LastName element.

<Students>
 <Student>
 <LastName>

The writer doesn’t remember any other elements that it might have written along the way such as
other Student elements or other elements within this Student element.

document Object Model
The XmlWriter and XmlTextWriter classes let you build XML data but they’re rather cumbersome.
For example, they require you to end each element that you start and to do so in the proper sequence.
Ending an element in the wrong place can mean the difference between this:

<Student>
 <FirstName>
 Bethany
 </FirstName>
 <LastName>
 Bechtold
 </LastName>
</Student>

And this:

<Student>
 <FirstName>
 Bethany
 <LastName>
 Bechtold
 </LastName>
 </FirstName>
</Student>

www.EBooksWorld.ir

www.hellodigi.ir

542 ❘ ChAPtER 24 xml

tIP If you forget to end an open element, the writer automatically ends it at the
end of the file.

Another way to build an XML document is to use the XML Document Object Model (DOM). The
DOM uses objects to create an in-memory model of an XML document. After you build such a model,
you can use its methods to manipulate the model and save the result into an XML file or string.

The WriteDom example program, which is available for download on this book’s website, uses the
following code to create an XML file holding the student data shown earlier.

// Write a text file.
private void writeButton_Click(object sender, EventArgs e)
{
 // Create the document.
 XDocument document = new XDocument();

 // Create the root element
 XElement students = new XElement("Students"); // <Students>
 document.Add(students);

 XElement description = new XElement("Description"); // <Description>
 students.Add(description);

 // Write the Description's content.
 string cdata = @"This is some text that describes the XML file.
It's a multi-line description.
< > ' "" &
This is its last line.";
 description.Add(new XCData(cdata));

 students.Add(new XComment(// Comment.
 "This Student's data is stored in sub-elements."));

 XElement student = new XElement("Student"); // <Student>
 students.Add(student);

 student.SetElementValue("FirstName", "Arthur"); // <FirstName>
 student.SetElementValue("LastName", "Andrews"); // <LastName>
 student.SetElementValue("StudentId", "83746"); // <StudentId>

 students.Add(new XComment(// Comment.
 "This Student's data is stored in attributes."));

 student = new XElement("Student"); // <Student>
 students.Add(student);

 student.SetAttributeValue("FirstName", "Bethany"); // FirstName
 student.SetAttributeValue("LastName", "Bechtold"); // LastName
 student.SetAttributeValue("StudentId", "12653"); // StudentId

www.EBooksWorld.ir

www.hellodigi.ir

Writing XmL Data ❘ 543

 // Save the document in a file.
 using (XmlTextWriter writer = new XmlTextWriter(fileTextBox.Text, null))
 {
 // Make it pretty.
 writer.Formatting = Formatting.Indented;

 document.WriteTo(writer);
 }

 // Display the file.
 resultTextBox.Text = File.ReadAllText(fileTextBox.Text);
}

The code first creates an XDocument object to represent the XML code.

Next, it creates an XElement object to represent the file’s Students element and uses the document’s
Add method to add it to the document’s child collection.

The code creates another XElement to represent the Description element and adds it to the
Students element. It then adds a new XCdata object to hold the Description’s data.

The rest of the code follows a similar pattern, creating new objects and adding them to the child
collections of the objects that should contain them.

After it finishes building the document, the program creates an XmlTextWriter much as
the FormatXml example program did. It sets the writer’s Formatting property and then uses the
document object’s WriteTo method to make the document write its XML code into a file.

The program finishes by displaying the resulting XML file.

ANOthER dOM

The WriteDom example program uses System.Xml.Linq classes to build an XML
document object model. The System.Xml namespace contains other versions of
similar classes. For example, it includes XmlDocument, XmlElement, XmlComment,
and other classes. Building an XML document object model with those classes is
similar to building one with the System.Xml.Linq classes, with some minor differ-
ences. Building objects models is easier with the newer System.Xml.Linq classes,
however, so you should probably use them.

Two of the most important classes for manipulating the DOM are XDocument and XElement.

The XDocument class’s most useful properties are Declaration, which gets or sets the document’s
XML declaration, and Root, which returns the document’s root element. The following table lists
the XDocument class’s most useful methods.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

544 ❘ ChAPtER 24 xml

MEthOd PuRPOSE

Add Adds an item to the document’s child collection . (Note that you can
add only one child, the root element, to the document .)

DescendantNodes Returns a collection of XNode objects that are descendants of the
document .

Descendants Returns a collection of XElement objects that are descendants of the
document . If you specify a name, the method returns only elements
with that name .

Load Loads the document from a filename, stream, or XmlReader .

Parse Creates a new XDocument from an XML string .

Save Saves the document into a file, stream, or writer .

ToString Returns the document’s indented XML code .

WriteTo Writes the document into an XmlWriter .

The following table lists the XElement class’s most useful properties.

PROPERty PuRPOSE

Document Returns the XDocument that contains the element .

FirstAttribute Gets the element’s first attribute .

FirstNode Gets the element’s first child node .

HasAttributes Returns true if the element has attributes .

HasElements Returns true if the element has child elements .

IsEmpty Returns true if the element contains no content . (It still might have
attributes .)

LastAttribute Gets the element’s last attribute .

LastNode Gets the element’s last child node .

Name Gets or sets the element’s name .

NextNode Returns the next node in the element’s parent’s child list .

NodeType Gets the node’s type .

Parent Gets the element’s parent element .

PreviousNode Returns the previous node in the element’s parent’s child list .

Value Gets or sets the node’s text contents .

www.EBooksWorld.ir

www.hellodigi.ir

Writing XmL Data ❘ 545

The following table lists the XElement class’s most useful methods.

MEthOd PuRPOSE

Add Adds an item at the end of the element’s child collection .

AddAfterSelf Adds an item to the parent’s child collection after this element .

AddBeforeSelf Adds an item to the parent’s child collection before this element .

AddFirst Adds an item at the beginning of the element’s child collection .

Ancestors Returns a collection of XElement objects that are ancestors of the ele-
ment . If you specify a name, the method returns only elements with
that name .

Attribute Returns an attribute with a specific name .

Attributes Returns a collection containing this element’s attributes . If you specify
a name, the collection includes only attributes with that name .

DescendantNodes Returns a collection of XNode objects that are descendants of the
element .

Descendants Returns a collection of XElement objects that are descendants of the
element . If you specify a name, the method returns only elements with
that name .

DescendantsAndSelf Returns a collection of XElement objects that includes this element
and its descendants . If you specify a name, the method returns only
elements with that name .

Element Returns the first child element with a specified name .

Elements Returns a collection holding the element’s children . If you specify a
name, the method returns only elements with that name .

ElementsAfterSelf Returns a collection holding the element’s siblings that come after this
element . If you specify a name, the method returns only elements with
that name .

ElementsBeforeSelf Returns a collection holding the element’s siblings that come before
this element . If you specify a name, the method returns only elements
with that name .

IsAfter Returns true if this node comes after another specified node in
document .

IsBefore Returns true if this node comes before another specified node in
document .

Load Loads the element from a filename, stream, or reader .

continues

www.EBooksWorld.ir

www.hellodigi.ir

546 ❘ ChAPtER 24 xml

MEthOd PuRPOSE

Nodes Returns a collection holding this element’s child nodes .

NodesAfterSelf Returns a collection holding the node’s siblings that come after
this node .

NodesBeforeSelf Returns a collection holding the node’s siblings that come before
this node .

Parse Creates an XElement from an XML string .

Remove Removes this element from its parent .

RemoveAll Removes all nodes and attributes from this element .

RemoveAttributes Removes this element’s attributes .

RemoveNodes Removes this element’s child nodes .

ReplaceAll Replaces the element’s child nodes and attributes with specified
new ones .

ReplaceAttributes Replaces the element’s attributes with specified new ones .

ReplaceNodes Replaces the element’s child nodes with specified new ones .

ReplaceWith Replaces this node with new specified content .

Save Saves the element into a file, stream, or writer .

SetAttributeValue Sets, adds, or removes an attribute .

SetElementValue Sets, adds, or removes a child element .

SetValue Sets the element’s value .

ToString Returns the element’s indented XML code .

WriteTo Writes the element into an XmlWriter .

An object model is handy if you need to roam through its structure to examine data and make
changes, but the XmlWriter class still has its uses. A document model must contain all the elements
that make up the XML data. If you’re building an enormous model, the DOM structure will take
up a lot of memory.

In contrast an XmlWriter doesn’t remember what it wrote in the past so it can write even huge
XML documents without using up a lot of memory. However, many programmers find XmlWriter
more cumbersome than the DOM so they prefer the DOM.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

reading XmL Data ❘ 547

xML Literals
The XmlWriter class and the DOM both let a program build an XML document, but both require
a fairly large amount of code. They’re a lot easier to use if you can loop through an array, list, or
other data structure containing objects and generate XML data for the objects.

However, sometimes you might simply want to create an XML object hierarchy within a program.
Visual Basic allows you to use string literals as in the following code.

Dim arthur As XElement =
 <Student>
 <FirstName>Arthur</FirstName>
 <LastName>Andrews</LastName>
 <StudentID>83746</StudentID>
 </Student>

C# doesn’t support XML literals. (Although I wouldn’t be surprised if it did some day.)
Fortunately, C# does support multiline string literals and that works almost as well. Simply use
the XElement.Parse method to parse a multiline string holding the XML code. The following
code shows an example.

XElement student = XElement.Parse(
 @"<Student>
 <FirstName>Arthur</FirstName>
 <LastName>Andrews</LastName>
 <StudentID>83746</StudentID>
 </Student>");

The XML string can include any amount of nested XML code, so you can use this technique to
build an XML document of arbitrary complexity.

REAdING xML dAtA

The previous sections explained how you can use XmlTextWriter and DOM classes to create XML
documents. The .NET Framework provides corresponding techniques to read XML documents. The
following two sections explain how you can use the XmlTextReader class and the document object
model to read XML code.

xmltextReader
The XmlWriter class and subclasses such as XmlTextWriter provide fast, forward-only, noncached
methods for writing XML data. Similarly, the XmlTextReader class provides fast, forward-only,
noncached methods for reading XML data. It provides methods to move through an XML file one
node at a time and to examine the data provided by each node.

To use an XmlTextReader, use the class’s constructor or the XmlReader class’s static Create method
to create an object associated with the file or input stream that you want to read. Use the object’s Read
method to read the next node from the XML data. After you read a node, you can use the reader’s
properties and methods to determine the node’s name, type, attributes, content, and other properties.

www.EBooksWorld.ir

www.hellodigi.ir

548 ❘ ChAPtER 24 xml

The following table lists the most useful XmlReader properties.

PROPERty MEANING

AttributeCount Returns the number of attributes the node has .

Depth Returns the depth of the current node in the XML hierarchy .

EOF Returns true when the reader is at the end of the XML data .

HasAttributes Returns true if the node has attributes .

HasValue Returns true if the node can have a value .

IsEmptyElement Returns true if the node is an empty element as in <Overdue /> .

Item Gets a node attribute by index or name . (This is the class’s
indexer, so you use it as in reader[0] instead of invoking the
Item property explicitly .)

Name Returns the node’s name .

Value Returns the text value of the current node .

The following table lists the XmlReader class’s most useful methods.

MEthOd PuRPOSE

Create Creates a new reader associated with a string, stream, file, or
other data source .

Dispose Frees the object’s resources . You can include a using statement
to automatically call Dispose .

GetAttribute Gets an attribute for the current node by index or name . (Similar
to the Item property .)

IsName Returns true if its parameter is a valid XML name .

MoveToAttribute Moves the reader to an attribute specified by index or name .

MoveToContent Moves the reader to the current node’s content .

MoveToElement Moves the reader to the element containing the reader’s current
position . For example, if you move the reader to examine an
element’s attributes, the method moves the reader back to
the element’s node .

MoveToFirstAttribute Moves the reader to the current node’s first attribute node .

MoveToNextAttribute Moves the reader to the current node’s next attribute node .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

reading XmL Data ❘ 549

MEthOd PuRPOSE

Read Reads the next node from the XML data .

ReadInnerXml Returns the current node’s descendants as an XML string .

ReadOuterXml Returns the current node’s subtree (including the current node) as
an XML string .

ReadToDescendant Moves the reader to a subelement with a specified name .

ReadToNextSibling Moves the reader past the rest of the current node to its
next sibling .

Skip Skips the current node’s children .

The ReadXml example program, which is available for download on this book’s website, uses the
following code to read an XML file.

// Read the XML data.
private void readButton_Click(object sender, EventArgs e)
{
 string result = "";

 // Open a reader for the XML file.
 using (XmlReader reader = XmlReader.Create(fileTextBox.Text))
 {
 // Read tags from the file.
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element:
 result += "Element: " + reader.Name + "\r\n";
 if (reader.HasAttributes)
 {
 for (int i = 0; i < reader.AttributeCount; i++)
 result += " Attribute: " + reader[i] + "\r\n";
 }
 break;
 case XmlNodeType.EndElement:
 result += "EndElement: " + reader.Name + "\r\n";
 break;
 case XmlNodeType.Text:
 result += "Text: " + reader.Value + "\r\n";
 break;
 case XmlNodeType.CDATA:
 result += "CDATA: [" +
 reader.Value.Replace("\n","\r\n") + "]\r\n";
 break;
 case XmlNodeType.Comment:
 result += "Comment: " + reader.Value + "\r\n";
 break;

www.EBooksWorld.ir

www.hellodigi.ir

550 ❘ ChAPtER 24 xml

 }
 }
 }
 resultTextBox.Text = result;
}

The code uses XmlReader.Create to create an XmlReader
associated with an XML file. It then enters a loop that con-
tinues as long as the Read method returns true to indicate
that there is more data to read.

Within the loop, the code checks the reader’s NodeType
property to see what kind of node it is reading. If the node is
an element (such as <Student>), the code displays its name
and its attributes if it has any.

If the node is the end of an element (such as </Student>),
the code displays its name.

If the node is a text node, the code displays the
text it contains. For example, in the XML code
<FirstName>Arthur</FirstName>, the FirstName ele-
ment contains a text element that holds the text Arthur.

If the node is a CDATA node, the code displays its data.
Within the data, the code replaces the \n character with
the string \r\n so newlines will be displayed correctly in
the result TextBox.

Finally, if the node is a comment, the code displays
its value.

After it has processed all the file’s nodes, the program displays the results in a TextBox.

Figure 24-3 shows the UseXmlReader program after it has read the students XML data shown earlier
in this chapter. If you look closely, you can see the pieces of the data in the result.

document Object Model
The XmlReader and XmlTextReader classes are fast but somewhat awkward because they let you
move only forward through the data. They can be efficient if you know the structure of the data or
if you are looking for specific nodes, but they don’t let you explore the structure of an XML file.

Just as you can use the DOM to build an XML file, you can also use the DOM to study an existing
XML file. Then your program can move over its nodes to examine its structure, find values, copy
subtrees, and use the document’s full structure to otherwise study and manipulate the data.

To load an object model from XML data, simply call the XDocument class’s static Load method
passing it a filename, stream, or XmlReader.

FIGuRE 24-3: The UseXmlReader
example program reads an XML file
and displays information about the
nodes it contains .

www.EBooksWorld.ir

www.hellodigi.ir

related Technologies ❘ 551

The ReadDom example program, which is available for download on this book’s website, uses the
following code to read and display an XML file holding the student data shown earlier.

// Load the XML file into a DOM.
XDocument document = XDocument.Load(fileTextBox.Text);

// Display the document's XML text.
resultTextBox.Text = document.ToString();

It doesn’t get much simpler than that! Of course, in a real program you would need to use the
XDocument object’s properties and methods to find the data you want and do something with it.

RELAtEd tEChNOLOGIES

By itself, an XML file simply holds data. It doesn’t select, sort, rearrange, or otherwise manipulate
the data. Those operations are often useful, however, so lots of related technologies have sprung up
to work with XML data. Some of those technologies include the following.

➤➤ XSL (Extensible Style Sheet Language)—This refers to a family of languages and tools for
reformatting XML data. It includes the following.

➤➤ XSLT (XSL Transform)—A language for transforming XML data into other formats
such as plain text, HTML, rearranged XML documents, or XSL FO.

➤➤ XSL FO (XSL Formatting Objects)—A language for formatting XML data for
output for screen, PDFs, printers, and so forth.

➤➤ XPath—This is a query language used by XSL and other XML tools to find and
identify items within XML data.

➤➤ XQuery—A somewhat SQL-like language for querying XML data.

➤➤ DTD (Document Type Definition)—An XML data file validation language. You use DTD
to define the required structure of an XML file. Then you can validate a particular XML
file to see if it satisfies those requirements.

➤➤ XSD (XML Schema Definition)—Another XML data file validation language. See DTD.

➤➤ XLink—A language for defining hyperlinks in XML data.

➤➤ SOAP (Simple Object Access Protocol)—A protocol that lets applications (often running on
different computers) exchange data.

➤➤ WSDL (Web Services Definition Language)—A language for describing web services.

➤➤ RSS (Really Simple Syndication)—A format for XML news feeds and sites that post news-
like items.

There isn’t room to cover all these technologies here, but I would like to provide at least a brief
introduction to two of these: XPath and XSLT.

www.EBooksWorld.ir

www.hellodigi.ir

552 ❘ ChAPtER 24 xml

xPath
XPath is a language for identifying items in XML data. For example, you can use XPath to select
nodes with a particular name, nodes that have certain attributes, and nodes that have certain
relationships with other nodes.

To use XPath in C#, you first define an XPath query to identify the elements that you want to select.
You then call an XDocument or XElement object’s XPathSelectElement or XPathSelectElements
method to find the wanted elements.

whERE ARE xPAthSELECtELEMENt ANd xPAthSELECtELEMENtS?

The XPathSelectElement and XPathSelectElements methods are extension
methods defined in the System.Xml.XPath namespace. To make using them easier,
you may want to add the following using directive to programs that use XPath.

using System.Xml.XPath;

The XPath query looks vaguely like a file’s pathname in a directory hierarchy. The query can also
include operators that work as wildcards, filter the results, and specify relationships among nodes.
For example, the following statement selects XElement objects representing Student elements that
have a GradePointAverage attribute with value less than 2.5.

IEnumerable<XElement> students =
 document.XPathSelectElements("//Student[@GradePointAverage < 2.5]");

The following table lists the most useful operators that you can use in an XPath query.

OPERAtOR MEANING

/ Selects an immediate child .

// Selects descendants .

. The current node .

.. The current node’s parent .

* Matches anything .

@ Attribute prefix for matching an attribute . For example, @Cost
matches an attribute named Cost .

@* Selects all attributes .

() Groups operations .

[] Applies a filter . For example, //Planet[@Name="Earth"] matches
Planet elements that have a Name attribute with value Earth .

www.EBooksWorld.ir

www.hellodigi.ir

related Technologies ❘ 553

OPERAtOR MEANING

[] Subscript operator for accessing items in a collection .

+ Addition .

- Subtraction .

div Floating-point division .

* Multiplication .

mod Modulus .

When a query filters results, it can include the boolean and comparison operators listed in the
following table.

OPERAtOR MEANING

and Logical AND

or Logical OR

not() Logical NOT

= Equals

!= Not equals

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

The UseXPath example program, which is available for download on this book’s website, uses
XPath to display information about planets. The program gets its data from the file Planets.xml,
which has the following structure.

<SolarSystem>
 <Planets>
 <Planet>
 <Name>Mercury</Name>
 <Distance>57.91</Distance>
 <Radius>2340</Radius>
 <LengthOfYear>0.24085</LengthOfYear>
 <Day>88</Day>
 <Mass>0.054</Mass>
 </Planet>

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

554 ❘ ChAPtER 24 xml

 ... Other planets omitted ...

 </Planets>
</SolarSystem>

When the program starts, it uses the following code to load the XML file and to fill a ComboBox
with the names of the planets defined in the file.

// The DOM.
XDocument Document = XDocument.Load("Planets.xml");

// Load the XML data.
private void Form1_Load(object sender, EventArgs e)
{
 // Load the XML file.
 Document = XDocument.Load("Planets.xml");

 // List planets.
 foreach (XElement element in Document.XPathSelectElements("//Planet/Name"))
 {
 planetComboBox.Items.Add(element.Value);
 }

 // Select the first planet.
 planetComboBox.SelectedIndex = 0;
}

The Load event handler first loads the XML document. It then calls the document’s
XPathSelectElements method, passing it the XQuery //Planet/Name. The // operator allows
the query to descend to any depth in the document. The Planet/Name piece makes the query
select Name elements that are direct children of Planet elements.

The code loops through the returned XElement objects and adds each object’s Value property to
the ComboBox.

When the user selects a planet from the ComboBox, the program executes the following code.

// Display the selected planet's data.
private void planetComboBox_SelectedIndexChanged(object sender, EventArgs e)
{
 string name = planetComboBox.Text;
 string query = "//Planet[Name=\"" + name + "\"]";
 XElement planet = Document.XPathSelectElement(query);
 string info = "";
 foreach (XElement child in planet.Elements())
 {
 info += child.Name.ToString() + ": " + child.Value + "\r\n";
 }
 infoTextBox.Text = info;
}

This code gets the selected planet’s name and uses it to build an XPath query with the following format.

//Planet[Name="Mercury"]

www.EBooksWorld.ir

www.hellodigi.ir

related Technologies ❘ 555

This query selects Planet elements at any depth in the document
where the Planet’s Name child has value Mercury.

The program then calls the XDocument object’s
XPathSelectElement method to get the first (and in this case the
only) element that satisfies the query. The code then loops through
the Planet element’s children and adds their names and values to
a result string. When it is finished, the program displays the result.

Figure 24-4 shows the UseXPath example program displaying
information for Mercury.

For more information on XPath, see the following links.

➤➤ “XPath Reference” at msdn.microsoft.com/library/ms256115.aspx

➤➤ “XPath Examples” at msdn.microsoft.com/library/ms256086.aspx

xSLt
XSLT is a language that you can use to transform XML data into a new format. It’s a fairly com-
plicated language, so there isn’t room to cover it in any depth here. To really learn the language,
see the following links.

➤➤ “XSLT Tutorial” at www.w3schools.com/xsl/default.asp

➤➤ “XSLT Elements Reference” at www.w3schools.com/xsl/xsl_w3celementref.asp

➤➤ “XSL Transformations (XSLT) Version 1.0” at www.w3.org/TR/xslt

Rather than explaining the whole XSLT language, the rest of this section explains an example.
The TransformPlanets example program uses XSLT to transform the Planets.xml file described
in the preceding section into an HTML file.

Recall that the Planets.xml file has the following structure.

<SolarSystem>
 <Planets>
 <Planet>
 <Name>Mercury</Name>
 <Distance>57.91</Distance>
 <Radius>2340</Radius>
 <LengthOfYear>0.24085</LengthOfYear>
 <Day>88</Day>
 <Mass>0.054</Mass>
 </Planet>

 ... Other planets omitted ...

 </Planets>
</SolarSystem>

FIGuRE 24-4: The UseXPath
example program uses XPath
queries to display information
about planets .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3schools.com/xsl/default.asp
http://www.w3schools.com/xsl/xsl_w3celementref.asp
http://www.w3.org/TR/xslt

556 ❘ ChAPtER 24 xml

The following code shows the XSLT file PlanetsToHtml.xslt.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 exclude-result-prefixes="msxsl"
>
 <xsl:output method="html" indent="yes"/>

 <xsl:template match="Planets">
 <HTML>
 <BODY>
 <TABLE BORDER="2">
 <TR>
 <TH>Planet</TH>
 <TH>Distance to Sun</TH>
 <TH>Length of Year</TH>
 <TH>Length of Day</TH>
 </TR>
 <xsl:apply-templates select="Planet"/>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
 <xsl:template match="Planet">
 <TR>
 <TD>
 <xsl:value-of select="Name"/>
 </TD>
 <TD>
 <xsl:value-of select="Distance"/>
 </TD>
 <TD>
 <xsl:value-of select="LengthOfYear"/>
 </TD>
 <TD>
 <xsl:value-of select="Day"/>
 </TD>
 </TR>
 </xsl:template>
</xsl:stylesheet>

The xsl:output element indicates that the resulting output file should be in HTML format and that
it should include indenting.

This file contains two templates. The first matches Planets nodes. When the XSLT processor works
through the XML input file and encounters a Planets element, this template executes. (In this example,
the Planets.xml file has only one Planets element so this template executes only once.)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/1999/XSL/Transform

related Technologies ❘ 557

The body of the template makes the processor emit the following text.

 <HTML>
 <BODY>
 <TABLE BORDER="2">
 <TR>
 <TH>Planet</TH>
 <TH>Distance to Sun</TH>
 <TH>Length of Year</TH>
 <TH>Length of Day</TH>
 </TR>
 <xsl:apply-templates select="Planet"/>
 </TABLE>
 </BODY>
 </HTML>

This is ordinary HTML code except for the line highlighted in bold. That line uses the xsl:apply-
templates element to tell the processor to apply the templates for Planet child nodes.

In this example, the first template finds the Planets element and applies the template that matches
Planet elements to that element’s children.

The second template matches Planet elements and emits the following text for them.

 <TR>
 <TD>
 <xsl:value-of select="Name"/>
 </TD>
 <TD>
 <xsl:value-of select="Distance"/>
 </TD>
 <TD>
 <xsl:value-of select="LengthOfYear"/>
 </TD>
 <TD>
 <xsl:value-of select="Day"/>
 </TD>
 </TR>

Again this is plain HTML text except for the bold statements. Those statements use the xsl:value-of
element to select values from the Planet element’s children.

The following HTML code shows the result.

 <HTML>
 <BODY>
 <TABLE BORDER="2">
 <TR>
 <TH>Planet</TH>
 <TH>Distance to Sun</TH>
 <TH>Length of Year</TH>
 <TH>Length of Day</TH>

www.EBooksWorld.ir

www.hellodigi.ir

558 ❘ ChAPtER 24 xml

 </TR>
 <TR>
 <TD>Mercury</TD>
 <TD>57.91</TD>
 <TD>0.24085</TD>
 <TD>88</TD>
 </TR>
 <TR>
 <TD>Venus</TD>
 <TD>108.21</TD>
 <TD>0.61521</TD>
 <TD>230</TD>
 </TR>

 ... Other planets omitted ...

 <TR>
 <TD>Pluto</TD>
 <TD>5910</TD>
 <TD>247.687</TD>
 <TD>6.39</TD>
 </TR>
 </TABLE>
 </BODY>
</HTML>

The following code shows how the TransformPlanets program uses the XSLT file to transform the
XML file.

// Transform Planets.xml.
private void Form1_Load(object sender, EventArgs e)
{
 // Load the style sheet.
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load("PlanetsToHtml.xslt");

 // Transform the file.
 xslt.Transform("Planets.xml", "Planets.html");

 // Display the result.
 string filename = Path.GetFullPath(
 Path.Combine(Application.StartupPath, "Planets.html"));
 planetsWebBrowser.Navigate(filename);
}

The program creates and initializes an XslCompiledTransform object. It then uses its Load method
to load the XSLT file. Next, the program calls the object’s Transform method to transform the input
XML file and save the result in the new HTML file.

That’s all that’s needed to perform the transformation. The program finishes by displaying the
HTML file in a WebBrowser control.

Figure 24-5 shows the TransformPlanets example program displaying its HTML output file.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 559

FIGuRE 24-5: The TransformPlanets example
program uses XSLT to transform an XML file
into an HTML file and then displays the result
in a WebBrowser control .

SuMMARy

XML is a hierarchical data storage language. Using the tools provided by the .NET Framework,
you write C# programs that read and write XML data. Because XML is standardized, your pro-
gram can exchange XML data with other programs, possibly running on different computers or
even operating systems.

By itself, an XML file just holds data. Other related technologies such as XPath and XSLT let you
search and transform XML data. This chapter didn’t have room to cover those technologies in detail
but it did provide some examples that you can use to start with XPath and XSLT.

Often XML files are used to hold data such as information about employees, customer orders, plants,
or planets. XML files can also be used to hold representations of objects. In a process called serial-
ization, a program can write information describing an object into an XML file. Later, it or another
program can read that data to re-create (or deserialize) the object. The next chapter explains how a
C# program can serialize and deserialize objects.

ExERCISES

 1. Use an XmlTextWriter to create an XML file containing random plant data. The file should
have the following structure.

<?xml version="1.0" encoding="utf-8"?>
<Plants>
 <Plant>
 <Name>ut nibh morbi</Name>
 <Zone>3</Zone>

www.EBooksWorld.ir

www.hellodigi.ir

560 ❘ ChAPtER 24 xml

 <Light>Shade</Light>
 </Plant>

 ... Other Plant elements omitted ...

</Plants>

Follow these steps to prepare to generate random plant names.

 a. Place a TextBox on the form so that the user can enter the number of Plant ele-
ments to create.

 b. Place a multiline TextBox on the form. Fill it with a few hundred words from
www.lipsum.com/feed/html.

 c. Get the text from the TextBox and convert it to lowercase.

 d. Use regular expressions to remove periods and commas from the text.

 e. Use string.Split to split the text into words using spaces, \r, and \n as word
separators, removing empty entries.

The following code shows two methods you can use to create random plant names and
light values.

// Return a random name.
private Random Rand = new Random();
private string RandomName(string[] words)
{
 return
 words[Rand.Next(0, words.Length)] + " " +
 words[Rand.Next(0, words.Length)] + " " +
 words[Rand.Next(0, words.Length)];
}

// Return a random light value.
private string RandomLight()
{
 string[] values =
 {
 "Shade", "Partial Shade", "Partial Sun", "Full Sun"
 };
 return values[Rand.Next(0, values.Length)];
}

The program should pass the array of words it built during preparation into the RandomName
method.

 2. Modify the program you wrote for Exercise 1 so that it uses the DOM instead of an
XmlTextWriter. Which version of the program do you prefer? Are there situations in which
one would be better than the other?

www.EBooksWorld.ir

www.hellodigi.ir

http://www.lipsum.com/feed/html

exercises ❘ 561

 3. Write a program similar to the one shown in Figure 24-6 to display the plant data generated
by the program you wrote for Exercise 1 or 2.

FIGuRE 24-6: For Exercise 3, write a
program that displays the plant data
you generated in Exercises 1 and 2 .

When it starts, the program should load the plant XML file into a DOM. It should use the
XDocument object’s Descendants method to find Zone elements and use LINQ and to dis-
play a sorted list of the distinct Zone values in the form’s ComboBox.

When the user selects a zone, the program should display the names of the plants in that zone
in the Plants ListBox. (Hints: Use the Descendants method to find Zone elements. Use LINQ
to select the elements with the selected zone. Loop through the selected elements. Use each ele-
ment’s Parent property to get to its Plant element. Then use the parent’s Element method to
get the Name subelement.)

When the user clicks a plant in the Plants ListBox, display the information about that
plant. (Hints: Use Descendants again to find Name elements and use LINQ to select the
one with the selected name. Get the first selected element’s parent and call the parent’s
ToString method.)

 4. Write a program that reads the plant data generated by the program you wrote for Exercise 1
or 2 and displays a list of the plant records’ names. (Hints: Scan the file to find Name elements.
With those elements, use the reader’s ReadElementContentAsString or ReadInnerXml
method to get the element’s content.)

Compare this program with the one you wrote for Exercise 3. Under what circumstances is
one better than the other?

 5. Modify the program you wrote for Exercise 3 so that it uses XPath instead of LINQ to find
the elements it needs.

 6. Modify the TransformPlanets example program so that it transforms the Plants.xml file cre-
ated by the program you wrote for Exercise 1 or Exercise 2 and displays it in an HTML page.

www.EBooksWorld.ir

www.hellodigi.ir

562 ❘ ChAPtER 24 xml

 7. Write a program that uses XSLT to transform the Planets.xml file into the Planets2.xml
file that has the following format.

<?xml version="1.0" encoding="utf-8"?>
 <Planets>
 <Planet Name="Mercury" Distance="57.91"
 LengthOfYear="0.24085" LengthOfDay="88" />
 <Planet Name="Venus" Distance="108.21"
 LengthOfYear="0.61521" LengthOfDay="230" />

 ... Other planets omitted ...

 <Planet Name="Pluto" Distance="5910"
 LengthOfYear="247.687" LengthOfDay="6.39" />
</Planets>

Hints: In the XSLT file, use the child nodes’ names in braces to set an attribute’s value as in
Name="{Name}". Also note that the new format uses the name LengthOfDay value instead of
Day. Finally, don’t worry about indenting.

www.EBooksWorld.ir

www.hellodigi.ir

serialization
whAt’S IN thIS ChAPtER

➤➤ Serialization and deserialization

➤➤ XML, JSON, and binary serialization

➤➤ Using attributes to control serialization

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Serialization is the process of converting one or more objects into a serial, stream-like format,
often text. Deserialization is the reverse: restoring an object from its serialization.

Like the XML files described in the preceding chapter, serialization gives you a portable way
to store data. You can serialize an object and send the serialization to another program, and
then that program can deserialize the object.

You can also use serialization to allow a program to save and restore its state. For example,
a drawing program might build a complicated data structure containing the objects the user
drew. To save the drawing, the program could write the data structure’s serialization into a
file. Later it could reload the serialization and display the objects.

The objects serialized can be relatively simple, such as a Customer or Person object, or they can be
complex data structures including objects that have references to other objects. For example, you
could serialize a CustomerOrder object that includes an array of Order objects each containing a
list of OrderItem objects.

For something that can be so complicated, serialization is surprisingly easy in .NET.

25

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref
http://www.hiva-network.com/

564 ❘ ChAPtER 25 serializaTion

This chapter explains serialization. It explains how to serialize and deserialize objects. It also
explains attributes that you can use to control how objects of a particular class are serialized.

The .NET Framework gives you three choices for how data is stored in a serialization: XML data,
JSON data, or binary data. The following sections explain how you can use each of these three choices.

SERIALIzAtION NAMESPACES

The System.Xml.Serialization namespace includes XML serialization classes.
To make that kind of serialization easier, you may want to include the following
using directive in your code.

using System.Xml.Serialization;

The System.Runtime.Serialization.Json namespace includes JSON serializa-
tion classes. To make that kind of serialization easier, you may want to include the
following using directive in your code.

using System.Runtime.Serialization.Json;

The JSON classes are included in the System.ServiceModel.Web library. If you
will be using those classes, use Project ➪ Add Reference to add a reference to that
library to your project.

xML SERIALIzAtION

To serialize and deserialize objects in XML format, you use the XmlSerializer class’s Serialize
and Deserialize methods. The methods work only for classes that have a parameterless construc-
tor, either the default constructor or one that you created. They also work only for public properties
and fields. All other properties and fields are ignored.

why A PARAMEtERLESS CONStRuCtOR?

If you think about it, you’ll realize why serialization has these restrictions. To serialize
an object, the serializer must get an object’s property and field values. If a property or
field is not public, the serializer cannot see it.

When you deserialize an object, the serializer must create a new object and then set its
values. If the class doesn’t have a parameterless constructor, it would need some way
to figure out which constructor to use and what values to pass into it. You might cook
up some scheme for telling it which constructor to use and how, but it would make
deserialization more complicated. It’s just easier to require a parameterless constructor.

www.EBooksWorld.ir

www.hellodigi.ir

XmL serialization ❘ 565

The Serialize and Deserialize methods are fairly easy to use; although, you do need to pass them
some slightly exotic parameters. For example, you might expect the Serialize method to simply
return a serialization string. Actually, it requires a stream, XmlWriter, or TextWriter parameter
where it can write the serialization.

The following section explains the basic process of serializing and deserializing objects. The section
after that describes some attributes you can use to change the way values are serialized.

Performing Serialization
The SerializeCustomer example program, which is available for download on this book’s website,
demonstrates XML serialization and deserialization. Before you look at the code, here’s an overview
of what the program does.

The example uses three classes: Customer, Order, and OrderItem. When it starts, the program creates
a Customer object, which contains Order objects, which contain OrderItem objects. It then displays
the Customer object’s data. It serializes the Customer object and displays the serialization. Finally, the
program deserializes the XML data to create a new object and displays that object’s data.

Figure 25-1 shows the program displaying the Customer objects’ data and the serialization. If you
look closely, you can see that the data in the left and right TextBoxes is the same, so the program
did successfully serialize and deserialize the Customer object.

FIGuRE 25-1: The SerializeCustomer example program serializes
and deserializes a Customer object .

The following code shows the OrderItem class.

public class OrderItem
{
 public string Description;
 public int Quantity;
 public decimal UnitPrice;

 public OrderItem() { }
 public OrderItem(string description, int quantity, decimal unitPrice)
 {

www.EBooksWorld.ir

www.hellodigi.ir

566 ❘ ChAPtER 25 serializaTion

 Description = description;
 Quantity = quantity;
 UnitPrice = unitPrice;
 }
}

This class has Description, Quantity, and UnitPrice fields; a parameterless constructor; and an
initializing constructor.

The following code shows the Order class.

public class Order
{
 public DateTime OrderDate;
 public OrderItem[] OrderItems;

 public Order() { }
 public Order(DateTime orderDate, params OrderItem[] orderItems)
 {
 OrderDate = orderDate;
 OrderItems = orderItems;
 }
}

This class includes an OrderDate field and an array of OrderItem objects. It also has a parameterless
constructor and an initializing constructor.

The following code shows the Person class.

// Customer and related classes.
public class Customer
{
 public string FirstName, LastName;
 public List<Order> Orders = new List<Order>();

 public Customer() { }
 public Customer(string firstName, string lastName, params Order[] orders)
 {
 FirstName = firstName;
 LastName = lastName;
 foreach (Order order in orders) Orders.Add(order);
 }
}

This class has FirstName and LastName fields. It holds information about orders in a List<Order>.

When the program starts, it uses the following code to create a Customer object and display its data.

// Create some OrderItems.
OrderItem item1 = new OrderItem("Pencil", 12, 0.25m);
OrderItem item2 = new OrderItem("Notepad", 6, 1.00m);
OrderItem item3 = new OrderItem("Binder", 1, 3.50m);
OrderItem item4 = new OrderItem("Tape", 12, 0.75m);

www.EBooksWorld.ir

www.hellodigi.ir

XmL serialization ❘ 567

// Create some Orders.
Order order1 = new Order(new DateTime(2014, 4, 4), item1, item2);
Order order2 = new Order(new DateTime(2014, 4, 17), item3, item4);

// Create a Customer.
Customer customer = new Customer("Rod", "Stephens", order1, order2);

// Display the Customer.
DisplayCustomer(originalTextBox, customer);

This code just creates some objects and sets their fields’ values. It then calls the DisplayCustomer
method to display the Customer object’s values in a TextBox. It isn’t very interesting so it isn’t
shown here. Download the example to see how it works.

Next, the program uses the following code to serialize the Customer object and display the
serialization.

// Create a serializer that works with the Customer class.
XmlSerializer serializer = new XmlSerializer(typeof(Customer));

// Create a TextWriter to hold the serialization.
string serialization;
using (TextWriter writer = new StringWriter())
{
 // Serialize the Customer.
 serializer.Serialize(writer, customer);
 serialization = writer.ToString();
}

// Display the serialization.
serializationTextBox.Text = serialization;

The code first creates an XmlSerializer object to perform the serialization (and later the deserial-
ization). It passes the XmlSerializer constructor the type of the class that it will serialize. In this
example, the serializer object knows only how to serialize and deserialize Customer objects.

The serializer can serialize only into streams, XmlWriters, and TextWriters, so this example
creates a TextWriter to hold the serialization. It calls the serializer’s Serialize method, passing
it the Customer object to serialize. The program saves the serialization in a string and displays
the string in a TextBox.

The following code shows how the program deserializes the serialization.

// Create a stream from which to read the serialization.
using (TextReader reader = new StringReader(serialization))
{
 // Deserialize.
 Customer newCustomer = (Customer)serializer.Deserialize(reader);

 // Display the deserialization.
 DisplayCustomer(deserializedTextBox, newCustomer);
}

www.EBooksWorld.ir

www.hellodigi.ir

568 ❘ ChAPtER 25 serializaTion

The serializer can deserialize only from streams, XmlReaders, and TextReaders, so the program
creates a reader to read from the serialization string.

The program then calls the Deserialize method, passing it the reader. The Deserialize method
returns a nonspecific object so the program casts it into a Customer object.

The program finishes by displaying the deserialized object.

The following code shows the object’s serialization.

<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FirstName>Rod</FirstName>
 <LastName>Stephens</LastName>
 <Orders>
 <Order>
 <OrderDate>2014-04-04T00:00:00</OrderDate>
 <OrderItems>
 <OrderItem>
 <Description>Pencil</Description>
 <Quantity>12</Quantity>
 <UnitPrice>0.25</UnitPrice>
 </OrderItem>
 <OrderItem>
 <Description>Notepad</Description>
 <Quantity>6</Quantity>
 <UnitPrice>1.00</UnitPrice>
 </OrderItem>
 </OrderItems>
 </Order>
 <Order>
 <OrderDate>2014-04-17T00:00:00</OrderDate>
 <OrderItems>
 <OrderItem>
 <Description>Binder</Description>
 <Quantity>1</Quantity>
 <UnitPrice>3.50</UnitPrice>
 </OrderItem>
 <OrderItem>
 <Description>Tape</Description>
 <Quantity>12</Quantity>
 <UnitPrice>0.75</UnitPrice>
 </OrderItem>
 </OrderItems>
 </Order>
 </Orders>
</Customer>

If you look through the serialization, it makes reasonably intuitive sense. A Customer element rep-
resents a Customer object. It contains FirstName and LastName elements to hold its simple data
values. The Orders element holds a sequence of Order elements to represent the Customer object’s
List<Order>.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.hiva-network.com/

XmL serialization ❘ 569

Each Order element holds other elements that contain information about the program’s
Order object. The OrderItems element holds a sequence of OrderItem objects to represent
an OrderItem object’s OrderItems array.

ObVIOuS xML

The XML serialization’s structure is so intuitive that you could easily serialize and
deserialize objects yourself by hand if necessary. The only remarkable thing about it is
that it all happens automatically. You don’t need to tell the serializer what properties
and fields the Customer, Order, and OrderItem classes have; what their data types
are; or whether they are simple values (such as int and string) or complex values
(such as OrderItem and List<Order>). The serializer figures that out all by itself.

The serializer uses reflection to analyze the classes and determine what values it must
save and what their names are. You’ll learn how your programs can use reflection in
the next chapter.

Controlling Serialization
The serialization shown in the preceding section is straightforward and reasonably intuitive, but
there are times when you might want to change the way an object is serialized.

For example, the previous serialization is easy to understand but it’s quite verbose. Perhaps you
would rather store this data:

<OrderItem>
 <Description>Tape</Description>
 <Quantity>12</Quantity>
 <UnitPrice>0.75</UnitPrice>
</OrderItem>

Like this:

<OrderItem Description="Tape" Quantity="12" UnitPrice="0.75" />

The result is more concise and possibly easier to read.

For another example, suppose your program saves a customer’s order data and you want to use
that data in another program. Unfortunately, the other program stores a Customer object’s order
information in an Order[] named CustomerOrders instead of a List<Order> named Orders.

At this point you might realize that you could use XSLT to transform your serialization into a format
that the other program could deserialize. That would certainly work (and would let you make other
transformations that you can’t with the techniques that follow) but it would be extra work and require
another processing step.

Fortunately, the System.Xml.Serialization namespace defines attributes that you can use to gain
some control over the serialization process. You add these attributes to classes or the properties and

www.EBooksWorld.ir

www.hellodigi.ir

570 ❘ ChAPtER 25 serializaTion

fields of classes that you want to serialize. They can indicate that a value should be stored in the
serialization as an attribute instead of an element. They can also change the name of a value in
the serialization or indicate that a value should be completely ignored.

For example, consider the following versions of the Customer, Order, and OrderItem classes.
Here I’ve removed the constructors (which are the same as the previous versions) to save space.
The attributes are highlighted in bold.

public class Customer
{
 [XmlAttribute]
 public string FirstName, LastName;

 [XmlArray("CustomerOrders")]
 public List<Order> Orders = new List<Order>();
}

public class Order
{
 [XmlIgnore]
 public DateTime OrderDate;

 [XmlArray("Items")]
 public OrderItem[] OrderItems;
}

public class OrderItem
{
 [XmlAttribute]
 public string Description;

 [XmlAttribute]
 public int Quantity;

 [XmlAttribute("PriceEach")]
 public decimal UnitPrice;
}

In the Customer class, the XmlAttribute attribute indicates that the FirstName and LastName
fields should be serialized as XML attributes instead of elements. The XmlArray attribute indicates
that the Customer class’s Orders list should be called CustomerOrders in the serialization. (Lists
and arrays are both serialized in the same way so that the XmlArray attribute doesn’t change the
way this is serialized. It just changes the name.)

AttRIbutE AttRIbutES

Yes, it sounds strange to say XmlAttribute attribute. Actually, the class that pro-
vides this attribute is XmlAttributeAttribute and you can even use that name
instead of the shorter XmlAttribute. Similarly, the class that provides the XmlArray
attribute is called XmlArrayAttribute.

www.EBooksWorld.ir

www.hellodigi.ir

XmL serialization ❘ 571

In the Order class, the XmlIgnore attribute indicates that the OrderDate field should not be serial-
ized at all. The XmlArray attribute makes the OrderItems array serialize with the name Items.

IGNORE ME

Why would you want to ignore a field or property in a serialization? There are a
few good reasons.

First, suppose a class provides more than one property that accesses the same data. For
example, it might have DegreesFahrenheit and DegreesCelsius properties. Both
store their data in the same backing variable (possibly one of those two properties) and
return it in different formats. In this case, there’s no point to saving and restoring the
same temperature value in two different formats.

Second, the XmlSerializer class cannot store some kinds of data. For example,
it cannot store images. If the Student class includes a Picture field that holds a
picture of the student, you can use the XmlIgnore attribute to let the serializer
skip it instead of getting confused and crashing.

Finally, you might just want to omit some data. For example, suppose a drawing
application uses the Picture class to represent a drawing, and suppose that class has
a History property that contains undo and redo information. You can use a serializa-
tion to save a drawing into a file, but you probably don’t want to save the undo and
redo information. In that case, you can simply mark the History property with the
XmlIgnore attribute.

In the OrderItem class, the three XmlAttribute attributes indicate that all three fields should
be stored as XML attributes and that the UnitPrice field should be stored as PriceEach in the
serialization.

The SerializeCustomerWithAttributes example program is identical to the SerializeCustomer program
except it uses the new definitions of the Customer, Order, and OrderItem classes. The following code
shows the XML serialization it produces.

<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 FirstName="Rod" LastName="Stephens">
 <CustomerOrders>
 <Order>
 <Items>
 <OrderItem Description="Pencil" Quantity="12" PriceEach="0.25" />
 <OrderItem Description="Notepad" Quantity="6" PriceEach="1.00" />
 </Items>
 </Order>
 <Order>
 <Items>
 <OrderItem Description="Binder" Quantity="1" PriceEach="3.50" />
 <OrderItem Description="Tape" Quantity="12" PriceEach="0.75" />

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

572 ❘ ChAPtER 25 serializaTion

 </Items>
 </Order>
 </CustomerOrders>
</Customer>

This is still reasonably intuitive and more concise than the previous version.

The following table lists the most useful attributes that you can use to control serialization. (The
names of the classes that implement these attributes all end with Attribute. For example, the
XmlArray attribute is implemented by the XmlArrayAttribute class. If you want to look up any
of these online, use their full class names.)

AttRIbutE PuRPOSE

XmlArray Changes the name by which the array or list is serialized .

XmlArrayItem Indicates a type that can be in an array . For example, suppose the
People array contains Person objects, some of which might be from
the Author subclass . Then you would use XmlArrayItem twice to
indicate that the array might contain Person and Author objects .

XmlAttribute Serializes a field as an attribute instead of an element . Optionally sets
the name of the attribute .

XmlElement Specifically indicates the field will be serialized as an XML element .
This attribute allows you to change the XML element’s name .

XmlEnum Enables you to specify the names by which enumeration values
are serialized . For example, suppose the enumeration MealSize
defines values Small, Medium, and Large . You could use this attri-
bute to make the serialization call those values Tall, Grande, and
Brobdignagian .

XmlIgnore Makes the serializer omit a field from the serialization .

XmlRoot Controls the name and namespace for the element generated
for a serialization’s root element . For example, the attribute
[XmlRoot("Client")] in front of the Customer class would make
the serializer name the root element Client . This would not affect
Customer objects that are not the root element . (See XmlType .)

XmlText Makes the serializer store a value as XML text . An object can have
only one text value . (The serializer cannot put more than one text
value between the object’s start and end tags .)

XmlType Controls the name and namespace for the element generated for a
class . For example, if you place the attribute [XmlType("Item")] in
front of the OrderItem class, then all OrderItem objects are serialized
as Item elements .

www.EBooksWorld.ir

www.hellodigi.ir

Json serialization ❘ 573

The DataContractSerializer class can also use XML to serialize and deserialize objects. The process
is similar to using the DataContractJsonSerializer class, which is described in the next section.

jSON SERIALIzAtION

Like XML, JSON (JavaScript Object Notation) is a data storage language. JSON is somewhat
simpler and often more concise than XML so it is preferred by some developers.

JSON data mostly consists of name:value pairs where names are text and values can have one of
the following data types:

➤➤ Number

➤➤ String

➤➤ Boolean

➤➤ Array (a sequence of values separated by commas and enclosed in brackets [])

➤➤ Object (a collection of key:value pairs with pairs separated by commas and the
whole collection surrounded by braces { })

➤➤ null

The following code shows a JSON representation of a Customer object that contains two Order
objects; each Order object holds two OrderItem objects.

{
 "FirstName":"Rod",
 "LastName":"Stephens",
 "Orders":
 [
 {
 "OrderDate":"\/Date(1396591200000-0600)\/",
 "OrderItems":
 [
 {"Description":"Pencil","Quantity":12,"UnitPrice":0.25},
 {"Description":"Notepad","Quantity":6,"UnitPrice":1.00}
]
 },
 {
 "OrderDate":"\/Date(1397714400000-0600)\/",
 "OrderItems":
 [
 {"Description":"Binder","Quantity":1,"UnitPrice":3.50},
 {"Description":"Tape","Quantity":12,"UnitPrice":0.75}
]
 }
]
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

574 ❘ ChAPtER 25 serializaTion

As is the case with XML serialization, you can use attributes to control how classes are serialized
by the DataContractJsonSerializer class. The following section explains the basic JSON seri-
alization and deserialization processes. The section after that describes attributes you can use to
control the serialization.

Performing Serialization
The DataContractJsonSerializer class serializes and deserializes objects using the JSON for-
mat. The class’s WriteObject method serializes an object. Its ReadObject method deserializes
an object.

The SerializeCustomerJson example program, which is available for download on this book’s website,
uses the following code to serialize and deserialize a Customer object in the JSON format.

// Create a serializer that works with the Customer class.
DataContractJsonSerializer serializer =
 new DataContractJsonSerializer(typeof(Customer));

// Create a stream to hold the serialization.
using (MemoryStream stream = new MemoryStream())
{
 // Serialize the Customer.
 serializer.WriteObject(stream, customer);

 // Convert the stream into a string.
 stream.Seek(0, SeekOrigin.Begin);
 string serialization;
 using (StreamReader reader = new StreamReader(stream))
 {
 serialization = reader.ReadToEnd();

 // Display the serialization.
 serializationTextBox.Text = serialization;

 // Deserialize from the stream.
 stream.Position = 0;
 Customer newCustomer = (Customer)serializer.ReadObject(stream);

 // Display the deserialization.
 DisplayCustomer(deserializedTextBox, newCustomer);
 }
}

The code first creates a DataContractJsonSerializer object.

That object can write serializations into a stream, XmlDictionaryWriter, or XmlWriter. This
example creates a MemoryStream to hold the serialization. The code then calls the serializer’s
WriteObject method to write the Customer object’s serialization into the stream.

To get the serialization as a string, the program rewinds the stream and creates a StreamReader
associated with the stream. It uses that object’s ReadToEnd method to get the text from the stream
and displays the serialization in a TextBox.

www.EBooksWorld.ir

www.hellodigi.ir

Json serialization ❘ 575

To deserialize the Customer object, the program uses the same MemoryStream (because it already
contains the serialization). The code rewinds the stream and uses the serializer’s ReadObject method
to read the Customer object from the serialization.

The code finishes by calling the DisplayCustomer method (not shown here) to display the object’s data.

Controlling Serialization
You can use attributes to control a JSON serialization much as you can use attributes to control
an XML serialization. JSON is a simpler format, however, so there are fewer attributes avail-
able. For example, JSON doesn’t let you store values as element attributes (as in <Customer
FirstName="Zaphod">) so there’s no attribute for that.

If you don’t give a class any attributes, the serializer tries to serialize all of its public properties
and methods.

You can use the XmlSerializable attribute to explicitly mark a class as serializable. If you do, the
serializer still tries to serialize all its public properties and methods.

In both of these cases, when you don’t give a class any attributes or you give it the XmlSerializable
attribute, you can give a field the IgnoreDataMember attribute to indicate that the field should not
be serialized.

In addition to using the XmlSerializable attribute, you can mark a class as serializable by giving it
the DataContract attribute. This attribute’s properties also let you change the name used to represent
the class in the serialization.

If you give a class the DataContract attribute, then the serializer’s default behavior changes.
Instead of serializing all public fields and properties that are not marked with IgnoreDataMember,
the serializer serializes only public fields and properties that are marked with the DataMember
attribute. The DataMember attribute also lets you change a member’s name or set the order in
which it is included in the object’s serialization.

The following code shows an OrderItem class with some serialization control attributes.

[DataContract(Name = "Item")]
public class OrderItem
{
 [DataMember]
 public string Description;

 [DataMember]
 public int Quantity;

 [DataMember(Name = "PriceEach")]
 public decimal UnitPrice;
}

The DataContract attribute indicates that the class is serializable and that any fields or properties
without the DataMember attribute will be ignored. It also makes the serializer use the name Item
when it writes an OrderItem into a serialization.

www.EBooksWorld.ir

www.hellodigi.ir

576 ❘ ChAPtER 25 serializaTion

The first two DataMember attributes indicate that the Description and Quantity fields should be
included in serializations.

The last DataMember attribute indicates that the PriceEach field should be included in serializations
and that it should be called PriceEach in serializations.

bINARy SERIALIzAtION

The XML and JSON serializers are fairly easy to use and produce reasonably intuitive results.
However, they have a couple of drawbacks. For example, there are some data types such as images
that they cannot serialize. (Exercise 4 explains one way around the problem.) They also cannot seri-
alize data structures that contain cycles.

For example, suppose you build an organizational model with Department objects representing your
company’s departments and Employee objects representing employees. The Department class has
an Employees property that is a List<Employee> that contains references to the employees in that
department. The Employee class has a Department property that is a reference to the department
where that employee works.

The XML and JSON serializers cannot serialize this structure because the Department object con-
tains references to Employee objects, and the Employee objects have references to the Department
object. These references form a cycle and the serializers don’t know how to handle cycles.

The BinaryFormatter class serializes and deserializes data and can handle both images and cycles.

The SerializeDepartment example program, which is available for download on this book’s website,
demonstrates the BinaryFormatter. It uses the following Department and Employee classes (con-
structors omitted).

[Serializable]
public class Department
{
 public Image Logo;
 public string Name;
 public List<Employee> Employees = new List<Employee>();
}

[Serializable]
public class Employee
{
 public string Name;
 public Department Department;
}

The BinaryFormatter can work only with classes that are decorated with the Serializable
attribute.

www.EBooksWorld.ir

www.hellodigi.ir

Binary serialization ❘ 577

IGNORE IGNOREd

The BinaryFormatter doesn’t care about attributes other than Serializable.
There’s no point trying to use an attribute to change an element’s name in the serial-
ization because the serialization is in binary so you can’t read it anyway. Furthermore
the BinaryFormatter ignores the XmlIgnore attribute so all properties and fields are
serialized.

In fact, the BinaryFormatter even ignores privacy. It barges into an object and
grabs all its fields and properties even if they’re marked private.

The example program uses the following code to serialize and deserialize a Department object.

// Create a BinaryFormatter.
IFormatter formatter = new BinaryFormatter();

// Create a stream to hold the serialization.
using (MemoryStream stream = new MemoryStream())
{
 // Serialize.
 formatter.Serialize(stream, department);

 // Display a textual representation of the serialization.
 byte[] bytes = stream.ToArray();
 string serialization = BitConverter.ToString(bytes).Replace("-", " ");

 // Display the serialization.
 serializationTextBox.Text = serialization;

 // Deserialize.
 stream.Seek(0, SeekOrigin.Begin);
 Department newDepartment = (Department)formatter.Deserialize(stream);

 // Display the new Department's data.
 deserializedPictureBox.Image = newDepartment.Logo;
 deserializedTextBox.Text = DisplayDepartment(newDepartment);
}

The code starts by creating a BinaryFormatter object. A BinaryFormatter uses only streams
for serialization, so the program creates a MemoryStream. It then uses the formatter’s Serialize
method to serialize the Department object into the stream.

Next, the code converts the serialization stream into a byte array. It converts that array into a string
showing the serialization’s hexadecimal contents and displays the result in a TextBox.

To deserialize the serialization, the code rewinds the MemoryStream, and then calls the formatter’s
Deserialize method. The code finishes by displaying the reconstituted Department object’s logo and
employee data. (The DisplayDepartment method is straightforward and unrelated to serialization, so
it isn’t shown here. Download the example to see how it works.)

www.EBooksWorld.ir

www.hellodigi.ir

578 ❘ ChAPtER 25 serializaTion

SuMMARy

This chapter explained techniques you can use to serialize and deserialize data. It explained how you
can use the XmlSerializer class to use XML serializations, the DataContractJsonSerializer
class to use JSON serializations, and the BinaryFormatter class to make binary serializations.

Binary serializations have the disadvantage that you can’t easily read them to see what they contain.
They have the advantage that they can contain data types such as images that the other serializations
cannot. They can also serialize data that contains cyclical references.

You can use attributes to influence the way objects are stored in XML and JSON serializations, but
most of the process is automatic. The serializers use reflection to determine what data is included in
a class. The next chapter explains how you can use reflection in your programs to get information
about the properties, methods, and events contained in a class.

ExERCISES

 1. Write a program similar to the SerializeCustomer example program but that works with an
array of Student objects. Give the Student class FirstName and LastName properties (not
fields). The program should

➤➤ Create an array of Students.

➤➤ Display the original Students.

➤➤ Serialize the array storing FirstName and LastName as attributes.

➤➤ Display the serialization.

➤➤ Deserialize the array.

➤➤ Display the deserialized Students.

Hint: Override the Student class’s ToString method. Then set a ListBox’s DataSource
property equal to an array to display the Students it contains.

 2. Make a classroom editor similar to the one shown in
Figure 25-2. Make the program store Student objects
in a List<Student>. Display the list by setting a
ListBox’s DataSource property equal to it. When the
program ends, save the list’s serialization into a file.
When the program restarts, reload the serialization.

Hints: Note that you don’t need to use strings to serial-
ize and deserialize. Just serialize and deserialize directly
in and out of a file. Before you change the list to add,
remove, or edit a Student, set the ListBox’s DataSource
property to null. After the change, set the DataSource
property back to the list.

 3. Make a static XmlTools class. Give it generic Serialize and Deserialize methods that
serialize and deserialize objects to and from strings. Modify the program you wrote for
Exercise 1 to test the methods.

FIGuRE 25-2: For Exercise 2,
make a classroom editor that
saves and restores a list of
Student objects when the
program stops and starts .

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 579

 4. The XmlSerializer class cannot serialize images, but you can help it along by creating a
public property that gets and sets an image in a format that it understands.

Write a program similar to the SerializeCustomer example program but that works with a
single Student object. Give the Student class FirstName, LastName, and Picture properties.

Hint: Also give the class the following property that gets and sets the picture as an array
of bytes.

// Return the Picture as a byte stream.
public byte[] PictureBytes
{
 get // Serialize
 {
 if (Picture == null) return null;
 using (MemoryStream stream = new MemoryStream())
 {
 Picture.Save(stream, ImageFormat.Png);
 return stream.ToArray();
 }
 }
 set // Deserialize.
 {
 if (value == null) Picture= null;
 else
 {
 using (MemoryStream stream = new MemoryStream(value))
 {
 Picture = new Bitmap(stream);
 }
 }
 }
}

 5. Make a friendship tracking program similar to the one shown in Figure 25-3. When the
user clicks a name in the ListBox on the left, the program checks that person’s friends in
CheckedListBox on the right.

FIGuRE 25-3: For Exercise 5,
make a friendship editor that
saves and restores a list of
Person objects when the
program stops and starts .

www.EBooksWorld.ir

www.hellodigi.ir

580 ❘ ChAPtER 25 serializaTion

Use the following Person class to store information about the people.

public class Person
{
 public string Name;
 public List<Person> Friends = new List<Person>();
 public override string ToString()
 {
 return Name;
 }
}

Hints: Store the person information in a List<Person>. Serialize and deserialize the data
into a file when the program stops and starts. If the data file doesn’t exist when the program
starts, just create some Person objects. (A real application would let the user add, edit, and
delete Person objects, perhaps as in the program you wrote for Exercise 2.)

www.EBooksWorld.ir

www.hellodigi.ir

reflection
whAt’S IN thIS ChAPtER

➤➤ Learning about assemblies

➤➤ Enumerating fields, properties, methods, and events

➤➤ Getting and setting property values

➤➤ Creating add-ins

➤➤ Compiling and executing scripts at run time

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Reflection is a process by which a program can examine and manipulate program objects at
run time. For example, serialization (described in the preceding chapter) uses reflection to figure
out what values an object has and what their data types are so that it can save and restore them.
IntelliSense also uses reflection to describe the parameters that a method takes while you are
entering those parameters.

Reflection is a fairly advanced technique that isn’t necessary for most programs. Usually,
when you write a program, you know what you want it to do and what methods you need to
call to do it. It’s unusual, for example, to be working with an Invoice class and not know
what properties, methods, and events that class defines. Even if you don’t know what’s in a
class and you use reflection to find out, it would be quite hard to make the program use those
discovered items effectively.

26

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

582 ❘ ChAPtER 26 reFleCTion

Still there are a few situations in which reflections can be useful. Some of the more common uses of
reflection include

➤➤ Load assemblies at run time.

➤➤ Learn what assembly defines a particular item such as a class or enumeration.

➤➤ List a class’s fields and properties.

➤➤ List a class’s constructors and other methods.

➤➤ List a class’s events.

➤➤ Get information about a property such as its type and whether it is read-only.

➤➤ Get and set a property’s value.

➤➤ Get information about the parameters passed to a method.

➤➤ Get information about an item’s attributes.

Some reflection classes even let you create new types and execute code at run time.

This chapter describes some of the more useful things you can do with reflection. It explains how to
learn about classes, get and set property values, invoke methods, and compile and execute scripts.

LEARNING AbOut CLASSES

A class’s type provides properties and methods that provide a wealth of information about the class.
You can get a class’s type by using typeof(TheClass) or by calling the GetType method on an
instance of the class.

The System.Type class provides many properties and methods that give information about a type.
Most of these are reasonably self-explanatory. One detail that may not be obvious is that some of
these properties and methods return objects that describe the information you want rather than the
information itself. The reason they do that is many of these items are more complicated than you
might at first realize.

For example, suppose the MusicalInstrument class is defined in some DLL. You can use reflection to
determine the module that defines the class. You might think of the module as simply the name of the
DLL containing the class, but the Type class’s Module property returns a Module object that includes
lots of information about the module including its name, assembly (which is also an object containing
a lot of information), custom attributes, fully qualified name, global fields, and types (which includes
classes, enumerations, delegate types, and any other types defined in the module).

Some of the more useful informational classes include the obviously named FieldInfo, PropertyInfo,
ConstructorInfo, MethodInfo, and EventInfo classes. Two other classes that are returned by some
reflection methods are MethodBase (the parent class of MemberInfo and ConstructorInfo) and
MemberInfo (the parent class of FieldInfo, PropertyInfo, MethodBase, and EventInfo).

The CustomerClassInformation example program, which is available for download on this book’s
website, demonstrates many useful reflection properties and methods to display information about a

www.EBooksWorld.ir

www.hellodigi.ir

Learning about classes ❘ 583

Customer class. This class is derived from the Person class and contains a list of Order objects. The
following code shows the Person, Customer, and Order classes.

public class Person
{
 public string FirstName, LastName;
}

public sealed class Customer : Person
{
 public struct Address
 {
 public string Street, City, State, Zip;
 }

 public string EmailAddress { get; set; }
 public Address MailingAddress { get; set; }
 public List<Order> Orders = new List<Order>();

 public Customer() { }
 public Customer(string firstName, string lastName, params Order[] orders)
 {
 FirstName = firstName;
 LastName = lastName;
 foreach (Order order in orders) Orders.Add(order);
 }

 public delegate void PaymentReceivedDelegate(decimal amount);
 public event PaymentReceivedDelegate PaymentReceived;

 public void SendEmail(string message) { }
}

public class Order
{
}

The Person class is almost empty. It’s just there to be the Customer class’s parent class.

The Customer class contains a nested Address structure, properties (EmailAddress and
MailingAddress), fields (Orders and the inherited FirstName and LastName fields), two con-
structors, a delegate type, an event, and the SendEmail method.

The Order class is empty. It’s just there so that the Customer class can contain a List<Order>.

The program uses the following code to display information about the Customer class.

// Display information about the Customer class.
private void Form1_Load(object sender, EventArgs e)
{
 Type type = typeof(Customer);
 AddItem("Name: ", type.Name);
 AddItem("Assembly: ", type.Assembly.FullName);
 AddItem("Attributes: ", type.Attributes.ToString());
 AddItem("BaseType: ", type.BaseType.Name);
 AddItem("FullName: ", type.FullName);

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

584 ❘ ChAPtER 26 reFleCTion

 AddItem("IsAbstract: ", type.IsAbstract.ToString());
 AddItem("IsAutoLayout: ", type.IsAutoLayout.ToString());
 AddItem("IsClass: ", type.IsClass.ToString());
 AddItem("IsNested: ", type.IsNested.ToString());
 AddItem("IsNotPublic: ", type.IsNotPublic.ToString());
 AddItem("IsPrimitive: ", type.IsPrimitive.ToString());
 AddItem("IsPublic: ", type.IsPublic.ToString());
 AddItem("IsSealed: ", type.IsSealed.ToString());
 AddItem("IsSerializable: ", type.IsSerializable.ToString());
 AddItem("IsSubclassOf(Person): ",
 type.IsSubclassOf(typeof(Person)).ToString());
 AddItem("IsValueType: ", type.IsValueType.ToString());
 AddItem("IsVisible: ", type.IsVisible.ToString());
 AddItem("Module: ", type.Module.Name);
 AddItem("Namespace: ", type.Namespace);

 AddItem("NestedTypes:", "");
 foreach (Type nestedType in type.GetNestedTypes())
 {
 AddItem(" ", nestedType.ToString());
 }

 AddItem("Fields:", "");
 foreach (FieldInfo info in type.GetFields())
 {
 AddItem(" ", info.ToString());
 }
 AddItem("Properties:", "");
 foreach (PropertyInfo info in type.GetProperties())
 {
 AddItem(" ", info.ToString());
 }

 AddItem("Constructors:", "");
 foreach (ConstructorInfo info in type.GetConstructors())
 {
 AddItem(" ", info.ToString());
 }
 AddItem("Methods:", "");
 foreach (MethodInfo method in type.GetMethods())
 {
 AddItem(" ", method.Name);
 }

 AddItem("Events:", "");
 foreach (EventInfo info in type.GetEvents())
 {
 AddItem(" ", info.ToString());
 }

 // Size the ListView's columns.
 infoListView.Columns[0].Width = -1;
 infoListView.Columns[1].Width = -1;
}

www.EBooksWorld.ir

www.hellodigi.ir

getting and setting Properties ❘ 585

The program first gets an object representing the Customer class’s type. It then invokes a series of that
object’s properties to display various pieces of information about the Customer class. The code uses
the AddItem method (described shortly) to display the values in the program’s ListView control.

Next, the program calls several Type methods to get information about features of the Customer
class. Those methods include GetNestedTypes, GetFields, GetProperties, GetConstructors,
GetMethods, and GetEvents. All these methods return objects (such as MethodInfo or EventInfo
objects) providing detailed information about particular Customer class features. This example simply
lists the features’ names.

The following code shows the AddItem method.

// Add an item and value to the ListView.
private void AddItem(string item, string value)
{
 ListViewItem newItem = infoListView.Items.Add(item);
 newItem.SubItems.Add(value);
}

This method simply adds a new item and subitem to the program’s ListView control.

Figure 26-1 shows the CustomerClassInformation example program scrolled down to display infor-
mation about the Customer class’s properties, constructors, and methods.

FIGuRE 26-1: The CustomerClassInformation example program
uses reflection to display information about a Customer class .

GEttING ANd SEttING PROPERtIES

The CustomerClassInformation example program just lists the names of the fields, properties,
methods, and other complex items that it finds. However, a program can do much more with those
items. For example, it can use a PropertyInfo object to get or set the value of its property, or it
can use a MethodInfo object to invoke its method.

www.EBooksWorld.ir

www.hellodigi.ir

586 ❘ ChAPtER 26 reFleCTion

The GetSetPersonProperties example program, which is shown in Figure 26-2 and available for
download on this book’s website, uses reflection to get and set a Person class’s fields and properties.

FIGuRE 26-2: The
GetSetPersonProperties example
program uses reflection to get
and set property and field values .

The program uses the following simple Person class.

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Street, City, State, Zip;
}

Most of the program’s code creates the Labels and TextBoxes that it uses to display property and
field values. The following code shows how the program gets values. To save space, I removed the
code that creates the Labels and TextBoxes. Download the example to see all the details.

// The Person object.
private Person ThePerson = new Person()
{
 FirstName = "Rufus",
 LastName = "Firefly",
 Street = "1933 Duck Soup Pl",
 City = "Hollywood",
 State = "CA",
 Zip = "90027"
};

// The Labels and TextBoxes we create.
private List<Label> Labels;
private List<TextBox> TextBoxes;

// Display the object's fields and properties.
private void getValuesButton_Click(object sender, EventArgs e)
{
 // List fields and properties.
 foreach (MemberInfo info in ThePerson.GetType().FindMembers(
 MemberTypes.Field | MemberTypes.Property,

www.EBooksWorld.ir

www.hellodigi.ir

getting and setting Properties ❘ 587

 BindingFlags.Public | BindingFlags.Instance,
 new MemberFilter((x, y) => true),
 null))
 {
 // Create a Label and TextBox.
 ...
 Labels.Add(label);
 ...
 textBox.Tag = info;
 TextBoxes.Add(textBox);
 ...

 // Get the value.
 if (info is FieldInfo)
 {
 FieldInfo fieldInfo = info as FieldInfo;
 textBox.Text = fieldInfo.GetValue(ThePerson).ToString();
 label.BackColor = Color.LightGray;
 }
 else if (info is PropertyInfo)
 {
 PropertyInfo propertyInfo = info as PropertyInfo;
 textBox.Text = propertyInfo.GetValue(ThePerson).ToString();
 label.BackColor = Color.White;
 }
 }

 setValuesButton.Enabled = true;
}

The code starts by creating a Person object and declaring lists to hold Labels and TextBoxes.

When you click the Get Values button, the program uses ThePerson.GetType().FindMembers to
get information about the Person class’s fields and properties. That method takes four parameters,
which in this example have the following values:

➤➤ MemberTypes.Field | MemberTypes.Property—This tells the method to select information
about fields and properties.

➤➤ BindingFlags.Public | BindingFlags.Instance—This makes the method return
information about members that are public instance members (as opposed to private
or static members).

➤➤ new MemberFilter((x, y) => true)—This parameter is a MemberFilter delegate that
examines objects discovered by FindMembers and returns true to select the ones you want
to select. It takes as parameters a MemberInfo object and an object that you can set to give
the method some extra information. This example uses a lambda expression that returns
true for any input so it selects every field and property.

➤➤ null—This is the extra value passed into the method provided in the third parameter. In
this example, this value means the lambda expression receives null as its second parameter.

www.EBooksWorld.ir

www.hellodigi.ir

588 ❘ ChAPtER 26 reFleCTion

bINdING FLAGS REQuIREd

The BindingFlags parameter must include either Static or Instance, and either
Public or NonPublic or else the FindMembers method won’t return any results.

The program loops over the MemberInfo objects returned by the call to FindMembers. For each
item, it creates a Label and TextBox. It stores the new controls in the Labels and TextBoxes lists.
It also stores the MemberInfo object in the TextBox’s Tag property for later use.

Next, the code displays the member’s value in the TextBox. It also changes the Label’s background
color to indicate whether the member is a field (darker) or property (lighter).

After the program displays the values, you can modify them by typing in the TextBoxes. If you then
click the Set Values button, the following code executes.

// Set the values.
private void setValuesButton_Click(object sender, EventArgs e)
{
 // Delete the Labels.
 foreach (Label label in Labels) label.Parent = null;

 // Save the TextBox values.
 foreach (TextBox textBox in TextBoxes)
 {
 // See if this TextBox represents a field or property.
 MemberInfo info = textBox.Tag as MemberInfo;
 if (info is FieldInfo)
 {
 // Save the field's value.
 FieldInfo fieldInfo = info as FieldInfo;
 fieldInfo.SetValue(ThePerson, textBox.Text);
 }
 else
 {
 // Save the property's value.
 PropertyInfo propertyInfo = info as PropertyInfo;
 propertyInfo.SetValue(ThePerson, textBox.Text);
 }

 // Remove the TextBox.
 textBox.Parent = null;
 }

 setValuesButton.Enabled = false;
}

This code starts by looping through the Labels it created and removing them from the form. It then
loops through the TextBoxes and gets each TextBox’s MemberInfo object. It converts the object into
the appropriate subclass, FieldInfo or PropertyInfo, and uses that object’s SetValue method to
update the member’s value. The code then removes the TextBox from the form.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

getting assembly Information ❘ 589

StRING ASSuMPtIONS

This example assumes all the Person class’s fields and properties are strings. If
they are not, you could still make a program read and update their values; although
you’d need to do a lot more work. For example, if a field is an int, you could use
int.Parse to get the new value.

GEttING ASSEMbLy INFORMAtION

An assembly is the fundamental unit of deployment and version control in Visual Studio. An
assembly can contain an executable application, a dynamic-link library (DLL), or a control library.
Usually, a project is contained in a single assembly.

The Assembly Information dialog box shown in Figure 26-3 lets you define information that should be
associated with the assembly, including the assembly’s company name, description, copyright, trade-
mark, name, product name, title, and version (which includes major, minor, revision, and build values).

FIGuRE 26-3: The Assembly Information
dialog lets you set a project’s assembly
information .

SEttING ASSEMbLy INFORMAtION

You can display the Assembly Information dialog box by using Project ➪ Properties,
selecting the Application tab, and clicking the Assembly Information button.

www.EBooksWorld.ir

www.hellodigi.ir

590 ❘ ChAPtER 26 reFleCTion

Most of the items in this dialog box, such as the application’s title and description, are self-explanatory.
They are simply strings that the assembly carries around for identification. The assembly and file ver-
sions are used by the Visual Studio run time to verify compatibility between an application’s com-
ponents. The GUID (which stands for globally unique identifier and is pronounced to rhyme with
“squid”) uniquely identifies the assembly and is generated by Visual Studio. The Make Assembly COM-
Visible check box lets you determine whether the assembly should make types defined in the assembly
visible to COM applications. For more information on this dialog box, see msdn.microsoft.com/
1h52t681.aspx.

Unfortunately, learning these values at run time isn’t easy. To get most of these values, you need to
follow these steps:

 1. Use Assembly.GetExecutingAssembly to get an Assembly object representing the cur-
rently running assembly.

 2. Call the Assembly object’s GetCustomAttributes method, passing it as a parameter an
assembly attribute type such as AssemblyTitleAttribute. The GetCustomAttributes
method returns an array of attribute objects of the requested type.

 3. Use the appropriate property for the returned attribute. For example, use an
AssemblyTitleAttribute object’s Title property.

Unfortunately, some of the attribute objects may not always be defined, so your code must watch
out for null object references.

A C# program uses a different method to obtain the assembly version information. To get that
information, the program calls the Assembly object’s GetName method and then uses the returned
object’s Version property.

The ShowAssemblyInformation example program uses the following GetAssemblyAttribute
method to make fetching assembly attributes a little easier.

// Return a particular assembly attribute value.
public static T GetAssemblyAttribute<T>(Assembly assembly) where T : Attribute
{
 // Get attributes of this type.
 object[] attributes = assembly.GetCustomAttributes(typeof(T), true);

 // If we didn't get anything, return null.
 if ((attributes == null) || (attributes.Length == 0)) return null;

 // Convert the first attribute value into the desired type and return it.
 return (T)attributes[0];
}

The method takes a type as a generic parameter. That should be the type of attribute that you want
to retrieve. The method also takes as a parameter the assembly that you want to use.

The code calls the Assembly object’s GetCustomAttributes method to fetch an array containing
the assembly’s attribute objects that have the right type. If the result is null or an empty array, the
method returns null.

If the code gets a nonempty array, it converts the first element in it into the desired attribute type
and returns it.

www.EBooksWorld.ir

www.hellodigi.ir

Invoking methods ❘ 591

The following code shows how the ShowAssemblyInformation program uses the
GetAssemblyAttribute method to display attribute information.

private void Form1_Load(object sender, EventArgs e)
{
 // Get the running assembly.
 Assembly assembly = Assembly.GetExecutingAssembly();

 // Get values from the assembly.
 AssemblyTitleAttribute titleAttr =
 GetAssemblyAttribute<AssemblyTitleAttribute>(assembly);
 if (titleAttr != null) titleTextBox.Text = titleAttr.Title;

 AssemblyDescriptionAttribute descrAttr =
 GetAssemblyAttribute<AssemblyDescriptionAttribute>(assembly);
 if (descrAttr != null) descriptionTextBox.Text = descrAttr.Description;

 ... Code omitted ...

 assemblyVersionTextBox.Text = assembly.GetName().Version.ToString();

 ... Code omitted ...
}

The code uses Assembly.GetExecutingAssembly to get an object representing the executing
assembly. It then uses the GetAssemblyAttribute method to get attribute objects representing
the assembly’s attributes. After checking that each result isn’t null, the code displays the attri-
bute values.

The one exception is the assembly version information. To get that value, the code simply calls
assembly.GetName().Version.ToString().

INVOKING MEthOdS

Reflection provides objects that let you load and examine assemblies. After you load an assembly,
you can dig through the types it defines and use the properties, methods, and other features defined
by those types.

This section describes the InvokeEchoer example program, which is available for download on
this book’s website. That example demonstrates several important techniques for working with an
assembly loaded at run time.

The tasks performed by the InvokeEchoer program include

➤➤ Load an assembly at run time.

➤➤ Get information about the Echoer class defined by the assembly.

➤➤ Create an instance of the Echoer class.

➤➤ Set a field value for the instance.

➤➤ Invoke the object’s ShowMessage method.

www.EBooksWorld.ir

www.hellodigi.ir

592 ❘ ChAPtER 26 reFleCTion

The EchoDll example, which is also available for download on this book’s website, creates a control
library (DLL) that the InvokeEchoer program can load. (The EchoDll example must be compiled for
the InvokeEchoer example to work properly.) It uses the following code to define the Echoer class.

public class Echoer
{
 // The objexct's message.
 public string Message = "Message not set";

 // Display the message in a MessageBox.
 public void ShowMessage(string caption)
 {
 MessageBox.Show(Message, caption);
 }
}

This class has a public string field named Message and a public method named ShowMessage.

The following code shows how the InvokeEchoer program loads and uses the EchoDll library.

// Load the DLL, create an Echoer, and invoke the ShowMessage method.
private void invokeButton_Click(object sender, EventArgs e)
{
 // Load the DLL assembly.
 Assembly dll = Assembly.LoadFile(dllTextBox.Text);

 // Find the Echoer class's Type.
 Type echoer = dll.GetType("EchoDll.Echoer");

 // Create an Echoer object.
 object myEchoer = Activator.CreateInstance(echoer);

 // Set the Message field.
 FieldInfo fieldInfo = echoer.GetField("Message");
 fieldInfo.SetValue(myEchoer, messageTextBox.Text);

 // Get a MethodInfo for the ShowMessage method.
 MethodInfo methodInfo = echoer.GetMethod("ShowMessage");

 // Invoke the method on the object.
 object[] args = { captionTextBox.Text };
 methodInfo.Invoke(myEchoer, args);
}

The program first uses the Assembly.LoadFile method to load the EchoDll assembly.

It then uses the Assembly’s GetType method to get a Type object that represents the Echoer class’s type.

Next, the code uses the System.Activator class to create an instance of the Echoer type. If you
pass the Activator class’s CreateInstance method additional parameters, it invokes the class’s
constructor that best fits the parameters. In this example, the Echoer class has no constructors, so
the code doesn’t pass any extra parameters to the CreateInstance method.

www.EBooksWorld.ir

www.hellodigi.ir

running scripts ❘ 593

The program then sets the value of the Echoer object’s Message field. It uses the Echoer type’s
GetField method to get a FieldInfo object representing the field. It then uses the FieldInfo
object’s SetValue method to set the field’s value for the Echoer instance.

The last task the program must perform is invoking the Echoer object’s ShowMessage method. To
do that, it calls the Echoer type’s GetMethod method to get a MethodInfo object representing the
ShowMessage method. It creates an array of objects to hold the parameters that should be passed
to the ShowMessage. Finally, it calls the MethodInfo object’s Invoke method, passing it the Echoer
instance for which it should invoke the method and the argument array.

This is an awful lot of work to simply display a message box, but the techniques used by the
InvokeEchoer program show how to load and explore an assembly at run time. With a little more
work and experimentation, you could modify the program to perform other tasks such as

➤➤ Discover the classes defined by an assembly.

➤➤ Create instances of a class.

➤➤ Learn what fields, properties, and methods are defined by each class.

➤➤ Get and set field and property values.

➤➤ Invoke static methods and instance methods.

dANGEROuS dLLS

Load an assembly at run time only if you are sure it is safe. If a hacker inserts a
bogus DLL in a directory where your code is looking for assemblies, you might be
tricked into executing dangerous code.

RuNNING SCRIPtS

Reflection lets a program learn about existing code. The classes in the System.CodeDom.Compiler
namespace enable a program to compile completely new code at run time. You can then use refec-
tion to execute the methods defined by the newly compiled code.

tIME SAVER

Compiling code at run time is fairly slow, so it’s not a good way to provide
features that you know about at design time. If you know at design time that
the program needs to do something, just compile that code right into the execut-
able program. You only need to compile code at run time to run scripts and
execute code that you can’t predict ahead of time.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

594 ❘ ChAPtER 26 reFleCTion

To compile code, the program creates a code provider. It sets any parameters needed by the
provider and adds references to any assemblies the script uses. It then calls the provider’s
CompileAssemblyFromSource method to compile the script. If the compilation succeeds, the pro-
gram can use reflection to find and use the classes, methods, and other items defined by the script.

The TurtleScript example program, which is shown in Figure 26-4 and available for download
on this book’s website, lets the user write scripts that control a drawing turtle similar to the one
described in Chapter 3, “Program and Code File Structure.”

FIGuRE 26-4: The TurtleScript example program compiles and
executes code entered at run time .

The script you enter can include using directives just as any other C# program can. It should define
a static Scripter class. That class should provide a static Draw method that takes a Turtle object
as a parameter and uses it to draw something. The code can include loops, if-then tests, other
classes, methods, and most anything else you can put in a C# program. The following code shows a
script’s basic structure.

using TurtleLib;
using System.Drawing;
using System;

public static class Scripter
{
 public static void Draw(Turtle turtle)
 {
 // Draw stuff here...
 }
}

The following code shows how the TurtleScript program compiles and executes the script.

// Run the script.
private void RunScript()
{
 // Make a C# code provider.
 CodeDomProvider codeProvider = CodeDomProvider.CreateProvider("C#");

www.EBooksWorld.ir

www.hellodigi.ir

running scripts ❘ 595

 // Generate a non-executable assembly in memory.
 CompilerParameters parameters = new CompilerParameters();
 parameters.GenerateInMemory = true;
 parameters.GenerateExecutable = false;

 // Add references to the assemblies used by the program.
 var query =
 from Assembly assembly in AppDomain.CurrentDomain.GetAssemblies()
 where !assembly.IsDynamic
 select assembly.Location;
 parameters.ReferencedAssemblies.AddRange(query.ToArray());

 // Compile the code.
 CompilerResults results =
 codeProvider.CompileAssemblyFromSource(parameters, scriptTextBox.Text);

 // See if there are errors.
 if (results.Errors.Count > 0)
 {
 string errors = "";
 foreach (CompilerError error in results.Errors)
 {
 errors +=
 "Error:\r\n" +
 " Line: " + error.Line + "\r\n" +
 " Error Number: " + error.ErrorNumber + "\r\n" +
 " Text: " + error.ErrorText + "\r\n";
 }
 throw new ApplicationException(errors);
 }

 // Get the Scripter class.
 Type scripterType = results.CompiledAssembly.GetType("Scripter");
 if (scripterType == null)
 throw new MissingMethodException("Cannot find class Scripter");

 // Get a MethodInfo object describing the Draw method.
 MethodInfo methodInfo = scripterType.GetMethod("Draw");
 if (methodInfo == null)
 throw new MissingMethodException(
 "Cannot find method Draw(Turtle turtle)");

 // Make sure the method takes a single Turtle as a parameter.
 ParameterInfo[] paramInfos = methodInfo.GetParameters();
 if ((paramInfos.Length != 1) ||
 (paramInfos[0].ParameterType.Name != "Turtle"))
 throw new ArgumentException(
 "The Draw method must take a single Turtle parameter.");

 // Make the parameter list.
 object[] methodParams = new object[] { TheTurtle };

 // Execute the method.
 methodInfo.Invoke(null, methodParams);
}

www.EBooksWorld.ir

www.hellodigi.ir

596 ❘ ChAPtER 26 reFleCTion

The code starts by creating a CodeDomProvider for C#. (The .NET Framework also includes JScript
and Visual Basic compilers.) It then creates a CompilerParameters object and sets its properties to
indicate that the compiler should compile the script into memory (as opposed to into a DLL file) and
that it should not create an executable program.

Next, the program must add references to any assemblies that the script needs. You could write code
to add specific references one at a time. This example takes a somewhat heavier-handed approach and
simply adds references to every assembly that the main program references. To do that, it uses a LINQ
query that selects from the assemblies returned by AppDomain.CurrentDomain.GetAssemblies. It
picks nondynamic assemblies (those not loaded at run time) and selects their locations.

The program then adds the selected assemblies to the CompilerParameters object’s
ReferencedAssemblies collection.

The program then calls the code provider’s CompileAssemblyFromSource method to compile the
script with the selected compiler parameters. If the compilation has errors, the program composes
an error message and displays it to the user.

SCRIPtING SuPPORt

Compilation error messages are useful but they’re far from perfect. They provide
basic information and the line number where the error occurred, but the compiler
isn’t integrated into your program as closely as it is in Visual Studio. For example,
the user cannot double-click an error to jump to the line containing the problem.
You could add that feature to your code, but it would mean extra work.

The TextBox you use to let the user enter a script is even less integrated. Unlike
Visual Studio’s code editor, it doesn’t provide IntelliSense, refactoring tools, or
debugging features such as watches and breakpoints.

If your users are advanced enough to benefit from those tools, you may want to
have them use Visual Studio to create an add-in DLL and then use reflection to load
it at run time as described in the preceding section.

Next, the program uses reflection to find the script’s Scripter class and that class’s Draw method,
which must take a Turtle object as a parameter. If it successfully finds this method, the program
invokes it, passing it the class-level TheTurtle variable as a parameter.

SuSPICIOuS SCRIPtS

As is the case with DLLs loaded at run time, you must be sure any scripts you execute
come from trusted sources. A hacker who uses your program to execute scripts might
make your program do all sorts of dangerous things such as deleting files. In general
you should not allow nontrusted users to run programs that allow scripting.

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 597

SuMMARy

Most programs can do without reflection. Usually, you know what a program needs to do, so you
can write the necessary code at design time. However, reflection is occasionally useful for exploring
assemblies. It lets you find properties, fields, and methods at run time. It lets you discover what’s
hidden in undocumented libraries. It even lets you implement add-ins by allowing you to search for
add-in classes and methods inside DLLs. Together add-ins and the ability to compile and execute
scripts at run time let you make applications that are extensible even after they have been compiled.

One problem with add-ins and scripts is that a hacker could use them to make your program execute
code that isn’t safe. In general, you shouldn’t allow nontrusted users to install DLLs or write and
execute scripts.

Even without add-ins and scripting, many applications have problems with hackers. One of the
biggest of those problems occurs when a hacker gets hold of crucial data. Every year millions (if
not hundreds of millions) of customer records are stolen, often including sensitive information
such as usernames, passwords, or credit card numbers.

One way you can protect this kind of data is to encrypt it. If a data thief steals your password file,
your data is still safe if the file is properly encrypted.

The .NET Framework includes tools that you can use to encrypt and decrypt files, calculate hash values
for files, digitally sign documents, and perform other cryptographic tasks. The next chapter describes
some of the most useful of those tools and explains how you can use them to protect your data.

ExERCISES

 1. The PropertyGrid control uses reflection to let a user view and edit the properties of an object
much as the Properties window lets you view and edit properties at design time. Write a pro-
gram that uses the PropertyGrid to let the user view and edit a Person object’s properties.

Create a Person class with the properties FirstName, LastName, Street, City, State,
PostalCode, and EmailAddress. Give each property a Description attribute explaining its
purpose and a Category attribute to group it with other related properties. For example, the
following code shows how you might declare the PostalCode property.

[Category("Address")]
[Description("The address's postal code.")]
public string PostalCode { get; set; }

Hint: The Description and Category attribute classes are defined in the
System.ComponentModel namespace.

When the program starts, create and initialize a Person object. Then set a PropertyGrid
control’s SelectedObject property to that Person object.

When you run the program, what do the Description and Category attributes do? What
happens when you click the PropertyGrid’s Alphabetical button?

www.EBooksWorld.ir

www.hellodigi.ir

598 ❘ ChAPtER 26 reFleCTion

MORE AbOut PROPERtyGRIdS

The PropertyGrid control can do a lot more than what’s demonstrated by this exer-
cise. For example, it provides support for custom visualizers and editors that you can
build to let the user view and set property values. (For example, the Properties window
uses a special editor to let you set the Anchor property graphically.)

For more information on the PropertyGrid control, see “Getting the Most Out
of the .NET Framework PropertyGrid Control” at msdn.microsoft.com/en-us/
library/aa302326.aspx.

 2. Modify the program you wrote for Exercise 1 by adding a ContactTypes enumeration to
the Person class. Give it the values Personal, Billing, Shipping, and Admin. Then give
the class a new ContactType property that has this type. How does the PropertyGrid
display the new property?

 3. Write a program similar to the one shown in Figure 26-5. (If you don’t want to write a
graphics program, create different tools that do something like display messages so that
you know which tool has been invoked.)

FIGuRE 26-5: The DrawingAddIns
example program loads add-in
methods at run time .

At run time, this program should do the following:

➤➤ Search its current directory for DLLs.

➤➤ Search each DLL for classes that have a static Draw method that takes a Graphics
object as a parameter.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 599

➤➤ For each such class, the program should add an item to the Tools menu. The name of
that item should be specified by the class’s DisplayName attribute. (If the class doesn’t
have that attribute, use the class’s name.)

➤➤ Each Draw method should draw something on the Graphics object it is passed.

Hint: To get a class’s DisplayName attribute value, get the class’s type and use the type’s
GetCustomAttribute method. Cast the returned Attribute into a DisplayNameAttribute
and use its DisplayName property.

The following code shows an example add-in method.

[DisplayName("Rectangle")]
public static class RectangleDrawer
{
 public static void Draw(Graphics gr)
 {
 // Draw something...
 }
}

Hint: When you find an appropriate Draw method, store its MethodInfo object in the Tag
property of its menu item. That way when the user clicks that item, you can find the corre-
sponding MethodInfo to invoke the method.

 4. The program you built for Exercise 3 looks for DLLs that hold classes that define a single Draw
method. Alternatively, you could allow the classes to hold any number of add-in methods.
Modify the program you wrote for Exercise 3 so it does that. It should use any method that
takes a Graphics object as a parameter and that has a DisplayName attribute.

 5. The program you built for Exercise 4 assumes that any method that takes a Graphics object
as a parameter and that has a DisplayName attribute is a drawing add-in. That works but is
somewhat restrictive because it prevents you from having any other similar methods that are
not add-ins. Another approach is to define your own custom attribute class and apply it to
methods that are add-ins.

Modify the program and DLL(s) you wrote for Exercise 4 to use this approach. In the DLL(s),
create a DrawingAddInAttribute attribute class. Place it inside the DrawingAddIn namespace.
(The rest of the DLL doesn’t need to be in that namespace.) The following code shows how you
can create this attribute.

namespace DrawingAddIn
{
 // An attribute that flags a method as a drawing add-in tool.
 [AttributeUsage(AttributeTargets.Method)]
 public class DrawingAddInAttribute : Attribute
 {
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

600 ❘ ChAPtER 26 reFleCTion

The important things here are the AttributeUsage attribute (which indicates that
the new attribute applies only to methods) and the fact that the class is inside the
DrawingAddIn namespace.

Next, modify the program that uses the DLL(s). When it processes a DLL, make it use the
following code to get the new attribute’s type from the DLL.

Type addInType = dll.GetType("DrawingAddIn.DrawingAddInAttribute");

(This is why you need the DrawingAddInAttribute class to be in the DrawingAddIn
namespace, so this statement can find the class’s type.)

When the code considers a method, have it use code similar to the following to see if the
method has this attribute.

// Make sure the method has DrawingAddIn attribute.
Attribute drawingAttribute = methodInfo.GetCustomAttribute(addInType);
if (drawingAttribute == null) continue;

 6. The description of Exercise 5 says the DrawingAddInAttribute class should be defined in
the DrawingAddIn namespace so you can find it later. Can you avoid that restriction?

www.EBooksWorld.ir

www.hellodigi.ir

cryptography
whAt’S IN thIS ChAPtER

➤➤ Symmetric key encryption and decryption

➤➤ Asymmetric key encryption and decryption

➤➤ Creating, saving, and retrieving public and private keys

➤➤ Cryptographic random numbers

➤➤ Generating keys, initialization vectors, and salts

wROx.COM dOwNLOAdS FOR thIS ChAPtER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

Cryptography is the study of methods for protecting communications between two people in
the presence of an adversary who wants to intercept the communications. Early forms of cryp-
tography, which were used thousands of years ago, use techniques such as rearranging letters
or replacing letters with other letters. For example, in a Caesar substitution cipher (named after
Julius Caesar who used it more than 2,000 years ago), you shift letters by some fixed amount.
For a shift of 3, A becomes D, B becomes E, C becomes F, and so forth.

These encryption schemes are interesting and fun to experiment with, but they’re relatively
easy to break with modern techniques. My book Essential Algorithms: A Practical Approach
to Computer Algorithms (John Wiley and Sons, 2013) includes a chapter that describes some
of these historical methods and how to break them (mostly for entertainment value).

Other books such as Applied Cryptography: Protocols, Algorithms, and Source Code in C
(by Bruce Schneier, John Wiley and Sons, 1996) explain modern cryptographic techniques
that cannot be easily broken even by today’s computers.

27

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/go/csharp5programmersref

602 ❘ ChAPtER 27 CryPTograPhy

This chapter describes only a few of the most useful cryptographic methods provided by the .NET
Framework. Those include generating cryptographically secure random numbers, symmetric encryp-
tion, and asymmetric encryption.

This chapter explains only how to use .NET Framework tools to perform those tasks, but it
should be enough to get you started with cryptography. Unfortunately, there isn’t room here to
explain all the methods for performing even those limited tasks or to explain how those methods
work. See a book about cryptography (such as Bruce Schneier’s book) for details about how some
of these algorithms work.

LEISuRE REAdING

The history of cryptography contains truly remarkable stories involving spies and
counterspies, ingenious contraptions, breaking unbreakable codes, and using clever
artifice to convince the enemy that its code is secure even after it’s broken. If you
have the time, it makes fascinating reading.

Cryptography was originally used to send messages from one person to another securely. Modern
cryptography has expanded to include other sorts of secure communication. The following section
describes some of the operations that modern cryptographic programs perform. The sections after
that explain some of the cryptographic tools you can use in your C# programs.

CRyPtOGRAPhy NAMESPACES

The System.Security.Cryptography namespace includes cryptographic classes.
To make using these classes easier, you may want to include the following using
directive in your code.

using System.Security.Cryptography;

CRyPtOGRAPhIC OPERAtIONS

The following list describes some of the most common cryptographic operations.

➤➤ Symmetric key encryption (private key encryption)—This technique uses a secret key
to encrypt and decrypt messages. You use the key to encrypt a message. You then send the
result to someone else who knows the key. That person uses the key to decrypt the message.

➤➤ Asymmetric key encryption (public key encryption)—This technique uses two keys, a public
key and a secret key, to encrypt and decrypt messages. Everyone knows the public key that is
used to encrypt messages. Only those who know the secret key (typically a single person) can
decrypt the messages. (This is sort of like a mail slot in a door. Anyone can slip a message

www.EBooksWorld.ir

www.hellodigi.ir

randomness ❘ 603

through the slot, but only the person with the key to the door can open the door and read
the messages.)

➤➤ Hashing—This technique uses the contents of a file to produce a hash code that represents
the file, sort of like a fingerprint. Hash codes have the property that two files are extremely
unlikely to have the same hash code. If you know a file’s hash code, then you can rehash the
file to see if it has the same hash code. If it does not, then the file has been modified since
the original code was calculated.

➤➤ Authentication—This is the process of verifying a person’s identity. For example, if someone
sends you a message, authentication lets you determine that the message was sent by the person
you think it is and not some imposter.

➤➤ Message signing—Digital message signing plays a role similar to signing a document in
the physical world: It lets you verify that the signer created the message. For example, if
Microsoft sends you a software update, its digital signature guarantees that the update actu-
ally came from Microsoft and not some imposter.

➤➤ Random number generation—This is the process of generating cryptographically strong
random numbers.

RANdOM thOuGhtS

Actually the “random” numbers produced by any deterministic method are not truly
random. If you knew the algorithm used to produce the numbers and the internal
state of the algorithm (the values of its variables), you could predict the numbers it
would generate.

To get truly random numbers, you need some source of nondeterministic random-
ness such as a device that measures particles coming from a radioactive sample or
that measures fluctuations in radio background noise.

To keep things simple, this chapter uses the word “random” but “pseudorandom”
is usually more technically correct.

The last item, random number generation, deserves a little more explanation.

RANdOMNESS

Cryptographic techniques do not all use random number generators but randomness is closely tied
with cryptography. If you have a good source of random numbers, you can use it to encrypt messages.
Conversely, if you have a good encryption scheme, you can use it to generate random numbers. Because
you can use random numbers to encrypt and vice versa, the two are in some sense equivalent.

The following two sections explain this equivalency. The section after that explains cryptographically
secure randomness.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

604 ❘ ChAPtER 27 CryPTograPhy

using Random Numbers for Encryption
Suppose you have a good random number generator. (I’ll say more about what “good” means shortly.)
To use random numbers to encrypt a message, generate a new random byte R for each byte P in the
message. The byte’s encrypted value is C = P ⊕ R.

PS ANd CS

Usually when discussing cryptography, the unencrypted message is called the plain-
text, so the letter P represents the unencrypted message byte. Similarly, the encrypted
message is usually called the ciphertext, so the letter C represents the encrypted
message byte.

Here ⊕ is the bitwise exclusive-or (XOR) operation. (In C# the XOR operator is ^.) A bit in the
result is 1 if exactly one of the corresponding bits in the two input bytes is 1. For example, 1 ⊕ 0 = 1
because exactly one of the input bits is 1. In contrast, 1 ⊕ 1 = 0 because both input bits are 1.

To decrypt the message, simply repeat the previous steps, because (P ⊕ R) ⊕ R = P, which restores
the original plaintext bytes.

Note that the message’s receiver must use the same sequence of bytes that the sender used to encrypt
the message. The information needed to produce the same sequence of bytes forms the system’s private
key that is shared by the sender and receiver. For example, the key might be a password or sequence of
numbers that both the sender and receiver can use to initialize their random number generators.

using Encryption for Random Numbers
Suppose you have a good encryption algorithm that converts plaintext bytes into unpredictable
ciphertext. Then to produce random numbers, simply encrypt the values 1, 1, 1, and so forth for
as many bytes as you need. If the encryption algorithm is good, this should produce a stream of
apparently random bytes.

If the resulting stream of bytes does not appear random, then the algorithm is not a good secure
encryption algorithm.

Cryptographically Secure Randomness
In cryptography, a “good” stream of random numbers roughly means one that is unpredictable. If I
give you a sequence of numbers produced by a random number generator, you should not be able to
predict with any certainty what the next number will be.

A “good” cryptographic algorithm also produces uncertainty. The bytes of a ciphertext message
should look random to an attacker.

The .NET Framework includes a Random class that you can use to generate random numbers, but the
algorithm it uses is not cryptographically secure. To see why, you need to know that you can initialize
a Random object by passing its constructor a 32-bit integer as a seed value. If you use a Random object
to encrypt messages, the seed value is basically the key.

www.EBooksWorld.ir

www.hellodigi.ir

randomness ❘ 605

A 32-bit integer can hold 232 (4.3 billion) different values, so there are approximately 4.3 billion ways
you can initialize a Random object. To think of it another way, there are roughly 4.3 billion possible
keys. That may seem like a lot of keys, but to a computer it’s actually not many. It wouldn’t be hard to
write a program that tries every possible seed value.

For each seed value, the program would try to decrypt the message. If the result looks like English (or
whatever language you use), the seed is probably correct. For example, in English some letters such
as E appear more often than others. If the seed is correct, some letters should appear more often than
others. If the seed is incorrect, all the letters should appear with roughly the same frequency.

Generating Random Numbers
Generating cryptographically strong random numbers is actually fairly easy in C#. Simply create a
cryptographic random number generator object and use its methods to generate the numbers. The
.NET Framework’s RNGCryptoServiceProvider class provides this kind of random number genera-
tor. (The “RNG” at the beginning of the class’s name stands for “random number generator.”)

The RandomNumbers example program, which is available for download on the book’s website,
uses the following code to generate a list of random numbers.

// Generate random numbers.
private void generateButton_Click(object sender, EventArgs e)
{
 numbersListBox.Items.Clear();
 int numNumbers = int.Parse(numNumbersTextBox.Text);

 // Make the RNG.
 RNGCryptoServiceProvider rand = new RNGCryptoServiceProvider();

 // Make a buffer to hold 4 random bytes.
 byte[] bytes = new byte[4];

 // Make the random numbers.
 for (int i = 0; i < numNumbers; i++)
 {
 // Get 4 random bytes.
 rand.GetBytes(bytes);

 // Convert the bytes into an integer.
 int number = BitConverter.ToInt32(bytes, 0);

 // Display the number.
 numbersListBox.Items.Add(number);
 }
}

The program starts by clearing its output ListBox and parsing the number of random numbers it
should generate.

The code then creates an RNGCryptoServiceProvider object. That object generates random bytes
but this program needs to display random numbers. To convert bytes into numbers, the program
creates a byte array large enough to hold the number of bytes it needs. This program generates int
values, which are 4-byte integers, so it makes an array holding 4 bytes.

www.EBooksWorld.ir

www.hellodigi.ir

606 ❘ ChAPtER 27 CryPTograPhy

dAtA tRANSLAtIONS

In the past, cryptography encrypted and decrypted only text messages. Modern
cryptography must encrypt any kind of data including text, databases, images,
audio, video, and anything else you can imagine. That means an encrypted mes-
sage may not be a simple string of letters. In fact, most modern techniques produce
seemingly random sequences of bytes.

That makes the cryptographic algorithms strong and flexible, but it makes visual-
izing the encrypted data difficult. There are a few tools you can use to make visual-
izing and working with encrypted data easier.

The UnicodeEncoding class provides GetBytes and GetString methods that let
you convert between strings and byte arrays. You can use GetBytes to turn a
string into a byte array so that you can encrypt the bytes. After you decrypt
some encrypted data, the result is another byte array. You can then use the
GetString method to turn the result back into a string.

The BitConverter.ToString method converts many data types (including byte
arrays) into a string that includes the bytes’ values. The string consists of a
sequence of two-digit hexadecimal numbers representing the array’s byte values,
separated by hyphens as in F9-9A-98-6F-BC-9F. This method lets you display byte
arrays textually.

Unfortunately, the BitConverter class doesn’t provide a reverse method for
translating a string of the form F9-9A-98-6F-BC-9F back into a byte array.
Fortunately, it’s not hard to write one.

// Convert a string created by BitConverter.ToString into a byte[].
private byte[] StringToBytes(string input)
{
 string[] byteStrings = input.Split('-');
 byte[] result = new byte[byteStrings.Length];
 for (int i = 0; i < result.Length; i++)
 result[i] = Convert.ToByte(byteStrings[i], 16);
 return result;
}

This method uses the string class’s Split method to split the input string into an
array of two-character strings holding the bytes’ hexadecimal values. Next, it cre-
ates a byte array long enough to hold the bytes. It then loops through the bytes’
hexadecimal values and uses Convert.ToByte to convert them into their byte values.

As you write cryptographic programs, you can use these tools to

➤➤ Convert plaintext strings into byte arrays so that you can encrypt them.

➤➤ Display textual representations of byte arrays.

➤➤ Convert textual representations of byte arrays back into arrays.

➤➤ Convert a byte array containing a string into the string.

www.EBooksWorld.ir

www.hellodigi.ir

randomness ❘ 607

The program then enters a loop to generate the values. For each value, it uses the
RNGCryptoServiceProvider object’s GetBytes method to fill the byte array with random
bytes. It then uses the BitConverter class’s ToInt32 method to convert the bytes into an integer
value. Finally, it adds the result to the ListBox.

This example uses four random bytes to generate an integer value, so it can produce any possible value.
If you want to generate values between lower and upper bounds, you need to do some more work.

The first step is to generate a random floating-point value. The following code snippet shows one way
you can generate a value in the range 0 (inclusive) and 1 (exclusive).

RNGCryptoServiceProvider rand = new RNGCryptoServiceProvider();
byte[] bytes = new byte[8];
rand.GetBytes(bytes);
UInt32 randomInt = BitConverter.ToUInt32(bytes, 0);
float randomFloat = randomInt / (1.0 + UInt32.MaxValue);

RANGES

You can represent a range of values by specifying the lower and upper bounds inside
parentheses or brackets. A parenthesis means the adjacent bound is not part of the
range, and a bracket means the bound is part of the range. For example, [0, 1) indi-
cates the values between 0 inclusive and 1 exclusive.

The code creates an RNGCryptoServiceProvider and uses it to fill a 4-byte array with random
bytes. It then converts the result into a UInt32.

Next, the code divides the random UInt32 by 1 more than the largest possible UInt32. Because
the random UInt32 is between 0 and the largest possible value, the result of the division is
between 0 and a tiny bit less than 1.

IMPERFECt RANdOMNESS

This method for generating random floating-point values is pretty good but not
completely perfect. For a discussion of some of the issues involved, see the article
“Tales from the CryptoRandom” at msdn.microsoft.com/en-us/magazine/
cc163367.aspx.

Now that you can generate random floating-point values, you can use those values to generate
integers within a range. The following code shows how you can generate an integer in the range
[min, max).

int randomInRange = (int)(min + (randomFloat * (max - min)));

www.EBooksWorld.ir

www.hellodigi.ir

608 ❘ ChAPtER 27 CryPTograPhy

AdVANtAGES OF RANdOM

The RNGCryptoServiceProvider class provides values that are “more random”
than those produced by the Random class, but there are still reasons why you might
want to use Random under some circumstances.

First, using Random is easier. The Random class doesn’t make you fill arrays of bytes
and then translate those bytes into integers. The Random class has a NextDouble
method that returns a value in the range [0, 1), and overloaded versions of a Next
method that returns integers or an integer within a range.

Second, generating cryptographically random numbers is a lot of work, so Random
is faster than RNGCryptoServiceProvider.

Finally, Random can produce a repeatable sequence of numbers. If you initialize
a Random object with the same seed value, you’ll get the same sequence of “ran-
dom” numbers. That can be useful for testing or creating the same “random”
data multiple times.

If you just need values that look random but won’t be attacked by hackers, the
values produced by Random are probably good enough.

SyMMEtRIC KEy ENCRyPtION

One of the most obvious uses for encryption is to encrypt and decrypt strings or files. The .NET
Framework’s encryption services work with streams, so you can use them to encrypt and decrypt
anything that you can treat as a stream. That includes strings, files, arrays of bytes, serializations,
or just about any other piece of data.

The basic idea is reasonably straightforward: Create a cryptographic service provider object and
use its methods to write data into an output stream. As data passes through the provider, it is
encrypted or decrypted. Unfortunately, the details are rather confusing, so they are described in
the following sections.

Simple Encryption and decryption
The DefaultKeyAndIV example program, which is shown in Figure 27-1 and available for down-
load on the book’s website, is one of the simplest programs you can write to encrypt and decrypt
a string.

When you enter a string and click Encrypt, the program encrypts and then decrypts the string. The
following code shows how the program encrypts the string.

private void encryptButton_Click(object sender, EventArgs e)
{
 // Get the plaintext.
 string plaintext = plaintextTextBox.Text;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

symmetric Key encryption ❘ 609

 // Create an AesManaged provider.
 using (AesManaged provider = new AesManaged())
 {
 // Make a byte array to hold the encrypted result.
 byte[] cipherbytes;

 // Encrypt. Create an encryptor.
 using (ICryptoTransform encryptor =
 provider.CreateEncryptor(provider.Key, provider.IV))
 {
 // Create a memory stream to hold the result.
 using (MemoryStream ms = new MemoryStream())
 {
 // Create an associated CryptoStream.
 using (CryptoStream cs =
 new CryptoStream(ms, encryptor, CryptoStreamMode.Write))
 {
 // Make a StreamWriter associated with the CryptoStream
 // so we can write into it.
 using (StreamWriter writer = new StreamWriter(cs))
 {
 // Write the message into the writer.
 writer.Write(plaintext);
 }

 // Save the resulting ciphertext bytes.
 cipherbytes = ms.ToArray();

 // Display the key, IV, and encrypted bytes.
 keyTextBox.Text = BitConverter.ToString(provider.Key);
 ivTextBox.Text = BitConverter.ToString(provider.IV);
 cipherbytesTextBox.Text = BitConverter.ToString(cipherbytes);
 }
 }
 }

FIGuRE 27-1: The DefaultKeyAndIV example program encrypts and
decrypts a string .

The code gets the message text and then creates an AesManaged object. This is a managed object
that lets C# programs easily interact with an Advanced Encryption Standard (AES) service provider.

www.EBooksWorld.ir

www.hellodigi.ir

610 ❘ ChAPtER 27 CryPTograPhy

Next, the code creates the variable cipherbytes to hold the encrypted data later. It then creates an
encryptor object that it can use to encrypt the string.

To use the encryptor, the program must create one stream from which to read data and a second
stream into which to write results. The program creates a MemoryStream to hold the results.

The program then creates a CryptoStream object to transform any data written into the input
stream. It passes the memory stream and the encryptor into the CryptoStream’s constructor, so it
knows where to write results and what encryptor to use to transform the data. It also passes the
constructor the value CryptoStreamMode.Write so the CryptoStream knows it will be writing
into the memory stream.

Next, the code creates a StreamWriter into which it can write the plaintext data. It associates the
writer with the CryptoStream.

Finally, the code calls the StreamWriter’s Write method to write the string.

Figure 27-2 shows the process schematically. The plaintext is written into the StreamWriter. The
StreamWriter writes the data into the CryptoStream. The CryptoStream uses the associated
encryptor to transform the data and writes the result into the MemoryStream.

StreamWriter

Encryptor

CryptoStream MemoryStream

This is the secret
message.

6E-56-4B-B1-05-4C-90-DC-45-E1-EC-3D-9D-. . .

FIGuRE 27-2: To encrypt a message, a StreamWriter writes data into
a CryptoStream, which transforms the data and writes the result into a
MemoryStream .

After the program writes the data, it saves the MemoryStream’s contents in a byte array.

Next, the program displays the AesManaged object’s Key and IV values, and the encrypted bytes.
(The following section says more about the Key and IV values.) It uses the BitConverter.ToString
method to convert each of those values, all of which are byte arrays, into strings displaying the
bytes as sequences of hexadecimal numbers.

After it encrypts the message string, the program uses the following code to decrypt the
encrypted bytes.

 // Decrypt. Create a decryptor.
 using (ICryptoTransform decryptor =
 provider.CreateDecryptor(provider.Key, provider.IV))
 {
 // Create a memory stream from which to read the encrypted bytes.
 using (MemoryStream ms = new MemoryStream(cipherbytes))

www.EBooksWorld.ir

www.hellodigi.ir

symmetric Key encryption ❘ 611

 {
 // Create an associated CryptoStream.
 using (CryptoStream cs =
 new CryptoStream(ms, decryptor, CryptoStreamMode.Read))
 {
 // Make a StreamReader associated with the CryptoStream
 // so we can read from it.
 using (StreamReader reader = new StreamReader(cs))
 {
 // Read the message from the reader.
 string decrypted = reader.ReadToEnd();

 // Display the result.
 decryptedTextBox.Text = decrypted;
 }
 }
 }
 }
 }
}

The general pattern of this code is similar to the code that encrypts the string. The biggest difference
is that this code uses a decryptor instead of an encryptor.

The code starts by creating the decryptor, passing its constructor the Key and IV values that were
used to encrypt the message. It then creates a MemoryStream associated with the encrypted bytes so
it can read from it.

The program then creates a CryptoStream associated with the MemoryStream and decryptor, this
time passing the constructor the CryptoStreamMode.Read parameter, so the CryptoStream knows
it will be reading data from the MemoryStream.

The code makes a StreamReader to read from the CryptoStream and uses its ReadToEnd method to
read the data from the stream. Finally, the program displays the decrypted result.

Figure 27-3 shows the decryption process schematically. The StreamReader’s ReadToEnd method
pulls data from the CryptoStream. The CryptoStream pulls data from the MemoryStream and uses
its associated decryptor to decrypt the data.

StreamReader

Decryptor

CryptoStream MemoryStream

This is the secret
message.

6E-56-4B-B1-05-4C-90-DC-45-E1-EC-3D-9D-. . .

FIGuRE 27-3: To decrypt a message, a StreamReader pulls data from
a CryptoStream, which pulls data from the MemoryStream and uses its
associated decryptor to decrypt it .

www.EBooksWorld.ir

www.hellodigi.ir

612 ❘ ChAPtER 27 CryPTograPhy

Keys and Initialization Vectors
Recall from the earlier discussion of randomness that there are only approximately 4.3 billion seeds you
can use to initialize a System.Random object. That means this class can’t give you a very secure encryp-
tion scheme because an attacker can simply try all possible seed values until finding the right one.

To avoid this problem, cryptographic service providers allow far more initialization values than
those available to the Random class. Those values are grouped into two pieces: a key and an initial-
ization vector (IV). Both the key and IV are arrays of bytes, so they don’t map to easily remem-
bered passwords.

If you don’t care what values the key and IV have, you can simply create an AesManaged object as is
done by the example in the preceding section and it will randomly generate those values for you.

That works for this simple example, but only because the same program performs the encryption
and decryption. When it decrypts the message, it knows the AesManaged object’s Key and IV values.

What if you want to encrypt a message and send it to someone else? They need to use the same Key
and IV values if they want to decrypt the message. Somehow you must get them those values or the
message is meaningless.

One solution is to have the encryption program write the Key and IV values onto a flash drive or piece
of paper. (You could even write the values on a microdot and hide them in the secret compartment of
a ring, so you can feel like you’re in a Tom Clancy novel.) Then you can transfer those values to the
receiver through secure means. For example, you might have a courier carrier the flash drive or paper
(or ring) to the recipient.

SPLIt PERSONALItIES

The sender and receiver could be the same person. For example, you might encrypt
some important document so that you can read it at a later date. In that case you
could write the Key and IV values onto a flash drive or piece of paper and lock it
away in a safe or safe deposit box. Later when you need to read the document, you
can retrieve the Key and IV.

In this example, that may seem like more work than it’s worth. If you look closely at Figure 27-1,
you’ll see that the Key contains 32 bytes and the IV contains 16 bytes, whereas the entire encrypted
message contains only 32 bytes. You could just as easily have had the courier carry the original
plaintext message to the receiver and skip the encryption.

However, the same Key and IV values could be used to encrypt a message of any size. As long as
the courier gets those values to the receiver safely, you could encrypt and transmit an entire ency-
clopedia securely.

Another approach would be to generate a collection of Key and IV values and send them securely to
the receiver in advance. Then when you need to send an encrypted message, the receiver can use the
next Key and IV values in the collection to decrypt the message.

www.EBooksWorld.ir

www.hellodigi.ir

symmetric Key encryption ❘ 613

hOw SECuRE IS It?

The System.Random class isn’t secure enough to use for encryption in large part
because it has only 232 possible initialization values. If the bytes in the Key and IV
are truly scrambled, so an attacker cannot guess them, then in this example there
are 2(32+16)*8 = 2384 possible combinations of values for the Key and IV bytes.

How good is that? Suppose the attacker has a computer that can examine 232 pos-
sible initialization values per second (which seems fantastically optimistic by modern
standards). Then it would take 2384 / 232 = 2384-32 = 2352 seconds or roughly 2.9 x 1098
years to try every possible value. Even if the attacker uses a million computers and
gets lucky and guesses the correct values 0.01 percent of the way through the search,
your secrets will still be safe for 2.9 x 1090 years or so.

Generating Key and IV Values
These methods work reasonably well (assuming you can safely carry the Key and IV values to the
receiver), but unless you have an amazing memory, you’re unlikely to remember the Key and IV values.

Often large pseudorandom arrays of bytes make good keys and IVs. If you truly want to use a
password, however, you can use one to generate a key and IV.

The Rfc2898DeriveBytes class provides a GetBytes method that returns an array containing a
specified number of bytes.

The following code shows a method that uses this class to initialize key and IV arrays.

// Use a password to generate key and IV bytes.
private static void MakeKeyAndIV(string password, byte[] salt,
 int iterations, int numKeyBytes, int numIVbytes, out byte[] key, out byte[] iv)
{
 Rfc2898DeriveBytes deriver =
 new Rfc2898DeriveBytes(password, salt, iterations);

 key = deriver.GetBytes(numKeyBytes);
 iv = deriver.GetBytes(numIVbytes);
}

The method starts by creating a new Rfc2898DeriveBytes object, passing its constructor the
password, a salt, and a number of iterations.

The salt is an array of bytes that you specify to make it harder for an attacker to build a dictionary
containing key and IV values for all possible passwords. Basically, this serves as an initialization
vector for the Rfc2898DeriveBytes object.

The number of iterations tells the object how many times to apply the object’s internal algorithm. This
number is intended to slow the operation down. If you know the correct password, repeating the algo-
rithm 1,000 or so times will slow you down only a few milliseconds. However, if you’re an attacker

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

614 ❘ ChAPtER 27 CryPTograPhy

trying to guess all possible passwords, performing all those iterations for every possible password will
add up and slow down your attack. (Microsoft recommends that you use at least 1,000 iterations.)

After it has initialized the Rfc2898DeriveBytes object, the code simply calls its GetBytes method
to generate however many bytes it needs for the key and IV values.

ASyMMEtRIC KEy ENCRyPtION

Asymmetric key encryption uses a public key known to everyone (or at least everyone you want to
be a message sender) and a private key known only to the message receiver. Anyone can encrypt
messages but only the receiver can decrypt them.

The most widely known asymmetric algorithm is RSA, which was named for the three people who
first publicized it: Ron Rivest, Adi Shamir, and Leonard Adleman. RSA is interesting but it’s also
fairly complicated, so there’s no room to explain how it works here. The rest of this section provides
an overview of how to use RSA in a C# program. The sections that follow show code that performs
the steps.

FuRthER REAdING

Many books, including my book Essential Algorithms: A Practical Approach to
Computer Algorithms and Bruce Schneier’s book (both mentioned earlier in this
chapter), explain how RSA works.

Microsoft’s description of the RSAParameters structure at msdn.microsoft.com/
library/system.security.cryptography.rsaparameters.aspx provides a brief
description of how Microsoft’s implementation of RSA works.

Finally you can look at more general descriptions of RSA such as Wikipedia’s article
“RSA (Cryptosystem)” at en.wikipedia.org/wiki/RSA_(algorithm).

For now what you need to know is that RSA uses a collection of numbers to encrypt and decrypt
data. Two of the numbers, called Exponent and Modulus, make up the public key. The others, which
are called D, DP, DQ, InverseQ, P, and Q, make up the private key.

The .NET Framework’s RSACryptoServiceProvider class uses RSA to encrypt and decrypt data.
It uses the RSAParameters structure to store the public and private key data.

To retrieve key data from an RSACryptoServiceProvider object, you call the object’s
ExportParameters method, passing it the parameter false if you want only the object’s public
parameters and true if you also want the object’s private parameters.

To load key values into an RSACryptoServiceProvider object, you call the object’s
ImportParameters method, passing it an RSAParameters structure holding the necessary
parameters.

Unlike the key and IV data used by the AES algorithm, the bytes used in RSA’s keys are not random.
They are carefully selected large integers that satisfy specific mathematical relationships. These

www.EBooksWorld.ir

www.hellodigi.ir

asymmetric Key encryption ❘ 615

numbers are also enormous (64 bytes or longer) so finding numbers that work isn’t as simple as gen-
erating random bytes.

You can create a new set of key parameters by making an instance of the RSACryptoServiceProvider
class. You can then publish the public parameters and save the private parameters so that you can later
decrypt messages.

Microsoft correctly points out that you should never store key values in plaintext on a computer, so
cyber-crooks can’t find them. You could write down the D, DP, DQ, InverseQ, P, and Q parameters
on a piece of paper, but that’s a lot of data.

To help solve this problem, Microsoft suggests that you store key information in a key container, an
object that stores key information encrypted, so it’s not easy to steal.

If this all seems complicated, you’re right, it is.

The following list summarizes the steps for creating RSA keys in a C# program.

 1. Create a new RSACryptoServiceProvider object. (It is created with a usable set of key values.)

 2. Use the object’s ExportParameters method to extract the key values.

 3. Save the key values in a key container for later use.

 4. Publish the public key values Exponent and Modulus.

The following list summarizes the steps for using RSA to encrypt data in a C# program.

 1. Create a new RSAParameters structure.

 2. Initialize the structure’s Exponent and Modulus parameters with the public values.

 3. Create an RSACryptoServiceProvider object.

 4. Call the object’s ImportParameters method to set its public key parameters.

 5. Call the object’s Encrypt method, passing it the bytes to encrypt.

The following list summarizes the steps for using RSA to decrypt data in a C# program.

 1. Create an RSACryptoServiceProvider object, initializing its parameters with the
values saved in the key container. (Alternatively, you can create the object and then use
ImportParameters to load the key parameters from an RSAParameters structure.)

 2. Call the provider’s Decrypt method, passing it the encrypted bytes.

The following sections show code that performs these steps.

Creating, Saving, and Retrieving Keys
The following code shows how a program might create new RSA key data and save it into a
key container.

// Create the parameters object and set the container name.
CspParameters parameters = new CspParameters();

www.EBooksWorld.ir

www.hellodigi.ir

616 ❘ ChAPtER 27 CryPTograPhy

parameters.KeyContainerName = "TestKey";

// Create an RSACryptoServiceProvider that uses the parameters.
return new RSACryptoServiceProvider(parameters);

The code first creates a CspParameters object and sets its KeyContainerName property to the name
of the key’s container. It then creates a new RSACryptoServiceProvider object, passing its constructor
the CspParameters object.

If the key container already exists, the new RSACryptoServiceProvider object is loaded with the
saved key information.

If the container does not already exist, the RSACryptoServiceProvider object is loaded with a new
set of valid RSA keys and they are saved in a new key container.

Encrypting data
The following RSAEncrypt method uses RSA to encrypt data.

private byte[] RSAEncrypt(byte[] plainbytes, RSAParameters publicParams)
{
 // Create a RSACryptoServiceProvider.
 using (RSACryptoServiceProvider provider = new RSACryptoServiceProvider())
 {
 // Import the public key information.
 provider.ImportParameters(publicParams);

 // Encrypt the data and return the result. (Don't use OAEP padding.)
 return provider.Encrypt(plainbytes, false);
 }
}

This method first creates an RSACryptoServiceProvider object. It then calls the object’s
ImportSettings method to import the public key information in the RSAParameters structure
passed into the routine as a parameter.

The method finishes by calling the provider’s Encrypt method. It passes the method the data to
encrypt and returns the resulting encrypted data.

decrypting data
The following RSADecrypt method uses RSA to decrypt data.

private byte[] RSADecrypt(byte[] cipherbytes, RSAParameters privateParams)
{
 // Create a RSACryptoServiceProvider.
 using (RSACryptoServiceProvider provider = new RSACryptoServiceProvider())
 {
 // Import the private key information.
 provider.ImportParameters(privateParams);

 // Decrypt the data and return the result. (Don't use OAEP padding.)
 return provider.Decrypt(cipherbytes, false);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

asymmetric Key encryption ❘ 617

This method is similar to the RSAEncrypt method. The only differences are that its privateParams
parameter contains the private RSA key parameters rather than the public parameters, and that the
method calls the provider’s Decrypt method instead of its Encrypt method.

Example Encryption
The RSAEncryptDecrypt example program, which is shown in Figure 27-4 and available for download
on the book’s website, demonstrates RSA encryption and decryption. You can see from the figure that
all the key values except Exponent are quite large. In this example running on my computer, Exponent
is a 3-byte integer, D and Modulus are 128-byte integers, and the other values are 64-byte integers.

FIGuRE 27-4: The RSAEncryptDecrypt example program uses
RSA to encrypt and decrypt a string .

The following code shows how the example encrypts and decrypts data when you click the
Encrypt button.

private void encryptButton_Click(object sender, EventArgs e)
{
 // Get the plaintext.
 string plaintext = plaintextTextBox.Text;

 // Create a UnicodeEncoding object to convert between byte array and string.
 UnicodeEncoding converter = new UnicodeEncoding();

 // Make byte arrays to hold the original, encrypted, and decrypted data.
 byte[] plainbytes = converter.GetBytes(plaintextTextBox.Text);
 byte[] cipherbytes;
 byte[] decryptedbytes;

 // Create an RSA provider.
 using (RSACryptoServiceProvider provider = new RSACryptoServiceProvider())
 {

www.EBooksWorld.ir

www.hellodigi.ir

618 ❘ ChAPtER 27 CryPTograPhy

 // Get the provider's public key properties.
 RSAParameters publicParams = provider.ExportParameters(false);

 // Use the public parameters to encrypt the data.
 cipherbytes = RSAEncrypt(plainbytes, publicParams);

 // Display the encrypted bytes.
 cipherbytesTextBox.Text = BitConverter.ToString(cipherbytes);

 // Display public properties.
 exponentTextBox.Text = BitConverter.ToString(publicParams.Exponent);
 modulusTextBox.Text = BitConverter.ToString(publicParams.Modulus);

 // Decrypt.
 // Get the provider's private key properties.
 RSAParameters privateParams = provider.ExportParameters(true);

 // Use the private parameters to decrypt the data.
 decryptedbytes = RSADecrypt(cipherbytes, privateParams);

 // Display private properties.
 DTextBox.Text = BitConverter.ToString(privateParams.D);
 DPTextBox.Text = BitConverter.ToString(privateParams.DP);
 DQTextBox.Text = BitConverter.ToString(privateParams.DQ);
 inverseQTextBox.Text = BitConverter.ToString(privateParams.InverseQ);
 PTextBox.Text = BitConverter.ToString(privateParams.P);
 QTextBox.Text = BitConverter.ToString(privateParams.Q);

 // Display the result.
 decryptedTextBox.Text = converter.GetString(decryptedbytes);
 }
}

The code starts by getting the plaintext to encrypt. It then creates a UnicideEncoding object to
translate between strings and byte arrays. It converts the plaintext into bytes and makes two
other byte arrays to hold the encrypted and decrypted data.

The program then creates an RSACryptoServiceProvider object. That object is initialized with
new RSA key information.

The program calls the provider’s ExportParameters method to get its public key values. It passes
those parameters and the data to encrypt into the RSAEncrypt method described earlier to encrypt
the data.

The program then displays the encrypted data and the public key parameters.

Next, the program calls the provider’s ExportParameters method again, this time to get its private
key values. It passes those and the encrypted data to the RSADecrypt method described earlier to
decrypt the data.

The program finishes by displaying the private key parameters and the decrypted message.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

exercises ❘ 619

LENGth LIMItAtIONS

RSA is relatively slow compared to symmetric key algorithms, so the .NET
Framework limits the size of the messages it encrypts with RSA. If you exceed the
allowed length, the provider throws a CryptographicException with the rather
unhelpful message “Bad Length.”

Symmetric algorithms break messages into blocks and then encrypt them separately,
so they can handle messages of any length.

Together the two kinds of algorithms are effective. For example, you could use the
following steps to send a long message to a receiver even if you have not exchanged
private keys for symmetric encryption.

 1. Generate a private key for symmetric encryption.

 2. Use asymmetric encryption to send the private key to the receiver.

 3. Send the symmetrically encrypted message to the receiver.

SuMMARy

Cryptography is a fascinating topic. Modern cryptographic tools use sophisticated mathematics to
let you perform such operations as encrypting and decrypting files and strings, hashing files to see if
they have been modified, digitally signing files to provide assurance that you actually wrote the file,
and generating cryptographically secure random numbers.

There isn’t room to cover all these topics here, so this chapter focused on three of the most useful
tasks: generating cryptographically secure random numbers, symmetric encryption, and asymmetric
encryption. This should provide enough introduction for you to continue your study of the .NET
Framework’s cryptographic methods on your own.

For more information about cryptographic tools in the .NET Framework, see “Cryptographic Services”
at msdn.microsoft.com/library/92f9ye3s.aspx.

ExERCISES

 1. Write a program that uses the Random class to encrypt and decrypt messages.

Unfortunately, if you use the XOR operator ^ to combine a letter with a random byte, the
result may not be a letter, so it’s hard to visualize the result. To make it easier to visualize
the results, assume the message contains only uppercase letters A through Z. (For bonus points,
use string methods and LINQ to convert the plaintext.) To encrypt a letter, shift it by a random
number of letters between 0 and 25. For example, A + 1 = B, A + 2 = C, and so forth.

www.EBooksWorld.ir

www.hellodigi.ir

620 ❘ ChAPtER 27 CryPTograPhy

Use the program to encrypt a message and then decrypt the result to make sure it works
properly. (For testing purposes, the message “This is a test” with key 123456 should be
ZJIBDEFDSNV.)

 2. Write a program similar to the one shown in Figure 27-5 that breaks the encryption you
used for Exercise 1.

FIGuRE 27-5: The BreakRandomCipher
example program uses character
frequencies to break the encryption
scheme used in Exercise 1 .

Make the program loop through possible key values. (To reduce the search slightly, use only
non-negative keys.) For each possible key, decipher the ciphertext and use LINQ to calculate
the frequencies of the letters in the resulting plaintext. Compare the maximum frequency in the
plaintext to the test value entered by the user. If the maximum frequency is greater than the test
value, display the plaintext so that the user can see if it looks like a message. (If you look closely
at Figure 27-5, you can see that the plaintext doesn’t make sense. In that case, you should
increase the test frequency and try again.)

To test your program, decrypt the text in the file DecipherMe.txt available in this chapter’s
downloads. What is the name of the author of the encrypted quote?

 3. Will the approach you used for Exercise 2 work for short messages? Why?

 4. The instructions for Exercise 2 tell you to look at the maximum frequency of the letters
in the decrypted plaintext. Why don’t you need to look at all the letters’ frequencies? What
are the advantages and disadvantages of this approach? Can you think of a simple way to
make the search more reliable?

 5. What changes would you need to make for the solution you wrote for Exercise 2 to work
with other languages such as French or German?

www.EBooksWorld.ir

www.hellodigi.ir

exercises ❘ 621

 6. The RandomNumbers example program described in the section “Generating Random
Numbers” works but is long and cumbersome. Write a static MyRandom class that has a
GetInt method that returns a cryptographically secure random integer. Then rewrite the
example program to use the new method.

 7. Rewrite the program you wrote for Exercise 6 so that it generates random doubles in the
range [0, 1). (Hint: Add a NextDouble method to the MyRandom class to generate the random
value, and make the main program use that method.)

 8. Rewrite the program you wrote for Exercise 6 so that it generates integers between minimum
and maximum values entered by the user. (Hint: Use the NextDouble method you added
for Exercise 7 to add an overloaded version of GetInt that takes lower and upper bounds as
parameters.)

 9. The DefaultKeyAndIV example program encrypts and decrypts a string within its button
Click event handler. That’s not a reusable approach. Rewrite the program to move the encryp-
tion and decryption steps into separate methods. (Hints: Make the methods take the key and
IV values as parameters. Make the main program create an AesManaged object and use its
default key and IV values.)

 10. Modify the program you wrote for Exercise 9 to move the encryption and decryption methods
into extension methods.

 11. Write a program similar to the one shown in Figure 27-6 to encrypt and decrypt strings. What
happens if you try to decrypt a message with the wrong password? What if the password is
wrong only by a single character?

FIGuRE 27-6: For Exercise 11, write a program that uses a password to
encrypt and decrypt messages .

 12. Write programs to act as a sender and receiver for RSA communication. The receiver program
should have these features:

 a. When it starts, the program should create an RSACryptoServiceProvider object
associated with a key stored in a key container. (If the key already exists, it will load
into the provider. If the key doesn’t yet exist, the provider will create a key and store
it in the container.)

 b. After it has created the provider, the program should display the public key values
Exponent and Modulus in TextBoxes. (You can also make it display the private data
if you like.)

www.EBooksWorld.ir

www.hellodigi.ir

622 ❘ ChAPtER 27 CryPTograPhy

 c. The user should enter encrypted data in the format used by the
BitConverter.ToString method (as in F9-9A-98-6F-BC-9F).

 d. When the user clicks the Decrypt button, the program should convert the entered
data into a byte array and use the private key data to decrypt it.

The sender program should have these features:

 a. The user should copy and paste the public key data from the receiver program into
TextBoxes in the sender. (The sender should not know the public key data.)

 b. When the user enters a message and clicks Encrypt, the program should use the
private key data to encrypt the message and display the result. (Remember to use
a short message because the RSA provider won’t encrypt long ones.)

To test the programs:

 a. Run both programs.

 b. Copy and paste the public key data from the receiver into the sender.

 c. Enter a message in the sender and encrypt it.

 d. Copy and paste the encrypted data from the sender to the receiver.

 e. Use the receiver to decrypt the message and verify that it is correct.

www.EBooksWorld.ir

www.hellodigi.ir

Part VI
Appendices

 ▶ APPENdIx A: Solutions to Exercises

 ▶ APPENdIx b: Data Types

 ▶ APPENdIx C: Variable Declarations

 ▶ APPENdIx d: Constant Declarations

 ▶ APPENdIx E: Operators

 ▶ APPENdIx F: Method Declarations

 ▶ APPENdIx G: Useful Attributes

 ▶ APPENdIx h: Control Statements

 ▶ APPENdIx I: Error Handling

 ▶ APPENdIx j: LINQ

 ▶ APPENdIx K: Classes and Structures

 ▶ APPENdIx L: Collection Classes

 ▶ APPENdIx M: Generic Declarations

 ▶ APPENdIx N: Printing and Graphics

Continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

 ▶ APPENdIx O: Useful Exception Classes

 ▶ APPENdIx P: Date and Time Format Specifiers

 ▶ APPENdIx Q: Other Format Specifiers

 ▶ APPENdIx R: Streams

 ▶ APPENdIx S: Filesystem Classes

 ▶ APPENdIx t: Regular Expressions

 ▶ APPENdIx u: Parallel Programming

 ▶ APPENdIx V: XML

 ▶ APPENdIx w: Serialization

 ▶ APPENdIx x: Reflection

www.EBooksWorld.ir

www.hellodigi.ir

Solutions to Exercises
All the programmatic exercise solutions are available for download in the downloads for
their chapters. For example, the ConsoleShowArgs example program that solves Exercise 1
in Chapter 2, “Writing a First Program,” is contained in the downloads for Chapter 2.

This appendix shows the most interesting parts of many of the programs, but to save space
some of the less interesting details are omitted. Download the examples from www.wrox.com/
go/csharp5programmersref to see all the code.

ChAPtER 1

 1. Figure A-1 shows the major steps that Visual Studio performs when you write a
C# program and press F5 to run it.

C# Compiler

CLR JIT
Compiler

IL Code
Machine
Code

Machine
Code

Machine
Code

C# Code

FIGuRE A-1: The C# compiler converts C# code into IL code .
Then the CLR’s JIT compiler converts the IL code into machine
code . The JIT compiler compiles only methods as they
are needed .

 2. In the first application, there will be a small delay because each method is compiled
the first time the user selects the corresponding tool. The delay is small, so the user
probably won’t notice anything.

A

www.EBooksWorld.ir

www.hellodigi.ir

http://www.wrox.com/

626 ❘ APPENdIx A soluTions To exerCises

In the second application, all the compilation delays occur when the program starts. It is
possible that those delays could add up to enough time for the user to notice. However, the
time spent by the methods’ code will probably be far larger, so the user would notice a delay
in any case.

If you precompile the programs and install them in the GAC, they would run slightly faster
because their methods wouldn’t need to compile to machine code on first use. The difference
will probably be small, however. This is probably not worth doing for the first application
because the user will see any compilation delay as part of the time needed to click a button.
It’s questionable whether it’s worth the effort for the second program, either.

 3. Using NGen and the GAC will be most useful for the code library and the control library. Their
code would be precompiled and ready to run for any application that uses those libraries.

 4. Calling all the methods when the program starts would force the CLR to compile them,
so they would be ready to run if they were called again later. However, this technique
would make the code more confusing, and it’s not clear that it would save enough time
to be noticeable to the user, so it may be best to not do this.

ChAPtER 2

 1. The ConsoleShowArgs example program does this.

The first time you run the program, a console window appears and displays the text Press
Enter to continue. When you press Enter, it closes.

When you run the program after entering the command-line arguments, the window displays
the following text.

Red
Green
Blue
Press Enter to continue.

 2. When you run the program from Windows Explorer, a console window appears and dis-
plays the text Press Enter to continue. The command-line arguments you entered for
Exercise 1 are passed to the program only when you run it from inside Visual Studio.

 3. When you run the program from the shortcut, a console window appears displaying the
following text.

Apple
Banana
Cherry
Press Enter to continue.

This technique enables you to easily start a program with command-line arguments.

 4. The first time you run the program, the console window displays Press Enter to continue.
When you press Enter, the window displays a command prompt and doesn’t disappear.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 3 ❘ 627

When you run the program again with the program’s name followed by command-line
arguments, the window displays the following text.

Ant
Bear
Cat
Press Enter to continue

 5. The WindowsFormsShowArgs example program does this.

If you worked through the previous exercises, you may think the program will show
nothing because you haven’t specified any command-line arguments for it. Actually, the
Environment.GetCommandLineArgs method treats the program’s name as an argument, so
the program lists that. In this example, the name should include the path to the executable
and then end in WindowsFormsShowArgs.vshost.exe. This is the program that Visual Studio
is actually executing.

After you set the command-line arguments Red, Green, and Blue, the program displays the
executable program’s name and those three values.

 6. On the basis of the results of Exercises 2 and 5, you probably think the program will display
only the executable program’s name. This time you’re right.

 7. On the basis of the results of Exercises 3 and 5, you probably think the program will display
the executable program’s name followed by the command-line arguments Apple, Banana,
and Cherry. You’re right again.

 8. As in Exercise 5, the program initially displays the executable program’s name (the vshost.exe
version). After you define the command-line arguments, the program displays the executable
program’s name and the arguments.

 9. As in Exercises 2 and 6, the program displays only the executable program’s name.

 10. As in Exercises 3 and 7, the program displays the executable program’s name followed by
the command-line arguments Apple, Banana, and Cherry.

ChAPtER 3

For Exercises 1 through 5, see the program Ex03-01.

 1. Initially the button is centered.

 a. When you resize the form, the button remains centered on the form.

 b. If Anchor is Top, Left, the button remains the same distance from the form’s upper
and left sides.

 c. If Anchor is Bottom, Right, the button remains the same distance from the form’s
lower and right sides.

 d. If Anchor is Top, Bottom, Left, Right, the button remains the same distance from
all the form’s sides. That makes it grow to use any available new size.

www.EBooksWorld.ir

www.hellodigi.ir

628 ❘ APPENdIx A soluTions To exerCises

 2. When you resize the form, the button resizes, too.

 a. If you make the form very small, the button shrinks until it disappears.

 b. Yes, if the button has focus, then you can still “click” it by pressing Enter or Space.

 c. If the button’s MinimumSize property is 50, 15 and you make the form small, the
button will not shrink below the minimum size.

 3. When you click the button, the picture displays on the form’s background.

 a. Initially the form tiles with copies of the picture.

 b. If BackgroundImageLayout is None, a single copy of the picture displays in the
form’s upper-left corner.

 c. If BackgroundImageLayout is Center, a single copy of the picture displays centered
on the form. If the image doesn’t fit, it is placed in the upper-left corner.

 d. If BackgroundImageLayout is Stretch, a copy of the picture stretches to fill the
form. This can distort the image if the picture’s and form’s aspect ratios are different.

 e. If BackgroundImageLayout is Zoom, a copy of the picture stretches as large as
possible without distorting it.

 4. The button’s background becomes yellow and its text becomes red.

 5. When you click the button, its text becomes blue. This code sets the form’s ForeColor and
BackColor properties to red and blue, respectively. Some controls inherit certain proper-
ties from the control that contains them. The Button control inherits ForeColor but not
BackColor because it has its own ideas about what a button’s background should look like.

The form doesn’t display a red background because it is already displaying a background
image. If you comment out the code that sets the image, the form’s background becomes red.

 6. A /* begins a comment that extends to the next */. In this case, that means the bold lines in
the following code are commented out.

/*
Comment.

/*
Inner comment.
*/

*/

The remaining */ is not commented out, so Visual Studio complains.

 7. Visual Studio ignores any text on the line after the #region and #endregion directives, so
the region names don’t actually matter to Visual Studio. It simply matches each #endregion
with the most recent #region. That means the code is equivalent to the following.

#region Region1
// Code Block 1 ...
#region Region2

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 4 ❘ 629

// Code Block 2 ...
#endregion Region2
// Code Block 3 ...
#endregion Region1

 a. If you collapse Region1, all this code is hidden.

 b. If you collapse Region2, only Code Block 3 is hidden.

ChAPtER 4

 1. The equivalent statement is

if (person is Student)
 student = (Student)person;
else
 student = null;

 2. The following statement creates and initializes the fibonacci array.

int[] fibonacci = { 1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87 };

 3. The following statement creates an 8×8 array of Person objects.

Person[,] board = new Person[8, 8];

 4. The following statement creates an array of eight arrays each holding eight Person objects.

Person[][] board =
{
 new Person[8],
 new Person[8],
 new Person[8],
 new Person[8],
 new Person[8],
 new Person[8],
 new Person[8],
 new Person[8],
};

 5. The smallest number type that can hold large five-digit ZIP codes is int, so the Zip field
must be an int. The following code defines the Person class.

public class Person
{
 public string FirstName, LastName, Street, City, State;
 public int Zip;
}

 6. The following code creates the necessary array.

Person[,] people =
{

www.EBooksWorld.ir

www.hellodigi.ir

630 ❘ APPENdIx A soluTions To exerCises

 {
 new Person() { FirstName=”Ann”, LastName=”Archer”},
 new Person() { FirstName=”Ben”, LastName=”Baker”},
 },
 {
 new Person() { FirstName=”Cindy”, LastName=”Cant”},
 new Person() { FirstName=”Dan”, LastName=”Deevers”},
 },
};

 7. The following code declares and initializes the required three-dimensional array.

string[, ,] values =
{
 {
 { "000", "001", "002" },
 { "010", "011", "012" },
 },
 {
 { "100", "101", "102" },
 { "110", "111", "112" },
 },
};

 8. Visual Studio flags the method call with an error similar to “Use of unassigned local vari-
able ‘value’.”

 9. The code works whether the calling method initializes the value or not. The method doesn’t
assume the value is initialized but doesn’t mind if it is.

 10. Visual Studio flags the statement that tries to double the parameter with as error similar to
“Use of unassigned out parameter ‘number’.”

 11. Visual Studio flags the method with an error similar to “The out parameter ‘number’ must
be assigned to before control leaves the current method.”

 12. If you try to pass an expression into a method for a ref parameter, Visual Studio flags the
method call with the error “A ref or out argument must be an assignable variable.”

 13. The following Oven class shows one possible solution.

public class Oven
{
 // Backing field for temperature in degrees Celsius.
 private float DegreesCelsius = 0;

 // Get and set the temperature in degrees Fahrenheit.
 public float TempFahrenheit
 {
 get
 {
 return DegreesCelsius * 5f / 9f + 32f;
 }
 set
 {
 DegreesCelsius = (value - 32f) * 5f / 9f;

www.EBooksWorld.ir

www.hellodigi.ir

chapter 5 ❘ 631

 }
 }

 // Get and set the temperature in degrees Celsius.
 public float TempCelsius
 {
 get
 {
 return DegreesCelsius;
 }
 set
 {
 DegreesCelsius = value;
 }
 }
}

 14. The following code shows the two methods.

private string Combine1(int row, int column)
{
 return "(" + row + ", " + column + ")";
}

private string Combine2(int row, int column)
{
 return "R" + row + "C" + column;
}

The following code declares a delegate variable to refer to the methods and tests them.

Func<int, int, string> combiner;

combiner = Combine1;
Console.WriteLine(combiner(1, 2));
combiner = Combine2;
Console.WriteLine(combiner(1, 2));

Alternatively, the program could use the following code to define a delegate type.

public delegate string CombinerType(int row, int column);

It would then declare the delegate variable as in the following code.

CombinerType combiner;

ChAPtER 5

 1. You cannot use both the pre- and post-increment operators on the same variable as in ++x++.
Because the post-increment operator has higher precedence than the pre-increment operator,
this is equivalent to ++(x++). The post-increment operator returns x’s original value. The pre-
increment operator would then try to increment the result. But the result isn’t x; it’s basically a

www.EBooksWorld.ir

www.hellodigi.ir

632 ❘ APPENdIx A soluTions To exerCises

copy of x’s value. The pre-increment operator can work only on items such as variables that it
can increment, so it fails.

If you enter ++x++ in the code, Visual Studio flags it with this error:

The operand of an increment or decrement operator must be a variable, property or indexer

 2. The following code uses if statements instead of ?: and ??.

if (amount < 0) amountLabel.ForeColor = Color.Red;
else amountLabel.ForeColor = Color.Blue;

Customer orderedBy;
if (customer != null) orderedBy = customer;
else orderedBy = new Customer();

The following code shows a slightly more concise way to set orderedBy.

Customer orderedBy = customer;
if (customer == null) orderedBy = new Customer();

 3. The code starts by using System.Object.ReferenceEquals to see if the operands refer
to the same object. If they are both null, then they refer to the same null object, so the
method returns true.

 4. The following code shows a subtraction operator for the Complex class.

public static Complex operator -(Complex operand1, Complex operand2)
{
 return new Complex()
 {
 Re = operand1.Re - operand2.Re,
 Im = operand1.Im - operand2.Im
 };
}

Alternatively, because the class already defines addition and unary negation, you could use
the following simpler subtraction operator.

public static Complex operator -(Complex operand1, Complex operand2)
{
 return operand1 + (-operand2);
}

 5. The following code shows a simple Fraction class with * and / operators.

public class Fraction
{
 public double Numerator = 0;
 public double Denominator = 0;

 public static Fraction operator *(Fraction operand1, Fraction operand2)
 {
 return new Fraction()
 {
 Numerator = operand1.Numerator * operand2.Numerator,
 Denominator = operand1.Denominator * operand2.Denominator

www.EBooksWorld.ir

www.hellodigi.ir

chapter 5 ❘ 633

 };
 }

 public static Fraction operator /(Fraction operand1, Fraction operand2)
 {
 return new Fraction()
 {
 Numerator = operand1.Numerator * operand2.Denominator,
 Denominator = operand1.Denominator * operand2.Numerator
 };
 }
}

 6. Any fraction can be represented as a double, possibly with the loss of some precision, so this
is a widening conversion. That means this should be an implicit conversion. The following
code shows the conversion operator.

public static implicit operator double(Fraction fraction)
{
 return fraction.Numerator / fraction.Denominator;
}

 7. If you provide the > operator, then you must also provide the < operator. The following code
uses the double conversion operator defined in Exercise 6 to implement those operators for
the Fraction class.

public static bool operator <(Fraction operand1, Fraction operand2)
{
 return (double)operand1 < (double)operand2;
}

public static bool operator >(Fraction operand1, Fraction operand2)
{
 return (double)operand1 > (double)operand2;
}

 8. If you provide the == operator, then you must also provide the != operator and you must
override the Equals and GetHashCode methods. The following code uses the double con-
version operator defined in Exercise 6 to do this for the Fraction class.

public override bool Equals(object obj)
{
 if (obj == null) return false;
 if (!(obj is Fraction)) return false;

 Fraction fraction = obj as Fraction;
 return (double)this == (double)fraction;
}

public override int GetHashCode()
{
 double value = (double)this;
 return value.GetHashCode();
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

634 ❘ APPENdIx A soluTions To exerCises

public static bool operator ==(Fraction operand1, Fraction operand2)
{
 // If both refer to the same object (reference equality), return true.
 if ((object)operand1 == (object)operand2) return true;

 // If one is null but not the other, return false.
 if (((object)operand1 == null) || ((object)operand2 == null)) return false;

 // Compare the values.
 return (double)operand1 == (double)operand2;
}

public static bool operator !=(Fraction operand1, Fraction operand2)
{
 return !(operand1 == operand2);
}

 9. The results of the statements are

 a. 1 + 2 * 3 - 4 / 5 = 7

 b. 9 * 5 / 10 = 4

 c. 2 * 5 / 10 = 1

 d. 2 / 10 * 5 = 1

 e. 12 / 6 * 4 / 8 = 1

 10. The following parenthesized statements are true.

 a. 4 * 4 - 4 / 4 + 4 = 19

 b. 4 * 4 - 4 / (4 + 4) = 16

 c. 4 * 4 - (4 / 4 + 4) = 11

 d. 4 * (4 - 4) / 4 + 4 = 4

 e. 4 * (4 - 4) / (4 + 4) = 0

 11. The following table shows the values of x and y after each statement.

StAtEMENt x y

int y = x / 4; 11 2

int y = x++ / 4; 12 2

int y = ++x / 4; 12 3

float y = x / 4; 11 2 .0

double y = x / 4f; 11 2 .75

www.EBooksWorld.ir

www.hellodigi.ir

chapter 6 ❘ 635

 12. The following statements make y equal 3.5.

 a. float y = x / 2f;

 b. float y = (float)x / 2;

 c. float y = x / (float)2;

 13. In the statement float y = x / 2.0, the value 2.0 is a double, so x / 2.0 is also a double.
Storing a double value in the float variable y is a narrowing conversion, so it cannot be done
implicitly. This statement tries to perform the conversion implicitly, so it raises an error.

One way to fix the statement is to explicitly cast the result to a float as in float y =
(float)(x / 2.0).

 14. If ||= existed, it would be a conditional Or operator. Suppose A and B are bools. Then A
||= B would examine A. If A is true, then it would be left alone. If A is false, the program
would set A = A | B.

If &&= existed, it would be a conditional And operator. Suppose A and B are bools. Then
A &&= B would examine A. If A is false, then it would be left alone. If A is true, the pro-
gram would set A = A & B.

These would provide some benefit because they wouldn’t evaluate B unless necessary. If B is
a slow method call instead of a variable, that could save some time.

ChAPtER 6

 1. The following code shows the IContactable interface.

interface IContactable
{
 bool Contact(string message);
}

 2. The following code shows an Emailable class that implicitly implements the IContactable
interface.

class Emailable : IContactable
{
 public bool Contact(string message)
 {
 return true;
 }
}

 3. The following code shows an Emailable class that explicitly implements the IContactable
interface.

class Textable : IContactable
{
 bool IContactable.Contact(string message)
 {

www.EBooksWorld.ir

www.hellodigi.ir

636 ❘ APPENdIx A soluTions To exerCises

 return true;
 }
}

 4. To define a method without providing any implementation, the method’s declaration must
include the abstract keyword. If the class contains an abstract method, its declaration
must also include the abstract keyword. The following code shows the Contactable class.

abstract class Contactable
{
 abstract public bool Contact(string message);
}

 5. The following code shows a Mailable class that inherits from Contactable and implements
the Contact method.

class Mailable : Contactable
{
 public override bool Contact(string message)
 {
 return true;
 }
}

 6. The following code shows an implementation of the Root extension method.

static class DoubleExtensions
{
 public static double Root(this double number)
 {
 return (Math.Sqrt(number));
 }
}

 7. The following code shows an overloaded version of the Root extension method. (In the same
DoubleExtensions class used in Exercise 6.)

public static double Root(this double number, int rootBase)
{
 return (Math.Pow(number, 1.0 / rootBase));
}

 8. If the program is going to use Piece variables to represent Pieces and Kings, the CanMoveTo
method must be virtual and the King class must override the method. Then if the program
uses a Piece variable to invoke CanMoveTo for a King object, it executes the King’s version of
the method.

The following code shows the Piece class.

class Piece
{
 public virtual bool CanMoveTo(int row, int column)
 {
 return false;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 6 ❘ 637

The following code shows the King class.

class King : Piece
{
 public override bool CanMoveTo(int row, int column)
 {
 return true;
 }
}

 9. The following statement defines the ManagersFromEmployeesDelegate type.

delegate Manager[] ManagersFromEmployeesDelegate(Employee[] employees);

The following code shows the Promote method that matches the delegate type.

private Manager[] Promote(Employee[] employees)
{
 return null;
}

The following statement creates a variable that holds a reference to the Promote method.

ManagersFromEmployeesDelegate del = Promote;

 10. Covariance lets a method return a more derived type than the delegate. In this example,
the delegate returns Manager[], so the new method should return the more derived type
Executive[].

Contravariance lets a method take parameters that are a less derived type than those taken
by the delegate. In this example, the delegate takes an Employee[] as a parameter, so the
new method should take the less derived parameter type Person[].

The following code shows the new version of the Promote method.

private Executive[] Promote2(Person[] people)
{
 return null;
}

The following statement creates a variable that holds a reference to the new version of the
Promote method.

ManagersFromEmployeesDelegate del2 = Promote2;

 11. The ColorizeImage program, which is available for download on this book’s website, does
this. Download the program to see how it works. In one test on my dual-core computer, pro-
cessing an image took roughly 1.78 seconds synchronously and 0.92 seconds asynchronously.

Because the computer has two cores, you might expect the asynchronous version to take
one-half the time used by the synchronous version, but there is some overhead in setting
up and coordinating the threads. The result is still an impressive reduction in time, however,
and would be even greater on a computer with more cores.

www.EBooksWorld.ir

www.hellodigi.ir

638 ❘ APPENdIx A soluTions To exerCises

 12. There would not be a big advantage to using callbacks or async and await. Those techniques
would allow the program’s user interface to respond to the user while the program was pro-
cessing images. The only things the user could do at that time, however, would be to load a
new image, close the program, or start more threads processing the images. Letting the user
do those things while the program is processing images doesn’t seem like it would be useful.

ChAPtER 7

 1. The first block of code uses else statements, so the program skips all the tests after it finds
a match. For example, if person.Type is Customer, then it skips the tests that compare
person.Type to Employee and Manager.

The second block of code performs all three comparisons even if person.Type matches one
of the early ones. That makes the second block of code slightly less efficient than the first. In
this example, where the conditions are simple comparisons, the difference will be small. If
the tests called complicated methods, then the difference in speed could be significant.

 2. The following code uses a switch statement instead of if statements.

switch (person.Type)
{
 case PersonType.Customer:
 //...
 break;
 case PersonType.Employee:
 //...
 break;
 case PersonType.Manager:
 //...
 break;
}

 3. A series of if-else statements would call the GetBirthMonth method 12 times. A switch
statement would call the method only once. Because GetBirthMonth accesses a database, it
would be inefficient to call it 12 times instead of once, so the switch statement is better.

 4. The following code uses a switch statement to determine the person’s birthstone.

string birthstone="";

switch (person.GetBirthMonth())
{
 case 1:
 birthstone = "Garnet";
 break;
 case 2:
 birthstone = "Amethyst";
 break;
 case 3:
 birthstone = "Aquamarine";
 break;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 7 ❘ 639

 case 4:
 birthstone = "Diamond";
 break;
 case 5:
 birthstone = "Emerald";
 break;
 case 6:
 birthstone = "Alexandrite";
 break;
 case 7:
 birthstone = "Ruby";
 break;
 case 8:
 birthstone = "Peridot";
 break;
 case 9:
 birthstone = "Sapphire";
 break;
 case 10:
 birthstone = "Tourmaline";
 break;
 case 11:
 birthstone = "Topaz";
 break;
 case 12:
 birthstone = "Zircon";
 break;
}

The problem with the series of if-else statements is that the most obvious version calls the
GetBirthMonth method 12 times, once for each if statement. You can avoid those calls if
you call the method once and save the result to use in the if statements. The following code
shows this version.

string birthstone="";
int month = person.GetBirthMonth();

if (month == 1) birthstone = "Garnet";
else if (month == 2) birthstone = "Amethyst";
else if (month == 3) birthstone = "Aquamarine";
else if (month == 4) birthstone = "Diamond";
else if (month == 5) birthstone = "Emerald";
else if (month == 6) birthstone = "Alexandrite";
else if (month == 7) birthstone = "Ruby";
else if (month == 8) birthstone = "Peridot";
else if (month == 9) birthstone = "Sapphire";
else if (month == 10) birthstone = "Tourmaline";
else if (month == 11) birthstone = "Topaz";
else if (month == 12) birthstone = "Zircon";

This version is more concise and easier to read than the switch statement. (Actually you
can place the case keyword, the line of code, and the break keyword all on one line to
make the switch version more concise. It looks a bit crowded but which version you prefer
is mostly a matter of personal preference.)

www.EBooksWorld.ir

www.hellodigi.ir

640 ❘ APPENdIx A soluTions To exerCises

 5. To do this in a switch statement, you would need 100 separate case statements, one for
each possible test score. You could reduce that number to 40 case statements if you let the
default case handle all the values less than 60 (which give the grade F).

In contrast, an if statement can evaluate boolean expressions so that each if statement can
handle a range of test scores. That makes it much more concise.

The following code uses a series of if statements to assign grades.

int score = 89;
string grade = "";

if (score >= 90) grade = "A";
else if (score >= 80) grade = "B";
else if (score >= 70) grade = "C";
else if (score >= 60) grade = "D";
else grade = "F";

 6. The following code shows the rewritten loop.

int a = 0;
int b = 1;
int c = 1;

for (; a < 1000;)
{
 Console.WriteLine("a: " + a);

 a = b;
 b = c;
 c = a + b;
}

 7. The following for loop adds up the numbers in the array values.

int total = 0;
for (int i = 0; i < values.Length; i++)
 total += values[i];

 8. The following while loop adds up the numbers in the array values.

int total = 0;
int i = 0;
while (i < values.Length)
{
 total += values[i];
 i++;
}

 9. The following do loop adds up the numbers in the array values.

int total = 0;
int i = 0;
do
{

www.EBooksWorld.ir

www.hellodigi.ir

chapter 7 ❘ 641

 total += values[i];
 i++;
} while (i < values.Length);

 10. The following for loop displays the letters A through Z.

for (char ch = 'A'; ch <= 'Z'; ch++)
 Console.WriteLine(ch);

 11. The following code sets the Bill object’s Penalty property without using the ?: operator.

if (bill.Status == BillStatus.Overdue)
{
 if (bill.Balance < 50m) bill.Penalty = 5m;
 else bill.Penalty = bill.Balance * 0.1m;
}
else
{
 bill.Penalty = 0m;
}

 12. The following code initializes the student variable without using the ?? operator.

Student student = GetStudent("Steward Dent");
if (student == null) student = new Student("Steward Dent");

 13. The following code displays the multiples of 3 between 0 and 100 in largest-to-smallest order.

for (int i = 99; i >= 0; i -= 3) Console.WriteLine(i);

 14. Each time the loop executes, the increment statement doubles the looping variable i, so the
loop displays the powers of 2 between 1 and 100: 1, 2, 4, 8, 16, 32, and 64.

 15. The following code displays Friday the 13ths a year at a time until the user stops it.

// Start at the beginning of this year.
int year = DateTime.Now.Year;

// Loop until stopped.
do
{
 for (int month = 1; month <= 12; month++)
 {
 DateTime date = new DateTime(year, month, 13);
 if (date.DayOfWeek == DayOfWeek.Friday)
 Console.WriteLine(date.ToShortDateString());
 }
 year++;
} while (MessageBox.Show("Continue for " + year.ToString() + "?",
 "Continue?", MessageBoxButtons.YesNo) == DialogResult.Yes);

 16. The following code shows the foreach loop without a continue statement.

foreach (Employee employee in employees)
{
 if (!employee.IsExempt)
 {

www.EBooksWorld.ir

www.hellodigi.ir

642 ❘ APPENdIx A soluTions To exerCises

 // Process the employee.
 ...
 }
}

This code uses an if statement to avoid using a continue statement. That causes an extra
level of indentation, which makes the code a bit harder to read than the version with the
continue statement.

If the code contained several tests that allowed it to skip processing an employee, then it would
need several if tests. That could increase the level of indentation quite a bit. (Alternatively, you
could use a single if statement with a complicated test.) The continue statement avoids that.

The continue statement is also useful if there are several places inside the loop where you
may discover that you don’t need to continue that iteration of the loop.

ChAPtER 8

Note that there may be many solutions to these exercises depending on what kind of information is
selected in the LINQ queries and what kind of information is generated in foreach loops.

 1. Example program FunctionalVolleyballData does this. The code is fairly long, so it isn’t shown
here. Download the example to see the solution.

 2. Simply add the following two lines at the beginning of the example program’s Main method.

XElement root = XElement.Parse(XmlString());
Console.WriteLine(root.ToString());

 3. There are a couple of ways you can do this. The following code shows one method.

// Select the teams.
var teams =
 from team in root.Element("Teams").Descendants("Team")
 select team;

// Loop through the teams displaying them and their players.
foreach (var team in teams)
{
 // Display the team's name.
 Console.WriteLine(team.Attribute("Name").Value);

 // Display the team's players.
 foreach (var player in team.Descendants("Player"))
 Console.WriteLine(" " +
 player.Attribute("FirstName").Value + " " +
 player.Attribute("LastName").Value);
}

This code uses LINQ to start at the root element, finds that element’s Teams children (in
this case there’s only one), and then looks for Team descendants of that element. Moving into
Element("Teams") makes the query only consider elements in the Teams subtree. That pre-
vents the query from selecting the Team elements that are inside the Matches subtree.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 8 ❘ 643

After selecting the Team elements inside the Teams subtree, the code loops through those
elements. For each Team, the code displays the Team’s name and then loops through the
Team’s Player elements, displaying their names.

Another approach uses the following code to select objects with an anonymous type holding
the Teams and their Players.

// Select the teams.
var teams =
 from team in root.Element("Teams").Descendants("Team")
 select new
 {
 Team = team,
 Players = team.Descendants("Player")
 };

// Loop through the teams displaying them and their players.
foreach (var team in teams)
{
 // Display the team's name.
 Console.WriteLine(team.Team.Attribute("Name").Value);

 // Display the team's players.
 foreach (var player in team.Players)
 Console.WriteLine(" " +
 player.Attribute("FirstName").Value + " " +
 player.Attribute("LastName").Value);
}

Like the preceding solution, this query searches for Team elements that are in the Teams
subtree. It then selects those Teams plus their Player descendants. The code loops through
the selected objects displaying each Team’s name and its Players.

Example program VolleyballTeamsAndPlayers demonstrates both of these approaches.
(These two solutions use similar loops to display their results. The second version feels
more LINQ-like, but the first seems more intuitive so I prefer the first solution.)

 4. Example program VolleyballTeamsAndScores does this. It uses the following code to match
the appropriate team and match score records.

// Join teams and match results.
var teamResults =
 from team in root.Element("Teams").Descendants("Team")
 join result in root.Element("Matches").Descendants("Team")
 on team.Attribute("Name").ToString()
 equals result.Attribute("Name").ToString()
 select new
 {
 Team = team.Attribute("Name").Value,
 Score = int.Parse(result.Attribute("Score").Value)
 };

string format = "{0,-20}{1,10}";
Console.WriteLine(string.Format(format, "Team", "Points"));
Console.WriteLine(string.Format(format, "====", "======"));
foreach (var obj in teamResults)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

644 ❘ APPENdIx A soluTions To exerCises

{
 Console.WriteLine(string.Format(format, obj.Team, obj.Score));
}

The query matches Team elements inside the Teams subtree with Team elements inside the
Matches subtree. For each selected pair, the query selects the team’s Name attribute and
the match result’s Score attribute.

Notice that the code compares the team and match Name attributes after converting them
into strings. The attributes themselves are XAttribute objects. They hold the same value
but the XAttribute objects are different, so if you compare those objects you’ll never find
any matches.

After selecting the corresponding records, the program loops through the query’s results
and displays the team names and scores.

 5. Example program VolleyballTeamsAndTotals does this. It uses the following code to calculate
and display the teams’ total wins and points.

// Select the teams and their results.
// Total each team's wins and points.
var teamResults =
 from team in root.Element("Teams").Descendants("Team")
 join result in root.Element("Matches").Descendants("Team")
 on team.Attribute("Name").Value
 equals result.Attribute("Name").Value
 group result by team into teamMatches
 orderby teamMatches.Count(r => r.Attribute("Score").Value == "25") descending,
 teamMatches.Sum(r => (int)r.Attribute("Score")) descending
 select new
 {
 Team = teamMatches.Key.Attribute("Name").Value,
 Wins = teamMatches.Count(r => r.Attribute("Score").Value == "25"),
 Points = teamMatches.Sum(r => (int)r.Attribute("Score"))
 };

string format = "{0,-20}{1,10}{2,10}";
Console.WriteLine(string.Format(format, "Name", "Wins", "Points"));
Console.WriteLine(string.Format(format, "====", "====", "======"));
foreach (var results in teamResults)
{
 Console.WriteLine(string.Format(format,
 results.Team, results.Wins, results.Points));
}

Like the solution to Exercise 4, this program joins teams with match results. It groups the
results by team and calls the groups teamMatches.

To determine the number of matches a team won, the query counts the matches where the
Score attribute has value 25.

To determine a team’s total number of points, the query takes the sum of the match values’
Score attribute values converted into integers.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 8 ❘ 645

The query orders its results by both the number of wins and the total number of points. Finally,
it selects the team’s name together with the number of wins and total number of points.

Next, the program loops through the query and displays the results. Because the query
selects simple string and integer values, displaying the results is easy.

 6. Example program CreateVolleyballDataSet does this. The code is fairly long, so it isn’t
shown here. Download the example to see the solution.

 7. Example program VolleyballTeamsAndPlayersDataSet does this.

The program demonstrates two approaches. The following code shows the first approach.

// Loop through the teams displaying them and their players.
foreach (DataRow team in teamsTable.AsEnumerable())
{
 // Display the team's name.
 Console.WriteLine(team.Field<string>("TeamName"));

 // Select the team's players.
 string teamName = team.Field<string>("TeamName");
 var players =
 from player in playersTable.AsEnumerable()
 where player.Field<string>("TeamName") == teamName
 select player;

 // Display the players.
 foreach (var player in players)
 Console.WriteLine(" " +
 player.Field<string>("FirstName") + " " +
 player.Field<string>("LastName"));
}

This code loops through the records from the Teams table. (Note that the items returned
by the table’s AsEnumerable method are DataRow objects. Note also that you could loop
over the table’s Rows collection instead of using AsEnumerable.)

For each team, the program displays the team’s name, selects the corresponding records in
the Players table, and displays the selected players.

The program’s second approach uses the following code.

// Select the teams joined with the players.
var teams =
 from team in teamsTable.AsEnumerable()
 join player in playersTable.AsEnumerable()
 on team.Field<string>("TeamName") equals player.Field<string>("TeamName")
 group player by team into teamPlayers
 select teamPlayers;

// Loop through the teams displaying them and their players.
foreach (var team in teams)
{
 // Display the team's name.
 Console.WriteLine(team.Key.Field<string>("TeamName"));

www.EBooksWorld.ir

www.hellodigi.ir

646 ❘ APPENdIx A soluTions To exerCises

 // Display the team's players.
 foreach (var player in team)
 {
 Console.WriteLine(" " +
 player.Field<string>("FirstName") + " " +
 player.Field<string>("LastName"));
 }
}

This code selects records from the Teams and Players tables, joined on their TeamName
fields. It groups the players by team.

The program loops through the selected team groups. For each group, it displays the group’s
team name and then loops through the team’s players displaying their names.

 8. Example program VolleyBallTeamsAndScoresDataSet uses the following query to select
its data.

// Join teams and match results.
var teamResults =
 from team in teamsTable.AsEnumerable()
 join result in matchesTable.AsEnumerable()
 on team.Field<string>("TeamName") equals result.Field<string>("TeamName")
 select new
 {
 Team = team.Field<string>("TeamName"),
 Score = result.Field<int>("Score")
 };

This query selects data from the Teams and Matches tables and joins them by TeamName.
It selects the team names and scores so the program can later display those values.

 9. Example program VolleyballTeamsAndTotalsDataSet uses the following query to select
its data.

// Select the teams and their results.
// Total each team's wins and points.
var teamResults =
 from team in teamsTable.AsEnumerable()
 join result in matchesTable.AsEnumerable()
 on team.Field<string>("TeamName") equals
 result.Field<string>("TeamName")
 group result by team into teamMatches
 orderby teamMatches.Count(r => r.Field<int>("Score") == 25) descending,
 teamMatches.Sum(r => r.Field<int>("Score")) descending
 select new
 {
 Team = teamMatches.Key.Field<string>("TeamName"),
 Wins = teamMatches.Count(r => r.Field<int>("Score") == 25),
 Points = teamMatches.Sum(r => r.Field<int>("Score"))
 };

This is similar to the code used in Exercise 5 except it selects its data from tables instead of
XElement objects.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 8 ❘ 647

 10. Example program VolleyballTeamsRankings does this. It uses a query named pointsFor
that is similar to the one used by the solution to Exercise 9 to select team name, number of
wins, and points “for.”

Next, the program uses a second query named pointsAgainst to select team name, number
of losses, and points “against.” This query is similar to the first except it matches the Teams
table’s TeamName field to the Matches table’s VersusTeamName field.

The program then uses the following query to join the results of the pointsFor and
pointsAgainst queries.

// Join the win and loss data.
var combined =
 from dataFor in pointsFor
 join dataAgainst in pointsAgainst
 on dataFor.Team equals dataAgainst.Team
 orderby
 100 * (dataFor.Wins / (float)dataAgainst.Losses) descending,
 dataFor.PointsFor - dataAgainst.PointsAgainst descending
 select new
 {
 Team = dataFor.Team,
 Wins = dataFor.Wins,
 Losses = dataAgainst.Losses,
 WinPercent = 100 *
 (dataFor.Wins / (float)(dataFor.Wins + dataAgainst.Losses)),
 PointsFor = dataFor.PointsFor,
 PointsAgainst = dataAgainst.PointsAgainst,
 PointDifferential = dataFor.PointsFor - dataAgainst.PointsAgainst
 };

Finally, the program loops through the selected data and displays the results.

 11. Example program AddStandingsToXml does this in two different ways.

The first method uses the same queries as the solution to Exercise 10. After it builds the
combined query, the program uses the following code to build the new XML elements.

// Add the results to a new Standings XML element.
XElement standings = new XElement("Standings");
root.Add(standings);
foreach (var results in combined)
{
 standings.Add(
 new XElement("Team",
 new XAttribute("Name", results.Team),
 new XAttribute("Wins", results.Wins),
 new XAttribute("Losses", results.Losses),
 new XAttribute("WinPercent", results.WinPercent),
 new XAttribute("PointsFor", results.PointsFor),
 new XAttribute("PointsAgainst", results.PointsAgainst),
 new XAttribute("PointDifferential", results.PointDifferential)
)
);
}

www.EBooksWorld.ir

www.hellodigi.ir

648 ❘ APPENdIx A soluTions To exerCises

This code starts by creating a new Standings XElement and adding it to the root ele-
ment. It then loops through the combined query. For each item in the query’s results, the
program uses the item’s properties to create a new Team element and adds that element to
the Standings element.

The program’s second approach uses the following code.

// Join the win and loss data.
var combined =
 from dataFor in pointsFor
 join dataAgainst in pointsAgainst
 on dataFor.Team equals dataAgainst.Team
 orderby
 100 * (dataFor.Wins / (float)dataAgainst.Losses) descending,
 dataFor.PointsFor - dataAgainst.PointsAgainst descending
 select new XElement("Team",
 new XAttribute("Name", dataFor.Team),
 new XAttribute("Wins", dataFor.Wins),
 new XAttribute("Losses", dataAgainst.Losses),
 new XAttribute("WinPercent",
 100 * (dataFor.Wins / (float)(dataFor.Wins + dataAgainst.Losses))),
 new XAttribute("PointsFor", dataFor.PointsFor),
 new XAttribute("PointsAgainst", dataAgainst.PointsAgainst),
 new XAttribute("PointDifferential",
 dataFor.PointsFor - dataAgainst.PointsAgainst)
);

// Add the results to a new Standings XML element.
root.Add(new XElement("Standings", combined));

This version makes the LINQ query create XElement objects to represent the standings
data. It then creates the Standings element and passes that element’s constructor the query.
Because the query returns an IEnumerable containing XElements, the constructor makes
those elements children of the Standings element.

The first approach uses a query that selects the data the program needs and then loops
through the query’s result to create the XElements. The second approach makes the
LINQ query create the XElements. In general you should use whichever approach you
find more intuitive.

ChAPtER 9

 1. To allow the program to detect changes to the classes’ values, all the values must be con-
verted into properties. The properties’ set accessors can then validate new values for the
properties. The following code shows the revised class.

public class Student
{
 private string _Name;
 public string Name
 {

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 9 ❘ 649

 get { return _Name; }
 set
 {
 Debug.Assert(value != null, "Name must not be null");
 Debug.Assert(value.Length > 0, "Name must have non-zero length");
 _Name = value;
 }
 }

 private List<Course> _Courses = new List<Course>();
 public List<Course> Courses
 {
 get { return _Courses; }
 set
 {
 Debug.Assert(value != null, "Courses list must not be null");
 _Courses = value;
 }
 }

 // Constructor.
 public Student(string name)
 {
 Name = name;
 }
}

Note that the constructor doesn’t need to do any validation because it uses the Name property
to set the new object’s name, and that property performs validation.

(You can find this code in the StudentTest example program in this chapter’s downloads.)

 2. The following code shows the revised class.

public class Student
{
 private string _Name;
 public string Name
 {
 get { return _Name; }
 set
 {
 Contract.Requires(value != null, "Name must not be null");
 Contract.Requires(value.Length > 0, "Name must have non-zero length");
 Contract.Ensures(_Name != null, "Name must not be null");
 Contract.Ensures(_Name.Length > 0, "Name must have non-zero length");
 _Name = value;
 }
 }

 private List<Course> _Courses = new List<Course>();
 public List<Course> Courses
 {
 get { return _Courses; }
 set

www.EBooksWorld.ir

www.hellodigi.ir

650 ❘ APPENdIx A soluTions To exerCises

 {
 Contract.Requires(value != null, "Courses list must not be null");
 Contract.Ensures(_Courses != null, "Courses list must not be null");
 _Courses = value;
 }
 }

 // Constructor.
 public Student(string name)
 {
 Name = name;
 }
}

Could you remove the postconditions? Of course, you could. The preconditions guarantee
that the postconditions are satisfied.

That’s exactly the sort of thinking that makes developers assume their code is correct when
it actually isn’t. This is also why it’s good to write contracts before writing the code inside
the method. Knowing what these property set accessors do, you can convince yourself
that the postconditions are unnecessary. In a nontrivial method, the same pressures may
lead you to omit the postconditions.

Note that the postconditions are not exactly the same as the preconditions. The precon-
ditions test the inputs to the accessors (if the accessors made other assumptions, the pre-
conditions would verify them, too) and the postconditions check the wanted results.

(You can find this code in the StudentTest example program in this chapter’s downloads.)

 3. The following code shows the revised class.

public class Student
{
 public string Name { get; set; }
 public List<Course> Courses { get; set; }

 // Constructor.
 public Student(string name)
 {
 Name = name;
 Courses = new List<Course>();
 }

 [ContractInvariantMethod]
 private void CheckValuesNotNull()
 {
 Contract.Invariant(this.Name != null);
 Contract.Invariant(this.Name.Length > 0);
 Contract.Invariant(this.Courses != null);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 9 ❘ 651

In this version, the Name and Courses values are auto-implemented properties. Because their
set accessors are public methods, they invoke the class’s invariant method after they set
their values.

Because an auto-implemented property cannot be initialized in its declaration, this version’s
constructor initializes the object’s Courses property so that property is not null when the con-
structor finishes.

(You can find this code in the StudentTest example program in this chapter’s downloads.)

 4. The following code shows the revised class.

public class Student
{
 private string _Name;
 public string Name
 {
 get { return _Name; }
 set
 {
 if (value == null) throw new ArgumentNullException("Name",
 "Name must not be null");
 if (value.Length <= 0) throw new ArgumentOutOfRangeException("Name",
 "Name must have non-zero length");
 _Name = value;
 }
 }

 private List<Course> _Courses = new List<Course>();
 public List<Course> Courses
 {
 get { return _Courses; }
 set
 {
 if (value == null) throw new ArgumentNullException("Courses",
 "Courses list must not be null");
 _Courses = value;
 }
 }

 // Constructor.
 public Student(string name)
 {
 Name = name;
 }
}

(You can find this code in the StudentTest example program in this chapter’s downloads).

 5. The program will throw an exception if you enter a non-numeric value such as “ten” or
“weasel” in the console window. Also if you enter numeric values other than 1, 2, or 3, the
program ignores them.

www.EBooksWorld.ir

www.hellodigi.ir

652 ❘ APPENdIx A soluTions To exerCises

 6. The ConsoleUnexpectedInputs example program in this chapter’s downloads uses the
following code to handle unexpected inputs. The new lines are highlighted in bold.

static void Main(string[] args)
{
 // Install the event handler.
 AppDomain.CurrentDomain.UnhandledException += UnhandledException;

 // Loop forever.
 for (; ;)
 {
 Console.WriteLine("1 - Continue, 2 - Throw exception, 3 - Exit");
 Console.Write("> ");
 string text = Console.ReadLine();

 // If the input cannot be parsed, set choice to 0.
 int choice;
 if (!int.TryParse(text, out choice)) choice = 0;

 switch (choice)
 {
 case 1:
 // Continue.
 Console.WriteLine("Continuing...\n");
 break;

 case 2:
 // Throw an exception.
 Console.WriteLine("Throwing exception...\n");
 throw new ArgumentException();

 case 3:
 // Exit.
 return;

 default:
 // Handle other inputs.
 Console.WriteLine("Unexpected input: " + text + "\n");
 break;
 }
 }
}

 7. The ConsoleTryCatch example program in this chapter’s downloads uses the following code
to avoid using the UnhandledException event handler.

static void Main(string[] args)
{
 // Loop forever.
 for (; ;)
 {
 // Catch all exceptions.
 try
 {

www.EBooksWorld.ir

www.hellodigi.ir

chapter 9 ❘ 653

 Console.WriteLine("1 - Continue, 2 - Throw exception, 3 - Exit");
 Console.Write("> ");
 string text = Console.ReadLine();
 int choice = int.Parse(text);

 switch (choice)
 {
 case 1:
 // Continue.
 Console.WriteLine("Continuing...\n");
 break;

 case 2:
 // Throw an exception.
 Console.WriteLine("Throwing exception...\n");
 throw new ArgumentException();

 case 3:
 // Exit.
 return;
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Caught exception:");
 Console.WriteLine(ex.Message);
 Console.WriteLine("\n\n");
 }
 }
}

One advantage of this method is that it can prevent the program from closing. An
UnhandledException event handler cannot.

One disadvantage of this method is that the program could get stuck in an infinite loop.
This example doesn’t have this problem (at least if you wrote it correctly), but a program
could throw an exception, display an error message, and then throw the same exception
again when it resumes its main loop. An UnhandledException event handler cannot stop
the program from ending, so it doesn’t have this problem. (Although that’s a bit like saying
you don’t have trouble parking because your car got repossessed. You don’t have the problem
because you have a worse problem.)

 8. The main program calls the Factorial method with values entered by the user. The
Debug.Assert statement and code contracts help flush out bugs during testing, but the
user may still enter invalid values in the release build. You could use those methods to
look for bugs, but the program needs to handle invalid inputs and run correctly in any
case, so it would be more useful to handle problems in try-catch blocks.

There are two places the original code can fail: in the calculateButton_Click event
handler and in the Factorial method. The event handler can fail to parse the user’s input.
The Factorial method can fail if its input is negative or too big. Each of those pieces of
code should protect itself.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

654 ❘ APPENdIx A soluTions To exerCises

The Factorial example program in this chapter’s downloads uses the following code to protect
itself from invalid inputs.

// Calculate the entered number's factorial.
private void calculateButton_Click(object sender, EventArgs e)
{
 try
 {
 // Clear the result label in case we fail.
 resultLabel.Text = "";

 // Try to parse the number entered by the user.
 long number;
 if (!long.TryParse(numberTextBox.Text, out number))
 {
 MessageBox.Show("Please enter a number.");
 numberTextBox.Select(0, numberTextBox.Text.Length);
 numberTextBox.Focus();
 return;
 }

 // Display the factorial.
 resultLabel.Text = Factorial(number).ToString();
 }
 catch (OverflowException)
 {
 MessageBox.Show("Please enter a number between 0 and 20.");
 }
 catch (ArgumentOutOfRangeException)
 {
 MessageBox.Show("Please enter a number between 0 and 20.");
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception: " + ex.GetType().Name);
 MessageBox.Show(ex.Message);
 }
}

// Return number!
private long Factorial(long number)
{
 // Make sure the number is non-negative.
 if (number < 0)
 throw new ArgumentOutOfRangeException("number",
 "Argument number must be non-negative.");

 // Check for overflow.
 checked
 {
 long result = 1;
 for (long i = 2; i <= number; i++) result *= i;
 return result;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 10 ❘ 655

The button’s event handler does all its work inside a try-catch block. The first two catch
sections display messages that the user can understand. The third catch section handles unex-
pected exceptions. Because it doesn’t know what kinds of exceptions to expect, it can’t display
a user-friendly message. Instead it just writes the exception’s name into the Console window
(so you can add a catch section for it) and displays the exception’s message to the user.

The Factorial function throws an ArgumentOutOfRangeException if its parameter
is negative. It then uses a checked block to watch for arithmetic errors and calculates the
factorial. (See the section “Casting Numbers” in Chapter 4, “Data Types, Variables, and
Constants,” for a review of checked blocks.)

ChAPtER 10

 1. The TraceFactorial example program, which is available in this book’s downloads,
includes code for Exercises 1, 2, and 4. It uses the following code to solve Exercise 1.
(Notice how the code needs to separate the recursive call from the return statement so
that it can display the method’s result before returning.)

private long Factorial(long number)
{
 Debug.WriteLine("Factorial(" + number.ToString() + ")");
 Debug.Indent();

 long result;
 if (number <= 1) result = 1;
 else result = number * Factorial(number - 1);

 Debug.Unindent();
 Debug.WriteLine("Result: " + result.ToString());
 return result;
}

 2. The TraceFactorial example program uses the following code to solve Exercise 2.

private long Factorial(long number)
{
 long result;
 if (number <= 1) result = 1;
 else result = number * Factorial(number - 1);

 Debug.WriteLine("Factorial(" + number.ToString() +
 ") = " + result.ToString());
 return result;
}

 3. You can’t do this efficiently with Debug statements alone because each call to the Factorial
method would need to know its result so that it can display it before it calls itself recursively.
But it needs to call itself recursively to find out its result.

www.EBooksWorld.ir

www.hellodigi.ir

656 ❘ APPENdIx A soluTions To exerCises

 4. One solution is to build a string holding the entire trace and then display it at the end. The
TraceFactorial example program uses the following version of the Factorial method to
solve Exercise 4.

private long Factorial(long number, ref string trace)
{
 long result;
 if (number <= 1) result = 1;
 else result = number * Factorial(number - 1, ref trace);

 // Add our information at the beginning of the trace.
 trace = "Factorial(" + number.ToString() +
 ") = " + result.ToString() + '\n' + trace;

 return result;
}

The method takes a second ref parameter that holds a string containing the method trace.
When the method is called, it calculates its value by calling itself recursively. The recursive call
sets trace equal to the trace for the recursive call (and any further recursive calls it makes).

When the recursive call returns, the current method call adds its information to the beginning
of the trace string.

The program uses the following code to call the Factorial method.

string trace = "";
resultLabel.Text = Factorial(number, ref trace).ToString();

// Display the trace.
Debug.WriteLine(trace);

This code initializes a blank trace string, calls the Factorial method and then
displays trace.

 5. The DebugLevels example program, which is available in this book’s downloads, uses the
following code to write appropriate messages.

 // Display the message if the debug level is low enough.
 private void PrintMessage(int level, string message)
 {
#if DEBUG1
 if (level <= 1) Console.WriteLine(message);
#elif DEBUG2
 if (level <= 2) Console.WriteLine(message);
#elif DEBUG3
 if (level <= 3) Console.WriteLine(message);
#elif DEBUG4
 if (level <= 4) Console.WriteLine(message);
#elif DEBUG5
 if (level <= 5) Console.WriteLine(message);
#endif
 }

www.EBooksWorld.ir

www.hellodigi.ir

chapter 10 ❘ 657

An obvious advantage of this method is that it gives as many debugging levels as you like
instead of just the two provided by the Debug and Trace classes.

One disadvantage is that it requires you to write a separate line of code for each possible
debug level. It also doesn’t support trace listeners, so you can’t use multiple listeners to send
the message to multiple locations the way the Debug and Trace classes can.

You can solve the first problem if you use a variable instead of preprocessor symbols to
determine the program’s current debugging level. That also lets you load the value in differ-
ent ways that may be more convenient that recompiling. For example, the program can load
the value at run time from a text file, configuration file, or registry setting. Then you could
change the debug level and rerun the program without needing to recompile it.

If you make the method use the Trace class to display its results, you can also take advantage
of trace listeners.

The following code shows an improved version of the method.

// The debug level. Load it from a text file, config file, registry setting, etc.
private int DebugLevel = 2;

// Display the message if the debug level is low enough.
private void PrintMessage(int level, string message)
{
 if (level <= DebugLevel) Trace.WriteLine(message);
}

 6. The MessageLog example program, which is available in this book’s downloads, uses the
following code to write messages into the message file.

static void Main(string[] args)
{
 // Remove the default Debug listener and
 // add a new TextWriterTraceListener.
 Debug.Listeners.RemoveAt(0);
 Stream stream = File.Open("Messages.txt",
 FileMode.Append, FileAccess.Write, FileShare.Read);
 Debug.Listeners.Add(new TextWriterTraceListener(stream));

 // Make Debug and Trace autoflush.
 Debug.AutoFlush = true;
 Trace.AutoFlush = true;

 // Write some messages.
 Debug.WriteLine(DateTime.Now.ToString() + ": Debug message 1");
 Trace.WriteLine(DateTime.Now.ToString() + ": Trace message 1");
 Console.WriteLine(DateTime.Now.ToString() + ": Console message 1");

 Debug.WriteLine(DateTime.Now.ToString() + ": Debug message 2");
 Trace.WriteLine(DateTime.Now.ToString() + ": Trace message 2");
 Console.WriteLine(DateTime.Now.ToString() + ": Console message 2");

 // Make the user press Enter before exiting.
 Console.WriteLine("Press Enter to exit.");

www.EBooksWorld.ir

www.hellodigi.ir

658 ❘ APPENdIx A soluTions To exerCises

 Console.ReadLine();

 // Close the logs.
 Debug.Close();
 Trace.Close();
}

 7. The DebugAndTraceLogs example program, which is available in this book’s downloads,
uses the following code to write messages into the message files.

static void Main(string[] args)
{
 // Write some messages.
 LogMessage("DebugLog.txt", "Debug message 1");
 LogMessage("TraceLog.txt", "Trace message 1");
 Console.WriteLine(DateTime.Now.ToString() + ": Console message 1");

 LogMessage("DebugLog.txt", "Debug message 2");
 LogMessage("TraceLog.txt", "Trace message 2");
 Console.WriteLine(DateTime.Now.ToString() + ": Console message 2");

 // Make the user press Enter before exiting.
 Console.WriteLine("Press Enter to exit.");
 Console.ReadLine();

 // Close the logs.
 Debug.Close();
 Trace.Close();
}

// Append a message to a text file.
private static void LogMessage(string filename, string message)
{
 System.IO.File.AppendAllText(filename,
 DateTime.Now.ToString() + ": " +
 message + '\n');
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 11 ❘ 659

ChAPtER 11

 1. You could add a new PartTimeProgrammer but it would duplicate features of the
Secretary class. The solution is to abstract those two classes to give them a common
HourlyEmployee parent class. Figure A-2 shows the new hierarchy.

Part-Time
Programmer SecretaryProgrammer

CustomerEmployee

Manager

Hourly
Employee

Salaried
Employee

Person

FIGuRE A-2: The HourlyEmployee class is an
abstraction of the PartTimeProgrammer and
Secretary classes .

 2. The following code avoids using the is statement.

foreach (Person person in AllPeople)
{
 Employee employee = person as Employee;
 if (employee != null)
 {
 // Do something Employee-specific with the person...
 ...
 }
}

Which version is better is a matter of personal preference and style. There isn’t much
difference.

www.EBooksWorld.ir

www.hellodigi.ir

660 ❘ APPENdIx A soluTions To exerCises

 3. Figure A-3 shows the inheritance hierarchy.

SalesClerkStore
Manager

Shift
Manager

Trainer
Classes

Groomer

ContractorHourly
Employee

Scheduled
Worker

Salaried
Employee

Employee
EmployeeId

Hours

Salary
HourlyRate

Customer

Person
Name
Address

CustomerId
Pets

Supplier
SupplierId
Products

HourlyPay

Janitor

FIGuRE A-3: This inheritance hierarchy represents classes used to represent people
for a pet store application . Classes with dashed outlines show abstract classes .

The classes with dashed outlines can be abstract because they don’t represent concrete
real-world objects. For example, the program will never need to create an Employee object.
Instead it can create an instance of the appropriate kind of Employee: ShiftManager,
StoreManager, Janitor, or SalesClerk. The program can still treat the objects as if they
were Employee objects if that is convenient.

In fact, the program should make those classes abstract so that no one tries to instantiate
them. Trying to create an Employee object is probably an indication of a bug. (You can
always make a class concrete later if you decide you need to instantiate it.)

You would make the classes abstract by including the abstract keyword, but they don’t
need to contain any abstract members.

 4. The PetStoreHierarchy example program shows one way to define the classes shown in
Figure A-3. In this solution, each property is defined in only one class and is inherited by
other classes.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 11 ❘ 661

 5. The “is-a” and “has-a” relationships lead to a good solution. A player “is-a” Human, Elf,
or Dwarf, and a player “has-a” weapon. That means the Player class should be part of an
inheritance hierarchy that includes the races. It should have a property that is an instance of
a weapon.

Figure A-4 shows the program’s inheritance hierarchies.

DwarfElfHuman

Player

Magic
Weapon

Missile
Weapon

Bladed
Weapon

Weapon

Sword

Spear

Dagger

Axe

Bow

Sling

Atlatl

Dart

Wand

Potion

Pendant

Doll

FIGuRE A-4: The role-playing game needs
two inheritance hierarchies, one for race and
one for weapon .

 6. This situation is a bit tricky because a player “is-a” race and also “is-a” profession. For
example, a specific player “is-a” Dwarf and “is-a” Chemist. This might suggest that you
should use multiple inheritance (implemented with interface inheritance).

The problem with that approach is it would lead to lots of classes to cover all the possible
combinations: Human/Fighter, Human/MagicUser, Dwarf/Illusionist, Elf/Witch, and so
forth. If you have N races and M professions and specialties, you would need to make N × M
classes to cover every possible combination. For the example so far, there would be 3 × 8 = 24
such combinations.

A better approach is to think a player “has-a” profession. Then you can give the Player
class a property to hold the player’s profession.

Figure A-5 shows the Profession inheritance hierarchies.

www.EBooksWorld.ir

www.hellodigi.ir

662 ❘ APPENdIx A soluTions To exerCises

Archer

Profession

RangerKnight

Fighter

ChemistWitchIllusionist

MagicUser

FIGuRE A-5: Players can have the generic class Fighter or MagicUser, so those
classes are not abstract .

 7. This situation is actually fairly simple as long as you don’t try to use inheritance. A devel-
oper “is-not-a” department, so there’s no inheritance relationship between the developer
and the department. Similarly, developer “is-not-a” project, so there’s no inheritance rela-
tionship between the developer and the project.

In this case, you can simply make the department and any assigned projects be properties of
the Developer class.

 8. The tricky part of this problem is that there are two key inheritance paths: one for students
and one for employees. The problem arises from the fact that TeachingAssistants and
ResearchAssistants are both students and employees. (The StudentId and EmployeeId
properties are the clues.)

Figure A-6 shows the inheritance hierarchy. Dashed lines represent multiple inheritance.
Alternatively, you could make the lines from ResearchAssistant and TeachingAssistant
to Student solid and make the lines from those classes to Employee dashed.

This hierarchy changes the names of the Instructor properties CurrentClasses and
PastClasses to CurrentClassesTaught and PastClassesTaught to make them the same
as the corresponding properties in the TeachingAssistant class. That clarifies the differ-
ences between a class that is being taken and a class that is being taught.

Because C# doesn’t allow multiple inheritance, you should implement the hierarchy with
interface inheritance. The program should define an IStudent interface for the Student,
ResearchAssistant, and TeachingAssistant classes to implement.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 11 ❘ 663

Student

InstructorTeaching
Assistant

Research
Assistant

Teacher

Person

Employee

Name
Address

StudentId
CurrentClasses
PastClasses

EmployeeId

CurrentClassesTaught
PastClassesTaught

Sponsor

FIGuRE A-6: The ResearchAssistant
and TeachingAssistant classes use multiple
inheritance .

 9. The StudentHierarchy example program defines the hierarchy. The most interesting classes
are those that implement the IStudent interface. The following code shows the IStudent
interface and TeachingAssistant class, which implements it.

// A student interface.
public interface IStudent
{
 int StudentId { get; set; }
 string CurrentClasses{ get; set; }
 string PastClasses{ get; set; }
}

public class TeachingAssistant : Person, IStudent
{
 public int StudentId { get; set; }
 public string CurrentClasses { get; set; }
 public string PastClasses { get; set; }
}

 10. The StudentHierarchy2 example program defines the revised hierarchy. It includes a
StudentImplementer class that implements IStudent. The following code shows the
updated StudentImplementer and TeachingAssistant classes.

// A class that implements IStudent.
public class StudentImplementer : IStudent
{
 public int StudentId { get; set; }
 public string CurrentClasses { get; set; }

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

664 ❘ APPENdIx A soluTions To exerCises

 public string PastClasses { get; set; }
}

public class TeachingAssistant : Teacher, IStudent
{
 // Delegate IStudent to a private Student object.
 private Student MyStudent = new Student();
 public int StudentId
 {
 get { return MyStudent.StudentId; }
 set { MyStudent.StudentId = value; }
 }
 public string CurrentClasses
 {
 get { return MyStudent.CurrentClasses; }
 set { MyStudent.CurrentClasses = value; }
 }
 public string PastClasses
 {
 get { return MyStudent.PastClasses; }
 set { MyStudent.PastClasses = value; }
 }
}

This version has the disadvantage that it is much longer than the previous one. It has
the advantage that all the classes that implement IStudent share the same code in the
StudentImplementer class because they delegate their properties to an object of that
class. That means if you need to debug or modify that code, you can do it in one place.

 11. You could do that but the Student class inherits from Person. The TeachingAssistant and
ResearchAssistant classes also inherit from Person via a different path through the tree.
If you make those classes delegate to Student, they essentially have the Person class in their
ancestry twice. In this example, the Person class defines Name and Address properties, so
TeachingAssistant and ResearchAssistant have two different ways to define those values.
You could simply ignore one, but it would introduce a possible source of confusion and error.

(Languages that allow multiple inheritance have methods for determining which inherited
version of a multiply defined property to use.)

 12. The new LabAssistant class wouldn’t need to worry about the IStudent interface. The
ResearchAssistant class already implements that interface, so LabAssistant would
inherit its implementation.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 12 ❘ 665

ChAPtER 12

The example programs that solve these exercises are fairly long, so their code isn’t shown here.
Download them to see how they work.

 1. Figure A-7 shows this memory arrangement.

Customer:

(Reference)
Order

Order

Order

Order

OrdersBilling
Address

Mailing
Address

FIGuRE A-7: The Customer
class contains two embedded
Address structures and an array
of Order structures .

 2. Figure A-8 shows this memory arrangement.

Customer:

(Reference)

(Reference)

(Reference)

(Reference)
Order

(Reference)
Order

(Reference) Order
(Reference)

Order

Orders
Billing
Address

Mailing
Address

FIGuRE A-8: The Customer class contains two
references to Address objects and an array of
references to Order objects .

 3. Because Customer is a class, there is little difference when passing either version of the class.
When passing by value, the program sends the method a copy of the Customer object’s ref-
erence. When passing by reference, the program sends the method a reference to the original
reference to the Customer object. In either case, the method receives only a reference, so the
program doesn’t need to send much data to the method.

If Customer were a structure passed by reference, the program would still need to pass only
a reference into the method, so there would be little difference between the two structures.

If Customer were a structure passed by value, the program would need to copy the Customer
instance and send the copy to the method. The version of Customer used in Exercise 1 would
require the program to copy two Address structures and a reference to the Orders array. The

www.EBooksWorld.ir

www.hellodigi.ir

666 ❘ APPENdIx A soluTions To exerCises

version of Customer used in Exercise 2 would require the program to copy only references to
the two Address objects and a reference to the Orders array. If the Address structure or class
is large, the version used by Exercise 2 would be more efficient because it would pass only refer-
ences to Address objects instead of copying Address structures entirely. (However, unless the
Address structure or class is really large, the practical difference will be small. In that case, you
should pick the design that makes the most logical sense instead of worrying about a tiny per-
formance difference.)

 4. If you “invoke” an event handler and no object is registered to receive it, the program
throws a System.NullReferenceException.

 5. The BankAccount example program does this.

 6. The OverdraftAccount example program does this.

 7. The OnOverdrawn example program does this.

 8. The OverdraftAccount2 example program does this. When you run the modified program
and try to reduce the account balance to a value less than –$100.00, the program does not
display a message box, but it doesn’t update the balance either.

The program behaves this way because this version of the OverdraftAccount class hides
the Overdrawn event but overrides the Balance property.

The main program uses this code to create its account object.

private BankAccount Account = new OverdraftAccount();

This code creates an OverdraftAccount object but saves it in a BankAccount variable.

Later, the program uses the following code to register to receive the Overdrawn event.

Account.Overdrawn += Account_Overdrawn;

Because the variable Account has type BankAccount, this registers the event handler to
catch the BankAccount version of the Overdrawn event. (If the OverdraftAccount class
overrode the event instead of hid it, this statement would register the event handler to catch
the OverdraftAccount version of the event.)

Finally, the OverdraftAccount class overrides the Balance property. When the program
tries to set the account’s balance to a value below –$100.00, the set accessor raises the
Overdrawn event and refuses to update the balance. But it raises the OverdraftAccount
version of the event and the main program registered to receive the BankAccount version.
Because no code registered to receive the OverdraftAccount version of the event, the event
handler doesn’t execute.

(This example shows the difference between hiding and overriding an event.)

 9. The DelegatedCustomEvent example program does this.

 10. The CustomEvent example program does this.

 11. The StudentFactory example program does this.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 13 ❘ 667

ChAPtER 13

 1. First, you can use the following directive to define an alias for the System.Security
.Cryptography namespace.

using Crypto = System.Security.Cryptography;

Then, you can refer to the class as Crypto.SHA512Managed.

Second, you can use the following directive.

using System.Security.Cryptography;

Then, you can refer to the class as SHA512Managed.

The second solution is more concise but the first is more self-documenting because it tells you
where the class is defined. That can be useful when the class has such a non-intuitive name.

 2. First, you could use the fully qualified namespaces for each of the classes. This would be
explicit but verbose.

Second, you could include a using directive such as the following to allow easy use of one
of the namespaces.

using System.Windows.Controls;

Now you can use the System.Windows.Controls version of the class without any namespace
prefix. You would need to fully qualify the System.Globalization version of the class. This
approach is more concise than the previous version but using the System.Windows.Controls
version of the class with no namespace might be confusing because you would need to remem-
ber which namespace had a using directive.

Third, you could use the following code to define aliases for both namespaces.

using Global = System.Globalization;
using Control = System.Windows.Controls;

Now you can use the abbreviations to refer to both classes. This is more concise than fully
qualified namespaces but still reminds you of each class’s namespace.

The OrderTracker example program demonstrates the solutions to Exercises 3 through 8. Note that
there may be more than one valid solution to each exercise.

 3. Code in the Algorithms namespace could use the following code.

public OrderClasses.Order order1;
public CustomerTools.Fulfillment.Order order2;

 4. Code in the OrderTools namespace could use the following code.

public CustomerTools.Fulfillment.Order order1;
public OrderClasses.Order order2;

www.EBooksWorld.ir

www.hellodigi.ir

668 ❘ APPENdIx A soluTions To exerCises

 5. You could include the following using directives to define the aliases. (You could use differ-
ent names for the aliases.)

using Ord = OrderTracker.OrderTools.OrderClasses;
using Ful = OrderTracker.CustomerTools.Fulfillment;

Code in the Algorithms namespace could then use the following code to define objects with
those aliases.

public Ord.Order order1;
public Ful.Order order2;

 6. You could define an alias for the OrderTracker.CustomerTools.Fulfillment class as in
Exercise 5. The code could use the other Order class without any namespace or alias. The
following code shows how the Customer class could define both kinds of objects.

public Order order1;
public Ful.Order order2;

 7. The Billing namespace doesn’t define any classes with names that are used elsewhere in
the hierarchy, so you can add the following using directive.

using OrderTracker.CustomerTools.Billing;

Now all code can use the Invoice class without including any namespace information.

 8. The most obvious improvement would be to rename the classes so that there are no dupli-
cate names. Perhaps you could change the name of the Fulfillment namespace’s Order
class to Shipment or PackingList (depending on the purpose of that class).

A second improvement would be to flatten the namespace hierarchy. The hierarchy doesn’t
actually help developers keep the code separate. You can do that just as easily by placing
different pieces of code in separate modules.

Often namespace hierarchies arise because pieces of an application are implemented in dif-
ferent libraries. The libraries have different namespaces to protect them from name collisions
with the other libraries. In this example, however, it’s unlikely that each namespace represents
a separate library. For example, it’s unlikely that the Fulfillment and Billing code can
work without the Customer class, so they probably weren’t developed as separate libraries.

A final simplification might be to merge the two Order classes into a single class. Whether
that would be better than leaving them as two separate classes depends on how much they
overlap. If they are practically the same class, then merging them would simplify the applica-
tion. If they serve different purposes, then it may be better to keep them as separate classes.

ChAPtER 14

 1. The PalindromeChecker example program uses the following code to do this. The key code
is highlighted in bold.

private void palindromeTextBox_TextChanged(object sender, EventArgs e)
{

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 14 ❘ 669

 string text = palindromeTextBox.Text.ToLower().Replace(" ", "");
 string reverse = new string(text.Reverse().ToArray());
 if (text == reverse)
 {
 isAPalindromeLabel.Text = "is a palindrome";
 isAPalindromeLabel.ForeColor = Color.Green;
 }
 else
 {
 isAPalindromeLabel.Text = "is not a palindrome";
 isAPalindromeLabel.ForeColor = Color.Red;
 }
}

The highlighted code uses the Reverse method to reverse the string’s characters and get an
IEnumerable<char> holding the string’s characters reversed. Next, it uses ToArray to convert
the IEnumerable<char> into a char[]. It then passes the char[] to the string class’s con-
structor to get a string holding the reverse of the original string.

Finally, the program compares the original and reversed strings and updates its display to
indicate whether they are the same.

 2. The BookLists example program uses the following code to create and initialize its
dictionary of lists.

// The book data.
private Dictionary<string, List<string>> Books =
 new Dictionary<string, List<string>>()
 {
 {"Stephen King",
 new List<string>()
 {"Carrie", "The Shining", "The Stand"}
 },
 {"Tom Clancy",
 new List<string>()
 {"The Hunt for Red October", "Red Storm Rising", "Patriot Games"}
 },
 {"Agatha Christie",
 new List<string>()
 {"The Mysterious Affair at Styles", "The Thirteen Problems"}
 },
 };

The dictionary’s initialization code contains three key/value pairs. The keys are author
names. The values are List<string> objects initialized to hold book titles.

When it loads, the program uses the following code to display the author names.

// Display the authors.
private void Form1_Load(object sender, EventArgs e)
{
 var authors =
 from entry in Books
 orderby entry.Key
 select entry.Key;

www.EBooksWorld.ir

www.hellodigi.ir

670 ❘ APPENdIx A soluTions To exerCises

 authorListBox.DataSource = authors.ToArray();
}

This code uses LINQ to select the keys (author names). It converts the result into an array
and displays the names by setting the author ListBox’s DataSource property.

When the user clicks on an author, the following code displays that author’s book titles.

// Display the books by the selected author.
private void authorListBox_SelectedIndexChanged(object sender, EventArgs e)
{
 string author = authorListBox.SelectedItem.ToString();
 List<string> books = Books[author];
 booksListBox.DataSource = books;
}

This code gets the selected author’s name and then uses it to get the value for that author.
The value is a List<string> containing the author’s book titles. The program converts that
into an array and displays the result in the book ListBox.

 3. The BookNameValueCollection example program uses the following code to create and
initialize its NameValueCollection.

// The book data.
private NameValueCollection Books =
 new NameValueCollection
 {
 {"Stephen King",
 "Carrie,The Shining,The Stand"},
 {"Tom Clancy",
 "The Hunt for Red October,Red Storm Rising,Patriot Games"},
 {"Agatha Christie",
 "The Mysterious Affair at Styles,The Thirteen Problems"},
 };

The collection’s initialization code contains three name/value pairs. The keys are author
names. Each of the values is a string holding an author’s book titles separated by commas.

When it loads, the program uses the following code to display the author names.

// Display the authors.
private void Form1_Load(object sender, EventArgs e)
{
 var authors =
 from name in Books.AllKeys
 orderby name
 select name;
 authorListBox.DataSource = authors.ToArray();
}

This code uses LINQ to select the NameValueCollection’s keys (author names). It con-
verts the result into an array and displays the names by setting the author ListBox’s
DataSource property.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 14 ❘ 671

When the user clicks on an author, the following code displays that author’s book titles.

// Display the books by the selected author.
private void authorListBox_SelectedIndexChanged(object sender, EventArgs e)
{
 string author = authorListBox.SelectedItem.ToString();
 string value = Books[author];
 string[] books = value.Split(',');
 booksListBox.DataSource = books;
}

This code gets the selected author’s name and then uses it to get the value for that author.
It uses the Split method to split the value string into an array of book titles and sets the
books ListBox’s DataSource property to the resulting array.

 4. The CarList example program does this. Download the example to see how it works.

 5. The ReverseList example program uses the following code to create and reverse its list
of characters.

private void Form1_Load(object sender, EventArgs e)
{
 // Make the original list.
 List<char> original = new List<char>() { 'A', 'B', 'C', 'D', 'E' };
 originalListTextBox.Text = new string(original.ToArray());

 // LINQ.
 var linq =
 from char letter in original
 orderby letter descending
 select letter;
 linqTextBox.Text = new string(linq.ToArray());

 // Reverse.
 List<char> reversed = new List<char>(original);
 reversed.Reverse();
 reverseTextBox.Text = new string(reversed.ToArray());

 // Stack.
 Stack<char> stack = new Stack<char>();

 // Add the characters to the stack.
 foreach (char ch in original) stack.Push(ch);

 // Remove the characters from the stack.
 List<char> result = new List<char>();
 while (stack.Count > 0) result.Add(stack.Pop());

 // Display the result.
 stackTextBox.Text = new string(result.ToArray());
}

www.EBooksWorld.ir

www.hellodigi.ir

672 ❘ APPENdIx A soluTions To exerCises

 6. A method that returns a collection is similar to an iterator, and you can use a foreach loop
to enumerate the items returned by either.

One difference is that a method returning a collection would need to generate all the items
at once and add them to the collection before the foreach loop started. In contrast, the iter-
ator generates items only as they are needed by the foreach loop. That can save some work
if the program doesn’t know how many items it must examine before it can stop.

For example, suppose the program must loop through Employee objects until it finds
one that hasn’t used 40 hours of work yet this week. A method that returned a collection
would have to build a collection containing every Employee. An iterator would only yield
Employee objects until the program found one that worked. The program could then exit
its foreach loop. (Exercise 8 gives you a chance to try this.)

 7. The ListPrimes example program does this. It uses the following Primes iterator.

// Enumerate prime numbers between startNumber and stopNumber.
public IEnumerable Primes(int startNumber, int stopNumber)
{
 // Define a lambda method that tests
 // primality of odd numbers at least 3.
 Func<int, bool> isPrime = x =>
 {
 for (int i = 3; i * i <= x; i += 2)
 if (x % i == 0) return false;
 return true;
 };

 // Return 2 if it is between startNumber and stopNumber.
 if ((2 >= startNumber) && (2 <= stopNumber)) yield return 2;

 // Make sure startNumber is positive and odd.
 if (startNumber < 3) startNumber = 3;
 if (startNumber % 2 == 0) startNumber++;

 // Loop through odd numbers in the range.
 for (int i = startNumber; i <= stopNumber; i += 2)
 {
 // If this number is prime, enumerate it.
 if (isPrime(i)) yield return i;
 }
}

The program uses the following code to display the primes.

// List primes between the two numbers.
private void listPrimesButton_Click(object sender, EventArgs e)
{
 int startNumber = int.Parse(startNumberTextBox.Text);
 int stopNumber = int.Parse(stopNumberTextBox.Text);

 primesListBox.Items.Clear();
 foreach (int i in Primes(startNumber, stopNumber))
 primesListBox.Items.Add(i);
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 15 ❘ 673

 8. The ListAllPrimes example program does this. It uses the following AllPrimes iterator.

// Enumerate prime numbers indefinitely.
public IEnumerable AllPrimes()
{
 // Define a lambda method that tests
 // primality of odd numbers at least 3.
 Func<int, bool> isPrime = x =>
 {
 for (int i = 3; i * i <= x; i += 2)
 if (x % i == 0) return false;
 return true;
 };

 // Return 2.
 yield return 2;

 // Loop through odd numbers.
 for (int i = 3; ; i += 2)
 {
 // If this number is prime, enumerate it.
 if (isPrime(i)) yield return i;
 }
}

The main program uses the following code to list primes.

// List primes between the two numbers.
private void listPrimesButton_Click(object sender, EventArgs e)
{
 int stopNumber = int.Parse(stopNumberTextBox.Text);

 primesListBox.Items.Clear();
 foreach (int i in AllPrimes())
 {
 if (i > stopNumber) break;
 primesListBox.Items.Add(i);
 }
}

ChAPtER 15

 1. The PriorityQueue example program does this. The most interesting part of the program is
the following PriorityQueue class.

public class PriorityQueue<TKey, TValue>
 where TKey : IComparable<TKey>
{
 // The list to hold the keys and values.
 List<KeyValuePair<TKey, TValue>> List =
 new List<KeyValuePair<TKey, TValue>>();

 // Add an item to the queue.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

674 ❘ APPENdIx A soluTions To exerCises

 public void Enqueue(TKey key, TValue value)
 {
 List.Add(new KeyValuePair<TKey, TValue>(key, value));
 }

 // Remove an item from the queue.
 public void Dequeue(out TKey key, out TValue value)
 {
 if (List.Count == 0)
 throw new InvalidOperationException("The PriorityQueue is empty");

 // Find the item with the lowest valued key.
 int bestIndex = 0;
 TKey bestKey = List[0].Key;
 for (int index = 1; index < List.Count; index++)
 {
 // See if this key is less than the previous best key.
 TKey testKey = List[index].Key;
 if (testKey.CompareTo(bestKey) < 0)
 {
 // Save this key.
 bestIndex = index;
 bestKey = testKey;
 }
 }

 // Return the best pair.
 key = bestKey;
 value = List[bestIndex].Value;

 // Remove the pair we are returning.
 List.RemoveAt(bestIndex);
 }

 // Return the number of items in the list.
 public int Count
 {
 get { return List.Count; }
 }
}

The class’s declaration includes generic type parameters for the keys and values that the
program will store. To find the key with the lowest value, the class must compare keys so
the TKey type must implement IComparable<TKey>.

The class uses a List<KeyValuePair<TKey, TValue>> to hold the keys and values. The
Enqueue method simply adds a new KeyValuePair object to the list.

The Dequeue method loops through the list to find the pair with the lowest key. It sets its
return values and then removes that pair from the list.

The PriorityQueue class’s Count property returns the number of items in the list. The
example program uses that property to determine when the list is empty, so the Dequeue
button should be disabled.

Download the example to see other details.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 15 ❘ 675

 2. The IncreasingQueue example program does this. The following code shows the
IncreasingQueue class.

public class IncreasingQueue<T>
 where T : IComparable<T>
{
 // The queue that holds the items.
 private Queue<T> Items = new Queue<T>();

 // The previously added item.
 private T LastValue;

 // Constructor.
 public IncreasingQueue(T lowerBound)
 {
 LastValue = lowerBound;
 }

 // Enqueue.
 public void Enqueue(T value)
 {
 // If this isn't the first item, make sure
 // it's bigger than the previous value.
 if (value.CompareTo(LastValue) <= 0)
 throw new ArgumentOutOfRangeException("value",
 "New value was not larger than the previous value");

 // Add the item.
 Items.Enqueue(value);

 // Save this value.
 LastValue = value;
 }

 // Dequeue.
 public T Dequeue()
 {
 return Items.Dequeue();
 }

 // Return the number of items.
 public int Count
 {
 get { return Items.Count; }
 }
}

This class takes a single generic type parameter. Like the previous example, this program
needs to compare items, so the type T must implement IComparable<T>.

The class starts by declaring a Queue<T> to hold the queue’s items. It then declares variable
LastValue to keep track of the last value added to the queue.

The class’s constructor sets LastValue to the lower bound it receives as a parameter.

www.EBooksWorld.ir

www.hellodigi.ir

676 ❘ APPENdIx A soluTions To exerCises

The Enqueue method does the most interesting work. It compares the new value to the
last value added to the queue and throws an exception if the new value is not larger. If
the new value is okay, the method adds it to the queue and updates LastValue.

The rest of the class simply delegates the Dequeue method and the Count property to its
internal queue.

Download the example to see other details.

 3. The following code shows one possible BoundValues method.

public static class NumberMethods
{
 // Make sure all values are between lowerBound and upperBound.
 public static void BoundValues<T>(T[] values, T lowerBound, T upperBound)
 where T : IComparable<T>
 {
 for (int i = 0; i < values.Length; i++)
 {
 if (values[i].CompareTo(lowerBound) < 0)
 values[i] = lowerBound;
 if (values[i].CompareTo(upperBound) > 0)
 values[i] = upperBound;
 }
 }
}

Notice that the NumberMethods class isn’t generic but the BoundValues method is.
The method simply loops through the array setting any values that are out of bounds
to the upper or lower bound.

 4. The following code shows one possible BoundValues method.

public static class NumberMethods
{
 // Make sure all values are between lowerBound and upperBound.
 public static List<T> BoundValues<T>(IEnumerable<T> values,
 T lowerBound, T upperBound)
 where T : IComparable<T>
 {
 List<T> result = new List<T>();
 foreach (T value in values)
 {
 if (value.CompareTo(lowerBound) < 0)
 result.Add(lowerBound);
 else if (value.CompareTo(upperBound) > 0)
 result.Add(upperBound);
 else
 result.Add(value);
 }
 return result;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 15 ❘ 677

This code creates a List<T>. Then for each item in the IEnumerable<T>, it adds one
of the item, the lower bound, or the upper bound to the result list. After it finishes its
loop, the method returns the list.

 5. The following code shows one possible MiddleValue method.

public static class NumberMethods
{
 public static T MiddleValue<T>(T value1, T value2, T value3)
 where T : IComparable<T>
 {
 T[] values = new T[] { value1, value2, value3 };
 Array.Sort(values);
 return values[1];
 }
}

This method saves the three values into an array, sorts the array, and returns the middle value.

 6. The following code shows one possible CircularQueue class.

public class CircularQueue<T>
{
 // A list to hold items.
 private List<T> List = new List<T>();

 // The index of the current item.
 private int CurrentItem = -1;

 // Add an item to the queue.
 public void Enqueue(T value)
 {
 List.Add(value);
 }

 // Return the next item in the queue.
 public T NextItem()
 {
 if (List.Count == 0)
 throw new InvalidOperationException("The CircularQueue is empty");

 // Move to the next item, wrapping around to 0 if necessary.
 CurrentItem = (CurrentItem + 1) % List.Count;

 // Return the item.
 return List[CurrentItem];
 }
}

 7. The following code shows one possible Bundle class.

public class Bundle<T>
{
 List<T> List = new List<T>();

 public void Add(T value)

www.EBooksWorld.ir

www.hellodigi.ir

678 ❘ APPENdIx A soluTions To exerCises

 {
 List.Add(value);
 }

 public override string ToString()
 {
 string result = "";
 foreach (T value in List)
 result += ";" + value.ToString();
 if (result.Length > 0) result = result.Substring(1);
 return result;
 }
}

 8. The following code shows one possible revised Bundle class.

public class Bundle<T> : List<T>
{
 public override string ToString()
 {
 string result = "";
 foreach (T value in this)
 result += ";" + value.ToString();
 if (result.Length > 0) result = result.Substring(1);
 return result;
 }
}

ChAPtER 16

 1. The PrintStars example program does this. The following code shows the program’s
BeginPrint event handler.

// The number of pages printed.
private int NumPagesPrinted = 0;

// Start at the first page.
private void starsPrintDocument_BeginPrint(object sender, PrintEventArgs e)
{
 NumPagesPrinted = 0;
}

This code declares the NumPagesPrinted variable to keep track of the number of pages that
have been printed. The BeginPrint event handler simply sets that value to 0 before starting
a new print job.

The following code shows the program’s PrintPage event handler.

// Draw stars on three pages.
private void starsPrintDocument_PrintPage(object sender, PrintPageEventArgs e)
{
 switch (++NumPagesPrinted)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 16 ❘ 679

 {
 case 1:
 DrawStar(5, e);
 break;
 case 2:
 DrawStar(7, e);
 break;
 case 3:
 DrawStar(9, e);
 break;
 }
 e.HasMorePages = (NumPagesPrinted < 3);
}

This code simply increments the page number and calls the following DrawStar method,
passing the number of points the star should have and the PrintPageEventArgs object.

// Draw a star with a given number of points.
private void DrawStar(int numPoints, PrintPageEventArgs e)
{
 // Find the center of the page.
 double cx = (e.MarginBounds.Left + e.MarginBounds.Right) / 2;
 double cy = (e.MarginBounds.Top + e.MarginBounds.Bottom) / 2;

 // Calculate the radius.
 double radius = e.MarginBounds.Width / 2;

 // Get the points.
 List<PointF> points = StarPoints(cx, cy, radius, numPoints);

 // Draw the star.
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;
 using (Pen pen = new Pen(Color.Blue, 20))
 {
 e.Graphics.DrawPolygon(pen, points.ToArray());
 }
}

The DrawStar method does all the interesting work. First, it calculates the center of the
printed page and the radius it will use to find the points on the star. It uses one-half of
the page’s width for that radius.

Next, the code calls the StarPoints method shown in the exercise’s statement to get the
points that make up the star. It finishes by drawing a polygon that connects the points.

 2. The PrintName example program does this. The following code shows the program’s
PrintPage event handler.

// Draw the name.
private void namePrintDocument_PrintPage(object sender, PrintPageEventArgs e)
{
 // Insert your name here.
 const string name = "Rod Stephens";

www.EBooksWorld.ir

www.hellodigi.ir

680 ❘ APPENdIx A soluTions To exerCises

 // Loop through bigger and bigger fonts until the name won't fit.
 int bestSize = 10;
 for (int fontSize = 10; ; fontSize++)
 {
 // Make a font if this size.
 using (Font font = new Font("Times New Roman", fontSize))
 {
 // See if the name will fit.
 SizeF size = e.Graphics.MeasureString(name, font);
 if (size.Width > e.MarginBounds.Width)
 {
 // Use this size.
 bestSize = fontSize - 1;
 break;
 }
 }
 }

 // Print the name with the best font size.
 using (Font font = new Font("Times New Roman", bestSize))
 {
 // Measure the text at this font size.
 SizeF size = e.Graphics.MeasureString(name, font);

 // Center the text.
 float x = e.MarginBounds.Left + (e.MarginBounds.Width - size.Width) / 2;
 float y = e.MarginBounds.Top + (e.MarginBounds.Height - size.Height) / 2;

 // Draw the name.
 e.Graphics.DrawString(name, font, Brushes.Green, x, y);
 }

 // We're done.
 e.HasMorePages = false;
}

This code starts with a font size of 10 points and loops through bigger and bigger font sizes.
For each size, it uses e.Graphics.MeasureString to see how big the string will be when
printed at that size. When it reaches a size that’s too big, the code saves the previous size
(that last one that let the name fit) and breaks out of its loop.

The code then makes a font with the best size and draws the name centered.

 3. The PrintPrimes example program does this. The following code shows the program’s
PrintPage event handler.

// Print primes.
private void primesPrintDocument_PrintPage(object sender, PrintPageEventArgs e)
{
 // Draw the margin bounds.
 e.Graphics.DrawRectangle(Pens.Red, e.MarginBounds);

 // Keep track of the next available X coordinate.
 float x = e.MarginBounds.Left;
 float y = e.MarginBounds.Top;

www.EBooksWorld.ir

www.hellodigi.ir

chapter 16 ❘ 681

 // Make the font.
 using (Font font = new Font("Times New Roman", 12))
 {
 // Measure a line's height.
 SizeF size = e.Graphics.MeasureString("M", font);

 // Print primes.
 foreach (int prime in AllPrimes())
 {
 // Draw this prime.
 e.Graphics.DrawString(prime.ToString(),
 font, Brushes.Black, x, y);

 // Move to the next line.
 y += size.Height * 1.2f;

 // See if we're out of room.
 if (y + size.Height > e.MarginBounds.Bottom) break;
 }
 }

 // We're done.
 e.HasMorePages = false;
}

The event handler starts by drawing the margin bounds. It then sets the x and y variables to
the coordinates of the margin bounds’ upper-left corner.

The code makes a 12-point font. It measures the M character in the font to calculate
line height.

The event handler then loops indefinitely through the values generated by the AllPrimes
iterator. See the solution to Chapter 14, “Collection Classes,” Exercise 8 for information
about that iterator.

For each prime, the program draws the prime and increases y by the height of a line. It then
checks to see if there is enough room to draw the next line of text. If the program has run
out of room, it exits its foreach loop and is done.

 4. The WpfStars example program does this. Download the example to see the details.

 5. The WpfFixedStars example program does this. The following code shows the most interesting
parts of the program.

// Create the FixedDocument's pages.
private void window_Loaded(object sender, RoutedEventArgs e)
{
 // Add the pages.
 starsFixedDocument.Pages.Add(MakePage(5));
 starsFixedDocument.Pages.Add(MakePage(7));
 starsFixedDocument.Pages.Add(MakePage(9));
}

// Make a PageContent object with a star on it.
private PageContent MakePage(int numPoints)

www.EBooksWorld.ir

www.hellodigi.ir

682 ❘ APPENdIx A soluTions To exerCises

{
 // Build this hierarchy:
 // PageContent
 // FixedPage
 // Grid
 // Polygon
 PageContent pageContent = new PageContent();
 pageContent.Width = 850;
 pageContent.Height = 1100;

 FixedPage fixedPage = new FixedPage();
 fixedPage.Width = 850;
 fixedPage.Height = 1100;
 pageContent.Child = fixedPage;

 Grid grid = new Grid();
 fixedPage.Children.Add(grid);

 Polygon star = new Polygon();
 star.Stroke = Brushes.Blue;
 star.StrokeThickness = 20.0;
 star.Points = StarPoints(425, 550, 300, numPoints);
 grid.Children.Add(star);

 // Return the PageContent object.
 return pageContent;
}

At design time, I gave the XAML code a FixedDocument element named
starsFixedDocument. When the program’s window loads, the window_Loaded event
handler executes. It calls the MakePage method three times to generate three pages of
content and adds those pages to the starsFixedDocument element’s Pages collection.

The MakePage method creates a PageContent element that contains a FixedPage element.
It sets the sizes of those elements to 850 by 1100 (8.5” by 11”).

Next, the method adds a Grid. It then adds a Polygon to the Grid. It uses the StarPoints
method to generate the polygon’s points. This method is based on the code given as a hint
for Exercise 1.

Finally, the method returns the PageContent object that contains all the content. (Download
the solution for additional details.)

ChAPtER 17

 1. Example program SystemEnvironment does this. The program uses the following code to
display the values in a dictionary returned by a call to GetEnvironmentVariables.

// Display the values in this dictionary.
private void ShowValues(ListBox lst, IDictionary values)
{
 foreach (string key in values.Keys)

www.EBooksWorld.ir

www.hellodigi.ir

chapter 17 ❘ 683

 lst.Items.Add(key + " = " + values[key].ToString());
}

The program uses this method as in the following code, which adds the machine-level
environment variables to the valuesListBox.

ShowValues(valuesListBox,
 System.Environment.GetEnvironmentVariables(
 EnvironmentVariableTarget.Machine));

 2. Example program VisualStudioVersion uses the following code to do this.

versionLabel.Text = "Visual Studio version " +
 System.Environment.GetEnvironmentVariable(
 "VisualStudioVersion");

This is a process-level variable defined by Visual Studio when it starts. It is inherited by the
executing program because Visual Studio starts that program. If you run the program outside
of Visual Studio, the variable hasn’t been defined, so the program cannot display the version.

 3. Example program ShowPaths uses the following code to do this.

// Display the paths in the Path variable.
private void Form1_Load(object sender, EventArgs e)
{
 string paths = System.Environment.GetEnvironmentVariable("PATH");
 pathsListBox.DataSource = paths.Split(new char[] { ';' });
}

 4. Example program SaveControlValues does this. It uses the RegistryTools class and
SetValue and GetValue methods similar to those described in the chapter. The following
code shows how the program saves and restores TextBox and ComboBox values.

// Load TextBox and ComboBox values.
private void Form1_Load(object sender, EventArgs e)
{
 foreach (Control ctl in Controls)
 {
 if (ctl is TextBox) ctl.Text = GetValue(ctl.Name, ctl.Text);
 else if (ctl is ComboBox) ctl.Text = GetValue(ctl.Name, ctl.Text);
 }
}

// Save TextBox and ComboBox values.
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 foreach (Control ctl in Controls)
 {
 if (ctl is TextBox) SetValue(ctl.Name, ctl.Text);
 else if (ctl is ComboBox) SetValue(ctl.Name, ctl.Text);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

684 ❘ APPENdIx A soluTions To exerCises

 5. Example program ConfigLabel uses the following code to make its label use the font specified
in the config file.

private void Form1_Load(object sender, EventArgs e)
{
 greetingsLabel.Font = Properties.Settings.Default.GreetingFont;
}

(Alternatively, you could bind the label’s font to the dynamic setting. Then you wouldn’t
need to use code to set it at run time.)

If you modify the config file and run the compiled executable, you see the new font. In fact, if
you run the program from Visual Studio, you still see the new font because the modified con-
fig file is in the same directory as the executable being run by Visual Studio.

If you delete the config file and run the compiled executable, you get the original font back.
Next, if you run the program from Visual Studio, you get the original font and Visual
Studio replaces the original config file.

 6. Example program LocalizedStrings uses the following code to do this.

public Form1()
{
 // Set the culture and UI culture to French.
 Thread.CurrentThread.CurrentCulture = new CultureInfo("fr-FR");
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("fr-FR");

 InitializeComponent();
}

// Display a greeting.
private void Form1_Load(object sender, EventArgs e)
{
 MessageBox.Show(MyStrings.Greeting);
}

When the program loads the fr-FR locale, it displays the message Salut. Visual Studio creates a
subdirectory named fr and puts the localized resource file LocalizedStrings.resources.dll in it.

 7. Example program ShowCurrency uses the following code to do this.

private void Form1_Load(object sender, EventArgs e)
{
 DateTime date = DateTime.Now;
 decimal amount = 12345.67m;
 string[] cultures =
 { "fr-FR", "de-DE", "de-CH", "es-MX", "es-ES", "en-US", "en-GB" };

 foreach (string culture in cultures)
 {
 Thread.CurrentThread.CurrentCulture = new CultureInfo(culture);
 resultsListBox.Items.Add(culture + "\t" +
 date.ToShortDateString() + "\t" +
 amount.ToString("C"));
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 18 ❘ 685

The following text shows sample results.

fr-FR 21/04/2014 12 345,67 €
de-DE 21.04.2014 12.345,67 €
de-CH 21.04.2014 Fr. 12'345.67
es-MX 21/04/2014 $12,345.67
es-ES 21/04/2014 12.345,67 €
en-US 4/21/2014 $12,345.67
en-GB 21/04/2014 £12,345.67

ChAPtER 18

 1. The WriteIntoMemoryStream example program contains the following commented out code
to do this.

// Create the stream.
using (MemoryStream stream = new MemoryStream())
{
 // Write into the stream.
 using (BinaryWriter writer = new BinaryWriter(stream))
 {
 writer.Write(textTextBox.Text);

 // Read from the stream.
 stream.Seek(0, SeekOrigin.Begin);
 using (BinaryReader reader = new BinaryReader(stream))
 {
 MessageBox.Show(reader.ReadString());
 }
 }
}

Which version seems easier to read is a matter of personal preference. The way the paren-
theses nest the BinaryReader inside the BinaryWriter’s using statement seems odd to me,
but you should use whichever technique seems most natural to you.

 2. If you don’t free a stream attached to a file, the file may remain locked until the program
ends. While it is locked, you may be unable to read, edit, or delete the file.

In contrast, if you don’t free a memory stream, the stream’s memory remains allocated until
the program ends.

A locked file can affect other programs and can be annoying if you try to read or delete the
file with Windows Explorer. Locked memory doesn’t actually affect other programs, so in
some sense failing to free a file stream is worse than failing to free a memory stream. (Both
are sloppy programming, however.)

 3. The LoadAndSaveFile example program uses the following code to do this.

// Load the file, if it exists.
private void Form1_Load(object sender, EventArgs e)
{
 // See if the file exists.

www.EBooksWorld.ir

www.hellodigi.ir

686 ❘ APPENdIx A soluTions To exerCises

 if (File.Exists("Notes.txt"))
 {
 // Read the file.
 using (StreamReader reader = new StreamReader("Notes.txt"))
 {
 notesTextBox.Text = reader.ReadToEnd();
 }
 }
}

// Save the file.
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 using (StreamWriter writer = File.CreateText("Notes.txt"))
 {
 writer.Write(notesTextBox.Text);
 }
}

 4. The WriteLine method adds a new line after the text it is writing into the file. When the pro-
gram starts, it reads that new line as part of the text it displays in the TextBox. If the program
uses WriteLine to save the text, it will write the original new line plus another one into the file.
The result is the program adds another new line every time it starts and stops. (Try it and see.)

You can avoid that by using the Write method instead of WriteLine.

 5. The LoadAndSaveFileWithPrompt example program uses the following Form_Closing
event handler to prompt the user if the text file exists.

// Save the file.
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 // See if the file exists.
 if (File.Exists("Notes.txt"))
 {
 // Prompt the user.
 DialogResult result =
 MessageBox.Show("The file exists. Do you want to overwrite it?",
 "Overwrite?",
 MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Question);

 // If the user clicked No, exit without saving.
 if (result == DialogResult.No) return;

 // If the user clicked Cancel, cancel.
 if (result == DialogResult.Cancel)
 {
 e.Cancel = true;
 return;
 }

 // If the user clicked Yes, continue to overwrite the file.
 }

www.EBooksWorld.ir

www.hellodigi.ir

chapter 18 ❘ 687

 // Save the text.
 using (StreamWriter writer = File.CreateText("Notes.txt"))
 {
 writer.Write(notesTextBox.Text);
 }
}

 6. The IsFileSorted example program uses the following FileIsSorted method to determine
whether a file’s contents are sorted.

// Return true if the file's lines are sorted.
// This method throws an exception if the file doesn't exist.
private bool FileIsSorted(string filename)
{
 // Open the file.
 using (StreamReader reader = new StreamReader(filename))
 {
 // Start with a line <= any string.
 string previousLine = "";

 // Read the lines.
 while (!reader.EndOfStream)
 {
 string nextLine = reader.ReadLine();
 if (nextLine.CompareTo(previousLine) < 0) return false;
 previousLine = nextLine;
 }
 }

 // If we get here, the file is sorted.
 return true;
}

 7. The StreamPrimes example program uses the following code to display primes and write
them in the text file. The modified code is highlighted in bold.

// List primes between the two numbers.
private void listPrimesButton_Click(object sender, EventArgs e)
{
 int stopNumber = int.Parse(stopNumberTextBox.Text);

 primesListBox.Items.Clear();

 using (StreamWriter writer = new StreamWriter("Primes.txt"))
 {
 foreach (int i in AllPrimes())
 {
 if (i > stopNumber) break;
 primesListBox.Items.Add(i);
 writer.Write(i.ToString() + " ");
 }
 }
}

The code that defines the AllPrimes iterator is the same as in the earlier program, so it isn’t
shown here. See the solution to Exercise 14-8 for that code.

www.EBooksWorld.ir

www.hellodigi.ir

688 ❘ APPENdIx A soluTions To exerCises

 8. The StreamPrimesBinary example program uses the following code to display primes and
write them in the data file.

// List primes between the two numbers.
private void listPrimesButton_Click(object sender, EventArgs e)
{
 int stopNumber = int.Parse(stopNumberTextBox.Text);

 primesListBox.Items.Clear();

 // Generate and list the primes.
 foreach (int i in AllPrimes())
 {
 if (i > stopNumber) break;
 primesListBox.Items.Add(i);
 }

 // Create a file stream.
 using (FileStream stream = new FileStream("Primes.dat", FileMode.Create))
 {
 // Create an associated BinaryWriter.
 using (BinaryWriter writer = new BinaryWriter(stream))
 {
 // Save the number of primes.
 writer.Write(primesListBox.Items.Count);

 // Save the primes.
 for (int i = 0; i < primesListBox.Items.Count; i++)
 {
 writer.Write((int)primesListBox.Items[i]);
 }
 }
 }
}

This version is different in two main ways. First, it uses a BinaryWriter instead of a
StreamWriter. Because it uses a BinaryWriter, it needs to create a file stream first for
the BinaryWriter to manipulate.

The second main difference is that it enumerates the primes before it starts writing the file.
Because it needs to save the number of primes at the beginning of the file, it needs to have
generated the primes before it writes the file so it knows how many there are.

The following code shows how the program loads the saved primes when the program starts.

// Load the saved primes.
private void Form1_Load(object sender, EventArgs e)
{
 if (File.Exists("Primes.dat"))
 {
 // Create a file stream.
 using (FileStream stream = new FileStream("Primes.dat", FileMode.Open))

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 19 ❘ 689

 {
 // Create an associated BinaryReader.
 using (BinaryReader reader = new BinaryReader(stream))
 {
 // Get the number of primes.
 int numPrimes = reader.ReadInt32();

 // Read the primes.
 for (int i = 0; i < numPrimes; i++)
 {
 primesListBox.Items.Add(reader.ReadInt32());
 }
 }
 }
 }
}

If the file exists, the program creates a FileStream and an associated BinaryReader. The
reader first reads the number of primes the file holds and then reads that many primes.

ChAPtER 19

 1. The GetDirectoryTimes example program uses the following code to display a direc-
tory’s times.

private void getTimesButton_Click(object sender, EventArgs e)
{
 string dirname = directoryTextBox.Text;
 creationTimeTextBox.Text =
 Directory.GetCreationTime(dirname).ToString();
 accessTimeTextBox.Text =
 Directory.GetLastAccessTime(dirname).ToString();
 writeTimeTextBox.Text =
 Directory.GetLastWriteTime(dirname).ToString();
}

 2. The GetSetFileTimes example program does this. The code that gets the file’s times is similar
to the code shown for the solution to Exercise 19-1 except it works with a file instead of a
directory. The following code shows how the program sets the file’s times.

private void setTimesButton_Click(object sender, EventArgs e)
{
 string filename = fileTextBox.Text;
 Directory.SetCreationTime(filename,
 DateTime.Parse(creationTimeTextBox.Text));
 Directory.SetLastAccessTime(filename,
 DateTime.Parse(accessTimeTextBox.Text));
 Directory.SetLastWriteTime(filename,
 DateTime.Parse(writeTimeTextBox.Text));
 MessageBox.Show("Done");
}

www.EBooksWorld.ir

www.hellodigi.ir

690 ❘ APPENdIx A soluTions To exerCises

 3. The GetSetFileAttributes example program does this. The following code shows how the
program gets a file’s attributes. The program gets all of the attributes in the same way, so
only
a few are shown here.

private void getAttributesButton_Click(object sender, EventArgs e)
{
 string filename = fileTextBox.Text;
 FileAttributes attributes = File.GetAttributes(filename);

 archiveCheckBox.Checked =
 (int)(attributes & FileAttributes.Archive) != 0;
 compressedCheckBox.Checked =
 (int)(attributes & FileAttributes.Compressed) != 0;
 deviceCheckBox.Checked =
 (int)(attributes & FileAttributes.Device) != 0;
 ...
}

The following code shows how the program sets a file’s attributes. The program sets all of
the attributes in the same way, so only a few are shown here.

private void setAttributesButton_Click(object sender, EventArgs e)
{
 string filename = fileTextBox.Text;
 FileAttributes attributes = 0;

 if (archiveCheckBox.Checked) attributes |= FileAttributes.Archive;
 if (compressedCheckBox.Checked) attributes |= FileAttributes.Compressed;
 if (deviceCheckBox.Checked) attributes |= FileAttributes.Device;
 ...

 File.SetAttributes(filename, attributes);
 MessageBox.Show("Done");
}

Note that the filesystem won’t allow certain combinations of attributes. For example, the
Normal attribute means the file has no other associated attributes. If the program tries to set
conflicting attributes, the SetAttributes method silently fixes them.

Also the program cannot set some attributes. For example, setting the Compressed attribute
does not magically compress a file and setting the Directory attribute cannot turn a file into
a directory. If the program tries to set one of these attributes, the SetAttributes method
silently ignores them.

 4. The LoadAndSaveFile2 example program uses the following code to do this.

// Load the saved file.
private void Form1_Load(object sender, EventArgs e)
{
 if (File.Exists("Notes.txt"))
 notesTextBox.Text = File.ReadAllText("Notes.txt");
}

// Save the text.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 19 ❘ 691

private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
 File.WriteAllText("Notes.txt", notesTextBox.Text);
}

This is much simpler than the solution to Exercise 18-3, which uses file streams to read and
write the notes file. (Unless you noticed the File class’s ReadAllText and WriteAllText
methods while you were working on Exercise 18-3. In that case, well done! But you might
want to repeat the exercise using streams just to see what they’re like.)

 5. The SortFileLines example program uses the following code to do this.

private void sortFileButton_Click(object sender, EventArgs e)
{
 string filename = fileTextBox.Text;
 string[] lines = File.ReadAllLines(filename);
 Array.Sort(lines);
 File.WriteAllLines(filename, lines);

 // Display the result.
 resultTextBox.Text = File.ReadAllText(filename);
}

 6. The ListDriveProperties example program uses the following code to do this.

private void Form1_Load(object sender, EventArgs e)
{
 string results = "";
 foreach (DriveInfo info in DriveInfo.GetDrives())
 {
 results += info.Name +
 "\r\n DriveType: " + info.DriveType.ToString() +
 "\r\n IsReady: " + info.IsReady.ToString() +
 "\r\n RootDirectory: " + info.RootDirectory.ToString() +
 "\r\n";
 if (info.IsReady)
 {
 results +=
 " AvailableFreeSpace: " + info.AvailableFreeSpace.ToString() +
 "\r\n DriveFormat: " + info.DriveFormat.ToString() +
 "\r\n TotalFreeSpace: " + info.TotalFreeSpace.ToString() +
 "\r\n TotalSize: " + info.TotalSize.ToString() +
 "\r\n VolumeLabel: " + info.VolumeLabel +
 "\r\n";
 }
 resultsTextBox.Text = results;
 }
}

 7. The ListDrivePropertiesWithSizes example program does this. This version of the program
uses the following ToFileSize method to format a file size.

public static string ToFileSize(long value)
{

www.EBooksWorld.ir

www.hellodigi.ir

692 ❘ APPENdIx A soluTions To exerCises

 string[] suffixes = { "bytes", "KB", "MB", "GB", "TB",
 "PB", "EB", "ZB", "YB" };
 for (int i = 0; i < suffixes.Length; i++)
 {
 if (value <= (Math.Pow(1024, i + 1)))
 {
 return ThreeNonZeroDigits(value / Math.Pow(1024, i)) + " " +
 suffixes[i];
 }
 }

 return ThreeNonZeroDigits(value / Math.Pow(1024, suffixes.Length - 1)) +
 " " + suffixes[suffixes.Length - 1];
}

This code finds the first power i where value ≤ 1024i+1. It then divides the value by 1024i
and returns the value’s first three digits with the appropriate suffix: KB, GB, and so forth.

For example, suppose the value is 10,000,000. Then 10243 = 1,073,741,824 is greater than
10,000,000, so the code divides 10,000,000 by 10242 = 1,048,576 and gets 9.54. The method
returns 9.54 MB.

The following code shows the ThreeNonZeroDigits method, which returns a value’s first
three digits.

private static string ThreeNonZeroDigits(double value)
{
 if (value >= 100)
 {
 // No digits after the decimal.
 return value.ToString("0,0");
 }
 else if (value >= 10)
 {
 // One digit after the decimal.
 return value.ToString("0.0");
 }
 else
 {
 // Two digits after the decimal.
 return value.ToString("0.00");
 }
}

If the value is at least 100, then it has three digits before the decimal point. In that case the
method simply returns the value with any digits after the decimal point removed.

If the value is less than 100 but at least 10, the method returns the value formatted with one
digit after the decimal point.

If the value is less than 10, the method returns the value formatted with two digits after the
decimal point.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 19 ❘ 693

 8. The ShowGrandparent example program uses the following code to do this.

private void Form1_Load(object sender, EventArgs e)
{
 grandparentTextBox.Text = Path.GetFullPath(
 Path.Combine(Application.StartupPath, "..\\.."));
}

If you run the program near the top of the directory hierarchy, the result is simply the top
of the hierarchy. For example, if you run the program in the directory C:\, the program
displays C:\.

 9. The FindFiles example program uses the following code to do this.

private void searchButton_Click(object sender, EventArgs e)
{
 filesListBox.Items.Clear();
 foreach (string filename in Directory.GetFiles(
 directoryTextBox.Text, patternTextBox.Text,
 SearchOption.AllDirectories))
 {
 filesListBox.Items.Add(filename);
 }
}

 10. The FindFilesAndSizes example program uses the following code to do this.

private void searchButton_Click(object sender, EventArgs e)
{
 string results = "";
 foreach (string filename in Directory.GetFiles(
 directoryTextBox.Text, patternTextBox.Text,
 SearchOption.AllDirectories))
 {
 FileInfo info = new FileInfo(filename);
 results += info.Name + "\r\n";
 results += " " + ToFileSize(info.Length) + "\r\n";
 }
 filesTextBox.Text = results;
}

 11. The WatchForChanges example program uses the following event handlers to display
information about directory changes in the resultsTextBox.

private void myFileSystemWatcher_Changed(object sender, FileSystemEventArgs e)
{
 resultsTextBox.AppendText(
 DateTime.Now.ToShortDateString() + ": Changed " +
 e.Name + "\r\n");
}

private void myFileSystemWatcher_Created(object sender, FileSystemEventArgs e)
{
 resultsTextBox.AppendText(
 DateTime.Now.ToShortDateString() + ": Created " +

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

694 ❘ APPENdIx A soluTions To exerCises

 e.Name + "\r\n");
}

private void myFileSystemWatcher_Deleted(object sender, FileSystemEventArgs e)
{
 resultsTextBox.AppendText(
 DateTime.Now.ToShortDateString() + ": Deleted " +
 e.Name + "\r\n");
}

private void myFileSystemWatcher_Renamed(object sender, RenamedEventArgs e)
{
 resultsTextBox.AppendText(
 DateTime.Now.ToShortDateString() + ": Renamed " +
 e.Name + "\r\n");
}

 12. The MoveToRecycleBin example program uses the following code to move a file into the
recycle bin.

// Move the file into the recycle bin.
private void recycleButton_Click(object sender, EventArgs e)
{
 FileSystem.DeleteFile(fileTextBox.Text,
 UIOption.OnlyErrorDialogs,
 RecycleOption.SendToRecycleBin);
 MessageBox.Show("Done");
}

ChAPtER 20

 1. The DownloadFile example program uses the following code to do this.

try
{
 using (WebClient client = new WebClient())
 {
 client.DownloadFile(urlTextBox.Text, fileTextBox.Text);
 }
 MessageBox.Show("Done");
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

 2. The DownloadString example program uses the following code to do this.

try
{
 using (WebClient client = new WebClient())
 {
 webBrowser1.Document.Body.InnerHtml =

www.EBooksWorld.ir

www.hellodigi.ir

chapter 20 ❘ 695

 client.DownloadString(urlTextBox.Text);
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

 3. The DownloadStringTaskAsync example program does this. The main change is to the
Download button’s Click event handler shown in the following code. Notice the async
and await keywords highlighted in bold.

// Start downloading.
async private void downloadButton_Click(object sender, EventArgs e)
{
 // Get ready to give feedback.
 webBrowser1.Navigate("about:blank");
 downloadProgressBar.Value = 0;
 downloadStatusLabel.Text = "0%";
 downloadButton.Enabled = false;
 cancelButton.Enabled = true;
 Cursor = Cursors.WaitCursor;

 // Make a Uri.
 Uri uri = new Uri(urlTextBox.Text);

 // Start the download.
 Client = new WebClient();
 Client.DownloadProgressChanged += Client_DownloadProgressChanged;

 try
 {
 // Start the download.
 string result = await Client.DownloadStringTaskAsync(uri);

 // Display the result in the WebBrowser.
 webBrowser1.Document.Body.InnerHtml = result;
 }
 catch (WebException ex)
 {
 if (ex.Status == WebExceptionStatus.RequestCanceled)
 MessageBox.Show("Canceled");
 else
 MessageBox.Show(ex.Message);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 Client.Dispose();

 // Remove the feedback.
 downloadProgressBar.Value = 0;
 downloadStatusLabel.Text = "";
 downloadButton.Enabled = true;

www.EBooksWorld.ir

www.hellodigi.ir

696 ❘ APPENdIx A soluTions To exerCises

 cancelButton.Enabled = false;
 Cursor = Cursors.Default;
}

The code is the same as the previous version up to the point where the program
calls DownloadStringTaskAsync. In the DownloadStringAsync program, the
DownloadStringCompleted event handler performs error handling. This program
doesn’t have a DownloadStringCompleted event handler so error handling must occur
here. (Even if you do use a DownloadStringCompleted event handler, the code that calls
DownloadStringTaskAsync must perform error handling.)

If the call to DownloadStringTaskAsync throws a WebException, the code determines
whether the request was canceled and displays an appropriate message if it was. If any
other exception occurred, the code displays its message text.

After the try-catch block, the code performs the tasks that were in the previous program’s
DownloadStringCompleted event handler.

 4. Removing the DownloadStringCompleted event handler is nice but the program still needs
to declare its WebClient object at the module level so that the Cancel button’s Click event
handler can use it. The code also has a separate DownloadProgressChanged event handler.
That means the code managing the download is still split into several pieces and the program
cannot dispose of the WebClient with a using statement.

If you don’t provide download progress and you don’t allow the user to cancel the download,
then only the Download button’s Click event handler needs to use the WebClient. That means
you can declare and create the WebClient in that event handler inside a using statement.
You also don’t need any event handlers. The code is much simpler but it is also less powerful
because it doesn’t provide progress reports or allow canceling.

 5. The DownloadStream example program uses the following code to do this.

using (WebClient client = new WebClient())
{
 using (Stream stream = client.OpenRead(urlTextBox.Text))
 {
 // Use the stream to create a Bitmap.
 Bitmap bitmap = new Bitmap(stream);

 // Display the result.
 imagePictureBox.Image = bitmap;
 }
}

 6. The DownloadStreamAsync example program uses the following code to do this.

// The WebClient.
private WebClient Client;

// Download the image file.
private void downloadButton_Click(object sender, EventArgs e)
{
 imagePictureBox.Image = null;

www.EBooksWorld.ir

www.hellodigi.ir

chapter 20 ❘ 697

 // Request the data stream.
 Uri uri = new Uri(urlTextBox.Text);
 Client = new WebClient();
 Client.OpenReadCompleted += Client_OpenReadCompleted;
 Client.OpenReadAsync(uri);
}

// Cancel the request.
private void cancelButton_Click(object sender, EventArgs e)
{
 Client.CancelAsync();
}

// Process the stream.
private void Client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 // See what the result was.
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 else if (e.Cancelled)
 {
 MessageBox.Show("Canceled");
 }
 else
 {
 // Get the data from the stream.
 // (You must close the stream when finished.)
 using (Stream stream = e.Result)
 {
 // Use the stream to create a Bitmap.
 Bitmap bitmap = new Bitmap(stream);

 // Display the result.
 imagePictureBox.Image = bitmap;
 }
 }

 // Make the form big enough.
 Size size = new Size(
 Math.Max(imagePictureBox.Right + 12, ClientSize.Width),
 Math.Max(imagePictureBox.Bottom + 12, ClientSize.Height));
 ClientSize = size;
}

 7. The DownloadData example program uses the following code to do this.

using (WebClient client = new WebClient())
{
 byte[] bytes = client.DownloadData(urlTextBox.Text);

 // Make a stream associated with the bytes.
 using (MemoryStream stream = new MemoryStream(bytes))

www.EBooksWorld.ir

www.hellodigi.ir

698 ❘ APPENdIx A soluTions To exerCises

 {
 // Make a bitmap from the stream.
 Bitmap bitmap = new Bitmap(stream);

 // Display the result.
 imagePictureBox.Image = bitmap;
 }
}

 8. The WebRequestDownloadData example program uses the following code to do this.

try
{
 // Make the WebRequest.
 WebRequest request = WebRequest.Create(urlTextBox.Text);

 // Use the Get method to download the file.
 request.Method = WebRequestMethods.Http.Get;

 // Get the response.
 WebResponse response = request.GetResponse();

 // Get the image from the response stream.
 // (You must close the stream when finished.)
 using (Stream stream = response.GetResponseStream())
 {
 Bitmap bitmap = new Bitmap(stream);

 // Display the result.
 imagePictureBox.Image = bitmap;
 }
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

 9. The UploadFile example program uses the following code to do this.

try
{
 WebClient client = new WebClient();
 client.Credentials = new NetworkCredential(
 usernameTextBox.Text, passwordTextBox.Text);
 client.UploadFile(urlTextBox.Text, fileTextBox.Text);
 MessageBox.Show("Done");
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 20 ❘ 699

 10. The UploadString example program uses the following code to do this.

try
{
 WebClient client = new WebClient();
 client.Credentials = new NetworkCredential(
 usernameTextBox.Text, passwordTextBox.Text);
 client.UploadString(urlTextBox.Text, stringTextBox.Text);
 MessageBox.Show("Done");
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

 11. The WebRequestUploadFile example program uses the following code to upload a byte array.

// Upload an array of bytes into a file.
private void UploadBytesIntoFile(byte[] bytes, string url,
 string username, string password)
{
 // Make the WebRequest.
 WebRequest request = WebRequest.Create(url);

 // Use the UploadFile method.
 request.Method = WebRequestMethods.Ftp.UploadFile;

 // Set network credentials.
 request.Credentials = new NetworkCredential(username, password);

 // Write the bytes into the request stream.
 using (Stream stream = request.GetRequestStream())
 {
 stream.Write(bytes, 0, bytes.Length);
 }
}

The program then uses the following method to upload files.

// Upload a file.
private void UploadFile(string filename, string url, string username,
 string password)
{
 // Read the file's contents into a byte array.
 byte[] bytes = File.ReadAllBytes(filename);

 // Upload the bytes into a file.
 UploadBytesIntoFile(bytes, url, username, password);
}

This method uses File.ReadAllBytes to read the file’s contents into a byte array. It then
calls UploadBytesIntoFile to upload the array.

www.EBooksWorld.ir

www.hellodigi.ir

700 ❘ APPENdIx A soluTions To exerCises

 12. The WebRequestUploadString example program uses the same UploadBytesIntoFile
method used by the solution to Exercise 11. The following UploadString method uses
UploadBytesIntoFile to upload a string.

// Upload a string into a file.
private void UploadString(string text, string url,
 string username, string password)
{
 // Convert the text into a byte array.
 byte[] bytes = Encoding.UTF8.GetBytes(text);

 // Write the bytes into the file.
 UploadBytesIntoFile(bytes, url, username, password);
}

This code uses Encoding.UTF8.GetBytes to convert the string into a byte array. It then
calls UploadBytesIntoFile to upload the array.

 13. The FtpListDirectory example program uses the following FtpGetShortDirectoryListing
method to get a directory listing.

// Use FTP to get a directory's file list.
private List<string> FtpGetShortDirectoryList(string url,
 string username, string password)
{
 // Make the FtpWebRequest.
 WebRequest request = WebRequest.Create(url);
 request.Method = WebRequestMethods.Ftp.ListDirectory;

 // Set network credentials.
 request.Credentials = new NetworkCredential(username, password);

 using (WebResponse response = request.GetResponse())
 {
 using (StreamReader streamReader =
 new StreamReader(response.GetResponseStream()))
 {
 // Read the response's lines.
 List<string> files = new List<string>();
 while (!streamReader.EndOfStream)
 {
 files.Add(streamReader.ReadLine());
 }
 return files;
 }
 }
}

This method creates the WebRequest, sets its Method and Credentials properties, calls
GetResponse, and calls GetResponseStream as usual. Each line of text in the response
stream gives information about one file.

The main program calls FtpGetShortDirectoryList and displays the files’ information in
a ListBox.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 20 ❘ 701

 14. The FtpListDirectoryDetail example program does this. The only difference between this
version and the solution to Exercise 13 is the following statement that sets the WebRequest
object’s Method property.

request.Method = WebRequestMethods.Ftp.ListDirectoryDetails;

 15. The FtpListDirectoryBySize example program lists files ordered by file size. It assumes the
directory listing has a format similar to the one returned for the directory ftp://nssdcftp
.gsfc.nasa.gov/photo_gallery/hi-res/astro.

The program stores information about the files in instances of the following FileData class.

// A class to hold file size information.
private class FileData
 : IComparable<FileData>
{
 public string Info;
 public long Length;
 public FileData(string info)
 {
 Info = info;
 string lengthString =
 info.Split(new char[] { ' ' },
 StringSplitOptions.RemoveEmptyEntries)[4];
 Length = long.Parse(lengthString);
 }
 public override string ToString()
 {
 return Info;
 }

 // Compare to another FileData.
 public int CompareTo(FileData other)
 {
 return Length.CompareTo(other.Length);
 }
}

The class provides an initializing constructor to make creating new instance easier. The pro-
gram displays FileData objects in a ListBox, so it overrides the class’s ToString method
so the ListBox can display the files’ data.

The class implements the IComparable<FileData> interface so the program can sort
FileData objects.

To get the directory listing, this program uses a method similar to the one used by the
solution to Exercise 14. The difference is the new version returns a list of FileData
objects representing the files instead of a list of strings.

The following code shows how the program invokes that method, sorts the result, and displays
the sorted FileData objects in its ListBox.

try
{
 // Get the directory's file data.

www.EBooksWorld.ir

www.hellodigi.ir

ftp://nssdcftp

702 ❘ APPENdIx A soluTions To exerCises

 FileData[] files =
 FtpGetDetailedDirectoryList(
 urlTextBox.Text, usernameTextBox.Text,
 passwordTextBox.Text).ToArray();

 // Sort the data.
 Array.Sort(files);

 // Display the result.
 filesListBox.DataSource = files;
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

 16. The SendEmailWithCc example program does this. The main difference between this program
and the SendEmail example program is that this program uses the following code to add the
CC e-mail name address to the MailMessage.

// Add the CC address.
if ((ccEmail.Length > 0) && (ccName.Length > 0))
 message.CC.Add(new MailAddress(ccEmail, ccName));

 17. The SendEmailWithBcc example program does this. The main difference between this pro-
gram and the solution to Exercise 16 is that this program uses the following code to add the
BCC e-mail addresses to the MailMessage.

// Add the BCC addresses.
if (bccEmails.Length > 0) message.Bcc.Add(bccEmails);

Here the string bccEmails is a comma-delimited list of e-mail addresses.

 18. The SendSms example program does this. The code to send the SMS e-mail is included in
the SendEmail example program, so it isn’t repeated here. Download the SendSms program
to see the details.

ChAPtER 21

 1. The CompressSpaces example program uses the following code to do this.

// Replace multiple whitespace with single spaces.
private void FixString()
{
 string text = inputTextBox.Text;

 // Remove initial and trailing whitespace.
 text = Regex.Replace(text, @"^\s*", "");
 text = Regex.Replace(text, @"\s*$", "");

 // Replace multiple whitespace with single spaces.
 text = Regex.Replace(text, @"\s+", " ");

www.EBooksWorld.ir

www.hellodigi.ir

chapter 21 ❘ 703

 // Display the result.
 resultTextBox.Text = "[" + text + "]";
}

The code uses the Regex class’s Replace method three times. First, it matches any number
of whitespace characters at the beginning of the string and replaces them with an empty
string. It then does the same for whitespace characters at the end of the string.

Next, the code searches for one or more occurrences of whitespace anywhere in the string
and replaces those with a single space. It then displays the result.

 2. The ListWords example program uses the following code to do this.

// List the words.
private void listWordsButton_Click(object sender, EventArgs e)
{
 string text = inputTextBox.Text;

 // Remove apostrophes. (They don't separate words.)
 text = text.Replace("'", "");

 // Split using groups of non-word characters as delimiters.
 string[] words = Regex.Split(text, @"\W+");

 // Display the words.
 wordsListBox.DataSource = words;
}

The code first removes apostrophes because they don’t represent the beginning of a new
word. It uses Regex.Split to split the string into pieces delimited by strings of one or
more nonword characters and displays the result in its ListBox.

 3. The ListMatches example program uses the following code to do this.

// Display matches in the ListBox.
private void FindMatches()
{
 matchesListBox.Items.Clear();
 try
 {
 // Make the regex object.
 Regex regex = new Regex(patternTextBox.Text);

 // Find the matches.
 foreach (Match match in regex.Matches(inputTextBox.Text))
 {
 // Display the matches.
 matchesListBox.Items.Add(match.Value);
 }
 }
 catch (Exception ex)
 {
 matchesListBox.Items.Add(ex.Message);
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

704 ❘ APPENdIx A soluTions To exerCises

This code calls the Regex object’s Matches method and loops through the result, adding
each match to the ListBox.

The reason it produces more than just three strings is the regular expression \w* matches
zero or more occurrences of word characters. For example, the spot between two semicolons
matches the expression because it contains zero or more word characters.

You can fix this by changing the regular expression to \w+ so that it matches one or more
word characters.

 4. The following text shows a regular expression that allows the program to parse phone
numbers with or without area codes. The bold characters show the changes that make
the area code optional.

^((?<NPA>[2-9][0-8]\d)-)?(?<NXX>[2-9][0-9]{2})-(?<XXXX>\d{4})$

If a phone number is missing an area code, the program simply leaves the NPA value blank.

 5. The ParsePhoneNumbers example program uses the following code to do this. The code
that gives the Regex object the Multiline option is highlighted in bold.

// Find matching groups.
private void parseButton_Click(object sender, EventArgs e)
{
 groupsListBox.Items.Clear();

 Regex regex = new Regex(patternTextBox.Text, RegexOptions.Multiline);
 foreach (Match match in regex.Matches(inputTextBox.Text))
 {
 groupsListBox.Items.Add(
 "NPA: " + match.Groups["NPA"] +
 ", NXX: " + match.Groups["NXX"] +
 ", XXXX: " + match.Groups["XXXX"]);
 }
}

The following text shows a regular expression that works for this example. The code that
removes the trailing [Return] character on each line is highlighted in bold.

^(?<NPA>[2-9][0-8]\d)-(?<NXX>[2-9][0-9]{2})-(?<XXXX>\d{4})\s*$

 6. The following text shows a regular expression that matches this kind of integer.

^[-+]?\d{1,3}(,\d{3})*$

The [-+]? matches a - or + sign zero or one times.

The \d{1,3} matches between one and three digits.

The next group contains ,\d{3}, which matches a comma followed by exactly three digits. The
group is followed by * so it can appear zero or more times.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 21 ❘ 705

 7. The following text shows a regular expression that matches this kind of floating-point number.

^[-+]?\d+(\.\d+)?$

The [-+]? matches a - or + sign zero or one times.

The \d+ matches one or more digits.

The \.\d+ matches a decimal point followed by one or more digits. That group is followed
by ? so it can appear zero or one times, so the expression won’t match strings with multiple
decimal points.

 8. The following text shows a regular expression that matches this kind of floating-point number.

^[-+]?\d{1,3}(,\d{3})*(\.\d+)?$

The [-+]? matches a - or + sign zero or one times.

The \d{1,3} matches between one and three digits.

The next group contains ,\d{3}, which matches a comma followed by exactly three digits. The
group is followed by * so it can appear zero or more times.

The \.\d+ matches a decimal point followed by one or more digits. That group is followed
by ? so it can appear zero or one times.

 9. The RearrangeNames example program uses the following code to do this.

// Rearrange the names.
private void rearrangeButton_Click(object sender, EventArgs e)
{
 resultTextBox.Text = Regex.Replace(
 namesTextBox.Text,
 @"^(\w*)\s*(\w*)(\s*)$",
 @"$2, $1$3",
 RegexOptions.Multiline);
}

The following text shows the matching expression.

^(\w*)\s*(\w*)(\s*)

This expression contains three groups. The first uses \w* to match zero or more word
characters. (This is the person’s first name.)

After the first group the expression uses \s* to match zero or more whitespace characters.
This is not in a group so anything matched here is lost.

The second group uses \w* again to match zero or more word characters. (This is the person’s
last name.)

The final group uses \s* to match zero or more whitespace characters at the end of the line.
(This is the [Return] character.)

The following text shows the replacement expression.

$2, $1$3

www.EBooksWorld.ir

www.hellodigi.ir

706 ❘ APPENdIx A soluTions To exerCises

This replaces the entire match with the second group, followed by a comma and space, fol-
lowed by the first group, followed by the third group. The result is last name, comma and
space, first name, trailing [Return].

ChAPtER 22

 1. The ThreadTimer example program uses the following code to do this.

// Create a timer to update the clock.
private void Form1_Load(object sender, EventArgs e)
{
 System.Threading.Timer timer =
 new System.Threading.Timer(TimerTick, null, 0, 500);
}

// Update the clock.
private void TimerTick(object state)
{
 // Invoke to the UI thread.
 this.Invoke((Action)UpdateClockLabel);
}

// Update the clock's label on the UI thread.
private void UpdateClockLabel()
{
 clockLabel.Text = DateTime.Now.ToString("T");
}

The only trick here is that the callback method TimerTick must use Invoke to update the
clock label because it is not running in the UI thread.

 2. The FiboTasksWaitAll example program does this. The program uses the following code to
create its Tasks and store them in an array.

Task[] tasks =
{
 new Task(FindFibonacci, 0),
 new Task(FindFibonacci, 1),
 new Task(FindFibonacci, 2),
 new Task(FindFibonacci, 3)
};

The program then uses the following code to start the Tasks.

foreach (Task task in tasks) task.Start();

Finally, the program uses the following code to wait for all the Tasks to finish.

Task.WaitAll(tasks);

www.EBooksWorld.ir

www.hellodigi.ir

chapter 22 ❘ 707

 3. The FiboTasksStartAndWaitAll example program uses the following code to create and
start its Tasks.

Task[] tasks =
{
 Task.Factory.StartNew(FindFibonacci, 0),
 Task.Factory.StartNew(FindFibonacci, 1),
 Task.Factory.StartNew(FindFibonacci, 2),
 Task.Factory.StartNew(FindFibonacci, 3),
};

This makes the program’s code slightly simpler.

 4. The FiboTasksWaitAny example program does this. The following code shows the call to
Task.WaitAny.

Task.WaitAny(tasks);

When one of the Tasks finishes, the others remain running. When the program displays its
results, some of the Tasks may not have finished.

The program uses the following code to display results only for any tasks that have finished.

for (int i = 0; i < OutputTextBoxes.Length; i++)
{
 if (tasks[i].IsCompleted)
 OutputTextBoxes[i].Text = Results[i].ToString();
}

The other Tasks continue running and their results are ignored. (You can also cancel a
Task. See “Task Cancellation” at msdn.microsoft.com/library/dd997396.aspx for
more information.)

 5. The FiboLambdaTPL example program uses the following code to start four threads
calculating Fibonacci numbers.

Parallel.For(0, 4,
 index => Results[index] = Fibonacci(Numbers[index])
);

This simplifies the code somewhat by removing the need for the FindFibonacci method.

 6. Not really. If you need to wait for all the Tasks to complete, it doesn’t matter in what order
you wait.

 7. The FiboTaskWithResults example program does this. The program uses the following code
to start its Tasks.

Task<long>[] tasks =
{
 Task<long>.Factory.StartNew(Fibonacci, Numbers[0]),
 Task<long>.Factory.StartNew(Fibonacci, Numbers[1]),
 Task<long>.Factory.StartNew(Fibonacci, Numbers[2]),
 Task<long>.Factory.StartNew(Fibonacci, Numbers[3]),
};

www.EBooksWorld.ir

www.hellodigi.ir

708 ❘ APPENdIx A soluTions To exerCises

This code creates four Task<long> objects that execute the Fibonacci method (which returns
a long result). The Fibonacci method receives as an argument the values Numbers[0],
Numbers[1], Numbers[2], and Numbers[4]. (You could even make the Numbers array local to
the event handler that creates the Tasks. Its only purpose in this program is to pass the values
into the StartNew method.)

Because the StartNew method passes the delegate an object as an argument, the
Fibonacci method must be revised to take an object as a parameter. The following
code shows the new method.

private long Fibonacci(object data)
{
 long N = (long)data;

 if (N <= 1) return 1;
 return Fibonacci(N - 1) + Fibonacci(N - 2);
}

This version of the program is somewhat simpler because it doesn’t need the FindFibonacci
method or a Results array, and the Numbers array can be stored locally in the method that
creates the Tasks.

 8. The FiboThreads example program does this. The following code shows the key code that
creates, starts, and waits for the threads.

// Launch four threads.
Thread thread0 = new Thread((ParameterizedThreadStart)FindFibonacci);
thread0.Start(0);
Thread thread1 = new Thread((ParameterizedThreadStart)FindFibonacci);
thread1.Start(1);
Thread thread2 = new Thread((ParameterizedThreadStart)FindFibonacci);
thread2.Start(2);
Thread thread3 = new Thread((ParameterizedThreadStart)FindFibonacci);
thread3.Start(3);

// Wait for the threads to complete.
thread0.Join();
thread1.Join();
thread2.Join();
thread3.Join();

This code creates and starts four Threads. It then calls each Thread’s Join method to wait
for the Thread to complete.

In my tests, there was no significant difference in performance between programs FiboTasks
and FiboThreads.

 9. The Tasks are in deadlock because each is waiting for a lock on an object that is already
locked by the other Task. They got there because Task A locks LockObjectA and then sleeps
so Task B has a chance to run. It locks LockObjectB so Task A is blocked. Task A already
locked LockObjectA so Task B is also blocked.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 22 ❘ 709

The DeadUnlock example program uses the following code for Task A.

// Task A.
private void TaskA()
{
 for (int attempts = 0; attempts < 10; attempts++)
 {
 Console.WriteLine("TaskA: Locking A");
 if (Monitor.TryEnter(LockObjectA))
 {
 try
 {
 Thread.Sleep(1);
 Console.WriteLine("TaskA: Locking B");
 if (Monitor.TryEnter(LockObjectB))
 {
 try
 {
 // Update the value.
 BestValue = ValueA;

 // We're done. Break out of the retry loop.
 Console.WriteLine("Task A: Done");
 return;
 }
 finally
 {
 Console.WriteLine("Task A: Releasing lock B");
 Monitor.Exit(LockObjectB);
 }
 }
 else
 {
 Console.WriteLine("Task A: Lock B failed");
 }
 }
 finally
 {
 Console.WriteLine("Task A: Releasing lock A");
 Monitor.Exit(LockObjectA);
 }
 }
 else
 {
 Console.WriteLine("Task A: Lock A failed");
 }
 }
}

The code used by Task B is similar so it isn’t shown here. The only difference is that Task B
tries to lock LockObjectB first and LockObjectA second.

www.EBooksWorld.ir

www.hellodigi.ir

710 ❘ APPENdIx A soluTions To exerCises

When you run this program, the Tasks still have trouble obtaining the locks they need.
The two Tasks march along almost synchronized, so they often run through the following
sequence of events:

 1. Task A locks LockObjectA.

 2. Task B locks LockObjectB.

 3. Task A fails to lock LockObjectB.

 4. Task A releases its lock on LockObjectA.

 5. Task A relocks LockObjectA.

 6. Task B fails to lock LockObjectA.

 7. Task B releases its lock on LockObjectB.

 8. Task B relocks LockObjectB.

At this point the objects each have one resource locked so the whole thing repeats from step 3.

This situation in which tasks perform actions that are synchronized enough so that they are
not in a deadlock but they still cannot get anywhere is called a livelock.

Eventually, the Tasks get a bit out of sync, so one can grab its second resource between the
other Task’s releasing and relocking it. Then the livelock is broken.

One way to prevent a livelock is to ensure that the Tasks cannot march along almost in
synch. In this example, if you make the two Tasks sleep for different amounts of time, the
livelock goes away fairly quickly.

In this example, an even more effective solution is to make the Tasks sleep a different amount
of time before trying to acquire the first lock. Then the Task that sleeps for less time can grab
both locks quickly before the other Task even starts.

An even better solution is to make both Tasks attempt to lock their objects in the same
order as explained in Exercise 11.

 10. Example program NoDeadlock does this. In this case, whichever Task locks LockObjectA
first can then lock object LockObjectB and finish its calculation. The other Task blocks
until the first Task finishes. It can then proceed without interference.

(You could also create a single lock object to represent locking both resources A and B.
Then each Task needs to acquire only one lock, so they cannot deadlock.)

 11. In this case the program throws the following exception.

An exception of type ‘System.Threading.SynchronizationLockException’ occurred in
NoDeadlock.exe but was not handled in user code.

Additional information: Object synchronization method was called from an unsynchro-
nized block of code.

If there is a handler for this exception, the program may be safely continued.

 12. In that case the object remains locked. If another Task needs to lock that object, it will
never obtain the lock.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 23 ❘ 711

ChAPtER 23

 1. The LinqTestScores example program does this. The code is similar to the code used by
the LinqToDataSetScores example program in Chapter 8 so it isn’t shown here. Download the
example to see how it works.

 2. If you don’t click Save, the program doesn’t call the data adapter’s Update method so no
new student records are saved to the database. If you restart the program you won’t find
the new records.

 3. Round trips to the database are relatively expensive, particularly if the database is located
on the other side of a network, so it’s often better to fetch or save as much data as you will
need all at once. That means using data adapters to load and save changes to DataSets can
be reasonably efficient in terms of communications costs.

However, that approach can lead to problems if the database has multiple simultane-
ous users. For example, suppose two users start the program and edit the same record.
Whichever user clicks Save second overwrites the changes made by the first user and the
first user’s changes are lost.

You could try to avoid that problem by locking the record so both users cannot edit it at
the same time. That works well if you use ADO.NET to fetch one record at a time, but it
doesn’t work well if you use a data adapter to load an entire table all at once. If one user
loads and locks the entire table, the other user can’t do anything.

Another problem with the data adapter approach arises if the database is very large. If the
Students table contains thousands of records, the program may be loading far more data
than it will ever need.

In general, using data adapters to load entire tables works well if the tables aren’t too big and
there is a single user or users who won’t try to edit the same records. For really large tables or
users who may conflict frequently, it’s often better to fetch data in more limited chunks.

 4. The CreateAndDropTable example program does this. The code is relatively straightforward
but it’s long so it isn’t shown in its entirety here. The following code shows how the program
executes the DROP TABLE command, which doesn’t fetch data.

string drop = "DROP TABLE Instructors";
using (OleDbCommand command = new OleDbCommand(drop, connection))
{
 // Execute the command.
 command.ExecuteNonQuery();
}

No the database doesn’t warn you when you try to drop a table that isn’t empty. It simply
drops the table and any data it contains is lost.

 5. If a program tries to open a connection that is already open, it throws a
System.InvalidOperationException with the message:

Additional information: The connection was not closed. The connection’s current state
is open.

www.EBooksWorld.ir

www.hellodigi.ir

712 ❘ APPENdIx A soluTions To exerCises

If a program creates a connection at the module level and uses the connection in multiple
methods, each method must be certain that it closes the connection before it exits. You
can use the finally section of a try-catch-finally block to ensure that the connection
is closed.

Alternatively you could use the following code to open the connection.

if (connection.State == ConnectionState.Closed) connection.Open();

 6. The InsertThreeRecords example program does this. The following code shows its
InsertInstructorsRecord method.

// Insert an Instructors record.
private void InsertInstructorsRecord(OleDbConnection connection, int
instructorId, string firstName, string lastName, string department)
{
 string insert =
 "INSERT INTO Instructors (InstructorId, FirstName, LastName, Department)"
 + "VALUES (" + instructorId.ToString() + ", '"
 firstName + "', '" + lastName + "', '" + department + "')";
 using (OleDbCommand command = new OleDbCommand(insert, connection))
 {
 // Execute the command.
 command.ExecuteNonQuery();
 }
}

Download the example to see the other details.

If you omit the UPDATE statement’s WHERE clause, it updates all of the records in the table. In
this example, that means every instructor’s first name is changed to Fran.

 7. The AdHocQuery example program does this. The following code shows how the program
displays a row’s values.

// Get the values.
object[] values = new object[reader.FieldCount];
reader.GetValues(values);

// Add the values to a string.
string result = "";
for (int i = 0; i < reader.FieldCount; i++)
{
 result += values[i].ToString() + " ";
}

// Display the result.
resultsListBox.Items.Add(result);

Download the example for other details.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 24 ❘ 713

ChAPtER 24

 1. The RandomPlantsWithWriter example program uses the following code to generate a random
XML plant data file.

private void createButton_Click(object sender, EventArgs e)
{
 // Get the words to use in building names.
 string text = namesTextBox.Text.ToLower();

 // Remove periods and commas.
 text = Regex.Replace(text, @"[\.,]", "");

 // Split into words.
 char[] chars = { ' ', '\r', '\n' };
 string[] words = text.Split(
 chars, StringSplitOptions.RemoveEmptyEntries);

 // Create the writer.
 using (XmlTextWriter writer = new XmlTextWriter("Plants.xml", null))
 {
 // Make it pretty.
 writer.Formatting = Formatting.Indented;

 // Write the start element.
 writer.WriteStartDocument();

 writer.WriteStartElement("Plants"); // <Plants>

 // Make the plants.
 int numPlants = int.Parse(numPlantsTextBox.Text);
 for (int i = 0; i < numPlants; i++)
 {
 writer.WriteStartElement("Plant"); // <Plant>
 writer.WriteElementString("Name", RandomName(words));
 writer.WriteElementString("Zone", Rand.Next(1, 10).ToString());
 writer.WriteElementString("Light", RandomLight());
 writer.WriteEndElement(); // </Plant>
 }
 writer.WriteEndElement(); // </Plants>
 }
 MessageBox.Show("Done");
}

 2. The RandomPlantsWithDom example program uses the following code to generate random
XML plant data file.

private void createButton_Click(object sender, EventArgs e)
{
 // Get the words to use in building names.
 string text = namesTextBox.Text.ToLower();

 // Remove periods and commas.
 text = Regex.Replace(text, @"[\.,]", "");

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

714 ❘ APPENdIx A soluTions To exerCises

 // Split into words.
 char[] chars = { ' ', '\r', '\n' };
 string[] words = text.Split(
 chars, StringSplitOptions.RemoveEmptyEntries);

 // Make the document.
 XDocument document = new XDocument();

 // Make the root node.
 XElement plants = new XElement("Plants");
 document.Add(plants);

 // Make the plants.
 int numPlants = int.Parse(numPlantsTextBox.Text);
 for (int i = 0; i < numPlants; i++)
 {
 XElement plant = new XElement("Plant");
 plant.SetElementValue("Name", RandomName(words));
 plant.SetElementValue("Zone", Rand.Next(1, 10));
 plant.SetElementValue("Light", RandomLight());
 plants.Add(plant);
 }

 // Save the file.
 document.Save("Plants.xml");

 MessageBox.Show("Done");
}

Which version of the program is better is mostly a matter of personal preference.

If you were generating a huge file, perhaps hundreds of thousands or millions of plant records,
then the version that uses XmlTextWriter would probably be better because, unlike the version
that uses the DOM, it would not need to store the entire XML document in memory all at the
same time.

 3. The FindPlantsWithDom example program uses the following code to do this.

// The DOM.
private XDocument Document;

// Load the XML data.
private void Form1_Load(object sender, EventArgs e)
{
 // Load the XML file.
 Document = XDocument.Load("Plants.xml");

 // Get the zones.
 var zones =
 from XElement zone in Document.Descendants("Zone")
 orderby zone.Value
 select zone.Value;
 zoneComboBox.DataSource = zones.Distinct().ToArray();
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 24 ❘ 715

// Display plants from the selected zone.
private void zoneComboBox_SelectedIndexChanged(object sender, EventArgs e)
{
 string selectedZone = zoneComboBox.SelectedItem.ToString();

 // Find the selected ZONE elements.
 var zones =
 from XElement zone in Document.Descendants("Zone")
 where zone.Value == selectedZone
 select zone;

 // Loop through the selected ZONE elements.
 plantsListBox.Items.Clear();
 foreach (XElement element in zones)
 {
 // Find the corresponding PLANT element's COMMON element.
 plantsListBox.Items.Add(element.Parent.Element("Name").Value);
 }
}

// Display this plant's details.
private void plantsListBox_SelectedIndexChanged(object sender, EventArgs e)
{
 // Get the selected name.
 string plantName = plantsListBox.SelectedItem.ToString();

 // Find the Name element with this value.
 var plants =
 from XElement name in Document.Descendants("Name")
 where name.Value == plantName
 select name;

 // Get the first plant's element.
 XElement plant = plants.First().Parent;

 // Display the Plant element's data.
 detailsTextBox.Text = plant.ToString();
}

 4. The FindPlantNamesWithReader example program uses the following code to do this.

// Display plant names.
private void Form1_Load(object sender, EventArgs e)
{
 // Open the file.
 using (XmlReader reader = XmlReader.Create("Plants.xml"))
 {
 // Scan the XML file's elements.
 while (reader.Read())
 {
 // See if this is a Name element.
 if (reader.Name == "Name")
 {
 // Display the name.
 //plantsListBox.Items.Add(reader.ReadElementContentAsString());

www.EBooksWorld.ir

www.hellodigi.ir

716 ❘ APPENdIx A soluTions To exerCises

 plantsListBox.Items.Add(reader.ReadInnerXml());
 }
 }
 }
}

This program and FindPlantsWithDom have different purposes, so you can’t compare them
exactly. FindPlantsWithDom is interactive and displays information when the user selects zones
or plant names. Because it might need to display data about any plant, it needs to keep the
data around. It can store it in the DOM, or it could reread the XML file every time it needed a
value. If the file were big, that would be slow. If the file were extremely big (millions of records),
rereading the file would be extremely slow, but that might be necessary to avoid loading the
entire file into memory all at once.

The FindPlantNamesWithReader program is not interactive. It needs to scan the data only
once to get the information it needs. It doesn’t need to keep the zone or light information,
so it doesn’t need to load all of the data at once.

In summary, FindPlantsWithDom needs to use the DOM because it’s interactive and will
need to use the data later. FindPlantNamesWithReader is not interactive and can get what
it needs by running through the file once.

 5. The FindPlantsWithXPath example program does this. The following code shows how it
loads its XML data and populates its ComboBox.

// The DOM.
private XDocument Document;

// Load the XML data.
private void Form1_Load(object sender, EventArgs e)
{
 // Load the XML file.
 Document = XDocument.Load("Plants.xml");

 // Get the distinct zones.
 List<string> zones = new List<string>();
 foreach (XElement zone in Document.XPathSelectElements("//Zone"))
 {
 if (!zones.Contains(zone.Value)) zones.Add(zone.Value);
 }

 // Sort the zones.
 zones.Sort();

 // Display the zones.
 zoneComboBox.DataSource = zones;
}

The code loads the XML document as before. It then uses the XPath query //Zone to find
all Zone elements. Because the program wants distinct zones, it checks its zones list and adds
only the values that are not already in the list. (You could also use a LINQ query to select the
distinct zones, but I’m trying to avoid LINQ in this example.)

www.EBooksWorld.ir

www.hellodigi.ir

chapter 24 ❘ 717

The code then sorts the zones and displays them in the ComboBox.

When the user selects a zone from the ComboBox, the program uses the following code to
display the plants in that zone.

// Display plants from the selected zone.
private void zoneComboBox_SelectedIndexChanged(object sender, EventArgs e)
{
 string selectedZone = zoneComboBox.SelectedItem.ToString();

 // Find Plant elements with the selected Zone children.
 plantsListBox.Items.Clear();

 // Find Plants that have the selected Zone as a child.
 string query = "//Plant[Zone=\"" + selectedZone + "\"]";
 foreach (XElement plant in Document.XPathSelectElements(query))
 {
 // Add the Plant's name to the list.
 plantsListBox.Items.Add(plant.Element("Name").Value);
 }
}

This code composes an XPath query similar to the following.

//Plant[Zone="1"]

This query selects Plant elements that have a Zone child with the value matching the value
selected by the user.

The code uses XPathSelectElements to find elements that satisfy the query and loops
through them. For each Plant element, the code adds the value of the element’s Name child
to the plants ListBox.

The following code shows an even more effective query.

// Find Names with parents that have the selected Zone as a child.
string query = "//Plant/Name[../Zone=\"" + selectedZone + "\"]";
foreach (XElement name in Document.XPathSelectElements(query))
{
 // Add the Plant's name to the list.
 plantsListBox.Items.Add(name.Value);
}

This query has the following format.

//Plant/Name[../Zone="1"]

The //Plant/Name part of the query selects Name elements that have Plant parents at any
depth in the document.

The brackets place a filter on the selected elements. The .. part of the filter moves to the
element’s parent, in this case the Name’s Plant element. The /Zone="1" part of the filter
means the parent element must have a child named Zone with value 1.

Taken all together this query means:

www.EBooksWorld.ir

www.hellodigi.ir

718 ❘ APPENdIx A soluTions To exerCises

Find Name elements that have parents that are Plant elements, and the Plant has a Zone
child with the value 1.

With this new query, the program needs to loop through the selected Name elements and
display their values. The previous query required the program to start at Plant elements
and find their Name elements. (Both versions of the query are in the example program, so
you can experiment with them.)

When the user selects a plant from the ListBox, the program uses the following code to
display information about the plant.

// Display this plant's details.
private void plantsListBox_SelectedIndexChanged(object sender, EventArgs e)
{
 // Get the selected name.
 string plantName = plantsListBox.SelectedItem.ToString();

 // Find the Plant with a Name child that has this value.
 string query = "//Plant[Name=\"" + plantName + "\"]";
 XElement plant = Document.XPathSelectElement(query);

 // Display the Plant element's data.
 detailsTextBox.Text = plant.ToString();
}

This code composes a query similar to the following.

//Plant[Name="id euismod pulvinar"]

It then calls XPathSelectElement to select the first Plant element with the selected name.
The code then displays that element’s data.

 6. The TransformPlants example program does this. The following code shows the XSLT file.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 exclude-result-prefixes="msxsl"
>
 <xsl:output method="html" indent="yes"/>

 <xsl:template match="Plants">
 <HTML>
 <BODY>
 <TABLE BORDER="2">
 <TR>
 <TH>Name</TH>
 <TH>Zone</TH>
 <TH>Light</TH>
 </TR>
 <xsl:apply-templates select="Plant"/>
 </TABLE>
 </BODY>
 </HTML>

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/1999/XSL/Transform
http://www.hiva-network.com/

chapter 24 ❘ 719

 </xsl:template>
 <xsl:template match="Plant">
 <TR>
 <TD>
 <xsl:value-of select="Name"/>
 </TD>
 <TD>
 <xsl:value-of select="Zone"/>
 </TD>
 <TD>
 <xsl:value-of select="Light"/>
 </TD>
 </TR>
 </xsl:template>
</xsl:stylesheet>

The following code shows how the program performs the transformation.

// Transform Plants.xml.
private void Form1_Load(object sender, EventArgs e)
{
 // Load the style sheet.
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load("PlantsToHtml.xslt");

 // Transform the file.
 xslt.Transform("Plants.xml", "Plants.html");

 // Display the result.
 string filename = Path.GetFullPath(
 Path.Combine(Application.StartupPath, "Plants.html"));
 planetsWebBrowser.Navigate(filename);
}

 7. The TransformPlanetsIntoAttributes example program does this. The following code shows
the XSLT file.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>
 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="Planets">
 <Planets>
 <xsl:apply-templates select="Planet"/>
 </Planets>
 </xsl:template>
 <xsl:template match="Planet">
 <Planet Name="{Name}"
 Distance="{Distance}"
 LengthOfYear="{LengthOfYear}"
 LengthOfDay="{Day}" />
 </xsl:template>
</xsl:stylesheet>

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/1999/XSL/Transform

720 ❘ APPENdIx A soluTions To exerCises

The program uses the following code to transform the XML file.

// Transform Planets.xml.
private void Form1_Load(object sender, EventArgs e)
{
 // Process without indenting.
 // Load the style sheet.
 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load("PlanetsToAttributes.xslt");

 // Transform the file.
 xslt.Transform("Planets.xml", "Planets2.xml");

 // Display the result.
 resultTextBox.Text = File.ReadAllText("Planets2.xml");
 resultTextBox.Select(0, 0);
}

The program also contains code to produce a nicely indented result. Download the example
to see how it works.

ChAPtER 25

 1. The SerializeStudentArray example program does this. The following code shows the heart
of the program.

// Display the students.
originalListBox.DataSource = students;

// Create a serializer that works with Student[].
XmlSerializer serializer = new XmlSerializer(typeof(Student[]));

// Create a TextWriter to hold the serialization.
string serialization;
using (TextWriter writer = new StringWriter())
{
 // Serialize the students array.
 serializer.Serialize(writer, students);
 serialization = writer.ToString();
}

// Display the serialization.
serializationTextBox.Text = serialization;

// Create a stream from which to read the serialization.
using (TextReader reader = new StringReader(serialization))
{
 // Deserialize.
 Student[] newStudents = (Student[])serializer.Deserialize(reader);

 // Display the deserialization.
 deserializedListBox.DataSource = newStudents;
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 25 ❘ 721

This code is reasonably straightforward. Its most interesting feature is that it works with the
Student[] type instead of a class as the SerializeCustomer example does.

 2. The ClassroomEditor example program uses the following code to save and load serializa-
tions of its Student list.

// The Students.
private List<Student> Students;

// Load saved Students.
private void Form1_Load(object sender, EventArgs e)
{
 // See if the serialization file exists.
 if (File.Exists("Students.xml"))
 {
 // Deserialize the file.
 // Create a serializer that works with Student[].
 XmlSerializer serializer = new XmlSerializer(typeof(List<Student>));

 // Create a stream from which to read the serialization.
 using (FileStream reader = File.OpenRead("Students.xml"))
 {
 // Deserialize.
 Students = (List<Student>)serializer.Deserialize(reader);
 }
 }
 else
 {
 // Create an empty student list.
 Students = new List<Student>();
 }

 // Display the Students.
 studentsListBox.DataSource = Students;
}

// Save Students.
private void Form1_FormClosed(object sender, FormClosedEventArgs e)
{
 // Create a serializer that works with Student[].
 XmlSerializer serializer = new XmlSerializer(typeof(List<Student>));

 // Create a StreamWriter to hold the serialization.
 using (StreamWriter writer = File.CreateText("Students.xml"))
 {
 // Serialize the student list.
 serializer.Serialize(writer, Students);
 }
}

This code is reasonably straightforward. The code that lets the user create, edit, and delete
Student objects is also straightforward (and it’s unrelated to the discussion of serialization)
so it isn’t shown here. Download the example to see how it works.

www.EBooksWorld.ir

www.hellodigi.ir

722 ❘ APPENdIx A soluTions To exerCises

 3. The XmlSerializeToString example program uses the following code to serialize and deserialize
objects as XML strings.

public static class XmlTools
{
 // Return obj's serialization as a string.
 public static string Serialize<T>(T obj)
 {
 // Create a serializer that works with the T class.
 XmlSerializer serializer = new XmlSerializer(typeof(T));

 // Create a TextWriter to hold the serialization.
 string serialization;
 using (TextWriter writer = new StringWriter())
 {
 // Serialize the object.
 serializer.Serialize(writer, obj);
 serialization = writer.ToString();
 }

 // Return the serialization.
 return serialization;
 }

 // Deserialize a serialization string.
 public static T Deserialize<T>(string serialization)
 {
 // Create a serializer that works with the T class.
 XmlSerializer serializer = new XmlSerializer(typeof(T));

 // Create a reader from which to read the serialization.
 using (TextReader reader = new StringReader(serialization))
 {
 // Deserialize.
 T obj = (T)serializer.Deserialize(reader);

 // Return the object.
 return obj;
 }
 }
}

This code should work with any object that the XmlSerializer class can understand. (For
example, it won’t work with images.)

 4. The SerializeStudentWithPicture example program does this. The only trick (aside from
the PictureBytes property that was given as a hint) is that the Student class uses the
XmlIgnore attribute to prevent the serializer from trying to serialize the Picture property.

The following code shows the Student class (with some code omitted).

public class Student
{
 public string FirstName, LastName;

www.EBooksWorld.ir

www.hellodigi.ir

chapter 25 ❘ 723

 [XmlIgnore]
 public Image Picture;

 // Return the Picture as a byte stream.
 public byte[] PictureBytes
 {
 ... Code omitted ...
 }

 ... Constructors omitted ...
}

The following text shows a small part of the serialization for a Student with a 143 × 170
pixel picture.

<?xml version="1.0" encoding="utf-16"?>
<Student xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
 <FirstName>Rod</FirstName>
 <LastName>Stephens</LastName>
 <PictureBytes>iVBORw0KGgoAAAANSUhEUgAAAI8AAACqCAYAAACUAhwWAAAABG
 ...96,130 characters omitted ...
 </PictureBytes>
</Student>

 5. The SerializeFriends example program does this. A Person object contains references to
other Person objects, which may contain references to the first Person, so the data may
contain cycles. That means you need to use a binary serialization.

The program uses the following code to load the serialization and prepare itself when it starts.

// The people.
private List<Person> People = null;

// The currently selected person.
private Person SelectedPerson = null;

// Reload saved data.
private void Form1_Load(object sender, EventArgs e)
{
 if (File.Exists("Friends.dat"))
 {
 // Deserialize the data.
 BinaryFormatter formatter = new BinaryFormatter();
 using (FileStream stream = new FileStream("Friends.dat", FileMode.Open))
 {
 People = (List<Person>)formatter.Deserialize(stream);
 }
 }
 else
 {
 // Create some initial people.
 People = new List<Person>();
 People.Add(new Person() { Name = "Archibald" });

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.hiva-network.com/

724 ❘ APPENdIx A soluTions To exerCises

 People.Add(new Person() { Name = "Beatrix" });
 People.Add(new Person() { Name = "Charles" });
 People.Add(new Person() { Name = "Delilah" });
 People.Add(new Person() { Name = "Edgar" });
 People.Add(new Person() { Name = "Francine" });
 }

 // Add all people to the friends list.
 foreach (Person person in People)
 friendsCheckedListBox.Items.Add(person);

 // Display the people.
 personListBox.DataSource = People;
}

The only non-obvious thing here is that the program uses the variable SelectedPerson to
keep track of the Person who is currently selected in the ListBox on the left.

When the user selects a person from the ListBox on the left, the following code executes.

// Select this person's friends.
private void personListBox_SelectedIndexChanged(object sender, EventArgs e)
{
 // Update the currently selected person's friends.
 UpdateFriends();

 // Update the selected person.
 SelectedPerson = (Person)personListBox.SelectedItem;

 // Check the newly selected person's friends.
 for (int i=0; i<friendsCheckedListBox.Items.Count; i++)
 {
 bool isFriend =
 SelectedPerson.Friends.Contains(friendsCheckedListBox.Items[i]);
 friendsCheckedListBox.SetItemChecked(i, isFriend);
 }
}

The code first calls UpdateFriends (described shortly) to save any changes to the previously
selected person’s Friends list.

Next, the code saves a reference to the newly selected person in the SelectedPerson variable.
It then loops through the items in the friends CheckedListBox on the right. The program
checks or unchecks the people in the CheckedListBox depending on whether they are in the
newly selected person’s Friends list.

The following code shows the UpdateFriends method.

// Update the currently selected person's friends.
private void UpdateFriends()
{
 if (SelectedPerson != null)
 {
 SelectedPerson.Friends = new List<Person>();

www.EBooksWorld.ir

www.hellodigi.ir

chapter 26 ❘ 725

 foreach (object friend in friendsCheckedListBox.CheckedItems)
 SelectedPerson.Friends.Add((Person)friend);
 }
}

If the selected person is not null, the code sets that person’s Friends list to a new
List<Person>. It then adds the checked items in the CheckedListBox on the right to
the person’s new Friends list.

The following code shows how the program saves the friend data when it closes.

// Save the friend data.
private void Form1_FormClosed(object sender, FormClosedEventArgs e)
{
 // Update the currently selected person's friends.
 UpdateFriends();

 // Save the data.
 BinaryFormatter formatter = new BinaryFormatter();
 using (FileStream stream = new FileStream("Friends.dat", FileMode.Create))
 {
 formatter.Serialize(stream, People);
 }
}

The code calls UpdateFriends to save any changes to the currently selected person. It then
creates a BinaryFormatter and uses it to save the People list.

ChAPtER 26

 1. The EditPerson example program does this. Download the example to see the details.

When you select a property in the PropertyGrid, it displays the Description attribute’s
value to give the user information about the property.

By default, the PropertyGrid groups properties by their Category attributes. If you click the
Alphabetical button, the grid displays the properties alphabetically instead of by category.

 2. The EditPerson example program does this. Download the example and search for the
following directive to see the new code.

#if Exercise2

 3. The UseDrawingAddIns example program does this. The following code shows how the
program searches for DLLs and classes within any DLLs it finds.

// Load available tools.
private void Form1_Load(object sender, EventArgs e)
{
 // Create a Bitmap.
 Picture = new Bitmap(

www.EBooksWorld.ir

www.hellodigi.ir

726 ❘ APPENdIx A soluTions To exerCises

 imagePictureBox.ClientSize.Width,
 imagePictureBox.ClientSize.Height);
 imagePictureBox.Image = Picture;

 // Look for assemblies.
 foreach (string filename in
 Directory.GetFiles(Application.StartupPath, "*.dll"))
 {
 // Load this assembly.
 Assembly dll = Assembly.LoadFile(filename);

 // Look for classes that have Draw methods.
 foreach (Type type in dll.GetTypes())
 {
 // Make sure this is a class.
 if (!type.IsClass) continue;

 // Find the Draw method.
 MethodInfo methodInfo = type.GetMethod("Draw");
 if (methodInfo == null) continue;

 // Make sure it's a static method.
 if (!methodInfo.IsStatic) continue;

 // Make sure it takes a Graphics object as a parameter.
 ParameterInfo[] parameters = methodInfo.GetParameters();
 if (parameters.Length != 1) continue;
 if (parameters[0].ParameterType != typeof(Graphics)) continue;

 // We can use this method!

 // Get the class's DisplayName atttribute.
 Attribute attribute =
 type.GetCustomAttribute(typeof(DisplayNameAttribute));
 string toolName;
 if (attribute == null) toolName = type.Name;
 else
 {
 DisplayNameAttribute attr = attribute as DisplayNameAttribute;
 toolName = attr.DisplayName;
 }

 // Create a menu item for this method.
 ToolStripItem item = toolsMenu.DropDownItems.Add(toolName);
 item.Tag = methodInfo;

 // Set a Click event handler for the menu item.
 item.Click += item_Click;
 }
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

chapter 26 ❘ 727

The following code shows how the program invokes a tool.

// The bitmap we are displaying.
private Bitmap Picture;

// Invoke a menu item's method.
private void item_Click(object sender, EventArgs e)
{
 using (Graphics gr = Graphics.FromImage(Picture))
 {
 // Get the menu item's MethodInfo.
 ToolStripMenuItem item = sender as ToolStripMenuItem;
 MethodInfo methodInfo = item.Tag as MethodInfo;

 // Invoke the method.
 object[] args = { gr };
 methodInfo.Invoke(null, args);
 }

 imagePictureBox.Refresh();
}

The UseDrawingAddIns program uses DLLs built by the DrawingAddIns and
MoreDrawingAddIns example projects.

 4. The UseDrawingAddIns2 example program does this. The MultipleDrawingAddIns project
creates a DLL that this program can load. Download the examples to see how they work.

 5. The UseDrawingAddIns3 example program uses this approach. The
MultipleDrawingAddIns2 project creates a DLL that this program can load.
Download the examples to see how they work.

 6. There are a couple ways you can avoid the restriction of putting the DrawingAddInAttribute
class in the DrawingAddIn namespace.

If you allow the class to be defined in any namespace, you can search the DLL to find the
class. That takes more effort but should work. It has problems, however, if the DLL defines
a DrawingAddInAttribute class in more than one namespace. In that case, an add-in
method could use any of the defined classes and you wouldn’t know which of the attribute
types to use.

Another approach would be to use GetCustomAttributes to iterate through the method’s
attributes. You could then use each attribute’s ToString method to see if its name were
DrawingAddInAttribute.

www.EBooksWorld.ir

www.hellodigi.ir

728 ❘ APPENdIx A soluTions To exerCises

ChAPtER 27

 1. The EncryptWithRandom example program does this. The following code shows how the
program gets the user’s inputs.

// Encrypt.
private void encryptButton_Click(object sender, EventArgs e)
{
 // Get the plaintext converted to uppercase.
 string plaintext = plaintextTextBox.Text.ToUpper();

 // Remove non-alphabetic characters.
 plaintext = Regex.Replace(plaintext, "[^A-Z]", "");

 // Get the key.
 int key = int.Parse(keyTextBox.Text);

 // Encrypt.
 ciphertextTextBox.Text = Encrypt(key, plaintext);
}

The program gets the plaintext and uses the ToUpper string method to convert it into upper-
case. It then uses the Regex regular expression class to remove all non-alphabetic characters.

The code gets the user’s key and calls the following Encrypt method to encrypt the message.

private string Encrypt(int key, string plaintext, bool encrypting = true)
{
 // Make the Random object.
 Random rand = new Random(key);

 // Encrypt.
 string ciphertext = "";
 foreach (char ch in plaintext)
 {
 int chNum = ch - 'A';

 // Add or remove a random number between 0 and 26.
 if (encrypting) chNum += rand.Next(0, 26);
 else chNum -= rand.Next(0, 26) - 26;

 chNum = chNum % 26;

 ciphertext += (char)('A' + chNum);
 }

 return ciphertext;
}

This method uses the key to initialize a Random object. It then loops through the message
characters.

It converts each character into a number between 0 and 25 where A = 0, B = 1, and so forth.
If it is encrypting, the method adds a random value between 0 and 25 to each character. If it

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

chapter 27 ❘ 729

is decrypting, the method subtracts a random value between 0 and 25 from each character.
It takes the new value modulo 26 and converts the result back into a letter.

The oddest trick here is that the code adds 26 to the character’s number if it is decoding. For
example, if the ciphertext letter is B = 1 and the random value subtracted is 10, then 1 – 10 =
–9. In C# the modulus operator % doesn’t care if its result is negative, so it leaves this value –9,
which does not convert back into a letter. The code adds 26, so the program calculates (–9 +
26) % 26 = 17 % 26 = 17, which converts to the letter R.

 2. The BreakRandomCipher example program does this. It’s mostly straightforward, so down-
load the example to see how it works. The following code shows the trickiest part, which
uses LINQ to find the largest letter frequency.

// Get the letter frequencies.
var query =
 from char ch in plaintext
 group ch by ch into g
 select g.Count();

// See how big the largest frequency is.
if (query.Max() / (float)plaintext.Length > maxFrequency)
{
 // Hopefully this is it.
 ...
}

This code uses LINQ to get the letter counts in the plaintext. It then divides the largest
count by the number of letters in the message and compares that to the test frequency.

 3. This approach doesn’t work well for short messages because the letter frequencies in short
messages may not match normal language usage. For example, in English the letter E appears
most often, but it doesn’t appear at all in the message “All good plans will bring victory!”

 4. You could look at a measure of the distribution of the letters in the plaintext to see if it matches
what you expect for a correct decryption. For example, you could see if the top three letters
have frequencies around 12 percent, 9 percent, and 8 percent, the frequencies of the letters
E, T, and A in English, respectively. Or you could see if the standard deviations of the letters
are large. Unfortunately, both of those techniques are relatively time-consuming. The method
described in the exercise is less reliable, so it won’t work well with short messages, but it is
much faster.

You might make the test a bit more reliable if you look at the largest and smallest frequencies.

 5. This program looks only at relative letter frequencies, so it should work with any language
where messages have uneven frequency distributions. The biggest change would be to allow
the program to work with characters that don’t lie between A and Z such as ö and ß.

 6. The RandomIntegers example program uses the following code to provide the GetInt method.

public static class MyRandom
{
 // The RNG.
 private static RNGCryptoServiceProvider Rand = new RNGCryptoServiceProvider();

www.EBooksWorld.ir

www.hellodigi.ir

730 ❘ APPENdIx A soluTions To exerCises

 // Return a random int.
 public static int GetInt()
 {
 // A buffer to hold random bytes.
 byte[] bytes = new byte[4];

 // Get 4 random bytes.
 Rand.GetBytes(bytes);

 // Convert the bytes into an integer.
 return BitConverter.ToInt32(bytes, 0);
 }
}

 7. The RandomFloats example program uses the following code to return random double
values between 0 and 1.

public static double NextDouble()
{
 byte[] bytes = new byte[8];
 Rand.GetBytes(bytes);
 UInt64 randomInt = BitConverter.ToUInt64(bytes, 0);
 return randomInt / (1.0 + UInt64.MaxValue);
}

 8. The RandomInRange example program uses the following code to provide the NextDouble
method and the new version of the GetInt method.

// Return a random integer within a range.
// Includes min and excludes max.
public static int GetInt(int min, int max)
{
 return (int)(min + (NextDouble() * (max - min)));
}

// Return a double between 0 (inclusive) and 1 (exclusive).
public static double NextDouble()
{
 byte[] bytes = new byte[8];
 Rand.GetBytes(bytes);
 UInt32 randomInt = BitConverter.ToUInt32(bytes, 0);
 return randomInt / (1.0 + UInt32.MaxValue);
}

 9. The DefaultKeyAndIVMethods example program does this. The code in the encryption and
decryption methods is similar to the code used by the original DefaultKeyAndIV program,
so it isn’t shown here.

 10. The DefaultKeyAndIVExtensions example program does this. The encryption and
decryption code is similar to the code used by the original DefaultKeyAndIV program,
so it isn’t shown here.

www.EBooksWorld.ir

www.hellodigi.ir

chapter 27 ❘ 731

 11. The EncryptWithPassword example program does this. Download it to see how it works.

If you try to decrypt a message with the wrong password, even a password that is wrong by
a single character, the decryption operation throws an exception.

A bAd PAd

In my tests, the decryption operation throws a ListDictionaryInternalException
with the message, “Padding is invalid and cannot be removed.” The AesManaged class
uses a block cipher, which means it breaks the message up into blocks and encrypts
them separately. It uses a padding scheme to make the blocks the length it requires.
This exception basically means the object tried to decrypt the encrypted bytes but the
result didn’t have the required padding.

To make a long story short, the decryption failed.

If you set the AesManaged object’s Padding property to PaddingMode.None during
decryption, the decryption will not worry about padding and will return a decrypted
result. However, if the password is even a little wrong, the result is complete gibberish.

 12. The RSAReceiver and RSASender example programs do this. They’re relatively straight-
forward, so download them to see how they work.

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Data Types
The following table summarizes the C# data types.

tyPE SIzE VALuE

bool 2 bytes Must be true or false .

byte 1 byte 0 to 255 (unsigned byte) .

sbyte 1 byte –128 to 127 (signed byte) .

char 2 bytes 0 to 65,535 (unsigned character) .

short 2 bytes –32,768 to 32,767 .

ushort 2 bytes 0 through 65,535 (unsigned short) .

int 4 bytes –2,147,483,648 to 2,147,483,647 .

uint 4 bytes 0 through 4,294,967,295 (unsigned integer) .

long 8 bytes –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 .

ulong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned long) .

decimal 16 bytes 0 to +/–79,228,162,514,264,337,593,543,950,335 with no
decimal point .

0 to +/–7 .9228162514264337593543950335 with
28 significant diits .

float 4 bytes –3 .4028235E+38 to –1 .401298E-45 (negative values) .

1 .401298E–45 to 3 .4028235E+38 (positive values) .

double 8 bytes –1 .79769313486231570E+308 to –4 .94065645841246544E–324
(negative values) .

4 .94065645841246544E–324 through
1 .79769313486231570E+308 (positive values) .

B

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

734 ❘ APPENdIx b daTa TyPes

tyPE SIzE VALuE

string varies Depending on the platform, approximately 0 to 2 billion
Unicode characters .

DateTime 8 bytes January 1, 0001 0:0:00 to December 31, 9999 11:59:59 p .m .

object 4 bytes Points to any type of data .

(class) varies Class members have their own ranges .

(structure) varies Structure members have their own ranges .

CAStING ANd CONVERtING VALuES

You can use a cast to convert a value into a compatible data type. For example, the following code
declares and initializes a long variable. It then uses a cast to convert the long into an int and save
the result in a new int variable. The cast operator is highlighted in bold.

long longValue = 10;
int intValue = (int)longValue;

The Convert class also provides methods for converting from one data type to another. The following
table lists the most useful Convert class functions.

FuNCtION

ToBoolean ToInt64

ToByte ToSByte

ToChar ToSingle

ToDateTime ToString

ToDecimal ToUInt16

ToDouble ToUInt32

ToInt16 ToUInt64

ToInt32

All the Convert class methods provide many overloaded versions to convert different kinds of values.
For example, ToInt32 has different versions that take parameters that are bool, byte, string, and
other data types.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

casting and converting Values ❘ 735

The integer functions ToInt16, ToInt32, ToInt64, ToUInt16, ToUInt32, and ToUInt64 also provide
overloaded versions that take as parameters a string value and a base, which can be 2, 8, 10, or 16 to
indicate whether the string is in binary, octal, decimal, or hexadecimal, respectively. For example, the
following statement converts the binary value 00100100 into the integer value 36.

int value = Convert.ToInt32("00100100", 2)

The BitConverter class provides methods for converting variables to and from arrays of bytes.

widening and Narrowing Conversions
In a widening conversion, the destination data type can hold any value held by the source data type. For
example, a long can hold any value that fits in an int, so the following code is a widening conversion.

int intValue = 100;
long longValue = intValue;

Because this conversion must succeed, no casting or other operation is required.

In a narrowing conversion, the destination data type may not hold any value held by the source
data type. For example, an int cannot necessarily hold any value that fits in a long, so the follow-
ing code is a narrowing conversion.

long longValue = 100;
int intValue = (long)longValue;

Because this is a narrowing conversion, the casting operator is required, and the operation may
throw an exception if the value cannot fit in the destination data type.

Converting Objects
Converting an object into a less derived ancestor class is a widening conversion, so it doesn’t require
casting. Conversely converting an object into a more derived descendant class is a narrowing conver-
sion, so it requires casting.

For example, suppose the Employee class is derived from the Person class. Then the following code
shows a widening conversion followed by a narrowing conversion.

Employee employee = new Employee();
Person person = new Person();
Employee employee2 = (Employee)person;

the as Operator
The as operator provides a shorthand for converting objects from one type to another. The following
code converts the value in variable person into a Student and saves it in variable student.

student = person as Student;

If the value cannot be converted into a Student (for example, if person is a Janitor), then the as
operator returns null.

www.EBooksWorld.ir

www.hellodigi.ir

736 ❘ APPENdIx b daTa TyPes

Casting Arrays
You can cast variables of array types. For example, an array of Student objects is also an array of
Person objects because a Student is a type of Person. The following code demonstrates implicit
and explicit array conversions.

// Make an array of Students.
Student[] students = new Student[10];

// Implicit cast to an array of Persons.
// (A Student is a type of Person.)
Person[] persons = students;

// Explicit cast back to an array of Students.
students = (Student[])persons;

PARSING VALuES

Data types have parsing methods that convert string values into values of the data type. For example,
the following code parses the text in the TextBox named numValuesTextBox and saves the result in the
integer variable numValues.

int numValues = int.Parse(numValuesTextBox.Text);

The data types also provide TryParse methods that attempt to parse a string and return a boolean
value indicating whether they succeeded.

www.EBooksWorld.ir

www.hellodigi.ir

Variable Declarations
The following code shows the syntax for declaring a variable inside a method.

«const» type«[]» name «= value»;

The following list describes the pieces of this declaration.

➤➤ const—If you include this, the variable is a constant and its value cannot be changed
later. Use the value to assign the constant a value.

➤➤ type—The data type you want the variable to have.

➤➤ []—Include empty square brackets [] to make an array.

➤➤ name—The name you want the variable to have.

➤➤ = value—The value you want the variable to initially have.

C# enables you to declare and initialize more than one variable in a single declaration statement,
but this can make the code more difficult to read.

The following code shows the syntax for declaring a variable outside of any method (at the
class level).

«attributes» «accessibility»
 «const | readonly | static | volatile | static volatile»
 type«[]» name «= value»

The following list describes the pieces of this declaration.

➤➤ attributes—Attributes that specify extra properties for the variable.

➤➤ accessibility—One of public, internal, protected, internal protected, or
private. The default is private.

➤➤ const—If you include this, the variable is a constant and its value cannot be changed
later. Use the value to assign the constant a value.

➤➤ readonly—If you include this, the variable is similar to a constant except its value can
be set either with a value clause or in the class’s constructor.

C

www.EBooksWorld.ir

www.hellodigi.ir

738 ❘ APPENdIx C variable deClaraTions

➤➤ static—This keyword indicates the variable is shared by all instances of the class.

➤➤ volatile—This keyword indicates the variable might be modified by code running in mul-
tiple threads running at the same time.

➤➤ type—The data type you want the variable to have.

➤➤ []—Include empty square brackets [] to make an array.

➤➤ name—The name you want the variable to have.

➤➤ = value—The value you want the variable to initially have.

INItIALIzAtION ExPRESSIONS

Initialization expressions assign a value to a new variable. Simple expressions assign a literal value
to a simple data type. The following example sets the value of a new string variable.

string txt = "Test";

The assignment expression can also initialize a variable to the result of a method or constructor, as
in the following example.

Person person = new Person("Rod", "Stephens"); // Constructor.
int numTools = CountTools(); // Method.

An initialization expression for an object can specify values for the object’s public properties as in
the following example, which sets the object’s FirstName and LastName properties.

Person rod = new Person() { FirstName = "Rod", LastName = "Stephens" };

To create an array of a certain size, set it equal to a new array of the required type with the number
of items in its dimensions inside brackets. For example, the following code creates an array that
holds 10 entries with indices 0 through 9.

decimal[] salaries = new decimal[10];

To initialize a one-dimensional array, put the array’s values inside braces separated by commas, as
in the following code.

int[] fibonacci = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 };

To initialize higher-dimensional arrays, place lower-dimensional array values inside braces and sep-
arate them with commas, as in the following example, which initializes a two-dimensional array.

int[,] values =
{
 {1, 2, 3},
 {4, 5, 6}
};

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

enumerated Type Declarations ❘ 739

To initialize a collection class that provides an Add method, create a new instance of the class fol-
lowed by initial values enclosed in braces, as in the following code.

List<string> pies = new List<string>()
{
 "Apple", "Banana", "Cherry", "Coconut Cream"
};

If the collection’s Add method takes more than one parameter, group parameters in brackets, as in
the following example.

Dictionary<string, string> directory = new Dictionary<string, string>()
{
 {"Alice Artz", "940-283-1298"},
 {"Bill Bland", "940-237-3827"},
 {"Carla Careful", "940-237-1983"}
};

uSING

To make it easy to call an object’s Dispose method, you can declare the object inside a using
statement. When the code reaches the end of the using block, the program automatically calls the
object’s Dispose method.

For example, the following code creates a Graphics variable named gr that is automatically disposed
when the using block ends.

using (Graphics gr = Graphics.FromImage(bm))
{
 ...
}

ENuMERAtEd tyPE dECLARAtIONS

The syntax for declaring an enumerated type is as follows.

«attributes0» «accessibility» enum name
 «: type»
{
 «attributes1» name1 «= value1»,
 «attributes2» name2 «= value2»,
 ...
}

The pieces of this declaration are as follows.

➤➤ attributes0—Attributes that specify extra properties for the enumeration.

➤➤ accessibility—This determines which code can access the variable.

➤➤ name—The name you want to give the enumeration.

www.EBooksWorld.ir

www.hellodigi.ir

740 ❘ APPENdIx C variable deClaraTions

➤➤ : type—All enumerations are stored internally as integer values. By default, an enumera-
tion’s type is int. You can use this part of the declaration to change the underlying type to
byte, sbyte, short, ushort, int, uint, long, or ulong (any integer type except char).

➤➤ attributes1, attributes2—Attributes that specify extra properties for the enumerators.

➤➤ name1, name2—The names of the enumerators.

➤➤ value1, value2—The integer value that should be used to store this enumerator. By default,
the first enumerator is represented by 0, and the values of subsequent enumerators are
increased by 1.

www.EBooksWorld.ir

www.hellodigi.ir

Constant Declarations
Constant declarations are similar to the variable declarations described in Appendix C, “Variable
Declarations.” The main differences are you must include an initialization statement to give the
constant a value and you cannot change the value after the constant is initialized.

You may also need to use a literal type character to explicitly give a value’s type. For example,
the following code attempts to create a float constant and set its value to 5.8. Unfortunately,
C# interprets the literal string 5.8 as a double and not a float, so Visual Studio flags this as
an error.

const float taxRate = 5.8;

To avoid this problem, or to make your code more explicit, you can follow a literal value with
a literal type character to indicate the value’s data type, as in the following code.

const float taxRate = 5.8F;

The following table lists C#’s literal type characters.

ChARACtER dAtA tyPE

U uint

L long

UL, LU ulong

F float

D double

M decimal

You can use either uppercase or lowercase for literal type characters.

You can also precede an integer literal with 0x or 0X to indicate that it is a hexadecimal value.

D

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Operators
The C# operators fall into four main categories: arithmetic, comparison, logical, and bitwise. The
following sections explain these categories and the operators they contain. The end of this appen-
dix describes operator precedence and special operators, as well as operator overloading.

ARIthMEtIC OPERAtORS

The following table lists the arithmetic operators provided by C#.

OPERAtOR PuRPOSE ExAMPLE RESuLt

++ Increment x++ or ++x Sets x = x + 1

-- Decrement x-- or --x Sets x = x - 1

– Negation -x Sets x = -x

+ Unary plus +x Sets x = +x
(leaves x unchanged)

* Multiplication 2 * 3 6

/ Division 3.0 / 2 1.5

% Modulus 17 % 5 2

+ Addition 2 + 3 5

+ Concatenation "Bob " + "Baker" "Bob Baker"

- Subtraction 3 - 2 1

<< Bit left shift 10110111 << 1 01101110

>> Bit right shift 10110111 >> 1 01011011

E

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

744 ❘ APPENdIx E oPeraTors

COMPARISON OPERAtORS

The following table lists the comparison operators provided by C#.

OPERAtOR PuRPOSE ExAMPLE RESuLt

== Equals A == B true if A equals B .

!= Not equals A != B true if A does not equal B .

< Less than A < B true if A is less than B .

<= Less than or equal to A <= B true if A is less than or equal
to B .

> Greater than A > B true if A is greater than B .

>= Greater than or
equal to

A >= B true if A is greater than or
equal to B .

is Object is or inherits
from a certain type

obj is Manager true if obj is an object that
inherits from Manager .

LOGICAL OPERAtORS

The following table summarizes the C# logical operators.

OPERAtOR PuRPOSE ExAMPLE RESuLt

! Negation !A true if A is false .

& And A & B true if A and B are both true .

| Or A | B true if A or B or both are true .

^ Xor (Exclusive Or) A ^ B true if A is true or B is true but
both are not true .

&& And with short-circuit
evaluation

A && B true if A and B are both true .

|| Or with short-circuit
evaluation

A || B true if A or B or both are true .

www.EBooksWorld.ir

www.hellodigi.ir

operator Precedence ❘ 745

bItwISE OPERAtORS

Bitwise operators work much as logical operators do, except that they compare values 1 bit at
a time. C# provides bitwise versions of the &, |, and ^ operators. It also provides ~, the bitwise
negation operator.

ASSIGNMENt OPERAtORS

Many operators have assignment versions. For example, the following code adds 10 to the value x
and saves the result in variable x.

x += 10;

The complete list of assignment operators is: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=.

CONdItIONAL ANd NuLL-COALESCING OPERAtORS

The conditional operator ?: (sometimes called the ternary operator) takes three operands. If the first
operand is true, it returns the second operand. Otherwise it returns the third operand.

The null-coalescing operator ?? takes two operands. It returns its left operand if its value is not null.
If the left operand is null, it returns its right operand.

OPERAtOR PRECEdENCE

The following table lists the operators in order of precedence. When evaluating an expression, the
program evaluates an operator before it evaluates those in a lower section of the list.

OPERAtOR dESCRIPtION

() Grouping (parentheses)

x++

x--

Post-increment

Post-decrement

+

-

!

~

++x

--x

(T)

Unary plus

Numeric negation

Logical negation

Bitwise negation

Pre-increment

Pre-decrement

Casting

continues

www.EBooksWorld.ir

www.hellodigi.ir

746 ❘ APPENdIx E oPeraTors

OPERAtOR dESCRIPtION

*

/

%

Multiplication

Division

Modulus

+

+

-

Concatenation

Addition

Subtraction

<<

>>

Left shift

Right shift

<

>

<=

>=

is

Less than

Greater than

Less than or equal to

Greater than or equal to

Inherits from

==

!=

Equals

Does not equal

& Logical And

^ Logical Xor

| Logical Or

&& Conditional And

|| Conditional Or

?? Null-coalescing

?: Conditional

=

+=

-=

 . . .

Assignment operators

When operators are in the same section in the table, or if an expression contains more than one
instance of the same operator, the program evaluates them in left-to-right order.

Use parentheses to change the order of evaluation and to make expressions easier to read.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

DateTime and Timespan operators ❘ 747

dAtEtIME ANd tIMESPAN OPERAtORS

The DateTime and TimeSpan data types are related through their operators. The following list shows
the relationships between these two data types.

➤➤ DateTime − DateTime = TimeSpan

➤➤ DateTime + TimeSpan = DateTime

➤➤ TimeSpan + TimeSpan = TimeSpan

➤➤ TimeSpan − TimeSpan = TimeSpan

The following table lists examples demonstrating convenient methods provided by the DateTime
data type.

SyNtAx MEANING

newDate = date1.Add(timespan1) Returns date1 plus timespan1

newDate = date1.AddYears(numYears) Returns date1 plus the indi-
cated number of years

newDate = date1.AddMonths(numMonths) Returns date1 plus the indi-
cated number of months

newDate = date1.AddDays(numDays) Returns date1 plus the indi-
cated number of days

newDate = date1.AddHours(numHours) Returns date1 plus the indi-
cated number of hours

newDate = date1.AddMinutes(numMinutes) Returns date1 plus the indi-
cated number of minutes

newDate = date1.AddSeconds(numSeconds) Returns date1 plus the indi-
cated number of seconds

newDate = date1.AddMilliseconds(numMilliseconds) Returns date1 plus the indi-
cated number of milliseconds

newDate = date1.AddTicks(numTicks) Returns date1 plus the indi-
cated number of ticks (100
nanosecond units)

newTimespan = date1.Subtract(date2) Returns the time span between
date2 and date1

resultInt = date1.CompareTo(date2) Returns a value indicating
whether date1 is greater than,
less than, or equal to date2

resultBool = date1.Equals(date2) Returns true if date1 equals
date2

www.EBooksWorld.ir

www.hellodigi.ir

748 ❘ APPENdIx E oPeraTors

OPERAtOR OVERLOAdING

To overload an operator, create a static method that returns the appropriate data type. Instead of
giving the method a name, use the keyword operator followed by the operator symbol you want to
overload. Next, define the parameters that the operator takes. Finally, write the code that the opera-
tor should execute.

For example, the following code defines a + operator for a simple Complex class.

public static Complex operator +(Complex operand1, Complex operand2)
{
 return new Complex()
 {
 Re = operand1.Re + operand2.Re,
 Im = operand1.Im + operand2.Im
 };
}

Unary operators that you can overload include: +, -, !, ~, ++, --, true, and false.

Binary operators that you can overload include: +, -, *, /, %, &, |, ^, <<, and >>. If you overload
true, false 7, and |, the && and || operators are automatically overloaded for you.

Note that the second operand for the shift operators << and >> must be an int.

The assignment operators are automatically overloaded if you overload the corresponding operator.
For example, if you overload *, then C# overloads *= for you.

See Chapter 5, “Operators,” for more information about overloading comparison, logical, and type
conversion operators.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Method Declarations
This appendix provides information about method declarations. A property procedure
includes a pair of methods, which are also described here.

MEthOdS

In C# all methods must be inside a class. The syntax for creating a method is as follows.

«attributes» «accessibility» «modifiers» return_type name(«parameters»)
{
 code...
}

The following list describes the pieces of this declaration.

➤➤ attributes—Attributes that specify extra properties for the method.

➤➤ accessibility—One of public, internal, protected, internal protected, or
private.

➤➤ modifiers—One of new (hides a parent class’s version of the method), static (shared
by all instances of the class), virtual (the method can be overridden in a descendant
class), override (the method is overriding a version in an ancestor class), sealed
(indicates an overriding method cannot be further overridden), abstract (defines only
the method’s signature), or extern (the method is defined outside of the assembly).

➤➤ return_type—The type of the data that the method returns. If the method doesn’t
return a value, this should be void.

➤➤ name—The name you want the method to have.

➤➤ parameters—The method’s parameters.

➤➤ code—The code that the method should execute.

Use a return statement to exit the method and return a value (if the method returns a value).

F

www.EBooksWorld.ir

www.hellodigi.ir

750 ❘ APPENdIx F meThod deClaraTions

PROPERty PROCEduRES

Properties have get and set accessors. The syntax for creating a read/write property is as follows.

public data_type name
{
 get
 {
 ...
 return value;
 }
 set
 {
 ...
 }
}

To create a read-only or write-only property, simply omit the accessor that you don’t need.

To create an auto-implemented property, simply omit the body of the accessors, as in the following
example.

public string Name { get; set; }

LAMbdA FuNCtIONS ANd ExPRESSIONS

A lambda expression is a method defined within the flow of the program’s code instead of as a sepa-
rate method.

An expression lambda consists of a list of zero or more parameters, the => operator, and a single
expression that evaluates to some result. For example, the following code creates an delegate named
root and sets it equal to an expression lambda. It then displays the value of root(13).

Func<float, double> root = (value) => Math.Sqrt(value);
Console.WriteLine(root(13));

A statement lambda is similar to an expression lambda except it can execute multiple statements
inside braces and uses the return statement to return its result. The following code demonstrates
a statement lambda.

Func<int, int, int, int> middle = (v1, v2, v3) =>
 {
 // Sort the items.
 int[] values = { v1, v2, v3 };
 Array.Sort(values);

 // Return the middle item.
 return values[1];
 };
Console.WriteLine(middle(2, 3, 1));

www.EBooksWorld.ir

www.hellodigi.ir

extension methods ❘ 751

An async lambda is a lambda expression with the async keyword added, so the program can execute
it asynchronously. For example, the following code adds an asynchronous statement lambda to the
countButton control’s Click event.

private void Form1_Load(object sender, EventArgs e)
{
 countButton.Click += async (button, args) =>
 {
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine(i);
 await System.Threading.Tasks.Task.Delay(1000);
 }
 };
}

ExtENSION MEthOdS

To make an extension method, place a static method in a static class. Add the keyword this
before the method’s first parameter and give that parameter the type that you want to extend. For
example, the following code defines a RemoveNonLetters string extension method.

public static class StringExtensions
{
 public static string RemoveNonLetters(this string text)
 {
 string result = "";
 foreach (char ch in text)
 if (((ch >= 'a') && (ch <= 'z')) ||
 ((ch >= 'A') && (ch <= 'Z')))
 result += ch;
 else
 result += "?";

 return result;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Useful Attributes
The .NET Framework defines more than 500 attribute classes, so only a handful of the most
commonly used are described here.

The names of attribute classes end with Attribute. If you want to search for an attribute’s
class, add Attribute to the end of the name. For example, the ReadOnly attribute class’s
name is ReadOnlyAttribute.

To create a custom attribute, simply create a new class derived from the Attribute class.
By convention, the custom attribute class’s name should end with Attribute.

For more information about attributes, see msdn.microsoft.com/library/system
.attribute.aspx. If you scroll to the bottom, you can see a list of classes that inherit
from the Attribute class.

uSEFuL xML SERIALIzAtION AttRIbutES

The following table lists attributes that are useful when performing XML serializations.

AttRIbutE PuRPOSE

XmlArray Indicates the name that should be given to an array in an
XML serialization .

XmlArrayItem Indicates a type that can be in an array in an XML serialization .

XmlAttribute Indicates that a property should be serialized as an attribute
rather than an element in an XML serialization . Optionally indi-
cates the attribute’s name in the serialization .

XmlElement Specifically indicates the field will be serialized as an
XML element . This attribute allows you to change the XML
element’s name .

G

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://msdn.microsoft.com/library/system.attribute.aspx
http://msdn.microsoft.com/library/system.attribute.aspx
http://www.hiva-network.com/

754 ❘ APPENdIx G useFul aTTribuTes

AttRIbutE PuRPOSE

XmlEnum Enables you to specify the names by which enumeration values
are serialized .

XmlIgnore Indicates that an XML serialization should not serialize
a property .

XmlRoot Controls the name and namespace for the element generated
for an XML serialization’s root element .

XmlText Indicates that a value should be serialized as a text value in an
XML serialization .

XmlType Controls the name and namespace for the element generated
for a class in an XML serialization .

uSEFuL jSON SERIALIzAtION AttRIbutES

The following table lists attributes that are useful when performing JSON serializations.

AttRIbutE PuRPOSE

CollectionDataContract Allows you to control serialization of collections .

DataContract Indicates that a type is serializable by a serializer such as a
DataContractSerializer .

DataMember Indicates that a property should be serialized .

EnumMember Indicates that a property is an enumeration and should be
serialized .

IgnoreDataMember Indicates that a property should not be included in the
serialization .

OptionalField Indicates that a property is optional in a serialization .

bINARy SERIALIzAtION AttRIbutES

The BinaryFormatter class understands only one attribute, Serializable, which you should use
to mark a class as serializable. The serialization includes all properties and fields, even those with
restricted access such as those marked private.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

other Useful attributes ❘ 755

OthER uSEFuL AttRIbutES

The following table summarizes particularly useful attributes available to C# programs.

AttRIbutE PuRPOSE

AssemblyCompany Stores an assembly’s company name .

AssemblyCopyright Stores an assembly’s copyright information .

AssemblyCulture Stores the culture that an assembly supports .

AssemblyDescription Stores an assembly’s description .

AssemblyProduct Stores an assembly’s product name .

AssemblyTitle Stores an assembly’s title .

AssemblyTrademark Stores an assembly’s trademark information .

AssemblyVersion Stores an assembly’s version information .

AttributeUsage Indicates the kinds of items (class, method, property, and so on)
to which a custom attribute may be applied .

Browsable Indicates whether a property should be visible to editors such
as the Properties window or the PropertyGrid control .

Category Indicates the category that should include a property in an edi-
tor such as the Properties window .

Conditional Hides a method’s body if a compile-time symbol is undefined .
The method is still callable; it just doesn’t do anything .

DebuggerHidden Indicates a method should be hidden from the debugger . The
debugger will not stop inside or step through the method .

DebuggerStepThrough Makes the debugger skip over the method if you try to step
over or into it . The debugger will still stop inside the method if
you set a breakpoint there .

DefaultEvent Indicates a class’s default event .

DefaultProperty Indicates a class’s default property .

DefaultValue Sets a property’s default value for use by editors such as the
Properties window . (If you right-click a property in the Properties
window and select Reset, the property is given this value .)

Description Specifies the description that an editor such as the Properties
window should display for an object’s property . (Use XML com-
ments to specify a description for use by IntelliSense .)

continues

www.EBooksWorld.ir

www.hellodigi.ir

756 ❘ APPENdIx G useFul aTTribuTes

AttRIbutE PuRPOSE

DisplayName Indicates the name that editors such as the Properties window
should display for a property .

Flags Indicates that an enumeration should be considered a bit mask,
so a variable can include one or more of the enumeration’s
values simultaneously .

Localizable Indicates that a property is localizable, and its value should be
stored in the appropriate resource files .

Mergable Indicates an editor such as the Properties window should allow
the user to get and set the property for multiple objects at the
same time . (For example, if you select two TextBoxes, you can
set both of their Text properties at the same time . In contrast,
you cannot set their Name properties at the same time .)

Obsolete Marks a method as obsolete . The program can still use the
method, but Visual Studio flags calls to it with warnings .

ParenthesizePropertyName Tells property editors such as the Properties window to display
a property’s name surrounded by parentheses . When displayed
alphabetically, the property comes at the top of the list .

ReadOnly Indicates that a property is read-only to editors such as the
PropertyGrid control .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Control Statements
Control statements tell an application which other statements to execute under a particular set
of circumstances.

The two main categories of control statements are decision statements and looping state-
ments. The following sections describe the decision and looping statements provided by C#.

dECISION StAtEMENtS

A decision statement represents a branch in the program. It marks a place where the program
can execute one set of statements or another or possibly no statements at all.

if-else Statements
The if=else statement has the following syntax.

if (condition1) block1;
else if (condition2) block2;
else if (condition3) block3;
...
else blockElse;

The program evaluates each condition and executes the first block for which the condition
is true.

If none of the conditions is true, then the final blockElse block is executed. If the final else
statement and the blockElse are not provided, no code is executed.

Each block could be a single statement or a sequence of statements included in braces.

switch
A switch statement lets a program execute one of several pieces of code based on a test value.
The switch statement is roughly equivalent to a sequence of if-else statements.

H

www.EBooksWorld.ir

www.hellodigi.ir

758 ❘ APPENdIx h ConTrol sTaTemenTs

The basic syntax is as follows.

switch (value)
{
 case expression1:
 statements1;
 break;
 case expression2:
 statements2;
 break;
 ...
 «default:
 statementsDefault
 break;»
}

The program compares value to the expressions until it finds one that matches or it runs out of
expressions to test. The expressions must be constant statements and cannot duplicate each other.

If the program finds a match, it executes the corresponding code. If the program runs out of
expressions, it executes the statements in the default section (if it is present).

You can place multiple case statements in a group to make them all execute the same code. However,
you cannot allow the code from one case section to fall through to the next. If a section contains lines
of code, then it must end with a break statement before the next case begins.

Conditional and Null-coalescing Operators
The conditional and null-coalescing operators are actually operators, but they behave like decision
statements so their descriptions are included here.

The conditional operator ?: (sometimes called the ternary operator) takes three operands. If the first
operand is true, it returns the second operand. Otherwise, it returns the third operand.

The null-coalescing operator ?? takes two operands. It returns its left operand if its value is not
null. If the left operand is null, it returns its right operand.

LOOPING StAtEMENtS

Looping statements make the program execute a series of statements repeatedly. C# provides four
kinds of loops: for loops, while loops, do loops, and foreach loops.

for Loops
A for loop has the following syntax.

for («initialization»; «test»; «increment») block;

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Looping statements ❘ 759

Here:

➤➤ initialization—This piece of code initializes the loop.

➤➤ test—Each time the program is about to execute the code inside the loop, it evaluates this
as a boolean expression. If the result is true, the loop continues. If the result is false, the
loop ends.

➤➤ increment—After the program has executed the code inside the loop but before it checks
test again, it executes this code.

➤➤ block—This is the piece of code, which could be a single statement or a sequence of statements
surrounded by braces, that is executed repeatedly as long as test is true.

while Loops
A while loop has the following syntax.

while (test)
 block;

As long as the test evaluates to true, the loop executes the block, which can be a single statement
or a sequence of statements enclosed in braces. Note that this means the loop might not execute even
once if the test is false when the loop starts.

You cannot omit the test but you can set it to true to make the while loop repeat indefinitely.

do Loops
A do loop has the following syntax.

do
 block;
while (test);

A do loop is similar to a while loop except it performs its test after the loop has executed instead of
before it executes. That means a do loop always executes at least once.

foreach Loops
A foreach loop iterates over the items in a collection, array, or other container class that supports
foreach loops. A foreach loop has the following syntax.

foreach (variable in group)
 statement;

Here, group is a collection, array, or other object that supports foreach.

www.EBooksWorld.ir

www.hellodigi.ir

760 ❘ APPENdIx h ConTrol sTaTemenTs

Enumerators
An enumerator is an object that lets you move through the objects contained by some sort of con-
tainer class.

You can use an enumerator to view the objects in a collection but not to modify the collection
itself. You can use the enumerator to alter the objects in the collection (for example, to change
their properties), but you can generally not use it to add, remove, or rearrange the objects in
the collection.

Initially, an enumerator is positioned before the first item in the collection. The following table
summarizes methods that an enumerator provides to let you move through its collection.

MEthOd PuRPOSE

MoveNext Moves to the next item in the collection . This method returns true
if it successfully moves to a new item .

Reset Restores the enumerator to its original position before the
first object .

Current Returns the object that the enumerator is currently reading .

Iterators
An iterator is similar in concept to an enumerator. Iterators also provide methods for moving
through a collection of items.

Iterators are more specialized than enumerators. How you use them depends on what you need to
do and on the kind of iterator, so they are not described in detail here.

break and continue Statements
Inside a loop, the break statement makes a program immediately break out of the closest enclosing
loop without executing any statements inside the loop that follow the break statement.

The continue statement makes a program jump to the beginning of the closest containing loop
without executing any statements inside the loop that follow the continue statement.

www.EBooksWorld.ir

www.hellodigi.ir

Error Handling
A program can use try-catch-finally blocks to protect itself from exceptions. The syntax is
as follows.

try
{
 tryStatements...
}
catch (exceptionType1 variable1)
{
 exceptionStatements1...
}
catch (exceptionType2 variable2)
{
 exceptionStatements2...
}
...
catch
{
 finalExceptionStatements...
}
finally
{
 finallyStatements...
}

When an error occurs, the program examines the catch statements in order until it finds one
that matches the current exception and executes the corresponding code. If the exception doesn’t
match any of the catch statements, the program executes the code in the final catch statement,
which doesn’t specify an exception type.

After executing the code in the try section and possibly a catch section, the program executes
the code in the finally section.

The catch and finally sections are optional; although, the try-catch-finally block must
include at least one catch section or the finally section.

I

www.EBooksWorld.ir

www.hellodigi.ir

762 ❘ APPENdIx I error handling

thROwING ExCEPtIONS

Use the throw statement to throw an exception, as in the following code.

throw new ArgumentException("Width must be greater than zero");

Exception classes provide several overloaded constructors, so you can indicate such things as the
basic error message, the name of the variable that caused the exception, and an inner exception.

For information on useful exception classes and custom exception classes, see Appendix O, “Useful
Exception Classes.”

www.EBooksWorld.ir

www.hellodigi.ir

LINQ
This appendix provides syntax summaries for the most useful LINQ methods. For more
detailed information, see Chapter 8, “LINQ.”

bASIC LINQ QuERy SyNtAx

The following text shows the typical syntax for a LINQ query.

from ... where ... orderby ... select ...

The following sections describe these four standard clauses. The sections after those describe
some of the other most useful LINQ clauses.

from
The from clause tells where the data comes from and defines the name by which it is known
within the LINQ query.

from queryVariable in dataSource

Examples:

var customerQuery =
 from person in customers
 select person;
var scoresQuery =
 from student in students
 from score in testScores
 where student.StudentId == score.StudentId
 select new {student, score};

Usually, if you select data from multiple sources, you will want to use a where clause to join
the results from the sources.

J

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

764 ❘ APPENdIx j linQ

where
The where clause applies filters to the records selected by the from clause. The syntax follows.

where conditions

Use comparison operators (>, <, and ==), logical operators (!, |, and &&), object methods (ToString
and Length), and functions to build complex conditions.

For example, the following query selects student and test score data, matching students to their
test scores.

var scoresQuery =
 from student in students
 from score in testScores
 where student.StudentId == score.StudentId
 select new {student, score};

The following example selects students with last names starting with S.

var scoresQuery =
 from student in students
 from score in testScores
 where student.StudentId == score.StudentId
 && student.LastName.StartsWith("S")
 select new {student, score};

orderby
The orderby clause makes a query sort the selected objects. For example, the following query selects
students and their scores ordered by student last name followed by first name.

var scoresQuery =
 from student in students
 from score in testScores
 where student.StudentId == score.StudentId
 orderby student.LastName, student.FirstName
 select new {student, score};

Add the descending keyword to sort a field in descending order.

select
The select clause lists the fields that the query should select into its result. Optionally, you can add
an alias to the result.

The following query selects the customers’ FirstName and LastName values concatenated and gives
the result the alias Name.

var customerQuery = from person in customers
 select Name = person.FirstName + " " + person.LastName;

www.EBooksWorld.ir

www.hellodigi.ir

Basic LInQ Query syntax ❘ 765

You can pass values from the data sources into functions or constructors. For example, suppose the
Person class has a constructor that takes first and last names as parameters. Then the following
query returns a group of Person objects created from the selected customer data.

var customerQuery = from person in customers
 select new Person(person.FirstName, person.LastName);

join
The join keyword selects data from multiple data sources matching up corresponding fields. The
following pseudo-code shows the join command’s syntax.

from variable1 in dataSource1
join variable2 in dataSource2
 on variable1.field1 equals variable2.field2

For example, the following query selects Customer objects from the customers array. For each
Customer object, it selects Order objects from the orders array where the two records have the
same CustomerId value.

var query =
 from customer in customers
 join order in orders
 on customer.CustomerId equals order.CustomerId
 select new { customer, order };

Note that you can get a similar result by using a where clause. The following query selects a similar
set of objects without using the join keyword.

var query =
 from customer in customers
 from order in orders
 where customer.CustomerId == order.CustomerId
 select new { customer, order };

group by
The group by clause lets a program select data from a flat, relational style format and build a
hierarchical arrangement of objects. The following code shows a simple example.

var query =
 from order in orders
 group order by order.CustomerId;

This query selects Order objects from the orders array and groups the selected objects by their
CustomerId values.

The result is a list of objects representing the groups. Each of those objects has a Key property that
gives the value that was used to build that group. In this example, the Key is the value of the objects’
CustomerId values.

Each of the group objects is also enumerable, so the program can loop through the objects that
are in its group.

www.EBooksWorld.ir

www.hellodigi.ir

766 ❘ APPENdIx j linQ

Aggregate Values
When you group data, you can use aggregate methods to select combined values from the groups.

The following query selects orders grouped by CustomerId. The Sum aggregate method highlighted
in bold selects the sum of the prices of the orders in each group.

var query =
 from order in orders
 group order by order.CustomerId into Orders
 select new
 {
 ID = Orders.Key,
 Orders,
 TotalPrice = Orders.Sum(order => order.Price)
 };

Limiting Results
The following list summarizes methods that LINQ provides for limiting the results returned by a query.

➤➤ First—Returns the first result and discards the rest. If the result includes no values, this
throws an exception.

➤➤ FirstOrDefault—Returns the first result and discards the rest. If the query contains no
results, it returns a default value.

➤➤ Last—Returns the last result and discards the rest. If the result includes no values, this
throws an exception.

➤➤ LastOrDefault—Returns the last result and discards the rest. If the query contains no
results, it returns a default value.

➤➤ Single—Returns the single item selected by the query. If the query does not contain exactly
one result, this throws an exception.

➤➤ SingleOrDefault—Returns the single item selected by the query. If the query contains no
results, this returns a default value. If the query contains more than one item, this throws
an exception.

➤➤ Skip—Discards a specified number of results and keeps the rest.

➤➤ SkipWhile—Discards results as long as some condition is true and then keeps the rest.
(The condition is given by a method, often a lambda expression.)

➤➤ Take—Keeps a specified number of results and discards the rest.

➤➤ TakeWhile—Keeps results as long as some condition is true and then discards the rest.

www.EBooksWorld.ir

www.hellodigi.ir

LInQ functions ❘ 767

LINQ FuNCtIONS

The following table summarizes LINQ useful extension methods that are not available from
C# LINQ query syntax.

FuNCtION PuRPOSE

Aggregate Uses a function specified by the code to calculate a custom
aggregate

Concat Concatenates two sequences into a new sequence

Contains Returns true if the result contains a specific value

DefaultIfEmpty Returns the query’s result or a default value if the query returns
an empty result

ElementAt Returns an element at a specific position in the query’s result

ElementAtOrDefault Returns an element at a specific position in the query’s result or a
default value if there is no such position

Empty Creates an empty IEnumerable

Except Returns the items in one IEnumerable that are not in a second
IEnumerable

Intersection Returns the intersection of two IEnumerable objects

Range Creates an IEnumerable containing a range of integer values

Repeat Creates an IEnumerable containing a value repeated a specific
number of times

SequenceEqual Returns true if two sequences are identical

Union Returns the union of two IEnumerable objects

The following table summarizes LINQ data type conversion methods.

FuNCtION PuRPOSE

AsEnumerable Converts the result to IEnumerable<T>

AsQueryable Converts an IEnumerable to IQueryable

OfType Removes items that cannot be cast into a specific type

ToArray Places the results in an array

continues

www.EBooksWorld.ir

www.hellodigi.ir

768 ❘ APPENdIx j linQ

FuNCtION PuRPOSE

ToDictionary Places the results in a Dictionary

ToList Converts the result to List<T>

ToLookup Places the results in a Lookup (one-to-many dictionary)

LINQ tO xML

The following sections describe LINQ methods to move data in and out of XML.

xML Literals
C# does not support XML literals, but you can pass a string containing XML data into an
XML object’s Parse method, as shown in the following code.

XElement xelement = XElement.Parse(
@"<Employees>
 <Employee FirstName=""Ann"" LastName=""Archer""/>
 <Employee FirstName='Ben' LastName='Baker'/>
 <Employee>
 <FirstName>Cindy</FirstName>
 <LastName>Cant</LastName>
 </Employee>
 </Employees>
");

LINQ into xML
LINQ’s XML classes provide constructors that enable you to build XML documents relatively easily.
Each constructor’s parameter list ends with a parameter array, so you can pass any number of items
into it. The following code uses functional construction to build an XML structure.

XElement employees = new XElement("Employees",
 new XElement("Employee",
 new XAttribute("FirstName", "Ann"),
 new XAttribute("LastName", "Archer")
),
 new XElement("Employee",
 new XAttribute("FirstName", "Ben"),
 new XAttribute("LastName", "Baker")
),
 new XElement("Employee",
 new XElement("FirstName", "Cindy"),
 new XElement("LastName", "Cant")
)
);

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

LInQ to XmL ❘ 769

LINQ out of xML
XML classes such as XElement provide LINQ functions that enable you to use LINQ queries on
them just as you can select data from IEnumerable objects.

The following code searches the XElement named document for descendants named "Employee"
and selects their FirstName and LastName attributes.

var selectEmployee =
 from employee in document.Descendants("Employee")
 select new
 {
 FirstName = employee.Attribute("FirstName").Value,
 LastName = employee.Attribute("LastName").Value
 };

The following table describes other methods supported by XElement that a program can use to
navigate through an XML hierarchy. Most of the functions return IEnumerable objects that you
can use in LINQ queries.

FuNCtION REtuRNS

Ancestors IEnumerable containing all ancestors of the element .

AncestorsAndSelf IEnumerable containing this element followed by all its
ancestors .

Attribute The element’s attribute with a specific name .

Attributes IEnumerable containing the element’s attributes .

Descendants IEnumerable containing all descendants of the element .

DescendantsAndSelf IEnumerable containing this element followed by all
its descendants .

DescendantNodes IEnumerable containing all descendant nodes of the element .
These include all nodes such as XElement and XText .

DescendantNodesAndSelf IEnumerable containing this element followed by all its
descendant nodes .

Element The first child element with a specific name .

Elements IEnumerable containing the immediate children of the element .

ElementsAfterSelf IEnumerable containing the siblings of the element that come
after this element .

ElementsBeforeSelf IEnumerable containing the siblings of the element that come
before this element .

continues

www.EBooksWorld.ir

www.hellodigi.ir

770 ❘ APPENdIx j linQ

FuNCtION REtuRNS

Nodes IEnumerable containing the nodes that are immediate children
of the element . These include all nodes such as XElement
and XText .

NodesAfterSelf IEnumerable containing the sibling nodes of the element that
come after this element .

NodesBeforeSelf IEnumerable containing the sibling nodes of the element that
come before this element .

LINQ tO AdO.NEt

LINQ to ADO.NET provides tools that enable you to apply LINQ-style queries to objects used by
ADO.NET to store and interact with relational data. LINQ to ADO.NET includes three components:
LINQ to SQL, LINQ to Entities, and LINQ to DataSet.

Building and managing SQL Server databases and the Entity Framework are topics too large to
cover in this book, so LINQ to SQL and LINQ to Entities are not described in more detail here.
For more information, consult the online help or Microsoft’s website.

LINQ to DataSet lets a program use LINQ-style queries to select data from DataSet objects.

For example, suppose the testScoresDataSet object contains tables named Students and
TestScores. Then the following code gets references to the DataTable objects that represent
the tables.

DataTable studentsTable = testScoresDataSet.Tables["Students"];
DataTable scoresTable = testScoresDataSet.Tables["TestScores"];

You can then use LINQ to query the DataTable table objects. For example, the following code selects
the names of students with LastName before "F" alphabetically.

var namesBeforeFQuery =
 from student in studentsTable.AsEnumerable()
 where (student.Field<string>("LastName").CompareTo("F") < 0)
 orderby student.Field<string>("LastName")
 select new
 {
 FirstName = student.Field<string>("FirstName"),
 LastName = student.Field<string>("LastName")
 };
namesBeforeDDataGrid.DataSource = namesBeforeFQuery.ToList();

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

PLInQ ❘ 771

The following list summarizes the key differences between a LINQ to DataSet query and a normal
LINQ to Objects query.

➤➤ The LINQ to DataSet query must use the DataTable object’s AsEnumerable method to
make the object queryable.

➤➤ The code can access the fields in a DataRow, as in student.Field<string>("LastName").

➤➤ If you want to display the results in a bound control such as a DataGrid or ListBox, use the
query’s ToList method.

PLINQ

Adding parallelism to LINQ is remarkably simple. First, add a reference to the System.Threading
library to your program. Then add a call to AsParallel to the enumerable object that you’re searching.
For example, the following code uses AsParallel to select the even numbers from the array numbers.

var evens =
 from int number in numbers.AsParallel()
 where number % 2 == 0
 select number;
 join order in orders on customer.CustomerId equals order.CustomerId

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Classes and Structures
This appendix provides information about class and structure declarations.

CLASSES

The syntax for declaring a class follows.

«attributes» «accessibility» «abstract|sealed|static» «partial»
 class name «inheritance»
{
 statements
}

The following list describes the declaration’s pieces.

➤➤ attributes—This can include any number of attribute specifiers.

➤➤ accessibility—This can be one of public, internal, private, protected, or
protected internal.

➤➤ abstract—This keyword means you cannot create instances of the class. Instead you
can make instances of derived classes.

➤➤ sealed—This keyword means you cannot derive other classes from the class.

➤➤ static—This keyword means you cannot derive other classes from the class or create
instances of it. You invoke the members of a static class by using the class’s name instead
of an instance. All members of a static class must also be declared static.

➤➤ partial—This keyword indicates that this is only part of the class declaration and
that the program may include other partial declarations for this class.

➤➤ name—This is the name you want to give the class.

➤➤ inheritance—This clause can include a parent class, one or more interfaces, or both
a parent class and interfaces. If the declaration includes a parent class and interfaces,
the parent class must come first.

K

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

774 ❘ APPENdIx K Classes and sTruCTures

StRuCtuRES

The syntax for writing a structure follows.

«attributes» «accessibility» «partial» struct name «interfaces»
{
 statements
}

The structure’s attributes, accessibility, and partial clauses are the same as those for classes.
See the previous section for details.

Structures cannot inherit, so they cannot have inheritance clauses. Instead they have interfaces
clauses that specify any interfaces the structure implements.

Following are the major differences between a structure and a class.

➤➤ Structures cannot inherit.

➤➤ Structures cannot use the abstract, sealed, or static keywords because you cannot
inherit from a structure.

➤➤ Structures are value types, whereas classes are reference types. See the section “Value
Versus Reference Types” in Chapter 12, “Classes and Structures,” for information on
the consequences of this difference.

CONStRuCtORS

A constructor is a special method that has no name and that returns the type of the class or
structure that contains it. Alternatively, you can think of a constructor as having the same name
as its class and returning no type, not even void.

Class constructors can take any number of parameters. If you provide no constructors, C# creates a
default parameterless constructor that takes no parameters. If you provide any constructor, C# does
not provide a default parameterless constructor. If you want to allow the program to use a parameter-
less constructor in that case, you must either provide one or provide a constructor with all optional
parameters.

Structure constructors are similar to class constructors with two major exceptions. First, you can-
not make a structure constructor that takes no parameters. Second, C# always provides a default
parameterless constructor, even if you give the structure other constructors.

dEStRuCtORS

A destructor is a method that executes when an object is destroyed. Before it permanently destroys
an object, the garbage collector calls that object’s destructor so that the destructor can clean up
unmanaged resources. Keep in mind that finalization is nondeterministic, so you generally don’t
know when the destructor will be called.

www.EBooksWorld.ir

www.hellodigi.ir

events ❘ 775

To create a destructor, create a method named after the class with a ~ character in front of it. For
example, the following code shows a destructor for the Person class.

~Person()
{
 // Free unmanaged resources here.
 ...
}

To allow a program to free resources before an object is destroyed, you can give the class a Dispose
method and implement the IDisposable interface.

The following list summarizes the key destruction issues.

➤➤ The destructor is called automatically when an object is destroyed.

➤➤ The destructor cannot refer to managed objects because they may have already been
destroyed. In particular, the destructor cannot free managed resources because they may
have already been destroyed.

➤➤ The destructor must free unmanaged resources. This is the last chance the object has for
freeing those resources.

➤➤ Instead of making the program wait an unknowable amount of time for the destructor to
execute, you can provide a Dispose method that disposes of all resources when the object
is done with them.

➤➤ If you implement the IDisposable interface, the using statement calls Dispose automatically.

➤➤ Either it must be safe for the Dispose method and the destructor to both run, or you can
ensure that they both can’t run by making the Dispose method call GC.SuppressFinalize.

EVENtS

An event lets an object notify the application that something potentially interesting has occurred.

Following is the syntax for declaring an event.

«attributes» «accessibility» «new|virtual|override|abstract|sealed» «static»
 event delegate name;

The following list describes the declaration’s pieces.

➤➤ attributes—Attributes provide extra information about the event for use by the compiler,
the runtime system, and other tools.

➤➤ accessibility—This can be public, private, protected, internal, or protected
internal and is similar to the accessibility for other items such as classes, properties, and
methods.

➤➤ new|virtual|override|abstract|sealed—These are similar to the keywords used by
methods described in Chapter 6, “Methods.” They have the following meanings:

www.EBooksWorld.ir

www.hellodigi.ir

776 ❘ APPENdIx K Classes and sTruCTures

➤➤ new—Hides an event with the same name defined in an ancestor class.

➤➤ virtual—If you mark an event as virtual, you can later replace it in a derived class
by overriding it.

➤➤ override—If an ancestor class defines a virtual event, you can use the override
keyword to override it.

➤➤ abstract—This keyword indicates the event is abstract, so derived classes must over-
ride the event to give it an implementation. As is the case with abstract methods, a
class that contains an abstract event must be abstract and cannot be instantiated.

➤➤ sealed—This keyword indicates the event is no longer virtual, so it cannot be
overridden in derived classes.

➤➤ static—This indicates the class itself raises the event rather than instances of the class.

➤➤ delegate—This is a delegate type that defines the parameters that will be passed to event
handlers for the event.

➤➤ name—This is the name you want to give the event.

To raise an event, first determine whether any other pieces of code have registered to receive the
event by comparing the event to null. If code has registered to receive the event, invoke the event
by name, passing it any necessary parameters.

For example, suppose the Student class has a GradeChanged event. Then the following snippet
inside the Student class raises the event, passing it the current Student object as a parameter.

if (GradeChanged != null) GradeChanged(this);

To subscribe to an event, use the += operator to “add” the event handler to the event. The following
code shows how a program could register the MyPerson_NameChanged event handler to handle the
MyPerson object’s NameChanged event.

MyPerson.NameChanged += MyPerson_NameChanged;

If you subscribe an event handler to an event multiple times, it executes multiple times when the
event occurs.

To unsubscribe from an event, use the -= operator, as in the following code.

MyPerson.NameChanged -= MyPerson_NameChanged;

Unsubscribing from an event more times than the event handler was originally registered does not
throw an exception.

www.EBooksWorld.ir

www.hellodigi.ir

Collection Classes
This appendix provides information about collection classes.

ARRAyS

Arrays are relatively simple collection classes that enable you to store and retrieve items by using
their indexes in the array. C# provides two kinds of arrays: simple arrays and array objects that
are instances of the Array class.

Simple Arrays
The syntax for declaring and allocating a one-dimensional array follows.

type[] name = new type[length];

Here type is the data type that the array should hold, name is the name you want to give the
array, and length is the number of items the array should hold. The array’s indexes range
from 0 to length - 1.

The syntax for declaring and allocating a two-dimensional array follows.

type[,] name = new type[length1, length2];

The only difference between this declaration and the preceding one is that you need to specify
the number of items the array should hold in each dimension. For example, the following state-
ment creates an array of integers with 10 rows and 20 columns.

int[,] values = new int[10, 20];

To make higher-dimensional arrays, use a similar syntax with more commas in the declaration
and more lengths in the allocation part.

To initialize an array when it is declared, include the values it should hold inside braces, as in
the following code.

int[] primes = { 2, 3, 5, 7, 11 };

L

www.EBooksWorld.ir

www.hellodigi.ir

778 ❘ APPENdIx L ColleCTion Classes

To initialize multidimensional arrays, include each dimension’s values inside their own braces. The
following code declares and initializes a 2 × 4 array of integers.

int[,] values =
{
 {11, 12, 13, 14},
 {21, 22, 23, 24},
};

Array Objects
The Array class provides another method for creating arrays. Simple arrays give much faster perfor-
mance than Array objects, so use them whenever possible.

One reason you may want to use an Array object is so that you can give the array nonzero lower
bounds. The following code creates a two-dimensional Array object with row indexes ranging
from 2001 to 2010 and column indexes ranging from 1 to 4. It then uses the SetValue method
to set the value sales[2005, 3].

int[] lengths = {10, 4};
int[] lowerBounds = {2001, 1};
Array sales = Array.CreateInstance(typeof(decimal), lengths, lowerBounds);
sales.SetValue(10000m, 2005, 3);

The following table summarizes some of the most useful Array class methods.

PROPERty/MEthOd PuRPOSE

BinarySearch Returns the index of an item in the previously sorted array . The
items must implement the IComparable interface, or you must
provide an IComparer object .

Clear Removes all the items from the array .

ConvertAll Converts an array of one type into an array of another type .

Copy Copies some or all the items from a position in one array to a
position in another .

Exists Determines whether the array contains a particular item .

IndexOf Returns the index of the first item with a given value .

LastIndexOf Returns the index of the last item with a given value .

Resize Resizes the array .

Reverse Reverses the order of the items in the array .

Sort Sorts the items in the array . The items must implement the
IComparable interface, or you must provide an IComparer object .

You can use these Array methods to manipulate simple arrays as well as Array objects.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

collections ❘ 779

COLLECtIONS

Collection classes store items in different data structures so that they can provide special features.
For example, dictionaries enable you to use keys to locate objects. The following sections describe
collection classes and how to initialize them.

Specialized Collections
The following list describes classes available in the System.Collections and System.Collections
.Specialized namespaces.

➤➤ ArrayList—A simple resizable array implemented internally as a list.

➤➤ StringCollection—Similar to an ArrayList except it can hold only strings.

➤➤ NameValueCollection—A collection that can hold one or more string values for a
particular key.

➤➤ Dictionaries—Collections that keys and values. The System.Collections.Specialized
namespace defines the following dictionary classes.

➤➤ ListDictionary—A dictionary that internally stores its items as a linked list. This
is good for short lists but not long ones.

➤➤ Hashtable—A dictionary that internally stores its items in a hash table. This pro-
vides fast access but imposes some memory overhead, so it is good for long lists but
not short ones.

➤➤ HybridDictionary—A dictionary that uses a linked list when the number of items
is small and a hash table when the number of items is large.

➤➤ StringDictionary—A dictionary that uses a hash table to store string values with
string keys.

➤➤ SortedList—A combination of Hashtable and Array.

➤➤ Stack—A list that stores and retrieves items in last-in-last-out (LIFO) order.

➤➤ Queue—A list that stores and retrieves items in first-in-first-out (FIFO) order.

Generic Collections
The collection classes in the System.Collections.Generic namespace use generic parameters to pro-
vide strong type checking. You should use them instead of the specialized collections described in the
preceding section whenever possible. The following list describes these collections and related classes.

➤➤ Dictionary—A strongly typed dictionary

➤➤ LinkedList—A strongly typed linked list

➤➤ LinkedListNode—A strongly typed node in a linked list

➤➤ List—A strongly typed list

➤➤ Queue—A strongly typed queue

www.EBooksWorld.ir

www.hellodigi.ir

780 ❘ APPENdIx L ColleCTion Classes

➤➤ SortedDictionary—A strongly typed sorted dictionary

➤➤ SortedList—A strongly typed sorted list

➤➤ Stack—A strongly typed stack

Collection Initializers
If a collection class has an Add method, you can initialize a new instance of the collection by includ-
ing values inside braces after the new statement. The following code initializes a new List<Author>.

List<Author> authors = new List<Author>()
{
 new Author("Terry", "Pratchett"),
 new Author("Jasper", "Fforde"),
 new Author("Tom", "Holt"),
};

If a class’s Add method takes multiple parameters, include them in their own braces. The following
code initializes a Dictionary<string, string>.

Dictionary<string, string> phoneNumbers = new Dictionary<string, string>()
{
 {"Arthur", "808-567-1543"},
 {"Betty", "808-291-9838"},
 {"Charles", "808-521-0129"},
 {"Debbie", "808-317-3918"},
};

ItERAtORS

The foreach statement enables you to iterate over the objects in a collection. C# also enables you to
write your own iterators to yield a sequence of results.

To make an iterator, create a method that returns IEnumerable or a generic type such as
IEnumerable<String>. Make the method generate its values and use a yield return statement
to return them to the code that is looping over the iteration.

The following iterator yields a list of prime numbers between startNumber and stopNumber.

// Enumerate prime numbers between startNumber and stopNumber.
public IEnumerable Primes(int startNumber, int stopNumber)
{
 // Define a lambda expression that tests primality.
 Func<int, bool> isPrime = x =>
 {
 if (x == 1) return false; // 1 is not prime.
 if (x == 2) return true; // 2 is prime.
 if (x % 2 == 0) return false; // Even numbers are not prime.
 for (int i = 3; i * i <= x; i += 2)
 if (x % i == 0) return false;
 return true;

www.EBooksWorld.ir

www.hellodigi.ir

Iterators ❘ 781

 };

 for (int i = startNumber; i <= stopNumber; i++)
 {
 // If this number is prime, enumerate it.
 if (isPrime(i)) yield return i;
 }
}

This code first makes a lambda expression that returns true if a number is prime. It then loops
through the values between startNumber and stopNumber and uses a yield return statement
for those that are prime.

The following code loops through the values yielded by the Primes iterator and displays them in
a ListBox.

foreach (int i in Primes(1, 100)) primesListBox.Items.Add(i);

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Generic Declarations
This appendix summarizes generic classes and methods. The final section in this appendix
describes items that you cannot make generic.

GENERIC CLASSES

To define a generic class, make a class declaration as usual. After the class name, add one or
more type names for data types surrounded by brackets. The following code defines a generic
BinaryNode class with the generic type highlighted in bold.

public class BinaryNode<T>
{
 public T Value;
 public BinaryNode<T> LeftChild, RightChild;
}

The class’s declaration includes one type parameter T. The class’s code declares a Value
field of type T. It also uses the type to declare the LeftChild and RightChild fields of type
BinaryNode<T>.

You can add constraints on the generic types, as in the following code.

public class SortedBinaryNode<T> where T : IComparable<T>
{
 ...
}

The code where T : IComparable<T> indicates that the generic type T must implement the
interface IComparable<T>.

A generic type’s where clause can include one or more of the elements shown in the follow-
ing table.

M

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

784 ❘ APPENdIx M generiC deClaraTions

ELEMENt MEANING

struct The type must be a value type .

class The type must be a reference type .

new() The type must have a parameterless constructor .

«baseclass» The type must inherit from baseclass .

«interface» The type must implement interface .

«typeparameter» The type must inherit from typeparameter .

The following code defines the StrangeGeneric class where type T1 must implement
IComparable<T1> and must provide a parameterless constructor, type T3 must inherit
from the Control class, and type T2 must inherit from type T3.

public class StrangeGeneric<T1, T2, T3>
 where T1 : IComparable<T1>, new()
 where T3 : Control
 where T2 : T3
{

}

GENERIC MEthOdS

You can also give a class (generic or otherwise) a generic method. Just as a generic class is not tied to
a particular data type, the parameters of a generic method are not tied to a specific data type.

To make a generic method, include type parameters similar to those you would use for a generic
class. The following code defines a generic Switch method inside the static Switcher class.

public static class Switcher
{
 // Switch two values.
 public static void Switch<T>(ref T value1, ref T value2)
 {
 T temp = value1;
 value1 = value2;
 value2 = temp;
 }
}

www.EBooksWorld.ir

www.hellodigi.ir

Printing and Graphics
This appendix provides information about printing and the graphics classes used by Windows
Forms applications. Printing is different in Windows Forms and WPF applications. The next
sections explain how to print in a Windows Forms application. The sections after that explain
how to print in a WPF application.

wINdOwS FORMS PRINtING

The following section explains the basic printing process in a Windows Forms application. The
section after that summarizes graphics classes and methods used to print in that kind of
application.

Printing Steps
The following steps summarize how to print in a Windows Forms application.

 1. Create a PrintDocument object either at design time or at run time.

 2. Start the printing process by doing one of the following:

 a. To send a printout to a printer, call the PrintDocument object’s Print method.

 b. To display a print preview in a PrintPreviewDialog:

 i. Create a PrintPreviewDialog object either at design time or at
run time.

 ii. Set the object’s Document property equal to the PrintDocument object
you created in Step 1.

 iii. Call the dialog’s ShowDialog method to display it.

 c. To display a print preview in a PrintPreviewControl:

 i. Create a PrintPreviewControl object either at design time or at
run time.

 ii. Set the object’s Document property equal to the PrintDocument object
you created in Step 1.

N

www.EBooksWorld.ir

www.hellodigi.ir

786 ❘ APPENdIx N PrinTing and graPhiCs

 3. Catch the PrintDocument object’s events to generate the printout.

The following list summarizes the events raised by the PrintDocument object.

➤➤ BeginPrint—This event indicates that printing is about to begin. The program can use this
event to prepare for printing.

➤➤ QueryPageSettings—This event occurs when the PrintDocument object is about to gen-
erate a new page. The program can use this event to make changes that are specific to the
page it is about to print.

➤➤ PrintPage—This event is raised to generate a page of output. The program catches this
event and uses the e.Graphics parameter to generate output. After it finishes printing the
page, the program sets the value e.HasMorePages to indicate whether there are more pages
to print.

➤➤ EndPrint—This event is raised when printing is finished. The program can use it to clean
up any data structures or resources it used while printing.

The PrintPage event receives a parameter e that includes several properties that are useful when
printing. The following list summarizes those properties.

➤➤ Cancel—Set this to true to cancel the printout.

➤➤ Graphics—This is a Graphics object that the program can use to produce graphics.

➤➤ HasMorePages—Set this to true or false to indicate whether there are more pages to print
after the current one.

➤➤ MarginBounds—This indicates the page boundaries inside the page’s margins. Normally
you should draw inside these bounds.

➤➤ PageBounds—This indicates the page’s printable boundaries.

➤➤ PageSettings—This gives the page settings such as the paper size, a value indicating
whether the page is printing in landscape mode, and the printer’s resolution.

Graphics Namespaces
The following list summarizes the most important graphics namespaces and their most useful
classes, structures, and enumerated values.

➤➤ System.Drawing—This namespace defines the most important graphics objects including
Bitmap, Brush, Color, Font, FontFamily, Graphics, Icon, Image, Metafile, Pen, Pens,
Point, PointF, Rectangle, RectangleF, Region, Size, SizeF, and SolidBrush.

➤➤ System.Drawing.Drawing2D—This namespace contains classes for more advanced two-
dimensional drawing and classes that refine more basic drawing classes. Classes and enu-
merations defined in this namespace include Blend, ColorBlend, DashCap, DashStyle,
GraphicsPath, HatchBrush, HatchStyle, LinearGradientBrush, LineCap, LineJoin,
Matrix, and PathGradientBrush.

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 787

➤➤ System.Drawing.Imaging—This namespace contains classes that deal with more
advanced bitmap graphics including ColorMap, ColorPalette, ImageFormat, Metafile,
MetafileHeader, MetaHeader, and WmfPlaceableFileHeader.

➤➤ System.Drawing.Printing—This namespace contains objects used for printing and
managing the printer’s characteristics including Margins, PageSettings, PaperSize,
PaperSource, PrinterResolution, and PrinterSettings.

➤➤ System.Drawing.Text—This namespace contains classes for working with installed fonts
including FontCollection, InstalledFontCollection, and PrivateFontCollection.

drawing Graphics
The basic steps for drawing in C# are to obtain a Graphics object and use its methods to draw shapes.
Brush classes determine how shapes are filled, and Pen classes determine how lines are drawn.

The following sections describe the most useful properties and methods provided by key
drawing classes.

graphics
The Graphics object represents a drawing surface. The following table lists the Graphics object’s
drawing methods.

dRAwING MEthOd PuRPOSE

DrawArc Draws an arc of an ellipse

DrawBezier Draws a Bézier curve

DrawBeziers Draws a series of connected Bézier curves

DrawClosedCurve Draws a smooth closed curve that connects a series of points,
joining the final point to the first point

DrawCurve Draws a smooth curve that connects a series of points

DrawEllipse Draws an ellipse

DrawIcon Draws an Icon onto the Graphics object’s drawing surface

DrawIconUnstretched Draws an Icon object onto the Graphics object’s drawing sur-
face without scaling

DrawImage Draws an Image object onto the Graphics object’s drawing
surface

DrawImageUnscaled Draws an Image object onto the drawing surface without scaling

DrawLine Draws a line

continues

www.EBooksWorld.ir

www.hellodigi.ir

788 ❘ APPENdIx N PrinTing and graPhiCs

dRAwING MEthOd PuRPOSE

DrawLines Draws a series of connected lines

DrawPath Draws a GraphicsPath object

DrawPie Draws a pie slice taken from an ellipse

DrawPolygon Draws a polygon

DrawRectangle Draws a rectangle

DrawRectangles Draws a series of rectangles

DrawString Draws text

The following table lists the Graphics object’s area filling methods.

FILLING MEthOd PuRPOSE

FillClosedCurve Fills a smooth curve that connects a series of points

FillEllipse Fills an ellipse

FillPath Fills a GraphicsPath object

FillPie Fills a pie slice taken from an ellipse

FillPolygon Fills a polygon

FillRectangle Fills a rectangle

FillRectangles Fills a series of rectangles

FillRegion Fills a Region object

The following table lists other useful Graphics object properties and methods.

PROPERtIES ANd MEthOdS PuRPOSE

AddMetafileComment Adds a comment to a metafile

Clear Clears the Graphics object and fills it with a specific color

Clip Determines the Region object used to clip any drawing the
program does on the Graphics surface

Dispose Releases the resources held by the Graphics object

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Windows forms Printing ❘ 789

PROPERtIES ANd MEthOdS PuRPOSE

DpiX Returns the horizontal number of dots per inch (DPI) for this
object’s surface

DpiY Returns the vertical number of dots per inch (DPI) for this
object’s surface

EnumerateMetafile Invokes a callback method for each record defined in a metafile

ExcludeClip Updates the Graphics object’s clipping region to exclude the
area defined by a Region or Rectangle

FromHdc Creates a new Graphics object from a device context
handle (hDC)

FromHwnd Creates a new Graphics object from a window handle (hWnd)

FromImage Creates a new Graphics object to draw on an Image object

InterpolationMode Controls anti-aliasing when drawing scaled images to determine
how smooth the result is

IntersectClip Updates the Graphics object’s clipping region to be the inter-
section of the current clipping region and the area defined by a
Region or Rectangle

IsVisible Returns true if a specified point is within the Graphics object’s
visible clipping region

MeasureCharacterRanges Returns an array of Region objects that show where each charac-
ter in a string will be drawn

MeasureString Returns a SizeF structure that gives the size of a string drawn on
the Graphics object with a particular font

MultiplyTransform Multiplies the Graphics object’s current transformation matrix
by another transformation matrix

PageScale Determines the amount by which drawing commands are scaled

PageUnit Determines the units of measurement: Display (depends on
the device, typically pixel for monitors and 1/100 inch for print-
ers), Document (1/300 inch), Inch, Millimeter, Pixel, or Point
(1/72 inch)

RenderingOrigin Determines the point used as a reference when hatching

ResetClip Resets the object’s clipping region so that the drawing is not
clipped

ResetTransformation Resets the object’s transformation matrix to the identity matrix

continues

www.EBooksWorld.ir

www.hellodigi.ir

790 ❘ APPENdIx N PrinTing and graPhiCs

PROPERtIES ANd MEthOdS PuRPOSE

Restore Restores the Graphics object to a state saved by the Save method

RotateTransform Adds a rotation to the object’s current transformation

Save Saves the object’s current state

ScaleTransform Adds a scaling transformation to the Graphics object’s current
transformation

SetClip Sets or merges the Graphics object’s clipping area to another
Graphics object, a GraphicsPath object, or a Rectangle

SmoothingMode Controls anti-aliasing when drawing lines, curves, or filled areas

TextRenderingHint Controls anti-aliasing and hinting when drawing text

Transform Gets or sets the Graphics object’s transformation matrix

TransformPoints Applies the object’s current transformation to an array of points

TranslateTransform Adds a translation transformation to the Graphics object’s
current transformation

Pen
The Pen object determines the appearance of drawn lines. The following table lists the Pen object’s
most useful properties and methods.

PROPERtIES ANd MEthOdS PuRPOSE

Alignment Determines whether the line is drawn inside or centered on the
theoretical perfectly thin line specified by the drawing routine

Brush Determines the Brush used to fill the line

Color Determines the line’s color

CompoundArray Lets you draw a line that is striped lengthwise

CustomEndCap Determines the line’s end cap

CustomStartCap Determines the line’s start cap

DashCap Determines the cap drawn at the ends of dashes

DashOffset Determines the distance from the start of the line to the start of
the first dash

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 791

PROPERtIES ANd MEthOdS PuRPOSE

DashPattern An array of floats that specifies a custom dash pattern

DashStyle Determines the line’s dash style

EndCap Determines the cap used at the end of the line

LineJoin Determines how lines are joined by a method that draws con-
nected lines such as DrawPolygon

MultiplyTransform Multiplies the Pen object’s current transformation by another
transformation matrix

ResetTransform Resets the Pen object’s transformation to the identity
transformation

RotateTransform Adds a rotation transformation to the Pen object’s current
transformation

ScaleTransform Adds a scaling transformation to the Pen object’s current
transformation

SetLineCap This method takes parameters that let you specify the Pen
object’s StartCap, EndCap, and LineJoin properties at the
same time

StartCap Determines the cap used at the start of the line

Transform Determines the transformation applied to the initially circular
“pen tip” used to draw lines

Width The width of the pen

Brushes
The Brush class is an abstract class, so you cannot make instances of it. Instead, you must make
instances of one of its derived classes. The following table briefly describes these derived classes.

CLASS PuRPOSE

SolidBrush Fills areas with a single solid color

TextureBrush Fills areas with a repeating image

HatchBrush Fills areas with a repeating hatch pattern

LinearGradientBrush Fills areas with a linear gradient of two or more colors

PathGradientBrush Fills areas with a color gradient that follows a path

www.EBooksWorld.ir

www.hellodigi.ir

792 ❘ APPENdIx N PrinTing and graPhiCs

graphicsPath
The GraphicsPath object represents a path defined by lines, curves, text, and other drawing com-
mands. The following table lists the GraphicsPath object’s most useful properties and methods.

PROPERtIES ANd MEthOdS PuRPOSE

CloseAllFigures Closes all open figures by connecting their last points with their
first points and then starts a new figure .

CloseFigure Closes the current figure by connecting its last point with its first
point and then starts a new figure .

FillMode Determines how the path handles overlaps when you fill it . This
property can take the values Alternate and Winding .

Flatten Converts any curves in the path into sequences of lines .

GetBounds Returns a RectangleF structure representing the path’s bound-
ing box .

GetLastPoint Returns the last PointF structure in the PathPoints array .

IsOutlineVisible Returns true if the indicated point lies beneath the path’s outline .

IsVisible Returns true if the indicated point lies in the path’s interior .

PathData Returns a PathData object that encapsulates the path’s
graphical data .

PathPoints Returns an array of PointF structures giving the points in the path .

PathTypes Returns an array of bytes representing the types of the points in
the path .

PointCount Returns the number of points in the path .

Reset Clears the path data and resets FillMode to Alternate .

Reverse Reverses the order of the path’s data .

StartFigure Starts a new figure, so future data is added to the new figure .

Transform Applies a transformation matrix to the path .

Warp Applies a warping transformation defined by mapping a paral-
lelogram onto a rectangle to the path .

Widen Enlarges the curves in the path to enclose a line drawn by a
specific pen .

www.EBooksWorld.ir

www.hellodigi.ir

Windows forms Printing ❘ 793

stringformat
The StringFormat object determines how text is formatted. The following table lists the
StringFormat object’s most useful properties and methods.

PROPERtIES ANd MEthOdS PuRPOSE

Alignment Determines the text’s horizontal alignment . This can
be Near (left), Center (middle), or Far (right) .

FormatFlags Gets or sets flags that modify the StringFormat
object’s behavior .

GetTabStops Returns an array of floats giving the positions of
tab stops .

HotkeyPrefix Determines how the hotkey prefix character is dis-
played . This can be Show, Hide, or None .

LineAlignment Determines the text’s vertical alignment . This can be
Near (top), Center (middle), or Far (bottom) .

SetMeasureableCharacterRanges Sets an array of CharacterRange structures
representing ranges of characters that will
later be measured by the Graphics object’s
MeasureCharacterRanges method .

SetTabStops Sets an array of floats giving the positions of tab stops .

Trimming Determines how the text is trimmed if it cannot fit
within a layout rectangle .

Image
The Image class represents the underlying physical drawing surface hidden below the logical layer
created by the Graphics class. The Image is abstract, so you cannot directly instantiate it. Instead,
you must instantiate its child classes Bitmap and Metafile. The following table describes the Image
class’s most useful properties and methods, which are inherited by the Bitmap and Metafile classes.

PROPERtIES ANd MEthOdS PuRPOSE

Dispose Frees the resources associated with this image

Flags Returns attribute flags for the image

FromFile Loads an image from a file

FromHbitmap Loads a Bitmap image from a Windows bitmap handle

FromStream Loads an image from a data stream

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

794 ❘ APPENdIx N PrinTing and graPhiCs

PROPERtIES ANd MEthOdS PuRPOSE

GetBounds Returns a RectangleF structure representing the rectangle’s
bounds

GetPixelFormatSize Returns the color resolution (bits per pixel) for a specified
PixelFormat

GetThumbnailImage Returns a thumbnail representation of the image

Height Returns the image’s height

HorizontalResolution Returns the horizontal resolution of the image in pixels per inch

IsAlphaPixelFormat Returns true if the specified PixelFormat contains alpha
(opaqueness) information

Palette Determines the ColorPalette object used by the image

PhysicalDimension Returns a SizeF structure giving the image’s dimensions in pixels
for Bitmaps and 0 .01 millimeters for Metafiles

PixelFormat Returns the image’s pixel format

RawFormat Returns an ImageFormat object representing the image’s
raw format

RotateFlip Rotates, flips, or rotates and flips the image

Save Saves the image in a file or stream with a given data format

Size Returns a Size structure containing the image’s width and height
in pixels

VerticalResolution Returns the vertical resolution of the image in pixels per inch

Width Returns the image’s width

Bitmap
The Bitmap class represents an image defined by pixel data. The following table describes the class’s
most useful methods that are not inherited from the Image class.

MEthOd PuRPOSE

FromHicon Loads a Bitmap image from a Windows icon handle

FromResource Loads a Bitmap image from a Windows resource

GetPixel Returns a Color representing a specified pixel

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

WPf Printing ❘ 795

MEthOd PuRPOSE

LockBits Locks the Bitmap image’s data in memory, so it cannot move
until the program calls UnlockBits

MakeTransparent Makes all pixels with a specified color transparent by setting the
alpha component of those pixels to 0

SetPixel Sets a specified pixel’s Color value

SetResolution Sets the Bitmap image’s horizontal and vertical resolution in dots
per inch (DPI)

UnlockBits Unlocks the Bitmap image’s data in memory so that the system
can relocate it, if necessary

metafile
The Metafile class represents an image defined by metafile records. The following table describes
the class’s most useful methods that are not inherited from the Image class.

MEthOd PuRPOSE

GetMetafileHeader Returns the MetafileHeader object associated with this Metafile .

PlayRecord Plays a metafile record . Use the Graphics class’s
EnumerateMetafile method to get the data needed
to play metafile records .

wPF PRINtING

To create a printout, a WPF application creates objects that represent lines, shapes, text, and what-
ever else needs to be printed. The program can scale those objects as necessary to fit the printout
and the result takes advantage of the printer’s capabilities.

There are several ways a WPF application can produce printouts. The following sections describe
two of the more useful: using a paginator and creating documents.

using a Paginator
A paginator is an object that generates a printout’s pages. To create a printout by using a paginator,
derive a new class from the DocumentPaginator class. Override the GetPage method to create the
document’s pages. Also override the following properties.

➤➤ IsPageCountValid—Returns true if all pages have been created. Returns false if some
pages have not yet been generated

➤➤ PageCount—Returns the number of pages that have been formatted

www.EBooksWorld.ir

www.hellodigi.ir

796 ❘ APPENdIx N PrinTing and graPhiCs

➤➤ PageSize—Gets or sets the suggested size of the printed page

➤➤ Source—Returns the element being paginated

Creating documents
The FlowDocument and FixedDocument classes allow you to arrange objects on a printout. The
classes automatically arrange the objects appropriately. For example, they let you make text flow
around other objects. The following sections describe these two document classes.

flowDocuments
A FlowDocument object holds other objects that represent graphical output such as text, images, and
shapes. It arranges its objects to take best advantage of whatever space is available, much as a web
browser rearranges its contents when it is resized.

The following code shows a short FlowDocument.

<Window x:Class="WpfFlowDocument.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WpfFlowDocument" Height="350" Width="525">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="30"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Button Grid.Row="0"
 Content="Print" Click="printButton_Click"
 Width="100" Height="30" VerticalAlignment="Top"/>
 <FlowDocumentReader Grid.Row="1" VerticalAlignment="Top">
 <FlowDocument Name="sampleFlowDocument">
 <Paragraph FontSize="20" FontWeight="Bold">
 Chapter 1. Lorem Ipsum
 </Paragraph>

 <Paragraph FontSize="16" FontWeight="Bold">
 Dolor Sit Amet
 </Paragraph>

 <Paragraph>
 <Floater HorizontalAlignment="Right">
 <Paragraph>
 <Grid Width="100" Height="100">
 <Border BorderBrush="Black" BorderThickness="1"/>
 <Polygon
 Points="50,5 95,50 50,95 5,50"
 Stroke="Black" StrokeThickness="5" />
 </Grid>
 </Paragraph>
 </Floater>
 Consectetur adipiscing elit ...
 </Paragraph>

www.EBooksWorld.ir

www.hellodigi.ir

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

WPf Printing ❘ 797

 <Paragraph>
 Nullam dapibus dapibus ...
 </Paragraph>

 <Paragraph>
 Etiam lacus eros ...
 </Paragraph>

 </FlowDocument>
 </FlowDocumentReader>
 </Grid>
</Window>

See the WPF documentation for information about the classes that you can use to produce output.

fixedDocuments
Like a FlowDocument, a FixedDocument holds graphical objects. Instead of rearranging its objects
as space permits, a FixedDocument always places its objects in the same positions. This is similar to
the way a PostScript document displays items at fixed positions.

The following code shows XAML that defines a FixedDocument inside a DocumentViewer.

<DocumentViewer Grid.Row="1">
 <FixedDocument Name="sampleFixedDocument">
 <PageContent Width="850" Height="1100">
 <FixedPage Width="850" Height="1100" Margin="100">
 ... Page 1 content elements ...
 </FixedPage>
 </PageContent>
 <PageContent Width="850" Height="1100">
 <FixedPage Width="850" Height="1100" Margin="100">
 ... Page 1 content elements ...
 </FixedPage>
 </PageContent>
 </FixedDocument>
</DocumentViewer>

FIxEddOCuMENtS NEEd FIxING

There is a well-known bug in Visual Studio’s XAML designer that prevents it
from correctly displaying XAML code that contains a FixedDocument. If you load
XAML code into the designer, Visual Studio reports errors such as the following:

Property ‘Pages’ does not support values of type ‘PageContent’.

The property ‘Pages’ is set more than once.

The specified value cannot be assigned. The following type was expected:
“PageContentCollection”.

If the XAML code is properly formed, however, the program will compile and run
without problems.

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Useful Exception Classes
When your program throws an exception, you can use a try-catch-finally block to catch the
exception and examine it to determine its class. When you want to throw your own exception,
however, you must know what exception classes are available so that you can pick the best one to
throw. The following sections describe some of the most useful classes for throwing exceptions.

StANdARd ExCEPtION CLASSES

The following table lists some of the most useful exception classes in C#. If possible you
should use one of these standard classes when you need to throw an exception.

CLASS PuRPOSE

AmbiguousMatchException The program could not figure out which overloaded
object method to use .

ArgumentException An argument is invalid .

ArgumentNullException An argument that cannot be null has the value null .

ArgumentOutOfRangeException An argument is out of its allowed range .

ArithmeticException An arithmetic, casting, or conversion operation
has occurred .

ArrayTypeMismatchException The program tried to store the wrong type of item in
an array .

ConfigurationException A configuration setting is invalid .

ConstraintException A data operation violates a database constraint .

DataException The ancestor class for ADO .NET exception classes .

O

continues

www.EBooksWorld.ir

www.hellodigi.ir

800 ❘ APPENdIx O useFul exCePTion Classes

CLASS PuRPOSE

DirectoryNotFoundException A needed directory is missing .

DivideByZeroException The program tried to divide by zero .

DuplicateNameException An ADO .NET operation encountered a duplicate
name . For example, it tried to create two tables with
the same name .

EvaluateException Occurs when a DataColumn’s Expression property
cannot be evaluated .

FieldAccessException The program tried to access a class property improperly .

FormatException An argument doesn’t match its required format .

IndexOutOfRangeException The program tried to access an item outside of the
bounds of an array or other container .

InvalidCastException The program tried to make an invalid conversion .
For example, int.Parse("ten") .

InvalidOperationException The operation is not currently allowed .

IOException The ancestor class for input/output (I/O) exception
classes . A generic I/O error occurred .

EndOfStreamException A stream reached its end .

FileLoadException Error loading a file .

FileNotFoundException Error finding a file .

InternalBufferOverflowException An internal buffer overflowed .

MemberAccessException The program tried to access a class member improperly .

MethodAccessException The program tried to access a class method improperly .

MissingFieldException The program tried to access a class field that
doesn’t exist .

MissingMemberException The program tried to access a class member that
doesn’t exist .

MissingMethodException The program tried to access a class method that
doesn’t exist .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

standard exception classes ❘ 801

CLASS PuRPOSE

NotFiniteNumberException A floating-point number is PositiveInfinity,
NegativeInfinity, or NaN (Not a Number) . You can
get these values from the floating-point classes (as in
float.NaN or double.PositiveInfinity) .

NotImplementedException The requested operation is not implemented .

NotSupportedException The requested operation is not supported . For example,
the program might be asking a routine to modify data
that was opened as read-only .

NullReferenceException The program tried to use an object reference that
is null .

OutOfMemoryException There isn’t enough memory . Note that sometimes a pro-
gram cannot recover from an OutOfMemoryException
because it doesn’t have enough memory to do anything
useful .

OverflowException An arithmetic, casting, or conversion operation created
an overflow . For example, the program tried to assign a
large int value to a byte variable .

PolicyException Policy prevents the code from running .

RankException A routine is trying to use an array with the wrong
number of dimensions .

ReadOnlyException The program tried to modify read-only data .

SecurityException A security violation occurred .

SyntaxErrorException A DataColumn’s Expression property contains
invalid syntax .

UnauthorizedAccessException The system is denying access because of an I/O or
security error .

Use the throw statement to throw an exception. The following code throws a
DivideByZeroException.

throw new DivideByZeroException("No employees are defined.");

This code passes the exception class’s constructor a message describing the exception. In this case,
the divide by zero exception occurred because the application did not have any employees defined.
Notice that the message explains the reason for the exception, not just the fact that a division by
zero occurred.

www.EBooksWorld.ir

www.hellodigi.ir

802 ❘ APPENdIx O useFul exCePTion Classes

CuStOM ExCEPtION CLASSES

To define a custom exception class, make a class that inherits from the Exception class. To give
developers who use the class the most flexibility, provide four constructors that delegate their work
to the parent class’s corresponding constructors.

The following code shows the InvalidWorkAssignmentException class. The parameterless con-
structor passes the Exception class’s constructor a default error message. The other constructors
simply pass their arguments to the Exception class’s other constructors.

public class InvalidWorkAssignmentException : Exception
{
 public InvalidWorkAssignmentException()
 : base("This work assignment is invalid")
 {
 }
 public InvalidWorkAssignmentException(string message)
 : base(message)
 {
 }
 public InvalidWorkAssignmentException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
 public InvalidWorkAssignmentException(SerializationInfo info,
 StreamingContext context)
 : base(info, context)
 {
 }
}

For more information on custom exception classes, see the section “Custom Exceptions” in
Chapter 9, “Error Handing.” Also see the online documentation for topics such as “Designing
Custom Exceptions” (msdn.microsoft.com/library/vstudio/ms229064(v=vs.100).aspx)
and “Design Guidelines for Exceptions” (msdn.microsoft.com/ms229014.aspx).

www.EBooksWorld.ir

www.hellodigi.ir

Date and Time Format Specifiers
A program uses date and time format specifiers to determine how dates and times are repre-
sented as strings. C# provides two kinds of specifiers that you can use to determine a date
and time value’s format: standard format specifiers and custom format specifiers.

Standard format specifiers are locale-aware, so the result depends on the computer’s regional
settings. For that reason, you should always use the standard specifiers whenever possible.

The following sections describe the available standard and custom date and time
format specifiers.

StANdARd FORMAt SPECIFIERS

A standard format specifier is a single character that you use alone to indicate a standardized
format. For example, the format string d indicates a short date format (as in 8/20/2012).

The following table lists standard format specifiers that you can use to format date and time
strings. The examples shown in this table are for a typical computer in the United States.

SPECIFIER MEANING ExAMPLE

d Short date . 8/20/2015

D Long date . Thursday, August 20, 2015

t Short time . 2:37 PM

T Long time . 2:37:18 PM

f Full date/time with short time . Thursday, August 20, 2015 2:37 PM

F Full date/time with long time . Thursday, August 20, 2015 2:37:18 PM

g General date/time with short time . 8/20/2015 2:37 PM

P

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

804 ❘ APPENdIx P daTe and Time FormaT sPeCiFiers

SPECIFIER MEANING ExAMPLE

G General date/time with long time . 8/20/2015 2:37:18 PM

m or M Month and date . August 20

r or R RFC1123 pattern . Formatting does not
convert the time to Greenwich Mean
Time (GMT), so you should convert
local times to GMT before formatting .

Thu, 20 Aug 2015 14:37:18 GMT

S Sortable ISO 8601 date/time . 2015-08-20T14:37:18

u Universal sortable date/time . Formatting
does not convert the time to universal
time, so you should convert local times
to universal time before formatting .

2015-08-20 14:37:18Z

U Universal full date/time . This is the full
universal time, not the local time .

Thursday, August 20, 2015 9:37:18 PM

y or Y Year and month . August 2015

CuStOM FORMAt SPECIFIERS

Custom format specifiers describe pieces of a date or time that you can use to build your own custom-
ized formats. For example, the specifier ddd indicates the abbreviated day of the week, as in Wed.

In general, you should use custom date and time formats only to build values used inside the code.
The user should never see them.

The following table lists characters that you can use to build custom formats for date and time strings.

SPECIFIER MEANING ExAMPLE

d Date of the month (1–31) . 3

dd Date of the month with two digits (01–31) . 03

ddd Abbreviated day of the week . Wed

dddd Full day of the week . Wednesday

f Fractions of seconds, one digit . Add additional fs for up to
seven digits (fffffff) .

8

F Similar to f except nothing is displayed if the fraction is 0 . 8

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

custom format specifiers ❘ 805

SPECIFIER MEANING ExAMPLE

g or gg Era . A .D .

h Hour, 12-hour clock with one digit (1–12) . 1

hh Hour, 12-hour clock with two digits (01–12) . 01

H Hour, 24-hour clock with one digit (1–24) . 13

HH Hour, 24-hour clock with two digits (01–24) . 07

K Time zone information . –07:00

m Minutes with one digit (0–59) . 9

mm Minutes with two digits (00–59) . 09

M Month number with one digit (1–12) . 2

MM Month number with two digits (01–12) . 02

MMM Month abbreviation . Feb

MMMM Full month name . February

s Seconds with one digit (0–59) . 3

ss Seconds with two digits (00–59) . 03

t AM/PM designator with one character . A

tt AM/PM designator with two characters . AM

y Year with up to two digits (0–99) . 7

yy Year with two digits (00–99) . 07

yyyy Year with four digits . 2015

yyyyy Year with five digits . 02015

z Time zone offset (hours from GMT in the range –12 to +13) . –7

zz Time zone offset with two digits . –07

zzz Time zone offset with two digits of hours and minutes . –07:00

: Time separator .

/ Date separator .

"..." Quoted string . Displays the enclosed characters without trying
to interpret them .

continues

www.EBooksWorld.ir

www.hellodigi.ir

806 ❘ APPENdIx P daTe and Time FormaT sPeCiFiers

SPECIFIER MEANING ExAMPLE

'...' Quoted string . Displays the enclosed characters without trying
to interpret them .

% Displays the following character as a custom specifier . (See the
following discussion .)

\ Displays the next character without trying to interpret it .

Some of the custom specifier characters in this table are the same as characters used by standard
specifiers. For example, if you use the character d alone, C# interprets it as the standard specifier for
a short date. If you use the character d in a custom specifier, C# interprets it as the date of the month.

If you want to use a custom specifier alone, precede it with the % character. The following shows two
queries and their results executed in the Immediate window.

DateTime.Now.ToString("d")
"4/1/2015"
DateTime.Now.ToString("%d")
"1"

Custom specifiers are somewhat sensitive to the computer’s regional settings. For example, they at
least know the local names and abbreviations of the months and days of the week.

The standard specifiers have even more information about the local culture, however. For example,
the date specifiers know whether the local culture places months before or after days. The d specifier
gives the result 8/20/2015 for the en-US culture (English, United States), and it returns 20/08/2015
for the culture en-NZ (English, New Zealand).

To avoid cultural problems on different computers, you should use the standard specifiers whenever
possible rather than build your own custom format specifiers. For example, use d instead of M/d/yyyy.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Other Format Specifiers
A program uses format specifiers to determine how objects are represented as strings.
C# provides two kinds of specifiers: standard format specifiers and custom format specifiers.
Standard format specifiers are locale-aware, so the result depends on the computer’s regional
settings. If a program uses standard format specifiers and you run the program in a new locale,
it automatically produces the formats appropriate for that locale. For that reason, you should
always use the standard specifiers whenever possible.

The following sections describe the standard and custom format specifiers.

StANdARd NuMERIC FORMAt SPECIFIERS

Standard numeric format specifiers enable you to easily display commonly used numeric formats.
The following table lists the standard numeric specifiers.

SPECIFIER MEANING

C or c Currency . If a precision specifier follows the C, it indicates the number of dig-
its that should follow the decimal point . On a standard system in the United
States, the value –1234 .5678 with the specifier C3 produces ($1,234 .568) .

D or d Decimal . This specifier works only with integer types . It simply displays the
number’s digits . If a precision specifier follows the D, it indicates the number of
digits the result should have, padding on the left with zeros, if necessary . If the
value is negative, the result has a minus sign on the left . The value –1234 with
the specifier D6 produces –001234 .

Q

continues

www.EBooksWorld.ir

www.hellodigi.ir

808 ❘ APPENdIx Q oTher FormaT sPeCiFiers

SPECIFIER MEANING

E or e Scientific notation . The result always has exactly one digit to the left of the
decimal point, followed by more digits, an E or e, a plus or minus sign, and at
least three digits of exponent (padded on the left with zeros, if necessary) . If
a precision specifier follows the E, it indicates the number of digits the result
should have after the decimal point . The value –1234 .5678 with the specifier e2
produces –1 .23e+003 .

F or f Fixed point . The result contains a minus sign if the value is negative, digits, a
decimal point, and then more digits . If a precision specifier follows the F, it
indicates the number of digits the result should have after the decimal point .
The value –1234 .5678 with the specifier f3 produces –1234 .568 .

G or g General . Either scientific or fixed-point notation depending on which is more
compact .

N or n Number . The result has a minus sign if the value is negative, digits with thou-
sands separators, a decimal point, and more digits . If a precision specifier
follows the N, it indicates the number of digits the result should have after the
decimal point . The value –1234 .5678 with the specifier N3 produces –1,234 .568 .

P or p Percentage . The value is multiplied by 100 and then formatted according to
the computer’s settings . If a precision specifier follows the P, it indicates the
number of digits that should follow the decimal point . The value 1 .2345678
with the specifier P produces 123 .46% .

R or r Round trip . The value is formatted in such a way that the result can be con-
verted back into its original value . Depending on the data type and value, this
may require 17 digits of precision . The value 1/7 with the specifier R produces
0 .14285714285714285 .

X or x Hexadecimal . This works for integer types only . The value is converted into
hexadecimal . The case of the X or x determines whether hexadecimal digits
above 9 are written in uppercase or lowercase . If a precision specifier follows
the X, it indicates the number of digits the result should have, padding on the
left with zeros, if necessary . The value 183 with the specifier x4 produces 00b7 .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

numeric formatting sections ❘ 809

CuStOM NuMERIC FORMAt SPECIFIERS

The following table lists characters that you can use to build custom numeric formats.

SPECIFIER MEANING

0 A digit or zero . If the number doesn’t have a digit in this position, the specifier
adds a 0 . The value 12 with the specifier 000.00 produces 012 .00 .

A digit . If the number doesn’t have a digit in this position, nothing is printed .

, If used between two digits (either 0 or #), this adds thousands separators to
the result . Note that it will add as many separators if necessary . The value
1234567 with the specifier #,# produces 1,234,567 .

, If used immediately to the left of the decimal point, the number is divided
by 1000 for each comma . The value 1234567 with the specifier #,#,. pro-
duces 1,235 .

% Multiplies the number by 100 and inserts the % symbol where it appears in the
specifier . The value 0.123 with the specifier .00% produces 12 .30% .

E0 or e0 Displays the number in scientific notation inserting an E or e between the num-
ber and its exponent . Use # and 0 to format the number before the exponent .
The number of 0s after the E determines the number of digits in the exponent .
If you place a + sign between the E and 0, the result’s exponent includes a + or
– sign . If you omit the + sign, the exponent includes a sign only if it is negative .
The value 1234 .5678 with the specifier 00.000E+000 produces 12 .346E+002 .

\ Displays the following character literally without interpreting it . Use \\ to
display the \ character . The value 12 with the specifier #\% produces 12% .
The same value with the specifier #% produces 1200% .

'ABC' or
"ABC"

Displays the characters in the quotes literally . The value 12 with the specifier
#'%' produces 12% .

NuMERIC FORMAttING SECtIONS

A numeric format specifier may contain one, two, or three sections separated by semicolons. If the
specifier contains one section, the specifier is used for all numeric values.

If the specifier contains two sections, the first is used to format values that are positive or zero, and
the second is used to format negative values.

If the specifier contains three sections, the first is used to format positive values, the second is used
to format negative values, and the third is used to format values that are zero.

www.EBooksWorld.ir

www.hellodigi.ir

810 ❘ APPENdIx Q oTher FormaT sPeCiFiers

The following text shows output from the Immediate window for three values using the format
specifier #,#.00;<#,#.00>;ZERO.

(1234.5678).ToString("#,#.00; <#,#.00>;ZERO")
"1,234.57"
(-1234.5678).ToString("#,#.00; <#,#.00>;ZERO")
" <1,234.57>"
(0).ToString("#,#.00; <#,#.00>;ZERO")
"ZERO"

COMPOSItE FORMAttING

The String.Format, Console.WriteLine, and TextWriter.WriteLine methods provide a differ-
ent method for formatting strings. These routines can take a composite formatting string parameter
that contains literal characters plus placeholders for values. Other parameters to the methods give
the values.

The value placeholders have the following format.

{index«,alignment»«:format_specifier»}

The index value gives the index of the parameter (numbered from 0) that should be inserted in this
placeholder’s position.

The optional alignment value tells the minimum number of characters the item should use and the
result is padded with spaces, if necessary. If this value is negative, the result is left-justified. If the
value is positive, the result is right-justified.

The format_specifier indicates how the item should be formatted.

For example, consider the following code.

string name = "Crazy Bob";
decimal sales = -12345.67m;
MessageBox.Show(String.Format("{0} {1:earned;lost} {1:c} this year", name, sales));

The first placeholder refers to parameter number 0. The first parameter after the format specifier is
the name variable, which has value Crazy Bob.

The second placeholder refers to parameter number 1 and includes a two-part format specifier that
displays earned if the value is positive or zero, and lost if the value is negative. The third place-
holder refers to parameter number 1 again, this time displaying its value formatted as currency.

The following shows the result.

Crazy Bob lost ($12,345.67) this year

www.EBooksWorld.ir

www.hellodigi.ir

enumerated Type formatting ❘ 811

ENuMERAtEd tyPE FORMAttING

Enumerated values are formatted as string representations rather than as the integer values that rep-
resent them. For example, consider the following code.

public enum Dessert
{
 Cake = 1,
 Pie = 2,
 Cookie = 3,
 IceCream = 4,
}
...
Dessert selection = Dessert.Cake;
MessageBox.Show(selection.ToString());

This code displays the string Cake.

For variables of an enumerated type such as selection, the ToString method can take a specifier
that determines how the value is formatted.

The specifier G or g formats the value as a string if possible. If the value is not a valid entry in the
enumeration’s definition, the result is the variable’s numeric value. For example, the previous code
does not define a value for the integer 7 so, if you set selection to 7, selection.ToString("G")
returns the value 7.

If you define an enumerated type with the Flags attribute, variables of that type can be a combina-
tion of the enumeration’s values, as shown in the following code.

[Flags()]
public enum Dessert
{
 Cake = 1,
 Pie = 2,
 Cookie = 3,
 IceCream = 4,
}
...
Dessert selection = Dessert.IceCream | Dessert.Pie;
Console.WriteLine(selection.ToString("G"));

In this case, the G format specifier returns a string that contains all the flag values separated by com-
mas. In this example, the result is Pie, IceCream. Note that the values are returned in the order in
which they are defined by the enumeration, not the order in which they are assigned to the variable.

If you do not use the Flags attribute when defining an enumerated type, the G format specifier always
returns the variable’s numeric value if it is a combination of values rather than a single value from
the list. In contrast the F specifier returns a list of comma-separated values if it makes sense. For
example, if you omit the Flags attribute from the previous code, selection.ToString("G") returns
6 (because Pie + IceCream = 2 + 4 = 6), but selection.ToString("F") returns Pie, IceCream.

www.EBooksWorld.ir

www.hellodigi.ir

812 ❘ APPENdIx Q oTher FormaT sPeCiFiers

The D or d specifier always formats the variable as a number.

The specifier X or x formats the value as a hexadecimal number.

The following table summarizes the enumeration format specifiers.

SPECIFIER MEANING

G or g (The default .) Returns the string value if possible .

If the value includes multiple enumeration values and the enumeration is
marked with the Flags attribute, this returns the values separated by commas .

If the value is not defined by the enumeration, or if it includes multiple enu-
meration values but the enumeration does not have the Flags attribute, this
returns a numeric value .

F or f Returns the string value if possible .

If the value includes multiple enumeration values, this returns the values sepa-
rated by commas .

If the value is not defined by the enumeration, this returns a numeric value .

D or d Always returns a numeric result .

X or x Always returns a hexadecimal numeric result .

www.EBooksWorld.ir

www.hellodigi.ir

Streams
The .NET Framework provides several classes that treat data as a stream—an ordered series
of bytes. These classes are not difficult to use, but they are similar enough to be confusing. This
appendix summarizes the stream classes and describes their properties and their methods. See
Chapter 18, “Streams,” for more information on streams.

StREAM CLASS SuMMARy

The following table lists the .NET Framework stream classes.

CLASS PuRPOSE

BinaryReader, BinaryWriter Read and write data from an underlying stream using rou-
tines that manage specific data types (such as ReadDouble
and ReadUInt16) .

BufferedStream Adds buffering to another stream type . This sometimes
improves performance on relatively slow underlying devices .

CryptoStream Applies a cryptographic transformation to its data .

FileStream Represents a file as a stream . Usually, you can use a helper
class such as BinaryReader or TextWriter to make work-
ing with a FileStream easier .

MemoryStream Lets you read and write stream data in memory . This is
useful when you need a stream but don’t want to read or
write a file .

NetworkStream Sends and receives data across a network connection .

Stream A generic stream class . This is an abstract class, so you
cannot create one directly . Instead, you must instantiate
one of its subclasses .

R

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

814 ❘ APPENdIx R sTreams

CLASS PuRPOSE

StreamReader, StreamWriter These classes inherit from TextReader and TextWriter .
They provide methods for reading and writing text into an
underlying stream, usually a FileStream .

StringReader, StringWriter These classes inherit from TextReader and TextWriter .
They provide methods for reading and writing text into an
underlying string .

TextReader, TextWriter These abstract classes define methods that make working
with text on an underlying stream easier .

The following sections describe stream classes in greater detail.

StREAM

The following table describes the Stream class’s most useful properties.

PROPERty PuRPOSE

CanRead Returns true if the stream supports reading .

CanSeek Returns true if the stream supports seeking to a particular
position in the stream .

CanTimeout Returns true if the stream supports timeouts .

CanWrite Returns true if the stream supports writing .

Length Returns the number of bytes in the stream .

Position Returns the stream’s current position in its bytes . For a
stream that supports seeking, the program can set this
value to move to a particular position .

ReadTimeout Determines the stream’s read timeout in milliseconds .

WriteTimeout Determines the stream’s write timeout in milliseconds .

The following table describes the Stream class’s most useful methods.

MEthOd PuRPOSE

BeginRead Begins an asynchronous read .

BeginWrite Begins an asynchronous write .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Binaryreader and BinaryWriter ❘ 815

MEthOd PuRPOSE

Close Closes the stream and releases any resources it uses (such
as file handles) .

EndRead Waits for an asynchronous read to finish .

EndWrite Ends an asynchronous write .

Flush Flushes data from the stream’s buffers into the underlying
storage medium (device, file, and so on) .

Read Reads bytes from the stream and advances its position by
that number of bytes .

ReadByte Reads a byte from the stream and advances its position by
1 byte .

Seek If the stream supports seeking, sets the stream’s position .

SetLength Sets the stream’s length . If the stream is currently lon-
ger than the new length, it is truncated . If the stream is
shorter than the new length, it is enlarged . The stream
must support both writing and seeking for this method
to work .

Write Writes bytes into the stream and advances the current
position by this number of bytes .

WriteByte Writes 1 byte into the stream and advances the current
position by 1 byte .

The FileStream and MemoryStream classes add only a few methods to those defined by the Stream
class. The most important of those are new constructors specific to the type of stream. For example, the
FileStream class provides constructors for opening files in various modes (append, new, and so forth).

bINARyREAdER ANd bINARywRItER

These are stream helper classes that make it easier to read and write data in specific formats onto an
underlying stream. The following table describes the BinaryReader class’s most useful methods.

MEthOd PuRPOSE

Close Closes the BinaryReader and its underlying stream .

PeekChar Reads the reader’s next character but does not advance
the reader’s position, so other methods can still read the
character later .

continues

www.EBooksWorld.ir

www.hellodigi.ir

816 ❘ APPENdIx R sTreams

MEthOd PuRPOSE

Read Reads characters from the stream and advances the read-
er’s position .

ReadBoolean Reads a bool from the stream and advances the reader’s
position by 1 byte .

ReadByte Reads a byte from the stream and advances the reader’s
position by 1 byte .

ReadBytes Reads a number of bytes from the stream into a byte array
and advances the reader’s position by that number
of bytes .

ReadChar Reads a character from the stream and advances the read-
er’s position according to the stream’s encoding and the
character .

ReadChars Reads a number of characters from the stream, returns
the results in a char array, and advances the reader’s posi-
tion according to the stream’s encoding and the number
of characters .

ReadDecimal Reads a decimal value from the stream and advances the
reader’s position by 16 bytes .

ReadDouble Reads a 64-bit double-precision floating-point value
(double) from the stream and advances the reader’s posi-
tion by 8 bytes .

ReadInt16 Reads a 16-bit signed integer (short) from the stream and
advances the reader’s position by 2 bytes .

ReadInt32 Reads a 32-bit signed integer (int) from the stream and
advances the reader’s position by 4 bytes .

ReadInt64 Reads a 64-bit signed integer (long) from the stream and
advances the reader’s position by 8 bytes .

ReadSByte Reads a signed byte (sbyte) from the stream and
advances the reader’s position by 1 byte .

ReadSingle Reads a 32-bit single-precision floating-point value
(float) from the stream and advances the reader’s posi-
tion by 4 bytes .

ReadString Reads a string from the stream and advances the reader’s
position past it . The string begins with its length .

ReadUInt16 Reads a 16-bit unsigned integer (ushort) from the stream
and advances the reader’s position by 2 bytes .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Textreader and TextWriter ❘ 817

MEthOd PuRPOSE

ReadUInt32 Reads a 32-bit unsigned integer (uint) from the stream
and advances the reader’s position by 4 bytes .

ReadUInt64 Reads a 64-bit unsigned integer (ulong) from the stream
and advances the reader’s position by 8 bytes .

The following table describes the BinaryWriter class’s most useful methods.

MEthOd dESCRIPtION

Close Closes the BinaryWriter and its underlying stream .

Flush Writes any buffered data into the underlying stream .

Seek Sets the position within the stream .

Write Writes a value into the stream . This method has many over-
loaded versions that write characters, arrays of characters,
integers, strings, unsigned 64-bit integers, and so on .

tExtREAdER ANd tExtwRItER

These are stream helper classes that make it easier to read and write text data onto an underlying
stream. The following table describes the TextReader class’s most useful methods.

MEthOd PuRPOSE

Close Closes the reader and releases any resources that it is using .

Peek Reads the next character from the text without changing
the reader’s state so that other methods can read the
character later .

Read Reads data from the input . Overloaded versions of this
method read a single character, or an array of characters
up to a specified length .

ReadBlock Reads data from the input into an array of characters .

ReadLine Reads a line of characters from the input and returns the
data in a string .

ReadToEnd Reads any remaining characters in the input and returns
them in a string .

www.EBooksWorld.ir

www.hellodigi.ir

818 ❘ APPENdIx R sTreams

The following table describes the TextWriter class’s most useful properties.

PROPERty PuRPOSE

Encoding Specifies the data’s encoding (ASCII, UTF-8, Unicode, and
so forth) .

FormatProvider Returns an object that controls formatting .

NewLine Gets or sets the stream’s new-line sequence .

The following table describes the TextWriter class’s most useful methods.

MEthOd PuRPOSE

Close Closes the writer and releases any resources it is using .

Flush Writes any buffered data into the underlying output .

Write Writes a value into the output . This method has many over-
loaded versions that write characters, arrays of characters,
integers, strings, unsigned 64-bit integers, and so forth .

WriteLine Writes data into the output followed by the new-line
sequence .

StRINGREAdER ANd StRINGwRItER

The StringReader and StringWriter classes let a program read and write text in a string. They
implement the features defined by their parent classes TextReader and TextWriter. See the section
“TextReader and TextWriter” earlier in this appendix for a list of those features.

StREAMREAdER ANd StREAMwRItER

The StreamReader and StreamWriter classes let a program read and write data in an underly-
ing stream, often a FileStream. They implement the features defined by their parent classes
TextReader and TextWriter. See the section “TextReader and TextWriter” earlier in this appendix
for a list of the features.

tExt FILE StREAM MEthOdS

The System.IO.File class provides several handy methods for working with text files. The follow-
ing table summarizes these methods.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Text file stream methods ❘ 819

MEthOd PuRPOSE

AppendText Creates a text file or opens it for appending if it already
exists . Returns a StreamWriter for writing into the file .

CreateText Creates a text file, overwriting it if it already exists . Returns
a StreamWriter for writing into the file .

Exists Returns true if a file exists . It is good practice (and much
faster) to only try to open the file if Exists returns true,
rather than just try to open the file and catch errors with a
try-catch-finally block .

OpenText Opens an existing text file and returns a StreamReader to
read from it . This method throws a FileNotFoundException
if the file doesn’t exist .

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Filesystem Classes
This appendix describes the .NET Framework’s filesystem classes. It also summarizes methods
you can use to manage the recycle bin.

FRAMEwORK CLASSES

The System.IO namespace provides several classes for working with the filesystem. The following
sections describe the properties, methods, and events provided by these classes.

directory
The Directory class provides static methods for working with directories. The following table
summarizes those static methods.

MEthOd PuRPOSE

CreateDirectory Creates a directory and any missing directories along
its path .

Delete Deletes a directory and its contents . It can recursively
delete all subdirectories .

Exists Returns true if the path points to an existing directory .

GetCreationTime Returns a directory’s creation date and time .

GetCreationTimeUtc Returns a directory’s creation date and time in
Coordinated Universal Time (UTC) .

GetCurrentDirectory Returns the application’s current working directory .

GetDirectories Returns an array of strings holding the fully qualified names
of a directory’s subdirectories .

S

continues

www.EBooksWorld.ir

www.hellodigi.ir

822 ❘ APPENdIx S FilesysTem Classes

MEthOd PuRPOSE

GetDirectoryRoot Returns the directory root for a path, which need not exist
(for example, C:\) .

GetFiles Returns an array of strings holding the fully qualified names
of a directory’s files .

GetFileSystemEntries Returns an array of strings holding the fully qualified names
of a directory’s files and subdirectories .

GetLastAccessTime Returns a directory’s last access date and time .

GetLastAccessTimeUtc Returns a directory’s last access date and time in UTC .

GetLastWriteTime Returns the date and time when a directory was last
modified .

GetLastWriteTimeUtc Returns the date and time when a directory was last
modified in UTC .

GetLogicalDrives Returns an array of strings listing the system’s logical drives
as in A:\ . The list includes drives that are attached . For
example, it lists an empty floppy drive and a connected flash
drive but doesn’t list a flash drive after you disconnect it .

GetParent Returns a DirectoryInfo object representing a directory’s
parent directory .

Move Moves a directory and its contents to a new location on
the same disk volume .

SetCreationTime Sets a directory’s creation date and time .

SetCreationTimeUtc Sets a directory’s creation date and time in UTC .

SetCurrentDirectory Sets the application’s current working directory .

SetLastAccessTime Sets a directory’s last access date and time .

SetLastAccessTimeUtc Sets a directory’s last access date and time in UTC .

SetLastWriteTime Sets a directory’s last write date and time .

SetLastWriteTimeUtc Sets a directory’s last write date and time in UTC .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

framework classes ❘ 823

File
The File class provides static methods for working with files. The following table summarizes its
most useful static methods.

MEthOd PuRPOSE

AppendAllText Adds text to the end of a file, creating the file if it doesn’t
exist, and then closes the file .

AppendText Opens a file for appending UTF-8 encoded text and
returns a StreamWriter attached to it .

Copy Copies a file .

Create Creates a new file and returns a FileStream attached to it .

CreateText Creates or opens a file for writing UTF-8 encoded text and
returns a StreamWriter attached to it .

Delete Permanently deletes a file .

Exists Returns true if the specified file exists .

GetAttributes Gets a file’s attributes . This is a combination of flags defined
by the FileAttributes enumeration, which defines the val-
ues Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContextIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary .

GetCreationTime Returns a file’s creation date and time .

GetCreationTimeUtc Returns a file’s creation date and time in UTC .

GetLastAccessTime Returns a file’s last access date and time .

GetLastAccessTimeUtc Returns a file’s last access date and time in UTC .

GetLastWriteTime Returns a file’s last write date and time .

GetLastWriteTimeUtc Returns a file’s last write date and time in UTC .

Move Moves a file to a new location .

Open Opens a file and returns a FileStream attached to it .
Parameters let you specify the mode (Append, Create,
CreateNew, Open, OpenOrCreate, or Truncate), access
(Read, Write, or ReadWrite), and sharing (Read, Write,
ReadWrite, or None) settings .

OpenRead Opens a file for reading and returns a FileStream
attached to it .

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

824 ❘ APPENdIx S FilesysTem Classes

MEthOd PuRPOSE

OpenText Opens a UTF-8 encoded text file for reading and returns a
StreamReader attached to it .

OpenWrite Opens a file for writing and returns a FileStream attached
to it .

ReadAllBytes Returns a file’s contents in an array of bytes .

ReadAllLines Returns a file’s lines in an array of strings .

ReadAllText Returns a file’s contents in a string .

Replace This method takes three file paths as parameters repre-
senting a source file, a destination file, and a backup file .
If the backup file exists, the method permanently deletes
it . It then moves the destination file to the backup file and
moves the source file to the destination file . This method
throws an exception if either the source file or the destina-
tion file doesn’t exist .

SetAttributes Sets a file’s attributes . This is a combination of flags defined
by the FileAttributes enumeration, which defines the val-
ues Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContextIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary .

SetCreationTime Sets a file’s creation date and time .

SetCreationTimeUtc Sets a file’s creation date and time in UTC .

SetLastAccessTime Sets a file’s last access date and time .

SetLastAccessTimeUtc Sets a file’s last access date and time in UTC .

SetLastWriteTime Sets a file’s last write date and time .

SetLastWriteTimeUtc Sets a file’s last write date and time in UTC .

WriteAllBytes Creates or overwrites a file, writes an array of bytes into it,
and closes the file .

WriteAllLines Creates or overwrites a file, writes an array of strings into
it, and closes the file .

WriteAllText Creates or overwrites a file, writes a string into it, and
closes the file .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

framework classes ❘ 825

driveInfo
A DriveInfo object represents one of the computer’s drives. The following table describes the
properties provided by this class. The final column in the table indicates whether a drive must be
ready for the property to work without throwing an exception. Use the IsReady property to see
whether the drive is ready before using those properties.

PROPERty PuRPOSE MuSt bE REAdy?

AvailableFreeSpace Returns the amount of free space avail-
able on the drive in bytes . This value takes
quotas into account, so it may not match
TotalFreeSpace .

True

DriveFormat Returns the name of the filesystem type such
as NTFS or FAT32 . (For more information on
NTFS and FAT filesystems, search the web . For
example, the page www.ntfs.com/ntfs_vs_
fat.htm compares the FAT, FAT32, and NTFS
filesystems .)

True

DriveType Returns a DriveType enumeration value indi-
cating the drive type . This value can be CDRom,
Fixed, Network, NoRootDirectory, Ram,
Removable, or Unknown .

False

IsReady Returns true if the drive is ready . Many
DriveInfo properties are unavailable and
throw exceptions if you try to access them
while the drive is not ready .

False

Name Returns the drive’s name . This is the drive’s
root name as in A:\ or C:\ .

False

RootDirectory Returns a DirectoryInfo object representing
the drive’s root directory . See the following
section, “DirectoryInfo,” for more information .

False

TotalFreeSpace Returns the total amount of free space on the
drive in bytes .

True

TotalSize Returns the total amount of space on the drive
in bytes .

True

VolumeLabel Gets or sets the drive’s volume label . True

www.EBooksWorld.ir

www.hellodigi.ir

http://www.ntfs.com/ntfs_vs_fat.htm
http://www.ntfs.com/ntfs_vs_fat.htm

826 ❘ APPENdIx S FilesysTem Classes

directoryInfo
A DirectoryInfo object represents a directory. The following table summarizes its most useful
properties and methods.

PROPERty OR MEthOd PuRPOSE

Attributes Gets or sets flags from the FileAttributes enumera-
tion for the directory . These flags can include Archive,
Compressed, Device, Directory, Encrypted, Hidden,
Normal, NotContentIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary .

Create Creates the directory . You can create a DirectoryInfo
object, passing its constructor the fully qualified name of a
directory that doesn’t exist . You can then call the object’s
Create method to create the directory .

CreateSubdirectory Creates a subdirectory within the directory and
returns a DirectoryInfo object representing it .
The subdirectory’s path must be relative to the
DirectoryInfo object’s directory but can contain
intermediate subdirectories . For example, the statement
dir_info.CreateSubdirectory("Tools\Bin") creates
the Tools subdirectory and the Bin directory inside that .

CreationTime Gets or sets the directory’s creation time .

CreationTimeUtc Gets or sets the directory’s creation time in UTC .

Delete Deletes the directory if it is empty . A parameter lets you
tell the object to delete its contents, too, if it isn’t empty .

Exists Returns true if the directory exists .

Extension Returns the extension part of the directory’s name .
Normally, this is an empty string for directories .

FullName Returns the directory’s fully qualified path .

GetDirectories Returns an array of DirectoryInfo objects represent-
ing the directory’s subdirectories . An optional parameter
gives a pattern to match . This method does not recursively
search the subdirectories .

GetFiles Returns an array of FileInfo objects representing files
inside the directory . An optional parameter gives a pat-
tern to match . This method does not recursively search
subdirectories .

www.EBooksWorld.ir

www.hellodigi.ir

framework classes ❘ 827

PROPERty OR MEthOd PuRPOSE

GetFileSystemInfos Returns a strongly typed array of FileSystemInfo objects
representing subdirectories and files inside the directory .
The items in the array are DirectoryInfo and FileInfo
objects, both of which inherit from FileSystemInfo . An
optional parameter gives a pattern to match . This method
does not recursively search subdirectories .

LastAccessTime Gets or sets the directory’s last access time .

LastAccessTimeUtc Gets or sets the directory’s last access time in UTC .

LastWriteTime Gets or sets the directory’s last write time .

LastWriteTimeUtc Gets or sets the directory’s last write time in UTC .

MoveTo Moves the directory and its contents to a new path .

Name Returns the directory’s name without the path information .

Parent Returns a DirectoryInfo object representing the direc-
tory’s parent . If the directory is its filesystem’s root (for
example, C:\), this returns null .

Refresh Refreshes the DirectoryInfo object’s data . For exam-
ple, if the directory has been accessed since the object
was created, you must call Refresh to load the new
LastAccessTime value .

Root Returns a DirectoryInfo object representing the root of
the directory’s filesystem .

ToString Returns the directory’s fully qualified path and name .

FileInfo
A FileInfo object represents a file. The following table summarizes its most useful properties and
methods.

PROPERty OR MEthOd PuRPOSE

AppendText Returns a StreamWriter that appends text to the file .

Attributes Gets or sets flags from the FileAttributes enumeration
for the file . These flags can include Archive, Compressed,
Device, Directory, Encrypted, Hidden, Normal,
NotContentIndexed, Offline, ReadOnly, ReparsePoint,
SparseFile, System, and Temporary .

continues

www.EBooksWorld.ir

www.hellodigi.ir

828 ❘ APPENdIx S FilesysTem Classes

PROPERty OR MEthOd PuRPOSE

CopyTo Copies the file and returns a FileInfo object representing
the new file . A parameter lets you indicate whether the copy
should overwrite the destination file if it already exists . If the
destination path is relative, it is relative to the application’s
current directory, not to the FileInfo object’s directory .

Create Creates the file and returns a FileStream object attached
to it . For example, you can create a FileInfo object pass-
ing its constructor the name of a file that doesn’t exist .
Then you can call the Create method to create the file .

CreateText Creates the file and returns a StreamWriter attached to it .
For example, you can create a FileInfo object passing its
constructor the name of a file that doesn’t exist . Then you
can call the CreateText method to create the file .

CreationTime Gets or sets the file’s creation time .

CreationTimeUtc Gets or sets the file’s creation time in UTC .

Delete Deletes the file .

Directory Returns a DirectoryInfo object representing the
file’s directory .

DirectoryName Returns the name of the file’s directory .

Exists Returns true if the file exists .

Extension Returns the extension part of the file’s name including the
period . For example, the extension for game.txt is .txt .

FullName Returns the file’s fully qualified path and name .

IsReadOnly Returns true if the file is marked read-only .

LastAccessTime Gets or sets the file’s last access time .

LastAccessTimeUtc Gets or sets the file’s last access time in UTC .

LastWriteTime Gets or sets the file’s last write time .

LastWriteTimeUtc Gets or sets the file’s last write time in UTC .

Length Returns the number of bytes in the file .

MoveTo Moves the file to a new location . If the destination uses a
relative path, it is relative to the application’s current direc-
tory, not to the FileInfo object’s directory . When this
method finishes, the FileInfo object is updated to refer
to the file’s new location .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

framework classes ❘ 829

PROPERty OR MEthOd PuRPOSE

Name The file’s name without the path information .

Open Opens the file with specified mode (Append, Create,
CreateNew, Open, OpenOrCreate, or Truncate), access
(Read, Write, or ReadWrite), and sharing (Read, Write,
ReadWrite, or None) settings . This method returns a
FileStream object attached to the file .

OpenRead Returns a read-only FileStream attached to the file .

OpenText Returns a StreamReader with UTF-8 encoding attached to
the file for reading .

OpenWrite Returns a write-only FileStream attached to the file .

Refresh Refreshes the FileInfo object’s data . For example, if the
file has been accessed since the object was created, you
must call Refresh to load the new LastAccessTime value .

Replace Replaces a target file with this one, renaming the old
target as a backup copy . If the backup file already exists,
it is deleted and replaced with the target .

ToString Returns the file’s fully qualified name .

FileSystemwatcher
The FileSystemWatcher class lets an application watch for changes to a file or directory. The following
table summarizes its most useful properties.

PROPERty PuRPOSE

EnableRaisingEvents Determines whether the component is enabled . Note that
this property is false by default, so the watcher will not
raise any events until you set it to true .

Filter Determines the files for which the watcher reports events .
You cannot watch for multiple file types as in *.txt and
*.dat . Instead, use multiple FileSystemWatchers .
If you like, you can use AddHandler to make all the
FileSystemWatchers use the same event handlers .

IncludeSubdirectories Determines whether the object watches subdirectories
within the main path .

InternalBufferSize Determines the size of the internal buffer . If the watcher is
monitoring an active directory, a small buffer may overflow .

continues

www.EBooksWorld.ir

www.hellodigi.ir

830 ❘ APPENdIx S FilesysTem Classes

PROPERty PuRPOSE

NotifyFilter Determines the types of changes that the watcher
reports . This is a combination of values defined by the
NotifyFilters enumeration and can include the values
Attributes, CreationTime, DirectoryName, FileName,
LastAccess, LastWrite, Security, and Size .

Path Determines the path to watch .

The following table summarizes the FileSystemWatcher class’s two most useful methods.

MEthOd PuRPOSE

Dispose Releases resources used by the object .

WaitForChanged Synchronously waits for a change to the target file
or directory .

The following table summarizes the class’s events.

NAME dESCRIPtION

Changed A file or subdirectory has changed .

Created A file or subdirectory was created .

Deleted A file or subdirectory was deleted .

Error The watcher’s internal buffer overflowed .

Renamed A file or subdirectory was renamed .

Path
The Path class provides static properties and methods that you can use to manipulate paths. The
following table summarizes its most useful public properties.

PROPERty PuRPOSE

AltDirectorySeparatorChar Returns the alternate character used to separate directory
levels in a hierarchical path (typically /) .

DirectorySeparatorChar Returns the character used to separate directory
levels in a hierarchical path (typically \, as in C:\Tests\
Billing\2010q2.dat) .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

framework classes ❘ 831

PROPERty PuRPOSE

InvalidPathChars Returns a character array that holds characters that are
not allowed in a path string . Typically, this array includes
characters such as ", <, >, and |, as well as nonprintable
characters such as those with ASCII values between 0
and 31 .

PathSeparator Returns the character used to separate path strings in
environment variables (typically ;) .

VolumeSeparatorChar Returns the character placed between a volume letter
and the rest of the path (typically :, as in C:\Tests\
Billing\2010q2.dat) .

The following table summarizes the Path class’s most useful methods.

MEthOd PuRPOSE

ChangeExtension Changes a path’s extension .

Combine Returns two path strings concatenated . This does not
simplify the result like the GetFullPath method does .

GetDirectoryName Returns a path’s directory .

GetExtension Returns a path’s extension .

GetFileName Returns a path’s filename and extension .

GetFileNameWithoutExtension Returns a path’s filename without the extension .

GetFullPath Returns a path’s fully qualified value . This can be particu-
larly useful for converting a partially relative path into
an absolute path . For example, the statement Path.
GetFullPath("C:\Tests\OldTests\Software\..\..\

New\Code") returns C:\Tests\New\Code .

GetInvalidFileNameChars Returns a character array that holds characters that are
not allowed in filenames .

GetPathRoot Returns a path’s root directory string . For example, the
statement Path.GetPathRoot("C:\Invoices\Unpaid\
Deadbeats") returns C:\ .

GetRandomFileName Returns a random filename .

continues

www.EBooksWorld.ir

www.hellodigi.ir

832 ❘ APPENdIx S FilesysTem Classes

MEthOd PuRPOSE

GetTempFileName Creates a uniquely named, empty temporary file and
returns its fully qualified path . Your program can open that
file for scratch space, do whatever it needs to do, close
the file, and then delete it . A typical filename might be
C:\Users\Rod\AppData\Local\Temp\tmpFCC6.tmp .

GetTempPath Returns the path to the system’s temporary folder .
This is the path part of the filename returned by
GetTempFileName .

HasExtension Returns true if a path includes an extension .

IsPathRooted Returns true if a path is an absolute path . This includes
\Temp\Wherever and C:\Clients\Litigation, but not
Temp\Wherever or ..\Uncle .

SPECIAL FOLdERS

The System.Environment.SpecialFolder enumeration defines SpecialFolder objects repre-
senting folders such as MyDocuments, History, and CommonProgramFiles. Use a SpecialFolder
object’s ToString method to get the folder’s name. Use Environment.GetFolderPath to get the
directory’s path.

The following code lists special folders.

foreach (Environment.SpecialFolder folderType
 in Enum.GetValues(typeof(Environment.SpecialFolder)))
{
 Console.WriteLine(
 String.Format("{0,-25}{1}",
 folderType.ToString(),
 Environment.GetFolderPath(folderType)
)
);
}

RECyCLE bIN

C# doesn’t provide tools for working with the recycle bin, but you can manage the recycle bin by
using a combination of three techniques: using the FileIO.FileSystem class, using API functions,
and using Shell32.Shell.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

recycle Bin ❘ 833

FileIO.FileSystem
The Microsoft.VisualBasic.FileIO namespace includes a FileSystem class that provides
DeleteDirectory and DeleteFile methods. Those methods can take an optional parameter that
indicates whether you want to move the directory or file into the recycle bin, or whether you want
to delete the directory or file permanently. (They can also take a parameter that lets you decide
whether the methods should display progress dialogs.)

To use the FileSystem class to move files and directories into the recycle bin, add a reference to the
Microsoft.VisualBasic library. Then use the class’s static DeleteFile and DeleteDirectory
methods.

API Functions
The SHEmptyRecycleBin API function lets you empty the recycle bin. To use this function, add the
following code to a class outside any methods.

[Flags]
private enum RecycleFlags : uint
{
 SHERB_NOCONFIRMATION = 0x1,
 SHERB_NOPROGRESSUI = 0x2,
 SHERB_NOSOUND = 0x4
}
[DllImport("shell32.dll")]
static extern int SHEmptyRecycleBin(
 IntPtr hWnd, string pszRootPath, uint dwFlags);

This code defines the RecycleFlags enumeration and the SHEmptyRecycleBin API function.

Now you can call the function, passing it appropriate parameters. The following EmptyRecycleBin
method wraps the call to the API function to make it a bit easier to use.

public static void EmptyRecycleBin(bool showProgress, bool playSound,
 bool confirm)
{
 RecycleFlags options = 0;
 if (!showProgress) options |= RecycleFlags.SHERB_NOPROGRESSUI;
 if (!playSound) options |= RecycleFlags.SHERB_NOSOUND;
 if (!confirm) options |= RecycleFlags.SHERB_NOCONFIRMATION;

 SHEmptyRecycleBin(IntPtr.Zero, null, (uint)options);
}

This method uses its parameter values to compose an appropriate RecycleFlags value and then
calls the API function.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

834 ❘ APPENdIx S FilesysTem Classes

Shell32.Shell
Shell32.Shell is an interface for working with the Windows shell. It enables you to interact with
virtual objects representing such things as the recycle bin.

To use Shell32.Shell, first add a reference to “Microsoft Shell Controls And Automation” on
the Reference Manager’s COM tab. To make using the Shell class easier, add the following using
directive to the program.

using Shell32;

Now you can use code similar to the following to enumerate the files in the recycle bin.

const int RECYCLE_BIN_NAMESPACE = 10;

Shell shell = new Shell();
Folder bin = shell.NameSpace(RECYCLE_BIN_NAMESPACE);

// List the files.
foreach (FolderItem item in bin.Items())
{
 Console.WriteLine(item.Name + "\n " + item.Path);
}

This code creates a new Shell object and uses that object’s NameSpace method to get a Folder
object representing the recycle bin. It then loops through the items returned by the Folder’s Items
method, displaying each item’s name and path.

www.EBooksWorld.ir

www.hellodigi.ir

Regular Expressions
This appendix summarizes methods of creating and using regular expressions.

CREAtING REGuLAR ExPRESSIONS

This section describes the characters you can use to define regular expressions.

Character Escapes
Character escapes are character sequences that match special characters. The following table
summarizes useful character escapes.

ESCAPE MEANING

\t Matches the tab character

\r Matches the return character

\n Matches the new-line character

\nnn Matches a character with ASCII code given by the two or three
octal digits nnn

\xnn Matches a character with ASCII code given by the two hexadeci-
mal digits nn

\unnnn Matches a character with Unicode representation given by the
four hexadecimal digits nnnn

T

www.EBooksWorld.ir

www.hellodigi.ir

836 ❘ APPENdIx t regular exPressions

Character Classes
A character class matches one of a set of characters. The following table summarizes useful character
class constructs.

CONStRuCt MEANING

[chars] Matches one of the characters inside the brackets . For example,
[aeiou] matches a single lowercase vowel .

[^chars] Matches a character that is not inside the brackets . For example,
[^aeiouAEIOU] matches a single nonvowel character such as Q, ?, or 3 .

[first-last] Matches a character between the character first and the character
last . For example, [a–z] matches any lowercase letter between a and
z . You can combine multiple ranges as in [a-zA-Z], which matches
uppercase or lowercase letters .

. This is a wildcard that matches any single character except \n . (To match
a period, use the \. escape sequence .)

\w Matches a single “word” character . Normally, this is equivalent to
[a-zA-Z_0-9], so it matches letters, the underscore character, and
digits .

\W Matches a single nonword character . Normally, this is equivalent to
[^a-zA-Z_0-9] .

\s Matches a single whitespace character . Normally, this includes space,
form feed, new line, return, tab, and vertical tab .

\S Matches a single nonwhitespace character . Normally, this matches every-
thing except space, form feed, new line, return, tab, and vertical tab .

\d Matches a single decimal digit . Normally, this is equivalent to [0-9] .

\D Matches a single character that is not a decimal digit . Normally, this is
equivalent to [^0-9] .

Anchors
An anchor matches a part of the input without reading any characters from it. The following table
summarizes useful anchors.

www.EBooksWorld.ir

www.hellodigi.ir

regular expression options ❘ 837

ANChOR MEANING

^ Matches the beginning of the line or string

$ Matches the end of the string or before the \n at the end of the line
or string

\A Matches the beginning of the string

\Z Matches the end of the string or before the \n at the end of the string

\z Matches the end of the string

\G Matches where the previous match ended

\B Matches a nonword boundary

REGuLAR ExPRESSION OPtIONS

You can specify regular expression options in three ways:

➤➤ Pass a RegexOptions parameter to a Regex object’s constructor or to a pattern matching
methods such as IsMatch.

➤➤ Use the syntax (?options) to include inline options within a regular expression. Options
can include i, m, n, s, and x. If the list begins with a – character, the following options are
turned off.

➤➤ Use the syntax (?options:subexpression) within a regular expression. In this case,
options is as before and subexpression is the part of a regular expression during which
the options should apply.

The following table lists the available options.

OPtION MEANING

i Ignore case .

m Multiline . Here ^ and $ match the beginning and ending of lines instead
of the beginning and ending of the whole input string .

s Single-line . Here . matches all characters including \n .

n Explicit capture . This makes the method not capture unnamed groups .
See the following section “Grouping Constructs” for more information
on groups .

x Ignore unescaped whitespace in the pattern and enable comments after
the # character .

www.EBooksWorld.ir

www.hellodigi.ir

838 ❘ APPENdIx t regular exPressions

Grouping Constructs
Grouping constructs let you define capture groups within matching pieces of a string. Parentheses
create groups. There are several kinds of groups, some of which are fairly specialized and confusing.
The two most common are numbered and named groups.

To create a numbered group, simply enclose a subexpression in parentheses as in (\w)\1. The \w
in this expression matches a single word character. The parentheses mean this character is in the
first numbered group. The \1 that follows matches whatever is in group 1, in this case a single word
character. That means this expression matches a single word character that appears twice.

To create a named group, use the syntax (?<name>subexpression) where name is the name you
want to assign to the group and subexpression is a subexpression. Use the syntax \k<name> to
refer to a named group.

For example, the expression (?<twice>\w)\k<twice> is equivalent to the previous expression
(\w)\1 except the group is named twice.

Quantifiers
A quantifier makes the regular expression engine match the previous element a certain number of
times. The following table describes regular expression quantifiers.

QuANtIFIER MEANING

* Matches the previous element 0 or more times

+ Matches the previous element 1 or more times

? Matches the previous element 0 or 1 times

{n} Matches the previous element exactly n times

{n,} Matches the previous element n or more times

{n,m} Matches the previous element between n and m times (inclusive)

If you follow one of these with ?, the pattern matches the preceding expression as few times as pos-
sible. For example, the pattern BO+ matches B followed by 1 or more Os, so it would match the BOO
in BOOK. The pattern BO+? also matches B followed by 1 or more Os, but it matches as few Os as pos-
sible, so it would match only the BO in BOOK.

Alternation Constructs
An alternation construct uses the | character to allow a pattern to match either of two subexpres-
sions. For example, the expression ^(true|yes)$ matches either true or yes.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Using regular expressions ❘ 839

Sample Regular Expressions
The following list shows several useful regular expressions.

➤➤ ^\d{3}-\d{4}$—Matches a simple 7-digit phone number.

➤➤ ^[2-9][0-9]{2}-\d{4}$—Matches a 7-digit phone number more precisely.

➤➤ ^[2-9][0-8]\d-[2-9][0-9]{2}-\d{4}$—Matches a 10-digit U.S. phone number with the
format NPA-NXX-XXXX where N is a digit 2-9, P is a digit 0-8, A is any digit 0-9, and X
is any digit 0-9.

➤➤ ^([2-9][0-8]\d-)?[2-9][0-9]{2}-\d{4}$—Matches a U.S. phone number with an
optional area code such as 202-234-5678 or 234-5678.

➤➤ ^\d{5}(-\d{4})?$—Matches a U.S. ZIP code with optional +4 as in 12345 or 12345-6789.

➤➤ ^[A-Z]\d[A-Z] \d[A-Z]\d$—Matches a Canadian postal code with the format A1A 1A1
where A is any capital letter and 1 is any digit.

➤➤ ^[a-zA-Z0-9._-]{3,16}$—Matches a username with 3 to 16 characters that can be
dashes, letters, digits, periods, or underscores.

➤➤ ^[a-zA-Z][a-zA-Z0-9._-]{2,15}$—Matches a username that includes a letter followed
by 2 to 15 dashes, letters, digits, periods, or underscores.

➤➤ ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9._%+-]+\.[a-zA-Z]{2,4}$—Matches an e-mail
address. (This pattern isn’t perfect but it matches most valid e-mail addresses.)

➤➤ ^[+-]?[a-fA-Z0-9]{3}$—Matches a 3-digit hexadecimal value with an optional sign + or
– as in +A1F.

➤➤ ^(https?://)?([\w-]+\.)+[\w-]+$—Matches a top-level HTTP web address such as
http://www.csharphelper.com. (This pattern isn’t perfect. In particular it doesn’t validate
the final part of the domain, so it would match www.something.whatever.)

➤➤ ^(https?://)?([\w-]+\.)+[\w-]+(/(([\w-]+)(\.[\w-]+)*)*)*$—Matches an HTTP
web URI such as http://www.csharphelper.com/howto_index.html. (Again this pattern
isn’t perfect and doesn’t handle some more advanced URLs such as those that include =, ?,
and # characters, but it does handle many typical URLs.)

uSING REGuLAR ExPRESSIONS

The Regex class provides objects that you can use to work with regular expressions. The following
table summarizes the Regex class’s most useful methods.

MEthOd PuRPOSE

IsMatch Returns true if a string satisfies a regular expression .

Match Searches a string for the first part of it that satisfies a regular expression .

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.csharphelper.com
http://www.something.whatever
http://www.csharphelper.com/howto_index.html

840 ❘ APPENdIx t regular exPressions

MEthOd PuRPOSE

Matches Returns a collection giving information about all parts of a string that
satisfy a regular expression .

Replace Replaces some or all the parts of the string that match a regular expres-
sion with a new value . (This is much more powerful than the string
class’s Replace method .)

Split Splits a string into an array of substrings delimited by pieces of the
string that match a regular expression .

The Regex class also provides static versions of these methods that take both a string to examine
and a regular expression as parameters.

The following sections summarize how to use the Regex class to perform common regular expres-
sion tasks.

Matching Patterns
The Regex class’s static IsMatch method gives you an easy way to determine whether a string
satisfies a regular expression. The following code tests whether the text in variable text matches
the pattern in variable pattern.

if (Regex.IsMatch(text, pattern))
 result = "Match";
else
 result = "No match";

Finding Matches
The Regex class’s Matches method can give you information about places where a string matches a
regular expression. The following code locates pieces of the string in variable text that match the
pattern in variable pattern.

// Make the regex object.
Regex regex = new Regex(pattern);

// Find the matches.
foreach (Match match in regex.Matches(text))
{
 // Display the match.
 Console.WriteLine(match.Value);
}

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Using regular expressions ❘ 841

The following table lists the Match class’s most useful properties.

PROPERty PuRPOSE

Groups Returns a collection of objects representing any groups captured by
the regular expression . The Group class has Index, Length, and Value
properties that describe the group .

Index The index of the match’s first character .

Length The length of the text represented by this match .

Value The text represented by this match .

Making Replacements
The Regex class’s static Replace method enables you to replace the parts of a string that match
a pattern with a new string. The following code examines the string in variable text, locates
pieces that match the pattern in variable pattern, and replaces them with the text in variable
replaceWith.

string result = Regex.Replace(
 text,
 pattern,
 replaceWith);

For example, the following code replaces vowels in a string with question marks.

string result =
 Regex.Replace("The quick brown fox jumps over the lazy dog", "[aeiou]", "?")

The following text shows the result.

Th? q??ck br?wn f?x j?mps ?v?r th? l?zy d?g

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

Parallel Programming
This appendix summarizes C# parallel programming techniques.

INtERACtING wIth thE uSER INtERFACE

Code can directly interact with user interface elements if the code is running inside the thread
that created those elements. For example, code executing in a separate thread cannot safely
change the text displayed in a TextBox or Label.

To interact with the UI controls, a thread should follow these steps.

 1. Check the InvokeRequired property for a control that was created in the UI thread.

 2. If InvokeRequired is true, the thread should call the control’s Invoke method, passing
it a delegate.

 3. The delegate executes on the control’s thread. Because it is running in the control’s
thread, the delegate can safely interact with the control.

PLINQ

Parallel LINQ (PLINQ pronounced “plink”) allows a program to execute LINQ queries across
multiple processors or cores in a multi-core system. Simply add a call to the AsParallel exten-
sion method to the enumerable object from which the query selects data.

The following code uses a PLINQ query to select the even numbers in the array numbers.
The call to AsParallel is highlighted in bold.

var evens =
 from int number in numbers.AsParallel()
 where number % 2 == 0
 select number;

foreach (int number in evens) Console.WriteLine(number);

U

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

844 ❘ APPENdIx u Parallel Programming

This code composes the query and includes the call to AsParallel. It then loops through the query’s
results and displays them.

bACKGROuNdwORKER

The BackgroundWorker component provides a relatively simple way to run a separate thread of
execution. It provides events to provide feedback to the main UI thread so that you can display
results without needing to use InvokeRequired and the Invoke method.

Following is the basic process.

 1. Create a BackgroundWorker at design time or run time.

 2. Call its RunWorkerAsync method. This starts a new thread and raises the worker’s DoWork
event handler on that thread.

 3. Catch the DoWork event, and make its event handler execute the code you want to run on the
new thread.

To provide feedback, add these steps to those described in the preceding list.

 1. Before starting the BackgroundWorker, set its WorkerReportsProgress property to true.

 2. Catch the worker’s ProgressChanged event. This event handler runs in the UI thread, so it can
manipulate the user interface controls without messing with InvokeRequired and Invoke.

If you want the main program to stop the worker, follow these steps.

 1. Before starting the BackgroundWorker, set its WorkerSupportsCancellation property
to true.

 2. To stop the worker, call its CancelAsync method.

 3. In the DoWork event handler, periodically check the worker’s CancellationPending prop-
erty. If that property is true, the event handler should exit. If you like, the code can set the
e.Cancel parameter to indicate that the work was canceled.

tPL

Task Parallel Library (TPL) provides methods for executing multiple calculations on separate threads
and waiting for them all to complete. Those methods are Parallel.For, Parallel.ForEach, and
Parallel.Invoke.

Because all three of these methods call delegates that might execute on separate threads, the calls
may not finish in any particular order.

www.EBooksWorld.ir

www.hellodigi.ir

Tasks ❘ 845

Parallel.For
The Parallel.For method takes as parameters a starting value, an ending value, and a delegate. It
invokes the delegate for each of the values between the starting value (including that value) and the
ending value (not including that value). The method blocks until all the calls to the delegate have
completed and then the code continues.

The following code shows how a program might invoke the FindFibonacci method with the
parameters 0, 1, 2, and 3.

Parallel.For(0, 4, FindFibonacci);

Parallel.ForEach
The Parallel.ForEach method takes as parameters an enumerable collection of values and a delegate.
The ForEach method invokes the delegate, passing it each of the parameter values. The method blocks
until all the calls to the delegate have completed.

The following code shows how a program might call the FindFibonacci method, passing it the
input parameters 0, 2, 4, 6, and 8.

int[] numbers = {0, 2, 4, 6, 8};
Parallel.ForEach(numbers, FindFibonacci);

Parallel.Invoke
The Parallel.Invoke method lets you invoke one or more possibly different delegates. It executes
the delegates, possibly on different threads, and blocks until they all complete.

The following code shows how a program might use Parallel.Invoke to execute the
ResetParameters, LoadGame, and BuildWorld methods in parallel.

Parallel.Invoke(ResetParameters, LoadGame, BuildWorld);

tASKS

The System.Threading.Tasks.Task class enables you to create threads and run them asynchro-
nously. The following table summarizes the Task class’s most useful properties.

PROPERty PuRPOSE

Exception Returns an AggregateException object containing information about
any exceptions that caused the Task to end early .

Factory Provides access to TaskFactory class methods that you can use to cre-
ate Tasks . (This is explained in more detail shortly .)

IsCanceled Returns true if the Task was canceled .

continues

www.EBooksWorld.ir

www.hellodigi.ir

846 ❘ APPENdIx u Parallel Programming

PROPERty PuRPOSE

IsCompleted Returns true if the Task has finished processing .

IsFaulted Returns true if the Task stopped because of an unhandled exception .

Status Returns the Task’s status . This can be one of Canceled, Created,
Faulted, RanToCompletion, Running, WaitingForAactivation,
WaitingForChildrenToComplete, or WaitingToRun .

The following table lists the Task class’s most useful methods.

MEthOd PuRPOSE

ConfigureAwait Configures an “awaiter” object that you can use with the await keyword
to wait for the Task to complete .

ContinueWith Creates a continuation Task that executes when a target Task finishes .

Delay Creates a Task that completes after a specified amount of time
has passed .

Run This static method creates a Task and queues it to start running . (This
is basically a simplified version of Task.Factory.StartNew, which is
described later in this section .)

RunSynchronously Runs a Task synchronously .

Start Starts a Task that was previously created .

Wait Waits for the Task to complete .

WaitAll This static method waits until all the Tasks in a set complete .

WaitAny This static method waits until any one of the Tasks in a set completes .

WhenAll Creates a Task that completes when all the specified Tasks complete .

WhenAny Creates a Task that completes when any one of the specified Tasks
completes .

The following list describes different methods you can use to create and start a Task.

➤➤ Use a Task class constructor to create a Task and then call its Start method to start it.

➤➤ Use a TaskFactory object. The Task class’s Factory method returns a TaskFactory object
that you can use to create different kinds of Tasks. The Task.Factory.StartNew method
creates and starts a Task in a single step.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Threads ❘ 847

➤➤ Call Task.Run. This is basically a simplified version of Task.Factory.StartNew.

➤➤ Call the TaskFactory class’s ContinueWhenAll or ContinueWhenAny methods to create
Tasks that start after some or all of a set of previous Tasks completes.

The following code shows one of the simplest cases in which a program starts four Tasks and then
waits for them all to complete.

// Start four tasks.
Task task0 = new Task(FindFibonacci, 0);
task0.Start();
Task task1 = new Task(FindFibonacci, 1);
task1.Start();
Task task2 = new Task(FindFibonacci, 2);
task2.Start();
Task task3 = new Task(FindFibonacci, 3);
task3.Start();

// Wait for the tasks to complete.
task0.Wait();
task1.Wait();
task2.Wait();
task3.Wait();

thREAdS

The System.Threading.Thread class gives you more control over threads than you can get from
the other techniques described in this appendix, but using it is more complicated. The following
table lists the Thread class’s most useful properties.

PROPERty MEANING

IsAlive Returns true if the thread has been started and has not ended or
aborted .

IsBackground Determines whether the thread is a background thread .

Priority Determines the thread’s priority . This can be Highest, AboveNormal,
Normal, BelowNormal, or Lowest .

ThreadState Returns the thread’s state . This can be a combination of the val-
ues Aborted, AbortRequested, Background, Running, Stopped,
StopRequested, Suspended, SuspendRequested, Unstarted, and
WaitSleepJoin .

www.EBooksWorld.ir

www.hellodigi.ir

848 ❘ APPENdIx u Parallel Programming

The following table lists the Thread class’s most useful methods.

MEthOd PuRPOSE

Abort Raises a ThreadAbortException on the thread to make it terminate .

Join Blocks the thread on which the method is called until the thread termi-
nates . (This is how programs normally wait for a thread to finish .)

ResetAbort Cancels an Abort for the current thread .

Sleep This static method suspends a thread for a specified amount of time .

Start Starts the thread .

Yield Yields execution to another thread if one is ready to run .

Using a simple thread typically involves the following steps.

 1. Create the Thread object.

 2. Call the Start method to start the thread.

 3. To stop the thread, call its Abort method.

 4. To wait for the thread, call its Join method.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

XML
This appendix summarizes useful XML topics and techniques.

SPECIAL ChARACtERS

The following table lists five special characters defined for use in XML files.

ChARACtER COdE

< <

> >

& &

' '

" "

You can also include special characters inside CDATA sections. A CDATA section begins with
<![CDATA[and includes all the following text until it reaches the closing sequence]]>. The
CDATA can include carriage returns, ampersands, quotes, and other special characters.

wRItING xML dAtA

The .NET Framework provides two main ways to write XML data: the XmlWriter class and
the XML Document Object Model. The following two sections describe these approaches.

V

www.EBooksWorld.ir

www.hellodigi.ir

850 ❘ APPENdIx V xml

xmlwriter
The XmlWriter class provides methods for writing the pieces of an XML file. To use an XmlWriter
to write XML data into a file, call the class’s Create method to create the file. Then use the other
methods to write the pieces of the XML document into the file.

The following table lists the most useful XmlWriter methods.

MEthOd PuRPOSE

Close Closes the writer’s underlying stream .

Create Creates an XmlWriter associated with a file, stream,
StringBuilder, or other object .

Dispose Frees the writer’s resources . (You can use the using statement to
ensure that the writer is disposed .)

Flush Flushes output to the underlying stream .

WriteAttributeString Writes an attribute with a specified name and value .

WriteCData Writes CDATA .

WriteComment Writes a comment .

WriteElementString Writes an element with a specified name and text value .

WriteEndAttribute Ends an attribute started with WriteStartAttribute .

WriteEndDocument Ends the document .

WriteName Writes a name .

WriteStartAttribute Starts an attribute .

WriteStartDocument Starts the document .

WriteStartElement Starts an element .

WriteString Writes a string, escaping special characters such as < and > if
necessary .

WriteValue Writes a value such as a bool, int, or double .

The XmlTextWriter class, which inherits from XmlWriter, works much as XmlWriter does but it
can produce nicely indented output. Simply create an XmlTextWriter instead of an XmlWriter, set
its Formatting property to Indented, and create the XML file using the methods described in the
preceding table.

www.EBooksWorld.ir

www.hellodigi.ir

Writing XmL Data ❘ 851

document Object Model
The XML Document Object Model (DOM) provides a more structured way to build XML documents.
It uses objects to create an in-memory model of an XML document. You can then manipulate the
model and save the result into an XML file or string.

Two of the most important classes for manipulating the DOM are XDocument and XElement.

The XDocument class represents an XML document. Its most useful properties are Declaration, which
gets or sets the document’s XML declaration, and Root, which returns the document’s root element.

The following table lists the XDocument class’s most useful methods.

MEthOd PuRPOSE

Add Adds an item to the document’s child collection . (Note that you
can add only one child, the root element, to the document .)

DescendantNodes Returns a collection of XNode objects that are descendants of
the document .

Descendants Returns a collection of XElement objects that are descendants
of the document . If you specify a name, the method returns only
elements with that name .

Load Loads the document from a filename, stream, or XmlReader .

Parse Creates a new XDocument from an XML string .

Save Saves the document into a file, stream, or writer .

ToString Returns the document’s indented XML code .

WriteTo Writes the document into an XmlWriter .

The XElement class represents an element in an XML document. The following table lists the
XElement class’s most useful properties.

PROPERty PuRPOSE

Document Returns the XDocument that contains the element .

FirstAttribute Gets the element’s first attribute .

FirstNode Gets the element’s first child node .

HasAttributes Returns true if the element has attributes .

HasElements Returns true if the element has child elements .

continues

www.EBooksWorld.ir

www.hellodigi.ir

852 ❘ APPENdIx V xml

PROPERty PuRPOSE

IsEmpty Returns true if the element contains no content . (It still might
have attributes .)

LastAttribute Gets the element’s last attribute .

LastNode Gets the element’s last child node .

Name Gets or sets the element’s name .

NextNode Returns the next node in the element’s parent’s child list .

NodeType Gets the node’s type .

Parent Gets the element’s parent element .

PreviousNode Returns the previous node in the element’s parent’s child list .

Value Gets or sets the node’s text contents .

The following table lists the XElement class’s most useful methods.

MEthOd PuRPOSE

Add Adds an item at the end of the element’s child collection .

AddAfterSelf Adds an item to the parent’s child collection after this element .

AddBeforeSelf Adds an item to the parent’s child collection before this element .

AddFirst Adds an item at the beginning of the element’s child collection .

Ancestors Returns a collection of XElement objects that are ancestors of
the element . If you specify a name, the method returns only ele-
ments with that name .

Attribute Returns an attribute with a specific name .

Attributes Returns a collection containing this element’s attributes . If
you specify a name, the collection includes only attributes with
that name .

DescendantNodes Returns a collection of XNode objects that are descendants of
the element .

Descendants Returns a collection of XElement objects that are descendants
of the element . If you specify a name, the method returns only
elements with that name .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Writing XmL Data ❘ 853

MEthOd PuRPOSE

DescendantsAndSelf Returns a collection of XElement objects that includes this ele-
ment and its descendants . If you specify a name, the method
returns only elements with that name .

Element Returns the first child element with a specified name .

Elements Returns a collection holding the element’s children . If you specify
a name, the method returns only elements with that name .

ElementsAfterSelf Returns a collection holding the element’s siblings that come
after this element . If you specify a name, the method returns only
elements with that name .

ElementsBeforeSelf Returns a collection holding the element’s siblings that come
before this element . If you specify a name, the method returns
only elements with that name .

IsAfter Returns true if this node comes after another specified node in
a document .

IsBefore Returns true if this node comes before another specified node in
a document .

Load Loads the element from a filename, stream, or reader .

Nodes Returns a collection holding this element’s child nodes .

NodesAfterSelf Returns a collection holding the node’s siblings that come after
this node .

NodesBeforeSelf Returns a collection holding the node’s siblings that come before
this node .

Parse Creates an XElement from an XML string .

Remove Removes this element from its parent .

RemoveAll Removes all nodes and attributes from this element .

RemoveAttributes Removes this element’s attributes .

RemoveNodes Removes this element’s child nodes .

ReplaceAll Replaces the element’s child nodes and attributes with specified
new ones .

ReplaceAttributes Replaces the element’s attributes with specified new ones .

ReplaceNodes Replaces the element’s child nodes with specified new ones .

ReplaceWith Replaces this node with new specified content .

continues

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

854 ❘ APPENdIx V xml

MEthOd PuRPOSE

Save Saves the element into a file, stream, or writer .

SetAttributeValue Sets, adds, or removes an attribute .

SetElementValue Sets, adds, or removes a child element .

SetValue Sets the element’s value .

ToString Returns the element’s indented XML code .

WriteTo Writes the element into an XmlWriter .

xML Literals
C# doesn’t support XML literals but it does support multiline string literals and they work almost
as well. Simply use the XElement.Parse method to parse a multiline string holding the XML code,
as in the following example.

XElement student = XElement.Parse(
 @"<Student>
 <FirstName>Arthur</FirstName>
 <LastName>Andrews</LastName>
 <StudentID>83746</StudentID>
 </Student>");

REAdING xML dAtA

The following two sections explain how you can use the XmlTextReader class and the Document
Object Model to read XML code.

xmltextReader
The XmlTextReader class provides fast, forward-only, noncached methods for reading XML data. It
provides methods to move through an XML file one node at a time and to examine the data provided
by each node.

To use an XmlTextReader, use the class’s constructor or the XmlReader class’s static Create
method to create an object associated with the file or input stream that you want to read. Use the
object’s Read method to read the next node from the XML data. After you read a node, you can
use the reader’s properties and methods to determine the node’s name, type, attributes, content,
and other properties.

The following table lists the most useful XmlReader properties.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

reading XmL Data ❘ 855

PROPERty MEANING

AttributeCount Returns the number of attributes the node has .

Depth Returns the depth of the current node in the XML hierarchy .

EOF Returns true when the reader is at the end of the XML data .

HasAttributes Returns true if the node has attributes .

HasValue Returns true if the node can have a value .

IsEmptyElement Returns true if the node is an empty element as in <Overdue /> .

Item Gets a node attribute by index or name . (This is the class’s
indexer, so you use it as in reader[0] instead of invoking the
Item property explicitly .)

Name Returns the node’s name .

Value Returns the text value of the current node .

The following table lists the XmlReader class’s most useful methods.

MEthOd PuRPOSE

Create Creates a new reader associated with a string, stream, file, or
other data source .

Dispose Frees the object’s resources . You can include a using statement
to automatically call Dispose .

GetAttribute Gets an attribute for the current node by index or name . (Similar
to the Item property .)

IsName Returns true if its parameter is a valid XML name .

MoveToAttribute Moves the reader to an attribute specified by index or name .

MoveToContent Moves the reader to the current node’s content .

MoveToElement Moves the reader to the element containing the reader’s current
position . For example, if you move the reader to examine an ele-
ment’s attributes, the method moves the reader back to the ele-
ment’s node .

MoveToFirstAttribute Moves the reader to the current node’s first attribute node .

MoveToNextAttribute Moves the reader to the current node’s next attribute node .

Read Reads the next node from the XML data .

continues

www.EBooksWorld.ir

www.hellodigi.ir

856 ❘ APPENdIx V xml

MEthOd PuRPOSE

ReadInnerXml Returns the current node’s descendants as an XML string .

ReadOuterXml Returns the current node’s subtree (including the current node)
as an XML string .

ReadToDescendant Moves the reader to a subelement with a specified name .

ReadToNextSibling Moves the reader past the rest of the current node to its
next sibling .

Skip Skips the current node’s children .

document Object Model
You can use the DOM to load and study an existing XML file.

To load an object model from XML data, simply call the XDocument class’s static Load method,
passing it a filename, stream, or XmlReader.

RELAtEd tEChNOLOGIES

The following list summarizes some XML-related technologies.

➤➤ XSL (Extensible Stylesheet Language)—This refers to a family of languages and tools for
reformatting XML data. It includes

➤➤ XSLT (XSL Transform)—A language for transforming XML data into other formats
such as plain text, HTML, rearranged XML documents, or XSL FO.

➤➤ XSL FO (XSL Formatting Objects)—A language for formatting XML data for output
for screen, PDFs, printers, and so forth.

➤➤ XPath—This is a query language used by XSL and other XML tools to find and
identify items within XML data.

➤➤ XQuery—A somewhat SQL-like language for querying XML data.

➤➤ DTD (Document Type Definition)—An XML data file validation language. You use DTD to
define the required structure of an XML file. Then you can validate a particular XML file
to see if it satisfies those requirements.

➤➤ XSD (XML Schema Definition)—Another XML data file validation language. See DTD.

➤➤ XLink—A language for defining hyperlinks in XML data.

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

related Technologies ❘ 857

➤➤ SOAP (Simple Object Access Protocol)—A protocol that lets applications (often running on
different computers) exchange data.

➤➤ WSDL (Web Services Definition Language)—A language for describing web services.

➤➤ RSS (Really Simple Syndication)—A format for XML news feeds and sites that post news-
like items.

The following sections provide more information about XPath and XSLT.

xPath
XPath is a language for identifying items in XML data. An XPath query looks vaguely like a file’s
pathname in a directory hierarchy. The query can also include operators that work as wildcards, filter
the results, and specify relationships among nodes.

The following table lists the most useful operators that you can use in an XPath query.

OPERAtOR MEANING

/ Selects an immediate child .

// Selects descendants .

. The current node .

.. The current node’s parent .

* Matches anything .

@ Attribute prefix for matching an attribute . For example, @Cost
matches an attribute named Cost .

@* Selects all attributes .

() Groups operations .

[] Applies a filter . For example, //Planet[@Name="Earth"] matches
Planet elements that have a Name attribute with value Earth .

[] Subscript operator for accessing items in a collection .

+ Addition .

- Subtraction .

Div Floating-point division .

* Multiplication .

Mod Modulus .

www.EBooksWorld.ir

www.hellodigi.ir

858 ❘ APPENdIx V xml

When a query filters results, it can include the boolean and comparison operators listed in the
following table.

OPERAtOR MEANING

And Logical AND

Or Logical OR

not() Logical NOT

= Equals

!= Not equals

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

For more information on XPath, see the following links.

➤➤ “XPath Reference” at msdn.microsoft.com/library/ms256115.aspx

➤➤ “XPath Examples” at msdn.microsoft.com/library/ms256086.aspx

xSLt
XSLT is a language that you can use to transform XML data into a new format. It’s a fairly com-
plicated language, so there isn’t room to cover it in any depth here. To learn the language, see the
following links.

➤➤ “XSLT Tutorial” at www.w3schools.com/xsl/default.asp

➤➤ “XSLT Elements Reference” at www.w3schools.com/xsl/xsl_w3celementref.asp

➤➤ “XSL Transformations (XSLT) Version 1.0” at www.w3.org/TR/xslt

For an example, see the section “XSLT” in Chapter 24, “XML.”

www.EBooksWorld.ir

www.hellodigi.ir

http://www.w3schools.com/xsl/default.asp
http://www.w3schools.com/xsl/xsl_w3celementref.asp
http://www.w3.org/TR/xslt
http://www.hiva-network.com/

Serialization
This appendix summarizes useful serialization topics and techniques.

xML SERIALIzAtION

To serialize and deserialize objects in XML format, you use the XmlSerializer class’s
Serialize and Deserialize methods. The methods work only for classes that have a param-
eterless constructor, either the default constructor or one that you created. They also work only
for public properties and fields. All other properties and fields are ignored.

To serialize an object, follow these steps.

 1. Create an XmlSerializer, passing its constructor the object’s type.

 2. Create a TextWriter to hold the serialization.

 3. Call the serializer’s Serialize method, passing it the TextWriter and the object
to serialize.

The following code shows how a program might serialize a Customer object.

// Create a serializer that works with the Customer class.
XmlSerializer serializer = new XmlSerializer(typeof(Customer));

// Create a TextWriter to hold the serialization.
string serialization;
using (TextWriter writer = new StringWriter())
{
 // Serialize the Customer.
 serializer.Serialize(writer, customer);
 serialization = writer.ToString();
}

// Display the serialization.
serializationTextBox.Text = serialization;

W

www.EBooksWorld.ir

www.hellodigi.ir

860 ❘ APPENdIx w serializaTion

To deserialize a serialization, follow these steps.

 1. Create an XmlSerializer, passing its constructor the object’s type.

 2. Create a TextReader from which to read the serialization.

 3. Call the serializer’s Deserialize method, passing it the TextReader. Cast the result into
the object’s type.

The following code shows how a program might deserialize a Customer object’s serialization.

// Create a serializer that works with the Customer class.
XmlSerializer serializer = new XmlSerializer(typeof(Customer));

// Create a stream from which to read the serialization.
using (TextReader reader = new StringReader(serialization))
{
 // Deserialize.
 Customer newCustomer = (Customer)serializer.Deserialize(reader);

 // Display the deserialization.
 DisplayCustomer(deserializedTextBox, newCustomer);
}

Controlling Serialization
The following table lists the most useful attributes that you can use to control serialization. (The
names of the classes that implement these attributes all end with Attribute. For example, the first
XmlArray attribute is implemented by the XmlArrayAttribute class. If you want to look up any of
these online, use their full class names.)

AttRIbutE PuRPOSE

XmlArray Changes the name by which the array or list is serialized .

XmlArrayItem Indicates a type that can be in an array . For example, sup-
pose the People array contains Person objects, some of
which might be from the Author subclass . Then you would use
XmlArrayItem twice to indicate that the array might contain
Person and Author objects .

XmlAttribute Serializes a field as an attribute instead of an element . Optionally
sets the name of the attribute .

XmlElement Specifically indicates the field will be serialized as an XML element .
This attribute allows you to change the XML element’s name .

XmlEnum Enables you to specify the names by which enumeration values
are serialized . For example, suppose the enumeration MealSize
defines values Small, Medium, and Large . You could use this
attribute to make the serialization call those values Tall, Grande,
and Brobdignagian .

www.EBooksWorld.ir

www.hellodigi.ir

Json serialization ❘ 861

AttRIbutE PuRPOSE

XmlIgnore Makes the serializer omit a field from the serialization .

XmlRoot Controls the name and namespace for the element generated
for a serialization’s root element . For example, the attribute
[XmlRoot("Client")] in front of the Customer class would make
the serializer name the root element Client . This would not affect
Customer objects that are not the root element . (See XmlType .)

XmlText Makes the serializer store a value as XML text . An object can
have only one text value . (The serializer cannot put more than
one text value between the object’s start and end tags .)

XmlType Controls the name and namespace for the element generated for a
class . For example, if you place the attribute [XmlType("Item")]
in front of the OrderItem class, then all OrderItem objects are
serialized as Item elements .

The DataContractSerializer class can also use XML to serialize and deserialize objects. The
process is similar to using the DataContractJsonSerializer class, which is summarized in the
next section.

jSON SERIALIzAtION

JavaScript Object Notation (JSON) is a data storage language that mostly consists of name:value
pairs where names are text and values can have one of the following data types.

➤➤ Number

➤➤ String

➤➤ Boolean

➤➤ Array (a sequence of values separated by commas and enclosed in brackets [])

➤➤ Object (a collection of key:value pairs with pairs separated by commas and the
whole collection surrounded by braces { })

➤➤ Null

The following section summarizes the basic JSON serialization and deserialization processes.
The section after that describes attributes you can use to control the serialization.

Performing Serialization
The DataContractJsonSerializer class serializes and deserializes objects using the JSON for-
mat. The class’s WriteObject method serializes an object. Its ReadObject method deserializes
an object.

www.EBooksWorld.ir

www.hellodigi.ir

862 ❘ APPENdIx w serializaTion

The following code serializes and deserializes a Customer object in the JSON format.

// Create a serializer that works with the Customer class.
DataContractJsonSerializer serializer =
 new DataContractJsonSerializer(typeof(Customer));

// Create a stream to hold the serialization.
using (MemoryStream stream = new MemoryStream())
{
 // Serialize the Customer.
 serializer.WriteObject(stream, customer);

 // Convert the stream into a string.
 stream.Seek(0, SeekOrigin.Begin);
 string serialization;
 using (StreamReader reader = new StreamReader(stream))
 {
 serialization = reader.ReadToEnd();

 // Display the serialization.
 serializationTextBox.Text = serialization;

 // Deserialize from the stream.
 stream.Position = 0;
 Customer newCustomer = (Customer)serializer.ReadObject(stream);

 // Display the deserialization.
 DisplayCustomer(deserializedTextBox, newCustomer);
 }
}

Controlling Serialization
The following table lists attributes that are useful when performing JSON serializations.

AttRIbutE PuRPOSE

CollectionDataContract Allows you to control serialization of collections

DataContract Indicates that a type is serializable by a serializer such as a
DataContractSerializer

DataMember Indicates that a property should be serialized

EnumMember Indicates that a property is an enumeration and should
be serialized

IgnoreDataMember Indicates that a property should not be included in the
serialization

OptionalField Indicates that a property is optional in a serialization

www.EBooksWorld.ir

www.hellodigi.ir

Binary serialization ❘ 863

bINARy SERIALIzAtION

The XML and JSON serializers cannot serialize some data types and cannot serialize a data structure
that contains reference loops. However, the BinaryFormatter class can handle both of these issues.

The BinaryFormatter can work only with classes that are decorated with the Serializable
attribute.

The following code shows how a program might use a BinaryFormatter to serialize and deserialize
a Department object.

// Create a BinaryFormatter.
IFormatter formatter = new BinaryFormatter();

// Create a stream to hold the serialization.
using (MemoryStream stream = new MemoryStream())
{
 // Serialize.
 formatter.Serialize(stream, department);

 // Display a textual representation of the serialization.
 byte[] bytes = stream.ToArray();
 string serialization = BitConverter.ToString(bytes).Replace("-", " ");

 // Display the serialization.
 serializationTextBox.Text = serialization;

 // Deserialize.
 stream.Seek(0, SeekOrigin.Begin);
 Department newDepartment = (Department)formatter.Deserialize(stream);

 // Display the new Department's data.
 deserializedPictureBox.Image = newDepartment.Logo;
 deserializedTextBox.Text = DisplayDepartment(newDepartment);
}

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

www.EBooksWorld.ir

www.hellodigi.ir

Reflection
A class’s type provides properties and methods that provide a wealth of information about the
class. You can get a Type object representing a class by using typeof(TheClass) or by calling
the GetType method on an instance of the class.

The following section summarizes the Type class’s most useful properties and methods. The
sections after that summarize other useful reflection classes.

tyPE

The following table lists the Type class’s most useful properties.

PROPERty dESCRIPtION

Assembly Gets the assembly where the type is declared .

Attributes Gets the type’s attributes .

BaseType Gets the type’s parent class .

ContainsGenericParameters Indicates whether the type has generic type parameters .

CustomAttributes Gets the type’s custom attributes .

FullName Gets the type’s fully qualified name, which includes the
type’s namespace but not its assembly .

IsAbstract Returns true if the type is abstract .

IsArray Returns true if the type is an array .

IsAutoLayout Returns true if the type’s fields are laid out automatically
by the CLR .

X

continues

www.EBooksWorld.ir

www.hellodigi.ir

866 ❘ APPENdIx x reFleCTion

PROPERty dESCRIPtION

IsByRef Returns true if the type is passed by reference .

IsClass Returns true if the type is a class .

IsCOMObject Returns true if the type is a COM object .

IsEnum Returns true if the type is an enumeration .

IsExplicitLayout Returns true if the type’s fields are laid out explicitly .

IsGenericType Gets a value indicating whether the current type is a
generic type .

IsImport Returns true if the type was imported from a COM library .

IsInterface Returns true if the type is an interface .

IsLayoutSequential Returns true if the type’s fields are laid out sequentially .

IsMarshalByRef Returns true if the type is marshaled by reference .

IsNested Returns true if the type’s definition is contained inside
another type’s definition .

IsNestedAssembly Returns true if the type is nested and visible only within
its assembly .

IsNestedFamANDAssem Returns true if the type is nested and visible only to classes
in its family in its class and derived classes) and its assembly .

IsNestedFamily Returns true if the type is nested and visible only to
classes in its family .

IsNestedFamORAssem Returns true if the type is nested and visible only to
classes either in its family or in its assembly .

IsNestedPrivate Returns true if the type is nested and private .

IsNestedPublic Returns true if the type is nested and public .

IsNotPublic Returns true if the type is not public .

IsPointer Returns true if the type is a pointer .

IsPrimitive Returns true if the type is a primitive type .

IsPublic Returns true if the type is public .

IsSealed Returns true if the type is sealed .

IsSerializable Returns true if the type is serializable .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

Type ❘ 867

PROPERty dESCRIPtION

IsValueType Returns true if the type is a value type .

IsVisible Returns true if the type is visible to code outside
the assembly .

Module Returns the module where the type is defined .

Name Returns the type’s name .

Namespace Returns the type’s namespace .

StructLayoutAttribute Returns a StructLayoutAttribute describing the
type’s layout .

TypeInitializer Gets the type’s initializer .

The following table lists the Type class’s most useful methods.

MEthOd dESCRIPtION

FindInterfaces Returns a filtered list of interfaces that the type
implements .

FindMembers Returns a filtered array of MemberInfo objects of
the specified member type . Member type can be
All, Constructor, Custom, Event, Field, Method,
NestedType, Property, or TypeInfo .

GetArrayRank Returns the number of an array’s dimensions .

GetConstructor Returns information about a constructor matching
specific parameter types .

GetConstructors Returns all the type’s public constructors .

GetCustomAttributes Returns an array of the type’s custom attributes .

GetDefaultMembers Returns the type’s default members .

GetElementType For an array, pointer, or reference type, returns the
type of items contained by the type .

GetEnumName For an enumeration type, returns the name cor-
responding to a specific value . (For example, if the
Desserts enumeration represents the value Cookie
with the integer value 3, then GetEnumName(3)
returns Cookie .)

continues

www.EBooksWorld.ir

www.hellodigi.ir

868 ❘ APPENdIx x reFleCTion

MEthOd dESCRIPtION

GetEnumNames For an enumeration type, returns the names of the
enumeration’s values .

GetEnumUnderlyingType For an enumeration type, returns the integer data
type used to store the enumeration’s values .

GetEnumValues For an enumeration type, returns an array of the inte-
ger values used to store the enumeration’s values .

GetEvent Returns an EventInfo object representing a speci-
fied public event .

GetEvents Returns EventInfo objects representing all the
type’s public events .

GetField Returns a FieldInfo object representing a specified
public field .

GetFields Returns FieldInfo objects representing all the
type’s public fields .

GetGenericArguments Returns an array of type objects representing the
type’s generic type arguments .

GetGenericParameterConstraints Returns an array of type objects representing con-
straints on a generic type parameter .

GetInterface Returns a type representing an interface implemented
by the type .

GetInterfaces Returns an array of types representing interfaces
implemented by the type .

GetMember Returns an array of MemberInfo objects containing
information about the type’s public members that
match search criteria .

GetMembers Returns an array of MemberInfo objects containing
information about all the type’s public members .

GetMethod Returns a MethodInfo object representing a public
method that matches search criteria .

GetMethods Returns an array of MethodInfo objects representing
the type’s public methods .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

Type ❘ 869

MEthOd dESCRIPtION

GetNestedType Returns type information representing a nested type
that matches search criteria .

GetNestedTypes Returns an array of type information representing all
the type’s nested types .

GetProperties Returns an array of PropertyInfo objects represent-
ing properties that match search criteria .

GetProperty Returns a PropertyInfo object representing a prop-
erty that matches search criteria .

GetType This static method returns a Type object representing
a type that matches search criteria .

GetTypeArray Returns an array of Type objects for objects in an array .

GetTypeFromCLSID Returns the type with a given class identifier (CLSID)
specified as a GUID .

InvokeMember Invokes a member .

IsAssignableFrom Returns true if an instance of the type can be
assigned from an instance of another specified type .

IsEnumDefined For an enumeration type, returns true if the enumera-
tion defines a specific value .

IsInstanceOfType Returns true if a specific object is an instance of
the type .

IsSubclassOf Returns true if the type is a subclass of another type .

MakeArrayType Returns a new Type object representing an array of
the current type .

MakeByRefType Returns a new Type object representing the current
type when passed by reference .

MakeGenericType Returns a new Type object representing the current
generic type with specific types substituted in for
the generic type parameters .

MakePointerType Returns a new Type object representing a pointer to
the current type .

www.EBooksWorld.ir

www.hellodigi.ir

870 ❘ APPENdIx x reFleCTion

MEMbERINFO

The MemberInfo class is the parent class of EventInfo, MethodInfo, FieldInfo, and
PropertyInfo. The following table lists useful MemberInfo properties.

PROPERty dESCRIPtION

CustomAttributes Returns a collection containing information about the member’s
custom attributes

DeclaringType Returns the class that includes this member

MemberType Returns the member’s type

Module Returns the module that contains the type that defines
this member

Name Returns the member’s name

ReflectedType Returns the object that was used to get this MemberInfo object

The following sections describe the most useful properties and methods provided by the EventInfo,
MethodInfo, FieldInfo, and PropertyInfo classes.

EVENtINFO

An EventInfo object contains information about an event. The following table lists the most useful
EventInfo properties that are not inherited from the MemberInfo class.

PROPERty dESCRIPtION

AddMethod Returns the method used to add a delegate to the event

Attributes Returns the event’s attributes

EventHandlerType Returns a Type representing the event’s event handler delegate

RaiseMethod Returns the method that is called when the event is raised

RemoveMethod Returns the method that removes a delegate from the
event handler

The following table lists the most useful EventInfo methods that are not inherited from the
MemberInfo class.

www.EBooksWorld.ir

www.hellodigi.ir

methodInfo ❘ 871

MEthOd dESCRIPtION

AddEventHandler Adds an event handler to the event

GetAddMethod Returns the method used to add a delegate to the event

GetRaiseMethod Returns the method that is called when the event is raised

GetRemoveMethod Returns the method that removes a delegate from the
event handler

RemoveEventHandler Removes an event handler from the event

MEthOdINFO

A MethodInfo object contains information about a method. This class is derived from MethodBase,
which is derived from MemberInfo.

The following table lists the most useful MethodInfo properties that are not inherited from the
MemberInfo class. (Some of these properties are inherited from MethodBase, but that class is
abstract, so this appendix doesn’t describe it separately.)

PROPERty dESCRIPtION

ContainsGenericParameters Returns true if the method has generic parameters .

IsAbstract Returns true if the method is abstract .

IsAssembly Returns true if the method is visible only to code within
the same assembly .

IsConstructor Returns true if the method is a constructor .

IsFamily Returns true if the method is visible only within this class
and derived classes .

IsFamilyAndAssembly Returns true if the method is visible only to its family
(its class and derived classes) and only within the same
assembly .

IsFamilyOrAssembly Returns true if the method is visible to its family (its
class and derived classes) and to code within the same
assembly .

IsFinal Returns true if the method is final .

continues

www.EBooksWorld.ir

www.hellodigi.ir

872 ❘ APPENdIx x reFleCTion

PROPERty dESCRIPtION

IsGenericMethod Returns true if the method is an instance of a generic
method .

IsGenericMethodDefinition Returns true if the method is a generic method definition .

IsPrivate Returns true if the method is private .

IsPublic Returns true if the method is public .

IsStatic Returns true if the method is static .

IsVirtual Returns true if the method is virtual .

ReturnParameter Returns a ParameterInfo object representing the meth-
od’s return type .

ReturnType Returns the method’s return type .

The following table lists the most useful MethodInfo methods that are not inherited from the
MemberInfo class.

MEthOd dESCRIPtION

CreateDelegate Returns a delegate for the method .

GetGenericArguments Returns an array of Type objects representing the meth-
od’s generic arguments .

GetGenericMethodDefinition For an instance of a generic method, returns a MethodInfo
object representing the method’s generic definition .

GetParameters Returns information about the method’s parameters .

Invoke Invokes the method, passing it specified parameters .

MakeGenericMethod For a generic method definition, returns a MethodInfo
representing the method with specific types inserted in
place of the generic type parameters .

(continued)

www.EBooksWorld.ir

www.hellodigi.ir

fieldInfo ❘ 873

FIELdINFO

A FieldInfo object contains information about a field. The following table lists the most useful
FieldInfo properties that are not inherited from the MemberInfo class.

PROPERty dESCRIPtION

Attributes Returns the field’s attributes

FieldType Returns the field’s type

IsAssembly Returns true if the field is visible only to code within
the assembly

IsFamily Returns true if the field is visible only to code in its family
(its class and derived classes)

IsFamilyAndAssembly Returns true if the field is visible only to code in its family
that is in the same assembly

IsFamilyOrAssembly Returns true if the field is visible to code in its family and
to code in the same assembly

IsInitOnly Returns true if the field’s value can be set only in the
class’s constructor

IsLiteral Returns true if the field is initialized at compile time and
cannot be changed later

IsNotSerialized Returns true if the field is marked with the
NotSerialized attribute

IsPrivate Returns true if the field is private

IsPublic Returns true if the field is public

IsStatic Returns true if the field is static

The following table lists the FieldInfo class’s most useful methods.

MEthOd dESCRIPtION

GetValue Returns the field’s value

GetValueDirect Returns the value of a field supported by a given object

SetValue Sets the field’s value

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

874 ❘ APPENdIx x reFleCTion

PROPERtyINFO

A PropertyInfo object contains information about a property. The following table lists the most
useful PropertyInfo properties that are not inherited from the MemberInfo class.

PROPERty dESCRIPtION

Attributes Returns the property’s attributes

CanRead Returns true if the property can be read

CanWrite Returns true if the property can be written

GetMethod Returns the property’s get accessor

PropertyType Returns the property’s type

SetMethod Returns the property’s set accessor

The following table lists the PropertyInfo class’s most useful methods.

MEthOd dESCRIPtION

GetAccessors Returns an array of MethodInfo objects representing the
property’s accessors

GetGetMethod Returns a MethodInfo object representing the property’s
get accessor

GetIndexParameters For indexed properties, returns an array of ParameterInfo
objects giving information about the property’s indexes

GetSetMethod Returns a MethodInfo object representing the property’s
set accessor

GetValue Returns the property’s value

SetValue Sets the property’s value

PARAMEtERINFO

A ParameterInfo object contains information about a parameter. The following table lists the most
useful ParameterInfo properties.

PROPERty dESCRIPtION

Attributes Returns the parameter’s attributes

CustomAttributes Returns the parameter’s custom attributes

www.EBooksWorld.ir

www.hellodigi.ir

ParameterInfo ❘ 875

PROPERty dESCRIPtION

DefaultValue Returns the parameter’s default value, if it has one

HasDefaultValue Returns true if the parameter has a default value

IsIn Returns true if the parameter is an input parameter

IsOptional Returns true if the parameter is optional

IsOut Returns true if the parameter is an output parameter

Member Returns the member that uses the parameter

Name Returns the parameter’s name

ParameterType Returns the parameter’s type

Position Returns the parameter’s position (numbered from 0) in a
parameter list

The ParameterInfo class’s most useful method is GetCustomAttributes, which returns information
about the parameter’s custom attributes.

www.EBooksWorld.ir

www.hellodigi.ir

www.EBooksWorld.ir

www.hellodigi.ir

877

Symbols

+ (addition) operator, 100, 101, 743
& (And) operator, 104, 106, 744
&& (and with short-circuit) operator, 104, 744
<< (bit left shift) operator, 100–101, 743
>> (bit right shift) operator, 100, 101, 743
-- (decrement) operator, 100, 101–102, 743
/ (division) operator, 100, 743
== (equals) operator, 103, 744
> (greater than) operator, 103, 744
>= (greater than or equal to) operator, 103
++ (increment) operator, 100, 101–102, 743
< (less than) operator, 103, 744
<= (less than or equal to) operator, 103, 744
% (modulus) operator, 100, 743
* (multiplication) operator, 100, 743
! (negation) operator, 104, 744
- (negation) operator, 100, 743
~ (negation) operator, 106
!= (not equals) operator, 103, 744
| (Or) operator, 104, 106, 744
|| (Or with short-circuit) operator, 104, 744
+ (string concatenation) operator, 101, 743
- (subtraction) operator, 100, 743
+ (unary plus) operator, 100, 743
^ (Xor) operator, 104, 106, 744

A

abstract keyword, 127, 259, 261–262, 272–273
abstraction, 252–256

accessibility
classes, 271–272
method declaration, 124
variables, 54

accessibility, variable declaration and, 61,
63–64

accessor methods, 86–88
Action delegate, 94
Add method, 68–69
ADO.NET

bound controls, data sources, 511–516
using, 527–530

AesManaged object, 609–610
Aggregate function, 767
aggregate values, LINQ, 181–182
alignment attributes, 57
alternation constructs, 476
Ancestors method, 769
AncestorsAndSelf, 769
anchors in regular expressions, 473–474, 835
anonymous FTP access, 458
anonymous objects, 176
API functions, recycle bin,

SHEmptyRecycleBin, 439–440
AppendText method, 422
applications

console, 12
resource files, 405–406
Windows Forms, 16–19
Windows Store, 12, 21–23
WPF, 12, 19–12

INdEx

www.EBooksWorld.ir

www.hellodigi.ir

878

arguments – attributes

arguments
named, 129
optional, 129

arithmetic operators, 743
decrement, 101–102
increment, 101–102
result data types, 100–101
shift operators, 101

ArithmeticException, 226–227
Array class, 318

methods, 320–321, 778
resizing arrays, 319–320

ArrayList class, 779
arrays

Array class, 318
of arrays, 60
casting, 77, 736
collection classes, 777

array objects, 777–778
simple arrays, 777–778

dimensions, 318, 738
downloading, 450–451
lower bounds, 318–319
parameter arrays, 131–133
resizing, 319–320
speed, 320
of structures, 276
variables, initialization and, 67–68

as operator, 76–77, 735–736
AsEnumerable method, 184, 767
AsQueryable method, 184, 767
assemblies, 4

reflection, 589–591
Assembly Information dialog, 589
assembly language, IL and, 6
AssemblyAttributeUsage attribute, 755
AssemblyCompany attribute, 755
AssemblyCopyright attribute, 755
AssemblyCulture attribute, 755
AssemblyDescription attribute, 755
AssemblyProduct attribute, 755
AssemblyTitle attribute, 755

AssemblyTrademark attribute, 755
AssemblyVersion attribute, 755
Assert method, 207
assignment operators, 107, 745
async keyword, 144–145
async lambdas, 138
asynchronicity, thread of execution, 138
asynchronous methods

BeginInvoke method, 140–141
callbacks, 141–144
EndInvoke method, 140–141

atomic sequence of events, 500
atomic zero-width assertion, 473–474
Attribute method, 769
attributes, 270–271

alignment, 57
AssemblyAttributeUsage, 755
AssemblyCompany, 755
AssemblyCopyright, 755
AssemblyCulture, 755
AssemblyDescription, 755
AssemblyProduct, 755
AssemblyTitle, 755
AssemblyTrademark, 755
AssemblyVersion, 755
AttributeUsage, 123
binary serialization, 754
Browsable, 123, 755
Category, 123, 755
CollectionDataContract, 754
Conditional, 122–123, 755
ContractInvariantMethod, 211–212
DataContract, 754
DataMember, 754
DebuggerHidden, 124, 755
DebuggerStepThrough, 124, 755
DefaultEvent, 123, 755
DefaultProperty, 123, 755
DefaultValue, 123, 755
Description, 123, 755
DisplayName, 756
EnumMember, 754

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

879

attributes – Bitmap class

Flags, 756
IgnoreDataMember, 754
JSON serialization, 754
Localizable, 123, 756
Mergable, 756
MergableProperty, 123
method declaration, 122–124
Obsolete, 124, 756
OptionalField, 754
ParenthesizePropertyName, 123, 756
ReadOnly, 123, 756
RecommendedAsConfigurable, 123
RefreshProperties, 123
ToolboxBitmap, 124
useful, 755–756
XML, 535, 570

serialization, 753–754
XmlArray, 753
XmlArrayItem, 753
XmlAttribute, 753
XmlElement, 753
XmlEnum, 754
XmlIgnore, 754
XmlRoot, 754
XmlText, 754
XmlType, 754

attributes, variable declaration and, 61, 62–63
Attributes method, 769
AttributeUsage attribute, 123
authentication, 603
Autos window (Windows submenu, Debug

menu), 234
await keyword, 144–145

b

BackgroundWorker, 491–492, 844
base conversion, 71

Calculator, 101
base keyword, 284

BeginInvoke method, 140–141
binary serialization, 576–577, 755, 863
BinaryFormatter class, 576–577
BinaryReader class, 412, 416–418

methods
Close, 815
PeekChar, 815
Read, 816
ReadBoolean, 816
ReadByte, 816
ReadBytes, 816
ReadChar, 816
ReadChars, 816
ReadDecimal, 816
ReadDouble, 816
ReadInt16, 816
ReadInt32, 816
ReadInt64, 816
ReadSByte, 816
ReadSingle, 816
ReadString, 816
ReadUInt16, 816
ReadUInt32, 817
ReadUInt65, 817

BinarySearch method, 778
BinaryWriter class, 412, 416–418

methods
Close, 817
Flush, 817
Seek, 817
Write, 817

BindingFlags parameter, 588
BitConvert class, 78
BitConverter class, 735
BitConverter.ToString method, 606
Bitmap class, 794–795

FromHicon method, 794
FromResource method, 794
GetPixel method, 794
LockBits method, 795

www.EBooksWorld.ir

www.hellodigi.ir

880

Bitmap class (continued) – class data type

MakeTransparent method, 795
SetPixel method, 795
SetResolution method, 795
UnlockBits method, 795

bits, 54
bitwise operators, 105–106, 745
block scope, 79–80
bool data type, 55
bound controls

data sources, DataSet, 511–512
DataGridView interface, 516–524

boxing
generics and, 344
objects, 281–282

Break All command (Debug menu), 232
break statement, 165
breakpoints, 232
Breakpoints window (Windows submenu, Debug

menu), 234, 235–237
Browsable attribute, 123, 755
Brush class

HatchBrush class, 791
LinearGradientBrush class, 791
PathGradientBrush class, 791
SolidBrush class, 791
TextureBrush class, 791

Brush objects, 370–371
bugs, 206

automated testing tools, 207
code contracts

invariants, 211–213
postconditions, 209–211
preconditions, 209–211

Contract class
postconditions, 209–211
preconditions, 209–211

DEBUG preprocessor symbol, 211
Ensures method, 211
regression testing, 207

TRACE preprocessor symbol, 211
versus undesirable conditions, 206

byte data type, 55
bytes, 54

words, 54

C

C# compiler, IL (Intermediate Language), 4
Calculator, base conversions, 101
Call Stack window (Windows submenu, Debug

menu), 234
callbacks

async keyword, 144–145
await keyword, 144–145

capture groups, 474–475
case statement, 154
cast operator

arrays, 77
numbers, 74–75
object, 76

casting arrays, 736
casting values in data types, 734–736
catch statements, 221–222
Category attribute, 123, 755
CDATA section (XML), 537–538
char data type, 55, 56
character classes, 472–473, 835
character escapes, 471–472
characters

dashes, 473
literal, 741

CheckPrinter method, 237–238
child classes, 250

adding/modifying features, 257–258
overriding parent method, 258–261

Choose Data Source dialog, 513
CIL (Common Intermediate Language), 4
class constructors, 774
class data type, 56

Bitmap class (continued)

www.EBooksWorld.ir

www.hellodigi.ir

881

class View – classes

Class View, 31
classes. See also collection classes

abstract keyword, 272–273
accessibility clause, 271–272
AesManaged, 609–610
Array, 318
ArrayList, 779
attributes, 270–271
BinaryFormatter, 576–577
BinaryReader, 412, 416–418, 815–817
BinaryWriter, 412, 416–418, 815–817
BitConvert, 78
BitConverter, 735
character classes, 472–473
child classes, 250

adding/modifying features, 257–258
CollectionsUtil, 331
Comparer, 336
container types, 269
Convert, 78, 734–736
CryptoStream, 610
Debug, 207
declaring, 270

consistency in, 274
syntax, 773

defining, 42
deriving, 250
destructors, 286–288
Dictionary, 336
Directory, 426–428
DirectoryInfo, 431–432
DriveInfo, 430–431
encapsulation, 248–250
EventInfo, 870–871
events, 246–247
exception

custom, 802
standard, 799–801

FieldInfo, 873
File, 428–430
FileInfo, 432–434

FileStream, 412, 414–415
FileSystemWatcher, 434–435
FileWebRequest, 447
FileWebResponse, 447
FtpWebRequest, 447
FtpWebResponse, 447
generic, 783–784
Hashtable, 313–314, 779
HatchBrush, 791
HttpListener, 446
HttpWebRequest, 447
HttpWebResponse, 447
HybridDictionary, 329, 779
inheritance, 250–251
instantiation, 247
LinearGradientBrush, 791
LinkedList, 336
LinkedListNode, 336
List, 336
ListDictionary, 779
MemberInfo, 870
MemoryStream, 412, 415–416
MethodInfo, 871–872
methods, 246–247, 783–784

extension, 273
Monitor, 502
NameValueCollection, 325–326, 779
.NET framework, 248
networking classes, 446–448
overriding, 251
overview, 245–246
ParameterInfo, 874–875
parent classes, 250
partial keyword, 273–275
Path, 436–437
PathGradientBrush, 791
properties, 246–247
PropertyInfo, 874
public interface, 248
Queue, 333–336, 779
reference types, 275

www.EBooksWorld.ir

www.hellodigi.ir

882

classes (continued) – collection classes

reflection and, 582–585
Regex, 478–483
Registry, 398
RegistryKey, 398, 399–400
RegistryTools, 401–402
RSACryptoServiceProvider, 614–619
scope, 81
sealed keyword, 272–273
ShapesPaginator, 382–385
SolidBrush, 791
SortedDictionary, 336
SortedList, 329–331, 336, 779
Stack, 336, 779
Stream, 412, 814–815
StreamReader, 412, 421–422, 818
streams, 412, 813–814
StreamWriter, 412, 421–422, 818
StringBuilder, 110
StringCollection, 324–325, 779
StringDictionary, 329, 779
StringReader, 412, 419–420, 818
StringWriter, 412, 419–420, 818
structures, 275

choosing between, 282
subclassing, 250
System.Environment, 396–397
TextReader, 418–419, 817–818
TextureBrush, 791
TextWriter, 418–419, 817–818
Thread, 498–499
TimeSpan, 111–112
Trace, 208
trace listeners, 238–239
Type, 865–869
UnicodeEncoding, 606
UseResources, 289
variable initialization, 66–67
WebClient, 447, 448–451, 455
WebRequest, 447, 455–456
WebResponse, 447

XDocument, 543–546
XElement, 543–546
XmlTextReader, 854–856
XmlTextWriter, 540–541
XmlWriter, 457–550, 850

clauses
LINQ

from, 173–174
group by, 179–180
join, 178–179
join into, 179
orderby, 175
select, 175–177
where, 174–175

where, 351
Clear method, 778
CLI (Common Language Infrastructure), 4
Click event handler, 17
Click events, 290
ClickOnce deployment, 9
CLR (Common Language Runtime), 6–8
code contracts

DEBUG preprocessor symbol, 211
invariants, 211–213
postconditions, 209–211
preconditions, 209–211
TRACE preprocessor symbol, 211
UseCodeContracts example program, 210

code reuse, 251–252
generics and, 344

collection classes
arrays, 318, 777

Array class methods, 320–321
array objects, 778
dimensions, 318
lower bounds, 318–319
resizing, 319–320
simple arrays, 777–778
speed, 320

collection initializers, 337–338
CollectionsUtil class, 331

classes (continued)

www.EBooksWorld.ir

www.hellodigi.ir

883

collectionDatacontract attribute – contract class

dictionaries, 326–327
Hashtable class, 328–329
HybridDictionary class, 329
ListDictionary, 327–328
SortedList class, 329–331
StringDictionary class, 329

generic, 352
generic collections, 335–337
iterators, 338–339, 780–781
queues, 333–335
stacks, 331–333
System.Collections namespace,
ArrayList class, 321–324

System.Collections.Specialized
namespace
NameValueCollection class, 325–326
StringCollection class, 324–325

CollectionDataContract attribute, 754
collections, 162

collection initializers, 780
generic

Dictionary class, 779
LinkedList class, 779
LinkedListNode class, 779
List class, 779
Queue class, 779

specialized
ArrayList class, 779
Hashtable class, 779
HybridDictionary class, 779
ListDictionary class, 779
NameValueCollection class, 779
Queue class, 779
SortedList class, 779
Stack class, 779
StringCollection class, 779
StringDictionary class, 779

variable initialization, 68–69
CollectionsUtil class, 331

comments
conventions, 46
end-of-line, 43–44
multiline, 43–44
XML, 45–48

Comparer class, 336
comparison operators, 102–103, 744

overloading, 113–115
compilers

GAC (Global Assembly Cache), 7
JIT (just-in-time), 6

composite formatting, 810
Concat function, 767
Concat set method (LINQ), 182
Conditional attribute, 122–123, 755
conditional operators, 106–107, 157, 745, 758
conditional statements, 151
configuration files, 402–405
connections, creating, 512–515
console applications, 12, 14

exception handling, 219–220
const, variable declaration and, 61
const keyword, 64–65
constant variables, 64–65
constants, declaring, 741
constrained types, 348–351
constructors, 282, 774

empty, 283
generic, 345–346
overloading, 283
parameterless, 283
parameters, optional, 284
Pen class, 368

container types, 269
containment, 257
Contains function, 767
Continue command (Debug menu), 232
continue statement, 165–166
Contract class, Requires method

postconditions, 209–211
preconditions, 209–211

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

884

contractInvariantmethod attribute – data translation

ContractInvariantMethod attribute, 211–212
control statements

decision statements
conditional operators, 758
if-else, 757
null-coalescing operators, 758
switch, 757–758

looping statements
break statement, 760
continue statement, 760
do loops, 759
enumerators, 760
foreach loops, 759
iterators, 760
for loops, 758–759
while loops, 759

switch, 153–156
conversion

data types, 734–735
BitConverter class, 78
casting, 74–76
casting arrays, 77, 736
Convert class, 78
implicit, 73–74
narrowing, 735
as operator, 76–77
parsing, 77–78
ToString method, 79
widening, 735

objects, 735
as operator, 735–736

Convert class, 78, 734–736
ConvertAll method, 778
Copy method, 778
CPUs (central processing units), 485
CreateCaseInsensitiveHashtable

method, 331
CreateCaseInsensitiveSortedList

method, 331
CreateText method, 422
critical regions, 500

cross-products, 173
cryptography, 601. See also encryption

AesManaged class, 609–610
asymmetric key encryption, 602, 614–619
authentication, 603
cryptographic service provider, 608
hashing, 603
keys, IVs (initialization vectors) and,

612–614
message signing, 603
namespaces, 602
operations, 602–603
private key encryption, 602
public key encryption, 602
random number generation, 603
randomness

encryption for random numbers, 604
random number generation, 605–608
random numbers for encryption, 604
secure randomness, 604–605

symmetric key encryption, 602
simple encryption/decryption, 608–611

CryptoStream class, 610
CSharp namespace, 304
currency, formatting, 107
Current method, 760

d

dashes, 473
data, sensitive, 515
data downloads

WebClient class, 448–451
WebRequest class, 451–454

Data Source Configuration Wizard, 512–513
data sources

Choose Date Source dialog, 513
creating, 512–516
DataGridView interface, 516–524
DataSet, 511–512

data translation, encryption and, 606

www.EBooksWorld.ir

www.hellodigi.ir

885

data types – Debug menu

data types, 53, 54–57, 733–734
bool, 55, 733
byte, 55, 733
char, 55, 56, 733
class, 56
conversion, 72–73, 734–735

BitConverter class, 78
casting, 74–76
casting arrays, 77, 736
Convert class, 78
implicit, 73–74
narrowing, 735
objects, 735
as operator, 76–77, 735–736
parsing, 77–78
ToBoolean function, 734
ToByte function, 734
ToChar function, 734
ToDateTime function, 734
ToDecimal function, 734
ToDouble function, 734
ToInt16 function, 734
ToInt32 function, 734
ToString method, 79
widening, 735

DateTime, 56, 111–112, 734
decimal, 55, 70, 733
double, 55, 69, 733
elementary, 55–56
float, 55, 70, 733
int, 55, 56, 733
literal type characters, 69–72
long, 55, 70, 733
nullable, 92–93
object, 56
result data types, arithmetic

operators, 100–101
sbyte, 55, 733
short, 55, 70, 733
string, 55, 734

struct, 56
uint, 55, 70, 733
ulong, 55, 70, 733
ushort, 55, 733
values

casting, 734–736
parsing, 736

data uploads
WebClient class, 455
WebRequest class, 455–456

databases
relational, 510
selecting, 510–511

DataContract attribute, 754
datagrams, 446
DataGridView interface, 516–524
DataMember attribute, 754
DataSet, 511–512

loading, 525–527
date and time format, 803–806
DateTime data type, 56, 111–112, 747
deadlocks, 501–503
Debug class

Assert method, 207
Fail method, 207

Debug menu
Break All command, 232
Continue command, 232
Delete All Breakpoints command, 233
Disable All Breakpoints command, 233
Enable All Breakpoints command, 233
Exceptions command, 233
New Breakpoint command, 233
QuickWatch command, 233
Step Into command, 232
Step Out command, 233
Step Over command, 232
Stop Debugging command, 232
Toggle Breakpoint command, 233
Windows submenu, 232

www.EBooksWorld.ir

www.hellodigi.ir

886

Debug menu (continued) – #define directive

Autos window, 234
Breakpoints window, 234, 235–237
Call Stack window, 234
Immediate window, 234, 237–238
Locals window, 234
Modules window, 235
Output window, 234
Watch submenu, 234

DEBUG preprocessor symbol, 208, 211
DebuggerHidden attribute, 124, 755
DebuggerStepThrough attribute, 124, 755
debugging

breakpoints, 232
levels, 34
trace listeners, 238–240

decimal data type, 55, 70
decimals, base conversion, 71
decision statements, 151

conditional operators, 758
if-else, 757
null-coalescing operators, 758
switch, 153–156, 757–758

declarations, generic
classes, 783–784
methods, 784

declaring classes
consistency, 274
syntax, 773

declaring constants, 741
declaring events, 290–291
declaring methods, 749

accessibility, 124
attributes, 122–124
interface implementation, 133

explicit, 135
implicit, 134

modifiers, 124–128
abstract keyword, 127
extern keyword, 127–128
override keyword, 125–126

sealed keyword, 126–127
static keyword, 125
virtual keyword, 125–126

names, 128
parameters, 129–133

arrays, 131–133
method overloading, 130–131
named arguments, 129
optional, 130–131
optional arguments, 129

return type, 128–129
declaring parameters

exceptions, 85
for output, 84–85
by reference, 83–84
by value, 82–83

declaring variables
enumerated types, 739
initialization expressions, 738–739
multiple, 61
name, 62
syntax

accessibility, 61, 63–64
attributes, 61, 62–63
const, 61
conventions, 59
name, 61
readonly, 61
static, 61
type, 61
volatile, 61

using statement, 739
decorations, 62
decrement operators, 101–102
decryption, 616–617
DefaultEvent attribute, 123, 755
DefaultIfEmpty function, 767
DefaultProperty attribute, 123, 755
DefaultTraceListener object, 238–239
DefaultValue attribute, 123, 755
#define directive, 31–33

Debug menu (continued)

www.EBooksWorld.ir

www.hellodigi.ir

887

delegate keyword – DownloadfileTaskasync method

delegate keyword, 93
delegate types, events, 292–295

EventHandler, 292–293
delegates, 93–95

Action, 94
Func, 94

Delete All Breakpoints command (Debug
menu), 233

DeleteDirectory method, 438–439
deriving classes, 250
DescendantNodes method, 769
DescendantNodesAndSelf method, 769
Descendants method, 769
DescendantsAndSelf method, 769
Description attribute, 123, 755
deserialization, 534, 563
Deserialize method, 564
Designer area (Visual Studio), 17
destructors, 286–288, 774–775
dictionaries, 326–327

Hashtable class, 328–329
HybridDictionary class, 329
ListDictionary, 327–328
SortedList class, 329–331
StringDictionary class, 329

Dictionary class, 336
dimensions, arrays, 318, 738
directives. See also preprocessor directives

using, 38, 41, 304–310
Directory class, 426–428

CreateDirectory method, 821
Delete method, 821
Exists method, 821
GetCreationTime method, 821
GetCreationTimeUtc method, 821
GetCurrentDirectory method, 821
GetDirectories method, 821
GetDirectoryRoot method, 822
GetFiles method, 822
GetFileSystemEntries method, 822

GetLastAccessTime method, 822
GetLastAccessTimeUtc method, 822
GetLastWriteTime method, 822
GetLastWriteTimeUtc method, 822
GetLogicalDrives method, 822
GetParent method, 822
Move method, 822
SetCreationTime method, 822
SetCreationTimeUtc method, 822
SetCurrentDirectory method, 822
SetLastAccessTime method, 822
SetLastAccessTimeUtc method, 822
SetLastWriteTime method, 822
SetLastWriteTimeUtc method, 822

DirectoryInfo class, 431–432
Disable All Breakpoints command

(Debug menu), 233
DispatcherUnhandledException

event, 217–218
DisplayName attribute, 756
Dispose method, 288–290, 414

using statement, 739
Distinct set method (LINQ), 182
DLL (dynamic-link library), 589
do loops, 160
documents

FixedDocument object, 388–389
FlowDocument object, 385–388

DOM (document object model), 541–546,
851–854
XmlReader class, 550
XmlTextReader class, 550

double data type, 55, 69
DoubleIt method, 82–83
DoubleTest method, 82–83
DownloadData method, 450–451
DownloadDataAsync method, 450–451
DownloadDataTaskAsync method, 450–451
DownloadFile method, 448
DownloadFileAsync method, 448
DownloadFileTaskAsync method, 448

www.EBooksWorld.ir

www.hellodigi.ir

888

downloads – encryption

downloads
arrays, 450–451
files, 448
streams, 451
strings, 449–450

DownloadString method, 449–450
DownloadStringAsync method, 449–450
DownloadStringTaskAsync method, 449–450
DrawArc method, 365, 787
DrawBezier method, 365, 787
DrawBeziers method, 365, 787
DrawClosedCurve method, 365, 787
DrawCurve method, 365, 787
DrawEllipse method, 365, 787
DrawIcon method, 365, 787
DrawIconUnstretched method, 365, 787
DrawImage method, 365, 372–373, 787
DrawImageUnscaled method, 366
drawing

Brush objects, 370–371
graphics

Bitmap class, 794–795
brushes, 791
GraphicsPath object, 792
Image class, 793–794
Metafile class, 795
pen, 790–791
StringFormat object, 793

Graphics class, 365–366
Graphics objects, 366–367
Pen objects, 367–369
text, 371–372

DrawLine method, 366, 788
DrawLines method, 366, 788
DrawPath method, 366, 788
DrawPie method, 366, 788
DrawPolygon method, 366, 788
DrawRectangle method, 366, 788
DrawRectangles method, 366, 788
DrawString method, 366, 788

DriveInfo class, 430–431
AvailableFreeSpace property, 825
DriveFormat property, 825
DriveType property, 825
IsReady property, 825
Name property, 825
RootDirectory property, 825
TotalFreespace property, 825
TotalSize property, 825
VolumeLabel property, 825

DTD (Document Type Definition), 551, 856

E

Element method, 769
elementary data types, 55–56
ElementAt function, 767
ElementAtOrDefault function, 767
Elements method, 769
ElementsAfterSelf method, 769
ElementsBeforeSelf method, 769
#elif directive, 33–34
#else directive, 33–34
email, 458–460
embedded resources, 406
empty constructors, 283
Empty function, 767
Enable All Breakpoints command (Debug

menu), 233
encapsulation, classes, 248–250
encryption, 601. See also cryptography

asymmetric key, 602, 614–619
authentication, 603
data translation, 606
decryption, 616–617
example, 617–619
hashing, 603
message signing, 603
private key, 602
public key, 602

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

889

#endif directive – exception classes

random number generation, 603
RSACryptoServiceProvider class, 614–619
RSADecrypt, 616–617
RSAEncrypt method, 616
symmetric key, 602

#endif directive, 33–34
EndInvoke method, 140–141
end-of-line comments, 43–44
#endregion directive, 35–36
Ensures method, 211
enumerated types

formatting, 811–812
variable declaration, 739–740

enumerated values, 156–157
enumerations, 88–92
enumerators, 163–164

enabling, 161
EnumMember attribute, 754
environment variables, 394

setting, 394–395
equality between objects, 113–115
#error directive, 34
error handling, 205, 761–762
escape sequences, 71, 470–471

character escapes, 471–472, 835
evaluating operators, 108–109
event statement, 290–291
EventHandler delegate type, 292–293
EventInfo class, 870–871

AddEventHandler method, 871
AddMethod property, 870
Attributes property, 870
EventHandlerType property, 870
GetAddMethod method, 871
GetRaiseMethod method, 871
GetRemoveMethod method, 871
RaiseMethod property, 870
RemoveEventHandler method, 871
RemoveMethod property, 870

events, 246–247, 775–776
accessors, 297
catching, 292

Click events, 290
custom, 297–298
declaring, 290–291
delegate types, 292–295
DispatcherUnhandledException,

217–218
hiding, 296
overriding, 296
PrintDocument class, 360–361
raising, 292

parent class, 296–297
static, 296
ThreadException, 216–217
UnhandledException, 219–220

Except function, 767
Except set method (LINQ), 182
exception classes

AmbiguousMatchException, 799
ArgumentException, 799
ArgumentNullException, 799
ArgumentOutOfRangeException, 799
ArithmeticException, 799
ArrayTypeMismatchException, 799
ConfigurationException, 799
ConstraintException, 799
custom, 802
DataException, 799
DirectoryNotFoundException, 800
DivideByZeroException, 800
DuplicateNameException, 800
EndOfStreamException, 800
EvaluateException, 800
FieldAccessException, 800
FileLoadException, 800
FileNotFoundException, 800
FormatException, 800
IndexOutOfRangeException, 800
InternalBufferOverflowException, 800
InvalidCastException, 800
InvalidOperationException, 800
IOException, 800
MemberAccessException, 800

www.EBooksWorld.ir

www.hellodigi.ir

890

exception classes (continued) – file class

MethodAccessException, 800
MissingFieldException, 800
MissingMemberException, 800
MissingMethodException, 800
NotFiniteNumberException, 801
NotImplementedException, 801
NotSupportedException, 801
NullReferenceException, 801
OutOfMemoryException, 801
OverflowException, 801
PolicyException, 801
RankException, 801
ReadOnlyException, 801
SecurityException, 801
standard, 799–801
SyntaxErrorException, 801
UnauthorizedAccessException, 801

exception handling, global, 216
console applications, 219–220
Windows Forms applications, 216–217
WPF applications, 217–218

exception objects, try catch blocks, 223–224
exceptions

ArithmeticException, 226–227
custom, 227–228
throwing, 762
try catch blocks, 224–227

Exceptions command (Debug menu), 233
exercise solutions, 625–731
Exists method, 422, 778
Export Template Wizard, 308
expression lambdas, 136–137
expressions. See also regular expressions

initialization, variable declaration, 739
lambda, 751

extension methods, 135–136, 273, 751
generics and, 353–354
LINQ, 188–189

queries
lambda functions and, 187–188
method-based, 185–187

extern keyword, 127–128

F

factory methods, 299–300
Fail method, 207
FieldInfo class, 873

Attributes property, 873
FieldType property, 873
GetValue method, 873
GetValueDirect method, 873
IsAssembly property, 873
IsFamily property, 873
IsFamilyAndAssembly property, 873
IsFamilyOrAssembly property, 873
IsInitOnly property, 873
IsLiteral property, 873
IsNotSerialized property, 873
IsPrivate property, 873
IsPublic property, 873
IsStatic property, 873
SetValue method, 873

fields, 61
FIFO list, 333–335
File class, 428–430

AppendAllText method, 823
AppendText method, 823
Copy method, 823
Create method, 823
CreateText method, 823
Delete method, 823
Exists method, 823
GetAttributes method, 823
GetCreationTime method, 823
GetCreationTimeUtc method, 823
GetLastAccessTime method, 823
GetLastAccessTimeUtc method, 823

exception classes (continued)

www.EBooksWorld.ir

www.hellodigi.ir

891

fileInfo class – firstorDefault method

GetLastWriteTime method, 823
GetLastWriteTimeUtc method, 823
Move method, 823
Open method, 823
OpenRead method, 823
OpenText method, 824
OpenWrite method, 824
ReadAllBytes method, 824
ReadAllLines method, 824
ReadAllText method, 824
Replace method, 824
SetAttributes method, 824
SetCreationTime method, 824
SetCreationTimeUtc method, 824
SetLastAccessTime method, 824
SetLastAccessTimeUtc method, 824
SetLastWriteTime method, 824
SetLastWriteTimeUtc method, 824
WriteAllBytes method, 824
WriteAllLines method, 824
WriteAllText method, 824

FileInfo class, 432–434
files

configuration, 402–405
downloading, 448
hidden, 28–31
resource files

application resources, 405–406
embedded resources, 406
localization resources, 407–408

FileStream class, 412, 414–415
filesystem

Directory class, 821–822
DirectoryInfo class, 826–827
DriveInfo class, 825
File class, 823–824
FileInfo class, 827–829
FileSystemWatcher class, 829–830
.NET Framework

Directory class, 426–428
DirectoryInfo class, 431–432

DriveInfo class, 430–431
File class, 428–430
FileInfo class, 432–434
FileSystemWatcher class, 434–435
Path class, 436–437

Path class, 830–832
permissions, 426
recycle bin, 438

DeleteDictionary method, 438–439
FileSystem class, 833
Shell32.Shell interface, 440–443, 834
SHEmptyRecycleBin API function,

439–440
SHEmptyRecycleBin function, 833

SpecialFolder class, 832
FileSystemWatcher class, 434–435

Changed event, 830
Created event, 830
Deleted event, 830
Dispose method, 830
EnableRaisingEvents property, 829
Error event, 830
Filter property, 829
IncludeSubdirectories property, 829
InternalBufferSize property, 829
NotifyFilter property, 830
Renamed event, 830
WaitForChanged method, 830

FileWebRequest class, 447
FileWebResponse class, 447
FillClosedCurve method, 788
FillEllipse method, 788
FillPath method, 788
FillPie method, 788
FillPolygon method, 788
FillRectangle method, 788
FillRectangles method, 788
FillRegion method, 788
Finalize method, 287
First method, 183, 766
FirstOrDefault method, 183, 766

www.EBooksWorld.ir

www.hellodigi.ir

892

fixedDocument object – global exception handling

FixedDocument object, 388–389, 797
Flags attribute, 91, 756
float data type, 55, 70

casting to int, 75
FlowDocument object, 385–388, 796–797
for loops, 157–160

block scope and, 80
increment operators and, 102

foreach loops, 160–163
format specifiers

composite formatting, 810
date and time, 803–806
enumerated type formatting, 811–812
numeric, 807–808

custom, 809
numeric formatting sections, 809–810

from clause (LINQ), 173–174
FTP (File Transfer Protocol), 456–458

anonymous access, 458
FtpWebRequest class, 447
FtpWebResponse class, 447
Func delegate, 94
functions, 121

Aggregate, 767
Concat, 767
Contains, 767
DefaultIfEmpty, 767
ElementAt, 767
ElementAtOrDefault, 767
Empty, 767
Except, 767
Intersection, 767
Range, 767
Repeat, 767
SequenceEqual, 767
SHEmptyRecycleBin API function, 439–440
ToBoolean function, 734
ToByte function, 734
ToChar function, 734
ToDateTime function, 734
ToDecimal function, 734

ToDouble function, 734
ToInt16 function, 734
ToInt32 function, 734
Union, 767

G

GAC (Global Assembly Cache), 7
Garbage collection, 276
GC (garbage collector), 286

destructors, 286–288
Dispose method, 288–290

generalization, 252–254
generic collections, 335–337

System.Collections.Generic
namespace, 335–337

generic parameters, 185
generics, 343

advantages, 344
class instantiation, 352
classes, 783–784
collection classes, 352
constructors, 345–346
default values, 352
defining, 344–345
methods, 352–353, 783–784

extension methods, 353–354
types

constrained, 348–351
multiple, 346–348
T, 345
where clause, 351

get method, 85–88
GetMetafileHeader method, 795
GetRegistryValue method, 401
GetResponse method, 453
GetResponseStream method, 453
global exception handling, 216

console applications, 219–220
Windows Forms applications, 216–217
WPF applications, 217–218

www.EBooksWorld.ir

www.hellodigi.ir

893

global namespace – inheritance

global namespace, 314–315
graphics

drawing, 786–787
Bitmap class, 794–795
brushes, 791
GraphicsPath object, 792
Image class, 793–794
Metafile class, 795
pen, 790–791
StringFormat object, 793

namespaces, 786–787
Graphics class, 365–366

DrawImage method, 372–373
obtaining objects, 366–367

Graphics object
FillClosedCurve method, 788
FillEllipse method, 788
FillPath method, 788
FillPie method, 788
FillPolygon method, 788
FillRectangle method, 788
FillRectangles method, 788
FillRegion method, 788

GraphicsPath object, 792
group by clause, 179–180
grouping constructs, 474–475
GUID (globally unique identifier), 590

h

has-a relationships, 257
hash tables

fast lookup, 328–329
load factor, 329

hashing, 603
Hashtable class, 313–314, 328–329, 779
HatchBrush class, 791
heap, 277

managed heap, 286
hexadecimals, base conversion, 71
hidden files, Solution Explorer, 28–31
hiding events, 296

hierarchies, inheritance, 251–252
hives (registry), 397
HTTP (HyperText Transfer Protocol), 446

methods, 452–453
HttpListener class, 446
HttpWebRequest class, 447
HttpWebResponse class, 447
HybridDictionary class, 329, 779

I

IDE (integrated development environment), 4
IEnumerable, LINQ results, 177–178
#if directive, 33–34
if-else statements, 152–153, 757
IgnoreDataMember attribute, 754
IL (Intermediate Language), 4

assembly language and, 6
displaying, 6

Image class, 793–794
images, printing, 372–373
Immediate window (Windows submenu, Debug

menu), 234, 237–238
implicit conversion, data types, 73–74
increment operators, 101–102
IndexOf method, 778
information hiding, 249
inheritance, 250–251

abstraction, 252–256
child classes, 250
code reuse, 251–252
containment and, 257
deriving classes, 250
has-a relationships, 257
hierarchies, 251–252
interface inheritance, 253
is-a relationships, 257
multiple, 253
parent classes, 250
partial keyword, 274–275
refinement, 252, 254–256
subclassing, 250

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

894

initialization – kitchen sink approach

initialization
expressions, variable

declaration, 739
variables, 65–66

arrays, 67–68
classes, 66–67
collections, 68–69
structures, 66–67

initializers, collections, 337–338
instantiation, 247

structures, 285
int data type, 55–56
IntelliSense

code editors, 4
generics and, 344
LINQ and, 172

interface inheritance, 253
interfaces. See also UI (user interface)

classes, 248
implementing, 133

explicit, 134
implicit, 134

Shell32.Shell, 440–443
internal keyword, 271
Intersect set method (LINQ), 182
Intersection function, 767
Invoke method, 488
InvokeRequired property, 488–491
invoking methods, reflection and,

591–593
is operator, 103, 744
is-a relationships, 257
IsMatch method, 479–480
IsValidInteger method, 215–216
item templates, using directive, 309–310
iterators, 164, 780–781

collection classes, 338–339
IVs (initialization vectors), cryptography,

613–614

j

JIT (just-in-time) compiler, 6
join clause, 178–179
join into clause, 179
JScript namespace, 304
JSON, serialization, 861–862

attributes, 754
controlling, 575–576
performing, 574–575

K

keywords
abstract, 127, 259, 261–262, 272–273
async, 144–145
await, 144–145
base, 284
const, 64–65
delegate, 93
extern, 127–128
internal, 271
new, 124–125, 258, 285
operator, 748
override, 125–126
partial, 42, 273–275
private, 271
protected, 271
protected internal, 271
public, 271
readonly, 64–65
ref, 278–279
sealed, 126–127, 262–263, 272–273
static, 64–65, 125
static volatile, 64–65
this, 284
throw, 226–227
var, 58–59
virtual, 125–126, 259
volatile, 64–65

kitchen sink approach, 250

www.EBooksWorld.ir

www.hellodigi.ir

895

lambda expressions – LInQ

L

lambda expressions, 750–751
async lambdas, 138
expression lambdas, 136–137
statement lambdas, 137

Language property, 407
Last method, 183, 766
LastIndexOf method, 778
LastOrDefault method, 183, 766
lifetime of variables, 54
LIFO list, 331–333
#line directive, 34–35
LinearGradientBrush class, 791
LinkedList class, 336
LinkedListNode class, 336
LINQ (Language Integrated Query), 169

ADO.NET, 770–771
aggregate values, 181–182, 766
from clause, 173–174, 763
extension methods, 188–189

queries, 185–187
lambda functions and, 187–188

functions, 767
Aggregate, 767
Concat, 767
Contains, 767
DefaultIfEmpty, 767
ElementAt, 767
ElementAtOrDefault, 767
Empty, 767
Except, 767
Intersection, 767
Range, 767
Repeat, 767
SequenceEqual, 767
Union, 767

group by clause, 179–180, 765
join clause, 178–179, 765
join into clause, 179
limiting results, 183, 766

LINQ into XML, 768
LINQ out of XML, 192–193, 769–770
LINQ to ADO.NET, 171, 194
LINQ to DataSet, 195–198
LINQ to Entities, 194–195
LINQ to Objects, 170, 189
LINQ to SQL, 194–195
LINQ to XML, 171, 189–192
methods

Ancestors, 769
AncestorsAndSelf, 769
AsEnumerable, 184, 767
AsQueryable, 184, 767
Attribute, 769
Attributes, 769
Contains, 184
DefaultIfEmpty, 184
DescendantNodes, 769
DescendantNodesAndSelf, 769
Descendants, 769
DescendantsAndSelf, 769
Element, 769
ElementAt, 184
ElementAtOrDefault, 184
Elements, 769
ElementsAfterSelf, 769
ElementsBeforeSelf, 769
Empty, 184
First, 183
FirstOrDefault, 183
Last, 183
LastOrDefault, 183
Nodes, 770
NodesAfterSelf, 770
NodesBeforeSelf, 770
OfType, 184, 767
Range, 184
Repeat, 184
SequenceEqual, 184
Single, 183
SingleOrDefault, 183

www.EBooksWorld.ir

www.hellodigi.ir

896

LInQ (continued) – memberInfo class

Skip, 183
SkipWhile, 183
Take, 183
TakeWhile, 183
ToArray, 184, 767
ToDictionary, 184, 768
ToList, 184, 768
ToLookup, 184, 768

orderby clause, 175, 764
parameters, generic, 185
PLINQ (Parallel LINQ), 198–199, 771
providers, 170
query expressions, 171
query results methods

First, 766
FirstOrDefault, 766
Last, 766
LastOrDefault, 766
Single, 766
SingleOrDefault, 766
Skip, 766
SkipWhile, 766
Take, 766
TakeWhile, 766

results, 177–178
select clause, 175–177, 764–765
set methods, 182
syntax, 763–766
tasks, 170
where clause, 174–175, 764
XML literals, 190, 768

List class, 336
ListDictionary class, 327–328, 779
ListValues method, 326
literal type characters, 69–72, 741
literals, XML, 457, 854
Localizable attribute, 123, 756
Localizable property, 407
localization resources, 407–408

Locals window (Windows submenu, Debug
menu), 234

lock statement, 500
logical operators, 103–105, 744

overloading, 115
long data type, 55, 70
looping statements

break statement, 760
continue statement, 760
do loops, 160, 759
enumerators, 760
foreach loops, 160–163, 759
iterators, 760
for loops, 157–160, 758–759
while loops, 160, 759

loops
collections, 162
increment section, 158
initialization section, 158
for loop, block scope and, 80
scope, 158

limiting, 162
statement section, 158
test section, 158

lower bounds of arrays, 318–319

M

managed heap, 286
Matches collection, 482–483
Matches method, 480–481
matching patterns, 479–480
MemberInfo class

CustomAttributes property, 870
DeclaringType property, 870
MemberTypes property, 870
Module property, 870
Name property, 870
ReflectedType property, 870

LINQ (continued)

www.EBooksWorld.ir

www.hellodigi.ir

897

memory – methods, convertall

memory
heap, 277
stack, 277
structures, 276

MemoryStream class, 412, 415–416
Mergable attribute, 756
MergableProperty attribute, 123
message signing, 603
Metafile class, 795

GetMetafileHeader method, 795
PlayRecord method, 795

method-based queries, 185–187
MethodInfo class, 871–872

ContainsGenericParameters
property, 871

CreateDelegate method, 872
GetGenericArguments method, 872
GetGenericMethodDefinition

method, 872
GetParameters method, 872
Invoke method, 872
IsAbstract property, 871
IsAssembly property, 871
IsConstructor property, 871
IsFamily property, 871
IsFamilyAndAssembly property, 871
IsFamilyOrAssembly property, 871
IsFinal property, 871
IsGenericMethod property, 872
IsGenericMethodDefinition

property, 872
IsPrivate property, 872
IsPublic property, 872
IsStatic property, 872
IsVirtual property, 872
MakeGenericMethod method, 872
ReturnParameter property, 872
ReturnType property, 872

methods, 246–247
accessor methods, 86–88
Add, 68–69

Ancestors, 769
AncestorsAndSelf, 769
AppendText, 422
Array class, 320–321
ArrayList class, 321–324
AsEnumerable, 767
AsQueryable, 767
Assert, 207
asynchronous

BeginInvoke method, 140–141
callbacks, 141–144
EndInvoke method, 140–141

Attribute, 769
attributes

AttributeUsage, 123
Browsable, 123
Category, 123
Conditional, 123
DebuggerHidden, 124
DebuggerStepThrough, 124
DefaultEvent, 123
DefaultProperty, 123
DefaultValue, 123
Description, 123
Localizable, 123
MergableProperty, 123
Obsolete, 124
ParenthesizePropertyName, 123
ReadOnly, 123
RecommendedAsConfigurable, 123
RefreshProperties, 123
ToolboxBitmap, 124

Attributes, 769
BeginInvoke, 140–141
BinaryReader class, 416–417
BinarySearch, 778
BinaryWriter class, 418
BitConverter.ToString, 606
CheckPrinter(), 237–238
Clear, 778
ConvertAll, 778

www.EBooksWorld.ir

www.hellodigi.ir

898

methods, copy – methods, getresponse

Copy, 778
CreateCaseInsensitiveHashtable, 331
CreateCaseInsensitiveSortedList, 331
CreateText, 422
Current, 760
declarations

accessibility, 124
attributes, 122–124
interface implementation, 133–135
modifiers, 124–128
names, 128
parameters, 129–133
return type, 128–129

declaring, 749–751
DeleteDictionary, 438–439
DescendantNodes, 769
DescendantNodesAndSelf, 769
Descendants, 769
DescendantsAndSelf, 769
Deserialize, 564
Dispose, 288–290, 414
DoubleIt, 82–83
DoubleTest, 82–83
DownloadData, 450–451
DownloadDataAsync, 450–451
DownloadDataTaskAsync, 450–451
DownloadFile, 448
DownloadFileAsync, 448
DownloadFileTaskAsync, 448
DownloadString, 449–450
DownloadStringAsync, 449–450
DownloadStringTaskAsync, 449–450
DrawArc, 365
DrawBezier, 365
DrawBeziers, 365
DrawClosedCurve, 365
DrawCurve, 365
DrawEllipse, 365
DrawIcon, 365
DrawIconUnstretched, 365

DrawImage, 365, 372–373
DrawImageUnscaled, 366
DrawLine, 366
DrawLines, 366
DrawPath, 366
DrawPie, 366
DrawPolygon, 366
DrawRectangle, 366
DrawRectangles, 366
DrawString, 366
Element, 769
Elements, 769
ElementsAfterSelf, 769
ElementsBeforeSelf, 769
EndInvoke, 140–141
Ensures, 211
Exists, 422, 778
extension, 135–136, 273, 751

generics and, 353–354
factory methods, 299–300
Fail, 207
FillClosedCurve, 788
FillEllipse, 788
FillPath, 788
FillPie, 788
FillPolygon, 788
FillRectangle, 788
FillRectangles, 788
FillRegion, 788
Finalize, 287
First, 766
FirstOrDefault, 766
FromHicon, 794
FromResource, 794
functions, 121
generic, 352–353
get, 85–88
GetMetafileHeader, 795
GetPixel, 794
GetRegistryValue, 401
GetResponse, 453

methods (continued)

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

899

methods, getresponsestream – methods, skip

GetResponseStream, 453
Graphics class, 365–366
IndexOf, 778
Invoke, 488
invoking, reflection and, 591–593
IsMatch, 479–480
IsValidInteger, 215–216
kitchen sink approach, 250
lambda expressions, 750–751

async lambdas, 138
expression lambdas, 136–137
statement lambdas, 137

Last, 766
LastIndexOf, 778
LastOrDefault, 766
LINQ

AsEnumerable, 184
AsQueryable, 184
Contains, 184
DefaultIfEmpty, 184
ElementAt, 184
ElementAtOrDefault, 184
Empty, 184
First, 183
First method, 183
FirstOrDefault, 183
Last, 183
LastOrDefault, 183
OfType, 184
Range, 184
Repeat, 184
SequenceEqual, 184
Single, 183
SingleOrDefault, 183
Skip, 183
SkipWhile, 183
Take, 183
TakeWhile, 183
ToArray, 184
ToDictionary, 184
ToList, 184
ToLookup, 184

ListValues, 326
LockBits, 795
MakeTransparent, 795
Matches, 480–481
MoveNext, 760
Nodes, 770
NodesAfterSelf, 770
NodesBeforeSelf, 770
OfType, 767
OpenRead, 451
OpenReadAsync, 451
OpenReadTaskAsync, 451
OpenText, 422
Parallel.For, 492–494
Parallel.ForEach, 494–495
Parallel.Invoke, 495
Parse, 77–78
PlayRecord, 795
Pop, 332
procedures, 121
property procedures, 750
Push, 332
RecordMessage, 272–273
Replace, 481–482
Requires, 209–211
Reset, 760
Resize, 778
Reverse, 778
routines, 121
RSADecrypt, 616–617
RSAEncrypt, 616
scope, 80
Serialize, 564
set, 85–88
SetPixel, 795
SetRegistryValue, 400
SetResolution, 795
ShowDialog, 361, 382
side effects, 105
Single, 766
SingleOrDefault, 766
Skip, 766

www.EBooksWorld.ir

www.hellodigi.ir

900

methods, skipWhile – namespaces

SkipWhile, 766
Sort, 778
static, 298–300
static, 14
Stream class, 413
strongly typed, 330
subprocedures, 121
subroutines, 121
Switch, 353
System.Environment class, 396–397
Take, 766
TakeWhile, 766
text file streams, 818–819
TextReader class, 418–419
TextWriter class, 419
ToArray, 767
ToDictionary, 768
ToList, 768
ToLookup, 768
ToString, 79, 264–265
TryEnter, 501–502
TryParse, 78
UnlockBits, 795
variance, 139
XmlWriter, 538–541

Microsoft namespace, 304
Win32 namespace, 304

modifiers
method declaration, 124–128

abstract keyword, 127
extern keyword, 127–128
override keyword, 125–126
sealed keyword, 126–127
static keyword, 125
virtual keyword, 125–126

Modules window (Windows submenu, Debug
menu), 235

Monitor class, 502
MoveNext method, 760
MSIL (Microsoft Intermediate Language), 4

multiline comments, 43–44
multiple inheritance, 253
multithreading, 485

advantages, 486
PLINQ, 486
speed, 487
Task class, 486
Thread clsss, 486
TPL (Task Parallel Library), 486

N

name, variable declaration and, 61, 62
named arguments, 129
names, method declaration and, 128
namespace statement, 39–42
namespaces, 38

collisions, 303
.NET Framework, 304

creating, 311–312
cryptography, 602
CSharp, 304
default, 311
global, 314–315
graphics, 786–787
JScript, 304
Microsoft, 304
nested, 304, 311–312
overview, 303
pollution, 303
RegularExpressions, 470
resolving, 313–314
serialization namespaces, 564
System, 305
System.Collections, ArrayList class,

321–324
System.Collections.Generic, 335–337
System.Xml.Serialization, 63
unnecessary, 39
using directive, 304–310
VisualBasic, 304

methods (continued)

www.EBooksWorld.ir

www.hellodigi.ir

901

nameValuecollection class – operators

Win32, 304
XML, 538

NameValueCollection class, 325–326, 779
naming conventions, 18

CamelCase
interfaces, 133

narrowing conversions, 73–74, 735
.NET Framework, 8–9

classes, 248
Directory class, 426–428
DirectoryInfo class, 431–432
DriveInfo class, 430–431
File class, 428–430
FileInfo class, 432–434
FileSystemWatcher class, 434–435
multithreading, 486
namespaces, collisions, 304
Path class, 436–437

networking
array downloads, 450–451
classes, 446–448
data downloads

WebClient class, 448–451
WebRequest class, 451–454

datagrams, 446
email, 458–460
file downloads, 448
FTP (File Transfer Protocol), 456–458
HttpListener class, 446
stream downloads, 451
string downloads, 449–450
text messages, 460–461

new constraint, 352
New Breakpoint command (Debug

menu), 233
new keyword, 124–125, 258, 285
New Project dialog, 12
new statement, 66–67
Nodes method, 770
NodesAfterSelf method, 770

NodesBeforeSelf method, 770
nondeterministic finalization, 286
nullable data types, 92–93
null-coalescing operators, 107, 157, 745, 758
numbers, cast operator, 74–75
numeric format specifiers, 807–808

custom, 809
numeric formatting sections, 809–810

O

object data type, 56
objects

anonymous, 176
assigning, 277

parameter passing, 277–281
boxing, 281–282
cast operator, 76
conversion, 735

as operator, 735–736
equality, 113–115
Graphics, 366–367
unboxing, 281–282

Obsolete attribute, 124, 756
OfType method, 184, 767
OOP (object-oriented programming), 245
OpenRead method, 451
OpenReadAsync method, 451
OpenReadTaskAsync method, 451
OpenText method, 422
operator keyword, 748
operator statement, 112–113
operators

as, 735–736
arithmetic, 743

decrement, 101–102
increment, 101–102
result data types, 100–101
shift operators, 101

assignment, 107, 745

www.EBooksWorld.ir

www.hellodigi.ir

902

operators (continued) – Parallel.Invoke method

bitwise, 105–106, 745
cast operators, 74–76
comparison, 102–103, 744

overloading, 113–115
conditional, 106–107, 157, 745, 758
currency formatting, 107
DateTime, 111–112, 747
evaluation, 108–109
logical, 103–105, 744

overloading, 115
null-coalescing, 107, 157, 745, 758
overloading, 112–113, 748

comparison operators, 113–115
logical operators, 115
type conversion operators, 115–117

parentheses, 108–109
precedence, 108–109, 745–746
short-circuit evaluation, 104
ternary, 106–107
TimeSpan, 111–112, 747
type conversion, overloading, 115–117

optional arguments, 129
OptionalField attribute, 754
orderby clause, 175
out keyword, parameter

declaration, 84–85
output, parameter declaration, 84–85
Output window (Windows submenu, Debug

menu), 234
overloading

constructors, 283
operators, 112–113, 748

comparison operators, 113–115
logical operators, 115
type conversion operators, 115–117

override keyword, 125–126
overriding classes, 251

child overriding parent, 258
overriding events, 296

P

paginator, 381–385
document creation, 385–389

parallel programming
BackgroundWorker, 491–492, 844
locking classes, 500–503
multithreading, 485

advantages, 486
BackgroundWorker, 491–492
PLINQ, 486
speed, 487
Task class, 486
Thread clsss, 486
TPL (Task Parallel Library), 486

PLINQ, 843–844
Task class

methods, 496–497
properties, 496

task coordination
deadlocks, 501–503
race conditions, 499–501

tasks, 845–847
Thread class, 498–499
threads, 847–848
thread-safe objects, 503–504
TPL (Task Parallel Library), 492, 844

Parallel.For method,
492–494, 845

Parallel.ForEach method,
494–495, 845

Parallel.Invoke method,
495, 845

UI (user interface), 488–491, 843
Invoke method, 488
InvokeRequired property,

488–491
Parallel.For method, 492–494
Parallel.ForEach method, 494–495
Parallel.Invoke method, 495

operators (continued)

www.EBooksWorld.ir

www.hellodigi.ir

903

ParameterInfo class – precedence of operators

ParameterInfo class
Attributes property, 874
CustomAttributes property, 874
DefaultValue property, 875
HasDefaultValue property, 875
IsIn property, 875
IsOptional property, 875
IsOut property, 875
Member property, 875
Name property, 875
ParameterType property, 875
Position property, 875

parameterless constructors, 283
parameters

declaration
for output, 84–85
by reference, 83–84

generic, 185
method declaration

arrays, 131–133
method overloading, 130–131
named arguments, 129
optional arguments, 129

optional, 284
passing, object assignment, 277–281
passing by reference, 83–84
passing by value, 82–83

parent classes, 250
event raising, 296–297

parentheses, in operators, 108–109
ParenthesizePropertyName attribute,

123, 756
Parse method, 77–78
parsing

data type conversion, 77–78
input, 482–483
values, 736

partial class statement, 42
partial keyword, 42, 273–275

inheritance and, 274–275
Pascal Case naming conventions, 18

passing parameters
exceptions, 85
object assignment, 277–281
for output, 84–85
by reference, 83–84
by value, 82–83

Path class, 436–437
AltDirectorySeparatorChar property, 830
ChangExtension method, 831
Combine method, 831
DirectorySeparatorChar property, 830
GetDirectoryName method, 831
GetExtension method, 831
GetFileName method, 831
GetFileNameWithoutExtension

method, 831
GetFullPath method, 831
GetInvalidFileNameChars method, 831
GetPathRoot method, 831
GetRandomFileName method, 831
GetTempFileName method, 832
GetTempPath method, 832
HasExtension method, 832
InvalidPathChars property, 831
IsPathRooted method, 832
PathSeparator property, 831
VolumeSeparatorChar property, 831

PathGradientBrush class, 791
pattern matching, 479–480
Pen class, 367

constructors, 368
methods, 368–369
properties, 368–369

permissions, filesystems, 426
PlayRecord method, 795
PLINQ (Parallel LINQ), 198–199, 843–844
pointers, type-safe function pointers, 93
polymorphism, 263–265
Pop method, 332
#pragma directive, 36–37
precedence of operators, 108–109, 745–746

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

904

preprocessor directives – properties, eventInfo class

preprocessor directives. See also directives
#define, 31–33
#elif, 33–34
#else, 33–34
#endif, 33–34
#endregion, 35–36
#error, 34
#if, 33–34
#line, 34–35
#pragma, 36–37
#region, 35–36
#undef, 31–33
#warning, 34

previewing printing, 381
PrintDialog object, 382
PrintDocument class, 360

BeginPrint event, 360
EndPrint event, 361
page settings, 364
PrintPage event, 360
QueryPageSettings event, 360
regeneration, 362
SmoothingMode, 364

printing
booklet example, 373–380
images, 372–373
page settings, 364
previews, 381
Windows Forms, 359–360, 785–786

drawing graphics, 787–795
graphics namespaces, 786–787
PrintDocument class, 360

WPF, 380
document creation, 796–797
paginator, 381–385, 795–796

PrintPreviewControl, 361–362
PrintPreviewDialog control, 361
private keyword, 271
private properties, 249
procedures, 121
processors, CPUs, 485
Program class, 14

program control
break statements, 165
conditional operators, 157
continue statement, 165–166
decision (control) statements, 151

if-else, 152–153
switch, 153–156

enumerated values, 156–157
enumerators, 163–164
iterators, 164
looping statements

do loops, 160
foreach loops, 160–163
for loops, 157–160
while loops, 160

null-coalescing operators, 157
projects

console, 12
New Project dialog, 12
solutions, 27
templates, using directive, 307–309
Windows Forms, 12
Windows Store, 12
WPF, 12

properties, 246–247
accessor methods, 86–88
ArrayList class, 321–324
DefaultProperty, 123, 755
DriveInfo class

AvailableFreeSpace, 825
DriveFormat, 825
DriveType, 825
IsReady, 825
Name, 825
RootDirectory, 825
TotalFreespace, 825
TotalSize, 825
VolumeLabel, 825

EventInfo class
AddMethod, 870
Attributes, 870
EventHandlerType, 870

www.EBooksWorld.ir

www.hellodigi.ir

905

properties, fieldInfo class – properties, stream class

RaiseMethod, 870
RemoveMethod, 870

FieldInfo class
Attributes, 873
FieldType, 873
IsAssembly, 873
IsFamily, 873
IsFamilyAndAssembly, 873
IsFamilyOrAssembly, 873
IsInitOnly, 873
IsLiteral, 873
IsNotSerialized, 873
IsPrivate, 873
IsPublic, 873
IsStatic, 873

FileSystemWatcher class
EnableRaisingEvents, 829
Filter, 829
IncludeSubdirectories, 829
InternalBufferSize, 829
NotifyFilter, 830

InvokeRequired, 488–491
Language, 407
Localizable, 407
MemberInfo class

CustomAttributes, 870
DeclaringType, 870
MemberTypes, 870
Module, 870
Name, 870
ReflectedType, 870

MergableProperty, 123
MethodInfo class

ContainsGenericParameters, 871
IsAbstract, 871
IsAssembly, 871
IsConstructor, 871
IsFamily, 871
IsFamilyAndAssembly, 871
IsFamilyOrAssembly, 871
IsFinal, 871

IsGenericMethod, 872
IsGenericMethodDefinition, 872
IsPrivate, 872
IsPublic, 872
IsStatic, 872
IsVirtual, 872
ReturnParameter, 872
ReturnType, 872

ParameterInfo class
Attributes, 874
CustomAttributes, 874
DefaultValue, 875
HasDefaultValue, 875
IsIn, 875
IsOptional, 875
IsOut, 875
Member, 875
Name, 875
ParameterType, 875
Position, 875

ParenthesizePropertyName, 123, 756
Path class

AltDirectorySeparatorChar, 830
DirectorySeparatorChar, 830
InvalidPathChars, 831
PathSeparator, 831
VolumeSeparatorChar, 831

private, 249
PropertyInfo class, 874

Attributes, 874
CanRead, 874
CanWrite, 874
GetMethod, 874
PropertyType, 874
SetMethod, 874

reflection
getting, 585–589
setting, 585–589

Stream class, 413
CanRead, 814
CanSeek, 814

www.EBooksWorld.ir

www.hellodigi.ir

906

properties, stream class (continued) – PropertyInfo class

CanTimeout, 814
CanWrite, 814
Length, 814
Position, 814
ReadTimeout, 814
WriteTimeout, 814

Type class
Assembly, 865
Attributes, 865
BaseType, 865
ContainsGenericParameters, 865
CustomAttributes, 865
FullName, 865
GetProperty method, 869
IsAbstract, 865
IsArray, 865
IsAutoLayout, 865
IsByRef, 866
IsClass, 866
IsCOMObject, 866
IsEnum, 866
IsExplicitLayout, 866
IsGenericType, 866
IsImport, 866
IsInterface, 866
IsLayoutSequential, 866
IsMarshalByRef, 866
IsNested, 866
IsNestedAssembly, 866
IsNestedFamANDAssem, 866
IsNestedFamily, 866
IsNestedFamORAssem, 866
IsNestedPrivate, 866
IsNestedPublic, 866
IsNotPublic, 866
IsPointer, 866
IsPrimitive, 866
IsPublic, 866
IsSealed, 866
IsSerializable, 866
IsValueType, 867

IsVisible, 867
Module, 867
Name, 867
Namespace, 867
StructLayoutAttribute, 867
TypeInitializer, 867

XElement class
Document, 851
FirstAttribute, 851
FirstNode, 851
HasAttributes, 851
HasElements, 851
IsEmpty, 852
LastAttribute, 852
LastNode, 852
Name, 852
NextNode, 852
NodeType, 852
Parent, 852
PreviousNode, 852
Value, 852

XmlReader class
AttributeCount, 855
Depth, 855
EOF, 855
HasAttributes, 855
HasValue, 855
IsEmptyElement, 855
Item, 855
Name, 855
Value, 855

Properties folder, 28
property procedures, methods, 750
PropertyInfo class, 874

Attributes property, 874
CanRead property, 874
CanWrite property, 874
GetAccessors method, 874
GetGetMethod method, 874
GetIndexParameters method, 874
GetMethod property, 874
GetSetMethod method, 874

properties (continued)

www.EBooksWorld.ir

www.hellodigi.ir

907

protected internal keyword – #region directive

GetValue method, 874
PropertyType property, 874
SetMethod property, 874
SetValue method, 874

protected internal keyword, 271
protected keyword, 271
public, 271
Push method, 332

Q

quantifiers in regular expressions, 475
queries, LINQ

lambda functions, 187–188
method-based, 185–187

Queue class, 336, 779
methods, 333–334
properties, 333–334

queues, 333–335
QuickWatch command (Debug menu), 233

R

race conditions, 499–501
raising events, 292

parent class, 296–297
random number generation, 603
randomness in cryptography

encryption for random numbers, 604
random number generation, 605–608
random numbers for encryption, 604
secure randomness, 604–605

Range function, 767
readonly, variable declaration and, 61
ReadOnly attribute, 123, 756
readonly keyword, 64–65
RecommendedAsConfigurable attribute, 123
RecordMessage method, 272–273
recycle bin, 438

DeleteDictionary method, 438–439
FileSystem class, 833

Shell32.Shell interface, 440–443, 833
SHEmptyRecycleBin API function,

439–440
SHEmptyRecyclebin function, 833

ref keyword, 84, 278–279
reference equality, 113–115
reference type variables, 57
reference types, 275
references

parameter declaration, 83–84
Solution Explorer, 30

refinement, 252–256
reflection, 581

assemblies, 589–591
classes, 582–585
EventInfo class, 870–871
FieldInfo class, 873
MemberInfo class, 870
MethodInfo class, 871–872
methods, invoking, 591–593
ParameterInfo class, 874–875
properties

getting, 585–589
setting, 585–589

PropertyInfo class, 874
scripts, running, 593–596
Type class, 865–869

RefreshProperties attribute, 123
Regex class, 839–840

finding matches, 840–841
IsMatch method, 479–480, 840
Match method, 841
Matches collection, 482–483
Matches method, 480–481, 841
methods, 479
pattern matching, 840
RegexOptions parameter, 474
Replace method, 481–482
replacements, 841

RegexOptions parameter, 474
#region directive, 35–36

www.EBooksWorld.ir

www.hellodigi.ir

908

registry – serialization

registry
configuration information, 398
hives, 397
keys, 397–401
uninstallation and, 402

Registry class, 398
hive fields, 398–399

RegistryKey class, 398, 400–401
methods, 399
properties, 399

RegistryTools class, 401–402
regular expressions, 469–470

alternation constructs, 476
anchors, 473–474, 836–837
building, 470–478
capture groups, 474–475
character classes, 472–473, 836
escape sequences, 470–471

character escapes, 471–472, 835
finding matches, 480–481
grouping constructs, 474–475
options, 837

alternation constructs, 838
grouping constraints, 838
quantifiers, 838

parsing input, 482–483
pattern matching, 479–480
quantifers, 475
Regex class, 839–840

finding matches, 840–841
pattern matching, 840
replacements, 841

replacements, 481–482
samples, 476–478, 839
testing, 478

RegularExpressions namespace, 470
relational databases, 510
Repeat function, 767
Replace method, 481–482
Requires method, 209–211
Reset method, 760
Resize method, 778

resource files
application resources, 405–406
embedded resources, 406
localization resources, 407–408

resources versus settings, 30
result data types, arithmetic operators, 100–101
return types, method declaration, 128–129
reusing code, 251–252
Reverse method, 778
RoutedEventArgs object, 218–219
routines, 121
RSACryptoServiceProvider class,

614–619
RSADecrypt method, 616–617
RSAEncrypt method, 616
RSS (Really Simple Syndication), 551, 857

S

sbyte data type, 55
scope (variables), 54

block scope, 79–80
class, 81
method scope, 80
restricting, 81

script running, reflection and, 593–596
sealed keyword, 126–127, 262–263,

272–273
seed values, integers, 604
select clause, 175–177
sensitive data, 515
SequenceEqual function, 767
serialization, 534, 563

binary, 576–577, 755, 863
deserialization, 534
Deserialize method, 564
JSON, 573–574, 754, 861

controlling, 575–576, 862
performing, 574–575, 861–862

namespaces, 564
parameterless constructor, 564
Serialize method, 564

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

909

serialize method – statements

XML, 859–860
attributes, 755–756
controlling, 569–573, 860–861
performing, 565–569

Serialize method, 564
set method, 85–88
set methods, LINQ, 182
SetRegistryValue method, 400
settings versus resources, 30
ShapesPaginator class, 382–385
Shell32.Shell interface, 440–443
SHEmptyRecycleBin API function, 439–440
shift operators, arithmetic operators, 101
short data type, 55, 70
short-circuit evaluation, 104
ShowDialog method, 361, 382
side effects, 105
signing, 603
Single method, 183, 766
SingleOrDefault method, 183, 766
Skip method, 183, 766
SkipWhile method, 183, 766
SMS (Short Message Service), 460
SMTP (Simple Mail Transfer Protocol), 460
SOAP (Simple Object Access Protocol), 551, 857
SolidBrush class, 791
Solution Explorer, 17

App.config, 30
AssemblyInfo.cs, 28
bin, 30
Class View, 31
files, hidden, 28–31
Form1, 30
Form1.cs, 30
Form1.Designer.cs, 30
obj, 30
Program.cs, 30
references, 30
Resources.Designer.cs, 28
Settings.Designer.cs, 28
Team Explorer, 31

solutions (Visual Studio), 11
projects, 12, 27

console, 12
Windows Forms, 12
Windows Store, 12
WPF, 12

.sln file extensions, 12

.suo file extensions, 12
solutions to exercises, 625–731
Sort method, 778
SortedDictionary class, 336
SortedList class, 329–331, 336, 779
specialized collections

ArrayList class, 779
Hashtable class, 779
HybridDictionary class, 779
ListDictionary class, 779
NameValueCollection class, 779
Queue class, 779
SortedList class, 779
Stack class, 779
StringCollection class, 779
StringDictionary class, 779

SQL (Structured Query Language), 522
stack, 277
Stack class, 336, 779

Pop method, 332
Push method, 332

stacks, 331–333
popping items off, 331–333
pushing items on, 331–333

statements
break, 165
case, 154
continue, 165–166
decision (conditional), 151
event, 290–291
namespace, 39–42
new, 66–67
operator, 112–113
partial class, 42
statement lambdas, 137
throw, 762

www.EBooksWorld.ir

www.hellodigi.ir

910

static – strings

static, variable declaration and, 61
static events, 296
static keyword, 64–65, 125
static method, 14

operator overloading, 748
static methods, 298–300
static variables, 64–65
static volatile keyword, 64–65
Step Into command (Debug menu), 232
Step Out command (Debug menu), 233
Step Over command (Debug menu), 232
Stop Debugging command (Debug menu), 232
Stream class, 412

methods, 413, 815
BeginRead, 815
BeginWrite, 815
Close, 815
EndRead, 815
EndWrite, 815
Flush, 815
Read, 815
ReadByte, 815
Seek, 815
SetLength, 815
Write, 815
WriteByte, 815

properties, 412–413
CanRead, 814
CanSeek, 814
CanTimeout, 814
CanWrite, 814
Length, 814
Position, 814
ReadTimeout, 814
WriteTimeout, 814

StreamReader class, 412, 421–422, 818
streams, 411

AppendText method, 422
BinaryReader class, 412, 416–418, 815–817
BinaryWriter class, 412, 416–418, 815–817
classes, 412, 813–814

BinaryReader, 813
BinaryWriter, 813
BufferedStreams, 813
CryptoStream, 813
custom, 423
FileStream, 813
MemoryStream, 813
NetworkStream, 813
Stream, 813
StreamReader, 814, 818
StreamWriter, 814, 818
StringReader, 814, 818
StringWriter, 814, 818
TextReader, 814
TextWriter, 814

CreateText method, 422
downloading, 451
Exists method, 422
FileStream class, 412, 414–415
MemoryStream class, 412, 415–416
OpenText method, 422
Stream class, 814–815
StreamReader class, 412, 421–422
StreamWriter class, 412, 421–422
StringReader class, 412, 419–420
StringWriter class, 412, 419–420
text file stream methods, 818–819
TextReader class, 418–419, 817–818
TextWriter class, 418–419, 817–818

StreamWriter class, 412, 421–422, 818
string, intern pool, 58
string data type, 55
StringBuilder class, 110
StringCollection class, 324–325, 779
StringDictionary class, 329, 779
StringFormat object, 793
StringReader class, 412, 419–420, 818
strings

downloading, 449–450
immutable, 58
structure, 58

www.EBooksWorld.ir

www.hellodigi.ir

911

stringWriter class – Task class

StringWriter class, 412, 419–420, 818
strong typing, 330

generics and, 344
struct data type, 56
structures

accessibility clause, 275
arrays, 276
attributes, 275
versus classes, 275
classes, choosing between, 282
container types, 269
declaring, 774
instantiation, 285
memory, requirements, 276
object assignment, 277

parameter passing, 277–281
partial keyword, 275
value types, 275
variable initialization, 66–67

subclassing, 250
subprocedures, 121
subroutines, 121
Switch method, 353
switch statement, 153–156, 757–758

enumerated values, 156–157
symmetric key encryption, simple encryption/

decryption, 608–611
syntax

enumerated type, 89
variable declaration

accessibility, 61, 63–64
attributes, 61, 62–63
const, 61
conventions, 59
name, 61, 62
readonly, 61
static, 61
type, 61
volatile, 61

System namespace, 305

System.Collections namespace, ArrayList
class, 321–324

System.Collections.Generic namespace,
335–337

System.Collections.Specialized namespace
dictionary classes, 327
StringCollection class, 324–325

System.CollectionsSpecialized namespace,
NameValueCollection class, 325–326

System.Environment class
methods, 396–397
properties, 395–396

System.Xml.Serialization namespace, 63

t

T type, 345
default values and, 352
generic constructor, 346

Take method, 183, 766
TakeWhile method, 183, 766
Task class

methods, 496–497
ConfigureWait, 846
ContiueWith, 846
Delay, 846
Run, 846
RunSynchronously, 846
Start, 846
Wait, 846
WaitAll, 846
WaitAny, 846
WhenAll, 846
WhenAny, 846

properties, 496
Exception, 845
Factory, 845
IsCanceled, 845
IsCompleted, 846
IsFaulted, 846
Status, 846

www.EBooksWorld.ir

www.hellodigi.ir

912

task coordination – try catch blocks

task coordination
deadlocks, 501–503
race conditions, 499–501

tasks, 845–847
Team Explorer, 31
templates, using directive, 307–310
ternary operators, 106–107
testing

regular expressions, 478
for undesirable conditions, 213–215

text, drawing, 371–372
text file stream methods, 818

AppendText, 819
CreateText, 819
Exists, 819
OpenText, 819

text messages, 460–461
TextReader class, 418–419

methods
Close, 817
Peek, 817
Read, 817
ReadBlock, 817
ReadLine, 817
ReadToEnd, 817

TextureBrush class, 791
TextWriter class, 418–419

methods
Close, 818
Flush, 818
Write, 818
WriteLine, 818

this keyword, 284
Thread class, 498–499

methods
Abort, 848
Join, 848
ResetAbort, 848
Sleep, 848
Start, 848
Yield, 848

properties
IsAlive, 847
IsBackground, 847
Priority, 847
ThreadState, 847

thread of execution, 138
ThreadException event, 216–217
threads, 847–848
thread-safe objects, 503–504
throw keyword, 226–227
throw statement, 762
TimeSpan class, 111–112
TimeSpan data type, 747
ToArray method, 184, 767
ToBoolean function, 734
ToByte function, 734
ToChar function, 734
ToDateTime function, 734
ToDecimal function, 734
ToDictionary method, 184, 768
ToDouble function, 734
Toggle Breakpoint command (Debug menu), 233
ToInt16 function, 734
ToInt32 function, 734
ToList method, 184, 768
ToLookup method, 184, 768
toolbox, Visual Studio, 17
ToolboxBitmap attribute, 124
ToString method, 79, 264–265
TPL (Task Parallel Library), 492, 844

Parallel.For method, 492–494, 845
Parallel.ForEach method, 494–495, 845
Parallel.Invoke method, 495, 845

Trace class, 208
trace listeners, 238–240
TRACE preprocessor symbol, 211
try catch blocks, 214, 217, 220–221

catch statements, 221–222
exception objects, 223–224
exception throwing, 224–227
exceptions, custom, 227–228

www.EBooksWorld.ir

www.hellodigi.ir

913

Tryenter method – Type class

TryEnter method, 501–502
TryParse method, 78
type, variable declaration and, 61
Type class

Assembly property, 865
Attributes property, 865
BaseType property, 865
ContainsGenericParameters property, 865
CustomAttributes property, 865
FindInterfaces method, 867
FindMembers method, 867
FullName property, 865
GetArrayRank method, 867
GetConstructor method, 867
GetConstructors method, 867
GetCustomAttributes method, 867
GetDefaultMembers method, 867
GetElementType method, 867
GetEnumName method, 867
GetEnumNames method, 868
GetEnumUnderlyingType method, 868
GetEnumValues method, 868
GetEvent method, 868
GetEvents method, 868
GetField method, 868
GetFields method, 868
GetGenericArguments method, 868
GetGenericParameterConstraints

method, 868
GetInterface method, 868
GetInterfaces method, 868
GetMember method, 868
GetMembers method, 868
GetMethod method, 868
GetMethods method, 868
GetNestedType method, 869
GetNestedTypes method, 869
GetProperties method, 869
GetProperty method, 869
GetType method, 869
GetTypeArray method, 869
GetTypeFromCLSID method, 869

InvokeMember method, 869
IsAbstract property, 865
IsArray property, 865
IsAssignableFrom method, 869
IsAutoLayout property, 865
IsByRef property, 866
IsClass property, 866
IsCOMObject property, 866
IsEnum property, 866
IsEnumDefined method, 869
IsExplicitLayout property, 866
IsGenericType property, 866
IsImport property, 866
IsInstanceOfType method, 869
IsInterface property, 866
IsLayoutSequential property, 866
IsMarshalByRef property, 866
IsNested property, 866
IsNestedAssembly property, 866
IsNestedFamANDAssem property, 866
IsNestedFamily property, 866
IsNestedFamORAssem property, 866
IsNestedPrivate property, 866
IsNestedPublic property, 866
IsNotPublic property, 866
IsPointer property, 866
IsPrimitive property, 866
IsPublic property, 866
IsSealed property, 866
IsSerializable property, 866
IsSubclassOf method, 869
IsValueType property, 867
IsVisible property, 867
MakeArrayType method, 869
MakeByRefType method, 869
MakeGenericType method, 869
MakePointerType method, 869
Module property, 867
Name property, 867
Namespace property, 867
StructLayoutAttribute property, 867
TypeInitializer property, 867

www.EBooksWorld.ir

www.hellodigi.ir

http://www.hiva-network.com/

914

types – variance

types
constrained, 348–351
multiple, 346–348
T, 345
where clause, 351

type-safe function pointers, 93

u

UI (user interface), 488–491, 843
Invoke method, 488
InvokeRequired property, 488–491

uint data type, 55, 70
ulong data type, 55, 70
unboxing, objects, 281–282
#undef directive, 31–33
undesirable conditions, 206

testing for, 213–215
UnhandledException event, 219–220
UnicodeEncoding class, 606
Union function, 767
Union set method (LINQ), 182
uploading data

WebClient class, 455
WebRequest class, 455–456

URI (Uniform Resource Identifier), 447
URL (Uniform Resource Location), 447
URN (Uniform Resource Name), 447
UseResources class, 289
ushort data type, 55
using directive, 38, 41, 304–307

item templates, 309–310
project templates, 307–309

using statement, variable declaration, 739

V

value equality, 113–115
value types, 275

variables, 57

values
data types

casting, 734–736
parsing, 736

enumerated, 156–157
generics, default, 352
parameter declaration, 82–83
parsing, 736

var keyword, 58–59
variables, 53

accessibility, 54
arrays, of arrays, 60
constant, 64–65
data types, 53, 54–57
declarations, 737–738

enumerated types, 739–740
initialization expressions, 738–739
using statement, 739

declaring
multiple, 61
syntax, 59–65

environment variables, 394
setting, 394–395

initialization, 65–66
arrays, 67–68
classes, 66–67
collections, 68–69
structures, 66–67

lifetime, 54
reference types, 57
scope, 54

block scope, 79–80
class, 81
method scope, 80
restricting, 81

static, 64–65
value types, 57
var keyword, 58–59
visibility, 54
volatile, 64–65

variance, methods, 139

www.EBooksWorld.ir

www.hellodigi.ir

915

virtual keyword – XDocument class

virtual keyword, 125–126, 259
visibility, variables, 54
Visual Studio, 3–4

code editors, 4
Designer area, 17
downloading, 4
editions, 4
properties area, 17
Solution Explorer, 17
solutions, 11

projects, 12
.sln files, 12
.suo files, 12

Toolbox, 17
windows, 17

VisualBasic namespace, 304
volatile, variable declaration and, 61
volatile keyword, 64–65
volatile variables, 64–65

w

#warning directive, 34
Watch submenu (Windows submenu, Debug

menu), 234
WebClient class, 447, 448–451

uploading data, 455
versus WebRequest class, 454

WebRequest class, 447
data downloads, 451–454
uploading data, 455–456
versus WebClient class, 454

WebResponse class, 447
where clause, 351

LINQ, 174–175
while loops, 160
widening conversions, 73–74, 735
Win32 namespace, 304
Windows Forms

applications, 12, 16–19
exception handling, 216–217

PrintDocument class, 360
BeginPrint event, 360
EndPrint event, 361
events, 360
PrintPage event, 360
QueryPageSettings event, 360
regeneration, 362
SmoothingMode, 364

printing, 359–360, 785–786
drawing graphics, 787–795
graphics namespaces, 786–787

Windows Store, applications, 12, 21–23
Windows submenu (Debug menu), 232, 234–235

Autos window, 234
Breakpoints window, 234, 235–237
Call Stack window, 234
Immediate window, 234, 237–238
Locals window, 234
Modules window, 235
Output window, 234
Watch submenu, 234

Winsock, 446
words (bytes), 54
WPF (Windows Presentation Foundation)

applications, 12, 19–21
exception handling, 217–218

printing, 380
document creation, 795–796
FixedDocument object, 797
FlowDocument object, 796–797
paginator, 381–385, 795–796

WSDL (Web Services Definition Language),
551, 857

xyz

XAML (extensible markup language), 13
Window Designer, 19

XDocument class, 543–546
Add method, 851
DescendantNodes method, 851

www.EBooksWorld.ir

www.hellodigi.ir

916

XDocument class (continued) – XmL

Descendants method, 851
Load method, 851
Parse method, 851
Save method, 851
ToString method, 851
WriteTo method, 851

XElement class, 543–546
Add method, 852
AddAfterSelf method, 852
AddBeforeSelf method, 852
AddFirst method, 852
Ancestors method, 852
Attribute method, 852
Attributes method, 852
DescendantAndSelf method, 853
DescendantNodes method, 852
Descendants method, 852
Document property, 851
Element method, 853
Elements method, 853
ElementsAfterSelf method, 853
ElementsBeforeSelf method, 853
FirstAttribute property, 851
FirstNode property, 851
HasAttributes property, 851
HasElements property, 851
IsAfter method, 853
IsBefore method, 853
IsEmpty property, 852
LastAttribute property, 852
LastNode property, 852
Load method, 853
Name property, 852
NextNode property, 852
Nodes method, 853
NodesAfterSelf method, 853
NodesBeforeSelf method, 853
NodeType property, 852
Parent property, 852
Parse method, 853

PreviousNode property, 852
Remove method, 853
RemoveAll method, 853
RemoveAttributes method, 853
RemoveNodes method, 853
ReplaceAll method, 853
ReplaceAttributes method, 853
ReplaceNodes method, 853
ReplaceWith method, 853
Save method, 854
SetAttributeValue method, 854
SetElementValue method, 854
SetValue method, 854
ToString method, 854
Value property, 852
WriteTo method, 854

XLink, 551, 856
XML (eXtensible Markup Language), 533

attributes, 535, 570
serialization, 755–756

CDATA section, 537–538
characters, 536–537
comments, 45–48
concise, 536
DOM (document object model), 541–546,

851–854
DTD (Document Type Definition), 551, 856
elements, nested, 535
literals, 190, 457, 854
namespaces, 538
nodes, 534

root node, 536
reading data, 854–856

XmlWriter class, 457–550
RSS (Really Simple Syndication), 551, 857
serialization, 859–861

attributes, 572–573
controlling, 569–573
parameterless constructor, 564
performing, 565–569

XDocument class (continued)

www.EBooksWorld.ir

www.hellodigi.ir

917

Xmlarray attribute – XsLT

SOAP (Simple Object Access Protocol),
551, 857

special characters, 849
syntax, 534–537
writing data, 849–854
WSDL (Web Services Definition Language),

551, 857
XLink, 551, 856
XmlTextReader class, 854–856
XmlWriter class, 850
XQuery, 551, 856
XSD (XML Schema Definition), 551, 856
XSL (Extensible Style Sheet Language), 551

XPath, 551, 552–555, 856
XSL FO, 551, 856
XSLT, 551, 555–559, 856

XmlArray attribute, 753
XmlArrayItem attribute, 753
XmlAttribute attribute, 753
XmlElement attribute, 753
XmlEnum attribute, 754
XmlIgnore attribute, 754
XmlReader class, 550

AttributeCount property, 855
Create method, 855
Depth property, 855
Dispose method, 855
EOF property, 855
GetAttribute method, 855
HasAttributes property, 855
HasValue property, 855
IsEmptyElement property, 855
IsName method, 855
Item property, 855
MoveToAttribute method, 855
MoveToContent method, 855
MoveToElement method, 855
MoveToFirstAttribute method, 855
MoveToNextAttribute method, 855

Name property, 855
Read method, 855
ReadInnerXml method, 856
ReadOuterXml method, 856
ReadToDescendant method, 856
ReadToNextSibling method, 856
Skip method, 856
Value property, 855

XmlRoot attribute, 754
XmlText attribute, 754
XmlTextReader class, 550, 854–856
XmlTextWriter class, 540–541
XmlType attribute, 754
XmlWriter class, 457–550

Close method, 850
Create method, 850
Dispose method, 850
Flush method, 850
WriteAttributeString method, 850
WriteCData method, 850
WriteComment method, 850
WriteElementString method, 850
WriteEndAttribute method, 850
WriteEndDocument method, 850
WriteName method, 850
WriteStartAttribute method, 850
WriteStartDocument method, 850
WriteStartElement method, 850
WriteString method, 850
WriteValue method, 850

XPath, 551, 552–555, 857–858
XQuery, 551, 856
XSD (XML Schema Definition), 551, 856
XSL (Extensible Style Sheet Language)

XPath, 551, 552–555, 856, 857–858
XSL FO, 551, 856
XSLT, 551, 555–559, 856, 858

XSL FO (XSL Formatting Objects), 551
XSLT (XSL Transform), 551, 555–559, 858

www.EBooksWorld.ir

www.hellodigi.ir

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!
Visit: www.safaribooksonline.com/wrox

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety of
software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

*Discount applies to new Safari Library subscribers only and
is valid for the � rst 6 consecutive monthly billing cycles.
Safari Library is not available in all countries.

www.EBooksWorld.ir

www.hellodigi.ir

http://www.safaribooksonline.com/wrox
http://www.hiva-network.com/

	Contents
	Introduction
	Who Should Read This Book
	Approach
	Which Edition of Visual Studio Should You Use?
	How This Book Is Organized
	How to Use This Book
	Necessary Equipment
	Conventions
	Source Code
	Errata
	p2p.wrox.com
	Important URLs

	Part I: The C# Ecosystem
	Chapter 1: The C# Environment
	Visual Studio
	The C# Compiler
	The CLR
	The .NET Framework
	Summary
	Exercises

	Chapter 2: Writing a First Program
	Types of Projects
	Console Applications
	Windows Forms Applications
	WPF Applications
	Windows Store Applications
	Summary
	Exercises

	Chapter 3: Program and Code File Structure
	Hidden Files
	Preprocessor Directives
	Code File Structure
	Comments
	Summary
	Exercises

	Part II: C# Language Elements
	Chapter 4: Data Types, Variables, and Constants
	Data Types
	Variable Declaration Syntax
	Initialization
	Literal Type Characters
	Data Type Conversion
	Scope
	Parameter Declarations
	Properties
	Enumerations
	Nullable Types
	Delegates
	Summary
	Exercises

	Chapter 5: Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Conditional and Null-coalescing Operators
	Assignment Operators
	Operator Precedence
	The StringBuilder Class
	DateTime and TimeSpan Operations
	Operator Overloading
	Summary
	Exercises

	Chapter 6: Methods
	Method Declarations
	Extension Methods
	Lambda Expressions
	Variance
	Asynchronous Methods
	Summary
	Exercises

	Chapter 7: Program Control Statements
	Decision Statements
	Looping Statements
	Summary
	Exercises

	Chapter 8: LINQ
	Introduction to LINQ
	Basic LINQ Query Syntax
	Advanced LINQ Query Syntax
	Other LINQ Methods
	LINQ Extension Methods
	LINQ to Objects
	LINQ to XML
	LINQ to ADO.NET
	PLINQ
	Summary
	Exercises

	Chapter 9: Error Handling
	Bugs Versus Undesirable Conditions
	try catch Blocks
	Summary
	Exercises

	Chapter 10: Tracing and Debugging
	The Debug Menu
	The Debug ➪ Windows Submenu
	The Breakpoints Window
	The Immediate Window
	Trace Listeners
	Summary
	Exercises

	Part III: Object-Oriented Programming
	Chapter 11: OOP Concepts
	Classes
	Encapsulation
	Inheritance
	Polymorphism
	Summary
	Exercises

	Chapter 12: Classes and Structures
	Classes
	Structures
	Constructors
	Structure Instantiation Details
	Garbage Collection
	Events
	Static Methods
	Summary
	Exercises

	Chapter 13: Namespaces
	Collisions in .NET
	The using Directive
	The Default Namespace
	Making Namespaces
	Resolving Namespaces
	The global Namespace
	Summary
	Exercises

	Chapter 14: Collection Classes
	Arrays
	System.Collections
	Dictionaries
	CollectionsUtil
	Stacks and Queues
	Generic Collections
	Collection Initializers
	Iterators
	Summary
	Exercises

	Chapter 15: Generics
	Advantages of Generics
	Defining Generics
	Instantiating Generic Classes
	Generic Collection Classes
	Generic Methods
	Generics and Extension Methods
	Summary
	Exercises

	Part IV: Interacting with the Environment
	Chapter 16: Printing
	Windows Forms Printing
	WPF Printing
	Summary
	Exercises

	Chapter 17: Configuration and Resources
	Environment Variables
	Registry
	Configuration Files
	Resource Files
	Summary
	Exercises

	Chapter 18: Streams
	Stream
	FileStream
	MemoryStream
	BinaryReader and BinaryWriter
	TextReader and TextWriter
	StringReader and StringWriter
	StreamReader and StreamWriter
	Exists, OpenText, CreateText, and AppendText
	Custom Stream Classes
	Summary
	Exercises

	Chapter 19: File System Objects
	Filesystem Permissions
	.NET Framework Classes
	Using the Recycle Bin
	Summary
	Exercises

	Chapter 20: Networking
	Networking Classes
	Downloading Information
	Uploading Information
	Getting FTP Information
	Sending E‑mail
	Sending Text Messages
	Summary
	Exercises

	Part V: Advanced Topics
	Chapter 21: Regular Expressions
	Building Regular Expressions
	Using Regular Expressions
	Summary
	Exercises

	Chapter 22: Parallel Programming
	Interacting with the User Interface
	BackgroundWorker
	Tasks
	Threads
	Coordinating Tasks
	Thread-Safe Objects
	Summary
	Exercises

	Chapter 23: ADO.NET
	Selecting a Database
	Using Bound Controls
	Loading DataSets
	Using ADO.NET
	Summary
	Exercises

	Chapter 24: XML
	Basic XML Syntax
	Writing XML Data
	Reading XML Data
	Related Technologies
	Summary
	Exercises

	Chapter 25: Serialization
	XML Serialization
	JSON Serialization
	Binary Serialization
	Summary
	Exercises

	Chapter 26: Reflection
	Learning About Classes
	Getting and Setting Properties
	Getting Assembly Information
	Invoking Methods
	Running Scripts
	Summary
	Exercises

	Chapter 27: Cryptography
	Cryptographic Operations
	Randomness
	Symmetric Key Encryption
	Asymmetric Key Encryption
	Summary
	Exercises

	Part VI: Appendices
	Appendix A: Solutions to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27

	Appendix B: Data Types
	Casting and Converting Values
	Parsing Values

	Appendix C: Variable Declarations
	Initialization Expressions
	Using
	Enumerated Type Declarations

	Appendix D: Constant Declarations
	Appendix E: Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Conditional and Null-coalescing Operators
	Operator Precedence
	DateTime and TimeSpan Operators
	Operator Overloading

	Appendix F: Method Declarations
	Methods
	Property Procedures
	Lambda Functions and Expressions
	Extension Methods

	Appendix G: Useful Attributes
	Useful XML Serialization Attributes
	Useful JSON Serialization Attributes
	Binary Serialization Attributes
	Other Useful Attributes

	Appendix H: Control Statements
	Decision Statements
	Looping Statements

	Appendix I: Error Handling
	Throwing Exceptions

	Appendix J: LINQ
	Basic LINQ Query Syntax
	LINQ Functions
	LINQ to XML
	LINQ to ADO.NET
	PLINQ

	Appendix K: Classes and Structures
	Classes
	Structures
	Constructors
	Destructors
	Events

	Appendix L: Collection Classes
	Arrays
	Collections
	Iterators

	Appendix M: Generic Declarations
	Generic Classes
	Generic Methods

	Appendix N: Printing and Graphics
	Windows Forms Printing
	WPF Printing

	Appendix O: Useful Exception Classes
	Standard Exception Classes
	Custom Exception Classes

	Appendix P: Date and Time Format Specifiers
	Standard Format Specifiers
	Custom Format Specifiers

	Appendix Q: Other Format Specifiers
	Standard Numeric Format Specifiers
	Custom Numeric Format Specifiers
	Numeric Formatting Sections
	Composite Formatting
	Enumerated Type Formatting

	Appendix R: Streams
	Stream Class Summary
	Stream
	BinaryReader and BinaryWriter
	TextReader and TextWriter
	StringReader and StringWriter
	StreamReader and StreamWriter
	Text File Stream Methods

	Appendix S: Filesystem Classes
	Framework Classes
	Special Folders
	Recycle Bin

	Appendix T: Regular Expressions
	Creating Regular Expressions
	Regular Expression Options
	Using Regular Expressions

	Appendix U: Parallel Programming
	Interacting with the User Interface
	PLINQ
	BackgroundWorker
	TPL
	Tasks
	Threads

	Appendix V: XML
	Special Characters
	Writing XML Data
	Reading XML Data
	Related Technologies

	Appendix W: Serialization
	XML Serialization
	JSON Serialization
	Binary Serialization

	Appendix X: Reflection
	Type
	MemberInfo
	EventInfo
	MethodInfo
	FieldInfo
	PropertyInfo
	ParameterInfo

	Index
	Advertisement

