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 1.0 INTRODUCTION TO STRUCTURAL ENGINEERING  

 
1.1 GENERAL INTRODUCTION 

Structural design is a systematic and iterative process that involves: 

1) Identification of intended use and occupancy of a structure – by owner 

2) Development of architectural plans and layout – by architect 

3) Identification of structural framework – by engineer 

4) Estimation of structural loads depending on use and occupancy  

5) Analysis of the structure to determine member and connection design forces  

6) Design of structural members and connections 

7) Verification of design  

8) Fabrication & Erection – by steel fabricator and contractor 

9) Inspection and Approval – by state building official 

 

Ideally, the owner and the architect, the architect and the engineer, and the engineer and the 

fabricator/contractor will collaborate and interact on a regular basis to conceive, develop, design, 

and build the structure in an efficient manner. The primary responsibilities of all these players 

are as follows: 

• Owner - primary responsibility is deciding the use and occupancy, and approving the 

architectural plans of the building.  

• Architect - primary responsibility is ensuring that the architectural plan of the building 

interior is appropriate for the intended use and the overall building is aesthetically pleasing. 

• Engineer – primary responsibility is ensuring the safety and serviceability of the structure, 

i.e., designing the building to carry the loads safely and ___________. 

• Fabricator – primary responsibility is ensuring that the designed members and connections 

are fabricated economically in the shop or field as required.  
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• Contractor/Erector - primary responsibility is ensuring that the members and connections are 

economically assembled in the field to build the structure. 

• State Building Official – primary responsibility is ensuring that the built structure satisfies 

the appropriate building codes accepted by the Govt. 

 

1.2 STRUCTURAL DESIGN  

• Conceptually, from an engineering standpoint, the parameters that can be varied (somewhat) 

are: (1) the material of construction, and (2) the structural framing plan.  

• The choices for material include: (a) steel, (b) reinforced concrete, and (c) steel-concrete 

composite construction.  

• The choices for structural framing plan include moment resisting frames, braced frames, dual 

frames, shear wall frames, and so on. The engineer can also innovate a new structural 

framing plan for a particular structure if required.  

• All viable material + framing plan alternatives must be considered and designed to compare 

the individual material + fabrication / erection costs to identify the most efficient and 

economical design for the structure.  

• For each material + framing plan alternative considered, designing the structure consists of 

designing the individual structural components, i.e., the members and the connections, of the 

framing plan.  

• This course CE405 focuses on the design of individual structural components. The material 

of construction will limited be steel, and the structural framing plans will be limited to braced 

frames and moment resisting frames.  

 

1.3 STRUCTURAL FRAMEWORK 

• Figure 1 shows the structural plan and layout of a four-story office building to be located in 

Lansing. Figure 2 and 3 show the structural elevations of frames A-A and B-B, respectively, 

which are identified in Figure 1.  
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Figure 3. Structural elevation of frame B-B
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Figure 3. Structural elevation of frame B-B
 

• As shown in Figure 1, the building has two 25-ft. bays in the north-south direction and three 

35 ft. bays in the east-west direction.  

• There are four structural frames in the north-south direction. These frames have structural 

elevations similar to frame A-A shown in Figure 2.  

• There are three structural frames in the east-west directions. These frames have structural 

elevations similar to frame B-B shown in Figure 3.  

• The building has a roof truss, which is shown in Figures 2 and 3.  

• Frame A-A is a braced frame, where all members are connected using pin/hinge connections. 

Diagonal bracing members are needed for stability.  

• Frame B-B is a moment frame, where all members are connected using fix/moment 

connections. There is no need for diagonal bracing members.  

• The north-south and east-west frames resist the vertical gravity loads together. 

• The three moment frames in the east-west direction resist the horizontal lateral loads in the 

east-west direction.  
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• The four braced frames in the north-south direction resist the horizontal lateral loads in the 

north-south direction.   

 

1.4 STRUCTURAL MEMBERS 

Structural members are categorized based up on the internal forces in them. For example: 

• Tension member –subjected to tensile axial force only 

• Column or compression member –subjected to compressive axial force only 

• Tension/Compression member –subjected to tensile/compressive axial forces 

• Beam member –subjected to flexural loads, i.e., shear force and bending moment only. The 

axial force in a beam member is negligible.  

• Beam-column member – member subjected to combined axial force and flexural loads (shear 

force, and bending moments) 

 

In basic structural analysis (CE305) students have come across two types of structures, 

namely, trusses and frames. For example, Figure 2 shows a roof truss supported by a braced 

frame.  

 

• All the members of a truss are connected using pin/hinge connections. All external forces are 

applied at the pins/hinges. As a result, all truss members are subjected to axial forces (tension 

or compression) only.  

• In braced and moment frames, the horizontal members (beams) are subjected to flexural 

loads only.  

• In braced frames, the vertical members (columns) are subjected to compressive axial forces 

only.  

•  In braced frames, the diagonal members (braces) are subjected to tension/compression axial 

forces only.  

• In moment frames, the vertical members (beam-columns) are subjected to combined axial 

and flexural loads.  
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For practice, let us categorize the member shown in Figures 2 and 3.  
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Figure 3. Structural elevation of frame B-B
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1.5 STRUCTURAL CONNECTIONS 

Members of a structural frame are connected together using connections. Prominent 

connection types include: (1) truss / bracing member connections; (2) simple shear connections; 

(3) fully-restrained moment connections; and (4) partially-restrained flexible moment 

connections.  

• Truss / bracing member connections are used to connect two or more truss members together. 

Only the axial forces in the members have to be transferred through the connection for 

continuity. 

• Simple shear connections are the pin connections used to connect beam to column members. 

Only the shear forces are transferred through the connection for continuity. The bending 

moments are not transferred through the connection.  

• Moment connections are fix connections used to connect beam to column members. Both the 

shear forces and bending moments are transferred through the connections with very small 

deformations (full restraint).  

• Partially restrained connections are flexible connections used to connect beam to column 

members. The shear forces are transferred fully through the connection. However, the 

bending moment is only transferred partially.  

S
Gusset

Figure 4. Truss connection at S in Frame A-A.

S
Gusset

S
Gusset

Figure 4. Truss connection at S in Frame A-A.  
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Figure 5. Bracing connection and Simple Shear Connection at G in Frame A-A. 
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• Figure 4 shows an example truss connection. Figure 5 shows an example bracing 

connection. Figure 6 shows an example shear connection. Figure 7 shows an example 

moment connection.  

• Connections are developed using bolts or welds. 

• Bolts are used to connect two or more plate elements that are in the same plane. Bolt-

holes are drilled in the plate elements. The threaded bolt shank passes through the holes, 

and the connection is secured using nuts.  

• Bolts are usually made of higher strength steel. 

• Welds can be used to connect plate elements that are in the same or different planes. A 

high voltage electric arc is developed between the two plate elements. The electric arc 

causes localized melting of the base metal (plate element) and the weld electrode. After 

cooling, all the molten metal (base and weld) solidifies into one continuum. Thus, 

developing a welded connection. 

• In Figure 4, all the truss members are connected together by welding to a common gusset 

plate. The axial forces in the members are transferred through the gusset plates. This 

same connection can also be developed using bolts. How? 

• In Figure 5, the bracing members are connected to gusset plates, which are also 

connected to the beam and column. The bracing member can be connected to the gusset 

plate using bolts or welds. However, the gusset plate has to be welded to the beam / 

column. 

• In Figure 6, two angles are bolted to the web of the beam. The perpendicular legs of the 

angles are bolted to the flange of the column. Thus, an all-bolted double-angle shear 

connection is achieved. This all-bolted connection will be easier to assemble in the field 

as compared to welding. How is this a shear connection? 

• In Figure 7, the beam flanges are beveled and welded directly to the flange of column 

using full penetration groove welds. This welding will have to be done in the field during 

erection and it will require the use of back-up bars. Weld-access holes and skilled 

welders are required to achieve a weld of acceptable quality. 

• In Figure 7, the beam web is bolted to a shear tab (plate), which is fillet welded to the 

column in the shop. This shear tab connection transfers the shear from the beam to the 

column.  How is Figure 7 a moment connection?  
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1.6 Structural Loads 

The building structure must be designed to carry or resist the loads that are applied to it over 

its design-life. The building structure will be subjected to loads that have been categorized as 

follows: 

• Dead Loads (D): are permanent loads acting on the structure. These include the self-weight 

of structural and non-structural components. They are usually gravity loads. 

• Live Loads (L): are non-permanent loads acting on the structure due to its use and 

occupancy. The magnitude and location of live loads changes frequently over the design life. 

Hence, they cannot be estimated with the same accuracy as dead loads.  

• Wind Loads (W): are in the form of pressure or suction on the exterior surfaces of the 

building. They cause horizontal lateral loads (forces) on the structure, which can be critical 

for tall buildings. Wind loads also cause uplift of light roof systems. 

• Snow Loads (S): are vertical gravity loads due to snow, which are subjected to variability due 

to seasons and drift. 

• Roof Live Load (Lr): are live loads on the roof caused during the design life by planters, 

people, or by workers, equipment, and materials during maintenance.  

• Values of structural loads are given in the publication ASCE 7-98: Minimum Design Loads 

for Buildings and Other Structures. The first phase of structural design consists of estimating 

the loads acting on the structure. This is done using the load values and combinations 

presented in ASCE 7-98 as explained in the following sub-sections. 
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1.6.1 Step I. Categorization of Buildings 

• Categories I, II, III, and IV. See Table 1.1 below and in ASCE 7-98.  
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1.6.2 Dead Loads (D) 

Dead loads consist of the weight of all materials of construction incorporated into the 

building including but not limited to walls, floors, roofs, ceilings, stairways, built-in partitions, 

finishes, cladding and other similarly incorporated architectural and structural items, and fixed 

service equipment such as plumbing stacks and risers, electrical feeders, and heating, ventilating, 

and air conditioning systems. 

In some cases, the structural dead load can be estimated satisfactorily from simple formulas 

based in the weights and sizes of similar structures. For example, the average weight of steel 

framed buildings is 60-75 lb/ft2, and the average weight for reinforced concrete buildings is 110 - 

130 lb/ft2.  

From an engineering standpoint, once the materials and sizes of the various components of 

the structure are determined, their weights can be found from tables that list their densities. See 

Tables 1.2 and 1.3, which are taken from Hibbeler, R.C. (1999), Structural Analysis, 4th Edition.  
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1.6.3 Live Loads 

• Building floors are usually subjected to uniform live loads or concentrated live loads. They 

have to be designed to safely support the minimum uniformly distributed load  or the 

minimum concentrated live load values given in the ASCE 7-98 (see Table 1.4 below), 

whichever produces the maximum load effects in the structural members.  
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• The minimum uniformly distributed live loads (Lo) given in Table 1.4 above can be reduced 

for buildings with very large floor areas, because it is unlikely that the prescribed live load 

will occur simultaneously throughout the entire structure.  

• Equation (1.1) can be used to calculate the reduce uniformly distributed live load (L) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

TLL
o AK

57.425.0LL     (1.1) 

where, AT is the tributary area in ft2 and KLL is the live load element factor as follows: 

KLL is equal to 4.0 for interior columns and exterior columns without cantilever slabs. KLL is 

equal to 3.0 for edge columns with cantilever slabs. 

KLL is equal to 2.0 for corner columns with cantilever slabs, edge beams without cantilever 

slabs, and interior beams. 

KLL is equal to 1.0 for all other members not identified above. 

• Some limitations to the live load reduction are as follows: 

L cannot be less than 0.5Lo for members supporting one floor and L cannot be less that 0.4Lo 

for members supporting two or more floors. 

Live loads that exceed 100 lb/ft2 shall not be reduced except the live loads for members 

supporting two or more floors may be reduced by 20%. 

Live loads exceeding 100 lb/ft2 shall not be reduced for passenger car garages, public 

assembly occupancies, or roofs 
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1.6.4 Roof Live Loads 

Ordinary flat, pitched, and curved roofs shall be designed for the live loads specified in 

Equation 1.2 (from ASCE 7-98).  

Lr = 20 R1 R2   where, 12 ≤ Lr ≤ 20    (1.2) 

where,  

Lr is the roof live load per square foot of horizontal projection in psf. 

= 1    for AT ≤ 200 ft2

 R1  = 1.2 - 0.001 AT  for 200 < AT < 600 ft2

 = 0.6    for 600ft2 ≤ AT 

____________________________________________________________________

 = 1    for F ≤ 4 

R2 = 1.2 - 0.05 F  for 4 < F < 12   

 = 0.6    for 12 ≤ F 

where, F = no. of inches of rise per foot for pitched roof.  
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1.6.5 Wind Loads 

• Design wind loads for buildings can be based on: (a) simplified procedure; (b) analytical 

procedure; and (c) wind tunnel or small-scale procedure. 

• Refer to ASCE 7-98 for the simplified procedure. This simplified procedure is applicable 

only to buildings with mean roof height less than 30 ft.  

• The wind tunnel procedure consists of developing a small-scale model of the building and 

testing it in a wind tunnel to determine the expected wind pressures etc. It is expensive and 

may be utilized for difficult or special situations. 

• The analytical procedure is used in most design offices. It is fairly systematic but somewhat 

complicated to account for the various situations that can occur: 

• Wind velocity will cause pressure on any surface in its path. The wind velocity and hence the 

velocity pressure depend on the height from the ground level. Equation 1.3 is recommended 

by ASCE 7-98 for calculating the velocity pressure (qz) in lb/ft2  

qz = 0.00256 Kz Kzt Kd V2 I     (lb/ft2)   (1.3) 

where, V is the wind velocity  (see Figure 6-1 in ASCE 7-98) 

 Kd is a directionality factor  (=0.85 for CE 405) 

 Kzt is a topographic factor  (= 1.0 for CE 405) 

 I is the importance factor  (=1.0 for CE 405) 

 Kz varies with height z above the ground level (see Table 6-5 in ASCE 7-98) 

• A significant portion of the U.S. including Lansing has V = 90 mph. At these location 

qz = 17.625 Kz (lb/ft2)    (1.4) 
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• The velocity pressure qz is used to calculate the design wind pressure (p) for the building 

structure as follows: 

p = q GCp – qi (GCpi)   (lb/ft2)   (1.5)  

where, G = gust effect factor (=0.85 for CE 405) 

 Cp = external pressure coefficient from Figure 6-3 in ASCE 7-98 

 Cpi = internal pressure coefficient from Table 6-7 in ASCE 7-98 

q depends on the orientation of the building wall or roof with respect to direction of the 

wind as follows: 

q = qz for the windward wall – varies with height z 

 q = qh for leeward wall.  
qh is qz evaluated at z = h (mean height of building). qh is constant. 

 qi = qh for windward, leeward, side walls and roofs. 

 

• Note that a positive sign indicates pressure acting towards a surface. Negative sign indicate 

pressure away from the surface 

• Equation 1.5 indicates that the design wind pressure p consists of two components: (1) the 

external pressure on the building (q GCp); and (2) the internal pressure in the building (qh 

GCpi) 

 

1.6.6 Load and Resistance Factor Design  

 The load and resistance factor design approach is recommended by AISC for designing steel 

structures. It can be understood as follows: 

Step I. Determine the ultimate loads acting on the structure 

- The values of D, L, W, etc. given by ASCE 7-98 are nominal loads (not maximum or 

ultimate) 
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- During its design life, a structure can be subjected to some maximum or ultimate loads 

caused by combinations of D, L, or W loading. 

- The ultimate load on the structure can be calculated using factored load combinations, 

which are given by ASCE and AISC (see pages 2-10 and 2-11 of AISC manual). The 

most relevant of these load combinations are given below: 

1.4 D     (4.2 – 1) 

1.2 D + 1.6 L + 0.5 (Lr or S)   (4.2 – 2) 

1.2 D + 1.6 (Lr or S) + (0.5 L or 0.8 W)   (4.2 – 3) 

1.2 D + 1.6 W + 0.5 L + 0.5 (Lr or S)   (4.2 – 4) 

0.9 D + 1.6 W    (4.2 – 5) 

Step II. Conduct linear elastic structural analysis 

- Determine the design forces (Pu, Vu, and Mu) for each structural member 

 
Step III. Design the members 

- The failure (design) strength of the designed member must be greater than the 

corresponding design forces calculated in Step II. See Equation (4.3) below:  

      φ Rn > ∑γ ii Q     (4.3) 

- Where, Rn is the calculated failure strength of the member 

- φ is the resistance factor used to account for the reliability of the material behavior and 

equations for Rn 

- Qi is the nominal load 

- γi is the load factor used to account for the variability in loading and to estimate the 
ultimate loading condition. 
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Example 1.1

Consider the building structure with the structural floor plan and elevation shown below. 

Estimate the wind loads acting on the structure when the wind blows in the east-west direction. 

The structure is located in Lansing. 
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Figure 8. Structural floor plan 
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Figure 9. Structural elevation in east-west direction 
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b 6 

 

Figure 10. Structural elevation in north-south direction 

• Velocity pressure (qz) 

- Kd = directionality factor = 0.85 

- Kzt = topographic factor = 1.0 

- I = importance factor = 1.0  

- Kh values for Exposure B, Case 2 
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• qz = 0.00256 Kz Kzt Kd V2I  

- In Lansing V = 90 mph 
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- qz = 17.625 Kz psf 

• Wind pressure (p) 

- Gust factor = G = 0.85 

- For wind in east west direction; L/B = Length / width = 2.0 

- External pressure coefficient = Cp = +0.8 for windward walls  

  Cp = -0.3 for leeward walls 

  Cp = -0.7 for side walls 

- External pressure = q G Cp 

- External pressure on windward wall = qz GCp = 17.625 Kz x 0.85 x 0.8  

  = 11.99 Kz psf toward surface 

- External pressure on leeward wall = qh GCp  = 17.625 K65 x 0.85 x (-0.3) 

= 4.00 psf away from surface 

- External pressure on side wall = qh GCp =17.625 K65 x 0.85 x (-0.7) 

= 9.33 psf away from surface 

- The external pressures on the structure are shown in Figures 11 and 12 below. 

 

Figure 11. External pressures on structural plan  
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Figure 12. External pressure on structural elevation (east west) 

• Internal pressure  

- p = q GCp – qi GCpi 

- qi = qh = 17.625 K65 = 17.625 x 0.89 = 15.69 psf 

- Enclosed building;  GCpi = +0.18  (acting toward surface) 

GCpi = -0.18 (acting away from surface) 

- qi GCpi = 2.82 psf acting toward  or away from surface 

- See Figure 13 (a) and (b) below 

(a)       (b) 

   

Figure 13. Internal pressure seen in structural plan 

• Take the external pressure from Figure 11 and 12 and add to internal pressure from Figures 
13 (a) and (b) to obtain the final pressure diagrams. Adding the internal pressure will not 
change the lateral forces in the structure.  
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     (a)       (b) 

   

Figure 14. Resultant wind pressure diagrams including external and internal pressures 

• Note: According to ASCE 7-98, the minimum wind design loading is equal to 10 lb/ft2 

multiplied by the area of the building projected on a vertical plane normal to assumed wind 

direction.  

• The determined design wind loading is greater than the minimum value. Therefore, continue 

with estimated design wind loading. 

 

Example 1.2 Determine the magnitude and distribution of live loading on the north-south frame 

bi - ei - hi

• Step I: Determine relevant tributary and influence areas. Estimate live load reduction factors. 

25 ft.

50 ft.50 ft.

25 ft.

ai
bi

ci

di
ei

fi

gi
hi ii

1

2

3

4

25 ft.

50 ft.50 ft. 50 ft.50 ft.

25 ft.

ai
bi

ci

di
ei

fi

gi
hi ii

11

22

33

44
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Table 1.1 Member tributary areas and minimum design live loading. 

Member  Tributary area  KLL Lo/L=0.25 + 4.57/(KLLAT)0.5 Lo/L min.

bi-ei AT2 = ½ x 25.0 x 12.5 x 2  

= 312.5 ft2

2.0 0.4328 0.5 

ei - hi AT1 = ½ x 25.0 x 12.5 x 2  

= 312.5 ft2

2.0 0.4328 0.5 

di - ei AT3 = ½ x 12.5 x 25.0 x 2 + 

25.0 x 25.0 = 937.5 ft2

2.0 0.36 0.5 

ei - fi AT4 = ½ x 12.5 x 25.0 x 2 +

25.0 x 25.0 = 937.5 ft2

2.0 0.36 0.5 

bi 12.5 x 50.0 = 625.0 ft2 4.0 0.34 0.4 

ei 25.0 x 50.0 = 1250.0 ft2 4.0 0.3146 0.4 

hi 12.5 x 50.0 = 625 ft2 4.0 0.34 0.4 

 

• Step II. Estimate uniformly distributed loads  

b1 e1 g1

b2 e2 g2

b3 e3 g3

b4 e4 g4

b5 e5 g5

b6 e6 g6

b1 e1 g1

b2 e2 g2

b3 e3 g3

b4 e4 g4

b5 e5 g5

b6 e6 g6
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• Step III: Estimate live loading on columns from other frames than the one being investigated.  

 

d1 e1 f1

d2 e2 f2

d3 e3 f3

d4 e4 f4

d5 e5
f5

d6 e6 f6

Resultant

d1 e1 f1

d2 e2 f2

d3 e3 f3

d4 e4 f4

d5 e5
f5

d6 e6 f6

Resultant

 

• Note: The minimum reduced live load for the column ei from Table 1 = 0.40 Lo. However, 

the live loading on column ei is being estimated using the reduced live loading on the beams. 

For consistency, make sure that the reduced beam live loading is not less than the reduced 

column live loading. 

 

• Note: The wind pressures act on the sides of the building. The lateral forces acting on the 

frame are calculated using these wind pressures and the tributary area concept. 
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ASCE 7 – 98 pg. 39 
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Figure showing the Wind Speed of Eastern US. (ASCE 7 – 98 pg. 35) 
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ASCE 7 – 98 pg. 41 
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ASCE 7 – 98 pg. 43 
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ASCE 7 – 98 pg. 42 
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Importance factor ASCE 7 – 98 pg. 55 
 

 
 
wind directionality factor asce 7 – 98 pg.  
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velocity pressure exposure coefficient 
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internal pressure coefficient for buildings 
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Chapter 2. Design of Beams – Flexure and Shear 

2.1 Section force-deformation response & Plastic Moment (Mp) 

• A beam is a structural member that is subjected primarily to transverse loads and negligible 

axial loads.  

• The transverse loads cause internal shear forces and bending moments in the beams as shown 

in Figure 1 below.   

w P

V(x)

M(x)

x

w P

V(x)

M(x)

x

 
Figure 1. Internal shear force and bending moment diagrams for transversely loaded beams. 

 
• These internal shear forces and bending moments cause longitudinal axial stresses and shear 

stresses in the cross-section as shown in the Figure 2 below. 

V(x)
M(x)

yd

b
ε

ε σ

σ

dF = σ b dy

V(x)
M(x)

yd

b
ε

ε σ

σ

dF = σ b dy

 
Curvature = φ = 2ε/d      (Planes remain plane)∫ σ=

+

−

2/d

2/d
dybF ydybM

2/d

2/d
∫ σ=

+

−
 

Figure 2. Longitudinal axial stresses caused by internal bending moment. 
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• Steel material follows a typical stress-strain behavior as shown in Figure 3 below.  

σy

εy εu

σu

σ

ε

σy

εy εu

σu

σ

ε  
Figure 3. Typical steel stress-strain behavior. 

 
• If the steel stress-strain curve is approximated as a bilinear elasto-plastic curve with yield 

stress equal to σy, then the section Moment - Curvature (M-φ) response for monotonically 

increasing moment is given by Figure 4.  

My

Mp

A: Extreme fiber reaches εy B: Extreme fiber reaches 2εy C: Extreme fiber reaches 5εy
D: Extreme fiber reaches 10εy      E: Extreme fiber reaches infinite strain

A
B C ED

Curvature, φ

Se
ct

io
n 

M
om

en
t, 

M

σy

σy

σy

σy

εy

εy

σy

σy

σy

σy

σy

σy

2εy

2εy

5εy

5εy

10εy

10εy

A B                 C D E

My

Mp

A: Extreme fiber reaches εy B: Extreme fiber reaches 2εy C: Extreme fiber reaches 5εy
D: Extreme fiber reaches 10εy      E: Extreme fiber reaches infinite strain

A
B C ED

Curvature, φ

Se
ct

io
n 

M
om

en
t, 

M

σy

σy

σy

σy

εy

εy

σy

σy

σy

σy

σy

σy

2εy

2εy

5εy

5εy

10εy

10εy

A B                 C D E

σy

σy

σy

σy

σy

σy

σy

σy

εy

εy

εy

εy

σy

σy

σy

σy

σy

σy

σy

σy

σy

σy

σy

σy

2εy

2εy

2εy

2εy

5εy

5εy

5εy

5εy

10εy

10εy

10εy

10εy

A B                 C D E

 

Figure 4. Section Moment - Curvature (M-φ) behavior. 
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• In Figure 4, My is the moment corresponding to first yield and Mp is the plastic moment 

capacity of the cross-section.  

- The ratio of Mp to My is called as the shape factor f for the section.  

- For a rectangular section, f is equal to 1.5. For a wide-flange section, f is equal to 1.1. 

• Calculation of Mp: Cross-section subjected to either +σy or -σy at the plastic limit. See Figure 

5 below. 

Plastic centroid. A1

A2

σy

σy
σyA1

σyA2

y1

y2

Plastic centroid. A1

A2

σy

σy
σyA1

σyA2

y1

y2

 
(a) General cross-section  (b) Stress distribution  (c) Force distribution 

22

11

21y

21

2y1y

Aofcentroidy
Aofcentroidy,Where

)yy(
2
AM

2/AAA

0AAF

=
=

+×σ=∴

==∴

=σ−σ=

22

11

21y

21

2y1y

Aofcentroidy
Aofcentroidy,Where

)yy(
2
AM

2/AAA

0AAF

=
=

+×σ=∴

==∴

=σ−σ=

 
(d) Equations 

Figure 5. Plastic centroid and Mp for general cross-section. 

• The plastic centroid for a general cross-section corresponds to the axis about which the total 

area is equally divided, i.e., A1 = A2 = A/2 

- The plastic centroid is not the same as the elastic centroid or center of gravity (c.g.) of the 

cross-section.  
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- As shown below, the c.g. is defined as the axis about which A1y1 = A2y2. 

c.g. = elastic N.A.
A1, y1

A2, y2

About the c.g. A1y1 = A2y2

y1

y2
c.g. = elastic N.A.

A1, y1

A2, y2

About the c.g. A1y1 = A2y2

y1

y2

 
 

• For a cross-section with at-least one axis of symmetry, the neutral axis corresponds to the 

centroidal axis in the elastic range. However, at Mp, the neutral axis will correspond to 

the plastic centroidal axis.  

• For a doubly symmetric cross-section, the elastic and the plastic centroid lie at the same 

point.  

• Mp = σy x A/2 x (y1+y2) 

• As shown in Figure 5, y1 and y2 are the distance from the plastic centroid to the centroid of 

area A1 and A2, respectively. 

• A/2 x (y1+y2) is called Z, the plastic section modulus of the cross-section. Values for Z are 

tabulated for various cross-sections in the properties section of the LRFD manual. 

• φ Mp = 0.90 Z Fy       - See Spec. F1.1 

where, 

Mp = plastic moment, which must be ≤ 1.5 My for homogenous cross-sections 
 
My = moment corresponding to onset of yielding at the extreme fiber from an elastic stress 

distribution = Fy S for homogenous cross-sections and = Fyf S for hybrid sections. 

Z = plastic section modulus from the Properties section of the AISC manual. 

S = elastic section modulus, also from the Properties section of the AISC manual. 
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Example 2.1 Determine the elastic section modulus, S, plastic section modulus, Z, yield 

moment, My, and the plastic moment Mp, of the cross-section shown below. What is the design 

moment for the beam cross-section. Assume 50 ksi steel. 

12 in.

16 in.

15 in.

0.75 in.

1.0 in.

F1

W

F2

tw = 0.5 in.

12 in.

16 in.

15 in.

0.75 in.

1.0 in.

F1

W

F2

12 in.

16 in.

15 in.

0.75 in.

1.0 in.

F1

W

F2

tw = 0.5 in.

 
 

• Ag = 12 x 0.75 + (16 - 0.75 - 1.0) x 0.5 + 15 x 1.0 = 31.125 in2 

Af1 = 12 x 0.75 = 9 in2 

Af2 = 15 x 1.0 = 15.0 in2 

Aw = 0.5 x (16 - 0.75 - 1.0) = 7.125 in2 

 
• distance of elastic centroid from bottom = y  

.in619.6
125.31

5.015125.8125.7)2/75.016(9y =
×+×+−×

=  

Ix = 12×0.753/12 + 9.0×9.0062 + 0.5×14.253/12 + 7.125×1.5062 + 15.0×13/12 +  

          15 6.119× 2 = 1430 in4 

 Sx = Ix / (16-6.619) = 152.43 in3 

 My-x = Fy Sx = 7621.8 kip-in. = 635.15 kip-ft. 

 
• distance of plastic centroid from bottom = py  

.in125.2y

5625.15
2
125.31)0.1y(5.00.10.15

p

p

=∴

==−×+×∴
 

 5



CE 405: Design of Steel Structures – Prof. Dr. A. Varma 

y1=centroid of top half-area about plastic centroid = 5746.10
5625.15

5625.65625.65.139
=

×+× in. 

y2=centroid of bottom half-area about plas. cent. = 5866.1
5625.15

625.10.155625.05625.0
=

×+×  in. 

Zx = A/2 x (y1 + y2) = 15.5625 x (10.5746 + 1.5866) = 189.26 in3 

Mp-x = Zx Fy = 189.26 x 50 = 9462.93 kip-in. = 788.58 kip-ft. 

 
• Design strength according to AISC Spec. F1.1= φbMp= 0.9 x 788.58 = 709.72 kip-ft. 
 
• Check = Mp ≤ 1.5 My 
 

Therefore, 788.58 kip-ft. < 1.5 x 635.15 = 949.725 kip-ft.  - OK! 
 

 
• Reading Assignment 
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2.2 Flexural Deflection of Beams – Serviceability 

� Steel beams are designed for the factored design loads. The moment capacity, i.e., the 

factored moment strength (φbMn) should be greater than the moment (Mu) caused by the 

factored loads.  

� A serviceable structure is one that performs satisfactorily, not causing discomfort or 

perceptions of unsafety for the occupants or users of the structure.  

- For a beam, being serviceable usually means that the deformations, primarily the vertical 

slag, or deflection, must be limited.  

- The maximum deflection of the designed beam is checked at the service-level loads. The 

deflection due to service-level loads must be less than the specified values.  

� The AISC Specification gives little guidance other than a statement in Chapter L, 

“Serviceability Design Considerations,” that deflections should be checked. Appropriate 

limits for deflection can be found from the governing building code for the region.  

� The following values of deflection are typical maximum allowable total (service dead load 

plus service live load) deflections. 

− Plastered floor construction – L/360 

− Unplastered floor construction – L/240 

− Unplastered roof construction – L/180 

• In the following examples, we will assume that local buckling and lateral-torsional buckling 

are not controlling limit states, i.e, the beam section is compact and laterally supported along 

the length. 
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Example 2.2 Design a simply supported beam subjected to uniformly distributed dead 

load of 450 lbs/ft. and a uniformly distributed live load of 550 lbs/ft. The dead load does 

not include the self-weight of the beam.  

• Step I. Calculate the factored design loads (without self-weight). 

wU = 1.2 wD + 1.6 wL = 1.42 kips / ft. 

MU = wu L2 / 8 = 1.42 x 302 / 8 = 159.75 kip-ft. 

� Step II. Select the lightest section from the AISC Manual design tables. 

From page                          of the AISC manual, select W16 x 26 made from 50 ksi steel with 

φbMp = 166.0 kip-ft.  

� Step III. Add self-weight of designed section and check design 

wsw = 26 lbs/ft 

Therefore, wD = 476 lbs/ft = 0.476 lbs/ft. 

wu = 1.2 x 0.476 + 1.6 x 0.55 = 1.4512 kips/ft. 

Therefore, Mu = 1.4512 x 302 / 8 = 163.26 kip-ft. < φbMp of W16 x 26. 

OK! 

� Step IV. Check deflection at service loads. 

w = 0.45 + 0.026 + 0.55 kips/ft. = 1.026 kips/ft. 

∆ = 5 w L4 / (384 E Ix)  = 5 x (1.026/12) x (30 x 12)4 / (384 x 29000 x 301)  

∆ = 2.142 in. > L/360    - for plastered floor construction 

� Step V.  Redesign with service-load deflection as design criteria 

L /360 = 1.0 in. > 5 w L4/(384 E Ix) 

Therefore, Ix > 644.8 in4 
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Select the section from the moment of inertia selection tables in the AISC manual. See page                           

– select W21 x 44. 

W21 x 44 with Ix = 843 in4 and φbMp = 358 kip-ft. (50 ksi steel). 

Deflection at service load = ∆ = 0.765 in. < L/360   - OK! 

Note that the serviceability design criteria controlled the design and the section 
 
Example 2.3 Design the beam shown below. The unfactored dead and live loads are shown in 

the Figure. 

 

0.67 k/ft. (dead load)
10 kips (live load)

30 ft.

15 ft.

0.75 k/ft. (live load)

 
 
• Step I. Calculate the factored design loads (without self-weight). 
 

wu = 1.2 wD + 1.6 wL = 1.2 x 0.67 + 1.6 x 0.75 = 2.004 kips / ft. 
 
Pu = 1.2 PD + 1.6 PL = 1.2 x 0 + 1.6 x 10 = 16.0 kips 
 
Mu = wU L2 / 8 + PU L / 4 = 225.45 + 120 = 345.45 kip-ft. 

 
� Step II. Select the lightest section from the AISC Manual design tables.  

 
From page ____________ of the AISC manual, select W21 x 44 made from 50 ksi steel with 

φbMp = 358.0 kip-ft.  

Self-weight = wsw = 44 lb/ft. 
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• Step III. Add self-weight of designed section and check design 

wD = 0.67 + 0.044 = 0.714 kips/ft 

wu = 1.2 x 0.714 + 1.6 x 0.75 = 2.0568 kips/ft. 

Therefore, Mu = 2.0568 x 302 / 8 + 120 = 351.39 kip-ft. < φbMp of W21 x 44. 

OK! 
 

� Step IV. Check deflection at service loads. 

Service loads 

− Distributed load = w = 0.714 + 0.75 = 1.464 kips/ft. 

− Concentrated load = P = D + L = 0 + 10 kips = 10 kips  

Deflection due to uniform distributed load = ∆d = 5 w L4 / (384 EI)  

Deflection due to concentrated load = ∆c = P L3 / (48 EI) 

Therefore, service-load deflection = ∆ = ∆d + ∆c 

∆ = 5 x 1.464 x 3604 / (384 x 29000 x 12 x 843) + 10 x 3603 / (48 x 29000 x 843) 

∆ = 1.0914 + 0.3976 = 1.49 in. 

Assuming unplastered floor construction, ∆max = L/240 = 360/240 = 1.5 in. 

Therefore, ∆ < ∆max     - OK! 
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2.3 Local buckling of beam section – Compact and Non-compact 

• Mp, the plastic moment capacity for the steel shape, is calculated by assuming a plastic stress 

distribution (+ or - σy) over the cross-section. 

• The development of a plastic stress distribution over the cross-section can be hindered by two 

different length effects:  

(1) Local buckling of the individual plates (flanges and webs) of the cross-section before  

they develop the compressive yield stress σy.  

(2) Lateral-torsional buckling of the unsupported length of the beam / member before  

the cross-section develops the plastic moment Mp. 

M

M

M

M

 
 

Figure 7. Local buckling of flange due to compressive stress (σ) 
 

• The analytical equations for local buckling of steel plates with various edge conditions and 

the results from experimental investigations have been used to develop limiting slenderness 

ratios for the individual plate elements of the cross-sections.  

• See Spec. B5 (page 16.1 – 12), Table B5.1 (16.1-13) and Page 16.1-183 of the AISC-manual 

• Steel sections are classified as compact, non-compact, or slender depending upon the 

slenderness (λ) ratio of the individual plates of the cross-section.  
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- Compact section if all elements of cross-section have λ ≤ λp  

- Non-compact sections if any one element of the cross-section has λp ≤ λ ≤ λr 

- Slender section if any element of the cross-section has λr ≤ λ 

• It is important to note that: 

- If λ ≤ λp, then the individual plate element can develop and sustain σy for large values of 

ε before local buckling occurs.  

- If λp ≤ λ ≤ λr, then the individual plate element can develop σy but cannot sustain it 

before local buckling occurs. 

- If λr ≤ λ, then elastic local buckling of the individual plate element occurs.  

Compact
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Figure 8. Stress-strain response of plates subjected to axial compression and local buckling. 

• Thus, slender sections cannot develop Mp due to elastic local buckling. Non-compact 

sections can develop My but not Mp before local buckling occurs. Only compact sections can 

develop the plastic moment Mp.  

• All rolled wide-flange shapes are compact with the following exceptions, which are non-

compact. 
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- W40x174, W14x99, W14x90, W12x65, W10x12, W8x10, W6x15 (made from A992) 

• The definition of λ and the values for λp and λr for the individual elements of various cross-

sections are given in Table B5.1 and shown graphically on page 16.1-183. For example,  

 
Section Plate element λ λp λr 

Flange bf/2tf 0.38 yF/E  0.38 LF/E  Wide-flange 

Web h/tw 3.76 yF/E  5.70 yF/E  

Flange bf/tf 0.38 yF/E  0.38 LF/E  Channel 

Web h/tw 3.76 yF/E  5.70 yF/E  

Flange (b-3t)/t 1.12 yF/E  1.40 yF/E  Square or Rect. 
Box 

Web (b-3t)/t 3.76 yF/E  5.70 yF/E  

 

In CE405 we will design all beam sections to be compact from a local buckling standpoint 
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2.4 Lateral-Torsional Buckling 

• The laterally unsupported length of a beam-member can undergo lateral-torsional buckling 

due to the applied flexural loading (bending moment).  

 

M

M

M

M

(a)

(b)

M

M

M

M

M

M

M

M

(a)

(b)

 
 

Figure 9. Lateral-torsional buckling of a wide-flange beam subjected to constant moment. 
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• Lateral-torsional buckling is fundamentally similar to the flexural buckling or flexural-

torsional buckling of a column subjected to axial loading.  

- The similarity is that it is also a bifurcation-buckling type phenomenon.  

- The differences are that lateral-torsional buckling is caused by flexural loading (M), and 

the buckling deformations are coupled in the lateral and torsional directions.  

 
• There is one very important difference. For a column, the axial load causing buckling 

remains constant along the length. But, for a beam, usually the lateral-torsional buckling 

causing bending moment M(x) varies along the unbraced length.  

- The worst situation is for beams subjected to uniform bending moment along the 

unbraced length. Why? 

 
2.4.1 Lateral-torsional buckling – Uniform bending moment 
 
• Consider a beam that is simply-supported at the ends and subjected to four-point loading as 

shown below. The beam center-span is subjected to uniform bending moment M. Assume 

that lateral supports are provided at the load points.  

 

Lb

PP

 
 
• Laterally unsupported length = Lb.  

• If the laterally unbraced length Lb is less than or equal to a plastic length Lp then lateral 

torsional buckling is not a problem and the beam will develop its plastic strength Mp. 

• Lp = 1.76 ry x yFE /    - for I members & channels (See Pg. 16.1-33) 
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• If Lb is greater than Lp then lateral torsional buckling will occur and the moment capacity of 

the beam will be reduced below the plastic strength Mp as shown in Figure 10 below.  
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Figure 10. Moment capacity (Mn) versus unsupported length (Lb). 

 
• As shown in Figure 10 above, the lateral-torsional buckling moment (Mn = Mcr) is a function 

of the laterally unbraced length Lb and can be calculated using the equation:  

Mn = Mcr = wy

2

b
y

b
CI

L
EJGIE

L
××







 ×π
+×××

π  

where,  Mn = moment capacity 

Lb = laterally unsupported length.  

  Mcr = critical lateral-torsional buckling moment. 

  E = 29000 ksi;  G = 11,200 ksi 

  Iy = moment of inertia about minor or y-axis (in4) 

  J = torsional constant (in4) from the AISC manual pages _______________. 

  Cw = warping constant (in6) from the AISC manual pages _______________. 
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• This equation is valid for ELASTIC lateral torsional buckling only (like the Euler equation). 

That is it will work only as long as the cross-section is elastic and no portion of the cross-

section has yielded.  

• As soon as any portion of the cross-section reaches the yield stress Fy, the elastic lateral 

torsional buckling equation cannot be used.  

- Lr is the unbraced length that corresponds to a lateral-torsional buckling moment  

Mr = Sx (Fy –10).  

- Mr will cause yielding of the cross-section due to residual stresses.  

When the unbraced length is less than Lr, then the elastic lateral torsional buckling equation 

cannot be used. 

• 

• When the unbraced length (Lb) is less than Lr but more than the plastic length Lp, then the 

lateral-torsional buckling Mn is given by the equation below:   

- If Lp ≤ Lb ≤ Lr,  then 






















−

−
−−=

pr

pb
rppn LL

LL
MMMM )(  

- This is linear interpolation between (Lp, Mp) and (Lr, Mr) 

- See Figure 10 again. 
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2.4.2 Moment Capacity of beams subjected to non-uniform bending moments 

• As mentioned previously, the case with uniform bending moment is worst for lateral 

torsional buckling.  

• For cases with non-uniform bending moment, the lateral torsional buckling moment is 

greater than that for the case with uniform moment.  

• The AISC specification says that: 

- The lateral torsional buckling moment for non-uniform bending moment case 

= Cb x lateral torsional buckling moment for uniform moment case. 

• Cb is always greater than 1.0 for non-uniform bending moment.  

- Cb is equal to 1.0 for uniform bending moment.  

- Sometimes, if you cannot calculate or figure out Cb, then it can be conservatively 

assumed as 1.0. 

cBAmax

max
b M3M4M3M5.2

M5.12
C

+++
=  • 

where,  Mmax = magnitude of maximum bending moment in Lb 

 MA = magnitude of bending moment at quarter point of Lb 

 MB = magnitude of bending moment at half point of Lb 

 MC = magnitude of bending moment at three-quarter point of Lb 

• The moment capacity Mn for the case of non-uniform bending moment 

- Mn = Cb x {Mn for the case of uniform bending moment} ≤ Mp 
 

- Important to note that the increased moment capacity for the non-uniform moment case 

cannot possibly be more than Mp.  

- Therefore, if the calculated values is greater than Mp, then you have to reduce it to Mp 
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Figure 11. Moment capacity versus Lb for non-uniform moment case. 

2.5 Beam Design  

Example 2.4 
Design the beam shown below. The unfactored uniformly distributed live load is equal to 3 

kips/ft. There is no dead load. Lateral support is provided at the end reactions.  

24 ft.

wL = 3 kips/ft.

Lateral support / bracing  

Step I. Calculate the factored loads assuming a reasonable self-weight. 

Assume self-weight = wsw = 100 lbs/ft. 

Dead load = wD = 0 + 0.1 = 0.1 kips/ft. 

Live load = wL = 3.0 kips/ft. 

Ultimate load = wu = 1.2 wD + 1.6 wL = 4.92 kips/ft. 

Factored ultimate moment = Mu = wu L2/8 = 354.24 kip-ft. 
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Step II. Determine unsupported length Lb and Cb 

There is only one unsupported span with Lb = 24 ft. 

Cb = 1.14 for the parabolic bending moment diagram, See values of Cb shown in Figure.  

Step III. Select a wide-flange shape 

The moment capacity of the selected section φbMn > Mu   (Note φb = 0.9) 

φbMn = moment capacity = Cb x (φbMn for the case with uniform moment) ≤ φbMp 

- Pages _________________ in the AISC-LRFD manual, show the plots of φbMn-Lb for 

the case of uniform bending moment (Cb=1.0)  

- Therefore, in order to select a section, calculate Mu/Cb and use it with Lb to find the first 

section with a solid line as shown in class.  

- Mu/Cb = 354.24/1.14 = 310.74 kip-ft. 

- Select W16 x 67 (50 ksi steel) with φbMn =357 kip-ft. for Lb = 24 ft. and Cb =1.0 

- For the case with Cb = 1.14,  

φbMn = 1.14 x 357 = 406.7 kip-ft., which must be ≤ φbMp = 491 kip-ft.   

 OK! 

• Thus, W16 x 67 made from 50 ksi steel with moment capacity equal to 406.7 kip-ft. for an 

unsupported length of 24 ft. is the designed section. 

Step IV. Check for local buckling. 

λ = bf / 2tf = 7.7;  Corresponding λp = 0.38 (E/Fy)0.5 = 9.192 

Therefore, λ < λp   - compact flange 

λ = h/tw = 34.4; Corresponding λp = 3.76 (E/Fy)0.5 = 90.5 

Therefore, λ < λp  - compact web 

Compact section.      - OK! 

• This example demonstrates the method for designing beams and accounting for Cb > 1.0 
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Example 2.5 
Design the beam shown below. The concentrated live loads acting on the beam are shown in the 

Figure. The beam is laterally supported at the load and reaction points.  

30 ft.

wsw = 0.1 kips/ft.

Lateral support / bracing

12 ft. 8 ft. 10 ft.

30 kips 30 kips

 

Step I. Assume a self-weight and determine the factored design loads 

Let, wsw = 100 lbs/ft. = 0.1 kips/ft. 

 PL = 30 kips 

 Pu = 1.6 PL = 48 kips 

 wu = 1.2 x wsw = 0.12 kips/ft. 

 The reactions and bending moment diagram for the beam are shown below. 

wsw = 0.12 kips/ft.

12 ft. 8 ft. 10 ft.

48 kips 48 kips

46.6 kips 53 kips

550.6 kip-ft. 524 kip-ft.

A
B C

D

A B C D

 
 
Step II. Determine Lb, Cb, Mu, and Mu/Cb for all spans. 
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Span Lb 

(ft.) 
Cb Mu 

(kip-ft.) 
Mu/Cb 

(kip-ft.) 
AB 12 1.67 550.6 329.7 

BC 8 1.0 
(assume) 

550.6 550.6 

CD 10 1.67 524.0 313.8 

 
It is important to note that it is possible to have different Lb and Cb values for different 

laterally unsupported spans of the same beam. 

 
Step III. Design the beam and check all laterally unsupported spans 

Assume that span BC is the controlling span because it has the largest Mu/Cb although the 

corresponding Lb is the smallest. 

From the AISC-LRFD manual select W21 x 68 made from 50 ksi steel (page _____) 
 
Check the selected section for spans AB, BC, and CD 

 
Span Lb 

(ft.) 
φbMn  

for Cb = 1.0 
from ______ 

 
Cb 

φbMn  
for Cb value 
col. 3 x col. 4 

φbMp 
 

limit 
AB 12 507 1.67 846.7 600 kip-ft 

BC 8 572 1.0 572.0  

CD 10 540 1.67 901.8 600 kip-ft. 

 
Thus,  for span AB, φbMn = 600 kip-ft. > Mu   - OK! 

 for span BC, φbMn = 572.0 kip-ft. > Mu   -OK! 

 For span CD, φbMn = 600 kip-ft. > Mu   -OK! 
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Step IV. Check for local buckling 

λ = bf / 2tf = 6.0;  Corresponding λp = 0.38 (E/Fy)0.5 = 9.192 

Therefore, λ < λp   - compact flange 

λ = h/tw = 43.6; Corresponding λp = 3.76 (E/Fy)0.5 = 90.55 

Therefore, λ < λp  - compact web 

Compact section.      - OK! 
 
This example demonstrates the method for designing beams with several laterally unsupported 

spans with different Lb and Cb values. 

 
Example 2.6 
 
Design the simply-supported beam shown below. The uniformly distributed dead load is equal to 

1 kips/ft. and the uniformly distributed live load is equal to 2 kips/ft. A concentrated live load 

equal to 10 kips acts at the mid-span. Lateral supports are provided at the end reactions and at 

the mid-span. 

 

wD = 1.0 kips/ft.

12 ft. 12 ft.

10 kips

A
B

C

wL = 2.0 kips/ft.

 
 
Step I. Assume the self-weight and calculate the factored design loads. 

Let, wsw = 100 lbs/ft. = 0.1 kips/ft. 

wD = 1+ 0.1 = 1.1 kips/ft.     

wL = 2.0 kips/ft. 

wu = 1.2 wD + 1.6 wL = 4.52 kips/ft. 

Pu = 1.6 x 10 = 16.0 kips 

 23



CE 405: Design of Steel Structures – Prof. Dr. A. Varma 

 
The reactions and the bending moment diagram for the factored loads are shown below. 

62.24 kips 62.24 kips

wu = 4.52 kips/ft.

12 ft. 12 ft.

16 kips

B

x M(x) = 62.24 x - 4.52 x2/2  

Step II. Calculate Lb and Cb for the laterally unsupported spans. 

Since this is a symmetric problem, need to consider only span AB 

Lb = 12 ft.; 
cBAmax

max
b M3M4M3M5.2

M5.12C
+++

=  

M(x) = 62.24 x – 4.52 x2/2 

Therefore, 

MA = M(x = 3 ft.) = 166.38 kip-ft.     - quarter-point along Lb = 12 ft. 

MB = M(x = 6 ft.) = 292.08 kip-ft.  - half-point along Lb = 12 ft. 

MC = M(x = 9ft.) = 377.1 kip-ft          -three-quarter point along Lb= 12 ft. 

Mmax = M(x = 12 ft.) = 421.44 kip-ft.          - maximum moment along Lb =12ft. 

 Therefore, Cb = 1.37 
 
Step III. Design the beam section 

 Mu = Mmax = 421.44 kip-ft. 

 Lb = 12.0 ft.; Cb = 1.37 

 Mu/Cb = 421.44/1.37 = 307.62 kip-ft. 

- Select W21 x 48 made from 50 ksi with φbMn = 322 kip-ft. for Lb = 12.0 ft. and Cb =1.0 

- For Cb = 1.37, φbMn = _441.44 k-ft., but must be < or = φbMp = 398 k-ft. 
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- Therefore, for Cb =1.37, φbMn = 398 k-ft. < Mu 

 
Step IV. Redesign the section 

- Select the next section with greater capacity than W21 x 48 

- Select W18 x 55 with φbMn = 345 k-ft. for Lb = 12 ft. and Cb = 1.0 

For Cb = 1.37, φbMn = 345 x 1.37 = 472.65 k-ft. but must be ≤ φbMp = 420 k-ft.  

Therefore, for Cb = 1.37, φbMn = 420 k-ft., which is < Mu (421.44 k-ft), (NOT OK!) 

- Select W 21 x 55 with φbMn = 388 k-ft. for Lb = 12 ft. and Cb = 1.0 

For Cb 1.37,  φbMn = 388 x 1.37 = 531.56 k-ft., but must be ≤ φbMp = 473 k-ft. 

Therefore, for Cb = 1.37, φbMn = 473 k-ft, which is > Mu (421.44 k-ft). (OK!) 

Step V. Check for local buckling. 

λ = bf / 2tf = 7.87;  Corresponding λp = 0.38 (E/Fy)0.5 = 9.192 

Therefore, λ < λp   - compact flange 

λ = h/tw = 50.0; Corresponding λp = 3.76 (E/Fy)0.5 = 90.55 

Therefore, λ < λp  - compact web 

Compact section.      - OK! 

 

This example demonstrates the calculation of Cb and the iterative design method.  
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CHAPTER 3. COMPRESSION MEMBER DESIGN 

 
3.1 INTRODUCTORY CONCEPTS 

Compression Members:  Structural elements that are subjected to axial compressive forces 

only are called columns. Columns are subjected to axial loads thru the centroid.  

• 

Stress: The stress in the column cross-section can be calculated as  • 

A
P

=f       (2.1) 

where, f is assumed to be uniform over the entire cross-section.  

This ideal state is never reached. The stress-state will be non-uniform due to: • 

• 

• 

- Accidental eccentricity of loading with respect to the centroid 

- Member out-of –straightness (crookedness), or 

- Residual stresses in the member cross-section due to fabrication processes. 

Accidental eccentricity and member out-of-straightness can cause bending moments in the 

member. However, these are secondary and are usually ignored. 

Bending moments cannot be neglected if they are acting on the member. Members with axial 

compression and bending moment are called beam-columns. 

 

3.2 COLUMN BUCKLING 

• Consider a long slender compression member. If an axial load P is applied and increased 

slowly, it will ultimately reach a value Pcr that will cause buckling of the column. Pcr is called 

the critical buckling load of the column. 
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Pcr

Pcr

P

P

(a) (b)Pcr

Pcr

P

P

P

P

(a) (b)

What is buckling? 

Buckling occurs when a straight column 

subjected to axial compression suddenly 

undergoes bending as shown in the Figure 1(b). 

Buckling is identified as a failure limit-state for 

columns.  

 

 

Figure 1. Buckling of axially loaded compression members 

 
• The critical buckling load Pcr for columns is theoretically given by Equation (3.1) 

Pcr = 
( )2

2

LK
IEπ      (3.1) 

where, I = moment of inertia about axis of buckling 

      K = effective length factor based on end boundary conditions 

• Effective length factors are given on page 16.1-189 of the AISC manual. 
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• In examples, homeworks, and exams please state clearly whether you are using the 

theoretical value of K or the recommended design values. 
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EXAMPLE 3.1 Determine the buckling strength of a W 12 x 50 column. Its length is 20 ft. For 

major axis buckling, it is pinned at both ends. For minor buckling, is it pinned at one end and 

fixed at the other end. 

Solution 

Step I. Visualize the problem 

    

 

 

x

y

 

 

 

 

 

 

Figure 2. (a) Cross-section; (b) major-axis buckling; (c) minor-axis buckling 

• For the W12 x 50 (or any wide flange section), x is the major axis and y is the minor axis. 

Major axis means axis about which it has greater moment of inertia (Ix > Iy) 

               

Figure 3. (a) Major axis buckling; (b) minor axis buckling 
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Step II. Determine the effective lengths 

• According to Table C-C2.1 of the AISC Manual (see page 16.1 - 189): 

- For pin-pin end conditions about the minor axis  

Ky = 1.0 (theoretical value); and Ky = 1.0 (recommended design value) 

- For pin-fix end conditions about the major axis 

Kx = 0.7 (theoretical value); and Kx = 0.8 (recommended design value) 

• According to the problem statement, the unsupported length for buckling about the major (x) 

axis = Lx = 20 ft. 

• The unsupported length for buckling about the minor (y) axis = Ly = 20 ft.  

• Effective length for major (x) axis buckling = Kx Lx = 0.8 x 20 = 16 ft. = 192 in.  

• Effective length for minor (y) axis buckling = Ky Ly = 1.0 x 20 = 20 ft. = 240 in. 

Step III. Determine the relevant section properties 

• For W12 x 50: elastic modulus = E = 29000 ksi (constant for all steels) 

• For W12 x 50:  Ix = 391 in4.  Iy = 56.3 in4  (see page 1-21 of the AISC manual) 

Step IV. Calculate the buckling strength 

• Critical load for buckling about x - axis = Pcr-x = 
( )2

2

xx

x

LK
IEπ

 = 
( )2

2

192
39129000××π  

Pcr-x = 3035.8 kips 

• Critical load for buckling about y-axis = Pcr-y = ( )2

2

yy

y

LK

IEπ
=

( )2

2

240
3.5629000××π  

Pcr-y = 279.8 kips 

• Buckling strength of the column = smaller (Pcr-x, Pcr-y) = Pcr = 279.8 kips  

Minor (y) axis buckling governs.  
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• Notes: 

- Minor axis buckling usually governs for all doubly symmetric cross-sections. However, for 

some cases, major (x) axis buckling can govern. 

- Note that the steel yield stress was irrelevant for calculating this buckling strength. 

 
3.3 INELASTIC COLUMN BUCKLING 
 
• Let us consider the previous example. According to our calculations Pcr = 279.8 kips. This Pcr 

will cause a uniform stress f = Pcr/A in the cross-section 

• For W12 x 50, A = 14.6 in2. Therefore, for Pcr = 279.8 kips; f = 19.16 ksi 

The calculated value of f is within the elastic range for a 50 ksi yield stress material. 

• However, if the unsupported length was only 10 ft., Pcr = ( )2

2

yy

y

LK

IEπ
would be calculated as 

1119 kips, and f = 76.6 kips.  

• This value of f is ridiculous because the material will yield at 50 ksi and never develop f = 

76.6 kips. The member would yield before buckling.  

• Equation (3.1) is valid only when the material everywhere in the cross-section is in the 

elastic region. If the material goes inelastic then Equation (3.1) becomes useless and 

cannot be used. 

• What happens in the inelastic range? 

Several other problems appear in the inelastic range.  

- The member out-of-straightness has a significant influence on the buckling strength in 

the inelastic region. It must be accounted for. 
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- The residual stresses in the member due to the fabrication process causes yielding in the 

cross-section much before the uniform stress f reaches the yield stress Fy.  

- The shape of the cross-section (W, C, etc.) also influences the buckling strength.  

- In the inelastic range, the steel material can undergo strain hardening. 

 
All of these are very advanced concepts and beyond the scope of CE405. You are welcome 

to CE805 to develop a better understanding of these issues.  

 
• So, what should we do? We will directly look at the AISC Specifications for the strength of 

compression members, i.e., Chapter E (page 16.1-27 of the AISC manual). 

 

3.4 AISC SPECIFICATIONS FOR COLUMN STRENGTH 

• The AISC specifications for column design are based on several years of research.  

• These specifications account for the elastic and inelastic buckling of columns including all 

issues (member crookedness, residual stresses, accidental eccentricity etc.) mentioned above. 

• The specification presented here (AISC Spec E2) will work for all doubly symmetric cross-

sections and channel sections. 

• The design strength of columns for the flexural buckling limit state is equal to φcPn 

Where,  φc = 0.85  (Resistance factor for compression members) 

   Pn = Ag Fcr        (3.2) 

- For λc ≤ 1.5   Fcr = ( )2
c658.0 λ  Fy      (3.3) 

- For λc > 1.5    Fcr = 












λ2
c

877.0 Fy    (3.4) 

Where, λc = 
E
F

r
LK y

π
        (3.5) 
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 Ag = gross member area;   K = effective length factor 

 L = unbraced length of the member;   r = governing radius of gyration 

λc = 
E
F

r
LK y

π

Fcr/Fy

1.0

1.5

0.39 Fcr =  Fy











λ2
c

877.0

Fcr = Fy  ( )2
c658.0 λ

λc = 
E
F

r
LK y

π
λc = 

E
F

r
LK y

π

Fcr/Fy

1.0

1.5

0.39 Fcr =  Fy











λ2
c

877.0
Fcr =  Fy












λ2
c

877.0

Fcr = Fy  ( )2
c658.0 λFcr = Fy  ( )2
c658.0 λ

 

Note that the original Euler buckling equation is Pcr = 
( )2

2

LK
IEπ  • 

( ) ( )

2
c

ycr

2
c

2
yy

2

2

y

cr

2

2
2

2

2

g
2

2

g

cr
cr

1FF

1

E
F

r
LK

1

F
r
LK

E
F
F

r
LK
Er

LK
E

A
I

LK
E

A
P

F

λ
×=∴

λ
=














×

π

=

×







π
=∴









π
=×

π
=×

π
==∴

  

• Note that the AISC equation for λc < 1.5  is 2
c

ycr
877.0F
λ

×=F  

- The 0.877 factor tries to account for initial crookedness. 

For a given column section: • 

- Calculate I, Ag, r  

- Determine effective length K L based on end boundary conditions.  

- Calculate λc 

- If λc is greater than 1.5, elastic buckling occurs and use Equation (3.4) 
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- If λc is less than or equal to 1.5, inelastic buckling occurs and use Equation (3.3) 

Note that the column can develop its yield strength Fy as λc approaches zero.  • 

• 

• 

 

3.5 COLUMN STRENGTH  

In order to simplify calculations, the AISC specification includes Tables.  

- Table 3-36 on page 16.1-143 shows KL/r vs. φcFcr for steels with Fy = 36 ksi. 

- You can calculate KL/r for the column, then read the value of φcFcr from this table 

- The column strength will be equal to φcFcr x Ag 

- Table 3-50 on page 16.1-145 shows KL/r vs. φcFcr for steels with Fy = 50 ksi. 

In order to simplify calculations, the AISC specification includes more Tables.  

- Table 4 on page 16.1-147 shows λc vs. φcFcr/Fy for all steels with any Fy. 

- You can calculate λc for the column, the read the value of φcFcr/Fy 

- The column strength will be equal to φcFcr/Fy x (Ag x Fy) 

 

EXAMPLE 3.2 Calculate the design strength of W14 x 74 with length of 20 ft. and pinned ends. 

A36 steel is used. 

Solution 

Step I. Calculate the effective length and slenderness ratio for the problem • 

• 

Kx = Ky = 1.0 

Lx = Ly = 240 in. 

Major axis slenderness ratio = KxLx/rx = 240/6.04 = 39.735 

Minor axis slenderness ratio = KyLy/ry = 240/2.48 = 96.77 

Step II. Calculate the buckling strength for governing slenderness ratio 
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The governing slenderness ratio is the larger of (KxLx/rx, KyLy/ry) 

KyLy/ry is larger and the governing slenderness ratio; λc = 
E
F

r
LK y

y

yy

π
= 1.085 

λc < 1.5; Therefore, Fcr = ( )2
c658.0 λ  Fy  

Therefore, Fcr = 21.99 ksi 

Design column strength = φcPn = 0.85 (Ag Fcr) = 0.85 (21.8 in2 x 21.99 ksi) = 408 kips 

Design strength of column = 408 kips 

• Check calculated values with Table 3-36. For KL/r = 97, φcFcr = 18.7 ksi 

• Check calculated values with Table 4. For λc = 1.08, φcFcr = 0.521 
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3.6 LOCAL BUCKLING LIMIT STATE 

• The AISC specifications for column strength assume that column buckling is the governing 

limit state. However, if the column section is made of thin (slender) plate elements, then 

failure can occur due to local buckling of the flanges or the webs.  

 

Figure 4. Local buckling of columns 

If local buckling of the individual plate elements occurs, then the column may not be able to 

develop its buckling strength.  

• 

• Therefore, the local buckling limit state must be prevented from controlling the column 

strength. 

Local buckling depends on the slenderness (width-to-thickness b/t ratio) of the plate element 

and the yield stress (Fy) of the material.  

• 

• Each plate element must be stocky enough, i.e., have a b/t ratio that prevents local buckling 

from governing the column strength.  
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The AISC specification B5 provides the slenderness (b/t) limits that the individual plate 

elements must satisfy so that local buckling does not control.  

• 

• The AISC specification provides two slenderness limits (λp and λr) for the local buckling of 

plate elements.  
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 Figure 5. Local buckling behavior and classification of plate elements 

- If the slenderness ratio (b/t) of the plate element is greater than λr then it is slender. It will 

locally buckle in the elastic range before reaching Fy 

- If the slenderness ratio (b/t) of the plate element is less than λr but greater than λp, then it 

is non-compact. It will locally buckle immediately after reaching Fy 

- If the slenderness ratio (b/t) of the plate element is less than λp, then the element is 

compact. It will locally buckle much after reaching Fy 

If all the plate elements of a cross-section are compact, then the section is compact. • 

• 

- If any one plate element is non-compact, then the cross-section is non-compact 

- If any one plate element is slender, then the cross-section is slender. 

The slenderness limits λp and λr for various plate elements with different boundary 

conditions are given in Table B5.1 on pages 16.1-14 and 16.1-15 of the AISC Spec. 
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Note that the slenderness limits (λp and λr) and the definition of plate slenderness (b/t) ratio 

depend upon the boundary conditions for the plate.  

• 

- If the plate is supported along two edges parallel to the direction of compression force, 

then it is a stiffened element. For example, the webs of W shapes 

- If the plate is supported along only one edge parallel to the direction of the compression 

force, then it is an unstiffened element. Ex., the flanges of W shapes. 

 

The local buckling limit state can be prevented from controlling the column strength by using 

sections that are non-compact 

• 

- If all the elements of the cross-section have calculated slenderness (b/t) ratio less than λr, 

then the local buckling limit state will not control.  

- For the definitions of b/t, λp, λr for various situations see Table B5.1 and Spec B5.  

 

EXAMPLE 3.3 Determine the local buckling slenderness limits and evaluate the W14 x 74 

section used in Example 3.2. Does local buckling limit the column strength? 

Solution 

Step I. Calculate the slenderness limits • 

See Table B5.1 on page 16.1 – 14.  

- For the flanges of I-shape sections in pure compression 

λr = 0.56 x 
yF

E = 0.56 x 
36

29000  = 15.9 

- For the webs of I-shapes section in pure compression 

λr = 0.56 x 
yF

E = 0.56 x 
36

29000  = 15.9  
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λr = 1.49 x 
yF

E = 1.49 x 
36

29000 = 42.3 

Step II. Calculate the slenderness ratios for the flanges and webs of W14 x 74 • 

• 

- For the flanges of I-shape member, b = bf/2 = flange width / 2   

Therefore, b/t = bf/2tf.     (See pg. 16.1-12 of AISC) 

For W 14 x 74, bf/2tf = 6.41    (See Page 1-19 in AISC) 

- For the webs of I shaped member, b = h 

h is the clear distance between flanges less the fillet / corner radius of each flange 

For W14 x 74, h/tw = 25.4    (See Page 1-19 in AISC) 

Step III. Make the comparisons and comment 

For the flanges, b/t < λr. Therefore, the flange is non-compact 

For the webs, h/tw < λr. Therefore the web is non-compact 

Therefore, the section is compact 

Therefore, local buckling will not limit the column strength.  

 

3.7 COLUMN DESIGN 

The AISC manual has tables for column strength. See page 4-21 onwards.  • 

• For wide flange sections, the column buckling strength (φcPn) is tabulated with respect to the 

effective length about the minor axis KyLy in Table 4-2. 

- The table takes the KyLy value for a section, and internally calculates the KyLy/ry, then λc 

= 
E
F

r
LK y

y

yy

π
; and then the tabulated column strength using either Equation E2-2 or 

E2-3 of the specification. 

 14



CE 405: Design of Steel Structures – Prof. Dr. A. Varma 

If you want to use the Table 4-2 for calculating the column strength for buckling about the 

major axis, then do the following: 

• 

- Take the major axis KxLx value. Calculate an equivalent (KL)eq = 
yx

xx

r/r
LK

 

- Use the calculated (KL)eq value to find (φcPn) the column strength for buckling about the 

major axis from Table (4-2)  

For example, consider a W14 x 74 column with KyLy = 20 ft. and KxLx = 25 ft.  • 

- Material has yield stress = 50 ksi (always in Table 4-2). 

- See Table 4-2, for KyLy = 20 ft., φcPn = 467 kips (minor axis buckling strength) 

- rx/ry for W14x74 = 2.44 from Table 4-2 (see page 4-23 of AISC). 

- For KxLx = 25 ft., (KL)eq = 25/2.44 = 10.25 ft.  

- For (KL)eq = 10.25 ft., φcPn = 774 kips (major axis buckling strength) 

- If calculated value of (KL)eq < KyLy then minor axis buckling will govern. 

 

EXAMPLE 3.4 Determine the design strength of an ASTM A992 W14 x 132 that is part of a 

braced frame. Assume that the physical length L = 30 ft., the ends are pinned and the column is 

braced at the ends only for the X-X axis and braced at the ends and mid-height for the Y-Y axis.  

Solution 

Step I. Calculate the effective lengths. • 

For W14 x 132:  rx = 6.28 in; ry = 3.76 in; Ag =38.8 in2  

Kx = 1.0 and  Ky = 1.0 

Lx = 30 ft. and Ly = 15 ft. 

KxLx = 30 ft.  and  KyLy = 15 ft.  

Step II. Determine the governing slenderness ratio • 
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KxLx/rx = 30 x 12 in./6.28 in.= 57.32 

KyLy/ry = 15 x 12 in./3.76 in. = 47.87 

The larger slenderness ratio, therefore, buckling about the major axis will govern the column 

strength.  

Step III. Calculate the column strength • 

KxLx = 30 ft. Therefore, (KL)eq = 
yx

xx

r/r
LK

 = 
76.3/28.6

30  = 17.96 ft. 

From Table 4-2, for  (KL)eq = 18.0 ft.  φcPn = 1300 kips (design column strength) 

Step IV. Check the local buckling limits • 

For the flanges, bf/2tf = 7.15 <  λr = 0.56 x 
yF

E = 13.5  

For the web, h/tw = 17.7  <  λr = 1.49 x 
yF

E = 35.9 

Therefore, the section is non-compact. OK.  

 

EXAMPLE 3.5 A compression member is subjected to service loads of 165 kips dead load and 

535 kips of live load. The member is 26 ft. long and pinned at each end. Use A992 (50 ksi) steel 

and select a W shape 

Solution 

Calculate the factored design load Pu • 

• 

Pu = 1.2 PD + 1.6 PL = 1.2 x 165 + 1.6 x 535 = 1054 kips 

 
Select a W shape from the AISC manual Tables 

For KyLy = 26 ft. and required strength = 1054 kips  

- Select W14 x 145 from page 4-22. It has φcPn = 1160 kips  
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- Select W12 x 170 from page 4-24. It has φcPn = 1070 kips 

- No no W10 will work. See Page 4-26 

- W14 x 145 is the lightest. 

 
Note that column sections are usually W12 or W14. Usually sections bigger than W14 are 

usually not used as columns.  

• 

 
3.8 EFFECTIVE LENGTH OF COLUMNS IN FRAMES 

So far, we have looked at the buckling strength of individual columns. These columns had 

various boundary conditions at the ends, but they were not connected to other members with 

moment (fix) connections.  

• 

• 

• 

• 

The effective length factor K for the buckling of an individual column can be obtained for the 

appropriate end conditions from Table C-C2.1 of the AISC Manual . 

However, when these individual columns are part of a frame, their ends are connected to 

other members (beams etc.).  

- Their effective length factor K will depend on the restraint offered by the other members 

connected at the ends.  

- Therefore, the effective length factor K will depend on the relative rigidity (stiffness) of 

the members connected at the ends. 

The effective length factor for columns in frames must be calculated as follows: 

First, you have to determine whether the column is part of a braced frame or an unbraced 

(moment resisting) frame.  

- If the column is part of a braced frame then its effective length factor 0 < K ≤ 1 

- If the column is part of an unbraced frame then 1 < K ≤ ∞ 
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Then, you have to determine the relative rigidity factor G for both ends of the column • 

- G is defined as the ratio of the summation of the rigidity (EI/L) of all columns coming 

together at an end to the summation of the rigidity (EI/L) of all beams coming together at 

the same end.  

- G = 
∑

∑

b

b

c

c

L
IE

L
IE

  - It must be calculated for both ends of the column. 

Then, you can determine the effective length factor K for the column using the calculated 

value of G at both ends, i.e., GA and GB and the appropriate alignment chart 

• 

• There are two alignment charts provided by the AISC manual,  

- One is for columns in braced (sidesway inhibited) frames. See Figure C-C2.2a on page 

16.1-191 of the AISC manual. 0 < K ≤ 1 

- The second is for columns in unbraced (sidesway uninhibited) frames. See Figure C-

C2.2b on page 16.1-192 of the AISC manual. 1 < K ≤ ∞ 

- The procedure for calculating G is the same for both cases.  
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EXAMPLE 3.6 Calculate the effective length factor for the W12 x 53 column AB of the frame 

shown below. Assume that the column is oriented in such a way that major axis bending occurs 

in the plane of the frame. Assume that the columns are braced at each story level for out-of-plane 

buckling. Assume that the same column section is used for the stories above and below.  
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Step I. Identify the frame type and calculate Lx, Ly, Kx, and Ky if possible. 

• It is an unbraced (sidesway uninhibited) frame.  

• Lx = Ly = 12 ft. 

• Ky = 1.0 

• Kx depends on boundary conditions, which involve restraints due to beams and columns 

connected to the ends of column AB. 

• Need to calculate Kx using alignment charts. 

 
Step II - Calculate Kx 

• Ixx of W 12 x 53 = 425 in4   Ixx of W14x68 = 753 
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• Using GA and GB: Kx = 1.3    - from Alignment Chart on Page 3-6 

 
Step III – Design strength of the column  

• KyLy = 1.0 x 12 = 12 ft. 

• Kx Lx = 1.3 x 12 = 15.6 ft. 

- rx / ry for W12x53 = 2.11 

- (KL)eq = 15.6 / 2.11 = 7.4 ft. 

• KyLy > (KL)eq  

• 

• 

• 

• Therefore, y-axis buckling governs. Therefore φcPn = 518 kips 

 
3.8.1 Inelastic Stiffness Reduction Factor – Modification 

This concept for calculating the effective length of columns in frames was widely accepted 

for many years.  

Over the past few years, a lot of modifications have been proposed to this method due to its 

several assumptions and limitation. Most of these modifications have not yet been accepted 

in to the AISC provisions.  

One of the accepted modifications is the inelastic stiffness reduction factor. As presented 

earlier, G is a measure of the relative flexural rigidity of the columns (EIc/Lc) with respect to 

the beams (EIb/Lb) 
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- However, if column buckling were to occur in the inelastic range (λc < 1.5), then the 

flexural rigidity of the column will be reduced because Ic will be the moment of inertia of 

only the elastic core of the entire cross-section. See figure below 

σrc = 10 ksi

σrt = 5 ksi

σrt = 5 ksi

σrt = 5 ksi

σrc = 10 ksi

(a) Initial state – residual stress (b) Partially y ielded state at buckling 

Yielded zone

Elastic core, Ic

σrc = 10 ksi

σrt = 5 ksi

σrt = 5 ksi

σrt = 5 ksi

σrc = 10 ksi

σrc = 10 ksi

σrt = 5 ksi

σrt = 5 ksi

σrt = 5 ksi

σrc = 10 ksi

(a) Initial state – residual stress (b) Partially y ielded state at buckling 

Yielded zone

Elastic core, Ic

Yielded zone

Elastic core, Ic

 

- The beams will have greater flexural rigidity when compared with the reduced rigidity 

(EIc) of the inelastic columns. As a result, the beams will be able to restrain the columns 

better, which is good for column design.  

- This effect is incorporated in to the AISC column design method through the use of Table 

4-1 given on page 4-20 of the AISC manual.  

- Table 4-1 gives the stiffness reduction factor (τ) as a function of the yield stress Fy and 

the stress Pu/Ag in the column, where Pu is factored design load (analysis) 
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EXAMPLE 3.7 Calculate the effective length factor for a W10 x 60 column AB made from 50 

ksi steel in the unbraced frame shown below. Column AB has a design factor load Pu = 450 kips. 

The columns are oriented such that major axis bending occurs in the plane of the frame. The 

columns are braced continuously along the length for out-of-plane buckling. Assume that the 

same column section is used for the story above 
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Solution 

Step I. Identify the frame type and calculate Lx, Ly, Kx, and Ky if possible. 

• It is an unbraced (sidesway uninhibited) frame.  

• Ly = 0 ft. 

• Ky has no meaning because out-of-plane buckling is not possible. 

• Kx depends on boundary conditions, which involve restraints due to beams and columns 

connected to the ends of column AB. 

• Need to calculate Kx using alignment charts. 

 
Step II (a)  - Calculate Kx

  

• Ixx of W 14 x 74 = 796 in4    Ixx of W 10 x 60 = 341 in4 
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•      - for pin support, see note on Page 16.1-191 10G B =
 
• Using GA and GB: Kx = 1.8   - from Alignment Chart on Page 16.1-192 

 
• Note, Kx is greater than 1.0 because it is an unbraced frame.  

 
Step II (b) - Calculate Kx– inelastic using stiffness reduction factor method 

• Reduction in the flexural rigidity of the column due to residual stress effects 

- First calculate, Pu / Ag = 450 / 17.6 = 25.57 ksi 

- Then go to Table 4-1 on page 4-20 of the manual, and read the value of stiffness 

reduction factor for Fy = 50 ksi and Pu/Ag = 25.57 ksi. 

- Stiffness reduction factor = τ = 0.833 

• GA-inelastic = τ x GA = 0.833 x 0.609 = 0.507 
 
GB

 = 10    - for pin support, see note on Page 16.1-191 • 
 

• Using GA-inelastic and GB, Kx-inelastic = 1.75   - alignment chart on Page 16.1-192 
 
• Note: You can combine Steps II (a) and (b) to calculate the Kx-inelastic directly. You don’t need 

to calculate elastic Kx first. It was done here for demonstration purposes. 

• Note that Kx-inelastic< Kx. This is in agreement with the fact that the beams offer better 

resistance to the inelastic column AB because it has reduced flexural rigidity. 

 
Step III – Design strength of the column  

• KxLx = 1.75 x 15 = 26.25 ft. 

- rx / ry for W10x60 = 1.71   - from Table 4-2, see page 4-26 

- (KL)eq = 26.25/1.71 = 15.35 ft. 
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• φcPn for X-axis buckling = 513.9 kips   - from Table 4-2, see page 4-26 
 

• Section slightly over-designed for Pu = 450 kips.  
 
Column design strength = φcPn = 513.9 kips 
 
 
EXAMPLE 3.8:  
 
• Design Column AB of the frame shown below for a design load of 500 kips.  
• Assume that the column is oriented in such a way that major axis bending occurs in the plane 

of the frame.  
• Assume that the columns are braced at each story level for out-of-plane buckling. 
• Assume that the same column section is used for the stories above and below.  
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Step I - Determine the design load and assume the steel material. 

• Design Load = Pu = 500 kips 

• Steel yield stress = 50 ksi (A992 material) 

 
Step II. Identify the frame type and calculate Lx, Ly, Kx, and Ky if possible. 

• It is an unbraced (sidesway uninhibited) frame.  
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• Lx = Ly = 12 ft. 

• Ky = 1.0 

• Kx depends on boundary conditions, which involve restraints due to beams and columns 

connected to the ends of column AB. 

• Need to calculate Kx using alignment charts. 

• Need to select a section to calculate Kx 

 
Step III - Select a column section 

• Assume minor axis buckling governs. 

• Ky Ly = 12 ft. 

• See Column Tables in AISC-LRFD manual  

Select section W12x53 

• φcPn for y-axis buckling = 518 kips 

 
Step IV - Calculate Kx-inelastic 

• Ixx of W 12 x 53 =425 in4   Ixx of W14x68 = 753 in4 

• Account for the reduced flexural rigidity of the column due to residual stress effects 

- Pu/Ag = 500 / 15.6 = 32.05 ksi 

- Stiffness reduction factor = τ = 0.58 
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• Using GA and GB: Kx-inelastic = 1.2    - from Alignment Chart 

 

Step V - Check the selected section for X-axis buckling 

• Kx Lx = 1.2 x 12 = 14.4 ft. 

• rx / ry for W12x53 = 2.11 
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• Calculate (KL)eq to determine strength (φcPn) for X-axis buckling  

(KL)eq = 14.4 / 2.11 = 6.825 ft. 

• From the column design tables, φcPn for X-axis buckling = 612.3 kips  

 

Step VI. Check the local buckling limits 

For the flanges, bf/2tf = 8.69 <  λr = 0.56 x 
yF

E = 13.5  

For the web, h/tw = 28.1  <  λr = 1.49 x 
yF

E = 35.9 

 Therefore, the section is non-compact. OK, local buckling is not a problem 

 

Step VII - Summarize the solution 

 

Lx = Ly = 12 ft.    Ky = 1.0   

Kx = 1.2 (inelastic buckling - sway frame-alignment chart method) 

φcPn for Y-axis buckling = 518 kips 

φcPn for X-axis buckling = 612.3 kips 

Y-axis buckling governs the design. 

Selected Section is W12 x 53 made from 50 ksi steel. 

 
 

 26



CE 405: Design of Steel Structures – Prof. Dr. A. Varma 

EXAMPLE 3.9 

• Design Column AB of the frame shown below for a design load of 450 kips.  

• Assume that the column is oriented in such a way that major axis bending occurs in the plane 

of the frame.  

• Assume that the columns are braced continuously along the length for out-of-plane buckling. 

• Assume that the same column section is used for the story above. 
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Step I - Determine the design load and assume the steel material. 

• Design Load = Pu = 450 kips 

• Steel yield stress = 50 ksi 

 

Step II. Identify the frame type and calculate Lx, Ly, Kx, and Ky if possible. 

• It is an unbraced (sidesway uninhibited) frame.  

• Ly = 0 ft. 

• Ky has no meaning because out-of-plane buckling is not possible. 

• Kx depends on boundary conditions, which involve restraints due to beams and columns 

connected to the ends of column AB. 

• Need to calculate Kx using alignment charts. 

• Need to select a section to calculate Kx 
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Step III. Select a section 

• There is no help from the minor axis to select a section 

• Need to assume Kx to select a section. 

See Figure below: 
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• The best case scenario for Kx is when the beams connected at joint A have infinite flexural 

stiffness (rigid). In that case Kx = 2.0 from Table C-C2.1  

• Actually, the beams don't have infinite flexural stiffness. Therefore, calculated Kx should be 

greater than 2.0.  

• To select a section, assume Kx = 2.0 

- KxLx = 2.0 x 15.0 ft. = 30.0 ft. 

• Need to be able to calculate (KL)eq to be able to use the column design tables to select a 

section. Therefore, need to assume a value of rx/ry to select a section. 

- See the W10 column tables on page 4-26.  

- Assume rx/ry = 1.71, which is valid for W10 x 49 to W10 x 68.  

(KL)eq = 30.0/1.71 = 17.54 ft. • 

• 

- Obviously from the Tables, for (KL)eq = 17.5 ft., W10 x 60 is the first section that will 

have φcPn > 450 kips 

Select W10x60 with φcPn = 457.7 kips for (KL)eq = 17.5 ft.  
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Step IV - Calculate Kx-inelastic using selected section 

• Ixx of W 14 x 74 = 796 in4   Ixx of W 10 x 60 = 341 in4 

• Account for the reduced flexural rigidity of the column due to residual stress effects 

- Pu/Ag = 450 / 17.6 = 25.57 ksi 

- Stiffness reduction factor = τ = 0.833 

• 507.0
002.7
550.3

1220
796

1218
796

1215
341

1212
341833.0

L
I

L
I

G

b

b

c

c

A ==

×
+

×









×
+

×
×

=
×τ

=

∑

∑
 

•       - for pin support 10G B =

• Using GA and GB: Kx-inelastic = 1.75  - from Alignment Chart on Page 3-6 

• Calculate value of Kx-inelastic is less than 2.0 (the assumed value) because GB was assumed to 

be equal to 10 instead of  ∞

 

Step V - Check the selected section for X-axis buckling 

• Kx Lx = 1.75 x 15 = 26.25 ft. 

- rx / ry for W10x60 = 1.71 

- (KL)eq = 26.25/1.71 = 15.35 ft.  

- (φcPn) for X-axis buckling = 513.9 kips 

• Section slightly over-designed for Pu = 450 kips.  

• W10 x 54 will probably be adequate, Student should check by calculating Kx inelastic and 

φcPn for that section.  

 

Step VI. Check the local buckling limits 

For the flanges, bf/2tf = 7.41 <  λr = 0.56 x 
yF

E = 13.5  

For the web, h/tw = 18.7  <  λr = 1.49 x 
yF

E = 35.9 

 Therefore, the section is non-compact. OK, local buckling is not a problem 
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• Step VII - Summarize the solution 

 

Ly = 0 ft.    Ky = no buckling   

Kx = 1.75 (inelastic buckling - sway frame - alignment chart method) 

φcPn for X-axis buckling = 513.9 kips 

X-axis buckling governs the design. 

Selected section is W10 x 60  

(W10 x 54 will probably be adequate). 
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3.9 DESIGN OF SINGLY SYMMETRIC CROSS-SECTIONS  
 

So far, we have been talking about doubly symmetric wide-flange (I-shaped) sections and 

channel sections. These rolled shapes always fail by flexural buckling. 

• 

• Singly symmetric (Tees and double angle) sections fail either by flexural buckling about the 

axis of non-symmetry or by flexural-torsional buckling about the axis of symmetry and the 

longitudinal axis.  

   

Figure 6(a). Flexural buckling  Figure 6(b). Flexural-torsional buckling 

Flexural buckling will occur about the x-axis 

x

y

z
x

y

z

Flexural-torsional buckling will occur about the y and z-axis 

Smaller of the two will govern the design strength 
 

Figure 6(c). Singly symmetric cross-section 

 
The AISC specification for flexural-torsional buckling is given by Spec. E3.  • 

Design strength = φcPn = 0.85 Ag Fcrft      (1) 

Where, Fcrft = 












+
−−







 +
2

crzcry

crzcrycrzcry

)FF(

HFF4
11

H2
FF

     (2) 

Fcry = critical stress for buckling about the y-axis, see Spec. E2.  (3) 
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Fcrz = 2
orA

GJ          (4) 

2
or  = polar radius of gyration about shear center (in.) = 

A
II

y yx2
o

+
+   (5) 

H = 1 - 2
o

2
o

r
y

         (6) 

yo = distance between shear center and centroid (in.)    (7) 

 
The section properties for calculating the flexural-torsional buckling strength Fcrft are given 

as follows: 

• 

- G = ( )υ+12
E   

- J, 2r , H are given for WT shapes in Table 1-32 on page 1-101 to page 1-105 o

- 2
or , H are given for double-angle shapes in Table 1-35 on page 1-108 to 1-110 

- J for single-angle shape in Table 1-31 on page 1-98 to 1-100. (J2L = 2 x JL) 

 
The design tables for WT shapes given in Table 4-5 on page 4-35 to 4-47. These design 

tables include the axial compressive strength for flexural buckling about the x axis and 

flexural-torsional buckling about the y and z axis.  

• 
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EXAMPLE 3.10 Calculate the design compressive strength of a WT10.5 x 66. The effective 

length with respect to x-axis is 25ft. 6in. The effective length with respect to the y-axis is 20 ft. 

and the effective length with respect to z-axis is 20ft. A992 steel is used. 

Solution 

Step I. Buckling strength about x-axis • 

λc-x = 
E
F

r
LK y

x

xx

π
 = 

29000
50

1416.306.3
306
×

= 1.321 

φcPn = 0.85 x ( x 50 x 19.4 = 397.2 kips ) 2321.1658.0

 Values for Ag and rx from page 4-41 of the manual. Compare with tabulated design strength 

for buckling about x-axis in Table 4-5 

Step II. Flexural-torsional buckling about the y and z axes • 

- Calculate Fcry and Fcrz then calculate Fcrft and φcPn 

- λc-y = 
E
F

r
LyK y

y

y

π
 = 

29000
50

1416.393.2
240
×

= 1.083 

- Fcry = x 50 = 30.6 ksi ( ) 2083.1658.0

- Fcrz = GJ/A 2
or  = 11,153 x 5.62/(4.602 x 19.4) = 152.69 

- Fcrft = 












+
−−







+
2

crzcry

crzcrycrzcry

)FF(

HFF4
11

H2
FF


 = 













+

×××
−−





 ×
+

2)7.1526.30(
844.07.1526.30411

844.02
7.1526.30


  

Fcrft =108.58 x 0.272 = 29.534 ksi 

- φcPn = 0.85 x Fcrft x Ag = 0.85 x 29.534 x 19.4 = 487 kips 
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Values for J, 2
or , and H were obtained from flexural-torsional properties given in Table 1-32 

on page 1-102. Compare the φcPn value with the value reported in Table 4-5 (page 4-41) of 

the AISC manual.  

Step III. Design strength and check local buckling • 

Flanges: bf/2tf  = 12.4/(2 x 1.03) = 6.02 , which is < λr = 0.56 x 
yF

E = 13.5 

Stem of Tee: d/tw = 10.9/0.65 = 16.77, which is < λr = 0.75 x
yF

E = 18.08 

Local buckling is not a problem. Design strength = 397.2 kips. X-axis flexural buckling 

governs. 

3.10 DESIGN OF DOUBLE ANGLE SECTIONS 

Double-angle sections are very popular as compression members in trusses and bracing 

members in frames.  

• 

• 

- These sections consist of two angles placed back-to-back and connected together using 

bolts or welds. 

- You have to make sure that the two single angle sections are connected such that they do 

not buckle (individually) between the connections along the length. 

- The AISC specification E4.2 requires that Ka/rz of the individual single angles < ¾ of the 

governing KL/r of the double angle. 

- where, a is the distance between connections and rz is the smallest radius of gyration 

of the single angle (see dimensions in Table 1-7) 

Double-angle sections can fail by flexural buckling about the x-axis or flexural torsional 

buckling about the y and z axes. 
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- For flexural buckling about the x-axis, the moment of inertia Ix-2L of the double angle will 

be equal to two times the moment of inertia Ix-L of each single angle. 

- For flexural torsional buckling, there is a slight problem. The double angle section will 

have some additional flexibility due to the intermittent connectors. This added flexibility 

will depend on the connection parameters. 

According to AISC Specification E4.1, a modified (KL/r)m must be calculated for the double 

angle section for buckling about the y-axis to account for this added flexibility 

• 

- Intermediate connectors that are snug-tight bolted

2

z

2

om r
a

r
KL

r
KL









+






=







 

- Intermediate connectors that are welded or fully tensioned bolted:  

2

y
2

22

om r
a

1
82.0

r
KL

r
KL












α+
α

+





=








  

where, α = separation ratio = h/2ry  

h = distance between component centroids in the y direction 
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3/8

5 x 3 x ½ 

0.746 0.746

3/8

5 x 3 x ½ 

0.746 0.746

EXAMPLE 3.11 Calculate the design strength of the compression 

member shown in the figure. Two angles, 5 x 3 x ½ are oriented with the 

long legs back-to-back and separated by 3/8 in. The effective length KL is 

16 ft. A36 steel is used. Assume three welded intermediate connectors  

Solution 

Step I. Determine the relevant properties from the AISC manual 

Property Single angle Double angle

Ag 3.75 in2 7.5 in2 

rx 1.58 in. 1.58 in. 

ry 0.824 in. 1.24 in. 

rz 0.642 in. ----- 

J 0.322 in4 0.644 in4 

2
or   2.51 in. 

H  0.646 

AISC Page no. 1-36, 1-37, 1-99 1-75, 1-109 

Step II. Calculate the x-axis buckling strength 

KL/rx = 16 x 12 /1.58 = 120.8 • 

• λc-x = 
E
F

r
LK y

x

xx

π
 = 

29000
36

1416.3
8.120 = 1.355 

φcPn = 0.85 x ( x 36 x (2 x 3.75)  = 106 kips ) 2355.1658.0• 

• 

Step III. Calculate (KL/r)m for y-axis buckling 

(KL/r) = 16 x 12/1.24 = 154.8  
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a/rz = 48/0.648 = 74.07 • 

• 

• 

a/rz = 74.07 < 0.75 x KL/r = 0.75 x 154.8 = 115.2 (OK!) 

α = h/2ry = (2 x 0.75 + 0.375)/(2 x 0.829) = l.131 

2

y
2

22

om r
a

1
82.0

r
KL

r
KL












α+
α

+





=








 

          ( )
2

2

2
2
o 829.0

48
131.11

131.182.08.154 







+
+= =158.5 

Step IV. Calculate flexural torsional buckling strength. 

λc-y = 
E
F1

r
KL y

m

×
π

×





  =1.778 • 

Fcry = y2
yc

F877.0
×

λ −

= 36
778.1
877.0

2 × = 9.987 ksi • 

Fcrz= ksi4.151
51.25.7

644.0200,11
rA

GJ
22

o

=
×

×
=  • 

Fcrft = 












+
−−







+
2

crzcry

crzcrycrzcry

)FF(

HFF4
11

H2
FF


 = 













+
×××

−−




 ×
+

2)4.151987.9(
646.04.151987.9411

646.02
4.151987.9


  • 

Fcrft = 9.748 ksi 

φcPn = 0.85 x Fcrft x Ag = 0.85 x 9.748 x 7.50 = 62.1 kips • 

• 

• 

Flexural torsional buckling strength controls. The design strength of the double angle member is 

62.1 kips. 

Step V. Compare with design strengths in Table 4-10 (page 4-84) of the AISC manual  

φcPn for x-axis buckling with unsupported length = 16 ft. = 106 kips 

φcPn for y-z axis buckling with unsupported length = 16 ft. = 61.3 kips 
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 38

These results make indicate excellent correlation between the calculations in steps II to IV and 

the tabulated values. 

 

Design tables for double angle compression members are given in the AISC manual. See 

Tables 4-9, 4-10, and 4-11 on pages 4-78 to 4-93 

- In these Tables Fy = 36 ksi 

- Back to back distance = 3/8 in.  

- Design strength for buckling about x axis 

- Design strength for flexural torsional buckling accounting for the modified slenderness ratio 

depending on the number of intermediate connectors. 

- These design Tables can be used to design compression members as double angle sections. 
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Chapter 4. TENSION MEMBER DESIGN 

 
4.1 INTRODUCTORY CONCEPTS 

• Stress: The stress in an axially loaded tension member is given by Equation (4.1) 

A
P

=f       (4.1) 

where, P is the magnitude of load, and 

 A is the cross-sectional area normal to the load 

• The stress in a tension member is uniform throughout the cross-section except: 

- near the point of application of load, and 

- at the cross-section with holes for bolts or other discontinuities, etc. 

• For example, consider an 8 x ½ in. bar connected to a gusset plate and loaded in tension as 

shown below in Figure 4.1 

 

b b

aa

8 x ½ in. bar

Gusset plate

7/8 in. diameter hole

Section a-a

Section b-bb b

aa

8 x ½ in. bar

Gusset plate

7/8 in. diameter hole
b b

aa

8 x ½ in. bar

Gusset plate

7/8 in. diameter hole

Section a-a

Section b-b

Section a-a

Section b-b

 

Figure 4.1 Example of tension member. 

• Area of bar at section a – a = 8 x ½ = 4 in2 

• Area of bar at section b – b = (8 – 2 x 7/8 ) x ½ = 3.12 in2 
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• Therefore, by definition (Equation 4.1) the reduced area of section b – b will be subjected to 

higher stresses 

• However, the reduced area and therefore the higher stresses will be localized around section 

b – b. 

• The unreduced area of the member is called its gross area = Ag 

• The reduced area of the member is called its net area = An 

 
4.2 STEEL STRESS-STRAIN BEHAVIOR 

• The stress-strain behavior of steel is shown below in Figure 4.2 

Strain, ε
εy εuεy εu

St
re

ss
, f

Fy

Fu

E

Strain, ε
εy εuεy εu

St
re

ss
, f

Fy

Fu

εy εuεy εu

St
re

ss
, f

Fy

Fu

E

 

Figure 4.2 Stress-strain behavior of steel 

• In Figure 4.2, E is the elastic modulus = 29000 ksi.  

 Fy is the yield stress and Fu is the ultimate stress 

 εy is the yield strain and εu is the ultimate strain 
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• Deformations are caused by the strain ε. Figure 4.2 indicates that the structural deflections 

will be small as long as the material is elastic (f < Fy) 

• Deformations due to the strain ε will be large after the steel reaches its yield stress Fy. 

 
4.3 DESIGN STRENGTH 

• A tension member can fail by reaching one of two limit states: 

(1) excessive deformation; or (2) fracture 

• Excessive deformation can occur due to the yielding of the gross section (for example section 

a-a from Figure 4.1) along the length of the member 

• Fracture of the net section can occur if the stress at the net section (for example section b-b in 

Figure 4.1) reaches the ultimate stress Fu. 

• The objective of design is to prevent these failure before reaching the ultimate loads on the 

structure (Obvious). 

• This is also the load and resistance factor design approach recommended by AISC for 

designing steel structures 

 

4.3.1 Load and Resistance Factor Design  

 The load and resistance factor design approach is recommended by AISC for designing steel 

structures. It can be understood as follows: 

Step I. Determine the ultimate loads acting on the structure 

- The values of D, L, W, etc. given by ASCE 7-98 are nominal loads (not maximum or 

ultimate) 

- During its design life, a structure can be subjected to some maximum or ultimate loads 

caused by combinations of D, L, or W loading. 
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- The ultimate load on the structure can be calculated using factored load combinations, 

which are given by ASCE and AISC (see pages 2-10 and 2-11 of AISC manual). The 

most relevant of these load combinations are given below: 

1.4 D     (4.2 – 1) 

1.2 D + 1.6 L + 0.5 (Lr or S)   (4.2 – 2) 

1.2 D + 1.6 (Lr or S) + (0.5 L or 0.8 W)   (4.2 – 3) 

1.2 D + 1.6 W + 0.5 L + 0.5 (Lr or S)   (4.2 – 4) 

0.9 D + 1.6 W    (4.2 – 5) 

Step II. Conduct linear elastic structural analysis 

- Determine the design forces (Pu, Vu, and Mu) for each structural member 

 
Step III. Design the members 

- The failure (design) strength of the designed member must be greater than the 

corresponding design forces calculated in Step II. See Equation (4.3) below:  

      φ Rn > ∑γ ii Q     (4.3) 

- Where, Rn is the calculated failure strength of the member 

- φ is the resistance factor used to account for the reliability of the material behavior and 

equations for Rn 

- Qi is the nominal load 

- γi is the load factor used to account for the variability in loading and to estimate the 

ultimate loading condition. 

4.3.2 Design Strength of Tension Members 

• Yielding of the gross section will occur when the stress f reaches Fy.  

y
g

F
A
P

==f  
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 Therefore, nominal yield strength = Pn = Ag Fy     (4.4) 

   Factored yield strength = φt Pn     (4.5) 

   where, φt = 0.9 for tension yielding limit state 

• See the AISC manual, section on specifications, Chapter D (page 16.1 –24)  

• Facture of the net section will occur after the stress on the net section area reaches the 

ultimate stress Fu 

u
e

F
A
P

==f  

Therefore, nominal fracture strength = Pn = Ae Fu

Where, Ae is the effective net area, which may be equal to the net area or smaller.  

 The topic of Ae will be addressed later. 

Factored fracture strength = φt Ae Fu      (4.6) 

Where, φt = 0.75 for tension fracture limit state   (See page 16.1-24 of AISC manual) 

 

4.3.3 Important notes 

• Note 1. Why is fracture (& not yielding) the relevant limit state at the net section?  

Yielding will occur first in the net section. However, the deformations induced by yielding 

will be localized around the net section. These localized deformations will not cause 

excessive deformations in the complete tension member. Hence, yielding at the net section 

will not be a failure limit state.  

• Note 2. Why is the resistance factor (φt) smaller for fracture than for yielding? 

The smaller resistance factor for fracture (φt = 0.75 as compared to φt = 0.90 for yielding) 

reflects the more serious nature and consequences of reaching the fracture limit state. 

• Note 3. What is the design strength of the tension member? 
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The design strength of the tension member will be the lesser value of the strength for the two 

limit states (gross section yielding and net section fracture).  

• Note 4. Where are the Fy and Fu values for different steel materials? 

The yield and ultimate stress values for different steel materials are noted in Table 2 in the 

AISC manual on pages 16.1–141 and 16.1–142.  

• Note 5.  What are the most common steels for structural members? 

See Table 2-1 in the AISC manual on pages 2–24 and 2-25. According to this Table: the 

preferred material for W shapes is A992 (Fy = 50 ksi; Fu = 65 ksi); the preferred material for 

C, L , M and S shapes is A36 (Fy = 36 ksi; Fu = 58 ksi). All these shapes are also available in 

A572 Gr. 50 (Fy = 50 ksi; Fu = 65 ksi).  

• Note 6. What is the amount of area to be deducted from the gross area to account for the 

presence of bolt-holes?  

- The nominal diameter of the hole (dh) is equal to the bolt diameter (db) + 1/16 in.  

- However, the bolt-hole fabrication process damages additional material around the hole 

diameter.  

- Assume that the material damage extends 1/16 in. around the hole diameter.  

- Therefore, for calculating the net section area, assume that the gross area is reduced by a 

hole diameter equal to the nominal hole-diameter + 1/16 in. 

 

 6



CE 405: Design of Steel Structures – Prof. Dr. A. Varma                                                                     Tension Member Design 

Example 3.1 A 5 x ½ bar of A572 Gr. 50 steel is used as a tension member. It is connected to a 

gusset plate with six 7/8 in. diameter bolts as shown in below. Assume that the effective net area 

Ae equals the actual net area An and compute the tensile design strength of the member. 

b b

aa

5 x ½ in. bar

Gusset plate

7/8 in. diameter bolt

A572 Gr. 50

b b

aa

5 x ½ in. bar

Gusset plate

7/8 in. diameter bolt
b b

aa

5 x ½ in. bar

Gusset plate

7/8 in. diameter bolt

A572 Gr. 50
 

Solution

• Gross section area = Ag = 5 x ½ = 2.5 in2 

• Net section area (An) 

- Bolt diameter = db = 7/8 in. 

- Nominal hole diameter = dh = 7/8 + 1/16 in. = 15/16 in. 

- Hole diameter for calculating net area = 15/16 + 1/16 in. = 1 in. 

- Net section area = An  = (5 – 2 x (1)) x ½ = 1.5 in2 

• Gross yielding design strength = φt Pn = φt Fy Ag 

- Gross yielding design strength = 0.9 x 50 ksi x 2.5 in2 = 112.5 kips 

• Fracture design strength = φt Pn = φt Fu Ae  

- Assume Ae = An (only for this problem) 

- Fracture design strength = 0.75 x 65 ksi x 1.5 in2 = 73.125 kips 

• Design strength of the member in tension = smaller of 73.125 kips and 112.5 kips 
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- Therefore, design strength = 73.125 kips (net section fracture controls). 

 

Example 3.2 A single angle tension member, L 4 x 4 x 3/8 in. made from A36 steel is connected 

to a gusset plate with 5/8 in. diameter bolts, as shown in Figure below. The service loads are 35 

kips dead load and 15 kips live load. Determine the adequacy of this member using AISC 

specification. Assume that the effective net area is 85% of the computed net area. (Calculating 

the effective net area will be taught in the next section).  

• Gross area of angle = Ag = 2.86 in2  (from Table 1-7 on page 1-36 of AISC) 

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

Section a-a

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

Section a-aSection a-a

 

• Net section area = An 

- Bolt diameter = 5/8 in. 

- Nominal hole diameter = 5/8 + 1/16 = 11/16 in. 

- Hole diameter for calculating net area = 11/16 + 1/16 = 3/4 in. 

- Net section area = Ag – (3/4) x 3/8 = 2.86 – 3/4 x 3/8 = 2.579 in2 

• Effective net area = Ae = 0.85 x 2.579 in2 = 2.192 in2 

• Gross yielding design strength = φt Ag Fy = 0.9 x 2.86 in2 x 36 ksi = 92.664 kips 

• Net section fracture = φt Ae Fu = 0.75 x 2.192 in2 x 58 ksi = 95.352 kips 
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• Design strength = 92.664 kips   (gross yielding governs) 

• Ultimate (design) load acting for the tension member = Pu 

- The ultimate  (design) load can be calculated using factored load combinations given on 

page 2-11 of the AISC manual, or Equations (4.2-1 to 4.2-5) of notes (see pg. 4) 

- According to these equations, two loading combinations are important for this problem. 

These are: (1) 1.4 D; and (2) 1.2 D + 1.6 L 

- The corresponding ultimate (design) loads are: 

1.4 x (PD) = 1.4 (35) = 49 kips 

1.2 (PD) + 1.6 (PL) = 66 kips     (controls) 

- The ultimate design load for the member is 66 kips, where the factored dead + live 

loading condition controls.  

• Compare the design strength with the ultimate design load 

- The design strength of the member (92.664 kips) is greater than the ultimate design load 

(66 kips). 

- φt Pn (92.664 kips) > Pu (66 kips) 

• The L 4 x 4 x 3/8 in. made from A36 steel is adequate for carrying the factored loads. 

 

4.4 EFFECTIVE NET AREA 

• The connection has a significant influence on the performance of a tension member. A 

connection almost always weakens the member, and a measure of its influence is called joint 

efficiency.  

• Joint efficiency is a function of: (a) material ductility; (b) fastener spacing; (c) stress 

concentration at holes; (d) fabrication procedure; and (e) shear lag. 
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• All factors contribute to reducing the effectiveness but shear lag is the most important. 

• Shear lag occurs when the tension force is not transferred simultaneously to all elements of 

the cross-section. This will occur when some elements of the cross-section are not connected.  

• For example, see Figure 4.3 below, where only one leg of an angle is bolted to the gusset 

plate.  

 

Figure 4.3 Single angle with bolted connection to only one leg. 

• A consequence of this partial connection is that the connected element becomes overloaded 

and the unconnected part is not fully stressed.  

• Lengthening the connection region will reduce this effect 

• Research indicates that shear lag can be accounted for by using a reduced or effective net 

area Ae 

• Shear lag affects both bolted and welded connections. Therefore, the effective net area 

concept applied to both types of connections. 

- For bolted connection, the effective net area is Ae = U An 

- For welded connection, the effective net area is Ae = U Ag  

•  Where, the reduction factor U is given by: 

U = 1- 
L
x ≤ 0.9    (4.7) 
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- Where, x  is the distance from the centroid of the connected area to the plane of the 

connection, and L is the length of the connection.  

- If the member has two symmetrically located planes of connection, x  is measured 

from the centroid of the nearest one – half of the area.  

- Additional approaches for calculating x  for different connection types are shown in 

the AISC manual on page 16.1-178. 

- The distance L is defined as the length of the connection in the direction of load.  

- For bolted connections, L is measured from the center of the bolt at one end to the 

center of the bolt at the other end. 

- For welded connections, it is measured from one end of the connection to other. 

- If there are weld segments of different length in the direction of load, L is the length 

of the longest segment.   

- Example pictures for calculating L are given on page 16.1-179 of AISC. 

• The AISC manual also gives values of U that can be used instead of calculating x /L.  

- They are based on average values of x /L for various bolted connections. 

- For W, M, and S shapes with width-to-depth ratio of at least 2/3 and for Tee shapes cut 

from them, if the connection is through the flanges with at least three fasteners per line in 

the direction of applied load ………………………………………………...U = 0.90 

- For all other shapes with at least three fasteners per line …………………... U = 0.85 

- For all members with only two fasteners per line …………………………… U = 0.75 

- For better idea, see Figure 3.8 on page 41 of the Segui text-book.  

- These values are acceptable but not the best estimate of U 

- If used in the exam or homeworks, full points for calculating U will not be given 
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Example 3.3 Determine the effective net area and the corresponding design strength for the 

single angle tension member of Example 3.2. The tension member is an L 4 x 4 x 3/8 in. made 

from A36 steel. It is connected to a gusset plate with 5/8 in. diameter bolts, as shown in Figure 

below. The spacing between the bolts is 3 in. center-to-center.  

- Compare your results with those obtained for Example 3.2.  

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

x

L 4 x 4 x 3/8

x

L 4 x 4 x 3/8  
 

• Gross area of angle = Ag = 2.86 in2  (from Table 1-7 on page 1-36 of AISC) 

• Net section area = An 

- Bolt diameter = 5/8 in. 

- Hole diameter for calculating net area = 11/16 + 1/16 = 3/4 in. 

- Net section area = Ag – (3/4) x 3/8 = 2.86 – 3/4 x 3/8 = 2.579 in2 

• x  is the distance from the centroid of the area connected to the plane of connection  

-  For this case x  is equal to the distance of centroid of the angle from the edge.  

- This value is given in the Table 1-7 on page 1-36 of the AISC manual. 

- x  = 1.13 in. 

• L is the length of the connection, which for this case will be equal to 2 x 3.0 in. 
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- L = 6.0 in.  

• U = 1-
L
x  = 1-

0.6
13.1  = 0.8116 in. 

• Effective net area = Ae = 0.8116 x 2.579 in2 = 2.093 in2 

• Gross yielding design strength = φt Ag Fy = 0.9 x 2.86 in2 x 36 ksi = 92.664 kips 

• Net section fracture = φt Ae Fu = 0.75 x 2.093 in2 x 58 ksi = 91.045 kips 

• Design strength = 91.045 kips   (net section fracture governs) 

• In Example 3.2 

- Factored load = Pu = 66.0 kips 

- Design strength = φt Pn = 92.66 kips  (gross section yielding governs) 

- Net section fracture strength = φt Pn = 95.352 kips  (assuming Ae = 0.85) 

• Comparing Examples 3.2 and 3.3 

- Calculated value of U (0.8166) is less than the assumed value (0.85) 

- The assumed value was unconservative. 

- It is preferred that the U value be specifically calculated for the section. 

- After including the calculated value of U, net section fracture governs the design 

strength, but the member is still adequate from a design standpoint. 
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Example 3.4 Determine the design strength of an ASTM A992 W8 x 24 with four lines if ¾ in. 

diameter bolts in standard holes, two per flange, as shown in the Figure below.  

Assume the holes are located at the member end and the connection length is 9.0 in. Also 

calculate at what length this tension member would cease to satisfy the slenderness limitation in 

LRFD specification B7 

W 8 x 24

¾ in. diameter bolts

3 in. 3 in. 3 in.

Holes in beam flange

W 8 x 24

¾ in. diameter bolts

W 8 x 24

¾ in. diameter bolts

3 in. 3 in. 3 in.

Holes in beam flange

3 in. 3 in. 3 in.3 in. 3 in. 3 in.

Holes in beam flange  

Solution: 

• For ASTM A992 material: Fy = 50 ksi; and Fu = 65 ksi 

• For the W8 x 24 section:  

- Ag  = 7.08 in2  d = 7.93 in.  

- tw = 0.285 in.  bf = 6.5 in. 

- tf = 0.4 in.  ry = 1.61 in.  

• Gross yielding design strength = φt Pn = φt Ag Fy = 0.90 x 7.08 in2 x 50 ksi = 319 kips 

• Net section fracture strength = φt Pn = φt Ae Fu = 0.75 x Ae x 65 ksi  

- Ae = U An   - for bolted connection 

- An = Ag – (no. of holes) x (diameter of hole) x (thickness of flange) 

An = 7.08 – 4 x (diameter of bolt + 1/8 in.) x 0.4 in. 

An = 5.68 in2
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- U  = 1 - 
L
x  ≤ 0.90 

- What is x  for this situation? 

x  is the distance from the edge of the flange to the centroid of the half (T) section 

76.0
285.0565.34.05.6

1825.2285.0565.32.04.05.6

2

)
4
2

()
2
2

(
2

)(
=

×+×
××+××

=
×+×

+
××

−
+××

=

wff

f
w

ff
ff

tdtb

td
t

tdt
tb

x

 

- x can be obtained from the dimension tables for Tee section WT 4 x 12. See page 1-50 

and 1-51 of the AISC manual:  

x  = 0.695 in. 

- The calculated value is not accurate due to the deviations in the geometry  

- U = 1- 
L
x = 1- 

0.9
695.0 = 0.923 

- But, U ≤ 0.90. Therefore, assume U = 0.90 

• Net section fracture strength = φt Ae Fu = 0.75 x 0.9 x 5.68 x 65 = 249.2 kips 

• The design strength of the member is controlled by net section fracture = 249.2 kips 

• According to LRFD specification B7, the maximum unsupported length of the member is 

limited to 300 ry = 300 x 1.61 in. = 543 in. = 40.3 ft. 
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4.4.1 Special cases for welded connections 

• If some elements of the cross-section are not connected, then Ae will be less than An 

- For a rectangular bar or plate Ae will be equal to An 

- However, if the connection is by longitudinal welds at the ends as shown in the figure 

below, then Ae = UAg  

Where,  U = 1.0   for L ≥ w 
   U = 0.87    for 1.5 w ≤ L < 2 w 
   U = 0.75  for w ≤ L < 1.5 w 

L = length of the pair of welds ≥ w 
 w = distance between the welds or width of plate/bar 

 

• AISC Specification B3 gives another special case for welded connections.  

For any member connected by transverse welds alone,  

Ae = area of the connected element of the cross-section 

 
 

 16



CE 405: Design of Steel Structures – Prof. Dr. A. Varma                                                                     Tension Member Design 

Example 3.5 Consider the welded single angle L 6x 6 x ½ tension member made from A36 steel 

shown below. Calculate the tension design strength. 

 

Solution 

• Ag = 5.00 in2 

• An = 5.00 in2  - because it is a welded connection 

• Ae = U An  - where, U = 1 - 
L
x  

- x  = 1.68 in. for this welded connection 

- L = 6.0 in. for this welded connection 

- U = 1- 
0.6

168.1  = 0.72 

• Gross yielding design strength = φt Fy Ag = 0.9 x 36 x 5.00 = 162 kips 

• Net section fracture strength = φt Fu Ae = 0.75 x 58 x 0.72 x 5.00 = 156.6 kips 

• Design strength = 156.6 kips  (net section fracture governs) 
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4.5 STAGGERED BOLTS 

For a bolted tension member, the connecting bolts can be staggered for several reasons: 

(1) To get more capacity by increasing the effective net area 

(2) To achieve a smaller connection length 

(3) To fit the geometry of the tension connection itself. 

 
• For a tension member with staggered bolt holes (see example figure above), the relationship f 

= P/A does not apply and the stresses are a combination of tensile and shearing stresses on 

the inclined portion b-c. 
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• Net section fracture can occur along any zig-zag or straight line. For example, fracture can 

occur along the inclined path a-b-c-d in the figure above. However, all possibilities must be 

examined.  

• Empirical methods have been developed to calculate the net section fracture strength  

According to AISC Specification B2 

- net width = gross width - ∑∑ +
g4

sd
2

 

- where, d is the diameter of hole to be deducted (dh + 1/16, or  db + 1/8) 

- s2/4g is added for each gage space in the chain being considered 

- s  is the longitudinal spacing (pitch) of the bolt holes in the direction of loading 

- g  is the transverse spacing (gage) of the bolt holes perpendicular to loading dir. 

- net area (An) = net width x plate thickness 

- effective net area (Ae) = U An  where U = 1- x /L 

- net fracture design strength = φt Ae Fu (φt = 0.75) 
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EXAMPLE 3.6 Compute the smallest net area for the plate shown below: The holes are for 1 in. 

diameter bolts. 

3 in.

5 in.

5 in.

3 in.

3 in. 3 in. 3 in. 3 in. 3 in. 3 in.

b

a

c

d

e

i

j

f

h

3 in.

5 in.

5 in.

3 in.

3 in. 3 in. 3 in. 3 in. 3 in.3 in. 3 in. 3 in. 3 in. 3 in. 3 in.

b

a

c

d

e

i

j

f

h

 

• The effective hole diameter is 1 + 1/8 = 1.125 in. 

• For line a-b-d-e 

wn = 16.0 – 2 (1.125) = 13.75 in. 

• For line a-b-c-d-e 

wn = 16.0 – 3 (1.125) + 2 x 32/ (4 x 5) = 13.52 in. 

• The line a-b-c-d-e governs: 

• An = t wn = 0.75 (13.52) = 10.14 in2 

Note 

• Each fastener resists an equal share of the load 

• Therefore different potential failure lines may be subjected to different loads. 

• For example, line a-b-c-d-e must resist the full load, whereas i-j-f-h will be subjected to 8/11 

of the applied load. The reason is that 3/11 of the load is transferred from the member before 

i-j-f-h received any load.  
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• Staggered bolts in angles. If staggered lines of bolts are present in both legs of an angle, 

then the net area is found by first unfolding the angle to obtain an equivalent plate. This plate 

is then analyzed like shown above. 

- The unfolding is done at the middle surface to obtain a plate with gross width equal to the 

sum of the leg lengths minus the angle thickness.  

- AISC Specification B2 says that any gage line crossing the heel of the angle should be 

reduced by an amount equal to the angle thickness.  

- See Figure below. For this situation, the distance g will be = 3 + 2 – ½ in. 
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 4.6 BLOCK SHEAR 

• For some connection configurations, the tension member can fail due to ‘tear-out’ of material 

at the connected end. This is called block shear. 

• For example, the single angle tension member connected as shown in the Figure below is 

susceptible to the phenomenon of block shear.  

T

T

Shear failure

Tension failure

(a)

(b)

(c)

T

T

Shear failure

Tension failure

Shear failure

Tension failure

(a)

(b)

(c)

 

Figure 4.4 Block shear failure of single angle tension member 

• For the case shown above, shear failure will occur along the longitudinal section a-b and 

tension failure will occur along the transverse section b-c 

• AISC Specification (SPEC) Chapter D on tension members does not cover block shear 

failure explicitly. But, it directs the engineer to the Specification Section J4.3 
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• Block shear strength is determined as the sum of the shear strength on a failure path and the 

tensile strength on a perpendicular segment.  

- Block shear strength = net section fracture strength on shear path + gross yielding 

strength on the tension path  

- OR 

- Block shear strength = gross yielding strength of the shear path + net section fracture 

strength of the tension path 

• Which of the two calculations above governs? 

- See page 16.1 – 67 (Section J4.3) of the AISC manual 

- When Fu Ant ≥ 0.6Fu Anv; φt Rn = φ (0.6 Fy Agv + Fu Ant) ≤ φ (0.6 FuAnv + Fu Ant) 

- When Fu Ant < 0.6Fu Anv; φt Rn = φ (0.6 Fu Anv + Fy Agt) ≤ φ (0.6 FuAnv + Fu Ant) 

- Where, φ = 0.75 

Agv = gross area subject to shear 

Agt = gross area subject to tension 

Anv = net area subject to shear 

Ant = net area subject to tension 
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EXAMPLE 3.8 Calculate the block shear strength of the single angle tension member 

considered in Examples 3.2 and 3.3. The single angle L 4 x 4 x 3/8 made from A36 steel is 

connected to the gusset plate with 5/8 in. diameter bolts as shown below. The bolt spacing is 3 

in. center-to-center and the edge distances are 1.5 in and 2.0 in as shown in the Figure below.  

Compare your results with those obtained in Example 3.2 and 3.3 

 

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

1.5 3.0 3.0 

2.0
L 4 x 4 x 3/8 

db = 5/8 in.

Gusset plate

a

a

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

L 4 x 4 x 3/8 
db = 5/8 in.

Gusset plate

a

a

1.5 3.0 3.0 
1.5 3.0 3.0 

2.0

x

L 4 x 4 x 3/8

x

L 4 x 4 x 3/8  
 

• Step I. Assume a block shear path and calculate the required areas 

db = 5/8 in.

Gusset plate

a1.5 3.0 3.0 

2.0 db = 5/8 in.

Gusset plate

a1.5 3.0 3.0 

2.0 db = 5/8 in.

Gusset plate

a

db = 5/8 in.

Gusset plate

db = 5/8 in.

Gusset plate

a1.5 3.0 3.0 
1.5 3.0 3.0 

2.0

 

- Agt = gross tension area = 2.0 x 3/8 = 0.75 in2  

- Ant = net tension area = 0.75 – 0.5 x (5/8 + 1/8) x 3/8 = 0.609 in2 

- Agv = gross shear area = (3.0 + 3.0 +1.5) x 3/8 = 2.813 in2 

- Anv = net tension area = 2.813 – 2.5 x (5/8 + 1/8) x 3/8 = 2.109 in2 
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• Step II. Calculate which equation governs 

- 0.6 Fu Anv = 0.6 x 58 x 2.109 = 73.393 kips 

- Fu Ant = 58 x 0.609 = 35.322 kips 

- 0.6 Fu Anv > Fu Ant 

- Therefore, equation with fracture of shear path governs 

• Step III. Calculate block shear strength 

- φt Rn = 0.75 (0.6 Fu Anv + Fy Agt) 

- φt Rn = 0.75 (73.393 + 36 x 0.75) = 75.294 kips 

• Compare with results from previous examples 

Example 3.2:  

Ultimate factored load = Pu = 66 kips 

Gross yielding design strength = φt Pn = 92.664 kips 

Assume Ae = 0.85 An  

Net section fracture strength = 95.352 kips 

Design strength = 92.664 kips (gross yielding governs) 

 

Example 3.3 

 Calculate Ae = 0.8166 An

Net section fracture strength = 91.045 kips 

Design strength = 91.045 kips (net section fracture governs)  

Member is still adequate to carry the factored load (Pu) = 66 kips 

 

Example 3.8  

 Block shear fracture strength = 75.294 kips 

 Design strength = 75.294 kips (block shear fracture governs) 

 Member is still adequate to carry the factored load (Pu) = 66 kips 
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• Bottom line:  

- Any of the three limit states (gross yielding, net section fracture, or block shear failure) 

can govern. 

- The design strength for all three limit states has to be calculated.  

- The member design strength will be the smallest of the three calculated values 

- The member design strength must be greater than the ultimate factored design load in 

tension. 

 
Practice Example Determine the design tension strength for a single channel C15 x 50 

connected to a 0.5 in. thick gusset plate as shown in Figure. Assume that the holes are for 3/4 in. 

diameter bolts and that the plate is made from structural steel with yield stress (Fy) equal to 50 

ksi and ultimate stress (Fu) equal to 65 ksi. 

gusset plate 

T 3 @ 3” = 9” 
center-to-center 

C15 x 50 

3”3”1.5” 

T 

 
▪ Limit state of yielding due to tension: 

kipsTn 6627.14*50*9.0 ==φ  
▪ Limit state of fracture due to tension: 

( ) 219.12716.0
8
747.14 intndAA egn =⎟
⎠
⎞

⎜
⎝
⎛−=−=  

257.1019.12*
6
798.011 inA

L
xUAA nne =⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −==  

Check:   OK. 9.0867.0 ≤=U
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Note: The connection eccentricity, x, for a C15X50 can be found on page 1-51 (LRFD).   
 
 

kipsTn 51557.10*65*75.0 ==φ  
 
▪ Limit state of block shear rupture: 

 

6925.296716.0*
8
7*5.25.7*2*65*6.06.0 =⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=nvu AF  

 

6925.296716.0*
8
739*65 =⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=ntu AF  

 
nvuntu AFAF 6.0≥  

 

[ ] kipsAFAFR ntugvyn 464
65
6925.296*65716.0*15*50*6.075.06.0 =⎥⎦

⎤
⎢⎣
⎡ +=+=∴ φφ  

 
Block shear rupture is the critical limit state and the design tension strength is 464kips. 
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4.7 Design of tension members 

• The design of a tension member involves finding the lightest steel section (angle, wide-

flange, or channel section) with design strength (φPn) greater than or equal to the maximum 

factored design tension load (Pu) acting on it.  

- φ Pn ≥ Pu 

- Pu is determined by structural analysis for factored load combinations 

- φ Pn is the design strength based on the gross section yielding, net section fracture, and 

block shear rupture limit states.  

• For gross yielding limit state, φPn = 0.9 x Ag x Fy  

- Therefore, 0.9 x Ag x Fy ≥ Pu 

- Therefore, Ag ≥ 
y

u

F9.0
P
×

 

•  For net section fracture limit state, φPn = 0.75 x Ae x Fu  

- Therefore, 0.75 x Ae x Fu ≥ Pu 

- Therefore, Ae ≥ 
u

u

F75.0
P
×

 

- But, Ae = U An  

- Where, U and An depend on the end connection.  

• Thus, designing the tension member goes hand-in-hand with designing the end connection, 

which we have not covered so far.  

• Therefore, for this chapter of the course, the end connection details will be given in the 

examples and problems.  

• The AISC manual tabulates the tension design strength of standard steel sections  

- Include: wide flange shapes, angles, tee sections, and double angle sections. 
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- The gross yielding design strength and the net section fracture strength of each section is 

tabulated.  

- This provides a great starting point for selecting a section. 

• There is one serious limitation 

- The net section fracture strength is tabulated for an assumed value of U = 0.75, obviously 

because the precise connection details are not known 

- For all W, Tee, angle and double-angle sections, Ae is assumed to be = 0.75 Ag 

- The engineer can first select the tension member based on the tabulated gross yielding 

and net section fracture strengths, and then check the net section fracture strength and the 

block shear strength using the actual connection details. 

• Additionally for each shape the manual tells the value of Ae below which net section fracture 

will control:  

- Thus, for W shapes net section fracture will control if Ae < 0.923 Ag 

- For single angles, net section fracture will control if Ae < 0.745 Ag 

- For Tee shapes, net section fracture will control if Ae < 0.923 

- For double angle shapes, net section fracture will control if Ae < 0.745 Ag 

• Slenderness limits 

- Tension member slenderness l/r must preferably be limited to 300 as per LRFD 

specification B7 
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Example 3.10 Design a member to carry a factored maximum tension load of 100 kips.  

(a) Assume that the member is a wide flange connected through the flanges using eight ¾ in. 

diameter bolts in two rows of four each as shown in the figure below. The center-to-center 

distance of the bolts in the direction of loading is 4 in. The edge distances are 1.5 in. and 2.0 

in. as shown in the figure below. Steel material is A992 

W

¾ in. d iameter bolts

W 

¾ in. d iameter bolts

W

¾ in. d iameter bolts

Holes in beam flangeHoles in beam flangeHoles in beam flange

4 in. 2 in. 

1.5 in. 

1.5 in. 

2 in. 4 in. 

W

¾ in. d iameter bolts

W 

¾ in. d iameter bolts

W

¾ in. d iameter bolts

W

¾ in. d iameter bolts

W 

¾ in. d iameter bolts

W

¾ in. d iameter bolts

Holes in beam flangeHoles in beam flangeHoles in beam flange

4 in. 2 in. 

1.5 in. 

1.5 in. 

2 in. 4 in. 

Holes in beam flangeHoles in beam flangeHoles in beam flange

4 in. 2 in. 

1.5 in. 

1.5 in. 

2 in. 4 in. 

 

SOLUTION 

• Step I. Select a section from the Tables 

- Go to the TEN section of the AISC manual. See Table 3-1 on pages 3-17 to 3-19.  

- From this table, select W8x10 with Ag = 2.96 in2, Ae = 2.22 in2. 

- Gross yielding strength = 133 kips, and net section fracture strength=108 kips 

- This is the lightest section in the table. 

- Assumed U = 0.75. And, net section fracture will govern if Ae < 0.923 Ag 

• Step II. Calculate the net section fracture strength for the actual connection 

- According to the Figure above, An = Ag - 4 (db + 1/8) x tf 

- An = 2.96 - 4 (3/4 + 1/8) x 0.205 = 2.24 in2 

- The connection is only through the flanges. Therefore, the shear lag factor U will be the 

distance from the top of the flange to the centroid of a WT 4 x 5.  
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- See DIM section of the AISC manual. See Table 1-8, on pages 1-50, 1-51 

- x  = 0.953 

- U = 1- x /L = 1 - 0.953 / 4 = 0.76 

- Ae = 0.76 An = 0.76 x 2.24 = 1.70 in2 

- φtPn = 0.75 x Fu x Ae = 0.75 x 65 x 1.70 = 82.9 kips 

- Unacceptable because Pu = 100 kips; REDESIGN required 

• Step III. Redesign  

Many ways to redesign. One way is shown here: 

- Assume φt Pn > 100 kips 

- Therefore, 0.75 x 65 x Ae > 100 kips 

- Therefore, Ae > 2.051 in2 

- Assume, Ae = 0.76 An   (based on previous calculations, step II) 

- Therefore An > 2.7 in2 

- But, Ag = An + 4 (db + 1/8) x tf  (based on previous calculations, step II) 

- Therefore Ag > 2.7 + 3.5 x tf 

- Go to the section dimension table 1-1 on page 1-22 of the AISC manual. Select next 

highest section. 

 For W 8 x 13, tf = 0.255 in. 

 Therefore, Ag > 2.7 + 3.5 x 0.255 = 3.59 in2 

 From Table 1-1, W8 x 13 has Ag = 3.84 in2 > 3.59 in2  

 Therefore, W8 x 13 is acceptable and is chosen. 
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• Step IV. Check selected section for net section fracture 

- Ag = 3.84 in2   

- An = 3.84 - 3.5 x 0.255 = 2.95 in2 

- From dimensions of WT4 x 6.5, x  = 1.03 in. 

- Therefore, U = 1- x /L = 1-1.03/4 = 0.74 

- Therefore, Ae = U An = 0.74 x 2.95 = 2.19 in2 

- Therefore, net section fracture strength = 0.75 x 65 x 2.19 = 106.7 kips 

- Which is greater than 100 kips (design load). Therefore, W 8 x 13 is acceptable. 

 
• Step V. Check the block shear rupture strength 

o Identify the block shear path 

4 in. 2 in. 

1.5 in. 

1.5 in. 

2 in. 4 in. 

4 in. 2 in. 

1.5 in. 

1.5 in. 

2 in. 4 in. 

 

- The block shear path is show above. Four blocks will separate from the tension 

member (two from each flange) as shown in the figure above.  

- Agv = [(4+2) x tf ] x 4  = 6 x 0.255 x 4 = 6.12 in2   - for four tabs  

- Anv = {4+2 - 1.5 x (db+1/8)} x tf x 4 = 4.78 in2 

- Agt = 1.5 x tf x 4 = 1.53 in2 

- Ant = {1.5 - 0.5 x (db+1/8)}x tf x 4 = 1.084 in2 

o Identify the governing equation:  
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- FuAnt = 65 x 1.084 = 70.4 kips 

- 0.6FuAnv = 0.6 x 65 x 4.78 = 186.42 kips , which is > FuAnt 

o Calculate block shear strength  

- φtRn = 0.75 (0.6FuAnv + FyAgt) = 0.75 (186.42 + 50 x 1.53) = 197.2 kips  

- Which is greater than Pu = 100 kips. Therefore W8 x 13 is still acceptable 

• Summary of solution 

Mem. Design 

load 

Ag An U  Ae Yield 

strength  

Fracture 

strength  

Block-shear 

strength  

W8x13 100 kips 3.84 2.95 0.74 2.19 173 kips 106.7 kips 197.2 kips 

  Design strength = 106.7 kips (net section fracture governs)

W8 x 13 is adequate for Pu = 100 kips and the given connection
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EXAMPLE 3.11 Design a member to carry a factored maximum tension load of 100 kips.  

(b) The member is a single angle section connected through one leg using four 1 in. diameter 

bolts. The center-to-center distance of the bolts is 3 in. The edge distances are 2 in. Steel 

material is A36 

2.0 in.

2.0 in. 3.0 in. 3.0 in. 3.0 in.

3.0 in. 

4.0 in. 

x

2.0 in.

2.0 in. 3.0 in. 3.0 in. 3.0 in.

3.0 in. 

4.0 in. 

x

3.0 in. 

4.0 in. 

x

 

• Step I. Select a section from the Tables 

- Go to the TEN section of the AISC manual. See Table 3-2 on pages 3-20 to 3-21.  

- From this table, select L4x3x1/2 with Ag = 3.25 in2, Ae = 2.44 in2. 

- Gross yielding strength = 105 kips, and net section fracture strength=106 kips 

- This is the lightest section in the table. 

- Assumed U = 0.75. And, net section fracture will govern if Ae < 0.745 Ag 

• Step II. Calculate the net section fracture strength for the actual connection 

- According to the Figure above, An = Ag - 1 (db + 1/8) x t 

- An = 3.25 - 1(1 + 1/8) x 0.5 = 2.6875 in2 

- The connection is only through the long leg. Therefore, the shear lag factor U will be the 

distance from the back of the long leg to the centroid of the angle.  

- See DIM section of the AISC manual. See Table 1-7, on pages 1-36, 1-37 

- x  = 0.822 in. 

- U = 1- x /L = 1 - 0.822 /9  = 0.908  

- But U must be ≤ 0.90. Therefore, let U = 0.90 
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- Ae = 0.90 An = 0.90 x 2.6875 = 2.41 in2 

- φtPn = 0.75 x Fu x Ae = 0.75 x 58 x 2.41 = 104.8 kips 

- Acceptable because Pu = 100 kips.  

 
• Step V. Check the block shear rupture strength 

o Identify the block shear path 

2.0 in.

2.0 in. 3.0 in. 3.0 in. 3.0 in.

2.0 in.

2.0 in. 3.0 in. 3.0 in. 3.0 in.  

- Agv = (9+2) x 0.5  = 5.5 in2  

- Anv = [11 - 3.5 x (1+1/8)] x 0.5 = 3.53 in2 

- Agt = 2.0 x 0.5 = 1.0 in2 

- Ant = [2.0 - 0.5 x (1 + 1/8)] x 0.5 = 0.72 in2 

o Identify the governing equation:  

- FuAnt = 58 x 0.72 = 41.76 kips 

- 0.6FuAnv = 0.6 x 58 x 3.53 = 122.844 in2, which is > FuAnt 

o Calculate block shear strength  

- φtRn = 0.75 (0.6FuAnv + FyAgt) = 0.75 (122.84 + 36 x 1.0) = 119.133 kips  

- Which is greater than Pu = 100 kips. Therefore L4x3x1/2 is still acceptable 
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• Summary of solution 

Mem. Design 
load 

Ag An U  Ae Yield 
strength  

Fracture 
strength  

Block-shear 
strength  

L4x3x1/2 100 kips 3.25 2.69 0.9 2.41 105 kips 104.8 kips 119.13 kips 
  Design strength = 104.8 kips (net section fracture governs) 

L4x3x1/2 is adequate for Pu = 100 kips and the given connection 
  

• Note: For this problem Ae/Ag = 2.41/3.25 = 0.741, which is < 0.745. As predicted by the 

AISC manual, when Ae /Ag < 0.745, net section fracture governs.  
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CHAPTER 5. BOLTED CONNECTION 

 

5.1 INTRODUCTORY CONCEPTS 

• There are different types of bolted connections. They can be categorized based on the type of 

loading.  

- Tension member connection and splice. It subjects the bolts to forces that tend to shear 

the shank.  

- Beam end simple connection. It subjects the bolts to forces that tend to shear the shank. 

- Hanger connection. The hanger connection puts the bolts in tension 
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• The bolts are subjected to shear or tension loading.  

- In most bolted connection, the bolts are subjected to shear.  

- Bolts can fail in shear or in tension. 

- You can calculate the shear strength or the tensile strength of a bolt 

• Simple connection: If the line of action of the force acting on the connection passes through 

the center of gravity of the connection, then each bolt can be assumed to resist an equal share 

of the load.  

• The strength of the simple connection will be equal to the sum of the strengths of the 

individual bolts in the connection.  

• We will first concentrate on bolted shear connections. 
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5.2 BOLTED SHEAR CONNECTIONS 

• We want to design the bolted shear connections so that the factored design strength (φ Rn) is 

greater than or equal to the factored load.  

• So, we need to examine the various possible failure modes and calculate the corresponding 

design strengths. 

• Possible failure modes are: 

- Shear failure of the bolts 

- Failure of member being connected due to fracture or block shear or …. 

- Edge tearing or fracture of the connected plate 

- Tearing or fracture of the connected plate between two bolt holes 

- Excessive bearing deformation at the bolt hole 

• Shear failure of bolts 

- Average shearing stress in the bolt = fv = P/A = P/(π db
2/4) 

- P is the load acting on an individual bolt 

- A is the area of the bolt and db is its diameter 

- Strength of the bolt = P = fv x (π db
2/4) where fv = shear yield stress = 0.6Fy 

- Bolts can be in single shear or double shear as shown below. 

- When the bolt is in double shear, two cross-sections are effective in resisting the load. 

The bolt in double shear will have the twice the shear strength of a bolt in single shear. 
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• Failure of connected member 

- We have covered this in detail in Ch. 2 on tension members 

- Member can fail due to tension fracture or block shear.  

• Bearing failure of connected/connecting part due to bearing from bolt holes 

- Hole is slightly larger than the fastener and the fastener is loosely placed in hole 

- Contact between the fastener and the connected part over approximately half the 

circumference of the fastener 

- As such the stress will be highest at the radial contact point (A). However, the average 

stress can be calculated as the applied force divided by the projected area of contact 

- Average bearing stress fp = P/(db t), where P is the force applied to the fastener. 

- The bearing stress state can be complicated by the presence of nearby bolt or edge. The 

bolt spacing and edge distance will have an effect on the bearing str. 

- Bearing stress effects are independent of the bolt type because the bearing stress acts on 

the connected plate not the bolt. 
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- A possible failure mode resulting from excessive bearing close to the edge of the 

connected element is shear tear-out as shown below. This type of shear tear-out can also 

occur between two holes in the direction of the bearing load.  

 Rn = 2 x 0.6 Fu Lc t = 1.2 Fu Lc t 
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- To prevent excessive deformation of the hole, an upper limit is placed on the bearing 

load. This upper limit is proportional to the fracture stress times the projected bearing 

area 

Rn = C x Fu x bearing area = C Fu db t 

 If deformation is not a concern then C = 3, If deformation is a concern then C=2.4 

 C = 2.4 corresponds to a deformation of 0.25 in.  

- Finally, the equation for the bearing strength of a single bolts is φRn 

 where, φ = 0.75 and Rn = 1.2 Lc t Fu < 2.4 db t Fu

Lc is the clear distance in the load direction, from the edge of the bolt hole to the edge of 

the adjacent hole or to the edge of the material 

- This relationship can be simplified as follows:  

 The upper limit will become effective when 1.2 Lc t Fu = 2.4 db t Fu

 i.e., the upper limit will become effective when Lc = 2 db

 If Lc < 2 db, Rn = 1.2 Lc t Fu

 If Lc > 2 db, Rn = 1.4 db t Fu 
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5.3 DESIGN PROVISIONS FOR BOLTED SHEAR CONNECTIONS 

• In a simple connection, all bolts share the load equally.  

T
T

T/n T/n

T/n T/n

T/n T/n

T
T

T/n T/n

T/n T/n

T/n T/n  

•  In a bolted shear connection, the bolts are subjected to shear and the connecting / connected 

plates are subjected to bearing stresses. 

Bolt in shear

Bearing stresses in plate

Bearing stresses in plate

TT

T

T

Bolt in shear

Bearing stresses in plate

Bearing stresses in plate

Bolt in shear

Bearing stresses in plate

Bearing stresses in plate

TT

T

T

 

• The shear strength of all bolts = shear strength of one bolt x number of bolts 

• The bearing strength of the connecting / connected plates can be calculated using equations 

given by AISC specifications. 

• The tension strength of the connecting / connected plates can be calculated as discussed 

earlier in Chapter 2. 

 

5.3.1 AISC Design Provisions 

• Chapter J of the AISC Specifications focuses on connections.  

• Section J3 focuses on bolts and threaded parts 
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• AISC Specification J3.3 indicates that the minimum distance (s) between the centers of bolt 

holes is 2 bd
3
2 . A distance of 3db is preferred. 

• AISC Specification J3.4 indicates that the minimum edge distance (Le) from the center of the 

bolt to the edge of the connected part is given in Table J3.4 on page 16.1-61. Table J3.4 

specifies minimum edge distances for sheared edges, edges of rolled shapes, and gas cut 

edges.  

• AISC Specification J3.5 indicates that the maximum edge distance for bolt holes is 12 times 

the thickness of the connected part (but not more than 6 in.). The maximum spacing for bolt 

holes is 24 times the thickness of the thinner part (but not more than 12 in.). 

• Specification J3.6 indicates that the design tension or shear strength of bolts is φ FnAb 

- Table J3.2 gives the values of φ and Fn 

- Ab is the unthreaded area of bolt.  

- In Table J3.2, there are different types of bolts A325 and A490. 

- The shear strength of the bolts depends on whether threads are included or excluded from 

the shear planes. If threads are included in the shear planes then the strength is lower.  

- We will always assume that threads are included in the shear plane, therefore less 

strength to be conservative.  

• We will look at specifications J3.7 – J3.9 later. 

• AISC Specification J3.10 indicates the bearing strength of plates at bolt holes. 

- The design bearing strength at bolt holes is φRn 

- Rn = 1.2 Lc t Fu ≤ 2.4 db t Fu   - deformation at the bolt holes is a  

design consideration        

- Where, Fu = specified tensile strength of the connected material 
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- Lc = clear distance, in the direction of the force, between the edge of the hole and the 

edge of the adjacent hole or edge of the material (in.). 

- t = thickness of connected material 

 

5.3.2 AISC Design Tables 

• Table 7-10 on page 7-33 of the AISC Manual gives the design shear of one bolt. Different 

bolt types (A325, A490), thread condition (included or excluded), loading type (single shear 

or double shear), and bolt diameters (5/8 in. to 1-1/2 in.) are included in the Table. 

• Table 7-11 on page 7-33 of the AISC Manual is an extension of Table 7-10 with the 

exception that it gives the shear strength of ‘n’ bolts. 

• Table 7-12 on page 7-34 of the AISC manual gives the design bearing strength at bolt holes 

for various bolt spacings.  

- These design bearing strengths are in kips/in. thickness.  

- The tabulated numbers must be multiplied by the plate thickness to calculate the design 

bearing strength of the plate. 

- The design bearing strengths are given for different bolt spacings (2.67db and 3db), 

different Fu (58 and 65 ksi), and different bolt diameters (5/8 – 1-1/2 in.) 

- Table 7-12 also includes the spacing (sfull) required to develop the full bearing strength 

for different Fu and bolt diameters 

- Table 7-12 also includes the bearing strength when s > sfull 

- Table 7-12 also includes the minimum spacing 2-2/3 db values 

• Table 7-13 in the AISC manual on page 7-35 is similar to Table 7-12. It gives the design 

bearing strength at bolt holes for various edge distances. 
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- These design bearing strengths are in kips/in. thickness.  

- The tabulated numbers must be multiplied by the plate thickness to calculate the design 

bearing strength of the plate. 

- The design bearing strengths are given for different edge distances (1.25 in. and 2 in.), 

different Fu (58 and 65 ksi), and different bolt diameters (5/8 – 1-1/2 in.) 

- Table 7-13 also includes the edge distance (Le full) required to develop the full bearing 

strength for different Fu and bolt diameters 

- Table 7-13 also includes the bearing strength when Le > Le full 
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Example 5.1 Calculate and check the design 

strength of the connection shown below. Is 

the connection adequate for carrying the 

factored load of 65 kips.  
1.25 2.50 1.25 

1.25

2.50

1.25
65 k

A36

A36 5 x ½ 
3/8 in. 

¾ in. bolts

1.25 2.50 1.25 

1.25

2.50

1.25
65 k

A36

A36 5 x ½ 
3/8 in. 

¾ in. bolts

Solution 

Step I. Shear strength of bolts 

• The design shear strength of one bolt in shear = φ Fn Ab = 0.75 x 48 x π x 0.752/4 

- φ Fn Ab = 15.9 kips per bolt   (See Table J3.2 and Table 7-10) 

- Shear strength of connection = 4 x 15.9 = 63.6 kips   (See Table 7-11) 

Step II. Minimum edge distance and spacing requirements 

• See Table J3.4,  minimum edge distance = 1 in. for rolled edges of plates 

- The given edge distances (1.25 in.) > 1 in. Therefore, minimum edge distance 

requirements are satisfied.   

• Minimum spacing = 2.67 db = 2.67 x 0.75 = 2.0 in. 

- Preferred spacing = 3.0 db = 3.0 x 0.75 = 2.25 in.  

- The given spacing (2.5 in.) > 2.25 in. Therefore, spacing requirements are satisfied. 

Step III. Bearing strength at bolt holes. 

• Bearing strength at bolt holes in connected part (5 x ½ in. plate) 

- At edges, Lc = 1.25 – hole diameter/2 = 1.25 – (3/4 + 1/16)/2 = 0.844 in. 

- φRn = 0.75 x (1.2 Lc t Fu) = 0.75 x (1.2 x 0.844 x 0.5 x 58) = 22.02 kips 

- But, φRn ≤ 0.75 (2.4 db t Fu) = 0.75 x (2.4 x 0.75 x 0.5 x 58) = 39.15 kips 

- Therefore, φRn = 22.02 kips at edge holes 

• Compare with value in Table 7-13. φRn = 44.0 x 0.5 = 22.0 kips 
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- At other holes, s = 2.5 in, Lc = 2.5 – (3/4 +1/16) = 1.688 in. 

- φRn = 0.75 x (1.2 Lc t Fu) = 0.75 x (1.2 x 1.688 x 0.5 x 58) = 44.05 kips  

- But, φRn ≤ 0.75 (2.4 db t Fu) = 39.15 kips. Therefore φRn = 39.15 kips 

- Therefore, φRn = 39.15 kips at other holes 

• Compare with value in Table 7-12. φRn = 78.3 x 0.5 =39.15 kips  

- Therefore, bearing strength at holes = 2 x 22.02 + 2 x 39.15 = 122.34 kips 

• Bearing strength at bolt holes in gusset plate (3/8 in. plate) 

- At edges, Lc = 1.25 – hole diameter/2 = 1.25 – (3/4 + 1/16)/2 = 0.844 in. 

- φRn = 0.75 x (1.2 Lc t Fu) = 0.75 x (1.2 x 0.844 x 0.375 x 58) = 16.52 k 

- But, φRn ≤ 0.75 (2.4 db t Fu) = 0.75 x (2.4 x 0.75 x 0.375 x 58) = 29.36 kips 

- Therefore, φRn = 16.52 kips at edge holes 

• Compare with value in Table 7-13. φRn = 44.0 x 3/8 = 16.5 kips 

- At other holes, s = 2.5 in, Lc = 2.5 – (3/4 +1/16) = 1.688 in. 

- φRn = 0.75 x (1.2 Lc t Fu) = 0.75 x (1.2 x 1.688 x 0.375 x 58) = 33.04 kips 

- But, φRn ≤ 0.75 (2.4 db t Fu) = 29.36 kips 

- Therefore, φRn = 29.36 kips at other holes 

• Compare with value in Table 7-12. φRn = 78.3 x 0.375 = 29.36 kips 

- Therefore, bearing strength at holes = 2 x 16.52 + 2 x 29.36 = 91.76 kips 

• Bearing strength of the connection is the smaller of the bearing strengths = 91.76 kips 
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Connection Strength

Shear strength = 63.3 kips 

Bearing strength (plate) = 122.34 kips 

Bearing strength (gusset) = 91.76 kips 

Connection strength (φRn) > applied factored loads (γQ). Therefore ok. 
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Example 5.2 Design a double angle tension member and a gusset plated bolted connection 

system to carry a factored load of 100 kips. Assume A36 (36 ksi yield stress) material for the 

double angles and the gusset plate. Assume A325 bolts. Note that you have to design the double 

angle member sizes, the gusset plate thickness, the bolt diameter, numbers, and spacing.  

Solution 

Step I. Design and select a trial tension member 

• See Table 3-7 on page 3-33 of the AISC manual. 

- Select 2L 3 x 2 x 3/8 with φPn = 113 kips (yielding) and 114 kips (fracture) 

- While selecting a trial tension member check the fracture strength with the load. 

 
Step II. Select size and number of bolts 

The bolts are in double shear for this design (may not be so for other designs) 

• See Table 7-11 on page 7-33 in the AISC manual 

Use four 3/4 in. A325 bolts in double shear 

φRn = 127 kips      - shear strength of bolts from Table 7-11 

 
Step III. Design edge distance and bolt spacing 

• See Table J3.4 

- The minimum edge distance = 1 in. for 3/4 in. diameter bolts in rolled edges. 

- Select edge distance = 1.25 in.  

• See specification J3.5 

- Minimum spacing = 2.67 db = 2.0 in. 

- Preferred spacing = 3.0 db = 2.25 in. 

- Select spacing = 3.0 in., which is greater than preferred or minimum spacing 
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Step IV. Check the bearing strength at bolt holes in angles 

• Bearing strength at bolt holes in angles 

- Angle thickness = 3/8 in. 

- See Table 7-13 for the bearing strength per in. thickness at the edge holes 

- Bearing strength at the edge holes (Le = 1.25 in.) = φRn = 44.0 x 3/8 = 16.5 k 

- See Table 7-12 for the bearing strength per in. thickness at non-edge holes 

- Bearing strength at non-edge holes (s = 3 in.) = φRn = 78.3 x 3/8 = 29.4 k 

- Bearing strength at bolt holes in each angle = 16.5 + 3 x 29.4 = 104.7 kips  

- Bearing strength of double angles = 2 x 104.7 kips = 209.4 kips 

 
Step V. Check the fracture and block shear strength of the tension member  

• This has been covered in the chapter on tension members and is left to the students. 

 
Step VI. Design the gusset plate 

• See specification J5.2 for designing gusset plates. These plates must be designed for the 

limit states of yielding and rupture 

- Limit state of yielding 

o φRn = 0.9 Ag Fy > 100 kips 

o Therefore, Ag = L x t > 3.09 in2 

o Assume t = ½ in; Therefore L > 6.18 in.  

o Design gusset plate = 6.5 x ½ in.   

o Yield strength = φRn = 0.9 x 6.5 x 0.5 x 36 = 105.3 kips 

 

- Limit state for fracture 
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o An = Ag – (db+1/8) x t 

o An = 6.5 x 0.5 – (3/4 + 1/8) x 0.5 = 2.81 in2 

o But, An ≤ 0.85 Ag = 0.85 x 3.25 = 2.76 in2 

o φRn = 0.75 x An x Fu = 0.75 x 2.76 x 58 = 120 kips 

- Design gusset plate = 6.5 x 0.5 in.  

 
• Step VII. Bearing strength at bolt holes in gusset plates 

Assume Le = 1.25 in. (same as double angles) 

- Plate thickness = 3/8 in. 

- Bearing strength at the edge holes = φRn = 44.0 x 1/2 = 22.0 k 

- Bearing strength at non-edge holes = φRn = 78.3 x 1/2 = 39.15 k 

- Bearing strength at bolt holes in gusset plate = 22.0 + 3 x 39.15 = 139.5 kips  

 
Summary of Member and Connection Strength 
 
Connection  Member Gusset Plate  

Shear strength  = 127 kips Yielding = 113 kips Yielding = 105.3 kips  

Bearing strength = 209.4 kips (angles) Fracture = ? Fracture = 120 kips 

Bearing Strength = 139.5 (gusset) Block Shear = ?  

 
- Overall Strength is the smallest of all these numbers = 105.3 kips 
- Gusset plate yielding controls 
- Resistance > Factored Load (100 kips).  
- Design is acceptable 
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5.4 SLIP-CRITICAL BOLTED CONNECTIONS 
• High strength (A325 and A490) bolts can be installed with such a degree of tightness that 

they are subject to large tensile forces.  

• These large tensile forces in the bolt clamp the connected plates together. The shear force 

applied to such a tightened connection will be resisted by friction as shown in the Figure 

below. 

Tightened 

P

P

Tightened Tightened 

P

P

P

P

 
 

Tb

N =Tb

N =Tb

N =Tb

P

F=µN

Tb

N = Tb

F=µN

N = Tb

N =Tb

P

Tb

N =Tb

Tb

N =Tb

N =Tb

N =Tb

P

F=µN

N =Tb

N =Tb

P

F=µN

Tb

N = Tb

Tb

N = Tb

F=µN

N = Tb

N =Tb

P

F=µN

N = Tb

N =Tb

N = Tb

N =Tb

P

 
 
• Thus, slip-critical bolted connections can be designed to resist the applied shear forces using 

friction. If the applied shear force is less than the friction that develops between the two 

surfaces, then no slip will occur between them.  

• However, slip will occur when the friction force is less than the applied shear force. After 

slip occurs, the connection will behave similar to the bearing-type bolted connections 

designed earlier. 
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• Table J3.1 summarizes the minimum bolt tension that must be applied to develop a slip-

critical connection. 

• The shear resistance of fully tensioned bolts to slip at factored loads is given by AISC 

Specification J3.8 a 

Shear resistance at factored load = φRn = 1.13 µ Tb Ns

where,  φ = 1.0 for standard holes 

  µ = 0.33 (Class A surface with unpainted clean mill scale surface: CE 405) 

  Tb = minimum bolt tension given in Table J3.1 

  Ns = number of slip planes 

- See Table 7-15 on page 7-36 of the AISC manual. This Table gives the shear resistance 

of fully tensioned bolts to slip at factored loads on class A surfaces. 

- For example, the shear resistance of 1-1/8 in. bolt fully tensioned to 56 kips (Table J3.1) 

is equal to 20.9 kips (Class A faying surface).  

- When the applied shear force exceeds the φRn value stated above, slip will occur in the 

connection. 

• The shear resistance of fully tensioned bolts to slip at service loads is given by AISC 

Specification J3.8 b. 

- Shear resistance at service load = φRn = φ Fv Ab 

- Where, φ = 1.0 for standard holes 

  Fv = slip-critical resistance to shear at service loads, see Table A-J3.2 on  

page 16.1-116 of the AISC manual 

- See Table 7-16 on page 7-37 of the AISC manual. This Table gives the shear resistance 

of fully tensioned bolts to slip at service loads on class A surfaces. 
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-  For example, the shear resistance of 1-1/8 in. bolt fully tensioned to 56 kips (Table J3.1) 

is equal to 16.9 kips (Class A faying surface).  

- When the applied shear force exceeds the φRn value stated above, slip will occur in the 

connection.  

• The final strength of the connection will depend on the shear strength of the bolts calculated 

using the values in Table 7-11 and on the bearing strength of the bolts calculated using the 

values in Table 7-12, 7-13. This is the same strength as that of a bearing type connection. 
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Example 5.3 Design a slip-critical splice for a tension member subjected to 300 kips of tension 

loading. The tension member is a W8 x 28 section made from A992 (50 ksi) material. The 

unfactored dead load is equal to 50 kips and the unfactored live load is equal to 150 kips. Use 

A325 bolts. The splice should be slip-critical at service loads. 

 
Solution 
 
Step I. Service and factored loads 
 
• Service Load = D + L = 200 kips. 
 
• Factored design load = 1.2 D + 1.6 L = 300 kips 
 
• Tension member is W8 x 28 section made from A992 (50 ksi) steel. The tension splice must 

be slip critical (i.e., it must not slip) at service loads.  

 
Step II. Slip-critical splice connection
 
• φRn of one fully-tensioned slip-critical bolt = φ Fv Ab  (See Spec. A-J3.8 b) 

    page 16.1-117 of AISC 

• If db = 3/4 in. 

φRn of one bolt = 1.0 x 17 x π x 0.752/4 = 7.51 kips  

Note, Fv = 17 ksi from Table A-J3.2 
 

From Table 7-16 on page 7-37 φRn = 7.51 kips 
 
 φRn of n bolts = 7.51 x n > 200 kips            (splice must be slip-critical at service) 

 Therefore, n > 26.63 
 
• If db = 7/8 in. 

φRn of one bolt = 10.2 kips     -from Table 7-16 

φRn of n bolts = 10.2 x n > 200 kips            (splice must be slip-critical at service) 

Therefore, n > 19.6 bolts 
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Number of bolts required n
Ps

φRn
:= n 26.63= (min. reqd.)

If diameter of the bolt =• db
7
8

:= in Ab
π

4
db( )2:=

for one bolt φRn φ Fv⋅ Ab⋅:= φRn 10.222= Kips

Number of bolts required n
Ps

φRn
:= n 19.565= (min. reqd.)

say we provide 24 bolts on either side of the center line, 6 on either side of the flanges, top + bottom

Step III: Connection Details and spacings for 24 bolts on each W8 x 28

Note that there are 24 bolts on either side of the center line. In all there are 48 number - 7/8 in dia bolts•
used in the connection.

 Minimum pretension applied to the bolts = 39.0 Kips from Table J3.1•

Minimum Edge distance from Table J3.4 = Le-min = 1.125 in•

Provide Edge Distance = • Le 1.25:= in

Minimum spacing (Spec. J3.3) = • s 2.67 db⋅:= s 2.336= in

Example 5.3

Step I: Service and Factored Loads

D 50:= Kips L 150:= Kips

Service Loads• Ps D L+:= Ps 200= Kips

Factored Loads• Pu 1.2 D⋅ 1.6 L⋅+:= Pu 300= Kips

Step II: Slip Critical connection

In Service loads consideration, φRn of one fully tenstioned slip-critical bolt = φ Fv Ab  •

(As given in Spec. A-J3.8b - page 16.1-117) φ 1.0:= Fv 17:= Ksi - A325 - Table A-J3.2

If diameter of the bolt =• db
3
4

:= in Ab
π

4
db( )2:=

for one bolt φRn φ Fv⋅ Ab⋅:= φRn 7.51= Kips



KipsPu 300=KsiFu 65:=KsiFy 50:=Step V: Design the splice plate

KipsBt 2.223 103
×=

Bt 4 Be⋅ 20 Bo⋅+:=Total bearing strength of the bolt holes in wide flange section •

Table 7-12Kip / in thicknessBo 102:=Bearing strength of 7/8 in. bolt at other holes =•

Table 7-13

Preferred spacing = s 3 db⋅:= s 2.625= in

From table 7-12 sfull 2.6875:= in

For design provide spacing = s 3:= in

Step IV: Connection Strength at factored loads

The splice connection should be designed as a normal shear / bearing connection beyong this point for the •
factored load = 300 kips

The shear strength of the bolts (Table 7-10) = 21.6 kips/bolt x 24 bolts = 518.4 Kips •

Bearing strength of 7/8 in. bolt at edge holes =• Be 45.7:= Kip / in thickness



Ag b t⋅:= Ag 16.35= in2 > minAg 6.667= in2

An Ag 4
7
8

1
8

+⎛⎜
⎝

⎞
⎠

⋅ t⋅−:= An 6.35= in2 > minAn 6.154= in2

Check An 6.35= in2 < 0.85 Ag⋅ 13.898= in2

Strength of the splice plate in •

yielding = 0.9 Ag⋅ Fy⋅ 735.75= Kips
> Pu 300= Kips

fracture = 0.75 An⋅ Fu⋅ 309.563= Kips

Check for bearing strength of the splice plates•

Check for block shear rupture•

Step VI : Check member yield, fracture and block shear....

Tension Yielding = 0.9 Ag Fy > Pu • minAg
Pu

0.9 Fy⋅
:= minAg 6.667= in2

Tension Fracture = 0.75 An Fu > Pu• minAn
Pu

0.75 Fu⋅
:= minAn 6.154= in2

We know, flange width of W 8 x 28 = 6.54 in. This is the limiting width of the splice plate. The unknown 
quantity which is the thickness of each splice plate is calculated as shown.

Net area = Gross area - area of the bolts An minAn:=

An Ag 4
7
8

1
8

+⎛⎜
⎝

⎞
⎠

⋅ t⋅−:= Ag Here, Ag 6.54 t⋅:= t An 6.154:= in2

Check for An and Ag:

intmin 2.42=>in t 2.5=t 2 tp⋅:=therefore, total plate thickness = 

intp 1.25:=inb 6.54:=Assume each plate of the dimensions

(This is the total thickness of the plate at the top and bottom)intmin 2.42:=Solving for t, we get
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Example 4.4 Modify Example 4.2 so that the connection system is slip critical for the factored 

load of 100 kips. 

Solution 

Step I. Design and select a trial tension member (same as example 4.2) 

• Select 2L 3 x 2 x 3/8 with φPn = 113 kips (yielding) and 114 kips (fracture) 

Step II. Select size and number of bolts (modified step) 

• The connection must be designed to be slip-critical at the factored loads 

- φRn
 for one bolt = 1.0 x 1.13 x µ x Tb x Ns

   (Tb from Table J3.1) 

- φRn for one 3/4 in. bolt = 1.0 x 1.13 x 0.33 x 28 x 2 = 20.9 kips 

- φRn for one 7/8 in. bolt = 1.0 x 1.13 x 0.33 x 39 x 2 = 29.1 kips 

- See Values in Table 7-15.  

φRn for ¾ and 7/8 in. bolts in double slip = 20.9 and 29.1 kips, respectively.  

- We need at least five ¾ in. bolts to have strength φRn = 5 x 20.9 = 104.5 k > 100 k 

- We need at least four 7/8 in. bolts to have strength φRn = 4 x 29.1 = 116.4 k> 100 

• Use five ¾ in. fully tightened bolts. Bolts must be tightened to 28 kips.  

• Compare with solution for example 4.2 where only four snug-tight ¾ in bolts design.  

 
For the remaining steps III to VII follow Example 4.2 

Step III. Design edge distance and bolt spacing  

Step IV. Check the bearing strength at bolt holes in angles  

Step V. Check the fracture and block shear strength of the tension member  

Step VI. Design the gusset plate 

Step VII. Bearing strength at bolt holes in gusset plates  

Summary of Member and Connection Strength 
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CHAPTER 6. WELDED CONNECTIONS 

 

6.1 INTRODUCTORY CONCEPTS 

• Structural welding is a process by which the parts that are to be connected are heated and 

fused, with supplementary molten metal at the joint.  

• A relatively small depth of material will become molten, and upon cooling, the structural 

steel and weld metal will act as one continuous part where they are joined. 

Fillet weld

Fillet weld

Fillet weldFillet weld

Fillet weldFillet weld
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• The additional metal is deposited from a special electrode, which is part of the electric circuit 

that includes the connected part.  

− In the shielded metal arc welding (SMAW) process, current arcs across a gap between 

the electrode and the base metal, heating the connected parts and depositing part of the 

electrode into the molten base metal. 

− A special coating on the electrode vaporizes and forms a protective gaseous shield, 

preventing the molten weld metal from oxidizing before it solidifies.  

− The electrode is moved across the joint, and a weld bead is deposited, its size depending 

on the rate of travel of the electrode.  

− As the weld cools, impurities rise to the surface, forming a coating called slag that must 

be removed before the member is painted or another pass is made with the electrode. 

− Shielded metal arc welding is usually done manually and is the process universally used 

for field welds.  

• For shop welding, an automatic or semi automatic process is usually used. Foremost among 

these is the submerged arc welding (SAW),  

• In this process, the end of the electrode and the arc are submerged in a granular flux that 

melts and forms a gaseous shield. There is more penetration into the base metal than with 

shielded metal arc welding, and higher strength results. 

• Other commonly used processes for shop welding are gas shielded metal arc, flux cored arc, 

and electro-slag welding.  

• Quality control of welded connections is particularly difficult, because defects below the 

surface, or even minor flaws at the surface, will escape visual detection. Welders must be 
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properly certified, and for critical work, special inspection techniques such as radiography or 

ultrasonic testing must be used.  

• The two most common types of welds are the fillet weld and the groove weld. Fillet weld 

examples: lap joint – fillet welds placed in the corner formed by two plates 

Tee joint – fillet welds placed at the intersection of two plates.  

• Groove welds – deposited in a gap or groove between two parts to be connected 

e.g., butt, tee, and corner joints with beveled (prepared) edges 

• Partial penetration groove welds can be made from one or both sides with or without edge 

preparation.  

 

6.2 Design of Welded Connections 

 Fillet welds are most common and used in all structures. 

 Weld sizes are specified in 1/16 in. increments 

 A fillet weld can be loaded in any direction in shear, compression, or tension. However, it 

always fails in shear. 
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 The shear failure of the fillet weld occurs along a plane through the throat of the weld, as 

shown in the Figure below. 

a

a
Throat = a x cos45o

= 0.707 a

a

a
Throat = a x cos45o

= 0.707 a

  

Failure Plane

L

 
 

 Shear stress in fillet weld of length L subjected to load P = fv = 
wLa707.0

P  

 If the ultimate shear strength of the weld = fw 

Rn =  ww La707.0f ×××

φ Rn =     i.e., φ factor = 0.75 ww La707.0f75.0 ××××

 fw = shear strength of the weld metal is a function of the electrode used in the SMAW 

process.  

- The tensile strength of the weld electrode can be 60, 70, 80, 90, 100, 110, or 120 ksi.  

- The corresponding electrodes are specified using the nomenclature E60XX, E70XX, 

E80XX, and so on. This is the standard terminology for weld electrodes. 

 The strength of the electrode should match the strength of the base metal.  

- If yield stress (σy) of the base metal is ≤ 60 - 65 ksi, use E70XX electrode. 

- If yield stress (σy) of the base metal is ≥ 60 - 65 ksi, use E80XX electrode. 

 E70XX is the most popular electrode used for fillet welds made by the SMAW method. 

 Table J2.5 in the AISC Specifications gives the weld design strength 

fw = 0.60 FEXX
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For E70XX, φ fw = 0.75 x 0.60 x 70 = 31.5 ksi 
 

 Additionally, the shear strength of the base metal must also be considered: 
 

φ Rn = 0.9 x 0.6 Fy x area of base metal subjected to shear  
 
where, Fy is the yield strength of the base metal. 
 

 For example: 
 

T

Elevation Plan

T

Elevation Plan
 

 
Strength of weld in shear     Strength of base metal 
= 0.75 x 0.707 x a x Lw x fw     = 0.9 x 0.6 x Fy x t x Lw 
 
 
 

Smaller governs the strength of the weld 
 

 Always check weld metal and base metal strength. Smaller value governs. In most cases, the 

weld metal strength will govern. 

 In weld design problems it is advantageous to work with strength per unit length of the weld 

or base metal. 

 

6.2.1 Limitations on weld dimensions (See AISC Spec. J2.2b on page 16.1-54 of manual) 

 
 Minimum size (amin) 

- function of the thickness of the thickest connected plate 

- given in Table J2.4 of the AISC specifications 

 Maximum size (amax) 
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- function of the thickness of the thinnest connected plate: 

- for plates with thickness ≤ 0.25 in., amax = 0.25 in. 

- for plates with thickness ≥ 0.25 in., amax = t - 1/16 in. 

 Minimum length (Lw) 

- length (Lw) ≥ 4 a  otherwise,  aeff = Lw / 4  

- Read J2.2 b 

- Intermittent fillet welds: Lw-min = 4 a  and 1.5 in. 

 Maximum effective length - read AISC J2.2b 

- If weld length Lw < 100 a, then effective weld length (Lw-eff) = Lw 

- If Lw < 300 a, then effective weld length (Lw-eff) = Lw (1.2 – 0.002 Lw/a) 

- If Lw > 300 a, the effective weld length (Lw-eff) = 0.6 Lw 

 Weld Terminations - read AISC J2.2b 

- Lap joint – fillet welds terminate at a distance > a from edge. 

- Weld returns around corners must be > 2 a 
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Example 6.1. Determine the design strength of the tension member and connection system 

shown below. The tension member is a 4 in. x 3/8 in. thick rectangular bar. It is welded to a 1/2 

in. thick gusset plate using E70XX electrode. Consider the yielding and fracture of the tension 

member. Consider the shear strength of the weld metal and the surrounding base metal. 

5 in.

5 in.

0.5 in.

0.5 in.

4 in x 3/8 in. 

t = 0.5 in.

a = 0.25 in.

5 in.

5 in.

0.5 in.

0.5 in.

4 in x 3/8 in. 

t = 0.5 in.

a = 0.25 in.

 
Solution 

Step I. Check for the limitations on the weld geometry 

 tmin = 3/8 in. (member) 

tmax = 0.5 in. (gusset) 

Therefore, amin = 3/16 in.      - AISC Table J2.4 

amax = 3/8 - 1/16 = 5/16 in.   - AISC J2.2b 

 Fillet weld size = a = 1/4 in.     - Therefore, OK! 

 Lw-min = 1.0 in.      - OK. 

- Lw-min for each length of the weld = 4.0 in. (transverse distance between welds, see J2.2b) 

- Given length = 5.0 in., which is > Lmin. Therefore, OK! 
 
 Length/weld size = 5/0.25 = 20 - Therefore, maximum effective length J2.2 b satisfied.   

 End returns at the edge corner size - minimum = 2 a = 0.5 in.  -Therefore, OK! 
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Step II. Design strength of the weld 

 Weld strength = φ x 0.707 x a x 0.60 x FEXX x Lw 

     = 0.75 x 0.707 x 0.25 x 0.60 x 70 x 10 = 55.67 kips 

 Base Metal strength = φ x 0.6 x Fy x Lw x t 

  = 0.9 x 0.6 x 50 x 10 x 3/8 = 101.25 kips 
 
Step III. Tension strength of the member 

 φ Rn = 0.9 x 50 x 4 x 3/8 = 67.5 kips   - tension yield 

 φ Rn = 0.75 x Ae x 65      - tension fracture 
 

Ae = U A 
 
A = Ag = 4 x 3/8 = 1.5 in2     - See Spec. B3 
 
U = 0.75  , since connection length (Lconn) < 1.5 w - See Spec. B3 
 
Therefore, φ Rn = 54.8 kips 

 
The design strength of the member-connection system = 54.8 kips. Tension fracture of the 

member governs. The end returns at the corners were not included in the calculations. 
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Example 6.2 Design a double angle tension member and connection system to carry a factored 

load of 250 kips. 

Solution 

Step I. Assume material properties

 Assume 36 ksi steel for designing the member and the gusset plates.  

 Assume E70XX electrode for the fillet welds. 

Step II. Design the tension member

 From Table 3-7 on page 3-32 of the AISC manual, select 2L 5 x 3½  x 1/2 made from 36 ksi 

steel with yield strength = 259 kips and fracture strength = 261 kips. 

Step III. Design the welded connection

 amin = 3/16 in.      - Table J2.4 

amax = 1/2 - 1/16 in. = 7/16 in.    - J2.2b 

Design, a = 3/8 in. = 0.375 in. 

 Shear strength of weld metal = φ Rn  = 0.75 x 0.60 x FEXX x 0.707 x a x Lw 

    = 8.35 Lw kips 

 Strength of the base metal in shear = φ Rn = 0.9 x 0.6 x Fy x t x Lw 

  = 9.72 Lw kips 

 Shear strength of weld metal governs, φ Rn = 8.35 Lw kips 

 φ Rn > 250 kips 

∴  8.35 Lw > 250 kips 

∴  Lw > 29.94 in. 

Design, length of 1/2 in. E70XX fillet weld = 30.0 in. 

 Shear strength of fillet weld = 250.5 kips 
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Step IV. Layout of Connection 

Welding on both 
sides of gusset. L1 a

L2

2a

L3

(a)

(b)

(c)

Welding on both 
sides of gusset.
Welding on both 
sides of gusset. L1 a

L2

2a

L3

L1 aL1 aL1 a

L2

2a

L2L2

2a

L3L3L3

(a)

(b)

(c)

 

 Length of weld required = 30 in. 

Since there are two angles to be welded to the gusset plate, assume that total weld length for  

each angle will be 15.0 in.  

 As shown in the Figure above, 15 in. of 1/2 in. E70XX fillet weld can be placed in three 

ways (a), (b), and (c). 

- For option (a), the AISC Spec. J2.2b requires that the fillet weld terminate at a distance 

greater than the size (1/2 in.) of the weld. For this option, L1 will be equal to 7.5 in. 

- For option (b), the AISC Spec. J2.2b requires that the fillet weld be returned 

continuously around the corner for a distance of at least 2 a (1 in.). For this option, L2 can 

be either 6.5 in. or 7.5 in. However, the value of 7.5 in. is preferred. 

- For option (c), L3 will be equal to 5.75 in. 

 10



CE 405: Design of Steel Structures – Prof. Dr. A. Varma 

Step V. Fracture strength of the member

• Ae = U Ag   

For the double angle section, use the value of x from Table 1-7 on page 1-37 of manual. 

 Option U = 
L
x1−  

(a) 1-0.901/7.5 = 0.88 ≤ 0.9 

(b) 1-0.901/6.5 =0.86 ≤ 0.9 

(c) 1-0.901/5.75 = 0.84 ≤ 0.9 

c.g.

x

c.g.

x

 

 

 

 

 

Assume case (a). Therefore, U =0.88 

φ Rn = 0.75 x 0.88 x 8.00 x 58 = 306.24 kips  > 250 kips - fracture limit state is ok! 

Step VI. Design the gusset plate 

φ Rn > Tu     - tension yielding limit state 

Therefore,  0.9 x Ag x 36 > 250 kips 

  Ag > 7.71 in2 

φ Rn > Tu     - tension fracture limit state 

Therefore, 0.75 x An x Fu > 250 kips 

  An ≤ 0.85 Ag   - Spec. J5 

  An > 5.747 in2  Therefore, Ag > 6.76 in2

Design gusset plate thickness 

= 1.0 in. a

1/2 7.5 in. (a)
1/2 7.5 in.

1/2 7.5 in.
1/2 7.5 in.

Gusset plate 8 x ½ in.

Two 5 x 3.5 x 1/2 in

1/2 7.5 in. (a)
1/2 7.5 in.

1/2 7.5 in.
1/2 7.5 in.

Gusset plate 8 x ½ in.

Two 5 x 3.5 x 1/2 in

nd width = 8.0 in. 
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