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CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS (Continued)

Times conversion factor
U.S. Customary unit

Accurate Practical
Equals SI unit

Moment of inertia (area)
inch to fourth power in.4 416,231 416,000 millimeter to fourth

power mm4

inch to fourth power in.4 0.416231 10 6 0.416 10 6 meter to fourth power m4

Moment of inertia (mass)
slug foot squared slug-ft2 1.35582 1.36 kilogram meter squared kg·m2

Power
foot-pound per second ft-lb/s 1.35582 1.36 watt (J/s or N·m/s) W
foot-pound per minute ft-lb/min 0.0225970 0.0226 watt W
horsepower (550 ft-lb/s) hp 745.701 746 watt W

Pressure; stress
pound per square foot psf 47.8803 47.9 pascal (N/m2) Pa
pound per square inch psi 6894.76 6890 pascal Pa
kip per square foot ksf 47.8803 47.9 kilopascal kPa
kip per square inch ksi 6.89476 6.89 megapascal MPa

Section modulus
inch to third power in.3 16,387.1 16,400 millimeter to third power mm3

inch to third power in.3 16.3871 10 6 16.4 10 6 meter to third power m3

Velocity (linear)
foot per second ft/s 0.3048* 0.305 meter per second m/s
inch per second in./s 0.0254* 0.0254 meter per second m/s
mile per hour mph 0.44704* 0.447 meter per second m/s
mile per hour mph 1.609344* 1.61 kilometer per hour km/h

Volume
cubic foot ft3 0.0283168 0.0283 cubic meter m3

cubic inch in.3 16.3871 10 6 16.4 10 6 cubic meter m3

cubic inch in.3 16.3871 16.4 cubic centimeter (cc) cm3

gallon (231 in.3) gal. 3.78541 3.79 liter L
gallon (231 in.3) gal. 0.00378541 0.00379 cubic meter m3

*An asterisk denotes an exact conversion factor 
Note: To convert from SI units to USCS units, divide by the conversion factor
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Preface to the SI Edition

This edition of Engineering Mechanics: Statics has been adapted to incorpo-
rate the International System of Units (Le Système International d’Unités or SI)
throughout the book.

Le Système International d’Unités

The United States Customary System (USCS) of units uses FPS (foot-pound-
second) units (also called English or Imperial units). SI units are primarily the
units of the MKS (meter-kilogram-second) system. However, CGS (centimeter-
gram-second) units are often accepted as SI units, especially in textbooks.

Using SI Units in this Book

In this book, we have used both MKS and CGS units. USCS units of FPS units
used in the US Edition of the book have been converted to SI units throughout the
text and problems. However, in case of data sourced from handbooks, government
standards, and product manuals, it is not only extremely difficult to convert all
values to SI, it also encroaches upon the intellectual property of the source. Also,
some quantities such as the ASTM grain size number and Jominy distances are
generally computed in FPS units and would lose their relevance if converted to
SI. Some data in figures, tables, examples, and references, therefore, remains in
FPS units. For readers unfamiliar with the relationship between the FPS and the
SI systems, conversion tables have been provided inside the front and back covers
of the book.

To solve problems that require the use of sourced data, the sourced values
can be converted from FPS units to SI units just before they are to be used in a
calculation. To obtain standardized quantities and manufacturers’ data in SI units,
the readers may contact the appropriate government agencies or authorities in
their countries/regions.

Instructor Resources

A Printed Instructor’s Solution Manual in SI units is available on request. An
electronic version of the Instructor’s Solutions Manual and PowerPoint slides of
the figures from the SI text are available through www.cengage.com/engineering.

The readers’ feedback on this SI Edition will be highly appreciated and will
help us improve subsequent editions.

The Publishers

x

www.cengage.com/engineering


Preface

Statics and dynamics are basic subjects in the general field known as engi-
neering mechanics. At the risk of oversimplifying, engineering mechanics is
that branch of engineering that is concerned with the behavior of bodies under
the action of forces. Statics and dynamics form the basis for many of the tradi-
tional fields of engineering, such as automotive engineering, civil engineering,
and mechanical engineering. In addition, these subjects often play fundamen-
tal roles when the principles of mechanics are applied to such diverse fields
as medicine and biology. Applying the principles of statics and dynamics to
such a wide range of applications requires reasoning and practice rather than
memorization. Although the principles of statics and dynamics are relatively
few, they can only be truly mastered by studying and analyzing problems.
Therefore, all modern textbooks, including ours, contain a large number of
problems to be solved by the student. Learning the engineering approach to
problem solving is one of the more valuable lessons to be learned from the
study of statics and dynamics.

We have made every effort to improve our presentation without compro-
mising the following principles that formed the basis of the previous editions.

• Each sample problem is carefully chosen to help students master the
intricacies of engineering problem analysis.

• The selection of homework problems is balanced between “textbook”
problems that illustrate the principles of engineering mechanics in a
straight-forward manner, and practical engineering problems that are
applicable to engineering design.

• The importance of correctly drawn free-body diagrams is emphasized
throughout.

• We continue to present equilibrium analysis in three separate articles,
each followed by a set of problems. The first article teaches the method
for drawing free-body diagrams. The second shows how to write and
solve the equilibrium equations using a given free-body diagram. The
third article combines the two techniques just learned to arrive at a
logical plan for the complete analysis of an equilibrium problem.

• Whenever applicable, the number of independent equations is compared
to the number of unknown quantities before the governing equations are
written.

• Review Problems appear at the end of chapters to encourage students to
synthesize the individual topics they have been learning.

xi



xii Preface

We have included several optional topics, which are marked with an
asterisk (*). Due to time constraints, topics so indicated can be omitted with-
out jeopardizing the presentation of the subject. An asterisk is also used to
indicate problems that require advanced reasoning. Articles, sample prob-
lems, and problems associated with numerical methods are preceded by an
icon representing a computer disk.

In this third edition, we have made a number of significant improve-
ments based upon the feedback received from students and faculty who have
used the previous editions. In addition, we have incorporated many of the
suggestions provided by the reviewers of the second edition.

A number of articles have been reorganized, or rewritten, to make the
topics easier for the student to understand. For example, our presentation of
beam analysis in Chapter 6 has been completely rewritten and includes both
revised sample problems and revised problems. Our discussion of beams now
more clearly focuses upon the methods and terminology used in the engineer-
ing analysis and design of beams. Also, the topic of rolling resistance has been
added to Chapter 7. Furthermore, our discussion of virtual displacements in
Chapter 10 has been made more concise and therefore will be easier for the
students to understand. New to this edition, sections entitled Review of Equa-
tions have been added at the end of each chapter as a convenience for students
as they solve the problems.

The total numbers of sample problems and problems remain about the
same as in the previous edition; however, the introduction of two colors
improves the overall readability of the text and artwork. Compared with the
previous edition, approximately one-third of the problems is new, or has been
modified.

Ancillary Study Guide to Accompany Pytel and Kiusalaas Engineering
Mechanics, Statics, Third Edition, J.L. Pytel and A. Pytel, 2010. The goals
of this study guide are two-fold. First, self-tests are included to help the stu-
dent focus on the salient features of the assigned reading. Second, the study
guide uses “guided” problems that give the student an opportunity to work
through representative problems, before attempting to solve the problems in
the text.

Acknowledgments We are grateful to the following reviewers for their
valuable suggestions:

K.L. Devries, University of Utah
Kurt Gramoll, University of Oklahoma
Scott L. Hendricks, Virginia Tech
Laurence Jacobs, Georgia Institute of Technology
Chad M. Landis, Rice University
Jim G. LoCascio, California Polytechnic State University,

San Luis Obispo
Thomas H. Miller, Oregon State University
Robert G. Oakberg, Montana State University
Scott D. Schiff, Clemson University

ANDREW PYTEL

JAAN KIUSALAAS



1
Introduction to Statics

The Flemish mathematician
and engineer Simon Stevinus
(1548–1620) was the first to
demonstrate resolution of forces,
thereby establishing the
foundation of modern statics.
© Bettmann/CORBIS

1.1 Introduction

a. What is engineering mechanics?

Statics and dynamics are among the first engineering topics encountered by most
students. Therefore, it is appropriate that we begin with a brief exposition on the
meaning of the term engineering mechanics and on the role that these courses
play in engineering education. Before defining engineering mechanics, we must
first consider the similarities and differences between physics and engineering.

In general terms, physics is the science that relates the properties of matter
and energy, excluding biological and chemical effects. Physics includes the study

1



2 CHAPTER 1 Introduction to Statics

of mechanics,* thermodynamics, electricity and magnetism, and nuclear physics.
On the other hand, engineering is the application of the mathematical and physical
sciences (physics, chemistry, and biology) to the design and manufacture of items
that benefit humanity. Design is the key concept that distinguishes engineers from
scientists. According to the Accreditation Board for Engineering and Technology
(ABET), engineering design is the process of devising a system, component, or
process to meet desired needs.

Mechanics is the branch of physics that considers the action of forces on bod-
ies or fluids that are at rest or in motion. Correspondingly, the primary topics
of mechanics are statics and dynamics. The first topic that you studied in your
initial physics course, in either high school or college, was undoubtedly mechan-
ics. Thus, engineering mechanics is the branch of engineering that applies the
principles of mechanics to mechanical design (i.e., any design that must take
into account the effect of forces). The primary goal of engineering mechanics
courses is to introduce the student to the engineering applications of mechanics.
Statics and Dynamics are generally followed by one or more courses that intro-
duce material properties and deformation, usually called Strength of Materials
or Mechanics of Materials. This sequence of courses is then followed by formal
training in mechanical design.

Of course, engineering mechanics is an integral component of the education
of engineers whose disciplines are related to the mechanical sciences, such as
aerospace engineering, architectural engineering, civil engineering, and mechan-
ical engineering. However, a knowledge of engineering mechanics is also useful
in most other engineering disciplines, because there, too, the mechanical behav-
ior of a body or fluid must often be considered. Because mechanics was the first
physical science to be applied to everyday life, it follows that engineering mechan-
ics is the oldest branch of engineering. Given the interdisciplinary character of
many engineering applications (e.g., robotics and manufacturing), a sound train-
ing in engineering mechanics continues to be one of the more important aspects
of engineering education.

b. Problem formulation and the accuracy of solutions

Your mastery of the principles of engineering mechanics will be reflected in your
ability to formulate and solve problems. Unfortunately, there is no simple method
for teaching problem-solving skills. Nearly all individuals require a considerable
amount of practice in solving problems before they begin to develop the analytical
skills that are so necessary for success in engineering. For this reason, a relatively
large number of sample problems and homework problems are placed at strategic
points throughout this text.

To help you develop an “engineering approach” to problem analysis, you will
find it instructive to divide your solution for each homework problem into the
following parts:

1. GIVEN: After carefully reading the problem statement, list all the data
provided. If a figure is required, sketch it neatly and approximately to scale.

2. FIND: State precisely the information that is to be determined.

*When discussing the topics included in physics, the term mechanics is used without a modifier. Quite
naturally, this often leads to confusion between “mechanics” and “engineering mechanics.”
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3. SOLUTION: Solve the problem, showing all the steps that you used in the
analysis. Work neatly so that your work can be easily followed by others.

4. VALIDATE: Many times, an invalid solution can be uncovered by simply
asking yourself, “Does the answer make sense?”

When reporting your answers, use only as many digits as the least accurate
value in the given data. For example, suppose that you are required to convert
12523 m and 12 cm (assumed to be accurate to four significant digits) to kilome-
ters. Using a calculator, you would divide 12523.12 by 100 m/km and report the
answer as 12.52 (four significant digits), although the quotient displayed on the
calculator would be 12.52312. Reporting the answer as 12.52312 implies that all
seven digits are significant, which is, of course, untrue. It is your responsibility
to round off the answer to the correct number of digits. In this text, you should
assume that given data are accurate to three significant digits unless stated other-
wise. For example, a length that is given as 3 m should be interpreted as 3.00 m.

When performing intermediate calculations, a good rule of thumb is to carry
one more digit than will be reported in the final answer; for example, use four-digit
intermediate values if the answer is to be significant to three digits. Furthermore,
it is common practice to report four digits if the first digit in an answer is 1; for
example, use 1.392 rather than 1.39.

1.2 Newtonian Mechanics

a. Scope of Newtonian mechanics

In 1687 Sir Isaac Newton (1642–1727) published his celebrated laws of motion
in Principia (Mathematical Principles of Natural Philosophy). Without a doubt,
this work ranks among the most influential scientific books ever published. We
should not think, however, that its publication immediately established classical
mechanics. Newton’s work on mechanics dealt primarily with celestial mechanics
and was thus limited to particle motion. Another two hundred or so years elapsed
before rigid-body dynamics, fluid mechanics, and the mechanics of deformable
bodies were developed. Each of these areas required new axioms before it could
assume a usable form.

Nevertheless, Newton’s work is the foundation of classical, or Newtonian,
mechanics. His efforts have even influenced two other branches of mechanics,
born at the beginning of the twentieth century: relativistic and quantum mechan-
ics. Relativistic mechanics addresses phenomena that occur on a cosmic scale
(velocities approaching the speed of light, strong gravitational fields, etc.). It
removes two of the most objectionable postulates of Newtonian mechanics: the
existence of a fixed or inertial reference frame and the assumption that time is an
absolute variable, “running” at the same rate in all parts of the universe. (There
is evidence that Newton himself was bothered by these two postulates.) Quantum
mechanics is concerned with particles on the atomic or subatomic scale. It also
removes two cherished concepts of classical mechanics: determinism and continu-
ity. Quantum mechanics is essentially a probabilistic theory; instead of predicting
an event, it determines the likelihood that an event will occur. Moreover, accord-
ing to this theory, the events occur in discrete steps (called quanta) rather than in
a continuous manner.
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Relativistic and quantum mechanics, however, have by no means invalidated
the principles of Newtonian mechanics. In the analysis of the motion of bodies
encountered in our everyday experience, both theories converge on the equations
of Newtonian mechanics. Thus the more esoteric theories actually reinforce the
validity of Newton’s laws of motion.

b. Newton’s laws for particle motion

Using modern terminology, Newton’s laws of particle motion may be stated as
follows:

1. If a particle is at rest (or moving with constant velocity in a straight line), it
will remain at rest (or continue to move with constant velocity in a straight
line) unless acted upon by a force.

2. A particle acted upon by a force will accelerate in the direction of the force.
The magnitude of the acceleration is proportional to the magnitude of the
force and inversely proportional to the mass of the particle.

3. For every action, there is an equal and opposite reaction; that is, the forces
of interaction between two particles are equal in magnitude and oppositely
directed along the same line of action.

Although the first law is simply a special case of the second law, it is customary
to state the first law separately because of its importance to the subject of statics.

c. Inertial reference frames

When applying Newton’s second law, attention must be paid to the coordinate
system in which the accelerations are measured. An inertial reference frame
(also known as a Newtonian or Galilean reference frame) is defined to be any
rigid coordinate system in which Newton’s laws of particle motion relative to that
frame are valid with an acceptable degree of accuracy. In most design applica-
tions used on the surface of the earth, an inertial frame can be approximated with
sufficient accuracy by attaching the coordinate system to the earth. In the study of
earth satellites, a coordinate system attached to the sun usually suffices. For inter-
planetary travel, it is necessary to use coordinate systems attached to the so-called
fixed stars.

It can be shown that any frame that is translating with constant velocity rela-
tive to an inertial frame is itself an inertial frame. It is a common practice to omit
the word inertial when referring to frames for which Newton’s laws obviously
apply.

d. Units and dimensions

The standards of measurement are called units. The term dimension refers to the
type of measurement, regardless of the units used. For example, kilogram and m/s
are units, whereas mass and length/time are dimensions. Throughout this text we
use SI system (from Système internationale d’unités). The base dimensions in the
SI system are mass [M], length [L], and time [T], and the base units are kilogram
(kg), meter (m), and second (s). All other dimensions or units are combinations
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of the base quantities. For example, the dimension of velocity is [L/T ], the units
being ft/s, m/s, and so on.

A system with the base dimensions [FLT] is called a gravitational system. If
the base dimensions are [MLT] (as in the SI system), the system is known as an
absolute system. In each system of measurement, the base units are defined by
physically reproducible phenomena or physical objects. For example, the second
is defined by the duration of a specified number of radiation cycles in a certain
isotope, the kilogram is defined as the mass of a certain block of metal kept near
Paris, France, and so on.

All equations representing physical phenomena must be dimensionally homo-
geneous; that is, each term of an equation must have the same dimension.
Otherwise, the equation will not make physical sense (it would be meaningless,
for example, to add a force to a length). Checking equations for dimensional
homogeneity is a good habit to learn, as it can reveal mistakes made during
algebraic manipulations.

e. Mass, force, and weight

If a force F acts on a particle of mass m, Newton’s second law states that

F=ma (1.1)

where a is the acceleration vector of the particle. For a gravitational [FLT] system,
dimensional homogeneity of Eq. (1.1) requires the dimension of mass to be

[M]=
[

FT2

L

]
(1.2a)

For an absolute [MLT] system of units, dimensional homogeneity of Eq. (1.1)
yields for the dimension of force

[F]=
[

ML

T 2

]
(1.2b)

The derived unit of force in the SI system is a newton (N), defined as the force
that accelerates a 1.0-kg mass at the rate of 1.0 m/s2. From Eq. (1.2b), we obtain

1.0 N= 1.0 kg ·m/s2

Weight is the force of gravitation acting on a body. Denoting gravitational
acceleration (free-fall acceleration of the body) by g, the weight W of a body of
mass m is given by Newton’s second law as

W =mg (1.3)
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Note that mass is a constant property of a body, whereas weight is a variable that
depends on the local value of g. The gravitational acceleration on the surface of
the earth is approximately 9.81 m/s2. Thus the mass of a body is 1.0 kg, its weight
on earth is (9.81 m/s2)(1.0 kg)= 9.81 N.

f. Conversion of units

A convenient method for converting a measurement from one set of units to
another is to multiply the measurement by appropriate conversion factors. For
example, to convert 360 km/h into m/s, we proceed as follows:

360 km/h= 360

/
km/
h
× 1.0

/
h

3600 s
× 1000 m

1.0
/

km
= 100 m/s

where the multipliers 1.0 h/3600 s and 1000 m/1.0 km are conversion factors.
Because 1.0 h = 3600 s and 1000 m = 1.0 km, we see that each conversion factor
is dimensionless and of magnitude 1. Therefore, a measurement is unchanged
when it is multiplied by conversion factors—only its units are altered. Note that
it is permissible to cancel units during the conversion as if they were algebraic
quantities.

Conversion factors applicable to mechanics are listed inside the front cover of
the book.

g. Law of gravitation

In addition to his many other accomplishments, Newton also proposed the law of
universal gravitation. Consider two particles of mass m A and m B that are sepa-
rated by a distance R, as shown in Fig. 1.1. The law of gravitation states that the

R

mA
F

F

mB

Fig. 1.1

two particles are attracted to each other by forces of magnitude F that act along
the line connecting the particles, where

F =G
m Am B

R2
(1.4)

The universal gravitational constant G is equal to 6.67 × 10−11 m3/(kg · s2).
Although this law is valid for particles, Newton showed that it is also applicable
to spherical bodies, provided that their masses are distributed uniformly. (When
attempting to derive this result, Newton was forced to develop calculus.)

If we let m A=Me (the mass of the earth), m B =m (the mass of a body), and
R= Re (the mean radius of the earth), then F in Eq. (1.4) will be the weight W
of the body. Comparing W =G Mem/R2

e with W =mg, we find that g=G Me/R2
e .

Of course, adjustments may be necessary in the value of g for some applications
in order to account for local variation of the gravitational attraction.



Sample Problem 1.1
Convert 2 × 105 N/mm2 to GPa (1 Pa= 1 N/m2).

Solution
Using the conversion factor listed above, we obtain

2× 105 N

mm2
=

2× 105
[

GN
109

]
[

m
1000

]2
=200 GN/m2

=200 GPa

Sample Problem 1.2
The acceleration a of a particle is related to its velocity v, its position coordinate x,
and time t by the equation

a= Ax3t + Bvt2 (a)

where A and B are constants. The dimension of the acceleration is length per
unit time squared; that is, [a]= [L/T 2]. The dimensions of the other variables are
[v]= [L/T ], [x]= [L], and [t]= [T ]. Derive the dimensions of A and B if Eq. (a)
is to be dimensionally homogeneous.

Solution
For Eq. (a) to be dimensionally homogeneous, the dimension of each term on
the right-hand side of the equation must be [L/T 2], the same as the dimension
for a. Therefore, the dimension of the first term on the right-hand side of Eq. (a)
becomes

[Ax3t]= [A][x3][t]= [A][L3][T ]=
[

L

T 2

]
(b)

Solving Eq.(b) for the dimension of A, we find

[A]= 1

[L3][T ]
[

L

T 2

]
= 1

[L2T 3] Answer

7



Performing a similar dimensional analysis on the second term on the right-
hand side of Eq. (a) gives

[Bvt2]= [B][v][t2]= [B]
[

L

T

]
[T 2]=

[
L

T 2

]
(c)

Solving Eq. (c) for the dimension of B, we find

[B]=
[

L

T 2

] [
T

L

] [
1

T 2

]
=
[

1

T 3

]
Answer

Sample Problem 1.3
Find the gravitational force exerted by the earth on a 70-kg man whose elevation
above the surface of the earth equals the radius of the earth. The mass and radius
of the earth are Me= 5.9742× 1024 kg and Re= 6378 km, respectively.

Solution
Consider a body of mass m located at the distance 2Re from the center of the
earth (of mass Me). The law of universal gravitation, from Eq. (11.4), states that
the body is attracted to the earth by the force F given by

F =G
m Me

(2Re)
2

where G= 6.67× 10−11 m3/(kg · s2) is the universal gravitational constant. Sub-
stituting the values for G and the given parameters, the earth’s gravitational force
acting on the 70-kg man is

F = (6.67× 10−11)
(70)(5.9742× 1024)

[2(6378× 103)]2 = 171.4 N Answer

8
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Problems

1.1 A person weighs 150 N on the moon, where g = 1.64 m/s2. Determine (a)
the mass of the person and (b) the weight of the person on earth.

1.2 The radius and length of a steel cylinder are 60 mm and 120 mm, respec-
tively. If the mass density of steel is 7850 kg/m3, determine the weight of the
cylinder.

1.3 Convert the following: (a) 40,000 N · cm to kN · m (b) 6 m/s to mm/h (c) 1
bar (= 105 Pa) to kPa and (d) 500 g/mm to kg/m.

1.4 The mass moment of inertia of a certain body is I = 1035285.8 g · mm2.
Express I in kg · m2 up to 4 significant digits.

1.5 The kinetic energy of a car of mass m moving with velocity v is E = mv2/2.
If m = 1000 kg and v = 6 m/s, compute E in kN ·m.

1.6 In a certain application, the acceleration a and the position coordinate x of
a particle are related by

a= gkx

W

where g is the gravitational acceleration, k is a constant, and W is the weight of
the particle. Show that this equation is dimensionally consistent if the dimension
of k is [MT−2].

1.7 When a force F acts on a linear spring, the elongation x of the spring is
given by F = kx , where k is called the stiffness of the spring. Determine the
dimension of k in terms of the base dimensions of an absolute [MLT] system
of units.

1.8 In some applications dealing with very high speeds, the velocity is measured
in mm/μs. Convert 25 mm/μs into m/s.

1.9 A geometry textbook gives the equation of a parabola as y= x2, where x
and y are measured in m. How can this equation be dimensionally correct?

1.10 The mass moment of inertia I of a homogeneous sphere about its diameter
is I = (2/5)m R2, where m and R are its mass and radius, respectively. Find the
dimension of I in terms of the absolute [MLT] system.

1.11 The position coordinate x of a particle is determined by its velocity v and
the elapsed time t as follows: (a) x = At2−Bvt ; and (b) x = Avte−Bt . Determine
the dimensions of constants A and B in each case, assuming the expressions to be
dimensionally correct.
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∗1.12 In a certain vibration problem the differential equation describing the
motion of a particle of mass m is

m
d2x

dt2
+ c

dx

dt
+ kx = P0 sin ωt

where x is the displacement of the particle and t is time. What are the dimensions
of the constants c, k, P0, and ω in terms of the base dimensions of an absolute
[MLT] system?

1.13 Using Eq. (1.4), derive the dimensions of the universal gravitational
constant G in terms of the base dimensions of an absolute [MLT] system.

1.14 The typical power output of a compact car engine is 120 hp. What is the
equivalent power in kW?

1.15 Two 10-kg spheres are placed 500 mm apart. Express the gravitational
attraction acting on one of the spheres as a percentage of its weight on earth.

1.16 Two identical spheres of radius 80 mm. and mass 2 kg on the surface of the
earth are placed in contact. Find the gravitational attraction between them.

Use the following data for Problems 1.17–1.21: mass of earth = 5.9742×1024 kg,
radius of earth = 6378 km, mass of moon = 0.073 483 × 1024 kg, radius of
moon = 1737 km.

1.17 A man weighs 900 N on the surface of the earth. Compute his weight in an
airplane flying at an elevation of 9000 m.

1.18 Use Eq. (1.4) to show that the weight of an object on the moon is
approximately 1/6 its weight on earth.

1.19 Plot the earth’s gravitational acceleration g (m/s2) against the height h (km)
above the surface of the earth.

1.20 Find the elevation h (km) where the weight of an object is one-tenth its
weight on the surface of the earth.

1.21 Calculate the gravitational force between the earth and the moon in
newtons. The distance between the earth and the moon is 384× 103 km.

1.3 Fundamental Properties of Vectors

A knowledge of vectors is a prerequisite for the study of statics. In this article,
we describe the fundamental properties of vectors, with subsequent articles dis-
cussing some of the more important elements of vector algebra. (The calculus
of vectors will be introduced as needed in Dynamics.) We assume that you are
already familiar with vector algebra—our discussion is intended only to be a
review of the basic concepts.
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The differences between scalar and vector quantities must be understood:

A scalar is a quantity that has magnitude only. A vector is a quantity
that possesses magnitude and direction and obeys the parallelogram law for
addition.

Because scalars possess only magnitudes, they are real numbers that can be
positive, negative, or zero. Physical quantities that are scalars include temperature,
time, and speed. As shown later, force, velocity, and displacement are examples
of physical quantities that are vectors. The magnitude of a vector is always taken
to be a nonnegative number. When a vector represents a physical quantity, the
units of the vector are taken to be the same as the units of its magnitude (pounds,
meters per second, feet, etc.).

The algebraic notation used for a scalar quantity must, of course, be different
from that used for a vector quantity. In this text, we adopt the following conven-
tions: (1) scalars are written as italicized English or Greek letters—for example,
t for time and θ for angle; (2) vectors are written as boldface letters—for example,
F for force; and (3) the magnitude of a vector A is denoted as |A| or simply as A
(italic).

There is no universal method for indicating vector quantities when writing

by hand. The more common notations are
−→
A , A−→, A, and A. Unless instructed

otherwise, you are free to use the convention that you find most comfortable.
However, it is imperative that you take care to always distinguish between scalars
and vectors when you write.

The following summarizes several important properties of vectors.

Vectors as Directed Line Segments Any vector A can be represented geo-
metrically as a directed line segment (an arrow), as shown in Fig. 1.2(a). The
magnitude of A is denoted by A, and the direction of A is specified by the sense
of the arrow and the angle θ that it makes with a fixed reference line. When using
graphical methods, the length of the arrow is drawn proportional to the magnitude
of the vector. Observe that the representation shown in Fig. 1.2(a) is complete
because both the magnitude and direction of the vector are indicated. In some
instances, it is also convenient to use the representation shown in Fig. 1.2(b),
where the vector character of A is given additional emphasis by using boldface.
Both of these representations for vectors are used in this text.

A

θ θ

A

Fixed reference line

(a) (b)

Fig. 1.2

We see that a vector does not possess a unique line of action, because moving
a vector to a parallel line of action changes neither its magnitude nor its direction.
In some engineering applications, the definition of a vector is more restrictive to
include a line of action or even a point of application—see Art. 2.2.
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Equality of Vectors Two vectors A and B are said to be equal, written as A = B,
if (1) their magnitudes are equal—that is, A = B, and (2) they have the same
direction.

Scalar-Vector Multiplication The multiplication of a scalar m and a vector A,
written as mA or as Am, is defined as follows.

1. If m is positive, mA is the vector of magnitude mA that has the same direction
as A.

2. If m is negative, mA is the vector of magnitude |m|A that is oppositely directed
to A.

3. If m= 0, mA (called the null or zero vector) is a vector of zero magnitude and
arbitrary direction.

For m= − 1, we see that (−1)A is the vector that has the same magnitude as A
but is oppositely directed to A. The vector (−1)A, usually written as−A, is called
the negative of A.

Unit Vectors A unit vector is a dimensionless vector with magnitude 1. There-
fore, if λ represents a unit vector (|λ| = 1) with the same direction as A, we can
write

A= Aλ

This representation of a vector often is useful because it separates the magnitude
A and the direction λ of the vector.

The Parallelogram Law for Addition and the Triangle Law The addition of two
vectors A and B is defined to be the vector C that results from the geometric con-
struction shown in Fig. 1.3(a) . Observe that C is the diagonal of the parallelogram

B

A

C = A
 + B

(a) Parallelogram law

B

(b) Triangle law

A

C = A + B

Fig. 1.3

formed by A and B. The operation depicted in Fig. 1.3(a), written as A + B =
C, is called the parallelogram law for addition. The vectors A and B are referred
to as components of C, and C is called the resultant of A and B. The process of
replacing a resultant with its components is called resolution. For example, C in
Fig. 1.3(a) is resolved into its components A and B.

An equivalent statement of the parallelogram law is the triangle law, which
is shown in Fig. 1.3(b). Here the tail of B is placed at the tip of A, and C is the
vector that completes the triangle, drawn from the tail of A to the tip of B. The
result is identical if the tail of A is placed at the tip of B and C is drawn from the
tail of B to the tip of A.

Letting E, F, and G represent any three vectors, we have the following two
important properties (each follows directly from the parallelogram law):

• Addition is commutative: E + F = F + E
• Addition is associative: E + (F + G) = (E + F) + G

It is often convenient to find the sum E + F + G (no parentheses are needed)
by adding the vectors from tip to tail, as shown in Fig. 1.4. The sum of the three
vectors is seen to be the vector drawn from the tail of the first vector (E) to the
tip of the last vector (G). This method, called the polygon rule for addition, can
easily be extended to any number of vectors.
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F

E

E + F

E + F + G

G

Fig. 1.4

The subtraction of two vectors A and B, written as A − B, is defined as
A − B = A + (−B), as shown in Fig. 1.5.

A
 – B

–B

B

A

Fig. 1.5

Because of the geometric nature of the parallelogram law and the triangle law,
vector addition can be accomplished graphically. A second technique is to deter-
mine the relationships between the various magnitudes and angles analytically
by applying the laws of sines and cosines to a sketch of the parallelogram
(or the triangle)—see Table 1.1. Both the graphical and the analytical methods
are illustrated in Sample Problem 1.4.

a

c

b

β
α

γ

Law of sines
a

sin α
= b

sin β
= c

sin γ

a2 = b2 + c2 − 2bc cos α

Law of cosines b2 = c2 + a2 − 2ca cos β

c2 = a2 + b2 − 2ab cos γ

Table 1.1

Some words of caution: It is unfortunate that the symbols +, −, and = are
commonly used in both scalar algebra and vector algebra, because they have
completely different meanings in the two systems. For example, note the dif-
ferent meanings for + and = in the following two equations: A + B = C and
1 + 2 = 3. In computer programming, this is known as operator overloading,
where the rules of the operation depend on the operands involved in the process.
Unless you are extremely careful, this double meaning for symbols can easily lead
to invalid expressions—for example, A+ 5 (a vector cannot be added to a scalar!)
and A = 1 (a vector cannot equal a scalar!).



Sample Problem 1.4
Figure (a) shows two position vectors of magnitudes A= 60 m and B= 100 m.
(A position vector is a vector drawn between two points in space.) Determine
the resultant R = A + B using the following methods: (1) analytically, using the
triangle law; and (2) graphically, using the triangle law.

70°

10
0 

m

B

30°

A

60 m

(a)

Solution
Part 1

The first step in the analytical solution is to draw a sketch (approximately to scale)
of the triangle law. The magnitude and direction of the resultant are then found by
applying the laws of sines and cosines to the triangle.

In this problem, the triangle law for the vector addition of A and B is shown
in Fig. (b). The magnitude R of the resultant and the angle α are the unknowns to

30°

α

70°

(b)

140°

R B
=

10
0 

m

A = 60 m

be determined. Applying the law of cosines, we obtain

R2= 602 + 1002 − 2(60)(100) cos 140◦

which yields R= 151.0 m.
The angle α can now be found from the law of sines:

100

sin α
= R

sin 140◦

Substituting R= 151.0 m and solving for α, we get α = 25.2◦. Referring to
Fig. (b), we see that the angle that R makes with the horizontal is 30◦ +α= 30◦ +
25.2◦ = 55.2◦. Therefore, the resultant of A and B is

R = 151.0 m

55.2°
Answer

14



Part 2

In the graphical solution, Fig. (b) is drawn to scale with the aid of a ruler and
a protractor. We first draw the vector A at 30◦ to the horizontal and then append
vector B at 70◦ to the horizontal. The resultant R is then obtained by drawing a
line from the tail of A to the head of B. The magnitude of R and the angle it makes
with the horizontal can now be measured directly from the figure.

Of course, the results would not be as accurate as those obtained in the ana-
lytical solution. If care is taken in making the drawing, two-digit accuracy is the
best we can hope for. In this problem we should get R ≈ 150 m, inclined at 55◦
to the horizontal.

Sample Problem 1.5
The vertical force P of magnitude 100 kN is applied to the frame shown in Fig. (a).
Resolve P into components that are parallel to the members AB and AC of
the truss.

A

P

70°

35°

B

C

(a)

PAB

PAC

110°

70°

35°

35°

(b)

P
=

10
0 

kN

Solution
The force triangle in Fig. (b) represents the vector addition P = PAC + PAB. The
angles in the figure were derived from the inclinations of AC and AB with the
vertical: PAC is inclined at 35◦ (parallel to AC), and PAB is inclined at 70◦ (parallel
to AB). Applying the law of sines to the triangle, we obtain

100

sin 35◦
= PAB

sin 35◦
= PAC

sin 110◦

which yields for the magnitudes of the components

PAB= 100.0 kN PBC = 163.8 kN Answer

15
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Problems

Solve the problems in this set analytically, unless a graphical solution is specified
by your instructor.

1.22 The magnitudes of the two velocity vectors are v1 = 3 m/s and v2 = 2 m/s.

60°

v1

v2

30°

Fig. P1.22, P1.23

Determine their resultant v = v1 + v2.

1.23 Determine the magnitudes of vectors v1 and v2 so that their resultant is a
horizontal vector of magnitude 4 m/s directed to the right.

1.24 The total aerodynamic force F acting on the airplane has a magnitude of

6°
F

Fig. P1.24

6250 N. Resolve this force into vertical and horizontal components (called the lift
and the drag, respectively).

1.25 Resolve the 200-N force into components along (a) the x- and y-axes and

200 N

x

x'

20°

30°

y

Fig. P1.25

(b) the x ′- and y-axes.

1.26 The velocity vector of the boat has two components: v1 is the velocity of
the water, and v2 is the velocity of the boat relative to the water. If v1 = 3 Km/h
and v2 = 5 Km/h, determine the velocity vector of the boat.

v2

v1

40°

Fig. P1.26

1.27 The two tugboats apply the forces P and Q to the barge, where P = 76 kN
and Q= 52 kN. Determine the resultant of P and Q.

16 m

32 m

24 m

12 m

P

Q

Fig. P1.27
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1.28 The 500-N weight is supported by two cables, the cable forces being F1 F2F1

35° 50°

500 N

y

Fig. P1.28

and F2. Knowing that the resultant of F1 and F2 is a force of magnitude 500 N
acting in the y-direction, determine F1 and F2.

1.29 Determine the resultant of the position vectors A and B.

3 m
1.0 m

3 m

B

A

2 m 3500 m

20
00

 m

CO

B

A

65°

Fig. P1.29 Fig. P1.30

1.30 Resolve the position vector A of the car (measured from fixed point O)
into components parallel to OB and OC.

1.31 Resolve the 360-N force into components along the cables AB and AC. Use

A

B C

βα

360 N

Fig. P1.31, P1.32

α= 55◦ and β = 30◦.

1.32 The supporting cables AB and AC are oriented so that the components of
the 360-N force along AB and AC are 185 N and 200 N, respectively. Determine
the angles α and β.

1.33 The two forces shown act on the structural member AB. Determine the
magnitude of P such that the resultant of these forces is directed along AB.

70°

40°60°

B

A

P
5 kN

60°
P

500 lb

T

W

θ

Fig. P1.33 Fig. P1.34 Fig. P1.35

1.34 The resultant of the two forces has a magnitude of 650 N. Determine the
direction of the resultant and the magnitude of P.

1.35 The forces acting on the bob of the pendulum are its weight W (W = 2 N)
and the tension T in the cord. When the pendulum reaches the limit of its swing
at θ = 30◦, it can be shown that the resultant of W and T is perpendicular to the
cord. Determine the magnitude of T in this position.

1.36 A surveyor sights a target at C from points A and B, recording the angles

North

East
63.8°42.5°

a

200 m

b

C

A B

Fig. P1.36shown. Determine the magnitudes of the position vectors a and b.
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1.37 Determine the following resultants of the position vectors given in theA

C

B

4 m

5 m
3 m

 
Fig. P1.37

figure, and show the results in a sketch of the “box”: (a) A+ B; and (b) B+ C.

∗1.38 To move the oil drum, the resultant of the three forces shown must have
a magnitude of 500 N. Determine the magnitude and direction of the smallest
force F that would cause the drum to move.

250 N

300 N

OIL 25°

F

Fig. P1.38

1.39 The resultant of the 50-N and 30-N forces is R. If R = 65 N, determine

α
β

R

30 N

50 N

Fig. P1.39

the angles α and β.

1.4 Representation of Vectors Using
Rectangular Components

The fundamental properties of vectors discussed in the preceding article are
independent of coordinate systems. However, in engineering applications, it is
customary to describe vectors using their rectangular components and then to
perform vector operations, such as addition, in terms of these components.

a. Rectangular components and direction cosines

The reference frame we use throughout this book is shown in Fig. 1.6(a).
It is a right-handed, rectangular Cartesian coordinate system. To test for
right-handedness, curl the fingers of your right hand and extend your thumb, as
shown in the figure. The coordinate axes now should line up with your hand as

y
j

k

i

(a)
x

z

(b)

A

x

Axi

Azk

Ayjθx θy

λ

θz

z

y

Fig. 1.6
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follows: the palm is parallel to the x-direction, the fingers point in the y-direction,
and the thumb lies in the z-direction. Figure 1.6(a) also shows the base vectors i, j,
and k of the coordinate system. They are dimensionless vectors of unit magnitude
directed in the positive coordinate directions.

If a vector A is resolved into its rectangular components, as illustrated in
Fig. 1.6(b), it can be written as

A = Ax i+ Ayj+ Azk (1.5)

where Ax i, Ayj, and Azk are the vector components of A. The scalar components
of A are

Ax = A cos θx Ay = A cos θy Az = A cos θz (1.6)

where θx , θy , and θz are the angles between A and the positive coordinate axes.
The scalar components can be positive or negative, depending upon whether the
corresponding vector component points in the positive or negative coordinate
direction. The magnitude of A is related to its scalar components by

A =
√

A2
x + A2

y + A2
z (1.7)

The direction of A customarily is specified by its direction cosines defined as

λx = cos θx λy = cos θy λz = cos θz (1.8)

The scalar components of A in Eq. (1.6) now become Ax = Aλx , Ay = Aλy ,
and Az = Aλz , so Eq. (1.5) takes the form

A = A(λx i+ λyj+ λzk) = Aλ (1.9)

where

λ = λx i+ λyj+ λzk (1.10)

is a unit vector in the direction of A, as shown in Fig. 1.6(b). Because the
magnitude of λ is one, its components satisfy the identity

λ2
x + λ2

y + λ2
z = 1 (1.11)
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b. Vector addition using rectangular components

Consider the two vectors A= Ax i+ Ayj+ Azk and B= Bx i+ Byj+ Bzk. Letting
C be the sum of A and B, we have

C=A+ B= (Ax i+ Ayj+ Azk)+ (Bx i+ Byj+ Bzk)

which can be written as

C = Cx i+ Cyj+ Czk

= (Ax + Bx )i+ (Ay + By)j+ (Az + Bz)k (1.12)

Equating like components, we find that the rectangular components of C are

Cx = Ax + Bx Cy = Ay + By Cz = Az + Bz (1.13)

Equations (1.13) show that each component of the sum equals the sum of the
components. This result is depicted in Fig. 1.7, where, for simplicity’s sake, the
xy-plane has been chosen as a plane that contains the vectors A and B. Equations
(1.12) and (1.13) can, of course, be extended to include the sum of any number of
vectors.

Ax

A

B

Ay
x

By

y

O
Bx

C =
 A

+B

C
y 

=
 A

y
+

 B
y

Cx = Ax + Bx

Fig. 1.7

c. Relative position vectors

The vector drawn from the origin O of a coordinate system to point B, denoted

by
−→
OB, is called the position vector of B. The vector

−→
AB, drawn from point A to

point B, is called the position vector of B relative to A. (Note that the position
vector of B relative to A is the negative of the position vector of A relative to B;

that is,
−→
AB= −−→BA.)

Figure 1.8 shows the relative position vector
−→
AB: the vector drawn from

A (xA, yA, z A) to B (xB, yB, zB). The rectangular representation of this vector is

−→
AB= (xB − xA)i+ (yB − yA)j+ (zB − z A)k (1.14)
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B

d

AB

λ

A

yB – yA

z B
–

z A

x B
– x A

z

x

y

Fig. 1.8

The magnitude of
−→
AB (the distance d in Fig. 1.8) is

|−→AB| = d =
√

(xB − xA)2 + (yB − yA)2 + (zB − z A)2 (1.15)

The unit vector λ in the direction of
−→
AB can be found by dividing the vector

−→
AB

by its magnitude:

λ=
−→
AB

|−→AB|
= (xB − xA)i+ (yB − yA)j+ (zB − z A)k

d
(1.16)

Therefore, the components of λ are

λx = xB − xA

d
λy = yB − yA

d
λz = zB − z A

d
(1.17)

d. How to write a vector in rectangular form

In statics, we frequently encounter the following problem: Given the magnitude
of a vector and two points on its line of action, determine the rectangular repre-
sentation of the vector. Figure 1.9 shows a vector F that acts along the line AB.

B

λ

A

F
=

Fλz

x

y

Fig. 1.9

Suppose that the magnitude of F and the coordinates of A and B are known, and
we want to write the vector F in the rectangular form F = Fx i+ Fyj+ Fzk. The
recommended procedure is

1. Write the relative position vector
−→
AB. The rectangular components of

−→
AB can

be obtained by inspection of a sketch similar to Fig. 1.9 or by substituting the
coordinates of points A and B into Eq. (1.14).

2. Evaluate the unit vector λ = −→AB/|−→AB|.
3. Write F in the rectangular form

F = Fλ = F
(
λx i+ λyj+ λzk

)
(1.18)



Sample Problem 1.6
The cable attached to the eyebolt in Fig. (a) is pulled with the force F of magnitude
500 N. Determine the rectangular representation of this force.

(a)

6 m

3 m

4 m

F

z

BO
A

x

y

Solution
Because the coordinates of points A and B on the line of action of F are
known, the following is a convenient method for obtaining the rectangular
representation of F.

1. Write
−→
AB, the vector from A to B, in rectangular form.

The vector
−→
AB and its rectangular components are shown in Fig. (b). Two

x

y

z

4 m
6 m

B
3 m

A

AB

(b)

O

common errors made by students at this point are choosing the wrong signs
and mixing up the scalar components. You can avoid both of these difficul-
ties by taking the time to show the vector on a carefully drawn sketch of the
appropriate parallelepiped. From Fig. (b) we see that

−→
AB= − 4i+ 6j− 3k m

2. Evaluate λ, the unit vector from A toward B:

λ=
−→
AB

|−→AB|
= −4i+ 6j− 3k√

(−4)2 + 62 + (−3)2

= −0.5122i+ 0.7682j− 0.3841k

3. Write F= Fλ:

F = 500(−0.5122i+ 0.7682j− 0.3841k)

= −256i+ 384j− 192k N Answer

The rectangular components of F are shown in Fig. (c).(c)

x

y

z

256 N

192 N

A

384 N

O

22



Sample Problem 1.7
Referring to Fig. (a), determine (1) the rectangular representation of the position

30°

12
 m

40°

x

y

A 

z

O

(a)

vector A; and (2) the angles between A and each of the positive coordinate axes.

Solution
Part 1

We first resolve A into two components as shown in Fig. (b): Az along the z-axis

x

y

30°

40°

z

Axy = A sin 30°

(b)

A

A
z

=
A

 c
os

 3
0°

y

z

(c)

Ax = Axy cos 40°

Ay = Axy sin 40°

Axy

A
z =

 A
co

s3
0°

x

40°

and Axy in the xy-plane. (Once again we see that a carefully drawn sketch is an
essential aid in performing vector resolution.) Because A, Az , and Axy lie in the
same plane (a diagonal plane of the parallelepiped), we obtain by trigonometry

Az = A cos 30◦ = 12 cos 30◦ = 10.392 m

Axy = A sin 30◦ = 12 sin 30◦ = 6 m

The next step, illustrated in Fig. (c), is to resolve Axy into the components
along the coordinate axes:

Ax = Axy cos 40◦ = 6 cos 40◦ = 4.596 m

Ay = Axy sin 40◦ = 6 sin 40◦ = 3.857 m

Therefore, the rectangular representation of A is

A= Ax i+ Ayj+ Azk= 4.60i+ 3.86j+ 10.39k m Answer

Part 2

The angles between A and the coordinate axes can be computed from Eqs. (1.6):

θx = cos−1 Ax

A
= cos−1 4.596

12
= 67.5◦

θy = cos−1 Ay

A
= cos−1 3.857

12
= 71.3◦ Answer

θz = cos−1 Az

A
= cos−1 10.392

12
= 30.0◦

These angles are shown in Fig. (d). Note that it was not necessary to compute θz ,
because it was already given in Fig (a).

θz = 30°

x

y

A

z

(d)

 θy = 71.3°
θx = 67.5°
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Sample Problem 1.8
The pulley shown in Fig. (a) is subjected to the belt forces P and Q. Using
rectangular components, determine the magnitude and direction of the resultant
force.

(a)

30°

P = 120 N

Q = 100 N
70°

y

x

Solution
Referring to Fig. (b), the rectangular representations of P and Q are

P = 120 cos 30◦i+ 120 sin 30◦j= 103.9i+ 60.0j N

Q = −100 cos 70◦i− 100 sin 70◦j= − 34.2i− 94.0j N

y

x

(b)

70°

30°

Q = 100 N

P = 120 N

The resultant of P and Q is found by adding their components:

R=P+Q = (103.9− 34.2)i+ (60.0− 94.0)j

= 69.7i− 34.0j N

Calculating the magnitude and direction of R, we obtain

34.0 N

69.7 N

R

θ Answer

R=
√

34.02 + 69.72= 77.6 N θ = tan−1 34.0

69.7
= 26.0◦
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Problems

1.40 Obtain the rectangular representation of the force P, given that its magni-
tude is 30 N.

50°

30° y

x

z
P

Fig. P1.40

1.41 The length of the position vector r is 240 mm. Determine the rectangular

50°

y

x

z

A

O

40°
r

Fig. P1.41

components of (a) r; and (b) the unit vector directed from O toward A.

1.42 (a) Compute the angle θz between the force vector F and the z-axis.

50°
60°

F
z

yx

θz

Fig. P1.42

(b) Determine the rectangular representation of F given that F = 240 N.

1.43 The coordinates of points A and B are (−3, 0, 2) m and (4, 1, 7) m,
respectively. Determine (a) the distance between A and B; and (b) the rectangular
representation of the unit vector directed from A towards B.

1.44 The slider travels along the guide rod AB with the velocity v = 6 m/s.
Determine the rectangular representations of (a) the unit vector directed from A
toward B; and (b) the velocity vector v.

z

x

8 m

10 m

16 m

B

12 m

y

A

v

Fig. P1.44

1.45 Find the rectangular representation of the force F, given its magnitude

z

x O

y

3 m

5 m

A

F

4 m 

Fig. P1.45
240 N.
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1.46 The magnitude of the force F is 120 N. Find its rectangular representation.

x
A

y

F

B15 m

z

18 m

25
 m

80 m

210 m
160 m

z

x

A

v

B y

Fig. P1.46 Fig. P1.47

1.47 A rifle at A is fired at a target at B. If the speed of the bullet is 1800 m/s,
determine the rectangular form of the velocity vector v.

1.48 Find the angles between the force F = 1200i + 800j − 1500k N and the
x-, y-, and z-axes. Show your results on a sketch of the coordinate system.

1.49 Find the resultant of the two forces, each of which is of magnitude P.

x

a

a

a

B

y

P

P

O

z

A

x
y

z

120 N

100 N

3 m 4 m

5 m

Fig. P1.49 Fig. P1.50

1.50 Determine the resultant of the two forces shown.

1.51 The magnitudes of the three forces are F1 = 1.6 kN, F2 = 1.2 kN, andx

z

y

F1

F3

F2

65°

35°

Fig. P1.51
F3 = 1.0 kN. Compute their resultant in the form (a) R = Rx i+ Ryj+ Rzk; and
(b) R = Rλ.
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1.52 Given that P = 120 N and Q= 130 N, find the rectangular representation

4

3

5

12

P

Q

y

x

Fig. P1.52, P1.53

of P+Q.

1.53 Knowing that P = 120 N and that the resultant of P and Q lies in the
positive x-direction, determine Q and the magnitude of the resultant.

1.54 If R is the resultant of the forces P and Q, find P and Q.

y

x

Q

P

R = 360 N

30°

30°

25°

Q

R = 2 kN

P = 3 kN

x

y

θ

55°

Fig. P1.54 Fig. P1.55

1.55 The force R is the resultant of P and Q. Determine Q and the angle θ .

1.56 The vertical post is secured by three cables. The cables are pre-tensioned

F P Q

A

z

x
y

B

C

D

12 m

6 m

6 m

6 m

8 m

8 m

Fig. P1.56

so that the resultant of the cable forces F, Q, and P is directed along the z-axis.
If F = 120 N, find P and Q.

1.5 Vector Multiplication∗

a. Dot (scalar) product

Figure 1.10 shows two vectors A and B, with θ being the angle between their B

θ
A

Fig. 1.10

positive directions. The dot product of A and B is defined as

A · B= AB cos θ (0 ≤ θ ≤ 180◦) (1.19)

Because the dot product is a scalar, it is also called the scalar product. Note that
the dot product is positive if θ < 90◦, negative if θ > 90◦, and zero if θ = 90◦.

The following two properties of the dot product follow from its definition in
Eq. (1.19).

• The dot product is commutative: A · B=B · A
• The dot product is distributive: A · (B+ C)=A · B+ A · C

*Note that division by a vector, such as 1/A or B/A, is not defined.
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From the definition of the dot product, we also note that the base vectors of a
rectangular coordinate system satisfy the following identities:

i · i = j · j=k · k= 1
(1.20)

i · j = j · k=k · i= 0

When A and B are expressed in rectangular form, their dot product becomes

A · B= (Ax i+ Ayj+ Azk) · (Bx i+ Byj+ Bzk)

which, using the distributive property of the dot product and Eqs. (1.20),
reduces to

A · B= Ax Bx + Ay By + Az Bz (1.21)

Equation (1.21) is a powerful and relatively simple method for computing the dot
product of two vectors that are given in rectangular form.

The following are two of the more important applications of the dot product.

Finding the Angle Between Two Vectors The angle θ between the two vec-
tors A and B in Fig. 1.11 can be found from the definition of the dot product in

B

A

λB

λA

θ

Fig. 1.11

Eq. (1.19), which can be rewritten as

cos θ = A · B
AB
= A

A
· B

B

Letting λA=A/A and λB =B/B be the unit vectors that have the same directions
as A and B, as shown in Fig. 1.11, the last equation becomes

cos θ =λA ·λB (1.22)

If the unit vectors are written in rectangular form, this dot product is easily
evaluated using Eq. (1.21).

Determining the Orthogonal Component of a Vector in a Given Direction If
we project B onto A as in Fig. 1.12, the projected length B cos θ is called theB

A

λA

B cos θ
θ

Fig. 1.12

orthogonal component of B in the direction of A. Because θ is the angle between
A and B, the definition of the dot product, A · B= AB cos θ , yields

B cos θ = A · B
A
=B · A

A

Because A/A=λA (the unit vector in the direction of A), as shown in Fig. 1.12,
the last equation becomes

B cos θ =B · λA (1.23)

Therefore,

The orthogonal component of B in the direction
of A equals B · λA. (1.24)
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b. Cross (vector) product

The cross product C of two vectors A and B, denoted by

C=A× B

has the following characteristics (see Fig. 1.13):

• The magnitude of C is

C = AB sin θ (1.25)

where θ (0 ≤ θ ≤ 180◦) is the angle between the positive directions of A and
B. (Note that C is always a positive number.)

• C is perpendicular to both A and B.
• The sense of C is determined by the right-hand rule, which states that when the

fingers of your right hand are curled in the direction of the angle θ (directed
from A toward B), your thumb points in the direction of C.*

B

A

C   = A × B

θ

Fig. 1.13

The cross product of two vectors is also called their vector product.
It can be shown that the cross product is distributive; that is,

A× (B+ C)= (A× B)+ (A× C)

However, the cross product is neither associative nor commutative. In other words,

A× (B× C) �= (A× B)× C

A× B �= B× A

In fact, it can be deduced from the right-hand rule that A× B= − B× A.
From the definition of the cross product C = A× B, we see that (1) if A and

B are perpendicular (θ = 90◦), then C = AB; and (2) if A and B are parallel
(θ = 0◦ or 180◦), then C = 0.

*An alternative statement of the right-hand rule is this: The direction of C is the direction in which a
right-hand screw would advance when turned in the direction of θ (directed from A toward B).
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From the properties of the cross product, we deduce that the base vectors of a
rectangular coordinate system satisfy the following identities:

i× i = 0 j× j= 0 k× k= 0
(1.26)

i× j = k j× k= i k× i= j

where the equations in the bottom row are valid in a right-handed coordinate
system. If the coordinate axes are labeled such that i× j= − k, j× k= − i, and
k × i= − j, the system is said to be left-handed. Examples of both right- and
left-handed coordinate systems are shown in Fig. 1.14.*

k

z

j
y

i

x

O

k

z

i
x

j

y

O

Right-handed coordinate
system (i × j = k, etc.)

Left-handed coordinate
system (i × j = –k, etc.)

Fig. 1.14

When A and B are expressed in rectangular form, their cross product becomes

A× B= (Ax i+ Ayj+ Azk)× (Bx i+ Byj+ Bzk)

Using the distributive property of the cross product and Eqs. (1.26), this equation
becomes

A× B = (Ay Bz − Az By)i

− (Ax Bz − Az Bx )j

+ (Ax By − Ay Bx )k

(1.27)

The identical expression is obtained when the rules for expanding a 3 × 3 deter-
minant are applied to the following array of nine terms (because the terms are not
all scalars, the array is not a true determinant):

A× B=
∣∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (1.28)

*In this text, we assume that all rectangular coordinate systems are right-handed.
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You may use any method for determinant expansion, but you will find that
the following technique, called expansion by minors using the first row, is very
convenient.

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
= a(ei − f h)− b(di − f g)+ c(dh − eg)

Expanding Eq. (1.28) by this method, we find that the 2 × 2 determinants equal
the i, j, and k components of the cross product.

c. Scalar triple product

Of the vector products that involve three or more vectors, the one that is most use-
ful in statics is the scalar triple product. The scalar triple product arises when the
cross product of two vectors is dotted with a third vector—for example, A× B · C.
When writing this product, it is not necessary to show the parentheses, because
A × B · C can be interpreted only in one way—the cross product must be done
first; otherwise the expression is meaningless.

Assuming that A, B, and C are expressed in rectangular form and recalling
Eq. (1.27), the scalar triple product becomes

A× B · C = [(Ay Bz − Az By) i− (Ax Bz − Az Bx )j

+ (Ax By − Ay Bx )k
] · (Cx i+ Cyj+ Czk)

Using Eq. (1.21) and the properties of the dot products of the rectangular base
vectors, this expression simplifies to

A× B · C= (Ay Bz − Az By)Cx − (Ax Bz − Az Bx )Cy

+ (Ax By − Ay Bx )Cz

(1.29)

Therefore, the scalar triple product can be written in the following determinant
form, which is easy to remember:

A× B · C=
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ (1.30)

The following identities relating to the scalar triple product are useful:

A× B · C=A · B× C=B · C× A=C · A× B (1.31)

Observe that the value of the scalar triple product is not altered if the locations of
the dot and cross are interchanged or if the positions of A, B, and C are changed—
provided that the cyclic order A–B–C is maintained.



Sample Problem 1.9
Given the vectors

A = 8i+ 4j− 2k N

B = 2j+ 6k m

C = 3i− 2j+ 4k m

calculate the following: (1) A · B; (2) the orthogonal component of B in the direc-
tion of C; (3) the angle between A and C; (4) A × B; (5) a unit vector λ that is
perpendicular to both A and B; and (6) A× B · C.

Solution
Part 1

From Eq. (1.21), the dot product of A and B is

A · B= Ax Bx + Ay By + Az Bz = 8(0)+ 4(2)+ (−2)(6)

= −4 N ·m Answer

The negative sign indicates that the angle between A and B is greater than 90◦.

Part 2

Letting θ be the angle between B and C, we obtain from Eq. (1.23)

B cos θ =B · λC = B · C
C
= (2j+ 6k) · 3i− 2j+ 4k√

32 + (−2)2 + 42

= (0)(3)+ (2)(−2)+ (6)(4)√
29

= 3.71 m Answer

Part 3

Letting α be the angle between A and C, we find from Eq. (1.22)

cos α=λA · λC = A
A

· C
C

= 8i+ 4j− 2k√
82 + 42 + (−2)2

· 3i− 2j+ 4k√
32 + (−2)2 + 42

= (8)(3)+ (4)(−2)+ (−2)(4)√
84
√

29
= 0.162 09
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which yields

α= 80.7◦ Answer

Part 4

Referring to Eq. (1.28), the cross product of A and B is

A× B =
∣∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
i j k
8 4 −2
0 2 6

∣∣∣∣∣∣
= i

∣∣∣∣4 −2
2 6

∣∣∣∣− j

∣∣∣∣8 −2
0 6

∣∣∣∣+ k

∣∣∣∣8 4
0 2

∣∣∣∣
= 28i− 48j+ 16k N · m Answer

Part 5

The cross product A×B is perpendicular to both A and B. Therefore, a unit vector
in that direction is obtained by dividing A×B, which was evaluated above, by its
magnitude

A× B

|A× B| =
28i− 48j+ 16k√

282 + (−48)2 + 162

= 0.484i− 0.830j+ 0.277k

Because the negative of this vector is also a unit vector that is perpendicular to
both A and B, we obtain

λ= ± (0.484i− 0.830j+ 0.277k) Answer

Part 6

The scalar triple product A× B · C is evaluated using Eq. (1.30).

A× B · C =
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
8 4 −2
0 2 6
3 −2 4

∣∣∣∣∣∣
= 8

∣∣∣∣ 2 6
−2 4

∣∣∣∣− 4

∣∣∣∣0 6
3 4

∣∣∣∣+ (−2)

∣∣∣∣0 2
3 −2

∣∣∣∣
= 160+ 72+ 12= 244 N · m2 Answer
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Problems

1.57 Compute the dot product A · B for each of the following cases. Identify the
units of each product.

(a) A= 6j+ 9k m B= 7i− 3j+ 2k m
(b) A= 2i− 3j m B= 6i− 13k N
(c) A= 5i− 6j− k m B=− 5i+ 8j+ 6k m

1.58 Compute the cross product C=A × B for each of the cases given in
Prob. 1.57. Identify the units of each product.

1.59 Given

r = 5i+ 4j+ 3k m (position vector)

F = 30i− 20j− 10k N (force vector)

λ = 0.6j+ 0.8k (dimensionless unit vector)

compute (a) r× F · λ; and (b) λ× r · F.

1.60 Compute A× B and C× B for the position vectors shown.

1.61 Use the dot product to find the angle between the position vectors A and

z

A C
B

1.5 m

1.2 m
2 mx

y

Fig. P1.60, P1.61

B. Check your results by trigonometry.

1.62 Use the dot product to find the angle between the position vectors A and B.

200 mm

18
0 m

m

12
0 m

m

x

z

B

A50°

y

Fig. P1.62

1.63 Let A and B be two nonparallel vectors that lie in a common plane S. If
C=A× (A×B), which of the following statements are true: (i) C= 0; (ii) C lies
in plane S; and (iii) C is perpendicular to plane S?

1.64 Determine which of the following position vectors B is perpendicular to
A= 3i− 5j+ 2k m:

(a) B= 5i+ 3j− 2k m
(b) B= 2i+ 3j+ 4k m
(c) B= i+ j+ k m
(d) B= 3i+ j− 2k m

1.65 Find a unit vector that is perpendicular to both A= 5i − 2j + 2k m and
B= − 3i+ 2j+ 4k m.

1.66 The three points A (0, −20, 20), B (−10, 40, 10), and C (30, 0, 0) define a
plane. The coordinates are in mm. Find a unit vector that is perpendicular to this
plane.

1.67 Determine the orthogonal component of C = r× F in the direction of the
unit vector λ where r = 0.2i+ 0.3j− 0.2k m, F = 300i− 100j+ 500k N, and
λ = (i+ j+ k)/

√
3.
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1.68 Compute the orthogonal component of F= 6i + 20j − 12k N in the
direction of the vector A= 2i− 3j+ 5k m.

1.69 Using the dot product, find the components of the velocity vector v= 20i+
30° 60°

O

y

x

v

x

y
'

'

Fig. P1.69

12j km/h in the directions of the x′- and y′-axes.

∗1.70 Resolve A = 3i+ 5j− 4k cm into two vector components—one parallel
to and the other perpendicular to B = 6i+ 2k cm. Express each of your answers
as a magnitude multiplied by a unit vector.

1.71 Show that the shortest distance between the point P and the line AB is

A

B

P

d

λAB

Fig. P1.71

d = |−→AP× λAB| where λAB is a unit vector in the direction of the line.

1.72 Determine the value of the scalar a if the following three vectors are to lie
in the same plane: A= 2i−j+2k m, B= 6i+3j+ak m, and C= 16i+46j+7k m.

∗1.73 Resolve the force F= 20i + 30j + 50k N into two components—one

2 m
6 m

O

5 
m

B

z

x

y

C

A

F

Fig. P1.73

perpendicular to plane ABC and the other lying in plane ABC.

1.74 It can be shown that a plane area may be represented by a vector A= Aλ,
where A is the area and λ represents a unit vector normal to the plane of the area.
Show that the area vector of the parallelogram formed by the vectors a and b
shown in the figure is A= a× b.

z

b

a

y

x

O

A =  Aλ

Area =  A

λ

Fig. P1.74

1.75 The coordinates of the corners of a triangle ABC are A (3, –1, 0), B (–2,
2, 3), and C (0, 0, 4). The units are meters. Calculate the area of triangle ABC.
(Hint: See Prob. 1.74.)

1.76 Show that |a × b · c| equals the volume of a parallelepiped that has a, b,
and c as its edges. (Hint: See Prob. 1.74.)
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Review of Equations

Universal law of gravitation

F = Gm Am B /R2

G = 6.67× 10−11m3/(kg · s2)

Rectangular components of vectors

A = Ax i+ Ayj+ Azk

A+ B = (Ax + Bx )i+ (Ay + By)j+ (Az + Bz)k
−→
AB = (xB − xA)i+ (yB − yA)j+ (zB − z A)k

Vector multiplication

A · B = Ax Bx + Ay By + Az Bz = AB cos θ

A× B =
∣∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ |A× B| = AB sin θ

A× B · C =
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
θ = angle between A and B



2
Basic Operations

with Force Systems

A fundamental concept of statics is
the equivalence of forces. For
example, a single force can produce
the same effect on the floating
drilling platform as the two forces
applied by the tugboats. Equivalence
of forces is one of the topics
discussed in this chapter. Don
Farrall/Photodisc/Getty Images

2.1 Introduction

The usefulness of vector algebra in real-world problems stems from the fact that
several commonly encountered physical quantities possess the properties of vec-
tors. One such quantity is force, which was shown to obey the parallelogram law
of addition by Stevinus (1548–1620).

In this chapter we begin to study the effects of forces on particles and rigid
bodies. In particular, we learn how to use vector algebra to reduce a system of
forces to a simpler, equivalent system. If the forces are concurrent (all forces
intersect at the same point), we show that the equivalent system is a single force.
The reduction of a nonconcurrent force system requires two additional vector con-
cepts: the moment of a force and the couple. Both of these concepts are introduced
in this chapter.

2.2 Equivalence of Vectors

We recall that vectors are quantities that have magnitude and direction, and com-
bine according to the parallelogram law for addition. Two vectors that have the
same magnitude and direction are said to be equal.

37
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In mechanics, the term equivalence implies interchangeability; two vectors are
considered to be equivalent if they can be interchanged without changing the out-
come of the problem. Equality does not always result in equivalence. For example,
a force applied to a certain point in a body does not necessarily produce the same
effect on the body as an equal force acting at a different point.

From the viewpoint of equivalence, vectors representing physical quantities
are classified into the following three types:

• Fixed vectors: Equivalent vectors have the same magnitude, direction, and
point of application.

• Sliding vectors: Equivalent vectors have the same magnitude, direction, and
line of action.

• Free vectors: Equivalent vectors have the same magnitude and direction.

It is possible for a physical quantity to be one type of vector—say, fixed—in
one application and another type of vector, such as sliding, in another application.
In vector algebra, reviewed in Chapter 1, all vectors were treated as free vectors.

2.3 Force

Force is the term assigned to mechanical interaction between bodies. A force can
affect both the motion and the deformation of the body on which it acts. Forces
may arise from direct contact between bodies, or they may be applied at a distance
(such as gravitational attraction). Contact forces are distributed over a surface area
of the body, whereas forces acting at a distance are distributed over the volume of
the body.

Sometimes the area over which a contact force is applied is so small that it
may be approximated by a point, in which case the force is said to be concentrated
at the point of contact. The contact point is also called the point of application of
the force. The line of action of a concentrated force is the line that passes through
the point of application and is parallel to the force. In this chapter we consider
only concentrated forces; the discussion of distributed forces begins in the next
chapter.

Force is a fixed vector, because one of its characteristics (in addition to its
magnitude and direction) is its point of application. As an informal proof, con-
sider the three identical bars in Fig. 2.1, each loaded by two equal but opposite
forces of magnitude P. If the forces are applied as shown Fig. 2.1(a), the bar is
under tension, and its deformation is an elongation. By interchanging the forces,
as seen in Fig. 2.1(b), the bar is placed in compression, resulting in its shortening.
The loading in Fig. 2.1(c), where both forces are acting at point A, produces no
deformation. Note that the forces in all three cases have the same line of action
and the same zero resultant; only the points of application are different. There-
fore, we conclude that the point of application is a characteristic of a force, as far
as deformation is concerned.

If the bar is rigid, however (meaning that the deformation is negligible), there
will be no observable differences in the behavior of the three bars in Fig. 2.1.
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P P
A B

(a)

P P
A B

(b)

A B

(c)

P P

Fig. 2.1

In other words, the external effects* of the three loadings are identical. It fol-
lows that if we are interested only in the external effects, a force can be treated
as a sliding vector. The above conclusion is summarized by the principle of
transmissibility:

A force may be moved anywhere along its line of action without changing its
external effects on a rigid body.

Two force systems that produce the same external effects on a rigid body are said
to be equivalent. (Sometimes the term rigid-body equivalent is used.)

In summary, a force is a fixed vector tied to a point of application, but if one
is interested only in its external effect on a rigid body, a force may be treated as a
sliding vector.

As a further illustration of the principle of transmissibility, consider the rigid
block shown in Fig. 2.2. The block is subjected to three forces P, Q, and S, P = 20 N

S = 20 N

Q = 20 N

Fig. 2.2

each with magnitude 20 N. The three forces are equal in the mathematical sense:
P=Q=S. However, only P and Q would produce identical external effects
because they have the same line of action. Because S has a different line of action,
its external effect would be different.

2.4 Reduction of Concurrent Force Systems

In this article, we discuss the method for replacing a system of concurrent forces
with a single equivalent force.

Consider the forces F1, F2, F3, . . . acting on the rigid body in Fig. 2.3(a) (for
convenience, only three of the forces are shown). All the forces are concurrent at
point O. (Their lines of action intersect at O.) These forces can be reduced to a
single, equivalent force by the following two steps.

1. Move the forces along their lines of action to the point of concurrency O,
as indicated in Fig. 2.3(b). According to the principle of transmissibility, this

*The external effects that concern us most are the motion (or state of rest) of the body, and the support
reactions.
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z

F1

y

x

F2

F3

O

F3

F1
F2

y

z

x

O
=

Rx

Rz

Ry

R

z

y

x

O=

(a) (b) (c)

Fig. 2.3

operation does not change the external effects on the body. Therefore, the
force systems in Figs. 2.3(a) and (b) are equivalent, which is indicated by the
equal sign between the figures.

2. With the forces now at the common point O , compute their resultant R from
the vector sum

R=�F=F1 + F2 + F3 + · · · (2.1)

This resultant, which is also equivalent to the original force system, is shown
in Fig. 2.3(c) together with its rectangular components. Note that Eq. (2.1)
determines only the magnitude and direction of the resultant. The line of
action of R must pass through the point of concurrency O in order for the
equivalence to be valid.

When evaluating Eq. (2.1), any of the graphical or analytical methods for
vector addition discussed in Chapter 1 may be used. If rectangular components
are chosen, the equivalent scalar equations for determining the resultant force
R are

Rx =�Fx Ry =�Fy Rz =�Fz (2.2)

Thus we see that three scalar equations are required to determine the resultant
force for a concurrent system of forces. If the original forces lie in a common
plane—say, the xy-plane—the equation Rz =�Fz yields no independent informa-
tion and only the following two equations are necessary to determine the resultant
force.

Rx =�Fx Ry =�Fy (2.3)

We emphasize that the method described here for determining the resultant
force is valid only for forces that are concurrent. Because a force is tied to its line
of action, the reduction of nonconcurrent force systems will require additional
concepts, which are discussed later.



Sample Problem 2.1
Determine the resultant of the three concurrent forces shown in Fig. (a).

(a)

y

A
x

F3 = 60 N

F1 = 50 NF2 = 10 N

60°
4

3

Solution
Because the three forces are concurrent at point A, they may be added immediately
to obtain the resultant force R.

The rectangular components of each of the three forces are shown in Fig. (b). y

x

50       = 40 N

10 sin 60° = 8.66 N

10 cos 60° = 5 N

60 N

A

(b)

4
5

50       = 30 N3
5

Using Eqs. (2.3) to determine the components of the resultant, we have

Rx =�Fx −→+ Rx = 30− 5= 25 N

and

Ry =�Fy +
�⏐ Ry = 40+ 8.66− 60= − 11.34 N

The signs in these equations indicate that Rx acts to the right and Ry acts down-
ward. The resultant force R is shown in Fig. (c). Note that the magnitude of
the resultant is 27.5 N and that it acts through point A (the original point of
concurrency) at the 24.4◦ angle shown.

y

xA

θ

(c)

25 N

11.34 N
R = 27.5 N

θ = tan–1             = 24.4°11.34
25

The foregoing solution could also have been accomplished using vector
notation. The forces would first be written in vector form as follows,

F1 = 30i+ 40j N

F2 = −5i+ 8.66j N

F3 = −60j N
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and the resultant force R would then be determined from the vector equation

R = �F=F1 + F2 + F3

R = (30i+ 40j)+ (−5i+ 8.66j)+ (−60j)

R = 25i− 11.34j N Answer

Whether you use scalar or vector notation is a matter of personal preference.

Sample Problem 2.2
Three ropes are attached to the post at A in Fig. (a). The forces in the ropes are
F1 = 260 N, F2 = 75 N, and F3 = 60 N. Determine (1) the magnitude of the
force R that is equivalent to the three forces shown, and (2) the coordinates of the
point where the line of action of R intersects the yz-plane.

z

y

x

B

3 m

4 m

AF3

F1

F2

(a)

C12 m

Solution
Part 1

The forces are concurrent at point A and thus may be added immediately. Because
the forces do not lie in a coordinate plane, it is convenient to use vector notation.

One method for expressing each of the forces in vector notation is to use the
form F= Fλ, where λ is the unit vector in the direction of the force F. Thus

F1 = 260λAB = 260
−→
AB

|−→AB|
= 260

(−3i− 12j+ 4k
13

)

= −60i− 240j+ 80k N

F2 = 75λAC = 75
−→
AC

|−→AC |
= 75

(−3i+ 4k
5

)

= −45i+ 60k N

F3 = −60j N
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The resultant force is given by

R = �F=F1 + F2 + F3

= (−60i− 240j+ 80k)+ (−45i+ 60k)+ (−60j)

= −105i− 300j+ 140k N

The magnitude of R is

R=
√

(−105)2 + (−300)2 + (140)2= 347.3 N Answer

Part 2

The unit vector λ in the direction of R is

λ = R
R
= −105i− 300j+ 140k

347.3

= −0.3023i− 0.8638j+ 0.4031k

(b)

12 m

zD

yD 12 – yDD

z

x

A

y
λ

3 m

Let D be the point where λ intersects the yz-plane, as shown in Fig. (b). The
coordinates of D can be determined by proportions:

|λx |
3
=
∣∣λy

∣∣
12− yD

= |λz|
zD

Substituting the components of λ, this becomes

0.3023

3
= 0.8638

12− yD
= 0.4031

zD

yielding

yD = 3.43 m zD = 4.0 m Answer
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Problems

2.1 Which of the force systems shown are equivalent to the 500-N force in (a)?

500 N

3 m 2 mA

(a)

4 m

A

(b)

250 N 335 N

A

(c)

250 N 335 N

A

(d)

500 N

A

(e)

250 N

559 N

A

(f)

559 N

250 N

A

(g)

500 N

250 N

250 N

A

(h)

500 N

Fig. P2.1
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2.2 Two men are trying to roll the boulder by applying the forces shown. Deter-

1500 N

70°

750 N
20°

Fig. P2.2

mine the magnitude and direction of the force that is equivalent to the two applied
forces.

2.3 The magnitudes of the three forces applied to the eye bolt are T1 =
550 N, T2 = 200 N, and T3 = 750 N. Replace these forces with a single
equivalent force R. Show the result on a sketch of the eye bolt.

x60° 40°

y

T3

T2

T1

Fig. P2.3

2.4 Determine P and θ so that the three forces shown are equivalent to the
single force R = 85i+ 20j kN.

x 
60°

θ

P
y

40 kN

30 kN

120 mm

100 mm

80 mm
y

x

z

40 N

30 N
60 N

Fig. P2.4 Fig. P2.5

2.5 Replace the three forces acting on the bracket by a single, equivalent force.

2.6 The forces P1 = 550 N, P2 = 1000 N, and P3 = 750 N are equivalent to a

y

z

x

P3

P2

P1

40°

25°

1 m

Fig. P2.6, P2.7

single force R. Determine (a) the magnitude of R; and (b) the coordinates of the
point where the line of action of R crosses the yz-plane.

2.7 Determine the magnitudes of the three forces P1, P2, and P3, given that they
are equivalent to the force R= − 3000i+ 2500j+ 1500k N.
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2.8 The magnitudes of the three forces acting on the plate are T1 =z

x y

T1

T2

T3

6 m

2 m
2 m

2 m

3 m

1.0 m

Fig. P2.8, P2.9

100 kN, T2 = 80 kN and T3 = 50 kN. Replace these forces with a single
equivalent force R. Also, find the coordinates of the point where R intersects
the plate.

2.9 Determine the three forces acting on the plate that are equivalent to the
force R = 210k kN.

2.10 The force R is the resultant of the forces P1, P2, and P3 acting on the
rectangular plate. Find P1 and P2 if R= 40 kN and P3= 20 kN.

P2

R

30°

300

Dimensions in mm

y

xP3

P1

40
0

60
0

300

x

y

0.2 m

0.1 m

x

A

90 N

120 N

Fig. P2.10 Fig. P2.11

2.11 The two forces are equivalent to a force R that has a line of action passing
through point A. Determine R and the distance x.

35°

Q = 150 N

x
A

y

P 0.18 m 0.12 m

0.2 m

Fig. P2.12

2.12 Knowing that the forces P and Q are equivalent to a single force R that
passes through point A, determine P and R.

2.13 The four forces are to be replaced by a single, equivalent force. Determine

75 N

z

y

100 N 100 N
75 N

0.25 m

x

75°

Fig. P2.13
the rectangular components of this force and the point of intersection of its line of
action with the plate.
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2.14 Find the forces Q1, Q2, and Q3 so that the two force systems are
equivalent.

0.9 m

1.2 m

P2 = 540 N

Q1 Q2

Q3

P3 = 270 N

z

y

x

0.9 m

0.9 m

1.2 m

0.9 m

P1 = 450 N

Fig. P2.14

2.15 The man exerts a force P of magnitude 250 N on the handles of the wheel-
barrow. Knowing that the resultant of the forces P, Q (the reaction at the wheel),
and W (the weight of the wheelbarrow) is the force R = 50 i N, determine W.

P

W

Q

30°
45°

x

y

Fig. P2.15

2.16 The three forces acting on the beam can be replaced with a single
equivalent force R. Determine the angle θ and R.

40°

P1 = 25 kN
P2 = 60 kN

P3 = 80 kN

y

x

50°θ

4 m 6 m

Fig. P2.16
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z

y

x

A

y

1.2 m

1.2 m

300 N

240 N

25°

Fig. P2.17

2.17 The trapdoor is held in the horizontal plane by two wires. Replace the
forces in the wires with an equivalent force R that passes through point A, and
determine the y-coordinate of point A.

2.18 Replace the three forces acting on the guy wires by a single, equivalent

T1

T2

T3

3 m

2 m
1.5 m

1 m
1.5 m

yx

z

O

A

Fig. P2.18 force acting on the flagpole. Use T1= 1000 N, T2= 2000 N, and T3= 1750 N.

2.19 The three forces acting on the pole are equivalent to a single force R.

x

50°

y

20
 m

10
 m

30° 30°

600 N

400 N 800 N
z

Fig. P2.19

Determine (a) the magnitude of R; and (b) the coordinates of the point where the
line of action of R crosses the xy-plane.

2.20 The three forces, each of magnitude F , are applied to the crate. Deter-
mine F so that the three forces are equivalent to a single 3000-N force.

25°

45°

F

F

F

x

y

35°

20°

10 tons

8 tons

60 m

8 tons

A

B

Fig. P2.20 Fig. P2.21

∗2.21 Determine the resultant force R that is equivalent to the forces exerted
by the three tugboats as they maneuver the barge. Specify the coordinate of the
point on the x-axis through which R passes. (Hint: First determine the resultant
force for the two forces at point A, and then combine this result with the force at
point B.)
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2.5 Moment of a Force about a Point

In general, a force acting on a rigid body tends to rotate, as well as translate, the
body. The force itself is the translational effect—the body tends to move in the
direction of the force, and the magnitude of the force is proportional to its ability
to translate the body. (The formal statement of this relationship is Newton’s sec-
ond law: Force equals mass times acceleration.) Here we introduce the tendency
of a force to rotate a body, called the moment of a force about a point. This rota-
tional effect depends on the magnitude of the force and the distance between the
point and the line of action of the force. The tendency of a force to rotate a body
about an axis, called the moment of a force about an axis, is discussed in the next
article.

a. Definition

Let F be a force and O a point that is not on the line of action of F, as shown in
Fig. 2.4. Note that the force F and the point O determine a unique plane. We let A F

A
r

O
θ

d

Plane determined
by O and F

MO

Fig. 2.4

be any point on the line of action of F and define r to be the vector from point O
to point A.

The moment of the force F about point O, called the moment center, is
defined as

MO = r× F (2.4)

Note that moment about a point has the dimension [ML2T−2]. In SI units,
moment is measured in newton-meters (N ·m).

The moment of F about point O is a vector by definition. From the properties
of the cross product of two vectors, MO is perpendicular to both r and F, with its
sense determined by the right-hand rule, as shown in Fig. 2.4.*

b. Geometric interpretation

The moment of a force about a point can always be computed using the cross pro-
duct in Eq. (2.4). However, a scalar computation of the magnitude of the moment
can be obtained from the geometric interpretation of Eq. (2.4).

Observe that the magnitude of MO is given by

MO = |MO | = |r× F| = rF sin θ (2.5)

in which θ is the angle between r and F. Returning to Fig. 2.4, we see that

r sin θ = d (2.6)

where d is the perpendicular distance from the moment center to the line of action
of the force F called the moment arm of the force. Therefore, the magnitude
of MO is

MO = Fd (2.7)

*Moment vectors are drawn as double-headed arrows throughout this text.
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Because the magnitude of MO depends only on the magnitude of the force
and the perpendicular distance d, a force may be moved anywhere along its line of
action without changing its moment about a point. Therefore, in this application,
a force may be treated as a sliding vector. This explains why any point A on
the line of action of the force may be chosen when determining the vector r in
Eq. (2.4).

Equation (2.7) is convenient only when the moment arm can be easily deter-
mined. Furthermore, when using Eq. (2.7), the direction of MO must be found by
inspection. For example, the magnitude of the moment of the 100-N force about
the point O in Fig. 2.5(a) is (100)(2)= 200 N ·m, and its direction is counter-
clockwise, as viewed from the positive z-axis. Using the right-hand rule, the vector
representation of this moment is MO = 200k N ·m, as shown in Fig. 2.5(b). The
magnitude of the moment about point O for the 100-N force in Fig. 2.5(c) is also
200 N ·m, but in this case its direction is clockwise, as viewed from the positive
z-axis. For this force, MO = − 200k N ·m, as shown in Fig. 2.5(d). Although the
vector description for both forces is −100i N, their moments about point O are
oppositely directed.

z

y

x

O

100 N

2 m

(a)

MO = 200 N. m

z

y

x

O

(b)

MO = 200k N. m

z

y

x

O

(c)

MO = 200 N. m

100 N

2 m
y

x

O

(d)

MO = – 200k N. m

z

Fig. 2.5
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c. Principle of moments

When determining the moment of a force about a point, it is often convenient to
use the principle of moments, also known as Varignon’s theorem:

The moment of a force about a point is equal to the sum of the moments of its
components about that point.

Proof

To prove Varignon’s theorem, consider the three forces F1, F2, and F3 concurrent
at point A, as shown in Fig. 2.6, where r is the vector from point O to point A. The z

y

x

O

F1

r

F2

F3A

Fig. 2.6

sum of the moments about point O for the three forces is

MO =�(r× F)= (r× F1)+ (r× F2)+ (r× F3) (a)

Using the properties of the cross product, Eq. (a) may be written as

MO = r× (F1 + F2 + F3)= r× R (b)

where R=F1 + F2 + F3 is the resultant force for the three original forces. Equa-
tion (b) proves the principle of moments: The moment of R equals the moments
of the components of R. (Although the preceding proof has used only three
components, it may obviously be extended to any number of components.)

d. Vector and scalar methods

From the preceding discussion, we observe that the following are equivalent
methods for computing the moment of a force F about a point O.

Vector Method The vector method uses MO = r × F, where r is a vector from
point O to any point on the line of action of F. The most efficient technique for
using the vector method (with rectangular components) is the following: (1) Write
F in vector form; (2) choose an r, and write it in vector form; and (3) use the
determinant form of r× F to evaluate MO :

MO = r× F=
∣∣∣∣∣∣

i j k
x y z
Fx Fy Fz

∣∣∣∣∣∣ (2.8)

where the second and third lines in the determinant are the rectangular compo-
nents of r and F, respectively. These components are shown in Fig. 2.7. Expansion

z

y

x

O

Fz

A
r

Fy

Fx

x

z

y

Fig. 2.7

of the determinant in Eq. (2.8) yields

MO = (yFz − zFy)i+ (zFx − x Fz)j+ (x Fy − yFx )k (2.9)

Scalar Method In the scalar method, the magnitude of the moment of the force
F about the point O is found from MO = Fd, where d is the moment arm of the
force. In this method, the sense of the moment must be determined by inspection.
As mentioned previously, the scalar method is convenient only when the moment
arm d can be easily determined.



Sample Problem 2.3
Determine (1) the moment of the force F about point C; and (2) the perpendicular
distance between C and the line of action of F.

z

y

x

B

2 m

3 m
A

F = 500 N

rCA  

C4 m

Solution
Part 1

The moment of a force about point C can be computed by either the scalar method
(MC = Fd), or the vector method (MC = r×F). In this problem the scalar method
would be inconvenient, because we have no easy means of determining d (the
perpendicular distance between C and the line AB). Therefore, we use the vector
method, which consists of the following three steps: (1) write F in vector form;
(2) choose an r, and write it in vector form; and (3) compute MC = r× F.

Step 1: Write F in vector form.
Referring to the figure, we obtain

F= 500λAB= 500
−→
AB

|−→AB|
= 500

(
2i− 4j+ 3k

5.385

)

which yields

F= 185.7i− 371.4j+ 278.6k N

Step 2: Choose an r, and write it in vector form.
The vector r is a vector from point C to any point on the line of

action of F. From the figure we see that there are two convenient choices
for r—the vector from point C to either point A or point B. As shown
in the figure, let us choose r to be rC A. (As an exercise, you may wish
to solve this problem by choosing r to be the vector from point C to
point B.) Now we have

r= rC A= − 2i m
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Step 3: Calculate MC = r× F.
The easiest method for evaluating the cross product is to use the

determinant expansion:

MC = r× F= rC A × F=
∣∣∣∣∣∣

i j k
−2 0 0

185.7 −371.4 278.6

∣∣∣∣∣∣
Expanding this determinant gives

MC = 557.2j+ 742.8k N ·m Answer

Part 2

The magnitude of MC is

MC =
√

(557.2)2 + (742.8)2= 928.6 N ·m

The perpendicular distance d from point C to the line of action of F may be
determined by

d = MC

F
= 928.6

500
= 1.857 m Answer

Observe that, instead of using the perpendicular distance to determine the
moment, we have used the moment to determine the perpendicular distance.

Caution A common mistake is choosing the wrong sense for r in Eq. (2.4).
Note that r is directed from the moment center to the line of action of F. If the
sense of r is reversed, r × F will yield the correct magnitude of the moment, but
the wrong sense. To avoid this pitfall, it is strongly recommended that you draw r
on your sketch before attempting to write it in vector form.

Sample Problem 2.4
Determine the moment of the force F in Fig. (a) about point A.

F = 1000 N

30 mm

30 mm

C

3

4

5

O D

(a)

B

A
x

y
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Solution
The force F and point A lie in the xy-plane. Problems of this type may be solved
using either the vector method (r× F) or the scalar method (Fd). For illustrative
purposes, we use both methods.

Vector Solution

Recall that the three steps in the vector method are to write F in vector form,
choose r and write it in vector form, and then evaluate the cross product r× F.

Writing F in vector form, we get

F = −
(

4

5

)
1000i+

(
3

5

)
1000j

= −800i+ 600j N

There are several good choices for r in this problem, three of which are
rAB, rAC , and rAD . Choosing

r= rAB= − 120i+ 180j

the moment about point A is

MA= r× F= rAB × F=
∣∣∣∣∣∣

i j k
−120 180 0
−800 600 0

∣∣∣∣∣∣
Expanding this determinant, we obtain

MA=k[(800)(−120)+ (800)(180)]= 72000k N ·mm Answer

The magnitude of MA is 72000 N · mm. Note that the direction of MA is the
positive z direction, which by the right-hand rule means that the moment about
point A is counterclockwise.

Scalar Solution

In Fig. (b), we have resolved the force into the rectangular components F1 and F2

at point B. The moment arm of each component about point A (the perpendicular
distance between A and the line of action of the force) can be determined by
inspection. The moment arms are d1 = 180 mm for F1 and d2 = 120 mm for F2,
as shown in Fig. (b).

The moment of F about A now can be obtained by the principle of moments.
Nothing that the moment of F1 is counterclockwise, whereas the moment of F2 is
clockwise, we obtain

+ MA = F1d1 − F2d2

= 800(180)− 600(120) = 72000 N ·mm
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F2 = 600 N 30 mm

30 mm

(b)

A

B
F1 = 800 N

F

x

y

d2

d1

Note that the sense of MA is counterclockwise. Applying the right-hand rule, the
vector representation of the moment is

MA = 72000k N·mm Answer

Recall that a force, being a sliding vector, can be moved to any point on its line
of action without changing its moment. In Fig. (c) we have moved F to point C .
Now the moment arm of F1 about A is d1 = 90 mm., and the moment arm of F2

is zero. Hence, the moment of F about A is

+ MA = F1d1 = 800(90) = 72000 N·mm

counterclockwise, as before.

30 mm

30 mm

(c)

x
A

B

y C

D

F2 = 600 N

F1 = 800 N

F

d1

Another convenient location for F would be point D in Fig. (c). Here the
moment arm of F1 about A is zero, whereas the moment arm of F2 is 120 mm,
which again yields MA = 72000 N ·mm counterclockwise.
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Problems

2.22 Determine the magnitude and sense of the moment of the 800-N force800 N

0.6 m

0.5 m
A

38°

Fig. P2.22

about point A.

2.23 Find the magnitude and sense of the moment of the 300-N force about
points A and B.

600 mm

300 mm

1000 mm

300-N

BA

2.5 m5.5 m
x

P

B

P

y

A
C

b

3.5 m

Fig. P2.23 Fig. P2.24

2.24 The two forces can be replaced by an equivalent force R acting at point B
on the beam. Determine the distance b that locates B. (Hint: The combined
moment of the two forces about any point is equal to the moment of R about
the same point.)

2.25 A force P in the xy-plane acts on the triangular plate. The moments of P
about points O, A, and B are MO = 200 N · m clockwise, MA= 0, and MB = 0.
Determine P.

2.26 A force P in the xy-plane acts on the triangular plate. The moments of P
about points O, A, and B are MO = 80 N · m counterclockwise, MA= 200 N · m
clockwise, and MB = 0. Determine P.

y

A

O B
x

500 mm

400 mm x

y

O

A

150 mm

360 mm

F

Fig. P2.25, P2.26 Fig. P2.27

2.27 Determine the moment of the force F= 45i + 90j N about point O by
the following methods: (a) vector method using r × F; (b) scalar method using
rectangular components of F; and (c) scalar method using components of F that
are parallel and perpendicular to the line OA.
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2.28 Given that T = 28.3 kN and W = 25 kN, determine the magnitude and
sense of the moments about point B of the following: (a) the force T; (b) the
force W; and (c) forces T and W combined.

36 m

T
20 m 16 m

B
W

Fig. P2.28

2.29 A moment of 80 N ·m about O is required to loosen the nut. Determine
the smallest magnitude of the force F and the corresponding angle θ that will turn
the nut.

F

θ

O

0.4 m 

Fig. P2.29

2.30 Knowing that the forces P and Q are equivalent to a single force R that
passes through point A, determine P . (Hint: The combined moment of P and Q
about A is zero.)

35°

Q = 150 N

x
A

y

P

255 mm

150 mm240 mm

Fig. P2.30

2.31 The resultant of the two forces shown has a line of action that passes

x

y

240 mm

120 mm

x

A

90 N

120 N

Fig. P2.31
through point A. Recognizing that the moment of the resultant about A is zero,
determine the distance x.
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2.32 The tow truck’s front wheels will be lifted off the ground if the moment
of the load W about the rear axle exceeds the moment of the 31000-N weight of
the truck. Determine the largest W that may be safely applied.

W

2 m

30°

3 m

31000 N

4 m 5 m

Fig. P2.32

2.33 The force F acts on the gripper of the robot arm. The moments of F about
points A and B are 210 N ·m and 90 N ·m, respectively—both counterclockwise.
Determine F and the angle θ .

150 mm

300 mm

600 mm

A

B

800 mm

30°

F

θ

Fig. P2.33

2.34 Compute the moment of the force P about point A.

P = 200 N

70 mm90 mm

10
0 

m
m

C

B

y

z

x
A

x

y

z

B C

O

D

PQ

A600 mm

36
0 

m
m

50
0 

m
m

Fig. P2.34 Fig. P2.35, P2.36

2.35 The magnitude of the force P is 100 N. Determine the moments of P about
(a) point O; and (b) point C.

2.36 The magnitude of the force Q is 250 N. Determine the moments of Q
about (a) point O; and (b) point C.
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2.37 The magnitude of the moment of force P about point O is 200 kN · m. z

O

P

25°

CB

x

A

3 m

2 m

4 m

y

Fig. P2.37, P2.38

Determine the magnitude of P.

2.38 The magnitude of the force P is 50 kN. Determine the moment of P about
(a) point A; and (b) point B.

2.39 Determine the moments of Q about (a) point O; and (b) point C. The
magnitude of Q is 100 N.

Q

z

x

C
y

A

4 m

1.5
 m

B

OOO
2 m

z

A

1.5 m

1 m
1 m

2.1 m

O

C

y

1 m

B

x

P
Q

Fig. P2.39 Fig. P2.40

2.40 Find the combined moment of the forces P and Q about point O . The
magnitudes of the forces are P = 400 N and Q = 300 N.

2.41 The wrench is used to tighten a nut on the wheel. Determine the moment
of the 600-N force about the origin O. Express your answer in vector form.

y

z

x

600 N

120 mm

360 mm
360 mm

O

Fig. P2.41

2.42 The magnitudes of the two forces shown are P = 80 N and Q= 110 N.

240 mm

90 mm

A

40°

Q

P

z

y

x

O

Fig. P2.42
Determine the magnitude of the combined moment of P and Q about point O and
the direction cosines of this moment vector.
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2.43 The moment of the force F = 50i − 100j − 70k N about point O is

F

z

x

z

x
y

O

Fig. P2.43

MO = 400i + 410j − 300k N ·m. Determine the coordinates of the point where
the line of action of F intersects the xz-plane.

2.44 Determine the magnitude of the moment of the 150-N force about point O
and find the direction cosines of the moment vector.

150 N z

y

x

60 mm
50 mm

30°

40
 m

m
 

A

O

A
a

a

P

P

a

A

y

x

z

d

Fig. P2.44 Fig. P2.45

2.45 The combined moment of the two forces, each of magnitude P, about
point A is zero. Determine the distance d that locates A.

2.46 The force F = −20i + 4j + 6k N acts at point A. Determine the coordi-
nates of point B where the line of action of F intersects the xy-plane. (Hint: The
moment of F about B is zero.)

z

y

y

x
A

2 m4 m
3 m

F

z

B

Fig. P2.46

2.6 Moment of a Force about an Axis

Whereas the preceding article defined the moment of a force about a point, this
article discusses the moment of a force about an axis. Because moment about an
axis is a measure of the tendency of a force to rotate a body about the axis, it is fun-
damental to the study of engineering mechanics. We begin with a formal definition
of the moment about an axis, and we then examine its geometric interpretation.
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a. Definition

The moment of a force about an axis, called the moment axis, is most easily
defined in terms of the moment of the force about a point on the axis. Figure 2.8

r

O

Plane determined
by O and F

F

MO = r × F

MAB = MO cos  
α

λ

B

A

α

Fig. 2.8

shows the force F and its moment MO = r × F about point O, where O is any
point on the axis AB. We define the moment about an axis as follows:

The moment of F about the axis AB is the orthogonal component of MO along
the axis AB, where O is any point on AB.

Letting λ be a unit vector directed from A toward B, this definition gives for the
moment of F about the axis AB

MAB=MO cos α (2.10)

where α is the angle between MO and λ, as shown in Fig. 2.8.
Because MO cos α=MO ·λ (from the definition of the dot product),

Eq. (2.10) can also be expressed in the form

MAB=MO · λ= r× F · λ (2.11)

Let us review each of the terms appearing in this equation:

• MAB is the moment (actually, the magnitude of the moment) of the force F
about the axis AB.

• MO represents the moment of F about the point O, where O is any point on
the axis AB.*

• λ is the unit vector directed from A toward B.
• r is the position vector drawn from O to any point on the line of action of F.

Note that the direction of λ determines the positive sense of MAB by the right-hand
rule, as illustrated in Fig. 2.9. Paying heed to this sign convention will enable you

B

A

λ
+ MAB

(a)

A

λ

B

+ MAB

(b)

Fig. 2.9

to interpret correctly the sign of MAB in Eqs. (2.10) and (2.11).
Sometimes we wish to express the moment of F about the axis AB as a vector.

We can do this by multiplying MAB by the unit vector λ that specifies the direction
of the moment axis, yielding

MAB=MABλ= (r× F · λ)λ (2.12)

Rectangular components of MO Let MO be the moment of a force F about
O, where O is the origin of the xyz-coordinate system shown in Fig. 2.10. The

*If we let O and C be two points on the moment axis AB, then MO and MC will, in general, be
different. However, it can be shown that MO · λ=MC · λ, where λ is a unit vector parallel to AB. For
this reason, O in Eq. (2.10) can be any point on AB.
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z

y

x

O

Mz

Mx

My

MO

Fig. 2.10

moments of F about the three coordinate axes can be obtained from Eq. (2.11) by
substituting i, j, and k in turn for λ. The results are

Mx =MO · i My =MO · j Mz =MO · k

from which we draw the following conclusion:

The rectangular components of the moment of a force about the origin O are
equal to the moments of the force about the coordinate axes.

In other words,

MO =Mx i+ Myj+ Mzk (2.13)

where Mx , My , and Mz , shown in Fig. 2.10, are equal to the moments of the force
about the coordinate axes.

Special Case: Moment Axis Perpendicular to F Consider the case where the
moment axis is perpendicular to the plane containing the force F and the point O,
as shown in Fig. 2.11(a). Because the directions of MO and MAB now coincide, λ

(a)

(b)

Plane determined
by O and FA

O

B

MAB = MO

MAB = MO

O r

F

r
F

λ

Fig. 2.11

in Eq. (2.11) is in the direction of MO . Consequently, Eq. (2.11) yields

MO =MAB (2.14)

That is, the moment of F about point O equals the moment of F about the axis AB.
A two-dimensional representation of Fig. 2.11(a), viewed along the moment

axis AB, is shown in Fig. 2.11(b). We will frequently use a similar figure in the
solution of two-dimensional problems (problems where all forces lie in the same
plane). In problems of this type, it is customary to use the term moment about a
point (MO), rather than moment about an axis (MAB).

b. Geometric interpretation

It is instructive to examine the geometric interpretation of the equation MAB=
r× F · λ.

Suppose we are given an arbitrary force F and an arbitrary axis AB, as shown
in Fig. 2.12. We construct a plane � that is perpendicular to the AB axis and let O
and C be the points where the axis and the line of action of the force intersect �,
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F2

Cr
O

F1

F

d

B

A
Plane �

MO = r × F
MAB  = F2d

λ

Fig. 2.12

respectively. The vector from O to C is denoted by r, and λ is the unit vector
along the axis AB. We then resolve F into two components: F1 and F2, which
are parallel and perpendicular to the axis AB, respectively (observe that F2 lies in
plane �). In terms of these components, the moment of F about the axis AB is

MAB= r× F · λ = r× (F1 + F2) · λ

= r× F1 ·λ+ r× F2 ·λ

Because r× F1 is perpendicular to λ, r× F1 · λ= 0, and we get

MAB= r× F2 ·λ

Substitution of r× F2 · λ= F2d, where d is the perpendicular distance from O to
the line of action of F2, yields

MAB= F2d (2.15)

We see that the moment of F about the axis AB equals the product of the com-
ponent of F that is perpendicular to AB and the perpendicular distance of this
component from AB. Observe that Eq. (2.15) gives only the magnitude of the
moment about the axis; its sense must be determined by inspection.

Consideration of Eq. (2.15) reveals that the moment of a force about an axis,
as defined in Eq. (2.10), possesses the following physical characteristics:

• A force that is parallel to the moment axis (such as F1) has no moment about
that axis.

• If the line of action of a force intersects the moment axis (d = 0), the force has
no moment about that axis.

• The moment of a force is proportional to its component that is perpendicular
to the moment axis (such as F2), and the moment arm (d) of that component.

• The sense of the moment is consistent with the direction in which the force
would tend to rotate a body.
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z

x Py

Pz

Direction
of rotation

y

Hinge axis

Px

Fig. 2.13

To illustrate the above characteristics, consider opening the door in Fig. 2.13
by applying a force P to the handle. In the figure, P is resolved into the following
rectangular components: Px intersects the hinge axis, Py is perpendicular to the
door, and Pz is parallel to the hinge axis.

To open the door, we must apply a moment about the z-axis (the hinge axis).
Experience tells us that Py is the only component of the force that would accom-
plish this task. The components Px and Pz are ineffective, because their moments
about the z-axis are zero. We also know that it is easier to open the door if we
increase the distance between the handle and the hinge axis (the moment arm) or
if the magnitude of Py is increased. Finally, observe that Py causes the door to
rotate in the direction shown in the figure, which is also the sense of the moment
about the z-axis.

c. Vector and scalar methods

From the preceding discussion we see that the moment of the force F about an
axis AB can be computed by two methods.

Vector Method The moment of F about AB is obtained from the triple scalar
product MAB= r×F · λ, where r is a vector drawn from any point on the moment
axis AB to any point on the line of action of F and λ represents a unit directed
from A toward B. A convenient means of evaluating the scalar triple product is its
determinant form

MAB=
∣∣∣∣∣∣

x y z
Fx Fy Fz

λx λy λz

∣∣∣∣∣∣ (2.16)

where x, y, and z are the rectangular components of r.

Scalar Method The moment of F about AB is obtained from the scalar expres-
sion MAB= F2d. The sense of the moment must be determined by inspection.
This method is convenient if AB is parallel to one of the coordinate axes (which
is always the case in two-dimensional problems).



Sample Problem 2.5
The force F of magnitude 195 kN acts along the line AB. (1) Determine the
moments Mx , My , and Mz of F about the coordinate axes by the scalar method;
and (2) find the moment of F about point O by the vector method and verify that
MO =Mx i+ Myj+ Mzk.

45 kN

y4 m

x

O

z

12 m B

F = 195 kN
60 kN

3 m

180 kNA

(a)

Solution
We start by computing the rectangular components of F:

F = FλAB= F

−→
AB

|−→AB|
= 195

(
3i+ 12j− 4k√

32 + 122 + (−4)2

)

= 45i+ 180j− 60k kN

When calculating the moment of a force, the force may be placed at any point
on its line of action. As shown in Fig. (a), we chose to have the force acting at
point A.

Part 1

The moment of F about a coordinate axis can be computed by summing the
moments of the components of F about that axis (the principle of moments).

Moment about the x-Axis Figure (b) represents a two-dimensional version of

z

y

A

4 m

45 kN

O

O

180 kN

(b)

60 kN

z

x

A

4 m

45 kN 180 kN

(c)

60 kN

720 kN . m

180 kN . m

Fig. (a), showing the yz-plane. We see that the 45-kN and the 60-kN components
of the force contribute nothing to the moment about the x-axis (the former is
parallel to the axis, and the latter intersects the axis). The perpendicular distance
(moment arm) between the 180-kN component and the x-axis is 4 m. Therefore,
the moment of this component about the x-axis (which is also the moment of F)

is 180(4)= 720 kN ·m, clockwise. According to the right-hand rule, the positive
sense of Mx is counterclockwise, which means that Mx is negative; that is,

Mx = − 720 kN ·m Answer

Moment about the y-Axis To compute the moment about the y-axis, we refer
to Fig. (c), which represents the xz-plane. We note that only the 45-kN force
component has a moment about the y-axis, because the 180-kN component is
parallel to the y-axis and the 60-kN component intersects the y-axis. Because the

65



moment arm of the 45-kN component is 4 m, the moment of F about the y-axis is
45(4)= 180 kN ·m, counterclockwise. Therefore, we have

My = 45(4)= 180 kN ·m Answer

The sign of the moment is positive, because the right-hand rule determines
positive My to be counterclockwise.

Moment about the z-Axis The moment of F about the z-axis is zero, because
F intersects that axis. Hence

Mz = 0 Answer

Part 2

Recognizing that the vector from O to A in Fig. (a) is rO A= 4k m, the moment of
F about point O can be computed as follows.

MO = rO A × F =
∣∣∣∣∣∣

i j k
0 0 4

45 180 −60

∣∣∣∣∣∣ = − i(4)(180)+ j(4)(45)

= −720i+ 180j kN ·m Answer

Comparing with MO =Mx i+ Myj+ Mzk, we see that

Mx = − 720 kN ·m My = 180 kN ·m Mz = 0

which agree with the results obtained in Part 1.

Sample Problem 2.6
The force F of Sample Problem 2.5 is shown again in Fig. (a). (1) Determine the
moment of F about the axis CE; and (2) express the moment found in Part 1 in
vector form.

(a)

45 kN

y

2 m

4 m

x

O

z

E

12 m B

F = 195 kN
60 kN

3 m

180 kNA

C
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Solution
Part 1

Referring to Fig. (a), we see that it is not practical to calculate the moment about
the axis CE by the scalar method. Because the axis CE is not parallel to a coor-
dinate axis, the task of determining the perpendicular distance between F and CE
would be tedious. However, if the vector method is used, the calculation of the
moment is straightforward.

To employ the vector method we first express the force F in vector form. This
was already done in the solution to Sample Problem 2.5:

F= 45i+ 180j− 60k kN

Next we calculate the moment of F about any convenient point on the axis
CE. Inspection of Fig. (a) reveals that there are only two convenient points from
which to choose—points C and E. Let us choose point C. Because we will use the
cross product r × F to compute the moment about C, our next step is to choose
the vector r and to write it in vector form (remember that r must be a vector from
point C to any point on the line of action of F). From Fig. (a) we see that there are
two convenient choices for r: either the vector from C to A or the vector from C
to B. Choosing the latter, we have

r= rC B = − 4k m

The moment of F about point C then becomes

MC = rC B × F=
∣∣∣∣∣∣

i j k
0 0 −4

45 180 −60

∣∣∣∣∣∣
= 720i− 180j kN ·m

Note that the z-component of MC is zero. To understand this result, recall that the
z-component of MC equals the moment of F about the axis BC (the line parallel
to the z-axis passing through C). Because F intersects BC , its moment about BC
is expected to be zero.

Next, we calculate the unit vector λCE directed from point C toward point E:

λCE=
−→
CE

|−→CE|
= −3i+ 2j− 4k√

(−3)2 + 22 + (−4)2
= − 0.5571i+ 0.3714j− 0.7428k

The moment of MC about the axis CE can now be obtained from Eq. (2.11):

MCE =MC ·λCE

= (720i− 180j) · (−0.5571i+ 0.3714j− 0.7428k)

= −468 kN ·m Answer
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The negative sign indicates that the sense of the moment is as shown in Fig. (b)—
that is, opposite to the sense associated with λCE.

y

x

z

E

(b)

468 kN · mC

λCE

We could also compute MCE without first determining MC by using the scalar
triple product:

MCE = rBC × F · λCE=
∣∣∣∣∣∣

0 0 −4
45 180 −60

−0.5571 0.3714 −0.7428

∣∣∣∣∣∣
= −468 kN ·m

This agrees, of course, with the result determined previously.

Part 2

To express the moment of F about the axis CE in vector form, we multiply MCE

by the unit vector λCE, which gives

MCE = MCEλCE= − 468(−0.5571i+ 0.3714j− 0.7428k)

= 261i− 174j+ 348k kN ·m Answer

There is no doubt that using the vector method is convenient when one wishes
to calculate the moment about an axis such as CE, which is skewed relative to the
coordinate system. However, there is a drawback to vector formalism: You can
easily lose appreciation for the physical nature of the problem.

68



2.47–2.67 Problems 69

Problems

2.47 Calculate the combined moment of the three forces about each of the
coordinate axes. Use (a) the scalar method; and (b) the vector method.

0.85 m

90 kN

75 kN

160 kN

0.5 m O

A

x

y

z

40 kN

B

A

C

600 mm

G

H
ED

F

900 mm
80

0 m
m

Fig. P2.47 Fig. P2.48

2.48 Determine the moment of the 40-N force about each of the following axes:
(a) AB; (b) CD; (c) CG; (d) CH; and (e) EG.

2.49 Determine the moment of the 400-N force about each of the following

F

H

G
C

E

7.5 m

z

y

x

9 m

D

4 m

400 N

B

A

Fig. P2.49

axes: (a) AB; (b) CD; (c) BF; (d) DH; and (e) BD.

2.50 The magnitude of the force F is 75 N. Calculate the moment of F about
F

3 m

30°

4 
m

z

x

y

Fig. P2.50

the x-axis using (a) the scalar method; and (b) the vector method.

2.51 The force F= 12i − 8j + 6k N is applied to the gripper of the holding
device shown. Determine the moment of F about (a) the a-axis; and (b) the z-axis.

F

480 m
m

400 mm

160 mm

160 mm

160 mm

120 mm

y

a

z

x

Fig. P2.51
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2.52 The moment of the force F about the x-axis is 1080 N ·m. Determine the
moment of F about the axis AB.

y

z

x
12 m

4 m

F B

5 
m

A

30 N

18 N

y

x

F

20 N

d

1.2 m

O

1.0
 m

Fig. P2.52 Fig. P2.53, P2.54

2.53 Compute the combined moment of the four parallel forces about point O
(the center of the table) using F = 40 N and d = 0.4 m. Express your answer in
vector form.

2.54 To lift the table without tilting, the combined moment of the four parallel
forces must be zero about the x-axis and the y-axis (O is the center of the table).
Determine the magnitude of the force F and the distance d.

2.55 The combined moment of the three forces is zero about the axis a–a and

40 N

x

b

4 m

6 m

b

6 m
y0 a

x 0

a

30 N

20 N

y

Fig. P2.55 the axis b–b. Determine the distances x0 and y0.

2.56 The trap door is held open by the rope AB. If the tension in the rope is
T = 40 N, determine its moment about the y-axis.

B

y

z

x

A

3 m

4 m

T

4 m

Fig. P2.56

2.57 The forces P and Q act on the handles of the wrench. If P = 32 N and
Q = 36 N, determine the combined moment of the two forces about the z-axis.
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25°
30°

z

Q

x y

P

540 mm

450 mm
450 mm

0.54 m

z
B

D

C
y

A
x

0.42 m

0.81 m

P

Fig. P2.57 Fig. P2.58

2.58 The magnitude of the force P is 480 N. Determine the moment of P about
the axis CD. Express the result in vector form.

2.59 The combined moment of P and the 20-N force about the axis GB is zero.
Determine the magnitude of P.

y

z

x

G

H

D

B

F

E

0.12 m

0.04 m
O

20 N

P

A

0.0
4 m

Fig. P2.59

2.60 Determine the magnitude of the force F given that its moment about the
axis BC is 150 N ·m.

y

z

x

B

A

C

1 m

4 m

3 m D3 m

F

5 
m

2 
m

Fig. P2.60
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∗2.61 Given that F = 250 N, determine the moment of F about the axis that is

y

z

x

C

O A

F

B

4 m

3 m

3 
m

Fig. P2.61

perpendicular to the plane ABC and passes through point O. Express your answer
in vector form.

2.62 Calculate the moment of the force P about the axis AD using (a) point A
as the moment center; and (b) point D as the moment center.

A

y

z

x

3 m
D

EO

B

C
P = 240 N

2 m

8 m

6 m

5 m

z

O

x

A

y

P = 1200 N

Q = 800 N

4 m

6 m

4 m

Fig. P2.62 Fig. P2.63

2.63 Calculate the combined moment of the two forces about the axis OA, using
(a) the vector method; and (b) the scalar method (use trigonometry to find the
moment arm of each force about the axis OA).

2.64 The force F= F(0.6i + 0.8j) kN is applied to the frame at the

y

z

x

B

1.2 m

1.6 mA

D

O

1.2 m

F

C1.0 m

zD

Fig. P2.64

point D (0, 0, zD). If the moment of F about the axis BC is zero, determine the
coordinate zD .

2.65 Determine the combined moment of the four forces acting on the pulleys
about the axis AB (points A and B are the centers of the pulleys).

0.8 m0.5 m

60 kN

40 kN
20 kN

20 kN

3 m

z

y
x

4 m

A
B

Fig. P2.65

2.66 The flexible shaft AB of the wrench is bent into a horizontal arc with a
radius of 72 mm. The two 20-N forces, which are parallel to the z-axis, are applied
to the handle CD, as shown. Determine the combined moment of the two 20-N
forces about the x-axis (the axis of the socket at point B).
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180 mm 180 mm

720 mm radius

y

z

x

30°A

B

C

D

20 N 20 N

Fig. P2.66

2.67 The magnitude of the force F is 120 N. Find the moment of F about the

3 m

40°

F

5 m

2 m

4 m

B

z

x A y

O

Fig. P2.67

axis AB using (a) the vector method, and (b) the scalar method.

2.7 Couples

As pointed out before, a force has two effects on a rigid body: translation due
to the force itself and rotation due to the moment of the force. A couple, on the
other hand, is a purely rotational effect—it has a moment but no resultant force.
Couples play an important role in the analysis of force systems.

a. Definition

Two parallel, noncollinear forces that are equal in magnitude and opposite in
direction are known as a couple.

A typical couple is shown in Fig. 2.14. The two forces of equal magnitude F F

F

a d
O

Plane of
the couple

Fig. 2.14

are oppositely directed along lines of action that are separated by the perpendic-
ular distance d. (In a vector description of the forces, one of the forces would be
labeled F and the other −F.) The lines of action of the two forces determine a
plane that we call the plane of the couple. The two forces that form a couple have
some interesting properties, which will become apparent when we calculate their
combined moment about a point.

b. Moment of a couple about a point

The moment of a couple about a point is the sum of the moments of the two forces
that form the couple. When calculating the moment of a couple about a point,
either the scalar method (force times perpendicular distance) or the vector method
(r × F) may be used. For illustrative purposes, we will calculate the moment of
a couple using both methods. Using two methods of analysis to determine the
same quantity may appear redundant, but it is instructive because each method
emphasizes different characteristics of a couple.

Scalar Calculation Let us calculate the moment of the couple shown in
Fig. 2.14 about the point O. Note that O is an arbitrary point in the plane of
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the couple and that it is located a distance a from the force on the left. The sum
of the moments about point O for the two forces is

+ MO = F(a + d)− F(a)= Fd (2.17)

Observe that the moment of the couple about point O is independent of the
location of O, because the result is independent of the distance a.

From the foregoing discussion, we see that a couple possesses two important
characteristics: (1) A couple has no resultant force (�F= 0), and (2) the moment
of a couple is the same about any point in the plane of the couple.

Vector Calculation When the two forces that form the couple are expressed as
vectors, they can be denoted by F and −F, as shown in Fig. 2.15. The points
labeled in the figure are A, any point on the line of action of F; B, any point on
the line of action of −F; and O, an arbitrary point in space (not necessarily lying
in the plane of the couple). The vectors rOA and rOB are drawn from point O to
points A and B, respectively. The vector rBA connects points B and A. Using the
cross product to evaluate the moment of the couple about point O, we get

MO =[rO A × F] + [rOB × (−F)]= (rOA − rOB)× F

F

–F

Plane of
the couple

rBA
A

B

rOB

rOA

O

d

Fig. 2.15

Since rOA − rOB= rBA, the moment of the couple about point O reduces to

MO = rBA × F (2.18)

which confirms that the moment of the couple about point O is independent of the
location of O. Although the choice of point O determines rOA and rOB, neither of
these vectors appear in Eq. (2.18). Thus we conclude the following:

The moment of a couple is the same about every point.

In other words, the moment of a couple is a free vector. (Recall that, in the scalar
calculation, point O was restricted to points in the plane of the couple. We see
now that this restriction is unnecessary; that is, O can be any point in space.) In
contrast, the moment of a force about a point (the moment center) is a fixed vector,
because the moment depends on the location of the moment center.
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c. Equivalent couples

Because a couple has no resultant force, its only effect on a rigid body is its
moment. For this reason, two couples that have the same moment are said to be
equivalent (have the same effect on a rigid body). Figure 2.16 illustrates the four
operations that may be performed on a couple without changing its moment; all
couples shown in the figure are equivalent. The operations are

1. Changing the magnitude F of each force and the perpendicular distance d
while keeping the product Fd constant

2. Rotating the couple in its plane
3. Moving the couple to a parallel position in its plane
4. Moving the couple to a parallel plane

2 m

100 N

100 N

y

x

(a) Original 200 N.m
counterclockwise couple

1 m

200 N

200 N

y

x

(b) Change F and d, but
keep Fd = 200 N.m  

2 m

100 N

y

x

(c) Rotate original couple
in its plane

100 N

2 m

100 N

100 N

(d) Move original couple to a
parallel position in its plane

y

x

1 m

2 m

100 N

100 N

(e) Move original couple to
a parallel plane

y

x

Fig. 2.16

d. Notation and terminology

Consider the couple shown in Fig. 2.17(a). The moment of this couple, shown in
Fig. 2.17(b), has a magnitude of C = 1800 N ·m and is directed counterclockwise
in the xy-plane. Because the only rigid-body effect of a couple is its moment, the
representations in Figs. 2.17(a) and (b) are equivalent. That is, we can replace
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3 m
600 N

600 N

(a) Couple (b) Moment of the couple,
      commonly called the couple

(c) Vector representation
     of the couple, known as
     the couple-vector

y

x
2 m

O

C = 1800 N· m

y

x
O

C = 1800k N· m

y

xO

z

Fig. 2.17

a couple that acts on a rigid body by its moment without changing the external
effect on the body. This equivalence also applies to the terminology—rather than
referring to C as the moment of the couple, it usually is called simply the couple.

Figure 2.17(c) shows the same couple (strictly speaking, the moment of the
couple) as a vector, which we call the couple-vector. The couple-vector is perpen-
dicular to the plane of the couple, and its direction is determined by the right-hand
rule. The choice of point O for the location of the couple-vector was arbitrary.
Being a free vector, the couple-vector could be placed anywhere in the figure.

We will use the scalar and vector representations in Figs. 2.17(b) and (c)
interchangeably, choosing the one that is more convenient for the problem at hand.

e. The addition and resolution of couples

Because couples are vectors, they may be added by the usual rules of vector addi-
tion. Being free vectors, the requirement that the couples to be added must have
a common point of application does not apply. This is in contrast to the addition
of forces, which can be added only if they are concurrent. Concurrency is also
required for the addition of moments of forces about points, because these are
fixed to a moment center. It follows that we must be careful when representing
moments of forces and couples as vectors—it is easy to confuse these two con-
cepts. To minimize the possibility of confusion, we will use M to denote moments
of forces and reserve C for couples.

The resolution of couples is no different than the resolution of moments of
forces. For example, the moment of a couple C about an axis AB can be computed
from Eq. (2.11) by replacing MO with C:

MAB=C · λ (2.19)

where λ is the unit vector in the direction of the axis. Note that the subscript O,
which indicated that the moment must be taken about point O lying on the axis
AB, is no longer present in Eq. (2.19). The reason is, of course, that the moment
of C is the same about every point. As in the case of moments of forces, MAB is
equal to the rectangular component of C in the direction of AB, and is a measure
of the tendency of C to rotate a body about the axis AB.



Sample Problem 2.7
For the couple shown in Fig. (a), determine (1) the corresponding couple-vector;

100 kN

100 kN

z

y

x

30
0 m

m E

D

60
0 m

m

400 mm B
G

H
A

(a)

300 mm

and (2) the moment of the couple about the axis GH.

Solution
Part 1

One method for determining the couple-vector is to multiply the magnitude of the
couple by the unit vector in its direction. The magnitude of the couple is

Fd= 100(0.6)= 60 kN ·m

The sense of the couple is shown in Fig. (b)—counterclockwise looking down
on the plane of the couple. Letting λ be the unit vector perpendicular to the
plane of the couple, as shown in Fig. (c), the couple-vector C may be written
as C= 60λ kN · m. Because λ is perpendicular to the line AB, it can be seen
that λ= (3j + 4k)/5 (recalling that perpendicular lines have negative reciprocal
slopes). Therefore, the couple-vector is

C= 60λ= 60

(
3j+ 4k

5

)
= 36j+ 48k kN ·m Answer

z

y

x

(b)

C = 60 kN. m

z

y

x

(c)

4

λ

3
C = 60λ   kN· m

Alternative Solution Because the couple-vector is equal to the moment of the
couple about any point, it can also be determined by adding the moments of the
two forces forming the couple about any convenient point, such as point B. Letting
F be the 100-kN force that acts along the line DE, we have

F = 100λDE= 100
−→
DE

|−→DE|
= 100

(−0.4j+ 0.3k
0.5

)

= −80j+ 60k kN

77



Equating C to the moment of F about point B (the other force of the couple passes
through B), we obtain

C = rBD × F=
∣∣∣∣∣∣

i j k
−0.6 0 0

0 −80 60

∣∣∣∣∣∣
= 36j+ 48k kN ·m

which agrees with the answer determined previously.
In this solution, the choice of point B as the moment center was arbitrary.

Because the moment of a couple is the same about every point, the same result
would have been obtained no matter which point had been chosen as the moment
center.

Part 2

The most direct method for determining the moment of the couple about the axis
GH is MGH =C · λGH . Because C has already been computed, all we need to do
is compute the unit vector λGH and evaluate the dot product. Referring to Fig. (a),
we have

λGH =
−→
GH

|−→GH|
= −0.3i+ 0.3k

0.3
√

2
= − 0.7071i+ 0.7071k

Hence the moment of the couple about axis GH is

MGH =C · λGH = (36j+ 48k) · (−0.7071i+ 0.7071k)

= +33.9 kN ·m Answer

The result is illustrated in Fig. (d). If you need help in interpreting the positive

z

y

H

G

x

33.9 kN . m

(d) sign in the answer, you should refer back to Fig. 2.9.

Sample Problem 2.8
The flat plate shown in Fig. (a) is acted on by the three couples. Replace the three
couples with (1) a couple-vector; (2) two forces, one acting along the line OP

120 mm

120 mm

BD
E

G

H

P

30 mm

90 mm

60 mm

150 N

150 N

x

y

90 mm 150 mm

60 N 60 N

O

(a)

Aθ = 30°

10500 N.mm

78



and the other acting at point A; and (3) the smallest pair of forces, with one force
acting at point O and the other at point A.

Solution
Part 1

The magnitudes (Fd) and senses of the couples, all of which lie in the xy-plane,
are listed below.

• Couple at H: 10500 N ·mm clockwise.
• Couple acting on GE: (150)(90)= 13500 N ·mm counterclockwise.
• Couple acting on DB: (60)(150)= 9000 N ·mm clockwise.

Because all three couples lie in the same plane, they can be added algebraically,
their sum being the resultant couple C R . Choosing the counterclockwise sense as
positive, we get

+ C R = − 10500+ 13500− 9000= − 6000 N ·mm

The negative sign shows that the sense of C R is clockwise. Therefore, the cor-
responding couple-vector CR is, according to the right-hand rule, in the negative
z-direction. It follows that

CR = − 6000k N ·mm Answer

Note that more dimensions are given in Fig. (a) than are needed for the solu-
tion. The only relevant dimensions are the distances between the 60-N forces
(150 mm) and the 150-N forces (90 mm).

Part 2

Two forces that are equivalent to the three couples shown in Fig. (a) must, of
course, form a couple. The problem states that one of the forces acts along the
line OP and the other acts at point A.

Because the two forces that form a couple must have parallel lines of action,
the line of action of the force at point A must also be parallel to OP. From Fig. (b),
we see that the perpendicular distance d between the lines of action of the two
forces is d = 240 sin 30◦ = 120 mm. Having already determined that the magni-
tude of the resultant couple is 6000 N ·mm, the magnitudes of the forces that form
the couple are given by C R /d = 6000/120= 50 N. The sense of each force must
be consistent with the clockwise sense of C R . The final result is shown in Fig. (b).

(b)

30°
O 240 mm

50 N
50 N

A
θ = 30°

d 
= 

12
0 

m
m

Answer
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Part 3

Here we are to determine the smallest two forces acting at points O and A that
are equivalent to the three couples shown in Fig. (a). Therefore, the two forces
to be determined must form a couple that is equivalent to the resultant couple
(6000 N ·mm, clockwise).

The magnitude of a couple (Fd) equals the product of the magnitude of the
forces that form the couple (F) and the perpendicular distance (d) between the
forces. For a couple of given magnitude, the smallest forces will be obtained when
the perpendicular distance d is as large as possible. From Fig. (b) it can be seen
that for forces acting at points O and A, the largest d will correspond to θ = 90◦,
giving d = 240 mm. Therefore, the magnitudes of the smallest forces are given by
C R /d = 6000/240= 25 N. These results are shown in Fig. (c), where again note
should be taken of the senses of the forces.

(c)

O
240 mm

25 N 25 N

A

Answer

Sample Problem 2.9
A section of a piping system is acted on by the three couples shown in Fig. (a).0.4 m

z
D

C2

C3

0.5 m

y

0.6 m

0.2 m

0.3 m

x

B

A

O

(a)

0.7 m

C1

Determine the magnitude of the resultant couple-vector CR and its direction
cosines, given that the magnitudes of the applied couples are C1= 50 N · m,
C2= 90 N ·m, and C3= 140 N ·m.

Solution
Applying the right-hand rule to each of the three couples in Fig. (a), we see that
the corresponding couple-vectors will be directed as follows: C1, from point D
toward point O; C2, from point O toward point B; and C3, from point A toward
point B. Because these couple-vectors do not have the same directions, the most
practical method of determining their resultant is to use the vector equation

CR =C1 + C2 + C3

Using the three unit vectors shown in Fig. (b), the couple-vectors C1, C2, and
C3 can be written as

C1 = C1 λDO= 50
−→
DO

|−→DO|
= 50

(
0.4j− 0.5k

0.6403

)

= 31.24j− 39.04k N ·m
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C2 = C2 λOB= 90i N ·m

C3 = C3 λAB= 140
−→
AB

|−→AB|
= 140

(−0.2i− 0.3j+ 0.6k
0.7000

)

= −40i− 60j+ 120k N ·m

Adding these three couple-vectors gives

z

D

0.5 m

y

0.2 m

0.3 m

x

B

A

O

(b)

0.6 m

0.4 m

λDO

λOB

λAB

CR = 50i− 28.76j+ 80.96k N ·m

The magnitude of CR is

C R =
√

(50)2 + (−28.76)2 + (80.96)2= 99.41 N ·m Answer

and the direction cosines of CR are the components of the unit vector λ directed
along CR :

λx = 50

99.41
= 0.503 λy = − 28.76

99.41
= −0.289 λz = 80.96

99.41
= 0.814 Answer

The resultant couple-vector is shown in Fig. (c). Although CR is shown at point O,
it must be remembered that couples are free vectors, so that CR could be shown
acting anywhere.

(c)

z

y

x

O

80.96 N· m

CR

50 N· m

28.76 N· m

The couple-vector CR can be represented as two equal and opposite parallel
forces. However, because the two forces will lie in a plane perpendicular to the
couple-vector, in this case a skewed plane, this representation is inconvenient
here.

In general, given two forces that form a couple, the corresponding couple-
vector is easily determined (e.g., by summing the moments of the two forces
about any point). However, given a couple-vector, it is not always convenient (or
even desirable) to determine two equivalent forces.

81
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Problems

2.68 Which of the systems are equivalent to the couple in (a)?

0.4 m

10 N

10 N

0.6 m

(a)

0.3 m

0.2 m

6 N. m

(b) (c)

15 N

15 N

(d)

6 N. m

(e)

3 N. m 9 N. m

5 N

(f)

7.5 N

5 N

7.5 N

(g)

22.5 N

5 N

22.5 N

5 N

(h)

5 N

5 N

0.3 m

5 N. m

(i)

3  N. m

6 N. m

4 N. m 

3 N. m

Fig. P2.68
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2.69 Which of the systems are equivalent to the couple in (a)?

3 m

60 N

5 m

4 m

60 N

(a) (b)

75 N
75 N

(c)

75 N

75 N

(d)

100 N

100 N

(e)

75 N

45 N

75 N

45 N

(f)

45 N

45 N

50 N

50 N

Fig. P2.69

2.70 Replace the two couples shown by a single equivalent couple.

75 N

1.5 m

45°

0.6 m

45°

60 N.m

75 N

Fig. P2.70
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2.71 Determine the vector representation of the couple shown.45 N

A

B

x

y

60° 3 m

1.8 m

45 m

60°

Fig. P2.71

2.72 Determine the magnitude of the single couple that is equivalent to the two

x

y

z

60 N

30 N 30 N

5 m

2 
m

3 m

60 N

Fig. P2.72

couples shown.

2.73 Calculate the combined moment of the couple C and the force P about the
axis AB. Use C = 80 N ·m and P = 400 N.

O y

x

A

D

B
C

P

300 mm

40
0 m

m

40
0 

m
m

z

90 mm

60 mm 27
0 m

m

210 mm

180 mm

z

y

x

C2

C3

C1

90
 m

m

Fig. P2.73 Fig. P2.74

∗2.74 Determine the couple-vector that is equivalent to the three couples act-
ing on the gear box, given that C1= 6000 N · mm, C2= 4200 N · mm, and
C3= 6600 N ·mm.

2.75 The two forces of magnitude F = 24 kN form a couple. Determine thez

B

yx

A

F

–F

1.2 m
0.9 m

0.9 m

Fig. P2.75

corresponding couple-vector.

2.76 The couple acts on the handles of a steering mechanism. In the position
shown, the moment applied by the couple about the z-axis is zero. Determine the
distance b. Use F = 200i− 110j− 80k kN.

z

18
0 m

m

b
y

B

A

x
F

–F

80 N

720 mm

50 N

30 N

15000 N.mm

480 mm
C

B

A

z

x y

Fig. P2.76 Fig. P2.77

2.77 The force-couple system shown can be replaced by a single equivalent
couple CR . Determine CR .
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2.78 A couple of magnitude 360 N ·m is applied about portion AB of the drive
shaft (the drive shaft is connected by universal joints at points B and C). Compute
the moment of the applied couple about the portion CD when the drive shaft is in
the position shown.

x

y

40°

30°
z

D

C

B

A

Plane of  ABC

Plane of BCD

30°

30°

C

360 N . m

Fig. P2.78

2.79 The arm ABCD of the industrial robot lies in a vertical plane that is
inclined at 40◦ to the yz-plane. The arm CD makes an angle of 30◦ with the
vertical. A socket wrench attached at point D applies a 52-N ·m couple about the
arm CD, directed as shown. (a) Find the couple-vector that represents the given
couple. (b) Determine the moment of the couple about the z-axis.

z

O

x

y

C

D

40°

30°

52 N.m
A

B

4.2 m

2.
8 

m

Fig. P2.79

2.80 The figure shows one-half of a universal coupling known as the Hooke’s

P

30°

x

z 60 mm.R
RP

C0

180 mm

y

Fig. P2.80

joint. The coupling is acted on by the three couples shown: (a) the input couple
consisting of forces of magnitude P, (b) the output couple C0, and (c) the couple
formed by bearing reactions of magnitude R. If the resultant of these couples is
zero, compute R and C0 for P = 600 N.



86 CHAPTER 2 Basic Operations with Force Systems

2.81 The steering column of the rack-and-pinion steering mechanism lies in the
xz-plane. The tube AB of the steering gear is attached to the automobile chassis at
A and B. When the steering wheel is turned, the assembly is subjected to the four
couples shown: the 3-N ·m couple applied by the driver to the steering wheel, two
1.8-N · m couples (one at each wheel), and the couple formed by the two forces
of magnitude F acting at A and B. If the resultant couple acting on the steering
mechanism is zero, determine F and the angle θ (the magnitude and direction of
the bearing reactions).

F

F

360 mm

1.8 N · m

1.8 N · m

25°

45°

z

x y

A

θ

θ

B

3 N · m

Fig. P2.81

2.8 Changing the Line of Action of a Force

In this article we show how to change the line of action of a force without affecting
its external effect on a rigid body. This topic lays the foundation for the next
chapter, in which we discuss the resultants of force systems.

Referring to Fig. 2.18(a), consider the problem of moving the force of magni-
tude F from point B to point A. We cannot simply move the force to A, because
this would change its line of action, thereby altering the rotational effect (the

A
F

B

Plane of A and F Couple

A
F

F

F

B

A

F

F

F

Bd

A

F

B

(a) Original force (c) Identify the couple (d) Equivalent force-couple
      system

(b) Introduce equal and
      opposite forces at A

CT = Fd

Fig. P2.18
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moment) of the force. We can, however, counteract this change by introducing a
couple that restores the rotational effect to its original state. The construction for
determining this couple is illustrated in Fig. 2.18. It consists of the following two
steps:

• Introduce two equal and opposite forces of magnitude F at point A, as shown
in Fig. 2.18(b). These forces are parallel to the original force at B. Because
the forces at A have no net external effect on a rigid body, the force systems
in Figs. 2.18(a) and (b) are equivalent.

• Identify the two forces that form a couple, as has been done in Fig. 2.18(c).
The magnitude of this couple is CT = Fd, where d is the distance between
the lines of action of the forces at A and B. The third force and CT thus con-
stitute the force-couple system shown in Fig. 2.18(d), which is equivalent to
the original force in Fig. 2.18(a).

We refer to the couple CT as the couple of transfer, because it is the couple
that must be introduced when a force is transferred from one line of action to
another. From the construction in Fig. 2.18 we note the following:

The couple of transfer is equal to the moment of the original force (acting at B)
about the transfer point A.

In vector terminology, the line of action of a force F can be changed to a
parallel line, provided that we introduce the couple of transfer

CT = r× F (2.20)

where r is the vector drawn from the transfer point A to the point of application
B of the original force, as illustrated in Fig. 2.19. It is conventional to show CT

F
r

A

B

FCT = r × F

A

B

(a) Original force

(b) Equivalent force-couple system

Fig. 2.19

acting at the transfer point, as in Fig. 2.19(b), but you must not forget that a couple
is a free vector that could be placed anywhere.

According to the properties of the cross product in Eq. (2.20), the couple-
vector CT is perpendicular to F. Thus a force at a given point can always be
replaced by a force at a different point and a couple-vector that is perpendicular to
the force. The converse is also true: A force and a couple-vector that are mutually
perpendicular can always be reduced to a single, equivalent force by reversing the
construction outlined in Figs. 2.18 and 2.19.



Sample Problem 2.10
For the machine part shown in Fig. (a), replace the applied load of 150 kN acting at
point A by (1) an equivalent force-couple system with the force acting at point B;
and (2) two horizontal forces, one acting at point B and the other acting at point C.

40 mm
40 mm 80 mm

80 mm

150 kNA

B

C

(a)

Solution
Part 1

First we move the 150-kN force to point B, and then we introduce the couple
of transfer equal to the moment of the 150-kN force in Fig. (a) about point B,
given by

+ CT =MB = − 150(0.080+ 0.040)= − 18 kN ·m

The negative sign indicates that the sense of the couple is clockwise. The
equivalent force-couple system is shown in Fig. (b).

A

B

C

40 mm
40 mm

150 kN

18 kN·m

(b)

Answer

Part 2

The 18 kN ·m clockwise couple in Fig. (b) can be replaced by two 450-kN forces,
one acting at point B and the other at point C, as shown in Fig. (c). (The couple
represented by these two forces is 450(0.040)= 18 kN ·m in the clockwise direc-
tion.) The two forces acting at point B can be added to get the system shown in
Fig. (d). This is the answer, because we have replaced the original force with two
horizontal forces, one at point B and the other at point C, as required.

A

B

C

40 mm
40 mm

450 kN
150 kN

450 kN

(c)

A

40 mm

B

C

600 kN

(d)

450 kN
Answer
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Sample Problem 2.11
Replace the force-couple system shown in Fig. (a) with an equivalent force-couple

y

60
 m

m

z

x

A

80
 m

m

D E

B120 mm

O
F

C

(a)

system, with the force acting at point A, given that F = 100 N and C = 3600 N ·
mm.

Solution
Moving the given force F from point B to point A requires the introduction of
a couple of transfer CT. This couple is then added to the given couple-vector C,
thereby obtaining the resultant couple-vector, which we label CR . The couple-
vector CR and the force F located at point A will then be the required force-couple
system.

Owing to the three-dimensional nature of this problem, it is convenient to use
vector methods in the solution. Writing F in vector form, we obtain

F = 100λBE= 100
−→
BE

|−→BE|
= 100

(−120i+ 60k
134.164

)

= −89.44i+ 44.72k N

The position vector from A to B is rAB= 120j− 60k m. The couple of transfer is
equal to the moment of the given force F about point A, so we have

CT =MA= rAB × F=
∣∣∣∣∣∣

i j k
0 120 −60

−89.44 0 44.72

∣∣∣∣∣∣
= 5366.4i+ 5366.4j+ 10732.8k N ·mm

Expressing the given couple-vector C shown in Fig. (a) in vector form,

C = 3600λDB= 3600
−→
DB

|−→DB|
= 3600

(
120i+ 120j− 60k

180

)

= 2400i+ 2400j− 1200k N ·mm

Adding CT and C (remember that couple-vectors are free vectors), the resultant

y

z

x

A

O

(b)

2

1

F = 100 N 9532.8 N.mm

CR = 14543.3 N.mm

7766.4 N.mm

7766.4 N.mm

couple-vector is

CR =CT + C= 7766.4i+ 7766.4j+ 9532.8k N ·mm

The magnitude of CR is given by

C R =
√

(7766.4)2 + (7766.4)2 + (9532.8)2= 14543.3 N ·mm

The equivalent force-couple system is shown in Fig. (b). Note that the force
acts at point A. For convenience of representation, CR is shown at point O, but
being a free vector, it could be placed anywhere.
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Problems

2.82 Which of the systems are equivalent to the force-couple system in (a)?

100 N

3 m

400 N · m

2 m

2 m

(a)

100 N

100 N · m

(b)

100 N

700 N · m

(c)

100 N

300 N · m

(d)

100 N

600 N · m

(e)

200 N

(f)

Fig. P2.82

2.83 A 75-N force acts at point A on the high-pressure water cock. Replace this
force with (a) a force-couple system, the force of which acts at point B; and (b)
two horizontal forces, one acting at point B and the other acting at point C.

66 mm

180mm

75 N
A

B

C

200 mm

1200 mm

700 mm150 mm

B

A

CP

Fig. P2.83 Fig. P2.84

2.84 The bracket, which is fastened to a wall by anchor bolts at A and B, is
loaded by the force P = 120 N and the couple C = 140 N·m. Replace P and C with
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(a) an equivalent force-couple system, the force of which acts at A; and (b) two
vertical forces, one acting at A and the other at B.

2.85 The three forces shown are equivalent to a 50-kN upward force at A and a  P Q

2 m 2 m

20 kN

3 m

A

Fig. P2.85

170-kN ·m counterclockwise couple. Determine P and Q.

2.86 Replace the two forces shown by a force-couple system with the force
acting at O .

50 N

270 mm

90 N

360 mm
B

x

O
A

y

30°

Fig. P2.86

2.87 The figure shows a schematic of a torsion-bar suspension for an automo-

300 mm
Torsion

bar

600 mm

H

V

R

D

H

C

B

A

Fig. P2.87

bile (the torsion bar appears in cross section at A). If the three forces and the
couple C = 27000 N ·mm are equivalent to a upward vertical force R = 1200 N
acting at D, determine H and V .

2.88 The table can be lifted without tilting by applying the 100-N force at

O

A

y

40 N
2 m

90 N.m

5 m 3 m

z

x

Fig. P2.90

point O, the center of the table. Determine the force-couple system with the force
acting at corner A that will produce the same result.

2.89 The magnitude of the force F acting at point A on the plate is 160 kN.
Determine the equivalent force-couple system with the force acting at point O.

A

y

x

1.2 m

O

1.0
 m

100 N

z

2 m

2.2
 m

2 m

x

z

y
BO

A F

Fig. P2.88 Fig. P2.89

2.90 Replace the force-couple system acting on the pipe with an equivalent
force-couple system with the force acting at point O .
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∗2.91 (a) Replace the force F= − 2800i+ 1600j+ 3000k N acting at end A of
the crank handle with a force R acting at O and a couple-vector CR . (b) Resolve
R into the normal component P (normal to the cross section of the shaft) and the
shear component V (in the plane of the cross section). (c) Resolve CR into the
twisting component T and the bending component M.

x

A

y

OO

z

120 mm F

150 mm

300 mm 

Fig. P2.91

2.92 Determine the force-couple system, with the force acting at point O, that

30° 49 Nz

O

x

y

C

D

40°

130 N.m
A

B

2.1 m

1.4 m

Fig. P2.92

is equivalent to the force and couple acting on the arm CD of the industrial robot.
Note that the arm ABCD lies in a vertical plane that is inclined at 40◦ to the
yz-plane; the arm CD makes an angle of 30◦ with the vertical.

2.93 Replace the force and the couple shown by an equivalent force-couple
system with the force acting at (a) point B; and (b) point D.

0.9 m

1.3 m1.8 m

80 N

250 N ⋅ m

B

z

x

A y
D

Fig. P2.93
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Review of Equations

Principle of transmissibility

A force may be moved anywhere along its line of action without changing its
external effect on a rigid body.

Moment of a force about point O

MO = r× F MO = Fd

r = vector from O to any point on the line of action of F
d = perpendicular distance between O and the line of action of F

Moment of force F about axis AB

MAB = r× F · λ =MO · λ

r = vector from any point on AB to any point on the line of action of F
λ = unit vector directed from A toward B
O = any point on AB

Changing the line of action of a force

A force F acting at point A is equivalent to F acting at point B plus the couple of
transfer

CT = r× F

r = vector from A to B
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Review Problems

2.94 The moment of the force P about the axis AB is 600 N ·m. Determine the
magnitude of P.

x
A

B

OC

y

z

30° 
20° 

8 m
P 8 m

8 
m

 

Fig. P2.94
2.95 Replace the force and the couple shown with an equivalent force-couple
system where the force acts at A.

6 m

6 m 8 m

D
x

A B

32 kN
180 kN ⋅ m

E

z

y
4 m

Fig. P2.95

2.96 Three cable tensions T1, T2, and T3 act at the top of the flagpole. Given

y
4 m

3 m

6 m
10 m O

12 m
T2

T1 T3

A

z

x
C

B

D

Fig. P2.96

that the resultant force for the three tensions is R=−400k N, find the magnitudes
of the cable tensions.

2.97 The force acting at A is F = 10i + 20j − 5k kN. Knowing that the
moment of this force about the y-axis is 8j kN ·m, determine the distance b and
the moment of F about point O .

A

y

b

30
0 

m
m

x
250 mm

z

O F

Fig. P2.97
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2.98 The magnitude of the moment of the force P about the axis CD is 1500

90 mm
90 mm

B

P

15
0 

m
m

60 mm 60 mm

A

z

y

x

C

D

Fig. P2.98

N · mm. Find the magnitude of P.

2.99 The three couples in (a) are equivalent to the couple shown in (b), where
F = 160i+ 120j N. Determine the distance b.

0.5 m

0.5 m

160 N
400 N ⋅ m

120 N ⋅ m

160 N

(a) (b)

y

x –F

Fb

Fig. P2.99

2.100 The magnitudes of the force P and couple C are 500 N and 1200 N · m,
respectively. Calculate the combined moment of P and C about (a) the origin O;
and (b) the axis OF.

y

x

z

C
P

B E

A

O

F

12 m

4 m

3 m
y

x

30° 45°

T2T3

T1

Fig. P2.100 Fig. P2.101

2.101 The resultant force of the three cable tensions that support the crate is
R= 500j N. Find T1 and T3, given that T2= 300 N.

2.102 A force system consists of the force F= 200i + 100j + 250k N, acting
at the origin of a rectangular coordinate system, and a couple C = −12000i +
9000j+ 6000k N · mm. (a) Show that F and C can be reduced to a single force.
(b) Find the coordinates of the point in the xy-plane where the combined moment
of F and C is zero.

2.103 Replace the two forces shown with an equivalent force-couple system

30 kN

50 kN

4 m

B
y

A

x

z

O

2 m

Fig. P2.103

with the force acting at O .

2.104 The three forces of magnitude P can be replaced by a single, equiva-

L L
2

x

P

P

AA

L
2

A

P

Fig. P2.104
lent force R acting at point A. Determine the distance x and the magnitude and
direction of R.
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2.105 Knowing that the two forces shown can be replaced by an equivalent
force acting at O (no couple), determine P.

O

P
4

3

5

12

260 N

30°
60°

15
0 

m
m

120 mm

z

y

C

T1

T2

A

B
x

20°

5 m

2 m

4 m

3 m

Fig. P2.105 Fig. P2.106

2.106 The trapdoor is held in the position shown by two cables. The tensions
in the cables are T1= 30 N and T2= 90 N. Determine the magnitude of the single
force that would have the same effect on the door as the cable tensions.

2.107 The force system consists of the force P= − 300i+ 200j+ 150k N and
B

AD

E

z

x

yP

C

3 m

3 m

4 m

Fig. P2.107

the couple C. Determine the magnitude of C if the moment of this force system
about the axis DE is 800 N ·m.

2.108 The force system shown can be replaced with a single, equivalent couple
CR . Determine CR .

Dimensions in mm

400 N

300 N

300

200 N

500 N

A

z

x
D

E

B

O

y

400 N

400

400

200

Fig. P2.108



3
Resultants of Force Systems

Strong winds result in significant
loads on high-rise buildings. If the
pressure distribution is known, the
resultant force of the wind and the
location of the corresponding
pressure center can be computed
using the principles of statics—see
Problem P3.52. Visions of
America/Joe Sohm/Digital
Vision/Getty Images

3.1 Introduction

In order to investigate the effects of a system of forces on a body, it is often
convenient to reduce the force system to its simplest equivalent representation.
Some of these simplifications have been discussed in the preceding chapter. For
example, you have learned that a system of concurrent forces can be replaced by
a single force and that a system of couples can be replaced by a single couple.

The next article explains how an arbitrary force system can be reduced to a
force and a couple. Subsequent articles discuss applications of the force-couple
system to the determination of the resultants of force systems.

3.2 Reduction of a Force System to a Force
and a Couple

Here we show how a system of forces can be reduced to an equivalent system
consisting of a force acting at an arbitrary point, plus a couple.

97
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RR

OO

R

O

CR

F1

F2

F3
r2

r3r1
OO

F1

FF22

CC33
TT

CC11
TT

C2
T

FF33

OO

(a) (b)

=
O

C3
T

F2

C1
T

F3

O

(c)

=

CR

Fig. 3.1

Consider the force system shown in Fig. 3.1(a), consisting of the forces F1,
F2, F3, . . . . The position vectors r1, r2, r3, . . . of the points where the forces act
are measured from an arbitrarily chosen base point O. We can reduce this force
system to an equivalent force-couple system, with the force acting at O, by the
following procedure:

• Move each force to point O. As explained in Art. 2.8, the force F1 can be
moved to O if we introduce the couple of transfer CT

1 = r1 × F1 (the moment
of F1 about O). The forces F2, F3, . . . can be moved in the same manner, their
couples of transfer being CT

2 = r2×F2, CT
3 = r3×F3, . . . . After all the forces

have been moved, we end up with the force system in Fig 3.1(b), which is
equivalent to the original system. (The equal signs between the figures signify
equivalence.)

• Because the forces are now concurrent at point O, they can be added to yield
the resultant force R:

R=F1 + F2 + F3 + · · · =�F (3.1)

The couples of transfer can also be added, their sum being the resultant
couple-vector CR :

CR = r1 × F1 + r2 × F2 + r3 × F3 + · · · =�MO (3.2)

The resultant force-couple system is displayed in Fig. 3.1(c), with both R and
CR shown acting at point O. It should be noted, however, that R is a sliding
vector (its line of action must pass through O), whereas CR is a free vector.
Although CT

1 is perpendicular to F1, and so on, as pointed out in Art. 2.8,
CR is generally not perpendicular to R.
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Using Eqs. (3.1) and (3.2), any force system can be reduced to an equivalent
force-couple system, with the force acting at a reference point of your choosing.
The resultant force R is simply the vector sum of all the forces—therefore, it is
not affected by the location of the reference point. However, the resultant couple-
vector CR , being the sum of the moments of all the forces about the reference
point,* does depend on the choice of the reference point.

If we choose the reference point O be the origin of a rectangular coordinate
system, the two vector equations in Eqs. (3.1) and (3.2) are equivalent to the
following six scalar equations:

Rx =�Fx Ry =�Fy Rz =�Fz

C R
x =�Mx C R

y =�My C R
z =�Mz

(3.3)

If the forces of the original system lie in a plane—say, the xy-plane—the
following three scalar equations are necessary to determine the force-couple
system.

Rx =�Fx Ry =�Fy C R =�MO (3.4)

The couple-vector CR will always be in the z-direction, because the plane of the
couple is the xy-plane. Because the resultant force R lies in the xy-plane, R and
CR will be mutually perpendicular. The last observation is significant—it implies
that a coplanar force system can be further reduced to a single force or a single
couple. This topic is discussed in more detail in the next article.

*If the original force system contains couples, their moments must be included in the sum.



Sample Problem 3.1
The force system acting on a structural member consists of the couple C and the

6 m3 
m

4 m

B

z

x

y

G

O

C

A

F1

F2

F3

forces F1, F2, and F3. Determine the equivalent force-couple system with the force
acting at point G. Use C = 200 N ·m, F1= 100 N, F2= 90 N, and F3= 120 N.

Solution
Because of the three-dimensional nature of this problem, we will use vector alge-
bra to solve it. The first step is to express the three forces and the couple in vector
form:

F1 = 100λAB= 100
−→
AB

|−→AB|
= 100

(
−4i− 6j+ 3k√

(−4)2 + (−6)2 + 32

)

= −51.22i− 76.82j+ 38.41k N

F2 = 90i N

F3 = 120j N

C = 200λBG= 200
−→
BG

|−→BG|
= 200

(
4i− 3k√

42 + (−3)2

)

= 160i− 120k N ·m

When we move the forces F1 and F2 to point G, they are concurrent with F3.
Adding the three forces, we get for the resultant force

R = F1 + F2 + F3

= (−51.22i− 76.82j+ 38.41k)+ 90i+ 120j

= 38.78i+ 43.18j+ 38.41k N Answer

The couple of transfer that arises from moving F1 and F2 is the moment
about G of

F1 + F2 = (−51.22i− 76.82j+ 38.41k)+ 90i

= 38.78i− 76.82j+ 38.41k N

The resultant couple is the sum of the couple of transfer and the couple C,
resulting in

CR = rGB × (F1 + F2)+ C

=
∣∣∣∣∣∣

i j k
−4 3 0

38.78 −76.82 38.41

∣∣∣∣∣∣+ 160i− 120k

= 275i+ 153.6j+ 70.9k N ·m Answer

100



Sample Problem 3.2
The coplanar force system in Fig. (a) consists of three forces and one couple.

4

3

800 mm

400 mm

300 mm

y

x

90 N

40 N.m

100 N

(a)

O

40°

60
0 

m
m

A

50 N

50
0 

m
m

Determine the equivalent force-couple system with the force acting at point O .

Solution
We will solve this problem with scalar algebra; however, the use of vector algebra
would be almost as convenient.

The components of the resultant force R are

Rx = �Fx −→+ Rx = 50 cos 40◦ + 90− 3

5
(100)= 68.30 N

Ry = �Fy +
�⏐ Ry = 50 sin 40◦ − 4

5
(100) = −47.86 N

Thus the resultant force is

R= 68.3i− 47.9j N Answer

The magnitude of R is

R=
√

(68.30)2 + (−47.86)2= 83.4 N

and the angle that R makes with the x-axis is

θ = tan−1 47.86

68.30
= 35.0◦

The force R acting at point O is shown in Fig. (b).

O
35°

68.3 N

CR = 87.4 N.m

R = 83.4 N
47.9 N

y

x

(b)

The magnitude of the resultant couple equals the magnitude of the total
moment about point O of the original force system. Referring to Fig. (a), we have

C R =�MO + C R = 50 sin 40◦(0.800)− 50 cos 40◦(0.500)

− 90(0.600)− 40

= −87.44 N ·m

Therefore,

C R = 87.4 N ·m clockwise Answer

The resultant force-couple system is shown in Fig. (b).
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Problems

3.1 Determine which of the force systems in (b) through (f) are equivalent to
the force-couple system in (a).

(a)

4 m

3 m

5 m

5 m

10 N

A

A A
A

A
A

4 N

8 N

10 N

(b)

5 N

(f )

8 N
6 N

(e)

8 N

80 N.m

36 N.m4 N

10 N

(d)

8 N

50 N.m

10 N

4 m

(c)

50 N.m

24 N.m

Fig. P3.1

3.2 Two forces and a couple are applied to the beam in an attempt to lift it.
Replace this force system by an equivalent force-couple system with the force
acting at (a) point A; and (b) point B.

x

y

A

2 m 3 m

36 kN 20 kN

94 kN.m2 m

C B

b

Fig. P3.2, P3.3

3.3 The two forces and a couple acting on the beam are equivalent to a single
force acting at C . Determine the distance b that locates point C .

3.4 The four forces shown act on the rollers of an in-line skate. Determine the

96 mm

90 N 150 N 230 N 300 N

285 mm

O

10
5 m

m

13
5 m

m

10
5 m

m

Fig. P3.4
equivalent force-couple system, with the force acting at O (the ankle joint of
the skater).
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3.5 Replace the three forces with an equivalent force-couple system, with the

150

300

Dimensions in mm

200

200

600 N

400 N

300 N

O

y

x

Fig. P3.5

force acting at O.

3.6 The force system acting on the machine part is equivalent to the single force
R = 475i+ 50j N acting at O . Determine the force P and the distance b.

240 mm

P

1500 N

300 N

1000 N
120 mm30°

O
x

b

y

Fig. P3.6
3.7 The three forces are perpendicular to the triangular plate. Find the equiva-
lent force-couple system, with the force acting at O.

50 kN
20 kN

40 kN

O

x y

z

3 m 4 m

Fig. P3.7
3.8 Replace the three forces acting on the quarter-circular plate with an
equivalent force-couple system with the force at point D. Use P = 2000 N and
θ = 40◦.

1000 N

1200 N

A

BO

θ

P

x

y

z

3 m

3 m

 

D

Fig. P3.8, P3.9
3.9 When the three forces acting on the quarter-circular plate are replaced by
an equivalent force-couple system with the force acting at point D, the resultant
couple is zero. Determine P and the angle θ .



104 CHAPTER 3 Resultants of Force Systems

3.10 Represent each of the force systems with a force-couple system having the
force act at point A. Which systems are equivalent to each other?

150 mm
y

x

z

10 N

30 N

150 mm

A

(a)

15 N

20 N

30 N

(b)

A
30 N 10 N

900 N.mm

(c)

A

15 N

15 N

15 N

15 N

1950 N.mm

A

(d)

5 N

10 N

15 N

(e)

A A
20 N

45 N

25 N

3750 N.mm

2400 N.mm

(f)

12
0 m

m

Fig. P3.10

3.11 A worker applies the forces P = −50i + 40j N and Q = 50i N to the
handgrips of the electric drill. These forces are equivalent to the force R = 40j N
acting at the tip of the drill and the couple CR = −18000j N ·mm. Determine the
dimensions a and b.

CR

R

Q

O

z

x PP y
b

a
240 mm

Fig. P3.11

3.12 Two cable tensions and a couple act on the rod OAB. Determine the
equivalent force-couple system with the force acting at O.
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50 kN

D
z

C

O

x

A

B

y
4 m

2 m

3 m

3 m

3 m

150 kN.m
20 kN

Fig. P3.12

3.13 Replace the two forces and a couple acting on the bent rod ABC with an

100 N

120 N

2 m

A
x

z
B

C

D
y

1.5 m 2 m

180 N.m

Fig. P3.13

equivalent force-couple system with the force acting at C .

3.14 The shaft-and-pulley assembly ABCD is driven by the 32-N · m torque
(couple) supplied by the electric motor at A. The assembly is also subjected to the
two belt tensions shown at each of the two pulleys. Determine the force-couple
system at D that is equivalent to the torque and the four belt tensions.

12 N

26 N

5

z

x

y

D

A

C

B

12

0.75 m

32 N

8 N

1m

32 N.m

2 m

3 m

1.5 m

Fig. P3.14

3.15 Replace the two forces and the couple with an equivalent force-couple

20 N

35°

14 N

Dimensions in mm

Dz

C

E
O

x

A

B

y

300
20

0

250

6 N.mm

Fig. P3.15

system, with the force acting at A. Note that the 6-N · m couple lies in the plane
OCED.

3.3 Definition of Resultant

The resultant of a force system is defined to be the simplest system that can
replace the original system without changing its external effect on a rigid
body.



106 CHAPTER 3 Resultants of Force Systems

The word simplest is used in the sense that one force is simpler than two forces,
one couple is simpler than two couples, a force is simpler than a force and a
couple, and so on.

The resultant of a force system is generally a force-couple system R and CR .
As explained in Art. 2.8, if R and CR are mutually perpendicular, they can be
further reduced to a single force. It follows that the resultant of a force system
must be one of the following:*

• A resultant force R (if CR = 0 or if R and CR are perpendicular)
• A resultant couple-vector CR (if R= 0)
• A resultant force-couple system (if R and CR are not mutually perpendicular)

Force systems that have the same resultant are called statically equivalent.
The remainder of this chapter discusses the procedures for determining the

resultants of two- and three-dimensional force systems.

3.4 Resultants of Coplanar Force Systems

This article investigates the resultants of force systems in which all the forces lie
in a single plane, chosen as the xy-coordinate plane. We begin with a discussion
of the resultants of general coplanar force systems and then consider two special
cases: concurrent force systems and parallel force systems.

a. General coplanar force system

A general coplanar force system is shown in Fig. 3.2(a), with all the forces lying
in the xy-plane. The origin O is located at any convenient point in the plane. The
reduction of this force system to its resultant (simplest equivalent force system) is
accomplished by the following procedure.

y

xO

F3

F2

F1

y

x x

y

R
==

R = ΣF

CR = ΣM d

O O

(a) General coplanar
      force system

(b) Equivalent
force-couple system

(c) Resultant is a
force (or a couple)

O

Fig. 3.2

*It is important that you pay particular attention to the use of the terms resultant, resultant force R,
and resultant couple-vector CR .
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Replace the original force system with the equivalent system consisting of
the resultant force R=�F (or Rx =�Fx and Ry =�Fy) acting at O and the
resultant couple C R =�MO , as shown in Fig. 3.2(b). This procedure has three
possible outcomes:

• R= 0. The resultant is the couple C R .
• C R = 0. The resultant is the force R acting through O.
• R �= 0 and C R �= 0. Because R and CR are perpendicular to each other, the

system can be reduced to a single force R acting at a point different from O, as
illustrated in Fig. 3.2(c). The perpendicular distance d between O and the line
of action of R is determined by the requirement that moments about O of the
force systems in Figs. 3.2(b) and (c) must be the same; that is, �MO = Rd.

In summary, the resultant of the general coplanar force system shown in
Fig. 3.2(a) is either a force or a couple. If �F �= 0, then the resultant is a force R
determined by

Rx =�Fx Ry =�Fy �MO = Rd (3.5)

Note that the moment equation locates the line of action of R.
If �F= 0 and �MO �= 0, then the resultant is the couple

C R =�MO (3.6)

b. Concurrent, coplanar force system

The resultant of a concurrent, coplanar force system is the force R=�F
(Rx =�Fx , Ry =�Fy) acting through the point of concurrency O, as indicated
in Fig. 3.3. This conclusion follows from Eq. (3.5): Because �MO = 0 for a force
system that is concurrent at O, the moment equation �MO = Rd yields d = 0.

x x

y y

F2

F3

F1

O

(a)  Concurrent, coplanar
force system

O

Ry

Rx

R = ΣF

=

(b) Resultant is a force
through point of concurrency

Fig. 3.3
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c. Parallel, coplanar force system

Figure 3.4(a) shows a coplanar force system, where the forces F1, F2, F3, . . . are
parallel to the y-axis. The equivalent force-couple system at point O is shown in
Fig. 3.4(b), where

R= F1 + F2 + F3 + · · · =�F

C R = F1x1 + F2x2 + F3x3 + · · · =�MO

x2

x1

x3

O

y y y

R = ΣF

CR = ΣMO

xx xO
x

O

R
F1

F2
F3

==

(a) Parallel, coplanar
force system

(b) Equivalent
force-couple system 

(c) Resultant is a
force (or a couple)

Fig. 3.4

If �F �= 0, the resultant is a force R located at the distance x from O, as indicated
in Fig. 3.4(c). The value of x is obtained by equating the moments about O in
Figs. 3.4(b) and (c):

�MO = Rx (3.7)

If, on the other hand, �F = 0 and �MO �= 0, then the resultant is the couple
C R =�MO .



Sample Problem 3.3
The values of Rx =�Fx , Ry =�Fy , and �MO for five force systems lying in the
xy-plane are listed in the following table. Point O is the origin of the coordinate
system, and positive moments are counterclockwise. Determine the resultant for
each force system, and show it on a sketch of the coordinate system.

Part Rx Ry �MO

1 0 200 N 400 N ·m
2 0 200 N −400 N ·m
3 300 N 400 N 600 N ·m
4 400 N −600 N −900 N ·m
5 0 0 −200 N ·m

Solution
Part 1

Rx = 0 Ry = 200 N �MO = 400 N ·m
The resultant is a 200-N force that is parallel to the y-axis, as shown in Fig. (a).

x = 2 m

y

x
O

200 N

(a)

Letting x be the distance from point O to the line of action of the resultant, as
shown in Fig. (a), and using Eq. (3.7), we have

�MO = Rx + 400= 200x

which gives

x = 2 m

Part 2
Rx = 0 Ry = 200 N �MO = − 400 N ·m

The resultant is the same 200-N force as in Part 1, but here the moment equation
gives

�MO = Rx + − 400= 200x

or

x = − 2 m

The negative sign indicates that x lies to the left of point O, as shown in Fig. (b).

2 m

y

x
O

200 N

(b)

Part 3
Rx = 300 N Ry = 400 N �MO = 600 N ·m

The resultant is the force R= 300i+ 400j N. Its magnitude is R=√
(300)2+ (400)2= 500 N. The moment equation of Eqs. (3.5) must be used to
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determine the line of action of R. Letting d be the perpendicular distance from
point O to the line of action of R, as shown in Fig. (c), we have

�MO = Rd + 600= 500d

which yields

y

O

B

A

4

3

x

R = 500 N
Ry = 400 N

Rx = 300 N

x = 1.5 m

d = 1.2 m

(c)

d = 1.2 m

The points where R intersects the coordinate axes can then be determined by
trigonometry or by using the principle of moments, as follows.

y

O

B

A x

R = 500 N

Ry = 400 N

Rx = 300 N

y = 2 m

(d)

With R placed at A, as in Fig. (c): With R placed at B, as in Fig. (d):

�MO = Ry x

+ 600= 400x

x = 1.5 m

�MO = Rx y

+ 600= 300y

y= 2 m

Part 4
Rx = 400 N Ry = − 600 N �MO = − 900 N ·m

The resultant is the force R = 400i − 600j N; its magnitude is R=√
(400)2 + (600)2 = 721.1 N. Letting d be the perpendicular distance from

point O to the line of action of R, as shown in Fig. (e), we have

y

x
O

(e)

R = 721.1 N

6

4

d = 1.248 m

�MO = Rd + − 900= − 721.1d

which gives

d = 1.248 m

Note that the line of action of R must be placed to the right of the origin, so that
its moment about point O has the same sense as �MO—that is, clockwise.

Part 5
Rx = 0 Ry = 0 �MO = − 200 N ·m

Because the sum of the forces is zero, the resultant of this force system is a
200-N · m clockwise couple, as shown in Fig. (f).

y

x
O

(f)

200 N.m
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Sample Problem 3.4
The force R is the resultant of the other three concurrent forces shown. Determine

30°
20°

80 N

y

P

R

x

100 N

O

P and R.

Solution
The three applied forces represent a concurrent, coplanar force system. Therefore,
the components of the resultant force are determined by two scalar equations:
Rx =�Fx and Ry =�Fy . Because the directions of all the forces are known,
there are two unknowns in this problem—the magnitudes P and R. The most
direct method for determining these two unknowns is to solve the following
two scalar equations (comparing the number of unknowns with the number of
available equations is often a valuable aid in the solution of problems):

Rx = �Fx −→+ R cos 30◦ = P sin 20◦ − 80 (1)

Ry = �Fy +
�⏐ R sin 30◦ = P cos 20◦ − 100 (2)

Solving Eqs. (1) and (2) simultaneously gives

P = 72.5 N and R= − 63.7 N

The positive value of P indicates that P is directed as shown in the figure. The
negative sign associated with R means that R acts in the direction opposite to that
shown in the figure.

Therefore, the forces P and R are

20°

P  =  72.5 N
30°

R  =  63.7 N

Answer

Of course, the lines of action of P and R pass through O, the point of concurrency.

Sample Problem 3.5
Determine the resultant of the coplanar force system shown in Fig. (a) that acts on
the arm of an excavator. Show your answer on a sketch of the coordinate system.

Solution
For a coplanar force system, the resultant is either a force or a couple. If the
resultant is a force, then Eqs. (3.5) provide three scalar equations: Rx =�Fx ,
Ry =�Fy , and �MO = Rd.

We see that there are no unknown quantities in the original force system.
Therefore, if the resultant is a force, the three unknowns in this problem will
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y
80 kN

40°

60 kN

O
x O

3 m

50 kN

(a)

37.2°
R = 14.17 kN

d = 2.27 m
x

y

(b)

3.3 m

350 kN.m

be Rx , Ry , and d, which could be determined from the three scalar equations.
Referring to Fig. (a), the three equations become

Rx =�Fx −→+ Rx = 80 cos 40◦ − 50= 11.284 kN

This equation is sufficient to tell us that the resultant is a force, not a couple; if
the resultant were a couple, �Fx would be zero.

Ry=�Fy +
�⏐ Ry= 80 sin 40◦ − 60= − 8.577 kN

�MO = Rd + �MO = 350− (80 cos 40◦)(3.3)− 60(3) = −32.24 kN ·m

Therefore, the resultant R is

8.577 kN R = 14.174 kN

11.284 kN
θ

θ = tan−1 8.577

11.284
= 37.2◦

Because �MO is negative (i.e., clockwise), the resultant R must also provide
a clockwise moment about O, as shown in Fig. (b). Therefore we obtain

�MO = Rd + 32.24 = 14.174d

which gives

d = 2.27 m

The final result is shown in Fig. (b).
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Sample Problem 3.6
The force system shown consists of the couple C and four forces. If the resul-
tant of this system is a 75000-N · mm counterclockwise couple, determine P, Q,
and C.

12
5

100 N

400 N

O B
30 mm

4
3

30 mm

C

P

Q

A

y

x

Solution
This problem contains three unknowns: P, Q, and C. Because the force system is
the general coplanar case, three equations are available to determine the resultant.
Since the resultant is a couple, the first two of Eqs. (3.5) become

Rx = �Fx = 0 −→+ −12

13
Q + 4

5
P + 400= 0 (a)

Ry = �Fy= 0 +
�⏐ − 5

13
Q + 3

5
P − 100= 0 (b)

Solving Eqs. (a) and (b) simultaneously gives

P = 1000 N and Q= 1300 N Answer

The third equation is Eq. (3.6), C R =�MO . Because a couple is a free
vector, the moment center can be any point. Given that C R = 75000 N ·mm,
counterclockwise, and choosing point A as the moment center, we have

C R =�MA + 75000= − 100(90)−C + 400(120)+ 3

5
P(180)+ 4

5
P(180)

Substituting P = 1000 N and solving yields

C = 216000 N ·mm Answer

Because the values for P, Q, and C are positive, each force acts in the direction
shown in the figure.
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Problems

3.16 Determine the resultant force R and its line of action for the followingy

Fy

Fx
x

C
O

Fig. P3.16

force-couple systems:

(a) Fx = 300 N, Fy = 0, and C = −900 N ·m
(b) Fx = 200 N, Fy = −200 N, and C = 800 N ·m
(c) Fx = −600 kN, Fy = −400 kN, and C = 0
(d) Fx = −600 N, Fy = 800 N, and C = −24000 N ·m

3.17 Determine the resultant of the three forces acting on the gusset plate of a
truss.

45° 50°

3800 N

6200 N

4000 N

y

x
A

Fig. P3.17

3.18 The resultant of the three concurrent forces acting on the eyebolt is the
force R= 800j N. Determine the magnitude of the force P and the angle θ that
specifies the direction of the 900-N force.

x

y

3
4

P

500 N

900 N

O

θ 2 m 8 m 4 m 3 m

300 kN 120 kN 200 kN

A

C

B

500 kN
x

Fig. P3.18 Fig. P3.19

3.19 The overhead electric hoist C rides along a track on the horizontal beam
AB. In addition to the 500-kN vertical force carried by the hoist, the beam also
supports the three vertical forces shown. (a) If x = 5 m, determine the resultant of
the four forces carried by the beam. (b) Determine the distance x for which the
resultant of the four forces would act at the center of the span AB.

3.20 Knowing that the resultant of the couple and the two forces shown is a

60°

150 N

875 N.m

P

y
O

x

3 
m

4 
m

Fig. P3.20 force R acting through point O , determine P and R.
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3.21 Determine which of the force systems in (b) through (f) are equivalent to
the 21-kN force in (a).

(f )

6 kN

15 kN

12.6 kN.m

8 kN

6 kN

(e)

21 kN

8 kN

8 kN

(d)

17 kN

10 kN

4
3

15

8

(c)

15 kN
6 kN

189 kN.m

(b)

15 kN
6 kN

(a)

2.1 m

1.5 m

1.575 m

A

21 kN

Fig. P3.21

3.22 Determine the resultant of the three forces if (a) θ = 30◦; and (b) θ = 45◦.

O

500 N

500 N

x

y

500 N

300 mm

θθ

Fig. P3.22

3.23 Determine the resultant of the force system acting on the beam.

1000 N 600 N

1200 N

1000 N

4.5 m

y

A x

8.2 m 5.5 m

12

x

y

O

2.4 m

2.8 m

150 N

4
35

80 N
C

130 N

Fig. P3.23 Fig. P3.24

3.24 Determine the resultant of the three forces and the couple C, and show it
on a sketch of the coordinate system if (a) C = 0; and (b) C = 90 N ·m.
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3.25 The resultant of the three forces is a force R that passes through point B.
Determine R and F.

x
B

O

1.5 m
3 m

4 m

F
12

5

36 N

30.5 N

y

Fig. P3.25

3.26 The resultant of the four belt tensions and the couple C is a force R acting

1000 N
800 N

200 N
400 N

45
0 

m
m

C
O

360 mm

Fig. P3.26
through point O . Determine C and R.

3.27 The resultant of the three forces shown is a counterclockwise couple of

A

O B
x

y
1.0 m

1.0 m

P1

P3

P2

Fig. P3.27

magnitude 150 N ·m. Calculate the magnitudes of the forces.

C

P3

P2

P1

A

B

y

x

4

3 2 m

2 m

50 N

300 N

B

A

P2

P1

y

x

5 m

5 m

30°
θ

Fig. P3.28 Fig. P3.29

3.28 The resultant of the three forces is the force R = −170j kN acting through
point B. Determine P1, P2, and P3.

∗3.29 The bar AB, which is inclined at the angle θ to the horizontal, is subjected
to the four forces shown. Knowing that these forces have no resultant (neither a
force nor a couple), determine P1, P2, and θ .

3.5 Resultants of Three-Dimensional Systems

In general, a three-dimensional force system cannot be simplified beyond a force-
couple system. Exceptions are systems in which the forces are either concurrent or
parallel. In this article, we discuss these two special cases, together with a special
form of the force-couple system called the wrench.



3.5 Resultants of Three-Dimensional Systems 117

a. Concurrent, three-dimensional force system

A concurrent, three-dimensional force system is shown in Fig. 3.5(a). As in the
case of concurrent, coplanar forces, this system can be reduced to the resul-
tant force R=�F (Rx =�Fx , Ry =�Fy , Rz =�Fz) acting through the point
of concurrency O, as indicated in Fig. 3.5(b).

z

x

y
O

F2

F1

F3

z

x

y

Rz

Rx

Ry

R = ΣF=
O

Resultant is a force through (b)
the point of concurrency

(a) Concurrent, three-dimensional
force system

Fig. 3.5

b. Parallel, three-dimensional force system

Consider the force system in Fig. 3.6(a), where the forces F1, F2, F3, . . . are
parallel to the z-axis. To find the resultant, we begin by replacing the forces with
an equivalent force-couple system, with the force acting at the origin O, as shown
in Fig. 3.6(b). The magnitude of the resultant force R, which is also parallel to the
z-axis, and the resultant couple-vector CR are given by

R=�F (3.8)

z

F1
F2

F3

y

x

x1
x2

y1
y2

y3

O y

zz

x

= =O O

CR = ΣMO
y A

xr

R

x

y

R = ΣF

(b) Equivalent
force-couple system

(c) Resultant is a
force (or a couple)

x3

(a) Parallel, three-dimensional
force system

Fig. 3.6
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and

CR =�MO (3.9)

where �MO is the sum of the moments of F1, F2, F3, . . . about O. The resultant
couple-vector CR lies in the xy-plane (CR has no z-component because forces
parallel to an axis have no moment about that axis).

Since R and CR are mutually perpendicular, the force system in Fig. 3.6(b)
can be further simplified. If �F = 0, then the resultant is the couple CR =�MO .
If �F �= 0, the resultant is the force R acting through the unique point A in the
xy-plane, as shown in Fig. 3.6(c). The vector r= x i + yj that locates this point
is obtained by equating the moments about point O of the force-couple system in
Fig. 3.6(b) and the force R in Fig. 3.6(c):

�MO = r× R (3.10)

The scalar components of this vector equation are

�Mx = F1 y1 + F2 y2 + F3 y3 + · · · = Ry

�My = −F1x1 − F2x2 − F3x3 − · · · = − Rx

where �Mx and �My are the moments of the original forces about the x- and
y-axes, respectively. Therefore, the coordinates x and y become

x = − �My

R
y= �Mx

R
(3.11)

c. General three-dimensional force system: The wrench

It was shown in Art. 3.2 that a given force system can always be reduced to a
force-couple system consisting of a resultant force R=�F, acting at an arbitrary
point O, and a resultant couple-vector CR =�MO , as shown in Fig. 3.7(a). If R

CR

O

R
Plane normal
to R

(a)

R

CR

CR
t

CR
n

O

(b)

λ

and CR are mutually perpendicular, they can be reduced to a single force R, acting

d

r

RCR
t

O
A

(c)

Direction of CR
n

d

R

O

λ

A

(d)

CR
t

Fig. 3.7
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through a unique point (this property was used in the special cases of coplanar and
parallel force systems). In the general case, R and CR will not be perpendicular to
each other, and thus they will not be reducible to a single force. However, a general
force system can always be represented by a force and a parallel couple-vector
by the procedure described next.

• Resolve CR into the orthogonal components CR
t and CR

n , which are parallel
and perpendicular to R, respectively. The result is shown in Fig. 3.7(b). The
parallel component can be computed from Eq. (2.11):

CR
t = (CR ·λ)λ (3.12)

where λ is the unit vector in the direction of R. The normal component is then
found from

CR
n =CR − CR

t (3.13)

• Because CR
n and R are mutually perpendicular, they can be replaced by the

single force R acting at point A, as illustrated in Fig. 3.7(c). The line of action
of this force is determined by the requirement that its moment about O must
be equal to CR

n . In other words,

r× R=CR
n (3.14)

where r is the vector drawn from O to any point on the new line of action of R.
The scalar form of Eq. (3.14) is Rd = C R

n , where d is the distance between O
and A, as indicated in Fig. 3.7(c). This equation yields

d = C R
n

R
(3.15)

Note that the line OA is perpendicular to CR
n .

• Move CR
t to point A, as shown in Fig. 3.7(d) (we can do this because a couple

is a free vector). The result is a collinear force-couple system, called the
wrench. The direction of the wrench, also known as the axis of the wrench,
is specified by the vector λ.

A physical example of a wrench is the operation of a screwdriver. You exert
a force along the axis of the screwdriver to hold its tip against the screw, while
applying a couple about the same axis to turn the screw. Because the force and
the couple-vector are parallel, they constitute a wrench.



Sample Problem 3.7
The values of �Fz , �Mx , and �My for three force systems that are parallel to
the z-axis are as follows:

Part �Fz �Mx �My

1 50 kN 60 kN ·m −125 kN ·m
2 −600 N 0 −1200 N ·m
3 0 600 N ·mm −800 N · cm

Determine the resultant of each force system and show it on a sketch of the
coordinate system.

Solution
Part 1

�Fz = 50 kN �Mx = 60 kN ·m �My = − 125 kN ·m
The resultant is the force R= 50k kN. With �MO =�Mx i + �Myj and
r= x i+ yj, Eq. (3.10) can be used to determine the line of action of R:

�MO = r× R

60i− 125j=
∣∣∣∣∣∣
i j k
x y 0
0 0 50

∣∣∣∣∣∣ = 50yi− 50xj

Equating like components gives the following scalar equations:

60= 50y and − 125= − 50x

which gives x = 2.5 m and y= 1.2 m. The sketch of the resultant is shown in
Fig. (a).

z

x

O y
50 kN

2.
5 

m

1.2 m

(a)

Identical results for x and y are obtained if one uses Eqs. (3.11):

x = −�My

R
= − −125

50
= 2.5 m

y = �Mx

R
= 60

50
= 1.2 m

Part 2
�Fz = − 600 N �Mx = 0 �My = − 1200 N ·m

The resultant is the force R= − 600k N. In this case, Eq. (3.10) yields

�MO = r× R

−1200j=
∣∣∣∣∣∣
i j k
x y 0
0 0 −600

∣∣∣∣∣∣ = − 600yi+ 600xj

Equating like components gives x = − 2 m and y= 0. The resultant is shown in
Fig. (b).

z

x

O y

600 N

2 
m

(b)
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Part 3
�Fz = 0 �Mx = 600 N · cm �My = − 800 N · cm

Because the sum of the forces is zero and the sum of the moments is not zero, the
resultant is the couple-vector CR =�Mx i+�Myj= 600i− 800j N · cm, shown
in Fig. (c). The magnitude of this couple-vector is 1000 N · cm.

O

(c)

y

x

z

800 N. cm

CR = 1000 N. cm
600 N. cm

Sample Problem 3.8
The parallel force system in Fig. (a) consists of the three forces shown and the
1250-N·m couple. (1) Determine the resultant, and show it on a sketch of the
coordinate system. (2) Determine the resultant if the direction of the 100-N force
is reversed.

100 N 1250 N.m

z

200 N

A B
300 N

(a)

O

x

y

3 m 3 m

4 m

3 m

2 m

Solution
Part 1

The resultant of the force system shown in Fig. (a) will be either a force or a
couple. We begin by summing the forces.

+
�⏐ R=�Fz = 100− 200+ 300= 200 N

Therefore, the resultant is the force R= 200k N.
We must use a moment equation to find the line of action of R. Using the

origin O as the moment center and assuming that R intersects the xy-plane at the
point (x, y, 0), Eq. (3.10) becomes

�MO = r× R

3i× (−200k)+ [(2i+ 6j)× 300k]

−
(

4

5

)
1250i−

(
3

5

)
1250j = (x i+ yj)× 200k
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Expanding the cross products and simplifying, we obtain

800i− 750j= 200yi− 200xj

Equating like components yields x = 3.75 m and y= 4 m. The resultant is shown
in Fig. (b).x

yO
R =  200 N

z

(b)

4 m
3.7

5 m

Part 2

If the direction of the 100-N force is reversed, the sum of the forces will be
zero, which means that the resultant is not a force. To determine the resultant
couple, we must compute the moment about any point. We choose the origin O
as the moment center. Because reversing the direction of the 100-N force has
no effect on the moment about O, we conclude that the moment is the same as
that found in the solution to Part 1. Therefore, the resultant is the couple-vector
CR =�MO = 800i− 750j N ·m.

Sample Problem 3.9
The plate is acted on by four parallel forces, three of which are shown in Fig. (a).

3 m
2 m

4 m

3 m

O

x

y

z

200 N

400 N

300 N

(a)

The fourth force P and its line of action are unknown. The resultant of this force
system is the couple-vector CR = − 1100i + 1500j N · m. Determine P and its
line of action.

Solution
Because the resultant is a couple, the sum of the forces must be zero:

+
�⏐ R=�Fz = P + 300+ 400− 200= 0

from which P = −500 N. Therefore, the force P is

P= − 500k N Answer

As shown in Fig. (b), we let A be the point where P intersects the xy-plane.

3 m
2 m

yA

O

x

y

z

200 N

400 N

300 N

x A

500 N

3 m

A

(b)

To determine the location of A, we equate the sum of the moments of the original
forces about any point to the moment of the resultant about that point (in this
case, the moment of the resultant about every point is simply CR). Choosing point
O as the moment center and noting that xAi + yAj is the vector from point O to
point A, the moment equation becomes

CR =�MO = �r× F

− 1100i+ 1500j =
∣∣∣∣∣∣
i j k
3 0 0
0 0 −200

∣∣∣∣∣∣+
∣∣∣∣∣∣
i j k
2 3 0
0 0 300

∣∣∣∣∣∣
+
∣∣∣∣∣∣

i j k
xA yA 0
0 0 −500

∣∣∣∣∣∣
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Expanding the above determinants and equating like components gives

−1100 = 900− 500yA

1500 = 600− 600+ 500xA

from which

xA= 3 m and yA= 4 m Answer

Sample Problem 3.10
Determine the wrench that is equivalent to the force system described in Sam-
ple Problem 3.1. Find the coordinates of the point where the axis of the wrench
crosses the xy-plane.

Solution
As explained in the solution to Sample Problem 3.1, the original force system can
be reduced to the force-couple system shown in Fig. (a): the force R, acting at the

y

z

x

O

CR
R

r
x

y

(a)

A

λ
origin O, and the couple CR , where

R = 38.8i+ 43.2j+ 38.4k N (a)

CR = 390i+ 116j+ 360k N ·m
The magnitude of R is

R=
√

(38.8)2 + (43.2)2 + (38.4)2= 69.6 N

We begin by determining the axis of the wrench, defined by the unit vector λ

in the direction of R:

λ = R
R
= 38.8i+ 43.2j+ 38.4k

69.6

= 0.557i+ 0.621j+ 0.552k

The component of CR in the direction of λ can now be obtained from Eq. (3.12):
CR

t = (CR · λ)λ. The magnitude of this vector is

C R
t = CR · λ

= (390i+ 116j+ 360k) · (0.557i+ 0.621j+ 0.552k)

= 488 N ·m
which gives

CR
t = C R

t λ= 488(0.557i+ 0.621j+ 0.552k)

= 272i+ 303j+ 269k N ·m
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Therefore, the wrench consists of the force-couple system

R = 38.8i+ 43.2j+ 38.4k N Answer

CR
t = 272i+ 303j+ 269k N ·m Answer

To find the coordinates of the point where the axis of the wrench intersects
the xy-plane, we must find CR

n , the component of CR that is normal to λ. From
Eq. (3.13), we obtain

CR
n =CR − CR

t = (390i+ 116j+ 360k)− (272i+ 303j+ 269k)

= 118i− 187j+ 91k N ·m

Referring to Fig. (a), we let r= x i + yj be the vector from the origin O to A, the
point where the wrench intersects the xy-plane. Using Eq. (3.14), we have

r × R=CR
n∣∣∣∣∣∣

i j k
x y 0

38.8 43.2 38.4

∣∣∣∣∣∣ = 118i− 187j+ 91k

After expanding the determinant, we get

38.4yi− 38.4xj+ (43.2x − 38.8y)k= 118i− 187j+ 91k

Equating the coefficients of i and j yields

38.4y = 118 y = 3.07 m Answer

−38.4x = −187 x = 4.87 m Answer

The third equation, obtained by equating the coefficients of k, is not independent
of the preceding two equations, as can be easily verified.

The resultant wrench is depicted in Fig. (b), which shows the magnitudes of
the force and the couple-vector.

y

z

x

O

4.87 m

3.07 m

R = 69.6 N

CR = 488 N.m

A

(b)

t
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Problems

3.30 The values of �Fz, �Mx , and �My for three force systems that are par-
allel to the z-axis are

Case �Fz �Mx �My

a −50 N −250 N ·m 200 N ·m
b 50 kN 0 −250 kN ·m
c 40 N 320 N ·m −400 N ·m

Determine the resultant of each force system and show it on a sketch of the
coordinate system.

3.31 State whether the resultant of each force system shown is a force, a couple,
or a wrench. Do not determine the resultant.

O

8 kN

9 kN

6 kN

12 m

9 m

(a)

15 m

y

z

x

O

24 kN

(b)

15 kN

15 kN

O

20 kN

(c)

25 kN

20 kN

O

(d)

16 kN

12 kN

12 kN O
300 kN.m

(e)

15 kN

400 kN.m

Fig. P3.31

3.32 Determine the resultant of the three cable tensions that act on the yx

z

3 m

4 m

6 m

8 m

T3

T1

T2

4 m

O

Fig. P3.32, P3.33

horizontal boom if T1= 900 N, T2= 500 N, and T3= 300 N.

3.33 The resultant of the three cable tensions acts along the y-direction.
Determine T1 and T3 given that T2= 980 N.
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3.34 The resultant of the three forces shown is the force R= 200k N. Deter-

200 mm

150 mm

A
y

x

B

P2

C

D

z
P1

P3

320 mm

120 mm150 mm

Fig. P3.34

mine P1, P2, and P3.

3.35 The resultant of the four forces that act on the right-angle bracket is a
couple CR . Determine CR and the force P.

120 N

90 N

y

0.2 m

0.5
m

80 N
x

z

P

O

0.3 m

0.3 m
0.6 m

0.8 m

y

z

x

20 kN

60 kN

80 kN

Fig. P3.35 Fig. P3.36

3.36 Determine the resultant of the three forces shown.

3.37 Find the resultant of the three forces acting on the square plate.

70 N

x

z

y

10 N

60 N

6 m6 m

0.75 m

0.75 m

Fig. P3.37

3.38 The resultant of the forces P1, P2, and the couple C is the force R= 12k N

50
 m

m 150 mm
150 m

m

x

z

y

P1

P2 C

A

O

Fig. P3.38, P3.39

acting at point A (R is not shown in the figure). Determine P1, P2, and C.

3.39 Find the resultant of the two forces and the couple shown, given that
P1= 20 N, P2= 30 N, and C = 1000 N ·mm.

3.40 Determine the resultant of the force system acting on the semi-circular

120 N

300 N

30°
yx

z

3 m

200 N

500 N.m

Fig. P3.40

plate.

3.41 The streetlight A is attached to the end of the horizontal boom ABO. The
light, which weighs 100 N, is subjected to a wind load of 20 N acting in the neg-
ative y-direction. The forces P and Q represent the tensions in the two cables that
are attached at point B. The resultant of the four forces shown is a force R acting
at point O. Determine the tensions P and Q and the force R.
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1.5 m

1.5 m

z

y

x

A

B

C

D

O

4 m

P
Q 2 m

100 N

20 N

2 m

Fig. P3.41

3.42 The transmission tower OA is being hoisted into position by the cables
AB and AC. The resultant of the cable tensions P and Q, along with the 2400-N
weight of the tower, is a force R acting at point O. Determine P, Q, and R.

x

z

B

O

C

y

20 m
20 m

2400 N

69 m

A
P

Q

28 m

32 m

36 m

40 m

Fig. P3.42

3.43 The force-couple system acting at O is equivalent to the wrench acting
at A. If R = 600i+ 1400j+ 700k N and |C| = 1200 N ·m, determine CR .

R

A

O

z

y
x

R

CR

C

2 m 3 m

R
CR

O

z

x
y

Fig. P3.43 Fig. P3.44

3.44 The force-couple system consists of the force R = 250i+ 360j− 400k N
and the couple-vector CR = 1200i+750j+560k N ·m. Determine the equivalent
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wrench and find the coordinates of the point where the axis of the wrench crosses
the xy-plane.

3.45 (a) Replace the force system shown by an equivalent force-couple system
with the force acting at point O. (b) Determine the equivalent wrench, and find
the coordinates of the point where the axis of the wrench crosses the xy-plane.

x

O

6 kN

6 kN
1.5 m

1.2 m1.2 m

8 kN

y

z

Fig. P3.45

3.6 Introduction to Distributed Normal Loads

All forces considered up to this point have been assumed to be concentrated. Here
we consider distributed loads that are directed normal to the surface on which they
act, such as pressure. Two examples of distributed normal loads are the wind pres-
sure acting on the side of a building and the water pressure on a dam. The methods
for determining the resultants of distributed normal loads are very similar to those
used for concentrated loads. The only notable difference is that integration is used
in place of summation.

a. Surface loads

Consider the load shown in Fig. 3.8, which is parallel to the z-axis and distributed
over the plane region � lying in the xy-plane.* The distribution of the load is

z

y

x

Load surface

Load area �

Region �
p(x,y)

Fig. 3.8

*The more general case of a load distributed over a curved surface is discussed in Chapter 8.
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specified by the function p(x, y), called the load intensity. The units of load
intensity are N/m2, lb/ft2, and so on. The plane region � is known as the load
area, and the surface formed by the plot of the load intensity is called the load
surface. The region that lies between the load area � and the load surface is
labeled �.

As shown in Fig. 3.9(a), we let dA represent a differential (infinitesimal) area
element of �. The force applied to dA is dR= p dA. The distributed surface load
can thus be represented mathematically as an infinite number of forces dR that
are parallel to the z-axis. Therefore, the resultant can be determined by employing
the methods explained previously for parallel forces. However, because the force
system here consists of an infinite number of differential forces, the summations
must be replaced by an integrations over the load area �.

The resultant force is obtained from R=�Fz , which becomes

R=
∫

�
dR=

∫
�

p dA (3.16)

where the range of integration is the load area �.
The coordinates x̄ and ȳ that locate the line of action of R, shown in

Fig. 3.9(b), are determined by Eqs. (3.11): x̄ = −�My /R and ȳ=�Mx /R. After
replacing �Mx by

∫
� py dA and �My by − ∫� px dA, these equations become

x̄ =
∫

� px dA∫
� p dA

and ȳ=
∫

� py dA∫
� p dA

(3.17)

Let us now consider Eqs. (3.16) and (3.17) from a geometrical viewpoint. By
inspection of Fig. 3.9 we observe that dR= p dA represents a differential volume
of the region � in Fig. 3.8. This volume has been denoted dV in Fig. 3.9(a).
Therefore, the resultant force R in Eq. (3.16) can also be written as

R=
∫

�
dV = V (3.18)

where V is the total volume of the region �.

z

y

x

z

y

x

x

y

O

p dV

dA

dR = p dA

Load area �

(a) (b)

=
O

R

C

y

x

Fig. 3.9
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Replacing p dA with dV in Eqs. (3.17), we get

x̄ =
∫

� x dV∫
� dV

=
∫

� x dV

V
(3.19)

ȳ=
∫

� y dV∫
� dV

=
∫

� y dV

V

As will be explained in Chapter 8, Eqs. (3.19) define the coordinates of a point
known as the centroid of the volume that occupies the region �. This point is
labeled C in Fig. 3.9(b). The z-coordinate of the centroid is of no concern here
because x̄ and ȳ are sufficient to define the line of action of the resultant force.

The determination of the resultant force of a normal loading distributed over
a plane area may thus be summarized as follows:

• The magnitude of the resultant force is equal to the volume of the region
between the load area and the load surface.

• The line of action of the resultant force passes through the centroid
of the volume bounded by the load area and the load surface.

b. Line loads

Whenever the width of the loading area is negligible compared with its length,
a distributed load can be represented as a line load. Loadings distributed along a
plane curve and along a straight line are shown in Figs. 3.10(a) and (b), respec-

z

y

Load diagram
w(s)

x

(a)

s

z

y

Load diagram
w(y)

x

(b)

Fig. 3.10

tively. Line loads are characterized by the load intensity w, a function of the
distance measured along the line of distribution. The plot of w is called the load
diagram. The units of w are N/m, lb/ft, and so on. In this article, we consider
only straight-line loads. Loads distributed along plane curves will be discussed in
Chapter 8.

As shown in Fig. 3.11(a), a straight-line load is equivalent to an infinite num-
ber of differential forces, each of magnitude dR=w dx. Because these forces are
parallel, their resultant is R=�Fz , or

R=
∫ L

x=0
dR=

∫ L

0
w dx (3.20)

directed parallel to the z-axis, as indicated in Fig. 3.11(b).
The line of action of R can be determined by equating the moments about

point O for the two systems in Figs. 3.11(a) and (b):

+ �MO =
∫ L

x=0
x dR=

∫ L

0
wx dx= Rx̄
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(a) (b)

L

x dx

x x

z Load
diagram

w(x)

dR = w dx

dA

z

O

x

R

C

O

=

Fig. 3.11

Substituting the expression for R given in Eq. (3.20) and solving for x̄ , we obtain

x̄ =
∫ L

0 wx dx∫ L
0 w dx

(3.21)

Referring to Fig. 3.11(a), we observe that dR=w dx equals the differential
area dA under the load diagram. Therefore, Eq. (3.20) represents the total area A
under that diagram. Substituting w dx= dA, Eq. (3.21) can be written as

x̄ =
∫ L

x=0 x dA∫ L
x=0 dA

=
∫ L

x=0 x dA

A
(3.22)

It is shown in Chapter 8 that x̄ locates the centroid of the area under the load dia-
gram, labeled C in Fig. 3.11(b) (the z-coordinate of the centroid is not of interest
in this case). Therefore, we may conclude the following for straight-line loads:

• The magnitude of the resultant force is equal to the area under the load
diagram.

• The line of action of the resultant force passes through the centroid of the
area under the load diagram.

c. Computation of resultants

Examining Eqs. (3.16) through (3.22), we see that the computation of the resultant
of distributed loading is essentially an integration problem. A discussion of the
associated integration techniques is postponed until Chapter 8. However, if the
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load surface or the load diagram has a simple shape, then tables of centroids, such
as Table 3.1, can be used to determine the resultant as illustrated in the following
sample problems.

A. Volumes

Rectangular solid

B. Areas

Rectangle

Right-triangular solid Right  triangle

x =    b1
2 y =    L1

2 z =    h1
2

V = bLh

x = b1
2 y = h1

2

A = bh

x = b2
3 y = h1

3

A = bh1
2

x = b1
2 y = L2

3 z = h1
3

V = bhL1
2

b

h

y

x

C

y

x

b

h

y

x

C

y
x

y

z

b

C

L

h

x

y
x

z

y

h

b

C

L
x

y
xz

z

Table 3.1 Centroids of Some Common Geometric Shapes (Additional tables are
found in Chapter 8.)



Sample Problem 3.11
Determine the resultant of the line load acting on the beam shown in Fig. (a). y

O

15 kN/m

6 m4 m

x

(a)

10 kN/m

Solution
We note that the load diagram is not one of the common shapes that are listed
in Table 3.1. However, as shown in Fig. (b), the load diagram can be represented
as the sum of three line loads corresponding to the two triangles, A1 and A2,
and the rectangle A3. The resultant of each of these three line loads is equal to
the area of the corresponding load diagram. The line of action of each resultant
passes through the centroid of the diagram, the location of which can be found in
Table 3.1.

O

(b)

4 m 6 m

y

P1 =  30 kN

x1 =  2.67 m

C1A1

x2  =  6 m

x3  =  7 m

P2  = 15 kN

C3

A2
P3  = 60 kN

x

10 kN/m

15 kN/m
C2

A3

Letting P1, P2, and P3 be the resultants of the line loads represented by the
areas A1, A2, and A3, respectively, we have

P1 = 1

2
(4)(15)= 30 kN

P2 = 1

2
(6)(5)= 15 kN

P3 = 6(10)= 60 kN

The line of action of each of these forces passes through the centroid of the cor-
responding load diagram, labeled C1, C2, and C3 in Fig. (b). The x-coordinates of
the centroids are obtained using Table 3.1:

x̄1 = 2

3
(4)= 2.67 m

x̄2 = 4+ 1

3
(6)= 6 m

x̄3 = 4+ 1

2
(6)= 7 m
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It follows that the magnitude of the resultant of the line load in Fig. (a) is given by

+
⏐� R= P1 + P2 + P3= 30+ 15+ 60= 105 kN Answer

To determine x̄ , the horizontal distance from point O to the line of action of R, we
use the moment equation:

�MO = Rx̄ + 30(2.67)+ 15(6)+ 60(7)= 105x̄

which gives

x̄ = 5.62 m Answer

The resultant is shown in Fig. (c).

y

x =  5.62 m

R = 105 kN

O

(c)

Sample Problem 3.12
After a severe rainstorm, the flat roof of the building shown in Fig. (a) is covered
by 75 mm of rainwater. The specific weight of water is 10,000 N/m3, so water
at a depth of 75 mm causes a uniform pressure of 10,000(75/1000)= 750 N/m2.
Determine the resultant force that the water exerts on the roof.

x

16
 m

y
750 N/m2 on roof

(a)

O

16
 m

z

37.5 m

10
 m

10
 m

Solution
The load diagram in Fig. (b) can be divided into three solid shapes: two right-
triangular solids of volume V1 and V3 and a rectangular solid of volume V2. The
resultant force corresponding to each of these shapes is equal to the volume of the
shape. Letting P1, P2, and P3 be the resultants, we have

P1 = V1= 750

[
1

2
(6)(37.5)

]
= 84375 N

P2 = V2= 750[(20)(37.5)]= 562500 N

P3 = V3= P1= 84375 N
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6 m

6 m

20
 m

(b)

V2

V3

V1

C1

P1 = 84375 N
C2

P2 = 562500 N

C3

P3 = 84375 N
y3 = 25 m

y2 = 18.75 m

y1 = 25 m

37.5 m

750 N/m2

The lines of action of these forces pass through the centroids of the correspond-
ing volumes. The points where these forces intersect the roof of the building are
labeled C1, C2, and C3 in Fig. (b).

The magnitude of the resultant force is given by

+
⏐� R = P1 + P2 + P3

= 84375+ 562500+ 84375= 731250 N Answer

Because the load area (the roof of the building) is symmetrical about the y-axis
and the pressure is uniform, the resultant will lie along the y-axis. Therefore, we
need only calculate the distance ȳ shown in Fig. (c).

(c)

z

x

yO

y =  20.2 m R = 731250 N

Using Table 3.1, the coordinates of C1, C2, and C3 in Fig. (b) are

ȳ1= ȳ3= 2

3
(37.5)= 25 m

ȳ2= 1

2
(37.5)= 18.75 m

We can now determine ȳ using the moment equation

�Mx = − Rȳ − 84375 (25)− 562500 (18.75)− 84375 (25)= − 731250 ȳ

which yields

ȳ= 20.2 m Answer

The resultant is shown in Fig. (c).
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Problems

3.46 During a storm, wind exerts a pressure of 130 N/m2, normal to the surface
of the stop sign. Determine the resultant force due to the wind.

STOP
300 mm

360 mm

300 mm

300 mm300 mm 360 mm

Fig. P3.46

3.47 Water pressure acting on the vertical wall of the concrete dam varies lin-

6 m

O y

z

x

32 m

58.9 kN/m2

Fig. P3.47

early with the depth of the water as shown. Determine the resultant force caused
by the water.

3.48 Determine the resultant of the line load acting on the beam ABC.

1700 N/m

1200 N/m

x
CBA

y

6 m 8 m

Fig. P3.48

3.49 Determine the resultant of the line load acting on the beam.

y

A

B
x

L/2

L/2
w0

w0

O L

L /2

L /2

y

x

w0

w0

Fig. P3.49 Fig. P3.50

3.50 Determine the resultant of the line loads acting on the frame, and the
x-coordinate of the point where the resultant intersects the x-axis.
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3.51 Find the resultant of the distributed load acting on the flat plate.

1.5 m

0.8
 m

y

x

80 kN/m2

120 kN/m2

z

Fig. P3.51

3.52 At a certain time during a hurricane, the wind pressure acting on the wall

120 m

180 m

z

x

yO

3.2 N/m 2

1.8 N/m 2
Wind

60 m

80 m

Fig. P3.52

of a high-rise building varies linearly as shown. Determine the resultant force
caused by the wind.

3.53 The figure shows the water pressure acting on the sides of a dam that is
20-m long. Determine the resultant force of the water pressure acting on the dam.

y

B

A
x

499 N/m2312 N/m2

5 m

8 m

12
 m

7.
5 

m

6 m

12 m

750 N/m2

x
1217 N/m2

y

O

Fig. P3.53 Fig. P3.54

3.54 The water pressure acting on a masonry dam varies as shown. If the dam is
20 ft wide, determine the resultant force of the water pressure acting on the dam.

3.55 The concrete pier is subjected to soil pressure that causes the line loads
O

6 MN/m

4 MN/m

8 MN/m

x

y

4 m

2.5 m

Fig. P3.55
shown. Determine the resultant of the loading and find the y-coordinate of the
point where the resultant crosses the y-axis.
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Review of Equations

Resultant force-couple
The forces F1, F2, F3, . . . can be reduced to the force R acting at an arbitrary
point A and the couple CR :

R = �Fi CR = �ri × Fi

ri = vector from A to any point on the line of action of Fi

Resultant of a force system

R = �Fi if R �= 0

CR = �ri × Fi if R = 0

Wrench

R = �Fi CR
t = (CR ·λ)λ

λ = unit vector in the direction of R

Resultant of distributed normal load

R =
∫

�
p dA x̄ =

∫
� px dA

R
ȳ =
∫

� py dA

R

R = volume under load diagram
x̄, ȳ = centroidal coordinates of the volume under load diagram

Resultant of distributed line load

R =
∫

�
w dx x̄ =

∫
� wx dx

R

R = area under the load diagram
x̄ = centroidal coordinate of the area under the load diagram
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Review Problems

3.56 Find the resultant of the three forces acting on the eye bolt.

95 N

360 N

50°

x

y

20°

220 N

Fig. P3.56

3.57 The resultant of the force system shown is a 50-N · m counterclockwise
couple. Find P, Q, and C.

3 m

x

y

2 m 2 m

4
3

3

4

P

Q

C

20 N

Fig. P3.57

3.58 Determine the resultant of the three forces acting on the plate. Also, find
the coordinates of the point where the resultant crosses the xy-plane.

50 kN

3 m2 m 150 kN
200 kN

z

x

O

y

Fig. P3.58

3.59 The five forces act at end A of the boom. Determine T1, T2, and T3 if the
resultant of this force system is zero.
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y

x

A 60 kN

20 kND

B

z

C

T2

T1

T3

30°

8 m

4 m

6 m

Fig. P3.59

3.60 A portion of the square plate is loaded by the uniformly distributed load
p= 20 N/m2. Find the coordinates of the point in the xy-plane through which the
resultant passes.

6 m

p = 20 N/m2

y

z

x 12 m

6 m

y

x
aA B

100 N/m

75 N/m

8 m

Fig. P3.60 Fig. P3.61

3.61 The resultant of the line loads acting on the beam AB is a couple C R .
Determine the distance a and the couple C R .

3.62 (a) Replace the force system shown with a force-couple system with the
force acting at point O. (b) Determine the wrench that is equivalent to this force
system. Find the coordinates of the point where the axis of the wrench crosses the
xy-plane.

300 N

200 N 250 N

300 N

200 N

B

A

O

5 m
2 m

z

y

x

Fig. P3.62

3.63 The center of gravity of the 30-N square plate is at G. The plate can be
raised slowly without rotating if the resultant of the three cable tensions is a 30-N
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force that passes through G. If T1= 6 N and T2= 14 N, find T3 and the x- and
y-coordinates of its point of attachment.

60

x

60

60

60
y

30A y
x

20

20

z T1

Dimensions in mm

T3
T2

G

B

C

Fig. P3.63

3.64 The resultant of the force-couple system acting on the frame is a force R
acting at point A. Determine the forces P and R.

140 kN.m 100 kN

30°

8 m

4 m

50 kN

y

A

x

P

6 m 30°

40°
O 4 m

A

B

C

y

z
35 kN

25 kN

40 kN

x

Fig. P3.64 Fig. P3.65

3.65 Find the x- and y-coordinates of the point where the resultant of the three
forces crosses the plate.

3.66 Replace the force system acting on the pipe with an equivalent force-
couple system with the force acting at point D.

Dx

A

B

z

260 N

300 N

500 mm
800 mm

300 mm

E

y
7800 N.mm

Fig. P3.66
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3.67 Replace the coplanar force system that acts on the casting with an equiva-
lent force-couple system, with the force acting at (a) point O; and (b) point A.

3 m

4 m

2.5 m

150 N

90 N

200 N

800 N.m
Ay

x

O

x

y

60°

30°
200 N

100 N

300 N

O

Fig. P3.67 Fig. P3.68

3.68 Determine the magnitude of the resultant of the three concurrent forces
acting on the hook.

3.69 Determine the wrench that is equivalent to the force-couple system shown
and find the coordinates of the point where the axis of the wrench crosses the
xz-plane.

z

y

x

120 N

180 N.m 2 m

2 m

O

A

B

C

1.5 m 

T1

T2

T3

8 m

4 m
3 m

2 m 3 m

yx

O

z

Fig. P3.69 Fig. P3.70

3.70 The resultant of the three cable tensions acting on the flagpole is the force
R= Rk. Find T1, T2, and R given that T3= 500 N.



4
Coplanar Equilibrium Analysis

Principles of statics often enable us
to determine quantities that cannot
be easily measured directly. For
example, measuring the axle loads of
a dump truck with the tray in the up
and down positions enables us to
compute the weight of the chassis
and the weight of the tray. This is
illustrated in Problem P4.59. Lester
Lefkowitz/The Image Bank/Getty
Images

4.1 Introduction

The first three chapters of this text were devoted to mastering the elements of
vector algebra, with emphasis on forces and couples. Proficiency in vector alge-
bra is a prerequisite to the study of statics and most other areas of engineering
mechanics.

With this chapter, we begin the application of vector methods to the equi-
librium analysis of engineering problems. We introduce the free-body diagram,
which is perhaps the most important physical concept found in this text. We show
how the free-body diagram is used to obtain the equations that relate the forces
acting on a body in equilibrium.

For the present, we restrict our attention to the analysis of bodies that are
held in equilibrium by coplanar force systems. The subject is divided into three
parts: analysis of single bodies, analysis of composite bodies (called frames and
machines in some texts), and analysis of plane trusses.
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4.2 Definition of Equilibrium

A body is said to be in equilibrium if the resultant of the force system that acts
on the body vanishes. Equilibrium means that both the resultant force and the
resultant couple are zero.

When a force system acts on a body that is initially at rest, the absence of a
resultant means that the body has no tendency to move. The analysis of problems
of this type is the focus of statics; dynamics is concerned with the response of
bodies to force systems that are not in equilibrium.

We showed in Chapter 3 that a coplanar force system always can be repre-
sented as a resultant force R passing through an arbitrary point O and a couple
CR that lies in the plane of the forces. Assuming that the forces lie in the xy-plane,
R and CR can be determined from Rx =�Fx , Ry =�Fy , and C R =�MO .
Therefore, the equations of equilibrium are

�Fx = 0 �Fy = 0 �MO = 0 (4.1)

The summations in Eqs. (4.1) must, of course, include all the forces that act on the
body—both the applied forces and the reactions (the forces provided by supports).

PART A: Analysis of Single Bodies

4.3 Free-Body Diagram of a Body

The first step in equilibrium analysis is to identify all the forces that act on the
body. This is accomplished by means of a free-body diagram.

The free-body diagram (FBD) of a body is a sketch of the body showing all
forces that act on it. The term free implies that all supports have been removed
and replaced by the forces (reactions) that they exert on the body.

The importance of mastering the FBD technique cannot be overemphasized.
Free-body diagrams are fundamental to all engineering disciplines that are con-
cerned with the effects that forces have on bodies. The construction of an FBD is
the key step that translates a physical problem into a form that can be analyzed
mathematically.

Forces that act on a body can be divided into two general categories—reactive
forces (or, simply, reactions) and applied forces. Reactions are those forces that
are exerted on a body by the supports to which it is attached. Forces acting on a
body that are not provided by the supports are called applied forces. Of course,
all forces, both reactive and applied, must be shown on free-body diagrams.
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The following is the general procedure for constructing a free-body diagram.

1. A sketch of the body is drawn assuming that all supports (surfaces of contact,
supporting cables, etc.) have been removed.

2. All applied forces are drawn and labeled on the sketch. The weight of the body
is considered to be an applied force acting at the center of gravity. As shown
in Chapter 8, the center of gravity of a homogeneous body coincides with the
centroid of its volume.

3. The support reactions are drawn and labeled on the sketch. If the sense of
a reaction is unknown, it should be assumed. The solution will determine
the correct sense: A positive result indicates that the assumed sense is cor-
rect, whereas a negative result means that the correct sense is opposite to the
assumed sense.

4. All relevant angles and dimensions are shown on the sketch.

When you have completed this procedure, you will have a drawing (i.e., a free-
body diagram) that contains all of the information necessary for writing the
equilibrium equations for the body.

The most difficult step to master in the construction of FBDs is the determi-
nation of the support reactions. Table 4.1 shows the reactions exerted by various
coplanar supports; it also lists the number of unknowns that are introduced on
an FBD by the removal of each support. To be successful at drawing FBDs, you
must be completely familiar with the contents of Table 4.1. It is also helpful to
understand the physical reasoning that determines the reactions at each support,
which are described below.

(a) Flexible Cable (Negligible Weight). A flexible cable exerts a pull, or tensile
force, in the direction of the cable. With the weight of the cable neglected,
the cable forms a straight line. If its direction is known, removal of the cable
introduces one unknown in a free-body diagram—the magnitude of the force
exerted by the cable.

(b) Frictionless Surface: Single Point of Contact. When a body is in contact
with a frictionless surface at only one point, the reaction is a force that is
perpendicular to the surface, acting at the point of contact. This reaction is
often referred to simply as the normal force. (Walking on an icy sidewalk is
treacherous because it is difficult to generate a force in any direction except
perpendicular to the sidewalk.) Therefore, removing such a surface introduces
one unknown in a free-body diagram—the magnitude of the normal force. If
contact between the body and the surface occurs across a finite area, rather
than at one point, the line of action of the resultant normal force will also be
unknown.

(c) Roller Support. A roller support is equivalent to a frictionless surface: It
can only exert a force that is perpendicular to the supporting surface. The
magnitude of the force is thus the only unknown introduced in a free-body
diagram when the support is removed.

(d) Surface with Friction: Single Point of Contact. A friction surface can exert
a force that acts at an angle to the surface. The unknowns may be taken to be
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Support Reaction(s) Number of
unknowns

Description
of reaction(s)

(a)
T

θθ

θ
θ

θ

θ

θ

θ
θ

Tension of unknown
magnitude T in the

direction of the
cable

One

(b)

Flexible cable of
negligible weight

N

Force of unknown
magnitude N

directed normal to
the surface

One

(c)
Force of unknown

magnitude N normal
to the surface

supporting the roller

One

(d)

Roller support

Frictionless surface
(single point of contact)

Surface with friction
(single point of contact)

N

Force of unknown
magnitude N normal

to the surface
and a friction force

of unknown magnitude
F parallel to the surface

(e)

Two

y

x

Pin support

Rx

Ry

Unknown force R Two

(f)
y

x C

Rx

Ry

Unknown force R and
a couple of unknown

magnitude C

Three

Built-in (cantilever)
support

F

N

Table 4.1 Reactions of Coplanar Supports



4.3 Free-Body Diagram of a Body 147

the magnitude and direction of the force. However, it is usually advantageous
to represent the unknowns as N and F, the components that are perpendicular
and parallel to the surface, respectively. The component N is called the normal
force, and F is known as the friction force. If there is an area of contact, the
line of action of N will also be unknown.

(e) Pin Support. A pin is a cylinder that is slightly smaller than the hole into
which it is inserted, as shown in Fig. 4.1(a). Neglecting friction, the pin
can only exert a force that is normal to the contact surface, shown as R in
Fig. 4.1(b). A pin support thus introduces two unknowns: the magnitude of
R and the angle α that specifies the direction of R (α is unknown because
the point where the pin contacts the surface of the hole is not known). More
commonly, the two unknowns are chosen to be perpendicular components of
R, such as Rx and Ry shown in Fig. 4.1(c).

(f) Built-in (Cantilever) Support. A built-in support, also known as a cantilever
support, prevents all motion of the body at the support. Translation (horizontal
or vertical movement) is prevented by a force, and a couple prohibits rotation.
Therefore, a built-in support introduces three unknowns in a free-body dia-
gram: the magnitude and direction of the reactive force R (these unknowns
are commonly chosen to be two components of R, such as Rx and Ry) and the
magnitude C of the reactive couple.

(a) (b)

R

α

(c)

Rx

Ry

Fig. 4.1

You should keep the following points in mind when you are drawing free-body
diagrams.

1. Be neat. Because the equilibrium equations will be derived directly from the
free-body diagram, it is essential that the diagram be readable.

2. Clearly label all forces, angles, and distances with values (if known) or
symbols (if the values are not known).

3. The support reactions must be consistent with the information presented in
Table 4.1.

4. Show only forces that are external to the body (this includes support reactions
and the weight). Internal forces occur in equal and opposite pairs and thus will
not appear on free-body diagrams.



Sample Problem 4.1
The homogeneous 6-m bar AB in Fig. (a) is supported in the vertical plane by
rollers at A and B and by a cable at C. The mass of the bar is 50 kg. Draw the FBD
of bar AB. Determine the number of unknowns on the FBD.

Solution
The FBD of bar AB is shown in Fig. (b). The first step in the construction of this
diagram is to sketch the bar, assuming the supports have been removed. Then the
following forces are added to the sketch.

C
20°

40°

(a)

AA

BB

y

x

4 m

2 m

B

C

A
40°

TG

NA

NB
W = 491 N 

(b)

2 m

1 m

3 m20°

W: The Weight of the Bar

The weight W is shown as a vertical force acting at G, the center of gravity of the
bar. Because the bar is homogeneous, G is located at the center of the bar. The
magnitude of the weight is W = mg= (50)(9.81) = 491 N.

NA: The Normal Reaction at A

Removal of the roller support at A dictates that we show the force that this support
can exert on the bar. From Table 4.1, we note that a roller support can exert a single
force that is normal to the supporting surface. Therefore, on the FBD we show the
reaction at A as a vertical force and label its magnitude as NA.

NB: The Normal Reaction at B

Following an argument similar to that for NA, we conclude that the removal of the
roller support at B means that we must show a horizontal force at that point. On
the FBD, we label this reaction as NB .

T: The Tension in the Cable at C

From Table 4.1, the force exerted by a cable is a tensile force acting in the direc-
tion of the cable. Therefore, the force exerted on the bar by the cable is shown as
a force of magnitude T , acting at 20◦ to the horizontal.

We note that there are three unknowns on the FBD: the magnitudes of the
three reactions (NA, NB , and T).
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Sample Problem 4.2
The homogeneous, 250-kg triangular plate in Fig. (a) is supported by a pin at

y

B

x

0.6 m

(a)

0.
35

 m

A

C
30°

A and a roller at C. Draw the FBD of the plate and determine the number of
unknowns.

Solution
The FBD of the plate is shown in Fig. (b). The pin and roller supports have been

B C

AAx

Ay

NC

(b)

W = 2453 N

30°
G

0.
35

 m

0.2 m 0.4 m

removed and replaced by the reactive forces. The forces acting on the plate are
described below.

W: The Weight of the Plate

The weight of the plate is W =mg= (250)(9.81)= 2453 N. It acts at the centroid
G of the triangle ABC, the location of which was determined from Table 3.1.
Only the horizontal location of G is shown in the figure, because it is sufficient to
determine the line of action of W.

Ax and Ay: The Components of the Pin Reaction at A

From Table 4.1, we see that a pin reaction can be shown as two components Ax

and Ay , which are equivalent to an unknown force acting at an unknown angle. We
have shown Ax acting to the right and Ay acting upward. These directions were
chosen arbitrarily; the solution of the equilibrium equations will determine the
correct sense for each force. Therefore, the free-body diagram would be correct
even if Ax or Ay had been chosen to act in directions opposite to those shown in
Fig. (b).

NC: The Normal Reaction at C

From Table 4.1, the force exerted by a roller support is normal to the inclined
surface. Therefore, on the FBD we show the force NC at C, inclined at 30◦ to the
vertical.

The FBD contains three unknowns: Ax , Ay , and NC .

Sample Problem 4.3
A rigid frame is fabricated by joining the three bars with pins at B, C, and D, as
shown in Fig. (a). The frame is loaded by the 5000-N force and the 1800-N ·m
couple. The supports consist of a pin at A and a roller support at E. Draw the FBD

F

5000 N
x

y

A

B

C
1 m

D

0.6
 m

0.6
 m

0.6
 m

0.6
 m

E
1800 N.  m

(a)

0.5 m

0.5 m
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of the frame, neglecting the weights of the members. How many unknowns are on
the FBD?

Solution
The FBD of the entire frame is shown in Fig. (b). In addition to the applied force
and couple, the diagram shows the pin reaction at A (Ax and Ay) and the normal
force at roller E (NE ).

1800 N.mAx

Ay

A

F

5000 NE

0.4 m

NE

( b)

2.4 m

It is important to realize that the forces at pins B, C, and D do not appear
on the FBD of the frame. These pin forces, as well as the forces inside the bars
themselves, are internal to the frame (recall that only external forces are shown
on FBDs).

We note that there are three unknowns on the FBD: Ax , Ay , and NE .

Sample Problem 4.4
The beam ABC, built into the wall at A and supported by a cable at C, carries a
distributed load over part of its length, as shown in Fig. (a). The weight of the3 m

1.5 m 2.5 m

A B C

2500 N/m

(a)

y

x

beam is 175 N/m. Draw the FBD of the beam.

Solution
The FBD of the beam is shown in Fig. (b). Because a built-in, or cantilever, sup-

A C

(b)

3
4

T

2 m 2 m
700 N

3750 N
0.75 m

CA

Ax

Ay

port can exert a force and a couple, the reactions at the wall are shown as the force
components Ax and Ay and the couple CA. The tension in the cable is labeled T .
Also shown on the FBD are the weight of the beam (175 N/m× 4 m= 700 N) and
the resultant of the distributed load (3750 N, acting at the centroid of the loading
diagram).

Observe that the FBD contains four unknowns whereas the number of equi-
librium equations in Eqs. (4.1) is three. Therefore, it would not be possible to
calculate all of the unknowns using only equilibrium analysis. The reason for the
indeterminacy is that the beam is oversupported; it would be in equilibrium even
if the cable at C were removed or if the built-in support were replaced by a pin
connection.
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Problems

4.1–4.3 Each of the bodies shown is homogeneous and has a mass of 30 kg.

A

B

30°

0.9 m

0.6 m

800 N/m

Cable

Fig. P4.3

Assume friction at all contact surfaces. Draw the fully dimensioned FBD for each
body and determine the number of unknowns.

1.2 m

1.5 m

30°

A

B

B

0.1 m

O

A

30°

Cable

Fig. P4.1 Fig. P4.2

4.4 The homogeneous bar weighs 45 N. It is resting on friction surfaces at

B

A

300 m
m

540 mm900 m
m

Fig. P4.4

A and B. Draw the FBD of the bar and determine the number of unknowns.

4.5 The homogeneous beam AB weighs 2000 N. For each support condition
shown in (a) through (d), draw the FBD of the beam and determine the number of
unknowns.

A
B6 m

(a) (b)

(c)

A
B6 m

(d)

A B

C

3 m3 m

A B6 m

30°60°

40°

4 
m

Cable

Cables

Fig. P4.5
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4.6 The homogeneous triangular plate has a mass of 12 kg. Draw the FBD of
the plate for each set of supports shown in (a)–(d) and determine the number of
unknowns.

210 mm

B

A
120 mm

(a)

(c) (d)

(b)

Frictionless

Friction

Friction

Friction

45°

60° 30°

Fig. P4.6

4.7 The bracket of negligible weight is supported by a pin at A and a frictionless

1 m

0.5 m

B

A

θ 90 N. m

Fig. P4.7

peg at B, which can slide in the slot in the bracket. Draw the FBD of the bracket
if (a) θ = 45◦; and (b) θ = 90◦. What are the unknowns?

4.8 To open the high-pressure water cock, a 60-N horizontal force must be
applied to the handle at A. Draw the FBD of the handle, neglecting its weight.
Count the unknowns.

60
 m

m

18
0 

m
m

60 N

A

B

C

20°

240 mm

D

Frictionless

Fig. P4.8, P4.9

4.9 The high-pressure water cock is rigidly attached to the support at D.
Neglecting the weights of the members, draw the FBD of the entire assembly
and count the unknowns.

4.10 Draw the FBD of the entire frame, assuming that friction and the weights

1.5 m

1.5 m

C

2 m

2 m 0.5
 m

200 N/m

Slot
D

A B

E

Fig. P4.10, P4.11

of the members are negligible. How many unknowns appear on this FBD?

4.11 Draw an FBD of member CE of the frame described in the previous
problem. How many unknowns appear on this FBD?



4.4 Coplanar Equilibrium Equations 153

4.4 Coplanar Equilibrium Equations

a. General case

As stated in Art. 4.2, a body is in equilibrium under a coplanar force system if
both the resultant force R and the resultant couple C R of the force system are
zero. It follows that the following three conditions are necessary for equilibrium:

�Fx = 0 �Fy = 0 �MO = 0 (4.1 repeated)

where the moment center O and the orientation of the xy-coordinate system can
be chosen arbitrarily. The two force equations are equivalent to R = 0, and the
moment equation assures us that C R = 0.

It often is convenient to use a set of three independent equations different from
those in Eqs. (4.1). The alternative equations are described next.

1. Two force equations and one moment equation The x- and y-directions
in Eqs. (4.1) do not have to be mutually perpendicular—as long as they are
not parallel. Hence, the equilibrium equations can be restated as

�Fx ′ = 0 �Fy′ = 0 �MO = 0 (4.2)

where x ′ and y′ are any two non-parallel directions and O is an arbitrary point.
2. Two moment equations and one force equation It is possible to replace

one of the force equations in Eqs. (4.2) by a moment equation, obtaining

�MA = 0 �MB = 0 �Fx ′ = 0 (4.3)

Here, A and B are any two distinct points, and x ′ is any direction that is not
perpendicular to the line AB. Note that if �MA = 0 and �MB = 0 are
satisfied, the resultant only can be a force R that lies along the line AB, as
shown in Fig. 4.2. The equation �Fx ′ = 0 (x ′ not perpendicular to AB) then Plane of forces

R

B

x'

C
A

Fig. 4.2

can be satisfied only if R = 0.
3. Three moment equations We also can replace both force equations in

Eqs. (4.2) by two moment equations. The result is

�MA = 0 �MB = 0 �MC = 0 (4.4)

where A, B, and C are any three distinct, non-collinear points, as indicated in
Fig. 4.2. Again the equations �MA = 0 and �MB = 0 are satisfied only if the
resultant is a force R that lies along the line AB. The third equation �MC = 0
(C not on the line AB) then guarantees that R = 0.
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b. Concurrent force system

Recall that the resultant of a concurrent force system is a force R that passes
through the point of concurrency, which we label as point O. The moment equa-
tion �MO = 0 now is satisfied trivially, so that the number of independent
equilibrium equations is reduced from three to two. Using the arguments in Part a,
it is straightforward to verify that the following are valid choices for independent
equilibrium equations, each set consisting of two equations.

1. Two force equations.

�Fx ′ = 0 �Fy′ = 0 (4.5)

where x ′ and y′ are any two non-parallel directions in the xy-plane.

2. Two moment equations.

�MA= 0 �MB = 0 (4.6)

where A and B are any two points in the xy-plane (except point O) provided that
A, B, and O do not lie on a straight line.

3. One force equation and one moment equation.

�Fx ′ = 0 �MA= 0 (4.7)

where A is any point in the xy-plane (except point O) and x ′ is any direction that
is not perpendicular to the line OA.

c. Parallel force system

Assume that all the forces lying in the xy-plane are parallel to the y-axis. The
equation �Fx = 0 is automatically satisfied, and the number of independent equi-
librium equations is again reduced from three to two. Using the reasoning in
Part a, it can be shown that there are two choices for independent equilibrium
equations, each containing two equations:

1. One force equation and one moment equation.

�Fy′ = 0 �MA= 0 (4.8)

where y′ is any direction in the xy-plane except the x-direction, and A is any point
in the xy-plane.

2. Two moment equations.

�MA= 0 �MB = 0 (4.9)

where A and B are any two points in the xy-plane, provided that the line AB is not
parallel to the y-axis.
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4.5 Writing and Solving Equilibrium Equations

The three steps in the equilibrium analysis of a body are:

Step 1: Draw a free-body diagram (FBD) of the body that shows all of the
forces and couples that act on the body.

Step 2: Write the equilibrium equations in terms of the forces and couples that
appear on the free-body diagram.

Step 3: Solve the equilibrium equations for the unknowns.

In this article, we assume that the correct free-body diagram has already been
drawn, so that we can concentrate on Steps 2 and 3—writing and solving the
equilibrium equations.

The force system that holds a body in equilibrium is said to be statically deter-
minate if the number of independent equilibrium equations equals the number
of unknowns that appear on its free-body diagram. Statically determinate prob-
lems can therefore be solved by equilibrium analysis alone. If the number of
unknowns exceeds the number of independent equilibrium equations, the prob-
lem is called statically indeterminate. The solution of statically indeterminate
problems requires the use of additional principles that are beyond the scope of
this text.

When analyzing a force system that holds a body in equilibrium, you should
first determine the number of independent equilibrium equations and count the
number of unknowns. If the force system is statically determinate, these two num-
bers will be equal. It is then best to outline a method of analysis, or plan of attack,
which specifies the sequence in which the equations are to be written and lists
the unknowns that will appear in each equation. After you have determined a
viable method of analysis, you can then proceed to the mathematical details of
the solution.

One word of caution—the set of equilibrium equations used in the analysis
must be independent. An attempt to solve a dependent set of equations will, at
some stage, yield a useless identity, such as 0= 0.

By now you should realize that, although the solution of a statically deter-
minate problem is unique, the set of equations used to determine that solution is
not unique. For example, there is an infinite number of choices for point O in the
equilibrium equation �MO = 0.

With an infinite number of equilibrium equations from which to choose, how
are you to decide which equations to use for a given problem? The answer is
to base your choice on mathematical convenience. If you intend to solve the
equations by hand, try to select equations that involve as few unknowns as possi-
ble, thus simplifying the algebraic manipulations required. However, if you have
access to a computer or a programmable calculator with equation-solving capa-
bility, the solution of simultaneous equations is not burdensome and the choice
of equations is therefore not critical. It cannot be overemphasized that the set of
chosen equations must be independent.



Sample Problem 4.5
The weight W is attached to one end of a rope that passes over a pulley that is free
to rotate about the pin at A. The weight is held at rest by the force T applied to
the other end of the rope. Using the given FBD, show that T = W and compute
the pin reactions at A.

A

T T

x r
Ay

A

W

Ax

y

r

30° 30°

FBD

W

Solution
Method of Analysis

The forces shown on the FBD are the weight W , the pull T acting at the end of
the rope, and the reactive forces applied to the pulley by the pin at A. Because the
force system is coplanar, there are three independent equilibrium equations. The
number of unknowns is also three (T, Ax , and Ay), which means that the problem
is statically determinate.

The equilibrium equation �MA = 0 is a convenient starting point. Since the
pin reactions have zero moments about A, the only unknown in this equation is
T . Having computed T , we can then determine Ax from �Fx = 0 and Ay from
�Fy = 0.

Mathematical Details

�MA = 0 + T r −Wr = 0

T = W Q.E.D.

This result is significant because it shows that the tension in a rope does not
change when the rope passes over a pulley that is supported by a frictionless pin.

�Fx = 0 −→+ Ax + T sin 30◦ = 0

�Fy = 0 +
�⏐ Ay −W − T cos 30◦ = 0

With T = W , the last two equations yield

Ax = −0.5W Ay = 1.866W Answer

The minus sign indicates that Ax acts to the left; that is, in the direction opposite
to what is shown on the FED.
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Sample Problem 4.6
The homogeneous 60-kg disk supported by the rope AB rests against a rough ver-
tical wall. Using the given FBD, determine the force in the rope and the reaction
at the wall.

200

150

200

150

FBDDimensions in mm

3

4

A

B

y

CNC

FC

T

B

x

A

W = 588.6 N

Solution
Method of Analysis

The FBD contains the weight W = 60(9.81)= 588.6 N, acting at the center of the
disk. The other forces shown on the FBD are the force T applied by the rope and
the reactive forces NC (the normal reaction) and FC (the friction force) applied by
the wall. The result is a general, coplanar force system for which there are three
independent equilibrium equations. Since the number of unknown forces is also
three, the problem is statically determinate.

Because NC and T intersect at point B, the moment equation �MB = 0 will
yield FC . Then the two force equations �Fx = 0 and �Fy = 0 can be used to
calculate NC and T .

Mathematical Details
�MB = 0 gives FC = 0 Answer

�Fy = 0 +
�⏐ 4

5
T − 588.6 = 0

T = 735.8 N Answer

�Fx = 0 −→+ NC − 3

5
T = 0 NC − 3

5
(735.8) = 0

NC = 441 N Answer

Another Method of Analysis

�MA = 0 + 200NC − 150(588.6) = 0

NC = 441 N
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Sample Problem 4.7
The homogeneous, 120-kg wooden beam is suspended from ropes at A and B.
A power wrench applies the 500-N · m clockwise couple to tighten a bolt at C.
Use the given FBD to determine the tensions in the ropes.

4 m 2 m

3 m

4 m 2 m
A B

C

C

500 N.m

500 N.m

A B

FBD
W = 1177.2 N

TA TB

y

x

Solution
Method of Analysis

The FBD of the beam contains the weight W =mg= 120(9.81)= 1177.2 N act-
ing at the center of the beam, the 500-N · m couple applied by the wrench, and
the unknown tensions TA and TB in the ropes. Because all the forces lie in the
xy-plane and are parallel to the y-axis, there are two independent equilibrium
equations. There are also two unknowns: TA and TB . Therefore, the problem is
statically determinate.

It is convenient to start the analysis with the equilibrium equation �MA= 0.
Because this equation does not contain TA, we can immediately solve it for TB .
We can then use the equation �Fy = 0 to calculate TA.

Mathematical Details

�MA= 0 + 4TB − 1177.2(3)− 500= 0

TB = 1007.9 N Answer

�Fy = 0 +
�⏐ TA + TB − 1177.2= 0

Substituting TB = 1007.9 N and solving for TA, we get

TA= 169.3 N Answer
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Other Methods of Analysis

Another, equally convenient option is to compute TA using �MB = 0 as

�MB = 0 + − 4TA + 1177.2(1.0)− 500= 0

TA= 169.3 N

Sample Problem 4.8
The 210-kg homogeneous log is supported by a rope at A and loose-fitting rollers
at B and C as it is being fed into a sawmill. Calculate the tension in the rope and
the reactions at the rollers, using the given FBD. Which rollers are in contact with
the log?

A

B

C

T

FBD

y

NB

W = 210 (9.81) = 2060.1 N

NC

x

30°

30°

30°
A

30°

B

C

5 m

2.5 m

3.75 m

2.5 m

1.25 m

Solution
Method of Analysis

The FBD contains the weight W of the log and three unknown forces: the tension
T in rope and the roller reactions NB and NC perpendicular to the log. The sense
of each roller reaction indicates that we have assumed the upper rollers to be in
contact with the lumber.

The force system in the FBD is the general coplanar case, for which three
independent equilibrium equations are available. Because there are also three
unknowns, the problem is statically determinate.

In general, equilibrium analysis would require the solution of three simultane-
ous equations, with all three unknowns appearing in each equation. With planning,
it usually is possible to reduce the number of unknowns that must be solved
simultaneously. Referring to the FBD, we could start with �Fx = 0, which would
contain only two unknowns: NB and NC . Then we would look for another equa-
tion that contains only these two unknowns. Inspection of the FBD reveals that
the equation �MA= 0 would not contain T , because this force passes through A.
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The equations �Fx and �MA could thus be solved simultaneously for NA and NB .
Finally, �Fy would be used to compute T .

Mathematical Details

�Fx = 0 −→+ −NB cos 30◦ − NC cos 30◦ = 0 (a)

�MA= 0 + 2060.1 (3.75 sin 30◦)+ 5NB + 7.5 NC = 0 (b)

The solution of Eqs. (a) and (b) is

NB = 1545 N and NC = − 1545 N Answer

The signs indicate that the sense of NB is as shown on the FBD, whereas the sense
of NC is opposite to that shown. Therefore, the upper roller at B and the lower
roller at C are in contact with the log.

�Fy = 0 +
�⏐ T − 2060.1− NB sin 30◦ − NC sin 30◦ = 0

Because NB = − NC , this equation yields

T = 2060.1 N Answer

Other Methods of Analysis

The above solution used the equations �Fx = 0, �Fy = 0, and �MA= 0. There
are other sets of independent equilibrium equations that would serve equally
well. For example, we could find T from just a single equation—summation of
forces parallel to the log equals zero. Because NB and NC are perpendicular to the
log, T would be the only unknown in this equation. The reaction NC could also
be computed independently from the other unknowns by setting the sum of the
moments about the point where T and NB intersect to zero. Similarly, we could
find NB from a single equation—summation of moments about the point where T
and NC intersect equals zero.

It is important to realize that the equilibrium equations must be independent.
Referring to the FBD, you might be tempted to use the three moment equations
�MA= 0, �MB = 0, and �MC = 0. Although each is a valid equation, they are
not independent of each other. Why not? What would happen if you tried to solve
these equations for NB , NC , and T?
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Problems

In each of the following problems, the free-body diagram is given. Write the
equilibrium equations, and compute the requested unknowns.

4.12 The homogeneous cylinder of weight W rests in a frictionless right-angled
corner. Determine the contact forces NA and NB in terms of W and θ .

A

B
NA

NB

FBD

W

θ

θ

θ

AA

BB
15°

P2 m
15°

600 N

2 m P

15°

A

N

FBD

15°

A

F

Fig. P4.12 Fig. P4.13

4.13 Calculate the force P that is required to hold the 600-N roller at rest on the
rough incline.

4.14 Solve Prob. 4.13 if the force P pushes rather than pulls.

P

15°

15°

2 m

600 N

2 m
P

A

N

F

FBD

15°

15°

A

Fig. P4.14

4.15 The 480-kg bent bar ABC of uniform cross section is supported by a pin
at A and a vertical cable at C . Determine the pin reactions and the force in the
cable.

FBD

2 m

4 m

A A

y

x

T

Ay

Ax

B BC C
2 m 2 m

WAB = 160(9.81) N

WBC  =  320(9.81) N

Fig. P4.15
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4.16 The table lamp consists of two uniform arms, each weighing 4 N, and a
10-N bulb fixture. If θ = 16◦, calculate the couple CA that must be supplied by
the friction in joint A.

60
0 

m
m

4 
N

600 mm

θ

4 N10-N

120 mm

A

4 N

10-N

16°

A

4 N
Ax

Ay

FBD

CA

30
0 

m
m

30
0 

m
m

70 mm 300 mm

Fig. P4.16

4.17 At what angle θ will the lamp in Prob. 4.16 be in equilibrium without the
couple CA?

10 N

4 N

A

420 mm 300 mm

0.8 N
Ax

Ay

30
0 

m
m

30
0 

m
m

FBD

θ

Fig. P4.17

4.18 The bent beam ABC is attached to a pin at C and rests against a roller

2 m

2 m
3

4

2.5 m

FBD

1.5 m

3 m

150 kg

3 m

150(9.81) N

C

A

A

y

x

B

Cy

RB

Cx

B

Fig. P4.18
support at B. Neglecting the weight of the beam, find the reactions at B and C
caused by the 150-kg load.
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4.19 Compute all reactions at the base A of the traffic light standard, given that
the tension in the cable BC is (a) T = 2720 N; and (b) T = 0. The weight of the
standard is negligible compared with the 1600-N weight of the traffic light.

5 m
C A

7.5 m

1600 N

B

5 mC
A

1600 N

B

4 m

T

7.
5 

m

CA

Ay

Ax

FBD

2 m

Fig. P4.19

4.20 The man is holding up the 35-kg ladder ABC by pushing perpendicular to
the ladder. If the maximum force that the man can exert is 400 N, determine the
smallest angle θ at which he can support the ladder.

400 N

FBD

C

B
θ θ

A
A

B
Ax

Ay

2 m

4 m

35(9.81) N
2 m

3 m

Fig. P4.20
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4.21 The machine part of negligible weight is supported by a pin at A and a
roller at C. Determine the magnitudes of the forces acting on the part at A and C.

50°

40°

40°

2.4 kN.m

2.4 kN.m

Ax

Ay

A

C

B

3 kN

B

3 kN

NC

300250200

300250200

A

C

400

400

Dimensions in mm

FBD

Fig. P4.21

4.22 The uniform plank ABC weighs 400 N. It is supported by a pin at A and
a cable that runs around the pulley D. Determine the tension in the cable and the
components of the pin reaction at A. Note that the tension in the cable is constant
(see Sample Problem 4.5).

0.5 m

70°

70°

0.5 m1.0 m1.5 m
400 N

FBD

A

Ax

Ay

y

x
B

C

TT

C

D

B
A

2.5 m

Fig. P4.22

4.23 The center of gravity of the 850-N man is at G. If the man pulls on the
rope with a 388-N force, determine the horizontal distance b between the man’s
feet and G.
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D

G
G

D FD

NDb
b

1.2 m 1.2 m

0.6 m 0.6 m

30° 30°

388 N

FBD

850 N

Fig. P4.23

4.24 The homogeneous 100-kg sign is suspended from three wires. Find the
tension in each wire.

A B

y

x

A B

T1

T2 T32 m 2 m

100 (9.81)
= 981 N

FBD

1 m

3
4

1.5 m

Fig. P4.24

4.25 When the truck is empty, it weighs 30000 N and its center of gravity is at
G. Determine the total weight W of the logs, knowing that the load on the rear
axle is twice the load on the front axle.

2.16 m 4.32 m

A B

G

4W
5

FBD

0.6 m

G

B

6 m

A

NA = 2NB NB

W
545°

30000 N

3.6 m 1.8 m

2.88 m 2.76 m 1.8 m

Fig. P4.25
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4.6 Equilibrium Analysis for Single-Body
Problems

We learned that the three steps in the equilibrium analysis of a body are:

1. Draw the free-body diagram (FBD).
2. Write the equilibrium equations.
3. Solve the equations for the unknowns.

The individual steps were introduced separately in the preceding articles. The
purpose of this article is to give you experience in the entire process of equilibrium
analysis.

Always begin by drawing the FBD; there are no exceptions. The FBD is
the very key to equilibrium analysis, so it should be drawn with great care.
We recommend that you use a straightedge and circle template. After the FBD
has been drawn, the remainder of the solution, consisting of writing and solving
equilibrium equations, will be straight forward.

It must be reiterated that if the number of unknowns on the FBD equals the
number of independent equations (statically determinate problem), you will be
able to calculate all of the unknowns. Conversely, if the number of unknowns
exceeds the number of independent equations (statically indeterminate prob-
lem), all of the unknowns cannot be determined by using equilibrium analysis
alone.

Although there are many statically indeterminate problems of practical impor-
tance, you will find that nearly all problems in this text are statically determinate.
To solve a statically indeterminate problem, one must consider deformations of
the body, as well as equations of equilibrium. The solution of statically indeter-
minate problems is discussed in texts with such titles as Strength of Materials or
Mechanics of Materials, the understanding of which requires a prior knowledge
of statics.



Sample Problem 4.9
The telephone cable spool in Fig. (a) weighs 1500 N and is held at rest on a 40◦

0.8 m
G

1.5 m

40°

(a)

G

40°1500 N A

F
N

T

1.5 m

(b)

0.4 m
G

F
N

T

1.5 m

(c)

0.8 m

1500 sin 40° 1500 cos 40°

A
1.5 cos 40° m

40°

40°

BB

AA

x

y

40°

y x

x

y

40°

y x

Friction

incline by the horizontal cable. The cable is wound around the inner hub of the
spool and attached to the support at B. Assume that G, the center of gravity of the
spool, is located at the center of the spool. Find all forces acting on the spool.

Solution
Method of Analysis

The first step is, of course, to draw the FBD of the spool, which is shown in
Fig. (b). In addition to its weight, the spool is acted on by the normal contact
force N and friction force F (both acting at the point of contact A) and by the
cable tension T . Note that the magnitudes T , N, and F are the only unknowns and
that there are three independent equilibrium equations (general coplanar force sys-
tem). Therefore, the problem is statically determinate. We illustrate one method
of solution in detail and then discuss several other methods that could be used.

We start with the equation

�MA= 0

The tension T can be calculated using this equation because it will be the only
unknown (N and F do not have moments about point A). The next equation is

�MG = 0

The unknowns in this equation will be T and F, because N has no moment
about G. Because T has already been found, this equation can be solved for F.
Finally, we use the equation

�Fy′ = 0

The unknowns in this equation will be T and N (F is perpendicular to the
y′-direction). Again, with T already computed, N can be found.

Mathematical Details

To help you follow the details of the preceding analysis, the FBD of the spool
has been redrawn in Fig. (c). Note that the 1500 N weight of the spool has been
replaced by its x ′- and y′-components and that the vertical distance between A and
G (1.5 cos 40◦ m) has been added. The analysis now proceeds as follows:

�MA= 0 + 1500 sin 40◦(1.5)− T (0.8+ 1.5 cos 40◦)= 0

T = 742 N Answer

�MG = 0 + F(1.5)− T (0.8)= 0

F = 742(0.8)

1.5
= 395.7 N Answer

�Fy′ = 0 ↖+ N − 1500 cos 40◦ − T sin 40◦ = 0

N = 1500 cos 40◦ + 742 sin 40◦ = 1626 N Answer
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The positive signs determined for T , F, and N indicate that the correct sense for
each force was assumed on the FBD.

As a check on this solution, we can verify that the above answers satisfy a
fourth equilibrium equation. For example,

�Fx = 0 −→+ F cos 40◦ − N sin 40◦ + T

= 395.7 cos 40◦ − 1626 sin 40◦ + 742 ≈ 0 Check

Other Methods of Analysis

Two additional methods of analysis are outlined in the table below, with the
mathematical details omitted.

Equation Unknowns Solution

�MG = 0 T and F
}

Solve simultaneously for T and F
�Fx ′ = 0 T and F

�Fy′ = 0 T and N Knowing T , solve for N

�MA = 0 T Solve for T

�Fx ′ = 0 T and F Knowing T , solve for F

�Fy = 0 T, N , and F Knowing T and F , solve for N

In this sample problem, we have illustrated only three of the many sets of
equations that can be used to analyze this problem. You may find it beneficial to
outline one or more additional analyses. Outlining the solution will permit you
to concentrate on the method of analysis without becoming too involved with the
mathematical details of the solution.

Sample Problem 4.10
Determine the mass of the heaviest uniform bar that can be supported in the posi-
tion shown in Fig. (a) if the breaking strength of the horizontal cable attached at
C is 15 kN. Neglect friction.

C
20°

1.2 m

1.2 m

(a)

4

3

AA

BB

Solution
Method of Analysis

We begin by drawing the FBD of the bar as shown in Fig. (b). The weight W of

A

C
B20°

1.2 m

1.2 m

(b)

3
4

5 W

NA

NB

T = 15 kN
x

y
y

x

the heaviest bar that can be supported will be obtained when the tension T is set
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equal to 15 kN. A heavier bar would result in a cable tension greater than 15 kN,
and the cable would break.

There are three unknowns in the FBD: the normal contact forces NA and NB ,
and W. Note that the directions of all these forces are known. The unknowns can,
therefore, be found using the three independent equilibrium equations that are
available for a general coplanar force system. However, because we are seeking
W only, it may not be necessary to use all three equations.

In our analysis, we will use the following two equations.

�Fx = 0

The force NA can be found from this equation (W and NB will not appear because
they are perpendicular to the x-direction).

�MB = 0

This equation will contain the two unknowns W and NA. Because NA already has
been determined, W now can be found.

Mathematical Details

Referring to the FBD in Fig. (b), the mathematical details of the preceding
analysis are as follows:

�Fx = 0 −→+ 4

5
NA − 15= 0

NA= 18.75 kN (a)

�MB = 0 + W (1.2 cos 20◦)+ 15(1.2 sin 20◦)− 3

5
NA(2.4 cos 20◦)

−4

5
NA(2.4 sin 20◦)= 0 (b)

Substituting NA= 18.75 kN from Eq. (a) into Eq. (b) gives W = 28.0 kN. There-
fore, the mass of the heaviest bar that can be supported without breaking the
cable is

m= W

g
= 28.0× 103

9.81
= 2850 kg Answer

Other Methods of Analysis

Another method that could be used to calculate W is outlined in the following
table.

Equation Unknowns Solution

�MA= 0 NB and W
}

Solve simultaneously for NB and W
�Fx ′ = 0 NB and W

There are, of course, many other sets of equations that could be used to
compute W. It is even possible to determine W using only one equilibrium
equation— a moment equation taken about the point where NA and NB intersect.
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Sample Problem 4.11
Figure (a) shows the distributed loading due to water pressure that is acting on the
upstream side of the flood barrier. Determine the support reactions acting on the
barrier at A and B. Neglect the weight of the barrier.

B

5 m

32000 N/m

60°

4 m

(a)

AA

B

A

60°

(b)

y

x R  = 80000 N

30°D

Ay

Ax

NB

C

4 m

5
y  =  3  m

Solution
Method of Analysis

The FBD of the barrier is shown in Fig. (b), where NB is the reaction at B, acting
perpendicular to the inclined surface, and Ax and Ay are the components of the
pin reaction at A. Any three independent equilibrium equations can be used to
determine these three unknowns. As explained in Art. 3.6, the resultant of a dis-
tributed load is equal to the area under the loading diagram, acting at the centroid
of that area. Therefore, we obtain

R= 1

2
(5)(32000)= 80000 N

and from Table 3.1, we find

ȳ= 5

3
m

Because the unknown forces Ax and Ay intersect at A, a convenient starting
point is

�MA= 0
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This equation will determine NB . We then use

�Fx = 0

Having previously determined NB , this equation will give Ax . The final equation is

�Fy = 0

With NB previously computed, Ay can be found from this equation.

Mathematical Details

�MA= 0 + 80000

(
5

3

)
− NB(4)= 0

NB = 33333.3 N Answer

�Fx = 0 −→+ NB cos 30◦ + Ax − 80000= 0

Ax = 80000− (33333.3) cos 30◦ = 51132.5 N Answer

�Fy = 0 +
�⏐ Ay + NB sin 30◦ = 0

Ay = − (33333.3) sin 30◦ = − 16666.7 N Answer

The signs indicate that NB and Ax are directed as shown on the FBD, whereas the
correct direction of Ay is opposite the direction shown on the FBD. Therefore, the
force that acts on the barrier at A is

16666.7 N

51132.5 N

A

θ
|A| =

√
(51132.5)2 + (16666.7)2= 53780 N

θ = tan−1

(
16666.7

51132.5

)
= 18.1◦ Answer

and the force at B is
33333. 3 N

30°
Answer

Other Methods of Analysis

There are, of course, many other independent equations that could be used to solve
this problem. Referring to the FBD in Fig. (b), the following set of equations has
the advantage of determining each unknown independently of the other two.

Equation Unknowns Solution

�MA=0 NB Solve for NB

�MC=0 Ax Solve for Ax

�MD=0 Ay Solve for Ay
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Problems

4.26 The homogeneous bar AB weighs 150 N. Determine the magnitudes of the
forces acting on the bar at A and B. Neglect friction.

B

A
60°

6 
m

35°
P 0.5 m

A

y

B4.5 m

1200 N/m

x

Fig. P4.26 Fig. P4.27 Fig. P4.28

4.27 Determine the horizontal force P required to keep the homogeneous 30-kg
cylinder in equilibrium on the rough inclined surface.

4.28 The homogeneous beam AB weighing 3000 N carries the distributed load
shown. Find the support reactions at A and B.

4.29 The homogeneous 40-kg bar ABC is held in position by a horizontal rope
30°A

B

C

2 m

1.25 m

Fig. P4.29 attached to end C . Neglecting friction, determine the tension in the rope.

4.30 The horizontal force P is applied to the handle of the puller. Determine
the resulting tension T in the chain in terms of P.

P

20°

720 mm

B

40°

A

18
0 

m
m

1 m

4.5 m6 m

3 m

4.5 m

x

A B

C

Fig. P4.30 Fig. P4.31

4.31 The thin steel plate, weighing 1640 N/m2, is being lifted slowly by the
cables AC and BC. Compute the distance x and find the corresponding tension in
each of the cables.

4.32 Neglecting the mass of the beam, compute the reactions at A and B.
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B

1 kN/m

3 m 6 m3 m

2 kN

12 kN.m

A

Fig. P4.32
4.33 The 1200-kg car is being lowered slowly onto the dock using the hoist A
and winch C. Determine the forces in cables BA and BC for the position shown.

2.2 m

5.6 m

2.4 m

A

B

C

5.6 m C

A B

P

30°

60° 

Fig. P4.33 Fig. P4.34, P4.35

4.34 The crate weighing 2000 N is supported by three ropes concurrent at B.
Find the forces in ropes AB and BC if P = 2300 N.

4.35 Find the smallest value of P for which the crate in the Prob. 4.34 will be in
equilibrium in the position shown. (Hint: A rope can only support a tensile force.)

4.36 Determine the rope tension T for which the pulley will be in equilibrium.

120 mm
75 mm

2 kN

200 N.m

T

Fig. P4.36

4.37 The 60-kg homogeneous disk is resting on an inclined friction surface.
(a) Compute the magnitude of the horizontal force P. (b) Could the disk be in
equilibrium if the inclined surface were frictionless?

30°

0.5
 m

P0.3 m

Fig. P4.37, P4.38

4.38 The 60-kg homogeneous disk is placed on a frictionless inclined surface
and held in equilibrium by the horizontal force P and a couple C (C is not shown
on the figure). Find P and C.
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4.39 The mass of the uniform bar AB is 40 kg. Calculate the couple C required
for equilibrium if (a) θ = 0; and (b) θ = 54◦.

2 m

C

A

B

20°θ

Fig. P4.39

4.40 The mechanism shown is a modified Geneva drive—a constant veloc-
ity input produces a varying velocity output with periods of dwell. The input
torque is 120 N ·m. For the position shown, compute the contact force at B
and the magnitude of the reaction at A. Neglect friction and the weights of the
components.

C

B

Input Output

180 mm

A
18° 28°

120 N. m

Fig. P4.40

4.41 The center of gravity of the 1500-kg car is at G. The car is parked on an
incline with the parking brake engaged, which locks the rear wheels. Find (a) the
normal forces (perpendicular to the incline) acting under the front and rear pairs
of wheels; and (b) the friction force (parallel to the incline) under the rear pair of
wheels.

G

12°

A

B1.5 m
3 m

1.1 m

Fig. P4.41

4.42 The 1800-kg boat is suspended from two parallel cables of equal length.
The location of the center of gravity of the boat is not known. Calculate the force
P required to hold the boat in the position shown.
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P
A

20° 20°

B

Fig. P4.42

4.43 The bracket contains three slots that engage pins that are attached to a

Dimensions in mm

30 N

30°
B

A C30°50

50

150 100

Fig. P4.43

wall. Neglecting friction, determine the force exerted on the bracket by each pin.

4.44 The uniform ladder of weight W is raised slowly by applying a vertical

B

2L3

P

L_
3

2L 3

C

A

θ

Fig. P4.44, P4.45

force P to the rope at A. Show that P is independent of the angle θ .

4.45 The uniform, 20-kg ladder is raised slowly by pulling on the rope attached
at A. Determine the largest angle θ that the ladder can attain if the maximum
allowable tension in rope BC is 1650 N.

4.46 The 90-kg man, whose center of gravity is at G, is climbing a uniform
ladder. The length of the ladder is 5 m, and its mass is 20 kg. Friction may be
neglected. (a) Compute the magnitudes of the reactions at A and B for x = 1.5 m.
(b) Find the distance x for which the ladder will be ready to fall.

L = 5 m 

G

x

1.6 m 

1.2 m 

A

B

165 lb
30°

20°

y

b

x

B

L = 4320 mm

A

Fig. P4.46 Fig. P4.47

4.47 The homogeneous 120-kg bar AB is in equilibrium in the position shown.
Determine the distance b that locates the 825 N force and compute the magnitude
of the support reaction at A.

4.48 The tensioning mechanism of a magnetic tape drive has a mass of 0.4 kg,

100 mm20 mm

T

T

B

G

80 mm

A

120 mm

Fig. P4.48

and its center of gravity is at G. The tension T in the tape is maintained by preset-
ting the tensile force in the spring at B to 14 N. Calculate T and the magnitude of
the pin reaction at A.
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4.49 The homogeneous 300-kg cylinder is pulled over the 100-mm step by theP

100 mm

600 mm

B

A

Fig. P4.49

horizontal force P. Find the smallest P that would raise the cylinder off the surface
at A. Assume sufficient friction at corner B to prevent slipping.

4.50 The homogeneous 18-kg pulley is attached to the bar ABC with a pin
at B. The mass of the bar is negligible. The cable running over the pulley carries a
tension of 600 N. Determine the magnitudes of the support reactions at A and C .

600 N

18 kg

40°

600 N

C
B

A

120

Dimensions in mm

96

240 240

Fig. P4.50

4.51 Each of the sandbags piled on the 125-kg uniform beam mass 6-kg.
Determine the support reactions at A and C.

C
x

5.5 m 4 m

B
A

y 5B C

A

2.5

Dimensions in m

1.5

1.5 1.5

2

Fig. P4.51 Fig. P4.52

4.52 The homogeneous 300-kg plate is suspended from three cables. Determine
the force in each cable.

4.53 The supporting structure of the billboard is attached to the ground by a pin

4 m

5 m

3.5 m

G

0.75 m

1200 kg

0.75 m

q N/m

A BA B

Fig. P4.53

at B, and its rear leg rests on the ground at A. Friction may be neglected. Point G
is the center of gravity of the billboard and structure, which together has a mass
of 14 N. To prevent tipping over in high winds, a 1200-kg mass is placed on the
structure near A, as shown. (a) Compute the magnitudes of the reactions at A and
B if the wind load on the billboard is q = 1200 N/m. (b) Find the smallest wind
load q that would cause the structure to tip over.

4.54 The self-regulating floodgate ABC, pinned at B, is pressed against the lip
of the spillway at C by the action of the 3645-N weight A. If the gate is to open
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hC

BA

x

3645 N

3 m

6 m

320h N/m

Fig. P4.54

when the water level reaches a height h= 6 m, determine the distance x locating
the weight A. Neglect the weight of the gate.

4.55 The cantilever beam is built into a wall at O. Neglecting the weight of the

x

360 N

400 N 100 N

200 N

120 N

4 m 4 m 3 m

3 m

y

O

Fig. P4.55
beam, determine the support reactions at O.

4.56 Determine the force F required to keep the 200-kg crate in equilibrium in
34°

8 m

200 kg

6.5 m

B

A C

F

Fig. P4.56

the position shown.

4.57 Determine the angle θ for which the 1250-N homogeneous cylinder will
be in equilibrium in the position shown. Also, find the tension in the rope AB.

500 N

W = 1250 N

A
B

θ

375 N C

150 50

A

B

P

T

50

25°

Dimensions in mm

Fig. P4.57 Fig. P4.58

4.58 A machine operator produces the tension T in the control rod by applying
the force P to the foot pedal. Determine the largest P if the magnitude of the pin
reaction at B is limited to 1.8 kN. Neglect the mass of the mechanism.
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∗4.59 The dump truck consists of a chassis and a tray, with centers of gravity
at G1 and G2, respectively. With the tray down, the axle loads (normal forces at
A and B) are 41 900 N each. When the tray is in the raised position, the rear axle
load increases to 48 700 N. Compute the weight of the chassis, the weight of the
tray, and the distance x.

12 m 7 m

GG22

14.5 m

BA

GG11

x

G1

G2

Fig. P4.59

∗4.60 The centers of gravity of the 50-kg lift truck and the 120-kg box are at
G1 and G2, respectively. The truck must be able to negotiate the 5-mm step when
the pushing force P is 600 N. Find the smallest allowable radius of the wheel at A.
Be sure to check whether the truck will tip.

1200

375

1200

5

G2

G1

P

500

Dimensions in mm

BA

Fig. P4.60
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PART B: Analysis of Composite Bodies

4.7 Free-Body Diagrams Involving Internal
Reactions

Up to now, we have been considering “one-body” problems. Because we have
been concerned primarily with calculating external reactions, each problem has
required the use of only one free-body diagram (FBD) and the solution of one
set of equilibrium equations. We now begin a study of the forces that act at con-
nections that are internal to the body, called internal reactions. The calculation of
internal reactions often requires the use of more than one FBD.

In this article, attention is focused on the drawing of FBDs of the various
parts that together form a composite body. Frames and machines are examples
of connected bodies that are commonly used in engineering applications. Frames
are rigid structures that are designed to carry load in a fixed position. Machines
contain moving parts and are usually designed to convert an input force to an
output force.

The construction of FBDs that involve internal forces relies on Newton’s third
law: For every action there is an equal and opposite reaction. Strict adherence to
this principle is the key to the construction of FBDs.

a. Internal forces in members

Consider the beam in Fig. 4.3(a), which carries the load P acting at its center
(P and θ are assumed known). In the FBD of the entire beam, Fig. 4.3(b), there
are three unknown external reactions (Ax , Ay , and NB) and three independent
equilibrium equations. Therefore, the beam is statically determinate, and the three
unknowns could be easily calculated, although we will not do so here.
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Fig. 4.3
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Now suppose that we are asked to determine the force system that acts on the
internal cross section at D, located a distance L/4 to the right of end A. We begin
by isolating the parts of the beam that lie to the left and right of D. In effect, we
imagine that the beam is cut open at the section of interest. Thus the cross section
that was initially an internal section now becomes an external section. We then
draw the FBDs of both parts of the beam, as shown in Fig. 4.3(c) and (d).

Consider the FBD for the left portion of the beam, Fig. 4.3(c). The right por-
tion of the beam has been removed, and its effect is shown as an unknown force
(represented by the independent components Dx and Dy) and an unknown couple
(CD), the senses of which are assumed.

On the FBD for the right portion of the beam, Fig. 4.3(d), the effect of the
removed left portion is likewise an unknown force and an unknown couple. How-
ever, Newton’s third law prescribes that the effect that the right part of the beam
has on the left part is equal and opposite to the effect that the left part has on the
right. Therefore, on the FBD in Fig. 4.3(d), the force system at D consists of the
forces Dx and Dy and the couple CD , each equal in magnitude, but opposite in
direction, to its counterpart in Fig. 4.3(c). That is the key to understanding FBDs!
When isolating two parts of a body in order to expose the internal reactions, these
reactions must be shown as equal and opposite force systems on the FBDs of the
respective parts.

Note that we are using scalar representation for the forces and couples in the
FBDs in Fig. 4.3. For example, the magnitude of the x-component of the force at
D is labeled Dx , and its direction is indicated by an arrow. If a vector representa-
tion is used, one force of the pair would be labeled Dx and the other force −Dx .
Because there is no advantage to using vector notation here, we continue to use
the scalar representation.

Finally, note that if Ax , Ay , and NB had been previously computed from the
FBD for the entire beam, the FBD in either Fig. 4.3(c) or (d) could be used to
calculate the three unknowns Dx , Dy , and CD .

Observe that internal forces do not appear on the FBD of the entire beam,
Fig. 4.3(b). The reason is that there are two internal force systems acting on every
section of the beam, each system being equal and opposite to the other. Therefore,
internal reactions have no effect on the force or moment equations for the entire
beam.

b. Internal forces at connections

Consider the frame shown in Fig. 4.4(a) , which consists of two identical, homo-

B

A Cx

y
Q

P

L

(a)

θθ

B

Q

P

(b)

W
θ θ

W

A C

Ay Cy

Ax Cx

L
2

L
2

Fig. 4.4

geneous bars AB and BC, each of weight W and length L. The bars are pinned
together at B and are attached to the supports with pins at A and C. Two forces
P and Q are applied directly to the pin at B. We assume that L, W, P, Q, and θ

are known quantities. Furthermore, throughout this text we neglect the weights of
pins and other connectors, unless stated otherwise.

The FBD of the structure shown in Fig. 4.4(b) contains four unknown pin
reactions: Ax and Ay (the forces exerted on bar AB by the pin A) and Cx and
Cy (the forces exerted on bar BC by the pin C). The senses of these forces have
been chosen arbitrarily. Because only three independent equilibrium equations
are available from this FBD, you might presume that the problem is statically
indeterminate. Indeed, this would be the correct conclusion if ABC were a single
rigid unit, rather than two rigid bars joined by a pin. If the system is “taken apart”
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and an FBD is drawn for each component, it will be seen that the problem is
statically determinate. As explained in the following, drawing the FBD of each
component increases the number of unknowns, but the number of independent
equations also increases.

The FBD of each component of the frame is shown in Fig. 4.5.

By

Bx

By

Bx

Q

P
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(c)
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(b)

AAx

Wθ θ

(a)

BxB

By

Ay

L
2

L
2

L
2

L
2

Bx

By

Fig. 4.5

Figure 4.5 (a) FBD of bar AB with pins at A and B removed.

W is the weight of bar AB acting at the center of the bar.
Ax and Ay are the forces exerted on bar AB by the pin at A.
Bx and By are the forces exerted on bar AB by the pin at B.

Notes

1. The senses of Ax and Ay cannot be chosen arbitrarily here. These senses were
already assumed when the FBD of the system, Fig. 4.4(b), was drawn. Ini-
tially, the sense of an unknown force may be chosen arbitrarily, but if that
force appears on more than one FBD, its sense must be consistent with the
original assumption.

2. The senses of Bx and By were chosen arbitrarily, because this is the first FBD
on which these forces appear.

3. P and Q are applied directly to the pin at B, so they do not appear on this FBD
(recall that the pin at B has been removed).
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Figure 4.5 (b) FBD of bar BC with pins at B and C removed.

W is the weight of bar BC acting at the center of the bar.
Cx and Cy are the forces exerted on bar BC by the pin at C.
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Fig. 4.5 repeated

B ′x and B ′y are the forces exerted on bar BC by the pin at B.

Notes

4. The directions of Cx and Cy must be the same as shown in Fig. 4.4(b). (See
Note 1.)

5. The forces exerted by the pin B on bar BC are labeled B ′x and B ′y . Because this
is the first FBD on which B ′x and B ′y have appeared, their senses have been
chosen arbitrarily.

Figure 4.5 (c) FBD of pin B with bars AB and BC removed.

P and Q are the external forces acting directly on the pin.
Bx and By are the forces exerted on the pin by bar AB.
B ′x and B ′y are the forces exerted on the pin by bar BC.

Notes

6. Because P and Q are applied directly to the pin at B, they will appear on every
FBD that contains that pin.

7. The senses of Bx and By are opposite to the senses chosen for these forces on
the FBD of bar AB. This follows from Newton’s third law: The force exerted
on bar AB by the pin B is equal and opposite to the force exerted on pin B by
bar AB. A similar argument holds for the directions of B ′x and B ′y .

Let us now count the unknowns and the independent equilibrium equations
available from the FBDs in Fig. 4.5. There are eight unknowns: Ax , Ay , Bx , By ,
B ′x , B ′y , Cx , and Cy . The number of equilibrium equations is also eight: three
each from the FBDs of bars AB and BC (general coplanar force systems) and two
from the FBD of the pin at B (concurrent, coplanar force system). Therefore, we
conclude that the problem is statically determinate, and the eight unknowns are
solvable from the eight independent equilibrium equations.

As mentioned previously, there are also three independent equations for the
FBD of the entire body, shown in Fig. 4.4. Does this mean that we have a total
of 8 + 3= 11 independent equations? The answer is no! The FBD for the entire
system is not independent of the FBDs for all of its parts—the FBDs in Fig. 4.5
could be put back together again to form the FBD in Fig. 4.4. In other words,
if each part of the body is in equilibrium, then equilibrium of the entire body is
guaranteed. This means that of the eleven equations just cited, only eight will be
independent.

Let us now change the problem by assuming ABC to be a single rigid unit
rather than two bars pinned together at B. In this case, the body would be able to
transmit a force and a couple at B. Consequently, the number of unknowns would
be increased by one (the magnitude of the couple), but the number of indepen-
dent equations would remain at eight. Hence, this problem would be statically
indeterminate.
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So far, we have drawn the FBD for the entire system and the FBDs for each of
its parts. There are two other FBDs that could be constructed—the FBDs with the
pin B left inside bar AB and those with pin B left inside bar BC. These FBDs are
shown in Figs. 4.6 and Fig. 4.7, respectively. As you study each of the FBDs, note
that B ′x and B ′y do not appear in Fig. 4.6 because they are now internal forces. For
the same reason, Bx and By do not appear in Fig. 4.7. It should be noted again
that, although we have drawn additional FBDs, the total number of independent
equilibrium equations remains eight.

FBDs of AB and BC with pin B left in BC
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The following special case is extensively used in the construction of FBDs of
bodies that are joined by pins.

Special Case: Equal and Opposite Pin Reactions
If two members are joined by a pin and if there are no external forces applied
to the pin, then the forces that the pin exerts on each member are equal in
magnitude and oppositely directed.

It is relatively easy to verify this statement by referring again to the FBD of
the pin B, Fig. 4.5(c). Note that if there are no forces applied to the pin (i.e.,
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if P = Q= 0), the equilibrium equations for the pin dictate that Bx = B ′x and
By = B ′y—the pin reactions are equal in magnitude and oppositely directed.

Using this special case, the FBDs for bars AB and BC, and pin B would be as
shown in Fig. 4.8. Here, the total number of unknowns is six, and the total number
of independent equations is six—three for each bar. Obviously, two of the original
eight equations have been used up in proving that the pin reactions at B are equal
and opposite.

FBDs with no external forces applied to pin B
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In this text we utilize equal and opposite pin reactions wherever applicable.
That is, our FBDs of members display equal and opposite reactions at the pins,
as shown at B in Fig. 4.8. The FBDs of the pins are not drawn. The two most
common situations where the pin reactions are not equal and opposite are

• External force is applied to the pin
• More than two members are connected by the pin



Sample Problem 4.12
(1) Referring to Fig. (a), draw the FBD for the entire frame and for each of its

D
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1.5 m

2 m 2 m
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(a)

y

x
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A B

D

C

C0

(b)

3 m

Ax 2 m 2 m

P

Ay

Cx

Cy

parts, neglecting the weights of the members. (2) Determine the total number of
unknowns and the total number of independent equilibrium equations, assuming
that the force P and couple C0 are known.

Solution
Part 1

The force system on each of the FBDs is described below.

FBD of Entire Frame—Fig. (b)

P and C0: applied force and applied couple
Ax and Ay : components of the force exerted on the frame by pin A (directions are

assumed)
Cx and Cy : components of the force exerted on the frame by pin C (directions are

assumed)

FBD of Member ABD—Fig. (c)

P: applied force
Ax and Ay : components of the force exerted on member ABD by pin A [must be

shown acting in the same directions as in Fig. (b)]
Dx and Dy : components of the force exerted on member ABD by pin D (directions

are assumed)
NB : force exerted on member ABD by the roller at B (must be perpendicular to

member CDB)

FBD of Member CDB—Fig. (d)

C0: applied couple
Cx and Cy : components of the force exerted on member CDB by pin C [must be

shown acting in the same directions as in Fig. (a)]
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Dx and Dy : components of the force exerted on member CDB by pin D [must be
equal and opposite to the corresponding components in Fig. (c)]

NB : force exerted on the member by the roller at B [must be equal and opposite to
the corresponding force in Fig. (c)]

Part 2

Three independent equilibrium equations are available from the FBD of mem-
ber ABD, and three from the FBD of member CDB, which gives a total of six
independent equilibrium equations (recall that the FBD for the entire frame is not
independent of the FBDs for its two composite members). The total number of
unknowns is seven: two unknowns each at A, C, and D and one unknown at B.

Because the number of unknowns exceeds the number of independent equi-
librium equations, we conclude that this problem is statically indeterminate; that
is, all unknowns cannot be determined from equilibrium analysis alone.

Sample Problem 4.13
(1) Draw the FBDs for the entire frame in Fig. (a) and for each of its parts. The
weights of the members are negligible. The cable at C is attached directly to
the pin. (2) Determine the total number of unknowns and the total number of
independent equilibrium equations, assuming that P is known.

R = 1 m
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Solution
Part 1

The forces on each of the FBDs are described in the following.

FBD of Entire Frame—Fig. (b)

P: applied force
Ax and Ay : components of force exerted on the frame by pin A (directions are

assumed)

186



NE : force exerted on the frame by the roller E (direction is horizontal, assumed
acting to the right)

T1: force exerted on the frame by the cable that is attached to pin C

FBD of Member EDC—Fig. (c)

NE : force exerted on member EDC by the roller at E [must be shown acting in the
same direction as in Fig. (b)]

Dx and Dy : components of the force exerted on member EDC by pin D (directions
are assumed)
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Cx

Cy

C

Cx and Cy : components of the force exerted on member EDC by pin C (directions
are assumed)

FBD of the Pulley—Fig. (d)

P: applied force
Dx and Dy : components of the force exerted on the pulley by pin D [must be

shown equal and opposite to the corresponding components in Fig. (c)]
T2: tension in the cable on the left side of the pulley

FBD of Member ABC—Fig. (e)

Ax and Ay : components of the force exerted on member ABC by pin A [must be
shown acting in the same directions as in Fig. (b)]

T2: force exerted on member ABC by the cable that is attached at B [must be equal
and opposite to the corresponding force in Fig. (d)]

C ′x and C ′y : components of the force exerted on member ABC by pin C (directions
are assumed)

FBD of Pin C—Fig. (f) This FBD is necessary because a cable is attached
directly to pin C.

T1: force exerted on pin C by the cable [must be shown acting in the same direction
as in Fig. (b)]

Cx and Cy : components of the force exerted on pin C by member EDC [must be
shown equal and opposite to the corresponding components in Fig. (c)]

C ′x and C ′y : components of the force exerted on pin C by member ABC [must be
shown equal and opposite to the corresponding components in Fig. (e)]

Part 2

There are a total of eleven independent equilibrium equations: three for each of
the two bars, three for the pulley, and two for pin C (the force system acting on
the pin is concurrent, coplanar). Recall that the FBD for the entire frame is not
independent of the FBDs of its members.

The problem is statically determinate because the total number of unknowns
is also eleven: Ax and Ay , Cx and Cy , C ′x and C ′y , Dx and Dy , NE , T1, and T2.

187
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Problems

For Probs. 4.61–4.68, (a) draw the free-body diagrams for the entire assembly (or
structure) and each of its parts. Neglect friction and the weights of the members
unless specified otherwise. Be sure to indicate all relevant dimensions. For each
problem, (b) determine the total number of unknown forces and the total number
of independent equilibrium equations.
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DBC

A
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Fig. P4.66 Fig. P4.67 Fig. P4.68

4.69 The fluid control valve D is controlled by the float A. Draw FBDs for
the float-arm assembly ABC, the link CE, the support arm BD, and the assembly
composed of all three of these components. The upward thrust on the float is 12 N.
Neglect the weights of the components. Assume that all dimensions are known.

A

B
C

D
E

12 N

Fig. P4.69

4.70 Draw the FBDs for the following: (a) bar ABC with pin A inside the
bar; (b) bar ABC with pin A removed; and (c) pin A. Neglect the weights of the
members.

30° 45°

3.6 m

2.4 kN

B
A C

D

Fig. P4.70
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4.71 Tension in the spring connecting the two arms of the lifting tongs is 750 N.
Draw the FBDs of (a) the entire assembly; (b) the pin A; (c) the arm ABD with
pin A removed; and (d) the 300-N block. Neglect the weight of the tongs.
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480 mm
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0.6 m
1 m

E

DB

A
2 m

0.6 m

Fig. P4.71 Fig. P4.72

4.72 For the structure shown, draw the following FBDs: (a) the entire structure;
(b) the small pulley at D; and (c) the frame ADE.

4.8 Equilibrium Analysis of Composite Bodies

In the equilibrium analysis of a composite body and its various parts, you must be
able to construct the appropriate FBDs. As explained in the previous article, this
ability depends on the correct application of Newton’s third law. Furthermore, you
must be able to write and solve equilibrium equations based on FBDs, a technique
that was explained for one-body problems in Art. 4.6. The primary difference
between one-body and composite-body problems is that the latter often require
that you analyze more than one FBD.

The problems in the preceding article required the construction of FBDs for a
composite body and each of its parts. These problems were simply exercises in the
drawing of FBDs. Beginning an equilibrium analysis by constructing all possible
FBDs is inefficient; in fact, it can lead to confusion. You should begin by drawing
the FBD of the entire body and, if possible, calculate the external reactions. Then,
and only then, should you consider the analysis of one or more parts of the body.
The advantages of this technique are the following: First, because only external
reactions appear on the FBD of the entire body, some or all of them can often be
calculated without referring to internal forces. A second advantage is that FBDs
are drawn only as needed, thereby reducing the amount of labor. Most of the
time it will not be necessary to draw all possible FBDs and compute all internal
reactions in order to find the desired unknowns. Knowing which FBDs to draw
and what equations to write are undoubtedly the most difficult parts of equilibrium
analysis.



Sample Problem 4.14
The structure in Fig. (a) is loaded by the 36000 N ·mm counterclockwise couple

30°
4

4

3
3

36000 N.mm

B

C

D

A

(a)

15
0 

m
m

150 m
m

150 m
m

y

x

30°

36000 N.mm

B

C

D

A

(b)

Ay

Ax

ND

120 mm

120 mm

120 mm

TC

30°

90 mm

B

C

D

(c)

90 mm

120 mm

120 mm

By

Bx

TC

ND

applied to member AB. Neglecting the weights of the members, determine all
forces acting on member BCD.

Solution
The solution of a problem involving a composite body such as this must be
approached with caution. Unless an efficient method of analysis is planned from
the outset, it is easy to be overwhelmed by the number of FBDs that can be drawn
and the number of equilibrium equations that can be written.

Method of Analysis

Although not absolutely necessary, considering the FBD of the entire structure is
often a good starting point. The FBD shown in Fig. (b) contains the four unknowns
ND , TC , Ax , and Ay . With four unknowns and three independent equilibrium
equations (general coplanar force system), we cannot determine all unknowns on
this FBD (one more independent equation is required). Therefore, without writing
a single equation from the FBD in Fig. (b), we turn our attention to another FBD.

Because we are seeking the forces acting on member BCD, let us next con-
sider its FBD, shown in Fig. (c). This FBD contains four unknowns: ND , TC , Bx ,
and By . Again there are only three independent equations (general coplanar force
system), but a study of Fig. (c) reveals that the equation �MB = 0 will relate the
unknowns ND and TC . Additionally, from Fig. (b) we see that ND and TC are also
related by the equation �MA = 0. Therefore, these two moment equations can
be solved simultaneously for ND and TC . After those two unknowns have been
found, the calculation of Bx and By , which are the remaining unknown forces
acting on BCD, is straightforward.

Mathematical Details

Referring to the FBD of the entire structure in Fig. (b),

�MA= 0 + TC cos 30◦(240)− ND(360)+ 36000 = 0

ND = 0.5774 TC + 100 (a)

From the FBD of member BCD in Fig. (c),

�MB = 0 + TC cos 30◦(120)+ TC sin 30◦(90)− 240 ND = 0

ND = 0.6205 TC (b)

Solving Eqs. (a) and (b) simultaneously yields

TC = 2320 N and ND = 1440 N Answer

Also from the FBD of member BCD in Fig. (c),

�Fx = 0 −→+ ND − TC cos 30◦ + Bx = 0

Bx = 2320 cos 30◦ − 1440= 570 N Answer
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and

�Fy = 0 +
�⏐ By − TC sin 30◦ = 0

By = 2320 sin 30◦ = 1160 N Answer

Because the solution yields positive numbers for the unknowns, each force is
directed as shown on the FBDs.

The FBD of member AB, although not required in the foregoing analysis, is
shown in Fig. (d).

120 mm36000 N.mm

B

A

(d)

90 mm

Ay

Ax

By

Bx

Other Methods of Analysis

Note that the FBDs for the two members that make up the structure, Figs. (c)
and (d), contain a total of six unknowns: Ax , Ay , Bx , By , ND , and TC . There are
also six independent equilibrium equations—three for each member. (Thus you
see that it is not absolutely necessary to use the FBD of the entire assembly.)
There are many combinations of equations that could be used to determine the
forces acting on member BCD. It is recommended that you practice your skills by
outlining one or more additional methods of analysis.

Sample Problem 4.15
An 80-N box is placed on a folding table as shown in Fig. (a). Neglecting friction
and the weights of the members, determine all forces acting on member EFG and
the tension in the cable connecting points B and D.

(a)

400

400 200 600

360

240
G

H

F

C
180

B D E
80 N

A

Dimensions in mm

400

y

x

Solution
Method of Analysis

We begin by considering the FBD of the entire table, Fig. (b). Because this FBD
contains three unknowns (NG , Hx , and Hy), it will be possible to compute all of
them from this FBD. In particular, NG can be found using the equation �MH = 0.
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800

(b)

600

NG Hy

H Hx

80 N

G

(c)

1200

Ey

80 N

Ay

400
EAAx Ex

Next, we turn our attention to the FBD of member EFG by skipping ahead to
Fig. (d). We note that there are five unknowns on this FBD (NG , Fx , Fy , Ex , and
Ey). Although we have already found a way to find NG , four unknowns remain—
with only three independent equations.

Therefore, without writing any equations for the time being, we consider
another FBD—the FBD of the tabletop, shown in Fig. (c). Although this FBD
also contains four unknown forces, we see that three of them (Ax , Ay , and Ex )
pass through point A. Therefore, the fourth force, Ey , which is one of the forces
we are seeking, can be determined from the equation �MA= 0.

Having computed Ey , only three unknowns remain on the FBD in Fig. (d).
These unknowns can now be readily found by using the three available equilib-
rium equations.

Thus far, our analysis has explained how to determine the five forces acting
on member EFG. All that remains is to find the tension in the cable connected
between B and D. This force has not yet appeared on any of the FBDs, so we
must draw another FBD.

Ey

ExE

Ey

ExE

Fy

Fx

NG

F

G

(d)

400 600

360

240 Cy

CxC

TBD D

600

(e)

180

We choose to draw the FBD of the right half of the tabletop, shown in Fig. (e).
The right half is chosen instead of the left because the pin reactions at E have
already been determined. With Ex and Ey previously found, the remaining three
unknowns (Cx , Cy , and TBD) can be computed. In particular, the tension TBD can
be found from the equation �MC = 0.

Note that we did not find it necessary to draw the FBD for member AFH or
for the left half of the tabletop.
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Mathematical Details

From the FBD of the entire table, Fig. (b),

�MH = 0 + 80(600)− NG(800)= 0 (a)

NG = 60 N Answer

From the FBD of the tabletop, Fig. (c),

�MA= 0 + − 80(400)+ Ey(1200)= 0 (b)

Ey = 26.67 N Answer

From the FBD of member EFG, Fig. (d),

�MF = 0 + Ex (360)− Ey(600)− NG(400)= 0 (c)

Ex (360)= 26.67(600)+ 60(400)

Ex = 111.12 N Answer

�Fx = 0 −→+ Fx − Ex = 0 (d)

Fx = Ex = 111.12 N Answer

�Fy = 0 +
�⏐ NG − Fy − Ey = 0 (e)

Fy = 60− 26.67= 33.33 N Answer

From the FBD of the right half of the tabletop, Fig. (e),

�MC = 0 + Ey(600)− Ex (180)+ TBD(180)= 0 (f)

TBD(180)= 111.12(180)− 26.67(600)

TBD= 22.22 N Answer

Other Methods of Analysis

Our analysis was based on the six independent equilibrium equations, Eqs. (a)–(f).
For a structure as complex as the one shown in Fig. (a), there are many other
methods of analysis that could be used. For example, a different set of equations
would result if we chose to consider the left side of the tabletop instead of the
right, as was done in Fig. (e).
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Problems

4.73 The beam consists of two bars connected by a pin at B. Neglecting the
weight of the beam, compute the support reactions at A.

A
B

C

1.8 m 1.2 m

3 kN/m

Fig. P4.73

4.74 For the frame shown, determine the magnitude of the pin reaction at B.
Neglect the weight of the frame.

A

B

C

3 m

1.8 m

2 m

15 kN/m

12 kN/m

Fig. P4.74

4.75 The structure consists of two identical bars joined by a pin at B. Neglecting
the weights of the bars, find the magnitude of the pin reaction at C .

C

20
0 m

m

20
0 m

m

A

B

80 kg45°

25°

45°

Fig. P4.75



196 CHAPTER 4 Coplanar Equilibrium Analysis

4.76 The bars AB and AC are joined by a pin at A and a horizontal cable. The
vertical cable carrying the 200-kg mass is attached to the pin at A. Determine the
tension in the horizontal cable. Neglect the weights of the bars.

B C

200 kg

A

3 m

2 m

60°
30°

Fig. P4.76

4.77 Neglecting the weights of the members, determine the magnitude of the200 400

200

30
0

50
0

F

D E

BA

200 N . m

Dimensions in mm

Fig. P4.77

pin reaction at D when the frame is loaded by the 200-N ·m couple.

4.78 The bars AB and BC of the structure are each of length L and weigh W and
2W , respectively. Find the tension in cable DE in terms of W, L, and the angle θ .

CA

B

2WW

D

L
/2

L
/2L

/2

L
/2

E

θ θ

1 m

3 m 3 m

3 m

3 mA

D

B

PP

Fig. P4.78 Fig. P4.79

4.79 Determine the magnitude of the pin reaction at A as a function of P. The
weights of the members are negligible.

4.80 Neglecting friction and the weights of the members, compute the magni-

1.2 m

0.8 m 0.8 m

0.6 m
300 N/m

B

ED

A

C

Fig. P4.80

tudes of the pin reactions at A and C for the folding table shown.

4.81 When activated by the force P, the gripper on a robotic arm is able to pick
up objects by applying the gripping force F. Given that P = 120 N, calculate the
gripping force for the position shown.
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35

D

F

C

160 mm 250 mm

°

65

A

B

F
P

52 mm

°

Fig. P4.81

4.82 Determine the axle loads (normal forces at A, B, and C) for the ore hauler
when it is parked on a horizontal roadway with its brakes off. The masses of the
cab and the trailer are 4000 kg and 6000 kg, respectively, with centers of gravity
at D and E. Assume that the connection at F is equivalent to a smooth pin.

1m
2m

0.6m

E

2.4 m

F

D

A B C

1.5m

210 mm

120 mm

330 mm

390 mm

P

C

B

A D

E

40°

Fig. P4.82 Fig. P4.83

4.83 Determine the force P that would produce a tensile force of 125 N in the
cable at E. Neglect the weights of the members.

4.84 Determine the force P that will keep the pulley system in equilibrium.

P A

9000 N

B

Fig. P4.84Neglect the weights of the pulleys.

4.85 Determine the contact force between the smooth 100-kg ball B and the
horizontal bar, and the magnitude of the pin reaction at A. Neglect the weights of
the bar and the pulley.

BC

1 m3.5 m

A

D

Fig. P4.85
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4.86 Compute the tension in the cable and the contact force at the smooth sur-

D

85 mm

A

100 mm

C
B

300 N . m

Fig. P4.86

face B when the 300-N · m couple is applied to the cylinder. Neglect the weights
of the members.

4.87 The masses and lengths of the two homogeneous beams that make up
the structure are shown in the figure. Determine the magnitude of the pin
reaction at B.

A

B
C

50°

2 
m

15
0 

kg

3 m

270 kg

Fig. P4.87

4.88 Determine the tension in the cable at B, given that the uniform cylinder

3 
m

1 m

40°

A

B

D

C

Fig. P4.88

mass 150 kg. Neglect friction and the weight of bar AB.

4.89 The masses of the frictionless cylinders A and B are 2.0 kg and 1.0 kg,
respectively. The smallest value of the force P that will lift cylinder A off the
horizontal surface is 55.5 N. Calculate the radius R of the cylinder B.

A B

20
 m

m

R P

3 m
4 m

6 m 4 m

A B

300 N/m

C D

E

F3 m

Fig. P4.89 Fig. P4.90

4.90 Neglecting the weight of the frame, find the tension in cable CD.

4.91 Determine the clamping force at A due to the 75-N horizontal force

75 N

Dimensions in mm

E

C

D
A

720

360165
90

112.5

B

Fig. P4.91

applied to the handle at E .

4.92 Compute the tension in the cable BD when the 80-kg man stands 2 m
off the ground, as shown. The weight of the stepladder and friction may be
neglected.
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A

B D

E

0.6 m

2 m 1.5 m

0.6 m

1 m

C

400 mm

600 N

200 mm

400 mm

300 mm

600 N
300 mm

A

B

C

D

Fig. P4.92 Fig. P4.93

4.93 Calculate the reactions at the built-in support at C, neglecting the weights
of the members.

4.94 In the angular motion amplifier shown, the oscillatory motion of AC is

30°

60°

120 mm

36 N · m

C0

C

A

B

Fig. P4.94

amplified by the oscillatory motion of BC. Neglecting friction and the weights
of the members, determine the output torque C0, given that the input torque
is 36 N ·m.

4.95 The linkage of the braking system consists of the pedal arm DAB, the
connecting rod BC, and the hydraulic cylinder C. At what angle θ will the force
Q be four times greater than the force P applied to the pedal? Neglect friction and
the weight of the linkage.

100 m
m

10
0 

m
m

B

C

A

θ

θ

D

250 mm

Q

P

C

85 kg 95 kg

5 m 2 m

A B

D

15 kg

1 m

Fig. P4.95 Fig. P4.96

4.96 The window washers A and B support themselves and the 15-kg uniform
plank CD by pulling down on the two ropes. Determine (a) the tension in each
rope; and (b) the vertical force that each man exerts on the plank.
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4.97 The figure shows a wire cutter. Determine the cutting force on the wire
at A when the 75-N forces are applied to the handgrips. (Hint: The horizontal
components of pin forces at B and D are zero due to symmetry.)

75 N

75 N
Dimensions in mm

E
D

CBA

27 80 24 72

Fig. P4.97

4.98 Find the tension T in the cable when the 180-N force is applied to the
pedal at E. Neglect friction and the weights of the parts.

45°

24
0 m

m

180 NB

T

A

C

D

E

Cable

D

45°

10
0 

m
m

10
0 m

m

4 m

A

C

DE

B

400 kg

1.6 m

1.1 m

1.4 m

1.4 m

Fig. P4.98 Fig. P4.99

4.99 The 400-kg drum is held by tongs of negligible mass. Determine the
magnitude of the contact force between the drum and the tongs at D.

4.9 Special Cases: Two-Force and Three-Force
Bodies

Up to this point, we have been emphasizing a general approach to the solution
of equilibrium problems. Special cases, with the exception of equal and opposite
pin reactions, have been avoided so as not to interfere with our discussion of the
general principles of equilibrium analysis. Here we study two special cases that
can simplify the solution of some problems.
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a. Two-force bodies

The analysis of bodies held in equilibrium by only two forces is greatly simplified
by the application of the following principle.

Two-Force Principle
If a body is held in equilibrium by two forces, the forces must be equal in
magnitude and oppositely directed along the same line of action.

To prove the two-force principle, consider the body in Fig. 4.9 (a) that is held
in equilibrium by the two forces PA and PB (the forces do not have to be coplanar).
From the equilibrium equation �F= 0 we get PA=−PB . That is, the forces must
be equal in magnitude and of opposite sense; they must form a couple. Because
the second equilibrium equation, �MO = 0 (O is an arbitrary point), requires the
magnitude of the couple to be zero, PA and PB must be collinear. We conclude
that a two-force body can be in equilibrium only if the two forces are as shown in
Fig. 4.9(b).

B

A A

PB

PA

P

P

B

(a) (b)

B

A A

B

Fig. 4.9

To illustrate the use of the two-force principle, consider the frame shown in
Fig. 4.10(a). Neglecting the weights of the members, the FBDs for the entire
frame and each of its parts are as shown in Figs. 4.10(b) through (d). There are

A

4 m

D

B

C

1.5 m

3 my

x

(a)

5000 N

4 m

D

B

C

1.5 m

3 m

(b)

5000 N

Ay

Ax Dx

Dy

A A

4 m

D

B

C

1.5 m

3 m

(c)

5000 N

Ay

Ax

Dy

Dx

3 m

Cy

Cx Cx
C

Cy

(d)

Fig. 4.10
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six unknowns (Ax , Ay , Cx , Cy , Dx , and Dy) and six independent equilibrium
equations (three each for the two members). Therefore, the problem is statically
determinate.

An efficient analysis is obtained if we recognize that member AC is a two-
force body; that is, it is held in equilibrium by two forces—one acting at A (Ax

and Ay are its components) and the other acting at C (Cx and Cy are its compo-
nents). Using the two-force principle, we know—without writing any equilibrium
equations—that the resultant forces at A and C are equal in magnitude and oppo-
sitely directed along the line joining A and C. The magnitude of these forces is
labeled PAC in Fig. 4.11 .

4 m

C

PAC

3 m

PAC

4

3

A

Fig. 4.11

Therefore, if we recognize that AC is a two-force body, either of the FBDs in
Fig. 4.12 can be used to replace the FBDs in Fig. 4.10. Because each of the FBDs
in Fig. 4.12 contains three unknowns (PAC , Dx , and Dy) and provides us with
three independent equilibrium equations, either could be solved completely.

D

B

1.5 m

3 m

5000 N

Dy

Dx

A

4 m

D

B

C

1.5 m

3 m

(a)

5000 N

PAC Dy

Dx

3 m

(b)

PAC

3

4

3

4

C

Fig. 4.12

It is not absolutely necessary to identify two-force bodies when solving equi-
librium problems. However, applying the two-force principle always reduces the
number of equilibrium equations that must be used (from six to three, in the pre-
ceding example). This simplification is invariably convenient, particularly in the
analysis of complicated problems.

b. Three-force bodies

The analysis of a body held in equilibrium by three forces can be facilitated by
applying the following principle.

Three-Force Principle
Three non-parallel, coplanar forces that hold a body in equilibrium must be
concurrent.

The proof of this principle can be obtained by referring to Fig. 4.13, which
shows a body subjected to the three non-parallel, coplanar forces PA, PB , and
PC . Because the forces are not parallel, two of them—say, PA and PB—must
intersect at some point, such as O. For the body to be in equilibrium, we must have
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APA

C

PB

PC

O

B

Fig. 4.13

�MO = 0. Therefore, the third force, PC , must also pass through O, as shown in
Fig. 4.13. This completes the proof of the principle.

As an example of the use of the three-force principle, consider once again the
frame shown in Fig. 4.10. We have already shown how the analysis is simplified
by recognizing that member AC is a two-force body. A further simplification can
be made if we utilize the fact that member BCD is a three-force body.

The FBD of member BCD, repeated in Fig. 4.14(a), shows that the member
is held in equilibrium by three non-parallel, coplanar forces. Knowing that the
three forces must be concurrent, we could draw the FBD of BCD as shown in Fig.
4.14(b). Because the 5000-N force and PAC intersect at point E, the pin reaction
at D must also pass through that point. Therefore, the two components Dx and Dy

can be replaced by a force RD with the slope 11/4.

D

B

(a)

5000 N

Dy

Dx

(b)

PAC 11

4

D

E
B 5000 N

PAC

4 m

1.5 m

4 m

1.5 m

RD

C C

2 m 2 m

Fig. 4.14

Observe that the FBD in Fig. 4.14(a) contains three unknowns (PAC , Dx , and
Dy) and that there are three independent equilibrium equations (general copla-
nar force system). The FBD in Fig. 4.14(b) contains two unknowns (PAC and
RD), and there are two independent equilibrium equations (concurrent, coplanar
force system). By recognizing that BCD is a three-force body, we reduce both
the number of unknowns and the number of independent equilibrium equations
by one.

The use of the three-force principle can be helpful in the solution of some
problems. However, it is not always beneficial, because complicated trigonometry
may be required to locate the point where the three forces intersect.



Sample Problem 4.16
Determine the pin reactions at A and all forces acting on member DEF of the
frame shown in Fig. (a). Neglect the weights of the members and use the two-force2.5 m 2.5 m

1 m

2 m

1 m

1 m

3 mB

C

D

E
40 kN

(a)

0.5 m

y

x

FFFAAA

3 m
B

C D

E

FA

40 kN

(b) 

Ax

Ay Fy

Fx

5 m

D

E

F

(c) 

Fy

Fx

3 m

1 m

PCD

PBE

5
229 

principle wherever applicable.

Solution
Method of Analysis

We begin by considering the FBD of the entire frame, Fig. (b). Because there are
only three independent equilibrium equations, it will not be possible to find all
four unknowns (Ax , Ay , Fx , and Fy) from this FBD alone. However it is possible
to compute Fy from �MA= 0, because it is the only unknown force that has a
moment about point A. Similarly, �MF = 0 will give Ay . To calculate Ax and Fx ,
we must consider the FBD of at least one member of the frame.

Note that members CD and BE are two-force bodies, because the only forces
acting on them are the pin reactions at each end (the weights of the members
are neglected). Therefore, the FBD of member DEF is as shown in Fig. (c). The
forces PCD and PBE act along the lines CD and BE, respectively, as determined by
the two-force principle. With Fy having been previously computed, the remaining
three unknowns in the FBD (PCD, PBE, and Fx ) can then be calculated. Returning
to the FBD of the entire frame, Fig. (b), we can then find Ax from �Fx = 0.

Mathematical Details

From the FBD of the entire frame, Fig. (b),

�MA= 0 + −40(3)+ Fy(5)= 0

Fy = 24.0 kN Answer

�MF = 0 + −40(3)+ Ay(5)= 0

Ay = − 24.0 kN Answer

From the FBD of member DEF, Fig. (c),

�Fy = 0 +
�⏐ Fy − 2√

29
PBE= 0

PBE=
√

29

2
(24.0)= 64.6 kN Answer

�MF = 0 + PCD(4)+ 5√
29

PBE(3)= 0

PCD= − 15

4
√

29
(64.6)= − 45.0 kN Answer

�Fx = 0 −→+ − PCD − 5√
29

PBE + Fx = 0

Fx = 5√
29

(64.6)+ (−45.0) = 15.0 kN Answer
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From the FBD of the entire frame, Fig. (b),

�Fx = 0 −→+ Ax + Fx + 40.0= 0

Ax = − 15.0− 40.0= − 55.0 kN Answer

Other Methods of Analysis

There are, of course, many other methods of analysis that could be used. For
example, we could analyze the FBDs of the members ABC and DEF, without
considering the FBD of the entire frame.

Sample Problem 4.17
Neglecting the weights of the members in Fig. (a), determine the forces acting
on the cylinder at A and B. Apply the two-force and three-force principles where
appropriate. Use two methods of solution: utilizing (1) conventional equilibrium
equations; and (2) the force triangle.

100 N

105 mm

60 mm 60 mm

R = 75 mm

B A

(a)

y

x

C

100 N

B A

(b)

1

21

60 mm 75 mm

θ

θ

θ

RA

PBC

a

O

C
60 mm

10
5 

m
m

Solution
We begin by drawing the FBD of the cylinder, Fig. (b). Because bar BC is acted
upon only by the pin reactions at its ends, it is a two-force body. Therefore, the
force at B, labeled PBC, is directed along the line BC. The point where the line of
action of PBC intersects the 100-N force is labeled O.

Next, we note that the cylinder is acted on by three forces: PBC, the 100-N
applied force, and the pin reaction RA. From the three-force principle, the line of
action of RA must also pass through point O, as shown in Fig. (b).
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The angles θ1 and θ2, locating the lines of action of PBC and RA, respectively,
can be found from trigonometry. Referring to Fig. (b), we obtain

θ1= tan−1

(
105

60

)
= 60.3◦

a= (60+ 75) tan θ1= 135 tan 60.3◦ = 236.7 mm

θ2= tan−1
( a

2.5

)
= tan−1

(
236.7

75

)
= 72.4◦

Part 1

The force system acting on the cylinder is concurrent and coplanar, yielding two
independent equilibrium equations. Therefore, referring to the FBD in Fig. (b),
the unknowns PBC and RA can be determined as follows:

�Fx = 0 −→+ −PBC cos θ1 + RA cos θ2= 0

RA= cos θ1

cos θ2
PBC= cos 60.3◦

cos 72.4◦
PBC

RA= 1.639PBC (a)

�Fy = 0 +
�⏐ −PBC sin θ1 + RA sin θ2 − 100= 0

−PBC sin 60.3◦ + RA sin 72.4◦ − 100= 0 (b)

Solving Eqs. (a) and (b) simultaneously yields

RA = 236 N and PBC = 144 N Answer

Part 2

Because the three forces acting on the cylinder are concurrent, the unknowns PBC

and RA can be found by applying the law of sines to the force triangle in Fig. (c).

(c)

θ

θ

θ
α

γ

100 N

RA

PBC

1 = 60.3°

2 = 72.4°

3

β

The angles in Fig. (c) are computed as follows:

α = 72.4◦ − 60.3◦ = 12.1◦

θ3 = 90◦ − 60.3◦ = 29.7◦

β = 180◦ − θ3= 180◦ − 29.7◦ = 150.3◦

γ = 180◦ − (α + β)= 180◦ − (12.1◦ + 150.3◦)= 17.6◦

Applying the law of sines, we obtain

100

sin α
= RA

sin β
= PBC

sin γ

Substituting the values for α, β, and γ into this equation yields the same values
for PBC and RA as given in Part 1.

The force triangle that results from the application of the three-force principle,
Fig. (c), can also be solved graphically. If the triangle is drawn to a suitable scale,
the unknown forces and angles can be measured directly.
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Problems

Problems 4.100–4.120 each contain at least one two-force member. Solve by uti-
lizing the two-force principle, where appropriate. If the weight of a body is not
specifically stated, it can be neglected.

4.100 Compute the magnitudes of all forces acting on member CDE of the

3 m

2 m

2 m

1.5 m

B

C

D

EA

80 N

Fig. P4.100

frame.

4.101 Calculate all forces acting on member CDB.

B

DC

A

2 m
4 m

3 m 3 m 3 m
240 N

Fig. P4.101

4.102 The automatic drilling robot must sustain a thrust of 38 lb at the tip of the
C E

14
40

 m
m

D

B

CA

50°

190 N A

70°

1620 mm 900 mm

Fig. P4.102

drill bit. Determine the couple CA that must be developed by the electric motor to
resist this thrust.

4.103 Determine the clamping (vertical) force applied by the tongs at E .

90 mm

300 mm

1000 N

F

A

D

B C

E

90 mm

70°

70°

Fig. P4.103

4.104 The two disks are connected by the bar AB and the smooth peg in the slot
at D. Compute the magnitude of the pin reaction at A.

E

6 N · m

150 mm

30°

D

A B

C

Fig. P4.104
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4.105 Neglecting friction, determine the relationship between P and Q, assum-

540 mm 20°

A

D

C

B180 mm
20°

P

Q

20°

Fig. P4.105

ing that the mechanism is in equilibrium in the position shown.

4.106 Calculate the magnitudes of the pin reactions acting on the crane at A
and C due to the 25000 N load.

C

E

D240 mm
240 mm

25000 N

240 mm1440 mm

BA

3180 mm

540 mm

Fig. P4.106

4.107 The load in the bucket of a skid steer loader is 3000 N with its center
of gravity at G. For the position shown, determine the forces in the hydraulic
cylinders AC and DE.

C

D

B

E

F

A
G

Dimensions in mm
600

150

150

750

900

1500
450

B

C

D

G 0.15

0.24

Dimensions in meters
0.25

0.18

A

0.5

Fig. P4.107 Fig. P4.108

4.108 The load in the scoop of an excavator weighs 1.5 MN, and its center
of gravity is at G. For the position shown, determine the forces in the hydraulic
cylinders AB and CD.

4.109 The tool shown is used to crimp terminals onto electric wires. The wire

D
15°

100 N

100 N

CC

A B

C
18 mm

78 mm

12 mm

Fig. P4.109
and terminal are inserted into the space D and are squeezed together by the motion
of slider A. Compute the magnitude of the crimping force.
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4.110 The 50-N force is applied to the handle of the toggle cutter. Determine

A

D

E
C

B

Dimensions in mm

50 N

120

25°

90

30

Fig. P4.110

the force exerted by the cutting blade CB on the workpiece E.

4.111 The blade of the bulldozer is rigidly attached to a linkage consisting of the
arm AB, which is controlled by the hydraulic cylinder BC. There is an identical
linkage on the other side of the bulldozer. Determine the magnitudes of the pin
reactions at A, B, and C.

A B

C

180 mm

600 kN

1000 mm

1280 kN

640 mm500 mm

Fig. P4.111

4.112 Find the magnitudes of the pin reactions at A, C, and E caused by the

1 m

1800 N.m

60°

A
D

C

FE

B

Fig. P4.112

1800-N ·m couple.

4.113 The pins at the end of the retaining-ring spreader fit into holes in a
retaining ring. When the handgrip is squeezed, the pins spread the retaining ring,
allowing its insertion or removal. Determine the spreading force P caused by the
40-N forces applied to the handgrip.

Dimensions in mm

Pins

P

P

D

C

A

B

E

18
40 N

40 N

1146036

Fig. P4.113

4.114 When the C-shaped member is suspended from the edge of a friction-

x

G

12
0 

m
m

90 mm

60
 m

m

A

60°

Fig. P4.114
less table, it assumes the position shown. Use a graphical construction to find the
distance x locating the center of gravity G.
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4.115 The center of gravity of the eccentric wheel is at point G. Determine
the largest slope angle θ for which the wheel will be at rest on a rough inclined
surface.

R

R
2

G

θ

Fig. P4.115

4.116 For the pliers shown, determine the relationship between the magnitudes
of the applied forces P and the gripping forces at E.

36 mm

P

P

30 mm

45 mm 90 mm

E

45 mm

A

C

B

D

Fig. P4.116

4.117 The device shown is an overload prevention mechanism. When the force
acting on the smooth peg at D reaches 1.0 kN, the peg will be sheared, allowing
the jaws at C to open and thereby releasing the eye-bolt. Determine the maxi-
mum value of the tension P that can be applied without causing the eyebolt to be
released. Neglect friction.

400 120

150

70

25
P

D 20°

AA

P

BB

Dimensions in mm

C

A

E

B

Fig. P4.117

4.118 The figure represents the head of a pole-mounted tree pruner. Determine
the force applied by the cutting blade ED on the tree branch when the vertical
rope attached at A is pulled with the force P.
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40°D

C

E

B

A

P

Tree
branch

Dimensions in mm

36

60

52
.5

30

150

Fig. P4.118

∗4.119 The hinge shown is the type used on the doors of some automobiles. If
a torsion spring at F applies the constant couple C0= 50 N ·m to member ABF,
calculate the force P required to hold the door open in the position shown.

A

D

P

H

90°

C

B

G

F
E

90°

C0

30°

30°

63
0 

m
m

810 mm

360 mm
360 mm 360 mm

360 mm

630 m
m

Fig. P4.119

4.120 Determine the force in the hydraulic cylinder EF that would maintain the
parallelogram mechanism in the position shown.

1.25 m

0.2 m 1000 N

30°

A

F

D

B

C

E

0.6m

0.25 m

0.25 m

Fig. P4.120
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Solve Probs. 4.121–4.130, using the two-force and three-force principles where
appropriate. Neglect weights of members unless specified otherwise.

4.121 Determine the horizontal force P that would keep the uniform 15-kg

0.4 m

0.3 m DE

P A B

Fig. P4.121

rectangular plate in the position shown.

4.122 Determine the magnitudes of the forces acting on the bracket at B and C .

600 N

A B

C

195 mm

195 mm 135 mm

Fig. P4.122

4.123 Determine the angle θ at which the bar AB is in equilibrium. NeglectB

C

1 m

θ

2 m

W

A

Fig. P4.123

friction.

4.124 The automobile, with center of gravity at G, is parked on an 18◦ slope
with its brakes off. Determine the height h of the smallest curb that will prevent
the automobile from rolling down the plane.

0.5 m dia

h

B

A

2.6 m

G

0.8 m

18°

1.2 m

G

30 kg

30°
60°

B PA

Fig. P4.124 Fig. P4.125

4.125 Determine the horizontal force P that will keep the 30-kg homogeneous
bar AB at rest in the position shown.

4.126 The center of gravity of the nonhomogeneous bar AB is located at G.
Find the angle θ at which the bar will be in equilibrium if it is free to slide on the
frictionless cylindrical surface.

G
θ

B

A

240 mm

120 mm
90 mm

Fig. P4.126
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4.127 When suspended from two cables, the rocket assumes the equilibrium
position shown. Determine the distance x that locates G, the center of gravity of
the rocket.

2.5 m

5 m

DC

A B

G

x

6 m 4 m

Fig. P4.127

4.128 The pump oiler is operated by pressing on the handle at D, causing the
plunger to raise and force out the oil. Determine the distance d of link BC so that
the horizontal pin reaction at A is zero.

A

D
P

C

B

Dimensions in mm

35

Plunger

70

35

d

Fig. P4.128

4.129 The uniform 160-kg bar AB is held in the position shown by the cable

A

B

C

6 m

35°

40°

Fig. P4.129

AC. Compute the tension in the cable.

4.130 Find the force P required to (a) push; and (b) pull the 40-kg homogeneous
roller over the 90-mm curb.

20°

720 mm

90-mm

P

20°

P

(a) (b)

Fig. P4.130
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PART C: Analysis of Plane Trusses

4.10 Description of a Truss

A truss is a structure that is made of straight, slender bars that are joined together
to form a pattern of triangles. Trusses are usually designed to transmit forces
over relatively long spans; common examples are bridge trusses and roof trusses.
A typical bridge truss is shown in Fig. 4.15(a).

(a) (b)

Fig. 4.15

The analysis of trusses is based on the following three assumptions:

1. The weights of the members are negligible. A truss can be classified as a
lightweight structure, meaning that the weights of its members are generally
much smaller than the loads that it is designed to carry.

2. All joints are pins. In practice, the members at each joint are usually riveted
or welded to a plate, called a gusset plate, as shown in Fig. 4.15(b).

However, if the members at a joint are aligned so that their centroidal axes
(axes that pass through the centroids of the cross-sectional areas of the mem-
bers) intersect at a common point, advanced methods of analysis indicate that
the assumption of pins is justified.

3. The applied forces act at the joints. Because the members of a truss are
slender, they may fail in bending when subjected to loads applied at locations
other than the joints. Therefore, trusses are designed so that the major applied
loads act at the joints.

Although these assumptions may appear to oversimplify the real situation, they
lead to results that are adequate in most applications.

Using the assumptions, the free-body diagram for any member of a truss will
contain only two forces—the forces exerted on the member by the pin at each end.
Therefore, each member of a truss is a two-force body.

When dealing with the internal force in a two-force body, engineers com-
monly distinguish between tension and compression. Figure 4.16 shows the

P

PP

Tension

P

PP

P

PP

Compression

P

PP

Fig. 4.16
external and internal forces in tension and compression. Tensile forces elongate
(stretch) the member, whereas compressive forces compress (shorten) it. Because
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the forces act along the longitudinal axis of the member, they are often called
axial forces. Note that internal forces always occur as equal and opposite pairs on
the two faces of an internal cross section.

The two common techniques for computing the internal forces in a truss are
the method of joints and the method of sections, each of which is discussed in the
following articles.

4.11 Method of Joints

When using the method of joints to calculate the forces in the members of a truss,
the equilibrium equations are applied to individual joints (or pins) of the truss.
Because the members are two-force bodies, the forces in the FBD of a joint are
concurrent. Consequently, two independent equilibrium equations are available
for each joint.

To illustrate this method of analysis, consider the truss shown in Fig. 4.17(a).
The supports consist of a pin at A and a roller at E (one of the supports is usu-
ally designed to be equivalent to a roller, in order to permit the elongation and
contraction of the truss with temperature changes).

2

Ay = 37500 N NE =  17500 N

Ax =  0

(b)

40000 N 15000 N

B C D

E
FGHA

1

2 m

2.5 m

y

x

40000 N 15000 N

B C D

EFGH
A

(a)

2 m 2 m 2 m

Fig. 4.17

a. Support reactions

It is usually a good idea to start the analysis by determining the reactions at the
supports using the FBD of the entire truss. The FBD of the truss in Fig. 14.17(b)
contains three unknown reactions: Ax , Ay , and NE , which can be found from the
three available equilibrium equations. The results of the computation are shown
in Fig. 4.17(b).

Note that Ax , the horizontal reaction at A, is zero. This result indicates that
the truss would be in equilibrium under the given loading even if the pin at A
were replaced by a roller. However, we would then have an improper constraint,
because an incidental horizontal force would cause the truss to move horizontally.
Therefore, a pin support at A (or B) is necessary to properly constrain the truss.

Sometimes the number of unknown reactions on the FBD of the entire truss is
greater than three. In this case, all the reactions cannot be found at the outset.
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b. Equilibrium analysis of joints

Let us now determine the forces in the individual members of the truss in
Fig. 4.17. Because the force in a member is internal to the truss, it will appear on a
FBD only if the FBD “cuts” the member, thereby separating it from the rest of the
truss. For example, to determine the force in members AB and AH, we can draw
the FBD of joint A—that is, the portion of the truss encircled by the dashed line 1
in Fig. 4.17(b). This FBD, shown in Fig. 4.18(a), contains the external reactions
Ax and Ay and the member forces PAB and PAH (the subscripts identify the mem-
ber). Note that we have assumed the forces in the members to be tensile. If the
solution yields a negative value for a force, the force is compressive. By assuming
the members to be in tension, we are using an established convention for which
positive results indicate tension and negative results indicate compression.

Ay = 37500 N

PBC

PBH

PAB

PAH

B

PAB

A

4

3

(b) FBD of joint B

(a) FBD of joint A

40000 N

Ax = 0

y

x

Fig. 4.18

Having previously computed Ax and Ay , the forces PAB and PAH are the only
unknowns in the FBD for joint A. Therefore, they can be determined from the two
independent equilibrium equations for the joint, as follows.

�Fy = 0 +
�⏐ 37500+ 4

5
PAB= 0

PAB= − 5

4
(37500)= − 46875 N

�Fx = 0 −→+ 3

5
PAB + PAH + Ax = 0

3

5
(−46875)+ PAH + 0= 0

PAH = − 3

5
(−46875)= 28125 N
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The negative value for PAB indicates that the force in member AB is com-
pressive; the positive value for PAH means that the force in member AH is
tensile.

To compute the forces in members BC and BH, we draw the FBD of joint
B—the portion of the truss encircled by the dashed line 2 in Fig. 4.17(b). This
FBD is shown in Fig. 4.18(b). Note that the force PAB is equal and opposite to the
corresponding force in Fig. 4.18(a), and that we again assumed PBC and PBH to
be tensile. Knowing that PAB= − 46875 N, PBC and PBH are the only unknowns
in this FBD. The equilibrium equations of the joint yield

�Fx = 0 −→+ PBC − 3

5
PAB= 0

PBC= 3

5
PAB= 3

5
(−46875)= − 28125 N

�Fy = 0 +
�⏐ − 4

5
PAB − PBH − 40000= 0

PBH = − 40000− 4

5
PAB

= − 40000− 4

5
(−46875)= − 2500 N

The negative values indicate that both PBC and PBH are compressive.
We could continue the procedure, moving from joint to joint, until the forces

in all the members are determined. In order to show that this is feasible, we count
the number of unknowns and the number of independent equilibrium equations:

13 member forces+ 3 support reactions = 16 unknowns

8 joints, each yielding 2 equilibrium equations = 16 equations

Because the number of equations equals the number of unknowns, the truss is
statically determinate. The three equilibrium equations of the entire truss were
not counted, because they are not independent of the joint equilibrium equa-
tions (recall that a structure is in equilibrium if each of its components is in
equilibrium).

c. Equilibrium analysis of pins

In the above example, the FBD of a joint contained a finite portion of the truss
surrounding the joint. This required “cutting” the members attached to the joint, so
that the internal forces in the members would appear on the FBD. An alternative
approach, preferred by many engineers, is to draw the FBDs of the “pins,” as
illustrated in Fig. 4.19 . In this case, the internal forces in the members appear as Ay = 37500 N

Ax = 0
4

3

5

PAB

PAH

(a) FBD of pin  A

A

PBC

PBHPAB

40000 N

B

(b) FBD of pin B

Fig. 4.19

forces acting on the pin. For all practical purposes, the FBDs in Figs. 4.18 and
4.19 are identical. The FBD of a pin is easier to draw, but the FBD of a joint is
somewhat more meaningful, particularly when it comes to determining whether
the member forces are tensile or compressive.



218 CHAPTER 4 Coplanar Equilibrium Analysis

d. Zero-force members

There is a special case that occurs frequently enough to warrant special atten-
tion. Figure 4.20(a) shows the FBD for joint G of the truss in Fig. 4.17. Because
no external loads are applied at G, the joint equilibrium equations �Fx = 0 and
�Fy = 0 yield PGH = PGF and PGC = 0. Because member GC does not carry a
force, it is called a zero-force member. It is easily verified that the results remain
unchanged if member GC is inclined to GH and GF, as shown in Fig. 4.20(b).
When analyzing a truss, it is often advantageous to begin by identifying zero-force
members, thereby simplifying the solution.

PGC

PGH PGF

PGC 

PGH PGF

G

G

(a) FBD of joint G

(b)

Fig. 4.20

You may wonder why a member, such as GC , is included in the truss if it
carries no force. The explanation is the same as the one given for providing a pin
support—rather than a roller—at A for the truss in Fig. 4.17(a): It is necessary to
ensure the proper constraint of joint G. If member GC were removed, the truss
would theoretically remain in equilibrium for the loading shown.* However, the
slightest vertical load applied to the joint at G would cause the truss to deform
excessively, or even collapse. Moreover, it is unlikely that the loads shown in Fig.
4.17(a) will be the only forces acting on the truss during its lifetime. Should a
vertical load be suspended from joint G at some future time, member GC would
be essential for equilibrium.

*The word theoretically is to be interpreted as “in accordance with the assumptions.” Our mathemati-
cal model for a truss assumes that the weights of the members are negligible. In practice, the force in
a so-called zero-force member is not exactly zero but is determined by the weights of the members.



Sample Problem 4.18
Using the method of joints, determine the force in each member of the truss shown
in Fig. (a). Indicate whether the members are in tension or compression.

B
10 kN

6 m

3 m3 m

60 kN

A C
D

(a)

y

x

Solution
The FBD of the entire truss is shown in Fig. (b). The three unknowns (NA, Cx ,
and Cy) can be computed from the three equilibrium equations

�MC = 0 + − NA(6)+ 60(3)− 10(6)= 0

NA= 20 kN

�Fy = 0 +
�⏐ NA − 60+ Cy = 0

Cy = 60− NA= 60− 20= 40 kN

�Fx = 0 −→+ 10− Cx = 0

Cx = 10 kN

We now proceed to the computation of the internal forces by analyzing the FBDs
of various pins.

3 m3 m

6 m

60 kN

D
A

NA

C

Cy

Cx

B
10 kN

(b)

219



Method of Analysis

In the following discussion, the external reactions are treated as knowns, because
they have already been calculated. It is convenient to assume the force in each
member to be tensile. Therefore, positive values of the forces indicate tension,
and negative values denote compression.

The FBD of pin A, shown in Fig. (c), contains two unknowns: PAB and
PAD. We can compute these two forces immediately, because two independent
equilibrium equations are available from this FBD.

The FBD of pin D, in Fig. (d), contains the forces PAD, PBD, and PCD. Because
PAD has already been found, we have once again two equations that can be solved
for the two unknowns.

Figure (e) shows the FBD of pin C. With PCD previously found, the only
remaining unknown is PBC, which can be easily computed.

(d)

PAD

D

PBD

PCD

60 kN

1

25

(e)

PCD

PBC

Cx = 10 kN

Cy = 40 kN

C
A

(c)

1
1

PAB

PAD

NA = 20 kN

2

Mathematical Details

From the FBD of pin A, Fig. (c),

�Fy = 0 +
�⏐ 1√

2
PAB + NA= 0

PAB= −
√

2(20)= − 28.3 kN

PAB= 28.3 kN (compression) Answer

�Fx = 0 −→+ 1√
2

PAB + PAD= 0

PAD = − 1√
2

PAB= − 1√
2
(−28.3)

= 20.0 kN (tension) Answer

From the FBD of pin D, Fig. (d),

�Fy = 0 +
�⏐ 2√

5
PBD − 60= 0

PBD=
√

5

2
(60)= 67.1 kN (tension) Answer
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�Fx = 0 −→+ − PAD + 1√
5

PBD + PCD= 0

PCD= PAD − 1√
5

PBD

PCD= 20.0− 1√
5
(67.1)= − 10.0 kN

PCD= 10.0 kN (compression) Answer

From the FBD of pin C, Fig. (e),

�Fy = 0 +
�⏐ Cy + PBC= 0

PBC= − Cy = − 40 kN

PBC= 40 kN (compression) Answer

Note that the equation �Fx = 0 yields PCD= − 10.0 kN, a value that has
been found before. Therefore, this equation is not independent of the equations
used previously. The reason for the dependence is that the external reactions were
determined by analyzing the FBD of the entire truss. However, the equations for
the pins and those for the entire truss are not independent of each other.

Other Methods of Analysis

In the preceding analysis, the pins were considered in the following order: A, D,
and C (the FBD of pin B was not used). Another sequence that could be used is

1. FBD of pin A: Calculate PAB and PBD (as before).
2. FBD of pin B: With PAB already found, calculate PBD and PBC.
3. FBD of pin C: Calculate PCD.

In this analysis, the FBD of pin D would not be used.
Yet another approach would be to compute the three external reactions and the

forces in the five members (a total of eight unknowns) by using the equilibrium
equations for all the pins (a total of eight equations, two for each pin).
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Problems

4.131–4.140 Using the method of joints, calculate the force in each member of
the trusses shown. State whether each member is in tension or compression.

70°

50°

10 m

C

BP

A

DC

B

A

P

5 m

4 m

3 m

H

P

D

A B C

PP

E F G

L L L L

L

Fig. P4.131 Fig. P4.132 Fig. P4.133

D

E

A B C

4 m

10000 N 6000 N
3 m 4 m 3 m

35° 35° 55°
A D

C

P

E

B

4 m 4 m

1.5P

160 kN 160 kN

A

B

C

E
D

2 m 2 m

2 m

Fig. P4.134 Fig. P4.135 Fig. P4.136

40°

A D

C

4 m

3 m

2 m
3000 N

B

C

B
L

D
E

L
A

8 kN

8 kN

45° 45° 60°
30°

30°

60°

A D

B

6 m

6 
m

200 kN
C

Fig. P4.137 Fig. P4.138 Fig. P4.139
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4.141 Identify all the zero-force members in the four trusses shown.

50°A
D

C

B

3 m

400 kN

500 kN

2 m

4 m

Fig. P4.140

AA

A

B

B

C

C

D

D

P

P

P

P

P

P

A

B

F

D

E

B

C

C

D

P
EE

E

(b)(a)

(c) (d)

Fig. P4.141

4.142 The walkway ABC of the footbridge is stiffened by adding the cable ADC

2 m A

B

C

G

F

E

D

2 m

2 m

2 m

2 m

2 m

42 kN

Fig. P4.143

and the short post of length L. If the tension in the cable is not to exceed 2000 N,
what is the smallest value of L for which the 80-kg person can be supported at B?

4 m 4 m

A

B

C

D

L

80 kg

Fig. P4.142

4.143 Find the force in member EF.

1.5 m 1.5 m 1.5 m

3 m

1 m
2 m

B C D

F

E
G

H

A

P P

Fig. P4.144

4.144 Find the forces in members HC and HG in terms of P.

4.145 Determine the reaction at E and the force in each member of the right
half of the truss.

10 kN

A 30°
90°

30°B

F G

4 kN

30°
90°

30°

C
D

8 kN

E

10 m

10 m
10 m

10 m

5 kN

Fig. P4.145
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4.146 Determine the force in member AD of the truss.

A
D

C

E

B

12.5 m

40000 N40000 N

12.5 m

20 m

7.5 m7.5 m

Fig. P4.146

4.147 Determine the force in member BE of the truss.

A

D

C

E

B

400 kN

300 kN

3 m

5 m

3 m

3 m

Fig. P4.147

4.12 Method of Sections

Truss analysis by the method of joints is based on the FBDs of individual
joints. Analyzing the free-body diagram of a part of a truss that contains two
or more joints is called the method of sections. The FBD for a single joint
results in a concurrent, coplanar force system (two independent equilibrium equa-
tions). When applying the method of sections, the force system will generally be
nonconcurrent, coplanar (three independent equilibrium equations).

In the method of sections, a part of the truss is isolated on an FBD so that it
exposes the forces to be computed. If the FBD for the isolated portion contains
three unknowns, all of them can usually be computed from the three available
equilibrium equations. If the number of unknowns exceeds three, one or more of
the unknowns must be found by analyzing a different part of the truss. If you are
skillful in writing and solving equilibrium equations, the only challenge in using
the method of sections is selecting a convenient part of the truss for the FBD.

Consider once again the truss discussed in the preceding article [its FBD is
repeated in Fig. 4.21(a)]. We now use the method of sections to determine the
forces in members BC, HC, HG, and DF—each of these members is identified by
two short parallel lines in Fig. 4.21(a).

Assuming that the external reactions have been previously computed, the first
and most important step is the selection of the part of the truss to be analyzed.
We note that the section labeled 1 in Fig. 4.21(a) passes through members BC,
HC, and HG. The forces in these three members are the only unknowns if the
FBD is drawn for a part of the truss that is isolated by this section. Note that
after the section has been chosen, the portion of the truss on either side of the
cut may be used for the FBD. The forces inside the members occur in equal
and opposite pairs, so the same results will be obtained regardless of which
part is analyzed. Of course, given a choice, one would naturally select the less
complicated part.
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3 m

4 m

40000 N 15000 N

B
C D

EFGHA

(a)

1

Ay = 37500 N NE = 17500 N

Ax = 0

2

3 m3 m3 m

(b)

PBC

40000 N

B

HA

Ay = 37500 N

Ax = 0
3 m

4 m

3
45

PHC

PHG

C

PEF

PDC

PDF

(c)

D

E

NE = 17500 N

y

x

Fig. 4.21

For our truss, using either the portion to the left or to the right of section 1 is
equally convenient. For no particular reason, we choose to analyze the left portion,
with its FBD shown in Fig. 4.21(b) (we have again assumed the members to be in
tension). Note that the force system is nonconcurrent and coplanar, so that any set
of three independent equations can be used to compute the three unknown forces.

The following is an efficient method of solution.

�Fy = 0—determines PHC, because PBC and PHG have no y-components
�MH = 0—determines PBC, because PHC and PHG have no moment about

point H
�MC = 0—determines PHG, because PBC and PHC have no moment about point C

The details of this analysis are as follows:

�Fy = 0 +
�⏐ 4

5
PHC − 40000+ 37500 = 0

PHC= 5

4
(40000− 37500)

= 3125 N (tension) Answer
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�MH = 0 + − 37500(3)− PBC(4)= 0

PBC= − 28125 N

= 28125 N (compression) Answer

�MC = 0 + 40000(3)− 37500(6)+ PHG(4)= 0

PHG= 1

4.0
[37500(6)− 40000(3)]

= 26250 N (tension) Answer

To determine the force in member DF by the method of sections, consider
once again the FBD of the entire truss in Fig. 4.21(a). Our intention is to isolate a
part of the truss by cutting only three members, one of which is the member DF.
It can be seen that section 2 accomplishes this task. We choose to analyze the part
to the right of this section because it contains fewer forces. The FBD is shown in
Fig. 4.21(c), with the unknown forces again assumed to be tensile. Note that PDF

can be computed from the equation

�Fy = 0 +
�⏐ 17500− PDF = 0

PDF = 17500 N (tension) Answer

If desired, PEF could now be calculated using �MD = 0, and �ME = 0 would
give PDC.

As you see, the forces in the members of a truss can be found by either the
method of joints or the method of sections. Selecting the method that results in
the most straightforward analysis is usually not difficult. For example, for the
truss shown in Fig. 4.21(a), the FBD of joint A is convenient for computing PAB,
whereas the method of sections is more advantageous for calculating PBC.



Sample Problem 4.19
Using the method of sections, determine the forces in the following members of
the truss in Fig. (a): FI and JC. Indicate tension or compression.

3 
m

3 
m

3 
m

1000 N3000 N

2 m 2 m

A

B

C

DE

I H

F

G

J

K

2 m

y

(a)

x

Solution
The FBD of the entire truss is shown in Fig. (b). The three external reactions

1000 N3000 N

PDE = 2000 N

B

A

C

D

F

G
HI

J

K2 m

2 m 2 m
3 

m
3 

m

3 
m

Ax =   

Ay = 4000 N

2000 N

(b)

1

2

(Ax , Ay , and PDE) can be calculated using the following equations (mathematical
details have been omitted):

�MA = 0 gives PDE = 2000 N

�Fx = 0 gives Ax = 2000 N

�Fy = 0 gives Ay = 4000 N

These forces are shown in Fig. (b), and from now on we treat them as known
quantities.

Member FI

Method of Analysis

Referring to the FBD in Fig. (b), it can be seen that section 1 cuts through mem-
bers FD, FI, and HI. Because there are three equilibrium equations available for a
portion of the truss separated by this section, we could find the forces in all three
members.

Mathematical Details

Having chosen section 1, we must now decide which portion of the truss to ana-
lyze. We select the portion lying to the right of the section, because it is somewhat
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less complicated than the portion on the left. Of course, identical results will be
obtained regardless of which part of the truss is analyzed.

The FBD for the part of the truss lying to the right of section 1 is shown
in Fig. (c), with the three unknowns being PFD, PFI , and PHI . Any set of three
independent equations can be used to solve for these unknowns. A convenient
solution that yields PFI directly is the following:

�MG = 0 gives PFI , because PFD and PHI pass through point G.

+ 3000(2)+ 3

5
PFI(4)= 0

PFI = −2500 N

= 2500 N (compression) Answer

Note: The moment of PFI about point G was computed by replacing PFI with its
x- and y-components acting at point I.

3

4

5

PFD

PFI

PHI

F

2 m 1.
5 

m

3000 N 1000 N

G
2 m

5

4

3

HI

(c)

Member JC

Method of Analysis

In Fig. (b), section 2 passes through only three members, one of which is member
JC. Therefore, we can find the force in that member (and the forces in the other
two members if desired) from one FBD.

Mathematical Details

The FBD for the portion of the truss lying below section 2 is shown in Fig. (d).

3
13

2

Ax = 2000 N

Ay = 4000 N

A

B

PBC
PJC PIJ

(d)

K

J

The three unknowns are PBC, PJC, and PIJ . The force PJC can be obtained from
the following equation:

�Fx = 0 −→+ Ax − 2√
13

PJC= 0

PJC=
√

13

2
Ax =

√
13

2
(2000)

= 3610 N (tension) Answer
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Problems

4.148 Show that all diagonal members of the truss carry the same force, and
find the magnitude of this force.

4 m

4 panels @ 3 m = 12 m

P

A B C D E

JIHGF

Fig. P4.148, P4.149

4.149 Determine the forces in members FG and AB in terms of P .

4.150 Determine the forces in members BC, BG, and FG.

A

D

C

E

F G H

B 4 m

4000 N 6000 N 8000 N

4 m 4 m 4 m 4 m

Fig. P4.150

4.151 Find the forces in members BC and DE.

6200 N

1.5 m

2 m

A

D

B C

E

4.5 m 4.5 m

Fig. P4.151

4.152 Compute the forces in members EF, NF, and NO.

A
B

C D E F G
H

I

300 kN

8 panels @ 5 m = 40 m

QPONMLK
J

6.
25

6.
0

5.
5

4.
5 3

R

Dimensions in meters

Fig. P4.152, P4.153

4.153 Repeat Prob. 4.152 assuming that the 300-kN force is applied at O instead
of L.

4.154 Determine the forces in members BG, CI, and CD.

P

a a a a

a

F G H JI

A

C D EB

Fig. P4.154, P4.155

4.155 Assuming that P = 48 000 N and that it may be applied at any joint on
the line FJ, determine the location of P that would cause (a) maximum tension in
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member HI; (b) maximum compression in member CI; and (c) maximum tension
in member CI. Also determine the magnitude of the indicated force in each case.

4.156 Determine the angle θ that maximizes the tensile force in member BC
and calculate the maximum value of this force.

2 m A

B

C

G

F

E

θ

D

2 m

2 m

2 m

2 m

2 m

42 kN

Fig. P4.156

4.157 Find the forces in members CD, DH, and HI.

A
B C D E

F
G

H
I

6 m

720 N 720 N1440 N 1440 N

4 m 4 m 4 m 4 m

3 m

2 kN5 kN 4 kN 3 kN

4 m

A B C D E

F

3 m 3 m 3 m 3 m

Fig. P4.157 Fig. P4.158

4.158 Determine the forces in members CD and DF.

4.159 Compute the forces in members CD and JK, given that P = 3000 N and
K

P

Q

A

 1 m
E

 1 m

Q

B

Q

C

D

F I

1.5 m

J

1.5 m

1.5 m

G

H

Fig. P4.159, P4.160

Q= 1000 N. (Hint: Use the section indicated by the dashed line.)

4.160 If PCD= 6000 N and PGD= 1000 N (both compression), find P and Q.

4.161 Determine the forces in members BC, CE, and FG.

2 m

1 m

A

B C D

H
G

E

F

560 N 560 N 560 N

1.5 m 1.5 m1.5 m

Fig. P4.161
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4.162 Determine the forces in members AC, AD, and DE.
A

D
C

F

H

J

E

60 kN
G

I

K

L

B
4 @ 4 m = 16 m

5 
@

 3
 m

 =
 1

5 
m

Fig. P4.162, P4.163

4.163 Determine the forces in members GI, FH, and GH.

4.164 Determine the forces in members CD, IJ, and NJ of the K-truss in
terms of P.

H I KJ L

A

a

B

M

P
a

C

P
a

D

P
a

E

P
a

F

P
a

N O Q a
G

Fig. P4.164

4.165 Determine the largest allowable value for the angle θ if the magnitude of A

B D

2P

C

P

θ
θ

Fig. P4.165

the force in member BC is not to exceed 5P .

4.166 Find the forces in members BC and BG.

A

D

C

F

P P P

G

H

E

B

L L L L

L/2

L/2

Fig. P4.166

4.167 Determine the forces in members BC and BE and the horizontal pin
reaction at G.

A C

D E

G

B

F

12000 N 16000 N 12000 N

4 4 4 4

9

5

Dimensions in meters

A B

C

D

H

E

F

G

45°
M

L

L

K

J

I

W

5 panels @
 L = 5L

Fig. P4.167 Fig. P4.168

4.168 A couple acting on the winch at G slowly raises the load W by means of
a rope that runs around the pulleys attached to the derrick at A and B. Determine
the forces in members EF and KL of the derrick, assuming the diameters of the
pulleys and the winch are negligible.
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Review of Equations

Coplanar equilibrium equations

�Fx = �Fy = �MA = 0 (A arbitrary point)

�Fx = �MA = �MB = 0 (x-axis not perpendicular to AB)

�MA = �MB = �MC = 0 (A, B and C not collinear)

There are three independent (scalar) equilibrium equations for each body.

Free-body diagram
A free-body diagram is a sketch of the body that shows all of the forces and
couples (including support reactions) that act upon it.

Pin reactions
If two members are joined by a pin, the forces exerted by the pin on the members
are equal and opposite, provided that no external force is applied to the pin.

Two-force members
If a body is held in equilibrium by two forces, the forces must be equal and
opposite.

Three-force members
Three non-parallel, coplanar forces that hold a body in equilibrium must be
concurrent.

Trusses
A truss is a structure that consists of two-force members joined by pins. All
external loads are applied to the pins.
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Review Problems

4.169 The uniform, 20-kg bar is placed between two vertical surfaces.

1.3 m

A

B

1.2 m

Fig. P4.169

Assuming sufficient friction at A to support the bar, find the magnitudes of the
reactions at A and B.

4.170 The homogeneous cylinder of weight W and radius R rests in a groove
of width 2b. Determine the smallest force P required to roll the cylinder out of
the groove. Assume that there is enough friction to prevent slipping.

P W
R

2b

25°
2 m

2.5 m

2 m

5 kN

A

B C

y

x

Fig. P4.170 Fig. P4.171

4.171 Determine the magnitude of the pin reaction at A, assuming the weight of
bar ABC to be negligible.

4.172 Determine the couple C that will hold the bar AB in equilibrium in the

A

C

L

W

B

30°

Fig. P4.172

position shown. Neglect the weight of the bar and the diameter of the small
pulley at B.

4.173 Calculate the magnitudes of the pin reactions at A, B, and C for the frame
shown. Neglect the weights of the members.

B

6 
m

A C

80 N/m

60
 N

/m

2.5 m2.5 m

Fig. P4.173
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4.174 The weight W = 6 kN hangs from the cable which passes over the pulley

1.5 m

2 m 2 m

1.5 m

B
D

A E

F

C

W
R = 0.4 m

F

Fig. P4.174

at F. Neglecting the weights of the bars and the pulley, determine the magnitude
of the pin reaction at D.

4.175 The 10-kN and 40-kN forces are applied to the pins at B and C, respec-
tively. Calculate the magnitudes of the pin reactions at A and F. Neglect the
weights of the members.

4 m

1 m

2 m

3 m

C

B

A

F

E

D

40 kN

10 kN 1 m

3 m 3 m

2 m

2 m

2 m

3 m

20 kN· m

20 kN· m

A

B

D

Fig. P4.175 Fig. P4.176

4.176 The two couples act at the midpoints of bars AB and BD. Determine the
magnitudes of the pin reactions at A and D. Neglect the weights of the members.

4.177 Determine the forces in members AC and AD of the truss.

4 m
6 m

5 m

4 kN

A

B

C

D

F

E
2.5 m

2 m θ

B

A

L

30°
40°

Fig. P4.177 Fig. P4.178

4.178 Determine the angle θ for which the uniform bar of length L and weight
W will be in equilibrium. Neglect friction.

4.179 Determine the magnitudes of the pin reactions at A, C, and E . Neglect
E

3 m

A

B C

D

1.5 m

3 m

450 N.m

1 m

Fig. P4.179

the weight of the frame.

4.180 Calculate the forces in members (a) DE; (b) BE; and (c) BC. Indicate
tension or compression.
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A
2 m

4 m

3 m6 m

100 kN200 kN

B

C

D

E

60° 60°A D

B C

2 
m

4 
m

4 
m

2 m 2 m

P Q

Fig. P4.180 Fig. P4.181

4.181 Determine the ratio P/Q for which the parallel linkage will be in
equilibrium in the position shown. Neglect the weights of the members.

4.182 The 20-kg block C rests on the uniform 10-kg bar AB. The cable con-

1 m 3 m

CA B

D

30°

Fig. P4.182

necting C to B passes over a pulley at D. Find the magnitude of the force acting
between the block and the bar.

4.183 The 15-kg homogeneous bar AB supports the 30-kg block. The ends of
the bar rest on frictionless inclines. Determine the distance x for which the bar
will be in equilibrium in the position shown.

60° 30°

A B

6 m

15 kg 30 kg

x

Fig. P4.183

4.184 Determine the forces in members (a) BF; and (b) EF. Indicate tension or
compression.

3 m3 m

2 m

2 m

1.5 m 1.5 m

F

C D

E

A

B

8000 N

1500 N

Fig. P4.184
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4.185 The bar ABC of negligible weight is supported by a pin at A and a
rope that runs around the small pulley at D and the 10-kg homogeneous disk.
Determine the tension in the rope.

D

B
C

10 kg

240 mm

A

1350 mm

450 mm

450 mm
270 m

120 mm

120 mm

240 mm

540 mm

180 mm
W

D
C

B

EA

F G

Fig. P4.185 Fig. P4.186

4.186 The breaking strength of the cable FG that supports the portable camping
stool is 2000 N. Determine the maximum weight W that can be supported. Neglect
friction and the weights of the members.

4.187 For the truss shown, determine the forces in members (a) BD; and (b) BF.

A B C

D
HE F G

6 m

20 kN 20 kN 20 kN

4 m 4 m 4 m 4 m

Fig. P4.187

4.188 The 80-N force is applied to the handle of the embosser at E. Determine
the resulting normal force exerted on the workpiece at D. Neglect the weights of
the members.

80 N

E

A C

B

D

15°

130 50

40

Dimensions in mm

Fig. P4.188

4.189 The tongs shown are designed for lifting blocks of ice. If the weight of
120 mm120 mm

210 mm

450 mm

360 mm

W

A

B

CD

W

Fig. P4.189

the ice block is W, find the horizontal force between the tongs and the ice block
at C and D.



5
Three-Dimensional Equilibrium

Analysis of three-dimensional
structures relies heavily on vector
algebra. The determination of forces
in even a simple space structure,
such as the tripod shown here,
requires the use of vector analysis.
prism_68/Shutterstock

5.1 Introduction

In this chapter, we discuss the analysis of bodies that are held in equilibrium by
three-dimensional force systems. The emphasis on free-body diagrams and the
number of independent equations, begun in Chapter 4, is continued here.

In the analysis of coplanar force systems, there was little advantage in using
vector notation. This is not true for equilibrium analysis in three dimensions,
where vector notation frequently has a decided advantage over scalar notation.
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5.2 Definition of Equilibrium

By definition, a body is in equilibrium if the resultant of the force system acting
on the body vanishes. A general force system can always be reduced to an equiv-
alent force-couple system R = �F and CR = �MO (where O is any point).
Therefore, for a body to be in equilibrium, the following two vector equations
must be satisfied:

�F = 0 �MO = 0 (5.1)

The equivalent six scalar equations are

�Fx = 0 �Fy = 0 �Fz = 0

�Mx = 0 �My = 0 �Mz = 0
(5.2)

where the x-, y-, and z-axes are assumed to intersect at point O. It is important
to recall that the summations must be taken over all forces acting on the body,
including the support reactions.

5.3 Free-Body Diagrams

Our study of coplanar equilibrium in Chapter 4 demonstrated the importance of
correctly drawn free-body diagrams (FBDs) in the solution of equilibrium prob-
lems. To extend the free-body diagram concept to problems in which the loads
are not coplanar we must again investigate the reactions that are applied by the
various connections and supports.

As mentioned in Chapter 4, the reactions that a connection is capable of exert-
ing on the body can be derived from the following rule: A support that prevents
translation in a given direction must apply a force in that direction and a support
that prevents rotation about an axis must apply a couple about that axis. Some
common supports are illustrated in Table 5.1 and are described in the following
paragraphs.

(a) Flexible Cable (Negligible Weight). A flexible cable can exert a tensile force
only in the direction of the cable. (With the weight of the cable neglected, the
cable can be shown as a straight line.) Assuming that the direction of the cable
is known, the removal of a cable introduces one unknown in the free-body
diagram—the magnitude of the tension.

(b) Spherical Roller or Single Point of Contact on Frictionless Surface. A spher-
ical roller, or a frictionless surface with a single point of contact, can exert
only a force that acts normal to the surface. Consequently, the magnitude of
the force is the only unknown.

(c) Cylindrical Roller on Friction Surface, or on Guide Rail. A cylindrical roller
placed on a friction surface can exert a force that is normal to the surface and
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a friction force that is perpendicular to the plane of the roller. If a cylindrical
roller is placed on a guide rail, the force perpendicular to the plane of the
roller is provided by the side of the guide rail. In either case, two unknowns
are introduced in the FBD.

(d) Ball-and-Socket Joint. A ball-and-socket joint prevents translational move-
ment but not rotation. Therefore, a connection of this type exerts an unknown
force, usually shown as three independent components; it does not apply a
couple.

(e) Friction Surface: Single Point of Contact. A friction surface in contact with
a body at one point can exert an unknown force, acting through the point of
contact. This force is usually shown as three components—a normal force and
two components of the friction force acting parallel to the surface.

Before describing the hinge and bearing supports, shown in Table 5.1 parts
(f) and (g), it is necessary to discuss how these supports are designed and used in
practice.

A hinge and a thrust bearing are illustrated in Fig 5.1(a) and 5.1(b), respec-

(a)

a

a

C

R

(b)

C

R

a

a

Fig. 5.1

tively. Each of these can exert both a force and a couple on the body it supports.
Because hinges and bearings prevent translation completely, the force R can act
in any direction. As these connections are designed to allow rotation about the a-a
axis, the reactive couple-vector C is always perpendicular to that axis. However,
hinges and bearings are seldom strong enough to exert the couples without failure.
Consequently, they must be arranged so that the reactive couples are not needed
to support the body. For this reason, we consider all hinges and bearings capable
of providing only reactive forces.

To further illustrate the physical reasoning behind omitting couples at hinges
and bearings, consider the door shown in Fig. 5.2. If the door is supported by
a single hinge, as shown in Fig. 5.2(a), the reactive couple CA is essential for
equilibrium; otherwise the moment equation �MA = 0 could not be satisfied.
However, we know from experience that this is not the way to suspend a door if
we expect it to last for any length of time. The screws used to attach the hinge to
the door and doorframe would soon pull out as a result of the large forces that are
necessary to provide the couple CA. Figure 5.2(b) shows the conventional method
for supporting a door. Two hinges are aligned along a common axis with the hinge
at B assumed to be free to slide, so that it does not provide an axial thrust—that
is, a force along the axis of the hinge. The FBD shows that equilibrium can be

A

(a)

W

Ay

Ax
CA

FBD

A A

B

(b)

W

Ay

Ax

FBD

B
Bx

A

Fig. 5.2
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Support Reaction(s)
Number of
unknowns

Description
of reaction(s)

Tension of unknown
magnitude T in the

direction of
cable

One

Force of unknown
magnitude N

directed normal to
the surface

One

Force of unknown
magnitude N normal

to the surface and
a force of unknown
magnitude F in the
direction of the axis

of the roller

Two

Unknown force R Three

Force of unknown
magnitude N normal
to the surface and an

unknown friction
force F in the plane

of the surface

Three

(a)

Flexible
cable of

negligible weight

(b)

Spherical roller on any
surface or a single point

of contact on 
frictionless surface

(c)

Cylindrical roller
on friction surface

or guide rail

(d)

Ball-and-socket
joint

z

y
x

(e)

Single point of contact
on friction surface

z

y
x

T

N

N

F

Rz

Rx

Ry

N

Fx

Fy

Table 5.1 Common Supports for Three-Dimensional Loading (Table continues
on p. 241.)
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Support Reaction(s)
Number of
unknowns

Description
of reaction(s)

Unknown force R
directed normal to the

axis of the bearing
or hinge

Two

Unknown force R Three

Unknown force R and
a couple-vector of

unknown magnitude C
directed along the axis

of the joint

Four

Unknown force R
and an unknown
couple-vector C

Six

(f )

Slider (radial)
bearing or hinge

z

y

x

(g)

Thrust bearing
or hinge

z

y

x

(h)

Universal joint

z

y

x

Axis

(i)

Built-in
(cantilever) support

z

y

x

Rz

Ry

Rz

Ry

Rz

Ry

Rz

Ry

Rx

Rx

Rz

Rx

Ry

C

Rx

Cx
Rz

RyCy

Cz

Table 5.1 (continued)

satisfied without developing reactive couples at the hinges. The reactive couple,
identified as CA in Fig. 5.2(a), is now provided by the reactive forces Ax and Bx in
Fig. 5.2(b). Any small misalignment between the axes of the hinges, which could
also give rise to reactive couples, is usually accommodated by the slack that is
present in most hinges and bearings.

(f) Slider Bearing or Hinge. A slider bearing, or slider hinge, can exert only
a force normal to the axis of the shaft passing through it. Therefore, two
unknown force components are introduced into the FBD by this support.
A slider bearing is also called a radial bearing, because it is designed to carry
loads acting in the radial direction only.

(g) Thrust Bearing or Hinge. In thrust bearings and thrust hinges, the sliding
motion of the shaft along its axis is prevented by an end cap or equivalent
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support. Consequently, this type of support results in three unknown force
components on an FBD. The force component Rx , acting parallel to the axis
of the shaft, is called the axial thrust.

(h) Universal Joint. A universal joint prevents all translation, and rotation about
the axis of the joint. A universal joint can, therefore, apply an unknown force,
usually shown as three independent components, and a couple-vector acting
along the axis of the joint. Consequently, four unknowns are introduced.

(i) Built-in (Cantilever) Support. A built-in support, also called a cantilever
support, prevents all translational and rotational movement of the body. There-
fore, the support can exert an unknown force and an unknown couple-vector,
introducing six unknowns in the FBD.

The procedure for constructing a free-body diagram involving a three-
dimensional force system is identical to that used for a coplanar force system:

1. A sketch of the body (or part of a body) is drawn with all supports removed.
2. All applied forces are shown on the sketch.
3. The reactions are shown for each support that was removed.

When analyzing connected bodies, it is again important that you adhere to
Newton’s third law: For every action, there is an equal and opposite reaction.

If a problem contains two-force members, the FBD can be simplified consid-
erably by recalling the two-force principle: Two forces in equilibrium must be
equal, opposite, and collinear. This principle is illustrated in Fig. 5.3. The bar in
Fig. 5.3(a) is supported by a ball-and-socket joint at each end and is not subjected
to any forces other than the joint reactions (the weight is assumed negligible).
The FBD of the bar, Fig. 5.3(b), shows the joint reactions—one force at A with
components Ax , Ay , and Az and the other at B with components Bx , By , and Bz .
Therefore, we see that the bar is a two-force member. After invoking the two-force
principle, the FBD of the bar simplifies to that shown in Fig. 5.3(c)—the forces at
A and B are equal, opposite, and collinear.

B

A
x y

(a)

z

A
AyAx

Az

(b)

B

By

Bx

Bz

P

A

P

B

(c)

Fig. 5.3



Sample Problem 5.1
The 2-Mg uniform pole in Fig. (a) is supported by a ball-and-socket joint at O and
two cables. Draw the FBD for the pole, and determine the number of unknowns.

y

x

z

40 kN

3 m

3 m

2 m

3 m

3 
m

4 
m

1 m

O

C

D

A

B

(a)

y

x

z

40 kN

3 m

3 m

1 m

3 m

3 
m

4 
m

1 m

O

C

D

A

B

(b)

1 m

TBD

TAC

G

W = 19.62 kN

Ox

Oz

Oy

Solution
The FBD for the pole is shown in Fig. (b). Observe that, in addition to the 40-kN
applied load, the pole is subjected to the following forces:

• The tensions in the two cables: The magnitudes of the tensions are labeled
TAC and TBD. Because the direction of each cable is known, the force in each
cable introduces only one unknown on the FBD—its magnitude.

• The reaction at O: Because the support at O is a ball-and-socket joint, the
reaction at O is an unknown force, which we show as the three independent
components: Ox , Oy , and Oz .

• The weight of the pole: The center of gravity is at G, the midpoint of the pole.
The weight is

W = mg = (2× 103 kg)(9.81 m/s2) = 19 620 N

Inspection of Fig. (b) reveals that there are five unknowns on the FBD:
the magnitude of the tension in each of the two cables and the three force
components at O.
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Sample Problem 5.2
The 10-kg surveyor’s transit in Fig. (a) is supported by a tripod of negligible

x

2 m

0.8 m1 m

1 m

y

z

B

C

D

A

(a)

1 m

weight that is resting on a rough horizontal surface. The legs of the tripod are
connected by ball-and-socket joints to the platform supporting the transit. Draw
the FBD for the entire assembly using two methods: (1) not recognizing two-force
bodies; and (2) recognizing two-force bodies. In each case, determine the number
of unknowns. What modifications to these FBDs are necessary if the weights of
the legs are not negligible?

Solution
Part 1 Not Recognizing Two-Force Bodies

The FBD of the entire assembly is shown in Fig. (b). In addition to the weight W
of the transit, we show three independent components of the ground reactions at
B, C, and D—giving a total of nine unknowns.

y
B

C

D

A

(b)

Dy

Dz

Dx
By

Bx

Bz
Cy

Cz

Cx

W = 10 (9.81) = 98.1 N

1 
m

1 
m

2 
m

1 m

0.8 m

x

yB

C

D

A

(c)

PD

W = 10 (9.81) = 98.1 N

1 
m

1 
m

2 
m

1 m

0.8 m

PC

PB

x

Part 2 Recognizing Two-Force Bodies

When each leg of the tripod is recognized to be a two-force body, the FBD of the
assembly can be drawn as shown in Fig. (c). The forces at B, C, and D act in the
direction of the corresponding leg of the tripod. Therefore, the three leg reactions
are the unknowns.

If the weights of the legs are not negligible, the FBD in Fig. (b) can be mod-
ified by simply including the weight of each leg. However, the FBD in Fig. (c)
cannot be corrected in the same manner. Because the legs are no longer two-force
bodies, the forces at B, C, and D cannot be assumed to act in the directions of the
respective legs.
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Sample Problem 5.3
The structure shown in Fig. (a) is supported by ball-and-socket joints at O and D,
and by a slider bearing at C. The two members OABC and AD, connected by a
ball-and-socket joint at A, each weigh 20 N/m. (1) Draw the FBD for the entire
structure, and count the unknowns. (2) Draw the FBD for each of the members,
and count the total number of unknowns.

x

y

z
1 m

1 
m

O 

A 

1 m

D

C
1 m

0.8 m

(a)

B

Solution
Part 1 FBD for the Entire Structure

The FBD for the entire structure is shown in Fig. (b); the dimensions have been
omitted for the sake of clarity.

Dx

Dy

Dz

C 

y

z

D

Oz Ox

Oy

A

B

Cx

Cz

O 

WBC

WAD

(b)

WAD = 32.6 N
WBC =  20 N
WOB = 36 N

x

WOB

The weight of the structure is represented by the weights of the segments OB,
BC, and AD at their respective midpoints. The weights have been computed by
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multiplying the weight per unit length (20 N/m) by the lengths of the respective
segments. (Note that the length of AD is

√
0.82 + 12 + 12 = 1.63 m)

In Fig. (b) we also show the reactions at the ball-and-socket joints at O and D.
Note that member AD is not a two-force body (because its weight is not negligi-
ble), and thus we cannot assume that the force at D acts along the line AD. The
FBD includes the two force components exerted on the structure by the slider
bearing at C. The FBD of the entire structure in Fig. (b) contains eight unknowns:
three forces at O, three forces at D, and two forces at C.

Part 2 FBD for Each of the Members

The FBDs for the members OABC and AD are shown in Fig. (c); the dimensions
are again omitted for clarity.

Dz

Dy

Dx

D

z

y 
Ax

Az

Ay

x

A 
Oz

Ox

Oy

z

Az

A Ay

Ax

36 N

20 N

B C 

Cz

y

(c)

O

x Cx

32.6 N

The ball-and-socket reactions at O and D are shown in the same directions as
assumed in Fig. (b).

We must also include the force exerted on each member by the ball-and-socket
joint at A [because this force is internal to the FBD of the entire structure, it does
not appear in Fig. (b)]. Note that Ax , Ay , and Az must be shown to be equal and
opposite on the two members.

Finally, the reactions at C—shown in the same directions as in Fig. (b)—as
well as the weights of the segments are included on the FBDs in Fig. (c).

When the composite structure is subdivided into its two constituent bodies,
the total number of unknowns is eleven—three at O, three at D, three at A, and
two at C.
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Problems

5.1 Bar AB of negligible weight is supported by a ball-and-socket joint at B
and two cables attached at A. Draw the FBD for the bar, recognizing that it is a
two-force body. Determine the number of unknowns.

5.2 Draw the FBD for the bar described in Prob. 5.1 if the bar is homogeneous
and weighs 180 N. Count the unknowns.

y

x

z

B

D

A

C

400 N

2 m 2.4 m

7 m

4 m

4 m

Fig. P5.1, P5.2

5.3 The space truss ABCD in the shape of a tetrahedron is suspended from three

2 m

A

D

CB

40 kN
15 kN

1.2 m

1.2 m

Fig. P5.3, P5.4

vertical links. Assuming that all connections are ball-and-socket joints, draw the
FBD of the truss and count the unknowns.

5.4 Draw the FBD of the portion BCD of the space truss described in Prob. 5.3.
How many unknowns appear on this FBD?

5.5 The 600-N uniform log OGA—G being its center of gravity—is held in the
position shown by the two cables and the light bar BG. Draw the FBD for the log,
assuming friction at all contact surfaces and noting that BG is a two-force body.
Count the unknowns.

4 m

2 m
2.5 m

3.5 m

3 m
2.5 m

A

z

G

O
D

B

C

y

x

Fig. P5.5
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5.6 The bar ABCD of negligible weight is supported by a slider bearing at A,
a thrust bearing at D, and the cable BE. Draw the FBD and count the unknowns.

200 N

A

B

C

z

x y

D

E

360 mm

840 mm

660 mm

y
O

100

B

100 N

30°
300 N

x

A

20
0

20
0

z

Dimensions in mm

Fig. P5.6 Fig. P5.7

5.7 The shaft-pulley assembly is supported by the universal joint at O and by
the slider bearing at A. The pulley, which has a mass of 7 kg, is subjected to
the belt tensions shown. The mass of the shaft may be neglected. Draw an FBD
that consists of the pulley and shaft AO. Determine the number of unknowns on
this FBD.

5.8 The 30-kg homogeneous door is supported by hinges at A and B, with only

880

770

1180

z

C
D

E

x

200 N

200

45°
880

360

900

360

y

B

A

Dimensions in mm

Fig. P5.8

the hinge at B being capable of providing axial thrust. The cable CD prevents the
door from fully opening when it is pulled by the 200-N force acting perpendicular
to the door. Draw the FBD for the door, and count the unknowns.

5.9 Draw the FBD for bar BCD. The connections at A and B are ball-and-socket
joints, C is a slider bearing, and D is a thrust bearing. Assume that the weights of
members are negligible and recognize that AB is a two-force member. How many
unknowns appear on the FBD?

25

100

40 110

70

D

C

y

x

B

A

z

40 N.m

Dimensions in mm

Fig. P5.9
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5.10 The T-bar AEBF is connected to rod CD, with the joint at F being
equivalent to a slider bearing. The supports at A and C are slider bearings, and
thrust bearings are found at B and D. The two applied forces, which act at the
midpoint of the arm EF, are parallel to the y- and z-axes, respectively. Neglecting

1080 mm

z

y

E
B

A

C
900 mm 1200 mm

D

300 N

200 N
1260 mm

x

F

Fig. P5.10

the weights of the members, draw the FBDs for the entire structure, the T-bar, and
rod CD. Determine the total number of unknowns.

5.11 The L-shaped rod, supported by slider bearings at A and B, passes through
a hole in the cantilever beam DE. Draw the FBDs for the entire assembly and for
its two parts. Determine the total number of unknowns. Neglect the weights of the
components.

x

y

z

540 mm 600 mm 400 NA B

D

72
0 m

m

1140 mm 720 mm

300 N

E

60
0 m

m

500 N

Fig. P5.11

5.12 Draw the FBD for the space truss assuming all connections to be ball-and-
socket joints. How many unknowns are there?

10 kN

12 kNA

B

C

D

G

F

E

z

yx

6 m 6 m6 m

6 
m

Fig. P5.12

5.4 Independent Equilibrium Equations

a. General case

The equilibrium equations for a body subjected to a three-dimensional force
system have been given in Art 5.2:

�F = 0 �MO = 0 (5.1, repeated)
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where O is an arbitrary point. If O is the origin of the x, y, and z coordinate axes,
the equivalent scalar equations are

�Fx = 0 �Fy = 0 �Fz = 0

�Mx = 0 �My = 0 �Mz = 0
(5.2, repeated)

As was the case for coplanar force systems, alternate sets of independent
equilibrium equations can be used in place of the above equations. Regrettably,
the restrictions ensuring the independence of the equations for three-dimensional
force systems are so numerous (and often fairly complicated) that a complete list-
ing of the restrictions is of little practical value. It is much better to rely on logic
rather than a long list of complex rules.

As an example of an alternate set of independent equilibrium equations, con-
sider the six scalar moment equilibrium equations that result from summing the
moments about two arbitrary points, say A and B. If these six equations are sat-
isfied, there can be no resultant couple. However, there could still be a resultant
force R = �F with the line of action passing through points A and B. Therefore,
only five of the moment equations are independent. An additional scalar equation
(a carefully chosen force or moment equation) must be used to guarantee that R
vanishes.

When considering a three-dimensional force system, remember that the num-
ber of independent scalar equations is six. Although various combinations of force
and moment equations may be used, at least three must be moment equations.
The reason is that couples do not appear in force equations, so that the only
way to guarantee that the resultant couple vanishes is to satisfy three independent
moment equations of equilibrium. However, if properly chosen, the six indepen-
dent equations could be three force and three moment equations, two force and
four moment equations, one force and five moment equations, or even six moment
equations.

Three special cases, occurring frequently enough to warrant special attention,
are discussed in the next three sections and summarized in Fig. 5.4.

b. Concurrent force system

In Chapter 3 the resultant of a concurrent force system was found to be a force R
passing through the point of concurrency. The components of R were given by
Rx = �Fx , Ry = �Fy , and Rz = �Fz . It follows that there are only three
independent equilibrium equations:

�Fx = 0 �Fy = 0 �Fz = 0 (5.3)

The x-, y-, and z-axes do not have to be the coordinate axes; they can represent
any three arbitrary directions, not necessarily perpendicular.

Note that the six independent equations for the general case are reduced to
three for this special case. Alternate sets of equations are one moment and two
force equations, one force and two moment equations, or three moment equations,
each with its own restrictions to ensure independence.
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Type of force
system

General

Concurrent

Parallel

All forces
intersect
an axis

No. of
independent
equil. eqs.

Six

Three

Three

Five

A set of
independent

equations

Fx  =  0 Fy  =  0

Fz  =  0

Mx  =  0 My  =  0

Mz  =  0

Fx  =  0 Fy  =  0

Fz  =  0

Fz  =  0

Mx  =  0 My  =  0

Fx   =  0 Fy  =  0

Fz  =  0

Mx  =  0 Mz  =  0

Σ

Σ

Σ

Σ

Σ

Σ

Σ Σ

Σ

Σ

Σ Σ

Σ Σ
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O
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F3

F1

Fig. 5.4

c. Parallel force system

It has been shown in Chapter 3 that, if all the forces are parallel to the z-axis, the
resultant is either a force parallel to the z-axis or a couple-vector perpendicular to
the z-axis. Therefore, the number of independent equilibrium equations is again
reduced to three.

�Fz = 0 �Mx = 0 �My = 0 (5.4)

The force equation eliminates the possibility of a resultant force, and the two
moment equations ensure that there is no resultant couple.
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In Eqs. (5.4), the moments can be summed about any two axes that lie in
the xy plane. The three equations in Eqs. (5.4) can be replaced by three moment
equations, with various restrictions required to guarantee their independence.

d. All forces intersect an axis

If all the forces intersect an axis—say, the y-axis, as shown in Fig. 5.4—the
moment equation �My = 0 is trivially satisfied, and we are left with the following
five independent equilibrium equations.

�Fx = 0 �Fy = 0 �Fz = 0

�Mx = 0 �Mz = 0
(5.5)

Of course, alternate sets of independent equations can be used—two force and
three moment equations, one force and four moment equations, or five moment
equations.

5.5 Improper Constraints

Even if the number of equilibrium equations equals the number of unknowns,
we cannot always conclude that a solution exists. As we have mentioned several
times, this is the predicament when the equilibrium equations are not indepen-
dent. In such a case, the fault lies with the analyst who chooses the equations,
not with the physical problem. But another situation exists in which the problem
itself precludes a solution of the equilibrium equations; it is known as the case of
improper constraints.

As an example of improper constraints, consider the plate of weight W sus-
pended from six parallel wires and pushed by the horizontal force P, as shown in
Fig. 5.5(a). The free-body diagram of the plate shows that there are six unknowns
(the forces in the wires). Because the two equations �Fy = 0 and �Mz = 0 are
trivially satisfied, the number of independent equilibrium equations is reduced to
four in this case. Moreover, the equation �Fx = 0 yields P = 0. From all this we
conclude that the plate can be in equilibrium in the position shown only if P = 0,
and then the problem is statically indeterminate (there are three equilibrium
equations left with six unknowns).

The trouble with this problem is that the supports are not capable of resisting
the applied load P in the given position; that is, they cannot provide the proper
constraints that prevent motion. We encounter this situation whenever the sup-
port reactions form one of the special cases described in the preceding article:
concurrent, parallel (as in the present example), or intersecting a common axis.
An example of the latter is shown in Fig. 5.5(b), in which the plate of weight
W is supported by three sliding hinges. Again we have six unknown reactions
and ostensibly six independent equilibrium equations, but equilibrium is clearly
impossible in the position shown, unless P = 0.

In summary, the support constraints are said to be improper if they are not
capable of supporting an arbitrary load system (this does not preclude equilibrium
under certain loads, e.g., when P = 0 in the examples shown in Fig. 5.5).
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5.6 Writing and Solving Equilibrium Equations

The steps in the analysis of three-dimensional equilibrium problems are identical
to those we used in coplanar analysis.

1. Draw the free-body diagrams (FBDs).
2. Write the equilibrium equations.
3. Solve the equations for the unknowns.

The first step, the construction of FBDs, was discussed in Art 5.3. In this article
we assume that the FBDs are given, permitting us to concentrate on the second
and third steps—writing and solving the equilibrium equations.

The solution of three-dimensional problems requires careful planning before
any equilibrium equations are written. As recommended in Chapter 4, you should
prepare a method of analysis or plan of attack that specifies the equations to be
written and identifies the unknowns that appear in the equations. Comparing the
number of unknowns with the number of independent equilibrium equations lets
you determine if the problem is statically determinate or indeterminate. With a
stated plan, you are able to maintain control of the solution; without it, you can
easily be overwhelmed with the complexity of the problem. After you adopt a
workable method of analysis, you can then proceed to the mathematical details of
the solution.

In the solution of coplanar equilibrium problems, the method of analysis fre-
quently centers on a moment equation. The idea is to find a moment center A so
that the equation �MA= 0 involves the fewest possible number of unknowns
(ideally only one unknown). This strategy is also convenient for analyzing three-
dimensional problems. In most problems, you should look for moment equations
that simplify the solution. A moment equation about an axis is frequently useful
because it eliminates forces that pass through the axis. In many problems, it is
possible to find an axis for which the corresponding moment equation contains
only one unknown.



Sample Problem 5.4
Calculate the tension in each of the three cables that support the 1500-kN weight,
using the given FBD.

Solution
Method of Analysis

As shown in the FBD, the forces acting on the weight are concurrent (all thez
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TAC
TAD

TAB

FBD

1.5 m

O

forces intersect at A). Therefore, there are three independent equilibrium equa-
tions. Because there are also three unknowns (the tensions TAB, TAC , and TAD),
we conclude that the problem is statically determinate.

The most straightforward solution is obtained from the three scalar force equa-
tions, �Fx = 0, �Fy = 0, and �Fz = 0 (or the equivalent vector equation,
�F = 0).

Mathematical Details

The first step is to write the forces in vector form, as follows:

TAB = TABλAB = TAB

−→
AB

|−→AB|
= TAB

(
2i+ 2.5k

3.202

)

= TAB(0.6246i+ 0.7808k)

TAC = TACλAC = TAC

−→
AC

|−→AC|
= TAC

(−3i− 1.2j+ 2.5k
4.085

)

= TAC(−0.7344i− 0.2938j+ 0.6120k)

TAD = TADλAD = TAD

−→
AD

|−→AD|
= TAD

(
1.5j+ 2.5k

2.915

)

= TAD(0.5145j+ 0.8575k)

W = −1500k kN

Summing the x-, y-, and z-components and setting the results equal to zero,
we have

�Fx = 0 0.6246TAB − 0.7344TAC = 0

�Fy = 0 −0.2938TAC + 0.5145TAD = 0

�Fz = 0 0.7808TAB + 0.6120TAC + 0.8575TAD − 1500 = 0

Solving these equations simultaneously gives

TAB = 873 kN TAC = 743 kN TAD = 424 kN Answer
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As you can see, the use of three force equations results in a straightforward
method of analysis for a concurrent force system. However, there are other sets of
equilibrium equations that could have been used just as effectively.

Another Method of Analysis

Note that the tensions TAC and TAD intersect the line CD and thus have no
moment about that line. Therefore, TAB can be calculated from only one equa-
tion: �MCD = 0. Similar arguments can be used to show that �MDB = 0 yields
TAC, and �MBC = 0 gives TAD.

Mathematical Details

�MCD = 0 (rCB×TAB · λCD)+ (rCO ×W · λCD) = 0

From the figure, we note that rCB = 5i+ 1.2j m, rCO = 3i+ 1.2j m, and the unit
vector λCD is given by

λCD =
−→
CD

|−→CD|
= 3i+ 2.7j

4.036

Using the vector expressions for TAB and W determined in the foregoing, and
using the determinant form of the scalar triple product, the moment equation
�MCD = 0 becomes

TAB

4.036

∣∣∣∣∣∣
5 1.2 0

0.6246 0 0.7808
3 2.7 0

∣∣∣∣∣∣+
1

4.036

∣∣∣∣∣∣
3 1.2 0
0 0 −1500
3 2.7 0

∣∣∣∣∣∣ = 0

Expanding the determinants and solving the resulting equation yields TAB=
873 kN, the same answer determined in the preceding analysis.

As mentioned, the tensions in the other two cables could be obtained from
�MDB = 0 and �MBC = 0.

Sample Problem 5.5
The horizontal boom OC, which is supported by a ball-and-socket joint and two

3 m

P = 8000 N

z

y

x
2 m

3 m

3.5 m

2.5 m

D

E

A

B
C

O

1.0 m

cables, carries the vertical force P = 8000 N. Calculate TAD and TCE, the tensions
in the cables, and the components of the force exerted on the boom by the joint
at O. Use the given FBD (the weight of the boom is negligible).

Solution
Method of Analysis

As shown in the FBD, the force system acting on the boom is the special case
in which all forces intersect an axis, namely, the y-axis. Therefore, there are five
independent equilibrium equations. Because there are also five unknowns in the
FBD (TAD, TCE, Ox , Oy , and Oz), the problem is statically determinate.
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Consider the moment equations about the x- and z-axes (�My = 0 is trivially
satisfied):

�Mx = 0—contains the unknowns TAD and TCE

�Mz = 0—contains the unknowns TAD and TCE

These two equations can be solved simultaneously for TAD and TCE. After these
3 m

O

z

y

x
2 m

3 m

3.5 m

2.5 m

D

E

A

B
C

Oy

Ox

Oz

TAD

TCE

FBD

P = 8000 N
1.0 m

tensions have been found, the reactions at O can be determined using the force
equations of equilibrium.

Mathematical Details

A convenient method of writing �Mx = 0 and �Mz = 0 is to sum the moments
about point O using vector representation (recall that MO = Mx i+ Myj+ Mzk).
Referring to the FBD, we have

�MO = (rOA × TAD)+ (rOC × TCE)+ (rOB × P) = 0

where

rOA = 3j m rOC = 6j m rOB = 5j m

TAD = TADλAD = TAD

−→
AD

|−→AD|
= TAD

(
2.5i− 3j+ 3k

4.924

)

= TAD(0.5077i− 0.6093j+ 0.6093k)

TCE = TCEλCE = TCE

−→
CE

|−→CE|
= TCE

(−3.5i− 6j+ 3k
7.566

)

= TCE(−0.4626i− 0.7930j+ 0.3965k)

P = −8000k N

Using the determinant form for the cross products, we have

�MO = TAD

∣∣∣∣∣∣
i j k
0 3 0

0.5077 −0.6093 0.6093

∣∣∣∣∣∣
+ TCE

∣∣∣∣∣∣
i j k
0 6 0

−0.4626 −0.7930 0.3965

∣∣∣∣∣∣
+
∣∣∣∣∣∣
i j k
0 5 0
0 0 −8000

∣∣∣∣∣∣ = 0

Expanding the determinants and equating the x- and z-components (the y-
components are identically zero, as expected), we get

�Mx = 0 1.828TAD + 2.379TCE − 40 000 = 0

�Mz = 0 −1.523TAD + 2.776TCE = 0
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from which we find

TAD = 12 770 N TCE = 7010 N Answer

After the tensions have been computed, the reactions at O can be calculated by
using the force equation �F = 0:

�Fx = 0 Ox + 0.5077TAD − 0.4626TCE = 0

�Fy = 0 Oy − 0.6093TAD − 0.7930TCE = 0

�Fz = 0 Oz + 0.6093TAD + 0.3965TCE − 8000 = 0

Substituting the previously found values for TAD and TCE, we obtain

Ox = −3240 N Oy = 13 340 N Oz = −2560 N Answer

The negative values for Ox and Oz indicate that the directions of these compo-
nents are opposite to the directions shown in the FBD.

Sample Problem 5.6
The nonhomogeneous plate weighing 60 kN has its center of gravity at G. It is

W = 60 kN

yCBO

A

x

z

2.2 m

3.6
 m

1.0 m
1.2

  mG

FBD

0.8 m

yCBO

A

x

z

1.0 m
1.2

  mG

TA

TB TC

0.8 m

3.6
 m

2.2 m

supported in the horizontal plane by three vertical cables. Compute the tension in
each cable using the given FBD.

Solution
Method of Analysis

As shown in the FBD, the forces holding the plate in equilibrium form a parallel
system, which has three independent equilibrium equations. Because there are
also three unknowns (TA, TB , and TC ), the problem is statically determinate.

One method of analysis considers the moment equations about the x- and
y-axes (�Mz = 0 is trivially satisfied because the forces are parallel to the z-axis)
and the force equation in the z-direction.

�Mx = 0—contains the unknowns TB and TC

�My = 0—contains the unknown TA

�Fz = 0—contains the unknowns TA, TB, and TC

First, the equation �My = 0 can be used to find TA. Then, the other two equations
can be solved simultaneously for TB and TC . The details of this analysis, using
scalar representation, are shown in the following.
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Mathematical Details

�My = 0 + 60(1.2)− 3.6TA = 0 (1)

which gives

TA = 20.0 kN Answer

�Mx = 0 + 0.8TB + 3.0TC − 60(1.0) = 0 (2)

�Fz = 0 +
�⏐ TA + TB + TC − 60 = 0 (3)

Substituting TA = 20.0 kN, and solving Eqs. (2) and (3) yields

TB = 27.3 kN TC = 12.7 kN Answer

Another Method of Analysis

In the above solution, we were able to find TA using the equation �My = 0
because TB and TC have no moment about the y-axis. By studying the FBD, you
will see that it is also possible to calculate TB using one equation, and TC using
one equation.

Sample Problem 5.7
The bent bar of negligible weight is supported by a ball-and-socket joint at O,
a cable connected between A and E, and a slider bearing at D. The bar is acted on
by a wrench consisting of the force P and couple C, both parallel to the z-axis.
Determine the components of bearing reaction at D and the force in the cable
using the given FBD.

Solution
Method of Analysis

The force system in the FBD is the general case. Therefore, there are six indepen-
dent equilibrium equations available for computing the six unknowns (Ox , Oy ,
Oz , TAE, Dx , and Dz).

Referring to the FBD, we consider the moment equation about each of the
coordinate axes:

�Mx = 0— contains the unknown Dz

�My = 0— contains the unknowns TAE, Dx , and Dz

�Mz = 0— contains the unknowns TAE and Dx

Therefore, the three unknowns TAE, Dx , and Dz can be computed from these equa-
tions according to the following scheme: First find Dz from �Mx = 0, and then
solve the other two equations simultaneously for Dx and TAE.
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Mathematical Details

When utilizing the above analysis, it is convenient to use the vector approach to

y

x

A B

E

P = 2000 N

C = 6000 N.m

4 m

3 m

2 m2 m

z

y
O

A B

D
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2 m2 m
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TAE
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4 
m

4 
m

z

O
D

x

2 
m

2 
m

derive the moment equations �MO = �Mx i+�Myj+�Mzk = 0. The details
are as follows:

�MO = 0 (rOA × TAE)+ (rOD × D)+ (rOB × P)+ C = 0

Referring to the FBD, the vectors in the above equation are

rOA = 4i m rOD = 4i+ 7j+ 2k m

rOB = 4i+ 2j m

P = −2000k N C = −6000 N ·m

TAE = TAEλAE = TAE

−→
AE

|−→AE|
= TAE

(−4i+ 7j+ 4k
9

)

D = Dx i+ Dzk

Therefore, �MO = 0 can be written in determinant form as

TAE

9

∣∣∣∣∣∣
i j k
4 0 0
−4 7 4

∣∣∣∣∣∣+
∣∣∣∣∣∣

i j k
4 7 2

Dx 0 Dz

∣∣∣∣∣∣+
∣∣∣∣∣∣
i j k
4 2 0
0 0 −2000

∣∣∣∣∣∣− 6000k = 0

Expanding the determinants and equating the x-, y-, and z-components yields the
equations

(x-component) 7Dz − 4000= 0

(y-component) −1.778TAE + 2Dx −4Dz + 8000= 0

(z-component) 3.111TAE − 7Dx −6000= 0

The solution of these equations yields

Dz = 571 N TAE = 4500 N Dx = 1140 N Answer

If desired, the reactions Ox , Oy , and Oz could now be found from the force
equation �F = 0.

It should be noted that TAE could also be obtained from a single scalar
equilibrium equation �MOD = 0.
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Problems

In each of the following problems, the free-body diagram is given. Write the
equilibrium equations and compute the requested unknowns.

5.13 In Sample Problem 5.4, determine the tension TAC using the equation
�MDB = 0.

5.14 In Sample Problem 5.5, compute the tension TAD using one scalar equilib-
rium equation.

5.15 In Sample Problem 5.5, determine Oy with one scalar equilibrium equa-
tion.

5.16 Determine the tension TB in Sample Problem 5.6 using one scalar
equilibrium equation.

5.17 Compute the tension TAE in Sample Problem 5.7 using one scalar equilib-
rium equation.

5.18 The 40-kg homogeneous plate is suspended from four wires. Determine
the tension in each wire.
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yx
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B

yx

z

C

550
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550

550

Fig. P5.18

5.19 The bent bar is supported by slider bearings at A, B, and C . Determine
the bearing reactions caused by the 36000 N·mm couple Express the answers in
vector form.
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5.20 The compound bar is supported by a thrust bearing at A, a slider bearing
at B, and the cable CD. Determine the tension in the cable and the magnitude of
the bearing reaction at A. Neglect the weight of the bar.
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5.21 The homogeneous door of weight W = 60 N is held in the horizontal plane
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Fig. P5.21

by a thrust hinge at O, a hinge at A, and the vertical prop BC. Determine all forces
acting on the door.

5.22 The light boom AB is attached to the vertical wall by a ball-and-socket
joint at A and supported by two cables at B. A force P = 12i− 16k kN is applied
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at B. Note that RA, the reaction at A, acts along the boom because it is a two-force
body. Compute the cable tensions and RA.
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5.23 The homogeneous 120-N sign is suspended from a ball-and-socket joint
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at O, and cables AD and BC. Determine the forces in the cables.

5.24 The support for the T-shaped bar consists of a thrust bearing at O and a
slider bearing at B. When a weight W is suspended from D, the force P = W /2,
parallel to the x-axis, is required to maintain equilibrium. Calculate θ , the angle
of inclination of the bearing axis OB.
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Fig. P5.24

5.25 The space truss is supported by ball-and-socket joints at B, D, and F .
Determine the forces in members AB, AC , and AD.
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5.26 For the truss described in Prob. 5.25, find the forces in members BC
and CE.
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5.7 Equilibrium Analysis

The method for analyzing rigid bodies subjected to three-dimensional force
systems is the same as used in Chapter 4 for coplanar loadings.

1. Draw the free-body diagrams.
2. Write the equilibrium equations.
3. Solve the equations for the unknowns.

Article 5.3 concentrated on the construction of FBDs. Article 5.6 was devoted
to writing and solving the equilibrium equations from given FBDs. The sam-
ple problems that follow this article illustrate the complete analysis of three-
dimensional equilibrium problems, beginning with the construction of the FBDs
and ending with the solution. Analyses of both single and connected bodies are
considered.

We reiterate that you must be careful when drawing free-body diagrams.
Sloppy sketches of three-dimensional problems are notoriously difficult to read;
consequently, they are a major source of errors in the derivation of equilibrium
equations.



Sample Problem 5.8
Determine the forces acting on the bent bar OBD in Fig. (a). The bar is loaded
by the wrench consisting of the force P and couple C. Neglect the weights of the
members, and assume that all connections are ball-and-socket joints.
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P = 10 kN

Solution
Method of Analysis

The first step is to draw the FBD of bar OBD, which is shown in Fig. (b). The
reactions at the ball-and-socket at O are labeled Ox , Oy , and Oz . Note that we
have used the fact that the struts AE and BF are two-force bodies, each assumed
to act in tension.

We see that the FBD contains five unknowns (PAE, PBF, Ox , Oy , and Oz).
Because there are also five independent equilibrium equations, the problem is
statically determinate.

Referring to the FBD in Fig. (b), we consider the moment equations about the
x- and z-axes (�My = 0 is trivially satisfied):

�Mx = 0—contains the unknowns PAE and PBF

�Mz = 0—contains the unknowns PAE and PBF

Therefore, these two equations can be solved simultaneously for PAE and PBF.
After these two unknowns have been found, the force equation �F = 0 can be
used to find the remaining three unknowns: Ox , Oy , and Oz .

Mathematical Details

We choose to write the moments about the x- and z-axes using the vector
expression �MO = �Mx i+�Myj+�Mzk.

�MO = 0 (rOA × PAE)+ (rOB × PBF)+ (rOB × P)+ C = 0
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The vectors that appear in this equation are

rOA = 4j m rOB = 7j m P = 10k kN C = −40k kN ·m

PAE = PAEλAE = PAE

−→
AE

|−→AE|
= PAE

(
3i− 4j+ 2k

5.385

)

PBF = PBFλBF = PBF

−→
BF

|−→BF|
= PBF

(−4i− 7j+ k
8.124

)

Expressing the cross products in determinant form, the equilibrium equation
�MO = 0 then becomes

PAE

5.385

∣∣∣∣∣∣
i j k
0 4 0
3 −4 2

∣∣∣∣∣∣+
PBF

8.124

∣∣∣∣∣∣
i j k
0 7 0
−4 −7 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
i j k
0 7 0
0 0 10

∣∣∣∣∣∣− 40k = 0

Expanding the determinants and equating the x- and z-components (there is no
y-component, as expected), we obtain

(x-component) 1.486PAE + 0.862PBF + 70 = 0
(z-component) −2.228PAE + 3.447PBF − 40 = 0

Solving simultaneously, we obtain

PAE = −39.16 kN PBF = −13.70 kN Answer

The minus signs indicate that the sense of each force is opposite to that assumed
in the FBD. In vector form, the two forces are

PAE = PAEλAE = −39.16

(
3i− 4j+ 2k

5.385

)

= −21.82i+ 29.09j− 14.54k kN

PBF = PBFλBF = −13.70

(−4i− 7j+ k
8.124

)

= 6.75i+ 11.80j− 1.69k kN

Summing forces, we have

�F = 0 PAE + PBF + P+ (Ox i+ Oyj+ Ozk) = 0

Substituting the expressions for PAE, PBF, and P, and solving, yields

Ox = 15.1 kN Oy = −40.9 kN Oz = 6.2 kN Answer
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Sample Problem 5.9
The window in Fig. (a) weighs 40 N; its center of gravity G is located at the
geometric center. Find all forces acting on the window when it is held open in the
position shown by the rope attached to C. Assume that the hinge at A can provide
an axial thrust whereas the hinge at B cannot.
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Solution
Method of Analysis

We begin by drawing the FBD of the window—see Fig. (b). In addition to its
40-lb weight and the tension TCD in the rope, the window is acted on by the hinge
reactions at A and B. Note that an axial thrust (force component in the x-direction)
is shown only for the hinge at A.

The FBD contains six unknowns: Ax , Ay , Az , By , Bz , and TCD. Because
the force system is the general case, there are also six independent equilibrium
equations, which means that the problem is statically determinate.

Point A plays an important role in the analysis of this problem, because three
of the unknowns (Ax , Ay , and Az) pass through A. Referring to the FBD, we
examine the following moment equations:

�(MA)x = 0— contains the unknown TCD

�(MA)y = 0— contains the unknowns TCD and Bz (By is parallel to this axis)

�(MA)z = 0— contains the unknowns TCD and By (Bz is parallel to this axis)
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These three scalar equations can be solved for the unknowns TCD, By , and Bz .
Once these values are known, the three force components at A (Ax , Ay , and Az)
can be found from the force equation �F = 0.

Mathematical Details

We will use the vector representation to find the moment equations about the axes
passing through A; that is, �MA = (�MA)x i+ (�MA)yj+ (�MA)zk = 0.

�MA = 0 (rAD × TCD)+ (rAB × B)+ (rAG ×W) = 0

Writing the forces and position vectors in rectangular form, we have

TCD = TCDλCD = TCD

−→
CD

|−→CD|
= TCD

(
1.9i− 2.2j+ 3.8k

4.784

)

B = Byj+ Bzk W = −40k N

rAD = −1.5i+ 2k m rAB = −3i m

rAG = −1.5i+ 1.1j− 0.9k m

Then, the determinant form of the equation �MA = 0 is

TCD

4.784

∣∣∣∣∣∣
i j k
−1.5 0 2

1.9 −2.2 3.8

∣∣∣∣∣∣+
∣∣∣∣∣∣

i j k
−3 0 0

0 By Bz

∣∣∣∣∣∣+
∣∣∣∣∣∣

i j k
−1.5 1.1 −0.9

0 0 −40

∣∣∣∣∣∣ = 0

Expanding the above determinants and equating like components, we get

(x-component) 0.9197TCD −44.0= 0
(y-component) 1.9858TCD +3Bz − 60.0= 0
(z-component) 0.6898TCD − 3By = 0

Solving these equations gives

TCD = 47.84 N By = 11.00 N Bz = −11.67 N Answer

Omitting the details, the remaining three unknowns are found from the force
equation �F = 0 to be

Ax = −19.00 N Ay = 11.00 N Az = 13.67 N Answer
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Sample Problem 5.10
The two bars AC and CD are homogeneous and weigh 200 N/m. Joints A, C, and
D are ball-and-sockets, and a cable is connected between B and E. Determine all
forces that act on bar AC.
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(a)

Solution
Method of Analysis

As you know, there are many ways in which one can calculate the unknown forces
acting on bodies that are connected together. However, considering the FBD of the
entire assembly is usually a good place to begin.

The FBD of the entire assembly is shown in Fig. (b). The weights of the
bars, WAC and WCD, were calculated by multiplying the weight per unit length
(200 N/m) by the length of each bar. The components of the reaction at A are Ax ,
Ay , and Az ; the components of the reaction at D are Dx , Dy , and Dz ; TBE is the
tension in the cable.

We see that the FBD in Fig. (b) contains seven unknowns (three force com-
ponents each at A and D, and the tension TBE). Because there are only six
independent equilibrium equations (the force system represents the general case),
we cannot calculate all of the unknowns without taking the assembly apart. How-
ever, we see that TBE is the only unknown that does not intersect the axis AD.
Therefore, we can find TBE from the moment equation �MAD = 0.
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We next draw the FBDs of bars AC and CD separately—see Figs. (c) and (d).
The force components at A in Fig. (c) and the force components at D in Fig. (d)
must act in the same directions as in Fig. (b). Furthermore, the components of the
reaction at C (Cx , Cy , and Cz) in Fig. (c) must be equal in magnitude, but oppo-
sitely directed, to the corresponding components in Fig. (d). We note that there are
ten unknowns in this problem: three each at A, C, and D, and the tension TBE. The
total number of independent equilibrium equations is also ten: five each for the
two bars (the force system acting on each bar represents the special case in which
the forces intersect an axis). This problem is therefore statically determinate.
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Referring to the FBD in Fig. (d), Cy can be computed using the moment equa-
tion �(MD)z = 0. Next, consider the FBD in Fig. (c). Because we have already
determined TBE and Cy , only five unknowns remain: Ax , Ay , Az , Cx , and Cz .
Therefore, any of the five independent equations for this FBD can be used to find
these unknowns.

Mathematical Details

Referring to the FBD of the entire assembly in Fig. (b), and using scalar triple
products to evaluate the moments about the axis AD, we obtain

�MAD = 0

(rAB × TBE · λAD)+ (rAB ×WAC · λAD)+ (rAF ×WCD ·λAD) = 0

The vectors appearing in this equation are

rAB = 3j m rAF = −2i+ 6j+ 1.5k m

WAC = −1200k N WCD = −1000k N

TBE = TBEλBE = TBE

−→
BE

|−→BE|
= TBE

(−2i− 3j+ 2k
4.123

)

λAD =
−→
AD

|−→AD|
= −4i+ 6j+ 3k

7.810
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The equation �MAD = 0 thus becomes

1

7.810

TBE

4.123

∣∣∣∣∣∣
0 3 0
−2 −3 2
−4 6 3

∣∣∣∣∣∣+
1

7.810

∣∣∣∣∣∣
0 3 0
0 0 −1200
−4 6 3

∣∣∣∣∣∣
+ 1

7.810

∣∣∣∣∣∣
−2 6 1.5

0 0 −1000
−4 6 3

∣∣∣∣∣∣ = 0

Expanding the determinants and solving yields

TBE = 18 140 N Answer

Using the FBD of bar CD in Fig. (d),

�(MD)z = 0 gives Cy = 0 Answer

As mentioned, with TBE and Cy already computed, we can use any five avail-
able equations to find the five remaining unknown forces on the FBD of bar AC in
Fig. (c). One method for finding the forces at A and C is outlined in the following;
the mathematical details are left as an exercise.

�Fy = 0 gives Ay = 13 200 N Answer

�(MC)x = 0 gives Az = 3800 N Answer

�(MC)z = 0 gives Ax = 4400 N Answer

�Fx = 0 gives Cx = 4400 N Answer

�Fz = 0 gives Cz = 3800 N Answer
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Problems

5.27 Calculate all forces acting on the bar AB described in Prob. 5.1.

5.28 Determine the forces in members AD, BD, and CD of the space truss in
Prob. 5.3.

5.29 Find the tension in cable BE that supports the bar ABCD described in
Prob. 5.6.

5.30 For the structure in Prob. 5.9, determine the reactions at C and D.

5.31 Calculate the reaction at D for the structure described in Prob. 5.11.

Dimensions in meters

z

B

E F D
C

A
x

y

12

6

6

12
6

3
3

Fig. P5.32

5.32 The frame is supported by a ball-and-socket joint at A and a slider bearing
at C. The strut EF has a ball-and-socket joint at each end. The cable EBD runs
over a small pulley at B and carries a 600-N weight D. Neglecting the weights of
the members, determine the force in EF and the magnitude of the reaction at C.

5.33 Determine the tension in each of the three ropes supporting the 600-N
crate.

5.34 Using only one equilibrium equation, compute the force in rope AD of

y

z

x

B

C

D

A

O

7 m

1.6 ft

4 m 4 m
4 m

4 m

W = 600 N

2 m

1.6 m

Fig. P5.33, P5.34

Prob. 5.33.

5.35 The homogeneous 25-kg bar AB is supported by a ball-and-socket joint

PB

A

25 kg
z

x y

1.6 m

1.8 m

0.8 m

Fig. P5.35

at A. End B, which leans against a frictionless vertical wall, is kept from
sliding by the horizontal force P . Determine P and the force exerted by the
wall at B.
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5.36 The shaft AB is supported by a thrust bearing at A and a slider bearing at B.
Determine the force in cable CD, and the bearing reactions at A and B caused by
the 90-N vertical force applied at E. Neglect weights.

60

125
65

70

40

Dimensions in mm

90 N
x

y

z

D

C
A

B

E

30

6 kN

270

500
450

2.4 kN • m

Dimensions in mm

9 kN

B

A

D

C

z

x y

Fig. P5.36 Fig. P5.37

5.37 The bar ABCD has a built-in support at A. Calculate the force and the
couple exerted by the support on the bar. Neglect the weight of the bar and express
the answers in vector form.

5.38 The total mass of the L-shaped beam of constant cross section is 1470 kg.

3 m

a
4 m

b

z

x

y

B

A O

PA PO

PBPB

Fig. P5.38

The beam is hoisted by three vertical cables attached at O, A, and B. Determine
the distances a and b for which the tensions in the cables are equal.

5.39 The crank is supported by a thrust bearing at A, a slider bearing at B, and
a frictionless surface at D. Calculate the reactions at A, B, and D if P = 200 N
and C = 800 N ·m. The weight of the crank may be neglected.

z

x

y

2 m 1.5 m 2 m

2 m

4 m

A BO

D E

C

P

1.25 m

1.5 m

Fig. P5.39

5.40 A 120-N weight is attached to the cable that is wrapped around the 50-N
homogeneous drum. The shaft attached to the drum is supported by a thrust bear-
ing at A and a slider bearing at B. The drum is kept in equilibrium by the vertical
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force P acting on the handle of the crank. Determine P and the reactions at A and
B. Neglect the weights of the crank and the shaft.

28

12

15

32

x

z

P

A

Dimensions in mm

50 N

120 N

24

12 y

B

12

Fig. P5.40

5.41 Calculate the force in cable CD and the reaction at O. Assume that O, A,

z

D

O

B

y

x

A

3 m
4 m

2 m
C

400 N

2 
m

Fig. P5.41and B are ball-and-socket joints, and neglect the weights of the members.

5.42 The homogeneous 48-N plate is welded to the vertical shaft AB of neg-
ligible weight. The assembly is supported by a slider bearing at A and a thrust
bearing at B. Determine the force in cable CD and the magnitude of the bearing
reaction at A.

E

C

y
x

z

B
D

A

60 N

48 N

4.8 m

3.6 m

3.5 m

1.8 m

0.8 m

Fig. P5.42
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5.43 The A-frame is supported by a thrust bearing at A, a slider bearing at B,E

C

B

D

A

5 m

3 m
3 m

3 m
4 m

4 m

600 N
z

yx

Fig. P5.43

and the cable CD. Compute the tension in the cable and the components of the
bearing reaction at B caused by the 600-N load.

5.44 A hoist is formed by connecting bars BD and BE to member ABC.
Neglecting the weights of the members and assuming that all connections are
ball-and-socket joints, determine the magnitudes of the forces in bars BD and BE
in terms of the applied load P.

A
z

B

D

E

C

O

x y

4 m

3 m

4 m

6 m

4 m

P

Fig. P5.44

5.45 The crank arm OD of the winch is connected by a universal joint at D to
the shaft-pulley assembly. The winch is supported by slider bearings at B and E,
and by a thrust bearing at G. Determine the force P that will hold the winch at rest,
and calculate the magnitudes of the corresponding bearing reactions. Neglect the
weights of the members.

200
320

200
320

240
O

B

D

E

z

x

200

360 N

P

Dimensions in mm

100

320

G
y

F

Fig. P5.45
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5.46 The 200-N homogeneous door is rigidly attached to the bent bar ABC.
The assembly is supported by a thrust bearing at A and a slider bearing at C .
Determine the vertical force P required to keep the door in equilibrium in the
position shown. Neglect the weight of bar ABC.

B

A

C

y

x

z 75 mm

25 mm

260 mm

160 mm

210 mm

D

P

200 N

Fig. P5.46

5.47 The frame is built into the wall at D and G. The cross-members AE and
BF pass through frictionless holes at A, B, E, and F. The weights of the members
are negligible. Determine the reactions at D.

x

46 mm

30 mm

240 N

z

y

A

B

D

G

I

F

E

H

64 mm

24 mm
36 mm

z

240A

D

240x

320 N

E
F

O

B

C
240

240

240
y

G
320

Dimensions in mm

Fig. P5.47 Fig. P5.48

5.48 All connections of the structure are ball-and-socket joints, except for
the slider bearings at A and O. The weights of the members may be neglected.
Calculate the forces in members BE and CF.
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5.49 Determine the reactions at ball-and-socket joints D, E , and F of the space
truss shown. Express the answers in vector form.

C

B

90 kN

1.5 m

2 m
1.5 m

A

D

x y

z

F

E

Fig. P5.49

Review of Equations

Equilibrium equations in three dimensions

General case �F = �MA = 0 (6 eqs.)

Concurrent force system �F = 0 (3 eqs.)

All forces parallel to z-axis �Fz = �Mx = �My = 0 (3 eqs.)

All forces intersect z-axis �F = 0 �Mx = 0 �My = 0 (5 eqs.)
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Review Problems

5.50 The space truss is supported by vertical cables at A, B, and C . Calculate

D

C

1800 N

5 m

5 m

3 m

x

z

y

A

B

9 m

12 m

Fig. P5.50

the forces in members CB and CD of the truss.

5.51 The bent rod is supported by a ball-and-socket joint at O, a cable at B, and
a slider bearing at D. Neglecting the weight of the rod, calculate the tension in the
cable and the magnitude of the bearing reaction at D.

z

x

O
4 m 4 m

1000 N

2000 N
3 m

3 m
D

C

60°

y

40°
A

B

Fig. P5.51

5.52 Find the maximum load P that can be supported by the tripod if the force
in any leg is limited to 2000 N. Assume that the legs are two-force bodies.

z

x

D

8 m

O
y

B

C

A

P 

6 m

6 m

6 m3 m

Fig. P5.52

5.53 The vertical mast OA, which weighs 1.5 kN, is supported by a ball-and-

C

y

O

x

B

2

A

20 kN

Dimensions
in meters

z

3

7

5

4

4

Fig. P5.53
socket joint at O and by the cables AB and AC. Calculate the tension in each cable
when the 20-kN force is applied.
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5.54 The homogeneous bar AB weighs 400 N. End B leans against a vertical

5 m

30°

C

B

A y

z

x

4 m 6 m

Fig. P5.54

wall and end A is supported by a ball-and-socket joint. Determine the tension in
the cable BC and the wall reaction at B. Neglect friction.

5.55 The 500-kg crate is supported by the three cables. Find the tension in
cable AD.

y

z

x

A

B

C

D

O

6 m

4 m

500 kg

4 m

2 m
8 m

10 m

Fig. P5.55

5.56 The uniform bars AB and BC each weigh 4 N/m. Calculate the tension in
cable DE, and the magnitudes of the ball-and-socket reactions at A, B, and C.

z

A

y
B

C
x

E

4 m

6 m

7 m

D
7 m

2.5 m

4 m

1200 N

A

B

C

D

F

y

x

z

E

9 m

7.5 m

6 m

6 m

Fig. P5.56 Fig. P5.57

5.57 The 1200-N weight is suspended from a cable that runs over a small pulley
attached to the boom ABC. The boom is supported by a ball-and-socket joint at C
and two cables attached at B. Neglecting the weight of the boom, determine the
tension in cable BE.
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5.58 The homogeneous 860-kg bar AB is supported by a ball-and-socket joint
at A and two cables attached to B. Find the tension in cable CB.

z

A

D

y

B

4 m

3 m

3 m
2.2 m

2.6 m

C

x

4.5 m

2 m2 m

3 m
B C

A

z

y

x

20 kN · m

Fig. P5.58 Fig. P5.59

5.59 The triangular plate is supported by three vertical rods, each of which is
able to carry a tensile or compressive force. Calculate the force in each rod when
the 20-kN ·m couple is applied. Neglect the weight of the plate.

5.60 The connections at the ends of bars AB and BC are ball-and-socket joints.
Neglecting the weights of the bars, determine the force in cable DE and the reac-
tion at A.

z

yx

E

C

D

B

A

2 m

1 m

1 m

0.8 m

800 N

O

x

B

A

D

C

O

y

z
3 m

5 m

4 
m

6 m

3 m

Fig. P5.60 Fig. P5.61

5.61 The 150-kg bar ABO is supported by two cables at A and a slider bear-
ing at B. The end of the bar presses against a frictionless surface at O. Find the
tensions in the cables and the contact force at O.
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5.62 The shaft is supported by a thrust bearing at A and a slider bearing at B.
Rotation of the shaft is prevented by the cable CD. Compute the tension in the
cable and the magnitude of the bearing reaction at B caused by the 12 N ·m
couple.

A

B

D

C

z

x

12 N.m

210 mm

160 mm 180 mm y

120 mm

Fig. P5.62



6
Beams and Cables

Cables are the main structural
components of a suspension bridge.
This chapter shows how to determine
the tension in a cable under a variety
of load conditions. George
Doyle/Stockbyte/Getty Images

*6.1 Introduction

In this chapter we introduce the analyses of beams and flexible cables, two impor-
tant topics of structural mechanics. The analysis of beams that carry transverse
loads deals with the computation of internal forces and couples. Because the
internal forces and couples may vary in a complicated manner with the distance
along the beam, we place considerable emphasis on methods of computation and
graphical displays of the results.

The analysis of flexible cables can also become quite involved; the source of
the difficulty lies in the geometry of the cable. Because a cable can carry only
a tensile force, it must adjust its shape so that the internal tension is in equilib-
rium with the applied loads. Therefore, the geometry of the cable is not always
known at the beginning of the analysis. When the shape of the cable is unknown,
the solution invariably leads to nonlinear equations, which can only be solved
numerically.
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PART A: Beams

*6.2 Internal Force Systems

The determination of internal forces is a fundamental step in the design of mem-
bers that carry loads. Only after this computation has been made can the design
engineer select the proper dimensions for a member or choose the material from
which the member should be fabricated.

If the external forces that hold a member in equilibrium are known, we can
compute the internal forces by straightforward equilibrium analysis. For example,
consider the bar in Fig. 6.1(a) that is loaded by the external forces F1, F2, . . . , F5.
To determine the internal force system acting on the cross section labeled 1 (per-
pendicular to the axis of the bar), we must first isolate the portions of the bar lying
on either side of section 1. The free-body diagram (FBD) of the portion to the left
of section 1 is shown in Fig. 6.1(b). In addition to the external forces F1, F2, and
F3, this FBD shows the resultant force-couple system of the internal forces that
are distributed over the cross section: the resultant force R acting at the centroid
C of the cross section and the resultant couple CR . As explained in Chapter 3,
we can place the resultant force R at any point, provided that we introduce the
proper resultant couple. However, locating R at the centroid of the cross section

F5

F1

F3

F2

1

(a)

F4

F1

(b)

z

y

x

C R

R

C

F3

F2

F1

(c)

C

Mz

Vz

P

T

My

Vy

F3

F2

Fig. 6.1
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is the standard engineering practice. If F1, F2, and F3 are known, the equilibrium
equations �F = 0 and �MC = 0 can be used to compute R and CR .

It is conventional to introduce the centroidal coordinate system shown in
Fig. 6.1(b). The axis that is perpendicular to the cross section and passes through
the centroid (x-axis) is called the centroidal axis. The components of R and CR

relative to this coordinate system are identified by the labels shown in Fig. 6.1(c)
and are given the following physically meaningful names.

P: The force component that is perpendicular to the cross section, tending to
elongate or shorten the bar, is called the normal force.

Vy and Vz : The force components lying in the plane of the cross section, tending
to slide (shear) the parts of the bar lying on either side of the cross section
relative to one another, are called shear forces.

T : The component of the resultant couple that tends to twist the bar is called
twisting moment, or torque.

My and Mz : The components of the resultant couple that tend to bend the bar are
called bending moments.

The deformations produced by these internal forces and couples are illustrated
in Fig. 6.2.

Undeformed Elongation Shear

Twisting Bending

P

T

V

M

Fig. 6.2

In many applications the external forces are coplanar and lie in a plane that
contains the centroidal axis. Figure 6.3(a) illustrates the case in which all the
external forces lie in the xy-plane, where the x-axis coincides with the centroidal
axis of the bar. In this special case, the only nonzero components of the inter-
nal force system acting on any cross section—for example, section 1—are the
normal force P, the shear force V, and the bending moment M, as shown in
Fig. 6.3(b).
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(a)

y

z

F3

F4 F5

1

F1

F2 Plane of external loads

x

(b)

M

C
P

F1 F2

F3

V

F5

F1

F2

(c)

M

V

P

V

P

M

F3 F4

Fig. 6.3

Thus far, we have concentrated on the internal force system acting on the
portion of the bar lying to the left of section 1. Using Newton’s third law, these
internal forces occur in equal and opposite pairs on the two sides of the cross
section, as shown in Fig. 6.3(c). In the following articles, we confine our attention
to calculating the internal forces and couples in members subjected to coplanar
forces.



Sample Problem 6.1
The bar in Fig. (a), supported by a pin at A and a cable at B, carries a uniformly

A

3 m 3 m
1

2 m

y

x
30°

(a)

800 N/m

B

distributed load over its left half. Neglecting the weight of the bar, determine the
normal force, shear force, and bending moment acting on the cross section at 1 by
analyzing (1) the bar segment on the left of section 1; and (2) the bar segment on
the right of section 1.

Solution
Preliminary Calculations

We must calculate the external reactions before we can find the internal force
system. As shown in the FBD in Fig. (b), the bar is subjected to the following

Ax

6 m

1.5 m

30°

(b)

2400 N

T

Ay

A B

forces: the components Ax and Ay of the pin reaction at A, the tension T in the
cable at B, and the 2400-N resultant of the uniformly distributed load. Equilibrium
analysis determines the reactions as follows:

�MA = 0 + T sin 30◦(6)− 2400(1.5) = 0

T = 1200 N

�Fx = 0 −→+ Ax − T cos 30◦ = 0

Ax = T cos 30◦ = 1200 cos 30◦

Ax = 1039 N

�Fy = 0 +
�⏐ Ay − 2400+ T sin 30◦ = 0

Ay = 2400− T sin 30◦ = 2400− 1200 sin 30◦

Ay = 1800 N

Because these answers are positive, each of the reactions is directed as assumed
in Fig. (b).

To find the internal force system acting on the cross section at 1, we must
isolate the segments of the bar lying on either side of section 1. The FBDs of the
segments on the left and on the right of section 1 are shown in Figs. (c) and (d),

1 m

(c)

1600 N

Ay = 1800 N

CAx = 1039 N
M1

P1

V1

2 mA

4 m

30°M1

P1

V1

0.5 m

800 N

T = 1200 N

C

(d)

B

respectively. Note that in determining the resultants of distributed loading, we
considered only that part of the load that acts on the segment.

The force system acting on the cross section at 1 consists of the normal
force P1, the shear force V1, and the bending moment M1. To be consistent with
Newton’s third law (equal and opposite reactions), P1, V1, and M1 in Fig. (c) are
shown equal in magnitude but oppositely directed to their counterparts in Fig. (d).
We can use either FBD to compute P1, V1, and M1.

Part 1

Applying the equilibrium equations to the FBD of the bar segment lying to the
left of section 1, Fig. (c), we obtain

�Fx = 0 −→+ P1 + 1039 = 0

P1 = −1039 N Answer
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�Fy = 0 +
�⏐ 1800− 1600− V1 = 0

V1 = 1800− 1600 = 200 N Answer

�MC = 0 + −1800(2)+ 1600(1)+ M1 = 0

M1 = 3600− 1600 = 2000 N ·m Answer

The negative sign in P1 indicates that its sense is opposite to what is shown in the
FBD.

Part 2

Applying the equilibrium equations to the FBD of the bar segment on the right of
section 1, Fig. (d), yields

�Fx = 0 −→+ −P1 − 1200 cos 30◦ = 0

P1 = −1200 cos 30◦ = −1039 N Answer

�Fy = 0 +
�⏐ V1 + 1200 sin 30◦ − 800 = 0

V1 = −1200 sin 30◦ + 800 = 200 N Answer

�MC = 0 + −M1 − 800(0.5)+ 1200 sin 30◦(4) = 0

M1 = −800(0.5)+ 1200 sin 30◦(4) = 2000 N ·m Answer

These answers agree, of course, with those obtained in Part 1.

Sample Problem 6.2
A pin-connected circular arch supports a 5000 N vertical load as shown in Fig. (a).
Neglecting the weights of the members, determine the normal force, shear force,
and bending moment that act on the cross section at 1.

60°

2 m

5 m

A
C

B

(a)

5000 N
1

y

x
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Solution
The FBD of the entire arch is shown in Fig. (b). The forces Ax and Ay are the
components of the pin reactions at A, and RC is the pin reaction at C. Recognizing
that member BC is a two-force member, we know that RC is directed along the line
BC. In general, all the external reactions should be computed before the internal
force systems are found. However, in this problem, we need only calculate RC .
From the FBD in Fig. (b) we obtain

�MA = 0 + RC sin 45◦(10)− 5000(2) = 0

RC = 1414 N

We next consider the FBD of the portion CD shown in Fig. (c). The forces Dx

and Dy are the horizontal and vertical components of the resultant force acting on
the cross section, and M1 is the bending moment. We could compute Dx , Dy , and
M1 by recognizing that their resultant is a single force that is equal and opposite
to RC . However, it is simpler to compute these unknowns using the following
equilibrium equations:

�Fx = 0 −→+ Dx − 1414 cos 45◦ = 0 Dx = 1000 N

�Fy = 0 +
�⏐ −Dy + 1414 sin 45◦ = 0 Dy = 1000 N

�MD = 0 + M1 − 1414 cos 45◦(4.33)− 1414 sin 45◦(2.5) = 0

M1 = 1830 N ·m Answer

The FBD in Fig. (d) shows the resultant force acting on the cross section
in terms of its normal component P1 and shear component V1. Comparing
Figs. (c) and (d), we obtain

P1 = Dy cos 60◦ + Dx sin 60◦

= 1000 cos 60◦ + 1000 sin 60◦ = 1366 N Answer

and

V1 = Dy sin 60◦ − Dx cos 60◦

= 1000 sin 60◦ − 1000 cos 60◦ = 366 N Answer

Because P1, V1, and M1 turned out to be positive, each of them is directed as
shown in Fig. (d).

45°

2 m

A C

B

(b)

5000 N

10 m
Ax

Ay
RC

60°

1
D

45°

C

RC = 1414 N

M1

Dx

Dy

D

5 sin60°
= 4.33 m

5 – 5 cos60°
= 2.5 m

60°

45°

M1

RC = 1414 N

P1

V1

(c) (d)

=
60°
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Problems

In the following problems the internal force system is to be represented as a nor-
mal force P, a shear force V, and a bending moment M. Neglect the weights of the
members.

6.1–6.3 Determine the internal force system acting on section 1 by analyzing

1

0.75 m

D
A B

6 kN/m

3.75 m 1.5 m

Fig. P6.1

the FBD of (a) segment AD; and (b) segment DB.

BA

3 m

180 kN . m

1.5 m

1.5 m 1

D
BA

6 m

400 N/m

3 m

1

D

Fig. P6.2 Fig. P6.3

6.4–6.6 Find the internal force systems acting on sections 1 and 2.

B

240 N total

1A

C2
5 m 5 m

3 m BA

5 m

C

5 m

3 m

240 N

1

2

BA

5 m

C

5 m

3 m

720 N ⋅ m

1

2

Fig. P6.4 Fig. P6.5 Fig. P6.6

6.7 The three identical cantilever beams carry vertical loads that are distributed
in a different manner. It is known that beam (a) fails because the maximum inter-
nal bending moment reaches its critical value when P1 = 360 N. Compute the
values of P2 and P3 that would cause the failure of the other two beams.

P1

L

(a)

L

(b)

Total load = P2

L

(c)

Total load = P3

Fig. P6.7

6.8 Find the internal force systems acting on sections 1 and 2 for the eyebolt
shown.
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28 N

40 N

30°

30 mm

20 mm
2

1

Fig. P6.8

6.9 For the structural component shown, determine the internal force systems
acting on sections 1 and 2.

2.5 kN

235

Dimensions in mm

1.2 kN

235
A B

C

D

400 400 400

1

2

Fig. P6.9

6.10 The two bars, pinned together at B, are supported by a frictionless surface
at A and a built-in support at C. Determine the internal force systems acting on
sections 1 and 2.

B C50°

0.6 m

900 N/m

0.6 m

A

0.6 m 0.6 m

21

Fig. P6.10

6.11 Determine the internal force system acting on section 1 (just below D) of 0.9 m 0.9 m

1

A

B D

C

E

2

800 N

600 N
0.8 m

0.8 m

Fig. P6.11, P6.12

the pin-connected frame.

6.12 Determine the internal force systems acting on section 2 (just to the right
of the 600-N load) of the pin-connected frame.
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6.13 Determine the internal force systems acting on sections 1 and 2 for the

C

240 N

0.4 m

0.4 m

240 N

0.3 m

A B

3
2

1

45°

Fig. P6.13, P6.14

pin-connected frame. The sections are located just above and just below pin C.

6.14 Find the internal force system acting on section 3 for the pin-connected
frame.

6.15 Calculate the internal force systems acting on sections 1 and 2, which are
adjacent to point C.

100 N

BC
1 m1 m

1.8 m 2.2 m

1 2

AA
1 m

Fig. P6.15

6.16 The 18000 N ·mm couple is applied to member DEF of the pin-connected

C

B

A

E

F

D

2

1

18000 N.mm
240 mm

360 mm

210 mm

480 mm

120 mm

Fig. P6.16

frame. Find the internal force systems acting on sections 1 and 2.

6.17 A man of weight W climbs a ladder that has been placed on a frictionless
horizontal surface. Find the internal force system acting on section 1 as a function
of x (the position coordinate of the person).

6.18 For the ladder in Prob. 6.17, find the internal force system acting on
section 2, assuming that x < a/2.

x

A

a a

C

a

a

B

D E

2 1

Fig. P6.17, P6.18

6.19 Determine the internal force system acting on section 1 of the circular
arch.
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1

30°

20°

D

CB

A

1000 N

500 N

2 m

Fig. P6.19

∗6.20 The equation of the parabolic arch is y = (36− x2)/6, where x and y are
measured in meters. Compute the internal force system acting on section 1.

2000 N

A
B

x

y

4 m
6 m 6 m

6 m

1

Fig. P6.20

*6.3 Analysis of Internal Forces

a. Loading and supports

The term beam is reserved for a slender bar that is subjected to transverse loading
(the applied forces are perpendicular to the bar). In this chapter, we consider only
loadings that are also coplanar. As explained in Art. 6.2, the internal force system
caused by coplanar loads can be represented as a normal force, a shear force, and
a bending moment acting on the cross section.

Several examples of coplanar beam supports and loadings encountered in
structural design are depicted in Fig. 6.4. Also shown are the free-body diagrams
of the beams, which display both the applied loads and the support reactions.
The reactions for statically determinate beams, Fig. 6.4(a)–(c), can be found from
equilibrium analysis. The computation of the reactions for statically indeterminate
beams, Fig. 6.4(d)–(f), requires analyses that are beyond the scope of this text.
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w0

A B

w0

NA By

Bx

(a) Simply supported beam

P1

A
B

P1

NA By

Bx

(b) Overhanging beam

A B

w0

By
MB

Bx

(c) Cantilever beam

w0

(d) Continuous beam

w0

A B C
w0

Cx

NBNA Cy

A

C1

C1

B

NA

MB

By

Bx

(e) Propped cantilever beam

A B

P1

P2

Bx

MB
By

MA
Ay

Ax

P2

(f) Fixed beam

P1

Statically determinate
beams

Statically indeterminate
beams

Fig. 6.4

b. Sign convention

For the sake of consistency, it is necessary to adopt sign conventions for applied
loading, shear forces, and bending moments. We will use the conventions shown
in Fig. 6.5 which assume the following to be positive:

• External forces that are directed downward; external couples that are directed
clockwise.

• Shear forces that tend to rotate a beam element clockwise.
• Bending moments that tend to bend a beam element concave upward (the

beam “smiles”).
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P

Positive Negative

External
loads

Shear
force

Bending
moment

V

V

P w

C

w

C

V

V

M M

M M

Fig. 6.5 Sign conventions for external loads, shear force, and bending moment.

The main disadvantage of the above conventions is that they rely on such
adjectives as “downward,” “clockwise,” and so on. To eliminate this obstacle, a
convention based upon a Cartesian coordinate system is sometimes used.

c. Shear force and bending moment
equations and diagrams

The determination of the internal force system at a given cross section in a mem-
ber has been discussed in Art. 6.2. The goal of beam analysis is to determine
the shear force and bending moment at every cross section of the beam. Particu-
lar attention is paid to finding the values and the locations of the maximum shear
force and the maximum bending moment. The results enable the engineer to select
a suitable beam that is capable of supporting the applied loads.

The equations that describe the variation of the shear force (V) and the bending
moment (M) with the location of the cross section are called the shear force and
bending moment equations, or simply, the V- and M-equations. These equations
are always dependent on sign conventions, such as shown in Fig. 6.5.

When the V- and M-equations are drawn to scale, the results are called the
shear force and bending moment diagrams, or simply, the V- and M-diagrams.
After these diagrams have been drawn, the maximum shear force and the max-
imum bending moment can usually be found by inspection or with minimal
computation.

In the following sample problems, we explain the procedures for deriving the
V- and M-equations and for plotting the V- and M-diagrams.



Sample Problem 6.3
The simply supported beam shown in Fig. (a) carries two concentrated loads.
(1) Derive the expressions for the shear force and the bending moment for each
segment of the beam. (2) Sketch the shear force and bending moment diagrams.
Neglect the weight of the beam. Note that the support reactions at A and D have
been computed and are shown in Fig. (a).

RA = 18 kN

x

y

DA

RD = 24 kN

1 2 3

(a)

2 m 2 m3 m

14 kN 28 kN

CB

Solution
Part 1

The determination of the expressions for V and M for each of the three beam
segments (AB, BC, and CD) is explained below.

Segment AB (0< x< 2m) Figure (b) shows the FBDs for the two parts of the
beam that are separated by section 1, located within segment AB. Note that we
show V and M acting in their positive directions according to the sign conventions
in Fig. 6.5. Because V and M are equal in magnitude and oppositely directed on
the two FBDs, they can be computed using either FBD. The analysis of the FBD
of the part to the left of section 1 yields

�Fy = 0 +
�⏐ 18− V = 0

V = +18 kN Answer

�ME = 0 + − 18x + M = 0

M = +18x kN ·m Answer

2 m3 m

14 kN 28 kN

18 kN 24 kN

D

CB

A

(b) FBDs

x
V

E
E

MM
V
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2 m

28 kN

24 kN

DC

M

F

(c) FBDs

2 m

14 kN

18 kN

BA

M

V

V

F

x

Segment BC (2m< x< 5m) Figure (c) shows the FBDs for the two parts of
the beam that are separated by section 2, an arbitrary section within segment BC.
Once again, V and M are assumed to be positive according to the sign conventions
in Fig. 6.5. The analysis of the part to the left of section 2 gives

�Fy = 0 +
�⏐ 18− 14− V = 0

V = +18− 14 = +4 kN Answer

�MF = 0 + − 18x + 14(x − 2)+ M = 0

M = +18x − 14(x − 2) = 4x + 28 kN ·m Answer

Segment CD (5m< x < 7m) Section 3 is used to find the shear force and bend-
ing moment in segment CD. The FBDs in Fig. (d) again show V and M acting in
their positive directions. Analyzing the portion of the beam to the left of section 3,
we obtain

�Fy = 0 +
�⏐ 18− 14− 28− V = 0

V = +18− 14− 28 = −24 kN Answer

�MG = 0 + − 18x + 14(x − 2)+ 28(x − 5)+ M = 0

M = +18x − 14(x − 2)− 28(x − 5) = −24x + 168 kN ·m Answer

24 kN

D

M V

G

2 m 3 m

14 kN 28 kN

18 kN

CBA

M

V

x

G

(d) FBDs

Part 2

The shear force and bending moment diagrams in Figs. (f) and (g) are the plots
of the expressions for V and M derived in Part 1. By placing these plots directly
below the sketch of the beam in Fig. (e), we establish a clear visual relationship
between the diagrams and locations on the beam.
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(g)

Shear force and bending moment diagrams

x

(e)

4

18

–24(f )

M (kN· m)

V (kN)

x

+48
+36

2 m

y

A
3 m

14 kN

18 kN

28 kN

24 kN

CB
2 m

D
x

An inspection of the V-diagram reveals that the largest shear force in the beam
is −24 kN and that it occurs at every cross section of the beam in segment CD.
From the M-diagram we see that the maximum bending moment is +48 kN · m,
which occurs under the 28-kN load at C. Note that at each concentrated force the
V-diagram “jumps” by an amount equal to the force. Furthermore, there is a
discontinuity in the slope of the M-diagram at each concentrated force.

Sample Problem 6.4
The simply supported beam shown in Fig. (a) is loaded by the clockwise couple
C0 at B. (1) Derive the shear force and bending moment equations; and (2) draw
the shear force and bending moment diagrams. Neglect the weight of the beam.
The support reactions A and C have been computed, and their values are shown
in Fig. (a).

Solution
Part 1

Due to the presence of the couple C0, we must analyze segments AB and BC
separately.

Segment AB (0< x < 3L/4) Figure (b) shows the FBD of the part of the beam
to the left of section 1 (we could also use the part to the right). Note that V and M
are assumed to act in their positive directions according to the sign conventions in
Fig. 6.5. The equilibrium equations for this portion of the beam yield
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�Fy = 0 +
�⏐ − C0

L
− V = 0

V = −C0

L
Answer

�MD = 0 +
C0

L
x + M = 0

M = −C0x

L
Answer

Segment BC (3L/4< x< L) Figure (c) shows the FBD of the portion of the
beam to the left of section 2 (the right portion could also be used). Once again,
V and M are assumed to act in their positive directions. Applying the equilibrium
equations to the segment, we obtain

�Fy = 0 +
�⏐ − C0

L
− V = 0

V = −C0

L
Answer

�ME = 0 +
C0

L
x − C0 + M = 0

M = −C0

L
x + C0 Answer

Part 2

The shear force and bending moment diagrams shown in Figs. (d) and (e), are
obtained by plotting the expressions for V and M found in Part 1. From the
V-diagram, we see that the shear force is the same for all cross sections of the
beam. The M-diagram shows a jump of magnitude C0 at the point of application
of the couple.

xC

1 2

C0
L

C0

L

y

x

(b)

C0
L

D

V

M

x

(c)

C0
L

E

V

MC0

3
4 LL

LL C0

A

RA =  
C0
L

B

RC =

3
4

FBDs

(a)

x

C0

3
4 L 1

4 L

V

x

C0
L

–

C0
L

C0
L

M

3
4 C0

x

1
4

C0

–

0

(e)

(d)

Shear force and bending moment diagrams
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Sample Problem 6.5
The cantilever beam in Fig. (a) carries a triangular load, the intensity of which
varies from zero at the left end to 360 N/m at the right end. In addition, a 1000-N
upward vertical load acts at the free end of the beam. (1) Derive the shear force
and bending moment equations; and (2) draw the shear force and bending moment
diagrams. Neglect the weight of the beam.

A

y

x
B

360 N/m

1000 N

12 m

(a)

Solution
The FBD of the beam is shown in Fig. (b). Note that the triangular load has been
replaced by its resultant, which is the force 0.5(12)(360) = 2160 N (area under
the loading diagram) acting at the centroid of the loading diagram. The support
reactions at B can now be computed from the equilibrium equations; the results
are shown in Fig. (b).

1

RB  = 1160 N
(b)

A

A

B

V (N)

12 m

2160 N
8 m

360 N/m

M (N.m)

MB  = 3360 N.m

y

1000 N

1000 N

1000

x
3

w  = 30x N/m
15x2 N

C

x

M

(c)

x

x

V

x
(e)

(d)
8.165 m

3°

2°

5443

–1160

3360
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Because the loading is continuous, the beam does not have to be divided into
segments. Therefore, only one expression for V and one expression for M apply
to the entire beam.

Part 1

Figure (c) shows the FBD of the part of the beam that lies to the left of section 1.
Letting w be the intensity of the loading at section 1, as shown in Fig. (b), we have
from similar triangles, w/x = 360/12, or w = 30x N/m. Now the triangular load
in Fig. (c) can be replaced by its resultant force 15x2 N acting at the centroid of the
loading diagram, which is located at x /3 m from section 1. The shear force V and
bending moment M acting at section 1 are shown acting in their positive directions
according to the sign convention in Fig. 6.5. Equilibrium analysis of the FBD in
Fig. (c) yields

�Fy = 0 +
�⏐ 1000− 15x2 − V = 0

V = 1000− 15x2 N Answer

�MC = 0 + − 1000x + 15x2
( x

3

)
+ M = 0

M = 1000x − 5x3 N ·m Answer

Part 2

Plotting the expressions for V and M found in Part 1 gives the shear force and
bending moment diagrams shown in Figs. (d) and (e). Observe that the shear
force diagram is a parabola and the bending moment diagram is a third-degree
polynomial in x.

The location of the section where the shear force is zero is found from

V = 1000− 15x2 = 0

which gives

x = 8.165 m

The maximum bending moment occurs where the slope of the M-diagram is
zero—that is, where dM / dx = 0. Differentiating the expression for M, we obtain

dM

dx
= 1000− 15x2 = 0

which again yields x = 8.165 m. (In the next article, we will show that the slope
of the bending moment diagram is always zero at a section where the shear force
vanishes.) Substituting this value of x into the expression for M, we find that the
maximum bending moment is

Mmax = 1000(8.165)− 5(8.165)3 = 5443 N ·m
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Problems

6.21–6.38 For the beam shown, derive the expressions for V and M , and draw
the shear force and bending moment diagrams. Neglect the weight of the beam.

w0

L

A

y

B
x

C0

L
A

y

B
x

Fig. P6.21 Fig. P6.22

w0

L
A

y

B
x

w0

LA

y

B

x

Fig. P6.23 Fig. P6.24

9 m

60 N/m

300 N.m

A

y

B
x

A B

P

C

y

x

a b

Fig. P6.25 Fig. P6.26

B

200 kN/m

A

y

C
x

2 m 2 m

B C

120 N/m

A

y

x

6 m8 m

Fig. P6.27 Fig. P6.28

B

A
75 kN · m

50 kN

C

y

x

2 m 3 m

120 N/m

y

C
x

A

6 m3 m

B

Fig. P6.29 Fig. P6.30
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C

B

A

y

x

2 m 2 m

80 kN/m

C
BA x

5 m 3 m

8 kN/m

12 kN ⋅ m

y

Fig. P6.31 Fig. P6.32

2 kN/m

A B C
x

y

4 kN/m

2 m 3 m

B C

P

D
x

P
y

A

L
3

L
3

L
3

Fig. P6.33 Fig. P6.34
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A
CB

D
x
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2 m3 m1 m

A
B
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12 kN
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D x

y
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Fig. P6.35 Fig. P6.36
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D

C

x

800 N/m

2 m 4 m 2 m

y

A

B
C

D
x

400 N900 N
60 N/m

8 m 6 m4 m

Fig. P6.37 Fig. P6.38
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6.39–6.40 Derive the shear force and the bending moment as functions of the
angle θ for the arch shown. Neglect the weight of the arch.

A
B

Q

P

R

θ R

O
A C

P

B

θ

Fig. P6.39 Fig. P6.40

6.41 The 6-m timber floor joist is designed to carry a uniformly distributed
load. Because only 4-m timbers are available, the joist is to be fabricated from
two pieces connected by a nailed joint D. Determine the distance b for the most
advantageous position of the joint D, knowing that nailed joints are strong in shear
but weak in bending.

A x

2 m4 m

b

D C

y

w0 N/m

Detail of joint at D

B

x
B

P

y

A

x

x
B

P

y

A

x

Case 1

Case 2

1

1

L
2

L
2

L
2

L
2

Fig. P6.41 Fig. P6.42

6.42 For the beam AB shown in Cases 1 and 2, derive and plot expressions for
the shear force and bending moment acting on section 1 in terms of the distance
x (0 < x < L). [Note: Case 1 results in the conventional V- and M-diagrams,
in which the loads are fixed and the location of the section varies; the diagrams
for Case 2 (called influence diagrams) show the variation of V and M at a fixed
section as the location of the load is varied.]
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*6.4 Area Method for Drawing
V- and M-Diagrams

There are useful relationships between the load diagram, the shear force diagram,
and the bending moment diagram, which are derivable from the equilibrium equa-
tions. Utilizing these relationships, we can plot the shear force diagram directly
from the load diagram, and then sketch the bending moment diagram directly
from the shear force diagram. This technique, called the area method, enables us
to draw the V- and M-diagrams without having to go through the tedium of writing
the V- and M-equations. We first consider beams subjected to distributed loading
and then discuss concentrated forces and couples.

a. Distributed loading

Consider the beam in Fig. 6.6(a) that is subjected to a line load of intensity w(x),
where w(x) is assumed to be a continuous function. The free-body diagram of an
infinitesimal element of the beam, located at the distance x from the left end, is
shown in Fig. 6.6(b). In addition to the distributed load w(x), the segment car-
ries a shear force and a bending moment at each end section, which are denoted
by V and M at the left end and by V + dV and M + dM at the right end. The
infinitesimal differences dV and dM represent the changes that occur over the dif-
ferential length dx of the element. Observe that all forces and bending moments
are assumed to act in the positive directions, as defined in Fig. 6.5.

The force equation of equilibrium for the element is

�Fy = 0 +
�⏐ V − w dx− (V + dV) = 0

w(x)

dx

y

x

w dx

dx
2V

M M+dM

V+dVdx

x

x

(a)

(b)

O

Fig. 6.6
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from which we get

w = −dV

dx
(6.1)

The moment equation of equilibrium yields

�MO = 0 + − M − V dx+ (M + dM)+ w dx
dx

2
= 0

After canceling M and dividing by dx, we get

−V + dM

dx
+ w dx

2
= 0

Because dx is infinitesimal, the last term can be dropped (this is not an approxi-
mation), yielding

V = dM

dx
(6.2)

Equations (6.1) and (6.2) are called the differential equations of equilibrium for
beams. The following five theorems relating the load, the shear force, and bending
moment diagrams follow from these equations.

1. The load intensity at any section of a beam is equal to the negative of the slope
of the shear force diagram at that section.
Proof—follows directly from Eq. (6.1).

2. The shear force at any section is equal to the slope of the bending moment
diagram at that section.
Proof—follows directly from Eq. (6.2).

3. The difference between the shear force at two sections of a beam is equal to
the negative of the area under the load diagram between those two sections.
Proof—integrating Eq. (6.1) between sections A and B in Fig. 6.7, we obtain

∫ xB

xA

dV

dx
dx = VB − VA = −

∫ xB

xA

w dx

Recognizing that the integral on the right-hand side of this equation represents
the area under the load diagram between A and B, we get

VB − VA = −area of w-diagram
]B

A
Q.E.D.

For computational purposes, a more convenient form of this equation is

VB = VA − area of w-diagram
]B

A (6.3)

Note that the signs in Eq. (6.3) are correct only if xB > xA.
4. The difference between the bending moments at two sections of a beam is

equal to the area of the shear force diagram between these two sections.
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w(x)

xA

MA
MB

x

xB

A B

w(x)

x

VB

VA

A
B

y

Fig. 6.7

Proof—integrating Eq. (6.2) between sections A and B (see Fig. 6.7), we have

∫ xB

xA

dM

dx
dx = MB − MA =

∫ xB

xA

V dx

Because the right-hand side of this equation is the area of the shear force
diagram between A and B, we obtain

MB − MA = area of V-diagram
]B

A Q.E.D.

We find it convenient to use this equation in the form

MB = MA + area of V-diagram
]B

A
(6.4)

The signs in Eq. (6.4) are correct only if xB > xA.
5. If the load diagram is a polynomial of degree n, then the shear force diagram

is a polynomial of degree (n + 1), and the bending moment diagram is a
polynomial of degree (n + 2).
Proof—follows directly from the integration of Eqs. (6.1) and (6.2).

The area method for drawing shear force and bending moment diagrams is
a direct application of the foregoing theorems. For example, consider the beam
segment shown in Fig. 6.8(a), which is 2 m long and is subjected to a uniformly
distributed load w= 300 N/m. Figure 6.8(b) shows the steps required in the con-
struction of the shear force and bending moment diagrams for the segment, given
that the shear force and the bending moment at the left end are VA = +1000 N
and MA = +3000 N ·m.
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w = +300 N/m (const.)

V  = +1000 N (given)

VB = VA − area of w−diagram] B
A

= 1000 − 600 = + 400 N

dV/dx = −w = −300 N/m (const.)
V−diagram is a straight line

MA = +3000 N · m (given)

MB = MA + area of V-diagram]B
A

= 3000 + 1400 = +4400 N · m

(d M/dx)A = VA = +1000 N

(d M/dx)B = VB = +400 N

M-diagram is a parabola

4400

A B
x

3000

(b)

A B
x

4400

M (N · m)

M (N · m)

M (N · m)

A B
x

3000

M (N · m)

A B
x

3000

+1400 N · m

2 m

V (N)

A B
x

1000

400

V (N)

A B
x

1000

400

V (N)

A B
x

1000

w (N/m)

A B
x

2 m

+600 N
300

w = +300 N/m

y

A
B x

VA = 1000 N

MA = 3000 N · m
MB

VB

2 m

(a)

Area = +600 N

A

Fig. 6.8 Constructing shear force and bending moment diagrams for a
beam segment.
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b. Concentrated forces and couples

The area method for constructing shear force and bending moment diagrams
described above for distributed loads can be extended to beams that are loaded
by concentrated forces and/or couples. Figure 6.9 shows the free-body diagram of
a beam element of infinitesimal length dx containing a point A where a concen-
trated force PA and a concentrated couple CA are applied. The shear force and the
bending acting at the left side of the element are denoted by V−A and M−A , whereas
the notation V+A and M+A is used for the right side of the element. Observe that all
forces and moments in Fig. 6.9 are assumed to be positive according to the sign
conventions in Fig. 6.5.

x

y

MA
MA

+
VA

–

PA

dx

–

A

CA

VA
+

dx
2

Fig. 6.9

The force equation of equilibrium gives

�Fy = 0 +
�⏐ V−A − PA − V+A = 0

V+A = V−A − PA (6.5)

Equation (6.5) indicates that a positive concentrated force causes a negative jump
discontinuity in the shear force diagram at A (a concentrated couple does not
affect the shear force diagram).

The moment equilibrium equation yields

�MA = 0 + M+A − M−A − CA − V+A
dx

2
− V−A

dx

2
= 0

Dropping the last two terms because they are infinitesimals (this is not an
approximation), we obtain

M+A = M−A + CA (6.6)

Thus, a positive concentrated couple causes a positive jump in the bending
moment diagram.
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c. Summary

Equations (6.1)–(6.6), which are repeated below, form the basis of the area
method for constructing shear force and bending moment diagrams without
deriving the expressions for V and M. The area method is useful only if the areas
under the load and shear force diagrams can be easily computed.

w = −dV

dx
(6.1)

V = dM

dx
(6.2)

VB = VA − area of w-diagram
]B

A
(6.3)

MB = MA + area of V-diagram
]B

A (6.4)

V+A = V−A − PA (6.5)

M+A = M−A + CA (6.6)

Procedure for the Area Method The following steps outline the procedure for
constructing shear force and bending moment diagrams by the area method:

• Compute the support reactions from the free-body diagram (FBD) of the entire
beam.

• Draw the load diagram of the beam (which is essentially a FBD) showing the
values of the loads, including the support reactions. Use the sign conventions
in Fig. 6.5 to determine the correct sign of each load.

• Working from left to right, construct the V- and M-diagrams for each segment
of the beam using Eqs. (6.1)–(6.6).

• When you reach the right end of the beam, check to see whether the computed
values of V and M are consistent with the end conditions. If they are not, you
have made an error in the computations.

At first glance, using the area method may appear to be more cumbersome
than plotting the shear force and bending moment equations. However, with
practice you will find that the area method is not only much faster but also
less susceptible to numerical errors because of the self-checking nature of the
computations.



Sample Problem 6.6
The simply-supported beam in Fig. (a) supports a 30-kN concentrated force at B
and a 40-kN·m couple at D. Sketch the shear force and bending moment diagrams
by the area method. Neglect the weight of the beam.

4 m

y

A E

(a)

B

3 m 3 m

PB = 30 kN

CD = 40 kN · m
D

x

Solution
Load Diagram

The load diagram for the beam is shown in Fig. (b). The reactions at A and E
are found from equilibrium analysis. The numerical value of each force and the
couple is followed by a plus or minus sign in parentheses, indicating its sign as
established by the sign conventions in Fig. 6.5.

4 m

y

A E
x

(b)

B

3 m 3 m

D

CD = 40 kN · m (+)

PB = 30 kN (+)

RA = 14 kN (–) RE = 16 kN (–)

0

14

–16

x

(c)

f56
h48

8
e

0
i

x

(d)

M (kN · m)

V (k N)

g

a b

c d

+56 kN · m

– 48 kN · m – 48 kN · m

Shear Force Diagram

We now explain the steps used to construct the shear force diagram in Fig. (c).
From the load diagram, we see that there are concentrated forces at A, B, and E
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that will cause jumps in the shear force diagram at these points. Therefore, our dis-
cussion of shear force must distinguish between sections of the beam immediately
to the left and to the right of each of these points.

We begin by noting that V−A = 0 because no loading is applied to the left of A.
We then proceed across the beam from left to right, constructing the diagram as
we go:

V+A = V−A − RA = 0− (−14) = +14 kN

Plot point a.

V−B = V+A − area of w-diagram
]B

A = 14− 0 = −14 kN

Plot point b.

Because w = −dV/dx = 0 between A and B, the slope of the V-diagram is zero
between these points.

Connect a and b with a horizontal straight line.

V+B = V−B − PB = 14− (+30) = −16 kN

Plot point c.

V−E = V+B − area of w-diagram
]E

B = −16− 0 = −16 kN

Plot point d.

Noting that w = −dV/dx = 0 between B and E, we conclude that the slope of the
V-diagram is zero in segment BE.

Connect c and d with a horizontal straight line.

Because there is no loading to the right of E, we should find that V+E = 0.

V+E = V−E − RE = −16− (−16) = 0 Checks!

Bending Moment Diagram

We now explain the steps required to construct the bending moment diagram
shown in Fig. (d). Because the applied couple is known to cause a jump in
the bending moment diagram at D, we must distinguish between the bending
moments at sections just to the left and to the right of D. Before proceeding, we
compute the areas under the shear force diagram for the different beam segments.
The results of these computations are shown in Fig. (c). Observe that the areas are
either positive or negative, depending on the sign of the shear force.
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We begin our construction of the bending moment diagram by noting that
MA = 0 (there is no couple applied at A).

Plot point e.

Proceeding across the beam from left to right, we generate the moment
diagram in Fig. (d) in the following manner:

MB = MA + area of V -diagram
]B

A = 0+ (+56) = 56 kN ·m
Plot point f.

The V-diagram shows that the shear force between A and B is constant and
positive. Therefore, the slope of the M-diagram between these two sections is
also constant and positive (recall that dM/dx = V ).

Connect e and f with a straight line.

M−D = MB + area of V -diagram
]D

B = 56+ (−48) = 8kN ·m
Plot point g.

Because the slope of the V -diagram between B and D is negative and constant,
the M-diagram has a constant, negative slope in this segment.

Connect f and g with a straight line.

M+D = M−D + CD = 8+ (+40) = 48 kN ·m
Plot point h.

Next, we note that ME = 0 (there is no couple applied at E). Our computations
based on the area of the V-diagram should verify this result.

ME = M+D + area of V -diagram
]E

D = 48+ (−48) = 0 Checks!

Plot point i.

The shear force between D and E is negative and constant, which means that the
slope of the M-diagram for this segment is also constant and negative.

Connect h and i with a straight line.
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Sample Problem 6.7
The overhanging beam in Fig. (a) carries two uniformly distributed loads and

2 m

y

A
E

x

1 m 4 m 2 m

C

400 N/m
PC = 400 N

200 N/m

(a)

D

B

a concentrated load. Using the area method, draw the shear force and bending
moment diagrams for the beam. Neglect the weight of the beam.

2 m

A E
x

1 m 2 m

B C D

400 N/m (+) PC = 400 N (+)

200 N/m (+)
d

720
320

V (N)

0

+720 N.m

4 m

RB = 1520 N (–)

(b)

RD = 880 N (–)

–800
–480

400

x (m)

4 – d = 2.4d = 1.6

0

M (N ⋅m)

–800

–80

176

–400

x (m)

(d)

F

–576 N.m

+400 N.m–800 N.m

dc

a
g

h

f
b

i

j

l

m
n

e

k

+256 N.m

(c)

Solution
Load Diagram

The load diagram for the beam is shown in Fig. (b); the reactions at B and D are
determined by equilibrium analysis. Each of the numerical values is followed by a
plus or minus sign in parentheses, determined by the sign conventions established
in Fig. 6.5. The significance of the section labeled F will become apparent in the
discussion that follows.

Shear Force Diagram

The steps required to construct the shear force diagram shown in Fig. (c) are now
detailed. From the load diagram, we see that there are concentrated forces at B, C,
and D, which means that there will be jumps in the shear diagram at these points.
Therefore, we must differentiate between the shear force immediately to the left
and to the right of each of these points.
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We begin our construction of the V-diagram by observing that VA = 0 because
no force is applied at A.

Plot point a.

V−B = VA − area of w-diagram
]B

A = 0− (+400)(2) = −800 N

Plot point b.

We observe from Fig. (b) that the applied loading between A and B is constant
and positive, so the slope of the shear diagram between the two cross sections is
constant and negative (recall that dV/dx = −w).

Connect a and b with a straight line.

V+B = V−B − RB = −800− (−1520) = 720 N

Plot point c.

V−C = V+B − area of w-diagram
]C

B = 720− 0 = 720 N

Plot point d.

Because w = −dV/dx = 0 between B and C, the slope of the V-diagram is zero
in this segment.

Connect c and d with a horizontal straight line.

V+C = V−C − PC = 720− (+400) = 320 N

Plot point e.

V−D = V+C − area of w-diagram
]D

C
= 320− (+200)4 = −480 N

Plot point f.

Because the loading between C and D is constant and positive, the slope of the
V-diagram between these two sections is constant and negative.

Connect e and f with a straight line.

Our computations have identified an additional point of interest—the point
where the shear force is zero, labeled F on the load diagram in Fig. (b). The
location of F can be found from

VF = V+C − area of w-diagram
]F

C
= 320− (+200)d = 0

which gives d = 1.60 m, as shown in Fig. (c).
Continuing across the beam, we have

V+D = V−D − RD = −480− (−880) = 400 N

Plot point g.
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Next, we note that VE = 0 (there is no force acting at E). The computation based
on the area of the load diagram should verify this result:

VE = V+D − area of w-diagram
]E

D = 400− (+200)2 = 0 Checks!

Plot point h.

From Fig. (b), we see that the applied loading between D and E is constant and
positive. Therefore the slope of the V-diagram between these two cross sections
is constant and negative.

Connect g and h with a straight line.

This completes the construction of the shear force diagram.

Bending Moment Diagram

We now explain the steps required to construct the bending moment diagram
shown in Fig. (d). Because there are no applied couples, there will be no jumps in
the M-diagram. The areas of the shear force diagram for the different segments of
the beam are shown in Fig. (c).

We begin by noting that MA = 0 because no couple is applied at A.

Plot point i.

Proceeding from left to right across the beam, we construct the bending
moment diagram as follows:

MB = MA + area of V-diagram
]B

A = 0+ (−800) = −800 N ·m
Plot point j.

We note from Fig. (c) that the V-diagram between A and B is a first-degree poly-
nomial (inclined straight line). Therefore, the M-diagram between these two cross
sections is a second-degree polynomial—that is, a parabola. From dM/dx = V ,
we see that the slope of the M-diagram is zero at A and −800 N/m at B.

Connect i and j with a parabola that has zero slope at i and
negative slope at j. The parabola will be concave downward.

MC = MB + area of V -diagram
]C

B = −800+ (+720) = −80 N ·m
Plot point k.

Because the V-diagram is constant and positive between B and C, the slope of the
M-diagram is constant and positive between those two cross sections.

Connect j and k with a straight line.

MF = MC + area of V -diagram
]F

C = −80+ (+256) = +176 N ·m
Plot point l.
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Using V = dM/dx, we know that the slope of the M-diagram is +320 N/m at C
and zero at F, and that the curve is a parabola between these two cross sections.

Connect k and l with a parabola that has positive slope at k
and zero slope at l. The parabola will be concave downward.

MD = MF + area of V-diagram
]D

F = 176+ (−576) = −400 N ·m
Plot pointm.

The M-diagram between F and D is again a parabola, with a slope of zero at F
and −480 N/m at D.

Connect l and m with a parabola that has zero slope at l and
negative slope at m. The parabola will be concave downward.

Next, we note that ME = 0 because no couple is applied at E. Our
computation based on the area of the V-diagram should verify this result.

ME = MD + area of V-diagram
]E

D
= −400+ (+400) = 0 Checks!

Plot point n.

From the familiar arguments, the M-diagram between D and E is a parabola with
a slope equal to +400 N/m at D and zero slope at E.

Connect m and n with a parabola that has positive slope at m
and zero slope at n. The parabola will be concave downward.

This completes the construction of the bending moment diagram. It is obvious
in Fig. (d) that the slope of the M-diagram is discontinuous at j and m. Not so
obvious is the slope discontinuity at k: From dM/dx = V , we see that the slope
of the M-diagram to the left of k equals +720 N/m, whereas to the right of k the
slope equals +320 N/m. Observe that the slope of the M-diagram is continuous at
l because the shear force has the same value (zero) to the left and to the right of l.

315



316 CHAPTER 6 Beams and Cables

Problems

6.43–6.56 Construct the shear force and bending moment diagrams for the
beam shown by the area method. Neglect the weight of the beam.

20 kN

A
B C D

E

2 m 2 m 2 m 2 m

40 kN 60 kN

30 kN . m

30 kN . m

5 kN/m

3 m 3 m

A
B C

Fig. P6.43 Fig. P6.44

120 kN/m

8 m 4 m

900 kN

A

B
C

25 kN . m

10 kN/m

3 m 2 m

A
B

D

E
C

1 m 1 m

Fig. P6.45 Fig. P6.46

120 kN/m 120 kN/m100 kN

2 m 2 m 2 m

A
B

D
C

2000 kN 200 kN/m

400 kN/m1000 kN

5 m 10 m 10 m

A
B

D
C

Fig. P6.47 Fig. P6.48
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A
B

D

C
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3 m

A E
B

D

C

1 m 1 m 1 m

Fig. P6.49 Fig. P6.50
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2 m 3 m 2 m

A
B

D

C

20 kN/m 60 kN

120 kN . m

2 m 2 m 2 m 2 m

A
B D

E
C

Fig. P6.51 Fig. P6.52
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CB D
E

40 kN30 kN
10 kN/m

A

2 m 2 m 3 m1 m

C
D

B
A D

960 kN/m

440 kN/m

960 kN/m

4 m 8 m 2 m

Fig. P6.53 Fig. P6.54

1000 kN

500 N

B C

D

A

400 kN/m

2 m 2 m 4 m

A

B
2 m 4 m

Hinge

2 m

C D

200 kN/m

Fig. P6.55 Fig. P6.56

6.57–6.61 Draw the load and the bending moment diagrams that correspond to
the given shear force diagram. Assume no couples are applied to the beam.
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2
2400
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V (kN)

x (m)

3 1 1
–8

–2

2

10 2nd-degree curve

Fig. P6.61

Part B: Cables

*6.5 Cables under Distributed Loads

a. General discussion

Flexible cables are used in numerous engineering applications. Common exam-
ples are power transmission lines and suspension bridges. The term flexible means
that the cables are incapable of developing internal forces other than tension. In
earlier chapters we treated cables as two-force members; that is, the weights of
the cables were neglected, and the loading consisted of end forces only. Here we
consider the effects of distributed forces, such as the weight of the cable or the
weight of a structure that is suspended from the cable. Concentrated loads are
covered in the next article.

Figure 6.10(a) shows a cable that is suspended from its endpoints A and B.
In order to support the distributed loading of intensity w, the cable must assume
a curved shape. It turns out that the equation describing this shape is simplified
if we place the origin of the xy-coordinate system at the lowest point O of the
cable. We let s be the distance measured along the cable from O. The shape of
the cable and the location of point O are generally unknown at the beginning of
the analysis.

y
B

A

O
x

s

w

(a)

C

T

OT0

s

x

y

θ

FBD

W

(b)

Fig. 6.10
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The units of the load intensity w are lb/ft or N/m. The length can be measured
in two ways: along the horizontal x-axis (w as a function of x) or along the cable
(w as a function of s). Although these two cases must be treated separately, we
first consider the elements of the analyses that are common to both.

The free-body diagram (FBD) of a segment of the cable, extending from the
lowest point O to an arbitrary point C, is shown in Fig. 6.10(b). The tensile forces
in the cable at O and C are denoted by T0 and T, respectively; W is the resultant
of the distributed loading; and θ represents the slope angle of the cable at C. The
force equilibrium equations of the cable segment are

�Fx = 0 −→+ T cos θ − T0 = 0

�Fy = 0 +
�⏐ T sin θ −W = 0

from which we obtain

T cos θ = T0 T sin θ = W (6.7)

The first of Eqs. (6.7) shows that the horizontal component of the cable force,
namely T cos θ , is constant throughout the cable. The solution of Eqs. (6.7) for θ

and T yields

tan θ = W

T0
T =
√

T 2
0 +W 2 (6.8)

b. Parabolic cable

Here we analyze the special case in which the loading is distributed uniformly
along the horizontal; that is, w(x) = w0, where w0 is the constant load inten-
sity. This case arises, for example, in the main cables of a suspension bridge [see
Fig. 6.11(a)] where w0 represents the weight of the roadway per unit length. It is
assumed that the roadway is connected to the main cables by a large number of
vertical cables and that the weights of all cables are negligible compared to the
weight of the roadway.

Taking Eqs. (6.8) as the starting point, we now derive several useful equations
that describe the geometry of the cable and the variation of the tensile force within
the cable.

θ and T as functions of x and T0 Because the resultant of the loading shown in
Fig. 6.11(b) is W = w0x , Eqs. (6.8) become

tan θ = w0x

T0
T =
√

T 2
0 + (w0x)2 (6.9)

y as a function of x and T0 Substituting tan θ = dy/dx, the first of Eqs. (6.9)
can be written as dy/dx = w0x /T0. Upon integration, we get

y = w0x2

2T0
(6.10)
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Main cable

Roadway

(a)

w0

O

C

W

w0

T0
O

C

s

x
y

θ
T

FBD
(b)

Fig. 6.11

where the constant of integration was set equal to zero to satisfy the condition
y = 0 when x = 0. Equation (6.10), which represents a parabola with its vertex
at O, could also be obtained from a moment equilibrium equation using the FBD
in Fig. 6.11(b).

s as a function of x and T0 It is often necessary to compute the length s of
the cable between points O and C in Fig. 6.11(b). The infinitesimal length of the
cable is

ds =
√

dx2 + dy2 =
√

1+
(

dy

dx

)2

dx (a)

Substituting dy/dx = w0x /T0 and integrating, we obtain

s(x) =
∫ x

0

√
1+
(

w0x

T0

)2

dx (6.11)

Therefore, the length of the cable between points O and C is (see a table of
integrals)

s(x) = x

2

√
1+
(

w0x

T0

)2

+ 1

2

(
T0

w0

)
ln

⎡
⎣(w0x

T0

)
+
√

1+
(

w0x

T0

)2
⎤
⎦ (6.12)
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c. Catenary cable

Consider a homogeneous cable that carries no load except its own weight. In
this case, the loading is uniformly distributed along the length of the cable; that
is, w(s)=w0, where w0 is the weight of the cable per unit length, and the dis-
tance s is measured along the cable. Therefore, the resultant of the loading shown
in Fig. 6.10(b) is W =w0s. The following useful relationships can now be derived
from Eqs. (6.8).

θ and T as functions of s and T0 Substituting W = w0s into Eqs. (6.8) gives

tan θ = w0s

T0
T =
√

T 2
0 + (w0s)2 (6.13)

s as a function of x and T0 We start with Eq. (a), which can be written as
(dy/dx)2 = (ds/dx)2−1. Substituting dy/dx = tan θ = w0s/T0, and solving for dx,
yields

dx = ds√
1+
(

w0s

T0

)2
(b)

Using a table of integrals, Eq. (b) yields

x(s) =
∫ s

0
dx = T0

w0
ln

⎡
⎣w0s

T0
+
√

1+
(

w0s

T0

)2
⎤
⎦ (6.14)

Solving this equation for s gives

s(x) = T0

w0
sinh

w0x

T0
(6.15)

The functions sinh u and cosh u, called the hyperbolic sine and hyperbolic
cosine, respectively, are defined as

sinh u = 1

2

(
eu − e−u

)
cosh u = 1

2

(
eu + e−u

)
It can be seen that the rules for differentiation are

d

du
sinh u = cosh u

d

du
cosh u = sinh u

y as a function of x and T0 We substitute Eq. (6.15) into the first equation of
Eqs. (6.13), which yields tan θ = sinh(w0x /T0). Using tan θ = dy/dx, we obtain

dy = tan θ dx = sinh
w0x

T0
dx

which gives

y(x) =
∫ x

0
dy = T0

w0

(
cosh

w0x

T0
− 1

)
(6.16)

The curve represented by Eq. (6.16) is called a catenary.
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If the slope of the catenary is small everywhere, then the curve differs very
little from a parabola. As a proof of this statement, we note that if θ << 1, then
dx = ds cos θ ≈ ds. Consequently, w(s) ≈ w(x), which means that the weight
of the cable may be approximated by a uniformly distributed loading along the
horizontal. This approximation usually simplifies the solution, because parabolic
cables are generally easier to analyze than catenary cables.

T as a function of x and T0 According to Eq. (6.7), the tension in the cable
is T = T0/ cos θ . Utilizing the geometrical relationship cos θ = dx/ds, this becomes
T = T0 ds/dx. On substituting for s from Eq. (6.15), we get

T = T0 cosh
w0x

T0
(6.17)

d. Note on the solution of problems

There is no standard, step-by-step procedure for solving problems involving flex-
ible cables. The reason is that the solution method for every problem is highly
dependent on the information that is given in the problem statement. However,
here are two guidelines that are applicable in most situations and that may be
helpful.

1. It is not always wise to depend entirely on Eqs. (6.9)–(6.17). More often than
not, a good starting point is the free-body diagram of the entire cable, or a
portion of it, similar to Figs. 6.10(b) or 6.11 (b). This FBD, in conjunction with
Eqs. (6.9)–(6.17), should be used to formulate a method of analysis before
proceeding to the actual computations.

2. Observe that point O, the origin of the coordinate system, and T0 appear in all
of the cable equations. If the location of point O and/or T0 are not known, they
should be determined first.



Sample Problem 6.8
The 36-m cable shown in Fig. (a) weighs 1.5 kN/m. Determine the sag H and the

A

H

30 m

OLength = 36 m

B

(a)

maximum tension in the cable.

Solution
Method of Analysis

Because the loading is distributed along the cable, the shape of the cable is a cate-
nary. The cable is obviously symmetric about the midpoint of AB, which means
that the location of the lowest point O of the cable is known. From the second
of Eqs. (6.13), we note that the maximum cable tension occurs at the endpoints,
where s is a maximum.

We now draw the free-body diagram of the right half of the cable, shown in
Fig. (b). Although we could use this FBD in the solution of the problem, it is
easier to use Eqs. (6.15)–(6.17). However, the FBD is convenient for identifying
the various terms that arise in the solution.

y

sB
= 18 m

H
O

w0 = 1.5 kN/m

B

(b) FBD of segment OB

x

15 m

T0

TB = Tmax

s

By studying Eqs. (6.15)–(6.17), we conclude that the solution can be obtained
by the following three steps.

Step 1: Equation (6.15)—Substitute w0 = 1.5 kN/m and the coordinates of B
(s = 18 m, x = 15 m); solve for T0.

Step 2: Equation (6.16)—Substitute w0 = 1.5 kN/m, the coordinates of B (x =
15 m, y = H ), and the value found for T0; solve for H.

Step 3: Equation (6.17)—Substitute w0 = 1.5 kN/m, x = 15 m, T = Tmax, and
the value found for T0; solve for Tmax.

Mathematical Details

Step 1
Equation (6.15) is

s = T0

w0
sinh

w0x

T0

18 = T0

1.5
sinh

1.5(15)

T0
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This equation must be solved numerically. The result, which may be verified by
substitution, is T0 = 21.13 kN.

Step 2
Equation (6.16) is

y = T0

w0

(
cosh

w0x

T0
− 1

)

H = 21.13

1.5

[
cosh

1.5(15)

21.13
− 1

]
= 8.77 m Answer

Step 3
Equation (6.17) is

T = T0 cosh
w0x

T0

Tmax = 21.13 cosh
1.5(15)

21.13
= 34.3 kN Answer

Sample Problem 6.9
Figure (a) shows a cable that carries the uniformly distributed load w0 = 80 N/m,
where the distance is measured along the horizontal. Determine the shortest cable
for which the cable tension does not exceed 10 000 N, and find the corresponding
vertical distance H.

40 m

200 m

(a)

A

B

H
O

w0 = 80 N/m

Solution
Method of Analysis

Because the loading is distributed uniformly over the horizontal distance, we
know that the shape of the cable is parabolic. It is also apparent that the loca-
tion of the lowest point O of the cable and the cable tension T0 at that point are
not known. Therefore, the computation of these unknowns is addressed first.

A good starting point is the free-body diagram of the entire cable,
shown in Fig. (b). The forces appearing on this diagram are the cable ten-
sions at the endpoints (TA and TB) and the resultant of the distributed load:
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W= (80 N/m)(200 m)= 16 000 N. According to the second equation of Eqs. (6.9),
the tension in the cable increases with x (x is measured from the vertex of
the parabola). It follows that the maximum cable tension occurs at B; that is,
TB = 10 000 N, as shown in the figure. The FBD in Fig. (b) now contains three
unknowns: the slope angles θA and θB and the tension TA, all of which could be
computed from the three available equilibrium equations. It turns out that we need
only θB , which can be obtained from the moment equation �MA = 0.

40 m
B

TB = 10 000 N
200 m

O

(b) FBD of entire cable

TA
100 m

LB

W = 16 000 N

sA

sB

LA

A

θB

θA

As the next step, we draw the FBD of the portion of the cable that lies to the
right of point O, as shown in Fig. (c). Assuming that θB has already been com-
puted, this FBD contains three unknowns: L B (which locates point O), T0, and H.
Because there are also three equilibrium equations available, all the unknowns
can now be calculated. The final step is to calculate the length of the cable from
Eq. (6.12).

B

TB = 10 000 N

O

(c) FBD of segment OB

x

LB

WB = 80LB

T0

y

H

1
2LB

s

θB

Mathematical Details

From the FBD of the entire cable in Fig. (b), we obtain

�MA = 0 + (10 000 sin θB)(200)− (10 000 cos θB)(40)

− (16 000)(100) = 0

which reduces to

sin θB − 0.2 cos θB − 0.8 = 0

The smallest positive root of this equation can be found by numerical methods.
The result, which can be verified by substitution, is θB = 62.98◦.

From the FBD of segment OB in Fig. (c) we obtain

�Fx = 0 T0 = TB cos θB = 10 000 cos 62.98◦ = 4543 N
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Note that this equation is identical to the first equation of Eqs. (6.7). Using the
FBD in Fig. (c), we also get

�Fy = 0 80LB = TB sin θB = 10 000 sin 62.98◦ = 8908 N

Therefore, LB = 8908/80 = 111.35 ft and LA = 200 − 111.35 = 88.65 N. The
FBD in Fig. (c) also gives

�MO = 0 + TB sin θB(LB)− TB cos θB(H)− 80LB
LB

2
= 0

which, on substituting the values for TB , θB , and LB , becomes

10 000 sin 62.98◦(111.35)− 10 000 cos 62.98◦(H)− 80
(111.35)2

2
= 0

Solving for H, we find

H = 109.2 N Answer

The length of each of the two cable segments can be computed from
Eq. (6.12). For the segment AO, we substitute x = −LA = −88.65 N, w0 =
80 N/m, and T0 = 4543 N. Therefore, w0x /T0 = 80(−88.65)/4543 = −1.5611,
and Eq. (6.12) becomes

s(−LA) = −88.65

2

√
1+ (−1.5611)2

+ 1

2

4543

80
ln
[
(−1.5611)+

√
1+ (−1.5611)2

]

= − 117.0 N

The negative result is due to the sign convention: The positive direction of s points
to the right of O, whereas point A is to the left of O. Therefore, the length of
segment OA is sA = 117.0 m.

The length of segment OB is obtained by using x = LB = 111.35 m in
Eq. (6.12). Omitting the details of this computation, the result is sB = 163.1 m.
Hence the total length of the cable is

sA + sB = 117.0+ 163.1 = 280.1 m Answer

If the length of the cable were smaller than 280.1 m, the maximum cable tension
would exceed the limiting value of 10 000 N.
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Problems

6.62 Show that the tension acting at a point in a parabolic cable varies with the
xy-coordinates of the point as

T (x, y) = w0x
[
1+ (x /2y)2

]1/2
(x > 0)

6.63 The cable of the suspension bridge spans L = 120 m with a sag H =
18 m. The cable supports a uniformly distributed load of w0 N/m along the hori-
zontal. If the maximum allowable force in the cable is 4 MN, determine the largest
permissible value of w0.

L /2 L /2
y

H

O

A B

x

Fig. P6.63, P6.64

6.64 The two main cables of the Akashi Kaikyo suspension bridge in Japan
have a span L = 1990 m and a sag H = 233 m. The loading on each cable is w0 =
444.7 kN/m (without traffic) along the horizontal. Determine the corresponding
maximum force in one of the cables.

6.65 Cable AB supports the uniformly distributed load of 2 kN/m. If the slope
of the cable at A is zero, compute (a) the maximum tensile force in the cable; and
(b) the length of the cable.

A

B

40
 m

60 m

2 kN/m

20 m

80 m

7.2 m

A

B

W = 960 kN

O

Fig. P6.65 Fig. P6.66

6.66 A uniform 80-m pipe that weighs 960 kN is supported entirely by a cable
AB of negligible weight. Determine the length of the cable and the maximum
force in the cable. (Hint: First locate the point O where the cable is tangent to the
pipe.)
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6.67 The cable AB supports a uniformly distributed load of 12 kN/m. DetermineB

A

60 m

12 kN/m

50°

20°

h

Fig. P6.67

the maximum force in the cable and the distance h.

6.68 The string attached to the kite weighs 1 N/m. If the tension in the string is
14 N at O and 10 N at B, determine the length s of the string and the height H of
the kite.

H

B

O

L

Fig. P6.68

6.69 Show that the tension acting at a point in a catenary cable varies with the
y-coordinate of the point as T(y) = T0 + w0 y.

6.70 A uniform cable weighing 15 N/m is suspended from points A and B. The
force in the cable at B is known to be 500 N. Using the result of Prob. 6.69,
calculate (a) the force in the cable at A; and (b) the span L.

L

y

x
4 m

8 m
A

B

Fig. P6.70

6.71 The span L and the sag H of the cable AB are 100 m and 10 m, respec-

H

L

BBAA

Fig. P6.71, P6.72

tively. If the cable weighs 50 N/m, determine the maximum force in the cable
using (a) the equations of the catenary; and (b) the parabolic approximation.
(c) Compute the percentage error in the parabolic approximation.

6.72 Determine the ratio H /L that minimizes the maximum force in the uni-
form cable AB of a given span L. (Hint: Minimize the maximum force with respect
to T0.)

6.73 The cable of mass 1.8 kg/m is attached to a rigid support at A and passes

H

M

BAAA

18 m

Fig. P6.73, P6.74

over a smooth pulley at B. If the mass M = 40 kg is attached to the free end
of the cable, find the two values of H for which the cable will be in equilibrium.
(Note: The smaller value of H represents stable equilibrium.)

6.74 One end of cable AB is fixed, whereas the other end passes over a smooth
pulley at B. If the mass of the cable is 1.5 kg/m and the sag is H = 1.8 m,
determine the mass M that is attached to the free end of the cable.
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6.75 The end of a water hose weighing 2.5 N/m is pulled with a 200-N force
that is inclined at 14◦ to the horizontal. Determine the length s of the hose that is
lifted off the ground and the corresponding horizontal distance L .

O

A

14°

200 N

s

L

Fig. P6.75

6.76 The 50-m steel tape AB that weighs 12 N is used to measure the horizontal 7.5 lb

A

LAC

B

C

A

Fig. P6.76

distance between points A and C. If the spring scale at B reads 37.5 N when the
length of tape between A and C is 36 m, calculate the horizontal distance LAC

between A and C to four significant digits.

6.77 The cable AOB weighs 5.2 N/m. When the horizontal 30-N force is applied
to the roller support at B, the sag in the cable is 5 m. Find the span L of the cable.

A

O

BL/2 L/2 30 N

5 m

Fig. P6.77

6.78 The chain AB weighs 25 N/m. If the force in the chain at B is 4000 N,
determine the length of the chain.

45°

A

B

20 m

60 m 60 m

h
A C

B
600 N

Fig. P6.78 Fig. P6.79

6.79 The 600-N traffic light is suspended from two identical cables AB and BC,
each weighing 3.75 N/m. If the maximum allowable horizontal force exerted by
a cable on a vertical post is 900 N, determine the shortest possible length of each
cable and the corresponding vertical distance h.
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*6.6 Cables under Concentrated Loads

a. General discussion

Sometimes a cable is called on to carry a number of concentrated vertical loads,
such as in Fig. 6.12(a). If the weight of the cable is negligible compared to the
applied loads, then each segment of the cable is a two-force member and the shape
of the cable consists of a series of straight lines. The analysis of a cable loaded
in this manner is similar to truss analysis, except that with cables the locations of
the joints (i.e., points where the loads are applied) are sometimes unknown. As in
the case of truss analysis, we can use the method of joints and/or the method of
sections to determine the equilibrium equations. However, it is often necessary to
include equations of geometric constraints in order to have enough equations to
find all the unknowns.

BB

h2

h1
h

s3

s2

s1

L1 L2 L3

L

2

W1

W2

θ2

θ3

θ1

(a)

1

A

W1 W2

(b) FBDs

x

y

T2

T1

θ1

θ2

θ2

θ3

θi

θi+1

T3

T2

y

x

y

x

WiTi

Ti+1

i21

Fig. 6.12

If a cable has n segments, then there are (n− 1) joints. For example, the cable
in Fig. 6.12(a) has n = 3 segments, and (n − 1) = 2 joints, labeled 1 and 2. We
use the following notation: si is the segment length; Li is the horizontal spacing
of the loads; and θi is the angle between a segment and the horizontal, where
i = 1, 2, . . . , n is the segment number. The vertical position of the ith joint,
measured downward from end B, is denoted by hi , i = 1, 2, . . . , n − 1.
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Figure 6.12(b) shows the FBDs for joints 1, 2, and an arbitrary joint i, i = 1,
2, . . . , n − 1. The equilibrium analysis of a cable with n segments involves cal-
culating the force Ti and slope angle θi of each cable segment. Because the FBD
of each joint yields two equilibrium equations, the total number of independent
equilibrium equations for a cable with n segments is 2(n − 1). The equilibrium
equations for joint i in Fig. 6.12(b) are

�Fx = 0 −→+ Ti+1 cos θi+1 − Ti cos θi = 0 (a)

�Fy = 0 +
�⏐ Ti+1 sin θi+1 − Ti sin θi −Wi = 0 (b)

where i = 1, 2, . . . , n − 1. From Eq. (a) we see that the horizontal component
Ti cos θi is the same for each segment. Labeling this component as T0, we can
replace Eq. (a) with

Ti cos θi = T0 i = 1, 2, . . . , n (6.18)

and Eq. (b) can be rewritten as

T0(tan θi+1 − tan θi ) = Wi i = 1, 2, . . . , n − 1 (6.19)

Observe that Eqs. (6.19) represent (n − 1) equations that contain the (n+ 1)

unknowns T0, θ1, θ2, . . . , θn . Therefore, we must obtain two additional inde-
pendent equations before we can calculate all of the unknowns.

The source of the additional equations depends primarily on the nature of
the problem. It is convenient to divide problems into two categories depending
on whether the horizontal spacings of the loads (Li ) or the lengths of the cable
segments (si ) are given and to discuss each category separately (we assume that
the relative position of the supports—the distances h and L in Fig. 6.12(a)—are
known).

Because Eqs. (6.18) and (6.19) have been derived from Fig. 6.12, the figure
also defines the sign conventions that have been used in the derivations: tensile
forces and counterclockwise angles measured from the horizontal are positive,
and h is the vertical distance measured downward from the right-hand support B.
These conventions also apply to the equations that are derived in the remainder of
this article.

b. Horizontal spacings of the loads are given

Consider a cable with n segments for which the horizontal spacings of the loads
(L1, L2, . . . , Ln) are given. For this case, the following geometric relationship
can be obtained from Fig. 6.12(a):

h =
n∑

i=1

Li tan θi (6.20)

However, the problem is still not solvable, unless one additional piece of infor-
mation is given. This information may take several forms. For example, the hor-
izontal pull T0 or the maximum cable tension may be specified (both conditions
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are relevant from a design viewpoint), the vertical position of one of the joints
(e.g., h1) may be prescribed, or the total length of the cable may be known.

We should point out that, in general, the analysis involves the solution of
simultaneous equations that are nonlinear in the angles θi . In many problems this
difficulty can be avoided by considering an appropriate moment equation using
the FBD of the entire cable (see Sample Problem 6.10) or the FBD of a section
of the cable containing two or more joints. However, these moment equilibrium
equations are not independent of Eqs. (6.18)–(6.20).

c. Lengths of the segments are given

Consider next a cable with n segments for which the lengths of the segments
s1, s2, . . . , sn are known. For this case, Fig. 6.12(a) yields two independent
geometric relationships:

h =
n∑

i=1

si sin θi L =
n∑

i=1

si cos θi (6.21)

These two equations, coupled with the (n − 1) equilibrium equations given in
Eq. (6.19), can be solved for the (n+1) unknowns without the need for additional
information. After T0, θ1, θ2, . . . , θn have been computed, the forces in the cables
can be found from Eq. (6.18).

Unfortunately, in this case it is not always possible to avoid the solution
of simultaneous, nonlinear equations (a very difficult task to perform analyti-
cally). Therefore, a computer program capable of solving simultaneous, nonlinear
equations may be necessary for solving problems in this category.



Sample Problem 6.10
For the cable loaded as shown in Fig. (a), determine the angles β1 and β2, the
force in each segment, and the length of the cable.

(a)

6 m

2000 N

1600 N

6 m 11 m 7 m

A
β1

β2 β3

B

=  35°
1

2

FBD

= 35°

1 –

3

s1

s3

A β θ

θ

θ

β

β
B

T3

T1

(b)

2 –

s2 3 =

h
=

–
6 

m

2 =

1 =

L1 = 6 m L2 = 11 m L3 = 7 m

L = 24 m

1

2

W2 = 2000 N

W1 =  1600 N

Solution
Method of Analysis

The free-body diagram of the entire cable is shown in Fig. (b), where the labeling
of the variables is consistent with the notation used in Fig. 6.12 (recall that the
positive direction for θ1, θ2, and θ3 is counterclockwise from the horizontal, and
positive h is measured downward from end B).

We note that the information given in Fig. (a) includes the horizontal spacing
of the loads and the angle β3. Therefore, according to the discussion in Art. 6.6,
the problem is statically determinate, and a solution can be obtained by writing
and solving Eqs. (6.18)–(6.20). In this problem, however, the difficulty of solving
these simultaneous, nonlinear equations can be avoided.

Examination of the FBD in Fig. (b) reveals that T3 can be calculated from the
equation �MA = 0. Equilibrium equations for joints 2 and 1 will then determine
the other unknowns without having to solve the equations simultaneously.

Mathematical Details

From the FBD of the entire cable, Fig. (b), we obtain

�MA = 0 + T3 sin 35◦(24)+ T3 cos 35◦(6)− 1600(6)− 2000(17) = 0

which gives

T3 = 2334 N Answer

The constant horizontal component T0 of the cable tension can now be found
by computing the horizontal component of T3.

T0 = T3 cos θ3 = 2334 cos 35◦ = 1912 N
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Substituting i = 2 into Eqs. (6.19), we obtain the equilibrium equation for
joint 2:

T0(tan θ3 − tan θ2) = W2

1912(tan 35◦ − tan θ2) = 2000

which gives

θ2 = −19.08◦ or β2 = 19.08◦ Answer

With i = 1, Eqs. (6.19) give the equilibrium equation for joint 1:

T0(tan θ2 − tan θ1) = W1

1912[tan(−19.08◦)− tan θ1] = 1600

which gives

θ1 = −49.78◦ or β1 = 49.78◦ Answer

The tensions in the first and second segments can now be found from Eqs.
(6.18):

T1 = T0

cos θ1
= 1912

cos(−49.78◦)
= 2961 N Answer

T2 = T0

cos θ2
= 1912

cos(−19.08◦)
= 2023 N Answer

The total length s of the cable is

s = s1 + s2 + s3

= L1

cos β1
+ L2

cos β2
+ L3

cos β3

= 6

cos 49.78◦
+ 11

cos 19.08◦
+ 7

cos 35◦

= 9.29+ 11.64+ 8.55 = 29.48 N Answer
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Sample Problem 6.11
For the cable loaded as shown in Fig. (a), calculate the angles β1, β2, and β3 and
the force in each segment of the cable.

6 m

2000 N

1600 N

24 m

8 m

12 m
10 m

(a)

A
β

β
β

B1

2

2

1

3

Solution
Method of Analysis

The free-body diagram of the entire cable is shown in Fig. (b). Its main function
is to identify the variables and to enforce the sign conventions defined in Fig.
6.12 (recall that the positive directions for the θ ’s are counterclockwise and that
positive h is measured downward from end B).

s 3
= 10 m

3 =

2

3

T3

(b)

1

2 –2 =

B

A β θ

θ

θ

β

β

T1

h
=

–
6 

mL = 24 m

1 –1 =s
1 =

8 m

s2 = 12 m

W2 = 2000 N

W1 =  1600 N

Observe that the length of each cable segment is given. As pointed out in
Art. 6.6, in problems of this type (and this problem is no exception) it is sel-
dom possible to obtain a solution without having to solve nonlinear, simultaneous
equations. An inspection of Fig. (b) reveals that two or more unknown angles
would appear in each equilibrium equation for the entire cable (this would also be
the situation if the equilibrium of any portion of the cable is analyzed). Therefore,
the most direct method of solution is to write and solve Eqs. (6.19) and (6.21),
giving us a total of four equations containing the unknowns T0, θ1, θ2, and θ3.
Because the equations are nonlinear, the solution must be obtained numerically by
a computer program capable of solving nonlinear, simultaneous equations. After
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the solution has been found, the force in each segment can be calculated from
Eqs. (6.18).

Mathematical Details

On substituting the given values, Eqs. (6.19) yield

(i = 1) T0(tan θ2 − tan θ1) = W1

T0(tan θ2 − tan θ1) = 1600 (a)

and

(i = 2) T0(tan θ3 − tan θ2) = W2

T0(tan θ3 − tan θ2) = 2000 (b)

and Eqs. (6.21) become

s1 sin θ1 + s2 sin θ2 + s3 sin θ3 = h

8 sin θ1 + 12 sin θ2 + 10 sin θ3 = −6 (c)

and

s1 cos θ1 + s2 cos θ2 + s3 cos θ3 = L

8 cos θ1 + 12 cos θ2 + 10 cos θ3 = 24 (d)

The solution of Eqs. (a)–(d), which can be verified by substitution, is

T0 = 1789 lb

θ1 = −53.62◦(= −β1)

Answer
θ2 = −24.83◦(= −β2)

θ3 = 33.23◦(= β3)

Using Eqs. (6.18), the tensions in the cable segments are

T1 = T0

cos θ1
= 1789

cos(−53.62◦)
= 3020 N

T2 = T0

cos θ2
= 1789

cos(−24.83◦)
= 1971 N Answer

T3 = T0

cos θ3
= 1789

cos 33.23◦
= 2140 N
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Problems

6.80 The cable carrying 200-N loads at B and C is held in the position shown

h

D

P A B

C

6 m

6 
m

200 N

200 N

Fig. P6.80

by the horizontal force P = 300 N applied at A. Determine h and the forces in
segments BC and CD.

6.81 The cable ABCD is held in the position shown by the horizontal force P.
Determine P, h, and the forces in segments BC and CD of the cable.

h

D

P
A B

C

40 N

40 N

6 m

6 m

4 m

D

A

10 m

1.2 kN

1.8 kN

B

C

12 m8 m6 m

A

β1

β2

β3

Fig. P6.81 Fig. P6.82

6.82 Determine the angles β2 and β3 and the force in each cable segment if
β1 = 40◦.

6.83 The cable carrying three 400-N loads has a sag at C of hC = 16 m.
Calculate the force in each segment of the cable.

8 m 8 m 12 m 12 m

hC

B

C

D

400 N

400 N

400 N

A E

Fig. P6.83, P6.84

6.84 The cable supports three 400-N loads as shown. If the maximum allow-
able tension in the cable is 900 N, find the smallest possible sag hC at C.

6.85 Cable ABC of length 5 m supports the force W at B. Determine (a) the

4 m

B

W

β1
β2

2 m

3 m

A C

Fig. P6.85

angles β1 and β2; and (b) the force in each cable segment in terms of W.
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6.86 When the 12-kN load and the unknown force P are applied, the cable
assumes the configuration shown. Determine P and the force in each segment of
the cable.

4 m

12 kN

D

C

P

B

A

4 m4 m2 m

Fig. P6.86

6.87 The cable is subjected to a 150-N horizontal force at B, and an 80-N ver-
tical force at C . Determine the force in segment CD of the cable, and the distance
b.

b

A

B

150 N

80 N

4 m

3 
m

3 
m

3 
m

C

D

Fig. P6.87

6.88 The 15-m-long cable supports the loads W1 and W2 as shown. Find the
ratio W1/W2 for which the segment BC will be horizontal; that is, β2 = 0.

4 m

C

B

β
1

β
3

A D

6 m

5 m

W1

W2

12 m

β
2

Fig. P6.88, P6.89

6.89 The cable of length 15 m supports the forces W1 = W2 = W at B and C.
(a) Derive the simultaneous equations for β1, β2, and β3. (b) Show that the solu-
tion to these equations is β1 = 41.0◦, β2 = 9.8◦, and β3 = 50.5◦. (c) Compute
the force in each segment in terms of W.
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6.90 The 12-kN weight is suspended from a small pulley that is free to roll on
the cable. The length of the cable ABC is 18 m. Determine the horizontal force P
that would hold the pulley in equilibrium in the position x = 4 m.

2 m

16 m

P
x

B

12 kN

A

C

Fig. P6.90

6.91 The cable ABCD is held in the position shown by the horizontal force P .
Determine P and the force in each segment of the cable.

3 m 

15 kg 

25 kg 

4 m 

1.0 m 
D

C

B

A

P

2 m 3 m 

Fig. P6.91
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Review of Equations

Beams
A beam is a slender bar carrying loads that are perpendicular to the bar.

Sign conventions for loading, shear force, and
bending moment

+w +V +M

y

x

Differential equations of equilibrium

w = −dV/dx V = dM/dx

Area method
VB = VA − area of w-diagram]BA
MB = MA + area of V-diagram]BA
V+A = V−A − PA M+A = M−A + CA

Parabolic cable
If the loading w0 is distributed uniformly along the horizontal, the shape of the
cable is parabolic:

y(x) = w0x2

2T0

s(x) = x

2

√
1+
(

w0x

T0

)2

+ T0

2w0
ln

⎡
⎣w0x

T0
+
√

1+
(

w0x

T0

)2
⎤
⎦

T0 = tension in the cable at x = 0
s(x) = length measured along the cable from x = 0

Catenary cable
If the loading w0 is distributed uniformly along the cable, the shape of the cable
is a catenary:

y(x) = T0

w0

(
cosh

w0x

T0
− 1

)

s(x) = T

w0
sinh

w0x

T0



7
Dry Friction

The force required to turn the handle
of a screw press, such as the antique
wine press shown here, depends on
the coefficient of friction between the
screw threads. This effect is
illustrated Sample Problem 7.12.
Andrey Kudinov/Shutterstock

7.1 Introduction

In most of the equilibrium problems that we have analyzed up to this point, the
surfaces of contact have been frictionless. The reactive forces were, therefore,
normal to the contact surfaces. The concept of a frictionless surface is, of course,
an idealization. All real surfaces also provide a force component that is tangent to
the surface, called the friction force, that resists sliding.

In many situations, friction forces are helpful. For example, friction enables
you to walk without slipping, it holds nails and screws in place, and it allows us
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to transmit power by means of clutches and belts. On the other hand, friction can
also be detrimental: It causes wear in machinery and reduces efficiency in the
transmission of power by converting mechanical energy into heat.

Dry friction refers to the friction force that exists between two unlubricated
solid surfaces. Fluid friction acts between moving surfaces that are separated by
a layer of fluid. The friction in a lubricated journal bearing is classified as fluid
friction, because the two halves of the bearing are not in direct contact but are
separated by a thin layer of liquid lubricant. In this chapter, we consider only dry
friction.* A study of fluid friction involves hydrodynamics, which is beyond the
scope of this text.

7.2 Coulomb’s Theory of Dry Friction

Dry friction is a complex phenomenon that is not yet completely understood.
This article introduces a highly simplified theory, known as Coulomb’s theory
of dry friction, that has been found to give satisfactory results in many practical
problems.

Coulomb’s theory is best explained by considering two bodies that are in con-
tact with each other, as shown in Fig. 7.1 (a). Although a single point of contact

Plane of contact

P3

P2

P1

P5

P4

(a)

P3

P2

P1

P5

P4

(b)

F

N
N

F

Fig. 7.1

is indicated in this figure, the following discussion also applies for a finite con-
tact area. The plane of contact shown in Fig. 7.1(a) is tangent to both bodies at
the point of contact. Figure 7.1(b) displays the free-body diagrams of the bod-
ies, where N is the normal contact force and F is the friction force. The force N
is perpendicular to the plane of contact, whereas F lies in the plane of con-
tact. Coulomb’s theory consists of several postulates that are explained in the
following.

a. Static case

Coulomb proposed the following law: If there is no relative motion between two
surfaces that are in contact, the normal force N and the friction force F satisfy the
following relationship.

F ≤ Fmax = μs N (7.1)

where Fmax is the maximum static friction force that can exist between the contact-
ing surfaces and μs is known as the coefficient of static friction. The coefficient
of static friction is an experimental constant that depends on the composition and
roughness of the contacting surfaces. Typical values of μs are listed in Table 7.1.
Observe that Eq. (7.1) states simply that the friction force F that exists under
static conditions (no relative motion) has an upper limit that is proportional to the
normal force.

*Dry friction is also known as Coulomb friction, after C.-A. de Coulomb (1736–1806), the first
investigator to completely state the laws of dry friction.
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b. Impending sliding

Consider the static case in which the friction force equals its limiting value; that is,

F = Fmax = μs N (7.2)

For this condition, the surfaces are on the verge of sliding, a condition known
as impending sliding. When sliding impends, the surfaces are at rest relative to
each other. However, any change that would require an increase in the friction
force would cause sliding. The direction for Fmax can be determined from the
observation that

Fmax always opposes impending sliding

c. Dynamic case

If the two contact surfaces are sliding relative to each other, the friction force F is
postulated to be

F = Fk = μk N (7.3)

where N is the contact normal force; μk is an experimental constant called the
coefficient of kinetic friction; and Fk is referred to as the kinetic, or dynamic fric-
tion force. As indicated in Table 7.1, the coefficient of kinetic friction is usually
smaller than its static counterpart. As in the static case,

Fk always opposes sliding

d. Further discussion of Coulomb friction

When applying Coulomb’s theory, the difference between Fmax and Fk must be
clearly understood: Fmax is the maximum friction force that can exist under static
conditions; Fk is the friction force that does exist during sliding.

To illustrate Coulomb’s laws of friction, consider the situation depicted in
Fig. 7.2 (a). The block of weight W is assumed to be at rest on a horizontal surface

(a)

P

W

P

(b)

N

F

Fig. 7.2
when it is subjected to the horizontal force P. (We limit our attention here to
sliding motion; the possibility that the block may tip about its corner is considered

Text not available due to copyright restrictions
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later.) The free-body diagram of the block is shown in Fig. 7.2(b). Because the
friction force F resists the tendency of the block to slide, F is directed opposite
to P. We now examine the variation of F with P as the latter increases slowly
from zero.

If P is relatively small, the block will remain at rest, and the force equations
of equilibrium, �Fx = 0 and �Fy = 0, yield F = P and N =W .* Therefore, as
long as the block remains at rest, the friction force F equals the applied force P.
Figure 7.3 shows the plot of F versus P. In the static region, 0≤ F ≤ Fmax; the
variation is a straight line with unit slope. When F = Fmax, the block is still
in static equilibrium, but sliding impends. However, the slightest increase in P
would result in sliding. In Fig. 7.3, the point referring to impending sliding marks
the end of the static region. When P exceeds Fmax, the block starts to slide, and the
friction force F drops to its kinetic value Fk . If P is further increased, F remains
constant at Fk . Consequently, the plot of F versus P is a horizontal line in the
dynamic range.

F
(friction
force)

P
(applied
force)

Impending sliding

Dynamic

1
1 Fk =   k N

Fmax =   s Nμ

μ

Static

Fig. 7.3

e. Limitations

Because there is no theoretical explanation that accurately describes friction phe-
nomena, engineers must rely on empirical constants, such as the coefficient of
friction. Handbook values for the coefficients of friction should be treated as
approximate values. Experimental results indicate that the coefficients may vary
widely with environmental conditions, such as humidity, the cleanliness of the
surfaces, and so on.

The theory of dry friction is applicable only to surfaces that are dry or that
contain only a small amount of lubricant. If there is relative motion between the
surfaces of contact, the theory is valid for low speeds only. If the surfaces are well
lubricated and are moving with high relative speeds, the frictional characteristics
are best described by the theories of fluid friction, which are beyond the scope of
this text.

*The moment equation of equilibrium would determine the line of action of the normal force N, an
important consideration in the analysis of tipping. However, because we are delaying a discussion of
tipping, this equation is not of interest at the present time.
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It is interesting to note that Coulomb’s theory of dry friction does not depend
on the area of contact. There are, of course, many situations where this is not the
case. For example, the traction (friction force) between an automobile tire and the
pavement can be increased under certain conditions by letting a small amount of
air out of the tire, thus increasing the contact area. Obviously, Coulomb’s theory
of dry friction is not applicable in this situation. The maximum traction in this
case is also influenced by factors, such as surface adhesion, that depend on the
area of contact.

7.3 Problem Classification and Analysis

The analysis of equilibrium problems that involve friction can be somewhat com-
plicated because Coulomb’s law, Eq. (7.1), is an inequality. It does not tell us
the friction force; it tells us only the largest possible friction force. The equality
F = Fmax = μs N can be used only if slipping is known to impend. Because F is
not necessarily equal to Fmax at a friction surface, it is not possible to develop a
single method of analysis that is valid for all friction problems. However, friction
problems can be classified into three types, and a separate method of solution can
be outlined for each type.

Type I The problem statement does not specify impending motion. In problems
of this type, we do not know whether or not the body is in equilibrium. Therefore,
the analysis must begin with an assumption about equilibrium.

Method of Analysis

1. Assume equilibrium You are strongly advised to write down this assumption
as a reminder that the solution will not be complete unless the assumption has
been checked. The sense of each friction force can be assumed because the
solution of the equilibrium equations will determine the correct sense.

2. Solve the equilibrium equations for the friction forces required for equilib-
rium.*

3. Check the assumption If the friction forces required for equilibrium do
not exceed their limits (i.e., if F ≤μs N at each friction surface), then the
assumption is correct, and the remaining unknowns can be computed using
equilibrium analysis. (Note that if F =μs N at a surface, which would
imply impending sliding, then the assumption is still correct.) If equilibrium
requires that F > μs N at any friction surface (which is physically impossible),
the assumption of equilibrium is incorrect. Therefore, we have a dynamics
problem in which the friction forces at the sliding surfaces are F = Fk =μk N .

See Sample Problems 7.1 and 7.4 for examples of Type I problems.

*This analysis presupposes that the friction forces are statically determinate. Statically indeterminate
friction forces are omitted from the present discussion. Problems of this type are best solved using the
principle of virtual work (see Chapter 10).
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Type II The problem statement implies impending sliding, and the surfaces where
sliding impends are known. Friction problems of this type have the most straight-
forward analyses, because no assumptions and, therefore, no checks are required.
It is not necessary to assume equilibrium—a body known to be in a state of
impending sliding is in equilibrium by definition.

Method of Analysis

1. Set F = Fmax = μs N at the surfaces where sliding impends. Make sure that
the sense of each Fmax is correctly shown on the FBD (opposing impending
sliding), because the solution of the equilibrium equations may depend on the
assumed directions of the friction forces.

2. Solve for the unknowns using the equilibrium equations.

See Sample Problems 7.2, 7.5, and 7.6 for examples of Type II problems.

Type III The problem statement implies impending sliding, but the surfaces at
which sliding impends are not known. Problems of this type are the most tedious
to analyze, because the surfaces at which sliding impends must be identified by
trial and error. Once an assumption has been made, the analysis is similar to that
for Type II problems. Two methods of analysis can be used here, both of which
are described in the following.

Method of Analysis 1

1. Determine all possible ways in which sliding can impend.
2. For each case, set F = Fmax at the surfaces where sliding impends and solve

the equilibrium equations. Again, the sense of each Fmax should be correct
on the FBD. In general, a different solution is obtained for each mode of
impending sliding.

3. Choose the correct answer by inspection of the solutions.

Method of Analysis 2

1. Determine all possible ways in which sliding can impend.
2. For one of the cases, set F = Fmax at the surfaces where sliding impends and

solve the equilibrium equations.
3. Check the solution by comparing the friction force at each of the other sur-

faces with its limiting value. If all these forces are less than or equal to their
maximum permissible values, then the solution is correct. If a friction force
exceeds its limiting value μs N , the solution is invalid and another mode of
impending sliding must be analyzed. This procedure must be continued until
the correct solution is found.

See Sample Problems 7.3 and 7.7 for examples of Type III problems.

Caution Remember that the equation F = μs N is valid only in the special case
of impending sliding. Many difficulties encountered by students can be traced to
the incorrect assumption that the equation F = μs N is always true.



Sample Problem 7.1
The 50-kg block in Fig. (a) is initially at rest on a horizontal plane. Determine the

WW == 50(9.81)50(9.81)
          = 490.5 N= 490.5 N
W = 50(9.81)
     = 490.5 N

P

s = 0.5

k = 0.2

(a)

490.5 N

P = 150 N

(b)

N

F

y

x

μ
μ

friction force between the block and the surface after P was gradually increased
from 0 to 150 N.

Solution
From the problem statement we conclude that this is a Type I problem (impending
motion is not specified). Furthermore, we do not know if the block will even
remain at rest in static equilibrium when P = 150 N.

Assume Equilibrium

Once we have assumed that the body remains at rest, the equilibrium equations
for the free-body diagram in Fig. (b) can be used to calculate the two unknowns
(N and F), as follows.

�Fy = 0 +
�⏐ N − 490.5 = 0

N = 490.5 N

�Fx = 0 −→+ P − F = 0

F = P = 150 N

Before we can accept this solution, the assumption of equilibrium must be
checked.

Check

The maximum static friction force is

Fmax = μs N = 0.5(490.5) = 245.25 N

Because F < Fmax, we conclude that the block is in static equilibrium, and the
correct value of the friction force is

F = 150 N Answer

Comment

If the coefficient of static friction had been 0.25, instead of 0.5, the block would
not be in equilibrium. The 150-N friction force required for equilibrium would
be greater than Fmax = 0.25(490.5) = 122.625 N; therefore, the friction force
would be

F = Fk = μk N = 0.2(490.5) = 98.1N

and the block would be sliding to the right.
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Sample Problem 7.2
The 50-kg block in Fig. (a) is at rest on a rough horizontal plane before the force P

P

s = 0.5

k = 0.2

(a)

μ
μ

W = 50(9.81)
     
WW == 50(9.81)50(9.81)
          = 490.5= 490.5
W = 50(9.81)
    = 490.5

is applied. Determine the magnitude of P that would cause impending sliding to
the right.

Solution
The problem statement clearly specifies that sliding impends. Because we know
where it impends (there is only one friction surface), we conclude that this is a
Type II problem.

The free-body diagram of the block is shown in Fig. (b), where the friction
100 lb

P

(b)

N

F

force is shown acting to the left, opposite the direction of impending sliding. There
are three unknowns in this FBD: P, N, and F. There are also three independent
equations: two equilibrium equations and Coulomb’s law for impending sliding.

From the FBD we see that the equilibrium equations give N = 490.5 N and
P = F . Coulomb’s law then yields

P = F = Fmax = μs N = 0.5(490.5) = 245.25 N Answer

This completes the solution. Because there were no assumptions, no checks are
necessary.

Comment

Note that Fig. (a) in both Sample Problems 7.1 and 7.2 is identical. The differ-
ences are revealed only in the problem statements. This shows that you must read
each problem statement very carefully, because it determines the problem type.

A problem statement can imply impending sliding. For example, the following
are equivalent to the original statement of this problem: They both imply that P is
to be calculated for impending sliding.

1. Determine the largest force P that can be applied without causing the block to
slide to the right.

2. Determine the smallest force P that will cause the block to slide to the right.

Sample Problem 7.3
Determine the maximum force P that can be applied to block A in Fig. (a) without

A
WA = 100 N

WB = 200 N
B

PSurface    1
    s = 0.2

Surface    2
    s = 0.1

(a)

y

x

μ

μ

causing either block to move.

Solution
The problem statement indicates that we are to find P that would cause impend-
ing motion. However, there are two possible ways in which motion can impend:
impending sliding at surface 1, or impending sliding at surface 2. Because
impending sliding is specified but not its location, this is a Type III problem.

The free-body diagrams of the entire system and each block are shown in
Figs. (b) and (c), respectively. Note that the equilibrium of each block yields
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A

WA = 100 N

WB = 200 N
B

P

(b)

N2 = 300 N
F2

A

WA = 100 N

WB = 200 NB

P

(c)

N2 = 300 N
F2

N1 = 100 N
F1

N1 = 100 N
F1

1

1

2

N1 = 100 N and N2 = 300 N, as shown on the FBDs. Attention should be paid
to the friction forces. The friction force F2 on the bottom of block B is directed
to the left, opposite the direction in which sliding would impend. At surface 1,
block A would tend to slide to the right, across the top of block B. Therefore, F1

is directed to the left on block A, and to the right on block B. The tendency of F1

to slide B to the right is resisted by the friction force F2. Note that F1 and N1 do
not appear in the FBD in Fig. (b), because they are internal to the system of both
blocks.

Two solutions are presented here to illustrate both methods of analysis
described in Art. 7.3.

Method of Analysis 1

First, assume impending sliding at surface 1. Under this assumption we have

F1 = (F1)max = (μs)1 N1 = 0.2(100) = 20 N

The FBD of block A then gives

�Fx = 0 −→+ P − F1 = 0

P = F1 = 20 N

Next, assume impending sliding at surface 2, which gives

F2 = (F2)max = (μs)2 N2 = 0.1(300) = 30 N

From the FBD of the entire system, Fig. (b), we then obtain

�Fx = 0 −→+ P − F2 = 0

P = F2 = 30 N
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So far, we have determined that P = 20 N will cause motion to impend at
surface 1 and that P = 30 N will cause motion to impend at surface 2. Therefore,
the largest force that can be applied without causing either block to move is

P = 20 N Answer

with sliding impending at surface 1.
Be sure you understand that the largest force that can be applied is the smaller

of the two values determined in the preceding calculations. If sliding impends
when P = 20 N, then the system would not be at rest when P = 30 N.

Method of Analysis 2

Assume impending motion at surface 1. We would then obtain P = (F1)max =
20 N, as determined in Method of Analysis 1. Next, we check the assumption.

Check

The assumption of impending motion at surface 1 is checked by comparing the
friction force F2 with (F2)max, its maximum possible value. Using the FBD of
block B, we obtain

�Fx = 0 −→+ F1 − F2 = 0

F1 = F2 = 20 N

Because (F2)max= (μs)2 N2= 0.1(300)= 30 N, we have F2 < (F2)max. Conse-
quently, we conclude that impending motion at surface 1 is the correct assump-
tion, so that the answer is P = 20 N.

Had F2 turned out to be greater than (F2)max, we would know that sliding
would first impend at surface 2, and the problem would have to be solved again
making use of this fact.

Comment

There are five unknowns in this problem: P, N1, F1, N2, and F2. There are
four independent equilibrium equations: two for each block. The assumption of
impending motion at one surface provides the fifth equation, F = μs N , making
the problem statically determinate.

In our solution, we have considered two possible modes of impending
motion—impending sliding at surface 1 and impending sliding at surface 2.
Impending sliding at both surfaces at the same time is obviously a third possibility,
but it need not be examined independently. Both of the foregoing analyses would
determine if simultaneous impending sliding is indeed the case. In Method of
Analysis 1 the two computed values of P would be equal. In Method of Analysis 2
the check would reveal that F = Fmax at both surfaces.

Caution A mistake that is often made in the analysis of Type III problems is to
assume that motion impends at the surface with the smallest coefficient of static
friction. The solution to this problem illustrates that this need not be the case.
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Sample Problem 7.4
Can the system in Fig. (a) be in static equilibrium in the position shown? The uni-

50°

A

B

C

30°

5 m

(a)

y

x

30° 500(9.81) = 4905 N

40°

A

B

FB

NB

NA2.5 m

2.5 m

(b)

FC

C

NC

(c)

300(9.81)
= 2943 N

FB

NB

form bar AB 500 kg and the mass of block C is 300 kg. Friction at A is negligible,
and the coefficient of static friction is 0.4 at the other two contact surfaces.

Solution
Because it is not known whether motion impends, we identify this as a Type I
problem. Note that the FBDs of the bar and the block, Figs. (b) and (c), contain
five unknowns: NA, NB , FB , NC , and FC .

Assume Equilibrium

Under this assumption, there are five equilibrium equations: three for the bar
AB and two for the block C. The unknowns may be computed by the following
procedure.

FBD of AB [Fig. (b)]

�MB = 0 + NA sin 40◦(5 cos 30◦)+ NA cos 40◦(5 sin 30◦)
−4905(2.5 cos 30◦) = 0

NA = 2260.24 N

�Fx = 0 −→+ FB − NA cos 40◦ = 0

FB = 2260.24 cos 40◦ = 1731.44 N

�Fy = 0 +
�⏐ NB + NA sin 40◦ − 4905 = 0

NB = −2260.24 sin 40◦ + 4905 = 3452.15 N

FBD of Block C [Fig. (c)]

�Fy = 0 +
�⏐ NC − NB − 2943 = 0

NC = 3452.15+ 2943 = 6395.15 N

�Fx = 0 −→+ FC − FB = 0

FC = FB = 1731.44 N

Check

To check the assumption of equilibrium, we must compare each of the friction
forces against its maximum static value.

(FB)max = 0.4NB = 0.4(3452.15) = 1380.86 N < FB = 1731.44 N
Answer

(FC)max = 0.4NC = 0.4(6395.15) = 2558.06 N > FC = 1731.44 N

We conclude that the system cannot be in equilibrium. Although there is sufficient
friction beneath B, the friction force under C exceeds its limiting value.
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Sample Problem 7.5
Determine the largest and smallest values of the force P for which the system
in Fig. (a) will be in static equilibrium. The homogeneous bars AB and BC are
identical, each having a mass of 100 kg. The coefficient of static friction between
the bar at C and the horizontal plane is 0.5.

s = 0.5

3 m

30° 30°

1.5 m

1.5 m

(a)

A

B

C

P

y

x

μ

Solution
This is a Type II problem because impending sliding at C is implied. However,
finding the largest and smallest values of P are two separate problems.

Note that the weights of the bars have a tendency to slide C to the right.
Therefore, impending sliding of C to the right corresponds to the smallest P. The
largest P occurs when sliding of C impends to the left; in this case, P must over-
come both the friction and the tendency of the weights to slide C to the right.
Consequently, the only difference between the two problems is the direction of
the friction force at C.

The FBD of the system consisting of both bars is shown in Fig. (b); the
two directions of FC are indicated by dashed lines. The weight of each bar,
W =mg= 100(9.81)= 981 N, is also shown on the diagram.

30°

1.5 m

1.5 m

(b)

A

B

C

P

1.5 m

1.5 m

Ax

Ay

981 N 981 N FCFC

NC

An equation involving only NC and P is obtained by summing moments about
A in Fig. (b):

�MA = 0 + NC(6 cos 30◦)+ P(1.5 sin 30◦)

− 981(1.5 cos 30◦)− 981(4.5 cos 30◦) = 0 (a)

The FBDs of bar BC corresponding to the largest and smallest values of P are
shown in Figs. (c) and (d), respectively. In both cases, FC is set equal to (FC)max
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1.5 m

1.5 m
C

P

981 N

NC

B

30°

By

Bx

(c) Largest P

FC = 0.5NC

1.5 m

1.5 m

C

P

981 N FC = 0.5NC

NC

B

(d) Smallest P

By

Bx

30°

because sliding impends. Summing moments about B yields another equation
containing NC and P.

�MB = 0 + NC(3 cos 30◦)− 981(1.5 cos 30◦)
− P(1.5 sin 30◦)± 0.5NC (3 sin 30◦) = 0 (b)

where the positive (negative) sign on the last term corresponds to the largest
(smallest) value of P.

Solving Eqs. (a) and (b) gives

largest P = 1630 N Answer
smallest P = 530 N Answer

Therefore, the system is in static equilibrium for values of P in the range
530 N ≤ P ≤ 1630 N.

The solution of this sample problem clearly illustrates that the directions of the
friction forces must be shown correctly on the free-body diagrams when sliding
impends.

Sample Problem 7.6
The uniform 50-kg plank in Fig. (a) is resting on friction surfaces at A and B. The
coefficients of static friction are shown in the figure. If a 80-kg man starts walking
from A toward B, determine the distance x when the plank will start to slide.

40°

x

A 5 m

B

(a)

s = 0.2μ
s = 0.5μ
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Solution
This is a Type II problem. When the plank is on the verge of moving, sliding
must impend at both A and B. Impending sliding at A only, or at B only, would be
physically impossible. Because the plank is a rigid body, any movement of end A
must be accompanied by a movement of end B.

The FBD of the plank is shown in Fig. (b). Observe that the friction forces

x

40°

50°
2.5 m 2.5 m

80(9.81) = 784.8

50(9.81)
= 490.5 N

(b)

A B

NA

FA
NB

FB

y

x

are shown acting in their correct directions. When the plank is ready to move,
the direction of impending sliding of end B is down the inclined plane. Con-
sequently, end A would tend to slide to the left. The directions of FA and FB

must oppose these motions. Showing either of the friction forces in the opposite
direction would lead to incorrect results.

Inspection of the FBD in Fig. (b) reveals that there are five unknowns: NA,
FA, NB , FB , and x. There are also five equations: three equilibrium equations and
two friction equations. Therefore, all the unknowns can be computed from the
FBD as follows.

�MA = 0 + NB sin 50◦(5)+ FB sin 40◦(5)

−784.8x − 490.5(2.5) = 0 (a)

�Fx = 0 −→+ FA − NB cos 50◦ + FB cos 40◦ = 0 (b)

�Fy = 0 +
�⏐ NA − 784.8− 490.5+ NB sin 50◦ + FB sin 40◦ = 0 (c)

Substituting the friction equations, FA = 0.2NA and FB = 0.5NB , and solving
Eqs. (a)–(c) give NA = 694.14 N, NB = 534.43 N, and

x = 2.55 m Answer

Sample Problem 7.7
The spool in Fig. (a) weighs 25 N, and its center of gravity is located at the geo-
metric center. The weight of block C is 50 N. The coefficients of static friction at
the two points of contact are as shown. Determine the largest horizontal force P
that can be applied without disturbing the equilibrium of the system.

C

A

B

120

80

(a)

P

Dimensions
in mm

μs = 0.3

μs = 0.4

μ

μ
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Solution
The key to the analysis of this problem is understanding that there are two possi-
bilities for impending motion (both could occur simultaneously): (1) impending
sliding at A with impending rolling (without sliding) at B, and (2) impending
sliding at B with impending rolling (without sliding) at A. Because it is initially
not known which of these possibilities represents the actual mode of impending
motion, this is a Type III problem.

The free-body diagrams for the block and the spool are shown in Fig. (b).

C

A

B

120

80

(b)

25 N

50 N

NC

FA

NA

NA

FA

FB

NB

P

y

x

Observe that both friction forces have been shown in their correct directions. The
force P tends to slide points A and B on the spool to the right. Therefore, both
friction forces are shown acting to the left on the FBD of the spool.

Inspecting the FBDs in Fig. (b), we conclude from �Fy = 0 that NA = 50 N
and NB = 75 N. At this stage three unknowns remain in the FBD of the spool: FA,
FB , and P. Because only two equilibrium equations are left (�Fy = 0 has already
been used), the remainder of the solution depends on the assumption regarding
impending motion.

Assume Impending Sliding at A

This assumption gives us the additional equation FA = 0.3NA = 0.3(50) = 15 N.
The FBD of the spool then yields

�MB = 0 + FA(240)− P(40) = 0

which gives

P = 6FA = 6(15) = 90.0 N

Assume Impending Sliding at B

This assumption gives FB = 0.4NB = 0.4(75)= 30 N. From the FBD of the spool,
we now obtain

�MA = 0 + − FB(240)+ P(200) = 0

which gives

P = 1.2FB = 1.2(30) = 36.0 N

Choose the Correct Answer

Up to this point, the analysis has determined that sliding impends at A if
P = 90.0 N and at B if P = 36.0 N. Consequently, the largest force P that can
be applied without disturbing the static equilibrium of the spool is

P = 36.0 N Answer

with sliding impending at B.
An alternate method for solving this problem is to assume impending sliding

at one surface and then to compare the friction force at the other surface with its
limiting static value.
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Problems

7.1 Can the two blocks be in equilibrium in the position shown? Justify your

20°

μs =  0.2

A
120 N

A
120 N

B
80 N

μ

B
80 N

Fig. P7.1

answer. All surfaces are frictionless except the horizontal surface beneath block B.

7.2 Determine the range of P for which the system of two blocks will be in

30°

μs  = 0.2

P

μ

A
120 N

A
120 N

B
80 N

B
80 N

Fig. P7.2

equilibrium. Friction is negligible except for the surface under block B.

7.3 Two identical chairs, each weighing 14 N, are stacked as shown. The cen-
ter of gravity of each chair is denoted by G. The coefficient of static friction is
0.2 at B (the contact point between the chairs) and 0.35 at A, C, and D. Determine
the smallest force P that would cause sliding.

G

A C D

P
B G

600 mm

360 mm 360 mm

Fig. P7.3

7.4 The two homogeneous bars AB and BC are connected with a pin at B and
placed between rough vertical walls. If the coefficient of static friction between
each bar and the wall is 0.4, determine the largest angle θ for which the assembly
will remain at rest.

A C

B

600 mm

6 N 8 N

600 mm

θ θ

Fig. P7.4

7.5 The contact surface between the 36-N block and 20-N homogenous cylin-30°

36 N

20 N

μs  =  0.75

μs  =  0.75μ

μ

540 mm

Fig. P7.5
der is frictionless. Can the system be in static equilibrium on the rough inclined
plane?
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7.6 Determine the smallest angle θ at which the uniform triangular plate of 180 m
m

270 mm

A

BWW

θ

Fig. P7.6

weight W can remain at rest. The coefficient of static friction at A and B is 0.5.

7.7 The center of gravity of the 50-kg spool is at G. A cable wound around
the hub of the spool is attached to the 30-kg block B. The coefficients of static
friction are 0.15 under the spool and 0.2 under the block. Determine the largest
counterclockwise couple C0 that can be applied to the spool without disturbing
the equilibrium of the system.

G

B

C0

0.3 m

0.5 m

1.2 m

0.6 m

Fig. P7.7

7.8 The brake pads at C and D are pressed against the cylinder by the spring BF.

B

A

F

E

720 mm

480 mm

300 mm

240
mm

240
mm

MC D

Fig. P7.8

The coefficient of static friction between each pad and the cylinder is 0.2. Find the
smallest tension in the spring that would prevent the cylinder from rotating when
the clockwise couple M = 90000 N ·mm is applied. Neglect the weights of the
members.

7.9 Can the three identical cylinders be in equilibrium if they are stacked as

Fig. P7.9

shown? The static coefficient of friction is 0.30 between the cylinders and 0.1
between the cylinders and the ground.

7.10 The rear-wheel-drive pickup truck, with its center of gravity at G, is to
negotiate a bump from a standing start in the position shown. The static and
kinetic coefficients of friction between the tires and the pavement are 0.18 and
0.15, respectively. Determine the largest slope angle θ that can be negotiated,
assuming that the drive wheels are (a) spinning; and (b) not spinning.

360 mm

1800
mm

1200
mm

BA

GG

θ

Fig. P7.10, P7.11

7.11 Solve Prob. 7.10 assuming that the pick-up truck has front-wheel drive.

7.12 The 0.8-kg bar is pinned at A and rests on the 1.6-kg spool at B. Both

300

A
B

7575

125125

150

C

P

Dimensions in mm

Fig. P7.12

bodies are homogenous. If the coefficient of static friction is 0.25 at both B and C,
calculate the largest force P that can be applied without disturbing the equilibrium
of the system.
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7.13 The horizontal force P acts on the rim of the homogeneous cylinder of

R

P

30°

Fig. P7.13

radius R and weight W . Determine the smallest coefficient of static friction that
enables the cylinder to start rolling up the 30◦ incline.

7.14 The uniform bar and the homogeneous cylinder each have a mass of 24 kg.
The static coefficient of friction is μs at A, B, and C (the three points of contact).
(a) Assuming equilibrium, calculate the normal and friction forces at A, B, and C.
(b) What is the smallest value of μs necessary for equilibrium?

BBB

1 m

A

1.5 m

CCC

0.333 m

1.3 m

3.2 m
AA BB

C

BA

60° 60°

Fig. P7.14 Fig. P7.15

7.15 A stepladder consisting of two legs pinned together at C is resting on a
rough floor. Will a 800 N worker be able to change the light bulb if he is required
to climb to a height of 1.3 m? The uniform legs AC and BC weigh 110 N and
70 N, respectively. The coefficient of static friction at A and B is 0.48.

7.16 The mass of the unbalanced disk is m, and its center of gravity is locatedB

20°

Dimensions in mm

30

11
0

A

G

Fig. P7.16

at G. If the coefficient of static friction is 0.2 between the cylinder and the inclined
surface, determine whether the cylinder can be at rest in the position shown. Note
that the string AB is parallel to the incline.

7.17 The two uniform sheets of plywood, each of length L and weight W , are
propped as shown. If the coefficient of static friction is 0.5 at all three contact
surfaces, determine whether the sheets will remain at rest.

L

L

60°

60°

Fig. P7.17
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7.18 Find the smallest coefficient of static friction at B and E that would permit
the tongs to lift the 40-kg block. Neglect the mass of the tongs.

Dimensions
in mm

200

1200

600

40 kg

240

P

O

A
D

C

B E

300

Fig. P7.18

7.19 Determine the smallest force P that the worker must apply to the bar
CD to prevent the homogeneous 80-kg spool from moving down the hill. The
coefficients of static friction are 0.12 at A and 0.36 at B. Neglect the weight of
bar CD.

C

90°

15°

D
A

B

0.5 m

80 kg
P

Fig. P7.19, P7.20

7.20 Find the smallest force P that the worker must apply to the bar CD in
order to initiate uphill motion of the homogeneous 80-kg spool. The coefficients
of static friction are 0.12 at A and 0.36 at B. Neglect the weight of bar CD.

7.21 The man is trying to push the homogeneous 20-kg ladder AB up a wall by

A

B

P

5 m

1.5 m

2 m

Fig. P7.21

applying the horizontal force P . Determine the smallest value of P that would
move the ladder. The coefficient of static friction between the ladder and both
contact surfaces is 0.3.
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7.22 A 11-N disk A is placed on the inclined surface. The coefficient of static
friction between the disk and the surface is 0.4. Is the disk in equilibrium if P =
6 N and θ = 30◦?

x

z

y
1 m

3 m

P

A

θ

P

A

G

45°

30°
192 mm

270 mm

Fig. P7.22 Fig. P7.23

7.23 The 40-N spool is suspended from the hanger GA and rests against a ver-
tical wall. The center of gravity of the spool is at G and the weight of the hanger
is negligible. The wire wound around the hub of the spool is extracted by pulling
its end with the force P . If the coefficient of static friction between the spool and
the wall is 0.25, determine the smallest P that will extract the wire.

7.24 A uniform plank is supported by a fixed support at A and a drum at B that
rotates clockwise. The coefficients of static and kinetic friction for the two points
of contact are as shown. Determine whether the plank moves from the position
shown if (a) the plank is placed in position before the drum is set in motion; and
(b) the plank is first placed on the support at A and then lowered onto the drum,
which is already rotating.

A

s = 0.18

k = 0.15
s = 0.32

k = 0.28

2 m3 m1 m

μ μ
μμ

BBB

Fig. P7.24

7.25 The uniform bar of weight W is supported by a ball-and-socket joint at
A and rests against a vertical wall at B. If sliding impends when the bar is in
the position shown, determine the static coefficient of friction at B. [Hint: The
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direction of impending sliding is tangent to the dashed circle (the potential path
of motion of point B).]

z240 mm

450 mm600 mm

y

B

Path of impending
motion of B

A

x

R = 510 m
m

Fig. P7.25

7.26 The uniform plank is initially at rest on the fixed support at A and the
stationary drum at B. If the drum begins rotating slowly counterclockwise, deter-
mine how far the plank will travel before it comes to rest again. (Note: Because
the drum rotates slowly, the inertia of the plank may be neglected.)

A

s = 0.36

k = 0.30
s = 0.32

k = 0.28

3 m3 m

BBBBBB

μ μ
μμ

Fig. P7.26

7.27 The two homogeneous bars with the weights shown are connected with a

C

A B

W

2W

b

b

Fig. P7.27

pin at B and suspended from a pin support at C . The coefficient of static friction
between bar AB and the vertical wall is μs . Determine the smallest μs required to
keep the assembly in equilibrium in the position shown.

7.4 Impending Tipping

In the preceding article, we restricted our attention to sliding; the possibility of
tipping was neglected. We now discuss problems that include both sliding and
tipping as possible motions.
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Consider again a homogeneous block on a friction surface being pushed by
a force P, as shown in Fig. 7.4 (a). We assume that the weight W of the block,
and the dimensions b, h, and d are known. We wish to determine the magnitude
of P that will cause impending motion of the block, either impending sliding or
impending tipping.

P

(a)

b

h

d
G

AA

P

(b)

A

d
G

W y

x

N

F

x

Fig. 7.4

We can gain insight into the solution by comparing the number of unknowns
with the number of available equilibrium equations. From the free-body dia-
gram of the block, Fig. 7.4(b), we see that there are four unknowns: the applied
force P, the resultant normal force N, the friction force F, and the distance x that
locates the line of action of N. Because there are only three independent equi-
librium equations, an additional equation must be found before all unknowns
can be calculated. If we assume impending sliding, the additional equation is
F = Fmax=μs N . On the other hand, if impending tipping about corner A is
assumed, the additional equation is x = b/2, because N acts at the corner of the
block when tipping impends.

In the preceding article, three classes of friction problems were introduced
for impending sliding. This classification can be easily reworded to include the
possibility of impending tipping.

Type I The problem statement does not specify impending motion (sliding or
tipping).

Type II The problem statement implies impending motion, and the type of
motion (sliding at known surfaces, or tipping) is known.

Type III The problem statement implies impending motion, but the type of
motion (sliding or tipping) and/or the surfaces where sliding impends are not
known.

Examples of the three types of problems are given in the sample problems that
follow.



Sample Problem 7.8
The man in Fig. (a) is trying to move a packing crate across the floor by applying
a horizontal force P. The center of gravity of the 250-N crate is located at its geo-
metric center. Does the crate move if P = 60 N? The coefficient of static friction
between the crate and the floor is 0.3.

0.6 m

1.
8 

m

0.
9 

m

(a)

P

Solution
This is a Type I problem because the problem statement does not specify impend-
ing motion. To determine if the crate moves for the conditions stated, we first
assume equilibrium and then check the assumption. However, the check must
answer two questions—(1) does the crate slide and (2) does the crate tip?

The free-body diagram of the crate is shown in Fig. (b). If the block is assumed
to remain in equilibrium, the three equilibrium equations can be used to calculate
the three unknowns: the normal force N1, the friction force F1, and the distance x
locating the line of action of N1, as shown in the following.

0.6 m

P  =  60 N

N1

F1

x

y

x

1.
8 

m

0.
9 

m

O

(b)

250 N
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Assume Equilibrium

�Fx = 0 −→+ P − F1 = 0

F1 = P = 60 N

�Fy = 0 +
�⏐ N1 − 250 = 0

N1 = 250 N

�MO = 0 + N1x − P(0.9) = 0

which gives

x = P(0.9)/N1 = 60(0.9)/250 = 0.216 m

Check

The largest possible value for x is 0.3 m (half the width of the crate). Because
x = 0.216 m, as obtained from equilibrium analysis, is smaller than that, we
conclude that the block will not tip.

The limiting static friction force is (F1)max=μs N1= 0.3(250)= 75.0 N,
which is larger than the force F1= 60 N that is required for equilibrium. We
therefore conclude that the crate will not slide.

Crate will not move when P = 60 N Answer

Sample Problem 7.9
Calculate the force P required to cause tipping of the packing crate in Sam-

P

FA

NA

A

0.6 m

y

x

1.
8 

m

0.
9 

m

250 N

ple Problem 7.8. Also determine the minimum coefficient of static friction that
permits tipping.

Solution
This is a Type II problem because impending tipping is specified. The free-body
diagram for the crate is shown in the figure. Note that when the crate is on the
verge of tipping, the normal force NA acts at corner A. There are three equilibrium
equations that can be solved for the unknowns P, NA, and FA:

�MA = 0 + 250(0.3)− P(0.9) = 0

P = 83.3 N Answer

�Fx = 0 −→+ P − FA = 0

FA = P = 83.3 N

�Fy = 0 +
�⏐ NA − 250 = 0

NA = 250 N
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The minimum coefficient of static friction that permits tipping is

μs = FA/NA = 83.3/250 = 0.333 Answer

Note that if the coefficient of static friction were exactly 0.333, then the
force P = 83.3 N would result in simultaneous impending sliding and impending
tipping.

Sample Problem 7.10
The winch in Fig. (a) is used to move the 150-kg uniform log AB. Compute the
largest tension in the cable for which the log remains at rest. The coefficient of
static friction between the log and the plane is 0.4.

60°4 m

(a)

A B

Solution
Although we are asked to find the cable tension that would cause impending
motion, we do not know whether sliding or tipping impends. Therefore, this is
a Type III problem.

The free-body diagram of the log in Fig. (b) contains four unknowns: ten-
sion T , resultant normal force N, friction force F, and x (the distance from A
to the line of action of N). Because there are only three independent equilib-
rium equations, all unknowns cannot be calculated unless an assumption is made
concerning the type of impending motion.

150(9.81) = 1471.5

x

A

N

F

2 m 2 m 60°

T

(b)

B

y

x
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Assume Impending Sliding

Under this assumption, we have F = Fmax = 0.4 N, and the force equilibrium
equations for the FBD in Fig. (b) are as follows.

�Fx = 0 −→+ 0.4N − T cos 60◦ = 0 (a)

�Fy = 0 +
�⏐ N − 1471.5+ T sin 60◦ = 0 (b)

Solving Eqs. (a) and (b) simultaneously, we obtain T = 695.4 N and N = 869.3 N.

Assume Impending Tipping

Under this assumption, N will act at A, as shown in the FBD in Fig. (c). The cable
tension T can be computed from the moment equation

�MA = 0 + T sin 60◦(4)− 1471.5(2) = 0

T = 849.6 N

1471.5

A

N

F

2 m 2 m

T

(c)

B

60°

Choose the Correct Answer

Because T = 695.4 N for impending sliding and T = 849.6 N for impending
tipping, the maximum tension that can be applied without moving the log is

T = 695.4 N Answer

Alternate Solutions

As with most equilibrium problems, there are several equivalent methods of
analysis that could be used. Two such methods are

1. Assume impending sliding, and solve for T . Continue the equilibrium analysis
to find x. Then check to see if this value of x is physically possible.

2. Assume impending tipping, and solve for T . Continue the equilibrium analysis
to find F. Then check to see if F ≤ Fmax.
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Problems

7.28 The man pushes the 60-kg homogeneous crate with the horizontal force P .
Determine the largest distance h for which the crate will slide without tipping.

1.5 m

3 m

P

μ s = 0.4

h

s = 0.3
0.4 m

P

1 m

1.2 m

0.5 m

GGG

μ

θ

Fig. P7.28 Fig. P7.29, P7.30

7.29 The 60-kg crate has its center of gravity at G. Determine the smallest
force P that will initiate motion if θ = 30◦.

7.30 Solve Prob. 7.29 if θ = 0.

7.31 The 60-kg door with its center of gravity at G is hung from a horizontal

25
20

 m
m

540 mm540 mm
A B

GG

1620 mm 1620 mm

P

Fig. P7.31
track at A and B. Find the largest coefficient of static friction μs at A and B
for which the door will slide without lifting off the track. Also, determine the
corresponding force P .

7.32 Determine the largest force P for which the 18-kg uniform bar remains in
equilibrium.

2 m 1 m

50°μs = 0.2

P

μ

Fig. P7.32

7.33 Determine the largest angle θ for which the homogeneous block remains

5 m

2 m

θ

μs = 0.4

Fig. P7.33

at rest.

7.34 The cylinder and the block are connected by a horizontal cord. Determine

90 mm

150 mm15 N

15 N

C

  s = 0.35μ

Fig. P7.34

the largest couple C that can be applied to the cylinder without disturbing the
equilibrium of the system. Assume that both bodies are homogeneous.

7.35 The weight of the cylindrical tank is negligible in comparison to the weight
of water it contains (density of water= 1000 kg/m3). The coefficient of static fric-
tion between the tank and the horizontal surface is μs . (a) Assuming a full tank,
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find the smallest force P required to tip the tank, and the smallest μs that would
allow tipping to take place. (b) If the force P = 1000 N initiates tipping, determine
the depth of water in the tank.

0.7 m

P
30°

2 m

A

L

B

P

20°
μ s = 0.2μ

θ

Fig. P7.35 Fig. P7.36

7.36 Find the smallest angle θ for which a sufficiently large force P would
cause the uniform log AB of weight W to tip about A.

7.37 The 20-kg ladder AC is leaning on a 5-kg block at B and a frictionless
5 m1 m

4 m

1.5 m

C

A

B

μs = 0.6

μs = 0.1

10 m

μ

μ

Fig. P7.37

corner at C. Both bodies are homogeneous. Can the system remain at rest in the
position shown? Be sure to consider all possibilities.

7.38 Two concrete blocks weighing 1800 N each form part of the retaining wall
of a swimming pool. Will the blocks be in equilibrium when the pool is filled and
the water exerts the line loading shown?

300
mm

540
mm

540
mm

Plastic
liner

6 N/mm

μs = 0.5

μs = 1.0

h

θ

b

μ s

Fig. P7.38 Fig. P7.39

7.39 Derive the expression for the largest angle θ for which the homogeneous
block stays in equilibrium.

7.40 Find the weight of the lightest block D that can be used to support the

AA

4 m

7.
5 

m

B

C

D

3 m 1 m

A

μs = 0.2

μs = 0.2

Fig. P7.40 100-kg uniform pole ABC in the position shown.
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7.41 The 2000-N weight of the trailer is distributed equally between its two
wheels, one on each side of the trailer. The center of gravity is at G, and the wheels
are free to rotate. Determine whether the trailer can be pushed over a 180 mm curb
without tipping, and, if so, compute the required horizontal force P.

R = 360 mm

540
mm

600 mm

P G

180 mm
A
1080
mm

μs = 0.4

Fig. P7.41

7.42 Determine the smallest force P, applied to the plunger D, that will prevent
the couple C = 250 N·m from moving the cylinder. Friction may be neglected at
all surfaces, except between the plunger and cylinder. The masses of the bodies
are negligible.

P

40 mm

30°

A B

C
30°

D

μs = 1.6

Fig. P7.42

7.43 The weights of the homogeneous roller and the wedge are 100 N and 40 N,

2 m

C 30°

Fig. P7.43respectively. The coefficient of static friction is 0.2 between all contact surfaces.
Find the smallest couple C that will move the cylinder.

7.5 Angle of Friction; Wedges and Screws

a. Angle of friction

Figure 7.5 shows a block on a friction surface subjected to the horizontal force P.
As seen in the free-body diagram, we let φ be the angle between the con-
tact force R and the normal n to the contact surface. The angle φ is given by
tan φ= F /N , where N and F are the normal and friction forces, respectively.
The upper limit of φ, denoted by φs , is reached at impending sliding when
F = Fmax=μs N . Therefore, we have

tan φs = μs (7.4)
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s

P 

W

W

P

F

N
φ

R

n

FBD

O

μ

Fig. 7.5

The angle φs is called the angle of static friction. Note that φ ≤ φs signifies equi-
librium and that φ = φs indicates impending sliding. Therefore, the direction of
the contact force R is known at all surfaces where sliding impends. This knowl-
edge can be frequently utilized to gain insight into problems involving two- and
three-force bodies.

In Fig. 7.5, the friction force F opposes the tendency of P to slide the block
to the right. If the direction of P is reversed, the direction of F would also be
reversed. This leads to the conclusion that the block can be in equilibrium only if
the line of action of R stays within the sector AOB (bounded by ±φs), as shown
in Fig. 7.6. For more general loadings, the line of action of R must lie within the
cone, called the cone of static friction, that is formed by rotating sector AOB about
the normal n. Observe that the vertex angle of the cone of static friction is 2φs .

BA

n

O

Equilibrium range
of the line
of action of R 

φs φs

Fig. 7.6

When sliding occurs, the friction force is F = μk N , and the value of φ that
specifies the direction of R is given by

tan φk = μk (7.5)
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The angle φk is called the angle of kinetic friction. For this case, the cone of static
friction is replaced by the smaller cone of kinetic friction, for which the vertex
angle is 2φk .

b. Wedges

A wedge is a simple device that is used for the same purpose as a lever—to create
a mechanical advantage. Consider, for example, the wedge shown in Fig. 7.7(a)
that is being forced into a crack by the applied force P. The angle formed by
the tip of the wedge is 2β, where β is called the wedge angle. Neglecting the
weight, the free-body diagram of the wedge at impending sliding is shown in
Fig. 7.7(b). As before, we let φ be the angle between the contact force R and
the normal n to the contact surface. Because sliding impends, φ=φs , where
φs = tan−1 μs is the angle of friction. From the force diagram in Fig. 7.7(c) we see
that R= P/[2 sin(φs+β)], which is substantially larger than P if the wedge angle
β is small and the sides of the wedge are lubricated (giving a small value for φs).

n

R

(b)

P

n

R
= s = s

P

R

R

(c)

+s

+s

P

(a)

φ φ φ φ

φ

φ

β β β

β

2β

Fig. 7.7

Ideally, a wedge should be slippery enough to be easily driven into the crack,
but have enough friction so that it stays in place when the driving force is removed.
In the absence of P, the wedge becomes a two-force body. Therefore, the contact
forces R must be collinear, as indicated in the free-body diagram in Fig. 7.8, where
now φ=β. Recalling that equilibrium can exist only if φ≤φs , we conclude that
the wedge will stay in place provided that β ≤φs .

n
R

n
R

== βφ φ β

2β

Fig. 7.8
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c. Square-threaded screws

Screws with square threads are employed in jacks, vises, and other devices that
produce a large axial force by applying a relatively small couple about the axis of
the screw. A square-threaded screw can be viewed as a bar of rectangular cross
section wrapped around a cylinder in a helical fashion, as shown in Fig. 7.9. The

r

θ

p

Fig. 7.9

helix angle θ is called the lead angle, the distance p between the threads is known
as the pitch, and the mean radius of the threads is denoted by r. It can be seen that
these parameters are related by

p = 2πr tan θ (7.6)

Figure 7.10 (a) shows a screw being employed as a jack. Assuming that the
couple C0, called the torque, is large enough, it will cause the screw to advance,
thereby elevating the weight W. The analysis of this problem is simplified if we
recall that in Coulomb’s theory the friction force is independent of the contact
area. Therefore, we can assume the contact area to be very small, as illustrated
in Fig. 7.10(b). Note that the entire weight W is carried by the contact area and
that the horizontal force Q = C0/r is supplied by the applied torque C0. We can
now see that this problem is identical to the one shown in Fig. 7.11(a)—namely,
a block of weight W being pushed up an incline by the horizontal force Q.

W

C0

(a) (b)

Q = C0/r
Contact
area

W

r

Fig. 7.10

The smallest torque required to start the weight W moving upward can now be
obtained from the FBD in Fig. 7.11(b). Note that at impending sliding the angle
between R and the normal n to the contact surface is φ = φs , and that the direction
of φs relative to the normal n indicates that the impending motion is directed up
the incline. For equilibrium of the block, we have

�Fx = 0 −→+ C0

r
− R sin(φs + θ) = 0 (a)

�Fy = 0 +
�⏐ R cos(φs + θ)−W = 0 (b)
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C0 /r

W

(b)

R

φ = φs

n

C0 /r

W

(c)

 =   s

n

R

Q = C0 /r

W

y

x

(a)

θ

θ
θ

φ φ

Fig. 7.11

Solving Eqs. (a) and (b), we find that the smallest torque that will cause the
weight W to move upward is

(C0)up = Wr tan(φs + θ) (7.7a)

If we reverse the direction of C0 and assume impending motion down the
incline, the FBD in Fig. 7.11(c) must be used. It is seen from the equilibrium
equations that the torque required to cause the weight W to move downward is

(C0)down = Wr tan(φs − θ) (7.7b)

If φs ≥ θ , the torque C0 in Eq. (7.7b) is positive, which means that the weight W
remains at rest if C0 is removed. In this case, the screw is said to be self-locking.
On the other hand, if φs < θ , the torque C0 in Eq. (7.7b) is negative, indicating
that the weight W would come down by itself in the absence of C0.



Sample Problem 7.11
Using the angle of friction, determine the smallest angle θ for which the slender

A

L

B

s = 0.5

(a)

θ

μ

bar shown in Fig. (a) can remain at rest. The bar is homogeneous of weight W and
length L. Neglect friction between the bar and wall at B.

Solution
As shown in the FBD, Fig. (b), the bar is acted on by three forces: the weight W
acting at the midpoint of the bar, the horizontal normal force NB , and the reac-
tion RA at the horizontal surface. Because impending motion is specified, the
angle φ between RA and the normal to the contact surface is equal to its limiting
value: φ=φs = tan−1 μs = tan−1 0.5 = 26.57◦. Because the bar is a three-force
member, the forces intersect at point C.

A θ

φ φ

B

L /2

W

DE

NB

RA s= = 26.57°

C

L /2

26.57°

(b)

From triangle ABD we see that

tan θ = BD

AD
(a)

From triangle ACE we obtain AE = CE tan 26.57◦. Because AD = 2AE, this
becomes

AD = 2CE tan 26.57◦ (b)

Substituting Eq. (b) into Eq. (a) together with BD = CE, we get

tan θ = CE

2CE tan 26.57◦
= 1

2 tan 26.57◦

which yields

θ = 45.0◦ Answer

By using the angle of friction and by recognizing the bar to be a three-force
member, we were able to find θ from geometry, without having to write the
equilibrium equations.
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Sample Problem 7.12
The screw press shown is used in bookbinding. The screw has a mean radius of
10 mm and its pitch is 5 mm. The static coefficient of friction between the threads
is 0.18. If a clamping force of 1000 N is applied to the book, determine (1) the
torque that was applied to the handle of the press; and (2) the torque required to
loosen the press.

Solution
The lead angle of the screw is computed from Eq. (7.6).

θ = tan−1 p

2πr
= tan−1 5

2π(10)
= 4.550◦

The friction angle is

φs = tan−1 μs = tan−1 0.18 = 10.204◦

Part 1

The torque required to apply the force W = 1000 N can be calculated from
Eq. (7.7a).

C0 = Wr tan(φs + θ) = 1000(0.01) tan(10.204◦ + 4.550◦)

C0 = 2.63 N ·m Answer

Part 2

The torque needed to loosen the press is obtained from Eq. (7.7b).

C0 = Wr tan(φs − θ) = 1000(0.01) tan(10.204◦ − 4.550◦)

C0 = 0.990 N ·m Answer
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Problems

The following problems are to be solved using the angle of friction. Utilize the
characteristics of two-force and/or three-force bodies wherever applicable.

7.44 The uniform bar of length L and weight W is kept in the horizontal

L

60° 30°

Fig. P7.44

position by friction. Determine the smallest possible coefficient of static friction
between the bar and the inclined surfaces.

7.45 The movable bracket of negligible weight is mounted on a vertical post.

a

b
P

A

B

Fig. P7.45

The coefficient of static friction between the bracket and the post is 0.2. Deter-
mine the smallest ratio b/a for which the bracket can support the vertical force P.
Assume that the diameter of the post is negligible. (Note: Because the result is
independent of P, the bracket is said to be self-locking.)

7.46 The 100-kg man walks up the inclined plank of negligible weight. The
coefficients of static friction at A and B are 0.3 and 0.2, respectively. Determine
the distance x at which the plank would begin to slide.

10 m

x

B

20°

A

Fig. P7.46

7.47 The four-wheel drive vehicle of weight W attempts to climb a vertical
obstruction at A. The center of gravity of the vehicle is at G, and the coefficient
of static friction is μs at A and B. Find the smallest μs necessary to initiate the
climb. (Hint: Slipping must impend at A and B simultaneously.)

4 m
2.1 m

0.6 m 1.2 mA

G

B

Fig. P7.47

7.48 Find the smallest distance d for which the hook will remain at rest when

60
mm

90 mm

d

P

BB

AA
μs = 0.6

Fig. P7.48
acted on by the force P. Neglect the weight of the hook, and assume that the
vertical wall is frictionless.
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7.49 The figure shows a locking device that is used in some belt buckles. When
the belt is pulled to the right by the force P, the roller A becomes jammed between
the belt and the upper surface of the buckle. If the coefficient of static friction
between all surfaces is 0.24, determine the largest angle θ for which the buckle
is self-locking (motion of the belt in either direction is prevented even after the
force P is removed). Neglect the weight of roller A.

P

Flexible belt

θ

A
4000 kg

s = 0.12

s = 0.2

A B

μ

μ

θ

Fig. P7.49 Fig. P7.50

7.50 A small wedge is placed beneath corner B of the 4000-kg block of marble.
Determine the largest angle θ for which the wedge is self-locking; that is, the
wedge will not slide out from under the block. Neglect the mass of the wedge and
the small angle between surface AB and the horizontal.

7.51 The two 200-N blocks are pushed apart by the 15◦ wedge of negligible
weight. The angle of static friction is 12◦ at all contact surfaces. Determine the
the force P required to start the blocks moving.

15°15°

200 N200 N

P

φ s = 15° φ
 s = 12°

P Pβ

Fig. P7.51 Fig. P7.52

7.52 The wedge with the angle β is squeezed between two blocks as shown. 48 mm20 mm

O

27 mm
BA

S

C

μ

Fig. P7.53

Determine the largest β for which the wedge will not move regardless of the
magnitude of the squeezing force P . Neglect the weight of the wedge.

7.53 The device shown is used to measure the kinetic coefficient of friction
between the rotating shaft S and the homogeneous stationary collar C. The entire
840-N weight of the collar is supported by the shaft. The spring scale attached to
the collar at A measures the tension in AB caused by the counterclockwise rotation
of the shaft. What is the coefficient of kinetic friction if the reading on the scale
is 150 N?
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7.54 The single-threaded screw of the floor jack has a pitch of 15 mm and a
mean radius of 52.5 mm. The angle of static friction is 8.5◦. (a) Determine the
couple C that must be applied to the screw to start lifting a weight of 4000 N. (b)
What is the couple required to start lowering the weight?

C

4000 N

P
7.5°7.5°

BA

Fig. P7.54 Fig. P7.55

7.55 The force P = 900 N is required to push the wedge into the crack, starting
from the position shown. It is also known that a force of 250 N is required to
pull the wedge out of the crack from this position. Determine the coefficient of
static friction between the wedge and the corners of the crack. Assume that the
horizontal components of the contact forces at A and B are the same for both
cases.

7.56 The square-threaded screw of the C-clamp has a mean diameter of 9 mm

C

Fig. P7.56

and a pitch of 1.5 mm. The coefficient of static friction between the threads is
0.2. If the torque C = 1.25 N · m is used to tighten the clamp, determine (a) the
clamping force; and (b) the torque required to loosen the clamp.

7.57 The square-threaded screw with a pitch of 10 mm and a mean radius of
18 mm drives a gear that has a mean radius of 75 mm. The static and kinetic

C0

C1

75 mm

Fig. P7.57
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coefficients of friction between the gear and the screw are 0.12 and 0.06, respec-
tively. The input torque applied to the screw is C0 = 10 N ·m. Assuming constant
speed operation, determine the output torque C1 acting on the gear.

7.58 The screw of the car jack has a pitch of 3 mm and a mean radius of
5.25 mm. Note that the ends of the screw are threaded in opposite directions
(right- and left-handed threads). The coefficient of static friction between the
threads is 0.08. Calculate the torque C0 that must be applied to the screw in order
to start the 1200-N load moving (a) upward; and (b) downward.

30°

30°

1200 N

C0

Fig. P7.58

*7.6 Ropes and Flat Belts

The theory of Coulomb friction can also be used to analyze the forces acting
between a flexible body, such as a rope or belt, and a friction surface.

Figure 7.12 shows a weight W that is held in static equilibrium by a rope that
passes over a peg. If the peg is frictionless, then P =W ; that is, the peg sim-
ply reverses the direction of the rope without changing its tension. If the contact
surface between the peg and the rope has friction, the friction force will help to
keep the weight from falling. In this case, it is possible to have P < W and still

W

P

Fig. 7.12
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maintain equilibrium. A good example of this principle in action is the capstan—a
device for fastening a ship to the dock. Other applications are belt drives and band
brakes. In a belt drive, the friction between the belt and the pulleys enables power
to be transmitted between rotating shafts. Band brakes use friction between a band
(belt) and a cylindrical drum to reduce the speed of rotating machinery.

Figure 7.13 (a) shows a thin, flat belt that passes over a cylinder of radius r.

(b)

A B

T1 T2

O

dα

Distributed
normal force

Distributed
friction force

Assumed direction
of impending motion

(or motion)

(c)

n

T

O

2

T +

t2

dF dN

      dT

dα dα

dα

(a)

A θ B

T1 T2

O
r

α

Fig. 7.13

Assuming that there is friction between the belt and the cylinder, the tensions
T1 and T2 are not equal. According to the theory of dry friction, the belt is in
one of the following states depending on the values of T1 and T2: equilibrium
without impending slipping, equilibrium with impending slipping, or slipping.
The analysis that follows determines the relationship between T1 and T2 for the
last two cases.

The forces acting on the belt are shown in Fig. 7.13(b), where the weight of
the belt is assumed to be negligible. The cylinder exerts normal and friction forces
on the belt, both of which are distributed along the contact area between A and B.
Because the direction of impending motion (or motion) of the belt is assumed to
be clockwise, equilibrium implies that T2 > T1.* Because the contact forces are
distributed, it is necessary to perform the equilibrium analysis on an infinitesimal
(differential) length of the belt that subtends the differential angle dα.

The free-body diagram of the differential element is shown in Fig. 7.13(c),
where n and t refer to the directions that are normal and tangent to the cylindrical
surface at the center of the element. The belt tension on the left side of the element
is denoted by T , and the tension on the right side by (T + dT ), where the differ-
ential change in the tension is dT = (dT /dα) dα. The angle between each tension
and the t-direction is dα/2. The element is also subjected to the normal force d N
and to the friction force d F , acting in the n- and t-directions, respectively.

Equilibrium of forces in the tangential direction yields

�Ft = 0 +↗ (T + dT ) cos
dα

2
− T cos

dα

2
− d F = 0 (a)

Because the cosine of an infinitesimal angle equals 1, Eq. (a) reduces to

d F = dT (b)

The balance of forces in the normal direction gives

�Fn = 0 +↖ d N − (T + dT ) sin
dα

2
− T sin

dα

2
= 0 (c)

Assuming that α is measured in radians, sin(dα/2) can be replaced by dα/2, an
identity that is valid for infinitesimal angles. Making this substitution gives

d N − (T + dT )
dα

2
− T

dα

2
= 0 (d)

*The equilibrium equations are applicable even if the belt is moving. Because the weight of the belt is
assumed to be negligible, inertial effects can be omitted except for very high speeds.
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Neglecting the product of differentials (dT dα) compared to T dα (this is not an
approximation), we have

d N = T dα (e)

If the belt is slipping or if motion impends, we have the additional equation
d F = μ d N , where μ = μk (slipping), or μ = μs (impending slipping). Sub-
stituting this for d F in Eq. (b) and eliminating d N between Eqs. (b) and (e), we
obtain

dT

T
= μ dα (f)

Integrating both sides of Eq. (f) over the contact angle θ shown in Fig. 7.13(a),
we get

∫ θ

0

dT

T
= μ

∫ θ

0
dα

Noting that T = T1 when α= 0, and T = T2 when α = θ , integration yields

ln(T2/T1) = μθ

which can be written as

T2 = T1eμθ (7.8)

where e = 2.718 . . . is the base of natural (Naperian) logarithms. If the tension
in one side of the belt is known, Eq. (7.8) can be used to calculate the belt tension
in the other side.

The following points should be kept in mind when using Eq. (7.8).

• T2 is the belt tension that is directed opposite the belt friction. Thus, T2 must
always refer to the larger of the two tensions.

• For impending motion, use μ = μs . If there is relative motion between the
belt and cylinder, use μ = μk .

• The angle of contact θ must be expressed in radians.
• Because Eq. (7.8) is independent of r, its use is not restricted to circular

contact surfaces; it may also be used for a surface of arbitrary shape.



Sample Problem 7.13
The block of weight W is supported by a rope that is wrapped one-and-one-half

PW

times around the circular peg. Determine the range of values of P for which the
block remains at rest. The coefficient of static friction between the rope and the
peg is 0.2.

Solution
The tension in the portion of the rope that is attached to the block is obviously
equal to W. Because motion impends, Eq. (7.8) can be used to relate this tension
to P. Because the angle of contact is θ = 1.5(2π) = 3π rad, Eq. (7.8) becomes

T2 = T1eμsθ = T1e0.2(3π) = 6.59T1

Recall that in this equation, T2 refers to the larger of the two tensions.
The largest value of P for equilibrium occurs when the block is on the verge

of moving upward. For this case we must substitute T1 = W and T2 = P into the
preceding equation. The result is P = 6.59W .

The smallest value of P corresponds to impending motion of the block down-
ward, when W will be larger than P. Substituting T1 = P and T2 = W , we have
W = 6.59P , or P = W /6.59 = 0.152W .

Therefore, the block is at rest if P is in the range

0.152W ≤ P ≤ 6.59W Answer

Sample Problem 7.14
As shown in Fig. (a), a flexible belt placed around a rotating drum of 120-mm
radius acts as a brake when the arm ABCD is pulled down by the force P . The
coefficient of kinetic friction between the belt and the drum is 0.2. Determine the
force P that would result in a braking torque of 12000-N ·mm, assuming that the
drum is rotating counterclockwise. Neglect the weight of the brake arm.

A B C
D

P

(a)

120 mm

O

60° 60°

60
mm

60
mm

120
mm
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Solution
The free-body diagram of the belt is shown in Fig. (b). The distributed contact
forces exerted by the drum have been replaced by the equivalent force-couple
system at O. The resultant force R is not of interest to us, but the couple C R

represents the braking torque; that is, C R = 12000 N ·mm. Note that C R has the
same sense as the rotation of the drum—namely, counterclockwise. The moment
equation of equilibrium, with O as the moment center, is

�MO = 0 + (TC − TB) 120− 12000 = 0 (a)

Equation (7.8) provides us with another relationship between the belt tensions.
Substituting μ = μk = 0.2, T1 = TB , T2 = TC (note that TC > TB), and
θ = 240(π /180) = 1.333π rad, Eq. (7.8) becomes

TC = TBe0.2(1.333π) = 2.311TB (b)

The solution of Eqs. (a) and (b) is TB = 76.3 N and TC = 176.3 N.
The force P can now be found by the balance of moments about A on the FBD

of the brake arm, shown in Fig. (c):

�MA = 0 + TB sin 60◦(60)+ TC sin 60◦(180)− P(240) = 0

O

60°

(b)

60°

TCTB

CR

240°

120°

R

60°60°

D

P

(c)

CBAAx

TB TC

Ay

60
mm

120
mm

60
mm

Substituting the values for TB and TC , and solving for P, gives

P = 131.0 N Answer
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Problems

7.59 How many turns of rope around the capstan are needed for the 60-N
force to resist the 9000-N pull of a docked ship? The static coefficient of friction
between the capstan and the rope is 0.2.

9000 N 60 N

240 mm

360 mm

180 mm

P

μ  k = 0.2

Fig. P7.59 Fig. P7.60, P7.61

7.60 The force P applied to the brake handle enables the band brake to reduce
the angular speed of a rotating drum. If the tensile strength of the band is 3800 N,
find the maximum safe value of P and the corresponding braking torque acting on
the drum. Assume that the drum is rotating clockwise.

7.61 Solve Prob. 7.60 if the drum is rotating counterclockwise.

7.62 The rope running over two fixed cylinders carries the 4-kg mass at one end.
Determine the force P that must be applied to the other end to initiate motion. The
coefficient of static friction between the rope and the cylinders is 0.15.

4 kg

150 mm150 mm

+ +A B

P

400 mm

Fig. P7.62

7.63 The leather rein used to fasten the horse to the hitching rail weighs 0.25

Horizontal

L

60°

Fig. P7.63

N/m. The coefficient of static friction between the rail and the rein is 0.6. If a 30-N
force acting on the bridle is sufficient to restrain the horse, determine the smallest
safe length L for the free end of the rein.
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7.64 The 30-N weight is attached to a rope that runs over a fixed cylinder. The

30 N P

Fig. P7.64

coefficient of static friction between the rope and the cylinder is 0.3. Determine
the range of the force P for which the system will be at rest.

7.65 The rail AB of negligible weight is suspended from a rope that runs around

A B

x

10 m

W

Fig. P7.65

two fixed pegs. The coefficient of static friction between the rope and the pegs is
0.5. As the weight W moves along the rail toward end B, determine its position x
when the rope is about to slip on the pegs.

7.66 The sling with a sliding hook is used to hoist a homogeneous drum. If
the static coefficient of friction between the cable and the eye of the hook is 0.6,
determine the smallest possible value for the angle θ .

μs = 0.6

θθ

150 N

120 mm

+

+

120 mm

P

A

B

480 mm

Fig. P7.66 Fig. P7.67

7.67 The 150-N weight is attached to a rope that passes over the fixed cylinders
A and B. The coefficient of static friction between the rope and the cylinders is
0.3. Determine the smallest force P that keeps the system at rest.

7.68 The 50-N homogeneous bar AB is suspended from a rope that runs over a
small peg at C . The bar is kept in the position shown by the horizontal force P .
Determine the smallest coefficient of static friction at C for which the bar will be
at rest.

P4 m

6 m

8 m

B

C

A

Fig. P7.68
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*7.7 Disk Friction

When a disk or the end of a shaft is pressed against a flat surface, its rotation
is resisted by a frictional couple, known as disk friction. Some examples of disk
friction are illustrated in Fig. 7.14. The friction clutch consists of two disks that are

P P

C

C

(a) Friction clutch

P

(b) Pivot bearing

C

P

(c) Collar bearing

C

Fig. 7.14

coated with special high-friction materials. When the disks are pressed together by
an axial force P, as shown in Fig. 7.14(a), they are capable of transmitting a large
torque C without slipping. Axial loads carried by rotating shafts are sometimes
supported by pivot bearings and collar bearings, shown in Fig. 7.14(b) and (c),
respectively. In a pivot bearing, the axial force is distributed over the end of the
shaft; in a collar bearing, the load is carried by the annular area of the collar. In
both cases the torque C is required to overcome the rotational resistance of the
bearing.

In order to analyze the frictional couple, consider the hollow shaft with inner
radius Ri and outer radius Ro shown in Fig. 7.15(a). The shaft is pressed against a
flat surface by the axial force P, and the torque required to overcome the frictional
couple is denoted by C. The objective of our analysis is to determine the relation-
ship between P and C. Following the practice of the preceding article, we denote
the coefficient of friction by μ. If the shaft is rotating, then μ is to be interpreted
as μk ; for impending rotation, μs should be used.

Figure 7.15(b) shows the normal force d N and the friction force d F acting on
the infinitesimal element of area dA at the end of the shaft. If the shaft is rotating,
or about to rotate, then d F = μ d N . The equilibrium equations of the shaft are

�Faxial = 0 P −
∫

�
d N = 0

�Maxis = 0 C −
∫

�
r d F = C − μ

∫
�

r d N = 0

P
Ri

Ro

Contact
region  �

C

P

C dF

dN

dr

RiRo

dA

dθ

dA

(b)

dF

r

(a)

Fig. 7.15
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where the integrals are to be computed over the contact region �, which is an
annular ring of area A = π(R2

o− R2
i ). Denoting the normal contact pressure by p,

we have d N = p dA, and the equilibrium equations become

P =
∫

�
p dA (7.9)

C = μ

∫
�

pr dA (7.10)

In order to perform the integrations, the variation of the normal pressure p over
the contact region must be known. This variation depends on whether the contact
surfaces are new or worn.

New Surfaces For new, flat contact surfaces, it is reasonable to assume that the
pressure p is uniformly distributed. Therefore, Eq. (7.9) becomes P = p A, and
the contact pressure is given by

p = P

A
= P

π
(
R2

o − R2
i

)

Taking p outside the integral in Eq. (7.10) gives C = μp
∫

� r dA. As shown in
Fig. 7.15(b), dA can be expressed in terms of polar coordinates as dA = r dθ dr .
Therefore, the torque required to overcome the friction couple becomes

C = μP

π
(
R2

o − R2
i

) ∫ Ro

Ri

∫ 2π

0
r2 dθ dr

which, after evaluating the integrals, becomes:

C = 2μP

3

(
R3

o − R3
i

)
(
R2

o − R2
i

) (7.11)

If the cross section is a solid circle of radius Ro(Ri = 0), the above expression
reduces to

C = 2μP Ro

3
(7.12)

Worn Surfaces Although the normal pressure p may be initially uniform
between two new, flat surfaces, the wear will not be uniform. The wear at a given
point on the cross section will depend on both the pressure and the distance trav-
eled by the point during slipping. Because the distance traveled is proportional to
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r (a point at a radial distance r travels the distance 2πr in one revolution of the
shaft), greater wear will occur at points farther from the axis of the shaft. Once
the contact surfaces have been broken in, it is reasonable to assume that the cross
section will have worn to a shape for which the rate of wear is constant. In this sit-
uation, we would have pr = K , where K is a constant. For a hollow cross section,
Eq. (7.10) then becomes

C = μK
∫

�
dA = μKπ

(
R2

o − R2
i

)
(7.13)

The constant K can be calculated by substituting p= K /r into Eq. (7.9),
resulting in

P =
∫

�
p dA =

∫ Ro

Ri

∫ 2π

0

K

r
r dθ dr = 2π K (Ro − Ri )

from which

K = P

2π (Ro − Ri )

Substituting this expression for K into Eq. (7.13), the torque required to overcome
the friction couple is

C = μP

2
(Ro + Ri ) (7.14)

For a solid shaft of radius Ro, we have Ri = 0 and the torque reduces to

C = μP Ro

2
(7.15)



Sample Problem 7.15
Figure (a) shows a disk clutch that transmits torque from the input shaft on the
left to the output shaft on the right. The clutch disk is splined to the input shaft,
thereby forcing the clutch disk and the shaft to rotate together but allowing the
disk to slide along the shaft. The normal force between the two halves of the clutch
is provided by the compression spring. The force F applied to the clutch pedal can
disengage the clutch by sliding the throw-out bearing to the left. Determine the
largest torque that can be transmitted if the value of F necessary to disengage the
clutch is 100 N. Solve for both new and worn friction surfaces.

90 mm
150 mm

135 mm

540 mm

(a)

F

Compression
spring

Output shaft

Clutch
disk

Throw-out
bearing

Input
shaft

Bearing

Friction surface, s = 0.6μ

Solution
Utilizing the free-body diagram of the clutch pedal assembly, Fig. (b), we get

�MA = 0 + 100(540)− P(135) = 0

P = 400 N

This is the normal force acting on the friction surface when the clutch is engaged.
The largest torque that can be transmitted equals the friction couple for this
value of P.

540 mm

(b)

F = 100 N
135 mm

Ay

AxA

P

For a new friction surface, Eq. (7.11) gives

C = 2μs P

3

(
R3

o − R3
i

)
(
R2

o − R2
i

) = 2(0.6)(400)

3

(
1503 − 903

)
(
1502 − 902

)
= 29400 N ·mm Answer

After the friction surfaces have become worn, we have from Eq. (7.14)

C = μs P

2
(Ro + Ri ) = 0.6(400)

2
(150+ 90) = 28800 N ·mm Answer
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Sample Problem 7.16
The normal pressure under a circular industrial glass polisher is axially symmetric
and varies linearly from p0 at r = 0 to zero at r = R, as shown in the figure. Derive
the expression for the torque required to rotate the polisher in terms of the axial
load P. The coefficient of kinetic friction between the polisher and the glass is μk .

P
C

r

R

pp0

Solution
The pressure p at the radial distance r is given by p = p0(R − r)/R. Substituting
this expression into Eq. (7.10), the torque C required to rotate the polisher is

C = μk

∫
�

pr dA = μk p0

R

∫ R

0

∫ 2π

0
(R − r)r2 dθ dr

= πμk p0 R3

6

The relationship between p0 and P can be obtained from Eq. (7.9).

P =
∫

�
p dA = p0

R

∫ R

0

∫ 2π

0
(R − r)r dθ dr = πp0 R2

3

Substituting p0 = 3P/π R2 into the expression for C yields

C = μk P R

2
Answer
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*7.8 Rolling Resistance

Up to this point, our discussion of friction has dealt only with rigid bodies. Defor-
mation (if any) was assumed to be negligible. For example, consider a rigid wheel
of weight W and radius R that is rolling on a rigid, horizontal surface with a con-
stant velocity. The FBD of the wheel is shown in Fig. 7.16(a). Because W and the
contact force N are perpendicular to the direction of travel, the wheel encounters
no resistance and, therefore, will roll forever.

R W

N

(a)

R
W

F

a

φ

(b)

N

A

Fig. 7.16

In the real world, both the wheel and the surface deform in the region of con-
tact. As a consequence, contact occurs over a finite area rather than at a point,
as illustrated in Fig. 7.16(b). The deformation in front of the wheel retards the
motion, whereas the material behind the wheel is in recovery, thereby assisting the
motion. During the deformation–recovery cycle some of the mechanical energy
invariably is converted to heat—a phenomena called hysteresis. Consequently,
the retarding force due to deformation always is greater than the propulsion force
from the recovering material, so that the contact force N has a horizontal compo-
nent opposing the motion, as indicated in Fig. 7.16(b). To keep the wheel rolling
at a constant velocity now requires the application of a horizontal force F equal to
the horizontal component of N . The magnitude of the force F is known as rolling
resistance or rolling friction.

Let A be the point of application of N , and let a represent the horizon-
tal distance between A and the vertical center line of the wheel. Referring to
Fig. 7.16(b), the moment equation �MA= 0 yields Wa= F R cos φ, where φ is
the angle between N and the vertical. In practice a << R, which allows us to
approximate cos φ ≈ 1. Therefore, Wa= F R, or

F = a

R
W = μr W (7.16)

where μr = a/R is called the coefficient of rolling resistance (unfortunately, the
distance a also often is referred to as the coefficient of rolling resistance). Note
that μr is analogous to the coefficient of kinetic friction μk . Generally, μr is con-
siderably smaller than μk . Typical values of μr are 0.0002 to 0.0005 for railroad
car wheels on steel rails, and 0.01 to 0.03 for car tires on paved roads.



Sample Problem 7.17
An 400-N shopping cart with 180-mm diameter wheels rolls down a ramp with
constant speed. If the slope angle of the ramp is 1.5◦, what is the coefficient of
rolling resistance?

90 mm

φ = 1.5°

1.5°

a

N

W

Solution
Consider the FBD of one wheel of the cart shown in the figure. Since the speed
of the wheel is constant, the wheel is in equilibrium. We also note that the wheel
is a two-force body, so that the weight W acting on a wheel and the contact force
N are collinear. From geometry, we get

a = 90 sin 1.5◦ = 2.3559 mm

Therefore, the coefficient of rolling resistance is

μr = a

R
= 2.3559

90
= 0.0262 Answer

392
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Problems

7.69 The collar bearing carries the axial load P = 400 N. Assuming uniform P

C

μs

40 mm
80 mm

Fig. P7.69

pressure between the collar and the horizontal surface, determine the couple C
required to start the shaft turning. Use μs = 0.15 for the coefficient of static
friction.

7.70 Solve Sample Problem 7.16 if the contact pressure under the polisher

F

2.8 m

2 m

Fig. P7.71

varies parabolically from p0 at r = 0 to zero at r = R; that is, p = p0(1−r2/R2).

7.71 The 500-N cable spool is placed on a frictionless spindle that has been
driven into the ground. If the force required to start the spool rotating is
F = 110 N, determine the coefficient of friction between the ground and the spool.
Neglect the diameter of the spindle compared to the diameter of the spool.

7.72 Determine the braking torque acting on the rotating disk when a force
P = 200 N is applied to each brake pad. Assume that the brakes are (a) new; and
(b) worn.

k  = 0.92

Dimensions in mm

Brake
pad

30°

P

μ
P

20

12
Brake
pads

Fig. P7.72

7.73 The normal pressure acting on the disk of the sander is given by p =
(4/3)+(r2/600), where p is the pressure in Newton per square mm and r represents
the radial distance in mm. Determine the torque C required to operate the sander
at constant speed if the kinetic coefficient of friction for the surface being sanded
is 0.86.

p

2 
N

/m
m

2

4 
N

/m
m

2

20
mm

r

C

P

80 mm

Fig. P7.73
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7.74 The 20-kg stepped shaft is supported by bearings at A and B. The coeffi-

B

A

C
100 mm

300 N

300 mm

Fig. P7.74

cients of kinetic friction are 0.15 at A and 0.06 at B. Assuming that all surfaces
are new, determine the couple C that will rotate the shaft at constant speed.

7.75 The single-plate clutch transmits the torque C from the input shaft on the
left to the output shaft on the right. Compression springs between the clutch hous-
ing and the pressure plate provide the necessary pressure on the friction surface.
The splines prevent the clutch plate from rotating relative to the output shaft. If
Ri = 120 mm and Ro = 270 mm, determine the total force that must be applied
to the pressure plate by the springs if the clutch is to transmit a torque of C = 140
N ·m when it is new.

Friction
surface
    = 1.6

Clutch housing
Clutch plate

Pressure plate

Splines
C

Ro

Ri

C
μ s

a b

P
C

β

μs

Friction surface

Gear teeth

Thrust bearingKey
Radial bearing

Fig. P7.75, P7.76 Fig. P7.77

7.76 The clutch described in Prob. 7.75 is to transmit a torque of 300 N ·m
when the total spring force exerted on the pressure plate is 375 N. If Ri = 120
mm, calculate the minimum acceptable value for Ro. Assume that the clutch is
new.

∗7.77 The cone clutch transmits the torque C through a conical friction surface
with cone angle β. The inner and outer radii of the friction surface are a and b,
respectively. The left half of the clutch is keyed to the shaft, and the right half
drives a machine (not shown) through a gear attached to its outer rim. Assuming
uniform pressure on the friction surface, show that the maximum torque that can
be transmitted by the clutch is

C = 2μs P

3 sin β

(
b3 − a3

)
(
b2 − a2

)
7.78 Determine the force F required to push the 3700-N car at a constant speed
on concrete pavement. The coefficient of rolling resistance of the 11-in. radius
tires on concrete is μr = 0.015.

F

330 mm

+

3700 N

330 mm

+

Fig. P7.78
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7.79 The coefficient of rolling resistance between the 30-kg lawn roller and
the ground is μr = 0.1. (a) Determine the force P required to pull the roller
at a constant speed. (b) What force P would be needed to push the roller at a
constant speed?

150 mm 30°

P

30 kg

Fig. P7.79

7.80 The 60-kg concrete slab is placed on steel rollers. Determine the force
P required to move the slab with a constant velocity. The coefficients of rolling
resistance are 0.05 between the slab and a roller and 0.03 between a roller and the
ground.

P

120 mm

60 kg

120 mm
+ ++

Fig. P7.80

7.81 Calculate the horizontal force P required to push the 400-N lawn mower
at constant speed. The center of gravity of the mower is at G, and the coefficients
of rolling resistance are 0.1 for the front wheels and 0.15 for the rear wheels.

G

P

BA

150 mm

360
mm

300
mm

300 mm

810 mm

Fig. P7.81
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Review of Equations

Friction force

Static case: F ≤ μs N Dynamic case: F = μk N

μs = coefficient of static friction
μk = coefficient of kinetic friction
N = normal force

Angle of friction

Static case: φs = tan−1 μs Dynamic case: φk = tan−1 μk

Square-threaded screws

p = 2πr tan θ

p = pitch of the screw
θ = lead angle (helix angle)
r = mean radius of threads

(C0)up = Wr tan(φs + θ) (C0)down = Wr tan(φs − θ)

C0 = smallest couple required to raise/lower weight W

Belt friction

T2 = T1eμsθ (impending slipping) T2 = T1eμkθ (slipping)

θ = contact angle between the belt and the peg (in rads.)

Disk friction

C = 2μP

3

R3
o − R3

i

R2
o − R2

i

(new surfaces)

C = μP

2
(Ro + Ri ) (worn surfaces)

C = transmitted torque
μ = μs (impending rotation) or μ = μk (rotating)
P = axial force
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Review Problems

7.82 Determine the smallest force P that will move the wedge to the right if
the coefficient of static friction is 0.5 at all contact surfaces. The uniform cylinder
weighs W, and the weight of the wedge may be neglected.

P
15°

W

R

Fig. P7.82

7.83 The homogeneous bar AB of weight W and length L is lifted by the
force P that is perpendicular to the bar. Determine the smallest coefficient of
static friction at A that would enable the bar to reach the position β = 30◦.

L

β

B

P

A

Fig. P7.83

7.84 Find the smallest angle β for which the uniform crate can be tipped about

2 m

β
2 m

100 kg

μS = 0.2

P

A

Fig. P7.84

corner A. Also compute the corresponding value of P.

7.85 The belt is placed between two rollers, which are free to rotate about
A and B. Determine the smallest coefficient of static friction between the belt and
the rollers for which the device is self-locking; that is, the belt cannot be pulled
down for any value of P.

P

R

A
B

35°

0.5R

Belt 1.5R

Fig. P7.85
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7.86 Determine the largest angle β for which the uniform box can be in
equilibrium.

1.2 m

0.5 m

s = 0.45

β
μ

Fig. P7.86

7.87 Can the uniform bar of weight W remain at rest in the position shown?

60°

μ

30°

s = 0.6

Fig. P7.87

7.88 The panel of weight W with its center of gravity at G is placed between
vertical guides and released. Determine the largest height h for which the panel
will not slide down due to binding at corners A and B. The coefficient of static
friction between the panel and the guides is 0.5.

B
G

A

h

6 m 2 m

Fig. P7.88

7.89 The woman is trying to move the crate of weight W by pulling on the
rope at the angle θ to the horizontal. Find the smallest possible tension that would
cause the crate to slide and the corresponding angle θ .

sμ

θ

Fig. P7.89
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7.90 The screw of the clamp has a square thread of pitch 4.5 mm and a mean
diameter of 15 mm. The coefficient of static friction between the threads is 0.5.
Determine (a) the torque C0 that must be applied to the screw in order to pro-
duce a 150-N clamping force at A; and (b) the torque required to loosen the
clamp.

A

CB
180 mm 120 mm

C0

Fig. P7.90

7.91 Find the largest clockwise couple C that can be applied to cylinder A with-
out causing motion. The coefficient of static friction is 0.2 at all three contact
surfaces.

0.3 m
40 kg

C
A B

60 kg

Fig. P7.91

7.92 The test specimen AB is placed in the grip of a tension-testing machine
and secured with a wedge. The coefficient of static friction at both surfaces of
the specimen is μs . If the wedge angle is θ = 18◦, determine the smallest μs for
which the grip is self-locking (no slipping takes place regardless of the magnitude
of the force P). Neglect the weight of the wedge.

A B Pθ

Fig. P7.92
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7.93 Determine the smallest force P necessary to hold the homogeneous 12-kg
block in the position shown.

60°

P

μ s = 0.24

0.2 m

12 kg

0.
25

 m

0.1 m

Fig. P7.93

7.94 The uniform bars AB and BC are connected with a pin at B and placed
on a horizontal surface. The coefficient of static friction between the bars and the
surface is μs = 0.6. Can the bars be in equilibrium in the position shown?

B

5 m

10 m
7.5 m

4 m

A C

3 m

Fig. P7.94
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Centroids and Distributed

Loads

The water pressure on the upstream
side of an arch dam results in very
large forces that must be resisted by
the abutments. This chapter shows
how to calculate the force resulting
from hydraulic pressure acting on
curved surfaces, such as the
upstream face of the dam shown.
Michael Busselle/Stone/Getty Images

8.1 Introduction

In this chapter we investigate centroids, centers of gravity, and centers of mass.
Centroids were first discussed in Art. 3.6 in conjunction with distributed normal
loads. The more rigorous treatment of centroids presented here will enable us to
analyze normal loads that are distributed in a complex manner. We also discuss
the theorems of Pappus-Guldinus, which utilize centroids for calculating areas
and volumes of revolution.

8.2 Centroids of Plane Areas and Curves

a. Definitions

Consider the plane region � shown in Fig. 8.1. Let dA be a differential (infinites-

x

y

dA

Cx

y

x

y

Plane
region �

Fig. 8.1

imal) area element of �, located at (x, y). There are certain properties of � that
occur frequently in various branches of the physical sciences. One of these is, of
course, the area

A =
∫

�
dA (8.1)

401



402 CHAPTER 8 Centroids and Distributed Loads

Other important properties are the first moments of the area about the x- and
y-axes, defined as

Qx =
∫

�
y dA Qy =

∫
�

x dA (8.2)

and the second moments of the area, also called the moments of inertia, which are
treated separately in Chapter 9.

The importance of the centroid of the area stems from its close association
with the first moments of areas. The centroid C of a plane area is defined as the
point that has the coordinates (see Fig. 8.1)

x̄ = Qy

A
=
∫

�x dA∫
�dA

ȳ = Qx

A
=
∫

� y dA∫
�dA

(8.3)

It can be seen that if A and (x̄, ȳ) of an area are known, its first moments can be
computed by Qx = Aȳ and Qy = Ax̄ , thereby avoiding the evaluation of the
integrals in Eqs. (8.2).

The centroid is sometimes referred to as the geometric center of the region.
The centroid is not to be confused with the mass center, which is a property of the
mass distribution within the region. Centroids and mass centers coincide only if
the distribution of mass is uniform—that is, if the body is homogeneous.

The following characteristics of centroids and first moments of areas should
be noted.

• The dimension of Qx and Qy is [L3]; hence the units are m3, cm3, mm3, and
so on.

• Qx and Qy may be positive, negative, or zero, depending on the location of
the coordinate axes relative to the centroid of the region. If the x-axis passes
through the centroid, then Qx = 0. Similarly, Qy = 0 if the centroid lies on
the y-axis.

• If the region is symmetric, then its centroid is located on the axis of symmetry.
This can be demonstrated by considering the region in Fig. 8.2, which is sym-
metric about the y-axis. Clearly, the integral

∫
x dA over the left half (where x

is negative) cancels the integral
∫

x dA over the right half (where x is positive).
Consequently, Qy = 0, and it follows that x̄ = 0.

dA dA

– x x

y

x

Fig. 8.2
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ds

y

x

y

x

Cx

y

Plane
curve �

Fig. 8.3

The definitions of centroids and first moments of plane curves are analogous
to those of plane areas. Letting ds be the differential length of the plane curve �
in Fig. 8.3, the length of the curve is

L =
∫

�
ds (8.4)

and the first moments of the curve about the coordinate axes are defined as

Qx =
∫

�
y ds Qy =

∫
�

x ds (8.5)

The dimension of the first moment of a curve is [L3]. The coordinates of the
centroid of the curve are, by definition,

x̄ = Qy

L
=
∫

� x ds∫
� ds

ȳ = Qx

L
=
∫

� y ds∫
� ds

(8.6)

b. Integration techniques

The details of the integration for plane areas in Eqs. (8.1) and (8.2) depend upon
the choice of the area element dA. There are two basic choices for dA: the double
differential elements shown in Figs. 8.4(a) and (b); and the single differential
elements in Figs. 8.4(c)–(e). In the latter case, the coordinates x and y of the
differential element must be interpreted as the coordinates of the centroid of the
element. These coordinates, denoted by x̄el and ȳel, are shown in Figs. 8.4(c)–(e).

The expressions for dA, x̄el, and ȳel also depend upon the choice of the coor-
dinate system. Figure 8.4 illustrates elements using both rectangular and polar
coordinates. The most convenient coordinate system for a given problem is deter-
mined primarily by the shape of the region �. Obviously, rectangular regions
are best handled by rectangular coordinates, whereas polar coordinates should be
chosen for circular regions.
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x

y

dA = (x2 – x1) dy

(c)

dy

y

x2

xel

x1

xel =    (x1 + x2)1
2

dA

x

y

dA = (y2 – y1) dx

(d)

dxx

yel =    (y1 + y2)1
2

yel

y2

y1

dA

x

y

dA

(e)

xel

yel

d

dA =   r2 d1
2

rel =    r2
3

xel =    r cos2
3

yel =    r sin2
3

rel r

x

y

dA

dA = r dr dθ

(b)

dr

dθr

x

y

dA

x

y

dy

dx

�

dA = dx dy

(a)

θ

θ

θ

θ

θ
θ

x = r cos θ

y 
=

 r 
si

n 
θ

Fig. 8.4

The properties of curves always involve a single integration, carried out
along the length of the curve. The expressions for the differential length ds for
rectangular and polar coordinates are shown in Fig. 8.5.

In cases where it is not possible to evaluate the integrals analytically,
numerical integration must be used. Two such methods, the trapezoidal rule

x

y

dx

dy

ds =    (dx)2 + (dy)2

dx

(a)

1+ 
dy  2( ) dx dy1+ 

dx 2( ) dy= =

ds

x

y

θ

θ

θθ

ds

(dr)2 + (rd  )2

dθr

dr

(b)

=

ds =

dr2 + dr 2( ) d

Fig. 8.5
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and Simpson’s rule, are discussed in Appendix A. Numerical integration is par-
ticularly useful for computing the centroids of curves, because even simple
shapes—for example, parabolas—result in integrals that are difficult to evaluate
analytically.

c. Composite shapes

Consider the plane region � shown in Fig. 8.6 that has been divided into subre- y

x

y1

C1

C2

C3

x1

y2

�2

�3

�1

y3

x3

x2

Fig. 8.6

gions �1, �2, �3, . . . (only three subregions are shown). The centroids of the
areas of the subregions are labeled C1, C2, C3, . . . , with coordinates (x̄1, ȳ1),
(x̄2, ȳ2), (x̄3, ȳ3), . . . , respectively. Because the integral of a sum is equal to the
sum of the integrals (a well-known property of definite integrals), the area A of
the composite region � is

A =
∫

�
dA =

∫
�1

dA+
∫

�2

dA+
∫

�3

dA+ · · · =∑
i

Ai

where A1, A2, A3, . . . are the areas of the subregions. Similarly, the first moment
of the area of � about the y-axis is

Qy =
∫

�
x dA =

∫
�1

x dA+
∫

�2

x dA+
∫

�3

x dA+ · · · =∑
i
(Qy)i

where (Qy)i refers to the first moment of the area of �i about the y-axis. A similar
analysis may be used to determine Qx , the first moment of the area of � about
the x-axis.

Therefore, the centroidal coordinates of the area of � can be written as

x̄ = Qy

A
=
∑

i (Qy)i∑
i Ai

ȳ = Qx

A
=
∑

i (Qx )i∑
i Ai

(8.7)

Determining the centroid of an area by this technique is called the method of
composite areas. Substituting (Qy)i = Ai x̄i and (Qx )i = Ai ȳi , the preceding
equations become

x̄ = Qy

A
=
∑

i Ai x̄i∑
i Ai

ȳ = Qx

A
=
∑

i Ai ȳi∑
i Ai

(8.8)

Caution The centroid of the composite area is not equal to the sum of the
centroids of its subregions; that is, x̄ �= �i (Ai x̄i /Ai ) and ȳ �= �i (Ai ȳi /Ai ).

The method of composite curves is analogous to the method of compos-
ite areas. The centroidal coordinates of the curve � of length L that has been
subdivided into the segments �1, �2, �3, . . . are given by

x̄ = Qy

L
=
∑

i Li x̄i∑
i Li

ȳ = Qx

L
=
∑

i Li ȳi∑
i Li

(8.9)

where Li is the length of the segment �i with its centroid located at (x̄i , ȳi ).
You will discover that tables that list the properties of common plane figures,

such as Tables 8.1 and 8.2, are very useful when applying the methods of
composite areas and composite lines.
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y

x

R

C

x

α
α

y

x

b

a

x

y

C

x2

a2
y2

b2+ = 1

y

x

h
x

y

C

b

y  = h
x
b( )2

y

x

R

R

x

y

C

y

x

h
x

y
C

b

y  = h x
b( )2

x =   (a+b)1
3

x =      R4
3π

x =      a4
3π

x =     b3
8

x = 2R sin α
3αy =      b4

3π

y =     h3
5 A =    bh2

3

A = αR2

y =      R4
3π A =    R2π

4

A =    abπ
4

x =   b3
4y =   h1

3 A =   bh1
2 A =   bh1

3y =     h3
10

y

x

h

a

b
2

x

y

C

b
2

Quarter circle

Triangle Half parabolic complement

Half parabola

Circular sectorQuarter ellipse

y

x

R

C

x

α
α

y

x

R

Cx

y
45°

R

x =    R2
π

L = 2αRx =    R sin α 
1
α 

y =    R2
π L =    R2

π

Quarter circular arc

Circular arc

Table 8.1 Centroids of Plane Areas Table 8.2 Centroids of Plane Curves



Sample Problem 8.1
Determine the coordinates of the centroid of the area that lies between the straight
line x = 2y/3 and the parabola x2= 40y, where x and y are measured in mm—see
Fig. (a). Use the following methods: (1) double integration; (2) single integration

60 mm

90 mm
x =  2

3 
y

x2  =  40y

x

y

(a)

�

60 mm

90 mm

x

y

(b)

dy

dA = dx dy

y

dx
x

using a horizontal differential area element; and (3) single integration using a
vertical differential area element.

Solution
Part 1 Double Integration

The double differential area element is shown in Fig. (b). Note that dA can be
written as dx dy, or dy dx, depending on whether you choose to integrate on x or
y first. Choosing to integrate over y first, the area A of the region � is

A =
∫

�
dA =

∫ 60

0

(∫ 3x /2

x2/40
dy

)
dx =

∫ 60

0

(
3x

2
− x2

40

)
dx

=
[

3x2

4
− x3

120

]60

0

= 900 mm2

The first moment of the area about the y-axis is

Qy =
∫

�
x dA =

∫ 60

0

(∫ 3x /2

x2/40
x dy

)
dx =

∫ 60

0

(
3x

2
− x2

40

)
x dx

=
[

3x3

6
− x4

160

]60

0

= 27000 mm3

The first moment of the area about the x-axis is

Qx =
∫

�
y dA =

∫ 60

0

(∫ 3x /2

x2/40
y dy

)
dx =

∫ 60

0

1

2

(
9x2

4
− x4

1600

)
dx

= 1

2

[
9x3

12
− x5

8000

]60

0

= 32400

Therefore, the coordinates of the centroid of the area are

x̄ = Qy

A
= 27000

900
= 30 mm Answer

ȳ = Qx

A
= 32400

900
= 36 mm Answer
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If you choose to integrate over x first, the respective integrals are as follows:

A =
∫

�
dA =

∫ 90

0

(∫ √40y

2y/3
dx

)
dy

Qy =
∫

�
x dA =

∫ 90

0

(∫ √40y

2y/3
x dx

)
dy

Qx =
∫

�
y dA =

∫ 90

0

(∫ √40y

2y/3
y dx

)
dy

You may wish to verify that the evaluation of these integrals yields the same
centroidal coordinates as determined previously.

Part 2 Single Integration: Horizontal Differential Area Element

The horizontal differential area element is shown in Fig. (c), together with the
60 mm

90 mm

x

y

(c)

dy

dA = ( 40y – 2
3 

y) dy

y

40y
2
3 

y

x el = 1
2 ( 40y + 2

3 
y)

expressions for dA and x̄el. For the area we have

A =
∫

�
dA =

∫ 90

0

(√
40y − 2y

3

)
dy =

[
2
√

40y3/2

3
− y2

3

]90

0

= 900 mm2

Using dQy = x̄el dA we obtain

dQy = 1

2

(√
40y + 2y

3

)(√
40y − 2y

3

)
dy =

(
20y − 2y2

9

)
dy

The first moment of the area about the y-axis becomes

Qy =
∫ 90

0

(
20y − 2y2

9

)
dy =

[
10y2 − 2y3

27

]90

0

= 27000 mm3

Similarly, dQx = y dA gives

dQx = y

(√
40y − 2y

3

)
dy =

(√
40y3/2 − 2y2

3

)
dy

The first moment about the x-axis is

Qx =
∫ 90

0

(√
40y3/2 − 2y2

3

)
dy =

[
2
√

40

5
y5/2 − 2y3

9

]90

0

= 32400 mm3

Note that A, Qx , and Qy are identical to the values computed in Part 1. Therefore,
the coordinates of the centroid of the area are also the same.
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Part 3 Single Integration: Vertical Differential Area Element

The vertical differential area element is shown in Fig. (d), which also gives the
expressions for dA and ȳel. The area of the region is

A =
∫

�
dA =

∫ 60

0

(
3x

2
− x2

40

)
dx =

[
3x2

4
− x3

120

]60

0

= 900 mm2

Using the information in Fig. (d), we obtain

dQy = x dA = x

(
3x

2
− x2

40

)
dx

Therefore, the first moment about the y-axis is

Qy =
∫

�
dQy =

∫ 60

0

(
3x2

2
− x3

40

)
dx =

[
x3

2
− x4

160

]60

0

= 27000 mm3

For dQx = ȳel dA, we get

dQx = 1

2

(
3x

2
+ x2

40

)(
3x

2
− x2

40

)
dx = 1

2

(
9x2

4
− x4

1600

)
dx

Integration of this expression yields

Qx =
∫

�
dQx =

∫ 6

0

1

2

(
9x2

4
− x4

1600

)
dx = 1

2

[
9x3

12
− x5

8000

]6

0

= 32400 mm3

Again, the same values of A, Qx , and Qy have been obtained as in Parts 1 and 2.
Thus x̄ and ȳ would also be identical.

60 mm

90 mm

x

y

(d)

dxx

x2

40

3
2

x

dA = 3
2

x  – x2

40
dx

yel  = 1
2

3
2

x + x2

40
dx

Sample Problem 8.2
Using the method of composite areas, determine the location of the centroid of
the shaded area shown in Fig. (a).

300

200 200

400

300

x

y

Dimensions in mm

(a)

400

Solution
The area can be viewed as a rectangle, from which a semicircle and a triangle
have been removed. The areas and centroidal coordinates for each of these shapes
can be determined using Table 8.1. The results are shown in Figs. (b)–(d).
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700

350

x

y

(b)

1

C1

Area = (700)(800) = 560 × 103 mm2   +

400 400

300

x

y

(c)

400

= 127.3
4(300)

3π

Area =     (300)2 = 141.4 × 103 mm2    –

C2

2

2

400

272.7

π

400

300

x

y

(d)

566.7

200
3 = 66.7

400
3 = 133.3

Area =    (200)(400) = 40 × 103 mm2    –1
2

3

C3

333.3

200 200

When applying the method of composite areas, it is convenient to tabulate the
data in the following manner.

Shape Area A x̄ Ax̄ ȳ Aȳ
(mm2) (mm) (mm3) (mm) (mm3)

1 (Rectangle) +560.0× 103 0 0 +350 196.0× 106

2 (Semicircle) −141.4× 103 −272.7 +38.56× 106 +400 −56.56× 106

3 (Triangle) −40.0× 103 +333.3 −13.33× 106 +566.7 −22.67× 106

� +378.6× 103 · · · +25.23× 106 · · · +116.77× 106

Be certain that you understand each of the entries in this table, paying attention
to signs. For the rectangle, A is positive, Ax̄ is zero, and Aȳ is positive. The area
of the semicircle is assigned a negative value because it must be subtracted from
the area of the rectangle. Because x̄ for the semicircle is also negative, its Ax̄
is positive; however, ȳ is positive, so that its Aȳ is negative. The area of the
triangle is also assigned a negative value, but x̄ and ȳ are both positive, resulting
in negative values for both Ax̄ and Aȳ.

According to the tabulated results, the coordinates of the centroid of the
composite area are

x̄ = � Ax̄

� A
= +25.23× 106

+378.6× 103
= 66.6 mm Answer

ȳ = � Aȳ

� A
= +116.77× 106

+378.6× 103
= 308 mm Answer

Because x̄ and ȳ are both positive, the centroid of the composite area lies in the
first quadrant of the coordinate plane.
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Sample Problem 8.3
Using the method of composite curves, determine the centroidal coordinates of

R = 6 cm

2 cm
5 cm

8 cm

2

1

3

y

x

(a)

the line in Fig. (a) that consists of the circular arc 1, and the straight lines 2 and 3.

Solution
The length and centroidal coordinates of the circular arc can be calculated using
Table 8.2; the results are shown in Fig. (b). Figure (c) displays the properties of
the two straight line segments; the centroidal coordinates are at the midpoints of
the segments.

2 cm

1

y

x

α
α

α

(b)

2.595 cm

C1

R          = 4.595 cmsin

L1 = 2   R = 14.772 cm

2
6

R
 =

 6
 c

m

    = cos–1   = 1.231 radα

5 cm

8 cm

2

3

y

x

(c)

4 cm

C2

C3

L2 = (8)2 + (5.657)2 = 9.798 cm

L3 = 5 cm

αRsin = 5.657 cm
2.828 cm

2.5 cm

It is convenient to organize the analysis in tabular form, as follows:

Segment Length L x̄ Lx̄ ȳ L ȳ
(cm) (cm) (cm2) (cm2) (cm2)

1 14.772 +2.595 +38.33 0 0
2 9.798 −4.0 −39.19 +2.828 +27.71
3 5.0 −8.0 −40.0 −2.5 −12.50
� 29.570 · · · −40.86 · · · +15.21

Therefore, the coordinates of the centroid of the composite curve are

x̄ = �Lx̄

�L
= −40.86

29.570
= −1.382 cm Answer

ȳ = �L ȳ

�L
= +15.21

29.570
= +0.514 cm Answer

Because x̄ is negative and ȳ is positive, the centroid of the composite curve lies
in the third quadrant of the coordinate plane.
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Sample Problem 8.4
Using numerical integration (Simpson’s rule), determine the centroidal coor-
dinates of the sine curve shown in the figure. Use six panels, each of width
�x = 0.5 cm.

2

x (cm)

Δx  =  0.5 

y (cm)

y = 2 sin x
6

0
0 0.5 1.0 1.5 2.0 2.5 3.0

y2

y3

π

y4
y5

y6 y7

Solution
With six panels, Simpson’s rule is (see Appendix A)

∫ b

a
f (x) dx = ( f1 + 4 f2 + 2 f3 + 4 f4 + 2 f5 + 4 f6 + f7)

�x

3
(a)

The integrals to be evaluated are given by Eqs. (8.4) and (8.5):

L =
∫

�
ds Qy =

∫
�

x ds Qx =
∫

�
y ds (b)

Substituting ds = (ds/dx) dx, the integrals in Eqs. (b) become

L =
∫

�

(
ds

dx

)
dx Qy =

∫
�

(
x

ds

dx

)
dx Qx =

∫
�

(
y

ds

dx

)
dx (c)

For our problem, the integrals in Eqs. (c) are to be computed with Simpson’s rule
using n= 6 and �x = 0.5 in. The values of yi and (ds/dx)i can be obtained from
the following sequence of computations (see Fig. 8.5).

yi = 2 sin
πxi

6

(
dy

dx

)
i

= π

3
cos

πxi

6

(
ds

dx

)
i

=
√

1+
(

dy

dx

)2

i
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The resulting numerical computations are contained in the following table.

i x y dy/dx ds/dx x(ds/dx) y(ds/dx)
(cm) (cm) (cm) (cm)

1 0.0 0.0000 1.0472 1.4480 0.0000 0.0000
2 0.5 0.5176 1.0115 1.4224 0.7112 0.7363
3 1.0 1.0000 0.9069 1.3500 1.3500 1.3500
4 1.5 1.4142 0.7405 1.2443 1.8665 1.7597
5 2.0 1.7321 0.5236 1.1288 2.2576 1.9551
6 2.5 1.9319 0.2710 1.0361 2.5902 2.0016
7 3.0 2.0000 0.0000 1.0000 3.0000 2.0000

Substituting the values from this table into Eq. (a) yields

L ≈ 0.5

3
[1(1.4480)+ 4(1.4224)+ 2(1.3500)+ 4(1.2443)+ 2(1.1288)

+ 4(1.0361)+ 1(1.0000)] = 3.7028 cm

Qy ≈ 0.5

3
[1(0)+ 4(0.7112)+ 2(1.3500)+ 4(1.8665)+ 2(2.2576)

+ 4(2.5902)+ 1(3.0000)] = 5.1478 cm2

Qx ≈ 0.5

3
[1(0)+ 4(0.7363)+ 2(1.3500)+ 4(1.7597)+ 2(1.9551)

+ 4(2.0016)+ 1(2.0000)] = 4.4334 cm2

from which we obtain

x̄ = Qy

L
= 5.1478

3.7028
= 1.390 cm Answer

ȳ = Qx

L
= 4.4334

3.7028
= 1.197 cm Answer
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Problems

8.1–8.6 Use integration to determine the coordinates of the centroid of the
plane region shown.

h

b
x

y

4 m

2 m

x

y

y =  1
4
 x3/2

y

x

60 mm

120 mm

y = 0.5x

y2 = 30x

Fig. P8.1 Fig. P8.2 Fig. P8.3

0.36 m

0.6 m

x

y

y = x1/2

y = 25 x 3/2
9

x

y = x2/25

100 mm

50 mm50 mm
y

y

x

13.5 mm

9 mm 27 mm

27 mm

81x = 4y2

Fig. P8.4 Fig. P8.5 Fig. P8.6

8.7 (a) Using integration, locate the centroid of the area under the nth order
parabola in terms of b, h, and n (n is a positive integer). (b) Check the result of
part (a) with Table 8.1 for the case n = 2.

8.8 Use integration to compute the coordinates of the centroid of the triangle.
Check your results with Table 8.1.

8.9 Determine the y-coordinate of the centroid of the semicircular segment,
given that a = 180 mm and α = 45◦.

b

h

y

x

y = h(x/b)n

x

y

50 mm

110 mm

70 mm

y

x

α

a

Fig. P8.7 Fig. P8.8 Fig. P8.9
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8.10 (a) Use integration to locate the centroid of the shaded region in terms of

x

y

R t

Fig. P8.10

R and t. (b) Show that when t→ 0 the result of part (a) agrees with that given in
Table 8.2 for a quarter circular arc.

8.11 Locate the centroid of the parabola by integration.

y

x

y = x2

1.0 m1.0 m

1.0 m 1.0 m

Fig. P8.11

8.12 Use integration to locate the centroid of the quarter circular arc shown in
Table 8.2.

∗8.13 The parametric equations of the plane curve known as a cycloid are

πa 2πa0
x

y

2a

Fig. P8.13

x = a(θ − sin θ) and y= a(1 − cos θ). Use integration to find the coordinates
of the centroid of the cycloid obtained by varying θ from 0 to 2π rad.

8.14–8.21 Use the method of composite areas to calculate the centroidal

20

80

60

20

20

Dimensions in mm

y

x

Fig. P8.18

coordinates of the plane regions shown.

30 mm

50 mm

30 mm

40 mm

y

x

Dimensions in mm

50

15

30
40

y

x
O

Fig. P8.14 Fig. P8.15

30 mm

48 mm

y

x

x

y

120 mm

20 mm

70 mm

80 mm

20 mm

20 mm

Fig. P8.16 Fig. P8.17
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y

x

80

Dimensions in mm

60
30

90

30

20

30 mm

70 mm
10 mm

20 mm

20 mm

60 mm

70 mm

y

x

60 mm 80 mm

y

x
30° 30°

Fig. P8.19 Fig. P8.20 Fig. P8.21

8.22 The plane region is bounded by a semicircle of radius R and a parabola
of height h. Determine the relationship between R and h for which the centroid
of the region is at C . Use the method of composite areas.

y

x

Parabola

R

C

h

Fig. P8.22

8.23 The centroid of the plane region shown is at C . Use the method of

R

y

x
C

80
 m

m

80 mm

Fig. P8.23

composite areas to determine the radius R of the semicircular cutout.

8.24 Compute the centroidal coordinates of the L-shaped region in terms of b
and t using the method of composite areas.

x
t

b

b

y

t

Fig. P8.24
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8.25 By the method of composite areas, derive the expression for the centroidal
x-coordinate of the circular segment in terms of R and α.

x
α

α

y

R

h

4 m

x

y

1 m 1 m 1 m 1 m

Fig. P8.25 Fig. P8.26

8.26 Using the method of composite areas, find the dimension h that maxi-

2 m

R
C

x

y

Fig. P8.27

mizes the centroidal coordinate ȳ of the plane region shown. Also, compute the
corresponding value of ȳ.

8.27 Given that the centroid of the plane region is at C, find the radius R. Use
the method of composite areas.

8.28–8.33 Using the method of composite curves, locate the centroids of the
plane curves shown.

30 mm

60 mm

y

x

35 mm

20 mm

y

x

Fig. P8.28 Fig. P8.29

3 m

4 
m

y

x

Fig. P8.30
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y

x

125 mm

60 mm

42
 m

m

y

x

300 mm

400 mm

40 mm

50 mm

30 mm

y

x

Fig. P8.31 Fig. P8.32 Fig. P8.33

8.34 Determine the ratio a/b for which the centroid of the composite curve will

b b

a

a

y

xO

Fig. P8.34

be located at point O.

8.35 Use numerical integration to locate the centroid of the symmetric plane
region.

20

77

60

46

35

27

22

20 x

y

Dimensions in mm

y

x

85
 m

m

80
 m

m

72
 m

m

54
 m

m

20 mm

Fig. P8.35 Fig. P8.36

8.36 Determine the centroidal coordinates of the plane region by numerical
integration.

8.37 Compute the y-coordinate of the centroid of the parabola shown, the equa-
tion of which is y = 40(1 − x2/3600), where x and y are in mm. Use numerical
integration with �x = 15 mm.

15 mm
y

x

40
 m

m

60 mm 60 mm

Fig. P8.37
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8.38 The equation of the catenary shown is y = 100 cosh(x /100) where x and y
are measured in meters (the catenary is the shape of a cable suspended between
two points). Locate the y-coordinate of the centroid of the catenary by numerical
integration using �x = 25 m.

y

x

100 m 100 m

15
4.

3 
m

15
4.

3 
m

10
0 

m

25 m

Fig. P8.38

8.3 Centroids of Curved Surfaces, Volumes, and
Space Curves

The centroids of curved surfaces, volumes, and space curves are defined by
expressions that are analogous to those used for plane regions. The only differ-
ence is that three coordinates, instead of two, are required to locate the centroids
for three-dimensional shapes. The following table lists the expressions that define

z

x
y

xy

z

dA
Region �

(a)

z

x
y

xy

z

(b)

Region � dV

z

x
y

xy

z

(c)

Space curve � ds

Fig. 8.7

the centroidal coordinates for various three-dimensional shapes.

Curved Surface
Occupying a
Region �

Volume Occupying
a Region �

Space Curve �

Fig. 8.7(a) Fig. 8.7(b) Fig. 8.7(c)

Area A = ∫� dA Volume V = ∫� dV Length L = ∫� ds

x̄ =
∫

� x dA

A
x̄ =
∫

� x dV

V
x̄ =
∫

� x ds

L

ȳ =
∫

� y dA

A
ȳ =
∫

� y dV

V
ȳ =
∫

� y ds

L
(8.10)

z̄ =
∫

� z dA

A
z̄ =
∫

� z dV

V
z̄ =
∫

� z ds

L

The term
∫

� xdA is sometimes labeled Qyz and is referred to as the first
moment of the area relative to the yz-plane. Similarly, Qxz =

∫
� ydA and

Qxy =
∫

� zdA are called the first moments of the area relative to the xz- and
xy-planes, respectively. Extensions of this notation and terminology to volumes
and space curves are obvious.
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The definitions in Eqs. (8.10) assume that the differential element (dA, dV ,
or ds) is located at the point that has coordinates x, y, and z. For other choices
of elements, such as those occurring in single or double integration, it may be
necessary to replace x, y, or z in Eqs. (8.10) with the centroidal coordinates of the
element: x̄el, ȳel, z̄el. Because this integration procedure is similar to that described
in Art. 8.2, it is not repeated here.

Symmetry of a body can play an important role in the determination of its
centroid, as explained in the following:

• If a volume has a plane of symmetry, its centroid lies in that plane. (The anal-
ogous statement for plane areas has been proven in Art. 8.2; the proof for
volumes is essentially the same.)

• If a volume has two planes of symmetry that intersect along a line, its cen-
troid lies on that line. (The proof of this statement follows directly from the
preceding symmetry argument.)

This symmetry argument is useful when determining the centroids of vol-
umes of revolution. For example, consider the volume shown in Fig. 8.8 that

Generating area

C

z

x

y

Fig. 8.8

is generated by rotating a plane area about the y-axis. Because any plane that
contains the y-axis is a plane of symmetry, the centroid C of the volume must
lie on the y-axis; that is, x̄ = 0 and z̄ = 0.

• The centroid of the volume of a prismatic body is located at the centroid of the
cross-sectional area that forms the middle plane of the volume.

To prove this statement, consider Fig. 8.9, which shows a prismatic body
of thickness h that occupies the region �. The xy-coordinate plane coin-
cides with the middle plane of the body, and the z-axis is the centroidal
axis (passes through the centroids of the cross-sectional areas). The foregoing
statement will be proven if we can show that the origin of the coordinate sys-
tem is the centroid C of the body—that is, if we can show that x̄ = ȳ= z̄= 0.
There is no question that C lies on the xy-plane (z̄= 0), because it is the
plane of symmetry. To show that x̄ = ȳ= 0, it is sufficient to demonstrate
that
∫

� y dV = ∫� x dV = 0. Using the differential volume element dV = h dA
shown in Fig. 8.9, we get

∫
� y dV = ∫� y (h dA)= h

∫
� y dA= 0, where � is

the plane region of the cross section. The last equality follows from the knowl-
edge that

∫
� y dA= 0 if y is measured from the centroid of the cross-sectional

area. It can be proven in a similar manner that
∫

� x dA= 0.

yx

z

x
dA

dV

Region �

Plane region �
(middle plane)

CC

y

h
2

h
2

Fig. 8.9
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Identical symmetry arguments can be used to locate the centroids of surfaces
and space curves. For example, knowing the centroidal coordinates of a semi-
circular arc, shown in Fig. 8.10(a), we can immediately deduce the centroidal
coordinates of the half cylindrical surface in Fig. 8.10(b).

R

C

y

R2

x

π

(a)

h
2

h
2

yx

C

z

(b)

π
2R

Fig. 8.10

The method of composite shapes also applies to curved surfaces, volumes,
and space curves. The expressions for the centroidal coordinates of composite
surfaces and curves can be obtained by extending Eqs. (8.8) and (8.9) to three
dimensions. The equations for composite volumes can be written by analogy with
composite areas. The results are

Composite Areas

x̄ = �i Ai x̄i

�i Ai
ȳ = �i Ai ȳi

�i Ai
z̄ = �i Ai z̄i

�i Ai
(8.11)

Composite Volumes

x̄ = �i Vi x̄i

�i Vi
ȳ = �i Vi ȳi

�i Vi
z̄ = �i Vi z̄i

�i Vi
(8.12)

Composite Curves

x̄ = �i Li x̄i

�i Li
ȳ = �i Li ȳi

�i Li
z̄ = �i Li z̄i

�i Li
(8.13)

Note that these expressions are identical to Eqs. (8.10) except that the
integrations have been replaced by summations.

In order to facilitate the application of Eqs. (8.11) and (8.12), the properties
of some basic surfaces and volumes are shown in Tables 8.3 and 8.4.
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Cone

z  =  3
4
hMMV  =  

3
R2h

Hemisphere

z

R

y

h

C

z

x

C

z

R

Rz

x

y

z  =  5
8

RMMV  =  2  R3
3

Semi-ellipsoid of revolution

C

z

R

z  =  5
8

hMMV  =  2   R2h3

y

h
z

x

π

π π

π

Paraboloid of revolution

C

z

R

y

h
z

x

Right tetrahedron

x  =  1
4

aMMy  =  1
4

bMMz  =  1
4

hMMV  =  1
6

abh

z

y

x

h

a
b

x
y

z
C

Pyramid

z  =  3
4

hMMV  =  1
3
abh

z

y

h
z

x

b
a

z  =  2
3
hMMV  =     R2h2

C

z

y

h

R

Conical surface

z

x

C

z

z  =    hMMA  =  πR   R2 + h2

R

x

C

y

R
z

Hemispherical surface

z  =    RMMA  =  2πR2

C

2
3

1
2

Table 8.3 Centroids of Volumes Table 8.4 Centroids of Surfaces



Sample Problem 8.5
Determine the centroidal coordinates of the volume shown in Fig. (a) that is

y
72 mm

z

z2  =  18y Generating
area

(a)

x

generated by rotating the area under the curve z2= 18y about the y-axis. The
coordinates are measured in mm.

Solution
By symmetry, x̄ = z̄= 0. Integration must be used to find ȳ. There are two conve-
nient single-integration techniques for volumes of revolution; the method of thin
disks and the method of thin shells.

Method I: Thin Disks

In this method, a differential element of the generating area is the vertical strip
shown in Fig. (b). When the generating area is rotated about the y-axis to form
the volume of revolution, the differential area element generates the thin disk of
thickness dy and radius z that is shown in Fig. (c). Thus, the properties of the
volume may be determined by integrating the properties of the disk.

z

y

y
dy

z

72 mm

(b)

y

x

z

(c)

The volume of the disk is

dV = π z2 dy = 18πy dy

Integrating to determine the volume V , we obtain

V = 18π

∫ 72

0
y dy = 18π

[
y2

2

]72

0

= 46656π mm3

Because the distance from the disk to the xz-plane is y, the corresponding first
moment is dQxz = y dV , which on substituting the expression for dV becomes

dQxz = y(18πy dy) = 18πy2 dy

Integration yields for the first moment of the volume

Qxz = 18π

∫ 72

0
y2 dy = 18π

[
y3

3

]72

0

= 2239488π mm4
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Therefore, the centroidal coordinates of the volume are

ȳ = Qxz

V
= 2239488π

46656π
= 48 mm x̄ = z̄ = 0 Answer

Method II: Thin Shells

In this method, a differential element of the generating area is the horizontal strip
shown in Fig. (d). Rotation about the y-axis generates a shell of infinitesimal

z

y

y 72 – y

z

(d)

dz
36 mm

36 +
z2

36

thickness dz, as shown in Fig. (e).

y

x

z

(e)

The volume of the thin shell (circumference × thickness × length) is

dV = 2π z dz (72− y) = 2π z

(
72− z2

18

)
dz = π

9
(1296z − z3) dz

Noting that the range of z is from 0 to 36 mm, the volume is given by

V = π

9

∫ 36

0
(1296z − z3) dz = π

9

[
648z2 − z4

4

]36

0

= 46656π mm3

Referring to Fig. (d), we see that the y-coordinate of the centroid of the thin
shell is ȳel = y + (72− y)/2 = 36+ (y/2) = 36+ (z2/36), and its first moment
with respect to the xz-plane becomes

dQxz = ȳel dV =
(

36+ z2

36

)
π

9
(1296z − z3) dz = π

9

(
46656z − z5

36

)
dz

Therefore, we obtain

Qxz = π

9

∫ 36

0

(
46656z − z5

36

)
dz = π

9

[
23328z2 − z6

216

]36

0

= 2239488π mm4

and the centroidal coordinates of the volume become

ȳ = Qxz

V
= 2239488π

46656π
= 48 mm x̄ = z̄ = 0 Answer

Of course, these answers are identical to those obtained by the method of thin
disks.
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Sample Problem 8.6
Locate the centroid of the hyperbolic paraboloid shown in Fig. (a) using (1) sin-
gle integration with a differential volume element parallel to the xz-plane; and
(2) double integration. The equation of the surface that bounds the volume is
(y2/b2)− (x2/a2) = z/c.

x

b

z

y

a

c
y2

b2
x2

a2– = z
c

(a)

a

Solution
Noting that x̄ = 0 by symmetry, we see that integration is required to find ȳ and
z̄ only.

Part 1: Single Integration

The dimensions of a differential volume element dV , parallel to the xz-plane, are
shown in Fig. (b). Because the cross section of the element is a parabola, we may
use Table 8.1 to determine dV and z̄el (the volume and centroidal coordinate of
the element).

dV = 2

3

(
2

a

b
y
)(cy2

b2

)
dy = 4

3

ac

b3
y3 dy

z̄el = 2

5

cy2

b2

x

y

z

y
ay

b

(b)

ay

bdV

dy

cy2

b2

zel
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Because the limits of integration are y = 0 to y = b, the volume becomes

V =
∫

�
dV = 4

3

ac

b3

∫ b

0
y3 dy = abc

3

and the first moments with respect to the xz- and xy-planes are

Qxz =
∫

�
y dV = 4

3

ac

b3

∫ b

0
y4 dy = 4ab2c

15

Qxy =
∫

�
z̄el dV =

(
4

3

ac

b3

)(
2

5

c

b2

)∫ b

0
y5 dy = 4abc2

45

Therefore, the centroidal coordinates of the hyperbolic paraboloid are

x̄ = 0

ȳ = Qxz

V
= 4ab2c/15

abc/3
= 4b

5
Answer

z̄ = Qxy

V
= 4abc2/45

abc/3
= 4c

15

Part 2: Double Integration

Using the double differential element of volume shown in Fig. (c), we have

dV = z dx dy z̄el = z

2

x
y

z

y

(c)

dV

dy

z

y2

b2

x2

a2
–z =  c

dx b

ay
x

Choosing to integrate first on x, then on y, and using the fact that the volume is
symmetric with respect to the yz-plane, we have

V =
∫

�
dV = 2

∫ b

0

(∫ ay/b

0
z dx

)
dy

Qxz =
∫

�
y dV = 2

∫ b

0

(∫ ay/b

0
yz dx

)
dy

Qxy =
∫

�
z̄el dV = 2

∫ b

0

(∫ ay/b

0

z

2
z dx

)
dy

Substituting z= c[(y2/b2)− (x2/a2)] into the preceding expressions and perform-
ing the integrations yield the same results as found in part 1.
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Sample Problem 8.7
Locate the centroid of the conical surface shown in Fig. (a). z

x

y

R

h

(a)

Solution
By symmetry, we see that x̄ = z̄ = 0. Because the conical surface is a surface of
revolution, single integration can be used to calculate ȳ.

As shown in Fig. (b), the differential area element is taken to be the area of
the “ring,” technically known as a frustum, that is generated by rotating the line
segment of differential length ds about the y-axis. The area of this differential
element (circumference × slant height) is

dA = 2π z ds

z

x

y

(b)

z

y

h

R
z

y dy

ds

α
α

Letting 2α be the cone angle as shown in Fig. (b), we have z= y tan α

and ds= dy/ cos α. Substituting these identities, together with tan α= R/h and
cos α= h/

√
R2 + h2, into the expressions for the differential area, we obtain

dA = 2π R
√

R2 + h2

h2
y dy

Integrating to find the area of the conical surface, we obtain

A = 2π R
√

R2 + h2

h2

∫ h

0
y dy = 2π R

√
R2 + h2

h2

[
y2

2

]h

0

= π R
√

R2 + h2

From Fig. (b), we see that y is the distance from the xz-plane to the differential
area element. Therefore, its first moment relative to that plane is dQxz = y dA.
Substituting the expression previously determined for dA, and integrating, the first
moment of the conical surface becomes

Qxz = 2π R
√

R2 + h2

h2

∫ h

0
y2 dy = 2π R

√
R2 + h2

h2

[
y3

3

]h

0

= 2

3
π Rh
√

R2 + h2
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Therefore, the centroidal coordinates of the conical surface are

x̄ = z̄ = 0 Answer

ȳ = Qxz

A
= (2/3)π Rh

√
R2 + h2

π R
√

R2 + h2
= 2h

3

Observe that these results agree with data given for a conical surface in Table 8.4.

Sample Problem 8.8
Use the method of composite volumes to determine the location of the centroid of

0.8

0.75

yx

z

O

1.25
2.5

(a)

Dimensions
in meters

4.3

4

the volume for the machine part shown in Fig. (a).

Solution
We note that x̄ = 0 because the yz-plane is a plane of symmetry of the volume.

To calculate ȳ and z̄, the machine part can be considered to be composed of the
four volumes shown in Fig. (b): the rectangular solid 1, plus the semicylinder 2,
plus the rectangular solid 3, minus the cylinder 4. Most centroidal coordinates of
these volumes can be determined by symmetry; only z̄ of volume 2 must be found
from Table 8.1.

(b)

1

x

2.5 

2.5

y

3.25

0.8

z

x 0.8

z

y

2.
5

2 3.25

x

0.8

z

y2.5
2.5

4.3

0.75

4

z

1.25

0.8

y
x

3.25
3
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The computations of the volumes and first moments relative to the xy- and
xz-planes are shown in the following table.

Part Volume V ȳ V ȳ z̄ V z̄
(m3) (m) (m4) (m) (m4)

1 5(3.25)(0.8)= 13.000 −0.40 −5.20 +3.25

2
= +1.625 +21.13

2
π(2.5)2

2
(0.8) = 7.854 −0.40 −3.14 +3.25+ 4(2.5)

3π
= +4.311 +33.86

3 5(4.30)(0.75) = 16.125 +4.30

2
− 0.80 = +1.35 +21.77 −0.75

2
= −0.375 −6.05

4 −π(1.25)2(0.80) = −3.927 −0.40 +1.57 +3.250 −12.76

� 33.052 · · · +15.00 · · · +36.18

Using the results displayed in the table, the centroidal coordinates of the
machine part are

x̄ = 0

ȳ = �V ȳ

V
= 15.00

33.05
= 0.454 m Answer

z̄ = �V z̄

V
= 36.18

33.05
= 1.095 m

Sample Problem 8.9
Calculate the centroidal coordinates of the shaded surface shown in Fig. (a).

y
x

2  

3 
6

4 

z

(a)

1.0

Dimensions in meters
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Solution
The surface in Fig. (a) can be decomposed into the four plane areas in Fig. (b):
the rectangle 1, plus the quarter circle 2, plus the triangle 3, minus the circle 4.
The location of the centroid of each composite area can be found by symmetry or
from Table 8.1.

yx

6

z

(b)

4

y
x

3

z

1.0

4

y
x

6

z

4

y
x

z

2

1

3
2

4

The following table lists the computations for the areas and first moments of the
areas.

Part Area A x̄ Ax̄ ȳ A ȳ z̄ Az̄
(m2) (m) (m3) (m) (m3) (m) (m3)

1 4(6) = 24 0 0 +3 +72.00 +2 +48.00

2
π(4)2

4
= 4π +4R

3π
= +4(4)

3π
+21.33 0 0 +4R

3π
= +4(4)

3π
+21.33

3
1

2
(4)(6) = 12 +1

3
(4) +16.00 +1

3
(6) +24.00 0 0

4 −π(1)2 = −π 0 0 +3 −3π +2 −2π

� 45.42 · · · +37.33 · · · +86.58 · · · +63.05
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Therefore, the centroidal coordinates of the shaded surface shown in
Fig. (a) are

x̄ = 37.33

45.42
= 0.822 m

ȳ = 86.58

45.42
= 1.906 m Answer

z̄ = 63.05

45.42
= 1.388 m

You should locate this point on Fig. (a) to verify that it represents a reasonable
location of the centroid for the shaded surface.

Sample Problem 8.10
Determine the centroidal coordinates for the composite curve made up of three
segments: the semicircular arc 1, and the straight lines 2 and 3.

yx

z

400 mm

300 mm

600 mm500 mm

1

2

3

Solution
Segment 1 (semicircular arc)

L1 = π R = 400π mm

x̄1 = 400 mm, ȳ1 = 0 (by inspection)

z̄1 = 2R

π
= 2(400)

π
= 800

π
mm (from Table 8.2)

Segment 2 (straight line)

L2 =
√

5002 + 6002 = 781.0 mm

x̄2 = 300 mm ȳ2 = 250 mm z̄2 = 0 (by inspection)
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Segment 3 (straight line)

L3 =
√

6002 + 3002 = 670.8 mm

x̄3 = 300 mm ȳ3 = 500 mm z̄3 = 150 mm (by inspection)

The remaining computations are carried out in the following table.

Segment Length L x̄ Lx̄ ȳ L ȳ z̄ L z̄
(mm) (mm) (mm2) (mm) (mm2) (mm) (mm2)

1 400π 400 502.7× 103 0 0
800

π
320.0× 103

2 781.0 300 234.3× 103 250 195.3× 103 0 0

3 670.8 300 201.2× 103 500 335.4× 103 150 100.6× 103

� 2708.4 · · · 938.2× 103 · · · 530.7× 103 · · · 420.6× 103

Therefore, the centroidal coordinates of the composite curve are

x̄ = �Lx̄

�L
= 938.2× 103

2708.4
= 346 mm

ȳ = �L ȳ

�L
= 530.7× 103

2708.4
= 196 mm Answer

z̄ = �Lz̄

�L
= 420.6× 103

2708.4
= 155 mm

You should locate this point on the figure to verify that it represents a reasonable
location for the centroid of the composite curve.
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8.39–8.75 Problems 433

Problems

8.39 Use integration to locate the centroid of the volume of the hemisphere. z

y

x
R

Fig. P8.39, P8.40

Compare your results with Table 8.3.

8.40 By integration, find the centroid of the surface of the hemisphere.
Compare your result with Table 8.4.

8.41 Locate the centroid of the volume obtained by revolving the triangle about

20 mm

y

x

40 mm

80 mm

Fig. P8.41, P8.42

the x-axis. Use integration.

8.42 Solve Prob. 8.41 assuming that the triangle is revolved about the y-axis.

y

h

b
x

y = h(1– x2/b2)

Fig. P8.43, P8.44

8.43 Use integration to find the centroidal coordinates for the volume obtained
by revolving the area shown about the x-axis.

8.44 Solve Prob. 8.43 assuming that the area is revolved about the y-axis.

8.45 Verify the centroidal z-coordinate of the pyramid shown in Table 8.3 by
integration.

8.46 Use integration to compute the z-coordinate of the centroid of the half

y

z

x
h

R

Fig. P8.46, P8.47

cone.

8.47 Determine the centroidal z-coordinate of the curved surface of the half
cone by integration.

8.48 By integration, determine the x- and y-centroidal coordinates for the
volume shown.

h2

y

x

z

b

a

h1

z = h1 – (h1 – h2) 
xy
ab

y

z

x

b b z = h cos

a

π x
2a

π y
2b

a

h

cos

Fig. P8.48 Fig. P8.49

8.49 Locate the centroid of the volume between the curved surface and the
xy-plane using integration.
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8.50 Use integration to locate the centroid of the curved surface.

x

y

z

R

h

B

A

z = h
π θ

θ

Fig. P8.50, P8.51

8.51 By integration, determine the centroidal coordinates of the curve connect-
ing points A and B.

8.52–8.57 By the method of composite volumes, determine the centroidal
coordinates of the volume.

35 mm

y

z

x 80 mm
170 mm

40 mm

40 mm

65 mm

130

160

190

y

100

180

z

x

Dimensions in mm

Fig. P8.52 Fig. P8.53

65 mm

z

y

x 120 mm

60 mm 80 mm

120

80

120

20

x

y

z

Dimensions in mm

45

60

40

Fig. P8.54 Fig. P8.55
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z

y

x

Dimensions in mm

10

10

90 160

45
80

60

70

x

z

y

20 mm radius

12.5 mm radius
35 mm

70 mm

7.5 mm

37.5 mm

Fig. P8.56 Fig. P8.57

8.58 Use the method of composite volumes to find the centroidal z-coordinate

Dimensions in mm

56

78

10

8

40 y

x

z

Fig. P8.58

of the split bearing.

8.59 The cylindrical container will have maximum stability against tipping

60 mm

h

20 mm15 mm

Fig. P8.59

when its centroid is located at its lowest possible position. Determine the depth h
of the cylindrical portion that must be removed to achieve this.

8.60–8.65 Using the method of composite surfaces, locate the centroid of the
surface.

z

yx

9 m
m

15 mm

15 mm

12 mm

12 mm

25 mm

Dimensions in meters

y
1.5x

z

3.5

1.5

0.75

3

Fig. P8.60 Fig. P8.61
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Dimensions in mm

20
0

200

200

400

y

z

x

360
150

900

100
150

150
100

z

x

y

Dimensions in mm

Fig. P8.62 Fig. P8.63

22 mm

18
 m

m

22 mm

z

yx

36

z

x

y

54

Dimensions in mm

21

15

Fig. P8.64 Fig. P8.65
8.66 The picture board and its triangular supporting bracket form a compos-
ite surface. Calculate the height h of the support that minimizes the centroidal
z-coordinate of the assembly.

250

y

h

150

z

x

Dimensions
in mm100

100

Fig. P8.66
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8.67–8.69 By the method of composite curves, locate the centroid of the wire
figure.

120 mm

120 mm

yx

z

120 mm

100 mm 100 mm
70 mm

60 mm

30 mm

z

y

x

Fig. P8.67 Fig. P8.68

x y

z

120 mm

80 mm

50 mm

60 51

92

114

114

51
x

y

Dimensions in mm

50

Fig. P8.69 Fig. P8.70, P8.71

8.70 Use numerical integration to find the centroid of the volume generated by

4.
90

 m

6.
93

 m

8.
49

 m

9.
80

 m

10
.9

5 
m

x

y

2 m
12 m

O

12
.0

0 
m

B

A

Fig. P8.72, P8.73

revolving the area shown about the x-axis.

8.71 Solve Prob. 8.70 assuming that the area is revolved about the y-axis.

8.72 Locate the centroid of the volume generated by revolving the area shown
about the line AB. Use numerical integration.

8.73 (a) Solve Prob. 8.72 assuming that the area is revolved about the x-axis.
(b) Check your result in part (a) with Table 8.3 knowing that the curve OB is a
parabola.
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8.74 Use numerical integration with �x = 1.0 m to locate the centroid of the
surface generated by revolving the parabola about the y-axis.

1 m

y

O

4 m

3 m

A

y = 3
16

x2

x

Fig. P8.74, P8.75

8.75 Solve Prob. 8.74 assuming that the parabola OA is revolved about the x-
axis.

8.4 Theorems of Pappus-Guldinus

The theorems of Pappus-Guldinus* provide relatively simple methods for calcu-
lating surface areas and volumes of bodies of revolution, utilizing first moments
of curves and areas.

Theorem I The surface area generated by revolving a plane curve through 360◦
about a nonintersecting axis in the plane of the curve is equal to 2π times the first
moment of the curve about the axis of revolution.

Proof
Consider the curve � with length L, shown in Fig. 8.11, that lies in the xy-plane.
When this curve is rotated through 360◦ about the x-axis, the area of the ring gen-
erated by the differential curve length ds is dA = 2πyds. Therefore, the surface
area generated by the entire curve � becomes

A = 2π

∫
�

y ds = 2π Qx (8.14)

where Qx =
∫

� yds is the first moment of the curve about the x-axis. This
completes the proof.

*Named after the Greek geometrician Pappus (fourth century A.D.) and the Swiss mathematician Paul
Guldinus (1577–1643).
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y

x

ds
Curve � of length L

y

z

x

dA

y

Fig. 8.11

Theorem II The volume generated by revolving a plane area through 360◦ about
a nonintersecting axis in the plane of the area is equal to 2π times the first moment
of the area about the axis of revolution.

Proof
Consider the region � with area A, shown in Fig. 8.12, that lies in the xy-plane.
When this area is rotated through 360◦ about the x-axis, the volume generated by
the differential area dA is dV = 2πy dA. Therefore, the volume generated by the
entire area is

V = 2π

∫
�

y dA = 2π Qx (8.15)

where Qx =
∫

� y dA is the first moment of the area about the x-axis. This
completes the proof.

Note that if the generating curve or area is revolved through an angle less than
360◦, this angle, measured in radians, should replace 2π in Eqs. (8.14) or (8.15).

y

x

dA

Plane region � of area A

y

z

x

dV

y

Fig. 8.12



Sample Problem 8.11
The area shown in Fig. (a) is revolved around the x-axis to form the body shown

30
 m

m

45 mm

10 mm

(a)

x

y

x

(b)

in Fig. (b). Using the theorems of Pappus-Guldinus, calculate (1) the volume of
the body; and (2) the area of the curved surface of the body.

Solution
Part 1

By Theorem II, the volume of the body is V = 2πQx , where Qx is the first
moment of the area in Fig. (a) about the x-axis. By the method of composite
areas, Qx equals the first moment of a rectangle minus the first moment of a quar-
ter circle, both taken about the x-axis—see Fig. (c). Table 8.1 is used to locate
the centroid for the quarter circle, and the centroid for the rectangle has been
determined from symmetry. Therefore, we obtain

Qx = � Aȳ= (30× 35)(27.5)− π(30)2

4

(
45− 40

π

)
= 6066.4 mm3

Hence the volume of the body is

V = 2πQx = 2π(6066.4) = 38116.3 mm3 Answer

27.5 mm
10 mm

(c)

x

y

30 mm

35
 m

m

C1 45 mm

x

y

R = 30 mm
4R 40
3π π      =     mm

C2

Part 2

The curved surface of the body in Fig. (b) is generated by revolving the quarter
circular arc shown in Fig. (d) about the x-axis. By Theorem I, this area equals

(d)

45 mm

x

y

R = 30 mm

60    mm

C

45°

      =  R2
π π

2πQx , where Qx is the first moment of the arc about the x-axis. The location of
the centroid for the arc can be found in Table 8.3. Using L = π R/2 for the length
of the arc and referring to Fig. (d), we obtain

Qx = L ȳ = π(30)

2

(
45− 60

π
sin 45◦

)
= 1484.2 mm2

The area of the curved surface is

A = 2π Qx = 2π(1484.2) = 9325.5 mm2 Answer
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Problems

8.76 A 40-mm diameter hole is drilled in the conical frustum. Calculate the 40 mm20 mm

80 mm

120 mm

Fig. P8.76

volume and the surface area of the resulting body.

8.77 A torus is formed by rotating the circle about the axis AB. Compute the
volume and the surface area of the torus.

A
a

b

B

y

x

40 mm

50 mm

Fig. P8.77 Fig. P8.78

8.78 A solid of revolution is formed by rotating the plane area shown about the
y-axis. Determine the surface area and the volume of the solid.

8.79 Compute the volume of the spherical cap that is formed when the circular

B

y

x

40 mm

A

60°

Fig. P8.79, P8.80

segment is revolved about the y-axis.

8.80 Calculate the surface area of the truncated sphere that is formed by
rotating the circular arc AB about the y-axis.

8.81 The rim of a steel V-belt pulley is formed by rotating the plane area shown
about the axis AB. Find the mass of the rim, given that the mass density of steel is
7850 kg/m3.

60 10

200

80

10

A B

Dimensions in mm

60

20 mm radius

100 mm radius
z

150 mm

100 mm

Fig. P8.81 Fig. P8.82

8.82 Determine the volume of the machine part shown.

8.83 Determine the surface area of the paraboloid that is generated by rotating

12 mm

10 mm
x

y = 12(1 – x2/100) mm
y

Fig. P8.83the parabola about the y-axis. (Hint: Compute Qy of the parabola by integration.)
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8.84 The volume of the dome in the shape of a paraboloid is 250 m3. Determine

5 m radius

h

Fig. P8.84

the height h of the dome.

8.85 Find the surface area of the 90◦ duct elbow.

60 mm

80 mm

20 mm radius
at each corner

50 mm
radius

36

30

2
60°

Dimensions in meters

9 9

Fig. P8.85 Fig. P8.86

8.86 Determine the volume of the concrete arch dam.

8.87 (a) Find the volume of liquid contained in the flask when it is filled to the
h

Half full

Full

radius = 70

radius = 20

142.5

Dimensions in mm

Fig. P8.87

“full” mark. (b) Determine the elevation h of the “half full” mark.

8.88 Determine the ratio b/a for which the volume of the fill equals the vol-
ume of the material removed from the conical excavation. Assume that the fill is
axisymmetric about the excavation.

a
b

Excavation Fill

α
αα

Fig. P8.88

8.5 Center of Gravity and Center of Mass

The resultant of the gravity forces acting on a body, which we know as the weight
of the body, acts through a point called the center of gravity of the body. The
center of gravity is thus determined by the distribution of weight within the body.

The center of mass of a body is a very important concept in dynamics (it is
the point through which the resultant inertia force acts); it is a property of the
distribution of mass within the body. However, because weight and mass differ
only by a constant factor (provided that the gravitational field is uniform), we find
that the centers of mass and gravity coincide in most applications. Differences
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arise only in problems in which the gravitational field is not uniform. Therefore,
it is not surprising that engineers frequently use the terms center of gravity and
center of mass interchangeably.

a. Center of gravity

The weight of a body is the most common example of a distributed force. For a
body occupying the region �, as in Fig. 8.13 , the weight of a differential volume z

x

y
x

y

z

(a)

dVdV

Region �

dW =    dVγ

z

GG

W

x

y

x

y

z

(b)

Fig. 8.13

element dV is dW = γ dV , where γ is the weight density (weight per unit vol-
ume). The total weight W of the body is thus the resultant of an infinite number
of parallel forces dW ; that is,

W =
∫

�
dW =

∫
�

γ dV

The point G through which the weight W acts is called the center of weight—or,
more commonly—the center of gravity of the body—see Fig. 8.13(b).

The coordinates of G can be determined by equating the resultant moment of
the distributed weight to the moment of W about the coordinate axes. Referring
to Fig. 8.13(a) and (b), we obtain

�Mx = −W ȳ = −
∫

�
y dW �My = W x̄ =

∫
�

x dW

from which we obtain

x̄ =
∫

� x dW∫
� dW

=
∫

� xγ dV∫
�γ dV

(8.16a)

ȳ =
∫

� y dW∫
� dW

=
∫

� yγ dV∫
�γ dV

(8.16b)

If we imagine that the body and the coordinate axes are rotated so that either the
x- or y-axis is vertical, the equality of moments would yield

z̄ =
∫

�z dW∫
�dW

=
∫

�zγ dV∫
�γ dV

(8.16c)

The integrals in Eqs. (8.16) can be evaluated by the same techniques that were
used to locate the centroids of volumes in Art. 8.3.

For homogeneous bodies, the weight density γ is constant and thus cancels in
Eqs. (8.16), giving

x̄ =
∫

� x dV∫
� dV

ȳ =
∫

� y dV∫
� dV

z̄ =
∫

� z dV∫
� dV

Comparing these equations with Eqs. (8.10), we can make the following important
observation.
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The center of gravity of a homogeneous body coincides with the centroid of its
volume.

Therefore, tables listing the centroids of volumes, such as Table 8.3, can be used
to determine the location of the centers of gravity of homogeneous bodies.

b. Center of mass

The center of mass of a body is defined as the point that has the following
coordinates.

x̄ =
∫

�x dm∫
�dm

=
∫

�xρ dV∫
�ρ dV

ȳ =
∫

� y dm∫
�dm

=
∫

� yρ dV∫
�ρ dV

z̄ =
∫

�z dm∫
�dm

=
∫

�zρ dV∫
�ρ dV

(8.17)

In Eqs. (8.17), dm is the mass of the differential element dV in Fig. 8.13(a),
given by dm = ρ dV , where ρ is the mass density (mass per unit volume). If the
gravitational field is constant, which is a valid assumption in most engineering
problems, the weight density γ and the mass density ρ are related by γ = ρg,
where g is the gravitational acceleration (constant). In this case, the center of
gravity and the center of mass for a given body coincide.

c. Composite bodies

If a body is composed of several simple shapes, we can use the method of com-
posite bodies to find its center of gravity or mass center. By replacing the integrals
in Eqs. (8.16) by summations, we obtain for the center of gravity

x̄ =
∑

Wi x̄i∑
Wi

ȳ =
∑

Wi ȳi∑
Wi

z̄ =
∑

Wi z̄i∑
Wi

(8.18)

where Wi is the weight of the i th component of the body and (x̄i , ȳi , z̄i ) are the
coordinates of its center of gravity.

Similarly, the location of the mass center of a composite body can be obtained
from Eqs. (8.17):

x̄ =
∑

mi x̄i∑
mi

ȳ =
∑

mi ȳi∑
mi

z̄ =
∑

mi z̄i∑
mi

(8.19)

where mi is the mass of the i th component and (x̄i , ȳi , z̄i ) are the coordinates of
its mass center.



Sample Problem 8.12
The machine part in Fig. (a) consists of a steel hemisphere joined to an aluminum
cylinder into which a hole has been drilled. Determine the location of the center of
mass. The mass densities for aluminum and steel are 2700 kg/m3 and 7850 kg/m3,
respectively.

y

z

30 20 50

12.5

303030

Dimensions in mm

Steel Aluminum

(a)

z

x

y

Solution
By symmetry, we note that x̄ = z̄ = 0. If the machine part were homogeneous,
its center of mass would coincide with the centroid of the enclosing volume,
and ȳ could be determined using the method of composite volumes described
in Art. 8.3. Because the machine part is not homogeneous, ȳ must be determined
by the method of composite bodies.

100

30

y

z

1 50

12.5
y

z

50

3

12.5
y

z

30

4

20

z

y

30

Steel

Aluminum

Aluminum

Aluminum

(b)

2
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The part is composed of the four bodies shown in Fig. (b): the aluminum
cylinder 1, plus the steel hemisphere 2, minus the aluminum cylinder 3, minus the
aluminum cone 4. Because each of these bodies is homogeneous, each center of
mass coincides with the centroid of the enclosing volume.

Aluminum Cylinder 1
m = ρV = ρπ R2h = 2700π(0.030)2(0.100) = 0.7634 kg

ȳ = 100

2
= 50 mm (by symmetry)

mȳ = (0.7634)(50) = 38.17 kg ·mm

Steel Hemisphere 2

m = ρV = ρ
2π

3
R3 = 7850

2π

3
(0.030)3 = 0.4439 kg

ȳ = −3

8
R = −3

8
(30) = −11.25 mm (using Table 8.3)

mȳ = (0.4439)(−11.25) = −4.994 kg ·mm

Aluminum Cylinder 3 (to be subtracted)
m = −ρV = −ρπ R2h = −2700π(0.0125)2(0.050) = −0.066 27 kg

ȳ = 75 mm (by symmetry)

mȳ = (−0.066 27)(75) = −4.970 kg ·mm

Aluminum Cone 4 (to be subtracted)

m = −ρV = −ρ
π

3
R2h = −2700

π

3
(0.0125)2(0.020) = −0.008 836 kg

ȳ = 30+ 3

4
(20) = 45 mm (using Table 8.3)

mȳ = (−0.008 836)(45) = −0.3976 kg ·mm

Totals
�m = 0.7634+ 0.4439− 0.066 27− 0.008 836 = 1.1322 kg

�mȳ = 38.17− 4.994− 4.970− 0.3976 = 27.81 kg ·mm

Therefore, the coordinates of the mass center of the machine part are

x̄ = z̄ = 0 ȳ = �mȳ

�m
= 27.81

1.1322
= 24.6 mm Answer

446
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Problems

8.89 The steel cylinder with a cylindrical hole is connected to the copper cone.
Find the center of gravity of the assembly. The weight densities of steel and copper
are 7.68× 10−5 N/mm3 and 8.74× 10−5 N/mm3, respectively.

Steel

Copper

y

x

z

60 mm80 mm

60 mm

20 mm

15 mm

Fig. P8.89

8.90 The rocket casing is a cylindrical shell of mass 80 kg. The mass of each

0.5 m

0.36 m

1.8 m

x
A

y

z

Fig. P8.90
of the four triangular fins attached to the casing is 12 kg. All components are thin
and of uniform thickness. Determine the coordinates of the mass center of the
casing.

8.91 What is the ratio L/R for which the uniform wire figure can be balanced

R

L

Fig. P8.91

in the position shown?

8.92 Small screws are used to fasten a piece of hardwood to the bracket that is
formed from 1/2mm-thick steel sheet metal. For steel, γ = 7.68 × 10−5N/mm3,
and for hardwood, γ = 0.78 × 10−5N/mm3. Locate the center of gravity of the
assembly.

z

y

x

50 mm

20 mm40 mm

50 mm

20
mm

t1

t1

360

z

x

y

Thickness t2

540

Dimensions in mm

210

150

Fig. P8.92 Fig. P8.93



448 CHAPTER 8 Centroids and Distributed Loads

8.93 Plywood with two different thicknesses is used to fabricate the partition
shown. Find the largest allowable ratio t2/t1 if the partition is not to tip over.

8.94 The aluminum cylinder is attached to the steel hemisphere. Find the height

Steel

Aluminum

90 mm

y

x
G

h

Fig. P8.94

h of the cylinder for which the center of gravity of the assembly is at G. Use
γ = 7.68× 10−5 N/mm3 for steel and γ = 2.61× 10−5 N/mm3 for aluminum.

8.95 Two uniform bars of different diameters are joined together as shown.

40 mm

A BC
160 mm

160 mm

6 mm dia
8 mm dia

y

x
D

Fig. P8.95

Bar AB is made of aluminum (ρ= 2700 kg/m3) and bar CD is made of copper
(ρ= 8910 kg/m3). Find the coordinates of the mass center of the assembly.

8.96 The assembly is formed by joining a semicircular steel (γ = 7.68× 10−5

N/mm3) plate to a triangular aluminum (γ = 2.61 × 10−5 N/mm3) plate. Both
plates are homogeneous and of thickness 1.25 mm. Find the coordinates of the
center of gravity of the assembly.

8.97 The steel pin A is inserted partway into the aluminum tube B. Determine
the x-coordinate of the mass center of the assembly. Use ρ= 2660 kg/m3 for
aluminum and ρ= 7850 kg/m3 for steel.

z

x
y

60 mm
90 mm

10

Dimensions in mm

B

y

A

x1227

130 36

27

100

Fig. P8.96 Fig. P8.97

8.98 Locate the center of gravity of the hammer if the mass of the steel head is
0.919 kg, and the mass of the hardwood handle is 0.0990 kg.

40

180

x

z

y

60 45

Ellipse

Dimensions in mm

25

30 30

30

Fig. P8.98
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8.99 The total weight of the car wheel and tire is 120 N. To statically balance
the wheel-tire assembly (to move its center of gravity to point O), 0.6-N lead
weights are attached to the rim at A and B. What was the location of the center of
gravity of the assembly before the balancing weights were added?

45°

x

y

O
B

70 mm70 mm

A

y

h
G

R

H

x

Fig. P8.99 Fig. P8.100

8.100 The cylindrical water tank with R= 6 m and H = 9 m has thin steel walls
of uniform thickness and weighs 115 000 N when empty. Determine the depth of
the water h for which the center of gravity G of the tank plus water will be located
at the surface of the water. For water, use γ = 9800 N/m3.

8.101 The thin, steel rod is rigidly attached to the plastic sheet. The masses are
4.5 kg/m2 for the plastic sheet and 0.098 kg/m for the steel rod. Determine the
coordinates of the mass center of the assembly.

Steel

z

x

y

120 mm

Plastic

80 mm

80 mm

60 mm

x

θ θ

y

80 mm

100 mm

45° 45°

 mm

O

15
2

Fig. P8.101 Fig. P8.102

8.102 Five 7.5 mm diameter holes are to be drilled in a uniform plate. Deter-
mine the angle θ for the circular segment that must also be removed if the center
of gravity is to remain at point O.
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8.6 Distributed Normal Loads

Our discussion of distributed loads in Art. 3.6 was limited to simple cases because
the treatment of centroids was postponed until the present chapter. It is now
possible to discuss distributed normal loads in a general context.

a. General case

Consider the general case of a distributed normal loading shown in Fig. 8.14(a).
The magnitude of the loading is characterized by p(x, y, z), the load intensity
(force per unit area). Letting dR be the force acting on the differential area dA, we
have dR = np dA, where n is a unit vector normal to dA (in the direction of p).
Then the resultant of the distributed load is the force R shown in Fig. 8.14(b),
where

R =
∫

�
dR =

∫
�

np dA (8.20)

Moment equations can be used to determine the line of action of R—that is, the
coordinates x̄ , ȳ, and z̄ (of course, if R = 0 and the sum of the moments is

p 

dA

n

dR = np dA

y

z

x

(a)

Load area �

y

z

x

(b)

R

z

x

y

�

Fig. 8.14
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not zero, the resultant is a couple). In general, n, p, and dA are functions of
x, y, and z, and evaluation of the integrals may be complicated. The following
special cases occur frequently enough to warrant special attention: flat surfaces,
line loads, uniform pressure on curved surfaces, and fluid pressure.

b. Normal loads on flat surfaces

The load shown in Fig. 8.15(a) is parallel to the z-axis and is assumed to be dis-
tributed across the load area �, which lies in the xy-plane. In this case, the load
intensity p is a function only of x and y. The resultant force is shown in Fig.
8.15(b). According to Eqs. (3.18) and (3.19) of Art. 3.6, the magnitude of the
resultant force and its line of action are determined by

R =
∫

�
dV = V x̄ =

∫
� x dV

V
ȳ =
∫

� y dV

V
(8.21)

where V is the volume of the region � between the load surface and the load area.

z

y

x

Load surface

Load area �

(a)

p(x, y)

Region �

z

y

x

(b)

R

C

y

x

�

Fig. 8.15
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Therefore, we arrive at the conclusions stated in Art. 3.6:

• The magnitude of the resultant force is equal to the volume under the load
surface.

• The line of action of the resultant force passes through the centroid of the
volume under the load surface.

c. Line loads

Line loads—that is, distributed loads for which the width of the loading area is
negligible compared to its length—were also introduced in Art. 3.6. In that article,
emphasis was given to loads distributed along straight lines. Here, we determine
the resultants of loadings that are distributed along plane curves.

Fig. 8.16(a) shows a loading, parallel to the z-axis, that acts along a curve lying
in the xy-plane. We let s be the length measured along the curve. The loading is
characterized by the load intensity w(s) with units lb/ft, N/m, etc. The plot of w(s)
is called the load diagram. We let A be the area of the region (curved surface) �
under the load diagram. The resultant R of the line load is shown in Fig. 8.16(b),
with its line of action located by x̄ and ȳ. Because the line load may be thought
of as an infinite number of parallel, differential forces, integration is used to find
the magnitude and line of action of R.

y

z

x

y ds

s
x

dR = w ds = dA

Region �
Load diagram

(a)

w

y

z

x

(b)

x

y

R

C

Fig. 8.16
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As shown in Fig. 8.16(a), we let dR represent the infinitesimal force that acts
on the differential line length ds. Because dR = w ds = dA, where dA is the differ-
ential area under the loading diagram, we see that the magnitude of the resultant
force equals the area of the curved surface �; that is,

R =
∫

�
dR =

∫
�

w ds =
∫

�
dA = A (8.22)

Equating moments of the load system in Figs. 8.16(a) and (b) about the coordinate
axes yields

�Mx = Rȳ =
∫

�
y dR �My = −Rx̄ = −

∫
�

x dR

After substituting R = A and dR = dA, we get

Aȳ =
∫

�
y dA Ax̄ =

∫
�

x dA

from which we obtain

x̄ =
∫

� x dA

A
ȳ =
∫

� y dA

A
(8.23)

Comparing Eqs. (8.23) and (8.10), we conclude that R acts at the centroid of
the region under the load diagram. This point is labeled C in Fig. 8.16(b). The
z-coordinate of the centroid is irrelevant, because R is a sliding vector.

In summary, line loads distributed along a plane curve have the following
properties:

• The magnitude of the resultant force is equal to the area under the load
diagram.

• The line of action of the resultant force passes through the centroid of the area
under the load diagram.

These conclusions were made in Art. 3.6 for loads distributed along straight lines;
now we see that they are also valid for curved lines.

d. Uniform pressure on curved surfaces

Uniform pressure refers to the special case in which the magnitude of the load
intensity is constant. If p is constant, Eq. (8.20) becomes

R =
∫

�
pn dA = p

∫
�

n dA (8.24)

It can be shown by vector analysis that

n dA = dAx i+ dAy j+ dAz k
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z

x

y

dAy

dAx

dAz

dA

n

Fig. 8.17

where dAx , dAy , and dAz are the projections of dA on the three coordinate planes,
as shown in Fig. 8.17. Therefore, Eq. (8.24) can be written as

R = p

(
i
∫

�
dAx + j

∫
�

dAy + k
∫

�
dAz

)
= p(Ax i+ Ayj+ Azk)

or

Rx = p Ax Ry = p Ay Rz = p Az (8.25)

where Ax , Ay , and Az are the projections of the load area on the coordinate planes.
In principle, moment equations could be used to determine the line of action of R.
However, in many instances the line of action can be determined by symmetry.

There are many practical applications in which the results of Eqs. (8.25) can be
used. For example, consider the cylindrical vessel with inside diameter D, shown
in Fig. 8.18(a), that is subjected to a uniform internal pressure p. Half of the vessel

(a)

z

yx

(b)

D

L

p

(c)

D

L

Ay

Pb = pDL

Fig. 8.18

and the pressure acting on it are shown in Fig. 8.18(b). It is clear that the pressure p
has a resultant force Pb that tends to rupture the vessel (to split it lengthwise).
This bursting force can be calculated using integration as indicated in Eq. (8.24).
However, from Eq. (8.25), we immediately obtain Pb = p Ay = pDL, as shown
in Fig. 8.18(c).

Although the formula “force equals pressure times projected area” is very
useful, you must remember that it is valid only for uniform pressure.

e. Fluid pressure

If a surface is submerged in a fluid of weight density γ , the pressure exerted by the
fluid is p = γ h, where h is the depth measured from the free surface of the fluid.
The resultant of this pressure could be obtained by integration, but if the surface
is curved, the analysis may become complicated because both the magnitude and
direction of p vary. It is usually easier to find the resultant by equilibrium analysis
of a volume of water that is bounded by the curved surface, as illustrated below.
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Let us find the resultant of the water pressure acting on the curved surface
AB of the dam in Fig. 8.19(a) by considering equilibrium of the body of water
contained in the region ABC shown in Fig. 8.19(b). The FBD of the water in
Fig. 8.19(c) contains the following forces:

R1: resultant of the uniform pressure exerted by the water above the region.
R2: resultant of the linearly varying pressure due to water lying to the right of the

region.
RAB : resultant of the pressure exerted by the dam; it is equal and opposite to the

force of the water acting on portion AB of the dam.
W : weight of the water contained in the region; it acts at the centroid G of region

ABC.

(a)

hB

hA

B

p = γ · depth

A

(b)

C

B

A

(c)

A

B

C

G

W

RAB

R2

pB = γhB

pA= γhA

R1

Fig. 8.19

The forces R1, R2, and W can be found by the methods described previ-
ously in this article. The horizontal and vertical components of RAB can then be
found by force equations of equilibrium. A moment equation would be required
to determine the line of action of RAB .



Sample Problem 8.13
Determine the resultant of the line load shown in Fig. (a).

Solution
As shown in Fig. (b), we represent the original line loading as the sum of the
following three components: 1—the parabolic load distributed along a straight
line on the x-axis, 2—the uniform load distributed along the quarter circle lying
in the xy-plane, and 3—the rectangular load along the y-axis. The resultant force
of each load component equals the area under the corresponding load diagram,
acting through the centroid of the diagram.

2.4 N/mm

rad. = 120

80

90

Dimensions
in mm

Parabola

z
y

x

(a)

R3

R1

C1

C3

C2

y3

y2

x2

x1

yz

x

(b)

R2

1

2

3

Load Component 1

Using Table 8.1 for the parabola, we have

R1 = A1 = 2

3
(90)(2.4) = 144.0 N

x̄1 = 120+ 3

8
(90) = 153.75 mm ȳ1 = 0

Load Component 2

R2 = A2 = π R

2
(2.4) = π(120)

2
(2.4) = 452.4 N

Noting that the x- and y-centroidal coordinates for the curved surface are the same
as the centroidal coordinates for the quarter circle lying in the xy-plane, Table 8.2
yields

x̄2 = ȳ2 = R − 2R

π
= 0.3634R = 0.3634(120) = 43.6 mm
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Load Component 3

R3 = A3 = (80)(2.4) = 192.0 N

x̄3 = 0 ȳ3 = 120.0+ 40.0 = 160.0 mm

Resultant Load

From the foregoing data, we find that the magnitude of the resultant is

R = �R = 144.0+ 452.4+ 192.0 = 788.4 N Answer

The coordinates of the point through which R acts are determined by

x̄ = �Rx̄

R
= (144.0)(153.75)+ (452.4)(43.6)+ (192.0)(0)

788.4

= 53.1 mm Answer

ȳ = �Rȳ

R
= (144.0)(0)+ (452.4)(43.6)+ (192.0)(160.0)

788.4

= 64.0 mm Answer

You should locate this point on Fig. (a) to confirm that it represents a reasonable
location for the line of action of the resultant force.

Sample Problem 8.14
The undersides of the 360-mm × 240-mm corrugated sheets in Figs. (a) and (b)
carry a uniform normal pressure of p0= 0.06 N/mm2. Calculate the rectangular
components of the resultant force acting on the underside of each sheet.

40 mm

z

y
p0

(a)

40 mm

x

360 mm240 mm

40 mm

40 mm

z

x

y

p0

(b)

240 mm 360 mm

Solution
Because each sheet is subjected to uniform normal pressure, it is possible to
determine the components of the resultant force by using the pressure times the
projected area. Thus Rx = p0 Ax , Ry = p0 Ay , and Rz = p0 Az , where Ax , Ay , and
Az are the projected areas of the loading surface on the three coordinate planes.
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The construction in Fig. (c) shows that the projected areas are

360 mm

800 mm

Sheet (a)

Sheet (b)

(c)

z

y

y

Az

Ay
Sheet (a)

Ax = 0 Ay = 80× 240 = 19200 mm2

Az = 360× 240 = 86400 mm2

Sheet (b)

Ax = 0 Ay = 0

Az = 360× 240 = 86400 mm2

Therefore, for sheet (a), the rectangular components of the resultant force are

Rx = p0 Ax = 0 Ry = p0 Ay = 0.06(19200) = 1152 N
Answer

Rz = p0 Az = 0.06(86400) = 5184 N

For sheet (b), we have

Rx = p0 Ax = 0 Ry = p0 Ay = 0
Answer

Rz = p0 Az = 0.06(86400) = 5184 N

Sample Problem 8.15
A swimming pool is filled with water to a depth of 3 m, as shown in Fig. (a).
Determine the magnitude and line of action of the resultant force that acts on the
circular portion AB of the wall. The length of the wall (dimension perpendicular
to the paper) is 25 m, and the mass density of water is 1000 kg/m3.

Solution
The free-body diagram of the water contained in the region OAB (25 m in length)
is shown in Fig. (b). The pressures p1 and p2 are equal to the products of the

radius  = 1.6 m

Length of wall = 25 m

(a)

3 m
O A

B
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weight density of water γ and the depths at A and B, respectively. Letting ρ be
the mass density, we have γ = ρg = 1000(9.81) = 9.81 kN/m3.

0.8 m

0.8 m

y

O

P1

A

x

p1 =    h  =  (9.81)(1.4)

     = 13.73 kN/m2

p2 =   h  =  (9.81)(3)

    = 29.43 kN/m2

4(1.6)

3π
= 0.6791 m

P2

p
1

P3

1.6

3
=  0.5333 m B

W

x0

R

(b)

C

γ

γ
0.8 m 0.8 m

The resultant forces P1 and P2 are caused by the uniformly distributed load-
ings shown, and P3 is due to the triangular portion of the loading. Each of these
forces equals the product of the pressure (average pressure is used for P3) and the
area on which the pressure acts.

P1 = p1 A = (13.73)(1.6)(25) = 549.2 kN

P2 = p1 A = (13.73)(1.6)(25) = 549.2 kN

P3 = p2 − p1

2
A = 29.43− 13.73

2
(1.6)(25) = 314.0 kN

The lines of action of P1, P2, and P3 pass through the centroids of the cor-
responding load diagrams. The weight W of the water contained in the region
OAB is

W = γ × volume = (9.81)
π(1.6)2

4
(25) = 493.1 kN

Letting R be the resultant force exerted on the water by the curved portion of the
wall, we can find its components from the force equilibrium equations. Referring
to the FBD in Fig. (b), we obtain

�Fx = 0 −→+ P2 + P3 − Rx = 0

Rx = P2 + P3 = 549.2+ 314.0 = 863.2 kN

�Fy = 0 +
�⏐ Ry −W − P1 = 0

Ry = W + P1 = 493.1+ 549.2 = 1042.3 kN
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Therefore, the magnitude and direction of R are

1042.3 kN

863.2 kN

θ

R R =
√

(863.2)2 + (1042.3)2

= 1353 kN

θ = tan−1 1042.3

863.2
= 50.4◦

To find the line of action of R, we use the moment equation of equilibrium.
Choosing point B in Fig. (b) as the moment center and letting x0 be the distance
between B and C (the point where R intersects the x-axis), we obtain

�MB = 0 + Ry x0 − P1(0.8)− P2(0.8)

− P3(0.5333)−W (0.6791) = 0

from which we have

x0 = 549.2(0.8)+ 549.2(0.8)+ 314.0(0.5333)+ 493.1(0.6791)

1042.3
= 1.325 m

The force exerted by the water on the wall is equal and opposite to the force
determined above, as shown in Fig. (c).

B

O A

R = 1353 N

50.4° 

1.325 m
C

(c)

Answer

460



8.103–8.122 Problems 461

Problems

Unless integration is specified, the following problems are to be analyzed using
the information in Tables 8.1–8.3.

8.103 Wind pressure acting on a cylinder can be approximated by p= p0 cos θ ,
where p0 is a constant (note that on the lee side the pressure is negative). Deter-
mine the resultant force of the wind pressure on a cylinder of radius R and
length L by integration.

p

Wind

R
θp0 p0

2.5 5 7.5 10 12.5 15
x (m)

w (N/m)

0

42
.5

37
.5

28
.3

32
.4

42
.3

52
.1

58
.6

Fig. P8.103 Fig. P8.104

8.104 The beam carries the distributed line load shown. Use numerical integra-
tion to determine the resultant force and its line of action.

8.105 The pressure acting on the square plate varies as

y

bb

x

2p0

p0

Fig. P8.105

p = p0

( x

b
+ xy

b2

)

where p0 is a constant. Use integration to find the resultant force of the pressure,
and the x- and y-coordinates of its line of action.

8.106 The intensity of the line loading acting on the rim of the semicircular
plate varies as w = w0 y/a, where w0 is a constant and a is the radius of the plate.
Use integration to determine the resultant force and to locate its line of action.

y

x

w0a

a

B

θ

A

y

x
O

w0

w = w0 cos θ

Fig. P8.106 Fig. P8.107

8.107 Use integration to determine the resultant of the normal line loading
acting on the circular arch.

8.108 If the intensity of the line loading is w = [(40x − x2)/40] N/mm, where

x

60 mm
w(x)

O x

Fig. P8.108x is measured in mm, use integration to find the resultant.
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8.109 Determine the resultant force of the line loading and the x- and
y-coordinates of its line of action.

Parabola

z

x

y

4 N/mm

160 mm
220 mm

0.4 m

x y

z

Radius  =  0.2 m

180 N/m

Fig. P8.109 Fig. P8.110

8.110 Find the resultant of the line load shown.

8.111 Determine the resultant force or resultant couple for each of the line loads
shown. In each case the loading is normal to the line and has constant intensity w0.

w0

y

x

(a)

a
O

a

w0

y

x

(b)

O

w0

y

x

(c)

a

2a

O a

w0

y

x

(d)

O

a

Fig. P8.111

8.112 The inside surface of each thin shell carries a uniform normal pressure of
intensity p0. Compute R, the magnitude of the resultant force for each case.
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z

y

h

(a) Cone

a

x

z

(b) Hemisphere

yx

a

(c) Quarter sphere

z

a

x y

z

yx

h

(d) Half cone

a

Fig. P8.112

8.113 Calculate the resultant force caused by the water acting on the parabolic
arch dam. The water levels are 8 m on the upstream side and zero on the
downstream side. For water, use γ = 9800 N/m3.

20 m

20 m

8 m

Downstream side

Upstream side

Parabola

8 m

A

B

Diameter = d

Radius = a

Fig. P8.113 Fig. P8.114

8.114 Determine the resultant force acting on the elbow of the thin-walled pipe
when the pipe carries a uniform internal pressure p0.

8.115 The thin plate of area A is submerged in fluid of weight density γ . Show

A
C

h

Fig. P8.115
that the resultant force of the fluid pressure acting on one side of the plate is
R = γ h̄ A where h̄ is the depth of the centroid C of the area of the plate.
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8.116 Each of the three gates has a constant width c (perpendicular to the
paper). Calculate the force P required to maintain each gate in the position shown.
Express your answers in terms of b, c, h, and γ (the weight density of the fluid).

y

b

h 

A
x

B
P

(a)

b

h 

A

B

P

(b)

Parabola

b

h 

A

B

P

(b)

Parabola

Fig. P8.116

8.117 The concrete dam shown in cross section holds back fresh water
(ρ= 1000 kg/m3). Determine the resultant force R of the water pressure acting
on one meter length of the dam. Also, compute the coordinates of a point on the
line of action of R.

x

y

5.8 m

7.5 m

4.3 m 3.9 m 3.3 m

Fig. P8.117

8.118 A concrete seawater dam is shown in cross section. Is the dam safe

2.5 m

4 m

1.5 m

x

y 

O A

Parabola

Fig. P8.118

against tipping about edge A? The mass densities are 2400 kg/m3 for concrete
and 1030 kg/m3 for seawater.

8.119 Determine the force F required to pull up the 0.7 N stopper from the
drain of a sink if the depth of water is 90 mm. Use γ = 0.98 × 10−5 N/mm3 for
water and neglect the weight of the chain.
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20 mm dia

5 mm

90
mm

F

0.7 N

z

x

y

90°

115 mm

Fig. P8.119 Fig. P8.120

8.120 If the trough is filled with water (ρ= 1000 kg/m3), determine the
resultant of the water pressure acting on one of the equilateral triangular end
plates.

8.121 The pressure acting on the circular plate of radius a varies as
p= p0 [1+ (r /a) cos θ ], where p0 is a constant. Use integration to find the
resultant force and to locate its line of action.

x

p

a r

y

2p0

θ
A

B

4 m

Fig. P8.121 Fig. P8.122

8.122 The 5 m wide quarter-circular gate AB is hinged at A. Determine the
contact force between the gate and the smooth surface at B due to water pressure
acting on the gate. Use ρ = 1000 kg/m3 for water.
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Review of Equations

First moments of areas and curves
Plane area: Qx =

∫
� y dA Qy =

∫
� x dA

Plane curve: Qx =
∫

� y ds Qy =
∫

� x ds

Composite areas and curves
Qx = �i (Qx)i Qy = �i (Qy)i

Centroidal coordinates of areas and curves
Plane area: x̄ = Qy

/
A ȳ = Qx /A

Plane curve: x̄ = Qy
/

L ȳ = Qx /L

Theorems of Pappus-Guldinus
A = 2π Qx

A = area of surface generated by rotating a plane curve about x-axis
Qx = first moment of the generating curve about x-axis

V = 2π Qx

V = volume of the solid generated by rotating a plane area about x-axis
Qx = first moment of the generating area about x-axis

Center of gravity—composite bodies

x̄ = �i Wi x̄i

�i Wi
ȳ = �i Wi ȳi

�i Wi
z̄ = �i Wi z̄i

�i Wi

Resultant of normal load on a flat surface

R = volume under the load surface
x̄, ȳ = centroidal coordinates of the volume under the load surface

Resultant of uniform pressure on a curved surface

Rx = p Ax Ry = p Ay Rx = p Az
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Review Problems

8.123 The center of gravity of the plane wire figure is located at G. Determine

x

y

G

a
b

40 mm

Fig. P8.123

the lengths a and b.

8.124 The 10-m wide gate restrains water at a depth of 6 ft. Calculate the mag-
nitude of the hinge reaction at A, and the contact force between the gate and the
smooth surface at B. Neglect the weight of the gate.

2 m
3 m

4 m
35°

A

B

y

L
w

Fig. P8.124 Fig. P8.125

8.125 The pressure of wind acting on a pole of length L results in the line
loading w=w0

[
1− exp(−5y/L)

]
, where w0 is a constant. Use integration to

determine the reactive couple at the base of the pole.

8.126 The bin, open at the top and closed at the bottom, is made from sheet
metal of uniform thickness. Locate its center of gravity.

25 20

40

z

y
x

Dimensions in mm

Fig. P8.126
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8.127 Find the volume of the solid that is generated by rotating the plane area
shown about the y-axis.

40

20

2030

y

Dimensions in mm

Fig. P8.127, P8.128

8.128 Determine the surface area of the solid that is generated by rotating the
plane area shown about the y-axis.

8.129 The rectangular plate is subjected to the pressure

p = p0
x

a
cos

πy

2b

Determine the resultant force of the pressure and the coordinates of its point of
application.

y

a
b

b

x

p
0

Fig. P8.129

8.130 Calculate the tension in each of the three ropes which support the
uniform steel plate weighing 7.72 N/mm3

C B

A

150 mm

200 mm

200 mm

30 mm

Fig. P8.130
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8.131 Using the method of composite areas, find the centroid of the truncated
parabolic complement.

bb

h

y

x

Fig. P8.131, P8.132

8.132 Find the centroid of the truncated parabolic complement by integration.

8.133 The screwdriver has a plastic handle and a 90 mm steel shaft. Find
the x-coordinate of its mass center. Use γ = 1.5 × 10−5 N/mm3 for plastic and
γ = 7.68× 10−5 N/mm3 for steel.

12.5 mm

4 mm

x

40 mm 75 mm

90 mm

Fig. P8.133

8.134 Determine the dimension h if the centroid of the homogeneous axisym-

z

r

h

C

O

30 mm

20 mm

10 mm

Fig. P8.134

metric solid is located at C.

8.135 Two hemispherical shells of inner diameter 1 m are joined together
with 12 equally spaced bolts. If the interior pressure is raised to 300 kPa above
atmospheric pressure, determine the tensile force in each bolt.

1 m dia

Fig. P8.135

8.136 Calculate the area of the surface generated when the plane z-curve is

y

x

25 mm 30 mm

40 mm

20 mm

Fig. P8.136rotated about (a) the x-axis; and (b) the y-axis.
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8.137 Determine the resultant of the line loading, given that w0 = 36 N/m.

3 m

3 m

x y

w0

w0

3 m

Fig. P8.137

8.138 Find the coordinates of the centroid of the plane region. The region is
symmetric about the y-axis.

x

y
30 mm 30 mm 30 mm

60 mm

20 mm
y

z

x

5 m

1.5 m
P

80 mm

50 mm

60 mm

Fig. P8.138 Fig. P8.139, P8.140 Fig. P8.141

8.139 The sheet metal trough has a uniform wall thickness. Determine the
coordinates of its center of gravity.

8.140 The trough is filled with water (γ = 1000 kg/m3). Determine the resul-
tant force of the water pressure acting on one of the semicircular ends and the
coordinates of its point of application.

8.141 The thin-walled cylindrical can with a spherical dimple weighs 1 N.
Determine the force P required to push the can into water to a depth of 80 mm.
Use γ = 9.81× 10−6 N/mm3 for water.

8.142 Find the location of the centroid of the plane region.

14

y

x
35

70

35

Dimensions in mm

Fig. P8.142
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Moments and Products

of Inertia of Areas

The strength and rigidity of a beam
is determined by the moment of
inertia of its cross-sectional area.
The computation of area moments
of inertia is the main topic of this
chapter. Peter Dazeley/
Photographer’s Choice
RF/Getty Images

9.1 Introduction

First moments of areas, as presented in Chapter 8, dealt with the integrals
∫

x dA
and
∫

y dA. In this chapter, we discuss the second moments of plane areas, also
known as moments of inertia,

∫
x2 dA and

∫
y2 dA. We also introduce the product

of inertia
∫

xy dA.
Moments and products of inertia arise in the analysis of linear load distri-

butions acting on plane areas. Such distributions occur in members subjected to
bending (beams), and in circular shafts carrying twisting couples. In addition,
moments and products of inertia are encountered in the determination of resultants
acting on submerged surfaces.

471
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In this chapter we also discuss the dependence of moments and products of
inertia on the orientation of the coordinate system. This dependence results in the
transformation equations for moments and products of inertia, which are used to
determine the maximum and minimum moments of inertia at a point. This chapter
concludes with a discussion of Mohr’s circle, a graphical method for representing
the transformation equations.

9.2 Moments of Inertia of Areas and Polar
Moments of Inertia

a. Moment of inertia of area

In Art. 8.2, the first moments of the area of a plane region � about the x- and
y-axes were defined as

Qx =
∫

�
y dA Qy =

∫
�

x dA (9.1)

where A is the area of the region and x and y are the coordinates of the differential
area element dA, as shown in Fig. 9.1.

y

x

dA

y

x

r

O

Plane region �

Fig. 9.1

The moments of inertia of the area about the x- and y-axes, respectively, are
defined by*

Ix =
∫

�
y2 dA Iy =

∫
�

x2 dA (9.2)

Because the distances x and y are squared, Ix and Iy are sometimes called the
second moments of the area.

The dimension for moment of inertia of area is [L4]. Therefore, the units are
in.4, mm4, and so forth. Although the first moment of an area can be positive,
negative, or zero, its moment of inertia is always positive, because both x and y in
Eqs. (9.2) are squared.

*The term moment of inertia of an area should not be confused with moment of inertia of a body,
which occurs in the study of dynamics. The latter refers to the ability of a body to resist a change
in its rotation and is a property of mass. Because an area does not have mass, it does not possess
inertia. However, the term moment of inertia is used because the integrals in Eqs. (9.2) are similar to
the expression

∫
r2 dm that defines the moment of inertia of a body.
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Caution Recall that the first moment of an area can be obtained from Qx = Aȳ,
where ȳ is the centroidal coordinate of the area. A mistake frequently made is to
assume that Ix = Aȳ2. Although the first moment of an area equals the area times
the centroidal distance, the second moment of an area is not equal to the area
times the centroidal distance squared.

b. Polar moment of inertia

Referring again to Fig. 9.1, the polar moment of inertia of the area about point O
(strictly speaking, about an axis through O, perpendicular to the plane of the area)
is defined by

JO =
∫

�
r2 dA (9.3)

where r is the distance from O to the differential area element dA. Note that the
polar moment of an area is always positive and its dimension is [L4].

From Fig. 9.1, we note that r2 = y2 + x2, which gives the following
relationship between polar moment of inertia and moment of inertia:

JO =
∫

�
r2 dA =

∫
�
(y2 + x2) dA =

∫
�

y2 dA+
∫

�
x2 dA

or

JO = Ix + Iy (9.4)

This relationship states that the polar moment of inertia of an area about a point
O equals the sum of the moments of inertia of the area about two perpendicular
axes that intersect at O.

c. Parallel-axis theorems

There is a simple relationship between the moments of inertia about two parallel
axes, provided that one of the axes passes through the centroid of the area. Refer-
ring to Fig. 9.2(a), let C be the centroid of the area contained in the plane region
� and let the x′-axis be the centroidal axis that is parallel to the x-axis. We denote
the moment of inertia about the x′-axis by Īx , which is to be read as the “moment
of inertia about the centroidal x-axis” (about the axis that is parallel to the x-axis
and passes through the centroid of the area). Observe that the y-coordinate of the
differential area dA can be written as y= ȳ + y′, where ȳ (the centroidal coordi-
nate of the area) is the distance between the two axes. Equations (9.2) yield the
following expression for the moment of inertia of the area about the x-axis (note
that ȳ is constant).

Ix =
∫

�
y2 dA =

∫
�
(ȳ + y′)2 dA

= ȳ2
∫

�
dA+ 2ȳ

∫
�

y′dA+
∫

�
(y′)2dA (a)
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y

x

dA

y

x

r

O

Plane region �

y'
x'

x'

y

C

y'
x

(a)

C

Ia

Ia

(b)

a

d

Fig. 9.2

Noting that
∫

� dA= A (the area of the region),
∫

� y′dA= 0 (the first moment
of the area about a centroidal axis vanishes), and

∫
�(y′)2dA= Īx (the second

moment of the area about the x′-axis), Eq. (a) simplifies to

Ix = Īx + Aȳ2 (9.5a)

This relationship is known as the parallel-axis theorem for moment of inertia of
an area. The distance ȳ is sometimes called the transfer distance (the distance
through which the moment of inertia is to be “transferred”). It is important to
remember that the theorem is valid only if Īx is the moment of inertia about the
centroidal x-axis. If this is not the case, the term

∫
� y′dA in Eq. (a) would not

vanish, giving rise to an additional term in Eq. (9.5a).
Because the direction of the x-axis in Fig. 9.2(a) can be chosen arbitrarily, the

parallel-axis theorem applies to axes of any orientation. For example, applying
the theorem to the y-axis yields

Iy = Īy + Ax̄2 (9.5b)

where Īy is the moment of inertia of the area about the centroidal y-axis—that is,
the y′-axis in Fig. 9.2 (a), and x̄ is the x-coordinate of the centroid.

In general, the parallel-axis theorem can be written as

Ia = Īa + Ad2 (9.6)
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As illustrated in Fig. 9.2(b), Ia is the moment of inertia about an arbitrarily ori-
ented a-axis, Īa represents the moment of inertia about the parallel axis that passes
through the centroid C, and d is the distance between the axes (transfer distance).

By inspection of Eq. (9.6), we see that, given the direction of the axis, the
moment of inertia of an area is smallest about the axis that passes through the
centroid of the area. In other words, Īa is smaller than the moment of inertia
about any other axis that is parallel to the a-axis.

The parallel-axis theorem also applies to the polar moment of inertia. Denot-
ing the polar moment of inertia of the area about the origin O by JO , and about
the centroid C by J̄C , we have from Eqs. (9.4) and (9.5)

JO = Ix + Iy = ( Īx + Aȳ2)+ ( Īy + Ax̄2)

Using Īx + Īy = J̄C , this equation becomes

JO = J̄C + Ar̄2 (9.7)

where r̄ =√x̄2 + ȳ2 is the distance between points O and C, as shown in
Fig. 9.2(a).

d. Radius of gyration

In some structural engineering applications, it is common practice to introduce
the radius of gyration of area. The radii of gyration of an area about the x-axis,
the y-axis, and the origin O are defined as

kx =
√

Ix

A
ky =

√
Iy

A
kO =

√
JO

A
(9.8)

The dimension of the radius of gyration is [L]. However, the radius of gyration is
not a distance that has a clear-cut physical meaning, nor can it be determined by
direct measurement; its value can be determined only by computation using Eqs.
(9.8). The radii of gyration are related by the equation

k2
O = k2

x + k2
y (9.9)

which can be obtained by substituting Eqs. (9.8) into Eq. (9.4).

e. Integration techniques

When computing the moment of inertia of an area about a given axis by inte-
gration, we must choose a coordinate system and decide whether to use single
or double integration. The differential area elements dA associated with various
coordinate systems were discussed in Art 8.2 and illustrated in Fig. 8.4.
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If double integration is used, the moments of inertia can be calculated from
Eqs. (9.2) in a straightforward manner. However, in single integration we must
view Eqs. (9.2) in the form

Ix =
∫

�
dIx Iy =

∫
�

dIy

where dIx and dIy are the moments of inertia of the area element dA about the
x- and y-axes. In general, dIx = y2dA only if all parts of the area element are the
same distance y from the x-axis. To satisfy this condition, the area element must
be either a double differential element (dA= dx dy), or a strip of width dy that is
parallel to the x-axis, as shown in Fig. 8.4(c). A similar argument applies to dIy .

f. Method of composite areas

Consider a plane region � that has been divided into the subregions �1, �2,
�3, . . . . The moment of inertia of the area of � about an axis can be computed
by summing the moments of inertia of the subregions about the same axis. This
technique, known as the method of composite areas, follows directly from the
property of definite integrals: the integral of a sum equals the sum of the integrals.
For example, Ix , the moment of inertia about the x-axis, becomes

Ix =
∫

�
y2 dA =

∫
�1

y2 dA+
∫

�2

y2 dA+
∫

�3

y2 dA+ · · ·

which can be written as

Ix = (Ix )1 + (Ix )2 + (Ix )3 + · · · (9.10a)

where (Ix )i is the moment of the inertia of the area of the subregion �i with
respect to the x-axis. Obviously, the method of composite areas also applies to the
computation of polar moments of areas:

JO = (JO)1 + (JO)2 + (JO)3 + · · · (9.10b)

where (JO)i is the polar moment of inertia of the subregion �i with respect to
point O.

The moments of inertia of the component areas about their centroidal axes
can be found in tables, such as Tables 9.1 and 9.2. The parallel-axis theorem must
then be used to convert these moments of inertia to the common axis before they
can be summed.
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CircleRectangle

Īx

Ix

Ix

= bh3

12 Īy

Iy

= b3h

b3h

12 Īxy

Ixy

= 0
= Iy

Ix

Ix Iy

= πR4

4 Ixy = 0

= bh3

3
= 3

= b2h2

4

SemicircleelgnairtthgiR

Īx

Ix

= bh3

bh3

36
Īy

Iy

Ix

Ix

Iy

= b3h

b3h

36
¯ = − 72

¯ = 0.1098R4 ¯ = 0

=
12

=
12

Ixy

Ixy

= b2h2

b2h2

24
= = πR4

8
Ixy

Ixy

= 0

Isosceles triangle

¯ = bh3

bh3

36
¯ = b3h

48
¯

= 12
Ixy  =  0

Ixy  =  0

h

x

h
3

y

b
2

b
2

C

y

x

R
3π
4 R

Ch

b

y

x

h
3

b
3

C

y

x

R

C
h

b

b
2

h
2

x

y

C

Table 9.1 Inertial Properties of Plane Areas: Part 1



478 CHAPTER 9 Moments and Products of Inertia of Areas

Triangle Half parabolic complement

Īx = bh3

36
Ix = bh3

12 Īx = 37bh3

2100 Ix = bh3

21

Īy = bh
36(a2 − ab + b2) Iy =

bh
12

(a2 + ab + b2) Īy = b3h
80 Iy = b3h

5

Īxy = bh2

72
(2a − b) Ixy = bh2

24
(2a + b) Īxy = b2h2

120 Ixy = b2h2

12

Quarter circle Half parabola

Īx = Īy = 0.05488R4 Ix = Iy = πR4

16

Īx = 8bh3

175
Ix = 2bh3

7

Īxy = − 0.01647R4 Ixy = R4

8

Īy = 19b3h
480 Iy = 2b3h

15

Īxy = b2h2

60 Ixy =
b2h2

6

Circular sectorQuarter ellipse

Īx = 0.05488ab3 Ix = π ab3

16
Ix = R4

8 (2α − sin 2α)

Īy = 0.05488a3b Iy =
π a3b
16

Iy = R4

8
(2α + sin 2α)

Īxy = − 0.01647a2b2 Ixy = a2b2

8 Ixy = 0

y

R

C x
α

α

a

y

b
C

x

x2
 + y

2
 = 1

a2 b2

h

y

x
b

C

y = h( xb) 2
y

x
R

C
R

h

x
C

y

b

y = h( xb) 2
a

C

h

y

x
b

Table 9.2 Inertial Properties of Plane Areas: Part 2



Sample Problem 9.1
The centroid of the plane region is located at C. If the area of the region is
2000 mm2 and its moment of inertia about the x-axis is Ix = 40 × 106 mm4,
determine Iu .

u

x

C
d2 = 70 mm

d1 = 90 mm

Solution
Note that we are required to transfer the moment of inertia from the x-axis to the
u-axis, neither of which is a centroidal axis. Therefore, we must first calculate Īx ,
the moment of inertia about the centroidal axis that is parallel to the x-axis.

From the parallel-axis theorem we have Ix = Īx + Ad2
1 , which gives

Īx = Ix − Ad2
1 = (40× 106)− (2000)(90)2 = 23.8× 106 mm4

After Īx has been found, the parallel-axis theorem enables us to compute the
moment of inertia about any axis that is parallel to the centroidal axis. For Iu

we have

Iu = Īx + Ad2
2 = (23.8× 106)+ (2000)(70)2

= 33.6× 106 mm4 Answer

A common error is to use the parallel-axis theorem to transfer the moment of
inertia between two axes, neither of which is a centroidal axis. In this problem,
for example, it is tempting to write Iu = Ix + A(d1 + d2)

2, which would result in
an incorrect answer for Iu .

Sample Problem 9.2
For the rectangle, compute the following: (1) the moment of inertia about the

y

dy

b

hdA

y

x
O

x-axis by integration; (2) the moment of inertia about the centroidal axis that is
parallel to the x-axis; and (3) the polar moment of inertia about the centroid.

Solution
Part 1

The area of the differential element shown in the figure is dA = b dy. Because all
parts of the element are a distance y from the x-axis, we can use Eq. (9.2):

Ix =
∫

�
y2 dA = b

∫ h

0
y2 dy = by3

3

]h

0

= bh3

3
Answer

479



This result agrees with the information listed for a rectangle in Table 9.1.
If we had chosen to use double integration with dA= dx dy, the analysis would

yield

Ix =
∫

�
y2 dA=

∫ h

0

∫ b

0
y2 dx dy = bh3

3

which is identical to the previous result.

Part 2

We can calculate Īx from the parallel-axis theorem and the result of Part 1.
Substituting Ix = bh3/3 into the parallel-axis theorem, and recognizing that

the transfer distance d (the distance between the x-axis and the centroidal x-axis)
is h/2, we find that

Īx = Ix − Ad2 = bh3

3
− bh

(
h

2

)2

= bh3

12
Answer

This answer also agrees with the results in Table 9.1.

Part 3

One method of computing J̄C is to use J̄C = Īx + Īy . From the results of Part 2,
or Table 9.1, we have

J̄C = Īx + Īy = bh3

12
+ hb3

12
= bh

12
(h2 + b2) Answer

Another method of computing J̄C is to first compute JO = Ix + Iy and then
transfer this result to the centroid. From the results of Part 1, we have

JO = Ix + Iy = bh3

3
+ hb3

3
= bh

3
(h2 + b2)

The transfer distance is the distance between point O and the centroid of the
rectangle; that is, d = √(b/2)2 + (h/2)2. From the parallel-axis theorem, we
obtain

J̄C = JO − Ad2= bh

3
(h2 + b2)− bh

(
b2

4
+ h2

4

)

or

J̄C = bh

12
(h2 + b2) Answer

which agrees with the previous result.
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Sample Problem 9.3
By integration, calculate the moment of inertia about the y-axis of the area shown
in Fig. (a) by the following methods: (1) single integration using a vertical dif-
ferential area element; (2) double integration; and (3) single integration using a
horizontal differential area element.

b

h

y

x

y = h(x/b)2

(a)

Solution
Part 1

The vertical differential area element is shown in Fig. (b). Because all parts of the
element are the same distance x from the y-axis, we may use Eq. (9.2) directly.
With dA = y dx = h(x /b)2 dx, we have

Iy =
∫

�
x2 dA = h

b2

∫ b

0
x4 dx = h

b2

b5

5
= b3h

5
Answer

which agrees with the information in Table 9.2 for the half parabolic complement.

x

y

x

(b)

y

dx

y = h (x /b)2
h

Part 2

Equation (9.2) can also be used with the double differential area element dA =
dy dx. Choosing to integrate on y first, we obtain

Iy =
∫

�
x2 dA =

∫ b

0

∫ h(x /b)2

0
x2 dy dx
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Integrating over x first would yield

Iy =
∫

�
x2 dA =

∫ h

0

∫ b(y/h)1/2

0
x2 dx dy

Performing either of the foregoing integrations yields the same expression for Iy

as found in Part 1.

Part 3

The horizontal differential area element is shown in Fig. (c). Because all parts of
the differential area element are not the same distance from the y-axis, Eq. (9.2)
cannot be applied directly. To find Iy for the entire area, we must integrate dIy ,
the moment of inertia of the differential area element about the y-axis.

x

y

y

x

(c)

b – x

dy

Cel

x + b – x = b + x
22

Table 9.1 lists Īy = hb3/12 for a rectangle. Therefore, the moment of inertia
of the differential element about its vertical centroidal axis (axis parallel to the
y-axis passing through the centroid Cel of the element) is d Īy = dy (b − x)3/12.
According to the parallel-axis theorem, dIy = d Īy + dA (d2

el), where del is the dis-
tance between the y-axis and the vertical centroidal axis of the element. Using
del= (b + x)/2, as shown in Fig. (c), and integrating, we obtain Iy for the entire
area:

Iy =
∫

�
dIy =

∫ h

0

[
dy (b − x)3

12
+ (b − x) dy

(
b + x

2

)2
]

Substituting x = b(y/h)1/2 and completing the integration gives the same result as
found in Part 1.

Obviously, the horizontal differential area element is not as convenient as the
other choices in this problem.
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Sample Problem 9.4
For the area shown in Fig. (a), calculate the radii of gyration about the x- and

20

45

100

y

x

(a)

Dimensions
in mm

y-axes.

Solution
We consider the area to be composed of the three parts shown in Figs. (b)–(d):
a triangle, plus a semicircle, minus a circle. The moments of inertia of each part
are obtained in two steps. First, the moments of inertia about the centroidal axes
of the part are found from Table 9.1. The parallel-axis theorem is then used to
calculate the moments of inertia about the x- and y-axes.

y

x

(b)

100

90

x =    (90) = 602
3

y =    (100) = 66.72
3

C

45

100

y

x

(c)

y = 100 +           = 119.1
4(45)

3π

x = 45

C 20

y = 100

y

x

(d)

x = 45

C

Triangle

A = bh

2
= 90(100)

2
= 4500 mm2

Īx = bh3

36
= 90(100)3

36
= 2.50× 106 mm4

Ix = Īx + Aȳ2 = (2.50× 106)+ (4500)(66.7)2 = 22.52× 106 mm4

Īy = hb3

36
= 100(90)3

36
= 2.025× 106 mm4

Iy = Īy + Ax̄2 = (2.025× 106)+ (4500)(60)2 = 18.23× 106 mm4

Semicircle

A = π R2

2
= π(45)2

2
= 3181 mm2

Īx = 0.1098R4 = 0.1098(45)4 = 0.450× 106 mm4

Ix = Īx + Aȳ2 = (0.450× 106)+ (3181)(119.1)2 = 45.57× 106 mm4

Īy = π R4

8
= π(45)4

8
= 1.61× 106 mm4

Iy = Īy + Ax̄2 = (1.61× 106)+ (3181)(45)2 = 8.05× 106 mm4
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Circle

A = π R2 = π(20)2 = 1257 mm2

Īx = π R4

4
= π(20)4

4
= 0.1257× 106 mm4

Ix = Īx + Aȳ2 = (0.1257× 106)+ (1257)(100)2 = 12.70× 106 mm4

Īy = π R4

4
= π(20)4

4
= 0.1257× 106 mm4

Iy = Īy + Ax̄2 = (0.1257× 106)+ (1257)(45)2 = 2.67× 106 mm4

Composite Area

To determine the properties for the composite area, we superimpose the foregoing
results (taking care to subtract the quantities for the circle) and obtain

A = � A = 4500+ 3181− 1257 = 6424 mm2

Ix = � Ix = (22.52+ 45.57− 12.70)× 106 = 55.39× 106 mm4

Iy = � Iy = (18.23+ 8.05− 2.67)× 106 = 23.61× 106 mm4

Therefore, for the radii of gyration we have

kx =
√

Ix

A
=
√

55.39× 106

6424
= 92.9 mm Answer

ky =
√

Iy

A
=
√

23.61× 106

6424
= 60.6 mm Answer

Sample Problem 9.5
Using numerical integration, calculate the moments of inertia about the x- and

b

h

y

x

y = h (x/b)2

b
4

y-axes for the half parabolic complement. Use Simpson’s rule with four panels.
Compare your results with the exact values in Table 9.2.

Solution
Dividing the range of integration into four panels, each of width �x = b/4,
Simpson’s rule becomes (see Appendix A)

∫ b

0
f (x) dx ≈ b/4

3
( f1 + 4 f2 + 2 f3 + 4 f4 + f5) (a)

The integrals to be evaluated are Ix =
∫

� dIx and Iy =
∫

� dIy . Choosing a vertical
strip of width dx and height y as the differential area element, we have

dIx = 1
3 y3dx (moment of inertia of a rectangle about its base)

dIy = x2dA = x2 y dx (all parts of the area element dA = y dx are at the distance
x from the y-axis)
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Therefore,

Ix =
∫ b

0

1

3
y3 dx ≈ b

12

(
y3

1

3
+ 4

y3
2

3
+ 2

y3
3

3
+ 4

y3
4

3
+ y3

5

3

)
(b)

Iy =
∫ b

0
x2 y dx ≈ b

12

(
x2

1 y1 + 4x2
2 y2 + 2x2

3 y3 + 4x2
4 y4 + x2

5 y5
)

(c)

where yi = h(xi /b)2. The terms on the right-hand side of Eqs. (b) and (c) are
evaluated in the following table.

i x y y3/3 x2y

1 0.00 0.0000 0.000 00 0.000 00
2 0.25b 0.0625h 0.000 08h3 0.003 91b2h
3 0.50b 0.2500h 0.005 21h3 0.062 50b2h
4 0.75b 0.5625h 0.059 33h3 0.316 41b2h
5 1.00b 1.0000h 0.333 33h3 1.000 00b2h

Substituting the values from this table into Eqs. (b) and (c) gives

Ix = bh3

12
[1(0)+ 4(0.000 08)+ 2(0.005 21)+ 4(0.059 33)]

+ 1(0.333 33)] = 0.0485bh3 Answer

Iy = b3h

12
[1(0)+ 4(0.003 91)+ 2(0.062 50)+ 4(0.316 41)]

+ 1(1.000 00)] = 0.2005b3h Answer

According to Table 9.2, the half parabolic complement has Ix = bh3/21 =
0.0476bh3 and Iy = b3h/5 = 0.2000b3h. Therefore, the errors introduced by
our numerical integration are 1.9% for Ix and 0.25% for Iy .
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Problems

9.1 Compute the moment of inertia of the shaded region about the y-axis byy = 50 + – x4
9

y

90 mm

50 mm

90 mm

x

Fig. P9.1

integration.

9.2 The properties of the plane region are J̄C = 50 × 103 mm4, Ix = 600 ×
103 mm4, and Iy = 350× 103 mm4. Calculate A, Īx , and Īy for the region.

y

x

C

30 mm

40 mm
x

Area = A

C

300 mm

u
h

Fig. P9.2 Fig. P9.3, P9.4

9.3 The moments of inertia about the x- and u-axes of the plane region are
Ix = 14× 109 mm4 and Iu = 38 × 109 mm4, respectively. If h= 200 mm, deter-
mine the area of the region, and the radius of gyration about the centroidal axis
parallel to the x-axis.

9.4 Find the distance h for which the moment of inertia of the plane region
about the u-axis equals 120×109 mm4, given that A= 90×103 mm2 and Ix = 14×
109 mm4.

9.5 Using integration, find the moment of inertia and the radius of gyrationy

x

t

R

Fig. P9.5

about the x-axis for the thin ring (t
 R).

9.6 Use integration to determine the moment of inertia of the shaded region
about the x-axis.

y

x

x = 10 – 0.25y2

20 mm

100 mm

Fig. P9.6



9.1–9.33 Problems 487

9.7 Compute Ix for the shaded region using integration.

xO

y

40 mm

40 mm 80 mm

y2 = 20x

O

y

x

R

α
α

Fig. P9.7 Fig. P9.8

9.8 Using integration, compute the polar moment of inertia about point O for
the circular sector. Check your result with Table 9.2.

9.9 Use integration to compute Ix and Iy for the parabola. Check your answers b

h

x

y = h(x/b )2

y

Fig. P9.9
with the results for the half parabolic complement in Table 9.2.

9.10 By integration, determine the moments of inertia about the x- and y-axes

y = x2

y = x

1 m

y

x

Fig. P9.10

for the region shown.

9.11 Compute the moment of inertia about the x-axis for the region shown using

y

x

20 mm

12 mm

y  = 12 cos 40
πx

Fig. P9.11, P9.12

integration.

9.12 By integration, find the moment of inertia about the y-axis for the region
shown.

9.13 Figure (a) shows the dimension of a structural I -section with Īx = 2.72×
106 mm4 and Īy = 0.886 × 106 mm4 and area of cross section A= 1970 mm2.
Determine the dimension of rectangle in Fig. (b) that has the same Īx and Īy as
that of the I -section shown in Fig (a)

y

xC90 mm

9.33 mm

Web

5.75 mm

Flange

82.87 mm

y

xCh

b

(a) (b)

Fig. P9.13–P9.15
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9.14 Compute the dimensions of the rectangle shown in Fig. (b) that has the
same k̄x and k̄y as that of the I -section shown in Fig. (a).

Problems 9.15–9.29 are to be solved using the method of composite areas.

9.15 Compute Īx and Īy for the shape dimensioned in the figure. Assume that
the section is composed of rectangles, neglecting the effects due to rounding of
the corners. Compare your results with the values listed in Prob. 9.13.

9.16 Figure (a) shows the cross-sectional dimensions of a structural steel
section known as C-channel with a nominal depth of 100 mm. The following
are properties for the cross section: A= 588 mm2, Īx = 78.9 × 104mm4, and
Īy = 2.81 × 104mm4. If two of these channels are welded together as shown in
Fig. (b), find Īx and Īy for the resulting cross section.

27.39 mm

3.79 mm

y
y

6.06 mm

C C
x x

(a) (b)

100 mm

Fig. P9.16

9.17 An I-section shown in Fig. 9.13(a) is joined to a C-channel section shown
in Fig. 9.16(a) to form a structural member that has the cross section shown.
Calculate Īx and Īy for this cross section.

x

y

Fig. P9.17



9.1–9.33 Problems 489

9.18 Compute Ix and Iy for the region shown.

66 mm 66 mm

40 mm40 mm

x

y

68 mm

Fig. P9.18

9.19 Find Īx and Īy for the region shown.

y
90 mm

50 mm

20 mm

20 mm

70 mm

x

10 mm

Fig. P9.19

9.20 Calculate Īx for the shaded region, knowing that ȳ= 68.54 mm.
60

30

90

20

25

80

Dimensions in mm

y

x

Fig. P9.20, P9.21

9.21 Compute Īy for the region shown, given that x̄ = 25.86 mm.

9.22 Compute Īx for the region shown.

2020

20

20 x

y

Dimensions in inches

80 80

180

50 50

30

30

15

y

x

Dimensions in mm

Fig. P9.22 Fig. P9.23

9.23 For the plane region with a circular cutout, (a) find Ix ; and (b) compute Īx

x

y

30 mm

20 mm

40 mm 40 mm

Fig. P9.24

using the result of part (a) and the parallel-axis theorem.

9.24 Determine Īx for the triangular region shown.
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9.25 Determine the distance h for which the moment of inertia of the region
shown about the x-axis will be as small as possible.

h

x

y

O
4 m

1 m 1 m 1 m 1 m

x

y

d

R/2

R

Fig. P9.25 Fig. P9.26

9.26 A circular region of radius R/2 is cut out from the circular region of radius
R as shown. For what distance d will kx for the new region be the same as kx for
the region before the cutout was removed?

9.27 Determine Ix and Iy for the region shown. Note that the region is
symmetric about the x-axis.

y

x

68 mm

17 mm

17 mm

18 mm

27 mm

Fig. P9.27

9.28 Determine the ratio a/b for which Īx = Īy for the isosceles triangle.

x

b

aa

C

y

Fig. P9.28
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9.29 As a round log passes through a sawmill, two slabs are cut off, resulting

h

h

x
RR

Fig. P9.29

in the cross section shown. Calculate Ix of the cross section if h= R/2. What is
the percentage reduction in Ix caused by the sawing operation?

9.30 For the circular sector shown in Table 9.2, determine the angle α, other
than α= 0 and α=π , for which Īx = Īy .

9.31 By numerical integration, compute the moments of inertia about the x-
and y-axes for the region shown. The region is symmetric with respect to each
coordinate axis.

24

6

x

y

Dimensions in mm

24
.0

0

22
.1

6

16
.9

7

9.
18

Fig. P9.31

9.32 Use numerical integration to compute the moments of inertia about the x-
and y-axes for the symmetric region shown.

120

20

77

y

x

60

46

35

27

22

20

Dimensions
in mm

Fig. P9.32

9.33 The plane region � is submerged in a fluid of weight density γ . The resul-

aa

h

C

Region �

Fig. P9.33

tant force of the fluid pressure on the region is R acting at the point C (called the
pressure center) located at the distance h below the surface of the fluid. Show that
R= γ Qa and h= Ia /Qa , where Qa and Ia are the first and second moments of �
about the axis a–a.
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9.3 Products of Inertia of Areas

a. Definition

The product of inertia of a plane area (also called the product of area) about the
x- and y-coordinate axes is defined by

Ixy =
∫

�
xy dA (9.11)

where A is the area of the plane region � shown in Fig. 9.3, and x and y are they

x

dA

y

x

O

Plane region �

Fig. 9.3

coordinates of dA.
The dimension of product of inertia is [L4], the same as for moment of inertia

and polar moment of area. Whereas moment of inertia is always positive, the
product of inertia can be positive, negative, or zero, depending on the manner in
which the area is distributed in the xy-plane.

To further explore the signs for product of inertia, consider the plane region
� shown in Fig. 9.4. The region lies in the first quadrant of the xy-coordinate
system. Because both x and y are positive for every differential area element dA,
Ixy =

∫
� xy dA is clearly positive. However, relative to the uv-coordinate system,

the region � lies in the fourth quadrant, so that the u-coordinate of each dA is
positive and the v-coordinate is negative. Therefore, Iuv=

∫
� uv dA is negative.

y

x

dA

y

x

O

Plane region �u

v θ

Fig. 9.4

Note that the uv-axes in Fig. 9.4 are rotated counterclockwise through the
angle θ relative to the xy-axes. Because Ixy is positive and Iuv is negative, there
must be an orientation of the axes for which the product of inertia is zero. As we
see in the next article, the axes of zero product of inertia play a fundamental role
in the calculation of the maximum and minimum moments of inertia.

Next, consider a region that has an axis of symmetry, such as that shown in
Fig. 9.5. Because the y-axis is the axis of symmetry, for every dA with coordinates

dA dA

– x x

y

x

Fig. 9.5
(x, y), there is a dA with coordinates (−x, y). Therefore,

∫
� xy dA = 0 when

the integration is performed over the entire region. Consequently, we have the
following property:

If an area has an axis of symmetry, that axis and the axis perpendicular to it
constitute a set of axes for which the product of inertia is zero.
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b. Parallel-axis theorem

The parallel-axis theorem for products of inertia can be derived by considering
the plane region shown in Fig. 9.6. We let x′ and y′ be axes through the centroid
C and parallel to the x- and y-axes. The coordinates of C relative to the xy-axes
are x̄ and ȳ. Using x = x ′ + x̄ and y = y′ + ȳ in Eq. (9.11), we obtain

Ixy =
∫

�
xy dA =

∫
�
(x ′ + x̄)(y′ + ȳ) dA

=
∫

�
x ′y′ dA+ x̄

∫
�

y′ dA+ ȳ
∫

�
x ′ dA+ x̄ ȳ

∫
�

dA

y

x

dA

y

x

O

Plane region �

y'
x'

x'

y

C

y'
x

Fig. 9.6

The first term on the right-hand side is the product of inertia with respect to
the centroidal axes, which we denote with Īxy . The middle two terms are zero,
because each integral represents the first moment of the area about a centroidal
axis. The integral in the last term is simply the area A. Therefore, the parallel-axis
theorem for products of inertia can be written as

Ixy = Īxy + Ax̄ ȳ (9.12)

To reiterate, the symbol Īxy is to be read as “the product of inertia relative to
centroidal x- and y-axes” (axes through the centroid and parallel to the x- and
y-axes).

It should be evident that the method of composite areas is also valid for prod-
ucts of inertia. Tables 9.1 and 9.2 list the products of inertia for common shapes,
which can be utilized in the method of composite areas.



Sample Problem 9.6
Calculate the product of inertia of the triangle shown in Fig. (a) about the x- and

y

x
b

(b)

h

y

dy

x

y

x

b

(c)

h

x dx

y

y-axes using (1) single integration; and (2) double integration.

y

x
b

(a)

h

Solution
Part 1

By definition, Ixy =
∫

� xy dA, where x and y are the coordinates of the differ-
ential area element dA = dy dx. However, this formula does not apply to single
integration, where we must integrate dIxy , the product of inertia of the differen-
tial area element. To find dIxy , the parallel-axis theorem for products of inertia,
Ixy = Īxy+ Ax̄ ȳ, must be interpreted as dIxy = d Īxy+dA x̄el ȳel, where d Īxy is the
product of inertia of dA about its centroidal axes, and x̄el and ȳel are the centroidal
coordinates of the area element.

The analysis then proceeds as follows:

Horizontal element shown in Fig. (b) Vertical element shown in Fig. (c)
dA= x dy dA = y dx

x̄el = x

2
x̄el = x

ȳel = y ȳel = y

2
d Īxy = 0 (by symmetry) d Īxy = 0 (by symmetry)

dIxy = dA x̄el ȳel dIxy = dA x̄el ȳel

= (x dy)
( x

2

)
(y) = (y dx)(x)

( y

2

)

= x2 y

2
dy = xy2

2
dx

Substitute x = b

h
(h − y) and integrate Substitute y = h

b
(b − x) and integrate

Ixy = b2

2h2

∫ h

0
(h − y)2 y dy Ixy = h2

2b2

∫ b

0
x(b − x)2 dx

Ixy = b2h2

24
Answer Ixy = b2h2

24
Answer

These results agree with the information listed for the triangle in Table 9.1.
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Part 2

Using double integration with dA = dx dy, we use Ixy =
∫

� xy dA. Choosing to
integrate on y first, we have

Ixy =
∫ b

0

(∫ (h/b)(b−x)

0
xy dy

)
dx

Integrating on x first would yield

Ixy =
∫ h

0

(∫ (b/h)(h−y)

0
xy dx

)
dy

Evaluating either of the above integrals yields Ixy = b2h2/24, as in Part 1.

Sample Problem 9.7
Using the results of Sample Problem 9.6, calculate Īxy , the product of inertia of
the triangle shown about centroidal axes parallel to the x- and y-axes.

y

x

b

h

C

3
b

h
3

Solution
From the solution to Sample Problem 9.6, we have Ixy = b2h2/24. The parallel-
axis theorem yields

Īxy = Ixy − Ax̄ ȳ = b2h2

24
− bh

2

(
b

3

)(
h

3

)

which simplifies to

Īxy = −b2h2

72
Answer

The above result agrees with the information in Table 9.1 for the right triangle.

495



Sample Problem 9.8
Calculate the product of inertia Ixy for the angle shown in Fig. (a) by the method
of composite areas.

20

140

180

20
x

y

Dimensions in mm

(a)

Solution
We may view the angle as the composite of the two rectangles shown in Fig. (b).
For each rectangle, Ixy can be computed using the parallel-axis theorem for prod-
ucts of inertia: Ixy = Īxy + Ax̄ ȳ. Note that Īxy = 0 for each rectangle, by
symmetry.

For the 20 mm × 140 mm rectangle,

Ixy = 0+ (140× 20)(10)(70) = 1.96× 106 mm4

For the 160 mm × 20 mm rectangle,

Ixy = 0+ (160× 20)(100)(10) = 3.20× 106 mm4

Therefore, the product of inertia for the angle is

Ixy = � Ixy = (1.96+ 3.20)× 106 = 5.16× 106 mm4 Answer

(b)

140

x

y

20

x = 10 y = 70 x = 100 y = 10

x
20

16020

y
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Problems

9.34 Use integration to verify the formula given in Table 9.2 for Ixy of a half
parabolic complement.

9.35 For the quarter circle in Table 9.2, verify the following formulas: (a) Ixy

by integration; and (b) Īxy using the formula for Ixy and the parallel-axis theorem.

9.36 Determine the product of inertia with respect to the x- and y-axes for the
quarter circular, thin ring (t
 R) by integration.

R

t

x

y

Fig. P9.36

9.37 The product of inertia of triangle (a) with respect to its centroid is Īxy =
−b2h2/72. What is Īxy for triangles (b)–(d)? (Hint: Investigate the signs in the
expression Īxy = Ixy − Ax̄ ȳ.)

b

b b

h

h h

h

y

y y

y

x

x x

x

(a)

b

(b)

(c) (d)

Fig. P9.37

9.38 Calculate Iuv for the region shown, given that x̄ = 30 mm, d = 40 mm,

y

x, u

C

A = 400 mm2

40 mm

v

x
d

Fig. P9.38, P9.39

and Ixy = 520× 103 mm4.

9.39 For the region shown, Ixy = 320 × 103 mm4 and Iuv = 0. Compute the
distance d between the y- and v-axes. (Note: The result is independent of x̄ .)
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Problems 9.40–9.47 are to be solved using the method of composite areas.

9.40 Compute the product of inertia with respect to the x- and y-axes.

20

Dimensions in mm

x

y

60

60

60 60

30

30

Fig. P9.40

9.41 Calculate the product of inertia with respect to the x- and y-axes.

x

y

R

R

Fig. P9.41

9.42 Find Īxy for the region shown.

40

160

160

160
40Dimensions

in mm

40
y

x

Fig. P9.42

9.43 Determine Īxy for the plate with parabolic cutouts.

6 mm

10 mm

7 mm 9 mm

6 mm

10 mm

7 mm9 mm

y

x

Parabola

Parabola

16.5

26.5

80

60

10

10

x

y

Dimensions in mm

C

Fig. P9.43 Fig. P9.44

9.44 The figure shows the cross section of a standard L80 × 60 × 10-mm
structural steel, unequal angle section. Neglecting the effects of the small corner
fillets, compute Ixy of the cross-sectional area.
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9.45 Calculate Īxy for the region shown, knowing that x̄ = 25.86 mm and ȳ =
68.54 mm.

60

90

20

25

80

Dimensions in mm

y

x

30

Fig. P9.45

9.46 Compute Īxy for the region shown.

x

y

12 mm

6 mm

18 mm

Fig. P9.46

9.47 Determine Īxy for the region shown.

x

y

12 mm

Parabola

6 mm

18 mm

Fig. P9.47

9.48 Use numerical integration to compute the product of inertia of the region
shown with respect to the x- and y-axes.

185

185

185

185

218

392

420

406

x

y

Dimensions in mm

338

Fig. P9.48

9.49 Determine the dimension b of the square cutout so that Ixy = 0 for the

b

b

y

x

4.2 m

4.2 m

5.6 m

5.6 m

5.6 m 5.6 m

Fig. P9.49region shown.
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9.4 Transformation Equations and Principal
Moments of Inertia of Areas

In general, the values of Ix , Iy , and Ixy for a given plane area depend on the loca-
tion of O (the origin of the coordinate system) and the orientation of the xy-axes.
The effect of relocating O, which is equivalent to translating the coordinate axes,
has been studied and has resulted in the parallel-axis theorem. Here we investigate
the changes in the moments and product of inertia caused by varying the orien-
tation of the coordinate axes. This in turn enables us to determine the maximum
and minimum moments of inertia associated with point O and find the orientation
of the corresponding axes.

a. Transformation equations for moments
and products of inertia

Consider the plane region � with area A shown in Fig. 9.7, where the uv-axes
at point O are obtained by rotating the xy-axes counterclockwise through the
angle θ . We now derive formulas for Iu , Iv, and Iuv in terms of Ix , Iy , Ixy , and θ .
These formulas are known as the transformation equations for moments and
products of inertia.* We start with the transformation equations of the position
coordinates, which can be derived from Fig. 9.7:

u = y sin θ + x cos θ

v = y cos θ − x sin θ
(9.13)

y

x

dAx

O

Plane region �

v

u

u

y sin θ

y
cos θ

x sin θ

x cos θ

v

y

θ

θ

Fig. 9.7

Substituting these equations into the defining equation for Iu , we have

Iu =
∫

�
v2 dA =

∫
�
(y cos θ − x sin θ)2 dA

= cos2 θ

∫
�

y2 dA− 2 sin θ cos θ

∫
�

xy dA+ sin2 θ

∫
�

x2 dA

*Several other physical quantities—for example, stress and strain—obey transformation equations
identical to those for moment of inertia.
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Identifying the moments and products of inertia, this equation becomes

Iu = Ix cos2 θ − 2Ixy sin θ cos θ + Iy sin2 θ (9.14)

The equations for Iv and Iuv may be derived in a similar manner, the results being

Iv = Ix sin2 θ + 2Ixy sin θ cos θ + Iy cos2 θ (9.15)

Iuv = (Ix − Iy) sin θ cos θ + Ixy(cos2 θ − sin2 θ) (9.16)

The equation for Iv could also be derived by replacing θ with (θ + 90◦) in
Eq. (9.14).

Using the trigonometric identities

sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ

cos2 θ = 1
2 (1+ cos 2θ) sin2 θ = 1

2 (1− cos 2θ)

Eqs. (9.14)–(9.16) can also be written in the form

Iu = 1
2 (Ix + Iy)+ 1

2 (Ix − Iy) cos 2θ − Ixy sin 2θ

Iv = 1
2 (Ix + Iy)− 1

2 (Ix − Iy) cos 2θ + Ixy sin 2θ

Iuv = 1
2 (Ix − Iy) sin 2θ + Ixy cos 2θ

(9.17)

(9.18)

(9.19)

From Eqs. (9.17) and (9.18) we see that Iu+Iv = Ix+Iy , a result that we expected,
because both sides of the equation are equal to JO , the polar moment of the area
about O.

b. Principal moments of inertia

The maximum and minimum moments of inertia at a point are called the principal
moments of inertia at that point. The axes about which the moments of inertia are
maximum or minimum are called the principal axes, and the corresponding direc-
tions are referred to as principal directions. To find the maximum and minimum
moments of inertia, we set the derivative of Iu in Eq. (9.17) equal to zero:

dIu

dθ
= −(Ix − Iy) sin 2θ − 2Ixy cos 2θ = 0

Solving for 2θ , we obtain

tan 2θ = − 2Ixy

Ix − Iy
(9.20)

Note that there are two solutions for the angle 2θ that differ by 180◦ or, equiva-
lently, two solutions for θ that differ by 90◦. We denote these solutions by θ1 and
θ2. From the graphical representations shown in Fig. 9.8 we find that

sin 2θ1,2 = ∓ Ixy

R

cos 2θ1,2 = ± Ix − Iy

2R

(9.21)
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where

R =
√(

Ix − Iy

2

)2

+ I 2
xy (9.22)

The angles θ1 and θ2, measured counterclockwise from the x-axis, define the prin-
cipal directions. Substituting Eq. (9.22) into Eq. (9.17) and simplifying, we obtain
the principal moments of inertia

I1,2 = Ix + Iy

2
± R (9.23)

where I1 and I2 correspond to the axes defined by θ1 and θ2, respectively.* In Eqs.
(9.21) and (9.23), the upper sign of either ± or ∓ is to be used with θ1 and the
lower sign with θ2 (refer to Fig. 9.8).

–Ixy

Ix – Iy

2

R

Solution 1

Ixy

Ix – Iy

2

R

Solution 2

–

2θ1 2θ2

Fig. 9.8

To determine the product of inertia with respect to the principal axes, we
substitute Eqs. (9.21) into Eq. (9.19), which yields

Iuv

∣∣∣
θ=θ1,2

= Ix − Iy

2

(
∓ Ixy

R

)
+ Ixy

(
± Ix − Iy

2R

)
= 0

Therefore, the product of inertia with respect to the principal axes is zero.
The properties of an area, in general, depend on the location of the origin

O of the xy-coordinate system. Therefore, the principal moments of inertia and
principal directions vary with the location of point O. However, most practical
applications, such as those found in structural engineering, are concerned with
moments of inertia with respect to centroidal axes.

*It can be shown that I1 and I2 are the two values of I that are the roots of the following quadratic
equation. ∣∣∣∣Ix − I −Ixy

−Ixy Iy − I

∣∣∣∣ = 0



Sample Problem 9.9
For the region shown in Fig. (a), calculate (1) the centroidal principal moments
of inertia and the principal directions; and (2) the moments and product of inertia
about the uv-axes through the centroid C.

50°

u
v

x

C

160

200

30

30

y

(a)

Dimensions in mm

Solution
Centroidal Properties

The table below lists the computations that have been used to determine the cen-

50°

u
v

x

C

130

200

30

y

(b)

30

y = 66.52

x = 46.52

1

2troidal coordinates and the inertial properties with respect to the x- and y-axes.
The region is considered as a composite of the two rectangles shown in Fig. (b).
Their moments of inertia have been calculated using Table 9.1.

The centroidal coordinates, shown in Fig. (b), are computed from the results
in Table 9.1 as follows:

x̄ = � Ax̄

� A
= 460.5× 103

9900
= 46.52 mm

ȳ = � Aȳ

� A
= 685.5× 103

9900
= 66.52 mm

Part A (mm2) x̄ (mm) Ax̄ (mm3) ȳ (mm) A ȳ (mm3) Ix (mm4) Iy (mm4) Ix y = Īx y +
Ax̄ ȳ (mm4)

1 200(30) 15 90× 103 100 600× 103 30(200)3

3

200(30)3

3
0+ 6000(15)(100)

= 6000 = 80.00× 106 = 1.800× 106 = 9.00× 106

130(30) 95 370.5× 103 15 58.5× 103 130(30)3

3

30(130)3

12
0+ 3900(95)(15)

2 = 3900 = 1.17× 106 + 3900(95)2 = 5.56× 106

= 40.69× 106

� 9900 · · · 460.5× 103 · · · 658.5× 103 81.17× 106 42.49× 106 14.56× 106
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The parallel-axis theorem is then used to calculate the inertial properties about the
centroidal axes.

Īx = Ix − Aȳ2 = (81.17× 106)− (9900)(66.52)2

= 37.36× 106 mm4

Īy = Iy − Ax̄2 = (42.49× 106)− (9900)(46.52)2

= 21.07× 106 mm4

Īxy = Ixy − Ax̄ ȳ = (14.56× 106)− (9900)(46.52)(66.52)

= −16.08× 106 mm4

Part 1

Substituting the values for Īx , Īy , and Īxy into Eq. (9.22) yields

R = 106

√(
37.36− 21.07

2

)2

+ (−16.08)2 = 18.03× 106 mm4

Therefore Eq. (9.23) becomes

I1,2 =
(

37.36+ 21.07

2
± 18.03

)
× 106 = (29.22± 18.03)× 106 mm4

from which we obtain the principal moments of inertia

I1 = 47.3× 106 mm4 I2 = 11.2× 106 mm4 Answer

For the principal directions, Eqs. (9.21) yield

sin 2θ1,2 = ∓ Īxy

R
= ∓ (−16.08)

18.03
= ±0.8919

Because the upper sign goes with θ1, we have 2θ1 = 63.11◦ or 116.9◦, and 2θ2 =
243.11◦ or −63.11◦. To determine the correct choices, we investigate the sign of
cos 2θ1. From Eqs. (9.21) we obtain

cos 2θ1 = ( Īx − Īy) / (2R) = (37.36− 21.07) / [2(18.03)]
which is positive. Therefore, 2θ1 = 63.11◦ and 2θ2 = 243.11◦ are the correct
choices, which give

θ1 = 31.6◦ θ2 = 121.6◦ Answer

The principal axes, labeled 1 and 2 in Fig. (c), correspond to the axes of I1 and I2,
respectively.

504



31.6°

x

C

y

(c)

1

2

Part 2

To compute the moments and product of inertia relative to the uv-axes in Fig. (a),
we need only substitute Īx = 37.36 × 106 mm4, Īy = 21.07 × 106 mm4, Īxy =
−16.08 × 106 mm4, and θ = 50◦ into the transformation equations. From Eq.
(9.17) we obtain

Iu × 10−6 = 37.36+ 21.07

2
+ 37.36− 21.07

2
cos 100◦ − (−16.08) sin 100◦

Iu = 43.6× 106 mm4 Answer

Equation (9.18) yields

Iv × 10−6 = 37.36+ 21.07

2
− 37.36− 21.07

2
cos 100◦ + (−16.08) sin 100◦

Iv = 14.8× 106 mm4 Answer

From Eq. (9.19) we have

Iuv × 10−6 = 37.36− 21.07

2
sin 100◦ + (−16.08) cos 100◦

Iuv = 10.8× 106 mm4 Answer
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Problems

9.50 For the rectangular region, determine (a) the principal moments of inertia

xC

u

v

y

3 m

4 m
30°

Fig. P9.50

and the principal directions at the centroid C; and (b) the moments and products
of inertia about the u-v axes.

9.51 For the semicircular region, calculate (a) the principal moments of inertia
and the principal directions at the centroid C; and (b) the moments and products
of inertia about the u-v axes.

x

u

v

y

65°
C120 mm

x

C

O

y

6 m

8 m

Fig. P9.51 Fig. P9.52

9.52 Find the principal moments of inertia and the principal directions at the
centroid C of the triangle.

9.53 Using Ix , Iy , and Ixy in Table 9.2, compute Iu, Iv, and Iuv for the parabola
shown.

θ

8.5 m

6.4 m

O

y

y = cx2

u

x

v

Fig. P9.53

9.54 Given that the properties of the region shown are Ix = 3000 m4,

y

C

v

u

xθ

Fig. P9.54–P9.58

Iy = 2000 m4, and Ixy = − 500 m4, determine Iu , Iv, and Iuv for θ = 120◦.

9.55 The properties of the region shown are Ix = 10 × 106 mm4, Iy = 20 ×
106 mm4, and Ixy = 12× 106 mm4. Compute Iu , Iv, and Iuv if θ = 33.7◦.

9.56 The u- and v-axes are the principal axes of the region shown. Given that
Iu = 7600 m4, Iv= 5000 m4, and θ = 33.7◦, determine Ix , Iy , and Ixy .

9.57 The x- and y-axes are the principal axes for the region shown with Ix =
6 × 106 mm4 and Iy = 2 × 106 mm4. (a) Calculate the angle θ for which Iuv is
maximum. (b) Determine Iu , Iv, and Iuv for the angle θ found in part (a).
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9.58 Compute Iv for the region shown, given that Iu = 160 × 106 mm4, Ixy =
−30 × 106 mm4, and θ = 18.44◦. The u- and v-axes are principal axes for the
region.

9.59 The inertial properties of the region shown with respect to the x- and
y-axes are Ix = Iy = 16.023× 106 mm4 and Ixy = −1.1310 × 106 mm4. Deter-
mine the principal moments of inertia at point O . (Hint: The orientation of the
principal axes can be determined by inspection.)

20

Dimensions in mm

O
x

y

30

30

60 60

60

60

u

y

x

80 mm

45°

C

20 mm

20 mm

80 mm

Fig. P9.59 Fig. P9.60

9.60 Determine Īu for the inverted T-section shown. Note that the section is
symmetric about the y-axis.

9.61 Using Ix and Iu from Table 9.2, determine the moment of inertia of the
circular sector about the OB-axis. Check your result for α= 45◦ with that given
for a quarter circle in Table 9.2.

O

R

B

x

y

α

α
x

a

a

C

y

a
2 m

y

u

O

v

x

2 m

Fig. P9.61 Fig. P9.62 Fig. P9.63

9.62 Show that every axis passing through the centroid of the equilateral
triangle is a principal axis.

9.63 Calculate Iu , Iv, and Iuv for the region shown.

9.64 The L80 × 60 × 10-mm structural angle has the following cross-

16.5

26.5

80

60

10

10

x

y

Dimensions in mm

C

Fig. P9.64sectional properties: Ix = 0.808 × 106 mm4, Iy = 0.388 × 106 mm4, and



508 CHAPTER 9 Moments and Products of Inertia of Areas

I2= 0.213 × 106 mm4, where I2 is a principal centroidal moment of inertia.
Assuming Ixy is negative, compute (a) I1 (the other principal centroidal moment
of inertia); and (b) the principal directions.

9.65 Compute the principal centroidal moments of inertia for the area shown.

2 m
1.32 m

x

y

1.32 m

16 mm

20 mm

10 mm

O x

y

Fig. P9.65 Fig. P9.66

9.66 Determine the directions of the principal axes of inertia at point O for the
area shown.

9.67 Determine the principal centroidal moments of inertia and the correspond-
ing principal directions for the region shown.

6 mm

10 mm

7 mm 9 mm

6 mm

10 mm

7 mm9 mm

y

x

Parabola

Parabola

40

160

160
40

Dimensions
in mm

40
y

x

160

Fig. P9.67 Fig. P9.68

9.68 Compute the principal centroidal moments of inertia and the correspond-
ing principal directions for the region shown.

*9.5 Mohr’s Circle for Moments and Products
of Inertia

Mohr’s circle is a graphical representation of the transformation equations for
moments and products of inertia. Developed by Otto Mohr, a German engineer
in 1882, it is a popular alternative to the transformation equations. There are two
advantages to using Mohr’s circle. First, the circle gives a clear visual represen-
tation of how the inertial properties vary with the orientation of the axes. Second,
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by referring to the circle, you can obtain the numerical values without having to
memorize the transformation equations.

a. Construction of Mohr’s circle

Consider the plane region shown in Fig. 9.9(a). Let Ix , Iy , and Ixy be the moments
and the product of inertia of the region with respect to the x-y axes that intersect
at point O. Mohr’s circle associated with point O is shown in Fig. 9.9(b). The
circle is constructed as follows:

1. Draw a set of axes, the horizontal axis representing the moment of inertia
(M.I.), and the vertical axis representing the product of inertia (P.I.).

2. Plot the point x with coordinates (Ix , Ixy), and the point y with coordinates
(Iy,−Ixy).

3. Join x and y with a line, and draw a circle with this line as its diameter.

y

xO

P.I.

Ixy

–Ixy

Iy

Ix

R

M.I.

b

(a)

(b)

x

y

Fig. 9.9

Mohr’s circle is now complete. Note that the radius of the circle is

R =
√(

Ix − Iy

2

)2

+ I 2
xy

and its center is located at

b = 1

2
(Ix + Iy)
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b. Properties of Mohr’s circle

The properties of Mohr’s circle are

• The end points of every diameter of the circle represent the moments and the
product of inertia associated with a set of perpendicular axes passing through
point O.

• Angles between diameters on the circle are twice the angles between axes at
point O , and these angles are measured in the same sense (CW or CCW).

The procedure for determining the inertial properties with respect to particular
axes, such as the u-v axes shown in Fig. 9.10(a), is as follows:

1. Note the magnitude and sense of the angle θ between the x-y and the u-v
coordinate axes. (The sense of the θ is the direction in which the x-y axes
must be rotated so that they coincide with the u-v axes.)

2. Rotate the diameter x-y of Mohr’s circle through the angle 2θ in the same
sense as θ . Label the end points of this diameter u and v, as shown in
Fig. 9.10(b). The coordinates of u are (Iu, Iuv), and the coordinates of v are
(Iv,−Iuv).

Mohr’s circle can also be used to find the principal moments of inertia and the
principal directions. Referring to Fig. 9.10(b), we see that the maximum and the

yv

xθ
α

α

θ

u

O

P.I.

Iuv

–Iuv

Iv

Iu I1I2

R

M.I.

b

(a)

(b)

x

y

2

1

u

v

2

2

Fig. 9.10
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minimum moments of inertia are I1 = b + R and I2 = b − R, respectively. The
orientation of the principal axes, labeled “1” and “2” in Fig. 9.10(a), is obtained
by rotating the x-y axes though the angle α. The magnitude and sense of α is
determined from the Mohr’s circle. In particular, note that α in Fig. 9.10(a) and
2α in Fig. 9.10(b) must have the same sense.

c. Verification of Mohr’s circle

Figure 9.11 shows the circle that was constructed following the steps outlined in
the preceding section. Because x and u are points located above the abscissa, we
have assumed that both Ixy and Iuv are positive.

P.I.

R

M.I.

b

x

y

u

v

2

2

Iy

Ix

IuvIxy

Iu

2

Ix – Iy

b = 
2

Iy + Iy

+ IxyR = 
2

2(           )Ix – Iy

2

θ

α

Fig. 9.11

In order to prove that Mohr’s circle is a valid representation of the transfor-
mation equations, we must show that the coordinates of u agree with Eqs. (9.17)
and (9.19).

From Fig. 9.11, we have

Iu = b + R cos(2θ + 2α)

Using the identity

cos(2θ + 2α) = cos 2θ cos 2α − sin 2θ sin 2α

and substituting b = (Ix + Iy)/2, we get

Iu = Ix + Iy

2
+ R(cos 2θ cos 2α − sin 2θ sin 2α)
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From Fig. 9.11, we see that sin 2α = Ixy /R and cos 2α = (Ix − Iy)/(2R).
Substituting these relations into the last equation yields

Iu = Ix + Iy

2
+ R

(
Ix − Iy

2R
cos 2θ − Ixy

R
sin 2θ

)

or

Iu = Ix + Iy

2
+ Ix − Iy

2
cos 2θ − Ixy sin 2θ (9.24)

From Fig. 9.11, we also obtain

Iuv = R sin(2θ + 2α)

Using the identity

sin(2θ + 2α) = sin 2θ cos 2α + cos 2θ sin 2α

and the previously derived expressions for sin 2α and cos 2α, we have

Iuv = R

(
Ix − Iy

2R
sin 2θ + Ixy

R
cos 2θ

)

which becomes

Iuv = Ix − Iy

2
sin 2θ + Ixy cos 2θ (9.25)

Because Eqs. (9.24) and (9.25) are identical to the transformation equations,
Eqs. (9.17) and (9.19), we conclude that Mohr’s circle is a valid representation
of the transformation equations.



Sample Problem 9.10
For the region shown in Fig. (a), calculate (1) the centroidal principal moments of
inertia and principal directions; and (2) the moments and product of inertia about
the u-v axes through the centroid C. Note that this is the same region as in Sample
Problem 9.9.

50°

u
v

x

C

160

200

30

30

y

(a)

Dimensions in mm

Solution
Construction of Mohr’s Circle

From the solution to Sample Problem 9.9, we have Īx = 37.36 × 106 mm4,
Īy = 21.07×106 mm4, and Īxy = −16.08×106 mm4. Using these values, Mohr’s
circle is plotted as shown in Fig. (b), following the procedure outlined in Art. 9.5.

2θ2
2α

100°

37.36

Iu

16.08

I2

Iv

I1

16.08

Iuv

v

21.07

yC

u

xC

P.I. (106 mm4)

M.I. (106 mm4)

(b)

2 1

b a

R

2θ1
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Note that

1. The points on the circle that correspond to the centroidal axes that are parallel
to the x- and y-axes are labeled xC and yC , respectively.

2. Because Īxy is negative, xC is plotted below the abscissa and yC is plotted
above.

If the circle were drawn to scale, all unknown values could be determined
by direct measurements. However, we will compute the requested values by
trigonometry. Of course, all results in the analyses should agree with those found
previously in the solution to Sample Problem 9.9.

The following values, computed directly from the circle, are shown in the
figure.

b = 37.36+ 21.07

2
× 106 = 29.22× 106 mm4

a = 37.36− 21.07

2
× 106 = 8.145× 106 mm4

R =
√

(8.145)2 + (16.08)2 × 106 = 18.03× 106 mm4

Part 1

In Fig. (b), 1, and 2 correspond to the maximum and minimum moments of inertia,
respectively. Therefore, we have I1,2= b± R= (29.22±18.03)×106 mm4, from
which we obtain

I1 = 47.3× 106 mm4 I2 = 11.2× 106 mm4 Answer

The principal directions are found by calculating the angles θ1 and θ2. From
the circle we find that 2θ1= sin−1 (16.08/18.03)= 63.11◦ and 2θ2= 180 +
2θ1= 243.11◦, which gives

θ1 = 31.6◦ θ2 = 121.6◦ Answer

Note that on the circle the central angle from xC to 1 is 2θ1, counterclockwise.
Therefore, the principal direction corresponding to I1 is θ1= 31.6◦, measured
counterclockwise from the centroidal x-axis. (Remember that angles on the circle
are twice the angles between axes, measured in the same direction). Therefore,
the centroidal principal axes are oriented as shown in Fig. (c).

31.6°

x

C

y

(c)

1

2

Part 2

To determine Iu , Iv, and Iuv, the points u and v—corresponding to the u- and
v-axes, respectively—must be identified on Mohr’s circle. Because the u-axis is
located at 50◦ counterclockwise from the centroidal x-axis, u on the circle is 100◦
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counterclockwise from xC . Of course, v is located at the opposite end of the diam-
eter from u. To facilitate our computations, we have introduced the central angle
2α between points 1 and u, given by 2α = 100◦−2θ1 = 100◦−63.11◦ = 36.89◦.
Referring to the circle, we find that

Iu,v = b ± R cos 2α

= (29.22± 18.03 cos 36.89◦)× 106 mm4

or

Iu = 43.6× 106 mm4 Iv = 14.8× 106 mm4 Answer

Additionally, the circle yields |Iuv| = R sin 2α = (18.03 sin 36.89◦) × 106 =
10.8 × 106 mm4. Because u is above the abscissa, Iuv is positive. Therefore, we
have

Iuv = +10.8× 106 mm4 Answer

Recall that in the transformation equations, Eqs. (9.17)–(9.19), 2θ represents
the angle measured counterclockwise from the x-axis to the u-axis. However, after
Mohr’s circle has been drawn, any convenient angle—clockwise or counterclock-
wise, and measured from any point on the circle—can be used to locate u. For
example, on the circle in Fig. (b) we see that u is located at 80◦ in the clockwise
direction from yC . This is consistent with Fig. (a), where the u-axis is reached
from the centroidal y-axis by a 40◦ clockwise rotation.
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Problems

The following problems are to be solved using Mohr’s circle.

9.69 Find the moments and the product of inertia of the rectangle about the u-v

3 m

4 m x
C

y

u

v

30°

Fig. P9.69

axes at the centroid C.

9.70 Determine the moments and the product of inertia of the semicircle about
the u-v axes that pass through the centroid C.

x

y

u

v

C
120 mm

65°

Fig. P9.70

9.71 Find the principal moments of inertia and the principal directions at the
centroid C of the triangle.

y

x

C

O

8 m

6 m

Fig. P9.71

9.72 Determine the moments and the product of inertia of the parabola about
the u-v axes.

8.5 m

6.4 m

y

y = cx 
2

u

x

v

O

θ

Fig. P9.72
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9.73 Given that the properties of the region shown are Ix = 3000 m4,
Iy = 2000 m4, and Ixy = − 500 m4, determine Iu , Iv, and Iuv for θ = 120◦.

9.74 The properties of the region shown are Ix = 10 × 106 mm4, Iy = 20 ×
106 mm4, and Ixy = 12× 106 mm4. Determine Iu , Iv, and Iuv if θ = 33.7◦.

9.75 The u- and v-axes are the principal axes of the region shown. Given that
Iu = 8400 m4, Iv= 5000 m4, and θ = 25◦, calculate Ix , Iy , and Ixy .

y

C

v

u

xθ

Fig. P9.73–P9.77

9.76 The x- and y-axes are the principal axes for the region shown, with
Ix = 8 × 106 mm4 and Iy = 2 × 106 mm4. (a) Calculate the angle θ for which
Iuv is maximum. (b) Determine Iu , Iv, and Iuv for the angle θ found in part (a).

9.77 Compute Iv for the region shown, given that Iu = 140 × 106 mm4, Ixy =
−30×106 mm4, and θ = 18◦. The u- and v-axes are principal axes for the region.

9.78 The L80× 60× 10-mm structural angle has the following cross-sectional
properties: Ix = 0.808 × 106 mm4, Iy = 0.388 × 106 mm4, and I2= 0.213 ×
106 mm4, where I2 is a centroidal principal moment of inertia. Assuming that
Ixy is negative, compute (a) I1 (the other centroidal principal moment of inertia);
and (b) the principal directions at the centroid.

16.5
60

10

10
y

Dimensions in mm

26.5

80

C x

Fig. P9.78
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Review of Equations

Moments of inertia of plane areas

Ix =
∫

�
y2 dA Iy =

∫
�

x2dA Ixy =
∫

�
xy dA

JO =
∫

�
r2 dA = Ix + Iy (polar moment of inertia)

Parallel axis theorems

Ix = Īx + Aȳ2 Iy = Īy + Ax̄2 Ixy = Īxy + Ax̄ ȳ

JO = J̄C + Ar̄2

Radius of gyration

kx =
√

Ix /A ky =
√

Iy /A kO =
√

JO /A

Composite areas

Ix = �i (Ix )i Iy = �i (Iy)i Ixy = �i (Ixy)i JO = �i (JO)i

Transformation equations

Iu = Ix + Iy

2
+ Ix − Iy

2
cos 2θ − Ixy sin 2θ

Iv = Ix + Iy

2
− Ix − Iy

2
cos 2θ + Ixy sin 2θ

Iuv = Ix − Iy

2
sin 2θ + Ixy cos 2θ

θ = angle measured from x-axis to u-axis in counterclockwise direction

Principal values and principal directions

I1,2 = Ix + Iy

2
± R R =

√(
Ix − Iy

2

)2

+ I 2
xy

sin 2θ1,2 = ∓ Ixy

R
cos 2θ1,2 = ± Ix − Iy

2R



9.79–9.94 Review Problems 519

Review Problems

9.79 Determine Iu, Iv, and Iuv for the rectangle where C is the centroid of the
area.

v

y

C
θ

120 m
m

80 m
m

x

u

Fig. P9.79

9.80 The principal moments of inertia at point O for the shaded region are
60× 106 mm4 and 30× 106 mm4. In addition, the product of inertia with respect
to the x- and y-axes is 10× 106 mm4. Find (a) Ix and Iy ; and (b) Iu and Iv.

y

O
x

u
u

50°

R

x

y

Fig. P9.80 Fig. P9.81

9.81 By integration, show that the product of inertia with respect to the x- and
y-axes for the quarter circular region is R4/8.

9.82 Compute the Īx and Īy for the annular region.

40
 m

m

y

x

60 mm

Fig. P9.82

9.83 Using integration, evaluate the moments of inertia about the x- and y-axes

60 mm

30 mm

90 mm

60 mm

y

x

Fig. P9.83

for the parallelogram.

9.84 The inertial properties at point O for a plane region are Ix = 200 ×
106 mm4, Iy = 300 × 106 mm4, and Ixy = − 120 × 106 mm4. Determine the
principal moments of inertia and principal directions at point O.
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9.85 Compute Īx and Īy for the shaded region.

1 m

6 m

6 m

3 m

1 m

1 m

x

y

Fig. P9.85

9.86 The flanged bolt coupling is fabricated by drilling 10 evenly spaced 0.5 m
diameter bolt holes in a steel plate. The radii of the plate and bolt circle are 5 m
and 4 m, respectively. Determine the percent reduction in the polar moment of the
area about point O due to the drilling operation.

y

x
O

4 m

5 m

Fig. P9.86

9.87 The figure shows a structural shape known as an unequal angle (L) section.
From a table of structural shapes, the inertial properties of an L150 × 100 ×
10-mm are x̄ = 23.8 mm, ȳ= 48.8 mm, A= 2400 mm2, Īx = 5.58 × 106 mm4,
Īy = 2.03× 106 mm4. In addition, the angle α locating the axis of minimum cen-
troidal moment of inertia (labeled as the 2-axis in the figure) is listed as 24.0◦,
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with the corresponding radius of gyration being k̄2= 21.9 mm. Compute (a) the
other principal centroidal moment of inertia; and (b) Īxy .

y

x

C
x

y

2

α

Fig. P9.87

9.88 Compute Īx , Īy , and Īxy for the region shown.

12 mm

y

x

5 mm

Fig. P9.88

9.89 Determine Ix and Ixy for the region shown.

60 mm
90 mm

x

y

90 mm

Fig. P9.89

9.90 Calculate Īx , Īy, and Īxy for the plane region shown.

y

x

50

40

Dimensions in mm

35
40

Fig. P9.90
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9.91 For the plane region shown, determine (a) Ix and Iy ; and (b) Īx and Īy

using the parallel axis theorem and the results of part (a).

x

y

20

20

20
10

Dimensions in mm

y

x

4 m

4 m

y2
 = 4x

x2
 = 4y

Fig. P9.91 Fig. P9.92

9.92 Use integration to find Ix , Iy , and Ixy for the region shown.

9.93 Determine the principal moments of inertia and the principal directions at

6 m

6 m

2 m

y

x
2 m

Fig. P9.93

the centroid of the region shown.

9.94 The inertial properties of the region shown are Ix = 140 m4, Iy = 264 m4,
and Ixy =−116 m4. Determine Iu , Iv, and Iuv. Note that the u-axis passes through
point B.

2 m

3.5 m

y

x

7.5 m

u

v

B

O

Fig. P9.94



10
Virtual Work and
Potential Energy

Methods based on concepts of work
and energy are well-suited for the
analysis of structures consisting of
interconnected links. The scissor lift
shown here is a typical example of a
multi-link structure. This chapter
discusses two work-energy methods
of analysis: the method of virtual
work and the principle of stationary
potential energy. Richard
Thornton/Shutterstock

*10.1 Introduction

Methods based on the concepts of virtual work and potential energy can be
used as alternatives to Newton’s laws in equilibrium analysis. These methods are
best suited for the analysis of systems made up of several interconnected rigid
bodies. The primary advantage of work and energy methods is that the reac-
tions at certain connections, such as pins or inextensible cables, do not enter
into the analysis. Therefore, the number of unknowns (and equations) is often
considerably reduced.

The disadvantage of work and energy methods is that they require the use
of kinematics (geometry of motion), which is a branch of dynamics. To keep

523



524 CHAPTER 10 Virtual Work and Potential Energy

the kinematics relatively simple, we confine our discussion to two-dimensional
problems. In addition to kinematics, the concept of work must also be introduced.

*10.2 Virtual Displacements

a. Definition and notation

A virtual displacement is defined as a fictitious displacement of infinitesimal mag-
nitude. By “fictitious,” we mean that the displacement is imaginary; it may not
actually occur.

The usual practice is to precede an infinitesimal quantity with the letter d.
Thus, the infinitesimal displacement vector of point A would be denoted by drA.
To draw attention to its fictitious nature, a virtual displacement is preceded by δ

(lower case delta). Hence, the virtual displacement of point A would be written
as δrA.

Mathematically, drA and δrA are identical. For example, if rA is a function of a
parameter θ , we can write δrA= (drA/dθ)δθ , where δθ is the virtual change in θ .

b. Virtual motion of a rigid body

Virtual Translation Virtual translation of a rigid body is illustrated in Fig. 10.1.
Two important characteristics of translation are

B

A

δ rB

δ rA

Fig. 10.1

• Any straight line embedded in the body, such as the line AB, remains parallel
to its original position. That is, embedded lines do not rotate.

• All points of the body have the same displacement. Therefore,

δrB = δrA (10.1)

where A and B are any two points of the body.

Virtual Rotation about a Fixed Point Figure 10.2 illustrates virtual rotation δθ

of a rigid body about point A. The characteristics of this motion are

δ rB

δθ  rAB

A

B

Fig. 10.2

• Every line embedded in the body undergoes the same virtual rotation δθ .
• Any point of the body, such as B, moves along a circular arc centered at A.

The magnitude of the virtual displacement of B is

δrB = rAB δθ (10.2)

where rAB is the magnitude of rAB (the vector drawn from A to B).

Sometimes it is convenient to use the vector form of Eq. (10.2), which is

δrB = δθ× rAB (10.3)
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where δθ is the virtual rotation vector shown in Fig. 10.3. It readily can be verified
that Eq. (10.3) produces the correct magnitude and direction of δrB .

A

Plane of
motion

B
rAB

δθ

δθ

δrB

Fig. 10.3

General Plane Virtual Motion Any virtual motion of a rigid body can be
obtained by a superposition of translation and rotation about a point, as illus-
trated in Fig. 10.4. We first apply the translation δrA, which moves point A to its
final position without changing the orientation of the body. This is followed by
the rotation δθ about A to give the body is final orientation. The resulting virtual
displacement of point B is

δrB = δrA + δθ× rAB (10.4)

A

B

δ rB

δ rA

δ θ

Fig. 10.4

The reference point A can be chosen arbitrarily. The order in which the two
motions (translation and rotation) are carried out is irrelevant.

*10.3 Virtual Work

a. Virtual work of a force

If the point of application of a force F undergoes a virtual displacement δr, as
shown in Fig. 10.5 (a), the virtual work δU done by the force is defined to be

F

(a)

δr
α

F cos α

F

(b)

δr

α

F

(c)

δr

δr cos α α

Fig. 10.5δU =F · δr= F cos α δr (10.5)
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where α is the angle between F and δr. Note that the virtual work is a scalar that
can be positive, negative, or zero, depending upon the angle α. The dimension of
virtual work is [FL]; hence the units are lb · ft, N ·m, and so forth.

Referring to Figs. 10.5(b) and 10.5(c), we see that the virtual work can be
viewed in two ways:

• δU = (F cos α) δr , where F cos α (the component of F in the direction of δr)
is called the working component of the force.

• δU = F(δr cos α), where δr cos α (the component of δr in the direction of F)
is known as the work-absorbing component of the virtual displacement.

b. Virtual work of a couple

Figure 10.6(a) shows a couple formed by the forces −F and F acting at points A
and B of a rigid body. The corresponding couple-vector C= rAB×F is perpendic-
ular to the plane of the couple, as indicated in Fig. 10.6(b). If the body undergoes
a virtual motion in the plane of the couple, the virtual work of the couple is

δU = − F · δrA + F · δrB

Plane of couple
and plane of motion

rAB
F

C = rAB × F

–F

A

B

(a) (b)

δθ

Fig. 10.6

Substituting for δrB from Eq. (10.4), we get

δU = − F · δrA + F · (δrA + δθ× rAB)=F · δθ× rAB= rAB × F · δθ

or

δU =C · δθ (10.6)

Because C and δθ are collinear (recall that we consider only two-dimensional
problems), the virtual work of the couple can also be written as

δU =C δθ (10.7)

Note that δU is positive if C and δθ have the same sense, and negative if they have
opposite sense.
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c. Virtual work performed on a rigid body

The following theorem is sometimes useful in the computation of virtual work
(this theorem is also needed to derive the principle of virtual work):

The virtual work of all forces that act on a rigid body is equal to the
virtual work of their resultant.

Proof
Consider a rigid body that is subjected to the coplanar forces F1, F2, . . . , Fi . . . ,
as in Fig. 10.7(a). Figure 10.7(b) shows the resultant of this force system consist-
ing of the force R=�i Fi acting at A, and the couple CR =�i rAi ×Fi , where rAi

is the vector drawn from A to the point of application of Fi . If the body undergoes
a virtual displacement, the virtual work of all the forces is

δU =
∑

i

Fi · δri

A

rAi

F2 R
Fi

F1

F3

(a)

A
CR

(b)

Fig. 10.7

Using Eq. (10.4), we substitute δri = δrA + δθ× rAi , which results in

δU =
∑

i

Fi · δrA +
∑

i

Fi · δθ× rAi

The first term in this expression is

∑
i

Fi · δrA=
(∑

i

Fi

)
· δrA=R · δrA

The second term can be written as

∑
i

Fi · δθ× rAi =
∑

i

rAi × Fi · δθ =
(∑

i

rAi × Fi

)
· δθ=CR · δθ
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Therefore, the virtual work performed on the body is

δU =R · δrA + CR · δθ (10.8)

which completes the proof.

d. Virtual work for a system of rigid bodies

Consider a system of interconnected rigid bodies, where the frictional forces at the
connections and the supports are negligible. Virtual work of friction forces would
introduce complications that we wish to avoid at this level. The connections that
we consider are thus limited to pins, rollers, inextensible and extensible cables,
ideal springs, and so forth.

If a system of interconnected rigid bodies is given a virtual displacement, the
virtual work done on the system equals the virtual work of the external forces,
plus the virtual work of the internal forces. At connections that do not deform,
the net work done by the internal forces is zero. For example, if a pin joins two
rigid bodies, the positive work of the pin reaction acting on one body cancels
the negative work of the pin reaction acting on the other body. The reason for
this cancellation is that the pin reactions acting on the two bodies are equal in
magnitude, opposite in sense, and undergo identical displacements. The forces
provided by a deformable connector may also be equal and opposite; however,
because of deformation, they do not necessarily undergo the same displacement.
Consequently, a deformable connection is capable of doing virtual work on a
system. Springs are the only deformable connections that we consider in this text.

*10.4 Method of Virtual Work

a. Principle of virtual work

The principle of virtual work for a rigid body states the following:

If a body is in equilibrium, then the virtual work of all forces acting on
the body is zero for all kinematically admissible virtual displacements of
the body from the equilibrium position.

The term kinematically admissible means that the virtual displacements must
be kinematically possible; that is, they must not violate constraints imposed by
the supports.

Proof of the principle follows directly from Eq. (10.8). If a body is in equilib-
rium, the resultant of the forces acting on it vanishes; that is, R= 0 and CR = 0,
and Eq. (10.8) becomes

δU = 0 (10.9)

The principle of virtual work also applies to systems of connected rigid
bodies. Because a system can be in equilibrium only if each of its members
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(constituent bodies) is in equilibrium, we conclude that δU = 0 for each mem-
ber. It follows that the virtual work done on the system also vanishes. In other
words:

If a system of rigid bodies is in equilibrium, then the virtual work of
all forces acting on the system is zero for all kinematically admissible
virtual displacements of the system from the equilibrium position.

b. Kinematic constraints and independent coordinates

The following terms are frequently used in kinematics (geometry of motion):

• Kinematic constraints are geometric restrictions imposed on the configuration
of a system.

• Kinematically independent coordinates of a system are parameters that define
the configuration of the system and can be varied independently without
violating kinematic constraints.

• Number of degrees of freedom (number of DOF) of a system is the number
of kinematically independent coordinates required to completely define the
configuration of the system.

• Equations of constraint are mathematical relations between position coordi-
nates that describe the kinematic constraints.

To illustrate these terms, consider the bar shown in Fig. 10.8. This bar has a

O

y

x

L

A

θ

Fig. 10.8

single DOF, because it takes only one coordinate, such as the angle θ to define the
position of every point in the bar. Because there are no kinematic constraints on
θ , it is a kinematically independent coordinate.

The system of two bars in Fig. 10.9 also has one DOF. For the kinemati-

x

y

L1

A

L2

B

d

O

θ1

θ2

Fig. 10.9

cally independent coordinate we may choose either θ1 or θ2. Whichever of the
two angles is selected, the other one is determined by the equation of constraint
L1 cos θ1+L2 cos θ2 = d. Any configuration of the bars that violates this equation
of constraint is kinematically inadmissible.

A system with two DOF is shown in Fig. 10.10. This system requires two

x

y

θ1

θ2

O

L1

A

L2

B

Fig. 10.10

kinematically independent coordinates, such as θ1 and θ2, to completely describe
its configuration.

c. Implementation of the method of virtual work

When applying the method of virtual work, we must be certain that the vir-
tual displacements of points where the loads are applied (the displacements
that contribute to the virtual work) are kinematically admissible. This can be
accomplished by the following two steps:

• First, use geometry to relate the coordinates of the points where loads act to
the kinematically independent coordinates.

• Then obtain the relationships between the virtual changes of these coordinates
(the virtual displacements) by differentiation.
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As an example, consider the bar shown in Fig. 10.11. The weight of the bar is
O

y

x

yG

xA A

L/2

L / 2

F

G

W

θ

Fig. 10.11

W, and its center of gravity is denoted by G. The virtual work done on the bar is

δU =W δyG + F δxA

Choosing θ as the kinematically independent coordinate, we obtain from
geometry

yG = L

2
cos θ xA= L sin θ

By taking the differentials of the coordinates (recall that virtual changes are
identical to differentials), we get

δyG = − L

2
sin θ δθ δxA= L cos θ δθ

Therefore, the virtual work done on the bar is

δU =
(
−W

2
sin θ + F cos θ

)
L δθ

If θ is an equilibrium position, then δU = 0 for any nonzero δθ . Consequently, the
condition for equilibrium is

−W

2
sin θ + F cos θ = 0

Consider next a system of bodies with n degrees of freedom with q1, q2, . . . ,
qn being the kinematically independent coordinates. If we follow the procedure
outlined above, the virtual work done on the system will take the form

δU = Q1 δq1 + Q2 δq2 + · · · + Qn δqn (10.10)

where each Qi is in general a function of q1, q2, . . . , qn . If the system is in
equilibrium, then δU = 0 for any nonzero combination of δq’s. This condition
can be satisfied only if

Q1= Q2= · · · = Qn = 0

The Q’s are known as the generalized forces. If qi has units of distance, then Qi

has units of force; if qi is an angle, then Qi has units of moment of a force.
When applying the method of virtual work, it is recommended that you begin

by drawing an active-force diagram, which is a sketch of the body that shows only
the forces that do work. Figure 10.11 is an example of an active-force diagram. It
displays only the work-producing forces W and F. The pin reactions at O were
omitted, because they do no work (point O does not move).



Sample Problem 10.1
Compute the couple C0 that will support the load W. Neglect the weights of

x

a

C

yC

A

B

D

C0

y

a

a
W

θ

the bars.

Solution
Note that the system possesses one DOF because its configuration can be specified
by a single coordinate, such as the angle θ .

The figure is an active-force diagram because only W and C0 do virtual work
when the system is given a virtual displacement consistent with the constraints.
The pin reaction at A is workless because its point of application does not move.
The roller reaction at D does no work because it is horizontal, whereas the virtual
displacement of end D can only be vertical. The internal forces, including the pin
reaction at B, are also workless.

The figure can also be used for the kinematic analysis. We introduce the xy-
coordinate system with origin at the fixed point A, and we choose the angle θ

as the kinematically independent coordinate. The vertical coordinate of end C is
denoted yC .

Applying the principle of virtual work to the system under consideration, we
have

δU =C0 δθ −W δyC = 0 (a)

where δθ is the virtual rotation of the bar BD and δyC is the vertical virtual dis-
placement of C. The positive directions for δθ and δyC are, of course, the same as
for θ and yC , respectively. The sign of the first term in Eq. (a) is positive because
positive δθ has the same sense as positive C0. The second term has a negative sign
because the positive sense of W is opposite to the positive sense of δyC .

We now relate yC to θ using geometry and then obtain δyC in terms of δθ by
differentiation. Referring to the figure, this procedure yields

yC = 2a cos θ

δyC = dyC

dθ
δθ = −2a sin θ δθ (b)

Substituting Eq. (b) into Eq. (a), we obtain

δU =C0 δθ −W (−2a sin θ δθ) = 0

or

(C0 + 2Wa sin θ) δθ = 0 (c)

Equation (c) can be satisfied for a nonzero δθ only if the term in parentheses
(which represents the generalized force corresponding to δθ ) vanishes, which
yields

C0= − 2Wa sin θ Answer

as the condition for equilibrium. The negative sign indicates that the correct sense
of C0 is opposite to that shown in the figure.
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Sample Problem 10.2
The mechanism shown in the figure consists of two pin-connected, homogeneous
bars of weight W and length L each. The roller at B moves in a horizontal slot,x

y

O

L

A
L

xB

W

W
P

1.5L

y1

y2

B

θ1 = 30°

θ2 (50.66°)

located at the distance 1.5L below the pin at O. Determine the force P that will
hold the system in equilibrium for θ1= 30◦.

Solution
The system has one DOF because only one position coordinate, for example, θ1 or
θ2, is required to specify its configuration. The figure shown is also an active-force
diagram, because it shows only those forces than can perform virtual work on the
system. The pin reactions at O and A, and the roller reaction at B, are omitted
because their virtual work is zero.

It is convenient to use the same figure for kinematic analysis. We introduce
the xy-coordinate system shown, the origin of which is located at the fixed point
O. The coordinates y1 and y2 locate the centers of gravity of the bars, and xB is
the horizontal coordinate of end B.

If the system is given a virtual displacement consistent with the constraints,
the principle of virtual work takes the form

δU =W δy1 +W δy2 + P δxB = 0 (a)

All the signs in Eq. (a) are positive because the direction of each force is the same
as the positive coordinate direction of its point of application.

The next step is to express δy1, δy2, and δxB as functions of the virtual change
in the kinematically independent coordinate. Let us choose θ1 as the independent
coordinate. Because the roller at B is constrained to move in the horizontal slot,
the equation of constraint is L cos θ1 + L cos θ2= 1.5L , or

cos θ1 + cos θ2= 1.5 (b)

which yields θ2= 50.66◦ when θ1= 30◦. The evaluation of δy1, δy2, and δxB in
terms of the virtual rotation δθ1 now proceeds as follows.

Evaluation of δy1
From the figure, we see that y1= (L/2) cos θ1. Forming the differential of both
sides and evaluating at θ1= 30◦, we find that

δy1= dy1

dθ1
δθ1 = − L

2
sin θ1 δθ1= − 0.2500L δθ1 (c)

Evaluation of δy2
From the figure, y2= L cos θ1+ (L/2) cos θ2. Substituting for θ2 from Eq. (b), and
simplifying, gives y2 = (L/2) cos θ1+0.75L . Taking the differential of each side,
and substituting θ1= 30◦, yields

δy2= dy2

dθ1
δθ1 = − L

2
sin θ1 δθ1= − 0.2500L δθ1 (d)
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Evaluation of δxB
From the figure, xB = L sin θ1 + L sin θ2. In principle, θ2 could be eliminated by
using Eq. (b), but this would result in a rather cumbersome expression. It is much
easier to form the differentials first and then carry out the substitution. From the
chain rule for differentiation, we obtain

δxB = ∂xB

∂θ1
δθ1 + ∂xB

∂θ2
δθ2

which gives

δxB = L cos θ1 δθ1 + L cos θ2 δθ2 (e)

From Eq. (b) we obtain the following equation of constraint in terms of δθ1

and δθ2:

∂

∂θ1
(cos θ1 + cos θ2) δθ1 + ∂

∂θ2
(cos θ1 + cos θ2) δθ2= 0

or

− sin θ1 δθ1 − sin θ2 δθ2= 0

which gives

δθ2= − (sin θ1/ sin θ2) δθ1 (f)

Substituting Eq. (f) into Eq. (e), we find that

δxB = L cos θ1 δθ1 + L cos θ2

(
− sin θ1

sin θ2

)
δθ1

which, when evaluated at θ1= 30◦ and θ2 = 50.66◦, yields

δxB = 0.4562L δθ1 (g)

Virtual Work Equation

Substituting Eqs. (c), (d), and (g) into Eq. (a) gives

δU =W (−0.2500L δθ1)+W (−0.2500L δθ1)+ P(0.4562L δθ1) = 0

which simplifies to

(−0.5W + 0.4562P) δθ1= 0 (h)

This equation can be satisfied for a nonzero δθ1 only if the term in parentheses
vanishes, which yields

P = 1.096W Answer

Because P is positive, its direction is as shown in the figure.
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Sample Problem 10.3
The structure shown in Fig. (a) is obtained by fixing point B of the mechanism in
Sample Problem 10.2. For θ1= 30◦, determine the pin reactions Bx and By .

x

y

O

L

A

L

B

W

W

1.5L

(a)

θ1 = 30°

θ2 = 50.66°

Solution
Using θ1= 30◦, we found from geometry in Sample Problem 10.2 that
θ2= 50.66◦.

Because the system in Fig. (a) is a structure rather than a mechanism, it has
no DOF. To determine the reactions at B by the method of virtual work, we must
turn Bx and By into active forces by removing the support at B.

Figure (b) shows the system with both Bx and By as active forces. In this case,
angles θ1 and θ2 are independent position coordinates; consequently, the system
possesses two DOF. The principle of virtual work states that at equilibrium

δU =W δy1 +W δy2 + Bx δxB + By δyB = 0 (a)

x

y

O

L

A
L

xB

Bx

By

W

W

(b)

y1

y2

yB

θ1 = 30°

θ2 = 50.66°
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The virtual displacements in Eq. (a) can be related to δθ1 and δθ2 as follows:

y1= L

2
cos θ1

δy1 = dy1

dθ1
δθ1 = − L

2
sin θ1 δθ1 (b)

y2= L cos θ1 + L

2
cos θ2

δy2 = ∂y2

∂θ1
δθ1 + ∂y2

∂θ2
δθ2

δy2 = −L sin θ1 δθ1 − L

2
sin θ2 δθ2 (c)

xB = L sin θ1 + L sin θ2

δxB = ∂xB

∂θ1
δθ1 + ∂xB

∂θ2
δθ2

δxB = L cos θ1 δθ1 + L cos θ2 δθ2 (d)

yB = L cos θ1 + L cos θ2

δyB = ∂yB

∂θ1
δθ1 + ∂yB

∂θ2
δθ2

δyB = −L sin θ1 δθ1 − L sin θ2 δθ2 (e)

Substituting Eqs. (b)–(e) into Eq. (a) and regrouping terms, we obtain

δU =
(
−W

2
sin θ1 −W sin θ1 + Bx cos θ1 − By sin θ1

)
L δθ1

+
(
−W

2
sin θ2 + Bx cos θ2 − By sin θ2

)
L δθ2= 0

(f)

Because δθ1 and δθ2 are independent, Eq. (f) will be satisfied only if each of the
terms in parentheses is zero; that is,

−3W

2
sin θ1 + Bx cos θ1 − By sin θ1= 0 (g)

and

−W

2
sin θ2 + Bx cos θ2 − By sin θ2= 0 (h)

Substituting θ1= 30◦ and θ2= 50.66◦, and solving Eqs. (g) and (h) simultane-
ously, we obtain

Bx = 1.096W and By = 0.398W Answer
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Problems

10.1 Determine the number of DOF for each of the mechanisms shown.

(a) (b) (c)

(d) (e) (f)

Fig. P10.1

Neglect friction in the following problems.

10.2 The uniform bar of weight W is held in equilibrium by the couple C0. Find
C0 in terms of W, L, and θ .

L

B

C0

A

θ

A

L
θ

P
C

B

L

Fig. P10.2 Fig. P10.3

10.3 Bars AB and AC of the mechanism are homogeneous with each of weight
W . Determine the force P required to keep the mechanism in the position shown.
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10.4 The 240-kg uniform block is supported by two bars of negligible mass.

4 m

θθ

3 
m

3 
m

2 
m

C0

240 kg

Fig. P10.4

Determine the couple C0 that will keep the system in the position θ = 30◦.

P
A

20° 20°

B

Fig. P10.5

10.5 The 1800-kg boat is suspended from two parallel cables of equal length.
The location of the center of gravity of the boat is not known. Calculate the force
P required to hold the boat in the position shown.

50 mm

50 mm

30°

A

C

B

E

D

25
 m

m

30
mm

G

C

A

B

P

150 mm
150 mm

0.6 kg

0.
25

 k
g

80
 m

m

θ
A B

b

θ θ

C

a

D

b

P

Fig. P10.6 Fig. P10.7 Fig. P10.8

10.6 The 2.5-kg lamp, with center of gravity located at G, is supported by the
parallelogram linkage of negligible weight. Find the tension in the spring AD
when the lamp is in equilibrium in the position shown.

10.7 Determine the force P that would hold the mechanism in equilibrium in
the position θ = 40◦.

10.8 For the frame shown, find the horizontal component of the support
reaction at B. Neglect the weights of the members.

10.9 The four-bar linkage supports the homogeneous box of weight W .

a

a

b b
a

aθ

A B
W

Fig. P10.9
Neglecting the weight of the linkage, determine the horizontal pin reactions at
A and B.
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10.10 The uniform 160-kg bar AB is held in the position shown by the cable
AC. Compute the tension in this cable.

40°

35°

A

B

C

9 m

a

P

a

Q

θ

Fig. P10.10 Fig. P10.11

10.11 Determine the ratio P/Q of the forces that are required to maintain equi-
librium of the mechanism for an arbitrary angle θ . Neglect the weight of the
mechanism.

10.12 Neglecting the weights of the members, determine the force P that wouldP

B

D E

CA
2 m

1.
5 

m

1.
5 

m

1.5 m

1.5 m

Fig. P10.12

keep the mechanism in the position shown. The spring DE has a free length of
0.5 m and a stiffness of 1.2 kN/m.

10.13 The linkage of the braking system consists of the pedal arm DAB, the
connecting rod BC, and the hydraulic cylinder C. At what angle θ will the force
Q be four times greater than the force P that is applied to the pedal? Neglect the
weight of the linkage.

100 m
m

10
0 

m
m

B

C

A

D

250 mm

Q

P

θ

θ

C E

48
 m

m

D

B

CA

50°

38 N A

54 mm 30 mm

70°

Fig. P10.13 Fig. P10.14

10.14 The automatic drilling robot must sustain a thrust of 38 N at the tip of the
drill bit. Determine the couple CA that must be developed by the electric motor at
A to resist this thrust. Neglect the weights of the members.

10.15 Determine the couple C for which the mechanism would be in equilib-
rium in the position θ = 25◦. Neglect the weights of the members.
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A

C

200 mm
B

θ 200 mm

200 N

D

80 mm

Fig. P10.15

10.16 In the angular motion amplifier, the oscillatory motion of AC is ampli-

30°

60°

120 mm

36 N . m

C0

C

A

B

Fig. P10.16

fied by the oscillatory motion of BC . Neglecting the weights of the members,
determine the output torque C0, given that the input torque is 36 N ·m.

10.17 End B of the 60-N homogeneous bar is pulled by the 80-N force inclined

A

L

θ

B
80 N

45°

60 N

Fig. P10.17

at 45◦ to the horizontal. Find θ , the angle of inclination of the bar.

10.18 Calculate the torque C0 that must be applied to the handle of the screw
jack in order to lift the load P = 3 kN when θ = 30◦. The screw has a pitch of
2.5 mm. Neglect the weight of the linkage.

C0

P

θθ

θ θ

A

C

α

B

L

θ

L F

1

θ2

Fig. P10.18 Fig. P10.19

10.19 Determine the force F and the angle α required to hold the linkage in
the position θ1= 60◦, θ2= 15◦. Each bar of the linkage is homogeneous and of
weight W.

*10.5 Instant Center of Rotation

In the previous article, we determined the virtual displacements of points of inter-
est (points of application of forces) by taking the differentials of their position
coordinates. Here we introduce a method that does not require differentiation.
This approach is based on the concept of instant center of rotation, which is
defined as follows:

The instant center of rotation of a rigid body is the point in the body that
has zero virtual displacement during virtual motion of the body.
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To find the location of the instant center, consider the virtual motion of the
rigid body shown in Fig. 10.12 . Let δrA and δrB be the virtual displacements

B
A

δrA

δθ

δrB

rA
rB

O

Plane of motion

Fig. 10.12

of points A and B in the body. Assume, for the time being, that their directions
are not parallel. Now draw a line through point A that is perpendicular to δrA,
and another line through B that is perpendicular to δrB . The intersection of these
two lines, labeled O in the figure, is the instant center of rotation of the body.
Sometimes O lies outside the body, in which case we imagine that the body is
enlarged to include it. The expanded body is called the body extended.

We still must show that the virtual displacement of O is zero. Because A, B,
and O are points in the same body (or body extended), their virtual displacements
satisfy Eq. (10.4):

δrA = δrO + δθ× rA (a)

δrB = δrO + δθ× rB (b)

where δθ is the virtual rotation of the body, and rA and rB are the position vectors
of A and B relative to O. Recalling that δθ is perpendicular to the plane of motion,
we deduce from the properties of the vector product that δθ×rA is parallel to δrA.
Therefore, Eq. (a) can hold only if δrO is also parallel to δrA. In the same way we
can argue that δrO in Eq. (b) must be parallel to δrB . Because a nonzero vector
cannot have two different directions, we conclude that δrO = 0.

The term instant center of rotation implies that the body appears to be rotat-
ing about O during its virtual displacement. Therefore, once the instant center of
rotation has been located, the magnitude of the virtual displacement of any point
in the body, such as A, can be obtained from Eq. (10.2):

δrA= rAδθ (10.11)

where rA is the distance of A from the instant center of rotation.
In summary, the rules for determining the virtual displacement of a point A in

a rigid body are as follows:

• The magnitude of the virtual displacement is proportional to the distance of A
from the instant center of rotation O.

• The direction of the virtual displacement is perpendicular to the line connect-
ing A and O.

• The sense of the virtual displacement must be consistent with the sense of the
virtual rotation.

The construction shown in Fig. 10.12 for locating the instant center for a rigid
body is valid only if the directions of δrA and δrB are not parallel. If the direc-
tions are parallel, the instant center can still be located without difficulty, as shown
in Fig. 10.13. Figure 10.13(a) shows translation, in which the virtual displace-
ments of all points are equal, and the instant center is located at infinity. Figure
10.13(b) depicts the case where δrA and δrB have the same direction but unequal
magnitudes, δrA > δrB . In Fig. 10.13(c), δrA and δrB have parallel but opposite
directions. (Whether their magnitudes are equal or not is irrelevant.)
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rA  = rB

A

(a)

Point O at ∞

rA

rB
B

δ δ

δ

δ

A

(b)

rA

rB B

δθ

rA

rB

O

δ

δ A

(c)

rA

rB
B

rA

rB

O

δ

δθ

δ

Fig. 10.13

We now derive the formulas for the rectangular components of the virtual dis-
placement of a point. These formulas are frequently used in the computation of
the virtual work of a force. Let δrA be the virtual displacement of a point A that
is located at the distance rA from point O (the instant center of the body con-
taining A). From Fig. 10.14 we see that δxA = −δrA sin θ and δyA= δrA cos θ .
Substituting δrA= rA δθ , and noting that rA cos θ = xA and rA sin θ = yA, we
obtain

δxA= − yA δθ and δyA= xA δθ (10.12)

x

y

yA

xA

O

rA

A

xA

yA

rA  =  rAδ δθ
δθ

δθ

δθ

θ

θ

Fig. 10.14

The signs in this equation are consistent with the positive directions of x, y, and δθ

shown in Fig. 10.14. However, when solving problems, it is easiest to determine
the directions of δxA and δyA by inspection, rather than by adhering to a rigorous
sign convention.



Sample Problem 10.4
The mechanism in Fig. (a) consists of three homogeneous bars with the weights
shown. A clockwise 500-N.m couple is applied to bar CD. Using instant centers
of rotation, determine the couple C0 that must be applied to bar AB in order to
maintain equilibrium.

500 N· m

6
400 N300 N

200 N

84

3 C0

A

B

C

D

Dimensions in m

(a)

Solution
The system possesses one degree of freedom, because only one position coordi-
nate, for example, the angular position of one of the bars, is sufficient to specify
its configuration.

Figure (b) shows a virtual displacement of the system that is consistent with
(b)

x

y

A

B

C

D

1

2
3

AB

BC

CD
CD

BC

ABδθ

δθ

δθ

θ

θ

θ

(c)

x

y
C

D

AB 1

2
3

2 2

4

O

3

3

3
8

3

A

B

rB
rC

CD

5

δ δ

δθ δθ

(d)

C

24

O

3

3

4
3

rB
rC

4

10

3
4

B

BC

Bar BC extended

δ δ

δθ

the constraints, with δθAB, δθBC , and δθCD representing the virtual rotations of
the bars. Points 1, 2, and 3 indicate the locations of the centers of gravity of the
bars. Note that Fig. (a) is the active-force diagram for the system because only the
weights and the two couples are capable of doing work on the system. Applying
the principle of virtual work, we obtain

δU =C0 δθAB − 500 δθCD − 200 δy1 − 300 δy2 − 400 δy3= 0 (a)

where δy1 is the positive y-component of the virtual displacement of point 1, and
so forth. Note the signs in Eq. (a), which follow the rule that virtual work is
positive if the force (couple) has the same direction as the displacement (rotation).
If these directions are opposite each other, the virtual work is negative.

The next step in the analysis is to express all of the virtual changes in Eq.
(a) in terms of one independent position coordinate, for which we choose θAB.
To utilize instant centers, we must first locate the instant center for each of the
three bars. Referring to Fig. (b), we see that A and D, being fixed points, are
obviously the instant centers for bars AB and CD, respectively. Therefore, δrB is
perpendicular to AB, and δrC is perpendicular to CD, each directed as shown in
Fig. (c). Because B and C also belong to bar BC, the instant center of BC is point
O, where the lines that are perpendicular to δrB and δrC intersect. Because point
O does not lie on bar BC , it is convenient to think of BC being extended to the
triangle BCO, as shown in Fig. (d). From the directions of δrB and δrC , we see
that δθBC is clockwise.
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Figures (c) and (d) show all the dimensions needed for kinematic analysis. We
now relate the virtual rotations of BC and CD to δθAB as follows:

B rotates about A: δrB = 5 δθAB m—see Fig. (c)
B rotates about O: δrB = 10 δθBC m—see Fig. (d)

Equating the right-hand sides of these two equations gives

δθBC = 1

2
δθAB (b)

C rotates about D: δrC = 6 δθCD m—see Fig. (c)
C rotates about O: δrC = 3 δθBC m—see Fig. (d)

Equating the right-hand sides of these two equations, and using Eq. (b), yields

δθCD= 1

4
δθAB (c)

Next, Eq. (10.12) is used to calculate δy1, δy2, and δy3:
Point 1 rotates about A: from Fig. (c) we find

δy1= 2 δθAB (d)

Point 2 rotates about O: from Fig. (d), δy2 = 4 δθBC. Substituting for δBC from
Eq. (b), we get

δy2= 2 δθAB (e)

Finally, from Fig. (c) we see that

δy3= 0 (f)

Substituting Eqs. (b)–(f) into Eq. (a), we obtain

δU = C0 δθAB − 500

(
1

4
δθAB

)
− 200(2 δθAB)

− 300(2 δθAB)− 400(0)= 0

which reduces to

(C0 − 1125) δθAB= 0

This equation can be satisfied for nonzero δθAB only if

C0= 1125 N ·m Answer

Because C0 is positive, it is directed as shown in Fig. (a)—that is, counterclock-
wise.
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Problems

10.20 Locate the instant center of rotation of bar AB for each case shown.

(a)

D

A

B

(b)

A B

(c)

BD

A

(d)

F
A

D

E

B

(e)

D E

B

A

Fig. P10.20

The following problems are to be solved using instant centers of rotation. Neglect
the weights of the members unless otherwise specified.

10.21 Each of the three uniform bars of the mechanism weighs 12 N/m. Deter-C

C0

D

2.5 m

2 m

1.6 m
B A

Fig. P10.21

mine the couple C0 that would hold the mechanism in equilibrium in the position
shown.

10.22 Determine the force P that will keep the mechanism in equilibrium in
the position shown.

P

θ

180 mm

180 mm

140 mm

24
0 

m
m

12
0 

m
m

300 N

12
0 

m
m

Fig. P10.22
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10.23 Determine the tension in the cable attached to the linkage at B.

6 m

3 m 2 m 4 m 4 m

A
B C E

D

F

400 N

Fig. P10.23, P10.24

10.24 Find the couple applied by the built-in support at F to the linkage.

10.25 Find the position coordinate x of the sliding weight B for which the scales
will be balanced.

x

A

25 60 140

40

Dimensions
in mm

0.4 kg

0.2 kg
B

0.4 m

0.3 m DE

P A B

Fig. P10.25 Fig. P10.26

10.26 Compute the force P that will keep the 15-kg uniform plate ABDE in
equilibrium in the position shown.

10.27 Each bar of the structure is uniform and weighs 50 N. Find the horizontal

C

4 
m

4 m

A
60° 60°

B

Fig. P10.27

pin reaction at C.

10.28 Determine the force P necessary to keep the mechanism in the position
800

20 kN

400

Dimensions
in mm

400
C D

F

P B

E

A

600

300

Fig. P10.28

shown.

10.29 If the input force to the compound lever is P = 150 N, calculate the
output force Q.

A

Q E

B D

220 mm

220 mm 60
mm

60 mm

40 mm

P

Fig. P10.29
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10.30 Determine the force P required for equilibrium of the compound lever if
Q = 4200 N.

B

A
C D

40

Dimensions in mm

P

Q

60

60 80 320

Fig. P10.30

10.31 If Q = 200 N, determine the couple C0 required to hold the mechanism
in equilibrium in the position θ = 25◦. Neglect friction.

A

B

C

θ Q
C0

50 mm 40 mm

Fig. P10.31

10.32 For the automobile suspension shown, find the force in the coil spring

E
D

A
B

F

C

135

150

135

Dimensions in mm

P

210

Fig. P10.32

BE given that P = 2600 N.

10.33 The couples C1 and C2 act on the linkage. Find the ratio C1/C2 for which
the linkage will be in equilibrium in the position shown.

40 mm

65°

B
A

D

C

C1

C2

60 mm

60 mm

70 mm

40 mm

110 mm

130 mm

P

C

B

A
D

E

40°

Fig. P10.33 Fig. P10.34

10.34 What force P will produce a tensile force of 125 N in the cable at E?

10.35 If the force P acting on the piston in the position shown is equal to

30°
C

C0

58

13
6

P

B

Dimensions in mm

A

Fig. P10.35 1600 N, compute C0, the output torque at the crankshaft.
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10.36 For the pliers shown, determine the relationship between the magnitude
of the applied forces P and the magnitude of the gripping forces at E. (Hint:
Consider AB to be fixed.)

12 mm

P

P

10
mm

15 mm 30 mm

E

15 mm

A

C

B

D

Fig. P10.36

10.37 When activated by the force P, the gripper on a robot’s arm is able to pick
up objects by applying the gripping force F. Given that P = 120 N, calculate F in
the position shown.

A

B

F
F

P

52 mm

160 mm

65°

250 mm

C

35°35°

D

Fig. P10.37

∗10.38 (a) Using a scale drawing, locate graphically the instant center of the
connecting rod AB in the position shown. (b) Using the results of part (a) and
assuming equilibrium, find the couple C0 that acts on the flywheel if the force
acting on the piston is P = 600 N.

25 mm

60°

185 mm

75 mm

C

C0

A

B
P

Fig. P10.38
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∗10.39 The hinge is of the type used on some automobiles, in which the door
DE appears to rotate about point H. Use a graphical construction, drawn to scale,
to locate H. (Hint: ABED and BCGF are parallelogram linkages.)

A

D

P

H

90°

C

B

G

F
E

90°

C0

30°

30°
270 mm

120 mm
120 mm

21
0 

m
m 210 m

m

120 mm
120 mm

Fig. P10.39

*10.6 Equilibrium and Stability of Conservative
Systems

a. Potential energy

As explained in Art. 10.4, if a frictionless system is given a kinematically
admissible virtual displacement, the virtual work has the form [see Eq. (10.10)]

δU = Q1 δq1 + Q2 δq2 + · · · + Qn δqn

where the δq’s are virtual changes in the independent position coordinates and
the Q’s are called generalized forces. The system is classified as conservative if
there exists a scalar function V (q1, q2, . . . , qn) such that

Qi = − ∂V

∂qi
(i = 1, 2, . . . , n) (10.13)

The function V is called the potential function, or the potential energy, of the
system. Therefore, the generalized forces are said to be derivable from a potential.
The minus sign in Eq. (10.13), which is part of the definition, has its origin in the
relationship between work and potential energy.* If each of the forces acting on a
system is derivable from a potential, the potential energy of the system is obtained
by summing the potential energies of all the forces. For our purposes, we only
need to consider gravitational potential energy and elastic potential energy.

*This relationship is treated in Dynamics. Here we discuss only those properties of potential energy
that are required for the equilibrium analysis of conservative systems.
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b. Gravitational potential energy

Figure 10.15 shows a body of weight W whose center of gravity G is a dis-

x

Arbitrary
reference
line

G

y

yGW

Fig. 10.15

tance yG above an arbitrary reference line that coincides with the x-axis. The
generalized force corresponding to the coordinate yG is −W (the minus sign
is necessary because W is directed opposite the positive direction of yG). The
potential function of the weight, also called its gravitational potential energy, is
Vg =W yG + C , where C is an arbitrary constant. This result is easily verified
by noting that −dVg/dyG = − W , which agrees with Eq. (10.13). Because the
weight W is derivable from a potential, it is a conservative force.* Observe that
the value of the additive constant C is irrelevant because it does not contribute to
the derivative of Vg . Therefore, C is usually taken to be zero, and the gravitational
potential energy is written as

Vg =W yG (10.14)

c. Elastic potential energy

Our discussion of elastic potential energy is limited to ideal springs. An ideal
spring has the following properties: (1) the weight of the spring is negligible,
and (2) the force exerted by the spring is proportional to the elongation of
the spring. (The reader should be aware that our consideration of deformable
springs represents a radical departure from the analysis of rigid bodies.) The free
(unstretched) length of the spring is denoted by L0 and the elongation by s, as
shown in Fig. 10.16. If the spring is ideal, the force F applied to the spring is

L0

F = ks

s

Unstretched

Stretched

Fig. 10.16

related to its elongation s by

F = ks (10.15)

where k is a constant, called the stiffness of the spring, or the spring constant. The
stiffness k has the dimension [F /L]; hence the units are lb/ft, N/m, and so on.

Letting Qs represent the force exerted by the spring, we have Qs = − ks (the
force exerted by the spring is opposite the force exerted on the spring). Note that
this expression for Qs is valid for both positive s (tension spring) and negative s
(compression spring).

The potential energy of an ideal spring is

Ve= 1

2
ks2 (10.16)

It can be seen that −dVe/ds= − ks, which is indeed the force Qs exerted by the
spring. Because the spring force is derivable from a potential, we conclude that it
is a conservative force. The potential energy Ve is called elastic potential energy.
When using Eq. (10.16), remember that s is the elongation or contraction of the
spring, not the length of the spring.

d. Stationary potential energy and stability

In Art. 10.5, we pointed out that a system is in equilibrium only if all the gen-
eralized forces vanish—that is, if Q1= Q2= · · · = Qn = 0. For a conservative

*A similar argument can be used to show that all forces of constant magnitude and direction are
conservative.
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system with potential energy V (q1, q2, . . . , qn), the equilibrium conditions
thus are

∂V

∂q1
= 0,

∂V

∂q2
= 0, . . . ,

∂V

∂qn
= 0 (10.17)

Equation (10.17) represents the principle of stationary potential energy:

The potential energy of a conservative system is stationary (minimum,
maximum, or constant) in an equilibrium position.

Potential energy can also be used to determine whether an equilibrium posi-
tion is stable, unstable, or neutral. These three classifications of equilibrium are
illustrated in Fig. 10.17. The ball at the bottom of the bowl in (a) is said to be

(a) Stable

(b) Unstable

(c) Neutral

Fig. 10.17

in stable equilibrium—if the ball is displaced a small amount and then released,
it will return to the equilibrium position shown. In (b), the ball is in equilibrium
at the top of an inverted bowl. Here the equilibrium is unstable—if the ball is
displaced a small amount and then released, it will move away from the original
equilibrium position. Neutral equilibrium is shown in (c)—if the ball on a flat sur-
face is displaced a small amount to the left or right and then released, the ball will
simply remain at rest in the new position.

From the foregoing examples, we can deduce the principle of minimum
potential energy:

The potential energy of a conservative system is at its minimum in a
stable equilibrium position.

As an illustration of this principle, note that when the ball in Fig. 10.17(a)
is displaced, its potential energy is increased. When released, the ball returns to
its original position of lower potential energy. However, when the ball in Fig.
10.17(b) is displaced, its potential energy decreases. When released, the ball does
not return to its original position of higher potential energy. Instead, the ball seeks
a position of lower potential energy—it rolls off the bowl.

We restrict our discussion of stability to systems that possess one degree of
freedom—that is, systems for which the potential energy V (q) is a function of a
single coordinate q. By the principle of stationary potential energy, the equilib-
rium positions of the system correspond to the roots of the equation dV /dq = 0.
To determine whether the equilibrium positions are stable or unstable, we must
investigate the sign of the second derivative, d2V /dq2. If the second derivative is
positive at an equilibrium position, the potential energy is a minimum (stable equi-
librium); if the second derivative is negative, the potential energy is a maximum
(unstable equilibrium).

In summary, if q = q0 is a stable equilibrium position, then

dV

dq

∣∣∣∣
q0

= 0
d2V

dq2

∣∣∣∣
q0

> 0 (10.18)

and if q = q0 is an unstable equilibrium position, then

dV

dq

∣∣∣∣
q0

= 0
d2V

dq2

∣∣∣∣
q0

< 0 (10.19)



Sample Problem 10.5
A light rod is pin-supported at one end and carries a weight W at the other end,
as shown in the figure. The ideal spring attached to the rod is capable of resisting
both tension and compression, and it is unstretched when the rod is vertical. Find
the largest value of W for which the vertical equilibrium position of the rod would
be stable.

LyG = L cos θ

s = b sin θ

Reference line for Vg

b

O

W

k

θ

Solution
The potential energy of the system consists of Vg , the gravitational potential
energy of the weight, and Ve, the elastic potential energy of the spring. From
Eq. (10.14), Vg =W yG , where yG is the vertical distance to W measured from
an arbitrary reference line. Choosing the horizontal line passing through O as the
reference, we find Vg =WL cos θ .

To determine whether a function evaluated at a point is a minimum or max-
imum, it is sufficient to investigate the function only in a small neighborhood of
that point. Therefore, we can confine our attention to small values of θ . Approx-
imating cos θ with (1 − θ2/2), which is valid for small angles, the gravitational
potential energy becomes

Vg =WL

(
1− 1

2
θ2

)
(a)

From Eq. (10.16), Ve= (1/2)ks2, where s is the elongation (or contraction) of the
spring measured from its unstretched position. From the figure, we see that for
sufficiently small θ , s= b sin θ . Using the approximation sin θ ≈ θ , the elastic
potential energy of the spring becomes

Ve= 1

2
kb2θ2 (b)

Combining Eqs. (a) and (b), the potential energy of the system is

V = Vg + Ve=WL

(
1− 1

2
θ2

)
+ 1

2
kb2θ2

which is valid for small values of θ .
For the system to be in stable equilibrium, d2V /dθ2 must be positive. After

differentiation, we find

dV

dθ
= (−WL+ kb2)θ

551



Observe that dV /dθ = 0 when θ = 0, confirming that the rod is in equilibrium in
the vertical position. Differentiating again, we obtain

d2V

dθ2
= −WL+ kb2

We see that d2V /dθ2 will be positive; that is, the system will be in stable equilib-
rium, only if kb2 > WL. Therefore, the maximum value of W for which the system
will be in stable equilibrium for θ = 0 is

Wmax= kb2/L Answer

Sample Problem 10.6
For the system shown, determine (1) all values of θ at equilibrium; and (2) the
stability of each equilibrium position. The homogeneous rod AB weighs 80 N,
and the ideal spring is unstretched when θ = 0. Neglect friction and the weights
of the sliders at A and B.

yG = 6 cos θ 

Reference
line for Vg

s = 12 sin

k = 6 N/m

12 m

W = 80 N

B

G

A

θ

θ

Solution
The potential energy V of the system consists of the potential energy of the weight
Vg and the potential energy of the spring Ve. From Eqs. (10.14) and (10.16), we
have

V = Vg + Ve=W yG + 1

2
ks2 (a)

where yG is the vertical distance of the center of gravity G of bar AB above the
chosen reference line, and s is the elongation of the spring. As shown in the figure,
we have yG = 6 cos θ m and s= 12 sin θ m (recall that the spring is unstretched
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when the rod is vertical). Therefore, the potential energy in Eq. (a) becomes

V = 80(6 cos θ)+ 1

2
(6)(12 sin θ)2

= 480 cos θ + 432 sin2 θ N ·m (b)

The first derivative of the potential energy is

dV

dθ
= − 480 sin θ + 864 sin θ cos θ N ·m (c)

Using d(sin θ cos θ)/dθ = cos2 θ − sin2 θ , the second derivative of the potential
energy is

d2V

dθ2
= − 480 cos θ + 864(cos2 θ − sin2 θ) N ·m (d)

Part 1

According to the principle of minimum potential energy, the values of θ at equi-
librium are the roots of the equation dV /dθ = 0. Using Eq. (c), we find that the
equilibrium condition is

−480 sin θ + 864 sin θ cos θ = 0

or

sin θ(−480+ 864 cos θ)= 0

The roots of this equation are sin θ = 0 and cos θ = 480/864. Consequently, the
equilibrium positions are

θ = 0 θ = cos−1 480

864
= 56.25◦ Answer

Part 2

Evaluating the second derivative of the potential energy, Eq. (d), at the equilibrium
position θ = 0, we find

d2V

dθ2
= − 480+ 864= 384 N ·m

Because d2V /dθ2 > 0, we conclude that θ = 0 is a stable equilibrium position.
For θ = 56.25◦, Eq. (d) gives

d2V

dθ2
= −480 cos 56.25◦ + 864(cos2 56.25◦ − sin2 56.25◦)

= −597 N ·m

Because d2V /dθ2 < 0, we deduce that θ = 56.25◦ is an unstable equilibrium
position.
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Problems

Neglect friction in the following problems, unless otherwise stated.

10.40 Show that θ = 0 represents the only equilibrium position of the uniform
B

A
θ

αα

Fig. P10.40

bar AB. Is this position stable or unstable?

10.41 The weight W is suspended from end B of the weightless bar that is sup-
ported by walls at A and C. Determine the equilibrium value of the angle θ and
investigate the stability of equilibrium.

B

C

1 m

2 m

W

A

θ
A

R

L

B

θ

Fig. P10.41 Fig. P10.42

10.42 The uniform bar of weight W and length L = 2R rests in a hemispher-
ical cavity of radius R. Calculate the angle θ for equilibrium and investigate the
stability of equilibrium.

10.43 A slender homogeneous bar is bent into a right angle and placed on a

R

b b

Fig. P10.43

cylindrical surface. Determine the range of b/R for which the equilibrium position
shown is stable.

10.44 The body shown is a composite of a hemisphere and a cylinder, with
both of uniform weight density γ . Determine the range of h/R for which the
equilibrium position shown is stable.

R

h
2h G

O

R

Fig. P10.44 Fig. P10.45

10.45 The uniform block of height 2h is balanced on the rough cylindrical sur-
face of radius R. Show that this equilibrium position is stable only if R > h.
Assume that friction prevents the block from sliding.

10.46 The uniform bar AB of weight W and length L is pinned to a sliding
collar at A and to the sliding rod BD at B. The spring wound around rod BD has
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a stiffness k and is undeformed when rod AB is in the position θ = 0. Determine
the expression for the angle θ (other than θ = 90◦) at equilibrium and investigate
the stability of equilibrium for this position.

A

B

C

D

k

L

θ

Fig. P10.46

10.47 Uniform rods of weights W1 and W2 are welded to the two pulleys that
are connected by a belt. Determine the range of W1/W2 for which the equilibrium
position shown is stable.

W1

W2

R

1.5R3R

2R

L

A B

kk

b b

Fig. P10.47 Fig. P10.48

10.48 The weight of the uniform bar of length L is W . The base of the bar is
supported by a pin and two springs. The springs (each of stiffness k) are unde-
formed when the base is horizontal. Determine the smallest dimension b of the
base for which the bar is stable in the position shown.

10.49 The semi-cylinder of radius r is placed on a cylindrical surface of radius

W r

R

Fig. P10.49

R. Assuming no slipping, determine the range of R/r for which the equilibrium
position shown is stable.

10.50 Find the equilibrium positions of the mechanism shown and investigate

30 N
θ

12
0 

m
m

120 m
m

k = 5 N/mm

k

Fig. P10.50
their stability. The spring is undeformed in the θ = 0 position. Neglect the weight
of the mechanism.
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10.51 Determine the largest weight W for which the hinged bar ABC will be in

a

k

b

W

A

B

C

Fig. P10.51

stable equilibrium in the position shown. The ideal spring of stiffness k is capable
of carrying tension and compression and is undeformed in the position shown.
(Hint: Use sin θ ≈ θ and cos θ ≈ 1− θ2/2.)

10.52 The spring is connected to a rope that passes over the cylindrical surface
and is attached to corner A of the rocker. The spring has a stiffness k and is unde-
formed when θ = 0. When the weight W is suspended from A, the equilibrium
position of the rocker is θ = 30◦. Determine if this equilibrium position is stable.
Neglect the weight of the rocker.

k

R

W

Aθ

20 N

θ
6 m

40 N

6 m

Fig. P10.52 Fig. P10.53

∗10.53 Find the equilibrium positions of the 40-N homogeneous bar and
investigate their stability.

10.54 The mechanism of negligible weight supports the weight W. Find the
value of θ for equilibrium. Is the equilibrium position stable or unstable?

A B

bb

bb

DC

W

θ

Fig. P10.54, P10.55

10.55 Solve Prob. 10.54 assuming that A and B are connected by a spring of
stiffness k= 0.3 W /b and free length b.

10.56 The stiffness of the ideal spring that is compressed by the slider C is

k

m

C

A

B

0.2 m0.
2 

m

0.
2 

m

0.2 m

0.2 m0.
2 

m

θ

Fig. P10.56, P10.57

k= 250 N/m. The spring is unstretched when θ = 20◦. When the mass m is sus-
pended from A, the system is in equilibrium at θ = 60◦. Determine the value of
m and whether the equilibrium position is stable or unstable.

10.57 Find the stable equilibrium position of the system described in Prob.
10.56 if m= 2.06 kg.



10.40–10.62 Problems 557

10.58 The uniform bar AB of weight W = kL is in equilibrium when θ = 65◦.
Find the value of θ for which the ideal spring would be unstretched, and
investigate the stability of the equilibrium position.

10.59 The weight of the uniform bar AB is W. The stiffness of the ideal spring
attached to B is k, and the spring is unstretched when θ = 80◦. If W = kL , the
bar has three equilibrium positions in the range 0 < θ < π , only one of which is
stable. Determine the angle θ at the stable equilibrium position.

L

A

B
k

θ

50 mm

50 mm

50 mm

50 mm

B

E

D

A

F

C

k =  3.75
N/mm

2.5 N

θ

Fig. P10.58, P10.59 Fig. P10.60

10.60 The weightless bars AB and CE, together with the 25-N weight BE, form
a parallelogram linkage. The ideal spring attached to D has a free length of 20 mm
and a stiffness of 3.75 N/mm. Find the two equilibrium positions that are in the
range 0 < θ < π /2, and determine their stability. Neglect the weight of slider F.

10.61 The three ideal springs supporting the two bars that are pinned together
at C are unstretched when θ1= θ2= 0. Note that the springs are always vertical
because the collars to which they are attached are free to slide on the horizontal
rail. Compute the angles θ1 and θ2 at equilibrium if W = kL /10.

A

B

k

C

θθ

D E

1
2

k k

L
2

L
2 L

2 L
2

W

L
3A

B

C

W

k
k

k
2L
3

L
2

θ

Fig. P10.61 Fig. P10.62

10.62 The bar ABC is supported by three identical, ideal springs. Note that the
springs are always vertical because the collars to which they are attached are free
to slide on the horizontal rail. Find the angle θ at equilibrium if W = kL . Neglect
the weight of the bar.
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Review of Equations

Virtual displacements

Translation : δrA = δrB

Rotation about fixed point : δrB = δθ× rAB

General plane motion : δrB = δrA + δθ× rAB

Point O is instant center of AB : δrA = δθ× rOA

δrB = δθ× rOB

Virtual work

δU = F · δr= F cos α δr (work of a force)

δU = C · δθ= C δθ (work of a couple)

α = angle between F and δr

Method of virtual work
If a body is in equilibrium, then the virtual work of all forces acting on the body
is zero for all kinematically admissible virtual displacements of the body from the
equilibrium position (δU = 0).

Potential energy

Vg = W yG (gravitational potential energy)

Ve = 1

2
ks2 (elastic energy of a spring)

k = spring stiffness
s = elongation of spring

Principle of stationary potential energy
The potential energy of a conservative system is minimum in a stable equilibrium
position.



A
Numerical Integration

A.1 Introduction

The purpose of numerical integration, also known as quadrature, is to evaluate
definite integrals of the type

A =
∫ b

a
f(x) dx (A.1)

without using calculus. Quadrature gives only an approximate value for the inte-
gral, because calculus is the only method for performing the integration exactly.
Numerical integration is useful in the following situations:

• The integration is difficult or tedious to perform analytically.
• The integral cannot be expressed in terms of known functions.
• The function f(x) is unknown, but its values are known at discrete points.

Generally speaking, integral is a mathematical term for the sum of an infinite
number of infinitesimal quantities. Consequently, the definite integral in Eq. (A.1)
represents the summation of all the differential (infinitesimal) areas dA= f(x) dx
that lie between the limits x = a and x = b, as seen in Fig. A.1. In numerical

f(x)dA

Area = A
y = f(x)

y

x

dx
a b

Fig. A.1

integration, the integral is approximated by adding the areas A1, A2, A3, . . . , An ,
of n (finite) panels, each of width �x , as shown in Fig. A.2. Because the area of
each panel must be estimated (integral calculus would be required to obtain the
exact values), quadrature yields only an approximate value of the integral; that is,

A ≈
n∑

i=1

Ai

As a rule, a larger number of panels, with correspondingly smaller �x , yields a
more accurate result.

There are several methods available for estimating the areas of the panels. We
discuss only the trapezoidal rule and Simpson’s rule.
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y

x

D x
D xn

A1

A2

A3

f1 f2 f3 f4

a b

fn fn + 1

An

Fig. A.2

A.2 Trapezoidal Rule

In the trapezoidal rule, each of the n-panels is approximated by a trapezoid.
Recalling that the area of a trapezoid is (base)× (average height), the area of a
typical panel in Fig. A.2 is

Ai = fi + fi+1

2
�x (A.2)

Adding the areas of all of the panels, we get

A ≈
n∑

i=1

Ai = ( f1 + 2 f2 + 2 f3 + · · · + 2 fn + fn+1)
�x

2
(A.3)

Equation (A.3) is known as the trapezoidal rule.
The trapezoidal rule is sometimes written in the following form.

A ≈
n+1∑
i=1

Wi fi (A.4)

where the Wi are known as the weights and the expression �
n+1
i=1 Wi fi is called the

weighted summation. For the trapezoidal rule, the weights are

W1 = Wn+1 = �x

2
(A.5)

Wi = �x for 2 ≤ i ≤ n

A.3 Simpson’s Rule

In the trapezoidal rule, the function f(x) is approximated by a straight line within
each panel of width �x ; that is, the curvature of f(x) is neglected. This lineariza-
tion may result in an unacceptably large error in the quadrature, particularly if the
curvature of f(x) is large and of the same sign throughout the interval a≤ x ≤ b.
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Simpson’s rule overcomes this deficiency by replacing the straight lines with
parabolas. Because three points—that is, three values of f(x)—are required to
define a parabola, Simpson’s rule approximates the area of a pair of adjacent
panels.

Figure A.3 shows two adjacent panels bounded by a parabola that passes
through the three panel points. It can be shown that the area under the parabola is

Ai + Ai+1 = fi + 4 fi+1 + fi+2

3
�x

y

x

fi + 2fi + 1

Ai + 1
Ai

fi

Δ x Δ x

Fig. A.3

Adding the areas of all the panels yields Simpson’ rule

A ≈
n−1∑

i=1,3,5,...

(Ai + Ai+1)

= ( f1 + 4 f2 + 2 f3 + 4 f4 + · · · + 2 fn−1 + 4 fn + fn+1)
�x

3

(A.6)

Note that the number of panels in Simpson’s rule must be even.
Introducing the concept of weights Wi , Simpson’s rule can be written as

A ≈
n+1∑
i=1

Wi fi (A.7)

where the weights are

W1 = Wn+1 = �x

3

Wi = 4�x

3
i even

Wi = 2 �x

3
i odd

⎫⎪⎪⎬
⎪⎪⎭ 2 ≤ i ≤ n (A.8)

Because of its greater accuracy, Simpson’s rule should be chosen over the trape-
zoidal rule. If the number of panels is odd, the area of one panel should be
calculated using the trapezoidal rule, and then Simpson’s rule can be used for
the remaining panels.



Sample Problem A.1
Evaluate the integral A = ∫ π /2

0 sin x dx (x is measured in radians) with four
panels, using (1) the trapezoidal rule; and (2) Simpson’s rule.

Solution
Because the range of integration is 0 ≤ x ≤ π /2 rad and the number of panels
is four, we get �x = (π /2)/4 = π /8 rad. The following table is convenient for
carrying out the quadrature.

i x(rad) f(x) = sin x

1 0 0
2 π /8 0.3827
3 π /4 0.7071
4 3π /8 0.9239
5 π /2 1.0000

Part 1: Trapezoidal Rule

Using Eq. (A.3) wih n = 4 and �x = π /8 rad, we get

A ≈ ( f1 + 2 f2 + 2 f3 + 2 f4 + f5)
�x

2

= [0+ 2(0.3827+ 0.7071+ 0.9239)+ 1.0]
π

16

= 0.9871 Answer

Part 2: Simpson’s Rule

With n = 4 and �x = π /8 rad, Eq. (A.6) becomes

A ≈ ( f1 + 4 f2 + 2 f3 + 4 f4 + f5)
�x

3

= [0+ 4(0.3827)+ 2(0.7071)+ 4(0.9239)+ 1.0]
π

24

= 1.0002 Answer

Because the exact value of the integral is 1.0000, you can see that Simpson’s
rule is considerably more accurate than the trapezoidal rule for this problem.
A major source of error in the trapezoidal rule is that the curvature of the function
f (x) = sin x has the same sign throughout the interval 0 ≤ x ≤ π /2 rad. As
mentioned previously, the trapezoidal rule does not perform well in problems of
this type.
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B
Finding Roots of Functions

B.1 Introduction

The solutions of the equation f (x) = 0, where f (x) is a given function, are called
the roots of f (x). In many practical applications, f (x) is nonlinear in x, in which
case it may be difficult or even impossible to find the roots analytically. Examples
of such nonlinear functions are f (x) = ex cos x−1 and f (x) = x4−2x3+6x−5.
Here we introduce two popular numerical methods for root finding: Netwon’s
method (also known as Newton-Raphson iteration) and the secant method. Both
methods work by iteration and require a good starting value (initial guess) of the
root. If the starting value is not sufficiently close to the root, the procedures may
fail. Frequently, the physical principles of a problem suggest a reasonable starting
value. Otherwise, a good estimate of the root can be obtained by sketching f (x)

versus x. (This involves, of course, evaluating the function at various values of x.)
If the initial value is not close enough to the root, two problems may arise:

• The iterative procedure will not converge to a single value of x.
• The procedure will converge to a root that is different from the one being

sought. (Recall that nonlinear equations may have multiple roots.)

B.2 Newton’s Method

Consider the problem of computing the root x0 of the function f (x) that is plotted
in Fig. B.1. We begin by estimating the value x1 of the root and computing f (x1);
the corresponding point is denoted A in the figure. The next step is to compute
f ′(x1) (the prime indicates differentiation with respect to x), which represents
the slope of the straight line that is tangent to f (x) at A. The coordinate of the
point where the tangent line crosses the x-axis is denoted x2. If x1 is close to x0,
then the tangent line is a good approximation of f (x) in the vicinity of the root.
Consequently, x2 should be a better approximation of the root than x1.

The value of x2 can be computed from the shaded triangle in Fig. B.1: tan θ =
f (x1)/(x1 − x2). Substituting tan θ = f ′(x1) and solving for x2 yield

x2 = x1 − f (x1)

f ′(x1)

563



564 APPENDIX B Finding Roots of Functions

Tangent line at A

f(x)

x
x1x2x0

f(x)

A

f(x1)
θ

Fig. B.1

This completes one cycle of the iteration process. The procedure is then repeated
with the output of each iterative step (e.g., x2) being used as the input for the next
step, until the change in x between successive steps is negligible. The algorithm
for Newton’s method can thus be summarized as follows:

estimate x

do until |�x | < ε

�x ←− f (x)

f ′(x)

x ← x +�x

end do

(B.1)

where a ← b means “b replaces a” and where ε is the convergence parameter (a
small number that signals that the desired accuracy has been achieved).

The main drawback of Newton’s method is that it requires the derivative of
f (x). If f (x) is a simple expression, then deriving f ′(x) is only a minor nuisance.
However, in cases where f (x) is a complicated function, methods that do not
require the derivative are more attractive.

B.3 Secant Method

The secant method is based on the same principle as Newton’s method. However,
instead of requiring the derivative of f (x), it requires two starting values (initial
guesses) of the root. These starting values are denoted x1 and x2 in Fig. B.2, and
the corresponding points on the plot of f (x) are labeled A and B, respectively. (In
the figure, we assume that x1 > x2, but this need not be the case.) The role that
was played by the tangent line in Newton’s method is now taken over by the chord
AB; that is, the chord AB will be a good approximation of f (x) in the vicinity of
the root x0 if the starting values are close enough to the root.
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Chord AB

f(x)

x
x1x2

x0

f(x)

A

f(x1)
f(x2)

x3

B

Fig. B.2

From similar triangles in Fig. B.2 we get

f (x2)

x2 − x3
= f (x1)− f (x2)

x1 − x2

which yields

x3 = x2 − f (x2)
x1 − x2

f (x1)− f (x2)

Repeating this procedure using x2 and x3 as the new input values (x1 is discarded)
will further improve the estimation of the root. The computations continue until
x3 shows no significant change—that is, until the change in x is insignificant. The
summary of the algorithm for the secant method is

estimate x1 and x2

do until |�x | < ε

�x ←− f (x2)
x1 − x2

f (x1)− f (x2)

x3 ← x2 +�x

x1 ← x2

x2 ← x3

end do

(B.2)



Sample Problem B.1
Find the smallest positive, nonzero root of f (x) = ex cos x − 1 within five
significant digits. Use (1) Newton’s method; and (2) the secant method.

Solution
To obtain an approximate value of the desired root, we plot f (x) in increments of
�x = 0.5, starting at x = 0 and ending after f (x) reverses its sign. The results
are shown in the figure. By inspection we estimate the root to be approximately
x = 1.3.

Part 1: Newton’s Method

0.5 1.0

1.5

0

f(x)

x

0.
44

7

0.
46

9

–
0.

68
3

Newton’s method requires the derivative of f (x), which is

f ′(x) = d

dx
(ex cos x − 1) = ex (cos x − sin x)

The following table shows the computations for the root, based on the algorithm
given in Eq. (B.1). The starting value was x = 1.3.

x f (x) f ′(x) �x

1.3 −0.018 47 −2.554 05 −0.007 23
1.292 77 −0.000 18 −2.503 16 −0.000 07
1.292 70 0.000 00 −2.502 64 0.000 00

The final result, x = 1.2927, has been obtained in only two iterations because of
the accuracy of our initial estimate.

Part 2: Secant Method

We chose x1 = 1.2 and x2 = 1.3 as the starting values of the root. The algorithm
in Eq. (B.2) leads to the following sequence of computations.

x1 x2 f (x1) f (x2) �x x3=x2+�x

1.2 1.3 0.203 07 −0.018 47 −0.008 34 1.291 66
1.3 1.291 66 −0.018 47 0.002 58 0.001 03 1.292 69
1.291 66 1.292 69 0.002 58 0.000 03 0.000 01 1.292 70
1.292 69 1.292 70 0.000 03 0.000 00 0.000 00 1.292 70

Referring to the first row in the table, note that x1 and x2 are entered first, and then
the remaining entries in the row are computed using the algorithm. In the sec-
ond row, the values for x1, x2, and f (x1) are simply copied from the appropriate
columns in the first row. This pattern is repeated in subsequent rows.

Once again, the final result (x3) is 1.2927, with only three iterations required.
In general, the secant method converges a little more slowly than Newton’s
method.
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C
Densities of Common Materials

ρ

kg/m3

Aluminum 2 660
Brass 8 300
Brick 2 000
Cast iron 7 200
Concrete 2 400
Copper 8 910
Earth (dry) 1 280
Earth (wet) 1 760
Glass 2 590
Ice 900
Lead 11 370
Oil 900
Steel 7 850
Water (fresh) 1 000
Water (ocean) 1 030
Wood, hard (white oak) 800
Wood, soft (Douglas fir) 480
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Answers to
Even-Numbered Problems

Chapter 1

1.2 10.65 kg
1.4 103.5× 10−5 kg · m2

1.6 (No answer)
1.8 25 000 m/s
1.10 ML2

1.12 [c] = [MT−1], [k] = [MT−2], [P0] = [M LT−2],
[ω] = [T−1]

1.14 89.5 kW
1.16 1.042× 10−8 N
1.18 (No answer)
1.20 13 790 km
1.22 3.61 m/s at 26.3◦

1.24 Lift = 6220 N
�⏐, Drag = 653 N→

1.26 7.55 km/h at 25.2◦

1.28 F1 = 323 N, F2 = 411 N
1.30 2210 m along OB, 2570 m along OC
1.32 α = 21.6◦, β = 19.9◦

1.34 (a) 71.8◦ ; (b) 235 N

1.36 a = 494 m, b = 372 m

1.38 222 N, 21.1◦
1.40 −9.64i+ 16.70j+ 22.98k N
1.42 (a) 54.5◦; (b) 154.3i+ 120.0j+ 139.3k N
1.44 (a)−0.269i+ 0.875j+ 0.404k;

(b) −1.61i+ 5.24j+ 2.42k m/s
1.46 63.0i− 52.5j− 87.6k N
1.48 θx = 54.8◦, θy = 67.4◦, θz = 136.1◦
1.50 −96.0i+ 123.5j− 85.8k N

1.52 146i− 48j N
1.54 P = 717 N, Q = 590 N
1.56 P = 74.3 N, Q = 69.9 N
1.58 (a) 39i+ 63j− 42k ft2; (b) 39i+ 26j+ 18k N ·m;

(c) −28i− 25j+ 10k m2

1.60 A× B = C× B = 1.8i− 3j m2

1.62 28.0◦
1.64 (c) and (d)
1.66 ± (0.422i+ 0.211j+ 0.844k)

1.68 −17.52 N
1.70 Parallel: 1.581(0.949i+ 0.316k) cm, Perpendicular:

6.89(0.218i+ 0.725j− 0.653k) cm
1.72 5 m
1.74 (No answer)
1.76 (No answer)

Chapter 2

2.2 2063.7 N at 53.8◦
2.4 P = 109.6 kN, θ = 29.9◦
2.6 (a) 1836 N; (b) (0, 0.657 m, 0.326 m)

2.8 R =−24.2i− 24.5j+ 205.1k kN, xA = 0.708 m,
yA = 0.716 m

2.10 P1 = 62.3 kN, P2 = 44.6 kN
2.12 P = 203.5 N, R = 170 N
2.14 Q1 = 547.83 N, Q2 = 0, Q3 = 912.6 N
2.16 θ = 69.2◦, R = −10.99i+ 133.45k N
2.18 −542.16i+ 608.72j− 4102.08k N
2.20 1119 N
2.22 132.0 N ·m CW
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2.24 1.378 m
2.26 −560i+ 200j N
2.28 (a) 400 kN ·m CCW; (b) 400 kN ·m CW; (c) 0
2.30 194.6 N
2.32 3007.9 N
2.34 −14.75i− 11.47j+ 10.32k N ·m
2.36 (a) −73.0j N ·m; (b) −87.7i− 121.7k N ·m
2.38 (a) 84.5i+ 136.0j+ 181.3k kN·m;

(b) 84.5i+ 181.3k kN ·m
2.40 376.3i−477.3j N ·m
2.42 MO = 34882.9 N ·mm, cos θx = 0.4865,

cos θy = 0.1327, cos θz = 0.8637
2.44 MO = 7.94 N ·m, cos θx = −0.327,

cos θy = 0.818, cos θz = −0.473
2.46 y = 4.60 m, z = 2.90 m
2.48 (a) 36 kN ·m; (b) 36 kN ·m; (c) 32 kN ·m; (d) 0;

(e) 0
2.50 (a) 1080.9 N ·m; (b) 1080.9 N ·m
2.52 415 N ·m
2.54 F = 32.0 N, d = 0.450 m
2.56 −75.0 N ·m
2.58 −74.6i− 96.0k N ·m
2.60 116.2 N
2.62 528 N ·m
2.64 0.327 m
2.66 −6235.6 N ·mm
2.68 (b), (c), (d), (f), and (g)
2.70 19.55 N ·m CW
2.72 192.1 N ·m
2.74 −3185.8i+ 4222j+ 8422k N ·mm
2.76 99.0 mm
2.78 339 N ·m
2.80 R = 900 N, C0 = 93533 N ·mm
2.82 (c) and (e)
2.84 (a) R = 120 N

⏐�, C R = 56 N ·m CCW;
(b) FA = 253 N

�⏐, FB = 373 N
⏐�

2.86 R = 25.0i− 133.3j N, CR = 6300 N ·mm
2.88 R = 100 N

�⏐, CR = 60i− 50j N ·m
2.90 R = P = −33.3i− 22.2k N,

CR = −157.3i− 10.6j+ 166.4k N ·m
2.92 R = 15.75i− 10.77j+ 42.43k N,

CR = 136.33i+ 29.54j+ 112.58k N ·m
2.94 97.9 N
2.96 T1 = 79.4 N, T2 = 151.6 N, T3 = 220.3 N
2.98 65.8 N
2.100 (a) 1200j+ 1200k N ·m; (b) 1477 N ·m
2.102 (a) Show that F ·C = 0; (b) (−36mm, −48mm, 0)

2.104 x = L/2, R = P
�⏐

2.106 107.3 N
2.108 −120i− 80j− 80k N ·m

Chapter 3

3.2 R = 56 kN
�⏐, C R = 266 kN ·m CCW

3.4 R = 770 N
�⏐, C R = 17280 N ·mm CW

3.6 P = 1109i− 750j N, b = 117 mm
3.8 R = 200k N, CR = 2614.4i− 3438.3j N ·mm;
3.10 (a) R = 10i+ 30j N, CR = −900j N ·mm;

(b) R = 20i+ 30j+ 15k N, CR = 0;
(c) R = 10i+ 30j N, CR = −900j N ·mm;
(d) R = 0, CR = −2250i+ 1200j N ·mm;
(e) R = 0, CR = −2250i+ 1200j N ·mm;
(f) R = 0, CR = 0; (a) and (c) are equivalent, (d) and
(e) are equivalent

3.12 R = −13.7i− 50.3j+ 25.7k kN,
CR = 102.9i+ 150.0j+ 54.9k kN·m

3.14 R = −36i− 30k N, CR = 15i− 162k N ·m
3.16 (1) R = 300i N intersecting y-axis at y = 3 m;

(2) R = 200i− 200j N intersecting x-axis at
x = −4 m;
(3) R = −600i− 400j kN passing through O;
(4) R = −600i+ 800j N intersecting x-axis at
x = −30 m

3.18 P = 348 N, θ = 33.7◦
3.20 P = 45.4 N, R = 175.3i− 75.0j N
3.22 (a) C R = 450 N ·m CCW; (b) R = 207i N

intersecting y-axis at y = −2.17 m
3.24 (a) R = −60i N acting through O;

(b) R = −60i N intersecting y-axis at y = 1.5 m
3.26 C = 54 N ·m CCW, R = 400 N→
3.28 P1 = 103.7 kN, P2 = 49.8 kN, P3 = 82.9 kN
3.30 (a) R = −50k N passing through point (4 m, 5 m, 0);

(b) R = 50k kN passing through point (5 m, 0, 0);
(c) R = 40k N passing through point (10 m, 8 m, 0)

3.32 R = 82i− 1411j+ 406k N at the point of
concurrency

3.34 P1 = 805 N, P2 = P3 = 338 N
3.36 CR = 18i− 12j kN ·m
3.38 P1 = 28.8 N, P2 = −16.8 N, C = 5400 N ·mm
3.40 R = −380k N passing through point

(−1.474 m, −1.001 m, 0)
3.42 P = 1063 N, Q = 915 N, R = −1425j− 3660k N
3.44 R = 250i+ 360j− 400k N,

CR
t = 246i+ 354j− 393k N ·m, passing through

point (0.991 m, −2.39 m, 0)

3.46 R = 9.64 kN acting at center of sign
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3.48 R = 15 200 N
⏐�, x̄ = 8.75 m

3.50 R = (−w0L/4)(i+ j), x = 0.833L
3.52 R = −76 970j N passing through point

(59.1 m, 0, 135.6 m)
3.54 R = (−237i− 45.0j)× 103 N acting through point

(−24.3 m, 0)

3.56 343i+ 201j N
3.58 R = −400k kN, x = 1.0 m, y = 1.125 m
3.60 (4.67 m, 5.33 m, 0)

3.62 (a) R = −200i+ 300j+ 150k N,
CR = 1250i+ 600j+ 1000k N ·m;
(b) R = −200i+ 300j+ 150k N,
CR = −104.9i+ 157.4j+ 78.7k N ·m,
passing through point (−2.95 m, 9.03 m, 0)

3.64 P = 38.9 kN, R = 125.5i kN
3.66 R = 131.3i+ 210j+ 221k N,

CR = −66963i− 6303.2j− 102700k
3.70 T1 = 654 N, T2 = 425 N, R = −1441 N

Chapter 4

4.2 3 unknowns
4.4 4 unknowns
4.6 (a) 3 unknowns; (b) 4 unknowns; (c) 3 unknowns;

(d) 3 unknowns
4.8 3 unknowns
4.10 4 unknowns
4.12 θ = 33.7◦, NA = 0.555W , NB = 0.832W
4.14 179.3 N
4.16 5754 N ·mm
4.18 RB = 2940 N, Cx = 1766 N, Cy = −883 N
4.20 39.0◦
4.22 T = 112.2 N, Ax = −38.4 N, Ay = 182.4 N
4.24 T1 = 654 N, T2 = 490.5 N, T3 = 817.5 N
4.26 NB = 43.3 N, Ax = 43.3 N, Ay = 150 N
4.28 NB = 3300 N, Ax = 0, Ay = 2400 N
4.30 5.36P
4.32 RA = 0, RB = 1.0 kN

�⏐
4.34 TAB = 173.2 N, TBC = 3637.3 N
4.36 533 N
4.38 P = 340 N, C = 101.9 N ·m
4.40 RA = RB = 960 N
4.42 6.43 N
4.44 P = 5W /8 (θ does not appear in the

expression for P)

4.46 (a) RA = 647 N, NB = 858 N; (b) 2.61 m

4.48 T = 13.66 N, RA = 27.4 N
4.50 NA = 434 N, C = 985 N
4.52 TA = 290.9 N, TB = 1590.3 N, TC = 1743.6 N
4.54 1.975 m
4.56 1627 N
4.58 238 N
4.60 50.4 mm
4.62 (a) 6 unknowns, 6 independent eqs.;

(b) 8 unknowns, 8 independent eqs.;
(c) 8 unknowns, 8 independent eqs.

4.64 6 unknowns, 6 independent eqs.
4.66 6 unknowns, 6 independent eqs.
4.68 9 unknowns, 9 independent eqs.
4.70 (No answer)
4.72 (No answer)
4.74 5.03 kN
4.76 1416 N
4.78 1.5W cot θ
4.80 RA = 411 N, RC = 416 N

4.82 NA = 55.6 kN, NB = 10.12 kN, NC = 32.4 kN

4.84 1000 N
4.86 T = 3530 N, NB = 6530 N
4.88 1373.3 N
4.90 36000 N
4.92 188.35 N
4.94 24.0 N ·m
4.96 (a) TA = 338 N, TB = 618.6 N;

(b) NA = 370.5 N, NB = 313.4 N

4.98 2690 N
4.100 PBC = 100 N, PBD = 200 N, E = 197 N

4.102 93409 N ·mm
4.104 21.2 N
4.106 138995 N at A, 158150 N at C
4.108 PAB = 3.13 MN, PCD = 5.50 MN
4.110 877 N
4.112 A = 13435 N, C = 11635 N, E = 6718 N
4.114 55.6 mm
4.116 E = 6P
4.118 10P
4.120 6714 N
4.122 RC = 848.5 N, NB = 600 N
4.124 29.6 mm
4.126 14.48◦
4.128 17.5 mm
4.130 (a) 289.4 N; (b) 192.4 N
4.132 PAB = 0.6P (T), PAC = 0.8P (C),

PBC = 0.64P (T), PCD = 0.48P (C)
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4.134 PAE = 14087 N (C), PAB = 11000 N (T),
PBC = 600 N (T), PBE = 9000 N (T),
PCE = 6708.7 N (T), PCD = 11180 N (T),
PDE = 11526 N (C)

4.136 PAB = 358 kN (T), PAD = PDE = 320 kN (C),
PBD = 160 kN (T), PBC = 537 kN (T),
PBE = 178.9 kN (C), PCE = 240 kN (C)

4.138 PAB = 11.87 kN (C), PAD = 8.39 kN (T),
PBC = 6.21 kN (C), PCD = 4.0 kN (T),
PBD = 5.66 kN (C), PDE = 4.39 kN (C),
PCE = 8.78 kN (C)

4.140 PAB = 979 kN (T), PBC = 861 kN (T),
PBD = 171 kN (T), PCD = 950 kN (C)

4.142 0.64 m
4.144 PHC = 0.901P (T), PHG = 0.901P (C)
4.146 16000 N (T)
4.148 1.25P (T)
4.150 PBC = 13 420 N (C), PBG = 4470 N (C),

PFG = 16 000 N (T)
4.152 PEF = 240 kN (C), PNF = 82.0 kN (T),

PNO = 187.5 kN (T)
4.154 PBG = 0.250P (T), PCI = 0.354P (T),

PCD = 0.750P (C)
4.156 (PBC)max = 168.0 kN, θ = 45◦
4.158 PCD = 12.75 kN (T), PDF = 7.39 kN (C)
4.160 P = 5170 N, Q = 370 N
4.162 PDE = 40 kN (T), PAD = 0, PAC = 50 kN (C)
4.164 PCD = 4.0P (T), PIJ = 4.0P (C),

PNJ = 0.559P (C)
4.166 PBC = 4.47P (C), PBG = 2.0P (C)
4.168 PEF = 1.828W (T), PKL = 2.83W (C)
4.170 W b/

√
R2 − b2

4.172 0.366WL
4.174 4.39 kN
4.176 A = D = 4.22 kN
4.178 15.12◦
4.180 (a) 361 kN (C); (b) 300 kN (T);

(c) 631 kN (T)
4.182 65.4 N
4.184 (a) 375 N (T); (b) 4875 N (T)
4.186 178 N
4.188 643 N

Chapter 5

5.2 5 unknowns
5.4 6 unknowns

5.6 6 unknowns
5.8 6 unknowns
5.10 12 unknowns
5.12 6 unknowns
5.14 12 770 N
5.16 27.3 kN
5.18 TA = TB = 145.8 N, TC = 134.9 N,

TD = 61.3 N
5.20 T = 473 N, A = 249 N
5.22 TBC = 5.82 kN, TBD = 14.95 kN, RA = 18.66 kN
5.24 14.04◦
5.26 PCB = 9690 N (T), PCE = 8050 N (T)
5.28 PAD = 29.2 kN (C), PCD = 0,

PBD = 65.0 kN (T)
5.30 C= 400k N, D = −400k N
5.32 PEF = 1000 N (C), C = 318 N
5.34 286 N
5.36 TCD = 193.5 N, A = 15.7i+ 86.5j+ 83.9k N,

B = 157.3i+ 6.14k N
5.38 a = 3.43 m, b = 1.93 m
5.40 P = 51.4 N, A = 87.0k N, B = 134.4k N
5.42 T = 104.4 N, A = 39.3 N
5.44 PBD = 1.786P , PBE = 1.515P
5.46 109.5 N
5.48 PBE = 800 N (T), PCF = 640 N (C)
5.50 PCB = 171.6 N (C), PCD = 671 N (T)
5.52 4600 N
5.54 T = 126.4 N, NB = 164.2 N
5.56 T = 161.3 N, A = 12.0 N, B = 12.0 N,

C = 140.5 N
5.58 8600 N
5.60 T = 4750 N, A = 2000j N
5.62 T = 149.5 N, B = 188.4 N

Chapter 6

6.2 P1 = 0, V1 = 40 kN, M1 = 60 kN ·m
6.4 P1 = 240 N (C), V1 = 0, M1 = 600 N ·m,

P2 = 0, V2 = 60 N, M2 = 300 N ·m
6.6 P1 = V1 = 0, M1 = 720 N ·m, P2 = 0,

V2 = 72 N, M2 = 360 N ·m
6.8 P1 = 28 N (T), V1 = 0, M1 = 840 N ·mm,

P2 = 34.6 N (T), V2 = 8 N, M2 = 400 N ·mm
6.10 P1 = 644 N (C), V1 = 0, M1 = 162 N ·m,

P2 = 644 N (C), V2 = 540 N, M2 = 324 N ·m
6.12 M2 = 135.0 N ·m, P2 = 969 N, V2 = 300 N
6.14 P3 = 255 N (C), V3 = 0, M3 = 29.8 N ·m
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6.16 P1 = 50 N (T), V1 = 0, M1 = 18000 N ·mm,
P2 = 50 N (C), V2 = 37.5 N, M2 = 4500
N ·mm

6.18 P2 = W x /(
√

5a) (T), V2 = W x /(2
√

5a),
M2 = 3W x /4

6.20 P1 = 555 N (C), V1 = 832 N, M1 = 4000 N ·m
6.22 V = C0/L , M = −C0 + C0x /L
6.24 V = −w0x + w0x2/(2L),

M = −w0x2/2+ w0x3/(6L)

6.26 AB: V = Pb/(a − b), M = Pbx /(a + b); BC:
V = −Pa/(a + b), M = Pa [1− x /(a + b)]

6.28 AB: V = −120x N, M = −60x2 N ·m; BC:
V = −960 N, M = −960x + 3840 N ·m

6.30 AB: V = −120x N, M = −60x2 N ·m; BC:
V = 810− 120x N,
M = −60x2 + 810x − 2430 N ·m

6.32 AB: V = 29− 8x kN, M = 29x − 4x2 kN ·m;
BC: V = −11 kN, M = 88− 11x kN ·m

6.34 AB: V = P/3, M = Px /3; BC: V = −2P/3,
M = P(L − 2x)/3; CD: V = P/3,
M = −P(L − x)/3

6.36 AB: V = 12 kN, M = 12x kN ·m; BC: V = 0,
M = 48 kN ·m; CD: V = M = 0

6.38 AB: V = 670− 60x N, M = 670x − 30x2

N ·m; BC: V = −230− 60x N,
M = −30x2 − 230x + 3600 lb ·N; CD:
V = 1480− 60x N,
M = −30x2 + 1480x − 16 920 N ·m

6.40 AB: V = (P/2) sin θ , M = (P R/2) (1− cos θ);
BC: V = − (P/2) sin θ ,
M = (P R/2) (1+ cos θ)

6.42 (1) For 0 < x < L/2: V = P/2, M = Px /2; for
L/2 < x < L: V = −P/2, M = P(L − x)/2;
(2) For 0 < x < L/2: V = −Px /L ,
M = Px /2; for L/2 < x < L:
V = P(L − x)/L , M = P(L − x)/2

6.44-6.62 (No answers)
6.64 1.043 GN
6.66 s = 86.0 m, T = 960 kN
6.68 s = 7.75 m, H = 2.00 m
6.70 (a) 440 N; (b) 33.7 m
6.72 0.338
6.74 36.4 kg
6.76 35.9 m
6.78 26.7 m
6.80 h = 8.13 m, TBC = 360.5 N, TCD = 500 N
6.82 β2 = 27.8◦, β3 = −3.53◦, TAB = 5.04 kN,

TBC = 4.36 kN, TCD = 3.87 kN

6.84 13.03 m
6.86 P = 48.0 kN, TAB = 26.8 kN, TBC = 12.0 kN,

TCD = 16.97 kN
6.88 0.420
6.90 1.50 kN

Chapter 7

7.2 29.3 N ≤ P ≤ 109.3 N
7.4 10.57◦
7.6 36.9◦
7.8 297 N
7.10 (a) 5.89◦; (b) 7.10◦
7.12 6.74 N
7.14 (a) NA = 94.2 N, NB = 141.2 N, NC = 377 N;

(b) 0.50
7.16 Cylinder cannot be at rest
7.18 0.270
7.20 153.2 N
7.22 Disk is in equilibrium
7.24 (a) Plank will slide at A;

(b) Plank will not move
7.26 1.688 m
7.28 1.88 m
7.30 176.6 N
7.32 115.3 N
7.34 675 N ·mm
7.36 47.1◦
7.38 Blocks tip
7.40 1730.5 N
7.42 10.83 kN
7.44 0.268
7.46 6.57 m
7.48 250 mm
7.50 18.15◦
7.52 27.0◦
7.54 (a) 41.2 N ·m; (b) 21.7 N ·m
7.56 (a) 1086 N; (b) 0.711 N ·m
7.58 (a) 3758.3 N ·mm; (b) 0
7.60 P = 76.2 N, C = 478710 N ·mm
7.62 64.1 N
7.64 11.69 N < P < 77.0 N
7.66 40.3◦
7.68 0.201
7.70 (8/15)μsPR
7.72 (a) 6.01 N ·m; (b) 5.89 N ·m
7.74 4.73 N ·m
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7.76 733.12 mm
7.78 55.5 N
7.80 23.54 N
7.82 1.461W
7.84 β = 71.6◦, P = 1549.9 N
7.86 22.6◦
7.88 2.0 m
7.90 (a) 1758.8 N ·mm; (b) 1086.4 N ·mm
7.92 0.325
7.94 Bars are in equilibrium

Chapter 8

8.2 x̄ = 2.86 m, ȳ = 0.625 m
8.4 x̄ = 0.1543 m, ȳ = 0.281 m
8.6 x̄ = 26.46 mm, ȳ = 18.23 mm
8.8 x̄ = 63.3 mm, ȳ = 36.67 mm

8.10 (a) x̄ = ȳ = 4

3π

3R2 + 3Rt + t2

2R + t
8.12 x̄ = ȳ = 2R/π
8.14 x̄ = 24.7 mm, ȳ = 0
8.16 x̄ = 0, ȳ = 5.57 mm
8.18 x̄ = 20.2 mm, ȳ = 9.81 mm
8.20 x̄ = 87.2 mm, ȳ = 59.6 mm
8.22 h = √5R/2

8.24 x̄ = ȳ = b2 + bt − t2

2(2b − t)
8.26 h = ȳmax = 2.34 m
8.28 x̄ = −3.6 mm, ȳ = 50.9 mm
8.30 x̄ = 1.0 m, ȳ = 1.5 m
8.32 x̄ = 0, ȳ = −10.30 mm
8.34

√
3

8.36 x̄ = 32.8 mm, ȳ = 35.9 mm
8.38 119.7 m
8.40 x̄ = ȳ = 0, z̄ = R/2
8.42 x̄ = z̄ = 0, ȳ = 35 mm
8.44 x̄ = z̄ = 0, ȳ = h/3
8.46 R/π

8.48 x̄ = 2(2h1 + h2)

3(3h1 + h2)
a, ȳ = 2(2h1 + h2)

3(3h1 + h2)
b

8.50 x̄ = −(2/π)2 R, ȳ = 2R/π , z̄ = h/3
8.52 x̄ = 99.5 mm, ȳ = 40 mm, z̄ = 17.5 mm
8.54 x̄ = 46.7 mm, ȳ = 40.0 mm, z̄ = 28.9 mm
8.56 x̄ = 124.1 mm, ȳ = 55.0 mm, z̄ = 41.1 mm
8.58 −29.4 mm
8.60 x̄ = −5.15 mm, ȳ = z̄ = 0
8.62 x̄ = 77.8 mm, ȳ = 161.1 mm, z̄ = 100.0 mm
8.64 x̄ = ȳ = 7.70 mm, z̄ = 2.70 mm
8.66 166.7 mm
8.68 x̄ = 0, ȳ = 17.4 mm, z̄ = 32.1 mm

8.70 x̄ = 108.7 mm, ȳ = z̄ = 0
8.72 x̄ = 12 m, ȳ = 3.83 m, z̄ = 0
8.74 x̄ = z̄ = 0, ȳ = 1.640 m
8.76 V = 125.66× 104 mm3, A = 76.59× 103 mm2

8.78 A = 25765.5 mm2, V = 366510.8 mm3

8.80 5027.2 mm2

8.82 1487020.7 mm3

8.84 6.37 m
8.86 7850 m3

8.88 1.702
8.90 x̄ = ȳ = 0, z̄ = 0.788 m
8.92 x̄ = 25 mm, ȳ = 41.37 mm, z̄ = 8.5 mm
8.94 109.2 mm
8.96 x̄ = 10.6 mm, ȳ = 53 mm, z̄ = 16.6 mm
8.98 x̄ = 0, ȳ = −3.12 mm, z̄ = 5.21 mm
8.100 4.22 m
8.102 27.7◦
8.104 R = 609 N, x̄ = 8.16 m
8.106 R = 2w0a, x̄ = 0, ȳ = πa/4
8.108 R = 0, C R = 9000 N ·m CCW
8.110 R = 149.1 N, x̄ = 0.0483 m,

ȳ = 0.0644 m
8.112 (a) πa2 p0; (b) πa2 p0; (c) 2.22a2 p0;

(d) (ap0/2)
√

4h2 + π2a2

8.114 1.111p0d2

8.116 (a) γ c(h2 + b2)/6; (b) γ c(h2/6+ 4b2/15);
(c) γ c(h2/6+ b2/2)

8.118 Safe against tipping
8.120 R = 0.622 N, ȳ = 0, z̄ = 28.8 mm
8.122 739019 N
8.124 A = 3.22× 106 N, NB = 3.79× 106 N
8.126 x̄ = 8.84 mm, ȳ = 0, z̄ = 21.45 mm
8.128 52.1× 103 mm2

8.130 TA = TC = 18.34 N, TB = 15.04 N
8.132 x̄ = (11/28)b, ȳ = (93/280)h
8.134 44.3 mm
8.136 (a) 27646 mm2; (b) 27646 mm2

8.138 x̄ = 0, ȳ = −5 mm
8.140 R = 22072.5 N, ȳ = 0, z̄ = 0.884 N
8.142 x̄ = 0, ȳ = 47.0 mm

Chapter 9

9.2 A = 360 mm2, Īx = 24× 103 mm4,
Īy = 26× 103 mm4

9.4 826 mm
9.6 21.3× 104 mm4

9.8 R4α/2
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9.10 Ix = 1/28 m4, Iy = 1/20 m4

9.12 23.15× 103 mm4

9.14 b = 73.5 mm, h = 128.7 mm
9.16 Īx = 157.8× 104 mm4, Īy = 9.94× 104 mm4

9.18 Ix = 48.7× 106 mm4, Iy = 18.42× 106 mm4

9.20 12.96× 106 mm4

9.22 6.230× 107 mm4

9.24 1.689× 105 mm4

9.26 0.433R
9.28 1.0
9.30 32.7◦
9.32 Ix = 63.0× 106 mm4, Iy = 7.90× 106 mm4

9.34 h2b2/12
9.36 t R3/2
9.38 −120× 103 mm4

9.40 −1.131× 106 mm4

9.42 −61.4× 106 mm4

9.44 −323× 103 mm4

9.46 792 mm4

9.48 −2.76× 109 mm4

9.50 (a) I1 = 16 m4, I2 = 9 m4, x- and y-axes are
principal axes; (b) Iu = 14.25 m4, Iv = 10.75 m4,
Iuv = 3.03 m4

9.52 Ī1 = 103.7 m4, Ī2 = 29.6 m4, θ1 = 29.9◦,
θ2 = 119.9◦

9.54 Iu = 1817 m4, Iv = 3180 m4,
Iuv = −183.0 m4

9.56 Ix = 6800 m4, Iy = 5800 m4,
Ixy = −1200 m4

9.58 60× 106 mm4

9.60 1.907× 106 mm4

9.62 Iu = Iv =
√

3a4/96, Iuv = 0 for all θ. Therefore,
every axis is a principal axis.

9.64 (a) I1 = 0.983× 106 mm4; (b) θ1 = 28.5◦,
θ2 = 118.5◦

9.66 θ1 = −18.84◦
9.68 I1 = 143.6× 106 mm4, I2 = 19.8× 106 mm4,

θ1 = 41.4◦, θ2 = 131.4◦
9.70 Iu = 33.3× 106 mm4, Iv = 71.0× 106 mm4,

Iuv = 22.5× 106 mm4

9.72 Iu = 115.2 m4, Iv = 777 m4, Iuv = 259 m4

9.74 Iu = 2× 106 mm4, Iv = 28× 106 mm4, Iuv = 0
9.76 (a) 45◦; (b) Iu = Iv = 5× 106 mm4,

|Iuv| = 3× 106 mm4

9.78 (a) 0.983× 106 mm4; (b) θ1 = 28.5◦, θ2 = 118.5◦
9.80 (a) Ix = 56.2× 106 mm4, Iy = 33.8 ×106 mm4;

(b) Iu = 33.2× 106 mm4, Iv = 56.8× 106 mm4

9.82 Īx = 4.084× 106 mm4, Īy = 0.816× 106 mm4

9.84 I1 = 380× 106 mm4, I2 = 120× 106 mm4,
θ1 = 56.3◦, θ2 = 146.3◦

9.86 3.21%
9.88 Īx = 645 mm4, Īy = 1438 mm4, Īxy = −442 mm4

9.90 Īx = 1.544× 106 mm4, Īy = 0.287× 106 mm4,
Īxy = 0

9.92 Ix = Iy = 21.9 m4, Ixy = 21.3 m4

9.94 Iu = 90.5 m4, Iv = 313.5 m4, Iuv = −69.7 m4

Chapter 10

10.2 (WL sin θ)/2
10.4 3.53 kN ·m
10.6 85 N

10.8
P(a + b)

2b
cot θ

10.10 1630.6 N
10.12 1.697 kN
10.14 624 N ·mm
10.16 24 N ·m
10.18 2.07 kN ·m
10.20 (No answer)
10.22 600 tan θ N
10.24 400 N ·m
10.26 55.2 N
10.28 120 kN
10.30 240 N
10.32 15.37 kN
10.34 50.93 N
10.36 Gripping force = 6.0P
10.38 (a) 275 mm directly below B; (b) 34800 N ·mm
10.40 Unstable
10.42 θ = 32.5◦ is stable
10.44 h/R < 1/

√
2

10.46 θ = sin−1 W /(2kL), stable if Lk/W >
√

3/2
10.48 b > 1

2

√
WL/k

10.50 θ = 90◦ is stable, θ = 2.87◦ is unstable
10.52 Stable
10.54 θ = 45◦ is unstable
10.56 m =2.06 kg, unstable
10.58 θ = 79.1◦, stable
10.60 θ = 29.6◦ is unstable, θ = 53.1◦ is stable
10.62 θ = 6.15◦
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A
Absolute system of units, 5
Acceleration, Newton’s second law for, 5
Active-force diagram, 530
Addition:

of couples, 76
of vectors:

parallelogram law for addition,
12–13

polygon rule for addition, 12
Angle, between vectors, 27–28
Angle of friction:

angle of kinetic friction, 369–371
angle of static friction, 369–371
cone of kinetic friction, 369–371
cone of static friction, 369–371

Applied forces, 144
Area method:

concentrated forces and couples, 307
distributed loading, 303–304
equations for, 307
theorems for, 304–305

Areas, plane (See Plane areas)
Axial forces:

definition of, 215
in disk friction, 386

Axis, centroidal, 283
Axis of the wrench, 119

B
Ball and socket joint, 239–240
Beams:

area method for:
concentrated forces, 307
couples, 307
distributed loads, 303–304
equations for, 304

bending moment equations and
diagrams for, 293

definition of, 291

differential equilibrium equations for,
304–305

internal forces systems in:
analysis of, 282–285
determination of, 282

loads and supports for, 291
shear force equations and diagrams for,

293
sign convention for analysis of internal

forces in, 292–293
Bending moment:

area method diagram and, 303
definition of, 283
diagrams (M-diagrams) for, 303
equations (M-equations) for, 303

Built-in (cantilever) support, 241, 242

C
Cables:

catenary, 321–322
under concentrated loads:

horizontal spacing given, 331–332
segment length given, 332
sign conventions for, 331

under distributed loads, 318-322
flexible:

definition of, 318
equations for, 319–322
guidelines for problem solution, 322
parabolic, 319
(See also Flexible cable)

Catenary cable, 321–322
Center of gravity:

as centroid of volume for homogeneous
body, 145, 443

for composite bodies, 444
contrasted with center of mass, 442–443
definition of, 442
weight and, 443
(See also Center of mass)

Center of mass:
of composite bodies, 444
contrasted with center of gravity,

442–443
definition of, 443–444

Center of weight (See Center of gravity)
Centroidal axis, 283
Centroids:

center of gravity and, 442–445
center of mass and, 442–445
of common geometric shapes, 132
of composite shapes:

method of composite areas, 405
method of composite curves, 405

coordinates for three-dimensional
shapes and, 419–422

of curved surfaces, volumes, and space
curves:

first moment of the area for
three-dimensional shapes,
419–422

method of composite shapes for, 421
symmetry and, 420

of plane areas and plane curves:
centroid of the area, 401
centroid of the curve, 403–406
first moments of the area, 402
first moments of the curve, 403
integration techniques for, 403–404
moment of inertia, 402

of surface loads, 130
table of plane figures, 406

Coefficient of kinetic friction, 343
Coefficient of static friction, 342
Components:

definition of, 18
orthogonal, 28
rectangular, 18–21
scalar, 19
vector, 19

576
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Composite areas, 405, 421, 476, 493
Composite bodies:

center of gravity of, 444
center of mass of, 444
coplanar equilibrium analysis of,

179–184
Composite curves, 405, 421
Composite shapes, 405, 421
Composite volumes, 421
Compression, 214
Concentrated force:

in beams, 307
in cables, 330
contrasted with distributed

normal loads, 128
definition of, 38

Concentrated loads (See
Concentrated force)

Concurrent force systems:
coplanar, 107, 154
reduction of, 39–40
resultant forces of, 40
three-dimensional, 117, 250

Cone of kinetic friction, 369–371
Cone of static friction, 369–371
Conservative systems, 548
Constraints:

improper, 252
kinematic, 529

Conversion factors, units, 6
Coordinate systems:

kinematically independent
coordinates, 529

left-handed, 30
local, 293
rectangular reference frame and, 18–19
right-handed, 30
(See also Reference frames)

Coplanar equilibrium analysis:
composite body:

analysis, 179–184
equations for:

concurrent force systems, 154
general coplanar force systems, 153
parallel coplanar force systems, 154

free-body diagram for, 144–147
plane trusses:

assumptions for, 214
method of joints, 215–218
method of pins, 217
method of sections, 224–226

single-body:
analysis, 144–155

support reactions in, 144–147

three-force bodies, 202–203
two-force bodies, 201–202

Coplanar force systems:
concurrent, 107, 154
general, 106–107, 153
parallel, 108, 154

Coplanar loads:
bending moment, 283, 291–292
normal force, 283, 291–292
shear force, 283, 291–292
torque, 283

Coplanar support reactions:
built-in support, 147
flexible cable, 145
frictionless surface, 145
pin support, 147
roller support, 145
surface with friction, 145

Coulomb’s theory of dry friction:
dynamic case, 343
impending sliding case, 343
impending tipping case, 361–362
limitations of, 344
static case, 342
(See also Dry friction)

Couple of transfer, 87
Couple-vector, 76
Couples:

addition of, 76
in beams:

area method and, 307
bending moment in, 283
torque in, 283

couple-vector, 76
definition of, 73
equivalent, 75
line of action, changing:

couple of transfer, 87
force-couple system, 87

moment of a couple about a point,
73–74

moment of a couple as a free
vector, 74

notation and terminology for, 75–76
plane of a couple, 73
resolution of, 76
scalar method for, 73
vector method for, 74
virtual work of, 526

Cross (vector) product, 29–31
Curved surfaces:

centroids of, 419–437
uniform pressure and, 453–454

Curves, plane (See Plane curves)

Curves, space (See Space curves)
Cylindrical roller on friction surface or on

guide rail, 238–240

D
Densities table, 567
Diagrams:

active-force diagram, 530
bending moment (M-diagrams), 293
load diagram:

area method and, 303
line loads along plane curves,

452–453
line loads along straight lines,

130–131
shear force (V-diagrams), 293

Differential equilibrium equations, 304
Dimensions, in Newtonian mechanics, 4–5
Direction cosines:

definition of, 18–19
writing vectors in rectangular form, 21

Disk friction:
axial force in, 386
new surfaces, 387
torque requirements in, 386
worn surfaces, 387–388

Distributed loads:
beams, 303–306
flexible cables, 318–322

Distributed normal loads:
computation of, 131–132
contrasted with concentrated forces, 128
for fluid pressure, 454–455
general case of, 450–451
line loads along plane curves:

load diagram for, 452–453
load intensity for, 452–453

line loads along straight lines:
load diagram for, 130–131
load intensity for, 130

pressure as example of, 128
resultants of, 128–132
surface loads:

centroid of the volume and, 130
on flat surfaces, 451–452
load area of, 129
load intensity of, 129
uniform pressure on curved surfaces,

453–454
Dot (scalar) product:

definition of, 27
finding angle between two vectors, 28
orthogonal components and, 28
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Dry friction:
angle of kinetic friction, 369–371
angle of static friction, 369–371
coefficient of kinetic friction, 343
coefficient of static friction, 342
cone of kinetic friction, 371
cone of static friction, 370
Coulomb’s theory of, 342–345

dynamic case, 343
impending sliding case, 343
impending tipping case, 361–362
limitations of, 344
static case, 342–343

disk friction:
axial force in, 386
new surfaces, 387
torque requirements in, 386
worn surfaces, 387–388

for flat belts, 379–381
method of analysis by problem type,

345, 362
for ropes, 379–381
for square-threaded screws, 372–373
for wedges, 371

Dynamic friction force, 343
(See also Kinetic friction)

E
Elastic potential energy, 549
Engineering, defined, 1–2
Engineering mechanics:

definition of, 1–2
problem analysis in, 2–3

Equal and opposite pin reactions, 183, 184
Equality of vectors, 12
Equations:

for area method, 304–307
for bending moment (M-equations), 293
for composite volumes, 421
equilibrium:

coplanar, 144
differential equilibrium equations

for beams, 304
three-dimensional, 237

for flexible cable, 318–320
independent equilibrium equations:

all forces intersect an axis, 252
concurrent force systems, 154
concurrent, three-dimensional

force system, 250
general, coplanar force systems, 153
general, three-dimensional force

system, 249–250

parallel, coplanar force systems, 154
parallel, three-dimensional force

system, 251–252
for moment of a couple about

a point, 73
for moment of a force about

a point, 49–51
for moment of a force about

an axis, 60–64
for reducing force system to

force-couple system, 97–99
for resultant of concurrent force

systems, 39–40
transformation equations for moments

and products of inertia, 500
Equations of constraint, 529
Equilibrium analysis:

coplanar:
composite bodies, 179–213
concurrent force systems, 154
free-body diagrams for, 144–147
general coplanar force systems, 153
independent equilibrium equations

for, 153–155
parallel coplanar force systems, 154
plane trusses, 214–226
single-body problems, 166
support reactions in, 144–147
three-force bodies, 202
two-force bodies, 201

definition of equilibrium, 144, 238
equations of equilibrium, 144, 238
free-body diagram:

applied forces on, 144
definition of, 144
determining support reactions,

144–145
procedure for constructing, 145
reactive forces on, 144

three-dimensional:
free-body diagrams for, 238–242
improper constraints in, 252
independent equilibrium equations

for, 249–252
method for, 263
steps in analysis, 253
support reactions in, 238–242

trusses, equilibrium of pins, 217
trusses, method of joints, 215–218
trusses, method of sections, 224–226
writing and solving equations:

method of analysis, 155
statically determinate force

systems, 155

statically indeterminate force
systems, 155

Equilibrium and stability of conservative
systems:

definition of conservative systems, 548
elastic potential energy, 549
gravitational potential energy, 549
potential energy, 548
stationary potential energy and stability,

549–550
Equilibrium, defined, 144, 238
Equilibrium equations:

coplanar, 144
differential equilibrium equations

for beams, 306
three-dimensional, 238

Equivalence:
of couples, 75
definition of, 38
of force systems:

general, 39
statically equivalent force systems,

106
of vectors:

fixed vectors, 38
free vectors, 38
sliding vectors, 38

Expansion by minors using the first row,
31

External effects:
in beams, 282
of a force, 38–39
resultant of a force system and, 105

F
First moments of an area:

Pappus-Guldinus theorems and,
438–439

for plane figures, 401–406
for three-dimensional shapes, 419–422

First moments of a curve:
Pappus-Guldinus theorems and,

438–439
for plane curves, 401–406

Fixed vector:
definition of, 38
force as, 38–39

Flat belts, dry friction analysis, 379–381
Flat surfaces, distributed normal loads,

451
Flexible cable:

catenary, 321–322
coplanar support reactions, 144–146
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definition of flexible, 318
equations for, 319–322
guidelines for problem solution, 322
parabolic, 319
three-dimensional support reactions

and, 238, 240
Fluid friction, 342, 344
Fluid pressure, distributed normal loads,

454–455
Force-couple system:

changing line of action of a force,
86–87

reduction to, 97–99
scalar equations for determining, 99
vector equations for determining, 98
wrench, 116, 118–119

Force systems:
all forces intersect an axis, 252
concurrent force systems:

reduction of, 39–40
resultant forces of, 40

coplanar:
concurrent, 107, 154
general, 106, 153
parallel, 108, 154
resultants in, 106–108

equivalence of, 39
force-couple system, 86–87
statically determinate, 155
statically equivalent, 106
statically indeterminate, 155
three-dimensional:

concurrent, 117, 250–251
general, 118, 249–250
parallel, 117–118, 251–252
resultants in, 116–119
wrench, 116, 118–119

(See also Force)
Force:

applied, 144
concentrated, 38
definition of, 38
distributed normal loads

(See Distributed normal loads)
as external effects, 38
as fixed vectors, 38
friction, 341
generalized, 548
line of action of:

changing, 86–87
definition of, 38

moment of a force about a point, 49–51
definition of, 49
geometric interpretation of, 49–50

moment arm, 49
moment center, 49
Newton’s second law and, 49
principle of moments

(Varignon’s theorem) for, 51
scalar method for, 51
vector method for, 51

moment of a force about an axis:
definition of, 60–61
geometric interpretation of, 62–64
scalar method for, 64
vector method for, 64

Newton’s second law, 5
point of application of, 38
reactive (reactions):

compared with applied forces, 144
internal reactions at connections,

180–184
internal reactions in members,

179–180
resultants:

coplanar systems, 106–108
definition of, 105
distributed normal loads, 128–132
reduction to a force and a couple,

97–99
three-dimensional systems, 116–119

as sliding vectors, 39
virtual work of, 525–526
working component of, 526
(See also Force systems)

Frames, 143, 179
Frames, reference:

inertial, 4
rectangular, 20

Free-body diagram:
applied forces, 144
coplanar support reactions:

built-in (cantilever) support, 147
flexible cable (negligible weight),

145
frictionless surface (single point

of contact), 145
pin support, 147
roller support, 145
surface with friction (single point

of contact), 145
definition of, 144
internal reactions:

at connections, 180–184
in members, 179–180

pin reactions, 180
procedure for constructing, 144, 242
reactive forces on, 144

three-dimensional support reactions:
ball and socket joint, 239–240
built-in (cantilever) support,

241–242
cylindrical roller on friction surface

or on guide rail, 238–240
flexible cable (negligible weight),

238, 240
friction surface (single point

of contact), 239–240
slider (radial) bearing or hinge, 241
spherical roller or single point of

contact on frictionless surface,
238–239

thrust bearing or hinge, 241–242
universal joint, 241–242

Free vectors:
definition of, 37
moment of a couple as a free vector, 74

Friction:
angle of, 369–373
Coulomb, 342
disk, 386
dry (See Dry friction)
fluid, 342, 344
friction surfaces (single point

of contact), 145–146, 239–240
frictionless surfaces, 145–146, 341
kinetic or dynamic, 343
static, 342–343

Friction force:
analysis of, 345–346
definition of, 341–342
(See also Dry friction)

Friction surface (single point of contact),
145–146, 239–240

Frictionless surface (single point
of contact), 145–146, 342

G
Galilean reference frames, 4
General force systems:

coplanar, 106, 153–154
three-dimensional, 118–119, 249–253

General virtual plane motion, 525
Generalized forces, 548
Geometric center of the region

(See Centroids)
Geometric interpretation:

of moment of a force about a point,
49–50

of moment of a force about an axis,
60–63
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Geometric tables:
centroids of common shapes, 130
inertial properties of plane areas,

472–478
plane figures, 406
surfaces and volumes, 422

Graphic addition, 12
Gravitational potential energy, 549
Gravitational system of measurement, 4
Gravity, weight and, 442 (See also

Center of gravity)

I
Impending sliding:

in dry friction, 343
method of analysis by problem type,

345–346
Impending tipping:

in dry friction, 361–362
method of analysis by problem type,

362
Improper constraints, 252
Independent equilibrium equations:

all forces intersect an axis, 252
concurrent coplanar force systems, 154
concurrent, three-dimensional force

system, 250
general coplanar force systems,

153–154
general, three-dimensional force

system, 249–253
parallel coplanar force systems, 154
parallel, three-dimensional force

system, 251–253
Inertia (See Moment of inertia of a

plane area; Product of inertia of
a plane area)

Inertial reference frames, 4
Instant center of rotation:

body extended in, 540
definition of, 539

Internal force systems:
analysis in beams:

bending moment equations and
diagrams, 293

loading and supports, 291
shear force equations and diagrams,

293
bending moment, 283
normal force, 283
shear force, 283
torque, 283

Internal forces (See Internal reactions)

Internal reactions:
in beams, 282–284
at connections, 180–184
in members, 179–180
normal force, 283
shear forces, 283
in trusses:

method of joints, 215–218
method of sections, 224–226

in two-force body:
compression, 214
tension, 214

J
Joints, in trusses, 216–217

K
Kinematic constraints, 529
Kinematically independent coordinates,

529
Kinematics:

equations of constraint, 529
kinematically independent

coordinates, 529
number of degrees of freedom

(DOF), 529
planar kinematics of a rigid body,

523–526
Kinetic friction:

angle of, 369–371
cone of, 369–371
in dry friction, 342

L
Law of universal gravitation, 6
Laws of particle motion, 3–4
Left-handed coordinate systems, 30
Line loads:

along plane curves:
load diagram, 452–453
load intensity, 452

along straight lines:
load diagram, 130
load intensity, 130

Line of action of a force:
changing:

couple of transfer, 87
force-couple system, 87

definition of, 38
Load area, 129
Load diagram:

area method, 303

line loads along plane curves, 452–453
line loads along straight lines, 130

Load intensity:
definition of, 129, 130
distributed normal loads, 450–455
line loads along plane curves, 452–453
line loads along straight lines, 130
uniform pressure on curved surfaces,

453–454
Load surface, 128–129
Loads:

concentrated, on cables, 330–332
coplanar:

bending moment, 283, 292–293
normal force, 283, 292–293
shear force, 283, 292–293
torque, 283

distributed:
on beams, 303–307
on cables, 318–322

line, 130–131
surface, 128–130
transverse, 291
(See also Distributed normal loads)

M
M-diagrams, 293
M-equations, 293
Machines, 179
Mass center (See Center of mass)
Mass, Newton’s second law and, 5
Measurement:

conversion factors for, 5–6
dimensions, 4
standards:

Système internationale
d’unités (SI), 4

U.S. Customary system, 4
systems:

absolute, 4
gravitational, 4

units, 4
Mechanics:

definition of, 1
Newtonian, 3
quantum, 3
relativistic, 3

Method of composite areas:
determining centroids with, 405
for moment of inertia of a plane area,

476
for product of inertia of a plane area,

493
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Method of composite curves, 405
Method of composite shapes:

applied to curved surfaces, volumes,
and space curves, 421

center of gravity and, 444
centroids by, 405

Method of joints:
equilibrium analysis of joints, 215–218
equilibrium analysis of pins, 217
support reactions, 215
zero-force members, 218

Method of sections, 224–226
Method of virtual work:

active-force diagram for, 530
generalized forces in, 530
implementation of, 529–530

Mohr’s circle:
construction of, 509
properties of, 510
verification of, 511–512

Moment about a point (See Moment of
a force about a point)

Moment about an axis (See Moment of
a force about an axis)

Moment arm, 49
Moment axis (See Moment of a force

about an axis)
Moment center, 49
Moment of a couple about a point, 73–74
Moment of a couple as a free vector, 74
Moment of a force about a point:

definition of, 49
geometric interpretation of, 49–50
moment arm and, 49
moment center and, 49
Newton’s second law and, 49
principle of moments (Varignon’s

theorem) for, 51
scalar method for, 51
special case: moment axis

perpendicular to force, 62
vector method for, 51

Moment of a force about an axis:
definition of, 61–62
geometric interpretation of, 62–64
rectangular components of, 61–62
scalar method for, 64
special case: moment axis

perpendicular to force, 62
vector method for, 64

Moment of couple (See Couples)
Moment of inertia of a plane area:

about the centroidal axis,
473–474

definition of, 471–472
integration techniques for, 475–476
method of composite areas for,

476–478
Mohr’s circle for, 508–512
parallel-axis theorems for,

473–475
polar moment of inertia using, 473
principal moments of inertia:

principal axes, 501
principal directions, 501

radius of gyration, 475
transformation equations for,

500–501
Moments:

bending moment, 283
first moments of an area:

Pappus-Guldinus theorems and, 438
for plane figures, 402
for three-dimensional shapes, 419

first moments of a curve:
Pappus-Guldinus theorems and, 439
for plane curves, 403

moment of inertia of a plane area, 402,
471–472

polar moment of inertia, 472–473
twisting moment or torque, 283

N
Newton, Sir Isaac, 3
Newtonian mechanics:

conversion of units in, 6
inertial reference frames in, 4
law of universal gravitation, 6
laws of particle motion, 4
Newton’s second law, 5
scope of, 3–4
units and dimensions in, 4–5

Newtonian reference frames
(See Inertial reference frames)

Newton’s method, for roots, 563–564
Newton’s second law:

acceleration in, 5
force in, 5
mass in, 5
moment of force about a point and,

49–50
weight in, 5

Newton’s third law, 4, 169
Normal force, 283, 291, 341
Normal loads (See Distributed

normal loads)
Number of degrees of freedom (DOF), 529

Numerical integration:
definition of, 559
Simpson’s rule, 560–561
trapezoidal rule, 560
when to use, 559

O
Orthogonal components, 28

P
Pappus-Guldinus:

Theorem I, 438
Theorem II, 439

Parabolic cable, 319–320
Parallel-axis theorem:

for moments of inertia, 473–475
for polar moments of inertia, 473–475
for products of inertia, 493
transfer distance, 474

Parallel force system:
coplanar, 108, 155
three-dimensional, 117, 251

Parallelogram law for addition:
components of, 12
resolution and, 12
resultants of, 12
triangle law and, 12

Physics, defined, 1
Pins:

equilibrium analysis in trusses,
216–218, 224–226

pin reactions:
equal and opposite, 183–184
not equal and opposite, 184

pin support, 146–147
Planar kinematics of a rigid body:

virtual displacements:
definition of, 524
general virtual plane motion, 525
notation for, 524
virtual rotation about a fixed point,

524
virtual translation, 524

Plane areas:
centroid of an area, 402
first moments of an area, 402
inertial properties of, 477–478
second moments of an area

(moments of inertia), 402
Plane curves:

centroid of a curve, 403
first moments of a curve, 403
Pappus-Guldinus theorems and, 438
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Plane figures, property tables of, 406
Plane motion (See Planar kinematics of a

rigid body)
Plane of the couple, 73
Point of application of a force, 38
Polar moment of inertia:

moments of inertia and, 472–473
parallel-axis theorems for, 473–475

Polygon rule for addition, 12
Position vector, 20
Potential energy:

definition of, 548
elastic, 549
gravitational, 549
principle of minimum potential energy,

550
principle of stationary potential energy,

550
Pressure:

distributed normal loads and, 128
fluid, 454–455
uniform, 453–454

Principal moments of inertia:
principal axes, 501
principal directions, 501

Principia (Mathematical Principles of
Natural Philosophy), 3

Principle of minimum potential energy,
550

Principle of moments, 51
Principle of stationary potential energy,

550
Principle of transmissibility, 39
Principle of virtual work, 525–526
Product of area (See Product of inertia of a

plane area)
Product of inertia of a plane area:

definition of, 492
inertial properties tables for, 477–478
method of composite areas for, 492–493
Mohr’s circle and, 508–512
parallel-axis theorem for, 493
transformation equations for, 500–501

Q
Quadrature (See Numerical integration)
Quantum mechanics, 3–4

R
Radius of gyration, 475
Reactive forces (reactions):

coplanar supports, 145–147

internal reactions:
at connections, 180–184
in members, 179–180

pin reactions, 147, 180–184
support reactions in trusses, 215
three-dimensional supports, 238–242

Rectangular components:
of moment of a force about an axis,

61–62
representation of vectors with, 18–21
vector addition with, 20
writing vectors with, 21

Rectangular coordinate systems:
left-handed, 30
right-handed, 30

Rectangular reference frame, 20
Reduction of concurrent force systems,

39–40
Reference frames:

inertial, 4
rectangular, 18–21

Relative position vector:
definition of, 20
using to write a vector in rectangular

form, 20–21
Relativistic mechanics, 3
Resolution:

of couples, 76
of forces, 12

Resultants of force systems:
concurrent force systems, 39–40
coplanar systems:

concurrent, 107
general, 106
parallel, 108

definition of, 12, 105–106
distributed normal loads

line loads, 130–131
surface loads, 128–130

external effects and, 105
reduction to a force and a couple, 97–99
three-dimensional systems:

concurrent, 117
general, 118–119
parallel, 117–118

Right-handed coordinate systems, 29
Rigid bodies:

equivalent couples and, 75
equivalent force systems and, 39
general plane motion for, 462–463
general virtual plane motion for, 525
instant center of rotation in, 539
resultant of a force system for, 105
virtual work for a system of, 528

Rigid-body equivalent, 39
Roller support, 145
Roots:

definition of, 564
Newton’s method for finding, 564–565
secant method for finding, 565

Ropes, dry friction analysis, 379–381
Rotation:

about a fixed point, 524
instant center of, 539–541
virtual, 524

S
Scalar equations:

for moment of a couple about a point,
73–74

for moment of a force about a point, 51
for moment of a force about an axis, 64
noncoplanar, 238
for reducing force system to

force-couple system, 97–98
for resultant of concurrent force

systems, 39–40
Scalar method (See Scalar equations)
Scalar triple product, 31
Scalar-vector multiplication, 12
Scalars:

compared with vectors, 11, 12
as components, 18–21
dot (scalar) product and, 27
notation for, 10–12
scalar-vector multiplication, 12

Screws:
lead angle of, 372–373
pitch of, 372–373
self-locking, 373
torque required by, 372–373

Secant method, 564–565
Second moment of the area (See Moment

of inertia of a plane area)
Shear force:

definition of, 283
diagram (V-diagram) for, 293, 305
equations (V-equation) for, 293
as part of internal force system of

coplanar loads, 291
SI system (See Système internationale

d’unités)
Simpson’s rule, 405, 560
Single bodies, coplanar equilibrium

analysis of, 144–158
Slider (radial) bearing or hinge, 241
Sliding (See Impending sliding)
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Sliding vector:
definition of, 38
treating force as, 39

Slug, as mass unit, 5
Space curves, 419–437
Spherical roller or single point of contact

on frictionless surface, 238
Spring constant, 549
Standards of measurement:

Système internationale d’unités (SI), 4
U.S. Customary system, 4

Static friction:
angle of, 369–371
coefficient of, 342
cone of, 369–371

Statically determinate force systems:
beams, 291–293
definition of, 155

Statically equivalent force systems, 106
Statically indeterminate force systems:

beams, 291–293
definition of, 155

Stationary potential energy, 549–550
Stiffness, 549
Support reactions:

in beams, 291–293
coplanar:

built-in (cantilever) support, 146–147
determining, 144–145
frictionless surface (single point

of contact), 145–147
pin support, 147
roller support, 145
surface with friction (single point

of contact), 145–147
three-dimensional, 238–242
in trusses, 215

Surface friction:
frictionless surface (single point

of contact), 145
new surfaces and, 387
surface with friction (single point

of contact), 145–147
worn surfaces and, 387–388

Surface loads:
centroid of the volume, 130
load area, 129
load intensity, 129
load surface, 128–130

Surfaces:
flat, 451–452
geometric tables for, 422

Système internationale d’unités (SI), 4–5

T
Tension, 214
Theorems:

area method diagrams and, 303–308
for bending moment, 303–308
for load, 303–308
Pappus-Guldinus theorems,

438–439
parallel-axis theorem, 473–475
for shear force, 303–305
theorem for virtual work performed on

a rigid body, 527
Varignon’s theorem, 51

Three-dimensional equilibrium analysis:
free-body diagram of, 238–242
improper constraints in, 252
independent equilibrium equations of,

249–250
method for, 263
support reactions in, 238–242
writing and solving equations for, 253

Three-dimensional shapes:
centroids of, 419–422
coordinate systems for, 419
first moments for, 419

Three-dimensional support reactions:
ball and socket joint, 239–240
built-in (cantilever) support,

241–242
cylindrical roller on friction surface or

on guide rail, 239–240
flexible cable (negligible weight), 238,

240
friction surface (single point of contact),

238, 240
slider (radial) bearing or hinge, 241
spherical roller or single point of

contact on frictionless surface,
238, 240

thrust bearing or hinge, 241
universal joint, 241–242

Three-dimensional systems:
concurrent, 117, 250
general, 118–119, 249–250
parallel, 117–118, 251–252
wrench, 116, 118–119

Three-force principle, 202
Thrust bearing or hinge, 241
Tipping (See Impending tipping)
Torque:

definition of, 283
required by screws, 372
requirements in disk friction, 386

Transfer distance, 474

Transformation equations for moments
and products of inertia:

definition of, 500–501
properties of, 510
verification of, 511

Translation, rigid bodies, 524
Trapezoidal rule, 404, 560
Triangle law, 12–13
Truss:

assumptions for analysis, 214–215
description of, 214–215
members as two-force bodies, 214
method of joints:

equilibrium analysis of joints, 216
equilibrium analysis of pins, 217
support reactions, 215
zero-force members, 218

method of sections, 224–226
Twisting moment (See Torque)
Two-dimensional shapes, 401–406
Two-force body:

compression, 214
equilibrium, 201
tension, 214

Two-force principle, 201

U
Uniform pressure, distributed normal

loads, 453–454
Unit vectors, 12, 20–21
Units:

conversion:
factor list for, 6
method for, 5–6

in Newtonian mechanics, 4
Universal joint, 241, 242
U.S. Customary system, 4–5

V
V-diagrams, 293
V-equations, 293
Varignon’s theorem, 51
Vector equations:

for moment of a couple about a point,
73

for moment of a force about a point, 51
for moment of a force about an axis, 64
for reducing force system to

force-couple system, 97
three-dimensional, 238

Vector method
(See Vector equations)
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Vector product, 29
Vectors:

addition of:
parallelogram law for addition, 12
polygon rule for addition, 12
triangle law, 12
using rectangular components, 18–20

compared with scalars, 11
as components, 12, 18
couple-vector, 76
as directed line segments, 11
equality of vectors, 12
equivalent:

fixed vectors, 38
free vectors, 38
sliding vectors, 38

multiplication of:
cross (vector) product, 29–31
dot (scalar) product, 27–28
scalar triple product, 31
scalar-vector multiplication, 12

notation for, 11
position vector, 20–21
relative position vector, 20–21

representation:
with direction cosines, 18–19
by rectangular components, 18–19

resolution of, 12
resultant, 12
unit, 12, 18–20
writing a vector in rectangular form:

using direction cosines, 18–19
using relative position vector, 20

Virtual displacements:
definition of, 524
general virtual plane motion, 525
notation for, 524
virtual rotation about a fixed point, 524
virtual translation, 524

Virtual work:
of a couple, 526
of a force:

work-absorbing component, 526
working component, 526

kinematic constraints and independent
coordinates for, 529

method of, 528–530
principle of, 528–529

for a system of rigid bodies, 528
theorem for virtual work performed on

a rigid body, 527–528
Volumes:

centroids of, 130, 419–422
composite, 421
geometric tables for, 422
Pappus-Guldinus theorems for, 438

W
Wedge angle, 371
Wedges, 371
Weight:

Newton’s second law and, 5
as resultant force of gravity, 442

Work-absorbing component of a force,
526

Working component of a force, 526
Wrench, 116, 118–119

Z
Zero-force members, 218



SI Units (Système international d’unités)

Selected Rules and Suggestions for SI Usage

Equivalence of U.S. Customary and SI Units (Asterisks indicate exact values; others are approximations.)
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Energy j ule J (1 J 1 N m) 10 giga G
F rce newt n N (1 N 1 kg m/s ) 10 mega M
Length meter* m 10 kil k
Mass kil gram* kg 10 milli m
M ment (t rque) newt n-meter N m 10 micr
R tati nal frequency rev luti n per sec nd r/s 10 nan n

hertz Hz (1 Hz 1 r/s)
Stress (pressure) pascal Pa (1 Pa 1 N/m )
Time sec nd* s
P wer watt W (1 W 1 J/s)

1. Be careful in the use f capital and l wercase f r symb ls, units, and prefixes (e.g., m f r meter r milli, M f r mega).
2. F r numbers having five r m re digits, the digits sh uld be placed in gr ups f three separated by a small space,

c unting b th t the left and t the right f the decimal p int (e.g., 61 354.982 03). The space is n t required f r f ur-
digit numbers. Spaces are used instead f c mmas t av id c nfusi n—many c untries use the c mma as the decimal
marker.

3. In c mp und units f rmed by multiplicati n, use the pr duct d t (e.g., N m).
4. Divisi n may be indicated by a slash (m/s), r a negative exp nent with a pr duct d t (m s ).
5. Av id the use f prefixes in the den minat r (e.g., km/s is preferred ver m/ms). The excepti n t this rule is the prefix

k in the base unit kg (kil gram).

1. Length 1 in. 25.4* mm 0.0254* m 1 mm 0.039 370 in.
1 ft 304.8* mm 0.3048* m 1 m 39.370 in.

3.281 ft

2. Area 1 in. 645.16* mm 1 mm 0.001 550 in.
1 ft 0.092 903 04* 1m m 1550.0 in.

10.764 ft

3. V lume 1 in. 16 387.064* mm 1 mm 0.000 061 024 in.
1 ft 0.028 317 m 61 023.7 in.

35.315 ft

4. F rce 1 lb 4.448 N 0.2248 lb
1 lb/ft 14.594 N/

2 2

1m

1m N/m 0.068 522 lb/ft

5. Mass 1 lbm 0.453 59 kg 1 kg 2.205 lbm
1 slug 14.593 kg 1 kg 0.068 53 slugs

6. M ment f a f rce 1 lb in. 0.112 985 N m 1 N m 8.850 75 lb in.
1 lb ft 1.355 82 N m 1 N m 0.737 56 lb ft

7. P wer 1 hp (550 lb ft/s) = 0.7457 kW
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1 kW 1.3410 hp�

Selected SI Units Commonly used SI prefixes

Quantity Name SI symbol Factor Prefix SI symbol

U.S. customary to SI SI to U.S. customary
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PRINCIPAL UNITS USED IN MECHANICS

International System (SI) U.S. Customary System (USCS)
Quantity

Unit Symbol Formula Unit Symbol Formula

Acceleration (angular) radian per second squared rad/s2 radian per second squared rad/s2

Acceleration (linear) meter per second squared m/s2 foot per second squared ft/s2

Area square meter m2 square foot ft2

Density (mass) kilogram per cubic meter kg/m3 slug per cubic foot slug/ft3

(Specific mass)

Density (weight) newton per cubic meter N/m3 pound per cubic foot pcf lb/ft3

(Specific weight)

Energy; work joule J N m foot-pound ft-lb

Force newton N kg m/s2 pound lb (base unit)

Force per unit length newton per meter N/m pound per foot lb/ft
(Intensity of force)

Frequency hertz Hz s 1 hertz Hz s 1

Length meter m (base unit) foot ft (base unit)

Mass kilogram kg (base unit) slug lb-s2/ft

Moment of a force; torque newton meter N m pound-foot lb-ft

Moment of inertia (area) meter to fourth power m4 inch to fourth power in.4

Moment of inertia (mass) kilogram meter squared kg m2 slug foot squared slug-ft2

Power watt W J/s foot-pound per second ft-lb/s
(N m/s)

Pressure pascal Pa N/m2 pound per square foot psf lb/ft2

Section modulus meter to third power m3 inch to third power in.3

Stress pascal Pa N/m2 pound per square inch psi lb/in.2

Time second s (base unit) second s (base unit)

Velocity (angular) radian per second rad/s radian per second rad/s

Velocity (linear) meter per second m/s foot per second fps ft/s

Volume (liquids) liter L 10 3 m3 gallon gal. 231 in.3

Volume (solids) cubic meter m3 cubic foot cf ft3


	Front Cover
	Title Page
	Copyright
	Contents���������������
	Preface to the SI Edition��������������������������������
	Preface��������������
	Chapter 1 Introduction to Statics
	1.1 Introduction
	a. What is engineering mechanics?
	b. Problem formulation and the accuracy of solutions

	1.2 Newtonian Mechanics
	a. Scope of Newtonian mechanics
	b. Newton’s laws for particle motion
	c. Inertial reference frames
	d. Units and dimensions
	e. Mass, force, and weight
	f. Conversion of units
	g. Law of gravitation
	Sample Problem 1.1
	Sample Problem 1.2
	Sample Problem 1.3
	Problems

	1.3 Fundamental Properties of  Vectors
	Sample Problem 1.4
	Sample Problem 1.5
	Problems

	1.4 Representation of Vectors Using Rectangular Components
	a. Rectangular components and direction cosines
	b. Vector addition using rectangular components
	c. Relative position vectors
	d. How to write a vector in rectangular form
	Sample Problem 1.6
	Sample Problem 1.7
	Sample Problem 1.8
	Problems

	1.5 Vector Multiplication
	a. Dot (scalar) product
	b. Cross (vector) product
	c. Scalar triple product
	Sample Problem 1.9
	Problems

	Review of Equations��������������������������

	Chapter 2 Basic Operations with Force Systems
	2.1 Introduction
	2.2 Equivalence of Vectors
	2.3 Force
	2.4 Reduction of Concurrent Force Systems
	Sample Problem 2.1
	Sample Problem 2.2
	Problems

	2.5 Moment of a Force about a Point
	a. Definition
	b. Geometric interpretation
	c. Principle of moments
	d. Vector and scalar methods
	Sample Problem 2.3
	Sample Problem 2.4
	Problems

	2.6 Moment of a Force about an Axis
	a. Definition
	b. Geometric interpretation
	c. Vector and scalar methods
	Sample Problem 2.5
	Sample Problem 2.6
	Problems

	2.7 Couples
	a. Definition
	b. Moment of a couple about a point
	c. Equivalent couples
	d. Notation and terminology
	e. The addition and resolution of couples
	Sample Problem 2.7
	Sample Problem 2.8
	Sample Problem 2.9
	Problems

	2.8 Changing the Line of Action of a Force
	Sample Problem 2.10
	Sample Problem 2.11
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 3 Resultants of Force Systems
	3.1 Introduction
	3.2 Reduction of a Force System to a Force and a Couple
	Sample Problem 3.1
	Sample Problem 3.2
	Problems

	3.3 Definition of Resultant
	3.4 Resultants of Coplanar Force Systems
	a. General coplanar force system
	b. Concurrent, coplanar force system
	c. Parallel, coplanar force system
	Sample Problem 3.3
	Sample Problem 3.4
	Sample Problem 3.5
	Sample Problem 3.6
	Problems

	3.5 Resultants of Three-Dimensional Systems
	a. Concurrent, three-dimensional force system
	b. Parallel, three-dimensional force system
	c. General three-dimensional force system: The wrench
	Sample Problem 3.7
	Sample Problem 3.8
	Sample Problem 3.9
	Sample Problem 3.10
	Problems

	3.6 Introduction to Distributed Normal Loads
	a. Surface loads
	b. Line loads
	c. Computation of resultants
	Sample Problem 3.11
	Sample Problem 3.12
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 4 Coplanar Equilibrium Analysis
	4.1 Introduction
	4.2 Definition of Equilibrium
	Part A: Analysis of Single Bodies����������������������������������������
	4.3 Free-Body Diagram of a Body
	Sample Problem 4.1
	Sample Problem 4.2
	Sample Problem 4.3
	Sample Problem 4.4
	Problems

	4.4 Coplanar Equilibrium Equations
	a. General case
	b. Concurrent force system

	4.5 Writing and Solving Equilibrium Equations
	Sample Problem 4.5
	Sample Problem 4.6
	Sample Problem 4.7
	Sample Problem 4.8
	Problems

	4.6 Equilibrium Analysis for Single-Body Problems
	Sample Problem 4.9
	Sample Problem 4.10
	Sample Problem 4.11
	Problems

	Part B: Analysis of Composite Bodies�������������������������������������������
	4.7 Free-Body Diagrams Involving Internal Reactions
	a. Internal forces in members
	b. Internal forces at connections
	Sample Problem 4.12
	Sample Problem 4.13
	Problems

	4.8 Equilibrium Analysis of Composite Bodies
	Sample Problem 4.14
	Sample Problem 4.15
	Problems

	4.9 Special Cases: Two-Force and Three-Force Bodies
	a. Two-force bodies
	b. Three-force bodies
	Sample Problem 4.16
	Sample Problem 4.17
	Problems

	Part C: Analysis of Plane Trusses����������������������������������������
	4.10 Description of a Truss
	4.11 Method of Joints
	a. Support reactions
	b. Equilibrium analysis of joints
	c. Equilibrium analysis of pins
	d. Zero-force members
	Sample Problem 4.18
	Problems

	4.12 Method of Sections
	Sample Problem 4.19
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 5 Three-Dimensional Equilibrium
	5.1 Introduction
	5.2 Definition of Equilibrium
	5.3 Free-Body Diagrams
	Sample Problem 5.1
	Sample Problem 5.2
	Sample Problem 5.3
	Problems

	5.4 Independent Equilibrium Equations
	a. General case
	b. Concurrent force system
	c. Parallel force system
	d. All forces intersect an axis

	5.5 Improper Constraints
	5.6 Writing and Solving Equilibrium Equations
	Sample Problem 5.4
	Sample Problem 5.5
	Sample Problem 5.6
	Sample Problem 5.7
	Problems

	5.7 Equilibrium Analysis
	Sample Problem 5.8
	Sample Problem 5.9
	Sample Problem 5.10
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 6 Beams and Cables
	6.1 Introduction
	Part A: Beams��������������������
	6.2 Internal Force Systems
	Sample Problem 6.1
	Sample Problem 6.2
	Problems

	6.3 Analysis of Internal Forces
	a. Loading and supports
	b. Sign convention
	c. Shear force and bending moment equations and diagrams
	Sample Problem 6.3
	Sample Problem 6.4
	Sample Problem 6.5
	Problems

	6.4 Area Method for Drawing V- and M-Diagrams
	a. Distributed loading
	b. Concentrated forces and couples
	c. Summary
	Sample Problem 6.6
	Sample Problem 6.7
	Problems

	Part B: Cables���������������������
	6.5 Cables under Distributed Loads
	a. General discussion
	b. Parabolic cable
	c. Catenary cable
	d. Note on the solution of problems
	Sample Problem 6.8
	Sample Problem 6.9
	Problems

	6.6 Cables under Concentrated Loads
	a. General discussion
	b. Horizontal spacings of the loads are given
	c. Lengths of the segments are given
	Sample Problem 6.10
	Sample Problem 6.11
	Problems

	Review of Equations��������������������������

	Chapter 7 Dry Friction
	7.1 Introduction
	7.2 Coulomb’s Theory of Dry Friction
	a. Static case
	b. Impending sliding
	c. Dynamic case
	d. Further discussion of Coulomb friction
	e. Limitations

	7.3 Problem Classification and Analysis
	Sample Problem 7.1
	Sample Problem 7.2
	Sample Problem 7.3
	Sample Problem 7.4
	Sample Problem 7.5
	Sample Problem 7.6
	Sample Problem 7.7
	Problems

	7.4 Impending Tipping
	Sample Problem 7.8
	Sample Problem 7.9
	Sample Problem 7.10
	Problems

	7.5 Angle of Friction; Wedges and Screws
	a. Angle of friction
	b. Wedges
	c. Square-threaded screws
	Sample Problem 7.11
	Sample Problem 7.12
	Problems

	7.6 Ropes and Flat Belts
	Sample Problem 7.13
	Sample Problem 7.14
	Problems

	7.7 Disk Friction
	Sample Problem 7.15
	Sample Problem 7.16

	7.8 Rolling Resistance
	Sample Problem 7.17
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 8 Centroids and Distributed Loads
	8.1 Introduction
	8.2 Centroids of Plane Areas and Curves
	a. Definitions
	b. Integration techniques
	c. Composite shapes
	Sample Problem 8.1
	Sample Problem 8.2
	Sample Problem 8.3
	Sample Problem 8.4
	Problems

	8.3 Centroids of Curved Surfaces, Volumes, and Space Curves
	Sample Problem 8.5
	Sample Problem 8.6
	Sample Problem 8.7
	Sample Problem 8.8
	Sample Problem 8.9
	Sample Problem 8.10
	Problems

	8.4 Theorems of Pappus-Guldinus
	Sample Problem 8.11
	Problems

	8.5 Center of Gravity and Center of Mass
	a. Center of gravity
	b. Center of mass
	c. Composite bodies
	Sample Problem 8.12
	Problems

	8.6 Distributed Normal Loads
	a. General case
	b. Normal loads on flat surfaces
	c. Line loads
	d. Uniform pressure on curved surfaces
	e. Fluid pressure
	Sample Problem 8.13
	Sample Problem 8.14
	Sample Problem 8.15
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 9 Moments and Products of Inertia of Areas
	9.1 Introduction
	9.2 Moments of Inertia of Areas and Polar Moments of Inertia
	a. Moment of inertia of area
	b. Polar moment of inertia
	c. Parallel-axis theorems
	d. Radius of gyration
	e. Integration techniques
	f. Method of composite areas
	Sample Problem 9.1
	Sample Problem 9.2
	Sample Problem 9.3
	Sample Problem 9.4
	Sample Problem 9.5
	Problems

	9.3 Products of Inertia of Areas
	a. Definition
	b. Parallel-axis theorem
	Sample Problem 9.6
	Sample Problem 9.7
	Sample Problem 9.8
	Problems

	9.4 Transformation Equations and Principal Moments of Inertia of Areas
	a. Transformation equations for moments and products of inertia
	b. Principal moments of inertia
	Sample Problem 9.9
	Problems

	9.5 Mohr’s Circle for Moments and Products of Inertia
	a. Construction of Mohr’s circle
	b. Properties of Mohr’s circle
	c. Verification of Mohr’s circle
	Sample Problem 9.10
	Problems

	Review of Equations��������������������������
	Review Problems����������������������

	Chapter 10 Virtual Work and Potential Energy
	10.1 Introduction
	10.2 Virtual Displacements
	a. Definition and notation
	b. Virtual motion of a rigid body

	10.3 Virtual Work
	a. Virtual work of a force
	b. Virtual work of a couple
	c. Virtual work performed on a rigid body
	d. Virtual work for a system of rigid bodies

	10.4 Method of Virtual Work
	a. Principle of virtual work
	b. Kinematic constraints and independent coordinates
	c. Implementation of the method of virtual work
	Sample Problem 10.1
	Sample Problem 10.2
	Sample Problem 10.3
	Problems

	10.5 Instant Center of Rotation
	Sample Problem 10.4
	Problems

	10.6 Equilibrium and Stability of Conservative Systems
	a. Potential energy
	b. Gravitational potential energy
	c. Elastic potential energy
	d. Stationary potential energy and stability
	Sample Problem 10.5
	Sample Problem 10.6
	Problems

	Review of Equations��������������������������

	Appendix A: Numerical Integration����������������������������������������
	A.1 Introduction
	A.2 Trapezoidal Rule
	A.3 Simpson’s Rule

	Appendix B: Finding Roots of Functions���������������������������������������������
	B.1 Introduction
	B.2 Newton’s Method
	B.3 Secant Method

	Appendix C: Densities of Common Materials������������������������������������������������
	Answers to Even-Numbered Problems����������������������������������������
	Index������������



