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Chapter �

Introduction

��� Historical Perspective

The �nite element method is a computational technique for obtaining approximate solu�

tions to the partial di�erential equations that arise in scienti�c and engineering applica�

tions� Rather than approximating the partial di�erential equation directly as with� e�g��

�nite di�erence methods� the �nite element method utilizes a variational problem that

involves an integral of the di�erential equation over the problem domain� This domain

is divided into a number of subdomains called �nite elements and the solution of the

partial di�erential equation is approximated by a simpler polynomial function on each

element� These polynomials have to be pieced together so that the approximate solution

has an appropriate degree of smoothness over the entire domain� Once this has been

done� the variational integral is evaluated as a sum of contributions from each �nite el�

ement� The result is an algebraic system for the approximate solution having a �nite

size rather than the original in�nite�dimensional partial di�erential equation� Thus� like

�nite di�erence methods� the �nite element process has discretized the partial di�eren�

tial equation but� unlike �nite di�erence methods� the approximate solution is known

throughout the domain as a pieceise polynomial function and not just at a set of points�

Logan ���	 attributes the discovery of the �nite element method to Hrennikof �
	 and

McHenry ���	 who decomposed a two�dimensional problem domain into an assembly of

one�dimensional bars and beams� In a paper that was not recognized for several years�

Courant ��	 used a variational formulation to describe a partial di�erential equation with

a piecewise linear polynomial approximation of the solution relative to a decomposition of

the problem domain into triangular elements to solve equilibrium and vibration problems�

This is essentially the modern �nite element method and represents the �rst application

where the elements were pieces of a continuum rather than structural members�

Turner et al� ���	 wrote a seminal paper on the subject that is widely regarded

�
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as the beginning of the �nite element era� They showed how to solve one� and two�

dimensional problems using actual structural elements and triangular� and rectangular�

element decompositions of a continuum� Their timing was better than Courant�s ��	�

since success of the �nite element method is dependent on digital computation which

was emerging in the late ����s� The concept was extended to more complex problems

such as plate and shell deformation �cf� the historical discussion in Logan ���	� Chapter

�� and it has now become one of the most important numerical techniques for solving

partial di�erential equations� It has a number of advantages relative to other methods�

including

� the treatment of problems on complex irregular regions�

� the use of nonuniform meshes to re�ect solution gradations�

� the treatment of boundary conditions involving �uxes� and

� the construction of high�order approximations�

Originally used for steady �elliptic� problems� the �nite element method is now used

to solve transient parabolic and hyperbolic problems� Estimates of discretization errors

may be obtained for reasonable costs� These are being used to verify the accuracy of the

computation� and also to control an adaptive process whereby meshes are automatically

re�ned and coarsened and�or the degrees of polynomial approximations are varied so as

to compute solutions to desired accuracies in an optimal fashion ��� 
� �� �� �� �� ��	�

��� Weighted Residual Methods

Our goal� in this introductory chapter� is to introduce the basic principles and tools of

the �nite element method using a linear two�point boundary value problem of the form

L�u	 �� �
d

dx
�p�x�

du

dx
� � q�x�u � f�x�� � � x � �� ���
��a�

u��� � u��� � �� ���
��b�

The �nite element method is primarily used to address partial di�erential equations and is

hardly used for two�point boundary value problems� By focusing on this problem� we hope

to introduce the fundamental concepts without the geometric complexities encountered

in two and three dimensions�

Problems like ���
��� arise in many situations including the longitudinal deformation

of an elastic rod� steady heat conduction� and the transverse de�ection of a supported
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cable� In the latter case� for example� u�x� represents the lateral de�ection at position

x of a cable having �scaled� unit length that is subjected to a tensile force p� loaded by

a transverse force per unit length f�x�� and supported by a series of springs with elastic

modulus q �Figure ��
���� The situation resembles the cable of a suspension bridge� The

tensile force p is independent of x for the assumed small deformations of this model� but

the applied loading and spring moduli could vary with position�

��
��
��
��

��
��
��
��

q(x) u(x)

xpp

f(x)

Figure ��
��� De�ection u of a cable under tension p� loaded by a force f per unit length�
and supported by springs having elastic modulus q�

Mathematically� we will assume that p�x� is positive and continuously di�erentiable

for x � ��� �	� q�x� is non�negative and continuous on ��� �	� and f�x� is continuous on

��� �	�

Even problems of this simplicity cannot generally be solved in terms of known func�

tions� thus� the �rst topic on our agenda will be the development of a means of calculating

approximate solutions of ���
���� With �nite di�erence techniques� derivatives in ���
��a�

are approximated by �nite di�erences with respect to a mesh introduced on ��� �	 ��
	�

With the �nite element method� the method of weighted residuals �MWR� is used to

construct an integral formulation of ���
��� called a variational problem� To this end� let

us multiply ���
��a� by a test or weight function v and integrate over ��� �� to obtain

�v�L�u	� f� � �� ���
�
a�

We have introduced the L� inner product

�v� u� ��

Z
�

�

vudx ���
�
b�

to represent the integral of a product of two functions�

The solution of ���
��� is also a solution of ���
�
a� for all functions v for which the

inner product exists� We�ll express this requirement by writing v � L���� ��� All functions

of class L���� �� are �square integrable� on ��� ��� thus� �v� v� exists� With this viewpoint

and notation� we write ���
�
a� more precisely as

�v�L�u	� f� � �� �v � L���� ��� ���
�
c�
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Equation ���
�
c� is referred to as a variational form of problem ���
���� The reason for

this terminology will become clearer as we develop the topic�

Using the method of weighted residuals� we construct approximate solutions by re�

placing u and v by simpler functions U and V and solving ���
�
c� relative to these

choices� Speci�cally� we�ll consider approximations of the form

u�x� � U�x� �
NX
j��

cj�j�x�� ���
��a�

v�x� � V �x� �
NX
j��

dj�j�x�� ���
��b�

The functions �j�x� and �j�x�� j � �� 
� � � � � N � are preselected and our goal is to

determine the coe�cients cj� j � �� 
� � � � � N � so that U is a good approximation of u�

For example� we might select

�j�x� � �j�x� � sin j�x� j � �� 
� � � � � N�

to obtain approximations in the form of discrete Fourier series� In this case� every function

satis�es the boundary conditions ���
��b�� which seems like a good idea�

The approximation U is called a trial function and� as noted� V is called a test func�

tion� Since the di�erential operator L�u	 is second order� we might expect u � C���� ���

�Actually� u can be slightly less smooth� but C� will su�ce for the present discussion��

Thus� it�s natural to expect U to also be an element of C���� ��� Mathematically� we re�

gard U as belonging to a �nite�dimensional function space that is a subspace of C���� ���

We express this condition by writing U � SN��� �� � C���� ��� �The restriction of these

functions to the interval � � x � � will� henceforth� be understood and we will no longer

write the ��� ���� With this interpretation� we�ll call SN the trial space and regard the

preselected functions �j�x�� j � �� 
� � � � � N � as forming a basis for SN �

Likewise� since v � L�� we�ll regard V as belonging to another �nite�dimensional

function space �SN called the test space� Thus� V � �SN � L� and �j�x�� j � �� 
� � � � � N �

provide a basis for �SN �

Now� replacing v and u in ���
�
c� by their approximations V and U � we have

�V�L�U 	� f� � �� �V � �SN � ���
��a�

The residual

r�x� �� L�U 	� f�x� ���
��b�
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is apparent and clari�es the name �method of weighted residuals�� The vanishing of the

inner product ���
��a� implies that the residual is orthogonal in L� to all functions V in

the test space �SN �

Substituting ���
��� into ���
��a� and interchanging the sum and integral yields

NX
j��

dj��j�L�U 	� f� � �� �dj� j � �� 
� � � � � N� ���
���

Having selected the basis �j� j � �� 
� � � � � N � the requirement that ���
��a� be satis�ed for

all V � �SN implies that ���
��� be satis�ed for all possible choices of dk� k � �� 
� � � � � N �

This� in turn� implies that

��j�L�U 	� f� � �� j � �� 
� � � � � N� ���
���

Shortly� by example� we shall see that ���
��� represents a linear algebraic system for the

unknown coe�cients ck� k � �� 
� � � � � N �

One obvious choice is to select the test space �SN to be the same as the trial space

and use the same basis for each� thus� �k�x� � �k�x�� k � �� 
� � � � � N � This choice leads

to Galerkin�s method

��j�L�u	� f� � �� j � �� 
� � � � � N� ���
���

which� in a slightly di�erent form� will be our �work horse�� With �j � C�� j �

�� 
� � � � � N � the test space clearly has more continuity than necessary� Integrals like

���
��� or ���
��� exist for some pretty �wild� choices of V � Valid methods exist when V

is a Dirac delta function �although such functions are not elements of L�� and when V

is a piecewise constant function �cf� Problems � and 
 at the end of this section��

There are many reasons to prefer a more symmetric variational form of ���
��� than

���
�
�� e�g�� problem ���
��� is symmetric �self�adjoint� and the variational form should

re�ect this� Additionally� we might want to choose the same trial and test spaces� as with

Galerkin�s method� but ask for less continuity on the trial space SN � This is typically

the case� As we shall see� it will be di�cult to construct continuously di�erentiable

approximations of �nite element type in two and three dimensions� We can construct

the symmetric variational form that we need by integrating the second derivative terms

in ���
�
a� by parts� thus� using ���
��a�Z
�

�

v���pu��� � qu� f 	dx �

Z
�

�

�v�pu� � vqu� vf�dx� vpu�j�� � � ���
�
�

where � �� � d� ��dx� The treatment of the last �boundary� term will need greater

attention� For the moment� let v satisfy the same trivial boundary conditions ���
��b� as
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u� In this case� the boundary term vanishes and ���
�
� becomes

A�v� u�� �v� f� � � ���
��a�

where

A�v� u� �

Z
�

�

�v�pu� � vqu�dx� ���
��b�

The integration by parts has eliminated second derivative terms from the formulation�

Thus� solutions of ���
��� might have less continuity than those satisfying either ���
��� or

���
�
�� For this reason� they are called weak solutions in contrast to the strong solutions

of ���
��� or ���
�
�� Weak solutions may lack the continuity to be strong solutions� but

strong solutions are always weak solutions� In situations where weak and strong solutions

di�er� the weak solution is often the one of physical interest�

Since we�ve added a derivative to v by the integration by parts� v must be restricted

to a space where functions have more continuity than those in L�� Having symmetry in

mind� we will select functions u and v that produce bounded values of

A�u� u� �

Z
�

�

�p�u��� � qu�	dx�

Actually� since p and q are smooth functions� it su�ces for u and v to have bounded

values of Z
�

�

��u��� � u�	dx� ���
����

Functions where ���
���� exists are said to be elements of the Sobolev space H�� We�ve

also required that u and v satisfy the boundary conditions ���
��b�� We identify those

functions in H� that also satisfy ���
��b� as being elements of H�
� � Thus� in summary�

the variational problem consists of determining u � H�
� such that

A�v� u� � �v� f�� �v � H�

� � ���
����

The bilinear form A�v� u� is called the strain energy� In mechanical systems it frequently

corresponds to the stored or internal energy in the system�

We obtain approximate solutions of ���
���� in the manner described earlier for the

more general method of weighted residuals� Thus� we replace u and v by their approxi�

mations U and V according to ���
���� Both U and V are regarded as belonging to the

same �nite�dimensional subspace SN� of H�
� and �j� j � �� 
� � � � � N � forms a basis for

SN� � Thus� U is determined as the solution of

A�V� U� � �V� f�� �V � SN� � ���
��
a�
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The substitution of ���
��b� with �j replaced by �j in ���
��
a� again reveals the more

explicit form

A��j� U� � ��j� f�� j � �� 
� � � � � N� ���
��
b�

Finally� to make ���
��
b� totally explicit� we eliminate U using ���
��a� and interchange

a sum and integral to obtain

NX
k��

ckA��j� �k� � ��j� f�� j � �� 
� � � � � N� ���
��
c�

Thus� the coe�cients ck� k � �� 
� � � � � N � of the approximate solution ���
��a� are deter�

mined as the solution of the linear algebraic equation ���
��
c�� Di�erent choices of the

basis �j� j � �� 
� � � � � N � will make the integrals involved in the strain energy ���
��b�

and L� inner product ���
�
b� easy or di�cult to evaluate� They also a�ect the accuracy

of the approximate solution� An example using a �nite element basis is presented in the

next section�

Problems

�� Consider the variational form ���
��� and select

�j�x� � ��x� xj�� j � �� 
� � � � � N�

where ��x� is the Dirac delta function satisfying

��x� � �� x �� ��

Z
�

��

��x�dx � ��

and

� � x� � x� � � � � � xN � ��

Show that this choice of test function leads to the collocation method

L�U 	� f�x�jx�xj � �� j � �� 
� � � � � N�

Thus� the di�erential equation ���
��� is satis�ed exactly at N distinct points on

��� ���


� The subdomain method uses piecewise continuous test functions having the basis

�j�x� ��

�
�� if x � �xj����� xj�����
�� otherwise

�

where xj���� � �xj � xj����
� Using ���
���� show that the approximate solution

U�x� satis�es the di�erential equation ���
��a� on the average on each subinterval

�xj����� xj������ j � �� 
� � � � � N �
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�� Consider the two�point boundary value problem

�u�� � u � x� � � x � �� u��� � u��� � ��

which has the exact solution

u�x� � x�
sinh x

sinh �
�

Solve this problem using Galerkin�s method ���
��
c� using the trial function

U�x� � c� sin�x�

Thus� N � �� ���x� � ���x� � sin�x in ���
���� Calculate the error in strain

energy as A�u� u�� A�U� U�� where A�u� v� is given by ���
��b��

��� A Simple Finite Element Problem

Finite element methods are weighted residuals methods that use bases of piecewise poly�

nomials having small support� Thus� the functions ��x� and ��x� of ���
��� ��
��� are

nonzero only on a small portion of problem domain� Since continuity may be di�cult to

impose� bases will typically use the minimum continuity necessary to ensure the existence

of integrals and solution accuracy� The use of piecewise polynomial functions simplify

the evaluation of integrals involved in the L� inner product and strain energy ���
�
b�

��
��b� and help automate the solution process� Choosing bases with small support leads

to a sparse� well�conditioned linear algebraic system ���
��
c�� for the solution�

Let us illustrate the �nite element method by solving the two�point boundary value

problem ���
��� with constant coe�cients� i�e��

�pu�� � qu � f�x�� � � x � �� u��� � u��� � �� �������

where p 	 � and q � �� As described in Section ��
� we construct a variational form of

���
��� using Galerkin�s method ���
����� For this constant�coe�cient problem� we seek

to determine u � H�
� satisfying

A�v� u� � �v� f�� �v � H�

� � �����
a�

where

�v� u� �

Z
�

�

vudx� �����
b�

A�v� u� �

Z
�

�

�v�pu� � vqu�dx� �����
c�
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With u and v belonging to H�
� � we are sure that the integrals �����
b�c� exist and that

the trivial boundary conditions are satis�ed�

We will subsequently show that functions �of one variable� belonging to H� must

necessarily be continuous� Accepting this for the moment� let us establish the goal of

�nding the simplest continuous piecewise polynomial approximations of u and v� This

would be a piecewise linear polynomial with respect to a mesh

� � x� � x� � � � � � xN � � �������

introduced on ��� �	� Each subinterval �xj��� xj�� j � �� 
� � � � � N � is called a �nite element�

The basis is created from the �hat function�

�j�x� �

���
��

x�xj��
xj�xj��

� if xj�� 	 x � xj
xj���x

xj���xj
� ifxj 	 x � xj��

�� otherwise

� ������a�

x x x x

1

x

jj-10 j+1

j
(x)

N
x

φ

Figure ������ One�dimensional �nite element mesh and piecewise linear hat function
�j�x��

As shown in Figure ������ �j�x� is nonzero only on the two elements containing the

node xj� It rises and descends linearly on these two elements and has a maximal unit

value at x � xj� Indeed� it vanishes at all nodes but xj� i�e��

�j�xk� � �jk ��

�
�� if xk � xj
�� otherwise

� ������b�

Using this basis with ���
���� we consider approximations of the form

U�x� �
N��X
j��

cj�j�x�� �������

Let�s examine this result more closely�
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x x x x x

x

jj-10 j+1 N

φ
j
(x)φ

j-1
(x)

c

c

j
j-1

j+1

c

1

U(x)

Figure ����
� Piecewise linear �nite element solution U�x��

�� Since each �j�x� is a continuous piecewise linear function of x� their summation

U is also continuous and piecewise linear� Evaluating U at a node xk of the mesh

using ������b� yields

U�xk� �
N��X
j��

cj�j�xk� � ck�

Thus� the coe�cients ck� k � �� 
� � � � � N � �� are the values of U at the interior

nodes of the mesh �Figure ����
��


� By selecting the lower and upper summation indices as � and N�� we have ensured

that ������� satis�es the prescribed boundary conditions

U��� � U��� � ��

As an alternative� we could have added basis elements ���x� and �N�x� to the

approximation and written the �nite element solution as

U�x� �
NX
j��

cj�j�x�� �������

Since� using ������b�� U�x�� � c� and U�xN � � cN � the boundary conditions are

satis�ed by requiring c� � cN � �� Thus� the representations ������� or ������� are

identical� however� ������� would be useful with non�trivial boundary data�

�� The restriction of the �nite element solution ������� or ������� to the element

�xj��� xj	 is the linear function

U�x� � cj���j���x� � cj�j�x�� x � �xj��� xj	� �������
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since �j�� and �j are the only nonzero basis elements on �xj��� xj	 �Figure ����
��

Using Galerkin�s method in the form ���
��
c�� we have to solve

N��X
k��

ckA��j� �k� � ��j� f�� j � �� 
� � � � � N � �� �����
�

Equation �����
� can be evaluated in a straightforward manner by substituting replacing

�k and �j using ������� and evaluating the strain energy and L� inner product according

to �����
b�c�� This development is illustrated in several texts �e�g�� ��	� Section ��
��

We�ll take a slightly more complex path to the solution in order to focus on the computer

implementation of the �nite element method� Thus� write ���
��
a� as the summation of

contributions from each element

NX
j��

�Aj�V� U�� �V� f�j	 � �� �V � SN� � ������a�

where

Aj�V� U� � AS
j �V� U� � AM

j �V� U�� ������b�

AS
j �V� U� �

Z xj

xj��

pV �U �dx� ������c�

AM
j �V� U� �

Z xj

xj��

qV Udx� ������d�

�V� f�j �

Z xj

xj��

V fdx� ������e�

It is customary to divide the strain energy into two parts with AS
j arising from internal

energies and AM
j arising from inertial e�ects or sources of energy�

Matrices are simple data structures to manipulate on a computer� so let us write the

restriction of U�x� to �xj��� xj	 according to ������� as

U�x� � �cj��� cj	

�
�j���x�
�j�x�

�
� ��j���x�� �j�x�	

�
cj��
cj

�
� x � �xj��� xj	� �������a�

We can� likewise� use ���
��b� to write the restriction of the test function V �x� to �xj��� xj	

in the same form

V �x� � �dj��� dj	

�
�j���x�
�j�x�

�
� ��j���x�� �j�x�	

�
dj��
dj

�
� x � �xj��� xj	� �������b�
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Our task is to substitute �������� into ������c�e� and evaluate the integrals� Let us begin

by di�erentiating �������a� while using ������a� to obtain

U ��x� � �cj��� cj	

�
���hj
��hj

�
� ����hj� ��hj	

�
cj��
cj

�
� x � �xj��� xj	� �������a�

where

hj � xj � xj��� j � �� 
� � � � � N� �������b�

Thus� U ��x� is constant on �xj��� xj	 and is given by the �rst divided di�erence

U ��x� �
cj � cj��

hj
� x � �xj��� xj	�

Substituting �������� and a similar expression for V ��x� into ������b� yields

AS
j �V� U� �

Z xj

xj��

p�dj��� dj	

�
���hj
��hj

�
����hj� ��hj	

�
cj��
cj

�
dx

or

AS
j �V� U� � �dj��� dj	

�Z xj

xj��

p

�
��h�j ���h�j

���h�j ��h�j

�
dx

	�
cj��
cj

�
�

The integrand is constant and can be evaluated to yield

AS
j �V� U� � �dj��� dj	Kj

�
cj��
cj

�
� Kj �

p

hj

�
� ��

�� �

�
� ������
�

The 

 
 matrix Kj is called the element sti�ness matrix� It depends on j through hj�

but would also have such dependence if p varied with x� The key observation is that

Kj can be evaluated without knowing cj��� cj� dj��� or dj and this greatly simpli�es the

automation of the �nite element method�

The evaluation of AM
j proceeds similarly by substituting �������� into ������d� to

obtain

AM
j �V� U� �

Z xj

xj��

q�dj��� dj	

�
�j��
�j

�
��j��� �j	

�
cj��
cj

�
dx�

With q a constant� the integrand is a quadratic polynomial in x that may be integrated

exactly �cf� Problem � at the end of this section� to yield

AM
j �V� U� � �dj��� dj	Mj



cj��cj

�
� Mj �

qhj
�

�

 �
� 


�
� ��������

whereMj is called the element mass matrix because� as noted� it often arises from inertial

loading�
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The �nal integral ������e� cannot be evaluated exactly for arbitrary functions f�x��

Without examining this matter carefully� let us approximate it by its linear interpolant

f�x� � fj���j���x� � fj�j�x�� x � �xj��� xj	� ��������

where fj �� f�xj�� Substituting �������� and �������b� into ������e� and evaluating the

integral yields

�V� f�j �

Z xj

xj��

�dj��� dj	

�
�j��
�j

�
��j��� �j	

�
fj��
fj

�
dx � �dj��� dj	lj �������a�

where

lj �
hj
�

�

fj�� � fj
fj�� � 
fj

�
� �������b�

The vector lj is called the element load vector and is due to the applied loading f�x��

The next step in the process is the substitution of ������
�� ��������� and �������� into

������a� and the summation over the elements� Since this our �rst example� we�ll simplify

matters by making the mesh uniform with hj � h � ��N � j � �� 
� � � � � N � and summing

AS
j � A

M
j � and �V� f�j separately� Thus� summing ������
�

NX
j��

AS
j �

NX
j��

�dj��� dj	
p

h

�
� ��

�� �

� �
cj��
cj

�
�

The �rst and last contributions have to be modi�ed because of the boundary conditions

which� as noted� prescribe c� � cN � d� � dN � �� Thus�

NX
j��

AS
j � �d�	

p

h
��	�c�	 � �d�� d�	

p

h

�
� ��

�� �

� �
c�
c�

�
� � � �

��dN��� dN��	
p

h

�
� ��

�� �

� �
cN��
cN��

�
� �dN��	

p

h
��	�cN��	�

Although this form of the summation can be readily evaluated� it obscures the need for the

matrices and complicates implementation issues� Thus� at the risk of further complexity�

we�ll expand each matrix and vector to dimension N � � and write the summation as

NX
k��

AS
j � �d�� d�� � � � � dN��	

p

h

�




�

�
�
�����
�



�

c�
c�
���

cN��

�
����
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��d�� d�� � � � � dN��	
p

h

�




�

� ��
�� �

�
�����
�



�

c�
c�
���

cN��

�
����

� � � �� �d�� d�� � � � � dN��	
p

h

�




� � ��

�� �

�
�����
�



�

c�
c�
���

cN��

�
����

��d�� d�� � � �dN��	
p

h

�




�

�

�
�����
�



�

c�
c�
���

cN��

�
����

Zero elements of the matrices have not been shown for clarity� With all matrices and

vectors having the same dimension� the summation is

NX
j��

AS
j � d

T
Kc� �������a�

where

K �
p

h

�







�


 ��
�� 
 ��

�� 
 ��
� � � � � � � � �

�� 
 ��
�� 


�
��������
� �������b�

c � �c�� c�� � � � � cN��	
T � �������c�

d � �d�� d�� � � � � dN��	
T � �������d�

The matrix K is called the global sti�ness matrix� It is symmetric� positive de�nite� and

tridiagonal� In the form that we have developed the results� the summation over elements

is regarded as an assembly process where the element sti�ness matrices are added into

their proper places in the global sti�ness matrix� It is not necessary to actually extend the

dimensions of the element matrices to those of the global sti�ness matrix� As indicated

in Figure ������ the elemental indices determine the proper location to add a local matrix

into the global matrix� Thus� the 
 
 
 element sti�ness matrix Kj is added to rows



���� A Simple Finite Element Problem ��

AS
� � d�

p

h
��	��z� c� AS

� � �d�� d�	
p

h

�
� ��

�� �

�
� �z �

�
c�
c�

�

AS
� � �d�� d�	

p

h

�
� ��

�� �

�
� �z �

�
c�
c�

�

K �
p

h

�










�


 ��
�� 
 ��

�� �

�
�����������

Figure ������ Assembly of the �rst three element sti�ness matrices into the global sti�ness
matrix�

j � � and j and columns j � � and j� Some modi�cations are needed for the �rst and

last elements to account for the boundary conditions�

The summations of AM
j and �V� f�j proceed in the same manner and� using ��������

and ��������� we obtain

NX
j��

AM
j � d

T
Mc� �������a�

NX
j��

�V� f�j � d
T
l �������b�

where

M �
qh

�

�





�

� �
� � �

� � �
� � �

� � �

� � �
� �

�
������ � �������c�

l �
h

�

�



�

f� � �f� � f�
f� � �f� � f�

���
fN�� � �fN�� � fN

�
���� � �������d�
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The matrix M and the vector l are called the global mass matrix and global load vector�

respectively�

Substituting �������a� and �������a�b� into ������a�b� gives

d
T ��K�M�c� l	 � �� ������
�

As noted in Section ��
� the requirement that ������a� hold for all V � SN� is equivalent

to satisfying ������
� for all choices of d� This is only possible when

�K�M�c � l� ��������

Thus� the nodal values ck� k � �� 
� � � � � N � �� of the �nite element solution are deter�

mined by solving a linear algebraic system� With c known� the piecewise linear �nite

element U can be evaluated for any x using ���
��a�� The matrix K �M is symmetric�

positive de�nite� and tridiagonal� Such systems may be solved by the tridiagonal algo�

rithm �cf� Problem 
 at the end of this section� in O�N� operations� where an operation

is a scalar multiply followed by an addition�

The discrete system �������� is similar to the one that would be obtained from a

centered �nite di�erence approximation of �������� which is ��
	

�K�D��c � �l� �����
�a�

where

D � qh

�



�

�
�

� � �

�

�
���� � �l � h

�



�

f�
f�
���

fN��

�
���� � �c �

�



�

�c�
�c�
���

�cN��

�
���� � �����
�b�

Thus� the qu and f terms in ������� are approximated by diagonal matrices with the

�nite di�erence method� In the �nite element method� they are �smoothed� by coupling

diagonal terms with their nearest neighbors using Simpson�s rule weights� The diagonal

matrix D is sometimes called a �lumped� approximation of the consistent mass matrix

M� Both �nite di�erence and �nite element solutions behave similarly for the present

problem and have the same order of accuracy at the nodes of a uniform mesh�

Example ��	��� Consider the �nite element solution of

�u�� � u � x� � � x � �� u��� � u��� � ��

which has the exact solution

u�x� � x�
sinh x

sinh �
�
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Relative to the more general problem �������� this example has p � q � � and f�x� � x�

We solve it using the piecewise�linear �nite element method developed in this section on

uniform meshes with spacing h � ��N for N � �� 
� � � � � �

� Before presenting results�

it is worthwhile mentioning that the load vector �������� is exact for this example� Even

though we replaced f�x� by its piecewise linear interpolant according to ��������� this

introduced no error since f�x� is a linear function of x�

Letting

e�x� � u�x�� U�x� �����
��

denote the discretization error
 in Table ����� we display the maximum error of the �nite

element solution and of its �rst derivative at the nodes of a mesh� i�e��

jej� �� max
��j�N

je�xj�j� je�j� �� max
��j�N

je��x�j �j� �����

�

We have seen that U ��x� is a piecewise constant function with jumps at nodes� Data in

Table ����� were obtained by using derivatives from the left� i�e�� x�j � lim��� xj�
� With

this interpretation� the results of second and fourth columns of Table ����� indicate that

jej��h
� and je�j��h are �essentially� constants� hence� we may conclude that jej� � O�h��

and je�j� � O�h��

N jej� jej��h
� je�j� je�j��h

� ��
������ �������
� ������ �� �����

 ���

���� �������
� ���
����� �����
�� ����
���� �������
� ��������� ���
�
�
 ����
���� ����
��
� ��������� ����

�� ����
���� ����
��
� �������
� �����
�

 ��
������ ����
��
� ���
���
� ����


Table ������ Maximum nodal errors of the piecewise�linear �nite element solution and its
derivative for Example ������ �Numbers in parenthesis indicate a power of ����

The �nite element and exact solutions of this problem are displayed in Figure ����� for

a uniform mesh with eight elements� It appears that the pointwise discretization errors

are much smaller at nodes than they are globally� We�ll see that this phenomena� called

superconvergence� applies more generally than this single example would imply�

Since �nite element solutions are de�ned as continuous functions �of x�� we can also

appraise their behavior in some global norms in addition to the discrete error norms used

in Table ������ Many norms could provide useful information� One that we will use quite
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Figure ������ Exact and piecewise�linear �nite element solutions of Example ����� on an

�element mesh�

often is the square root of the strain energy of the error� thus� using �����
c�

kekA ��
p
A�e� e� �

�Z
�

�

�p�e��� � qe�	dx

����

� �����
�a�

This expression may easily be evaluated as a summation over the elements in the spirit

of ������a�� With p � q � � for this example�

kek�A �

Z
�

�

��e��� � e�	dx�

The integral is the square of the norm used on the Sobolev space H�� thus�

kek� ��

�Z
�

�

��e��� � e�	dx

����

� �����
�b�

Other global error measures will be important to our analyses� however� the only one
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that we will introduce at the moment is the L� norm

kek� ��

�Z
�

�

e��x�dx

����
� �����
�c�

Results for the L� and strain energy errors� presented in Table ����
 for this example�

indicate that kek� � O�h�� and kekA � O�h�� The error in the H� norm would be

identical to that in strain energy� Later� we will prove that these a priori error estimates

are correct for this and similar problems� Errors in strain energy converge slower than

those in L� because solution derivatives are involved and their nodal convergence is O�h�

�Table �������

N kek� kek��h
� kekA kekA�h

� ��
����
� ���
����� ��������� �����

 ��������� ���
����� ��������� �����
�� ��������� ���
����� �������
� �����
�
 ��������� ���
����� �������
� �����
�� ��������� ���
����� ��
����
� �����
�

 ��
������ ���
����� ���

��
� �����

Table ����
� Errors in L� and strain energy for the piecewise�linear �nite element solution
of Example ������ �Numbers in parenthesis indicate a power of ����

Problems

�� The integral involved in obtaining the mass matrix according to �������� may� of

course� be done symbolically� It may also be evaluated numerically by Simpson�s

rule which is exact in this case since the integrand is a quadratic polynomial� Recall�

that Simpson�s rule isZ h

�

F�x�dx �
h

�
�F��� � �F�h�
� � F�h�	�

The mass matrix is

Mj �

Z xj

xj��

�
�j��
�j

�
��j��� �j	dx�

Using �������� determine Mj by Simpson�s rule to verify the result ��������� The

use of Simpson�s rule may be simpler than symbolic integration for this example

since the trial functions are zero or unity at the ends of an element and one half at

its center�


� Consider the solution of the linear system

AX � F� �����
�a�
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where F and X are N �dimensional vectors and A is an N 
N tridiagonal matrix

having the form

A �

�





�
a� c�
b� a� c�

� � � � � � � � �

bN�� aN�� cN��
bN aN

�
������ � �����
�b�

Assume that pivoting is not necessary and factor A as

A � LU� �����
�a�

where L and U are lower and upper bidiagonal matrices having the form

L �

�





�

�
l� �

l� �
� � � � � �

lN �

�
������ � �����
�b�

U �

�





�
u� v�

u� v�
� � � � � �

uN�� vN��
uN

�
������ � �����
�c�

Once the coe�cients lj� j � 
� �� � � � � N � uj� j � �� 
� � � � � N � and vj� j � �� 
� � � � � N�

�� have been determined� the system �����
�a� may easily be solved by forward and

backward substitution� Thus� using �����
�a� in �����
�a� gives

LUX � F� �����
�a�

Let

UX � Y� �����
�b�

then�

LY � F� �����
�c�


��� Using �����
�� and �����
��� show

u� � a��

lj � bj�uj��� uj � aj � ljcj��� j � 
� �� � � � � N�

vj � cj� j � 
� �� � � � � N�



���� A Simple Finite Element Problem 
�


�
� Show that Y and X are computed as

Y� � F��

Yj � Fj � ljYj��� j � 
� �� � � � � N�

XN � yN�uN �

Xj � �Yj � vjXj����uj� j � N � �� N � 
� � � � � ��


��� Develop a procedure to implement this scheme for solving tridiagonal systems�

The input to the procedure should be N and vectors containing the coe�cients

aj� bj� cj� fj� j � �� 
� � � � � N � The procedure should output the solution X�

The coe�cients aj� bj� etc�� j � �� 
� � � � � N � should be replaced by uj� vj� etc��

j � �� 
� � � � � N � in order to save storage� If you want� the solution X can be

returned in F�


��� Estimate the number of arithmetic operations necessary to factor A and for

the forward and backward substitution process�

�� Consider the linear boundary value problem

�pu�� � qu � f�x�� � � x � �� u��� � u���� � ��

where p and q are positive constants and f�x� is a smooth function�

���� Show that the Galerkin form of this boundary�value problem consists of �nding

u � H�
� satisfying

A�v� u�� �v� f� �

Z
�

�

�v�pu� � vqu�dx�

Z
�

�

vfdx � �� �v � H�

� �

For this problem� functions u�x� � H�
� are required to be elements of H� and

satisfy the Dirichlet boundary condition u��� � �� The Neumann boundary

condition at x � � need not be satis�ed by either u or v�

��
� Introduce N equally spaced elements on � 	 x 	 � with nodes xj � jh�

j � �� �� � � � � N �h � ��N�� Approximate u by U having the form

U�x� �
NX
j��

ck�k�x��

where �j�x�� j � �� 
� � � � � N � is the piecewise linear basis �������� and use

Galerkin�s method to obtain the global sti�ness and mass matrices and the

load vector for this problem� �Again� the approximation U�x� does not satisfy

the natural boundary condition u���� � � nor does it have to� We will discuss

this issue in Chapter 
��





 Introduction

���� Write a program to solve this problem using the �nite element method devel�

oped in Part ��
b and the tridiagonal algorithm of Problem 
� Execute your

program with p � �� q � �� and f�x� � x and f�x� � x�� In each case� use

N � �� 
� ��� and �
� Let e�x� � u�x�� U�x� and� for each value of N � com�

pute jej�� je
��xN �j� and kekA according to �����

� and �����
�a�� You may

�optionally� also compute kek� as de�ned by �����
�c�� In each case� estimate

the rate of convergence of the �nite element solution to the exact solution�

�� The Galerkin form of ������� consists of determining u � H�
� such that �����
� is

satis�ed� Similarly� the �nite element solution U � SN� � H�
� satis�es ���
��
��

Letting e�x� � u�x�� U�x�� show

A�e� e� � A�u� u�� A�U� U�

where the strain energy A�v� u� is given by �����
c�� We have� thus� shown that the

strain energy of the error is the error of the strain energy�
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Chapter �

One�Dimensional Finite Element

Methods

��� Introduction

The piecewise�linear Galerkin �nite element method of Chapter � can be extended in

several directions� The most important of these is multi�dimensional problems� however�

we�ll postpone this until the next chapter� Here� we�ll address and answer some other

questions that may be inferred from our brief encounter with the method�

�� Is the Galerkin method the best way to construct a variational principal for a partial

di�erential system	


� How do we construct variational principals for more complex problems	 Speci�cally�

how do we treat boundary conditions other than Dirichlet	

�� The �nite element method appeared to converge as O�h
 in strain energy and O�h�


in L� for the example of Section ���� Is this true more generally	

�� Can the �nite element solution be improved by using higher�degree piecewise�

polynomial approximations	 What are the costs and bene�ts of doing this	

We�ll tackle the Galerkin formulations in the next two sections� examine higher�degree

piecewise polynomials in Sections 
�� and 
��� and conclude with a discussion of approx�

imation errors in Section 
���

��� Galerkin�s Method and Extremal Principles

�For since the fabric of the universe is most perfect and the work of a most

wise creator� nothing at all takes place in the universe in which some rule of

maximum or minimum does not appear��

�




 One�Dimensional Finite Element Methods

� Leonhard Euler

Although the construction of variational principles from di�erential equations is an

important aspect of the �nite element method it will not be our main objective� We�ll

explore some properties of variational principles with a goal of developing a more thorough

understanding of Galerkin�s method and of answering the questions raised in Section 
���

In particular� we�ll focus on boundary conditions� approximating spaces� and extremal

properties of Galerkin�s method� Once again� we�ll use the model two�point Dirichlet

problem

L�u� �� ��p�x
u��� � q�x
u � f�x
� � � x � �� �
�
��a


u��
 � u��
 � �� �
�
��b


with p�x
 � �� q�x
 � �� and f�x
 being smooth functions on � � x � ��

As described in Chapter �� the Galerkin form of �
�
��
 is obtained by multiplying

�
�
��a
 by a test function v � H�
� � integrating the result on ��� ��� and integrating the

second�order term by parts to obtain

A�v� u
 � �v� f
� �v � H�
� � �
�
�
a


where

�v� f
 �

Z �

�

vfdx� �
�
�
b


and

A�v� u
 � �v�� pu�
 � �v� qu
 �

Z �

�

�v�pu� � vqu
dx� �
�
�
c


and functions v belonging to the Sobolev space H� have bounded values ofZ �

�

��v�
� � v��dx�

For �
�
��
� a function v is in H�
� if it also satis�es the trivial boundary conditions

v��
 � v��
 � �� As we shall discover in Section 
��� the de�nition of H�
� will depend on

the type of boundary conditions being applied to the di�erential equation�

There is a connection between self�adjoint di�erential problems such as �
�
��
 and

the minimum problem� �nd w � H�
� that minimizes

I�w� � A�w�w
� 
�w� f
 �

Z �

�

�p�w�
� � qw� � 
wf �dx� �
�
��




���� Galerkin�s Method and Extremal Principles �

Maximum and minimum variational principles occur throughout mathematics and physics

and a discipline called the Calculus of Variations arose in order to study them� The initial

goal of this �eld was to extend the elementary theory of the calculus of the maxima and

minima of functions to problems of �nding the extrema of functionals such as I�w�� �A

functional is an operator that maps functions onto real numbers�


The construction of the Galerkin form �
�
�

 of a problem from the di�erential form

�
�
��
 is straight forward� however� the construction of the extremal problem �
�
��


is not� We do not pursue this matter here� Instead� we refer readers to a text on the

calculus of variations such as Courant and Hilbert ���� Accepting �
�
��
� we establish

that the solution u of Galerkin�s method �
�
�

 is optimal in the sense of minimizing

�
�
��
�

Theorem ������ The function u � H�
� that minimizes ������� is the one that satis�es

������a� and conversely�

Proof� Suppose �rst that u�x
 is the solution of �
�
�
a
� We choose a real parameter �

and any function v�x
 � H�
� and de�ne the comparison function

w�x
 � u�x
 � �v�x
� �
�
��


For each function v�x
 we have a one parameter family of comparison functions w�x
 � H�
�

with the solution u�x
 of �
�
�
a
 obtained when � � �� By a suitable choice of � and

v�x
 we can use �
�
��
 to represent any function in H�
� � A comparison function w�x


and its variation �v�x
 are shown in Figure 
�
���

0 1

ε v(x)

w(x)

u, w

u(x)

x

Figure 
�
��� A comparison function w�x
 and its variation �v�x
 from u�x
�

Substituting �
�
��
 into �
�
��


I�w� � I�u� �v� � A�u� �v� u� �v
� 
�u� �v� f
�



� One�Dimensional Finite Element Methods

Expanding the strain energy and L� inner products using �
�
�
b�c


I�w� � A�u� u
� 
�u� f
 � 
��A�v� u
� �v� f
� � ��A�v� v
�

By hypothesis� u satis�es �
�
�
a
� so the O��
 term vanishes� Using �
�
��
� we have

I�w� � I�u� � ��A�v� v
�

With p � � and q � �� we have A�v� v
 � �� thus� u minimizes �
�
��
�

In order to prove the converse� assume that u�x
 minimizes �
�
��
 and use �
�
��
 to

obtain

I�u� � I�u� �v��

For a particular choice of v�x
� let us regard I�u� �v� as a function ���
� i�e��

I�u� �v� �� ���
 � A�u� �v� u� �v
� 
�u� �v� f
�

A necessary condition for a minimum to occur at � � � is ����
 � �� thus� di�erentiating

����
 � 
�A�v� v
 � 
A�v� u
� 
�v� f


and setting � � �

����
 � 
�A�v� u
� �v� f
� � ��

Thus� u is a solution of �
�
�
a
�

The following corollary veri�es that the minimizing function u is also unique�

Corollary ������ The solution u of ������a� �or �������� is unique�

Proof� Suppose there are two functions u�� u� � H�
� satisfying �
�
�
a
� i�e��

A�v� u�
 � �v� f
� A�v� u�
 � �v� f
� �v � H�
� �

Subtracting

A�v� u� � u�
 � �� �v � H�
� �

Since this relation is valid for all v � H�
� � choose v � u� � u� to obtain

A�u� � u�� u� � u�
 � ��

If q�x
 � �� x � ��� �
� then A�u� � u�� u� � u�
 is positive unless u� � u�� Thus� it

su�ces to consider cases when either �i
 q�x
 � �� x � ��� ��� or �ii
 q�x
 vanishes at

isolated points or subintervals of ��� �
� For simplicity� let us consider the former case�

The analysis of the latter case is similar�

When q�x
 � �� x � ��� ��� A�u� � u�� u� � u�
 can vanish when u�� � u�� � �� Thus�

u� � u� is a constant� However� both u� and u� satisfy the trivial boundary conditions

�
�
��b
� thus� the constant is zero and u� � u��



���� Galerkin�s Method and Extremal Principles �

Corollary ������ If u� w are smooth enough to permit integrating A�u� v
 by parts then

the minimizer of �������� the solution of the Galerkin problem ������a�� and the solution

of the two�point boundary value problem �����	� are all equivalent�

Proof� Integrate the di�erentiated term in �
�
��
 by parts to obtain

I�w� �

Z �

�

��w�pw�
� � qw� � 
fw�dx� wpw�j���

The last term vanishes since w � H�
� � thus� using �
�
��a
 and �
�
�
b
 we have

I�w� � �w�L�w�
� 
�w� f
� �
�
��


Now� follow the steps used in Theorem 
�
�� to show

A�v� u
� �v� f
 � �v�L�u�� f
 � �� �v � H�
� �

and� hence� establish the result�

The minimization problems �
�
��
 and �
�
��
 are equivalent when w has su�cient

smoothness� However� minimizers of �
�
��
 may lack the smoothness to satisfy �
�
��
�

When this occurs� the solutions with less smoothness are often the ones of physical

interest�

Problems

�� Consider the �stationary value� problem� �nd functions w�x
 that give stationary

values �maxima� minima� or saddle points
 of

I�w� �

Z �

�

F �x� w� w�
dx �
�
��a


when w satis�es the �essential� �Dirichlet
 boundary conditions

w��
 � �� w��
 � �� �
�
��b


Let w � H�
E� where the subscript E denotes that w satis�es �
�
��b
� and consider

comparison functions of the form �
�
��
 where u � H�
E is the function that makes

I�w� stationary and v � H�
� is arbitrary� �Functions in H�

� satisfy trivial versions of

�
�
��b
� i�e�� v��
 � v��
 � ��


Using �
�
��
 as an example� we would have

F �x� w� w�
 � p�x
�w�
� � q�x
w� � 
wf�x
� � � � � ��

Smooth stationary values of �
�
��
 would be minima in this case and correspond

to solutions of the di�erential equation �
�
��a
 and boundary conditions �
�
��b
�
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Di�erential equations arising from minimum principles like �
�
��
 or from station�

ary value principles like �
�
��
 are called Euler�Lagrange equations�

Beginning with �
�
��
� follow the steps used in proving Theorem 
�
�� to determine

the Galerkin equations satis�ed by u� Also determine the Euler�Lagrange equations

for smooth stationary values of �
�
��
�

��� Essential and Natural Boundary Conditions

The analyses of Section 
�
 readily extend to problems having nontrivial Dirichlet bound�

ary conditions of the form

u��
 � �� u��
 � �� �
����a


In this case� functions u satisfying �
�
�
a
 or w satisfying �
�
��
 must be members of

H� and satisfy �
����a
� We�ll indicate this by writing u� w � H�
E� with the subscript E

denoting that u and w satisfy the essential Dirichlet boundary conditions �
����a
� Since

u and w satisfy �
����a
� we may use �
�
��
 or the interpretation of �v as a variation

shown in Figure 
�
��� to conclude that v should still vanish at x � � and � and� hence�

belong to H�
� �

When u is not prescribed at x � � and�or �� the function v need not vanish there�

Let us illustrate this when �
�
��a
 is subject to conditions

u��
 � �� p��
u���
 � �� �
����b


Thus� an essential or Dirichlet condition is speci�ed at x � � and a Neumann condition is

speci�ed at x � �� Let us construct a Galerkin form of the problem by again multiplying

�
�
��a
 by a test function v� integrating on ��� ��� and integrating the second derivative

terms by parts to obtainZ �

�

v���pu�
� � qu� f �dx � A�v� u
� �v� f
� vpu�j�� � �� �
���



With an essential boundary condition at x � �� we specify u��
 � � and v��
 � ��

however� u��
 and v��
 remain unspeci�ed� We still classify u � H�
E and v � H�

� since

they satisfy� respectively� the essential and trivial essential boundary conditions speci�ed

with the problem�

With v��
 � � and p��
u���
 � �� we use �
���

 to establish the Galerkin problem

for �
�
��a� 
����b
 as� determine u � H�
E satisfying

A�v� u
 � �v� f
 � v��
�� �v � H�
� � �
����




���� Essential and Natural Boundary Conditions �

Let us reiterate that the subscript E on H� restricts functions to satisfy Dirichlet �essen�

tial
 boundary conditions� but not any Neumann conditions� The subscript � restricts

functions to satisfy trivial versions of any Dirichlet conditions but� once again� Neumann

conditions are not imposed�

As with problem �
�
��
� there is a minimization problem corresponding to �
�
��
�

determine w � H�
E that minimizes

I�w� � A�w�w
� 
�w� f
� 
w��
�� �
����


Furthermore� in analogy with Theorem 
�
��� we have an equivalence between the Galerkin

�
����
 and minimization �
����
 problems�

Theorem ������ The function u � H�
E that minimizes �����
� is the one that satis�es

������� and conversely�

Proof� The proof is so similar to that of Theorem 
�
�� that we�ll only prove that the

function u that minimizes �
����
 also satis�es �
����
� �The remainder of the proof is

stated as Problem � as the end of this section�


Again� create the comparison function

w�x
 � u�x
 � �v�x
� �
����


however� as shown in Figure 
����� v��
 need not vanish� By hypothesis we have

x

u, w

0 1

ε

α

u(x)

v(x)

w(x)

Figure 
����� Comparison function w�x
 and variation �v�x
 when Dirichlet data is pre�
scribed at x � � and Neumann data is prescribed at x � ��

I�u� � I�u� �v� � ���
 � A�u� �v� u� �v
� 
�u� �v� f
� 
�u��
 � �v��
���



� One�Dimensional Finite Element Methods

Di�erentiating with respect to � yields the necessary condition for a minimum as

����
 � 
�A�v� u
� �v� f
� v��
�� � ��

thus� u satis�es �
����
�

As expected� Theorem 
���� can be extended when the minimizing function u is

smooth�

Corollary ������ Smooth functions u � H�
E satisfying ������� or minimizing �����
� also

satisfy �����	a� ����	b��

Proof� Using �
�
�
c
� integrate the di�erentiated term in �
����
 by parts to obtainZ �

�

v���pu�
� � qu� f �dx� v��
�p��
u���
� �� � �� �v � H�
� � �
����


Since �
����
 must be satis�ed for all possible test functions� it must vanish for those

functions satisfying v��
 � �� Thus� we conclude that �
�
��a
 is satis�ed� Similarly� by

considering test functions v that are nonzero in just a small neighborhood of x � �� we

conclude that the boundary condition �
����b
 must be satis�ed� Since �
����
 must be

satis�ed for all test functions v� the solution u must satisfy �
�
��a
 in the interior of the

domain and �
����b
 at x � ��

Neumann boundary conditions� or other boundary conditions prescribing derivatives

�cf� Problem 
 at the end of this section
� are called natural boundary conditions be�

cause they follow directly from the variational principle and are not explicitly imposed�

Essential boundary conditions constrain the space of functions that may be used as trial

or comparison functions� Natural boundary conditions impose no constraints on the

function spaces but� rather� alter the variational principle�

Problems

�� Prove the remainder of Theorem 
����� i�e�� show that functions that satisfy �
����


also minimize �
����
�


� Show that the Galerkin form �
�
��a
 with the Robin boundary conditions

p��
u���
 � ��u��
 � ��� p��
u���
 � ��u��
 � ��

is� determine u � H� satisfying

A�v� u
 � �v� f
 � v��
��� � ��u��

� v��
��� � ��u��

� �v � H��

Also show that the function w � H� that minimizes

I�w� � A�w�w
� 
�w� f
� 
��w��
 � ��w��

� � 
��w��
� ��w��


�

is u� the solution of the Galerkin problem�



���� Piecewise Lagrange Polynomials �

�� Construct the Galerkin form of �
�
��
 when

p�x
 �

�
�� if � � x � �	


� if �	
 � x � �

�

Such a situation can arise in a steady heat�conduction problem when the medium

is made of two di�erent materials that are joined at x � �	
� What conditions

must u satisfy at x � �	
	

��� Piecewise Lagrange Polynomials

The �nite element method is not limited to piecewise�linear polynomial approximations

and its extention to higher�degree polynomials is straight forward� There is� however� a

question of the best basis� Many possibilities are available from design and approximation

theory� Of these� splines and Hermite approximations ��� are generally not used because

they o�er more smoothness and�or a larger support than needed or desired� Lagrange

interpolation �
� and a hierarchical approximation in the spirit of Newton�s divided�

di�erence polynomials will be our choices� The piecewise�linear �hat� function


j�x
 �

���
��

x�xj��
xj�xj��

� if xj�� � x � xj
xj���x

xj���xj
� if xj � x � xj��

�� otherwise

�
����a


on the mesh

x� � x� � � � � � xN �
����b


is a member of both classes� It has two desirable properties� �i
 
j�x
 is unity at node

j and vanishes at all other nodes and �ii
 
j is only nonzero on those elements contain�

ing node j� The �rst property simpli�es the determination of solutions at nodes while

the second simpli�es the solution of the algebraic system that results from the �nite

element discretization� The Lagrangian basis maintains these properties with increasing

polynomial degree� Hierarchical approximations� on the other hand� maintain only the

second property� They are constructed by adding high�degree corrections to lower�degree

members of the series�

We will examine Lagrange bases in this section� beginning with the quadratic poly�

nomial basis� These are constructed by adding an extra node xj���� at the midpoint of

each element �xj��� xj�� j � �� 
� � � � � N �Figure 
����
� As with the piecewise�linear basis

�
����a
� one basis function is associated with each node� Those associated with vertices

are
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Figure 
����� Finite element mesh for piecewise�quadratic Lagrange polynomial approxi�
mations�


j�x
 �

���
��

� � ��
x�xj
hj


 � 
�
x�xj
hj


�� if xj�� � x � xj

�� ��
x�xj
hj��


 � 
�
x�xj
hj��


�� if xj � x � xj��
�� otherwise

� j � �� �� � � � � N� �
���
a


and those associated with element midpoints are


j�����x
 �

�
�� ��

x�xj����
hj


�� if xj�� � x � xj
�� otherwise

� j � �� 
� � � � � N� �
���
b


Here

hj � xj � xj��� j � �� 
� � � � � N� �
���
c


These functions are shown in Figure 
���
� Their construction �to be described
 invovles

satsifying


j�xk
 �

�
�� if j � k
�� otherwise

� j� k � �� �	
� �� � � � � N � �� N � �	
� N� �
����


Basis functions associated with a vertex are nonzero on at most two elements and those

associated with an element midpoint are nonzero on only one element� Thus� as noted�

the Lagrange basis function 
j is nonzero only on elements containing node j� The

functions �
���
a�b
 are quadratic polynomials on each element� Their construction and

trivial extension to other �nite elements guarantees that they are continuous over the

entire mesh and� like �
����
� are members of H��

The �nite element trial function U�x
 is a linear combination of �
���
a�b
 over the

vertices and element midpoints of the mesh that may be written as

U�x
 �
NX
j��

cj
j�x
 �
NX
j��

cj����
j�����x
 �
�NX
j��

cj��
j���x
� �
����
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Figure 
���
� Piecewise�quadratic Lagrange basis functions for a vertex at x � � �left
 and
an element midpoint at x � ���� �right
� When comparing with �
���

� set xj�� � ���
xj���� � ����� xj � �� xj���� � ���� and xj�� � ��

Using �
����
� we see that U�xk
 � ck� k � �� �	
� �� � � � � N � �	
� N �

Cubic� quartic� etc� Lagrangian polynomials are generated by adding nodes to element

interiors� However� prior to constructing them� let�s introduce some terminology and

simplify the node numbering to better suit our task� Finite element bases are constructed

implicitly in an element�by�element manner in terms of shape functions� A shape function

is the restriction of a basis function to an element� Thus� for the piecewise�quadratic

Lagrange polynomial� there are three nontrivial shape functions on the element �j ��

�xj��� xj��

� the right portion of 
j���x


Nj���j�x
 � �� ��
x� xj��

hj

 � 
�

x� xj��
hj


�� �
����a


� 
j�����x


Nj�����j�x
 � �� ��
x� xj����

hj

�� �
����b


� and the left portion of 
j�x


Nj�j�x
 � � � ��
x� xj
hj


 � 
�
x� xj
hj


�� x � �j� �
����c


�Figure 
����
� In these equations� Nk�j is the shape function associated with node k�

k � j � �� j � �	
� j� of element j �the subinterval �j
� We may use �
����
 and �
����


to write the restriction of U�x
 to �j as

U�x
 � cj��Nj���j � cj����Nj�����j � cjNj�j� x � �j�
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Figure 
����� The three quadratic Lagrangian shape functions on the element �xj��� xj��
When comparing with �
����
� set xj�� � �� xj���� � ���� and xj � ��

More generally� we will associate the shape function Nk�e�x
 with mesh entity k of

element e� At present� the only mesh entities that we know of are vertices and �nodes

on
 elements� however� edges and faces will be introduced in two and three dimensions�

The key construction concept is that the shape function Nk�e�x
 is

�� nonzero only on element e and


� nonzero only if mesh entity k belongs to element e�

A one�dimensional Lagrange polynomial shape function of degree p is constructed

on an element e using two vertex nodes and p � � nodes interior to the element� The

generation of shape functions is straight forward� but it is customary and convenient to

do this on a �canonical element�� Thus� we map an arbitrary element �e � �xj��� xj�

onto �� � � � � by the linear transformation

x��
 �
�� �



xj�� �

� � �



xj� � � ���� ��� �
����


Nodes on the canonical element are numbered according to some simple scheme� i�e�� �

to p with �� � ��� �p � �� and � � �� � �� � � � � � �p�� � � �Figure 
����
� These are

mapped to the actual physical nodes xj��� xj�����p� � � � � xj on �e using �
����
� Thus�

xj���i�p �
�� �i



xj�� �
� � �i



xj� i � �� �� � � � � p�
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ξ

ξ

(ξ)

ξ   = 1ξ
1

1

N

−1 = ξ
0 Nk

k,e

Figure 
����� An element e used to construct a p th�degree Lagrangian shape function
and the shape function Nk�e�x
 associated with node k�

The Lagrangian shape function Nk�e��
 of degree p has a unit value at node k of

element e and vanishes at all other nodes� thus�

Nk�e��l
 � �kl �

�
�� if k � l
�� otherwise

� l � �� �� � � � � p� �
����a


It is extended trivially when � 	� ���� ��� The conditions expressed by �
����a
 imply that

Nk�e��
 �

pY
l��� l ��k

� � �l
�k � �l

�
�� � ��
�� � ��
 � � � �� � �k��
�� � �k��
 � � � �� � �p


��k � ��
��k � ��
 � � � ��k � �k��
��k � �k��
 � � � ��k � �p

�

�
����b


We easily check that Nk�e �i
 is a polynomial of degree p in � and �ii
 it satis�es conditions

�
����a
� It is shown in Figure 
����� Written in terms of shape function� the restriction

of U to the canonical element is

U��
 �

pX
k��

ckNk�e��
� �
����


Example ��
�	� Let us construct the quadratic Lagrange shape functions on the

canonical element by setting p � 
 in �
����b
 to obtain

N��e��
 �
�� � ��
�� � ��


��� � ��
��� � ��

� N��e��
 �

�� � ��
�� � ��


��� � ��
��� � ��

�

N��e��
 �
�� � ��
�� � ��


��� � ��
��� � ��

�
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Setting �� � ��� �� � �� and �� � � yields

N��e��
 �
��� � �




� N��e��
 � ��� ��
� N��e��
 �

�� � �
�



� �
����


These may easily be shown to be identical to �
���

 by using the transformation �
����


�see Problem � at the end of this section
�

Example ��
��� Setting p � � in �
����b
� we obtain the linear shape functions on the

canonical element as

N��e �
�� �



� N��e �

� � �



� �
�����


The two nodes needed for these shape functions are at the vertices �� � �� and �� � ��

Using the transformation �
����
� these yield the two pieces of the hat function �
����a
�

We also note that these shape functions were used in the linear coordinate transformation

�
����
� This will arise again in Chapter ��

Problems

�� Show the the quadratic Lagrange shape functions �
����
 on the canonical ���� ��
element transform to those on the physical element �
���

 upon use of �
����



� Construct the shape functions for a cubic Lagrange polynomial from the general

formula �
����
 by using two vertex nodes and two interior nodes equally spaced on

the canonical ���� �� element� Sketch the shape functions� Write the basis functions

for a vertex and an interior node�

��� Hierarchical Bases

With a hierarchical polynomial representation the basis of degree p � � is obtained as a

correction to that of degree p� Thus� the entire basis need not be reconstructed when

increasing the polynomial degree� With �nite element methods� they produce algebraic

systems that are less susceptible to round�o� error accumulation at high order than those

produced by a Lagrange basis�

With the linear hierarchical basis being the usual hat functions �
����
� let us begin

with the piecewise�quadratic hierarchical polynomial� The restriction of this function to

element �e � �xj��� xj� has the form

U��x
 � U��x
 � cj����N
�
j�����e�x
� x � �e� �
����a


where U��x
 is the piecewise�linear �nite element approximation on �e

U��x
 � cj��N
�
j���e�x
 � cjN

�
j�e�x
� �
����b
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Superscripts have been added to U and Nj�e to identify their polynomial degree� Thus�

N�
j���e�x
 �

� xj�x

hj
� if x � �e

�� otherwise
� �
����c


N�
j�e�x
 �

� x�xj��
hj

� if x � �e

�� otherwise
�
����d


are the usual hat function �
����
 associated with a piecewise�linear approximation U��x
�

The quadratic correction N�
j�����e�x
 is required to �i
 be a quadratic polynomial� �ii


vanish when x 	� �e� and �iii
 be continuous� These conditions imply that N�
j�����e is

proportional to the quadratic Lagrange shape function �
����b
 and we will take it to be

identical� thus�

N�
j�����e�x
 �

�
�� ��

x�xj����
hj


�� if x � �e

�� otherwise
� �
����e


The normalization N�
j�����e�xj����
 � � is not necessary� but seems convenient�

Like the quadratic Lagrange approximation� the quadratic hierarchical polynomial has

three nontrivial shape functions per element� however� two of them are linear and only

one is quadratic �Figure 
����
� The basis� however� still spans quadratic polynomials�

Examining �
����
� we see that cj�� � U�xj��
 and cj � U�xj
� however�

U�xj����
 �
cj�� � cj



� cj�����

Di�erentiating �
����a
 twice with respect to x gives an interpretation to cj���� as

cj���� � �h�

�
U ���xj����
�

This interpretation may be useful but is not necessary�

A basis may be constructed from the shape functions in the manner described for

Lagrange polynomials� With a mesh having the structure used for the piecewise�quadratic

Lagrange polynomials �Figure 
����
� the piecewise�quadratic hierarchical functions have

the form

U�x
 �
NX
j��

cj

�
j�x
 �

NX
j��

cj����

�
j�����x
 �
���



where 
�j�x
 is the hat function basis �
����a
 and 
�j�x
 � N�
j�e�x
�

Higher�degree hierarchical polynomials are obtained by adding more correction terms

to the lower�degree polynomials� It is convenient to construct and display these poly�

nomials on the canonical ���� �� element used in Section 
��� The linear transformation
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Figure 
����� Quadratic hierarchical shape on �xj��� xj�� When comparing with �
����
�
set xj�� � � and xj � ��

�
����
 is again used to map an arbitrary element �xj��� xj� onto �� � � � �� The vertex

nodes at � � �� and � are associated with the linear shape functions and� for simplicity�

we will index them as �� and �� The remaining p�� shape functions are on the element

interior� They need not be associated with any nodes but� for convenience� we will asso�

ciate all of them with a single node indexed by � at the center �� � �
 of the element�

The restriction of the �nite element solution U��
 to the canonical element has the form

U��
 � c��N
�
����
 � c�N

�
� ��
 �

pX
i��

ciN
i
���
� � � ���� ��� �
����


�We have dropped the elemental index e on N i
j�e since we are only concerned with ap�

proximations on the canonical element�
 The vertex shape functions N�
�� and N�

� are the

hat function segments �
�����
 on the canonical element

N�
����
 �

�� �



� N�

� ��
 �
� � �



� � � ���� ��� �
����


Once again� the higher�degree shape functions N i
���
� i � 
� �� � � � � p� are required to have

the proper degree and vanish at the element�s ends � � ��� � to maintain continuity�

Any normalization is arbitrary and may be chosen to satisfy a speci�ed condition� e�g��

N�
� ��
 � �� We use a normalization of Szab o and Babu!ska ��� which relies on Legendre

polynomials� The Legendre polynomial Pi��
� i � �� is a polynomial of degree i in �

satisfying ����
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�� the di�erential equation

��� ��
P ��
i � 
�P �

i � i�i� �
Pi � �� �� � � � �� i � �� �
����a



� the normalization

Pi��
 � �� i � �� �
����b


�� the orthogonality relationZ �

��

Pi��
Pj��
d� �




i� �

�
�� if i � j
�� otherwise

� �
����c


�� the symmetry condition

Pi���
 � ���
iPi��
� i � �� �
����d


�� the recurrence relation

�i � �
Pi����
 � �
i� �
�Pi��
� iPi����
� i � �� �
����e


and

�� the di�erentiation formula

P �
i����
 � �
i � �
Pi��
 � P �

i����
� i � �� �
����f


The �rst six Legendre polynomials are

P���
 � �� P���
 � ��

P���
 �
��� � �



� P���
 �

��� � ��



�

P���
 �
���� � ���� � �



� P���
 �

���� � ���� � ���

�
� �
����


With these preliminaries� we de�ne the shape functions

N i
���
 �

r

i� �




Z �

��

Pi���

d
� i � 
� �
����a


Using �
����d�f
� we readily show that

N i
���
 �

Pi��
� Pi����
p

�
i� �


� i � 
� �
����b
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Use of the normalization and symmetry properties �
����b�d
 further reveal that

N i
����
 � N i

���
 � �� i � 
� �
����c


and use of the orthogonality property �
����c
 indicates that

Z �

��

dN i
���


d�

dN j
���


d�
d� � �ij� i� j � 
� �
����d


Substituting �
����
 into �
����b
 gives

N�
� ��
 �

�



p
�
��� � �
� N�

� ��
 �
�



p
��

���� � �
�

N�
� ��
 �

�

�
p
��

���� � ��� � �
� N�
� ��
 �

�

�
p
��

���� � ���� � ��
� �
����


Shape functions N i
���
� i � 
� �� � � � � �� are shown in Figure 
���
�
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Figure 
���
� One�dimensional hierarchical shape functions of degrees 
 �solid
� ���
� �
�	
� � ��
� and � �"
 on the canonical element �� � � � ��

The representation �
����
 with use of �
����b�d
 reveals that the parameters c�� and

c� correspond to the values of U���
 and U��
� respectively� however� the remaining

parameters ci� i � 
� do not correspond to solution values� In particular� using �
����
�
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�
����d
� and �
����b
 yields

U��
 �
c�� � c�



�

pX
i����

ciN
i
���
�

Hierarchical bases can be constructed so that ci is proportional to diU��
	d�i� i � 


�cf� ���� Section 
��
� however� the shape functions �
����
 based on Legendre polynomials

reduce sensitivity of the basis to round�o� error accumulation� This is very important

when using high�order �nite element approximations�

Example ����	� Let us solve the two�point boundary value problem

�pu�� � qu � f�x
� � � x � �� u��
 � u��
 � �� �
����


using the �nite element method with piecewise�quadratic hierarchical approximations�

As in Chapter �� we simplify matters by assuming that p � � and q � � are constants�

By now we are aware that the Galerkin form of this problem is given by �
�
�

� As

in Chapter �� introduce �cf� ������



AS
j �v� u
 �

Z xj

xj��

pv�u�dx�

We use �
����
 to map �xj��� xj� to the canonical ���� �� element as

AS
j �v� u
 �




hj

Z �

��

p
dv

d�

du

d�
d�� �
�����


Using �
����
� we write the restriction of the piecewise�quadratic trial and text functions

to �xj��� xj� as

U��
 � �cj��� cj� cj�����

�
� N�

��

N�
�

N�
�

	

 � V ��
 � �dj��� dj� dj�����

�
� N�

��

N�
�

N�
�

	

 � �
�����


Substituting �
�����
 into �
�����


AS
j �V� U
 � �dj��� dj� dj�����Kj

�
� cj��

cj
cj����

	

 �
����
a


where Kj is the element sti�ness matrix

Kj �

p

hj

Z �

��

d

d�

�
� N�

��

N�
�

N�
�

	

 d

d�
�N�

��� N
�
� � N

�
� �d��
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Substituting for the basis de�nitions �
����� 
����


Kj �

p

hj

Z �

��

�
��
��	

�	


�
q

�
�

	
�
 ���	
� �	
� �

r
�



�d��

Integrating

Kj �

p

hj

Z �

��

�
� �	� ��	� ��p�	�

��	� �	� �
p

�	�

��p�	� �
p

�	� ���	


	

 d� �

p

hj

�
� � �� �
�� � �
� � 


	

 � �
����
b


The orthogonality relation �
����d
 has simpli�ed the sti�ness matrix by uncoupling the

linear and quadratic modes�

In a similar manner�

AM
j �V� U
 �

Z xj

xj��

qV Udx �
qhj



Z �

��

V Ud�� �
�����a


Using �
�����


AM
j �V� U
 � �dj��� dj� dj�����Mj

�
� cj��

cj
cj����

	

 �
�����b


where� upon use of �
����� 
����
� the element mass matrix Mj satis�es

Mj �
qhj



Z �

��

�
� N�

��

N�
�

N�
�

	

 �N�

��� N
�
� � N

�
� �d� �

qhj
�

�
� 
 � �p�	


� 
 �p�	


�p�	
 �p�	
 �	�

	

 �

�
�����c


The higher and lower order terms of the element mass matrix have not decoupled� Com�

paring �
����
b
 and �
�����c
 with the forms developed in Section ��� for piecewise�linear

approximations� we see that the piecewise linear sti�ness and mass matrices are contained

as the upper 
	 
 portions of these matrices� This will be the case for linear problems�

thus� each higher�degree polynomial will add a �border� to the lower�degree sti�ness and

mass matrices�

Finally� consider

�V� f
j �

Z xj

xj��

V fdx �
hj



Z �

��

V fd�� �
�����a


Using �
�����


�V� f
j � �dj��� dj� dj�����lj �
�����b
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�

where

lj �
hj



Z �

��

�
� N�

��

N�
�

N�
�

	

 f�x��

d�� �
�����c


As in Section ���� we approximate f�x
 by piecewise�linear interpolation� which we write

as

f�x
 
 N�
����
fj�� �N�

� ��
fj

with fj �� f�xj
� The manner of approximating f�x
 should clearly be related to the

degree p and we will need a more careful analysis� Postponing this until Chapters � and

�� we have

lj �
hj



Z �

��

�
� N�

��

N�
�

N�
�

	

 �N�

��� N
�
� �d�



fj��
fj

�
�

hj
�

�
� 
fj�� � fj

fj�� � 
fj
�p�	
�fj�� � fj


	

 �
�����d


Using �
�
�
a
 with �
����
a
� �
�����a
� and �
�����a
� we see that assembly requires

evluating the sum
NX
j��

�AS
j �V� U
 � AM

j �V� U
� �V� f
j� � ��

Following the strategy used for the piecewise�linear solution of Section ���� the local

sti�ness and mass matrices and load vectors are added into their proper locations in

their global counterparts� Imposing the condition that the system be satis�ed for all

choices of dj� j � �	
� �� �	
� � � � � N � �� yields the linear algebraic system

�K�M
c � l� �
�����


The structure of the sti�ness and mass matrices K and M and load vector l depend on

the ordering of the unknowns c and virtual coordinates d� One possibility is to order

them by increasing index� i�e��

c � �c���� c�� c���� c�� � � � � cN��� cN�����
T � �
�����


As with the piecewise�linear basis� we have assumed that the homogeneous boundary

conditions have explicitly eliminated c� � cN � �� Assembly for this ordering is similar

to the one used in Section ��� �cf� Problem 
 at the end of this section
� This is a natural

ordering and the one most used for this approximation� however� for variety� let us order

the unknowns by listing the vertices �rst followed by those at element midpoints� i�e��

c �



cL
cQ

�
� cL �

�
����

c�
c�
���

cN��

	
���
 � cQ �

�
����

c���
c���
���

cN����

	
���
 � �
�����
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In this case� K� M� and l have a block structure and may be partitioned as

K �



KL �

� KQ

�
� M �



ML MLQ

MT
LQ MQ

�
� l �



lL
lQ

�
�
�����


where� for uniform mesh spacing hj � h� j � �� 
� � � � � N � these matrices are

KL �
p

h

�
������


 ��
�� 
 ��

� � �
� � �

� � �

�� 
 ��
�� 


	
�����
 � KQ �

p

h

�
������






� � �






	
�����
 � �
�����


ML �
qh

�

�
������

� �
� � �

� � � � � � � � �

� � �
� �

	
�����
 � MLQ � �qh

�

r
�




�
������

� �
� �

� � � � � �

� �
� �

	
�����
 �

MQ �
qh

�

�
������

�
�

� � �

�
�

	
�����
 � �
���
�


lL �
h

�

�
����

f� � �f� � f�
f� � �f� � f�

���
fN�� � �fN�� � fN

	
���
 � lQ � � hp


�

�
����

f� � f�
f� � f�

���
fN�� � fN

	
���
 � �
���
�


With N � � vertex unknowns cL and N elemental unknowns cQ� the matrices KL and

ML are �N � �
	 �N � �
� KQ and MQ are N 	N � and MLQ is �N � �
	N � Similarly�

lL and lQ have dimension N �� and N � respectively� The indicated ordering implies that

the � 	 � element sti�ness and mass matrices �
����
b
 and �
�����c
 for element j are

added to rows and columns j � �� j� and N � � � j of their global counterparts� The

�rst row and column of the element sti�ness and mass matrices are deleted when j � �

to satisfy the left boundary condition� Likewise� the second row and column of these

matrices are deleted when j � N to satisfy the right boundary condition�

The structure of the system matrix K�M is

K�M �



KL �ML MLQ

MT
LQ KQ �MQ

�
� �
���






���� Hierarchical Bases 
�

The matrix KL � ML is the same one used for the piecewise�linear solution of this

problem in Section ���� Thus� an assembly and factorization of this matrix done during a

prior piecewise�linear �nite element analysis could be reused� A solution procedure using

this factorization is presented as Problem � at the end of this section� Furthermore� if

q � � then MLQ � � �cf� �
���
�b

 and the linear and quadratic portions of the system

uncouple�

In Example ������ we solved �
����
 with p � �� q � �� and f�x
 � x using piecewise�

linear �nite elements� Let us solve this problem again using piecewise�quadratic hier�

archical approximations and compare the results� Recall that the exact solution of this

problem is

u�x
 � x� sinh x

sinh �
�

Results for the error in the L� norm are shown in Table 
���� for solutions obtained

with piecewise�linear and quadratic approximations� The results indicate that solutions

with piecewise�quadratic approximations are converging as O�h�
 as opposed to O�h�


for piecewise�linear approximations� Subsequently� we shall show that smooth solutions

generally converge as O�hp��
 in the L� norm and as O�hp
 in the strain energy �or H�


norm�

N Linear Quadratic
DOF jjejj� jjejj�	h� DOF jjejj� jjejj�	h�

� � ��
����

 ���
����
 � ���
����
 �������


� � ��������
 ���
����
 �� ��������
 �������


�� �� ��������
 ���
����
 �� ��������
 �������


�
 �� ��������
 ���
����


Table 
����� Errors in L� and degrees of freedom �DOF
 for piecewise�linear and piecewse�
quadratic solutions of Example 
�����

The number of elements N is not the only measure of computational complexity�

With higher�order methods� the number of unknowns �degrees of freedom
 provides a

better index� Since the piecewise�quadratic solution has approximately twice the number

of unknowns of the linear solution� we should compare the linear solution with spacing h

and the quadratic solution with spacing 
h� Even with this analysis� the superiority of

the higher�order method in Table 
���� is clear�

Problems

�� Consider the approximation in strain energy of a given function u��
� �� � � � ��

by a polynomial U��
 in the hierarchical form �
����
� The problem consists of
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determining U��
 as the solution of the Galerkin problem

A�V� U
 � A�V� u
� �V � Sp�

where Sp is a space of p th�degree polynomials on ���� ��� For simplicity� let us take

the strain energy as

A�v� u
 �

Z �

��

v�u�d��

With c�� � u���
 and c� � u��
� �nd expressions for determining the remaining

coe�cients ci� i � 
� �� � � � � p� so that the approximation satis�es the speci�ed

Galerkin projection�


� Show how to generate the global sti�ness and mass matrices and load vector for

Example 
���� when the equations and unknowns are written in order of increasing

index �
�����
�

�� Suppose KL �ML have been assembled and factored by Gaussian elimination as

part of a �nite element analysis with piecewise�linear approximations� Devise an

algorithm to solve �
�����
 for cL and cQ that utilizes the given factorization�

��� Interpolation Errors

Errors of �nite element solutions can be measured in several norms� We have already

introduced pointwise and global metrics� In this introductory section on error analysis�

we�ll de�ne some basic principles and study interpolation errors� As we shall see shortly�

errors in interpolating a function u by a piecewise polynomial approximation U will

provide bounds on the errors of �nite element solutions�

Once again� consider a Galerkin problem for a second�order di�erential equation� �nd

u � H�
� such that

A�v� u
 � �v� f
� �v � H�
� � �
����


Also consider its �nite element counterpart� �nd U � SN
� such that

A�V� U
 � �V� f
� �V � SN
� � �
���



Let the approximating space SN
� � H�

� consist of piecewise�polynomials of degree p on

N �element meshes� We begin with two fundamental results regarding Galerkin�s method

and �nite element approximations�



���� Interpolation Errors 
�

Theorem ������ Let u � H�
� and U � SN

� � H�
� satisfy �����	� and �������� respectively�

then

A�V� u� U
 � �� �V � SN
� � �
����


Proof� Since V � SN
� it also belongs to H�

� � Thus� it may be used to replace v in �
����
�

Doing this and subtracting �
���

 yields the result�

We shall subsequently show that the strain energy furnishes an inner product� With

this interpretation� we may regard �
����
 as an orthogonality condition in a �strain

energy space� where A�v� u
 is an inner product and
p
A�u� u
 is a norm� Thus� the

�nite element solution error

e�x
 �� u�x
� U�x
 �
����


is orthogonal in strain energy to all functions V in the subspace SN
� � We use this orthog�

onality to show that solutions obtained by Galerkin�s method are optimal in the sence of

minimizing the error in strain energy�

Theorem ������ Under the conditions of Theorem ����	�

A�u� U� u� U
 � min
V �SN

�

A�u� V� u� V 
� �
����


Proof� Consider

A�u� U� u� U
 � A�u� u
� 
A�u� U
 � A�U� U
�

Use �
����
 with V replaced by U to write this as

A�u� U� u� U
 � A�u� u
� 
A�u� U
 � A�U� U
 � 
A�u� U� U


or

A�u� U� u� U
 � A�u� u
� A�U� U
�

Again� using �
����
 for any V � SN
�

A�u� U� u� U
 � A�u� u
� A�U� U
 � A�V� V 
� A�V� V 
� 
A�u� U� V 


or

A�u� U� u� U
 � A�u� V� u� V 
� A�U � V� U � V 
�

Since the last term on the right is non�negative� we can drop it to obtain

A�u� U� u� U
 � A�u� V� u� V 
� �V � SN
� �

We see that equality is attained when V � U and� thus� �
����
 is established�
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With optimality of Galerkin�s method� we may obtain estimates of �nite element

discretization errors by bounding the right side of �
����
 for particular choices of V �

Convenient bounds are obtained by selecting V to be an interpolant of the exact solution

u� Bounds furnished in this manner generally provide the exact order of convergence in

the mesh spacing h� Furthermore� results similar to �
����
 may be obtained in other

norms� They are rarely as precise as those in strain energy and typically indicate that

the �nite element solution di�ers by no more than a constant from the optimal solution

in the considered norm�

Thus� we will study the errors associated with interpolation problems� This can be

done either on a physical or a canonical element� but we will proceed using a canonical

element since we constructed shape functions in this manner� For our present purposes�

we regard u��
 as a known function that is interpolated by a p th�degree polynomial U��


on the canonical element ���� ��� Any form of the interpolating polynomial may be used�

We use the Lagrange form �
����
� where

U��
 �

pX
k��

ckNk��
 �
����


with Nk��
 given by �
����b
� �We have omitted the elemental index e on Nk for clarity

since we are concerned with one element�
 An analysis of interpolation errors whith hi�

erarchical shape functions may also be done �cf� Problem � at the end of this section
�

Although the Lagrangian and hierarchical shape functions di�er� the resulting interpola�

tion polynomials U��
 and their errors are the same since the interpolation problem has

a unique solution �
� ���

Selecting p�� distinct points xii � ���� ��� i � �� �� � � � � p� the interpolation conditions

are

U��i
 � u��i
 �� ui � ci� j � �� �� � � � � p� �
����


where the rightmost condition follows from �
����a
�

There are many estimates of pointwise interpolation errors� Here is a typical result�

Theorem ������ Let u��
 � Cp������ �� then� for each � � ���� ��� there exists a point

���
 � ���� �
 such that the error in interpolating u��
 by a p th�degree polynomial U��


is

e��
 �
u	p��
��


�p� �
#

pY
i��

�� � �i
� �
����


Proof� Although the proof is not di�cult� we�ll just sketch the essential details� A com�

plete analysis is given in numerical analysis texts such as Burden and Faires �
�� Chapter

�� and Isaacson and Keller ���� Chapter ��
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�

Since

e���
 � e���
 � � � � � e��p
 � �

the error must have the form

e��
 � g��


pY
i��

�� � �i
�

The error in interpolating a polynomial of degree p or less is zero� thus� g��
 must be

proportional to u	p��
� We may use a Taylor�s series argument to infer the existence of

���
 � ���� �
 and
e��
 � Cu	p��
��


pY
i��

�� � �i
�

Selecting u to be a polynomial of degree p � � and di�erentiating this expression p � �

times yields C as �	�p� �
# and �
����
�

The pointwise error �
����
 can be used to obtain a variety of global error estimates�

Let us estimate the error when interpolating a smooth function u��
 by a linear polyno�

mial U��
 at the vertices �� � �� and �� � � of an element� Using �
����
 with p � �

reveals

e��
 �
u����




�� � �
�� � �
� � � ���� �
� �
����


Thus�

je��
j � �



max
������

ju����
j max
������

j�� � �j�

Now�

max
������

j�� � �j � ��

Thus�

je��
j � �



max
������

ju����
j�

Derivatives in this expression are taken with respect to �� In most cases� we would

like results expressed in physical terms� The linear transformation �
����
 provides the

necessary conversion from the canonical element to element j� �xj��� xj�� Thus�

d�u��


d��
�

h�j
�

d�u��


dx�

with hj � xj � xj��� Letting

kf��
k��j �� max
xj���x�xj

jf�x
j �
�����
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denote the local �maximum norm� of f�x
 on �xj��� xj�� we have

ke��
k��j �
h�j
�
ku����
k��j� �
�����


�Arguments have been replaced by a � to emphasize that the actual norm doesn�t depend

on x�


If u�x
 were interpolated by a piecewise�linear function U�x
 on N elements �xj��� xj��

j � �� 
� � � � � N � then �
�����
 could be used on each element to obtain an estimate of the

maximum error as

ke��
k� � h�

�
ku����
k�� �
����
a


where

kf��
k� �� max
��j�N

kf��
k��j� �
����
b


and

h �� max
��j�N

�xj � xj��
� �
����
c


As a next step� let us use �
����
 and �
����
 to compute an error estimate in the L�

norm� thus� Z xj

xj��

e��x
dx �
hj



Z �

��

�
u������





��� � �
��d��

Since j�� � �j � �� we haveZ xj

xj��

e��x
dx � hj
�

Z �

��

�u������

��d��

Introduce the �local L� norm� of a function f�x
 as

kf��
k��j ��
�Z xj

xj��

f ��x
dx

����

� �
�����


Then�

ke��
k���j �
hj
�

Z �

��

�u������

��d��

It is tempting to replace the integral on the right side of our error estimate by ku��k���j�
This is almost correct� however� � � ���
� We would have to verify that � varies smoothly

with �� Here� we will assume this to be the case and expand u�� using Taylor�s theorem

to obtain

u����
 � u����
 � u�����
�� � �
 � u����
 �O�j� � �j
� � � ��� �
�
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�

or

ju����
j � Cju����
j�
The constant C absorbs our careless treatment of the higher�order term in the Taylor�s

expansion� Thus� using �
����
� we have

ke��
k���j � C�hj
�

Z �

��

�u����
��d� � C�
h�j
��

Z xj

xj��

�u���x
��dx�

where derivatives in the rightmost expression are with respect to x� Using �
�����


ke��
k���j � C�
h�j
��
ku����
k���j� �
�����


If we sum �
�����
 over the N �nite elements of the mesh and take a square root we

obtain

ke��
k� � Ch�ku����
k�� �
�����a


where

kf��
k�� �
NX
j��

kf��
k���j� �
�����b


�The constant C in �
�����a
 replaces the constant C	� of �
�����
� but we won�t be

precise about identifying di�erent constants�


With a goal of estimating the error in H�� let us examine the error u���
 � U ���
�

Di�erentiating �
����
 with respect to �

e���
 � u����
� �
u�����





d�

d�
��� � �
�

Assuming that d�	d� is bounded� we use �
�����
 and �
����
 to obtain

ke�k���j �
Z xj

xj��

�
de�x


dx
��dx �




hj

Z �

��

�u����
� �
u�����





d�

d�
��� � �
��d��

Following the arguments that led to �
�����
� we �nd

ke���
k���j � Ch�jku����
k���j�

Summing over the N elements

ke���
k�� � Ch�ku����
k�� �
�����
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To obtain an error estimate in the H� norm� we combine �
�����a
 and �
�����
 to get

ke��
k� � Chku����
k� �
�����a


where

kf��
k�� ��
NX
j��

�kf ���
k���j � kf��
k���j�� �
�����b


The methodology developed above may be applied to estimate interpolation errors of

higher�degree polynomial approximations� A typical result follows�

Theorem ������ Introduce a mesh a � x� � x� � � � � � xN � b such that U�x
 is a

polynomial of degree p or less on every subinterval �xj��� xj
 and U � H��a� b
� Let U�x


interpolate u�x
 � Hp���a� b� such that no error results when u�x
 is any polynomial of

degree p or less� Then� there exists a constant Cp � �� depending on p� such that

ku� Uk� � Cph
p��ku	p��
k� �
�����a


and

ku� Uk� � Chppku	p��
k�� �
�����b


where h satis�es �����	�c��

Proof� The analysis follows the one used for linear polynomials�

Problems

�� Choose a hierarchical polynomial �
����
 on a canonical element ���� �� and show

how to determine the coe�cients cj� j � ��� �� 
� � � � � p� to solve the interpolation

problem �
����
�
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Chapter �

Multi�Dimensional Variational

Principles

��� Galerkin�s Method and Extremal Principles

The construction of Galerkin formulations presented in Chapters � and � for one�dimensional

problems readily extends to higher dimensions� Following our prior developments� we�ll

focus on the model two�dimensional self�adjoint di�usion problem

L�u	 
 ��p�x� y�ux�x � �p�x� y�uy�y 
 q�x� y�u 
 f�x� y�� �x� y� � �� ������a�

where � � �� with boundary �� �Figure ������ and p�x� y� � �� q�x� y� � �� �x� y� � ��

Essential boundary conditions

u�x� y� 
 ��x� y�� �x� y� � ��E � ������b�

are prescribed on the portion ��E of �� and natural boundary conditions

p�x� y�
�u�x� y�

�n

 pru � n �
 p�ux cos � 
 uy sin �� 
 ��x� y�� �x� y� � ��N �

������c�

are prescribed on the remaining portion ��N of ��� The angle � is the angle between

the x�axis and the outward normal n to �� �Figure �������

The Galerkin form of ������� is obtained by multiplying ������a� by a test function v

and integrating over � to obtainZZ
�

v���pux�x � �puy�y 
 qu� f 	dxdy 
 �� �������

In order to integrate the second derivative terms by parts in two and three dimensions�

we use Green�s theorem or the divergence theoremZZ
�

r � adxdy 


Z
��

a � nds ������a�

�
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x

y
ns

pu  = βn

θ

Ω

u = α

Figure ������ Two�dimensional region � with boundary �� and normal vector n to ���

where s is a coordinate on ��� a 
 �a�� a�	
T � and

r � a 

�a�
�x



�a�
�y

� ������b�

In order to use this result in the present circumstances� let us introduce vector notation

�pux�x 
 �puy�y �
 r � �pru�

and use the �product rule� for the divergence and gradient operators

r � �vpru� 
 �rv� � �pru� 
 vr � �pru�� ������c�

Thus� ZZ
�

�vr � �pru�dxdy 


ZZ
�

��rv� � �pru��r � �vpru�	dxdy�

Now apply the divergence theorem ������� to the second term to obtain
ZZ
�

�vr � �pru�dxdy 


ZZ
�

rv � prudxdy �

Z
��

vpru � nds�

Thus� ������� becomes
ZZ
�

�rv � pru
 v�qu� f�	dxdy �

Z
��

vpunds 
 � �������
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where ������c� was used to simplify the surface integral�

The integrals in ������� must exist and� with u and v of the same class and p and q

smooth� this implies ZZ
�

�u�x 
 u�y 
 u��dxdy

exists� This is the two�dimensional Sobolev space H�� Drawing upon our experiences

in one dimension� we expect u � H�
E� where functions in H�

E are in H� and satisfy the

Dirichlet boundary conditions ������b� on �E� Likewise� we expect v � H�
� � which denotes

that v 
 � on ��E � Thus� the variation v should vanish where the trial function u is

prescribed�

Let us extend the one�dimensional notation as well� Thus� the L� inner product is

�v� f� �


ZZ
�

vfdxdy ������a�

and the strain energy is

A�v� u� �
 �rv� pru� 
 �v� qu� 


ZZ
�

�p�vxux 
 vyuy� 
 qvu	dxdy� ������b�

We also introduce a boundary L� inner product as

� v�w �


Z
��N

vwds� ������c�

The boundary integral may be restricted to ��N since v 
 � on ��E � With this nomen�

clature� the variational problem ������� may be stated as� �nd u � H�
E satisfying

A�v� u� 
 �v� f�
 � v� � �� �v � H�
� � �������

The Neumann boundary condition ������c� was used to replace pun in the boundary

inner product� The variational problem ������� has the same form as the one�dimensional

problem �������� Indeed� the theory and extremal principles developed in Chapter � apply

to multi�dimensional problems of this form�

Theorem ������ The function w � H�
E that minimizes

I�w	 
 A�w�w�� ��w� f�� � � w� � � � �������

is the one that satis�es �������� and conversely�

Proof� The proof is similar to that of Theorem ����� and appears as Problem � at the

end of this section�
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Corollary ������ Smooth functions u � H�
E satisfying ������� or minimizing �����	� also

satisfy ��������

Proof� Again� the proof is left as an exercise�

Example ������ Suppose that the Neumann boundary conditions ������c� are changed

to Robin boundary conditions

pun 
 	u 
 �� �x� y� � ��N � ������a�

Very little changes in the variational statement of the problem ������a�b�� �������� Instead

of replacing pun by � in the boundary inner product ������c�� we replace it by � � 	u�

Thus� the Galerkin form of the problem is� �nd u � H�
E satisfying

A�v� u� 
 �v� f�
 � v� � � 	u �� �v � H�
� � ������b�

Example ����
� Variational principles for nonlinear problems and vector systems

of partial di�erential equations are constructed in the same manner as for the linear

scalar problems �������� As an example� consider a thin elastic sheet occupying a two�

dimensional region �� As shown in Figure ������ the Cartesian components �u�� u�� of

the displacement vector vanish on the portion ��E of of the boundary �� and the com�

ponents of the traction are prescribed as �S�� S�� on the remaining portion ��N of ���

The equations of equilibrium for such a problem are �cf�� e�g�� ��	� Chapter ��

�
��
�x



�
��
�y


 �� ������a�

�
��
�x



�
��
�y


 �� �x� y� � �� ������b�

where 
ij� i� j 
 �� �� are the components of the two�dimensional symmetric stress tensor

�matrix�� The stress components are related to the displacement components by Hooke�s

law


�� 

E

�� ��
�
�u�
�x


 �
�u�
�y

�� �������a�


�� 

E

�� ��
��
�u�
�x



�u�
�y

�� �������b�


�� 

E

��� 
 ��
�
�u�
�y



�u�
�x

�� �������c�
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x

y
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θ

S

S
2

1

u  = 0
1

2

u  = 0,

Ω

Figure ������ Two�dimensional elastic sheet occupying the region �� Displacement com�
ponents �u�� u�� vanish on ��E and traction components �S�� S�� are prescribed on ��N �

where E and � are constants called Young�s modulus and Poisson�s ratio� respectively�

The displacement and traction boundary conditions are

u��x� y� 
 �� u��x� y� 
 �� �x� y� � ��E� �������a�

n�
�� 
 n�
�� 
 S�� n�
�� 
 n�
�� 
 S�� �x� y� � ��N � �������b�

where n 
 �n�� n�	
T 
 �cos �� sin �	T is the unit outward normal vector to �� �Figure

�������

Following the one�dimensional formulations� the Galerkin form of this problem is

obtained by multiplying ������a� and ������b� by test functions v� and v�� respectively�

integrated over �� and using the divergence theorem� With u� and u� being components

of a displacement �eld� the functions v� and v� are referred to as components of the

virtual displacement �eld�

We use ������a� to illustrate the process� thus� multiplying by v� and integrating over

�� we �nd ZZ
�

v��
�
��
�x



�
��
�y

	dxdy 
 ��

The three stress components are dependent on the two displacement components and

are typically replaced by these using ��������� Were this done� the variational principle
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would involve second derivatives of u� and u�� Hence� we would want to use the divergence

theorem to obtain a symmetric variational form and reduce the continuity requirements

on u� and u�� We�ll do this� but omit the explicit substitution of �������� to simplify the

presentation� Thus� we regard 
�� and 
�� as components of a two�vector� we use the

divergence theorem ������� to obrain
ZZ
�

�
�v�
�x


�� 

�v�
�y


��	dxdy 


Z
��

v��n�
�� 
 n�
��	ds�

Selecting v� � H�
� implies that the boundary integral vanishes on ��E � This and the

subsequent use of the natural boundary condition �������b� give
ZZ
�

�
�v�
�x


�� 

�v�
�y


��	dxdy 


Z
��N

v�S�ds� �v� � H�
� � �������a�

Similar treatment of ������b� gives
ZZ
�

�
�v�
�x


�� 

�v�
�y


��	dxdy 


Z
��N

v�S�ds� �v� � H�
� � �������b�

Equations �������a� and �������b� may be combined and written in a vector form�

Letting u 
 �u�� u�	
T � etc�� we add �������a� and �������b� to obtain the Galerkin problem�

�nd u � H�
� such that

A�v�u� 
� v�S �� �v � H�
� � �������a�

where

A�v�u� 


ZZ
�

�
�v�
�x


�� 

�v�
�y


�� 
 �
�v�
�y



�v�
�x

�
��	dxdy� �������b�

� v�S �


Z
��N

�v�S� 
 v�S��ds� �������c�

When a vector function belongs to H�� we mean that each of its components is in H��

The spaces H�
E and H�

� are identical since the displacement is trivial on ��E �

The solution of �������� also satis�es the following minimum problem�

Theorem ������ Among all functions w 
 �w�� w�	
T � H�

E the solution u 
 �u�� u�	
T of

�������� is the one that minimizes

I�w	 

E

���� ���

ZZ
�

f��� ����
�w�

�x
�� 
 �

�w�

�y
��	 
 ��

�w�

�x


�w�

�y
��
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��� ��

�
�
�w�

�y


�w�

�x
��gdxdy �

Z
��N

�w�S� 
 w�S��ds�

and conversely�

Proof� The proof is similar to that of Theorem ������ The stress components 
ij� i� j 


�� �� have been eliminated in favor of the displacements using ���������

Let us conclude this section with a brief summary�

� A solution of the di�erential problem� e�g�� �������� is called a �classical� or �strong�

solution� The function u � H�
B� where functions in H� have �nite values ofZZ

�

��uxx�
� 
 �uxy�

� 
 �uyy�
� 
 �ux�

� 
 �uy�
� 
 u�	dxdy

and functions in H�
B also satisfy all prescribed boundary conditions� e�g�� ������b�c��

� Solutions of a Galerkin problem such as ������� are called �weak� solutions� They

may be elements of a larger class of functions than strong solutions since the high�

order derivatives are missing from the variational statement of the problem� For

the second�order di�erential equations that we have been studying� the variational

form �e�g�� �������� only contains �rst derivatives and u � H�
E� Functions in H�

have �nite values of ZZ
�

��ux�
� 
 �uy�

� 
 u�	dxdy�

and functions in H�
E also satisfy the prescribed essential �Dirichlet� boundary con�

dition ������b�� Test functions v are not varied where essential data is prescribed

and are elements of H�
� � They satisfy trivial versions of the essential boundary

conditions�

� While essential boundary conditions constrain the trial and test spaces� natural

�Neumann or Robin� boundary conditions alter the variational statement of the

problem� As with ������� and ��������� inhomogeneous conditions add boundary

inner product terms to the variational statement�

� Smooth solutions of the Galerkin problem satisfy the original partial di�erential

equation�s� and natural boundary conditions� and conversely�

� Galerkin problems arising from self�adjoint di�erential equations also satisfy ex�

tremal problems� In this case� approximate solutions found by Galerkin�s method

are best in the sense of �������� i�e�� in the sense of minimizing the strain energy of

the error�
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Problems

�� Prove Theorem ����� and its Corollary�

�� Prove Theorem ����� and aslo show that smooth solutions of �������� satisfy the

di�erential system ������� � ���������

�� Consider an in�nite solid medium of material M containing an in�nite number of

periodically spaced circular cylindrical �bers made of material F � The �bers are

arranged in a square array with centers two units apart in the x and y directions

�Figure ������� The radius of each �ber is a �� ��� The aim of this problem is to

�nd a Galerkin problem that can be used to determine the e�ective conductivity

of the composite medium� Because of embedded symmetries� it su�ces to solve a

y

x

M

F a

θ

1

1

r

Figure ������ Composite medium consisting of a regular array of circular cylindrical �bers
embedded in in a matrix �left�� Quadrant of a Periodicity cell used to solve this problem
�right��

problem on one quarter of a periodicity cell as shown on the right of Figure ������

The governing di�erential equations and boundary conditions for the temperature
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�or potential� etc�� u�x� y� within this quadrant are

r � �pru� 
 �� �x� y� � �F 	 �M �

ux��� y� 
 ux��� y� 
 �� � 
 y 
 ��

u�x� �� 
 �� u�x� �� 
 �� � 
 x 
 ��

u � C�� pur � C�� �x� y� � x� 
 y� 
 a��

��������

The subscripts F and M are used to indicate the regions and properties of the �ber

and matrix� respectively� Thus� letting

� �
 f�x� y�j � 
 x 
 �� � 
 y 
 �g�

we have

�F �
 f�r� ��j � 
 r 
 a� � 
 � 
 �
�g�

and

�M �
 �� �F �

The conductivity p of the �ber and matrix will generally be di�erent and� hence� p

will jump at r 
 a� If necessary� we can write

p�x� y� 


�
pF � if x� 
 y� � a�

pM � if x� 
 y� � a�
�

Although the conductivities are discontinuous� the last boundary condition con�rms

that the temperature u and �ux pur are continuous at r 
 a�

���� Following the steps leading to �������� show that the Galerkin form of this

problem consists of determining u � H�
E as the solution ofZZ

�F��M

p�uxvx 
 uyvy�dxdy 
 �� �v � H�
� �

De�ne the spaces H�
E and H�

� for this problem� The Galerkin problem appears

to be the same as it would for a homogeneous medium� There is no indication

of the continuity conditions at r 
 a�

���� Show that the function w � H�
E that minimizes

I�w	 


ZZ
�F��M

p�w�
x 
 w�

y�dxdy

is the solution u of the Galerkin problem� and conversely� Again� there is little

evidence that the problem involves an inhomogeneous medium�
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��� Function Spaces and Approximation

Let us try to formalize some of the considerations that were raised about the properties

of function spaces and their smoothness requirements� Consider a Galerkin problem in

the form of �������� Using Galerkin�s method� we �nd approximate solutions by solving

������� in a �nite�dimensional subspace SN of H�� Selecting a basis f�jg
N
j�� for SN � we

consider approximations U � SN
E of u in the form

U�x� y� 

NX
j��

cj�j�x� y�� �������

With approximations V � SN
� of v having a similar form� we determine U as the solution

of

A�V� U� 
 �V� f�
 � V� � �� �V � SN
� � �������

�Nontrivial essential boundary conditions introduce di�erences between SN
E and SN

� and

we have not explicitly identi�ed these di�erences in ���������

We�ve mentioned the criticality of knowing the minimum smoothness requirements

of an approximating space SN � Smooth �e�g� C�� approximations are di�cult to con�

struct on nonuniform two� and three�dimensional meshes� We have already seen that

smoothness requirements of the solutions of partial di�erential equations are usually ex�

pressed in terms of Sobolev spaces� so let us de�ne these spaces and examine some of

their properties� First� let�s review some preliminaries from linear algebra and functional

analysis�

De�nition ������ V is a linear space if

�� u� v � V then u
 v � V�

�� u � V then �u � V� for all constants �� and

�� u� v � V then �u
 �v � V� for all constants �� ��

De�nition ������ A�u� v� is a bilinear form on V�V if� for u� v� w � V and all constants

� and ��

�� A�u� v� � �� and

�� A�u� v� is linear in each argument� thus�

A�u� �v 
 �w� 
 �A�u� v� 
 �A�u� w��

A��u
 �v� w� 
 �A�u� w� 
 �A�v� w��
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De�nition ������ An inner product A�u� v� is a bilinear form on V � V that

�� is symmetric in the sense that A�u� v� 
 A�v� u�� �u� v � V� and

�� A�u� u� � �� u �
 � and A��� �� 
 �� �u � V�

De�nition ������ The norm k � kA associated with the inner product A�u� v� is

kukA 

p
A�u� u� �������

and it satis�es

�� kukA � �� u �
 �� k�kA 
 ��

�� ku
 vkA 
 kukA 
 kvkA� and

�� k�ukA 
 j�jkukA� for all constants ��

The integrals involved in the norms and inner products are Lebesgue integrals rather

than the customary Riemann integrals� Functions that are Riemann integrable are also

Lebesgue integrable but not conversely� We have neither time nor space to delve into

Lebesgue integration nor will it be necessary for most of our discussions� It is� however�

helpful when seeking understanding of the continuity requirements of the various function

spaces� So� we�ll make a few brief remarks and refer those seeking more information to

texts on functional analysis ��� �� �	�

With Lebesgue integration� the concept of the length of a subinterval is replaced by

the measure of an arbitrary point set� Certain sets are so sparse as to have measure

zero� An example is the set of rational numbers on ��� �	� Indeed� all countably in�nite

sets have measure zero� If a function u � V possesses a given property except on a set

of measure zero then it is said to have that property almost everywhere� A relevant

property is the notion of an equivalence class� Two functions u� v � V belong to the same

equivalence class if

ku� vkA 
 ��

With Lebesgue integration� two functions in the same equivalence class are equal almost

everywhere� Thus� if we are given a function u � V and change its values on a set of

measure zero to obtain a function v� then u and v belong to the same equivalence class�

We need one more concept� the notion of completeness� A Cauchy sequence fung
�
n�� �

V is one where

lim
m�n��

kum � unkA 
 ��



�� Multi�Dimensional Variational Principles

If fung
�
n�� converges in k � kA to a function u � V then it is a Cauchy sequence� Thus�

using the triangular inequality�

lim
m�n��

kum � unkA 
 lim
m�n��

fkum � ukA 
 ku� unkAg 
 ��

A space V where the converse is true� i�e�� where all Cauchy sequences fung
�
n�� converge

in k � kA to functions u � V� is said to be complete�

De�nition ������ A complete linear space V with inner product A�u� v� and correspond�

ing norm kukA� u� v � V is called a Hilbert space�

Let�s list some relevant Hilbert spaces for use with variational formulations of bound�

ary value problems� We�ll present their de�nitions in two space dimensions� Their ex�

tension to one and three dimensions is obvious�

De�nition ������ The space L���� consists of functions satisfying

L���� �
 fuj

ZZ
�

u�dxdy �
g� ������a�

It has the inner product

�u� v� 


ZZ
�

uvdxdy ������b�

and norm

kuk� 

p

�u� u�� ������c�

De�nition ����	� The Sobolev space Hk consists of functions u which belong to L� with

their �rst k � � derivatives� The space has the inner product and norm

�u� v�k �

X
j�j�k

�D�u�D�v�� ������a�

kukk 

p

�u� u�k� ������b�

where

� 
 ���� ��	
T � j�j 
 �� 
 ��� ������c�

with �� and �� non�negative integers� and

D�u �

������u

�x���y��
� ������d�
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In particular� the space H� has the inner product and norm

�u� v�� 
 �u� v� 
 �ux� vx� 
 �uy� vy� 


ZZ
�

�uv 
 uxvx 
 uyvy�dxdy ������a�

kuk� 


�
�ZZ

�

�u� 
 u�x 
 u�y�dxdy

�
�
���

� ������b�

Likewise� functions u � H� have �nite values of

kuk�� 


ZZ
�

�u�xx 
 u�xy 
 u�yy 
 u�x 
 u�y 
 u�	dxdy�

Example ��
��� We have been studying second�order di�erential equations of the

form ������� and seeking weak solutions u � H� and U � SN � H� of ������� and ��������

respectively� Let us verify that H� is the correct space� at least in one dimension� Thus�

consider a basis of the familiar piecewise�linear hat functions on a uniform mesh with

spacing h 
 �
N

�j�x� 


��
�

�x� xj���
h� if xj�� 
 x � xj
�xj�� � x�
h� if xj 
 x � xj��
�� otherwise

� �������

Since SN � H�� �j and �
�
j must be in L�� j 
 �� �� ���� N � Consider C� approximations of

�j�x� and ��j�x� obtained by �rounding corners� in O�h
n��neighborhoods of the nodes

xj��� xj� xj�� as shown in Figure������ A possible smooth approximation of ��j�x� is

��j�x� � ��j�n�x� 

�

�h
�tanh

n�x� xj���

h

 tanh

n�x� xj���

h
� � tanh

n�x� xj�

h
	�

A smooth approximation �j�n of �j is obtained by integration as

�j�n�x� 

h

�n
ln

	
coshn��x� xj���
h� coshn��x� xj���
h�

cosh� n��x� xj�
h�



�

Clearly� �j�n and ��j�n are elements of L�� The �rounding� disappears as n�
 and

lim
n��

Z �

�

���j�n�x�	
�dx � �h��
h�� 
 �
h�

The explicit calculations are somewhat involved and will not be shown� However� it

seems clear that the limiting function ��j � L� and� hence� �j � SN for �xed h�
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Figure ������ Smooth version of a piecewise linear hat function ������� �top�� its �rst
derivative �center�� and the square of its �rst derivative �bottom�� Results are shown
with xj�� 
 ��� xj 
 �� xj�� 
 � �h 
 ��� and n 
 ���

Example ��
�
� Consider the piecewise�constant basis function on a uniform mesh

�j�x� 


�
�� if xj�� 
 x � xj
�� otherwise

� �������

A smooth version of this function and its �rst derivative are shown in Figure ����� and

may be written as

�j�n�x� 

�

�
�tanh

n�x� xj���

h
� tanh

n�x� xj�

h
	

��j�n�x� 

n

�h
�sech�

n�x� xj���

h
� sech�

n�x� xj�

h
	�

As n � 
� �j�n approaches a square pulse� however� ��j�n is proportional to the combi�

nation of delta functions

��j�n�x� � ��x� xj���� ��x� xj��
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Thus� we anticipate problems since delta functions are not elements of L�� Squaring

��j�n�x�

���j�n�x�	
� 
 �

n

�h
���sech�

n�x� xj���

h
��sech�

n�x� xj���

h
sech�

n�x� xj�

h

sech�

n�x� xj�

h
	�

As shown in Figure ������ the function sechn�x � xj�
h is largest at xj and decays

exponentially fast from xj� thus� the center term in the above expression is exponentially

small relative to the �rst and third terms� Neglecting it yields

���j�n�x�	
� � �

n

�h
���sech�

n�x� xj���

h

 sech�

n�x� xj�

h
	�

Thus� Z �

�

���j�n�x�	
�dx �

n

��h
�tanh

n�x� xj���

h
�� 
 sech�

n�x� xj���

h
�


 tanh
n�x� xj�

h
�� 
 sech�

n�x� xj�

h
�	���

This is unbounded as n�
� hence� ��j�x� 
� L� and �j�x� 
� H��
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Figure ������ Smooth version of a piecewise constant function ������� �left� and its �rst
derivative �right�� Results are shown with xj�� 
 �� xj 
 � �h 
 ��� and n 
 ���

Although the previous examples lack rigor� we may conclude that a basis of continuous

functions will belong to H� in one dimension� More generally� u � Hk implies that

u � Ck�� in one dimension� The situation is not as simple in two and three dimensions�

The Sobolev space Hk is the completion with respect to the norm ������� of Ck functions

whose �rst k partial derivatives are elements of L�� Thus� for example� u � H� implies

that u� ux� and uy are all elements of L�� This is not su�cient to ensure that u is

continuous in two and three dimensions� Typically� if �� is smooth then u � Hk implies

that u � Cs�� 	 ��� where s is the largest integer less than �k � d
�� in d dimensions

��� �	� In two and three dimensions� this condition implies that u � Ck���

Problems
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�� Assuming that p�x� y� � � and q�x� y� � �� �x� y� � �� �nd any other conditions

that must be satis�ed for the strain energy

A�v� u� 


ZZ
�

�p�vxux 
 vyuy� 
 qvu	dxdy

to be an inner product and norm� i�e�� to satisfy De�nitions ����� and ������

�� Construct a variational problem for the fourth�order biharmonic equation

��p�u� 
 f�x� y�� �x� y� � ��

where

�u 
 uxx 
 uyy

and p�x� y� � � is smooth� Assume that u satis�es the essential boundary conditions

u�x� y� 
 �� un�x� y� 
 �� �x� y� � ���

where n is a unit outward normal vector to ��� To what function space should the

weak solution of the variational problem belong�

��� Overview of the Finite Element Method

Let us conclude this chapter with a brief summary of the key steps in constructing a �nite�

element solution in two or three dimensions� Although not necessary� we will continue

to focus on ������� as a model�

�� Construct a variational form of the problem� Generally� we will use Galerkin�s

method to construct a variational problem� As described� this involves multiplying the

di�erential equation be a suitable test function and using the divergence theorem to get

a symmetric formulation� The trial function u � H�
E and� hence� satis�es any prescribed

essential boundary conditions� The test function v � H�
� and� hence� vanishes where

essential boundary conditions are prescribed� Any prescribed Neumann or Robin bound�

ary conditions are used to alter the variational problem as� e�g�� with ������� or ������b��

respectively�

Nontrivial essential boundary conditions introduce di�erences in the spaces H�
E and

H�
� � Furthermore� the �nite element subspace SN

E cannot satisfy non�polynomial bound�

ary conditions� One way of overcoming this is to transform the di�erential equation to

one having trivial essential boundary conditions �cf� Problem � at the end of this sec�

tion�� This approach is di�cult to use when the boundary data is discontinuous or when

the problem is nonlinear� It is more important for theoretical than for practical reasons�
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The usual approach for handling nontrivial Dirichlet data is to interpolate it by the

�nite element trial function� Thus� consider approximations in the usual form

U�x� y� 

NX
j��

cj�j�x� y�� �������

however� we include basis functions �k for mesh entities �vertices� edges� k that are on

��E � The coe�cients ck associated with these nodes are not varied during the solu�

tion process but� rather� are selected to interpolate the boundary data� Thus� with a

Lagrangian basis where �k�xj� yj� 
 �k�j� we have

U�xk� yk� 
 ��xk� yk� 
 ck� �xk� yk� � ��E �

The interpolation is more di�cult with hierarchical functions� but it is manageable �cf�

Section ����� We will have to appraise the e�ect of this interpolation on solution accuracy�

Although the spaces SN
E and SN

� di�er� the sti�ness and mass matrices can be made

symmetric for self�adjoint linear problems �cf� Section �����

A third method of satisfying essential boundary conditions is given as Problem � at

the end of this section�


� Discretize the domain� Divide � into �nite elements having simple shapes� such

as triangles or quadrilaterals in two dimensions and tetrahedra and hexahedra in three

dimensions� This nontrivial task generally introduces errors near ��� Thus� the problem

is typically solved on a polygonal region  � de�ned by the �nite element mesh �Figure

������ rather than on �� Such errors may be reduced by using �nite elements with curved

sides and!or faces near �� �cf� Chapter ��� The relative advantages of using fewer curved

elements or a larger number of smaller straight�sided or planar�faced elements will have

to be determined�

�� Generate the element sti�ness and mass matrices and element load vector� Piece�

wise polynomial approximations U � SN
E of u and V � SN

� of v are chosen� The approx�

imating spaces SN
E and SN

� are supposed to be subspaces of H�
E and H�

� � respectively�

however� this may not be the case because of errors introduced in approximating the

essential boundary conditions and!or the domain �� These e�ects will also have to be

appraised �cf� Section ����� Choosing a basis for SN � we write U and V in the form of

��������

The variational problem is written as a sum of contributions over the elements and

the element sti�ness and mass matrices and load vectors are generated� For the model

problem ������� this would involve solving

N�X
e��

�Ae�V� U�� �V� f�e� � V� � �e	 
 �� �V � SN
� � ������a�
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Figure ������ Two�dimensional domain � having boundary �� 
 ��E 	 ��N with unit
normal n discretized by triangular �nite elements� Schematic representation of the as�
sembly of the element sti�ness matrix Ke and element load vector le into the global
sti�ness matrix K and load vector l�

where

Ae�V� U� 


ZZ
�e

�VxpUx 
 VypUy 
 V qU�dxdy� ������b�



���� Overview of the Finite Element Method ��

�V� f�e 


ZZ
�e

V fdxdy� ������c�

� V� � �e


Z

��e�� ��N

V �ds� ������d�

�e is the domain occupied by element e� and N	 is the number of elements in the mesh�

The boundary integral ������d� is zero unless a portion of ��e coincides with the boundary

of the �nite element domain �  ��

Galerkin formulations for self�adjoint problems such as ������� lead to minimum prob�

lems in the sense of Theorem ������ Thus� the �nite element solution is the best solution

in SN in the sense of minimizing the strain energy of the error A�u � U� u � U�� The

strain energy of the error is orthogonal to all functions V in SN
E as illustrated in Figure

����� for three�vectors�

�
�
�

�
�
�

�
�
�

�
�
�u

S
E
N

H 1
E

U

Figure ������ Subspace SN
E of H�

E illustrating the �best� approximation property of the
solution of Galerkin�s method�

�� Assemble the global sti�ness and mass matrices and load vector� The element

sti�ness and mass matrices and load vectors that result from evaluating ������b�d� are

added directly into global sti�ness and mass matrices and a load vector� As depicted

in Figure ������ the indices assigned to unknowns associated with mesh entities �vertices

as shown� determine the correct positions of the elemental matrices and vectors in the

global sti�ness and mass matrices and load vector�
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� Solve the algebraic system� For linear problems� the assembly of ������� gives rise

to a system of the form

dT ��K
M�c� l	 
 
� ������a�

where K and M are the global sti�ness and mass matrices� l is the global load vector�

cT 
 �c�� c�� ���� cN 	
T � ������b�

and

dT 
 �d�� d�� ���� dN 	
T � ������c�

Since ������a� must be satis�ed for all choices of d� we must have

�K
M�c 
 l� �������

For the model problem �������� K
M will be sparse and positive de�nite� With proper

treatment of the boundary conditions� it will also be symmetric �cf� Chapter ���

Each step in the �nite element solution will be examined in greater detail� Basis

construction is described in Chapter �� mesh generation and assembly appear in Chapter

�� error analysis is discussed in Chapter �� and linear algebraic solution strategies are

presented in Chapter ���

Problems

�� By introducing the transformation

"u 
 u� �

show that ������� can be changed to a problem with homogeneous essential bound�

ary conditions� Thus� we can seek "u � H�
� �

�� Another method of treating essential boundary conditions is to remove them by

using a �penalty function�� Penalty methods are rarely used for this purpose� but

they are important for other reasons� This problem will introduce the concept and

reinforce the material of Section ���� Consider the variational statement ������� as

an example� and modify it by including the essential boundary conditions

A�v� u� 
 �v� f�
 � v� � ���N 
� � v� �� u ���E � �v � H��

Here � is a penalty parameter and subscripts on the boundary integral indicate

their domain� No boundary conditions are applied and the problem is solved for u

and v ranging over the whole of H��
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Show that smooth solutions of this variational problem satisfy the di�erential equa�

tion ������a� as well as the natural boundary conditions ������c� and

u

p

�

�u

�n

 �� �x� y� � �E �

The penalty parameter � must be selected large enough for this natural boundary

condition to approximate the prescribed essential condition ������b�� This can be

tricky� If selected too large� it will introduce ill�conditioning into the resulting

algebraic system�
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Chapter �

Finite Element Approximation

��� Introduction

Our goal in this chapter is the development of piecewise�polynomial approximations U

of a two� or three�dimensional function u� For this purpose� it su�ces to regard u as

being known and to determine U as its interpolant on a domain �� Concentrating on

two dimensions for the moment� let us partition � into a collection of �nite elements and

write U in the customary form

U�x� y� 	
NX
j��

cj�j�x� y�� �
�����

As we discussed� it is convenient to associate each basis function �j with a mesh entity�

e�g�� a vertex� edge� or element in two dimensions and a vertex� edge� face� or element

in three dimensions� We will discuss these entities and their hierarchical relationship

further in Chapter �� For now� if �j is associated with the entity indexed by j� then� as

described in Chapters � and 
� �nite element bases are constructed so that �j is nonzero

only on elements containing entity j� The support of two�dimensional basis functions

associated with a vertex� an edge� and an element interior is shown in Figure 
�����

As in one dimension� �nite element bases are constructed implicitly in an element�

by�element manner in terms of �shape functions� �cf� Section 
�
�� Once again� a shape

function on an element e is the restriction of a basis function �j�x� y� to element e�

We proceed by constructing shape functions on triangular elements �Section 
�
� 
�
��

quadrilaterals �Sections 
��� 
�
�� tetrahedra �Section 
������ and hexahedra �Section


���
��

�
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Figure 
����� Support of basis functions associated with a vertex� edge� and element
interior �left to right��

��� Lagrange Shape Functions on Triangles

Perhaps the simplest two�dimensional Lagrangian �nite element basis is a piecewise�linear

polynomial on a grid of triangular elements� It is the two�dimensional analog of the hat

functions introduced in Section ���� Consider an arbitrary triangle e with its vertices

indexed as �� 
� and � and vertex j having coordinates �xj� yj�� j 	 �� 
� � �Figure 
�
����

The linear shape function Nj�x� y� associated with vertex j satis�es

Nj�xk� yk� 	 �j�k� j� k 	 �� 
� �� �
�
���

�Again� we omit the subscript e from Nj�e whenever it is clear that we are discussing a

single element�� Let Nj have the form

Nj�x� y� 	 a� bx � cy� �x� y� � �e�

where �e is the domain occupied by element e� Imposing conditions �
�
��� produces�
� �

�
�

�
� 	

�
� � xj yj

� xk yk
� xl yl

�
�
�
� a

b
c

�
� � k �	 l �	 j� j� k� l 	 �� 
� ��

Solving this system by Crammer�s rule yields

Nj�x� y� 	
Dk�l�x� y�

Cj�k�l
� k �	 l �	 j� j� k� l 	 �� 
� �� �
�
�
a�

where

Dk�l 	 det

�
� � x y

� xk yk
� xl yl

�
� � �
�
�
b�
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Figure 
�
�
� Shape function N� for Node � of element e �left� and basis function �� for
a cluster of four �nite elements at Node ��

Cj�k�l 	 det

�
� � xj yj

� xk yk
� xl yl

�
� � �
�
�
c�

Basis functions are constructed by combining shape functions on neighboring elements

as described in Section 
�
� A sample basis function for a four�element cluster is shown in

Figure 
�
�
� The implicit construction of the basis in terms of shape function eliminates

the need to know detailed geometric information such as the number of elements sharing
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a node� Placing the three nodes at element vertices guarantees a continuous basis� While

interpolation at three non�colinear points is �necessary and� su�cient to determine a

unique linear polynomial� it will not determine a continuous approximation� With vertex

placement� the shape function �e�g�� Nj� along any element edge is a linear function of

a variable along that edge� This linear function is determined by the nodal values at

the two vertex nodes on that edge �e�g�� j and k�� As shown in Figure 
�
�
� the shape

function on a neighboring edge is determined by the same two nodal values� thus� the

basis �e�g�� �j� is continuous�

The restriction of U�x� y� to element e has the form

U�x� y� 	 c�N��x� y� � c�N��x� y� � c�N��x� y�� �x� y� � �e� �
�
���

Using �
�
���� we have cj 	 U�xj � yj�� j 	 �� 
� ��

The construction of higher�order Lagrangian shape functions proceeds in the same

manner� In order to construct a p th�degree polynomial approximation on element e� we

introduce Nj�x� y�� j 	 �� 
� � � � � np� shape functions at np nodes� where

np 	
�p� ���p� 
�



�
�
�
�

is the number of monomial terms in a complete polynomial of degree p in two dimensions�

We may write a shape function in the form

Nj�x� y� 	

npX
i��

aiqi�x� y� 	 aTq�x� y� �
�
��a�

where

qT �x� y� 	 ��� x� y� x�� xy� y�� � � � � yp�� �
�
��b�

Thus� for example� a second degree �p 	 
� polynomial would have n� 	 � coe�cients

and

qT �x� y� 	 ��� x� y� x�� xy� y���

Including all np monomial terms in the polynomial approximation ensures isotropy in the

sense that the degree of the trial function is conserved under coordinate translation and

rotation�

With six parameters� we consider constructing a quadratic Lagrange polynomial by

placing nodes at the vertices and midsides of a triangular element� The introduction of

nodes is unnecessary� but it is a convenience� Indexing of nodes and other entities will be

discussed in Chapter �� Here� since we�re dealing with a single element� we number the
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Figure 
�
��� Arrangement of nodes for quadratic �left� and cubic �right� Lagrange �nite
element approximations�

nodes from � to � as shown in Figure 
�
��� The shape functions have the form �
�
���

with n� 	 �

Nj 	 a� � a�x � a�y � a�x
� � a�xy � a�y

��

and the six coe�cients aj� j 	 �� 
� � � � � �� are determined by requiring

Nj�xk� yk� 	 �j�k� j� k 	 �� 
� � � � � ��

The basis

�j 	 �N�
e��Nj�e�x� y�

is continuous by virtue of the placement of the nodes� The shape function Nj�e is a

quadratic function of a local coordinate on each edge of the triangle� This quadratic

function of a single variable is uniquely determined by the values of the shape functions

at the three nodes on the given edge� Shape functions on shared edges of neighboring

triangles are determined by the same nodal values� hence� ensuring that the basis is

globally of class C��

The construction of cubic approximations would proceed in the same manner� A

complete cubic in two dimensions has �� parameters� These parameters can be deter�

mined by selecting �� nodes on each element� Following the reasoning described above�

we should place four nodes on each edge since a cubic function of one variable is uniquely

determined by prescribing four quantities� This accounts for nine of the ten nodes� The

last node can be placed at the centroid as shown in Figure 
�
���

The construction of Lagrangian approximations is straight forward but algebraically

complicated� Complexity can be signi�cantly reduced by using one of the following two

coordinate transformations�
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Figure 
�
�
� Mapping an arbitrary triangular element in the �x� y��plane �left� to a
canonical 
�� right triangle in the ��� ���plane �right��

�� Transformation to a canonical element� The idea is to transform an arbitrary

element in the physical �x� y��plane to one having a simpler geometry in a computational

��� ���plane� For purposes of illustration� consider an arbitrary triangle having vertex

nodes numbered �� 
� and � which is mapped by a linear transformation to a unit 
��

right triangle� as shown in Figure 
�
�
�

Consider N�
� and N�

� as de�ned by �
�
�
�� �A superscript � has been added to

emphasize that the shape functions are linear polynomials�� The equation of the line

connecting Nodes � and � of the triangular element shown on the left of Figure 
�
�
 is

N�
� 	 �� Likewise� the equation of a line passing through Node 
 and parallel to the

line passing through Nodes � and � is N�
� 	 �� Thus� to map the line N�

� 	 � onto the

line � 	 � in the canonical plane� we should set � 	 N�
� �x� y�� Similarly� the line joining

Nodes � and 
 satis�es the equation N�
� 	 �� We would like this line to become the line

� 	 � in the transformed plane� so our mapping must be � 	 N�
� �x� y�� Therefore� using

�
�
�
�

� 	 N�
� �x� y� 	

det

�
� � x y

� x� y�
� x� y�

�
�

det

�
� � x� y�

� x� y�
� x� y�

�
�
� � 	 N�

� �x� y� 	

det

�
� � x y

� x� y�
� x� y�

�
�

det

�
� � x� y�

� x� y�
� x� y�

�
�
� �
�
���

As a check� evaluate the determinants and verify that �x�� y��� ��� ��� �x�� y��� ��� ���

and �x�� y��� ��� ���

Polynomials may now be developed on the canonical triangle to simplify the algebraic
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Figure 
�
��� Geometry of a triangular �nite element for a cubic polynomial Lagrange
approximation�

complexity and subsequently transformed back to the physical element�

�� Transformation using triangular coordinates� A simple procedure for constructing

Lagrangian approximations involves the use of a redundant coordinate system� The

construction may be described in general terms� but an example su�ces to illustrate the

procedure� Thus� consider the construction of a cubic approximation on the triangular

element shown in Figure 
�
��� The vertex nodes are numbered �� 
� and �� edge nodes

are numbered 
 to �� and the centroid is numbered as Node ���

Observe that

� the line N�
� 	 � passes through Nodes 
� �� �� and ��

� the line N�
� 	 ��� passes through Nodes �� ��� and �� and

� the line N�
� 	 
�� passes through Nodes 
 and ��

Since N�
� must vanish at Nodes 
 � �� and be a cubic polynomial� it must have the form

N�
� �x� y� 	 �N�

� �N
�
� � �����N�

� � 
���

where the constant � is determined by normalizing N�
� �x�� y�� 	 �� Since N�

� �x�� y�� 	 ��

we �nd � 	 ��
 and

N�
� �x� y� 	

�



N�

� �N
�
� � �����N�

� � 
����

The shape function for an edge node is constructed in a similar manner� For example�

in order to obtain N�
� we observe that

� the line N�
� 	 � passes through Nodes �� �� �� and ��
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� the line N�
� 	 � passes through Nodes 
� �� �� and �� and

� the line N�
� 	 ��� passes through Nodes �� ��� and ��

Thus� N�
� must have the form

N�
� �x� y� 	 �N�

�N
�
� �N

�
� � �����

Normalizing N�
� �x�� y�� 	 � gives

N�
� �x�� y�� 	 �




�

�

�
�



�
� �

�
��

Hence� � 	 
��
 and

N�
� �x� y� 	


�



N�
�N

�
� �N

�
� � �����

Finally� the shape function N�
�� must vanish on the boundary of the triangle and is�

thus� determined as

N�
���x� y� 	 
�N�

�N
�
�N

�
� �

The cubic shape functions N�
� � N

�
� � and N�

�� are shown in Figure 
�
���

The three linear shape functions N�
j � j 	 �� 
� �� can be regarded as a redundant

coordinate system known as �triangular� or �barycentric� coordinates� To be more

speci�c� consider an arbitrary triangle with vertices numbered �� 
� and � as shown

in Figure 
�
��� Let

	� 	 N�
� � 	� 	 N�

� � 	� 	 N�
� � �
�
���

and de�ne the transformation from triangular to physical coordinates as

�
� x

y
�

�
� 	

�
� x� x� x�

y� y� y�
� � �

�
�
�
� 	�
	�
	�

�
� � �
�
���

Observe that �	�� 	�� 	�� has value ������� at vertex �� ������� at vertex 
 and ������� at

vertex ��

An alternate� and more common� de�nition of the triangular coordinate system in�

volves ratios of areas of subtriangles to the whole triangle� Thus� let P be an arbitrary

point in the interior of the triangle� then the triangular coordinates of P are

	� 	
AP��

A���
� 	� 	

AP��

A���
� 	� 	

AP��

A���
� �
�
���

where A��� is the area of the triangle� AP�� is the area of the subtriangle having vertices

P � 
� �� etc�
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Figure 
�
��� Cubic Lagrange shape functions associated with a vertex �left�� an
edge�right�� and the centroid �bottom� of a right 
�� triangular element�

The triangular coordinate system is redundant since two quantities su�ce to locate

a point in a plane� This redundancy is expressed by the third of equations �
�
���� which

states that

	� � 	� � 	� 	 ��

This relation also follows by adding equations �
�
����

Although seemingly distinct� triangular coordinates and the canonical coordinates are

closely related� The triangular coordinate 	� is equivalent to the canonical coordinate �

and 	� is equivalent to �� as seen from �
�
��� and �
�
����

Problems

�� With reference to the nodal placement and numbering shown on the left of Figure


�
��� construct the shape functions for Nodes � and 
 of the quadratic Lagrange

polynomial� Derive your answer using triangular coordinates� Having done this�

also express your answer in terms of the canonical ��� �� coordinates� Plot or sketch
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Figure 
�
��� Triangular coordinate system�

the two shape functions on the canonical element�


� A Lagrangian approximation of degree p on a triangle has three nodes at the vertices

and p � � nodes along each edge that are not at vertices� As we�ve discussed�

the latter placement ensures continuity on a mesh of triangular elements� If no

additional nodes are placed on edges� how many nodes are interior to the element

if the approximation is to be complete�

��� Lagrange Shape Functions on Rectangles

The triangle in two dimensions and the tetrahedron in three dimensions are the poly�

hedral shapes having the minimum number of edges and faces� They are optimal for

de�ning complete C� Lagrangian polynomials� Even so� Lagrangian interpolants are

simple to construct on rectangles and hexahedra by taking products of one�dimensional

Lagrange polynomials� Multi�dimensional polynomials formed in this manner are called

�tensor�product� approximations� we�ll proceed by constructing polynomial shape func�

tions on canonical 
 � 
 square elements and mapping these elements to an arbitrary

quadrilateral elements� We describe a simple bilinear mapping here and postpone more

complex mappings to Chapter ��

We consider the canonical 
� 
 square f��� ��j � � � �� � � �g shown in Figure 
�����

For simplicity� the vertices of the element have been indexed with a double subscript

as ��� ��� �
� ��� ��� 
�� and �
� 
�� At times it will be convenient to index the vertex

coordinats as �� 	 ��� �� 	 �� �� 	 ��� and �� 	 �� With nodes at each vertex� we

construct a bilinear Lagrangian polynomial U��� �� whose restriction to the canonical
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Figure 
����� Node indexing for canonical square elements with bilinear �left� and bi�
quadratic �right� polynomial shape functions�

element has the form

U��� �� 	 c���N������ �� � c���N������ �� � c���N������ �� � c���N������ ��� �
����a�

As with Lagrangian polynomials on triangles� the shape function Ni�j��� �� satis�es

Ni�j��k� �l� 	 �i�k�j�l� k� l 	 �� 
� �
����b�

Once again� U��k� �l� 	 ck�l� however� now Ni�j is the product of one�dimensional hat

functions

Ni�j��� �� 	 �Ni��� �Nj��� �
����c�

with

�N���� 	
�� �



� �
����d�

�N���� 	
� � �



� �� � � � �� �
����e�

Similar formulas apply to �Nj���� j 	 �� 
� with � replaced by � and i replaced by j�

The shape function N��� is shown in Figure 
���
� By examination of either this �gure or

�
����c�e�� we see that Ni�j��� �� is a bilinear function of the form

Ni�j��� �� 	 a� � a�� � a�� � a���� �� � �� � � �� �
���
�

The shape function is linear along the two edges containing node �i� j� and it vanishes

along the two opposite edges�

A basis may be constructed by uniting shape functions on elements sharing a node�

The piecewise bilinear basis functions �i�j when Node �i� j� is at the intersection of four
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Figure 
���
� Bilinear shape function N��� on the ���� ������� �� canonical square element
�left� and bilinear basis function at the intersection of four square elements �right��

square elements is shown in Figure 
���
� Since each shape function is a linear polynomial

along element edges� the basis will be continuous on a grid of square �or rectangular� ele�

ments� The restriction to a square �or rectangular� grid is critical and the approximation

would not be continuous on an arbitrary mesh of quadrilateral elements�

To construct biquadratic shape functions on the canonical square� we introduce �

nodes� ������ �
���� �
�
�� and ���
� at the vertices� ������ �
���� ���
�� and ����� at mid�

sides� and ����� at the center �Figure 
������ The restriction of the interpolant U to this

element has the form

U��� �� 	
�X

i��

�X
j��

ci�jNi�j��� �� �
����a�

where the shape functionsNi�j� i� j 	 �� 
� �� are products of the one�dimensional quadratic

polynomial Lagrange shape functions

Ni�j��� �� 	 �Ni��� �Nj���� i� j 	 �� 
� �� �
����b�

with �cf� Section 
�
�

�N���� 	 ����� ���
� �
����c�

�N���� 	 ��� � ���
� �
����d�

�N���� 	 ��� ���� �� � � � �� �
����e�

Shape functions for a vertex� an edge� and the centroid are shown in Figure 
�����

Using �
����b�e�� we see that shape functions are biquadratic polynomials of the form

Ni�j��� �� 	 a� � a�� � a�� � a��
� � a��� � a��

� � a	��
� � a
�

�� � a��
���� �
���
�
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Figure 
����� Biquadratic shape functions associated with a vertex �left�� an edge �right��
and the centroid �bottom��

Although �
���
� contains some cubic and quartic monomial terms� interpolation accuracy

is determined by the highest�degree complete polynomial that can be represented exactly�

which� in this case� is a quadratic polynomial�

Higher�order shape functions are constructed in similar fashion�

����� Bilinear Coordinate Transformations

Shape functions on the canonical square elements may be mapped to arbitrary quadri�

laterals by a variety of transformations �cf� Chapter ��� The simplest of these is a

picewise�bilinear function that uses the same shape functions �
����d�e� as the �nite el�

ement solution �
����a�� Thus� consider a mapping of the canonical 
 � 
 square S to

a quadrilateral Q having vertices at �xi�j� yi�j�� i� j 	 �� 
� in the physical �x� y��plane

�Figure 
���
� using a bilinear transformation written in terms of �
����d�e� as
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���
� Bilinear mapping of the canonical square to a quadrilateral�

�
x��� ��
y��� ��

�
	

�X
i��

�X
j��

�
xij
yij

�
Ni�j��� ��� �
�����

where Ni�j��� �� is given by �
����b��

The transformation is linear on each edge of the element� In particular� transforming

the edge � 	 �� to the physical edge �x��� y�� � �x��� y
�� yields�
x
y

�
	

�
x��
y��

�
�� �



�

�
x��
y��

�
� � �



� �� � � � ��

As � varies from �� to �� x and y vary linearly from �x��� y��� to �x��� y���� The locations

of the vertices ���
� and �
�
� have no e�ect on the transformation� This ensures that a

continuous approximation in the ��� ���plane will remain continuous when mapped to the

�x� y��plane� We have to ensure that the mapping is invertible and we�ll show in Chapter

� that this is the case when Q is convex�

Problems

�� As noted� interpolation errors of the biquadratic approximation �
����� are the same

order as for a quadratic approximation on a triangle� Thus� for example� the L�

error in interpolating a smooth function u�x� y� by a piecewise biquadratic function

U�x� y� is O�h��� where h is the length of the longest edge of an element� The

extra degrees of freedom associated with the cubic and quartic terms do not gen�

erally improve the order of accuracy� Hence� we might try to eliminate some shape

functions and reduce the complexity of the approximation� Unknowns associated

with interior shape functions are only coupled to unknowns on the element and can

easily be eliminated by a variety of techniques� Considering the biquadratic poly�

nomial in the form �
����a�� we might determine c��� so that the coe�cient of the
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quartic term x�y� vanishes� Show how this may be done for a 
� 
 square canon�

ical element� Polynomials of this type have been called serendipity by Zienkiewicz

���� In the next section� we shall see that they are also a part of the hierarchical

family of approximations� The parameter c��� is said to be �constrained� since it is

prescribed in advance and not determined as part of the Galerkin procedure� Plot

or sketch shape functions associated with a vertex and a midside�

��� Hierarchical Shape Functions

We have discussed the advantages of hierarchical bases relative to Lagrangian bases for

one�dimensional problems in Section 
��� Similar advantages apply in two and three di�

mensions� We�ll again use the basis of Szab�o and Babu ska ���� but follow the construction

procedure of Shephard et al� ��� and Dey et al� ���� Hierarchical bases of degree p may

be constructed for triangles and squares� Squares are the simpler of the two� so let us

handle them �rst�

����� Hierarchical Shape Functions on Squares

We�ll construct the basis on the canonical element f��� ��j � � � �� � � �g� indexing
the vertices� edges� and interiors as described for the biquadratic approximation shown

in Figure 
����� The hierarchical polynomial of order p has a basis consisting of the

following shape functions�

Vertex shape functions� The four vertex shape functions are the bilinear functions

�
����c�e�

N�
i�j 	 �Ni��� �Nj���� i� j 	 �� 
� �
�
��a�

where

�N���� 	
�� �



� �N���� 	

� � �



� �
�
��b�

The shape function N�
��� is shown in the upper left portion of Figure 
�
���

Edge shape functions� For p 	 
� there are 
�p� �� shape functions associated with

the midside nodes ��� ��� �
� ��� ��� 
�� and ��� ���

Nk
������ �� 	 �N���� �N

k���� �
�
�
a�

Nk
������ �� 	 �N���� �N

k���� �
�
�
b�

Nk
������ �� 	 �N���� �N

k���� �
�
�
c�

Nk
������ �� 	 �N���� �N

k���� k 	 
� �� � � � � p� �
�
�
d�
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where �Nk���� k 	 
� �� � � � � p� are the one�dimensional hierarchical shape functions given

by �
����a� as

�Nk��� 	

r

k � �




Z �

��

Pk���
�d
� �
�
�
e�

Edge shape functions Nk
��� are shown for k 	 
� �� 
� in Figure 
�
��� The edge shape

functions are the product of a linear function of the variable normal to the edge to which

they are associated and a hierarchical polynomial of degree k in a variable on this edge�

The linear function � �Nj���� �Nj���� j 	 �� 
� �blends� the edge function � �Nk���� �Nk����

onto the element so as to ensure continuity of the basis�

Interior shape functions� For p 	 
� there are �p�
��p����
 internal shape functions

associated with the centroid� Node ��� ��� The �rst internal shape function is the �bubble

function�

N�����
��� 	 ��� ������ ���� �
�
��a�

The remaining shape functions are products of N�����
��� and the Legendre polynomials as

N�����
��� 	 N�����

��� P����� �
�
��b�

N�����
��� 	 N�����

��� P����� �
�
��c�

N�����
��� 	 N�����

��� P����� �
�
��d�

N�����
��� 	 N�����

��� P����P����� �
�
��e�

N�����
��� 	 N�����

��� P����� � � � � �
�
��f�

The superscripts k� �� and �� resectively� give the polynomial degree� the degree of P�����

and the degree of P����� The �rst six interior bubble shape functions Nk����
��� � ��� 	 k�
�

k 	 
� �� �� are shown in Figure 
�
�
� These functions vanish on the element boundary

to maintain continuity�

On the canonical element� the interpolant U��� �� is written as the usual linear com�

bination of shape functions

U��� �� 	
�X

i��

�X
j��

c�i�jN
�
i�j �

pX
k��

�
�X

j��

ck��jN
k
��j �

�X
i��

cki��N
k
i��� �

pX
k��

X
����k��

ck������� Nk����
��� �

�
�
�
�

The notation is somewhat cumbersome but it is explicit� The �rst summation identi�es

unknowns and shape functions associated with vertices� The two center summations

identify edge unknowns and shape functions for polynomial orders 
 to p� And� the

third summation identi�es the interior unknowns and shape functions of orders 
 to p�
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Figure 
�
��� Hierarchical vertex and edge shape functions for k 	 � �upper left�� k 	 

�upper right�� k 	 � �lower left�� and k 	 
 �lower right��

Summations are understood to be zero when their initial index exceeds the �nal index�

A degree p approximation has 
 � 
�p� ��� � �p� 
���p� ����
 unknowns and shape

functions� where q� 	 max�q� ��� This function is listed in Table 
�
�� for p ranging from

� to �� For large values of p there are O�p�� internal shape functions and O�p� edge

functions�

����� Hierarchical Shape Functions on Triangles

We�ll express the hierarchical shape functions for triangular elements in terms of trian�

gular coordinates� indexing the vertices as �� 
� and �� the edges as 
� �� and �� and the

centroid as � �Figure 
�
���� The basis consists of the following shape functions�

Vertex Shape functions� The three vertex shape functions are the linear barycentric

coordinates �
�
���

N�
i �	�� 	�� 	�� 	 	i� i 	 �� 
� �� �
�
���
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�
�
� Hierarchical interior shape functions N�����
��� � N�����
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p Square Triangle
Dimension Dimension

� 
 �

 � �
� �
 ��

 �� ��
� 
� 
�
� �� 
�
� �� ��
� 
� 
�

Table 
�
��� Dimension of the hierarchical basis of order p on square and triangular
elements�
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Figure 
�
��� Node placement and coordinates for hierarchical approximations on a tri�
angle�

Edge shape functions� For p 	 
 there are ��p � �� edge shape functions which are

each nonzero on one edge �to which they are associated� and vanish on the other two�

Each shape function is selected to match the corresponding edge shape function on a

square element so that a continuous approximation may be obtained on meshes with

both triangular and quadrilateral elements� Let us construct of the shape functions Nk
� �

k 	 
� �� � � � � p� associated with Edge 
� They are required to vanish on Edges � and �

and must have the form

Nk
� �	�� 	�� 	�� 	 	�	� �


k���� k 	 
� �� � � � � p� �
�
��a�

where �
k��� is a shape function to be determined and � is a coordinate on Edge 
 that

has value �� at Node �� � at Node 
� and � at Node 
� Since Edge 
 is 	� 	 �� we have

Nk
� �	�� 	�� �� 	 	�	� �


k���� 	� � 	� 	 ��
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The latter condition follows from �
�
��� with 	� 	 �� Along Edge 
� 	� ranges from � to

� and 	� ranges from � to � as � ranges from �� to �� thus� we may select

	� 	 ��� ���
� 	� 	 �� � ���
� 	� 	 �� �
�
��b�

While � may be de�ned in other ways� this linear mapping ensures that 	� � 	� 	 � on

Edge 
� Compatibility with the edge shape function �
�
�
� requires

Nk
� �	�� 	�� �� 	 �Nk��� 	

��� ���� � ��



�
k���

where �Nk��� is the one�dimensional hierarchical shape function �
�
�
e�� Thus�

�
k��� 	

 �Nk���

�� ��
� �
�
��c�

The result can be written in terms of triangular coordinates by using �
�
��b� to obtain

� 	 	� � 	�� hence�

Nk
� �	�� 	�� 	�� 	 	�	� �


k�	� � 	��� k 	 
� �� � � � � p� �
�
��a�

Shape functions along other edges follow by permuting indices� i�e��

Nk
� �	�� 	�� 	�� 	 	�	� �


k�	� � 	��� �
�
��b�

Nk
� �	�� 	�� 	�� 	 	�	� �


k�	� � 	��� k 	 
� �� � � � � p� �
�
��c�

It might appear that the shape functions �
k��� has singularities at � 	 
�� however� the
one�dimensional hierarchical shape functions have ��� ��� as a factor� Thus� �
k��� is a

polynomial of degree k � 
� Using �
������ the �rst four of them are

�
���� 	 �
p
�� �
���� 	 �

p
����

�
���� 	 �
r

�

�
���� � ��� �
���� 	 �

r
�

�
���� � ���� �
�
���

Interior shape functions� The �p� ���p� 
��
 internal shape functions for p 	 � are

products of the bubble function

N�����
	 	 	�	�	� �
�
��a�

and Legendre polynomials� The Legendre polynomials are functions of two of the three

triangular coordinates� Following Szab�o and Babu ska ���� we present them in terms of

	� � 	� and 	�� Thus�

N�����
	 	 N�����

	 P��	� � 	��� �
�
��b�

N�����
	 	 N�����

	 P��
	� � ��� �
�
��c�

N�����
	 	 N�����

	 P��	� � 	��� �
�
��d�

N�����
	 	 N�����

	 P��	� � 	��P��
	� � ��� �
�
��e�

N�����
	 	 N�����

	 P��
	� � ��� � � � � �
�
��f�
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The shift in 	� ensures that the range of the Legendre polynomials is ���� ���
Like the edge shape functions for a square �
�
�
�� the edge shape functions for a

triangle �
�
��� are products of a function on the edge ��
k�	i�	j�� and a function �	i	j� i �	
j� that blends the edge function onto the element� However� the edge functions for the

triangle are not the same as those for the square� The two are related by �
�
��c�� Having

the same edge functions for all element shapes simpli�es construction of the element

sti�ness matrices ���� We can� of course� make the edge functions the same by rede�ning

the blending functions� Thus� using �
�
��a�c�� the edge function for Edge 
 can be �Nk���

if the blending function is

	�	�
�� ��

�

In a similar manner� using �
�
�
a� and �
�
��c�� the edge function for the shape function

Nk
��� can be �
k��� if the blending function is

�N������� ���



�

Shephard et al� ��� show that representations in terms of �
k involve fewer algebraic

operations and� hence� are preferred�

The �rst three edge and interior shape functions are shown in Figure 
�
�
� A degree

p hierarchical approximation on a triangle has ����p������p�����p�
���
 unknowns

and shape functions� This function is listed in Table 
�
��� We see that for p � �� there are

two fewer shape functions with triangular elements than with squares� The triangular

element is optimal in the sense of using the minimal number of shape functions for a

complete polynomial of a given degree� This� however� does not mean that the complexity

of solving a given problem is less with triangular elements than with quadrilaterals� This

issue depends on the partial di�erential equations� the geometry� the mesh structure� and

other factors�

Carnevali et al� �
� introduced shape functions that produce better conditioned ele�

ment sti�ness matrices at higher values of p than the bases presented here ���� Adjerid

et al� ��� construct an alternate basis that appears to further reduce ill conditioning at

high p�

��� Three�Dimensional Shape Functions

Three�dimensional �nite element shape functions are constructed in the same manner as

in two dimensions� Common element shapes are tetrahedra and hexahedra and we will

examine some Lagrange and hierarchical approximations on these elements�





 Finite Element Approximation

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Figure 
�
�
� Hierarchical edge and interior shape functions N�
� �top left�� N�

� �top right��
N�

� �middle left�� N�����
	 �middle right�� N�����

	 �bottom left�� N�����
	 �bottom right��

����� Lagrangian Shape Functions on Tetrahedra

Let us begin with a linear shape function on a tetrahedron� We introduce four nodes

numbered �for convenience� as � to 
 at the vertices of the element �Figure 
������ Im�

posing the usual Lagrangian conditions that Nj�xk� yk� zk� 	 �jk� j� k 	 �� 
� �� 
� gives
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the shape functions as

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1 (1,0,0,0)

2 (0,1,0,0)

3 (0,0,1,0)

4 (0,0,0,1)

P(ζ ,ζ ,ζ ,ζ )
1 2 43

Figure 
����� Node placement for linear shape functions on a tetrahedron and de�nition
of tetrahedral coordinates�

Nj�x� y� z� 	
Dk�l�m�x� y� z�

Cj�k�l�m
� �j� k� l�m� a permutation of �� 
� �� 
� �
����a�

where

Dk�l�m�x� y� z� 	 det

�
���

� x y z
� xk yk zk
� xl yl zl
� xm ym zm

�
��� � �
����b�

Cj�k�l�m 	 det

�
���

� xj yj zj
� xk yk zk
� xl yl zl
� xm ym zm

�
��� � �
����c�

Placing nodes at the vertices produces a linear shape function on each face that is uniquely

determined by its values at the three vertices on the face� This guarantees continuity of

bases constructed from the shape functions� The restriction of U to element e is

U�x� y� z� 	
�X

j��

cjNj�x� y� z�� �
���
�

As in two dimensions� we may construct higher�order polynomial interpolants by

either mapping to a canonical element or by introducing �tetrahedral coordinates�� Fo�

cusing on the latter approach� let

	j 	 Nj�x� y� z�� j 	 �� 
� �� 
� �
����a�
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Figure 
���
� Transformation of an arbitrary tetrahedron to a right� unit canonical tetra�
hedron�

and regard 	j� j 	 �� 
� �� 
� as forming a redundant coordinate system on a tetrahedron�

The coordinates of a point P located at �	�� 	�� 	�� 	�� are �Figure 
�����

	� 	
VP���
V����

� 	� 	
VP���
V����

� 	� 	
VP���
V����

� 	� 	
VP���
V����

� �
����b�

where Vijkl is the volume of the tetrahedron with vertices at i� j� k� and l� Hence� the

coordinates of Vertex � are ��� �� �� ��� those of Vertex 
 are ��� �� �� ��� etc� The plane

	 	 � is the plane A��� opposite to vertex �� etc� The transformation from physical to

tetrahedral coordinates is�
���
x
y
z
�

�
��� 	

�
���
x� x� x� x�
y� y� y� y�
z� z� z� z�
� � � �

�
���

�
���
	�
	�
	�
	�

�
��� � �
���
�

The coordinate system is redundant as expressed by the last equation�

The transformation of an arbitrary tetrahedron to a right� unit canonical tetrahedron

�Figure 
���
� follows the same lines� and we may de�ne it as

� 	 N��x� y� z�� � 	 N��x� y� z�� 	 	 N��x� y� z�� �
�����

The face A��� �Figure 
���
� is mapped to the plane � 	 �� the face A��� is mapped to

� 	 �� and A��� is mapped to 	 	 �� In analogy with the two�dimensional situation� this

transformation is really the same as the mapping �
����� to tetrahedral coordinates�

A complete polynomial of degree p in three dimensions has

np 	
�p� ���p� 
��p� ��

�
�
�����
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monomial terms �cf�� e�g�� Brenner and Scott ���� Section ����� With p 	 
� we have

n� 	 �� monomial terms and we can determine Lagrangian shape functions by placing

nodes at the four vertices and at the midpoints of the six edges �Figure 
������ With

p 	 �� we have n� 	 
� and we can specify shape functions by placing a node at each of

the four vertices� two nodes on each of the six edges� and one node on each of the four

faces �Figure 
������ Higher degree polynomials also have nodes in the element�s interior�

In general there is � node at each vertex� p�� nodes on each edge� �p����p�
��
 nodes

on each face� and �p� ���p� 
��p� ���� nodes in the interior�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
��
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
� ��

��
��
��

1

2

3

4

5

6

8
9

10

Figure 
����� Node placement for quadratic �left� and cubic �right� interpolants on tetra�
hedra�

Example ������ The quadratic shape function N�
� associated with vertex Node � of a

tetrahedron �Figure 
����� left� is required to vanish at all nodes but Node �� The plane

	� 	 � passes through face A��� and� hence� Nodes 
� �� 
� �� �� ��� Likewise� the plane

	� 	 ��
 passes through Nodes �� � �not shown�� and �� Thus� N�
� must have the form

N�
� �	�� 	�� 	�� 	�� 	 �	��	� � ��
��

Since N�
� 	 � at Node � �	� 	 ��� we �nd � 	 
 and

N�
� �	�� 	�� 	�� 	�� 	 
	��	� � ��
��

Similarly� the shape function N�
� associated with edge Node � �Figure 
����� left� is

required to vanish on the planes 	� 	 � �Nodes 
� �� 
� �� �� ��� and 	� 	 � �Nodes �� ��


� �� �� ��� and have unit value at Node � �	� 	 	� 	 ��
�� Thus� it must be

N�
� �	�� 	�� 	�� 	�� 	 
	�	��
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Figure 
���
� Node placement for a trilinear �left� and tri�quadratic �right� polynomial
interpolants on a cube�

����� Lagrangian Shape Functions on Cubes

In order to construct a trilinear approximation on the canonical cube f�� �� 	j � � �
�� �� 	 � �g� we place eight nodes numbered �i� j� k�� i� j� k 	 �� 
� at its vertices �Figure


���
�� The shape function associated with Node �i� j� k� is taken as

Ni�j�k��� �� 	� 	 �Ni��� �Nj��� �Nk�	� �
����a�

where �Ni���� i 	 �� 
� are the hat function �
����d�e�� The restriction of U to this element

has the form

U��� �� 	� 	
�X

i��

�X
j��

�X
k��

ci�j�kNi�j�k��� �� 	�� �
����b�

Once again� ci�j�k 	 Ui�j�k 	 U��i� �j� 	k��

The placement of nodes at the vertices produces bilinear shape functions on each

face of the cube that are uniquely determined by values at their four vertices on that

face� Once again� this ensures that shape functions and U are C� functions on a uniform

grid of cubes or rectangular parallelepipeds� Since each shape function is the product of

one�dimensional linear polynomials� the interpolant is a trilinear function of the form

U��� �� 	� 	 a� � a�� � a�� � a�	 � a��� � a��	 � a		� � a
��	�

Other approximations and transformations follow their two�dimensional counterparts�

For example� tri�quadratic shape functions on the canonical cube are constructed by

placing 
� nodes at the vertices� midsides� midfaces� and centroid of the element �Figure


���
�� The shape function associated with Node �i� j� k� is given by �
����a� with �Ni���

given by �
����b�d��
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����� Hierarchical Approximations

As with the two�dimensional hierarchical approximations described in Section 
�
� we use

Szab�o and Babu ska�s ��� shape function with the representation of Shephard et al� ����

The basis for a tetrahedral or a canonical cube begins with the vertex functions �
�����

or �
������ respectively� As noted in Section 
�
� higher�order shape functions are written

as products

Nk
i �x� y� z� 	 �
k��� �� 	��i��� �� 	� �
�����

of an entity function �
k and a blending function �i�

� The entity function is de�ned on a mesh entity �vertex� edge� face� or element� and

varies with the degree k of the approximation� It does not depend on the shapes

of higher�dimensional entities�

� The blending function distributes the entity function over higher�dimensional enti�

ties� It depends on the shapes of the higher�dimensional entities but not on k�

The entity functions that are used to construct shape functions for cubic and tetra�

hedral elements follow�

Edge functions for both cubes and tetrahedra are given by �
�
��c� and �
�
�
e� as

�
k��� 	

p

�
k � ��

�� ��

Z �

��

Pk���
�d
� k 	 
� �
����a�

where � � ���� �� is a coordinate on the edge� The �rst four edge functions are presented

in �
�
����

Face functions for squares are given by �
�
��� divided by the square face blending

function �
�
��a�

�
k������� �� 	 P����P����� �� � 	 k � 
� k 	 
� �
����b�

Here� ��� �� are canonical coordinates on the face� The �rst six square face functions are

�
����� 	 �� �
����� 	 ��

�
����� 	 �� �
����� 	
��� � �



�

�
����� 	 ��� �
����� 	
��� � �



�

Face functions for triangles are given by �
�
��� divided the triangular face blending

function �
�
��a�

�
k�����	�� 	�� 	�� 	 P��	� � 	��P��
	� � ��� �� � 	 k � �� k 	 �� �
����c�
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As with square faces� �	�� 	�� 	�� form a canonical coordinate system on the face� The

�rst six triangular face functions are

�
����� 	 �� �
����� 	 	� � 	��

�
����� 	 
	� � �� �
����� 	
��	� � 	��

� � �



�

�
����� 	 �	� � 	���
	� � ��� �
����� 	
��
	� � ��� � �



�

Now� let�s turn to the blending functions�

The tetrahedral element blending function for an edge is

�ij�	�� 	�� 	�� 	�� 	 	i	j �
�����a�

when the edge is directed from Vertex i to Vertex j� Using either Figure 
���
 or Figure


���� as references� we see that the blending function ensures that the shape function

vanishes on the two faces not containing the edge to maintain continuity� Thus� if i 	 �

and j 	 
� the blending function for Edge ��� 
� �which is marked with a � on the left of

Figure 
����� vanishes on the faces 	� 	 � �Face A���� and 	� 	 � �Face A�����

The blending function for a face is

�ijk�	�� 	�� 	�� 	�� 	 	i	j	k �
�����b�

when the vertices on the face are i� j� and k� Again� the blending function ensures that

the shape function vanishes on all faces but Aijk� Again referring to Figures 
���
 or


����� the blending function ���� vanishes when 	� 	 � �Face A����� 	� 	 � �Face A�����

and 	� 	 � �Face A�����

The cubic element blending function for an edge is more di�cult to write with our

notation� Instead of writing the general result� let�s consider an edge parallel to the �

axis� Then

�����j�k��� �� 	� 	
�� ��



�Nj��� �Nk�	�� �
�����a�

The factor ��� ����
 adjusts the edge function to �
����� as described in the paragraph

following �
�
���� The one�dimensional shape functions �Nj��� and �Nk�	� ensure that the

shape function vanishes on all faces not containing the edge� Blending functions for other

edges are obtained by cyclic permutation of �� �� and 	 and the index� Thus� referring

to Figure 
���
� the edge function for the edge connecting vertices 
� �� � and 
� 
� � is

����������� �� 	� 	
�� ��



�N���� �N��	��

Since �N����� 	 � �cf� �
����b��� the shape function vanishes on the rear face of the cube

shown in Figure 
���
� Since �N���� 	 �� the shape function vanishes on the top face of
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the cube of Figure 
���
� Finally� the shape function vanishes at � 	 
� and� hence� on

the left and right faces of the cube of Figure 
���
� Thus� the blending function �
�����a�

has ensured that the shape function vanishes on all but the bottom and front faces of

the cube of Figure 
���
�

The cubic face blending function for a face perpendicular to the � axis is

�i�j�k��� �� 	� 	 �Ni������ ������ 	��� �
�����b�

Referring to Figure 
���
� the quadratic terms in � and 	 ensure that the shape func�

tion vanishes on the right� left �� 	 
��� top� and bottom �	 	 
�� faces� The one�

dimensional shape function �Ni��� vanishes on the rear �� 	 ��� face when i 	 � and on

the front �� 	 �� face when i 	 
� thus� the shape function vanishes on all faces but the

one to which it is associated�

Finally� there are elemental shape functions� For tetrahedra� there are �p � ���p �

��p� ���� elemental functions for p 	 
 that are given by

Nk������
� �	�� 	�� 	�� 	�� 	 	�	�	�	�P��	� � 	��P��
	� � ��P��
	� � ���

� �� �� � 	 k � 
� k 	 
� �� � � � � p� �
����
a�

The subscript � is used to identify the element�s centroid� The shape functions vanish

on all element faces as indicated by the presence of the multiplier 	�	�	�	�� We could

also split this function into the product of an elemental function involving the Legendre

polynomials and the blend involving the product of the tetrahedral coordinates� However�

this is not necessary�

For p 	 � there are the following elemental shape functions for a cube

Nk������
� ��� �� 	� 	 ��� ������ ������ 	��P����P����P��	�� � �� �� � 	 k � ��

�
����
b�

Again� the shape function vanishes on all faces of the element to maintain continuity�

Adding� we see that there are �p�����p�
���p������ element modes for a polynomial

of order p�

Shephard et al� ��� also construct blending functions for pyramids� wedges� and prisms�

They display several shape functions and also present entity functions using the basis of

Carnevali et al� �
��

Problems

�� Construct the shape functions associated with a vertex� an edge� and a face node

for a cubic Lagrangian interpolant on the tetrahedron shown on the right of Figure


����� Express your answer in the tetrahedral coordinates �
������
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ξ

η

2 (x  ,y  )
2 2

3 (x  ,y  )
3 3

h

h

h

α

α

α1

1

2

3

2 3

Figure 
����� Nomenclature for a �nite element in the physical �x� y��plane and for its
mapping to a canonical element in the computational ��� ���plane�

��� Interpolation Error Analysis

We conclude this chapter with a brief discussion of the errors in interpolating a function u

by a piecewise polynomial function U � This work extends our earlier study in Section 
��

to multi�dimensional situations� Two� and three�dimensional interpolation is� naturally�

more complex� In one dimension� it was su�cient to study limiting processes where mesh

spacings tend to zero� In two and three dimensions� we must also ensure that element

shapes cannot be too distorted� This usually means that elements cannot become too

thin as the mesh is re�ned� We have been using coordinate mappings to construct

bases� Concentrating on two�dimensional problems� the coordinate transformation from

a canonical element in� say� the ��� ���plane to an actual element in the �x� y��plane must

be such that no distorted elements are produced�

Let�s focus on triangular elements and consider a linear mapping of a canonical unit�

right� 
�� triangle in the ��� ���plane to an element e in the �x� y��plane �Figure 
������

More complex mappings will be discussed in Chapter �� Using the transformation �
�
���

to triangular coordinates in combination with the de�nitions �
�
��� and �
�
��� of the

canonical variables� we have

�
� x

y
�

�
� 	

�
� x� x� x�

y� y� y�
� � �

�
�
�
� 	�
	�
	�

�
� 	

�
� x� x� x�

y� y� y�
� � �

�
�
�
� �� � � �

�
�

�
� � �
�����

The Jacobian of this transformation is

Je �	

�
x� x�
y� y�

�
� �
���
a�
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Di�erentiating �
������ we �nd the determinant of this Jacobian as

det�Je� 	 �x� � x���y� � y��� �x� � x���y� � y��� �
���
b�

Lemma ������ Let he be the longest edge and �e be the smallest angle of Element e�

then

h�e



sin�e � det�Je� � h�e sin�e� �
�����

Proof� Label the vertices of Element e as �� 
� and �� their angles as �� � �� � ��� and

the lengths of the edges opposite these angles as h�� h�� and h� �Figure 
������ With

�� 	 �e being the smallest angle of Element e� write the determinant of the Jacobian as

det�Je� 	 h�h� sin�e�

Using the law of sines we have h� � h� � h� 	 he� Replacing h� by h� in the above

expression yields the right�hand inequality of �
������ The triangular inequality gives

h� � h� � h�� Thus� at least one edge� say� h� � h��
� This yields the left�hand

inequality of �
������

Theorem ������ Let ��x� y� � Hs��e� and !���� �� � Hs���� be such that ��x� y� 	
!���� �� where �e is the domain of element e and �� is the domain of the canonical element�

Under the linear transformation ������	� there exist constants cs and Cs� independent of

�� !�� he� and �e such that

cs sin
s���� �eh

s��
e j�js�
e

� j!�js�
� � Cs sin
���� �eh

s��
e j�js�
e

�
���
a�

where the Sobolev seminorm is

j�j�s�
e
	
X
j�j�s

ZZ

e

�D����dxdy �
���
b�

with D�u being a partial derivative of order j�j 	 s �cf� Section 
��	�

Proof� Let us begin with s 	 �� whereZZ

e

��dxdy 	 det�Je�

ZZ

�

!��d�d�

or

j�j���
e
	 det�Je�j!�j���
� �

Dividing by det�Je� and using �
�����

j�j���
e

sin�eh�e
� j!�j���
� �


j�j���
e

sin�eh�e
�
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Taking a square root� we see that �
���
a� is satis�ed with c� 	 � and C� 	
p

�

With s 	 �� we use the chain rule to get

�x 	 !���x � !���x� �y 	 !���y � !���y�

Then�

j�j���
e
	

ZZ

e

���x � ��y�dxdy 	 det�Je�

ZZ

�

�g��e!�
�
� � 
g��e!�� !�� � g��e!�

�
��d�d�

where

g��e 	 ��x � ��y � g��e 	 �x�x � �y�y� g��e 	 ��x � ��y�

Applying the inequality ab � �a� � b���
 to the center term on the right yields

j�j���e � det�Je�

ZZ

�

�g��e!�
�
� � g��e�!�

�
� �

!���� � g��e!�
�
��d�d��

Letting

� 	 max�jg��e � g��ej� jg��e � g��ej�
and using �
���
b�� we have

j�j���
e
� det�Je��j!�j���
�� �
����a�

Either by using the chain rule above with � 	 x and y or by inverting the mapping

�
������ we may show that

�x 	
y�

det�Je�
� �y 	 � x�

det�Je�
� �x 	 � y�

det�Je�
� �y 	 � x�

det�Je�
�

From �
���
�� jx�j� jx�j� jy�j� jy�j � he� thus� using �
������ we have j�xj� j�yj� j�xj� j�yj �

��he sin�e�� Hence�

� � ��

�he sin�e��
�

Using this result and �
����� with �
����a�� we �nd

j�j���
e
� ��

sin�e
j!�j���
�� �
����b�

Hence� the left�hand inequality of �
���
a� is established with c� 	 ��
�

To establish the right inequality� we invert the transformation and proceed from ��

to �e to obtain

j!�j���
� �
!�j�j���
e

det�Je�
�
����a�
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with

!� 	 max�j!g��e � !g��ej� j!g��e � !g��ej��

!g��e 	 x�� � x��� !g��e 	 x�y� � x�y�� !g��e 	 y�� � y���

We�ve indicated that jx�j� jx�j� jy�j� jy�j � he� Thus� !� � 
h�e and� using �
������ we �nd

j!�j���
� �
�

sin�e

j�j���
e
� �
����b�

Thus� the right inequality of �
���
b� is established with C� 	 

p

�

The remainder of the proof follows the same lines and is described in Axelsson and

Barker �
��

With Theorem 
���� established� we can concentrate on estimating interpolation errors

on the canonical triangle� For simplicity� we�ll use the Lagrange interpolating polynomial

!U��� �� 	
nX

j��

!u��j� �j�Nj��� ��� �
�����

with n being the number of nodes on the standard triangle� However� with minor alter�

ations� the results apply to other bases and� indeed� other element shapes� We proceed

with one preliminary theorem and then present the main result�

Theorem ������ Let p be the largest integer for which the interpolant ������	 is exact

when !u��� �� is a polynomial of degree p� Then� there exists a constant C � � such that

j!u� !U js�
� � Cj!ujp���
�� �u � Hp������� s 	 �� �� � � � � p� �� �
�����

Proof� The proof utilizes the Bramble�Hilbert Lemma and is presented in Axelsson and

Barker �
��

Theorem ������ Let � be a polygonal domain that has been discretized into a net of

triangular elements �e� e 	 �� 
� � � � � N�� Let h and � denote the largest element edge

and smallest angle in the mesh� respectively� Let p be the largest integer for which ������	

is exact when !u��� �� is a complete polynomial of degree p� Then� there exists a constant

C � �� independent of u � Hp�� and the mesh� such that

ju� U js � Chp���s

�sin��s
jujp��� �u � Hp������ s 	 �� �� �
�����

Remark �� The results are restricted s 	 �� � because� typically� U � H� �Hp���
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Proof� Consider an element e and use the left inequality of �
���
a� with � replaced by

u� U to obtain

ju� U j�s�
e
� c��s sin��s�� �eh

��s��
e j!u� !U j�s�
��

Next� use �
�����

ju� U j�s�
e
� c��s sin��s�� �eh

��s��
e Cj!uj�p���
��

Finally� use the right inequality of �
���
a� to obtain

ju� U j�s�
e
� c��s sin��s�� �eh

��s��
e CC�

p�� sin
�� �eh

�p
e juj�p���
e

�

Combining the constants

ju� U j�s�
e
� C sin��s �eh

��p���s�
e juj�p���
e

�

Summing over the elements and taking a square root gives �
������

A similar result for rectangles follows�

Theorem ������ Let the rectangular domain � be discretized into a mesh of rectangular

elements �e� e 	 �� 
� � � � � N�� Let h and � denote the largest element edge and smallest

edge ratio in the mesh� respectively� Let p be the largest integer for which ������	 is exact

when !u��� �� is a complete polynomial of degree p� Then� there exists a constant C � ��

independent of u � Hp�� and the mesh� such that

ju� U js � Chp���s

�s
jujp��� �u � Hp������ s 	 �� �� �
������

Proof� The proof follows the lines of Theorem 
���� �
��

Thus� small and large �near �� angles in triangular meshes and small aspect ratios

�the minimum to maximum edge ratio of an element� � in a rectangular mesh must be

avoided� If these quantities remain bounded then the mesh is uniform as expressed by

the following de�nition�

De�nition ������ A family of �nite element meshes "h is uniform if all angles of all

elements are bounded away from � and � and all aspect ratios are bounded away from

zero as the element size h� ��

With such uniform meshes� we can combine Theorems 
���
� 
����� and 
���
 to obtain

a result that appears more widely in the literature�

Theorem ������ Let a family of meshes "h be uniform and let the polynomial inter�

polant U of u � Hp�� be exact whenever u is a complete polynomial of degree p� Then

there exists a constant C � � such that

ju� U js � Chp���sjujp��� s 	 �� �� �
������
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Proof� Use the bounds on � and � with �
����� and �
������ to rede�ne the constant C

and obtain �
�������

Theorems 
���
 � 
���� only apply when u � Hp��� If u has a singularity and belongs

to Hq��� q � p� then the convergence rate is reduced to

ju� U js � Chq���sjujq��� s 	 �� �� �
����
�

Thus� there appears to be little bene�t to using p th�degree piecewise�polynomial inter�

polants in this case� However� in some cases� highly graded nonuniform meshes can be

created to restore a higher convergence rate�
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Chapter �

Mesh Generation and Assembly

��� Introduction

There are several reasons for the popularity of �nite element methods� Large code seg�

ments can be implemented for a wide class of problems� The software can handle complex

geometry� Little or no software changes are needed when boundary conditions change�

domain shapes change� or coe�cients vary� A typical �nite element software framework

contains a preprocessing module to de�ne the problem geometry and data� a processing

module to assemble and solve the �nite element system� and a postprocessing module to

output the solution and calculate additional quantities of interest� The preprocessing

module

� creates a computer model of the problem domain �� perhaps� using a computer

aided design �CAD	 system�

� discretizes � into a �nite element mesh�

� creates geometric and mesh databases describing the mesh entities �vertices� edges�

faces and elements	 and their relationships to each other and to the problem ge�

ometry� and

� de�nes problem�dependent data such as coe�cient functions� loading� initial data�

and boundary data�

The processing module

� generates element sti
ness and mass matrices and load vectors�

� assembles the global sti
ness and mass matrices and load vector�

� enforces any essential boundary conditions� and

�
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� solves the linear �or nonlinear	 algebraic system for the �nite element solution�

The postprocessing modules

� calculates additional quantities of interest� such as stresses� total energy� and a

posteriori error estimates� and

� stores and displaying solution information�

In this chapter� we study the preprocessing and processing steps with the exception of

the geometrical description and solution procedures� The former topic is not addressed

while the latter subject will be covered in Chapter ���

��� Mesh Generation

Discretizing two�dimensional domains into triangular or quadrilateral �nite element meshes

can either be a simple or di�cult task depending on geometric or solution complexi�

ties� Discretizing three�dimensional domains is currently not simple� Uniform meshes

may be appropriate for some problems having simple geometric shapes� but� even there�

nonuniform meshes might provide better performance when solutions vary rapidly� e�g��

in boundary layers� Finite element techniques and software have always been associated

with unstructured and nonuniform meshes� Early software left it to users to generate

meshes manually� This required the entry of the coordinates of all element vertices�

Node and element indexing� typically� was also done manually� This is a tedious and

error prone process that has largely been automated� at least in two dimensions� Adap�

tive solution�based mesh re�nement procedures concentrate meshes in regions of rapid

solution variation and attempt to automate the task of modifying �re�ning
coarsening	

an existing mesh ��� �� �� �� ���� While we will not attempt a thorough treatment of

all approaches� we will discuss the essential ideas of mesh generation by �i	 mapping

techniques where a complex domain is transformed into a simpler one where a mesh may

be easily generated and �ii	 direct techniques where a mesh is generated on the original

domain�

����� Mesh Generation by Coordinate Mapping

Scientists and engineers have used coordinate mappings for some time to simplify ge�

ometric di�culties� The mappings can either employ analytical functions or piecewise

polynomials as presented in Chapter �� The procedure begins with mappings

x � f���� �	� y � f���� �	
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that relate the problem domain in physical �x� y	 space to its image in the simpler ��� �	

space� A simply connected region and its computational counterpart appear in Figure

������ It will be convenient to introduce the vectors

xT � �x� y�� f��� �	T � �f���� �	� f���� �	� ������a	

and write the coordinate transformation as

x � f��� �	 ������b	

������

f

(

(

0,η )

1,2
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���
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1,1

2,1

2,2

f

f

f

(

(ξ

ξ

,0)

,1)

1,η )

ξ

η

2,11,1

2,21,2

Figure ������ Mapping of a simply connected region �left	 onto a rectangular computa�
tional domain �right	�

In Figure ������ we show a region with four segments f��� �	� f��� �	� f��� �	� and f��� �	

that are related to the computational lines � � �� � � �� � � �� and � � �� respectively�

�The four curved segments may involve di
erent functions� but we have written them all

as f for simplicity�	

Also consider the projection operators

x � P��f	 � �N���	f��� �	 � �N���	f��� �	� ������a	

x � P��f	 � �N���	f��� �	 � �N���	f��� �	� ������b	

where

�N���	 � �� �� ������c	

and

�N���	 � � ������d	
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are the familiar hat functions scaled to the interval � � � � ��

As shown in Figure ������ the mapping x � P��f	 transforms the left and right edges

of the domain correctly� but ignores the top and bottom while the mapping x � P��f	

transforms the top and bottom boundaries correctly but not the sides� Coordinate lines

of constant � and � are mapped as either curves or straight lines on the physical domain�

x

y y

x

y

1,1

1,2
2,22,2

1,1

1,2

2,1 2,1

Figure ������ The transformations x � P��f	 �left	 and x � P��f	 �right	 as applied to
the simply�connected domain shown in Figure ������

x

y

1,1

2,1

2,2

1,2

x

y

1,1

2,1

1,2

2,2

Figure ������ Illustrations of the transformations x � P�P��f	 �left	 and x � P� �P��f	
�right	 as applied to the simply�connected domain shown in Figure ������

With a goal of constructing an e
ective mapping� let us introduce the tensor product

and Boolean sums of the projections ������	 as

x � P�P��f	 �
�X

i��

�X
j��

�Ni��	 �Nj��	f�i� �� j � �	 ������a	
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x � P� � P��f	 � P��f	 � P��f	� P�P��f	� ������b	

An application of these transformations to a simply�connected domain is shown in Figure

������ The transformation ������a	 is a bilinear function of � and � while ������b	 is clearly

the one needed to map the simply connected domain onto the computational plane� Lines

of constant � and � become curves in the physical domain �Figure �����	�

Although these transformations are simple� they have been used to map relatively

complex two� and three�dimensional regions� Two examples involving the �ow about an

airfoil are shown in Figure ������ With the transformation shown at the top of the �gure�

the entire surface of the airfoil is mapped to � � � ����	� A cut is made from the trailing

edge of the airfoil and the curve so de�ned is mapped to the left �� � �� ���	 and right

�� � �� ���	 edges of the computational domain� The entire far �eld is mapped to the top

�� � �� ���	 of the computational domain� Lines of constant � are rays from the airfoil

surface to the far �eld boundary in the physical plane� Lines of constant � are closed

curves encircling the airfoil� Meshes constructed in this manner are called �O�grids�� In

the bottom of Figure ������ the surface of the airfoil is mapped to a portion ����	 of the

� axis� The cut from the trailing edge is mapped to the rest ���� and ���	 of the axis�

The �right	 out�ow boundary is mapped to the left ����	 and right ����	 edges of the

computational domain� and the top� left� and bottom far �eld boundaries are mapped

to the top �� � �� ���	 of the computational domain� Lines of constant � become curves

beginning and ending at the out�ow boundary and surrounding the airfoil� Lines of

constant � are rays from the airfoil surface or the cut to the outer boundary� This mesh

is called a �C�grid��

����� Unstructured Mesh Generation

There are several approaches to unstructured mesh generation� Early attempts used

manual techniques where point�coordinates were explicitly de�ned� Semi�automatic mesh

generation required manual input of a coarse mesh which could be uniformly re�ned by

dividing each element edge intoK segments and connecting segments on opposite sides of

an element to create K� �triangular	 elements� More automatic procedures use advancing

fronts� point insertion� and recursive bisection� We�ll discuss the latter procedure and

brie�y mention the former�

With recursive bisection ���� a two�dimensional region � is embedded in a square �uni�

verse� that is recursively quartered to create a set of disjoint squares called quadrants�

Quadrants are related through a hierarchical quadtree structure� The original square

universe is regarded as the root of the tree and smaller quadrants created by subdivi�

sion are regarded as o
spring of larger ones� Quadrants intersecting �� are recursively
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Figure ������ �O�grid� �top	 and �C�grid� �bottom	 mappings of the �ow about an airfoil�

quartered until a prescribed spatial resolution of � is obtained� At this stage� quadrants

that are leaf nodes of the tree and intersect � � �� are further divided into small sets

of triangular or quadrilateral elements� Severe mesh gradation is avoided by imposing a

maximal one�level di
erence between quadrants sharing a common edge� This implies a

maximal two�level di
erence between quadrants sharing a common vertex�

A simple example involving a domain consisting of a rectangle and a region within a

curved arc� as shown in Figure ������ will illustrate the quadtree process� In the upper

portion of the �gure� the square universe containing the problem domain is quartered

creating the one�level tree structure shown at the upper right� The quadrant containing

the curved arc is quartered and the resulting quadrant that intersects the arc is quartered

again to create the three�level tree shown in the lower right portion of the �gure� A

triangular mesh generated for this tree structure is also shown� The triangular elements

are associated with quadrants of the tree structure� Quadrants and a mixed triangular�

and quadrilateral�element mesh for a more complex example are shown in Figure ������

Elements produced by the quadtree and octree techniques may have poor geometric

shapes near boundaries� A �nal �smoothing� of the mesh improves element shapes and
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Boundary quadrant

Interior quadrant

Exterior quadrant

Finite element

Figure ������ Finite quadtree mesh generation for a domain consisting of a rectangle and
a region within a curved arc� One�level �top	 and three�level �bottom	 tree structures
are shown� The mesh of triangular elements associated with the three�level quadtree is
shown superimposed�

further reduces mesh gradation near ��� Element vertices on �� are moved along the

boundary to provide a better approximation to it� Pairs of boundary vertices that are too

close to each other may be collapsed to a single vertex� Interior vertices are smoothed by a

Laplacian operation that places each vertex at the �centroid� of its neighboring vertices�

To be speci�c� let i be the index of a node to be re�positioned� xi be its coordinates� Pi

be the set of indices of all vertices that are connected to Node i by an element edge� and

Qi contain the indices of vertices that are in the same quadrant as Node i but are not
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Figure ������ Quadtree structure and mixed triangular� and quadrilateral�element mesh
generated from it�

connected to it by an edge� Then

xi �
�
P

j�Pi
xj �

P
j�Qi

xj

� dim�Pi	 � dim�Qi	
������	

where dim�S	 is the number of element vertices in set S� Additional details appear in
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Baehmann et al� ����

Arbitrarily complex two� and three�dimensional domains may be discretized by quadtree

and octree decomposition to produce unstructured grids� Further solution�based mesh

re�nement may be done by subdividing appropriate terminal quadrants or octants and

generating a new mesh locally� This unites mesh generation and adaptive mesh re�ne�

ment by a common tree data structure ���� The underlying tree structure is also suitable

for load balancing on a parallel computer ��� ���

The advancing front technique constructs a mesh by �notching� elements from ��

and propagating this process into the interior of the domain� An example is shown in

Figure ������ This procedure provides better shape control than quadtree or octree but

problems arise as the advancing fronts intersect� L ohner ���� has a description of this and

other mesh generation techniques� Carey ��� presents a more recent treatment of mesh

generation�

Figure ������ Mesh generation by the advancing front technique�

��� Data Structures

Unstructured mesh computation requires a data structure to store the geometric infor�

mation� There is some ambiguity concerning the information that should be computed

at the preprocessing stage� but� at the very least� the processing module would have to

know

� the vertices belonging to each element�

� the spatial coordinates of each vertex� and

� the element edges� faces� or vertices that are on ���

The processing module would need more information when adaptivity is performed� It�

for example� would need a link to the geometric information in order to re�ne elements
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along a curved boundary� Even without adaptivity� the processing software may want

access to geometric information when using elements with curved edges or faces �cf�

Section ���	� If the �nite element basis were known at the preprocessing stage� space could

be reserved for edge and interior nodes or for a symbolic factorization of the resulting

algebraic system �cf� Chapter ��	�

Beall and Shephard ��� introduced a database and data structure that have great

�exibility� It is suitable for use with high�order and hierarchical bases� adaptive mesh

re�nement and
or order variation� and arbitrarily complex domains� It has a hierarchical

structure with three�dimensional elements �regions	 having pointers to their bounding

faces� faces having pointers to their bounding edges� and edges having pointers to their

bounding vertices� Those mesh entities �elements� faces� edges� and vertices	 on domain

boundaries have pointers to relevant geometric structures de�ning the problem domain�

This structure� called the SCOREC mesh database� is shown in Figure ������ Nodes may

be introduced as �xed points in space to be associated with shape functions� When done�

these may be located by pointers from any mesh entity�

Element

Face

Edge

Vertex

Geometric
 Model
Entities

Figure ������ SCOREC hierarchical mesh database�

Let us illustrate the data structure for the two�dimensional domain shown in Figure

������ As shown in Figure ������ this mesh has �� faces �two�dimensional elements	� ��

edges� and �� vertices� The face and edge�pointer information is shown in Table ������

Each edge has two pointers back to the faces that contain it� These are shown within

brackets in the table� The use of tables and integer indices for pointers is done for

convenience and does not imply an array implementation of pointer data� The edge and
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vertex�pointer information and the vertex�point coordinate data are shown in Table ������

Backward pointers from vertices to edges and pointers from vertices and edges on the

boundary to the geometric database have not been shown to simplify the presentation�

We have shown a small portion of the pointer structure near Edge �� in Figure ������

Links between common entities allow the mesh to be traversed by faces� edges� or vertices

in two dimensions� Problem and solution data is stored with the appropriate entities�
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Figure ������ Example illustrating the SCOREC mesh database� Faces are indexed
as shown at the upper left� edge numbering is shown at the upper right� and vertex
numbering is shown at the bottom�
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Face Edge Edge Edge

� � � � � � � � �� � � � ��
� � � � � � � � �� � � � ��
� � � � �� � � � �� �� � � ��
� � � � � �� � � �� � � � ��
� �� � � �� �� � � �� �� � � ��
� �� � � �� �� � � �� �� � � ���
� � � � � �� � � �� �� � � ��
� �� � � �� � � � � �� � � ���
� � � � �� �� � � ��� �� � � �

�� �� ��� �� �� ��� ��� �� ��� ���
�� �� ��� �� �� ��� ��� �� ��� ���
�� �� ��� ��� �� ��� ��� �� ��� ���
�� �� ��� � � �� ��� ��� �� ��� ���
�� �� ��� ��� �� ��� ��� �� ��� ���
�� �� ��� ��� �� ��� ��� �� ��� �
�� �� ��� � �� ��� ��� �� ��� �
�� �� ��� � �� ��� ��� �� ��� ���
�� �� ��� ��� �� ��� ��� �� ��� ���
�� �� ��� ��� �� ��� ��� �� ��� �
�� �� ��� ��� �� ��� � �� ��� ���

Table ������ Face and edge�pointer data for the mesh shown in Figure ������ Backward
pointers from edges to their bounding faces are shown in brackets�

Face 14

Edge 18

Face 10 ...

...
To Edges 24 and 23To Edges 17 and 19

To vertices 10 and 11

...

Figure ������ Pointer structure in the vicinity of Edge ���

The SCOREC mesh database contains more information than necessary for a typi�

cal �nite element solution� For example� the edge information may be eliminated and

faces may point directly to vertices� This would be a more traditional �nite element

data structure� Although it saves storage and simpli�es the data structure� it may be

wise to keep the edge information� Adaptive mesh re�nement procedures often work by

edge splitting and these are simpli�ed when edge data is available� Edge information

also simpli�es the application of boundary conditions� especially when the boundary is
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Edge Vertices Edge Vertices

� � � �� � ��
� � � �� � ��
� � � �� � ��
� � � �� � ��
� � � �� �� ��
� � � �� �� ��
� � � �� �� �
� � � �� �� ��
� � � �� �� ��

�� � � �� �� ��
�� � � �� �� ��
�� � � �� �� ��
�� � � �� �� ��
�� � � �� �� ��
�� � � �� �� ��
�� � � �� �� ��
�� � �� �� �� ��
�� �� �� �� � ��

Vertex Coordinates

� ����� ����
� ����� ����
� ����� ����
� ���� ����
� ����� ����
� ���� ����
� ����� ����
� ����� ����
� ����� ����

�� ����� ����
�� ����� ����
�� ���� ����
�� ���� ����
�� ���� �����
�� ���� �����
�� ���� ����
�� ���� ����

Table ������ Edge and vertex�pointer data �left	 and vertex and coordinate data �right	
for the mesh shown in Figure ������

curved� Only pointers are required for the edge information and� in many implementa�

tions� pointers require less storage than integers� Nevertheless� let us illustrate face and

vertex information for the simple mesh shown in Figure ������ which contains a mixture

of triangular and quadrilateral elements� The face�vertex information is shown in Table

����� and the vertex�coordinate data is shown in Table ������ Assuming quadratic shape

functions on the triangles and biquadratic shape functions on the rectangles� a traditional

data structure would typically add nodes at the centers of all edges and the centers of

the rectangular faces� In this example� the midside and face nodes are associated with

faces� however� they could also have been associated with vertices�

Without edge data� the database generally requires additional a priori assumptions�

For example� we could agree to list vertices in counterclockwise order� Edge nodes could

follow in counterclockwise order beginning with the node that is closest in the coun�

terclockwise direction to the �rst vertex� Finally� interior nodes may be listed in any

order� The choice of the �rst vertex is arbitrary� This strategy is generally a compromise

between storing a great deal of data with fast access and having low storage costs but

having to recompute information� We could further reduce storage� for example� by not

saving the coordinates of the edge nodes�
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Figure ������ Sample �nite element mesh involving a mixture of quadratic approximations
on triangles and biquadratic approximations on rectangles� Face indices are shown in
parentheses�

Face Vertices Nodes

� � � � � � �� �� �� ��
� � � � � �� �� �� �� ��
� � � � �� �� ��
� � � � �� �� ��
� � � � �� �� ��

Table ������ Simpli�ed face�vertex data for the mesh of Figure ������

The type of �nite element basis must also be stored� In the present example� we could

attach it to the face�vertex table� With the larger database described earlier� we could

attach it to the appropriate entity� In the spirit of the shape function decomposition

described in Sections ��� and ���� we could store information about a face shape function

with the face and information about an edge shape function with the edge� This would

allow us to use variable�order approximations �p�re�nement	�

Without edge data� we need a way of determining those edges that are on ��� This

can be done by adopting a convention that the edge between the �rst and second vertices

of each face is Edge �� Remaining edges are numbered in counterclockwise order� A

sample boundary data table for the mesh of Figure ����� is shown on the right of Table

������ The �rst row of the table identi�es Edge � of Face � as being on a boundary of

the domain� Similarly� the second row of the table identi�es Edge � of Face � as being a

boundary edge� etc� Regions with curved edges would need pointers back to the geometric

database�
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Vertex Coordinates

� ���� ����
� ���� ����
� ���� ����
� ���� ����
� ���� ����
� ���� ����
� ���� ����
� ���� ����

� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����
�� ���� ����

Face Edge

� �
� �
� �
� �
� �
� �
� �

Table ������ Vertex and coordinate data �left	 and boundary data �right	 for the �nite
element mesh shown in Figure ������

��� Coordinate Transformations

Coordinate transformations enable us to develop element sti
ness and mass matrices

and load vectors on canonical triangular� square� tetrahedral� and cubic elements in a

computational domain and map these to actual elements in the physical domain� Useful

transformations must �i	 be simple to evaluate� �ii	 preserve continuity of the �nite

element solution and geometry� and �iii	 be invertible� The latter requirement ensures

that each point within the actual element corresponds to one and only one point in the

canonical element� Focusing on two dimensions� this requires the Jacobian

Je ��

�
x� x�
y� y�

�
������	

of the transformation of Element e in the physical �x� y	�plane to the canonical element

in the computational ��� �	�plane to be nonsingular�

The most popular coordinate transformations are� naturally� piecewise�polynomial
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functions� These mappings are called subparametric� isoparametric� and superparametric

when their polynomial degree is� respectively� lower than� equal to� and greater than

that used for the trial function� As we have seen in Chapter �� the transformations use

the same shape functions as the �nite element solutions� We illustrated linear �Section

���	 and bilinear �Section ���	 transformations for� respectively� mapping triangles and

quadrilaterals to canonical elements� We have two tasks in front of us� �i	 determining

whether higher�degree piecewise polynomial mappings can be used to advantage and �ii	

ensuring that these transformations will be nonsingular�

Example ������ Recall the bilinear transformation of a � � � canonical square to a

quadrilateral that was introduced in Section ��� �Figure �����	
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Figure ������ Bilinear mapping of a quadrilateral to a �� � square�

�
x��� �	
y��� �	

�
�

�X
i��

�X
j��

�
xij
yij

�
Ni�j��� �	� ������a	

where

Ni�j��� �	 � �Ni��	 �Nj��	� i� j � �� �� ������b	

and

�Ni��	 �

�
��� �	��� if i � �
�� � �	��� if i � �

� ������c	

The vertices of the square ������	� �����	� ���� �	� ��� �	 are mapped to the vertices of

the quadrilateral �x���� y���	� �x���� y���	� �x���� y���	� �x���� y���	� The bilinear transforma�

tion is linear along each edge� so the quadrilateral element has straight sides�
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Di
erentiating ������a	 while using ������b�c	

x� �
x�� � x��

�
�N���	 �

x�� � x��
�

�N���	�

y� �
y�� � y��

�
�N���	 �

y�� � y��
�

�N���	�

x� �
x�� � x��

�
�N���	 �

x�� � x��
�

�N���	�

y� �
y�� � y��

�
�N���	 �

y�� � y��
�

�N���	�

Substituting these formulas into ������	 and evaluating the determinant reveals that the

quadratic terms cancel� hence� the determinant of Je is a linear function of � and � rather

than a bilinear function� Therefore� it su�ces to check that det�Je	 has the same sign at

each of the four vertices� For example�

det�Je������		 � x�������	y�������	� x�������	y�������	

or

det�Je������		 � �x�� � x��	�y�� � y��	� �x�� � x��	�y�� � y��	�

The cross product formula for two�component vectors indicates that

det�Je������		 � h�h� sin����

where h�� h�� and ��� are the lengths of two adjacent sides and the angle between them

�Figure �����	� Similar formulas apply at the other vertices� Therefore� det�Je	 will not

vanish if and only if �ij � 	 at each vertex� i�e�� if and only if the quadrilateral is convex�

Polynomial shape functions and bases are constructed on the canonical element as

described in Chapter �� For example� the restriction of a bilinear �isoparametric	 trial

function to the canonical element would have the form

U��� �	 �
�X

i��

�X
j��

ci�jNi�j��� �	�

A subparametric approximation might� for example� use a piecewise�bilinear coordinate

transformation ������	 with a piecewise�biquadratic trial function� Let us illustrate this

using the element node numbering of Section ��� as shown in Figure ������ Using ������	�

the restriction of the piecewise�biquadratic polynomial trial function to the canonical

element is

U��� �	 �
�X

i��

�X
j��

ci�jN
�
i�j��� �	 ������a	
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Figure ������ Bilinear mapping to a unit square with a biquadratic trial function�
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Figure ������ Biquadratic mapping of the unit square to a curvilinear element�

where the superscript � is used to identify biquadratic shape functions

N�
i�j��� �	 � �N�

i ��	 �N
�
j ��	� i� j � �� �� �� ������b	

with

�N�
i ��	 �

��
�

����� �	��� if i � �
��� � �	��� if i � �
�� ��� if i � �

� ������c	

Example ������ A biquadratic transformation of the canonical square has the form

�
x��� �	
y��� �	

�
�

�X
i��

�X
j��

�
xij
yij

�
N�

i�j��� �	� ������	

where N�
i�j��� �	� i� j � �� �� �� is given by ������	�

This transformation produces an element in the �x� y	�plane having curved �quadratic	

edges as shown in Figure ������ An isoparametric approximation would be biquadratic
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Figure ������ Quadratic mapping of a triangle having one curved side�

and have the form of ������	� The interior node ����	 is awkward and can be eliminated

by using a second�order serendipity �cf� Problems �����	 or hierarchical transformation

�cf� Section ���	�

Example ������ The biquadratic transformation described in Example ����� is useful

for discretizing domains having curved boundaries� With a similar goal� we describe a

transformation for creating triangular elements having one curved and two straight sides

�Figure �����	� Let us approximate the curved boundary by a quadratic polynomial and

map the element onto a canonical right triangle by the quadratic transformation

�
x��� �	
y��� �	

�
�

�X
i��

�
xi
yi

�
N�

i ��� �	� ������a	

where the quadratic Lagrange shape functions are �cf� Problem �����	

N�
j � �
j�
j � ���	� j � �� �� �� ������b	

N�
� � �
�
�� N�

� � �
�
�� N�
� � �
�
�� ������c	

and


� � �� � � �� 
� � �� 
� � �� ������	

Equations ������	 and ������	 describe a general quadratic transformation� We have a

more restricted situation with

x� � �x� � x�	��� y� � �y� � y�	���

x� � �x� � x�	��� y� � �y� � y�	���
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This simpli�es the transformation ������a	 to

�
x��� �	
y��� �	

�
�

�
x�
y�

�
!N�
� �

�
x�
y�

�
!N�
� �

�
x�
y�

�
!N�
� �

�
x�
y�

�
!N�
� � ������a	

where� upon use of ������	 and ������	�

!N�
� � N�

� � �N�
� �N�

� 	�� � 
� � �� � � �� ������b	

!N�
� � N�

� �N�
� �� � ���� ��	� ������c	

!N�
� � N�

� �N�
� �� � ���� ��	� ������d	

!N�
� � N�

� � ���� ������e	

From these results� we see that the mappings on edges ��� �� � �	 and ��� �� � �	 are

linear and are� respectively� given by

�
x
y

�
�

�
x�
y�

�
��� �	 �

�
x�
y�

�
��

�
x
y

�
�

�
x�
y�

�
��� �	 �

�
x�
y�

�
��

The Jacobian determinant of the transformation can vanish depending on the location

of Node �� The analysis may be simpli�ed by constructing the transformation in two

steps� In the �rst step� we use a linear transformation to map an arbitrary element onto

a canonical element having vertices at ��� �	� ��� �	� and ��� �	 but with one curved side�

In the second step� we remove the curved side using the quadratic transformation ������	�

The linear mapping of the �rst step has a constant Jacobian determinant and� therefore�

cannot a
ect the invertibility of the system� Thus� it su�ces to consider the second step

of the transformation as shown in Figure ������ Setting �x�� y�	 � ��� �	� �x�� y�	 � ��� �	�

and �x�� y�	 � ��� �	 in ������a	 yields

�
x��� �	
y��� �	

�
�

�
�
�

�
!N�
� �

�
�
�

�
!N�
� �

�
x�
y�

�
!N�
� �

Using ������c�e	 �
x��� �	
y��� �	

�
�

�
���� ��	
���� ��	

�
� ���

�
x�
y�

�
�

Calculating the Jacobian

Je��� �	 �

�
x� x�
y� y�

�
�

�
�� �� � �x�� ��� � �x��
��� � �y�� �� �� � �y��

�
�
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Figure ������ Quadratic mapping of a right triangle having one curved side� The shaded
region indicates where Node � can be placed without introducing a singularity in the
mapping�

we �nd the determinant as

det�Je��� �	 � � � ��x� � �	� � ��y� � �	��

The Jacobian determinant is a linear function of � and �� thus� as with Example ������

we need only ensure that it has the same sign at each of its three vertices� We have

det�Je��� �		 � �� det�Je��� �		 � �x� � �� det�Je��� �		 � �y� � ��

Hence� the Jacobian determinant will not vanish and the mapping will be invertible when

x� � ��� and y� � ��� �cf� Problem � at the end of this section	� This region is shown

shaded on the triangle of Figure ������

Problems

�� Consider the second�order serendipity shape functions of Problem ����� or the

second�order hierarchical shape functions of Section ���� Let the four vertex nodes

be numbered ��� �	� ��� �	� ��� �	� and ��� �	 and the four midside nodes be numbered

��� �	� ��� �	� ��� �	� and ��� �	� Use the serendipity shape functions of Problem �����

to map the canonical � � � square element onto an eight�noded quadrilateral ele�

ment with curved sides in the �x� y	�plane� Assume that the vertex and midside

nodes of the physical element have the same numbering as the canonical element

but have coordinates at �xij� yij	� i� j � �� �� �� i � j �� �� Can the Jacobian of the

transformation vanish for some particular choices of �x� y	" �This is not a simple

question� It su�ces to give some qualitative reasoning as to how and why the

Jacobian may or may not vanish�	
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�� Consider the transformation ������	 of Example ����� with x� � y� � ��� and sketch

the element in the �x� y	�plane� Sketch the element for some choice of x� � y� � ����

��� Generation of Element Matrices and Vectors and

Their Assembly

Having discretized the domain� the next step is to select a �nite element basis and

generate and assemble the element sti
ness and mass matrices and load vectors� As a

review� we summarize some of the two�dimensional shape functions that were developed

in Chapter � in Tables ����� and ������ Nodes are shown on the mesh entities for the

Lagrangian and hierarchical shape functions� As noted in Section ���� however� the shape

functions may be associated with the entities without introducing modal points� The

number of parameters np for an element having order p shape functions is presented for

p � �� �� �� �� We also list an estimate of the number of unknowns �degrees of freedom	 N

for scalar problems solved on unit square domains using uniform meshes of �n� triangular

or n� square elements�

Both the Lagrange and hierarchical bases of order p have the same number of param�

eters and degrees of freedom on the uniform triangular meshes� Without constraints for

Dirichlet data� the number of degrees of freedom is N � �pn� �	� �cf� Problem � at the

end of this section	� Dirichlet data on the entire boundary would reduce N by O�pn	

and� hence� be a higher�order e
ect when n is large� The asymptotic approximation

N � �pn	� is recorded in Table ������ Similarly� bi�polynomial approximations of order p

on squares with n� uniform elements have N � �pn � �	� degrees of freedom �again� cf�

Problem �	� The asymptotic approximation �pn	� is reported in Table ������ Under the

same conditions� hierarchical bases on squares have

N �

�
��p� �	n� � �pn� �� if p � �
�p� � p� �	n��� � �pn� �� if p 	 �

�

degrees of freedom� The asymptotic values N � ��p� �	N�� p � �� and N � �p� � p �

�	n���� p 	 �� are reported in Table ������

The Lagrange and hierarchical bases on triangles and the Lagrange bi�polynomial

bases on squares have approximately the same number of degrees of freedom for a given

order p� The hierarchical bases on squares have about half the degrees of freedom of the

others� The bi�polynomial Lagrange shape functions on a square have the largest number

of parameters per element for a given p� The number of parameters per element a
ects the

element matrix and vector computations while the number of degrees of freedom a
ects

the solution time� We cannot� however� draw �rm conclusions about the superiority of

one basis relative to another� The selection of an optimal basis for an intended level
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Table ������ Shape function placement for Lagrange and hierarchical �nite element ap�
proximations of degrees p � �� �� �� � on triangular elements with their number of param�
eters per element np and degrees of freedom N on a square with �n� elements� Circles
indicate additional shape functions located on a mesh entity�

of accuracy is a complex issue that depends on solution smoothness� geometry� and

the partial di
erential system� We�ll examine this topic in a later chapter� At least it

seems clear that bi�polynomial bases are not competitive with hierarchical ones on square

elements�

����� Generation of Element Matrices and Vectors

The generation of the element sti
ness and mass matrices and load vectors is largely

independent of the partial di
erential system being solved� however� let us focus on the

model problem of Section ��� in order to illustrate the procedures less abstractly� Thus�

consider the two�dimensional Galerkin problem� determine u 
 H�
E satisfying

A�v� u	 � �v� f	� �v 
 H�
� � ������a	
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Table ������ Shape function placement for bi�polynomial Lagrange and hierarchical ap�
proximations of degrees p � �� �� �� � on square elements with their number of parameters
per element np and degrees of freedom N on a square with n� elements� Circles indicate
additional shape functions located on a mesh entity�

where

�v� f	 �

ZZ
	

vfdxdy ������b	

A�v� u	 �

ZZ
	

�p�vxux � vyuy	 � qvu�dxdy ������c	

As usual� � is a two�dimensional domain with boundary �� � ��E � ��N � Recall that

smooth solutions of ������	 satisfy

��pux	x � �puy	y � qu � f� �x� y	 
 �� ������a	
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u � �� �x� y	 
 ��E � ������b	

un � �� �x� y	 
 ��N � ������c	

where n is the unit outward normal vector to ��� Trivial natural boundary conditions

are considered for simplicity� More complicated situations will be examined later in this

section�

Following the one�dimensional examples of Chapters � and �� we select �nite�dimensional

subspaces SN
E and SN

� of H�
E and H�

� and write ������b�c	 as the sum of contributions

over elements

�V� f	 �

N�X
e��

�V� f	e� ������a	

A�V� U	 �

N�X
e��

Ae�V� U	� ������b	

Here� N
 is the number of elements in the mesh�

�V� f	e �

ZZ
	e

V fdxdy ������c	

is the local L� inner product�

Ae�V� U	 �

ZZ
	e

�p�VxUx � VyUy	 � qV U �dxdy ������d	

is the local strain energy� and �e is the portion of � occupied by element e�

The evaluation of ������c�d	 can be simple or complex depending on the functions

p� q� and f and the mesh used to discretize �� If p and q were constant� for example�

the local strain energy ������d	 could be integrated exactly as illustrated in Chapters �

and � for one�dimensional problems� Let�s pursue a more general approach and discuss

procedures based on transforming integrals ������c�d	 on element e to a canonical element

� and evaluating them numerically� Thus� let U���� �	 � U�x��� �	� y��� �		 and V���� �	 �

V �x��� �	� y��� �		 and transform the integrals ������c�d		 to element � to get

�V� f	e �

ZZ
	�

V���� �	f�x��� �	� y��� �		 det�Je	d�d�� ������a	

Ae�V� U	 �

ZZ
	�

�p�V���x � V���x	�U���x � U���x	�
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p�V���y � V���y	�U���y � U���y	 � qV�U�� det�Je	d�d�

where Je is the Jacobian of the transformation �cf� ������		�

Expanding the terms in the strain energy

Ae�V� U	 �

ZZ
	�

�g�eV��U�� � g�e�V��U�� � V��U��	 � g�eV��U�� � qV�U�� det�Je	d�d�

������b	

where

g�e � p�x��� �	� y��� �		���x � ��y�� ������c	

g�e � p�x��� �	� y��� �		��x�x � �y�y�� ������d	

g�e � p�x��� �	� y��� �		���x � ��y�� ������e	

The integrand of ������b	 might appear to be polynomial for constant p and a poly�

nomial mapping� however� this is not the case� In Section ���� we showed that the inverse

coordinate mapping satis�es

�x �
y�

det�Je	
� �y � � x�

det�Je	
� �x � � y�

det�Je	
� �y �

x�
det�Je	

� ������	

The functions gie� i � �� �� �� are proportional to ��� det�Je	�
�� thus� the integrand of

������b	 is a rational function unless� of course� det�Je	 is a constant�

Let us write U� and V� in the form

U���� �	 � cTeN��� �	 � N��� �	Tce� V���� �	 � dTeN��� �	 � N��� �	Tde ������	

where the vectors ce and de contain the elemental parameters and N��� �	 is a vector

containing the elemental shape functions�

Example ������ For a linear polynomial on the canonical right ��� triangular element

having vertices numbered � to � as shown in Figure ������

ce �

�
� ce��
ce��
ce��

	

 � N��� �	 �

�
� �� � � �

�
�

	

 �

The actual vertex indices� shown as i� j� abd k� are mapped to the canonical indices ��

�� and ��

Example ������ The treatment of hierarchical polynomials is more involved because

there can be more than one parameter per node� Consider the case of a cubic hierarchical
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Figure ������ Linear transformation of a triangular element e to a canonical right ���

triangle�

function on a triangle� Translating the basis construction of Section ��� to the canonical

element� we obtain an approximation of the form ������	 with

cTe � �ce��� ce��� ���� ce����

NT � �N���� �	� N���� �	� ���� N����� �	��

The basis has ten shape functions per element �cf� ��������		� which are ordered as

N���� �	 � 
� � �� � � �� N���� �	 � 
� � �� N���� �	 � 
� � ��

N���� �	 � �
p
�
�
�� N���� �	 � �

p
�
�
�� N���� �	 � �

p
�
�
��

N���� �	 � �
p
��
�
���� � �	� N���� �	 � �

p
��
�
���� � �	�

N
��� �	 � �
p
��
�
���� ��	� N����� �	 � 
�
�
��

With this ordering� the �rst three shape functions are associated with the vertices� the

next three are quadratic corrections at the midsides� the next three are cubic corrections

at the midsides� and the last is a cubic �bubble function� associated with the centroid

�Figure �����	�

An array implementation� as described by ������	 and Examples ���� � and ������

may be the simplest data structure� however� implementations with structures linked to

geometric entities �Section ���	 are also possible�

Substituting the polynomial representation ������	 into the transformed strain energy

expression ������b	 and external load ������a	 yields

Ae�V� U	 � dTe �Ke �Me	ce� ������a	
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Figure ������ Shape function placement and numbering for a hierarchical cubic approxi�
mation on a canonical right ��� triangle�

�V� f	e � dTe fe� ������b	

where

Ke �

ZZ
	�

�g�eN�N
T
� � g�e�N�N

T
� �N�N

T
� 	 � g�eN�N

T
� � det�Je	d�d�� ������a	

Me �

ZZ
	�

qNNT det�Je	d�d�� ������b	

fe �

ZZ
	�

Nf det�Je	d�d�� ������c	

Here� Ke and Me are the element sti
ness and mass matrices and fe is the element load

vector� Numerical integration will generally be necessary to evaluate these arrays when

the coordinate transformation is not linear and we will study procedures to do this in

Chapter ��

Element mass and sti
ness matrices and load vectors are generated for all elements

in the mesh and assembled into their proper locations in the global sti
ness and mass

matrix and load vector� The positions of the elemental matrices and vectors in their

global counterparts are determined by their indexing� In order to illustrate this point�

consider a linear shape function on an element with Vertices �� �� and � as shown in

Figure ������ These vertex indices are mapped onto local indices� e�g�� �� �� �� of the

canonical element and the correspondence is recorded as shown in Figure ������ After

generating the element matrices and vectors� the global indexing determines where to add
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these entries into the global sti
nes and mass matrix and load vector� In the example

shown in Figure ������ the entry ke�� is added to Row � and Column � of the global

sti
ness matrix K� The entry ke�� is added to Row � and Column � of K� etc�

The assembly process avoids the explicit summations implied by ������	 and yields

A�V� U	 � dT �K�M	c� ������a	

�V� f	 � dT f � ������b	

where

cT � �c�� c�� ���� cN �� ������c	

dT � �d�� d�� ���� dN �� ������d	

where K is the global sti
ness matrix� M is the global mass matrix� f is the global load

vector� and N is the dimension of the trial space �or the number of degrees of freedom	�

Imposing the Galerkin condition ������a	

A�V� U	� �V� f	 � dT ��K�M	c� f � � �� �d 
 �N � �������a	

yields

�K�M	c � f � �������b	

����� Essential and Neumann Boundary Conditions

It�s customary to ignore any essential boundary conditions during the assembly phase�

Were boundary conditions not imposed� the matrix K�M would be singular� Essential

boundary conditions constrain some of the ci� i � �� �� ���� N � and they must be imposed

before the algebraic system �������b	 can be solved� In order to simplify the discussion�

let us suppose that either M � � or that M has been added to K so that �������	 may

be written as

dT �Kc� f � � �� �d 
 �N � �������a	

Kc � f � �������b	
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Figure ������ Assembly of an element sti
ness matrix and load vector into their global
counterparts for a piecewise�linear polynomial approximation� The actual vertex indices
are recorded and stored �top	� the element sti
ness matrix and load vector are calculated
�center	� and the indices are used to determine where to add the entries of the elemental
matrix and vector into the global sti
ness and mass matrix�
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Essential boundary conditions may either constrain a single ci or impose constraints

between several nodal variables� In the former case� we partition �������a	 as

�d�d��

��
K�� K��

K�� K��

� �
c�
c�

�
�
�
f�
f�

�

� �� �������a	

where the essential boundary conditions are

c� � ��� �������b	

Recall �Chapters � and �	� that the test function V should vanish on ��E � thus� corre�

sponding to �������b	

d� � �� �������c	

The second �block� of equations in �������a	 should never have been generated and�

actually� we should have been solving

dT� �K��c� �K��c� � f�� � dT� �K��c� �K���� � f�� � �� �������a	

Imposing the Galerkin condition that �������a	 vanish for all d��

K��c� � f� �K����� �������b	

Partitioning �������	 need not be done explicitly as in �������	� It can be done im�

plicitly without rearranging equations� Consider the original system �������b	

�
������

k�� k�j k�N
���

���
���

kj� 
 
 
 kjj 
 
 
 kjN
���

���
���

kN� kNj kNN

	
�����


�
������

c�
���
cj
���
cN

	
�����

�

�
������

f�
���
fj
���
fN

	
�����

� �������	

Suppose that one boundary condition speci�es cj � �j� then the j th equation �row	 of

the system is deleted� cj is replaced by the boundary condition� and the coe�cients of cj

are moved to the right�hand side to obtain

�
��������

k�� k��j�� k��j�� k�N
���

���
���

���
kj���� 
 
 
 kj���j�� kj���j�� 
 
 
 kj���N
kj���� 
 
 
 kj���j�� kj���j�� 
 
 
 kj���N

���
���

���
���

kN� kN�j�� kN�j�� kNN

	
�������


�
��������

c�
���

cj��
cj��
���
cN

	
�������

�

�
��������

f� � k��j�j
���

fj�� � kj���j�j
fj�� � kj���j�j

���
fN � kN�j�j

	
�������

�
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When the algebraic system is large� the cost of moving data when rows and columns

are removed from the system may outweigh the cost of solving a larger algebraic system�

In this case� the boundary condition cj � �j can be inserted as the j th equation of

�������	� Although not necessary� the j th column is usually moved to the right�hand

side to preserve symmetry� The resulting larger problem is

�
������

k�� � k�N
���

���
���

� 
 
 
 � 
 
 
 �
���

���
���

kN� � kNN

	
�����


�
������

c�
���
cj
���
cN

	
�����

�

�
������

f� � k��j�j
���
�j
���

fN � kN�j�j

	
�����

�

The treatment of essential boundary conditions that impose constraints among several

nodal variables is much more di�cult� Suppose� for example� there are l boundary

conditions of the form

Tc � �� �������	

where T is an l�N matrix and � is an l�vector� In vector systems of partial di
erential

equations� such boundary conditions arise when constraints are speci�ed between di
erent

components of the solution vector� In scalar problems� conditions having the form �������	

arise when a �global� boundary condition like

Z
�	

uds � �

is speci�ed� They could also arise with periodic boundary conditions which might� for

example� specify u��� y	 � u��� y	 if u were periodic in x on a rectangle of unit length�

One could possibly solve �������	 for l values of ci� i � �� �� ���� N � in terms of the

others� Sometimes there is an obvious choice� however� often there is no clear way to

choose the unknowns to eliminate� A poor choice can lead to ill�conditioning of the

algebraic system� An alternate way of treating problems with boundary conditions such

as �������	 is to embed Problem �������	 in a constrained minimization problem which

may be solved using Lagrange multipliers� Assuming K to be symmetric and positive

semi�de�nite� �������	 can be regarded as the minimum of

I�c� � cTKc� �cT f �

Using Lagrange multipliers� we minimize the modi�ed functional

#I�c��� � cTKc� �cT f � ��T �Tc��	�
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where � is an l�vector of Lagrange multipliers� Minimizing #I with respect to c and �

yields �
K TT

T �

� �
c

�

�
�

�
f

�

�
� �������	

The system �������	 may or may not be simple to solve� If K is non�singular then the

algorithm described in Problem � at the end of this section is e
ective� However� since

boundary conditions are prescribed by �������	� K may not be invertible�

Nontrivial Neumann boundary conditions on ��N require the evaluation of an extra

line integral for those elements having edges on ��N � Suppose� for example� that the

variational principle ������	 is replaced by� determine u 
 H�
E satisfying

A�v� u	 � �v� f	� � v� � �� �v 
 H�
� � �������a	

where

� v� � ��

Z
�	N

v��x� y	ds� �������b	

s being a coordinate on ��N � As discussed in Chapter �� smooth solutions of �������	

satisfy ������a	� the essential boundary conditions ������b	� and the natural boundary

condition

pun � �� �x� y	 
 ��N � �������	

The line integral �������b	 is evaluated in the same manner as the area integrals and it

will alter the load vector f �cf� Problem � at the end of this section	�

Problems

�� Determine the number of degrees of freedom when a scalar �nite element Galerkin

problem is solved using either Lagrange or hierarchical bases on a square region

having a uniform mesh of either �n� triangular or n� square elements� Express

your answer in terms of p and n and compare it with the results of Tables �����

and ������

�� Assume that K is invertible and show that the following algorithm provides a

solution of �������	�

Solve KW � TT for W

Let Y � TW

Solve Ky � f for y

Solve Y� � Ty� � for �

Solve Kc � f �TT
� for c
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�� Calculate the e
ect on the element load vector fe of a nontrivial Neumann condition

having the form �������	�

�� Consider the solution of Laplace�s equation

uxx � uyy � �� �x� y	 
 ��

on the unit square � �� f�x� y	j� � x� y � �g with Dirichlet boundary conditions

u � �� �x� y	 
 ���

As described in the beginning of this section� create a mesh by dividing the unit

square into n� uniform square elements and then into �n� triangles by cutting each

square element in half along its positive sloping diagonal�

���� Using a Galerkin formulation with a piecewise�linear basis� develop the element

sti
ness matrices for each of the two types of elements in the mesh�

���� Assemble the element sti
ness matrices to form the global sti
ness matrix�

���� Apply the Dirichlet boundary conditions and exhibit the �nal linear algebraic

system for the nodal unknowns�

�� The task is is to solve a Dirichlet problem on a square using available �nite element

software� The problem is

�uxx � uyy � f�x� y	 � �� �x� y	 
 ��

with u � � on the boundary of the unit square � � f�x� y	j� � x� y � �g� Select

f�x� y	 so that the exact solution of the problem is

u�x� y	 � exy sin	x sin �	y�

The Galerkin form of this problem is to �nd u 
 H�
� satisfying

ZZ
	

�vxux � vyuy � vf �dxdy � �� �v 
 H�
� �

Solve this problem on a sequence of �ner and �ner grids using piecewise linear�

quadratic� and cubic �nite element bases� Select a basic grid with either two or

four elements in it and obtain �ner grids by uniform re�nement of each element

into four elements� Present plots of the energy error as functions of the number of

degrees of freedom �DOF	� the mesh spacing h� and the CPU time for the three

polynomial bases� De�ne h as the square root of the area of an average element�
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You may combine the convergence histories for the three polynomial solutions on

one graph� Thus� you�ll have three graphs� error vs� h� error vs� DOF� and error

vs� CPU time� each having results for the three polynomial solutions� Estimate the

convergence rates of the solutions� Comment on the results� Are they converging

at the theoretical rates" Are there any unexpected anomalies" If so� try to explain

them� You may include plots of solutions and
or meshes to help answer these

questions�

�� Consider the Dirichlet problem for Laplace�s equation

$u � uxx � uyy � �� �x� y	 
 ��

u�x� y	 � ��x� y	� �x� y	 
 ���

where � is the L�shaped region with lines connecting the Cartesian vertices ����	�

����	� ����	� �����	� ������	� �����	� ����	� Select ��x� y	 so that the exact solution

expressed in polar coordinates is

u�r� 
	 � r��� sin
�


�
�

with

x � r cos 
� y � r sin 
�

This solution has a singularity in its �rst derivative at r � �� The singularity

is typical of those associated with the solution of elliptic problems at re�entrant

corners such as the one found at the origin�

Because of symmetries� the problem need only be solved on half of the L�shaped

domain� i�e�� the trapezoidal region #� with lines connecting the Cartesian vertices

����	� ����	� ����	� �����	� ����	�

The Galerkin form of this problem consists of determining u 
 H�
EZZ

�	

�vxux � vyuy�dxdy � �� �v 
 H�
� �

Functions u 
 H�
E satisfy the essential boundary conditions

u�x� y	 � �� y � �� � � x � ��

u�r� 
	 � r��� sin
�


�
� x � �� � � y � �� y � �� �� � x � ��

These boundary conditions may be expressed in Cartesian coordinates by using

r� � x� � y�� tan 
 �
y

x
�
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The solution of the Galerkin problem will also satisfy the natural boundary condi�

tion un � u� � � along the diagonal y � �x�
Solve this problem using available �nite element software� To begin� create a

three�element initial mesh by placing lines between the vertices ����	 and ����	

and between ����	 and ����	� Generate �ner meshes by uniform re�nement and use

piecewise�polynomial bases of degrees one through three�

As in Problem �� present plots of the energy error as functions of the number of

degrees of freedom� the mesh spacing h� and the CPU time for the three polyno�

mial bases� You may combine the convergence histories for the three polynomial

solutions on one graph� De�ne h as the square root of the area of an average ele�

ment� Estimate the convergence rates of the solutions� Is accuracy higher with a

high�order method on a coarse mesh or with a low�order method on a �ne mesh"

If adaptivity is available� use a piecewise�linear basis to calculate a solution using

adaptive h�re�nement� Plot the energy error of this solution with those of the

uniform�mesh solutions� Is the adaptive solution more e�cient" E�ciency may

be de�ned as less CPU time or fewer degrees of freedom for the same accuracy�

Contrast the uniform and adaptive meshes�

��� Assembly of Vector Systems

Vector systems of partial di
erential equations may be treated in the same manner as the

scalar problems described in the previous section� As an example� consider the vector

version of the model problem ������	� determine u 
 H�
E satisfying

A�v�u	 � �v� f	� �v 
 H�
� � ������a	

where

�v� f	 �

ZZ
	

vT fdxdy� ������b	

A�v�u	 �

ZZ
	

�vTxPux � vTyPuy � vTQu�dxdy� ������c	

The functions u�x� y	� v�x� y	� and f�x� y	 arem�vectors and P andQ arem�m matrices�

Smooth solutions of ������	 satisfy

��Pux	x � �Puy	y �Qu � f � �x� y	 
 �� ������a	
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u � �� �x� y	 
 ��D� un � �� �x� y	 
 ��N � ������b	

Example ������ Consider the biharmonic equation

$�w � f�x� y	� �x� y	 
 ��

where

$� 	 �� � 	xx � � 	yy

is the Laplacian and � is a bounded two�dimensional region� Problems involving bihar�

monic operators arise in elastic plate deformation� slow viscous �ow� combustion� etc�

Depending on the boundary conditions� this problem may be transformed to a system of

two second�order equations having the form ������	� For example� it seems natural to let

u� � �$w

then

�$u� � f�

Let w � �u� to obtain the vector system

�$u� � f� �$u� � u� � �� �x� y	 
 ��

This system has the form ������	 with

u �

�
u�
u�

�
� P � I� Q �

�
� �
� �

�
� f �

�
f
�

�
�

The simplest boundary conditions to prescribe are

w � �u� � ��� $w � �u� � ��� �x� y	 
 ���

With these �Dirichlet	 boundary conditions� the variational form of this problem is

������a	 with

�v� f	 �

ZZ
	

v�fdxdy

and

A�v�u	 �

ZZ
	

��v�	x�u�	x � �v�	y�u�	y � �v�	x�u�	x � �v�	y�u�	y � v�u��dxdy�

The requirement that ������a	 be satis�ed for all vector functions v 
 H�
� gives the two

scalar variational problemsZZ
	

��v�	x�u�	x � �v�	y�u�	y � v�f �dxdy � �� �v� 
 H�
� �
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ZZ
	

��v�	x�u�	x � �v�	y�u�	y � v�u��dxdy � �� �v� 
 H�
� �

We may check that smooth solutions of these variational problems satisfy the pair of

second�order di
erential equations listed above�

We note in passing� that the boundary conditions presented with this example are

not the only ones of interest� Other boundary conditions do not separate the system as

neatly�

Following the procedures described in Section ���� we evaluate ������	 in an element�

by�element manner and transform the elemental strain energy and load vector to the

canonical element to obtain

Ae�V�U	 �

ZZ
	�

�VT
��
G�eU�� �VT

��
G�eU�� �VT

��
G�eU���

VT
��
G�eU�� �VT

�QU�� det�Je	d�d�� ������a	

where

G�e � P���x � ��y �� G�e � P��x�x � �y�y�� G�e � P���x � ��y �� ������b	

and

�V� f	e �

ZZ
	�

VT
� f det�Je	d�d�� ������c	

The restriction of the piecewise�polynomial approximation U� to element e is written

in terms of shape functions as

U���� �	 �

npX
j��

ce�jNj��� �	 ������a	

where np is the number of shape functions on element e� We have divided the vector

ce of parameters into its contributions ce�j� j � �� �� ���� n� from the shape functions of

element e� Thus� we may write

cTe � �cTe��� c
T
e��� ���� c

T
e�np�� ������b	

In this form� we may write U� as

U� � NTce � cTeN ������c	
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where N is the npm�m matrix

NT � �N�I� N�I� ���� NnpI�� ������d	

and the identity matrices have the dimension m of the partial di
erential system� The

simple linear shape functions will illustrate the formulation�

Example ������ Consider the solution of a system of m � � equations using a

piecewise�linear �nite element basis on triangles� Suppose� for convenience� that the

node numbers of element e are �� �� and �� In order to simplify the notation� we suppress

the subscript � on U� and V� and the subscript e on ce� The linear approximation on

element e then takes the form

�
U�

U�

�
�

�
c��
c��

�
N���� �	 �

�
c��
c��

�
N���� �	 �

�
c��
c��

�
N���� �	�

where

N���� �	 � �� � � �� N���� �	 � �� N���� �	 � ��

The �rst subscript on cij denotes its index in c and the second subscript identi�es the

vertex of element e� The expression ������c	 takes the form

�
U�

U�

�
�

�
N� � N� � N� �
� N� � N� � N�

�
�
�������

c��
c��
c��
c��
c��
c��

	
������

�

Substituting ������c	 and a similar expression for V� into ������a�e	 yields

Ae�V�U	 � dTe �Ke �Me	ce� �V� f	e � dTe fe� ������	

where

Ke �

ZZ
	�

�N�G�eN
T
� �N�G�eN

T
� �N�G�eN

T
� �N�G�eN

T
� � det�Je	

d�d�� ������a	

Me �

ZZ
	�

NQNT det�Je	d�d�� fe �

ZZ
	�

Nf det�Je	d�d�� ������b	

Problems
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�� It is� of course� possible to use di
erent shape functions for di
erent solution com�

ponents� This is often done with incompressible �ows where the pressure is approx�

imated by a basis having one degree less than that used for velocity� Variational

formulations with di
erent �elds are calledmixed variational principles� The result�

ing �nite element formulations are called mixed methods� As an example� consider

a vector problem having two components� Suppose that a piecewise�linear basis is

used for the �rst variable and piecewise quadratics are used for the second� Using

hierarchical bases� select an ordering of unknowns and write the form of the �nite el�

ement solution on a canonical two�dimensional element� What are the components

of the matrix N" For this approximation� develop a formula for the element sti
�

ness matrix ������a	� Express your answer in terms of the matrices Gie� i � �� �� ��

and integrals of the shape functions�
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Chapter �

Numerical Integration

��� Introduction

After transformation to a canonical element ��� typical integrals in the element sti�ness

or mass matrices �cf� �������� have the forms

Q 	

ZZ

��

���� ��NsN
T
t det�Je�d�d�� �
����a�

where ���� �� depends on the coe�cients of the partial di�erential equation and the

transformation to �� �cf� Section ��
�� The subscripts s and t are either nil� �� or

� implying no di�erentiation� di�erentiation with respect to �� or di�erentiation with

respect to �� respectively� Assuming that N has the form

NT 	 �N�� N�� � � � � Nnp�� �
����b�

then �
����a� may be written in the more explicit form

Q 	

ZZ

��

���� ��

�
����

�N��s�N��t �N��s�N��t �N��s�Nnp�t
�N��s�N��t �N��s�N��t �N��s�Nnp�t

� � �

�Nnp�s�N��t �Nnp�s�N��t �Nnp�s�Nnp�t

�
���� det�Je�d�d��

�
����c�

Integrals of the form �
����b� may be evaluated exactly when the coordinate trans�

formation is linear �Je is constant� and the coe�cients of the di�erential equation are

constant �cf� Problem � at the end of this section�� With certain coe�cient functions and

transformations it may be possible to evaluate �
����b� exactly by symbolic integration�

however� we�ll concentrate on numerical integration because�

� it can provide exact results in simple situations �e�g�� when � and Je are constants�

and

�



� Numerical Integration

� exact integration is not needed to achieve the optimal convergence rate of �nite

element solutions ���� �� ���� and Chapter ���

Integration is often called quadrature in one dimension and cubature in higher dimen�

sions� however� we�ll refer to all numerical approximations as quadrature rules� We�ll

consider integrals and quadrature rules of the form

I 	

ZZ

��

f��� ��d�d� �
nX

i��

Wif��i� �i�� �
����a�

where Wi� are the quadrature rule�s weights and ��i� �i� are the evaluation points� i 	

�� �� � � � � n� Of course� we�ll want to appraise the accuracy of the approximate integration

and this is typically done by indicating those polynomials that are integrated exactly�

De�nition ������ The integration rule �
����a� is exact to order q if it is exact when

f��� �� is any polynomial of degree q or less�

When the integration rule is exact to order q and f��� �� � Hq������� the error

E 	 I �
nX

i��

Wif��i� �i� �
����b�

satis�es an estimate of the form

E � Cjjf��� ��jjq��� �
����c�

Example ������ Applying �
����� to �
����a� yields

Q �
nX

i��

Wi���i� �i�N��i� �i�N
T ��i� �i� det�Je��i� �i���

Thus� the integrand at the evaluation points is summed relative to the weights to ap�

proximate the given integral�

Problems

�� A typical term of an element sti�ness or mass matrix has the form

ZZ

��

�i�jd�d�� i� j�� ��

Evaluate this integral when �� is the canonical square ���� �� � ���� �� and the

canonical right 
�� unit triangle�



���� One�Dimensional Quadrature �

��� One�Dimensional Gaussian Quadrature

Although we are primarily interested in two� and three�dimensional quadrature rules�

we�ll set the stage by studying one�dimensional integration� Thus� consider the one�

dimensional equivalent of �
����� on the canonical ���� �� element

I 	

Z �

��
f���d� 	

nX
i��

Wif��i� � E� �
�����

Most classical quadrature rules have this form� For example�the trapezoidal rule

I � f���� � f���

has the form �
����� with n 	 �� W� 	 W� 	 �� ��� 	 �� 	 �� and

E 	 ��f �����
�

� � � ���� ���

Similarly� Simpson�s rule

I � �

�
�f���� � 
f��� � f����

has the form �
����� with n 	 �� W� 	 W��
 	W� 	 ���� ��� 	 �� 	 �� �� 	 �� and

E 	 �f �iv	���

��
� � � ���� ���

Gaussian quadrature is preferred to these Newton�Cotes formulas for �nite element

applications because they have fewer function evaluations for a given order� With Gaus�

sian quadrature� the weights and evaluation points are determined so that the integration

rule is exact �E 	 �� to as high an order as possible� Since there are �n unknown weights

and evaluation points� we expect to be able to make �
����� exact to order �n� �� This

problem has been solved ��� 
� and the evaluation points �i� i 	 �� �� � � � � n� are the roots

of the Legendre polynomial of degree n �cf� Section ����� The weightsWi� i 	 �� �� � � � � n�

called Christo�el weights� are also known and are tabulated with the evaluation points

in Table 
���� for n ranging from � to 
� A more complete set of values appear in

Abromowitz and Stegun ����

Example ������ The derivation of the two�point �n 	 �� Gauss quadrature rule is

given as Problem � at the end of this section� From Table 
���� we see that W� 	W� 	 �

and ��� 	 �� 	 ��
p
�� Thus� the quadrature rule is

Z �

��
f���d� � f����

p
�� � f���

p
���

This formula is exact to order three� thus the error is proportional to the fourth derivative

of f �cf� Theorem 
����� Example 
���
� and Problem � at the end of this section��
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n 	�i Wi

� ������� ����� ����� ������� ����� �����

� ������� ��
�� ��
�
 ������� ����� �����

� ������� ����� ����� ������� ����� �����
����
�� 


�� 
�
�� ������� ����� ����
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�
� ���
��
 ����� 
����
�����

 ���
� ����� ������� 

��� �����

Table 
����� Christo�el weightsWi and roots �i� i 	 �� �� � � � � n� for Legendre polynomials
of degrees � to 
 ����

Example ������ Consider evaluating the integral

I 	

Z �

�

e�x�dx 	

p
�

�
erf��� 	 ���

��
������
� �
�����

by Gauss quadrature� Let us transform the integral to ���� �� using the mapping

� 	 �x� �

to get

I 	
�

�

Z �

��
e��

���
�
	�d��

The two�point Gaussian approximation is

I � �I 	
�

�
�e��

����
p
�

�
	� � e��

����
p
�

�
	� ��

Other approximations follow in similar order�

Errors I � �I when I is approximated by Gaussian quadrature to obtain �I appear in

Table 
���� for n ranging from � to 
� Results using the trapezoidal and Simpson�s rules

are also presented� The two� and three�point Gaussian rules have higher orders than the

corresponding Newton�Cotes formulas and this leads to smaller errors for this example�



���� One�Dimensional Quadrature �

n Gauss Rules Newton Rules
Error Error

� ������� ��
� �����
�� 
� �
������ ��
� ����
��� 
� ���
��� 
�

 ������� ��
� �
��

�� ��

 ����������

Table 
����� Errors in approximating the integral of Example 
���� by Gauss quadrature�
the trapezoidal rule �n 	 �� right� and Simpson�s rule �n 	 �� right�� Numbers in
parentheses indicate a power of ten�

Example ������ Composite integration formulas� where the domain of integration �a� b�

is divided into N subintervals of width

�xj 	 xj � xj��� j 	 �� �� � � � � N�

are not needed in �nite element applications� except� perhaps� for postprocessing� How�

ever� let us do an example to illustrate the convergence of a Gaussian quadrature formula�

Thus� consider

I 	

Z b

a

f�x�dx 	
nX

j��

Ij

where

Ij 	

Z xj

xj��

f�x�dx�

The linear mapping

x 	 xj��
�� �

�
� xj

� � �

�

transforms �xj��� xj� to ���� �� and

Ij 	
�xj
�

Z �

��
f�xj��

�� �

�
� xj

� � �

�
�d��

Approximating Ij by Gauss quadrature gives

Ij � �xj
�

nX
i��

Wif�xj��
�� �i
�

� xj
� � �i
�

��

We�ll approximate �
����� using composite two�point Gauss quadrature� thus�

Ij 	
�xj
�

�e��xj�����
xj���
p
�		� � e��xj�����
xj���

p
�		� ��
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where xj���� 	 �xj � xj������ Assuming a uniform partition with �xj 	 ��N � j 	

�� �� � � � � N � the composite two�point Gauss rule becomes

I � �

�N

nX
j��

�e��xj���������N
p
�		� � e��xj���������N

p
�		� ��

The composite Simpson�s rule�

I � �

�N
�� � 


N��X
i����

e�xj � �
N��X
i����

e�xj � e���

on N�� subintervals of width ��x has an advantage relative to the composite Gauss rule

since the function evaluations at the even�indexed points combine�

The number of function evaluations and errors when �
����� is solved by the compos�

ite two�point Gauss and Simpson�s rules are recorded in Table 
����� We can see that

both quadrature rules are converging as O���N�� ��
�� Chapter ��� The computations

were done in single precision arithmetic as opposed to those appearing in Table 
�����

which were done in double precision� With single precision� round�o� error dominates the

computation as N increases beyond �
 and further reductions of the error are impossible�

With function evaluations de�ned as the number of times that the exponential is evalu�

ated� errors for the same number of function evaluations are comparable for Gauss and

Simpson�s rule quadrature� As noted earlier� this is due to the combination of function

evaluations at the ends of even subintervals� Discontinuous solution derivatives at inter�

element boundaries would prevent such a combination with �nite element applications�

N Gauss Rules Simpson�s Rule
Fn� Eval� Abs� Error Fn� Eval� Abs� Error

� 
 ������� 
� � ����
�� ��

 � ���
��� �� � ������� 
�
� �
 ������� 
� � ������� ��
�
 �� ���

�� �� �� ���

� ���

Table 
����� Comparison of composite two�point Gauss and Simpson�s rule approxima�
tions for Example 
����� The absolute error is the magnitude of the di�erence between
the exact and computational result� The number of times that the exponential function
is evaluated is used as a measure of computational e�ort�

As we may guess� estimates of errors for Gauss quadrature use the properties of

Legendre polynomials �cf� Section ����� Here is a typical result�
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Theorem ������ Let f��� � C�n���� ��� then the quadrature rule ������	 is exact to order

�n � � if �i� i 	 �� �� � � � � n� are the roots of Pn���� the nth
degree Legendre polynomial�

and the corresponding Christo�el weights satisfy

Wi 	
�

P �
n��i�

Z �

��

Pn���

� � �i
d�� i 	 �� �� � � � � n� �
����a�

Additionally� there exists a point 	 � ���� �� such that

E 	
f ��n	�	�

�n�

Z �

��

nY
i��

�� � �i�
�d�� �
����b�

Proof� cf� �
�� Sections ���� 
�

Example ������ Using the entries in Table 
���� and �
����b�� the discretization error

of the two�point �n 	 �� Gauss quadrature rule is

E 	
f iv�	�


�

Z �

��
�� �

�p
�
���� � �p

�
��d� 	

f iv�	�

���
� 	 � ���� ���

Problems

�� Calculate the weights W� and W� and the evaluation points �� and �� so that the

two�point Gauss quadrature rule

Z �

��
f�x� � W�f���� �W�f����

is exact to as high an order as possible� This should be done by a direct calculation

without using the properties of Legendre polynomials�

�� Lacking the precise information of Theorem 
����� we may infer that the error in

the two�point Gauss quadrature rule is proportional to the fourth derivative of f���

since cubic polynomials are integrated exactly� Thus�

E 	 Cf iv�	�� 	 � ���� ���

We can determine the error coe�cient C by evaluating the formula for any function

f�x� whose fourth derivative does not depend on the location of the unknown point

	� In particular� any quartic polynomial has a constant fourth derivative� hence�

the value of 	 is irrelevant� Select an appropriate quartic polynomial and show that

C 	 ����� as in Example 
���
�
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��� Multi�Dimensional Quadrature

Integration on square elements usually relies on tensor products of the one�dimensional

formulas illustrated in Section 
��� Thus� the application of �
����� to a two�dimensional

integral on a canonical ���� ��� ���� �� square element yields the approximation

I 	

Z �

��

Z �

��
f��� ��d�d� �

Z �

��

nX
i��

Wif��i� ��d� 	
nX

i��

Wi

Z �

��
f��i� ��d�

and

I 	

Z �

��

Z �

��
f��� ��d�d� �

nX
i��

nX
j��

WiWjf��i� �j�� �
�����

Error estimates follow the one�dimensional analysis�

Tensor�product formulas are not optimal in the sense of using the fewest function

evaluations for a given order� Exact integration of a quintic polynomial by �
����� would

require n 	 � or a total of � points� A complete quintic polynomial in two dimensions

has �� monomial terms� thus� a direct �non�tensor�product� formula of the form

I 	

Z �

��

Z �

��
f��� ��d�d� �

nX
i��

Wif��i� �i�

could be made exact with only � points� The �� coe�cients Wi� �i� �i� i 	 �� �� � � � � ��

could potentially be determined to exactly integrate all of the monomial terms�

Non�tensor�product formulas are complicated to derive and are not known to very high

orders� Orthogonal polynomials� as described in Section 
��� are unknown in two and

three dimensions� Quadrature rules are generally derived by a method of undetermined

coe�cients� We�ll illustrate this approach by considering an integral on a canonical right


�� triangle

I 	

ZZ

��

f��� ��d�d� 	

nX
i��

Wif��i� �i� � E� �
�����

Example ������ Consider the one�point quadrature rule

ZZ

��

f��� ��d�d� 	 W�f���� ��� � E� �
�����

Since there are three unknownsW�� ��� and ��� we expect �
����� to be exact for any linear

polynomial� Integration is a linear operator� hence� it su�ces to ensure that �
����� is

exact for the monomials �� �� and �� Thus�



���� Multi�Dimensional Quadrature �

� If f��� �� 	 �� Z �

�

Z ���

�

���d�d� 	
�

�
	W��

� If f��� �� 	 �� Z �

�

Z ���

�

���d�d� 	
�



	 W����

� If f��� �� 	 �� Z �

�

Z ���

�

���d�d� 	
�



	W����

The solution of this system isW� 	 ��� and �� 	 �� 	 ���� thus� the one�point quadrature

rule is ZZ

��

f��� ��d�d� 	
�

�
f�
�

�
�
�

�
� � E� �
���
�

As expected� the optimal evaluation point is the centroid of the triangle�

A bound on the error E may be obtained by expanding f��� �� in a Taylor�s series

about some convenient point ���� ��� � �� to obtain

f��� �� 	 p���� �� �R���� �� �
����a�

where

p���� �� 	 f���� ��� � ��� � ���




�
� �� � ���





�
�f���� ��� �
����b�

and

R���� �� 	
�

�
��� � ���





�
� �� � ���





�
��f��� ��� ��� �� � ��� �
����c�

Integrating �
����a� using �
���
�

E 	

ZZ

��

�p���� �� �R���� ���d�d�� �

�
�p��

�

�
�
�

�
� �R��

�

�
�
�

�
���

Since �
���
� is exact for linear polynomials

E 	

ZZ

��

R���� ��d�d�� �

�
R��

�

�
�
�

�
��

Not being too precise� we take an absolute value of the above expression to obtain

jEj �
ZZ

��

jR���� ��jd�d� � �

�
jR��

�

�
�
�

�
�j�



�� Numerical Integration

For the canonical element� j� � ��j � � and j� � ��j � �� hence�

jR���� ��j � � max
j�j��

jjD�f jj���

where

jjf jj��� 	 max
����	���

jf��� ��j�

Since the area of �� is ����

jEj � � max
j�j��

jjD�f jj���� �
���
�

Errors for other quadrature formulas follow the same derivation ��
�� Section �����

Two�dimensional integrals on triangles are conveniently expressed in terms of trian�

gular coordinates as

ZZ

�e

f�x� y�dxdy 	 Ae

nX
i��

Wif�	
i
�� 	

i
�� 	

i
�� � E �
�����

where �	 i�� 	
i
�� 	

i
�� are the triangular coordinates of evaluation point i and Ae is the area of

triangle e� Symmetric quadrature formulas for triangles have appeared in several places�

Hammer et al� ��� developed formulas on triangles� tetrahedra� and cones� Dunavant �
�

presents formulas on triangles which are exact to order ��� however� some formulas have

evaluation points that are outside of the triangle� Sylvester ���� developed tensor�product

formulas for triangles� We have listed some quadrature rules in Table 
���� that also

appear in Dunavant �
�� Strang and Fix ���� and Zienkiewicz ����� A multiplication factor

M indicates the number of permutations associated with an evaluation point having a

weight Wi� The factor M 	 � is associated with an evaluation point at the triangle�s

centroid ����� ���� ����� M 	 � indicates a point on a median line� and M 	 
 indicates

an arbitrary point in the interior� The factor p indicates the order of the quadrature rule�

thus� E 	 O�hp��� where h is the maximum edge length of the triangle�

Example ������ Using the data in Table 
���� with �
������ the three�point quadrature

rule on the canonical triangle is

ZZ

��

f��� ��d�d� 	
�



�f����� ��
� ��
� � f���
� ��
� ���� � f���
� ���� ��
�� � E�

The multiplicative factor of ��
 arises because the area of the canonical element is ��� and

all of the weights are ���� The quadrature rule can be written in terms of the canonical

variables by setting 	� 	 � and 	� 	 � �cf� �
���
� and �
������� The discretization error

associated with this quadrature rule is O�h���
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n Wi 	 i� 	 i�� 	
i
� M p

� ����������������� ����������������� ����������������� �
����������������� �

� ����������������� ��













� ���












� �
���












� �


 ����
������������� ����������������� ����������������� �
����������������� �

����������������� ��
�������������� �����������������
����������������� �


 ���������
�
����� ����
�
�������
�� �������
��������� 

�������
��������� �

�����������
����� ������������
���� ��

��
�
������
�
��

��
�
������
� �

� ����������������� ����������������� ����������������� �
����������������� �

������������

��� �����
�
��������� �������
������
�

�������
������
�
 �

�������
��������
 ����������������� ��
���
��

������
��
���
��

������ �

�� ������

��
������ �������������
��
 ���
������

����� 

���
������

����� �

����
��
�����
��� �����
�
���
����� ���
���
�
�������
���
���
�
������� �

�����������
����
 ��
�
���
�������� ��������
��������
������
��
��

��
 


�� ����
�����



�
�� ����������������� ����������������� �
����������������� �

�����
�����
����
 ��
������
��
���� ���
��
��

������
���
��
��

������ �

������
����
����� ���
������
����
� ���
������������

���
������������
 �

���������
������� ��
��


����
���� ������
�
�
��
���
��
�
�����
����
� 


Table 
����� Weights and evaluation points for integration on triangles �
��
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Quadrature rules on tetrahedra have the form

ZZZ

�e

f�x� y� z�dxdydz 	 Ve

nX
i��

Wif�	
i
�� 	

i
�� 	

i
�� 	

i
�� � E �
�����

where Ve is the volume of Element e and �	 i�� 	
i
�� 	

i
�� 	

i
�� are the tetrahedral coordinates of

evaluation point i� Quadrature rules are presented by Jinyun ��� for methods to order

six and by Keast ��� for methods to order eight� Multiplicative factors are such that

M 	 � for an evaluation point at the centroid ���
� ��
� ��
� ��
�� M 	 
 for points on

the median line through the centroid and one vertex� M 	 
 for points on a line between

opposite midsides� M 	 �� for points in the plane containing an edge an and opposite

midside� and M 	 �
 for points in the interior �Figure 
������

n Wi 	 i�� 	� 	�� 	� M p

� ����������������� ����������������� ����������������� �
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Table 
����� Weights and evaluation points for integration on tetrahedra ��� ���
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Figure 
����� Some symmetries associated with the tetrahedral quadrature rules of Table

����� An evaluation point with M 	 � is at the centroid �C�� one with M 	 
 is on a
line through a vertex and the centroid �e�g�� line �� P����� one with M 	 
 is on a line
between two midsides �e�g�� line Q�� �Q���� and one with M 	 �� is in a plane through
two vertices and an opposite midside �e�g�� plane �� 
�Q���

Problems

�� Derive a three�point Gauss quadrature rule on the canonical right 
�� triangle

that is accurate to order two� In order to simplify the derivation� use symmetry

arguments to conclude that the three points have the same weight and that they

are symmetrically disposed on the medians of the triangle� Show that there are

two possible formulas� the one given in Table 
���� and another one� Find both

formulas�

�� Show that the mapping

� 	
� � u

�
� � 	

��� u��� � v�




transforms the integral �
����� from the triangle �� to one on the square �� �
u� v � �� Find the resulting integral and show how to approximate it using a

tensor�product formula�
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Chapter �

Analysis of the Finite Element

Method

��� Introduction

Finite element theory is embedded in a very elegant framework that enables accurate a

priori and a posteriori estimates of discretization errors and convergence rates� Unfortu�

nately� a large portion of the theory relies on a knowledge of functional analysis� which

has not been assumed in this material� Instead� we present the relevant concepts and

key results without proof and cite sources of a more complete treatment� Once again� we

focus on the model Galerkin problem� �nd u � H�
� satisfying

A�v� u� � �v� f�� �v � H�
� � �	�
�
a�

where

�v� f� �

ZZ
�

vfdxdy� �	�
�
b�

A�v� u� �

ZZ
�

�p�vxux � vyuy� � qvu
dxdy� �	�
�
c�

where the two�dimensional domain � has boundary �� � ��E ���N � For simplicity� we

have assumed trivial essential and natural boundary data on ��E and ��N � respectively�

Finite element solutions U � SN
� of �	�
�
� satisfy

A�V� U� � �V� f�� �V � SN
� � �	�
���

where SN
� is a �nite�dimensional subspace of H�

� �

As described in Chapter �� error analysis typically proceeds in two steps�
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� showing that U is optimal in the sense that the error u� U satis�es

ku� Uk � min
W�SN

E

ku�Wk �	�
���

in an appropriate norm� and

�� �nding an upper bound for the right�hand side of �	�
����

The appropriate norm to use with �	�
��� for the model problem �	�
�
� is the strain

energy norm

kvkA �
p
A�v� v�� �	�
���

The �nite element solution might not satisfy �	�
��� with other norms and�or problems�

For example� �nite element solutions are not optimal in any norm for non�self�adjoint

problems� In these cases� �	�
��� is replaced by the weaker statement

ku� Uk � C min
W�SN

�

ku�Wk� �	�
���

C � 
� Thus� the solution is �nearly best� in the sense that it only di�ers by a constant

from the best possible solution in the space�

Upper bounds of the right�hand sides of �	�
��� or �	�
��� are obtained by considering

the error of an interpolant W of u� Using Theorems ����� and ������ for example� we

could conclude that

ku�Wks � Chp���skukp��� s � �� 
� �	�
���

if SN consists of complete piecewise polynomials of degree p with respect to a sequence of

uniform meshes �cf� De�nition ����
� and u � Hp��� The bound �	�
��� can be combined

with either �	�
��� or �	�
��� to provide an estimate of the error and convergence rate of

a �nite element solution�

The Sobolev norm on H� and the strain energy norm �	�
��� are equivalent for the

model problem �	�
�
� and we shall use this with �	�
��� and �	�
��� to construct error

estimates� Prior to continuing� you may want to review Sections ���� ���� and ����

A priori �nite element discretization errors� obtained as described� do not account for

such �perturbations� as


� using numerical integration�

�� interpolating Dirichlet boundary conditions by functions in SN � and

�� approximating �� by piecewise�polynomial functions�



���� Convergence and Optimality �

These e�ects will have to be appraised� Additionally� the a priori error estimates supply

information on convergence rates but are di�cult to use for quantitative error infor�

mation� A posteriori error estimates� which use the computed solution� provide more

practical accuracy appraisals�

��� Convergence and Optimality

While keeping the model problem �	�
�
� in mind� we will proceed in a slightly more

general manner by considering a Galerkin problem of the form �	�
�
a� with a strain

energy A�v� u� that is a symmetric bilinear form �cf� De�nitions ������ �� and is also

continuous and coercive�

De�nition ������ A bilinear form A�v� u� is continuous in Hs if there exists a constant

� � � such that

jA�v� u�j � �kukskvks� �u� v � Hs� �	���
�

De�nition ������ A bilinear form A�u� v� is coercive �Hs � elliptic or positive de�nite�

in Hs if there exists a constant � � � such that

A�u� u� � �kuk�s� �u � Hs� �	�����

Continuity and coercivity of A�v� u� can be used to establish the existence and unique�

ness of solutions to the Galerkin problem �	�
�
a�� These results follow from the Lax�

Milgram Theorem� We�ll subsequently prove a portion of this result� but more complete

treatments appear elsewhere ��� 
�� 
�� 
�
� We�ll use examples to provide insight into

the meanings of continuity and coercivity�

Example ������ Consider the variational eigenvalue problem� determine nontrivial

u � H�
� and � � ����� satisfying

A�u� v� � ��u� v�� �v � H�
� �

When A�v� u� is the strain energy for the model problem �	�
�
�� smooth solutions of this

variational problem also satisfy the di�erential eigenvalue problem

��pux�x � �puy�y � qu � �u� �x� y� � ��

u � �� �x� y� � ��E � un � �� �x� y� � ��N �

where n is the unit outward normal to ���
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Letting �r and u
r� r � 
� be an eigenvalue�eigenfunction pair and using the variational

statement with v � u � ur� we obtain the Rayleigh quotient

�r �
A�ur� ur�

�ur� ur�
� r � 
�

Since this result holds for all r� we have

�� � min
r��

A�ur� ur�

�ur� ur�

where �� is the minimum eigenvalue� �As indicated in Problem 
� this result can be

extended��

Using the Rayleigh quotient with �	������ we have

�r � �kurk�s
kurk��

� r � 
�

Since kurks � kurk�� we have

�r � � � �� r � 
�

Thus� � � �r� r � 
� and� in particular� � � ���

Using �	���
� in conjunction with the Rayleigh quotient implies

�r � �kurk�s
kurk��

� r � 
�

Combining the two results�

�
kurk�s
kurk��

� �r � �
kurk�s
kurk��

� r � 
�

Thus� � provides a lower bound for the minimum eigenvalue and � provides a bound for

the maximum growth rate of the eigenvalues in Hs�

Example ������ Solutions of the Dirichlet problem

�uxx � uyy � f�x� y�� �x� y� � �� u � �� �x� y� � ���

satisfy the Galerkin problem �	�
�
� with

A�v� u� �

ZZ
�

rv � rudxdy� ru � �ux� uy

T �

An application of Cauchy�s inequality reveals

jA�v� u�j � j
ZZ
�

rv � rudxdyj � krvk�kruk��
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where

kruk�� �
ZZ
�

�u�x � u�y�dxdy�

Since kruk� � kuk�� we have

jA�v� u�j � kvk�kuk��

Thus� �	���
� is satis�ed with s � 
 and � � 
� and the strain energy is continuous in

H��

Establishing that A�v� u� is coercive in H� is typically done by using Friedrichs�s �rst

inequality which states that there is a constant � � � such that

kruk�� � �kuk��� �	�����

Now� consider the identity

A�u� u� � kruk�� � �
	��kruk�� � �
	��kruk��

and use �	����� to obtain

A�u� u� � �
	��kruk�� � �
	���kuk�� � �kuk��

where � � �
	��max�
� ��� Thus� �	����� is satis�ed with s � 
 and A�u� v� is coercive

�H��elliptic��

Continuity and coercivity of the strain energy reveal the �nite element solution U to

be nearly the best approximation in SN

Theorem ������ Let A�v� u� be symmetric� continuous� and coercive� Let u � H�
� satisfy

������a� and U � SN
� 	 H�

� satisfy �������� Then

ku� Uk� � �

�
ku� V k�� �V � SN

� � �	����a�

with � and � satisfying ������� and ��������

Remark �� Equation �	����a� may also be expressed as

ku� Uk� � C inf
V �SN

�

ku� V k�� �	����b�

Thus� continuity and H��ellipticity give us a bound of the form �	�
����

Proof� cf� Problem � at the end of this section�

The bound �	����� can be improved when A�v� u� has the form �	�
�
c��
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Theorem ������ let A�v� u� be a symmetric� continuous� and coercive bilinear form	

u � H�
� minimize

I�w
 � A�w�w�� ��w� f�� �w � H�
� � �	�����

and SN
� be a �nite
dimensional subspace of H�

� � Then

�� The minimum of I�W 
 and A�u�W�u�W �� �W � SN
� � are achieved by the same

function U �

�� The function U is the orthogonal projection of u onto SN
� with respect to strain

energy� i�e��

A�V� u� U� � �� �V � SN
� � �	�����

�� The minimizing function U � SN
� satis�es the Galerkin problem

A�V� U� � �V� f�� �V � SN
� � �	���	�

In particular� if SN
� is the whole of H�

�

A�v� u� � �v� f�� �v � H�
� � �	�����

Proof� Our proof will omit several technical details� which appear in� e�g�� Wait and

Mitchell ��

� Chapter ��

Let us begin with �	���	�� If U minimizes I�W 
 over SN
� then for any 
 and any

V � SN
�

I�U 
 � I�U � 
V 
�

Using �	������

I�U 
 � A�U � 
V� U � 
V �� ��U � 
V� f�

or

I�U 
 � I�U 
 � �
�A�V� U�� �V� f�
 � 
�A�V� V �

or

� � �
�A�V� U�� �V� f�
 � 
�A�V� V ��

This inequality must hold for all possible 
 of either sign� thus� �	���	� must be satis�ed�

Equation �	����� follows by repeating these arguments with SN
� replaced by H�

� �

Next� replace v in �	����� by V � SN
� 	 H�

� and subtract �	���	� to obtain �	������

In order to prove Conclusion 
� consider the identity

A�u� U � V� u� U � V � � A�u� U� u� U�� �A�u� U� V � � A�V� V ��
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Using �	�����

A�u� U� u� U� � A�u� U � V� u� U � V �� A�V� V ��

Since A�V� V � � ��

A�u� U� u� U� � A�u� U � V� u� U � V �� �V � SN
� �

Equality only occurs when V � �� therefore� U is the unique minimizing function�

Remark �� We proved a similar result for one�dimensional problems in Theorems

����
� ��

Remark �� Continuity and coercivity did not appear in the proof� however� they are

needed to establish existence� uniqueness� and completeness� Thus� we never proved that

limN�� U � u� A complete analysis appears in Wait and Mitchell ��

� Chapter ��

Remark �� The strain energy A�v� u� not need be symmetric� A proof without this

restriction appears in Ciarlet �
�
�

Corollary ������ With the assumptions of Theorem ������

A�u� U� u� U� � A�u� u�� A�U� U�� �	�����

Proof� cf� Problem � at the end of this section�

In Section ���� we obtained a priori estimates of interpolation errors under some

mesh uniformity assumptions� Recall �cf� De�nition ����
�� that we considered a family

of �nite element meshes �h which became �ner as h 
 �� The uniformity condition

implied that all vertex angles were bounded away from � and � and that all aspect ratios

were bounded away from � as h
 �� Uniformity ensured that transformations from the

physical to the computational space were well behaved� Thus� with uniform meshes� we

were able to show �cf� Theorem ������ that the error in interpolating a function u � Hp��

by a complete polynomial W of degree p satis�es

ku�Wks � Chp���skukp��� s � �� 
� �	���
�a�

The norm on the right can be replaced by the seminorm

juj�p�� �
X

j�j�p��

kD�uk�� �	���
�b�

to produce a more precise estimate� but this will not be necessary for our present appli�

cation� If singularities are present so that u � Hq�� with q � p then� instead of �	���
�a��

we �nd

ku�Wk� � Chqkukq��� �	���
�c�
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With optimality �or near optimality� established and interpolation error estimates

available� we can establish convergence of the �nite element method�

Theorem ������ Suppose


�� u � H�
� and U � SN

� 	 H�
� satisfy ������� and �������� respectively

�� A�v� u� is a symmetric� continuous� and H�
elliptic bilinear form	

�� SN
� consists of complete piecewise
polynomial functions of degree p with respect to

a uniform family of meshes �h	 and

�� u � H�
� �Hp���

Then

ku� Uk� � Chpkukp�� �	���

a�

and

A�u� U� u� U� � Ch�pkuk�p��� �	���

b�

Proof� From Theorem 	����

A�u� U� u� U� � inf
V �SN

�

A�u� V� u� V � � A�u�W�u�W �

where W is an interpolant of u� Using �	���
� with s � 
 and v and u replaced by u�W

yields

A�u�W�u�W � � �ku�Wk���
Using the interpolation estimate �	���
�a� with s � 
 yields �	���

b�� In order to prove

�	���

a�� use �	����� with s � 
 to obtain

�ku� Uk�� � A�u� U� u� U��

The use of �	���

b� and a division by � yields �	���

a��

Since the H� norm dominates the L� norm� �	���

a� trivially gives us an error esti�

mate in L� as

ku� Uk� � Chpkukp���
This estimate does not have an optimal rate since the interpolation error �	���
�a� is con�

verging as O�hp���� Getting the correct rate for an L� error estimate is more complicated

than it is in H�� The proof is divided into two parts�
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Lemma ������ �Aubin
Nitsche� Under the assumptions of Theorem ������ let ��x� y� �
H�

� be the solution of the �dual problem�

A�v� �� � �v� e�� �v � H�
� � �	���
�a�

where

e �
u� U

ku� Uk� � �	���
�b�

Let � � SN
� be an interpolant of �� then

ku� Uk� � �ku� Uk�k� � �k�� �	���
�c�

Proof� Set V � � in �	����� to obtain

A��� u� U� � �� �	���
��

Take the L� inner product of �	���
�b� with u� U to obtain

ku� Uk� � �e� u� U��

Setting v � u� U in �	���
�a� and using the above relation yields

ku� Uk� � A�u� U� ���

Using �	���
��

ku� Uk� � A�u� U� � � ���

Now use the continuity of A�v� u� in H� ��	���
� with s � 
� to obtain �	���
�c��

Since we have an estimate for ku � Uk�� estimating ku � Uk� by �	���
�c� requires

an estimate of k� � �k�� This� of course� will be done by interpolation� however� use of

�	���
�a� requires knowledge of the smoothness of �� The following lemma provides the

necessary a priori bound�

Lemma ������ Let A�u� v� be a symmetric� H�
elliptic bilinear form and u be the solu


tion of ������� on a smooth region �� Then

kuk� � Ckfk�� �	���
��

Remark �� This result seems plausible since the underlying di�erential equation is of

second order� so the second derivatives should have the same smoothness as the right�

hand side f � The estimate might involve boundary data� however� we have assumed

trivial conditions� Let�s further assume that ��E is not nil to avoid non�uniqueness

issues�
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Proof� Strang and Fix �
�
� Chapter 
� establish �	���
�� in one dimension� Johnson �
�
�

Chapter �� obtain a similar result�

With preliminaries complete� here is the main result�

Theorem ������ Given the assumptions of Theorem ������ then

ku� Uk� � Chp��kukp��� �	���
��

Proof� Applying �	���
�� to the dual problem �	���
�a� yields

k�k� � Ckek� � C�

since kek� � 
 according to �	���
�b�� With � � H�� we may use �	���
�c� with q � s � 


to obtain

k� � �k� � Chk�k� � Ch�

Combining this estimate with �	���

a� and �	���
�c� yields �	���
���

Problems


� Show that the function u that minimizes

� � min
w�H�

�
� kwk� ���

A�w�w�

�w�w�

is u�� the eigenfunction corresponding to the minimum eigenvalue �� of A�v� u� �

��v� u��

�� Assume that A�v� u� is a symmetric� continuous� and H��elliptic bilinear form and�

for simplicity� that u� v � H�
� �

��
� Show that the strain energy and H� norms are equivalent in the sense that

�kuk�� � A�u� u� � �kuk��� �u � H�
� �

where � and � satisfy �	���
� and �	������

���� Prove Theorem 	���
�

�� Prove Corollary 	���
 to Theorem 	�����

��� Perturbations

In this section� we examine the e�ects of perturbations due to numerical integration�

interpolated boundary conditions� and curved boundaries�
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����� Quadrature Perturbations

With numerical integration� we determine U� as the solution of

A��V� U
�� � �V� f��� �V � SN

� � �	���
a�

instead of determining U by solving �	������ The approximate strain energy A��V� U�

or L� inner product �V� f�� re ect the numerical integration that has been used� For

example� consider the loading

�V� f� �

N�X
e��

�V� f�e� �V� f�e �

ZZ
�e

V �x� y�f�x� y�dxdy

where �e is the domain occupied by element e in a mesh of N� elements� Using an

n�point quadrature rule �cf� ���
��a�� on element e� we would approximate �V� f� by

�V� f�� �

N�X
e��

�V� f�e�� �	���
b�

where

�V� f�e�� �
nX

k��

WkV �xk� yk�f�xk� yk�� �	���
c�

The e�ects of transformations to a canonical element have not been shown for simplicity

and a similar formula applies for A��V� U��

Deriving an estimate for the perturbation introduced by �	���
a� is relatively simple

if A�V� U� and A��V� U� are continuous and coercive�

Theorem ������ Suppose that A�v� u� and A��V� U� are bilinear forms with A being

continuous and A� being coercive in H�	 thus� there exists constants � and � such that

jA�u� v�j � �kuk�kvk�� �u� v � H�
� � �	����a�

and

A��U� U� � �kUk��� �U � SN
� � �	����b�

Then

ku� U�k� � Cfku� V k� � sup
W�SN

�

jA�V�W �� A��V�W �j
kWk� �

sup
W�SN

�

j�W� f�� �W� f��j
kWk� g� �V � SN

� � �	�����
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Proof� Using the triangular inequality

ku� U�k� � ku� V � V � U�k� � ku� V k� � kWk� �	����a�

where

W � U� � V� �	����b�

Using �	����b� and �	����b�

�kWk�� � A��U
� � V�W � � A��U

��W �� A��V�W ��

Using �	���
a� with V replaced by W to eliminate A��U
��W �� we get

�kWk�� � �f�W �� � A��V�W ��

Adding the exact Galerkin equation �	����� with v replaced by W

�kWk�� � �f�W �� � �f�W � � A�u�W �� A��V�W ��

Adding and subtracting A�V�W � and taking an absolute value

�kWk�� � j�f�W �� � �f�W �j� jA�u� V�W �j� jA�V�W �� A��V�W �j�
Now� using the continuity condition �	����a� with u replaced by u�V and v replaced by

W � we obtain

�kWk�� � j�f�W �� � �f�W �j� �ku� V k�kWk� � jA�V�W �� A��V�W �j�
Dividing by �kWk�

kWk� � 


�
f�ku� V k� � j�f�W �� � �f�W �j

kWk� �
jA�V�W �� A��V�W �j

kWk� g�

Combining the above inequality with �	����a�� maximizing the inner product ratios over

W � and choosing C as the larger of 
 � �	� or 
	� yields �	������

Remark �� Since the error estimate �	����� is valid for all V � SN
� it can be written

in the form

ku� U�k� � C inf
V �SN

�

fku� V k� � sup
W�SN

�

jA�V�W �� A��V�W �j
kWk� �

sup
W�SN

�

j�W� f�� �W� f��j
kWk� g� �	�����

To bound �	����� or �	����� in terms of a mesh parameter h� we use standard interpola�

tion error estimates �cf� Sections ��� and ���� for the �rst term and numerical integration

error estimates �cf� Chapter �� for the latter two terms� Estimating quadrature errors is

relatively easy and the following typical result includes the e�ects of transforming to a

canonical element�
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Theorem ������ Let J�
� �� be the Jacobian of a transformation from a computational

�
� ��
plane to a physical �x� y�
plane and let W � SN
� � Relative to a uniform family

of meshes �h� suppose that det�J�
� ���Wx�
� �� and det�J�
� ���Wy�
� �� are piecewise

polynomials of degree at most r� and det�J�
� ���W �
� �� is a piecewise polynomial of

degree at most r�� Then


�� If a quadrature rule is exact �in the computational plane� for all polynomials of

degree at most r� � r�

jA�V�W �� A��V�W �j
kWk� � Chr��kV kr��� �V�W � SN

� � �	����a�

�� If a quadrature rule is exact for all polynomials of degree at most r� � r � 
�

j�f�W �� �f�W ��j
kWk� � Chr��kfkr��� �W � SN

� � �	����b�

Proof� cf� Wait and Mitchell ��

� Chapter �� or Strang and Fix �
�
� Chapter ��

Example ������ Suppose that the coordinate transformation is linear so that det�J�
� ���

is constant and that SN
� consists of piecewise polynomials of degree at most p� In this

case� r� � p� 
 and r� � p� The interpolation error in H� is

ku� V k� � O�hp��

Suppose that the quadrature rule is exact for polynomials of degree � or less� Thus�

� � r� � r or r � �� p � 
 and �	����a� implies that

jA�V�W �� A��V�W �j
kWk� � Ch��p��kV k��p��� �V�W � SN

� �

With � � r� � r � 
 and r� � p� we again �nd r � �� p � 
 and� using �	����b��

j�f�W �� �f�W ��j
kWk� � Ch��p��kfk��p��� �W � SN

� �

� If � � ��p�
� so that r � p�
 then the above perturbation errors areO�hp�� Hence�
all terms in �	����� or �	����� have the same order of accuracy and we conclude that

ku� U�k� � O�hp��

This situation is regarded as optimal� If the coe�cients of the di�erential equation

are constant and� as is the case here� the Jacobian is constant� this result is equiv�

alent to integrating the di�erentiated terms in the strain energy exactly �cf�� e�g��

�	�
�
c���
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� If � � ��p� 
� so that r � p� 
 then the error in integration is higher order than

the O�hp� interpolation error� however� the interpolation error dominates and

ku� U�k� � O�hp��

The extra e�ort in performing the numerical integration more accurately is not

justi�ed�

� If � � ��p� 
� so that r � p� 
 then the integration error dominates the interpo�

lation error and determines the order of accuracy as

ku� U�k� � O�h��p����

In particular� convergence does not occur if � � p� ��

Let us conclude this example by examining convergence rates for piecewise�linear �or

bilinear� approximations �p � 
�� In this case� r� � �� r� � 
� and r � �� Interpolation

errors converge as O�h�� The optimal order of accuracy of the quadrature rule is � � ��

i�e�� only constant functions need be integrated exactly� Performing the integration more

accurately yields no improvement in the convergence rate�

Example ������ Problems with variable Jacobians are more complicated� Consider

the term

det�J�
� ���Wx�
� �� � J�W�
x �W��x�

where J � det�J�
� ���� The metrics 
x and �x are obtained from the inverse Jacobian

J�� �

�

x 
y
�x �y

�
�




J

�
y� �x�
�y� x�

�
�

In particular� 
x � y�	J and �x � �y�	J and

det�J�Wx �W�y� �W�y��

Consider an isoparametric transformation of degree p� Such triangles or quadrilaterals

in the computational plane have curved sides of piecewise polynomials of degree p in the

physical plane� If W is a polynomial of degree p then Wx has degree p � 
� Likewise�

x and y are polynomials of degree p in 
 and �� Thus� y� and y� also have degrees

p� 
� Therefore� JWx and� similarly� JWy have degrees r� � ��p� 
�� With J being a

polynomial of degree ��p� 
�� we �nd JW to be of degree r� � �p� ��

For the quadrature errors �	����� to have the same O�hp� rate as the interpolation

error� we must have r � p� 
 in �	����a�b�� Thus� according to Theorem 	����� the order

� of the quadrature rules in the �
� ���plane should be

� � r� � r � ��p� 
� � �p� 
� � ��p� 
�
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for �	����a� and

� � r� � r � 
 � ��p� �� � �p� 
�� 
 � ��p� 
�

for �	����b�� These results are to be compared with the order of ��p � 
� that was

needed with the piecewise polynomials of degree p and linear transformations considered

in Example 	���
� For quadratic transformations and approximations �p � ��� we need

third� and fourth�order quadrature rules for O�h�� accuracy�

����� Interpolated Boundary Conditions

Assume that integration is exact and the boundary �� is modeled exactly� but Dirichlet

boundary data is approximated by a piecewise polynomial in SN � i�e�� by a polynomial

having the same degree p as the trial and test functions� Under these conditions� Wait

and Mitchell ��

� Chapter �� show that the error in the solution U of a Galerkin problem

with interpolated boundary conditions satis�es

ku� Uk� � Cfhpkukp�� � hp����kukp��g� �	���	�

The �rst term on the right is the standard interpolation error estimate� The second term

corresponds to the perturbation due to approximating the boundary condition� As usual�

computation is done on a uniform family of meshes �h and u is smooth enough to be in

Hp��� Brenner and Scott �
�
� Chapter �� obtain similar results under similar conditions

when interpolation is performed at the Lobatto points on the boundary of an element�

The Lobatto polynomial of degree p is de�ned on ��
� 

 as

Lp�
� �
dp��

d
p��
�
� 
��p��� 
 � ��
� 

� p � ��

These results are encouraging since the perturbation in the boundary data is of slightly

higher order than the interpolation error� Unfortunately� if the domain � is not smooth

and� e�g�� contains corners solutions will not be elements of Hp��� Less is known in these

cases�

����� Perturbed Boundaries

Suppose that the domain � is replaced by a polygonal domain !� as shown in Figure

	���
� Strang and Fix �
�
� analyze second�order problems with homogeneous Dirichlet

data of the form� determine u � H�
� satisfying

A�v� u� � �v� f�� �v � H�
� � �	����a�
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where functions in H�
� satisfy u�x� y� � �� �x� y� � ��� The �nite element solution

U � !SN
� satis�es

A�V� U� � �V� f�� �V � !SN
� � �	����b�

where functions in !SN
� vanish on � !�� �Thus� !SN

� is not a subspace of H�
� ��

Figure 	���
� Approximation of a curved boundary by a polygon�

For piecewise linear polynomial approximations on triangles they show that ku �
Uk� � O�h� and for piecewise quadratic approximations ku� Uk� � O�h�	��� The poor

accuracy with quadratic polynomials is due to large errors in a narrow �boundary layer�

near ��� Large errors are con�ned to the boundary layer and results are acceptable

elsewhere� Wait and Mitchell ��

� Chapter �� quote other results which prove that

ku�Uk� � O�hp� for pth degree piecewise polynomial approximations when the distance

between �� and � !� is O�hp���� Such is the case when �� is approximated by p th degree

piecewise�polynomial interpolation�

��� A Posteriori Error Estimation

In previous sections of this chapter� we considered a priori error estimates� Thus� we

can� without computation� infer that �nite element solutions converge at a certain rate

depending on the exact solution�s smoothness� Error bounds are expressed in terms of

unknown constants which are di�cult� if not impossible� to estimate� Having computed

a �nite element solution� it is possible to obtain a posteriori error estimates which give

more quantitative information about the accuracy of the solution� Many error estimation

techniques are available and before discussing any� let�s list some properties that a good

a posteriori error estimation procedure should possess�

� The error estimate should give an accurate measure of the discretization error for

a wide range of mesh spacings and polynomial degrees�
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� The procedure should be inexpensive relative to the cost of obtaining the �nite

element solution� This usually means that error estimates should be calculated

using only local computations� which typically require an e�ort comparable to the

cost of generating the sti�ness matrix�

� A technique that provides estimates of pointwise errors which can subsequently be

used to calculate error measures in several norms is preferable to one that only

works in a speci�c norm� Pointwise error estimates and error estimates in local

�elemental� norms may also provide an indications as to where solution accuracy is

insu�cient and where re�nement is needed�

A posteriori error estimates can roughly be divided into four categories�


� Residual error estimates� Local �nite element problems are created on either an

element or a subdomain and solved for the error estimate� The data depends on

the residual of the �nite element solution�

�� Flux
projection error estimates� A new  ux is calculated by post processing the

�nite element solution� This  ux is smoother than the original �nite element  ux

and an error estimate is obtained from the di�erence of the two  uxes�

�� Extrapolation error estimates� Two �nite element solutions having di�erent orders

or di�erent meshes are compared and their di�erences used to provide an error

estimate�

�� Interpolation error estimates� Interpolation error bounds are used with estimates

of the unknown constants�

The four techniques are not independent but have many similarities� Surveys of error es�

timation procedures �	� ��
 describe many of their properties� similarities� and di�erences�

Let us set the stage by brie y describing two simple extrapolation techniques� Consider a

one�dimensional problem for simplicity and suppose that an approximate solution Up
h�x�

has been computed using a polynomial approximation of degree p on a mesh of spacing

h �Figure 	���
�� Suppose that we have an a priori interpolation error estimate of the

form

u�x�� Up
h�x� � Cp��h

p�� � O�hp����

We have assumed that the exact solution u�x� is smooth enough for the error to be

expanded in h to O�hp���� The leading error constant Cp�� generally depends on �un�

known� derivatives of u� Now� compute a second solution with spacing h	� �Figure 	���
�

to obtain

u�x�� Up
h���x� � Cp���

h

�
�p�� �O�hp����
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x

U
h
1

h

U
h/2
1

U
h
2

Figure 	���
� Solutions U�
h and U�

h�� computed on meshes having spacing h and h	� with

piecewise linear polynomials �p � 
� and a third solution U�
h computed on a mesh of

spacing h with a piecewise quadratic polynomial �p � ���

Subtracting the two solutions we eliminate the unknown exact solution and obtain

Up
h���x�� Up

h�x� � Cp��h
p���
� 


�p � 

� �O�hp����

Neglecting the higher�order terms� we obtain an approximation of the discretization error

as

Cp��h
p�� 


Up
h���x�� Up

h�x�


� 
	�p��
�

Thus� we have an estimate of the discretization error of the coarse�mesh solution as

u�x�� Up
h�x� 


Up
h���x�� Up

h�x�


� 
	�p��
�

The technique is called Richardson�s extrapolation or h
extrapolation� It can also be

used to obtain error estimates of the �ne�mesh solution� The cost of obtaining the error

estimate is approximately twice the cost of obtaining the solution� In two and three

dimensions the cost factors rise to� respectively� four and eight times the solution cost�

Most would consider this to be excessive� The only way of justifying the procedure is

to consider the �ne�mesh solution as being the result and the coarse�mesh solution as

furnishing the error estimate� This strategy only furnishes an error estimate on the coarse

mesh�

Another strategy for obtaining an error estimate by extrapolation is to compute a

second solution using a higher�order method �Figure 	���
�� e�g��

u�x�� Up��
h � Cp��h

p�� �O�hp����

Now� use the identity

u�x�� Up
h�x� � �u�x�� Up��

h �x�
 � �Up��
h �x�� Up

h 
�
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The �rst term on the right is the O�hp��� error of the higher�order solution and� hence�

can be neglected relative to the second term� Thus� we obtain the approximation

u�x�� Up
h�x� 
 Up��

h �x�� Up
h�x��

The di�erence between the lower� and higher�order solutions furnish an estimate of the er�

ror of the lower�order solution� The technique is called order embedding or p
extrapolation�

There is no error estimate for the higher�order solution� but some use it without an error

estimate� This strategy� called local extrapolation� can be dangerous near singularities�

Unless there are special properties of the scheme that can be exploited� the work in�

volved in obtaining the error estimate is comparable to the work of obtaining the solu�

tion� With a hierarchical embedding� computations needed for the lower�order method

are also needed for the higher�order method and� hence� need not be repeated�

The extrapolation techniques just described are typically too expensive for use as

error estimates� We�ll develop a residual�based error estimation procedure that follows

Bank �cf� ��
� Chapter 	� and uses many of the ideas found in order embedding� We�ll

follow our usual course of presenting results for the model problem

�r � pru� qu � ��pux�x � �puy�y � qu � f�x� y�� �x� y� � �� �	���
a�

u�x� y� � �� �x� y� � ��E � pun�x� y� � �� �x� y� � ��N � �	���
b�

however� results apply more generally� Of course� the Galerkin form of �	���
� is� deter�

mine u � H�
E such that

A�v� u� � �v� f�� � v� � �� �v � H�
� � �	����a�

where

�v� f� �

ZZ
�

vfdxdy� �	����b�

A�v� u� �

ZZ
�

�prv � ru� qvu
dxdy� �	����c�

and

� v� u ��

Z
��N

vuds� �	����d�

Similarly� the �nite element solution U � SN
E 	 H�

E satis�es

A�V� U� � �V� f�� � V� � �� �V � SN
� � �	�����
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We seek an error estimation technique that only requires local �element level� mesh

computations� so let�s construct a local Galerkin problem on element e by integrating

�	���
a� over �e and applying the divergence theorem to obtain� determine u � H���e�

such that

Ae�v� u� � �v� f�e� � v� pun �e� �v � H���e�� �	����a�

where

�v� f�e �

ZZ
�e

vfdxdy� �	����b�

Ae�v� u� �

ZZ
�e

�prv � ru� qvu
dxdy� �	����c�

and

� v� u �e�

Z
��e

vuds� �	����d�

As usual� �e is the domain of element e� s is a coordinate along ��e� and n is a unit

outward normal to ��e�

Let

u � U � e� �	�����

where e�x� y� is the discretization error of the �nite element solution� and substitute

�	����� into �	����a� to obtain

Ae�v� e� � �v� f�e � Ae�v� U�� � v� pun �e� �v � H���e�� �	�����

Equation �	������ of course� cannot be solved because �i� v� u� and e are elements of an

in�nite�dimensional space and �ii� the  ux pu
n
is unknown on ��e� We could obtain

a �nite element solution of �	����� by approximating e and v by E and V in a �nite�

dimensional subspace !SN��e� of H
���e�� Thus�

Ae�V�E� � �V� f�e � Ae�V� U�� � V� pun �e� �V � !SN ��e�� �	���	�

We will discuss selection of !SN momentarily� Let us �rst prescribe the  ux pu
n

appearing in the last term of �	���	�� The simplest possibility is to use an average  ux

obtained from pUn across the element boundary� i�e��

Ae�V�E� � �V� f�e � Ae�V� U�� � V�
�pU

n
�� � �pU

n
��

�
�e� �V � !SN��e�� �	�����
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where superscripts � and�� respectively� denote values of pUn on the exterior and interior
of ��e�

Equation �	����� is a local Neumann problem for determining the error approximation

E on each element� No assembly and global solution is involved� Some investigators prefer

to apply the divergence theorem to the second term on the right to obtain

Ae�V�E� � �V� r�e� � V� �pUn�
� �e � � V�

�pUn�
� � �pUn�

�

�
�e

or

Ae�V�E� � �V� r�e� � V�
�pUn�

� � �pUn�
�

�
�e �	����a�

where

r�x� y� � f �r � prU � qU �	����b�

is the residual� This form involves jumps in the  ux across element boundaries�

Now let us select the error approximation space !SN � Choosing !SN � SN does not

work since there are no errors in the solution subspace� Bank �
�
 chose !SN as a space of

discontinuous polynomials of the same degree p used for the solution space SN
E � however�

the algebraic system for E resulting from �	����� or �	����� could be ill�conditioned when

the basis is nearly continuous� A better alternative is to select !SN as a space of piecewise

p� 
 st�degree polynomials when SN
E is a space of p th degree polynomials� Hierarchical

bases �cf� Sections ��� and ���� are the most e�cient to use in this regard� Let us

illustrate the procedure by constructing error estimates for a piecewise bilinear solution

on a mesh of quadrilateral elements� The bilinear shape functions for a canonical �� �

square element are

N�
i�j�
� �� � "Ni�
� "Nj���� i� j � 
� �� �	���
�a�

where

"N��
� �

� 


�
� "N��
� �


 � 


�
� �	���
�b�

The four second�order hierarchical shape functions are

N�
��j�
� �� � "Nj��� "N

�
� �
�� j � 
� �� �	���

a�

N�
i���
� �� � "Ni�
� "N

�
� ���� i � 
� �� �	���

b�

where

"N�
� �
� �

��
� � 
�

�
p
�

� �	���

c�
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Figure 	����� Nodal placement for bilinear and hierarchical biquadratic shape functions
on a canonical �� � square element�

Node indexing is given in Figure 	����

The restriction of a piecewise bilinear �nite element solution U to the square canonical

element is

U�
� �� �
�X

i��

�X
j��

c�ijN
�
ij�
� ��� �	���
��

Using either �	����� or �	������ the restriction of the error approximation E to the canon�

ical element is the second�order hierarchical function

E�
� �� �
�X
i��

�X
j��

c�ijN
�
ij�
� �� �

�X
i��

d�i�N
�
i��
� �� �

�X
j��

d��jN
�
�j�
� ��� �	���
��

The local problems �	����� or �	����� are transformed to the canonical element and solved

for the eight unknowns� c�ij� i� j � 
� �� d�i�� i � 
� �� d��j� j � 
� �� using the test functions

V � Nk
ij� i� j � 
� �� �� k � 
� ��

Several simpli�cations and variations are possible� One of these may be called ver


tex superconvergence which implies that the solution at vertices converges more rapidly

than it does globally� Vertex superconvergence has been rigorously established in certain

circumstances �e�g�� for uniform meshes of square elements�� but it seems to hold more

widely than current theory would suggest� In the present context� vertex superconver�

gence implies that the bilinear vertex solution c�ij� i� j � 
� �� converges at a higher rate

than the solution elsewhere on Element e� Thus� the error at the vertices c�ij� i� j � 
� ��

may be neglected relative to d�i�� i � 
� �� and d��j� j � 
� �� With this simpli�cation�
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�	���
�� becomes

E�
� �� �
�X
i��

d�i�N
�
i��
� �� �

�X
j��

d��jN
�
�j�
� ��� �	���
��

Thus� there are four unknowns d���� d
�
��� d

�
��� and d��� per element� This technique may be

carried to higher orders� Thus� if SN
E contains complete polynomials of degree p� !SN only

contains the hierarchical correction of order p�
� All lower�order terms are neglected in

the error estimation space�

The performance of an error estimate is typically appraised in a given norm by com�

puting an e�ectivity index as

# �
kE�x� y�k
ke�x� y�k � �	���
��

Ideally� the e�ectivity index should not di�er greatly from unity for a wide range of mesh

spacings and polynomial degrees� Bank and Weiser �


 and Oden et al� �
	
 studied

the error estimation procedure �	����� with the simplifying assumption �	���
�� and were

able to establish upper bounds of the form # � C in the strain energy norm

kekA��
p
A�e� e��

They could not� however� show that the estimation procedure was asymptotically correct

in the sense that #
 
 under mesh re�nement or order enrichment�

Example ������ Strouboulis and Haque �
�
 study the properties of several di�erent

error estimation procedures� We report results for the residual error estimation procedure

�	����� 	���
�� on the �Gaussian Hill� problem� This problem involves a Dirichlet problem

for Poisson�s equation on an equilateral triangle having the exact solution

u�x� y� � 
��e���	
�x���	

���y����
���

Errors are shown in Figure 	���� for unifom p�re�nement on a mesh of uniform trian�

gular elements having an edge length of ���� and for uniform h�re�nement with p � ��

�Extrapolation� refers to the p�re�nement procedure described earlier in this section�

This order embedding technique appears to produce accurate error estimates for all poly�

nomial degrees and mesh spacings� The �residual� error estimation procedure is �	�����

with errors at vertices neglected and the hierarchical corrections of order p � 
 forming
!SN �	���
��� The procedure does well for even�degree approximations� but less well for

odd�degree approximations�

From �	������ we see that the error estimate E is obtained by solving a Neumann

problem� Such problems are only solvable when the edge loading �the  ux average across
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Figure 	����� E�ectivity indices for several error estimation procedures using uniform h�
re�nement �left� and p�re�nement �right� for the Gaussian Hill Problem �
�
 of Example
	���
�

element edges� is equilibrated� The  ux averaging used in �	����� is� apparently� not

su�cient to ensure this when p is odd� We�ll pursue some remedies to this problem later

in this section� but� �rst� let us look at another application�

Example ������ Ai�a ��
 considers the nonlinear parabolic problem

ut � qu��u� 
� �
uxx � uyy

�
� �x� y� � ��� 
�� ��� 
�� t � ��

with the inital and Dirichlet boundary conditions speci�ed so that the exact solution is

u�x� y� t� �




 � e
p

q���x�y�t
p

q��

�

He estimates the spatial discretization error using the residual estimate �	����� neglecting

the error at vertices� The error estimation space !SN consists of the hierarchical corrections

of degree p � 
� however� some lower�degree hierarchical terms are used in some cases�

This is to provide a better equilibration of boundary terms and improve results� although

this is a time�dependent problem� which we haven�t studied yet� Ai�a ��
 keeps the

temporal errors small to concentrate on spatial error estimation� With q � ���� Ai�a�s

��
 e�ectivity indices in H� at t � ���� are presented in Table 	���
 for computations

performed on uniform meshes of N� triangles with polynomial degrees p ranging from 


to ��

The results with !SN consisting only of hierarchical corrections of degree p � 
 are

reasonable� E�ectivity indices are in excess of ��� for the lower�degree polynomials p �
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p !SN N�

� �� 
�� �
�


 � 
���� 
���� 
��
� 
����
� � ����� ����� ����� �����
� � ����
 ����� ����� �����

�� � ��	�� 
�	�� 
���
 
����
� � ����� ��	�� ����� �����

�� � ���
� ���

 ����� �����

Table 	���
� E�ectivity indices in H� at t � ���� for Example 	����� The degrees of the
hierarchical modes used for !SN are indicated in that column ��
�


� �� but degrade with increasing polynomial degree� The addition of a lower �third�

degree polynomial correction has improved the error estimates with p � �� however�

a similar tactic provided little improvement with p � �� These results and those of

Strouboulis and Haque �
�
 show that the performance of a posteriori error estimates is

still dependent on the problem being solved and on the mesh used to solve it�

Another way of simplifying the error estimation procedure �	����� and of understand�

ing the di�erences between error estimates for odd� and even�order �nite element solu�

tions involves a profound� but little known� result of Babu$ska �cf� �
� �� �� �� ��� ��
��

Concentrating on linear second�order elliptic problems on rectangular meshes� Babu$ska

indicates that asymptotically �as mesh spacing tends to zero� errors of odd�degree �nite

element solutions occur near element edges while errors of even�degree solutions occur

in element interiors� These �ndings suggest that error estimates may be obtained by

neglecting errors in element interiors for odd�degree polynomials and neglecting errors

on element boundaries for even�degree polynomials�

Thus� for piecewise odd�degree approximations� we could neglect the area integrals

on the right�hand sides of �	����� or �	����a� and calculate an error estimate by solving

Ae�V�E� �� V�
�pU

n
�� � �pU

n
��

�
�e� �V � !SN � �	���
�a�

or

Ae�V�E� �� V�
�pU

n
�� � �pU

n
��

�
�e� �V � !SN � �	���
�b�

For piecewise even�degree approximations� the boundary terms in �	����� or �	����a�

can be neglected to yield

Ae�V�E� � �V� f�e � Ae�V� U�� �V � !SN � �	���
	a�
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or

Ae�V�E� � �V� r�e� �V � !SN � �	���
	b�

Yu ���� ��
 used these arguments to prove asymptotic convergence of error estimates

to true errors for elliptic problems� Adjerid et al� ��� �
 obtained similar results for

transient parabolic systems� Proofs� in both cases� apply to a square region with square

elements of spacing h � 
	
p
N�� A typical result follows�

Theorem ������ Let u � H�
E �Hp�� and U � SN

E be solutions of ������� using complete

piecewise
bi
polynomial functions of order p�

�� If p is an odd positive integer then

ke��� ��k�� � kE��� ��k�� �O�h�p��� �	���
�a�

where

kEk�� �
h�


���p� 
�

N�X
e��

�X
i��

�X
k��

�Uxi�Pk�e�

�
i � �	���
�b�

Pk�e� k � 
� �� �� �� are the coordinates of the vertices of �e� and �f�P�
i denotes the

jump in f�x� in the direction xi� i � 
� �� at the point P�

�� If p is a positive even integer then �������a� is satis�ed with

Ae�Vi� E� � �V� f�e � Ae�Vi� U�� �	���
�c�

where

E�x�� x�� � b��e%
p��
e �x�� � b��e%

p��
e �x��� �	���
�d�

Vi�x�� x�� � xi
%p��
e �x��

x�

%p��
e �x��

x�
� i � 
� �� �	���
�e�

and %m
e �x� is the mapping of the hierarchical basis function

"Nm
� �
� �

r
�m� 


�

Z �

��

Pm�����d� �	���
�f�

from ��
� 

 to the appropriate edge of �e�

Proof� cf� Adjerid et al� ��� �
 and Yu ���� ��
� Coordinates are written as x � �x�� x�

T

instead of �x� y� to simplify notation within summations� The hierarchical basis element

�	���
�f� is consistent with prior usage� Thus� the subscript � refers to a midside node as

indicated in Figure 	�����
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Remark �� The error estimate for even�degree approximations has di�erent trial and

test spaces� The functions Vi�x�� x�� vanish on ��e� Each function is the product of

a �bubble function� %p��
e �x��%

p��
e �x�� biased by a variation in either the x� or the x�

direction� As an example� consider the test functions on the canonical element with

p � �� Restricting �	���
�e� to the canonical element �
 � 
�� 
� � 
� we have

Vi�
�� 
�� � 
i
"N�
� �
��


�

"N�
� �
��


�
� i � 
� ��

Using �	���
�f� with m � � or ��������

"N�
� �
� �

�

�
p

�

�
� � 
��

Thus�

Vi�
�� 
�� �
�
i
�
�
�� � 
��
�� � 
�� i � 
� ��

Remark �� Theorem 	���
 applies to tensor�product bi�polynomial bases� Adjerid et

al� �

 show how this theorem can be modi�ed for use with hierarchical bases�

Example ������ Adjerid et al� ��
 solve the nonlinear parabolic problem of Example

	���� with q � �� on uniform square meshes with p ranging from 
 to � using the error

estimates �	���
�a�b� and �	���
�a�c�f�� Temporal errors were controlled to be negligible

relative to spatial errors� thus� we need not be concerned that this is a parabolic and not

an elliptic problem� The exact H� errors and e�ectivity indices at t � ��� are presented

in Table 	����� Approximate errors are within ten percent of actual for all but one mesh

and appear to be converging at the same rate as the actual errors under mesh re�nement�

p N� � 
�� ��� ��� 
���
kek�	kuk� # kek�	kuk� # kek�	kuk� # kek�	kuk� #


 �������
� ����� ��
����
� ���		 ��������� ����� ��������� �����
� ���	����� ����� ���
����� ����� ��������� ����� ��������� 
����
� ���	����� ����� ��������� ����� ��
������ ���	� ��������� ���	�
� ��������� ����� �������	� 
���� ��
����	� 
���� ����
���� 
����

Table 	����� Errors and e�ectivity indices inH� for Example 	���� on N��element uniform
meshes with piecewise bi�p polynomial bases� Numbers in parentheses indicate a power
of ten�

The error estimation procedures �	����� and �	����� use average  ux values on ��e�

As noted� data for such �local� Neumann problems cannot be prescribed arbitrarily� Let

us examine this further by concentrating on �	����� which we write as

Ae�V�E� � �V� r�e� � V�R �e �	���
�a�
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where the elemental residual r was de�ned by �	����b� and the boundary residual is

R � ���pU
n
�� � �pU

n
��
� �	���
�b�

The function � on ��e was taken as 
	� to obtain �	����a�� however� this may not have

been a good idea for reasons suggested in Example 	���
�

Recall �cf� Section ��
� that smooth solutions of the weak problem �	���
�� satisfy

the Neumann problem

�r � prE � qE � r� �x� y� � �e� �	�����a�

pEn � R� �x� y� � ��e� �	�����b�

Solutions of �	������ only exist when the data R and r satisfy the equilibrium condition

ZZ
�e

r�x� y�dxdy �

Z
��e

R�s�ds � �� �	�����c�

This condition will most likely not be satis�ed by the choice of � � 
	�� Ainsworth and

Oden ��
 describe a relatively simple procedure that requires the solution of the Poisson

problem

���e � r� �x� y� � �e� �	����
a�

��e
�n

� R� �x� y� � ��e � ��E � �	����
b�

�e � �� �x� y� � ��E � �	����
c�

The error estimate is

kEk�A �

N�X
e��

Ae��e� �e�� �	����
d�

The function � is approximated by a piecewise�linear polynomial in a coordinate s on

��e and may be determined explicitly prior to solving �	����
�� Let us illustrate the

e�ect of this equilibrated error estimate�

Example ������ Oden �
�
 considers a �cracked panel� as shown in Figure 	���� and

determines u as the solution of

A�v� u� �

ZZ
�

�vxux � vyuy�dxdy � ��
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y

x

r

u = 0
y

u   = 0

u = r1/2 cos θ/2

θ
Ω

L
Ω

R

Figure 	����� Cracked panel used for Example 	�����

p 
	h #��L� #��R� #���
With Without With Without With Without

Balancing Balancing Balancing Balancing Balancing Balancing
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�
�� ����� ���	� 
���� 
��
	 
����

 �� 
�

� ����� ����� 
���� 
��
� 
����
� �� 
�
�� ���	� ����� 
�
	� 
���� ����


Table 	����� Local and global e�ectivity indices for Example 	���� using �	����
� with
and without equilibration�

The essential boundary condition

u�r� �� � r��� cos �	�

is prescribed on all boundaries except x � �� y � �� Thus� the solution of the Galerkin

problem will satisfy the natural boundary condition uy � � there� These conditions have

been chosen so that the exact solution is the speci�ed essential boundary condition� This

solution is singular since ur � r���� near the origin �r � ���

Results for the e�ectivity indices in strain energy for the entire region and for the two

elements� �L and �R� adjacent to the singularity are shown in Table 	����� Computations

were performed on a square grid with uniform spacing h in each coordinate direction

�Figure 	������ Piecewise linear and quadratic polynomials were used as �nite element

bases�

Local e�ectivity indices on �L and �R are not close to unity and don�t appear to

be converging as either the mesh spacing is re�ned or p is increased� Global e�ectivity

indices are near unity� Convergence to unity is di�cult to appraise with the limited data�
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At this time� the �eld of a posteriori error estimation is still emerging� Error estimates

for problems with singularities are not generally available� The performance of error

estimates is dependent on both the problem� the mesh� and the basis� Error estimates

for realistic nonlinear and transient problems are just emerging� Verf&urth ���
 provides

an exceelent survey of methods and results�
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Chapter �

Adaptive Finite Element Techniques

��� Introduction

The usual �nite element analysis would proceed from the selection of a mesh and basis

to the generation of a solution to an accuracy appraisal and analysis� Experience is the

traditional method of determining whether or not the mesh and basis will be optimal

or even adequate for the analysis at hand� Accuracy appraisals typically require the

generation of a second solution on a �ner mesh or with a di�erent method and an ad hoc

comparison of the two solutions� At least with a posteriori error estimation �cf� Section

����� accuracy appraisals can accompany solution generation at a lower cost than the

generation of a second solution�

Adaptive procedures try to automatically re�ne� coarsen� or relocate a mesh and	or

adjust the basis to achieve a solution having a speci�ed accuracy in an optimal fashion�

The computation typically begins with a trial solution generated on a coarse mesh with a

low
order basis� The error of this solution is appraised� If it fails to satisfy the prescribed

accuracy� adjustments are made with the goal of obtaining the desired solution with

minimal e�ort� For example� we might try to reduce the discretization error to its desired

level using the fewest degrees of freedom� While adaptive �nite element methods have

been studied for nearly twenty years ��� �� 
� ��� ��� �
� ��� ��� ���� surprising little is

known about optimal strategies� Common procedures studied to date include

� local re�nement and	or coarsening of a mesh �h�re�nement��

� relocating or moving a mesh �r�re�nement�� and

� locally varying the polynomial degree of the basis �p�re�nement��

These strategies may be used singly or in combination� We may guess that r
re�nement

alone is generally not capable of �nding a solution with a speci�ed accuracy� If the mesh

is too coarse� it might be impossible to achieve a high degree of precision without adding

�
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more elements or altering the basis� R
re�nement is more useful with transient problems

where elements move to follow an evolving phenomena� By far� h
re�nement is the most

popular ��� ��� ��� �
� ��� ���� It can increase the convergence rate� particularly when

singularities are present �cf� ��� ��� or Example 
������ In some sense p
re�nement is the

most powerful� Exponential convergence rates are possible when solutions are smooth

�
� ��� ���� When combined with h
re�nement� these high rates are also possible when

singularities are present ���� ��� ���� The use of p
re�nement is most natural with a

hierarchical basis� since portions of the sti�ness and mass matrices and load vector will

remain unchanged when increasing the polynomial degree of the basis�

A posteriori error estimates provide accuracy appraisals that are necessary to termi


nate an adaptive procedure� However� optimal strategies for deciding where and how to

re�ne or move a mesh or to change the basis are rare� In Section ���� we saw that a pos�

teriori error estimates in a particular norm were computed by summing their elemental

contributions as

kEk� �
N�X
e��

kEk�e �
�����

where N� is the number of elements in the mesh and kEk�e is the restriction of the error

estimate kEk� to Element e� The most popular method of determining where adaptivity

is needed is to use kEke as an enrichment indicator� Thus� we assume that large errors

come from regions where the local error estimate kEke is large and this is where we should

re�ne or concentrate the mesh and	or increase the method order� Correspondingly� the

mesh would be coarsened or the polynomial degree of the basis lowered in regions where

kEke is small� This is the strategy that we�ll follow �cf� Section 
���� however� we reiterate

that there is no proof of the optimality of enrichment in the vicinity of the largest local

error estimate�

Enrichment indicators other than local error estimates have been tried� The use of

solution gradients is popular� This is particularly true of �uid dynamics problems where

error estimates are not readily available ���� ��� ��� ����

In this chapter� we�ll examine h
� p
� and hp
re�nement� Strategies using r
re�nement

will be addressed in Chapter ��

��� h�Re�nement

Mesh re�nement strategies for elliptic �steady� problems need not consider coarsening�

We can re�ne an initially coarse mesh until the requested accuracy is obtained� This

strategy might not be optimal and won�t be� for example� if the coarse mesh is too

�ne in some regions� Nevertheless� we�ll concentrate on re�nement at the expense of
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coarsening� We�ll also focus on two
dimensional problems to avoid the complexities of

three
dimensional geometry�

����� Structured Meshes

Let us �rst consider adaptivity on structured meshes and then examine unstructured


mesh re�nement� Re�nement of an element of a structured quadrilateral
element mesh

by bisection requires mesh lines running to the boundaries to retain the four
neighbor

structure �cf� the left of Figure 
������ This strategy is simple to implement and has

been used with �nite di�erence computation ����� however� it clearly re�nes many more

elements than necessary� The customary way of avoiding the excess re�nement is to

introduce irregular nodes where the edges of a re�ned element meet at the midsides of

a coarser one �cf� the right of Figure 
������ The mesh is no longer structured and our

standard method of basis construction would create discontinuities at the irregular nodes�

Figure 
����� Bisection of an element of a structured rectangular
element mesh creating
mesh lines running between the boundaries �left�� The mesh lines are removed by creating
irregular nodes �right��

The usual strategy of handling continuity at irregular nodes is to constrain the basis�

Let us illustrate the technique for a piecewise
bilinear basis� The procedure for higher


order piecewise polynomials is similar� Thus� consider an edge between Vertices � and �

containing an irregular node � as shown in Figure 
����� For simplicity� assume that the

elements are h � h squares and that those adjacent to Edge �
� are indexed �� �� and �

as shown in the �gure� For convenience� let�s also place a Cartesian coordinate system

at Vertex ��

We proceed as usual� constructing shape functions on each element� Although not

really needed for our present development� those bilinear shape functions that are nonzero

on Edge �
� follow�
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Figure 
����� Irregular node at the intersection of a re�ned element�
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��
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As in Chapter �� the second subscript on Nje denotes the element index�

The restriction of U on Element � to Edge �
� is

U�x� y� � c�N���x� y� � c�N���x� y��

Evaluating this at Node � yields

U�x�� y�� �
c� � c�

�
� x � ��

The restriction of U on Elements � and � to Edge �
� is

U�x� y� �

�
c�N���x� y� � c�N���x� y�� if y � h��
c�N���x� y� � c�N���x� y�� if y � h��

�

In either case� we have

U�x�� y�� � c�� x � ��

Equating the two expressions for U�x�� y�� yields the constraint condition

c� �
c� � c�

�
� �
�����
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Figure 
����� The one
irregular rule� the intended re�nement of an element to create two
irregular nodes on an edge �left� necessitates re�nement of a neighboring element to have
no more than one irregular node per element edge �right��

Thus� instead of determining c� by Galerkin�s method� we constrain it to be determined

as the average of the solutions at the two vertices at the ends of the edge� With the

piecewise
bilinear basis used for this illustration� the solution along an edge containing

an irregular node is a linear function rather than a piecewise
linear function�

Software based on this form of adaptive re�nement has been implemented for elliptic

���� and parabolic ��� systems� One could guess that di�culties arise when there are too

many irregular nodes on an edge� To overcome this� software developers typically use

Bank�s ��� ��� �one
irregular� and �three
neighbor� rules� The one
irregular rule limits

the number of irregular nodes on an element edge to one� The impending introduction

of a second irregular node on an edge requires re�nement of a neighboring element as

shown in Figure 
����� The three
neighbor rule states that any element having irregular

nodes on three of its four edges must be re�ned�

A modi�ed quadtree �Section ���� can be used to store the mesh and solution data�

Thus� let the root of a tree structure denote the original domain �� With a structured

grid� we�ll assume that � is square� although it could be obtained by a mapping of a

distorted region to a square �Section ����� The elements of the original mesh are regarded

as o�spring of the root �Figure 
������ Elements introduced by adaptive re�nement are

obtained by bisection and are regarded as o�spring of the elements of the original mesh�

This structure is depicted in Figure 
����� Coarsening can be done by �pruning� re�ned

quadrants� It�s customary� but not essential� to assume that elements cannot be removed

�by coarsening� from the original mesh ����

Irregular nodes can be avoided by using transition elements as shown in Figure 
�����

The strategy on the right uses triangular elements as a transition between the coarse and

�ne elements� If triangular elements are not desirable� the transition element on the left

uses rectangles but only adds a mid
edge shape functions at Node �� There is no node

at the midpoint of Edge �
�� The shape functions on the transition element are

N�� � �
h� x

h
��
y � h��

h��
�� N�� � �

h� x

h
��
h��� y

h��
��
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Figure 
����� Original structured mesh and the bisection of two elements �left�� The tree
structure used to represent this mesh �right��
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Figure 
����� Transition elements between coarse and �ne elements using rectangles �left�
and triangles �right��
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��
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Again� the origin of the coordinate system is at Node �� Those shape functions associated

with nodes on the right edge are piecewise
bilinear on Element �� whereas those associated

with nodes on the left edge are linear�

Berger and Oliger ���� considered structured meshes with structured mesh re�nement�

but allowed elements of �ner meshes to overlap those of coarser ones �Figure 
������ This

method has principally used with adaptive �nite di�erence computation� but it has had

some use with �nite element methods �����

����� Unstructured Meshes

Computation with triangular
element meshes has been done since the beginning of adap


tive methods� Bank ��� ��� developed the �rst software system PLTMG� which solves
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Figure 
����� Composite grid construction where �ner grids overlap elements of coarser
ones�

our model problem with a piecewise
linear polynomial basis� It uses a multigrid itera


tive procedure to solve the resulting linear algebraic system on the sequence of adaptive

meshes� Bank uses uniform bisection of a triangular element into four smaller elements�

Irregular nodes are eliminated by dividing adjacent triangles sharing a bisected edge

in two �Figure 
������ Triangles divided to eliminate irregular nodes are called �green

triangles� ����� Bank imposes one
irregular and three
neighbor rules relative to green

triangles� Thus� e�g�� an intended second bisection of a vertex angle of a green triangle

would not be done� Instead� the green triangle would be uniformly re�ned �Figure 
���
�

to keep angles bounded away from zero as the mesh is re�ned�

Figure 
����� Uniform bisection of a triangular element into four and the division of
neighboring elements in two �shown dashed��

Rivara ���� ��� developed a mesh re�nement algorithm based on bisecting the longest

edge of an element� Rivara�s procedure avoids irregular nodes by additional re�nement as

described in the algorithm of Figure 
����� In this procedure� we suppose that elements




 Adaptive Finite Element Techniques

Figure 
���
� Uniform re�nement of green triangles of the mesh shown in Figure 
���� to
avoid the second bisection of vertex angles� New re�nements are shown as dashed lines�

of a sub
mesh � of mesh �h are scheduled for re�nement� All elements of � are bisected

by their longest edges to create a mesh ��
h� which may contain irregular nodes� Those

elements e of ��
h that contain irregular nodes are placed in the set ��� Elements of �� are

bisected by their longest edge to create two triangles� This bisection may create another

node Q that is di�erent from the original irregular node P of element e� If so� P and Q

are joined to produce another element �Figure 
������� The process is continued until all

irregular nodes are removed�

procedure rivara��h� ��
Obtain ��

h by bisecting all triangles of � by their longest edges
Let �� contain those elements of ��

h having irregular nodes
i �� �
while �i is not � do

Let e � �i have an irregular node P and bisect e by its longest edge
Let Q be the intersection point of this bisection
if P �� Q then

Join P and Q
end if

Let �i��
h be the mesh created by this process

Let �i�� be the set of elements in �i��
h with irregular nodes

i �� i � �
end while

return �i
h

Figure 
����� Rivara�s mesh bisection algorithm�

Rivara�s ���� algorithm has been proven to terminate with a regular mesh in a �nite

number of steps� It also keep angles bounded away from � and �� In fact� if 	 is the
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P P

Q

e

Figure 
������ Elimination of an irregular node P �left� as part of Rivara�s algorithm
shown in Figure 
���� by dividing the longest edge of Element e and connecting vertices
as indicated�

smallest angle of any triangle in the original mesh� the smallest angle in the mesh obtained

after an arbitrary number of applications of the algorithm of Figure 
����� is no smaller

than 	�� ����� Similar procedures were developed by Sewell ���� and used by Mitchell

��
� by dividing the newest vertex of a triangle�

Tree structures can be used to represent the data associated with Bank�s ���� and

Rivara�s ���� procedures� As with structured
mesh computation� elements introduced

by re�nement are regarded as o�spring of coarser parent elements� The actual data

representations vary somewhat from the tree described earlier �Figure 
����� and readers

seeking more detail should consult Bank ���� or Rivara ���� ���� With tree structures� any

coarsening may be done by pruning �leaf� elements from the tree� Thus� those elements

nested within a coarser parent are removed and the parent is restored as the element�

As mentioned earlier� coarsening beyond the original mesh is not allowed� The process

is complex� It must be done without introducing irregular nodes� Suppose� for example�

that the quartet of small elements �shown with dashed lines� in the center of the mesh of

Figure 
���
 were scheduled for removal� Their direct removal would create three irregular

nodes on the edges of the parent triangle� Thus� we would have to determine if removal

of the elements containing these irregular nodes is justi�ed based on error
indication

information� If so� the mesh would be coarsened to the one shown in Figure 
������

Notice that the coarsened mesh of Figure 
����� di�ers from mesh of Figure 
���� that

was re�ned to create the mesh of Figure 
���
� Hence� re�nement and coarsening may

not be reversible operations because of their independent treatment of irregular nodes�

Coarsening may be done without a tree structure� Shephard et al� ��
� describe an

�edge collapsing� procedure where the vertex at one end of an element edge is �collapsed�

onto the one at the other end� Ai�a ��� describes a two
dimensional variant of this

procedure which we reproduce here� Let P be the polygonal region composed of the union

of elements sharing Vertex V	 �Figure 
������� Let V�� V�� � � � � Vk denote the vertices on the

k triangles containing V	 and suppose that error indicators reveal that these elements may
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Figure 
������ Coarsening of a quartet of elements shown with dashed lines in Figure

���
 and the removal of surrounding elements to avoid irregular nodes�
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Figure 
������ Coarsening of a polygonal region �left� by collapsing Vertex V	 onto V�
�right��

be coarsened� The strategy of collapsing V	 onto one of the vertices Vj� j � �� �� � � � � k� is

done by deleting all edges connected to V	 and then re
triangulating P by connecting Vj

to the other vertices of P �cf� the right of Figure 
������� Vertex V	 is called the collapsed

vertex and Vj is called the target vertex�

Collapsing has to be evaluated for topological compatibility and geometric validity

before it is performed� Checking for geometric validity prevents situations like the one

shown in Figure 
����� from happening� A collapse is topologically incompatible when�

e�g�� V	 is on 
� and the target vertex Vj is within �� Assuming that V	 can be collapsed�

the target vertex is chosen to be the one that maximizes the minimum angle of the

resulting re
triangulation of P � Ai�a ��� does no collapsing when the smallest angle that

would be produced by collapsing is smaller than a prescribed minimum angle� This might

result in a mesh that is �ner than needed for the speci�ed accuracy� In this case� the

minimum angle restriction could be waived when V	 has been scheduled for coarsening

more than a prescribed number of times� Suppose that the edges h�e� h�e� h�e of an
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element e are indexed such that h�e � h�e � h�e� then the smallest angle 	�e of Element

e may be calculated as

sin	�e �
�Ae

h�eh�e

where Ae is the area of Element e�
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Figure 
������ A situation where the collapse of Vertex V	 �left� creates an invalid mesh
�right��
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Figure 
������ Swapping an edge of a pair of elements �left� to improve element shape
�right��

The shape of elements containing small or large angles that were created during

re�nement or coarsening may be improved by edge swapping� This procedure operates on

pairs of triangles �� and �� that share a common edge E� If Q � ��	��� edge swapping

occurs deleting Edge E and re
triangulating Q by connecting the vertices opposite to

Edge E �Figure 
������� Swapping can be regarded as a re�nement of Edge E followed

by a collapsing of this new vertex onto a vertex not on Edge E� As such� we recognize

that swapping will have to be checked for mesh validity and topological compatibility�

Of course� it will also have to provide an improved mesh quality�

����� Re�nement Criteria

Following the introductory discussion of error estimates in Section 
��� we assume the

existence of a set of re�nement indicators �e� e � �� �� � � � � N�� which are large where

re�nement is desired and small where coarsening is appropriate� As noted� these might



�� Adaptive Finite Element Techniques

be the restriction of a global error estimate to Element e

��e � kEk�e �
�����

or an ad hoc re�nement indicator such as the magnitude of the solution gradient on the

element� In either case� how do we use this error information to re�ne the mesh� Perhaps

the simplest approach is to re�ne a �xed percentage of elements having the largest error

indicators� i�e�� re�ne all elements e satisfying

�e � � max
��j�N�

�j� �
�����

A typical choice of the parameter � � ��� �� is ��
�

We can be more precise when an error estimate of the form �
����� with indicators

given by �
����� is available� Suppose that we have an a priori error estimate of the form

kek � Chp� �
����a�

After obtaining an a posteriori error estimate kEk on a mesh with spacing h� we could

compute an estimate of the error constant C as

C 
 kEk
hp

� �
����b�

The mesh spacing parameter h may be taken as� e�g�� the average element size

h �

r
A

N�
�
����c�

where A is the area of ��

Suppose that adaptivity is to be terminated when kEk 
 
 where 
 is a prescribed

tolerance� Using �
����a�� we would like to construct an enriched mesh with a spacing

parameter  h such that

C hp 
 
�

Using the estimate of C computed by �
����b�� we have

 h

h


�




kEk
���p

� �
����a�

Thus� using �
����c�� an enriched mesh of

 N� �
 h�

A

 h�

A

�



kEk
���p

�
����b�
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elements will reduce kEk to approximately 
 �

Having selected an estimate of the number of elements  N� to be in the enriched

mesh� we have to decide how to re�ne the current mesh in order to attain the prescribed

tolerence� We may do this by equidistributing the error over the mesh� Thus� we would

like each element of the enriched mesh to have approximately the same error� Using

�
������ this implies that

k  Ek�e 


 �

 N�

where k  Eke is the error indicator of Element e of the enriched mesh� Using this notion�

we divide the error estimate kEk�e by a factor n so that

kEk�e
n


 
 �

 N�

�

Thus� each element of the current mesh is divided into n segments such that

n
 N�



�kEke




��

� �
�����

In practice� n and N� may be rounded up or increased slightly to provide a measure

of assurance that the error criterion will be satis�ed after the next adaptive solution�

The mesh division process may be implemented by repeated applications of a mesh


re�nement algorithm without solving the partial di�erential equation in between� Thus�

with bisection ���� ���� the elemental error estimate would be halved on each bisected

element� Re�nement would then be repeated until �
����� is satis�ed�

The error estimation process �
����� works with coarsening when n � �� however�

neighboring elements would have to suggest coarsening as well�

Example ����� Rivara ���� solves Laplace�s equation

uxx � uyy � �� �x� y� � ��

where � is a regular hexagon inscribed in a unit circle� The hexagon is oriented with

one vertex along the positive x
axis with a �crack� through this vertex for � � x � ��

y � �� Boundary conditions are established to be homogeneous Neumann conditions on

the x
axis below the crack and

u�r� �� � r��� sin
�

�

everywhere else� This function is also the exact solution of the problem expressed in a

polar frame eminating from the center of the hexagon� The solution has a singularity

at the origin due to the �re
entrant� angle of �� at the crack tip and the change in
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boundary conditions from Dirichlet to Neumann� The solution was computed with a

piecewise
linear �nite element basis using quasi
uniform and adaptive h
re�nement� A

residual error estimation procedure similar to those described in Section ��� was used to

appraise solution accuracy ����� Re�nement followed �
������

The results shown in Figure 
����� indicate that the uniform mesh is converging as

O�N���
� where N is the number of degrees of freedom� We have seen �Section ���� that

uniform h
re�nement converges as

kek� � C�h
min�p�q� � C�N

�min�p�q��� �
�����

where q � � depends on the solution smoothness and� in two dimensions� N � h�� For

linear elliptic problems with geometric singularities� q � ��� where � is the maximum

interior angle on 
�� For the hexagon with a crack� the interior angles would be ����

����� and ��� The latter is the largest angle� hence� q � ���� Thus� with p � ��

convergence should occur at an O�N����� rate� however� the actual rate is lower �Figure


�������

The adaptive procedure has restored the O�N����� convergence rate that one would

expect of a problem without singularities� In general� optimal adaptive h
re�nement will

converge as ��� ���

kek� � C�h
p � C�N

�p��� �
���
�

��� p� and hp�Re�nement

With p
re�nement� the mesh is not changed but the order of the �nite element basis is

varied locally over the domain� As with h
re�nement� we must ensure that the basis

remains continuous at element boundaries� A situation where second
 and fourth
degree

hierarchical bases intersect along an edge between two square elements is shown on the

left of Figure 
����� The second
degree approximation �shown at the top left� consists of a

bilinear shape function at each vertex and a second
degree correction on each edge� The

fourth
degree approximation �bottom left� consists of bilinear shape functions at each

vertex� second� third and fourth
degree corrections on each edge� and a fourth
degree

bubble function associated with the centroid �cf� Section ����� The maximum degree of

the polynomial associated with a mesh entity is identi�ed on the �gure� The second
 and

fourth
degree shape functions would be incompatible �discontinuous� across the common

edge between the two elements� This situation can be corrected by constraining the

edge functions to the lower
degree �two� basis of the top element as shown in the center
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Figure 
������ Solution of Example 
���� by uniform ��� and adaptive ��� h
re�nement
�����

portion of the �gure or by adding third
 and fourth
order edge functions to the upper

element as shown on the right of the �gure� Of the two possibilities� the addition of the

higher degree functions is the most popular� Constraining the space to the lower
degree

polynomial could result in a situation where error criteria satis�ed on the element on the

lower left of Figure 
���� would no longer be satis�ed on the element in the lower
center

portion of the �gure�

Remark �� The incompatibility problem just described would not arise with the

hierarchical data structures de�ned in Section ��� since edge functions are blended onto

all elements containing the edge and� hence� would always be continuous�

Szab!o ���� developed a strategy for the adaptive variation of p by constructing error

estimates of solutions with local degrees p� p��� and p�� on Element e and extrapolating

to get an error estimates for solutions of higher degrees� With a hierarchical basis� this

is straightforward when p � �� One could just use the di�erences between higher
 and

lower
order solutions or an error estimation procedure as described in Section ���� When

p � � on Element e� local error estimates of solutions having degrees � and � are linearly

extrapolated� Szabo ���� began by generating piecewise
linear �p � �� and piecewise


quadratic �p � �� solutions everywhere and extrapolating the error estimates� Flaherty

and Moore ���� suggest an alternative when p � �� They obtain a �lower
order� piecewise
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Figure 
����� Second
 and fourth
degree hierarchical shape functions on two square el

ements are incompatible across the common edge between elements �left�� This can be
corrected by removing the third
 and fourth
degree edge functions from the lower ele

ment �center� or by adding third
 and fourth
degree edge functions to the upper element
�right�� The maximum degree of the shape function associated with a mesh entity is
shown in each case�

constant �p � �� solution by using the value of the piecewise
linear solution at the center

of Element e� The di�erence between these two �solutions� furnishes an error estimate

which� when used with the error estimate for the piecewise
linear solution� is linearly

extrapolated to higher values of p�

Having estimates of discretization errors as a function of p on each element� we can

use a strategy similar to �
����� to select a value of p to reduce the error on an element

to its desired level� Often� however� a simpler strategy is used� As indicated earlier�

the error estimate kEke should be of size 
�N� on each element of the mesh� When

enrichment is indicated� e�g�� when kEk � 
 � we can increase the degree of the polynomial

representation by one on any element e where

�e � �R



N�

� �
����a�

The parameter �e is an enrichment indicator on Element e� which may be kEke� and
�R 
 ���� If coarsening is done� the degree of the approximation on Element e can be

reduced by one when

�e � �Che



N�
�
����b�

where he is the longest edge of Element e and �C 
 ����

The convergence rate of the p version of the �nite element method is exponential when

the solution has no singularities� For problems with singularities� p
re�nement converges
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as

kek � CN�q �
�����

where q � � depends on the solution smoothness ���� ��� ��� ��� ���� �The parameter

q is intended to be generic and is not necessarily the same as the one appearing in

�
������� With singularities� the performance of the p version of the �nite element method

depends on the mesh� Performance will be better when the mesh has been graded near

the singularity�

This suggests combining h
 and p
re�nement� Indeed� when proper mesh re�nement is

combined with an increase of the polynomial degree p� the convergence rate is exponential

kek � Ce�q�N
q� �
�����

where q� and q� are positive constants that depend on the smoothness of the exact solution

and the �nite element mesh� Generating the correct mesh is crucial and its construction is

only known for model problems ���� ��� ��� ��� ���� Oden et al� ���� developed a strategy

for hp
re�nement that involved taking three solution steps followed by an extrapolation�

Some techniques do not attempt to adjust the mesh and the order at the same time� but�

rather� adjust either the mesh or the order� We�ll illustrate one of these� but �rst cite

the more explicit version of the error estimate �
����� given by Babu"ska and Suri ���

kek� � C
hmin�p�q�

pq
kukmin�p�q���� �
�����

The mesh must satisfy the uniformity condition� the polynomial
degree is uniform� and

u � Hq��� In this form� the constant C is independent of h and p� This result and the

previous estimates indicate that it is better to increase the polynomial degree when the

solution u is smooth �q is large� and to reduce h near singularities� Thus� a possible

strategy would be to increase p in smooth high
error regions and re�ne the mesh near

singularities� We� therefore� need a method of estimating solution smoothness and Ai�a

��� does this by computing the ratio

�e �

�
�e�p���e�p� ��� if �e�p� �� �� �
�� otherwise

�
�����

where p is the polynomial degree on Element e� An argument has been added to the

error indicator on Element e to emphasize its dependence on the local polynomial degree�

As described in Section 
��� ��p � �� can be estimated from the part of U involving the

hierarchal corrections of degree p� Now

� If �e � �� the error estimate is decreasing with increasing polynomial degree� If

enrichment were indicated on Element e� p
re�nement would be the preferred strat


egy�
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� If �e � � the recommended strategy would be h
re�nement�

Ai�a ��� selects p
re�nement if �e � � and h
re�nement if �e � �� with � 
 ���� Adjust


ments have to made when p � � ���� Coarsening is done by vertex collapsing when all

elements surrounding a vertex have low errors ����

Example ����� Ai�a ��� solves the nonlinear parabolic partial di�erential equation

ut � �u���� u� �
uxx � uyy

�
� �x� y� � �� t � ��

with the initial and Dirichlet boundary data de�ned so that the exact solution on the

square � � f�x� y�j� � x� y � �g is

u�x� y� t� �
�

� � e
p

����x�y�t
p

����

Although this problem is parabolic� Ai�a ��� kept the temporal error small so that spatial

errors dominate�

Ai�a ��� solved this problem with � � ��� by adaptive h
� p
� and hp
re�nement

for a variety of spatial error tolerances� The initial mesh for h
re�nement contained

�� triangular elements and used piecewise
quadratic �p � �� shape functions� For p


re�nement� the mesh contained �� triangles with p varying from � to �� The solution

with adaptive hp
re�nement was initiated with �� elements and p � �� The convergence

history of the three adaptive strategies is reported in Figure 
�����

The solution with h
re�nement appears to be converging at an algebraic rate of ap


proximately N�	�
�� which is close to the theoretical rate �cf� �
������� There are no

singularities in this problem and the adaptive p
 and hp
re�nement methods appear to

be converging at exponential rates�

This example and the material in this chapter give an introduction to the essential

ideas of adaptivity and adaptive �nite element analysis� At this time� adaptive software

is emerging� Robust and reliable error estimation procedures are only known for model

problems� Optimal enrichment strategies are just being discovered for realistic problems�
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Chapter �

Parabolic Problems

��� Introduction

The �nite element method may be used to solve time�dependent problems as well as

steady ones� This e�ort involves both parabolic and hyperbolic partial di�erential sys�

tems� Problems of parabolic type involve di�usion and dissipation while hyperbolic

problems are characterized by conservation of energy and wave propagation� Simple

one�dimensional heat conduction and wave propagation equations will serve as model

problems of each type�

Example ������ The one�dimensional heat conduction equation

ut � puxx� a � x � b� t � �� ���	�	a


where p is a positive constant called the di�usivity� is of parabolic type� Initial�boundary

value problems consist of determining u�x� t
 satisfying ���	�	a
 given the initial data

u�x� �
 � u��x
� a � x � b� ���	�	b


and appropriate boundary data� e�g��

pux�a� t
 � ��u�a� t
 � ���t
� pux�b� t
 � ��u�b� t
 � ���t
� ���	�	c


As with elliptic problems� boundary conditions without the pux term are called Dirichlet

conditions
 those with �i � �� i � �� 	� are Neumann conditions
 and those with both

terms present are called Robin conditions� The problem domain is open in the time

direction t
 thus� unlike elliptic systems� this problem is evolutionary and computation

continues in t for as long as there is interest in the solution�

Example ������ The one�dimensional wave equation

utt � c�uxx� a � x � b� t � �� ���	��a
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where c is a constant called the wave speed� is a hyperbolic partial di�erential equation�

Initial�boundary value problems consist of determining u�x� t
 satisfying ���	��a
 given

the initial data

u�x� �
 � u��x
� ut�x� �
 � �u��x
� a � x � b� ���	��b


and boundary data of the form ���	�	c
� Small transverse vibrations of a taut string

satisfy the wave equation� In this case� u�x� t
 is the transverse displacement of the

string and c� � T��� T being the applied tension and � being the density of the string�

We�ll study parabolic problems in this chapter and hyperbolic problems in the next�

We shall see that there are two basic �nite element approaches to solving time�dependent

problems� The �rst� called the method of lines� uses �nite elements in space and ordinary

di�erential equations software in time� The second uses �nite element methods in both

space and time� We�ll examine the method of lines approach �rst and then tackle space�

time �nite element methods�

��� Semi�Discrete Galerkin Problems� The Method

of Lines

Let us consider a parabolic problem of the form

ut � L�u� � f�x� y
� �x� y
 � �� t � �� �����	a


where L is a second�order elliptic operator� In two dimensions� u would be a function of

x� y� and t and L�u� could be the very familiar

L�u� � ��pux
x � �puy
y � qu� �����	b


Appropriate initial and boundary conditions would also be needed� e�g��

u�x� y� �
 � u��x� y
� �x� y
 � � � 	�� �����	c


u�x� y� t
 � 
�x� y� t
� �x� y
 � 	�E � �����	d


pun � �u � �� �x� y
 � 	�N � �����	e


We construct a Galerkin formulation of �����	
 in space in the usual manner
 thus� we

multiply �����	a
 by a suitable test function v and integrate the result over � to obtain

�v� ut
 � �v�L�u�
 � �v� f
�
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As usual� we apply the divergence theorem to the second�derivative terms in L to reduce

the continuity requirements on u� When L has the form of �����	b
� the Galerkin problem

consists of determining u � H�
E � �t � �
 such that

�v� ut
 � A�v� u
 � �v� f
� � v� � � �u �� �v � H�
� � t � �� ������a


The L� inner product� strain energy� and boundary inner product are� as with elliptic

problems�

�v� f
 �

ZZ
�

vfdxdy� ������b


A�v� u
 �

ZZ
�

�p�vxux � vyuy
 � vqu�dxdy� ������c


and

� v� pun ��

Z
��N

vpunds� ������d


The natural boundary condition �����	e
 has been used to replace pun in the boundary

inner product� Except for the presence of the �v� ut
 term� the formulation appears to

the same as for an elliptic problem�

Initial conditions for ������a
 are usually determined by projection of the initial data

�����	c
 either in L�

�v� u
 � �v� u�
� �v � H�
� � t � �� ������a


or in strain energy

A�v� u
 � A�v� u�
� �v � H�
� � t � �� ������b


Example ������ We analyze the one�dimensional heat conduction problem

ut � �pux
x � f�x� t
� � � x � 	� t � ��

u�x� �
 � u��x
� � � x � 	�

u��� t
 � u�	� t
 � �� t � ��

thoroughly in the spirit that we did in Chapter 	 for a two�point boundary value problem�

A Galerkin form of this heat�conduction problem consists of determining u � H�
�

satisfying

�v� ut
 � A�v� u
 � �v� f
� �v � H�
� � t � ��
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Figure ����	� Mesh for the �nite element solution of Example ����	�

�v� u
 � �v� u�
� �v � H�
� � t � ��

where

A�v� u
 �

Z �

�

vxpuxdx�

Boundary terms of the form ������d
 disappear because v � � at x � �� 	 with Dirichlet

data�

We introduce a mesh on � � x � 	 as shown in Figure ����	 and choose an approxi�

mation U of u in a �nite�dimensional subspace SN
� of H�

� having the form

U�x� t
 �
N��X
j��

cj�t
�j�x
�

Unlike steady problems� the coe�cients cj� j � 	� �� � � � � N�	� depend on t� The Galerkin

�nite element problem is to determine U � SN
� such that

��j� Ut
 � A��j� U
 � ��j� f
� t � ��

��j� U
 � ��j� u
�
� t � �� j � 	� �� � � � � N � 	�

Let us chose a piecewise�linear polynomial basis

�k�x
 �

���
��

x�xk��
xk�xk��

� if xk�� � x � xk
xk���x

xk���xk
� if xk � x � xk��

�� otherwise

�

This problem is very similar to the one�dimensional elliptic problem considered in Section

	��� so we�ll skip several steps and also construct the discrete equations by vertices rather

than by elements�



���� Semi�Discrete Galerkin Problems �

Since �j has support on the two elements containing node j we have

A��j� U
 �

Z xj

xj��

��jpUxdx�

Z xj��

xj

��jpUxdx

where � 
� � d� 
�dx� Substituting for �j and Ux

A��j� U
 �

Z xj

xj��

	

hj
p�x
�

cj � cj��
hj


dx�

Z xj��

xj

� 	

hj��
p�x
�

cj�� � cj
hj��


dx

where

hj � xj � xj���

Using the midpoint rule to evaluate the integrals� we have

A��j� U
 � pj����
hj

�cj � cj��
�
pj����
hj��

�cj�� � cj


where pj���� � p�xj����
�

Similarly�

��j� Ut
 �

Z xj

xj��

�jUtdx�

Z xj��

xj

�jUtdx

or

��j� Ut
 �

Z xj

xj��

�j� �cj���j�� � �cj�j
dx�

Z xj��

xj

�j� �cj�j � �cj���j��
dx

where ��
 � d� 
�dt� Since the integrands are quadratic functions of x they may be

integrated exactly using Simpson�s rule to yield

��j� Ut
 �
hj
�
� �cj�� � ��cj
 �

hj��
�

�� �cj � �cj��
�

Finally�

��j� f
 �
Z xj

xj��

�jf�x
dx �

Z xj��

xj

�jf�x
dx�

Although integration of order one would do� we�ll� once again� use Simpson�s rule to

obtain

��j� f
 � hj
�
��fj���� � fj
 �

hj��
�

�fj � �fj����
�

We could replace fj���� by the average of fj�� and fj to obtain a similar formula to the

one obtained for ��j� Ut

 thus�

��j� f
 � hj
�
�fj�� � �fj
 �

hj��
�

��fj � fj��
�

Combining these results yields the discrete �nite element system

hj
�
� �cj�� � ��cj
 �

hj��
�

�� �cj � �cj��
 �
pj����
hj

�cj � cj��
�
pj����

hj � 	��
�cj�� � cj
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�
hj
�
�fj�� � �fj
 �

hj��
�

��fj � fj��
� j � 	� �� � � � � N � 	�

�We have dropped the � and written the equation as an equality�


If p is constant and the mesh spacing h is uniform� we obtain

h

�
� �cj�� � ��cj � �cj��
� p

h
�cj�� � �cj � cj��
 �

h

�
�fj�� � �fj � fj��
�

j � 	� �� � � � � N � 	�

The discrete systems may be written in matrix form and� for simplicity� we�ll do so for

the constant coe�cient� uniform mesh case to obtain

M �c�Kc � l ������a


where

M �
h

�

�
������

� 	
	 � 	

� � � � � � � � �

	 � 	
	 �

�
					
 � ������b


K �
p

h

�
������

� �	
�	 � �	

� � � � � � � � �

�	 � �	
�	 �

�
					
 � ������c


l �
h

�

�
����

f� � �f� � f�
f� � �f� � f�

���
fN�� � �fN�� � fN

�
			
 � ������d


c � �c�� c�� � � � � cN���
T � ������e


The matricesM� K� and l are the global mass matrix� the global sti�ness matrix� and

the global load vector� Actually� M has little to do with mass and should more correctly

be called a global dissipation matrix
 however� we�ll stay with our prior terminology�

In practical problems� element�by�element assembly should be used to construct global

matrices and vectors and not the nodal approach used here�

The discrete �nite element system ������
 is an implicit system of ordinary di�erential

equations for �c� The mass matrix M can be �lumped� by a variety of tricks to yield an
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explicit ordinary di�erential system� One such trick is to approximate ��j� Ut
 by using

the right�rectangular rule on each element to obtain

��j� Ut
 �

Z xj

xj��

�j� �cj���j�� � �cj�j
dx�

Z xj��

xj

�j� �cj�j � �cj���j��
dx � hcj�

The resulting �nite element system would be

hI �c�Kc � l�

Recall �cf� Section ���
� that a one�point quadrature rule is satisfactory for the conver�

gence of a piecewise�linear polynomial �nite element solution�

With the initial data determined by L� projection onto SN
E � we have

��j� U��� �

 � ��j� u
�
� j � 	� �� � � � � N � 	�

Numerical integration will typically be needed to evaluate ��j� u
�
 and we�ll approximate

it in the manner used for the loading term ��j� f
� Thus� with uniform spacing� we have

Mc��
 � u� �
h

�

�
����

u�� � �u�� � u��
u�� � �u�� � u��

���
u�N�� � �u�N�� � u�N

�
			
 � ������f


If the initial data is consistent with the trivial Dirichlet boundary data� i�e�� if u� � H�
�

then the above system reduces to

cj��
 � u��xj
� j � 	� �� �� � � � � N � 	�

Had we solved the wave equation ���	��
 instead of the heat equation ���	�	
 using a

piecewise�linear �nite element basis� we would have found the discrete system

M�c �Kc � � ������


with p in ������c
 replaced by c��

The resulting initial value problems �IVPs
 for the ordinary di�erential equations

�ODEs
 ������a
 or ������
 typically have to be integrated numerically� There are several

excellent software packages for solving IVPs for ODEs� When such ODE software is used

with a �nite element or �nite di�erence spatial discretization� the resulting procedure is

called the method of lines� Thus� the nodes of the �nite elements appear to be �lines�

in the time direction and� as shown in Figure ����� for a one�dimensional problem� the

temporal integration proceeds along these lines�
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x

0 = x x x x
0 N-1 N1 j

x   = 1

t

Figure ������ �Lines� for a method of lines integration of a one�dimensional problem�

Using the ODE software� solutions are calculated in a series of time steps ��� t���

�t�� t��� � � � � Methods fall into two types� Those that only require knowledge of the so�

lution at time tn in order to obtain a solution at time tn�� are called one�step methods�

Correspondingly� methods that require information about the solution at tn and several

times prior to tn are calledmultistep methods� Excellent texts on the subject are available

��� �� �� ��� One�step methods are Runge�Kutta methods while the common multistep

methods are Adams or backward di�erence methods� Software based on these methods

automatically adjusts the time steps and may also automatically vary the order of accu�

racy of a class of methods in order to satisfy a prescribed local error tolerance� minimize

computational cost� and maintain numerical e�ciency�

The choice of a one�step or multistep method will depend on several factors� Gener�

ally� Runge�Kutta methods are preferred when time integration is simple relative to the

spatial solution� Multistep methods become more e�cient for complex nonlinear prob�

lems� Implicit Runge�Kutta methods may be e�cient for problems with high�frequency

oscillations� The ODEs that arise from the �nite element discretization of parabolic

problems are �sti�� ��� �� so backward di�erence methods are the preferred multistep

methods�

Most ODE software ��� �� �� addresses �rst�order IVPs of the explicit form

�y�t
 � f�t�y�t

� y��
 � y�� ������


Second�order systems such as ������
 would have to be written as a �rst�order system by�

e�g�� letting

d � �c



���� Semi�Discrete Galerkin Problems �

and� hence� obtaining �
�c

M �d

�
�

�
d

�Kc
�
�

Unfortunately� systems having the form of ������a
 or the one above are implicit and

would require inverting or lumping M in order to put them into the standard explicit

form ������
� Inverting M is not terribly di�cult when M is constant or independent

of t
 however� it would be ine�cient for nonlinear problems and impossible when M is

singular� The latter case can occur when� e�g�� a heat conduction and a potential problem

are solved simultaneously�

Codes for di�erential�algebraic equations �DAEs
 directly address the solution of im�

plicit systems of the form

f�t�y�t
� �y�t

 � �� y��
 � y�� ������


One of the best of these is the code DASSL written by Petzold ���� DASSL uses variable�

step� variable�order backward di�erence methods to solve problems without needingM��

to exist�

Let us illustrate these concepts by applying some simple one�step schemes to problems

having the forms �����	
 or ������
� However� implementation of these simple methods

is only justi�ed in certain special circumstances� In most cases� it is far better to use

existing ODE software in a method of lines framework�

For simplicity� we�ll assume that all boundary data is homogeneous so that the bound�

ary inner product in ������a
 vanishes� Selecting a �nite�dimensional space SN
� 	 H�

� � we

then determine U as the solution of

�V� Ut
 � A�V� U
 � �V� f
� �v � SN
� � ������


Evaluation leads to ODEs having the form of ������a
 regardless of whether or not the

system is one�dimensional or the coe�cients are constant� The actual matricesM and K

and load vector l will� of course� di�er from those of Example ����	 in these cases� The

systems ������a
 or ������
 are called semi�discrete Galerkin equations because time has

not yet been discretized�

We discretize time into a sequence of time slices �tn� tn��� of duration �t with tn �

n�t� n � �� 	� � � � � For this discussion� no generality is lost by considering uniform time

steps� Let�


 u�x� tn
 be the exact solution of the Galerkin problem ������a
 at t � tn�


 U�x� tn
 be the exact solution of the semi�discrete Galerkin problem ������
 at t � tn�


 Un�x
 be the approximation of U�x� tn
 obtained by ODE software�
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 cj�tn
 be the Galerkin coe�cient at t � tn
 thus� for a one�dimensional problem

U�x� tn
 �
N��X
j��

cj�tn
�j�x
�

For a Lagrangian basis� cj�tn
 � U�xj � tn
�


 cnj be the approximation of cj�tn
 obtained by ODE software� For a one�dimensional

problem

Un�x
 �
N��X
j��

cnj �j�x
�

We suppose that all solutions are known at time tn and that we seek to determine

them at time tn��� The simplest numerical scheme for doing this is the forward Euler

method where ������
 is evaluated at time tn and

Ut�x� tn
 � Un���x
� Un�x


�t
� ������


A simple Taylor�s series argument reveals that the local discretization error of such an

approximation is O��t
� Substituting ������
 into ������
 yields

�V�
Un�� � Un

�t

 � A�V� Un
 � �V� fn
� �v � SN

� � �����	�a


Evaluation of the inner products leads to

M
cn�� � cn

�t
�Kncn � ln� �����	�b


We have allowed the sti�ness matrix and load vector to be functions of time� The mass

matrix would always be independent of time for di�erential equations having the explicit

form of �����	a
 as long as the spatial �nite element mesh does not vary with time�

The ODEs �����	�a�b
 are implicit unless M is lumped� If lumping were used and� e�g��

M � hI then cn�� would be determined as

cn�� � cn �
�t

h
�ln �Kncn��

Assuming that cn is known� we can determine cn�� by inverting M�

Using the backward Euler method� we evaluate ������
 at tn�� and use the approxi�

mation ������
 to obtain

�V�
Un�� � Un

�t

 � A�V� Un��
 � �V� fn��
� �v � SN

� � �����		a
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and

M
cn�� � cn

�t
�Kn��cn�� � ln��� �����		b


The backward Euler method is implicit regardless of whether or not lumping is used�

Computation of cn�� requires inversion of

	

�t
M�Kn���

The most popular of these simple schemes uses a weighted average of the forward and

backward Euler methods with weights of 	� � and �� respectively� Thus�

�V�
Un�� � Un

�t

 � �	� �
A�V� Un
 � �A�V� Un��
 � �	� �
�V� fn
 � ��V� fn��
�

�V � SN
� � �����	�a


and

M
cn�� � cn

�t
� �	� �
Kncn � �Kn��cn�� � �	� �
ln � �ln��� �����	�b


The forward and backward Euler methods are recovered by setting � � � and 	� respec�

tively�

Let us regroup terms involving cn and cn�� in �����	�b
 to obtain

�M � ��tKn���cn�� � �M� �	� �
�tKn�cn ��t��	� �
ln � �ln���� �����	�c


Thus� determination of cn�� requires inversion of

M � ��tKn���

In one dimension� this system would typically be tridiagonal as with Example ����	� In

higher dimensions it would be sparse� Thus� explicit inversion would never be performed�

We would just solve the sparse system �����	�c
 for cn���

Taylor�s series calculations reveal that the global discretization error is

kc�tn
� cnk � O��t


for almost all choices of � � ��� 	� ���� The special choice � � 	�� yields the Crank�Nicolson

method which has a discretization error

kc�tn
� cnk � O��t�
�

The foregoing discussion involved one�step methods� Multistep methods are also used

to solve time�dependent �nite element problems and we�ll describe them for an ODE in
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the implicit form ������
� The popular backward di�erence formulas �BDFs
 approximate

y�t
 in ������
 by a k th degree polynomial Y�t
 that interpolates y at the k � 	 times

tn���i� i � �� 	� � � � � k� The derivative �y is approximated by �Y� The Newton backward

di�erence form of the interpolating is most frequently used to represent Y ��� ��� but

since we�re more familiar with Lagrangian interpolation we�ll write

y�t
 � Y�t
 �
kX

i��

yn���iNi�t
� t � �tn���k� tn���� �����	�a


where

Ni�t
 �
kY

j���j ��i

t� tn���j
tn���i � tn���j

� �����	�b


The basis �����	�b
 is represented by the usual Lagrangian shape functions �cf� Section

���
� so Ni�tn���j
 � 
ij�

Assuming yn���i� i � 	� �� � � � � k� to be known� the unknown yn�� is determined by

collocation at tn��� Thus� using ������


f�tn���Y�tn��
� �Y�tn��

 � �� �����	�


Example ������ The simplest BDF formula is obtained by setting k � 	 in �����	�
 to

obtain

Y�t
 � yn��N��t
 � ynN��t
�

N��t
 �
t� tn

tn�� � tn
� N��t
 �

t� tn��
tn � tn��

�

Di�erentiating Y�t


�Y�t
 �
yn�� � yn

tn�� � tn



thus� the numerical method �����	�
 is the backward Euler method

f�tn���y
n���

yn�� � yn

tn�� � tn

 � ��

Example ������ The second�order BDF follows by setting k � � in �����	�
 to get

Y�t
 � yn��N��t
 � ynN��t
 � yn��N��t


N��t
 �
�t� tn
�t� tn��


��t�
� N��t
 �

�t� tn��
�t� tn��


��t� �

N��t
 �
�t� tn��
�t� tn


��t�
�

where time steps are of duration �t�
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Di�erentiating and setting t � tn��

�N��tn��
 �
�

��t
� �N��tn��
 � � �

�t
� �N��tn��
 �

	

��t
�

Thus�

�Y�tn��
 �
�yn�� � �yn � yn��

��t

and the second�order BDF is

f�tn���y
n���

�yn�� � �yn � yn��

��t

 � ��

Applying this method to ������a
 yields

M
�cn�� � �cn � cn��

��t
�Kn��cn�� � ln���

Thus� computation of cn�� requires inversion of

M

��t
�K�

Backward di�erence formulas through order six are available ��� �� �� �� ���

��� Finite Element Methods in Time

It is� of course� possible to use the �nite element method in time� This can be done

on space�time triangular or quadrilateral elements for problems in one space dimension


on hexahedra� tetrahedra� and prisms in two space dimensions
 and on four�dimensional

parallelepipeds and prisms in three space dimensions� However� for simplicity� we�ll focus

on the time aspects of the space�time �nite element method by assuming that the spatial

discretization has already been performed� Thus� we�ll consider an ODE system in the

form ������a
 and construct a Galerkin problem in time by multiplying it by a test

function w � L� and integrating on �tn� tn��� to obtain

�w�M �c
n � �w�Kc
n � �w� l
n� �w � L��tn� tn���� �����	a


where the L� inner product in time is

�w� c
n �

Z tn��

tn

wTcdt� �����	b


Only �rst derivatives are involved in ������a

 thus� neither the trial space for c nor the

test space for w have to be continuous� For our initial method� let us assume that c�t


is continuous at tn� By assumption� c�tn
 is known in this case and� hence� w�tn
 � ��
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Example ������ Let us examine the method that results when c�t
 and w�t
 are linear

on �tn� tn���� We represent c�t
 in the manner used for a spatial basis as

c��
 � cnNn��
 � cn��Nn����
 ������a


where

Nn��
 �
	� �

�
� Nn����
 �

	 � �

�
������b


are hat functions in time and

� �
�t� tn � tn��

�t
������c


de�nes the canonical element in time� The test function

w � Nn����
�	� 	� � � � � 	�
T ������d


vanishes at tn �� � �	
 and is linear on �tn� tn��
�

Transforming the integrals in �����	a
 to ��	� 	
 using ������c
 and using ������a�b�d


yields

�w�M �c
n �
�t

�

Z �

��

	 � �

�
M
cn�� � cn

�t
d��

�w�Kc
n �
�t

�

Z �

��

	 � �

�
K�cn

	� �

�
� cn��

	 � �

�
�d��

�Again� we have written equality instead of � for simplicity�
 Assuming that M and K

are independent of time� we have

�w�M �c
n � M
cn�� � cn

�
�

�w�Kc
n �
�t

�
K�cn � �cn��
�

Substituting these into �����	a


M
cn�� � cn

�
�

�t

�
K�cn � �cn��
 �

�t

�

Z �

��

	 � �

�
l��
d� ������a


or� if l is approximated like c�

M
cn�� � cn

�
�

�t

�
K�cn � �cn��
 �

�t

�
�ln � �ln��
� ������b


Regrouping terms

�M�
�

�
�tK�cn�� � �M� 	

�
�tK�cn �

	

�
�t�ln � �ln���� ������c
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we see that the piecewise�linear Galerkin method in time is a weighted average scheme

�����	�c
 with � � ���� Thus� at least to this low order� there is not much di�erence be�

tween �nite di�erence and �nite element methods� Other similarities appear in Problem

	 at the end of this section�

Low�order schemes such as �����	�
 are popular in �nite element packages� Our pref�

erence is for BDF or implicit Runge�Kutta software that control accuracy through au�

tomatic time step and order variation� Implicit Runge�Kutta methods may be derived

as �nite element methods by using the Galerkin method �����	
 with higher�order trial

and test functions� Of the many possibilities� we�ll examine a class of methods where the

trial function c�t
 is discontinuous�

Example ������ Suppose that c�t
 is a polynomial on �tn� tn��� with jump disconti�

nuities at tn� n � �� When we need to distinguish left and right limits� we�ll use the

notation

cn� � lim
���

c�tn � �
� cn� � lim
���

c�tn � �
� ������a


With jumps at tn� we�ll have to be more precise about the temporal inner product �����	b


and we�ll de�ne

�u� v
n� � lim
���

Z tn����

tn��

uvdt� �u� v
n� � lim
���

Z tn����

tn��

uvdt� ������b


The inner product �u� v
n� may be a�ected by discontinuities in functions at tn� but

�u� v
n� only involves integrals of smooth functions� In particular�


 �u� v
n� � �u� v
n� when u�t
 and v�t
 are either continuous or have jump discon�

tinuities at tn



 �u� v
n� exists and �u� v
n� � � when either u or v are proportional to the delta

function 
�t� tn

 and


 �u� v
n� doesn�t exist while �v� u
n� � � when both u and v are proportional to


�t� tn
�

Suppose� for example� that v�t
 is continuous at tn and u�t
 � 
�t� tn
� Then

�u� v
n� � lim
���

Z tn����

tn��


�t� tn
v�t
dt � v�tn
�

The delta function can be approximated by a smooth function that depends on � as was

done in Section ��� to help explain this result�

Let us assume that w�t
 is continuous and write c�t
 in the form

c�t
 � cn� � � c�t
� cn��H�t� tn
 ������a
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where

H�t
 �



	� if t � �
�� otherwise

������b


is the Heaviside function and  c is a polynomial in t�

Di�erentiating

�c�t
 � � c�t
� cn��
�t� tn
 � � c�t
H�t� tn
� ������c


With the interpretation that inner products in �����	
 are of type ������
� assume that

w�t
 is continuous and use ������
 in �����	a
 to obtain

wT �tn
M�tn
�c
n� � cn�
 � �w�M � c
n� � �w�K c
n� � �w� l
n�� �w � H�� ������


The simplest discontinuous Galerkin method uses a piecewise constant �p � �
 basis

in time� Such approximations are obtained from ������a
 by selecting

 c�t
 � cn� � c�n��	��

Testing against the constant function

w�t
 � �	� 	� � � � � 	�T

and assuming that M and K are independent of t� ������
 becomes

M�c�n��	� � cn�
 �Kc�n��	��t �

Z tn��

tn

l�t
dt�

The result is almost the same as the backward Euler formula �����		b
 except that the

load vector l is averaged over the time step instead of being evaluated at tn���

With a linear �p � 	
 approximation for  c�t
� we have

 c�t
 � cn�Nn�t
 � c�n��	�Nn���t


where Nn�i� i � �� 	� are given by ������b
� Selecting the basis for the test space as

wi�t
 � Nn�i�t
�	� 	� � � � � 	�
T � i � �� 	�

assuming thatM andK are independent of t� and substituting the above approximations

into ������
� we obtain

M�cn� � cn�
 �
	

�
M�c�n��	� � cn�
 �

�t

�
K��cn� � c�n��	�
 �

Z tn��

tn

Nnl�t
dt
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and
	

�
M�c�n��	� � cn�
 �

�t

�
K�cn� � �c�n��	�
 �

Z tn��

tn

Nn��l�t
dt�

Simplifying the expressions and assuming that l�t
 can be approximated by a linear

function on �tn� tn��
 yields the system

M�
cn� � c�n��	�

�
� cn�
 �

�t

�
K��cn� � c�n��	�
 �

�t

�
��ln � l�n��	�
�

M
c�n��	� � cn�

�
�

�t

�
K�cn� � �c�n��	�
 �

�t

�
�ln � �l�n��	�
�

This pair of equations must be solved simultaneously for the two unknown solution vectors

cn� and c�n��	�� This is an implicit Runge�Kutta method�

Problems

	� Consider the Galerkin method in time with a continuous basis as represented by

�����	
� Assume that the solution c�t
 is approximated by the linear function

������a�c
 on �tn� tn��
 as in Example ����	� but do not assume that the test space

w�t
 is linear in time�

	�	� Specifying

w��
 � ���
�	� 	� � � � � 	�T

and assuming that M and K are independent ot t� show that �����	a
 is the

weighted average scheme

�M� ��tK�cn�� � �M� �	� �
�tK�cn ��t��	� �
ln � �ln���

with

� �

R �

��
���
N�

n����
d�R �

��
���
d�

�

When di�erent trial and test spaces are used� the Galerkin method is called a

Petrov�Galerkin method�

	��� The entire e�ect of the test function ��t
 is isolated in the weighting factor ��

Furthermore� no integration by parts was performed� so that ��t
 need not be

continuous� Show that the choices of ��t
 listed in Table ����	 correspond to

the cited methods�

�� The discontinuous Galerkin method may be derived by simultaneously discretizing

a partial di�erential system in space and time on �� �t� n�� t�n��	�
� This form
may have advantages when solving problems with rapid dynamics since the mesh

may be either moved or regenerated without concern for maintaining continuity
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Scheme � �

Forward Euler �����	�b
 
�	 � �
 �
Crank�Nicolson �����	�b
 
��
 	!�
Crank�Nicolson �����	�b
 	 	!�
Backward Euler �����		b
 
�	� �
 	
Galerkin ������
 N�

n����
 �!�

Table ����	� Test functions � and corresponding methods for the �nite element solution
of ������a
 with a linear trial function�

between time steps� Using ������a
 as a model spatial �nite element formulation�

assume that test functions v�x� y� t
 are continuous but that trial functions u�x� y� t


have jump discontinuities at tn� Assume Dirichlet boundary data and show that

the space�time discontinuous Galerkin form of the problem is

�v� ut
ST � �v��� tn
� u��� tn�
� u��� tn�

 � AST �v� u
 � �v� f
ST �

�v � H�
� ��� �tn�� t�n��	�

�

where

�v� u
ST �

Z t�n����

tn�

ZZ
�

vudxdydt

and

AST �v� u
 � �vx� pux
ST � �vy� puy
ST � �v� qu
ST �

In this form� the �nite element problem is solved on the three�dimensional strips

�� �tn�� t�n��	�
� n � �� 	� � � � �

��� Convergence and Stability

In this section� we will study some theoretical properties of the discrete methods that

were introduced in Sections ��� and ���� Every �nite di�erence or �nite element scheme

for time integration should have three properties�

	� Consistency� the discrete system should be a good approximation of the di�erential

equation�

�� Convergence� the solution of the discrete system should be a good approximation

of the solution of the di�erential equation�

�� Stability� the solution of the discrete system should not be sensitive to small per�

turbations in the data�
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Somewhat because they are open ended� �nite di�erence or �nite element approxi�

mations in time can be sensitive to small errors� e�g�� introduced by round o�� Let us

illustrate the phenomena for the weighted average scheme �����	�c


�M� ��tK�cn�� � �M� �	� �
�tK�cn ��t��	� �
ln � �ln���� �����	


We have assumed� for simplicity� that K and M are independent of time�

Sensitivity to small perturbations implies a lack of stability as expressed by the fol�

lowing de�nition�

De�nition ������ A �nite di�erence scheme is stable if a perturbation of size k
k in�

troduced at time tn remains bounded for subsequent times t � T and all time steps

�t � �t��

We may assume� without loss of generality� that the perturbation is introduced at

time t � �� Indeed� it is common to neglect perturbations in the coe�cients and con�ne

the analysis to perturbations in the initial data� Thus� in using De�nition ����	� we

consider the solution of the related problem

�M� ��tK�"cn�� � �M� �	� �
�tK�"cn ��t��	� �
ln � �ln����

"c� � c� � ��

Subtracting �����	
 from the perturbed system

�M � ��tK��n�� � �M� �	� �
�tK��n� �� � �� ������a


where

�n � "cn � cn� ������b


Thus� for linear problems� it su�ces to apply De�nition ����	 to a homogeneous version

of the di�erence scheme having the perturbation as its initial condition� With these

restrictions� we may de�ne stability in a more explicit form�

De�nition ������ A linear di�erence scheme is stable if there exists a constant C � �

which is independent of �t and such that

k�nk � Ck��k ������


as n�
� �t� �� t � T �
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Both De�nitions ����	 and ����� permit the initial perturbation to grow� but only

by a bounded amount� Restricting the growth to �nite times t � T ensures that the

de�nitions apply when the solution of the di�erence scheme cn �
 as n �
� When

applying De�nition ������ we may visualize a series of computations performed to time

T with an increasing number of time steps M of shorter�and�shorter duration �t such

that T � M�t� As �t is decreased� the perturbations 
n� n � 	� �� � � � �M � should settle

down and eventually not grow to more than C times the initial perturbation�

Solutions of continuous systems are often stable in the sense that c�t
 is bounded for

all t � �� In this case� we need a stronger de�nition of stability for the discrete system�

De�nition ����	� The linear di�erence scheme �����	
 is absolutely stable if

k�nk � k��k� ������


Thus� perturbations are not permitted to grow at all�

Stability analyses of linear constant coe�cient di�erence equations such as ������


involve assuming a perturbation of the form

�n � ��
nr� ������


Substituting into ������a
 yields

�M � ��tK���
n��r � �M� �	� �
�tK���
nr�

Assuming that � �� � and M� ��tK is not singular� we see that � is an eigenvalue and

r is an eigenvector of

�M � ��tK����M� �	� �
�tK�rk � �krk� k � 	� �� � � � � N� ������


Thus� �n will have the form ������
 with � � �k and r � rk when the initial perturbation

�� � rk� More generally� the solution of ������a
 is the linear combination

�n �
NX
k��


�k��k

nrk ������a


when the initial perturbation has the form

�� �
NX
k��


�krk� ������b


Using ������a
� we see that ������
 will be absolutely stable when

j�kj � 	� k � 	� �� � � � � N� ������
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The eigenvalues and eigenvectors of many tridiagonal matrices are known� Thus� the

analysis is often straight forward for one�dimensional problems� Analyses of two� and

three�dimensional problems are more di�cult
 however� eigenvalue�eigenvector pairs are

known for simple problems on simple regions�

Example ������ Consider the eigenvalue problem ������
 and rearrange terms to get

�M� ��tK��krk � �M� �	� �
�tK�rk

or

��k � 	
Mrk � ���k� � �	� �
��tKrk

or

�Krk � �kMrk

where

�k �
�k � 	

��k� � �	� �
��t

Thus� �k is an eigenvalue and rk is an eigenvector of �M��K�

Let us suppose that M and K correspond to the mass and sti�ness matrices of the

one�dimensional heat conduction problem of Example ����	� Then� using ������b�c
� we

have

�p

h

�
����

� �	
�	 � �	

� � �

�	 �

�
			

�
����

rk�
rk�
���

rk�N��

�
			
 �

�kh

�

�
����

� 	
	 � 	

� � �

	 �

�
			

�
����

rk�
rk�
���

rk�N��

�
			
 �

The di�usivity p and mesh spacing h have been assumed constant� Also� with Dirichlet

boundary conditions� the dimension of this system is N � 	 rather than N �

It is di�cult to see in the above form� but writing this eigenvalue�eigenvector problem

in component form

p

h
�rj�� � �rj � rj��
 �

�kh

�
�rj�� � �rj � rj��
� j � 	� �� � � � � N � 	�

we may infer that the components of the eigenvector are

rkj � sin
k�j

N
� j � 	� �� � � � � N � 	�

This guess of rk may be justi�ed by the similarity of the discrete eigenvalue problem to

a continuous one
 however� we will not attempt to do this� Assuming it to be correct� we

substitute rkj into the eigenvalue problem to �nd

p

h
�sin

k��j � 	


N
� � sin

k�j

N
� sin

k��j � 	


N
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�
�kh

�
�sin

k��j � 	


N
� � sin

k�j

N
� sin

k��j � 	


N

� j � 	� �� � � � � N � 	�

But

sin
k��j � 	


N
� sin

k��j � 	


N
� � sin

k�j

N
cos

k�

N

and
p

h
�cos

k�

N
� 	
 sin

k�j

N
�

�kh

�
�cos

k�

N
� �
 sin

k�j

N
�

Hence�

�k �

�
�p

h�

��
cos k��N � 	

cos k��N � �

�
�

With cos k��N ranging on ��	� 	�� we see that �	�p�h� � �k � �� Determining �k in

terms of �k

�k �
	 � �k�	� �
�t

	� �k��t
� 	 �

�k�t

	� �k��t
�

We would like j�kj � 	 for absolute stability� With �k � �� we see that the requirement

that �k � 	 is automatically satis�ed� Demanding the �k � �	 yields

j�kj�t�	� ��
 � ��

If � � 	�� then 	� �� � � and the above inequality is satis�ed for all choices of �k and

�t� Methods of this class are unconditionally absolutely stable� When � � 	��� we have

to satisfy the condition
p�t

h�
� 	

��	� ��

�

If we view this last relation as a restriction of the time step �t� we see that the forward

Euler method �� � �
 has the smallest time step� Since all other methods listed in Table

����	 are unconditionally stable� there would be little value in using the forward Euler

method without lumping the mass matrix� With lumping� the stability restriction of the

forward Euler method actually improves slightly to p�t�h� � 	���

Let us now turn to a more general examination of stability and convergence� Let�s

again focus on our model problem� determine u � H�
� satisfying

�v� ut
 � A�v� u
 � �v� f
� �v � H�
� � t � �� ������a


�v� u
 � �v� u�
� �v � H�
� � t � �� ������b


The semi�discrete approximation consists of determining U � SN
� 	 H�

� such that

�V� Ut
 � A�V� U
 � �V� f
� �V � SN
� � t � �� �����	�a
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�V� U
 � �V� u�
� �V � SN
� � t � �� �����	�b


Trivial Dirichlet boundary data� again� simpli�es the analysis�

Our �rst result establishes the absolute stability of the �nite element solution of the

semi�discrete problem �����	�
 in the L� norm�

Theorem ������ Let 
 � SN
� satisfy

�V� 
t
 � A�V� 

 � �� �V � SN
� � t � �� �����		a


�V� 

 � �V� 
�
� �V � SN
� � t � �� �����		b


Then

k
��� �� t
k� � k
�k�� t � �� �����		c


Remark �� With 
�x� t
 being the di�erence between two solutions of �����	�a
 satis�

fying initial conditions that di�er by 
��x
� the loading �V� f
 vanishes upon subtraction

�as with ������

�

Proof� Replace V in �����		a
 by 
 to obtain

�
� 
t
 � A�
� 

 � ��

or
	

�

d

dt
k
k�� � A�
� 

 � ��

Integrating

k
��� �� t
k�� � k
��� �� �
k�� � �

Z t

�

A�
� 

d��

The result �����		c
 follows by using the initial data �����		b
 and the non�negativity of

A�
� 

�

We�ve discussed stability at some length� so now let us turn to the concept of conver�

gence� Convergence analyses for semi�discrete Galerkin approximations parallels the lines

of those for elliptic systems� Let us� as an example� establish convergence for piecewise�

linear solutions of �����	�
 to solutions of ������
�

Theorem ������ Let SN
� consist of continuous piecewise�linear polynomials on a family

of uniform meshes �h characterized by their maximum element size h� Then there exists

a constant C � � such that

max
t����T 


ku� Uk� � C�	 � j log T

h�
j
h� max

t����T 

kuk�� �����	�
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Proof� Create the auxiliary problem� determine W � SN
� such that

��V�W� ��� �� �

 � A�V�W ��� �� �

 � �� �V � SN
� � � � ��� t
� �����	�a


W �x� y� t
 � E�x� y� t
 � U�x� y� t
� "U�x� y� t
� �����	�b


where "U � SN
� satis�es

A�V� u��� �� �
� "U��� �� �

 � �� �V � SN
� � � � ��� T �� �����	�c


We see that W satis�es a terminal value problem on � � � � t ant that "U satis�es an

elliptic problem with � as a parameter�

Consider the identity

d

d�
�W�E
 � �W� � E
 � �W�E� 
�

Integrate and use �����	�b


kE��� �� t
k�� � �W�E��� �� �

 �
Z t

�

��W� � E
 � �W�E� 
�d��

Use �����	�a
 with V replaced by E

kE��� �� t
k�� � �W�E��� �� �

 �
Z t

�

�A�W�E
 � �W�E� 
�d�� �����	�


Setting v in ������
 and V in �����	�
 to W and subtracting yields

�W�u� � U� 
 � A�W�u� U
 � �� � � ��

�W�u� U
��
 � �� � � ��

Add these results to �����	�
 and use �����	�b
 to obtain

kE��� �� t
k�� � �W� ���� �� �

 �
Z t

�

�A�W� �
 � �W� �� 
�d��

where

� � u� "U�

The �rst term in the integrand vanishes by virtue of �����	�c
� The second term is

integrated by parts to obtain

kE��� �� t
k�� � �W� ���� �� t

�
Z t

�

�W� � �
d�� �����	�a
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This result can be simpli�ed slightly by use of Cauchy�s inequality �j�W�V 
j � kWk�kV k�

to obtain

kE��� �� t
k�� � kW ��� �� t
k�k���� �� t
k� �
Z t

�

kW�k�k�k�d�� �����	�b


Introduce a basis on SN
� and write W in the standard form

W �x� y� �
 �
NX
j��

cj��
�j�x� y
� �����	�


Substituting �����	�
 into �����	�a
 and following the steps introduced in Section ���� we

are led to

�M �c �Kc � �� �����	�a


where

Mij � ��i� �j
� �����	�b


Kij � A��i� �j
� i� j � 	� �� � � � � N� �����	�c


Assuming that the sti�ness matrixK is independent of � � �����	�a
 may be solved exactly

to show that �cf� Lemmas ����	 and ����� which follow


kW ��� �� �
k� � kE��� �� t
k�� � � � � t� �����	�a


Z t

�

kW�k�d� � C�	 � j log t

h�
j
kE��� �� t
k�� �����	�b


Equation �����	�a
 is used in conjunction with �����	�b
 to obtain

kE��� �� t
k�� � �kE��� �� t
k� �
Z t

�

kW�k�d�
 max
�����t


k���� �� �
k��

Now� using �����	�b


kE��� �� t
k� � C�	 � j log t

h�
j
 max

�����t

k���� �� �
k�� �����	�


Writing

u� U � u� "U � "U � U � � � E

and taking an L� norm

ku� Uk� � k�k� � kEk��
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Using �����	�


ku� Uk� � C�	 � j log t

h�
j
 max

�����t

k���� �� �
k�� �������a


Finally� since � satis�es the elliptic problem �����	�c
� we can use Theorem ����� to

write

k���� �� �
k� � Ch�ku��� �� �
k�� �������b


Combining �������a
 and �������b
 yields the desired result �����	�
�

The two results that were used without proof within Theorem ����� are stated as

Lemmas�

Lemma ������ Under the conditions of Theorem ������ there exists a constant C � �

such that

A�V� V 
 � C

h�
kV k��� �V � SN

� � ������	


Proof� The result can be inferred from Example ����	
 however� a more formal proof is

given by Johnson ���� Chapter ��

Instead of establishing �����	�b
� we�ll examine a slightly more general situation� Let

c be the solution of

M �c�Kc � �� t � �� c��
 � c�� �������


The mass and sti�ness matrices M and K are positive de�nite� so we can diagonalize

�������
� In particular� let 
 be a diagonal matrix containing the eigenvalues of M��K

and R be a matrix whose columns are the eigenvectors of the same matrix� i�e��

M��KR � R
� �������a


Further let

d�t
 � R��c�t
� �������b


Then �������
 can be written in the diagonal form

�d�
d � � �������a


by multiplying it by �MR
�� and using �������a�b
� The initial conditions generally

remain coupled through �������a�b
� i�e��

d��
 � d� � R��c�� �������b


With these preliminaries� we state the desired result�
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Lemma ������ If d�t
 is the solution of 	������
 then

j �dj� j
dj � Cjd�j
t

� t � �� �������a


where jdj �
p
dTd� If� in addition�

max
� ���

j
�j
j�j �

C

h�
�������b


then Z T

�

�j �dj� j
dj
dt � C�	 � j log T

h�
j
jd�j� �������c


Proof� cf� Problem 	�

Problems

	� Prove Lemma ������

��	 Convection�Di
usion Systems

Problems involving convection and di�usion arise in #uid #ow and heat transfer� Let us

consider the model problem

ut � � � ru � r � �pru
 �����	a


where � � ���� ���
T is a velocity vector� Written is scalar form� �����	a
 is

ut � ��ux � ��uy � �pux
x � �puy
y� �����	b


The vorticity transport equation of #uid mechanics has the form of �����	
� In this case�

u would represent the vorticity of a two�dimensional #ow�

If the magnitude of � is small relative to the magnitude of the di�usivity p�x� y
�

then the standard methods that we have been studying work �ne� This� however� is not

the case in many applications and� as indicated by the following example� standard �nite

element methods can produce spurious results�

Example ����� �	�� Consider the steady� one�dimensional� convection�di�usion equa�

tion

��u�� � u� � �� � � x � 	� ������a


with Dirichlet boundary conditions

u��
 � 	� u�	
 � �� ������b
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The exact solution of this problem is

u�x
 � 	 �
e����x	�� � e����

	� e����
� ������c


If � � � � 	 then� as shown by the solid line in Figure ����	� the solution features

a boundary layer near x � 	� At points removed from an O��
 neighborhood of x � 	�

the solution is smooth with u � 	� Within the boundary layer� the solution rises sharply

from its unit value to u � � at x � 	�

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

2 N odd

N even

Figure ����	� Solutions of ������
 with � � 	���� The exact solution is shown as a solid
line� Piecewise�linear Galerkin solutions with 	�� and 		�element meshes are shown as
dashed and dashed�dotted lines� respectively �	��

The term �u�� is di�usive while the term u� is convective� With a small di�usivity

�� convection dominates di�usion outside of the narrow O��
 boundary layer� Within

this layer� di�usion cannot be neglected and is on an equal footing with convection�

This simple problem will illustrate many of the di�culties that arise when �nite element

methods are applied to convection�di�usion problems while avoiding the algebraic and

geometric complexities of more realistic problems�

Let us divide ��� 	� into N elements of width h � 	�N � Since the solution is slowly

varying over most of the domain� we would like to choose h to be signi�cantly larger than
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the boundary layer thickness� This could introduce large errors within the boundary layer

which we assume can be reduced by local mesh re�nement� This strategy is preferable to

the alternative of using a �ne mesh everywhere when the solution is only varying rapidly

within the boundary layer�

Using a piecewise�linear basis� we write the �nite element solution as

U�x
 �
NX
j��

cj�j�x
� c� � 	� cN � �� ������a


where

�k�x
 �

���
��

x�xk��
xk�xk��

� if xk�� � x � xk
xk���x

xk���xk
� if xk � x � xk��

�� otherwise

� ������b


The coe�cients c� and cN are constrained so that U�x
 satis�es the essential boundary

conditions ������b
�

The Galerkin problem for ������
 consists of determining U�x
 � SN
� such that

����i� U
�
 � ��i� U

�
 � �� i � 	� �� � � � � N � 	� ������a


Since this problem is similar to Example ����	� we�ll omit the development and just write

the inner products

���i� U
�
 �

�

h
�ci�� � �ci � ci��
� ������b


��i� U
�
 �

ci�� � ci��
�

� ������c


Thus� the discrete �nite element system is

�	� h

��

ci�� � �ci � �	 �

h

��

ci�� � �� i � 	� �� � � � � N � 	� ������d


The solution of this second�order� constant�coe�cient di�erence equation is

ci � 	 �
	� �i

	� �N
� i � �� 	� � � � � N� ������e


� �
	 � h���

	� h���
� ������f


The quantity h��� is called the cell Peclet or cell Reynolds number� If h���� 	� then

� � 	 �
h

�
�O��

h

�

�
 � eh�� �O��

h

�

�
�
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which is the correct solution� However� if h���� 	� then � � �	 and

ci �



	� if i is even
�� if i is odd

when N is odd and

ci �



�N � i
�N� if i is even
O�	��
� if i is odd

when N is even� These two obviously incorrect solutions are shown with the correct

results in Figure ����	�

Let us try to remedy the situation� For simplicity� we�ll stick with an ordinary di�er�

ential equation and consider a two�point boundary value problem of the form

L�u� � ��u�� � �u� � qu � f� � � x � 	� ������a


u��
 � u�	
 � �� ������b


Let us assume that u� v � H�
� with u� and v� being continuous except� possibly� at

x � � � ��� 	
� Multiplying ������a
 by v and integrating the second derivative terms by

parts yields

�v�L�u�
 � A�v� u
 � ��u�v�x�� ������a


where

A�v� u
 � ��v�� u�
 � �v� �u�
 � �v� qu
� ������b


�Q�x�� � lim
���

�Q�� � 

�Q�� � 

�� ������c


We must be careful because the �strain energy� A�v� u
 is not an inner product since

A�u� u
 need not be positive de�nite� We�ll use the inner product notation here for

convenience�

Integrating the �rst two terms of ������b
 by parts

�v�L�u�
 � �L��v�� u
� ���v�u� u�v
 � �vu�x��

or� since u and v are continuous

�v�L�u�
 � �L��v�� u
� ���v�u� u�v
�x�� ������a


The di�erential equation

L��v� � ��v�� � ��v
� � qv� ������b


with the boundary conditions v��
 � v�	
 � � is called the adjoint problem and the

operator L�� � is called the adjoint operator�
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De�nition ������ A Green�s function G��� x
 for the operator L� � is the continuous

function that satis�es

L��G��� x
� � ��Gxx � ��G
x � qG � �� x � ��� �
 � ��� 	
� ������a


G��� �
 � G��� 	
 � � ������b


�Gx��� x
�x�� � �	

�
� ������c


Evaluating ������a
 with v�x
 � G��� x
 while using ������a� �����
 and assuming that

u��x
 � H���� 	
 gives the familiar relationship

u��
 � �L�u�� G��� �

 �
Z �

�

G��� x
f�x
dx� ������a


A more useful expression for our present purposes is obtained by combining ������a
 and

������a
 with v�x
 � G��� x
 to obtain

u��
 � A�u�G��� �

� ������b


As usual� Galerkin and �nite element Galerkin problems for ������a
 would consist of

determining u � H�
� or U � SN

� 	 H�
� such that

A�v� u
 � �v� f
� �v � H�
� � �����	�a


and

A�V� U
 � �V� f
� �v � SN
� � �����	�b


Selecting v � V in �����	�a
 and subtracting �����	�b
 yields

A�V� e
 � �� �v � SN
� � �����	�c


where

e�x
 � u�x
� U�x
� �����	�d


Equation ������b
 did not rely on the continuity of u��x

 hence� it also holds when u

is replaced by either U or e� Replacing u by e in ������b
 yields

e��
 � A�e� G��� �

� �����		a
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Subtacting �����	�c


e��
 � A�e� G��� �
� V 
� �����		b


Assuming that A�v� u
 is continuous in H�� we have

je��
j � Ckek�kG��� �
� V k�� �����		c


Expressions �����		b�c
 relate the local error at a point � to the global error� Equation

�����		c
 also explains superconvergence� From Theorem ����� we know that kek� �

O�hp
 when SN consists of piecewise polynomials of degree p and u � Hp��� The test

function V is also an element of SN 
 however� G��� x
 cannot be approximated to the

same precision as u because it may be less smooth� To elaborate further� consider

kG��� �
� V k�� �
NX
j��

kG��� �
� V k���j

where

kuk���j �
Z xj

xj��

��u�
� � u��dx�

If � � �xk��� xk
� k � 	� �� � � � � N � then the discontinuity in Gx��� x
 occurs on some

interval and G��� x
 cannot be approximated to high order by V � If� on the other hand�

� � xk� k � �� 	� � � � � N � then the discontinuity in Gx��� x
 is con�ned to the mesh and

G��� x
 is smooth on every subinterval� Thus� in this case� the Green�s function can be

approximated to O�hp
 by the test function V and� using �����		c
� we have

u�xk
 � Ch�p� k � �� 	� � � � � N� �����	�


The solution at the vertices is converging to a much higher order than it is globally�

Equation �����		c
 suggests that there are two ways of minimizing the pointwise error�

The �rst is to have U be a good approximation of u and the second is to have V be a

good approximation of G��� x
� If the problem is not singularly perturbed� then the two

conditions are the same� However� when � � 	� the behavior of the Green�s function is

hardly polynomial� Let us consider two simple examples�

Example ����� ���� Consider ������
 in the case when ��x
 � �� x � ��� 	�� Balancing

the �rst two terms in ������a
 implies that there is a boundary layer near x � 	
 thus�

at points other than the right endpoint� the small second derivative terms in ������
 may

be neglected and the solution is approximately

�u�R � quR � f� � � x � 	� uR��
 � ��
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where uR is called the reduced solution� Near x � 	 the reduced solution must be

corrected by a boundary layer that brings it from its limiting value of uR�	
 to zero�

Thus� for � � �� 	� the solution of ������
 is approximately

u�x
 � uR�x
� uR�	
e
����x	���	���

Similarly� the Green�s function ������
 has boundary layers at x � � and x � ��� At

points other than these� the second derivative terms in ������a
 may be neglected and

the Green�s function satis�es the reduced problem

���GR

� � qGR � �� x � ��� �
 � ��� 	
� GR��� x
 � C��� 	
� GR��� 	
 � ��

Boundary layer jumps correct the reduced solution at x � � and x � � and determine an

asymptotic approximation of G��� x
 as

G��� x
 � c��




GR��� x
�GR��� �
e

����	x��� if x � �
e��x��	���	��� if x � �

�

The function c��
 is given in Flaherty and Mathon ����

Knowing the Green�s function� we can construct test functions that approximate it

accurately� To be speci�c� let us write it as

G��� x
 �
NX
j��

G��� xj
�j�x
 �����	�


where �j�x
� j � �� 	� � � � � N � is a basis� Let us consider ������
 and ������
 with � � ��

x � ��� 	�� Approximating the Green�s function for arbitrary � is di�cult� so we�ll restrict

� to xk� k � �� 	� � � � � N � and establish the goal of minimizing the pointwise error of

the solution� Mapping each subinterval to a canonical element� the basis �j�x
� x �
�xj��� xj��
 is

�j�x
 � $��
x� xj
h


 �����	�a


where

$��s
 �

��
�

��e�����s�

��e��
� if � 	 � s � �

e��s�e��

��e��
� if � � s � 	

�� otherwise

�����	�b


where

� �
h �

�
�����	�c
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Figure ������ Canonical basis element $��s
 for � � �� 	�� and 	�� �increasing steepness
�

is the cell Peclet number� The value of  � will remain unde�ned for the moment� The

canonical basis element $��s
 is illustrated in Figure ������ As � � � the basis �����	�b


becomes the usual piecewise�linear hat function

$��s
 �
	

�

��
�

	 � s� if � 	 � s � �
	� s� if � � s � 	
�� otherwise

As ��
� �����	�b
 becomes the piecewise�constant function

$��s
 �



	� if � 	 � s � �
�� otherwise

�

The limits of this function are nonuniform at s � �	� ��
We�re now in a position to apply the Petrov�Galerkin method with U � SN

� and

V � $SN
� to ������
� The trial space SN will consist of piecewise linear functions and� for

the moment� the test space will remain arbitrary except for the assumptions

�j�x
 � H���� 	�� �j�xk
 � 
jk�

Z �

��

$��s
ds � 	� j� k � 	� �� � � � � N � 	�

�����	�
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The Petrov�Galerkin system for ������
 is

����i� U
�
 � ��i� �U

�
 � ��i� qU
 � ��i� f
� i � 	� �� � � � � N � 	� �����	�


Let us use node�by�node evaluation of the inner products in �����	�
� For simplicity� we�ll

assume that the mesh is uniform with spacing h and that � and q are constant� Then

����i� U
�
 �

�

h

Z �

��

$���s
 $U ��s
ds

where $U�s
 is the mapping of U�x
 onto the canonical element �	 � s � 	� With a

piecewise linear basis for $U and the properties noted in �����	�
 for �j� we �nd

����i� U
�
 � � �

h

�ci� �����	�a


We�ve introduced the central di�erence operator


ci � ci���� � ci���� �����	�b


for convenience� Thus�


�ci � 
�
ci
 � ci�� � �ci � ci��� �����	�c


Considering the convective term�

���i� U
�
 � �

Z �

��

$��s
 $U ��s
ds � ���
 � �
���
ci �����	�a


where � is the averaging operator

�ci � �ci���� � ci����
��� �����	�b


Thus�

�
ci � ��
ci
 � �ci�� � ci��
��� �����	�c


Additionally�

� � �
Z �

�

� $��s
� $���s
�ds �����	�d


Similarly

q��i� U
 � qh

Z �

��

$��s
 $U�s
ds � qh�	� ��
 � 

���
ci �����	�a
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where


 �

Z �

��

jsj $��s
ds� �����	�b


� � �
Z �

��

s $��s
ds� �����	�c


Finally� if f�x
 is approximated by a piecewise�linear polynomial� we have

��i� f
 � h�	� ��
 � 

���
fi �������


where fi � f�xi
�

Substituting �����	�a
� �����	�a
� �����	�a
� and �������
 into �����	�
 gives a di�erence

equation for ck� k � 	� �� � � � � N � 	� Rather than facing the algebraic complexity� let us

continue with the simpler problem of Example ����	�

Example ������ Consider the boundary value problem ������
� Thus� q � f�x
 � � in

�����	��������
 and we have

����i� U
�
 � ���i� U

�
 � � �

h

�ci � ���
 � �
���
ci� i � 	� �� � � � � N � 	� ������	a


or� using �����	�c
� �����	�c
� and �����	�c


�	

�
�� �

�

�

�ci�� � �ci � ci��
 �

ci�� � ci��
�

� �� i � 	� �� � � � � N � 	� ������	b


This is to be solved with the boundary conditions

c� � 	� cN � �� ������	c


The exact solution of this second�order constant�coe�cient di�erence equation is

ci � 	 �
	� � i

	� �N
� i � �� 	� � � � � N� �������a


where

� �
� � ���� 	

� � ���� 	
� �������b


In order to avoid the spurious oscillations found in Example ����	� we�ll insist that

� � �� Using �������b
� we see that this requires

� � sgn�� �

�
� �������c


Some speci�c choices of � follow�
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	� Galerkin�s method� � � �� In this case�

$��s
 � $��s
 �
	� jsj

�
�

Using �������
� this method is oscillation free when

�

j�j � 	�

From �����	�c
� this requires h � �j���j� For small values of j���j� this would be

too restrictive�

�� Il�in�s scheme� In this case� $��s
 is given by �����	�b
 and

� � coth
�

�
� �

�
�

This scheme gives the exact solution at element vertices for all values of �� Either

this result or the use of �������c
 indicates that the solution will be oscillation free

for all values of �� This choice of � is shown with the function 	 � ��� in Figure

������

�� Upwind di
erencing� � � sgn�� When � � �� the shape function $��s
 is the

piecewise constant function

$��s
 �



	� if � 	 � s � �
�� otherwise

�

This function is discontinuous
 however� �nite element solutions still converge�

With � � 	� �������b
 becomes

� �
��	 � 	��


���
�

In the limit as ��
� we have � � �
 thus� using �������a


ci � 	� ���N�i	� i � �� 	� � � � � N� �� 	�

This result is a good asymptotic approximation of the true solution�

Examining ������	
 as a �nite di�erence equation� we see that positive values of � can

be regarded as adding dissipation to the system�

This approach can also be used for variable�coe�cient problems and for nonuniform

mesh spacing� The cell Peclet number would depend on the local value of � and the

mesh spacing in this case and could be selected as

�j �
hj  �j

�
�������
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Figure ������ The upwinding parameter � � coth ��� � ��� for Il�in�s scheme �upper
curve
 and the function 	� ��� �lower curve
 vs� ��

where hj � xj � xj�� and  �j is a characteristic value of ��x
 when x � �xj��� xj
� e�g��

 �j � ��j����� Upwind di�erencing is too di�usive for many applications� Il�in�s scheme

o�ers advantages� but it is di�cult to extend to problems other than ������
�

The Petrov�Galerkin technique has also been applied to transient problems of ther

form �����	

 however� the results of applying Il�in�s scheme to transient problems have

more di�usion than when it is applied to steady problems�

Example ����� ���� Consider Burgers�s equation

�uxx � uux � �� � � x � 	�

with the Dirichlet boundary conditions selected so that the exact solution is

u�x
 � tanh
	� x

�
�

Burgers�s equation is often used as a test problem because it is a nonlinear problem with

a known exact solution that has a behavior found in more complex problems� Flaherty

��� solved problems with h�� � �� ��� and N � �� using upwind di�erencing and Il�in�s

scheme �the Petrov�Galerkin method with the exponential weighting given by �����	�b

�
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h�� Maximum Error
Upwind Exponential

� ��	�� ������
��� ������� ����	��

Table ����	� Maximum pointwise errors for the solution of Example ����� using upwind
di�erencing �� � sgn�
 and exponential weighting �� � coth ���� ���
 ����

The cell Peclet number �������
 used

 �j �

��
�

U�xj
� if �Uj���� � �
�U�xj����
� if �Uj���� � �
U�xj � 	
� if �Uj���� � �

�

The nonlinear solution is obtained by iteration with the values of U�x
 evaluated at the

beginning of an iterative step�

The results for the pointwise error

jej� � max
��j�N

ju�xj
� U�xj
j

are shown in Table ����	� The value of h�� � � is approximately where the great�

est di�erence between upwind di�erencing �� � sgn�
 and exponential weighting �� �

coth ��� � ���
 exists� Di�erences between the two methods decrease for larger and

smaller values of h���

The solution of convection�di�usion problems is still an active research area and much

more work is needed� This is especially the case in two and three dimensions� Those

interested in additional material may consult Roos et al� �	���

Problems

	� Consider ������
 when ��x
 �� q�x
 � �� x � ��� 	� ����

	�	� Show that the solution of ������
 is asymptotically given by

u�x
 � f�x


q�x

� uR��
e

�x
p

q��	�� � uR�	
e
����x	

p
q��	���

Thus� the solution has O�
p
�
 boundary layers at both x � � and x � 	�

	��� In a similar manner� show that the Green�s function is asymptotically given

by

G��� x
 � 	

����q�x
q��
����

�
e����x	

p
q��	��� if x � �

e��x��	
p

q��	��� if x � �
�

The Green�s function is exponentially small away from x � �� where it has

two boundary layers� The Green�s function is also unbounded as O������
 at

x � � as �� ��
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Chapter ��

Hyperbolic Problems

���� Conservation Laws

We have successfully applied �nite element methods to elliptic and parabolic problems�

however� hyperbolic problems will prove to be more di�cult� We got an inkling of this

while studying convection�di�usion problems in Section ��	� Conventional Galerkin meth�

ods required the mesh spacing h to be on the order of the di�usivity � to avoid spurious

oscillations� The convection�di�usion equation 
��	��� changes type from parabolic to hy�

perbolic in the limit as �� 
� The boundary layer also leads to a jump discontinuity in

this limit� Thus� a vanishingly small mesh spacing will be required to avoid oscillations�

at least when discontinuities are present� We�ll need to overcome this limitation for �nite

element methods to be successful with hyperbolic problems�

Instead of the customary second�order scalar di�erential equation� let us consider

hyperbolic problems as �rst�order vector systems� Let us con�ne our attention to con�

servation laws in one space dimension which typically have the form

ut � f
u�x � b
x� t�u�� 
�
����a�

where

u
x� t� �

�
����

u�
x� t�
u�
x� t�
���

um
x� t�

�
���� � f
u� �

�
����

f�
u�
f�
u�
���

fm
u�

�
���� � b
x� t�u� �

�
����

b�
x� t�u�
b�
x� t�u�

���
bm
x� t�u�

�
����


�
����b�

are m�dimensional density� �ux� and load vectors� respectively� It�s also convenient to

write 
�
����a� as

ut �A
u�ux � b
x� t�u� 
�
����a�

�
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where the system Jacobian is the m�m matrix

A
u� � f
u�
u
� 
�
����b�

Equation 
�
����a� is called the conservative form and 
�
����a� is called the convective

form of the partial di�erential system�

Conditions under which 
�
����� and 
�
����� are of hyperbolic type follow�

De�nition ������� If A has m real and distinct eigenvalues �� � �� � � � � � �m and�

hence� m linearly independent eigenvectors p���� p���� � � � �p�m�� then 
�
����a� is said to

be hyperbolic�

Physical problems where dissipative e�ects can be neglected often lead to hyperbolic

systems� Areas where these arise include acoustics� dynamic elasticity� electromagnetics�

and gas dynamics� Here are some examples�

Example ������� The Euler equations for one�dimensional compressible inviscid �ows

satisfy

�t �mx � 
� 
�
����a�

mt � 

m�

�
� p�x � 
� 
�
����b�

et � �
e � p�
m

�
�x � 
� 
�
����c�

Here �� m� e� and p are� respectively� the �uid�s density� momentum� internal energy� and

pressure� The �uid velocity u � m�� and the pressure is determined by an equation of

state� which� for an ideal �uid is

p � 
� � ���e� m�

��
�� 
�
����d�

where � is a constant� Equations 
�
����a�� 
�
����b�� and 
�
����c� express the facts that

the mass� momentum� and energy of the �uid are neither created nor destroyed and are�

hence� conserved� We readily see that the system 
�
����� has the form of 
�
����� with

u �

�
� �
m
e

�
� � f
u� �

�
� m

m���� p

e � p�m��

�
� � b
x� t�u� �

�
� 






�
� � 
�
�����

Example ������� The de�ection of a taut string has the form

utt � a�uxx � q
x�� 
�
���	a�
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x = 0 x = L
T T

u(x,t)

Figure �
����� Geometry of the taut string of Example �
�����

where a� � T�� with T being the tension and � being the linear density of the string 
Fig�

ure �
������ The lateral loading q
x� applied in the transverse direction could represent

the weight of the string�

This second�order partial di�erential equation can be written as a �rst�order system

of two equations in a variety of ways� Perhaps the most common approach is to let

u� � ut� u� � aux� 
�
���	b�

Physically� u�
x� t� is the velocity and u�
x� t� is the stress at point x and time t in the

string� Di�erentiating with respect to t while using 
�
���	a� and 
�
���	b� yields


u��t � utt � a�uxx � q
x� � a
u��x � q
x�� 
u��t � auxt � autx � a
u��x�

Thus� the one�dimensional wave equation has the form of 
�
����� with

u �

�
u�
u�

�
� f
u� �

� �cu�
�cu�

�
� b
x� t�u� �

�
q
x�



�
� 
�
���	c�

In the convective form 
�
������ we have

A �

�

 �a
�a 


�
� 
�
���	d�

������ Characteristics

The behavior of the system 
�
����� can be determined by diagonalizing the Jacobian


�
����b�� This can be done for hyperbolic systems since A
u� has m distinct eigenvalues


De�nition �
������ Thus� let

P � �p����p���� � � � �p�m�� 
�
����a�

and recall the eigenvalue�eigenvector relation

AP � P�� 
�
����b�
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where

� �

�
����
��

��
� � �

�m

�
���� 
�
����c�

Multiplying 
�
����a� by P�� and using 
�
����b� gives

P��ut �P��Aux � P��ut ��P��ux � P��b�

Let

w � P��u 
�
�����

so that

wt ��wx � P��ut � 
P
���tu ���P��ux � 
P

���xu��

Using 
�
�����

wt ��wx � Qw � g� 
�
����a�

where

Q � �
P���t ��
P���x�P� g � P��b� 
�
����b�

In component form� 
�
����a� is


wi�t � �i
wi�x �
mX
j��

qi�jwj � gi� i � �� �� � � � � m� 
�
����c�

Thus� the transformation 
�
����� has uncoupled the di�erentiated terms of the original

system 
�
����a��

Consider the directional derivative of each component wi� i � �� �� � � � � m� of w�

dwi

dt
� 
wi�t � 
wi�x

dx

dt
� i � �� �� � � � � m�

in the directions

dx

dt
� �i� i � �� �� � � � � m� 
�
����a�

and use 
�
����c� to obtain

dwi

dt
�

mX
j��

qi�jwj � gi� i � �� �� � � � � m� 
�
����b�
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The curves 
�
����a� are called the characteristics of the system 
�
����� �
������ The

partial di�erential equations 
�
����� may be solved by integrating the �m ordinary dif�

ferential equations 
�
����a� �
����b�� This system is uncoupled through its di�erentiated

terms but coupled through Q and g� This method of solution is� quite naturally� called

the method of characteristics� While we could develop numerical methods based on the

method of characteristics� they are generally not e�cient when m 	 ��

De�nition ������� The set of all points that determine the solution at a point P 
x�� t��

is called the domain of dependence of P �

Consider the arbitrary point P 
x�� t�� and the characteristics passing through it as

shown in Figure �
����� The solution u
x�� t�� depends on the initial data on the interval

�A�B� and on the values of b in the region APB� bounded by �A�B� and the characteristic

curves �x � �� and �x � �m� Thus� the region APB is the domain of dependence of P �

dx/dt = 

x

1
dx/dt = 

P(x  ,t   )

A B

t

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

m
λ

0 0

λ

Figure �
����� Domain of dependence of a point P 
x�� t��� The solution at P depends on
the initial data on the line �A�B� and the values of b within the region APB bounded
by the characteristic curves dx�dt � ��� �m�

Example ������� Consider an initial value problem for the forced wave equation


�
���	a� with the initial data

u
x� 
� � u�
x�� ut
x� 
� � �u�
x�� �� � x ���

Transforming 
�
���	a� using 
�
���	b� yields the �rst�order system 
�
����� with A and

b given by 
�
���	�� Using 
�
���	b�� The initial conditions become

u�
x� 
� � �u�
x�� u�
x� 
� � au�x
x�� �� � x ���
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With A given by 
�
���	�� we �nd its eigenvalues as ���� � �a� Thus� the character�
istics are

�x � �a�
and the eigenvectors are

P �
�p
�

�
� �
� ��

�
�

Since P�� � P� we may use 
�
����� to determine the canonical variables as

w� �
u� � u�p

�
� w� �

u� � u�p
�

�

From 
�
������ the canonical form of the problem is


w��t � a
w��x �
qp
�
� 
w��t � a
w��x �

qp
�
�

The characteristics integrate to

x � x� � at� x � x� � at�

and along the characteristics� we have

dwk

dt
�

qp
�
� k � �� ��

Integrating� we �nd

w�
x� t� � w�
�
x�� �

�p
�

Z t

�

q
x� � a
�d


or

w�
x� t� � w�
�
x���

�

a
p
�

Z x��at

x�

q
��d��

It�s usual to eliminate x� by using the characteristic equation to obtain

w�
x� t� � w�
�
x � at�� �

a
p
�

Z x

x�at

q
��d��

Likewise

w�
x� t� � w�
�
x� at� �

�

a
p
�

Z x

x�at

q
��d��

The domain of dependence of a point P 
x�� t�� is shown in Figure �
����� Using the

bounding characteristics� it is the triangle connecting the points 
x�� t��� 
x� � at�� 
��

and 
x�� at�� 
�� 
Actually� with q being a function of x only� the domain of dependence

only involves values of q
x� on the subinterval 
x� � at�� 
� to 
x� � at�� 
���
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0

0

t

dx/dt = -adx/dt = a

0
P(x   ,t   )

x

x   - at x   + at
0

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

0 0

Figure �
����� The domain of dependence of a point P 
x�� t�� for Example �
���� is the
triangle connecting the points P � 
x� � at�� 
�� and 
x� � at�� 
��

Transforming back to the physical variables

u�
x� t� �
�p
�

w� � w�� �

�p
�
�w�

�
x� at� � w�
�
x� at�� �

�

�a

Z x�at

x�at

q
��d��

u�
x� t� �
�p
�

w��w�� �

�p
�
�w�

�
x� at��w�
�
x� at��� �

�a
�

Z x

x�at

q
��d��

Z x

x�at

q
��d���

Suppose� for simplicity� that �u�
x� � 
� then

u�
x� 
� � 
 �
�p
�
�w�

�
x� � w�
�
x���

u�
x� 
� � au�x
x� �
�p
�
�w�

�
x�� w�
�
x���

Thus�

w�
�
x� � �w�

�
x� �
au�x
x�p

�
�

and

u�
x� t� �
a

�
�u�x
x � at�� u�x
x� at�� �

�

�a

Z x�at

x�at

q
��d��

u�
x� t� �
a

�
�u�x
x� at� � u�x
x� at��� �

�a
�

Z x

x�at

q
��d� �

Z x

x�at

q
��d���

Since u� � aux� we can integrate to �nd the solution in the original variables� In order

to simplify the manipulations� let�s do this with q
x� � 
� In this case� we have

u�
x� t� �
a

�
�u�x
x � at� � u�x
x� at���
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hence�

u
x� t� �
�

�
�u�
x� at� � u�
x� at���

The solution for an initial value problem when

u�
x� �

	

�

x� �� if � � � x � 

�� x� if 
 � x � �

� otherwise

is shown in Figure �
����� The initial data splits into two waves having half the initial

amplitude and traveling in the positive and negative x directions with speeds a and �a�
respectively�

u(x,0)

x-1 1

-1 1 x

-1 1

-1 1

x

x

u(x,1/2a)

u(x,1/a) u(x,3/2a)

Figure �
����� Solution of Example �
���� at t � 
 
upper left�� ���a 
upper right�� ��a

lower left�� and ���a 
lower right��

������ Rankine�Hugoniot Conditions

For simplicity� let us neglect b
x� t�u� in 
�
����a� and consider the integral form of the

conservation law

d

dt

Z �

�

udx � �f
u�j�� � �f
u
�� t�� � f
u

� t��� 
�
����
�

which states that the rate of change of u within the interval 
 � x � � is equal to the

change in its �ux through the boundaries x � 
� ��

If f and u are smooth functions� then 
�
����
� can be written asZ �

�

�ut � f
u�x�dx � 
�
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If this result is to hold for all �control volumes� 

� ��� the integrand must vanish� and�

hence� 
�
����a� and 
�
����
� are equivalent�

To further simplify matters� let con�ne our attention to the scalar conservation law

ut � f
u�x � 
 
�
�����a�

with

a
u� �
df
u�

du
� 
�
�����b�

and

ut � a
u�ux � 
� 
�
�����c�

The characteristic equation is

dx

dt
� � � a
u�� 
�
�����a�

The scalar equation 
�
�����c� is already in the canonical form 
�
����a�� We calculate

the directional derivative on the characteristic as

du

dt
� utdt� ux

dx

dt
� ut � a
u�ux � 
� 
�
�����b�

Thus� in this homogeneous scalar case� u
x� t� is constant along the characteristic curve


�
����a��

For an initial value problem for 
�
�����a� on �� � x � �� t 	 
� the solution

would have to satisfy the initial condition

u
x� 
� � u�
x�� �� � x ��� 
�
������

Since u is constant along characteristic curves� it must have the same value that it had

initially� Thus� u � u�
x�� � u�� along the characteristic that passes through 
x�� 
�� From


�
�����a�� we see that this characteristic satis�es the ordinary initial value problem

dx

dt
� a
u���� t 	 
� x

� � x�� 
�
������

Integrating� we determine that the characteristic is the straight line

x � x� � a
u���t� 
�
����	�

This procedure can be repeated to trace other characteristics and thereby construct

the solution�
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0

0
x = x   + at

φ

at

u(x,0) =   (x)φ u(x,t) =    (x-at)

at

x

x

u(x,t)

t

a

x

1

Figure �
���	� Characteristic curves and solution of the initial value problem 
�
�����a�
�
������ when a is a constant�

Example ������� The simplest case occurs when a is a constant and f
u� � au� All

of the characteristics are parallel straight lines with slope ��a� The solution of the initial

value problem 
�
�����a� �
������ is u
x� t� � u�
x�at� and is� as shown in Figure �
���	�

a wave that maintains its shape and travels with speed a�

Example ������� Setting a
u� � u and f
u� � u��� in 
�
�����a� �
�����b� yields the

inviscid Burgers� equation

ut �
�

�

u��x � 
� 
�
������

Again� consider an initial value problem having the initial condition 
�
������� so the

characteristic is given by 
�
����	� with a� � u
x�� 
� � u�
x��� i�e��

x � x� � u�
x��t� 
�
������

The characteristics are straight lines with a slope that depends on the value of the

initial data� thus� the characteristic passing through the point 
x�� 
� has slope ��u
�
x���
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The fact that the characteristics are not parallel introduces a di�culty that was not

present in the linear problem of Example �
����� Consider characteristics passing through


x�� 
� and 
x�� 
� and suppose that u
�
x�� 	 u�
x�� for x� 	 x�� Since the slope of the

characteristic passing through 
x�� 
� is less than the slope of the one passing through


x�� 
�� the two characteristics will intersect at a point� say� P as shown in Figure �
�����

The solution would appear to be multivalued at points such as P �

1

φ

x

P

x x
0 1

1

0
1

φx = x   +    (x  )t

x = x   +    (x  )t
0

φ

φ
1

0

1

t

Figure �
����� Characteristic curves for two initial points x� and x� for Burgers� equation

�
������� The characteristics intersect at a point P �

In order to clarify matters� let�s examine the speci�c choice of u� given by Lax ��
�

u�
x� �

	

�
�� if x � 

�� x� if 
 � x � �

� if � � x

� 
�
������

Using 
�
������� we see that the characteristic passing through the point 
x�� 
� satis�es

x �

	

�

x� � t� if x� � 

x� � 
�� x��t� if 
 � x � �
x�� if � � x

� 
�
������

Several characteristics are shown in Figure �
����� The characteristics �rst intersect at

t � �� After that� the solution would presumably be multivalued� as shown in Figure

�
�����

It�s� of course� quite possible for multivalued solutions to exist� however� 
i� they

are not observed in physical situations and 
ii� they do not satisfy 
�
�����a� in any

classical sense� Discontinuous solutions are often observed in nature once characteristics

of the corresponding conservation law model have intersected� They also do not satisfy
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t

x

1

1

Figure �
����� Characteristics for Burgers� equation 
�
������ with initial data given by

�
�������

u(x,3/2)

u(x,1/2)

u(x,1)

u(x,0)

x2100 1 x

x210

2

2 x10

Figure �
����� Multivalued solution of Burgers� equation 
�
������ with initial data given
by 
�
������� The solution u
x� t� is shown as a function of x for t � 
� ���� �� and ����


�
�����a�� but they might satisfy the integral form of the conservation law 
�
������ We

examine the simplest case when two classical solutions satisfying 
�
�����a� are separated

by a single smooth curve x � �
t� across which u
x� t� is discontinuous� For each t 	 


we assume that 
 � �
t� � � and let superscripts � and � denote conditions immediately
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to the left and right� respectively� of x � �
t�� Then� using 
�
������ we have

d

dt

Z �

�

udx �
d

dt
�

Z ��

�

udx�

Z �

��
udx� � �f
u�j��

or� di�erentiating the integrals

Z ��

�

utdx� u� ��� �

Z �

��
utdx� u� ��� � �f
u�j���

The solution on either side of the discontinuity was assumed to be smooth� so 
�
�����a�

holds in 

� ��� and 
��� �� and can be used to replace the integrals� Additionally� since

� is smooth� ��� � ��� � ��� Thus� we have

�f
u�j��� � u� �� � f
u�j��� � u� �� � �f
u�j���

or

��
u� � u�� � f
u��� f
u��� 
�
����
�

Let

�q� � q� � q� 
�
�����a�

denote the jump in a quantity q and write 
�
����
� as

�u� �� � �f
u��� 
�
�����b�

Equation 
�
�����b� is called the Rankine�Hugoniot jump condition and the discontinuity

is called a shock wave� We can use the Rankine�Hugoniot condition to �nd a discontinuous

solution of Example �
���	�

Example �����	� For t � �� the discontinuous solution of 
�
������ �
������ is as given

in Example �
���	� For t � �� we hypothesize the existence of a single shock wave� passing
through 
�� �� in the 
x� t��plane� As shown in Figure �
����� the solution of Example

�
���	 can be used to infer that u� � � and u� � 
� Thus� f
u�� � 
u����� � ��� and

f
u�� � 
u����� � 
� Using 
�
�����b�� the velocity of the shock wave is

�� �
�

�
�

Integrating� we �nd the shock location as

� �
�

�
t � c�



�� Hyperbolic Problems

= (t + 1)/2ξ

10

t

x

1

Figure �
����� Characteristics and shock discontinuity for Example �
�����
u(x,0)

u(x,3/2)u(x,1)

x21 0 x2

210 xx10

0 1

2

u(x,1/2)

Figure �
����
� Solution u
x� t� of Example �
���� as a function of x at t � 
� ���� �� and
���� The solution is discontinuous for t 	 ��

Since the shock passes through 
�� ��� the constant of integration c � ���� and

� �
�

�

t� ��� 
�
������



����� Conservation Laws �	

The characteristics and shock wave are shown in Figure �
���� and the solution u
x� t�

is shown as a function of x for several times in Figure �
����
�

Let us consider another problem for Burgers� equation with di�erent initial conditions

that will illustrate another structure that arises in the solution of nonlinear hyperbolic

systems�

Example �����
� Consider Burgers� equation 
�
������ subject to the initial conditions

u�
x� �

	

�

� if x � 

x� if 
 � x � �
�� if � � x

� 
�
������

Using 
�
������ and 
�
������� we see that the characteristic passing through 
x�� 
� sat�

is�es

x �

	

�

x�� if x � 

x�
� � t�� if 
 � x � �
x� � t� if � � x

� 
�
������

These characteristics� shown in Figure �
������ may be used to verify that the solution�

shown in Figure �
������ is continuous� Additional considerations and di�culties with

nonlinear hyperbolic systems are discussed in Lax ��
��

Example ������� A Riemann problem is an initial value 
Cauchy� problem for 
�
�����

with piecewise�constant initial data� Riemann problems play an important role in the

numerical solution of conservation laws using both �nite di�erence and �nite element

techniques� In this introductory section� let us illustrate a Riemann problem for the

inviscid Burgers� equation 
�
������� Thus� we apply the initial data

u
x� 
� �

�
uL� if x � 

uR� if x � 
 � 
�
����	�

As in the previous two examples� we have to distinguish between two cases when

uL 	 uR and uL � uR� The solution may be obtained by considering piecewise�linear

continuous initial conditions as in Examples �
���� and �
����� but with the �ramp�

extending from 
 to � instead of from 
 to �� We could then take a limit as �� 
� The

details are left to an exercise 
Problem � at the end of this section��

When uL 	 uR� the characteristics emanating from points x� � 
 are the straight

lines x � x� � uLt 
cf� 
�
�������� Those emanating from points x� 	 
 are x �

x� � uRt� The characteristics cross immediately and a shock forms� Using 
�
����
�� we

see that the shock moves with speed �� � 
uL�uR���� The solution is constant along the

characteristics and� hence� is given by

u
x� t� �

�
uL� if x�t � 
uL � uR���
uR� if x�t � 
uL � uR���

� uL 	 uR� 
�
�����a�
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1

Figure �
������ Characteristics for Example �
�����
u(x,1/2)u(x,0)

x21 0 2 x

x210

0

1

1

1
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1

1

1

u(x,1)

0 x

u(x,3/2)

Figure �
������ Solution u
x� t� of Example �
���� as a function of x at t � 
� ���� �� and
����
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Several characteristics and the location of the shock are shown in Figure �
������

When uL � uR� the characteristics do not intersect� There is a region between the

characteristic x � uLt emanating from x� � 
� and x � uRt emanating from x� � 
�

where the initial conditions fail to determine the solution� As determined by either

the limiting process suggested in Problem � or thermodynamic arguments using entropy

considerations ��
�� no shock forms and the solution in this region is an expansion fan�

Several characteristics are shown in Figure �
����� and the expansion solution is given

by

u
x� t� �

	

�

uL� if x�t � uL
x�t� if uL � x�t � uR
uR� if x�t � uR

� uL � uR� 
�
�����b�

t

1/u

1/u

R

L

ξ

x

t

1/u
1/uR

L

x

Figure �
������ Shock 
left� and expansion 
right� wave characteristics of the Riemann
problem of Example �
�����

We conclude this example by examining the solution of the Riemann problem along

the line x � 
� Characteristics for several choices of initial data are shown in Figure

�
����� and� by examining these and 
�
������� we see that

u

� t� �

	









�

uL� if uL� uR 	 

uR� if uL� uR � 


� if uL � 
� uR 	 

uL� if uL 	 
� uR � 
� 
uL � uR��� 	 

uR� if uL 	 
� uR � 
� 
uL � uR��� � 


�

This data will be useful when constructing numerical schemes based on the solution of

Riemann problems�

Problems
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Figure �
������ Characteristics of Riemann problems for Burgers� equation when uL� uR 	

 
top�� uL� uR � 
 
center�� uL 	 
� uR � 
� 
uL � uR��� 	 
 
bottom left�� and
uL � 
� uR 	 
 
bottom right��

�� Show that the solution of the Riemann problem 
�
������ �
����	� is given by


�
������� You may begin by solving a problem with continuous initial data� e�g��

u
x� 
� �

	

�

uL� if x � ��
uL
��

�� x� � uR

��

� � x�� if � � � x � �

uR� if � � x
�

and take the limit as �� 
�
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���� Discontinuous Galerkin Methods

In Section ���� we examined the use of the discontinuous Galerkin method for time

integration� We�ll now examine it as a way of performing spatial discretization of con�

servation laws 
�
������ The method might have some advantages when solving problems

with discontinuous solutions� The discontinuous Galerkin method was �rst used for to

solve an ordinary di�erential equation for neutron transport ����� At the moment� it

is very popular and is being used to solve ordinary di�erential equations ���� ��� and

hyperbolic �	� �� �� �� ��� ��� ��� ���� parabolic ���� �	�� and elliptic ��� �� ��� partial

di�erential equations� A recent proceedings contains a complete and current survey of

the method and its applications ��
��

The discontinuous Galerkin method has a number of advantages relative to traditional

�nite element methods when used to discretize hyperbolic problems� We have already

noted that it has the potential of sharply representing discontinuities� The piecewise

continuous trial and test spaces make it unnecessary to impose interelement continuity�

There is also a simple communication pattern between elements that makes it useful for

parallel computation�

We�ll begin by describing the method for conservation laws 
�
����� in one spatial

dimension� In doing this� we present a simple construction due to Cockburn and Shu ����

rather than the 
more standard� approach ���� used in Section ��� for time integra�

tion� Using a method of lines formulation� let us divide the spatial region into elements


xj��� xj�� j � �� �� � � � � N � and construct a local Galerkin problem on Element 
xj��� xj�

in the usual manner by multiplying 
�
����a� by a test function v and integrating to

obtain Z xj

xj��

vT �ut � f
u�x�dx � 
� 
�
����a�

The loading term b
x� t�u� in 
�
����a� causes no conceptual or practical di�culties and

we have neglected it to simplify the presentation�

Following the usual procedure� let us map 
xj��� xj� to the canonical element 
��� ��
using the linear transformation

x �
�� �

�
xj�� �

� � �

�
xj� 
�
����b�

Then� after integrating the �ux term in 
�
����a� by parts� we obtain

hj
�

Z �

��

vTutd� � vT f
u�j��� �
Z �

��

vT� f
u�d� 
�
����c�

where

hj � xj � xj��� 
�
����d�
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Without a need to maintain interelement continuity� there are several options available

for selecting a �nite element basis� Let us choose one based on Legendre polynomials�

As we shall see� this will produce a diagonal mass matrix without a need to use lumping�

Thus� we select the approximation Uj
x� t� of u
x� t� on the mapping of 
xj��� xj� to the

canonical element as

Uj
�� t� �

pX
k��

ckj
t�Pk
�� 
�
����a�

where ckj
t� is an m�vector and Pk
�� is the Legendre polynomial of degree k in �� Recall


cf� Section ��	�� that the Legendre polynomials satisfy the orthogonality relation

Z �

��

Pi
��Pj
��d� �
��ij
�i� �

� i� j � 
 
�
����b�

are normalized as

Pi
�� � �� i � 
� 
�
����c�

and satisfy the symmetry relation

Pi
�� � 
���iPi
���� i � 
� 
�
����d�

The �rst six Legendre polynomials are

P�
�� � �� P�
�� � ��

P�
�� �
��� � �
�

� P�
�� �
	�� � ��

�
�

P	
�� �
�	�	 � �
�� � �

�
� P

�� �

���
 � �
�� � �	�
�

� 
�
�����

These polynomials are illustrated in Figure �
������ Additional information appears in

Section ��	 and Abromowitz and Stegen ����

Substituting 
�
����a� into 
�
����c�� testing against Pi
��� and using 
�
����b�d� yields

hj �cij
�i� �

� f
U
xj � t��� 
���if
U
xj��� t�� �

Z �

��

dPi
��

d�
f
Uj
�� t��d��

i � �� �� � � � � p� 
�
����a�

where �
 � � d
 ��dt�

Neighboring elements must communicate information to each other and� in this form

of the discontinuous Galerkin element method� this is done through the boundary �ux
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Figure �
����� Legendre polynomials of degrees p � 
� �� � � � � 	�

terms� The usual practice is to replace the boundary �ux terms f
U
xk� t�� k � j � �� j�
by a numerical �ux function

f
U
xk� t� 	 F
Uk
xk� t���Uk��
xk� t�� 
�
����b�

that depends on the approximate solutions Uk and Uk�� on the two elements sharing the

vertex at xk� Cockburn and Shu ���� present several possible numerical �ux functions�

Perhaps� the simplest is the average

F
Uk
xk� t���Uk��
xk� t�� �
f
Uk
xk� t�� � f
Uk��
xk� t��

�
� 
�
���	a�

Based on our work with convection�di�usion problems in Section ��	� we might expect

that some upwind considerations might be worthwhile� This happens to be somewhat

involved for nonlinear vector systems� We�ll postpone it and� instead� note that an

upwind �ux for a scalar problem is

F 
Uk
xk� t��� Uk��
xk� t�� �

�
f
Uk
xk� t��� if a
Uk
xk� t�� � a
Uk��
xk� t�� 	 

f
Uk��
xk� t��� if a
Uk
xk� t�� � a
Uk��
xk� t�� � 



�
���	b�

where

a
u� � fu
u�� 
�
���	c�
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A simple numerical �ux that is relatively easy to apply to vector systems and employs

upwind information is the Lax�Friedrichs function ����

F
Uk
xk� t��Uk��
xk� t�� �
�

�
�f
Uk
xk� t�� � f
Uk��
xk� t��

��max
Uk��
xk� t��Uk
xk� t���� 
�
���	d�

where �max is the maximum absolute eigenvalue of the Jacobian matrix fu
u�� u 

�Uk
xk� t���Uk��
xk� t���

Example ������� The simplest discontinuous Galerkin scheme uses piecewise�constant


p � 
� solutions

Uj
�� t� � c�j
t�P�
�� � c�j�

In this case� 
�
����a� becomes

hj �c�j � f
U
xj� t��� f
U
xj��� t�� � ��

In this initial example� let�s choose a scalar problem and evaluate the �ux using the

average 
�
���	a�

F 
Uk
xk� t��� Uk��
xk� t�� �
f
Uk
xk� t�� � f
Uk��
xk� t��

�
�

f
c��k� � f
c��k���

�

and upwind 
�
���	b�

F 
Uk
xk� t��� Uk��
xk� t�� �

�
f
c��k�� if a
c��k� � a
c��k��� 	 

f
c��k���� if a
c��k� � a
c��k��� � 


numerical �uxes� With these �ux choices� we have the ordinary di�erential systems

�c�j �
f
c��j���� f
c��j���

�hj
� 


and

�c�j �

�� �j�f
c��j��� � 
� � �j�f
c��j�� 
�� �j���f
c��j�� 
� � �j���f
c��j���

�hj
� 


where

�j � sgn
a
c��j� � a
c��j�����

In the 
simplest� case when f
u� � au with a a positive constant� we have the two

schemes

�c�j �
a
c��j�� � c��j���

�hj
� 
 j � 
� �� � � � � J�

and

�c�j �
a
c��j � c��j���

hj
� 
� j � 
� �� � � � � J�
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Initial conditions for c�j

� may be speci�ed by interpolating the initial data at the center

of each interval� i�e�� c��j

� � u�
xj � hj���� j � �� �� � � � � J �

We use these two techniques to solve an initial value problem with a � � and

u�
x� t� � sin ��x�

Thus� the exact solution is

u
x� t� � sin ��
x� t��

Piecewise�constant discontinuous Galerkin solutions with upwind and centered �uxes

are shown at t � � in Figure �
����� A ���element uniform mesh was used and time inte�

gration was performed using the MATLAB Runge�Kutta procedure ode�	� The solution

with the upwind �ux has greatly dissipated the solution after one period in time� The

maximum error at cell centers
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x
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Figure �
����� Exact and piecewise�constant discontinuous solutions of a linear kinematic
wave equation with sinusoidal initial data at t � �� Solutions with upwind and centered
�uxes are shown� The solution using the upwind �ux exhibits the most dissipation�

je
�� t�j� �� max
��j�J

ju
xj � hj��� t�� U
xj � hj��� t�j

at t � � is shown in Table �
���� on meshes with J � ��� ��� and �� elements� Since

the errors are decreasing by a factor of two for each mesh doubling� it appears that the
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upwind��ux solution is converging at a linear rate� Using similar reasoning� the centered

solution appears to converge at a quadratic rate� The errors appear to be smallest at the

downwind 
right� end of each element� This superconvergence result has been known for

some time ���� but other more general results were recently discovered ����

J Upwind Centered
jej� jej�

�� 
��
�� 
��	��
�� 
��	�� 
�
�


�� 
���	� 
�
���

Table �
����� Maximum errors for solutions of a linear kinematic wave equation with
sinusoidal initial data at t � � using meshes with J � ��� ��� and �� uniform elements�
Solutions were obtained using upwind and centered �uxes�

As a second calculation� let�s consider discontinuous initial data

u�
x� t� �

�
�� if 
 � x � ���
��� if ��� � x � �

�

This data is extended periodically to the whole real line� Piecewise�constant discontin�

uous Galerkin solutions with upwind and centered �uxes are shown at t � � in Fig�

ure �
����� The upwind solution has� once again� dissipated the initial square pulse�

This time� however� the centered solution is exhibiting spurious oscillations� As with

convection�dominated convection�di�usion equations� some upwinding will be necessary

to eliminate spurious oscillations near discontinuities�

������ High�Order Discontinuous Galerkin Methods

The results of Example �
���� are extremely discouraging� It would appear that we have

to contend with either excessive di�usion or spurious oscillations� To overcome these

choices� we investigate the use of the higher�order techniques o�ered by 
�
������ With

cij being an m�vector and i ranging from 
 to p� we have p�� vector and m
p��� scalar

unknowns on each element�

We will focus on the four major tasks� 
i� evaluating the integral on the right side

of 
�
����a�� 
ii� performing the time integration 
iii� de�ning the initial conditions�

and 
iv� evaluating the �uxes� The integral in 
�
����a� will typically require numerical

integration and the obvious choice is Gaussian quadrature as described in Chapter ��

This works �ne and there is no need to discuss it further�

Time integration can be performed by either explicit or implicit techniques� The

choice usually depends on the spread of the eigenvalues �i� i � �� �� � � � � m� of the Jaco�

bian A
u�� If the eigenvalues are close to each other� explicit integration is �ne� Stability
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Figure �
����� Exact and piecewise�constant discontinuous solutions of a linear kinematic
wave equation with discontinuous initial data at t � �� Solutions with upwind and
centered �uxes are shown� The solution using the upwind �ux is dissipative� The solution
using the centered �ux exhibits spurious oscillations�

is usually not a problem� An implicit scheme might be necessary when the eigenvalues are

widely separated or when integrating 
�
����� to a steady state� For explicit integration�

Cockburn and Shu ���� recommend a total variation diminishing 
TVD� Runge�Kutta

scheme� However� Biswas et al� ��� found that classical Runge�Kutta formulas gave sim�

ilar results� Second� and third�order and fourth� and �fth�order classical Runge�Kutta

software was used for time integration of Example �
����� If forward Euler integration of


�
����a� were used� we would have to solve the explicit system

hj
�i� �

cn��ij � cnij

�t
� �f
Un
xj�� � 
���if
Un
xj���� �

Z �

��

dPi
��

d�
f
Un

j 
���d��

i � �� �� � � � � p�

The notation is identical to that used in Chapter �� thus� Un
x� and cnij are the approx�

imations of U
x� tn� and cij
tn�� respectively� produced by the time integration software

and �t is the time step� The forward Euler method is used for illustration because of its

simplicity� The order of the temporal integration method should be comparable to p�
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Initial conditions may be determined by L� projection as

Z �

��

Pi
���Uj
�� 
�� u�
���d� � �� i � 
� �� � � � � p� j � �� �� � � � � J� 
�
�����

One more di�culty emerges� Higher�order schemes for hyperbolic problems oscillate

near discontinuities� This is a fundamental result that may be established by theoretical

means 
cf�� e�g�� Sod ��	��� One technique for reduced these oscillations involves limiting

the computed solution� Many limiting algorithms have been suggested but none are

totally successful� We describe a procedure for limiting the slope �Uj
x� t���x of the

solution that is widely used� With this approach� �Uj
x� t���x is modi�ed so that�

�� the solution 
�
����a� does not take on values outside of the adjacent grid averages


Figure �
����� upper left��

�� local extrema are set to zero 
Figure �
����� upper right�� and

�� the gradient is replaced by zero if its sign is not consistent with its neighbors 
Figure

�
����� lower center��

Figure �
���� illustrates these situations when the solution is a piecewise�linear 
p � ��

function relative to the mesh�

A formula for accomplishing this limiting can be summarized concisely using the

minimum modulus function as

�Uj�mod
xj� t�

�x
� minmod


�Uj
xj� t�

�x
�rUj
xj����� t���Uj
xj����� t�� 
�
����a�

�Uj�mod
xj��� t�

�x
� minmod


�Uj
xj��� t�

�x
�rUj
xj����� t���Uj
xj����� t�� 
�
����b�

where

minmod
a� b� c� �

�
sgn
a�min
jaj� jbj� jcj�� if sgn
a� � sgn
b� � sgn
c�

� otherwise


�
����c�

and r and � are the backward and forward di�erence operators

rUj
xj����� t� � Uj
xj����� t��Uj
xj����� t�� 
�
����d�

and

�Uj
xj����� t� � Uj
xj����� t��Uj
xj����� t�� 
�
����e�

With �Uj�mod
xj��� t���x and �Uj�mod
xj� t���x� determined� 
�
����a�b� are used to re�

computed the coe�cients in 
�
����a� to reduce the oscillations� However� 
�
����a�b�
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Figure �
����� Solution limiting� reduce slopes to be within neighboring averages 
upper
left�� set local extrema to zero 
upper right�� and set slopes to zero if they disagree with
neighboring trends�

only provide two vector equations for modifying the p vector coe�cients cij�mod
t�� i �

�� �� � � � � p� in �Uj
x� t���x� When p � �� 
�
����a�b� are identical and c�j�mod
t� is

uniquely determined� Likewise� when p � �� the two conditions 
�
����a�b� su�ce to

uniquely determine the modi�ed coe�cients c�j�mod
t� and c�j�mod
t�� Equations 
�
����a�b�

are insu�cient to determine the modi�ed coe�cients when p 	 � and Cockburn and

Shu ���� suggested setting the higher�order coe�cients cij�mod
t�� i � �� �� � � � � p� to zero�

This has the disturbing characteristic of ��attening� the solution near smooth extrema

and reducing the order of accuracy� Biswas et al� ��� developed an adaptive limiter which
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applied the minimummodulus function 
�
����c� to higher derivatives ofUj� They began

by limiting the p th derivative of Uj and worked downwards until either a derivative was

not changed by the limiting or they modi�ed all of the coe�cients� Their procedure�

called �moment limiting�� is described further in their paper ����

Example ������� Biswas et al� ��� solve the inviscid Burgers� equation 
�
������ with

the initial data

u
x� 
� �
� � sin x

�
�

This initial data steepens to form a shock which propagates in the positive x direction�

Biswas et al� ��� use an upwind numerical �ux 
�
���	b� and solve problems on uniform

meshes with h � ���� with p � 
� �� �� Time integration was done using classical Runge�

Kutta methods of orders ���� respectively� for p � 
� �� �� Exact and computed solutions

are shown in Figure �
���	� The piecewise polynomial functions used to represent the

solution are plotted at eleven points on each subinterval�

The �rst�order solution 
p � 
� shown at the upper left of Figure �
���	 is character�

istically di�usive� The second�order solution 
p � �� shown at the upper right of Figure

�
���	 has greatly reduced the di�usion while not introducing any spurious oscillations�

The minimum modulus limiter 
�
����� has �attened the solution near the shock as seen

with the third�order solution 
p � �� shown at the lower left of Figure �
���	� There is

a loss of 
local� monotonicity near the shocks� 
Average solution values are monotone

and this is all that the limiter 
�
����� was designed to produce�� The adaptive moment

limiter of Biswas et al� ��� reduces the �attening and does a better job of preserving local

monotonicity near discontinuities� The solution with p � � using this limiter is shown in

the lower portion of Figure �
���	�

Example ������� Adjerid et al� ��� solve the nonlinear wave equation

utt � uxx � u
�u� � �� 
�
����a�

which can be written in the form 
�
����a� as


u��t � 
u��x � u�� 
u��t � 
u��x � u�
�u
�
� � �� 
�
����b�

with u� � u� The initial and boundary conditions are such that the exact solution of


�
����a� is the solitary wave

u
x� t� � sech
x cosh
�

�
� t sinh

�

�
� 
�
����c�


cf� Figure �
������

Adjerid et al� ��� solved problems on ���� � x � ���� 
 � t � � by the discontin�

uous Galerkin method using polynomials of degrees p � 
 to �� The solution at t � �
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Figure �
���	� Exact 
line� and discontinuous Galerkin solutions of Example �
���� for
p � 
� �� �� and h � ����� Solutions with the minmod limiter 
�
����� and an adaptive
moment limiter of Biswas et al� ��� are shown for p � ��

performed with p � � and J � �� is shown in Figure �
����� The entire solitary wave is

shown� however� the computation was performed on the center region ���� � x � ����
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Discretization errors in the L� norm

ke
�� t�k �
JX

j��

Z xj

xj��

jU
x� t�� Uj
x� t�jdx

are presented for the solution u for various combinations of h and p in Table �
�����

Solutions of this nonlinear wave propagation problem appear to be converging as O
hp���

in the L� norm� This can be proven correct for smooth solutions of discontinuous Galerkin

methods ��� ��� ����
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Figure �
����� Solution of Example �
���� at t � � obtained by the discontinuous Galerkin
method with p � � and N � ���

J p � 
 p � � p � � p � � p � �

� ����e�
� 	���e�
� ����e�
� ����e�
� ����e�
�
�� ����e�
� ����e�
� ����e�
	 ����e�
� ����e�
�
�� ����e�
� ����e�
� ���
e�
� ���
e�
� ��		e��

�� ����e�
� ��
�e�
	 ����e�
� ����e�
� ���
e���
��� ����e�
� ����e�
	 ��	�e�
� ��
�e��
 ����e���
�	� ��	�e�
� ����e�
� 	���e�
�

Table �
����� Discretization errors at t � � as functions J and p for Example �
�����

Evaluating numerical �uxes and using limiting for vector systems is more complicated

than indicated by the previous scalar example� Cockburn and Shu ���� reported problems

when applying limiting component�wise� At the price of additional computation� they

applied limiting to the characteristic �elds obtained by diagonalizing the Jacobian f
u
�

Biswas et al� ��� proceeded in a similar manner� �Flux�vector splitting� may provide a

compromise between the two extremes� As an example� consider the solution and �ux

vectors for the one�dimensional Euler equations of compressible �ow 
�
������ For this
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and related di�erential systems� the �ux vector is a homogeneous function that may be

expressed as

f
u� � Au � fu
u�u� 
�
����a�

Since the system is hyperbolic� the Jacobian A may be diagonalized as described in

Section �
�� to yield

f
u� � P���Pu 
�
����b�

where the diagonal matrix � contains the eigenvalues of A

� �

�
����
��

��
� � �

�m

�
���� �

�
� u� c

u
u� c

�
� � 
�
����c�

The variable c �
p
�p��� is the speed of sound in the �uid� The matrix � can be

decomposed into components

� � �� ��� 
�
����
a�

where �� and �� are� respectively� composed of the non�negative and non�positive com�

ponents of �

��i �
�i � j�ij

�
� i � �� �� � � � � m� 
�
����
b�

Writing the �ux vector in similar fashion using 
�
�����

f
u� � P��
�� ����Pu � f
u�� � f
u��� 
�
����
c�

Split �uxes for the Euler equations were presented by Steger and Warming ����� Van

Leer ���� found an improvement that provided better performance near sonic and stag�

nation points of the �ow� The split �uxes are evaluated by upwind techniques� Thus� at

an interface x � xj� f
� is evaluated using Uj
xj� t� and f

� is evaluated using Uj��
xj� t��

Calculating �uxes based on the solution of Riemann problems is another popular

way of specifying numerical �uxes for vector systems� To this end� let w
x�t�uL�uR�

be the solution of a Riemann problem for 
�
����a� with the peicewise�constant initial

data 
�
����	�� The solution of a Riemann problem �breaking� at 
xj� tn� would be

w

x�xj��
t�tn��Uj
xj� tn��Uj
xj��� tn��� Using this� we would calculate the numerical

�ux at 
xj� t�� t 	 tn� as

F
Uj
xj� tn��Uj��
xj� tn�� � f
w

�Uj
xj� tn��Uj��
xj� tn��� 
�
������
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Example ������� Let us calculate the numerical �ux based on the solution of a Rie�

mann problem for Burgers� equation 
�
������� Using the results of Example �
����� we

know that the solution of the appropriate Riemann problem is

w

� Uj� Uj��� �

	









�

Uj� if Uj� Uj�� 	 

Uj��� if Uj� Uj�� � 


� if Uj � 
� Uj�� 	 

Uj� if Uj 	 
� Uj�� � 
� 
Uj � Uj����� 	 

Uj��� if Uj 	 
� Uj�� � 
� 
Uj � Uj����� � 


�


The arguments of Uj and Uj�� are all 
xj� tn�� These have been omitted for clarity��

With f
u� � u��� for Burgers� equation� we �nd the numerical �ux

F 
Uj� Uj��� �

	









�

U�
j ��� if Uj� Uj�� 	 


U�
j����� if Uj� Uj�� � 


� if Uj � 
� Uj�� 	 

U�
j ��� if Uj 	 
� Uj�� � 
� 
Uj � Uj����� 	 


U�
j����� if Uj 	 
� Uj�� � 
� 
Uj � Uj����� � 


�

Letting

u� � max
u� 
�� u� � min
u� 
��

we can write the numerical �ux more concisely as

F 
Uj� Uj��� � max�
U
�
j �

���� 
U�j���
�����

When used with a piecewise�constant basis and forward Euler time integration� the result�

ing discontinuous Galerkin scheme is identical to Godunov�s �nite di�erence scheme �����

This was the �rst di�erence scheme to be based on the solution of a Riemann problem�

This early work and a subsequent work of Glimm ���� and Chorin ��� stimulated a great

deal of interest in using Riemann problems to construct numerical �ux functions� A

summary of a large number of choices appears in Cockburn and Shu �����

���� Multidimensional Discontinuous Galerkin Meth�

ods

Let us extend the discontinuous Galerkin method to multidimensional conservation laws

of the form

ut �r � f
u�x � b
x� y� z� t�u�� 
x� y� z� 
  � t 	 
� 
�
����a�

where

f
u� � �f
u�� g
u��h
u�� 
�
����b�
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and

r � f
u� � f
u�x � g
u�y � h
u�z� 
�
����c�

The solution u
x� y� z� t�� componenets of the �ux vector f
u�� g
u�� and h
u�� and the

loading b
x� y� z� t�u� are m�vectors and  is a bounde region of ��� Boundary conditions

must be prescribed on � along characteristics that enter the region� We�ll see what this

means by example� Initial condtions prescribe

u
x� y� z� 
� � �� 
x� y� z� 
  
 � � 
�
����d�

Following our analysis of Section �
��� we partition  into a set of �nite elements  j�

j � �� �� � � � � N�� and construct a weak form of the problem on an element� This is done�

as usual� by multiplying 
�
����a� by a test function v 
 L�
 j�� integrating over  j� and

applying the divergence theorem to the �ux to obtain


v�ut�j� � v�f � n 	j �
rv�f�j � 
v�b�j� �v 
 L�
 j�� 
�
����a�

where


v�u�j �

Z
�j

vTudxdydz� 
�
����b�


rv�f�j �
Z
�j

�vTx f
u� � vTy g
u� � vTz h
u��dxdydz� 
�
����c�

f � n � fn � f
u�n� � g
u�n� � h
u�n�� 
�
����d�

and

� v�f � n 	j�

Z
��j

vTfndS� 
�
����e�

The vector n � �n�� n�� n��
T is the unit outward normal vector to � and dS is a surface

in�nitessimal on � j �

Only the normal component of the �ux is involved in 
�
������ hence� its approxi�

mation on � j is the same as the one�dimensional problems of Section �
��� Thus� the

numerical normal �ux function can be taken as a one�dimensional numerical �ux using

solution values on each side of � j � In order to specify this more precisely� let nbj�k�

k � �� �� � � � � NE� denote the indices of the NE elements sharing the bounding faces of

 j and let � j�k� k � �� �� � � � � NE� be the faces of  j 
Figure �
������ Then� we write


�
����a� in the more explicit form


v�ut�j �

NEX
k��

� v�F n
Uj�Unbj�k� 	j�k �
rv�f�j � 
v�b�j� �v 
 L�
 j�� 
�
�����
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Ω

ΩΩ

Ω

j

nb

nb
j,1

nb
j,3 j,2

Figure �
����� Element j and its neighboring elements indicating that the segments � j�k�
k � �� �� � � � � NE� �

Without the need to maintain inter�element continuity� virtually any polynomial basis

can be used for the approximate solutionUj
x� y� z� t� on  j� Tensor products of Legendre

polynomials can provide a basis on square or cubic canonical elements� but these are

unavailable for triangles and tetrahedra� Approximations on triangles and tetrahedra can

use a basis of monomial terms� Focusing on two�dimensional problems on the canonical


right �	�� triangle� we write the �nite element solution in the usual form

Uj
x� y� t� �

npX
k��

ckjNk
�� ��� 
�
�����

where np � 
p� ��
p� ���� is the number of monomial terms in a complete polynomial

of degree p� A basis of monomial terms would set

N� � �� N� � �� N� � �� � � � � Nnp � �p� 
�
���	�
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All terms in the mass matrix can be evaluated by exact integration on the canonical

triangle 
cf� Problem � at the end of this section� as long as it has straight sides�

however� without orthogonality� the mass matrix will not be diagonal� This is not a

severe restriction since the mass matrix is independent of time and� thus� need only be

inverted 
factored� once� The ill�conditioning of the mass matrix at high p is a more

important concern with the monomial basis 
�
���	��

Ill�conditioning can be reduced and the mass matrix diagonalized by extracting an

orthogonal basis from the monomial basis 
�
���	�� This can be done by the Gram�

Schmidt orthogonalization process shown in Figure �
����� The inner product and norm

are de�ned in L� on the canonical element as

procedure gram
N�
!N� �� N��kN�k���
for k �� � to np do

t �� Nk �
Pk��

i�� 
Nk� !Ni�� !Ni
!Nk �� t�ktk���

bf end for
return !N

Figure �
����� Gram�Schmidt process to construct an orthogonal basis !Nk k � �� �� � � � � np
from a basis of monomials Nk� k � �� �� � � � � np �


u� v�� �

Z �

�

Z ���

�

uvd�d�� kuk��� � 
u� u����� � 
�
����a�

The result of the Gram�Schmidt process is a basis !Nk� k � �� �� � � � � np that satis�es the

orthogonality condition


 !Ni� !Nk� � �i�k� i� k � �� �� � � � � np� 
�
����b�

The actual process can be done using symbolic computation using a computer algebra

system such as MAPLE or MATHEMATICA 
cf� Remacle et al� ���� and Problem �

at the end of this section��

Example ������� We will illustrate some results using the discontinuous Galerkin

method to solve two� and three�dimensional compressible �ow problems involving the
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Euler equations� This complex nonlinear system has the form of 
�
����a� with

u �

�
�����

�
m
n
l
e

�
����� � f
u� � �f
u�� g
u��h
u�� �

�
�����

m n l
m���� p nm�� lm��
mn�� n��� � p ln��
ml�� nl�� l���� p


e� p�m�� 
e� p�n�� 
e � p�b��

�
����� �

b
x� t�u� �

�
�����












�
����� � 
�
����a�

Here� � is the �uid density� m� n� and l are the Cartesian components of the momentum

vector per unit volume� e is the total energy per unit volume� and p is the pressure� which

must satisfy an equation of state of the form

p � 
� � ���e� 
m� � n� � l������� 
�
����b�

This equation of state assumes an ideal �uid with gas constant ��

Let us consider a classical Rayleigh�Taylor instability which has a heavy 
� � �� �uid

above a light 
� � �� �uid 
Figure �
������ This hydrostatic con�guration is unstable and

any slight perturbation will cause the heavier �uid to fall and the lighter one to rise� The

�uid motion is quite complex and Remacle et al� ���� simulated it using discontinuous

Galerkin methods� They considered two�dimensional motion 
l � 
� ���z � 
 in 
�
������

with the initial perturbation

� �

�
�� if 
 � y � ���
�� if ��� � y � �

� p �

�
���� y� if 
 � y � ���
�
�� y�� if ��� � y � �

u � �x sin ��x cos �y sin
��� �y� v � ��y cos � sin� �y�

Here u� v� and w are the Cartesian velocity components and � � 	��� 
 � �� and �x and

�y were chosen to be small� The boundary conditions specify that u � 
 on the sides and

top and v � 
 on the bottom�

Solutions for the density � at t � ��� are shown in Figure �
�� for computations

with p � 
 to �� The mesh used for all values of p is shown in Figure �
��� The total

number of vector degrees of freedom for two�dimensional discontinuous Galerkin methods

is N�np� Since there are four unknowns per element 
�� m� n� and e� for two�dimensional

�ows� there are �
��� �
��� ��
��� and �
��
 unknowns for degrees p � 
� �� �� and

�� respectively� Fluxes were evaluated using Roe�s linearized �ux approximation �����

No limiting was used for this computation� A high�frequency �ltering ���� was used to

suppress oscillations in the vicinity of the interface separating the two �uids�
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1/4

1/2

1/2ρ = 1

ρ = 2

Figure �
����� Con�guration for the Rayleigh�Taylor instability of Example �
����� There
are solid walls on the bottom and sides and open �ow at the top�

The results with p � 
 show very little structure of the solution� Those with p � �

show more�and�more detail of the �ow� There is no exact solution of this problem� so

it is not possible to appraise the e�ects of using higher degree polynomials� however�

solutions with more detail are assumed to be more correct�

Remacle et al� ���� also did computations using adaptive p�re�nement� There is no

error estimate available for the Euler equations� so they used an error indicator Ej on

element j consisting of

Ej �

Z
�j

r� � r�dV �
�X

k��

�����
Z
��j


�j � �nbj�k�dS

����� �
This can be shown ���� to be the length of the interface that separates the two �uids

on  j� Remacle et al� ���� increased the degree on elements where Ej was above the

median of all error indicators� Results using this adaptive p�re�nement strategy with p

ranging from � to � are shown in Figure �
��� The mesh used for these computations was
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Figure �
����� Densities for the Rayleigh�Taylor instability of Example �
���� at t � ���
and p � 
 to �� The mesh used for all computations is shown at the left�

a uniform bisection of each element of the mesh shown in Figure �
�� into four elements�

Successive frames in Figure �
�� show the selected values of p and the density � at

t � 
��	� ���� and ��	� The computations show the complex series of bifurcations that

occur at the interface between the two �uids��

Example ������� Flaherty et al� ���� solve a �ow problem for the three�dimensional Eu�

ler equations 
�
����� in a tube containing a vent 
Figure �
��� using a piecewise�constant

discontinuous Galerkin method� A van Leer �ux vector splitting 
�
���� � �
����
� ����

was used to evaluate �uxes� No limiting is necessary with a �rst�order method� The main

tube initially had a supersonic �ow at a Mach number 
ratio of the speed of the �uid to

the speed of sound� of ����� There was no �ow in the vent� At time t � 
 a hypothetical

diaphragm between the main and vent cylinders is ruptured and the �ow expands into

the vent� Flaherty et al� citeFLS�� solve this problem using an adaptive h�re�nement

procedure� They used the magnitude of density jumps across element boundaries as a

re�nement indicator� Solutions for the Mach number at t � 
 and �
�� are shown on the

left of Figure �
�� for a portion of the problem domain� The mesh used in each each case
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Figure �
���	� Density for the Rayleigh�Taylor instability of Example �
���� at t � 
��	�
���� and ��	 
left to right� obtained by adaptive p�re�nement� The values of p used on
each element are shown in the �rst� third� and �fth frames with blue denoting p � � and
red denoting p � ��

is shown on the right of the �gure�

A shock forms on the downwind end of the vent tube and expansion forms on the

upwind end� The mesh is largely concentrated in these regions where the rapid solution

changes occur� The initial mesh consisted of ������ elements� This rose to more than

�

�


 elements during the adaptive enrichment� This computation was done on ��

processors of a parallel computer� The coloring of the images on the right of Figure �
��

indicates processor assignments�

The discontinuous Galerkin method is still evolving and many questions regarding �ux

evaluation� limiting� a posteriori error estimation� the treatment of di�usive problems�

and its e�ciency relative to standard �nite element methods remain unanswered�

Problems

�� Construct a typical term in the mass matrix on the canonical element by integrating

Z �

�

Z ���

�

Nm
�� ��Nn
�� ��d�d�

using the basis of monomials 
�
���	��

�� Use the monomial basis 
�
���	� and the Gram�Schmidt process of Figure �
����

to construct an orthogonal basis on the canonical right triangle for polynomials of
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Figure �
����� Mach contours 
left� and adaptive meshes 
right� used to solve the com�
pressible �ow problem of Example �
���� at t � 
 
top� and t � �
�� 
bottom��

degree p � � or less�



Bibliography

��� M� Abromowitz and I�A� Stegun� Handbook of Mathematical Functions� volume 		

of Applied Mathematics Series� National Bureau of Standards� Gathersburg� �����

��� S� Adjerid� K�D� Devine� J�E� Flaherty� and L� Krivodonova� A posteriori error esti�

mation for discontinuous Galerkin solutions of hyperbolic problems� In preparation�

�


�

��� F� Bassi and S� Rebay� A high�order accurate discontinuous �nite element method

for the numerical solution of the compressible navier�stokes equations� Journal of

Computational Physics� �������"���� �����

��� C�E� Baumann and J�T� Oden� A discontinuous hp �nite element method for

convection�di�usion problems� to appear� �����

�	� K�S� Bey and J�T� Oden� hp�version discontinuous galerkin method for hyper�

bolic conservation laws� Computer Methods in Applied Mechanics and Engineering�

�����	�"���� �����

��� K�S� Bey� J�T� Oden� and A� Patra� hp�version discontinuous galerkin method for hy�

perbolic conservation laws� A parallel strategy� International Journal of Numerical

Methods in Engineering� �������"��
�� ���	�

��� K�S� Bey� J�T� Oden� and A� Patra� A parallel hp�adaptive discontinuous galerkin

method for hyperbolic conservation laws� Applied Numerical Mathematics� �
����"

���� �����

��� R� Biswas� K�D� Devine� and J�E� Flaherty� Parallel adaptive �nite element methods

for conservation laws� Applied Numerical Mathematics� ����		"���� �����

��� A�J� Chorin� Random choice solution of hyperbolic systems� Journal of Computa�

tional Physics� �	�	��"	��� �����

��



�� Hyperbolic Problems

��
� B� Cockburn� G� Karniadakis� and C��W� Shu� editors� Discontinous Galerkin Meth�

ods Theory
 Computation and Applications� volume �� of Lecture Notes in Compu�

tational Science and Engineering� Berlin� �


� Springer�

���� B� Cockburn� S��Y� Lin� and C��W� Shu� TVB Runge�Kutta local projection discon�

tinuous �nite element method for conservation laws III� One�dimensional systems�

Journal of Computational Physics� ����
"���� �����

���� B� Cockburn and C��W� Shu� TVB Runge�Kutta local projection discontinuous

�nite element method for conservation laws II� General framework� Mathematics of

Computation� 	�����"��	� �����

���� K� Devine and J�E� Flaherty� Parallel adaptive hp�re�nement techniques for conser�

vation laws� Applied Numerical Mathematics� �
����"���� �����

���� K� Ericksson and C� Johnson� Adaptive �nite element methods for parabolic prob�

lems I� A linear model problem� SIAM Journal on Numerical Analysis� �����"���

�����

��	� K� Ericksson and C� Johnson� Adaptive �nite element methods for parabolic prob�

lems II� Optimal error estimates in l�l� and l�l�� SIAM Journal on Numerical

Analysis� ����
�"��
� ���	�

���� J�E� Flaherty� R� Loy� M�S� Shephard� B�K� Szymanski� J� Teresco� and L� Ziantz�

Adaptive local re�nement with octree load�balancing for the parallel solution of

three�dimensional conservation laws� Journal of Parallel and Distributed Computing�

������"�	�� �����

���� J� Glimm� Solutions in the large for nonlinear hyperbolic systems of equations�

Communications on Pure and Applied Mathematics� ������"��	� ���	�

���� S�K� Godunov� A �nite di�erence method for the numerical computation of dis�

continuous solutions of the equations of �uid dynamics� Mat� Sbornik�� ������"�
��

��	��

���� C� Johnson� Error estimates and adaptive time step control for a class of one step

methods for sti� ordinary di�erential equations� SIAM Journal on Numerical Anal�

ysis� �	��
�"���� �����

��
� P�D� Lax� Hyperbolic Systems of Conservation Laws and the Mathematical Theory

of Shock Waves� Regional Conference Series in Applied Mathematics� No� ��� SIAM�

Philadelphia� �����



����� Multidimensional Discontinuous Galerkin Methods ��

���� W�H� Reed and T�R� Hill� Triangular mesh methods for the neutron transport

equation� Technical Report LA�UR�������� Los Alamos Scienti�c Laboratory� Los

Alamos� �����

���� J��F� Remacle� J�E� Flaherty� and M�S� Shephard� Adaptive order discontinuous

galerkin methods� In preparation� �


�

���� P�L� Roe� Approximate Riemann solvers� parameter vectors� and di�erence schemes�

Journal of Computational Physics� ����	�"���� �����

���� P� Le Saint and P� Raviart� On a �nite element method for solving the newtron

transport equations� In C� de Boor� editor� Mathematical Aspects of Finite Elements

in Partial Di�erential Equations� pages ��"��	� New York� ����� Academic Press�

��	� G�A� Sod� Numerical Methods in Fluid Dynamic� Cambridge University Press�

Cambridge� ���	�

���� J�L Steger and R�F� Warming� Flux vector splitting of the inviscid gasdynamic

equations with applications to �nite di�erence methods� Journal of Computational

Physics� �
����"���� �����

���� B� van Leer� Flux�vector splitting gor the Euler equations� Lecture Notes in Physics�

��
�	
�"	��� �����

���� M�F� Wheeler� An elliptic collocation��nite element method with interior penalties�

SIAM Journal on Numerical Analysis� �	��	�"���� �����


	Introduction
	One Dimensional Finite Element Methods
	Hyperbolic Problems
	Multi Dimensional Variational Principles
	Finite Element Approximation
	Mesh Generation and Assembly
	Numerical Integration
	Analysis of the Finite Element Method
	Adaptive Finite Element Techniques
	Parabolic Problems

