CSCI, MATH 6860
FINITE ELEMENT ANALYSIS

Lecture Notes: Spring 2000

Joseph E. Flaherty
Amos Eaton Professor

Department of Computer Science
Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, New York 12180

(©2000, Joseph E. Flaherty, all rights reserved. These notes are intended for classroom
use by Rensselaer students taking courses CSCI, MATH 6860. Copying or downloading

by others for personal use is acceptable with notification of the author.

i

CSCI, MATH 6860: Finite Element Analysis
Spring 2000

Outline
. Introduction

1.1. Historical Perspective
1.2. Weighted Residual Methods
1.3. A Simple Finite Element Problem

. One-Dimensional Finite Element Methods

2.1. Introduction

2.2. Galerkin’s Method and Extremal Principles
2.3. Essential and Natural Boundary Conditions
2.4. Piecewise Lagrange Approximation

2.5. Hierarchical Bases

2.6. Interpolation Errors
. Multi-Dimensional Variational Principles

3.1. Galerkin’s Method and Extremal Principles
3.2. Function Spaces and Approximation

3.3. Overview of the Finite Element Method
. Finite Element Approximation

4.1. Introduction

4.2. Lagrange Bases on Triangles
4.3. Lagrange Bases on Rectangles
4.4. Hierarchical Bases

4.5. Three-dimensional Bases

4.6. Interpolation Errors
. Mesh Generation and Assembly

5.1. Introduction

il

10.

5.2. Mesh Generation

5.3. Data Structures

5.4. Coordinate Transformations

5.5. Generation of Element Matrices and Their Assembly

5.6. Assembly of Vector Systems
Numerical Integration

6.1. Introduction
6.2. One-Dimensional Gaussian Quadrature

6.3. Multi-Dimensional Gaussian Quadrature
Discretization Errors

7.1. Introduction
7.2. Convergence and Optimality

7.3. Perturbations
Adaptivity

8.1. Introduction
8.2. h-Refinement

8.3. p- and hp-Refinement
Parabolic Problems

9.1. Introduction

9.2. Semi-Discrete Galerkin Methods: The Method of Lines

9.3. Finite Element Methods in Time
9.4. Convergence and Stability

9.5. Convection-Diffusion Systems
Hyperbolic Problems

10.1. Introduction
10.2. Flow Problems and Upwind Weighting
10.3. Artificial Diffusion

iv

10.4.

Streamline Weighting

11. Linear Systems Solution

11.1.
11.2.
11.3.
11.4.
11.5.

Introduction

Banded Gaussian Elimination and Profile Techniques
Nested Dissection and Domain Decomposition
Conjugate Gradient Methods

Nonlinear Problems and Newton’s Method

vi

Bibliography

1] A.K. Aziz, editor. The Mathematical Foundations of the Finite Element Method with
Applications to Partial Differential Equations, New York, 1972. Academic Press.

(2] 1. Babuska, J. Chandra, and J.E. Flaherty, editors. Adaptive Computational Methods
for Partial Differential Equations, Philadelphia, 1983. STAM.

3] I. Babuska, O.C. Zienkiewicz, J. Gago, and E.R. de A. Oliveira, editors. Accuracy
Estimates and Adaptive Refinements in Finite Element Computations. John Wiley
and Sons, Chichester, 1986.

[4] K.-J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs, 1995.

[5] E.B. Becker, G.F. Carey, and J.T. Oden. Finite Elements: An Introduction, vol-
ume [. Prentice Hall, Englewood Cliffs, 1981.

6] M.W. Bern, J.E. Flaherty, and M. Luskin, editors. Grid Generation and Adaptive
Algorithms, volume 113 of The IMA Volumes in Mathematics and its Applications,
New York, 1999. Springer.

[7] C.A. Brebia. The Boundary Element Method for Engineers. Pentech Press, London,
second edition, 1978.

[8] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, New York, 1994.

9] G.F. Carey. Computational Grids: Generation, Adaptation, and Solution Strategies.
Series in Computational and Physical Processes in Mechanics and Thermal science.
Taylor and Francis, New York, 1997.

[10] G.F. Carey and J.T. Oden. Finite Elements: A Second Course, volume II. Prentice
Hall, Englewood Cliffs, 1983.

[11] G.F. Carey and J.T. Oden. Finite Elements: Computational Aspects, volume III.
Prentice Hall, Englewood Cliffs, 1984.

vii

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam, 1978.

K. Clark, J.E. Flaherty, and M.S. Shephard, editors. Applied Numerical Mathemat-
ics, volume 14, 1994. Special Issue on Adaptive Methods for Partial Differential

Equations.

R.D. Cook, D.S. Malkus, and M.E. Plesha. Concepts and Applications of Finite
Element Analysis. John Wiley and Sons, New York, third edition, 1989.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equation. Cambridge, Cambridge, 1996.

G. Fairweather. Finite Element Methods for Differential Equations. Marcel Dekker,
Basel, 1981.

B. Finlayson. The Method of Weighted Residuals and Variational Principles. Aca-
demic Press, New York, 1972.

J.E. Flaherty, P.J. Paslow, M.S. Shephard, and J.D. Vasilakis, editors. Adaptive
methods for Partial Differential Fquations, Philadelphia, 1989. STAM.

R.H. Gallagher, J.T. Oden, C. Taylor, and O.C. Zienkiewicz, editors. Finite FEl-
ements in Fluids: Mathematical Foundations, Aerodynamics and Lubrication, vol-
ume 2, London, 1975. John Wiley and Sons.

R.H. Gallagher, J.T. Oden, C. Taylor, and O.C. Zienkiewicz, editors. Finite Ele-
ments in Fluids: Viscous Flow and Hydrodynamics, volume 1, London, 1975. John
Wiley and Sons.

R.H. Gallagher, O.C. Zienkiewicz, J.T. Oden, M. Morandi Cecchi, and C. Taylor,
editors. Finite Elements in Fluids, volume 3, London, 1978. John Wiley and Sons.

V. Girault and P.A. Raviart. Finite Element Approzimations of the Navier-Stokes
Equations. Number 749 in Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1979.

T.J.R. Hughes, editor. Finite Element Methods for Convection Dominated Flows,
volume 34 of AMD, New York, 1979. ASME.

T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Prentice Hall, Englewood Cliffs, 1987.

viil

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

B.M. Irons and S. Ahmed. Techniques of Finite Elements. Ellis Horwood, London,
1980.

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-
ment method. Cambridge, Cambridge, 1987.

N. Kikuchi. Finite Element Methods in Mechanics. Cambridge, Cambridge, 1986.

Y.W. Kwon and H. Bang. The Finite Element Method Using Matlab. CRC Mechan-
ical Engineering Series. CRC, Boca Raton, 1996.

L. Lapidus and G.F. Pinder. Numerical Solution of Partial Differential Equations

in Science and Engineering. Wiley-Interscience, New York, 1982.

D.L. Logan. A First Course in the Finite Element Method using ALGOR. PWS,
Boston, 1997.

J.T. Oden. Finite Elements of Nonlinear Continua. Mc Graw-Hill, New York, 1971.

J.T. Oden and G.F. Carey. Finite Elements: Mathematical Aspects, volume IV.
Prentice Hall, Englewood Cliffs, 1983.

D.R.J. Owen and E. Hinton. Finite Elements in Plasticity-Theory and Practice.
Pineridge, Swansea, 1980.

D.D. Reddy and B.D. Reddy. Introductory Functional Analysis: With Applications
to Boundary Value Problems and Finite Elements. Number 27 in Texts in Applied
Mathematics. Springer-Verlag, Berlin, 1997.

J.N. Reddy. The Finite Element Method in Heat Transfer and Fluid Dynamics.
CRC, Boca Raton, 1994.

C. Schwab. P- And Hp- Finite Element Methods: Theory and Applications in Solid
and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Claren-
don, London, 1999.

G. Strang and G. Fix. Analysis of the Finite Element Method. Prentice-Hall, En-
glewood Cliffs, 1973.

B. Szabé and 1. Babuska. Finite Element Analysis. John Wiley and Sons, New York,
1991.

F. Thomasset. Implementation of Finite Element Methods for Navier-Stokes FEqua-
tions. Springer Series in Computational Physics. Springer-Verlag, New York, 1981.

X

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Number 1054
in Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1984.

R. Verfiirth. A Review of Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Teubner-Wiley, Stuttgart, 1996.

R. Vichevetsky. Computer Methods for Partial Differential Equations: Elliptic Equa-
tions and the Finite-Element Method, volume 1. Prentice-Hall, Englewood Cliffs,
1981.

R. Wait and A.R. Mitchell. The Finite Element Analysis and Applications. John
Wiley and Sons, Chichester, 1985.

R.E. White. An Introduction to the Finite Element Method with Applications to
Nonlinear Problems. John Wiley and Sons, New York, 1985.

J.R. Whiteman, editor. The Mathematics of Finite Elements and Applications V,
MAFELAP 198/, London, 1985. Academic Press.

J.R. Whiteman, editor. The Mathematics of Finite Elements and Applications VI,
MAFELAP 1987, London, 1988. Academic Press.

0O.C. Zienkiewicz. The Finite Element Method. Mc Graw-Hill, New York, third
edition, 1977.

0.C. Zienkiewicz and R.L. Taylor. Finite Element Method: Solid and Fluid Mechan-
ics Dynamics and Non-Linearity. Mc Graw-Hill, New York, 1991.

Chapter 1

Introduction

1.1 Historical Perspective

The finite element method is a computational technique for obtaining approximate solu-
tions to the partial differential equations that arise in scientific and engineering applica-
tions. Rather than approximating the partial differential equation directly as with, e.g.,
finite difference methods, the finite element method utilizes a variational problem that
involves an integral of the differential equation over the problem domain. This domain
is divided into a number of subdomains called finite elements and the solution of the
partial differential equation is approximated by a simpler polynomial function on each
element. These polynomials have to be pieced together so that the approximate solution
has an appropriate degree of smoothness over the entire domain. Once this has been
done, the variational integral is evaluated as a sum of contributions from each finite el-
ement. The result is an algebraic system for the approximate solution having a finite
size rather than the original infinite-dimensional partial differential equation. Thus, like
finite difference methods, the finite element process has discretized the partial differen-
tial equation but, unlike finite difference methods, the approximate solution is known

throughout the domain as a pieceise polynomial function and not just at a set of points.

Logan [10] attributes the discovery of the finite element method to Hrennikof [8] and
McHenry [11] who decomposed a two-dimensional problem domain into an assembly of
one-dimensional bars and beams. In a paper that was not recognized for several years,
Courant [6] used a variational formulation to describe a partial differential equation with
a piecewise linear polynomial approximation of the solution relative to a decomposition of
the problem domain into triangular elements to solve equilibrium and vibration problems.
This is essentially the modern finite element method and represents the first application

where the elements were pieces of a continuum rather than structural members.

Turner et al. [13] wrote a seminal paper on the subject that is widely regarded

2 Introduction

as the beginning of the finite element era. They showed how to solve one- and two-
dimensional problems using actual structural elements and triangular- and rectangular-
element decompositions of a continuum. Their timing was better than Courant’s [6],
since success of the finite element method is dependent on digital computation which
was emerging in the late 1950s. The concept was extended to more complex problems
such as plate and shell deformation (cf. the historical discussion in Logan [10], Chapter
1) and it has now become one of the most important numerical techniques for solving
partial differential equations. It has a number of advantages relative to other methods,

including
e the treatment of problems on complex irregular regions,
e the use of nonuniform meshes to reflect solution gradations,
e the treatment of boundary conditions involving fluxes, and
e the construction of high-order approximations.

Originally used for steady (elliptic) problems, the finite element method is now used
to solve transient parabolic and hyperbolic problems. Estimates of discretization errors
may be obtained for reasonable costs. These are being used to verify the accuracy of the
computation, and also to control an adaptive process whereby meshes are automatically
refined and coarsened and/or the degrees of polynomial approximations are varied so as

to compute solutions to desired accuracies in an optimal fashion [1, 2, 3, 4, 5, 7, 14].

1.2 Weighted Residual Methods

Our goal, in this introductory chapter, is to introduce the basic principles and tools of

the finite element method using a linear two-point boundary value problem of the form

Llu] := —%(p(x)g—z) +q(x)u = f(x), O<z<l, (1.2.1a)
u(0) = u(1) = 0. (1.2.1Db)

The finite element method is primarily used to address partial differential equations and is
hardly used for two-point boundary value problems. By focusing on this problem, we hope
to introduce the fundamental concepts without the geometric complexities encountered
in two and three dimensions.

Problems like (1.2.1) arise in many situations including the longitudinal deformation

of an elastic rod, steady heat conduction, and the transverse deflection of a supported

1.2. Weighted Residual Methods 3

cable. In the latter case, for example, u(x) represents the lateral deflection at position
x of a cable having (scaled) unit length that is subjected to a tensile force p, loaded by
a transverse force per unit length f(z), and supported by a series of springs with elastic
modulus ¢ (Figure 1.2.1). The situation resembles the cable of a suspension bridge. The
tensile force p is independent of x for the assumed small deformations of this model, but

the applied loading and spring moduli could vary with position.

p p X

T

a(x) u(x)

f() i i

Figure 1.2.1: Deflection u of a cable under tension p, loaded by a force f per unit length,
and supported by springs having elastic modulus q.

Mathematically, we will assume that p(x) is positive and continuously differentiable
for z € [0,1], g() is non-negative and continuous on [0,1], and f(z) is continuous on
[0, 1].

Even problems of this simplicity cannot generally be solved in terms of known func-
tions; thus, the first topic on our agenda will be the development of a means of calculating
approximate solutions of (1.2.1). With finite difference techniques, derivatives in (1.2.1a)
are approximated by finite differences with respect to a mesh introduced on [0, 1] [12].
With the finite element method, the method of weighted residuals (MWR) is used to
construct an integral formulation of (1.2.1) called a variational problem. To this end, let

us multiply (1.2.1a) by a test or weight function v and integrate over (0, 1) to obtain
(v, L[u] = f) = 0. (1.2.2a)

We have introduced the L? inner product

(v,u) = /Olvuda: (1.2.2Dh)

to represent the integral of a product of two functions.

The solution of (1.2.1) is also a solution of (1.2.2a) for all functions v for which the
inner product exists. We’ll express this requirement by writing v € L?(0,1). All functions
of class L?*(0,1) are “square integrable” on (0, 1); thus, (v, v) exists. With this viewpoint

and notation, we write (1.2.2a) more precisely as

(v, Llu] —) =0, Yo e L*0,1). (1.2.2¢)

4 Introduction

Equation (1.2.2¢) is referred to as a variational form of problem (1.2.1). The reason for
this terminology will become clearer as we develop the topic.

Using the method of weighted residuals, we construct approximate solutions by re-
placing w and v by simpler functions U and V' and solving (1.2.2¢) relative to these

choices. Specifically, we’ll consider approximations of the form

u(r) ~U(x) = Z cjp;(z), (1.2.3a)
v(z) = V(z) = Zdjz/)j(x). (1.2.3b)

The functions ¢;(z) and v¢;(z), j = 1,2,..., N, are preselected and our goal is to
determine the coefficients ¢;, j = 1,2,..., N, so that U is a good approximation of u.

For example, we might select

¢](1‘):¢](1‘):Sinjﬂ-x7 j:]‘727"'7N7

to obtain approximations in the form of discrete Fourier series. In this case, every function
satisfies the boundary conditions (1.2.1b), which seems like a good idea.

The approximation U is called a trial function and, as noted, V' is called a test func-
tion. Since the differential operator L[u] is second order, we might expect u € C?(0,1).
(Actually, u can be slightly less smooth, but C? will suffice for the present discussion.)
Thus, it’s natural to expect U to also be an element of C?(0,1). Mathematically, we re-
gard U as belonging to a finite-dimensional function space that is a subspace of C?(0, 1).
We express this condition by writing U € S¥(0,1) € C?(0,1). (The restriction of these
functions to the interval 0 < x < 1 will, henceforth, be understood and we will no longer
write the (0,1).) With this interpretation, we’ll call SV the trial space and regard the
preselected functions ¢;(x), j =1,2,..., N, as forming a basis for SV.

Likewise, since v € L?, we’ll regard V as belonging to another finite-dimensional
function space SV called the test space. Thus, V € S¥ ¢ L? and Yi(zr), 7 =1,2,... N,
provide a basis for SV.

Now, replacing v and u in (1.2.2¢) by their approximations V' and U, we have
(V,L[U]—f)=0, VVeSsV (1.2.4a)
The residual

r(z) = L[U] — f(z) (1.2.4b)

1.2. Weighted Residual Methods 5

is apparent and clarifies the name “method of weighted residuals.” The vanishing of the
inner product (1.2.4a) implies that the residual is orthogonal in L? to all functions V' in
the test space SN.

Substituting (1.2.3) into (1.2.4a) and interchanging the sum and integral yields

N

> di(y;, LIUT = f)=0, Vi, j=1,2,... N. (1.2.5)
j=1
Having selected the basis ¢;, j = 1,2,... , N, the requirement that (1.2.4a) be satisfied for
all V € SV implies that (1.2.5) be satisfied for all possible choices of dj, k =1,2,... , N.

This, in turn, implies that
(¢, LIU] = f) =0, j=1,2,...,N. (1.2.6)

Shortly, by example, we shall see that (1.2.6) represents a linear algebraic system for the
unknown coefficients ¢, k =1,2,... , N.

One obvious choice is to select the test space SN %o be the same as the trial space
and use the same basis for each; thus, ¢y (z) = ¢p(z), £ = 1,2,... , N. This choice leads

to Galerkin’s method
(6, Llu] — f)=0, j=1,2,...,N, (1.2.7)

which, in a slightly different form, will be our “work horse.” With ¢; € C?, j =
1,2,..., N, the test space clearly has more continuity than necessary. Integrals like
(1.2.4) or (1.2.6) exist for some pretty “wild” choices of V. Valid methods exist when V'
is a Dirac delta function (although such functions are not elements of L?) and when V
is a piecewise constant function (¢f. Problems 1 and 2 at the end of this section).

There are many reasons to prefer a more symmetric variational form of (1.2.1) than
(1.2.2), e.g., problem (1.2.1) is symmetric (self-adjoint) and the variational form should
reflect this. Additionally, we might want to choose the same trial and test spaces, as with
Galerkin’s method, but ask for less continuity on the trial space SY. This is typically
the case. As we shall see, it will be difficult to construct continuously differentiable
approximations of finite element type in two and three dimensions. We can construct
the symmetric variational form that we need by integrating the second derivative terms
in (1.2.2a) by parts; thus, using (1.2.1a)

1 1
/ v[=(pu)" + qu — fldz = / (v'pu’ + vqu — v f)dr — vpu')y = 0 (1.2.8)
0 0

where () = d()/dx. The treatment of the last (boundary) term will need greater

attention. For the moment, let v satisfy the same trivial boundary conditions (1.2.1b) as

6 Introduction

u. In this case, the boundary term vanishes and (1.2.8) becomes
Alv,u) — (v, f) =0 (1.2.9a)

where
1
Av,u) = / (v'pu’ 4+ vqu)dz. (1.2.9b)
0

The integration by parts has eliminated second derivative terms from the formulation.
Thus, solutions of (1.2.9) might have less continuity than those satisfying either (1.2.1) or
(1.2.2). For this reason, they are called weak solutions in contrast to the strong solutions
of (1.2.1) or (1.2.2). Weak solutions may lack the continuity to be strong solutions, but
strong solutions are always weak solutions. In situations where weak and strong solutions
differ, the weak solution is often the one of physical interest.

Since we’ve added a derivative to v by the integration by parts, v must be restricted
to a space where functions have more continuity than those in L?. Having symmetry in

mind, we will select functions v and v that produce bounded values of

Alu,u) = /0 [p(v')? + qu?)dz.

Actually, since p and ¢ are smooth functions, it suffices for v and v to have bounded

values of
1
[1w+ la (1:2.10)
0

Functions where (1.2.10) exists are said to be elements of the Sobolev space H'. We've
also required that u and v satisfy the boundary conditions (1.2.1b). We identify those
functions in H' that also satisfy (1.2.1b) as being elements of H;]. Thus, in summary,

the variational problem consists of determining v € H{ such that
A(v,u) = (v, f), Vv € Hj. (1.2.11)

The bilinear form A(v,u) is called the strain energy. In mechanical systems it frequently
corresponds to the stored or internal energy in the system.

We obtain approximate solutions of (1.2.11) in the manner described earlier for the
more general method of weighted residuals. Thus, we replace u and v by their approxi-
mations U and V according to (1.2.3). Both U and V' are regarded as belonging to the
same finite-dimensional subspace S}’ of H} and ¢;, j = 1,2,..., N, forms a basis for

SY¥. Thus, U is determined as the solution of

AV, U)=(V,f), vV esp. (1.2.12a)

1.2. Weighted Residual Methods 7

The substitution of (1.2.3b) with ; replaced by ¢; in (1.2.12a) again reveals the more

explicit form
Alp;,U) = (¢,), j=1,2,...,N. (1.2.12b)

Finally, to make (1.2.12b) totally explicit, we eliminate U using (1.2.3a) and interchange
a sum and integral to obtain

N
> aAld k) = (05, f), i=12,...,N. (1.2.12¢)
k=1

Thus, the coefficients ¢, k =1,2,... , N, of the approximate solution (1.2.3a) are deter-
mined as the solution of the linear algebraic equation (1.2.12¢). Different choices of the
basis ¢;, j = 1,2,..., N, will make the integrals involved in the strain energy (1.2.9b)
and L? inner product (1.2.2b) easy or difficult to evaluate. They also affect the accuracy
of the approximate solution. An example using a finite element basis is presented in the
next section.

Problems

1. Consider the variational form (1.2.6) and select
Yi(r) = 0(r — xj), j=1,2,...,N,

where 0(x) is the Dirac delta function satisfying

d(xz) =0, x # 0, /00 §(x)dr =1,

and
O<m<ay<...<zy <L

Show that this choice of test function leads to the collocation method
£[U]_f(x)|:v:xj:0, j:1,2,...,N.

Thus, the differential equation (1.2.1) is satisfied exactly at N distinct points on
(0,1).

2. The subdomain method uses piecewise continuous test functions having the basis

L itr ez, miiy2)
V() = { 0, otherwise

where x;_1/9 = (; + x;_1)/2. Using (1.2.6), show that the approximate solution

U(z) satisfies the differential equation (1.2.1a) on the average on each subinterval

(xj—l/anj-i-l/Z)a .] =]-727 s 7N'

8 Introduction

3. Consider the two-point boundary value problem
—u" +u=u, 0<z<l, u(0) = u(1) =0,

which has the exact solution

sinh z

sinh 1’

Solve this problem using Galerkin’s method (1.2.12¢) using the trial function

u(z) =z —

U(x) = ¢sinmz.

Thus, N = 1, ¢1(x) = ¢1(x) = sinmz in (1.2.3). Calculate the error in strain
energy as A(u,u) — A(U,U), where A(u,v) is given by (1.2.9b).

1.3 A Simple Finite Element Problem

Finite element methods are weighted residuals methods that use bases of piecewise poly-
nomials having small support. Thus, the functions ¢(z) and ¢(x) of (1.2.3, 1.2.4) are
nonzero only on a small portion of problem domain. Since continuity may be difficult to
impose, bases will typically use the minimum continuity necessary to ensure the existence
of integrals and solution accuracy. The use of piecewise polynomial functions simplify
the evaluation of integrals involved in the L? inner product and strain energy (1.2.2b,
1.2.9b) and help automate the solution process. Choosing bases with small support leads
to a sparse, well-conditioned linear algebraic system (1.2.12c)) for the solution.

Let us illustrate the finite element method by solving the two-point boundary value

problem (1.2.1) with constant coefficients, i.e.,
—pu"” + qu = f(z), 0<z<l, u(0) = u(1) =0, (1.3.1)

where p > 0 and ¢ > 0. As described in Section 1.2, we construct a variational form of
(1.2.1) using Galerkin’s method (1.2.11). For this constant-coefficient problem, we seek

to determine u € Hj satisfying
A(v,u) = (v, f), Vv € Hy, (1.3.2a)

where

(v,u) = /01 vudz, (1.3.2b)

1
A(U,u):/ (v'pu’ 4+ vqu)dz. (1.3.2c)
0

1.3. A Simple Finite Element Problem 9

With v and v belonging to H|, we are sure that the integrals (1.3.2b,c) exist and that
the trivial boundary conditions are satisfied.

We will subsequently show that functions (of one variable) belonging to H!' must
necessarily be continuous. Accepting this for the moment, let us establish the goal of
finding the simplest continuous piecewise polynomial approximations of v and v. This

would be a piecewise linear polynomial with respect to a mesh
O=zrp<m <...<zny=1 (133)

introduced on [0, 1]. Each subinterval (x;_1,2,), 7 =1,2,...,N,iscalled a finite element.

The basis is created from the “hat function”

é__l;j__lla if v, <z <
0, otherwise
b o,
1 —
| | | | X
I I I I I |
XO Xj-l Xj Xj+1 XN

Figure 1.3.1: One-dimensional finite element mesh and piecewise linear hat function

¢;(x).

As shown in Figure 1.3.1, ¢;(x) is nonzero only on the two elements containing the
node x;j. It rises and descends linearly on these two elements and has a maximal unit

value at * = ;. Indeed, it vanishes at all nodes but z;, i.e.,

1, if T = Tj
ZICORITE {0, otherwise (1.3.4b)

Using this basis with (1.2.3), we consider approximations of the form
N-1

Z cjo;(x (1.3.5)

Jj=1

Let’s examine this result more closely.

10

Introduction

)

A UX) C.

0

+1

9.0 @

X

-
L

I
%o %1 X X1 N

Figure 1.3.2: Piecewise linear finite element solution U(z).

1. Since each ¢;(x) is a continuous piecewise linear function of z, their summation

U is also continuous and piecewise linear. Evaluating U at a node x; of the mesh

using (1.3.4b) yields
N-1

Ulze) = Y ¢jdy(an) = on.

j=1
Thus, the coefficients ¢, k = 1,2,... , N — 1, are the values of U at the interior
nodes of the mesh (Figure 1.3.2).

. By selecting the lower and upper summation indices as 1 and N —1 we have ensured

that (1.3.5) satisfies the prescribed boundary conditions

As an alternative, we could have added basis elements ¢y(z) and ¢y (z) to the

approximation and written the finite element solution as
N
Ulz) =) cjp(w). (1.3.6)
§=0

Since, using (1.3.4b), U(zg) = ¢o and U(xy) = cy, the boundary conditions are
satisfied by requiring ¢y = ¢y = 0. Thus, the representations (1.3.5) or (1.3.6) are

identical; however, (1.3.6) would be useful with non-trivial boundary data.

. The restriction of the finite element solution (1.3.5) or (1.3.6) to the element

[z;_1,z;] is the linear function

Ux) = ¢jaidj-1(z) + ¢io(x), @ € [wj-1,24], (1.3.7)

1.3. A Simple Finite Element Problem 11

since ¢;_1 and ¢; are the only nonzero basis elements on [z,_1, z;] (Figure 1.3.2).

Using Galerkin’s method in the form (1.2.12¢), we have to solve

=

-1

CkA(¢j7¢)k) = (¢j7f)7 Jj=12,...,N-L (138)

1

i

Equation (1.3.8) can be evaluated in a straightforward manner by substituting replacing
¢r and ¢; using (1.3.4) and evaluating the strain energy and L? inner product according
to (1.3.2b,c). This development is illustrated in several texts (e.g., [9], Section 1.2).
We’ll take a slightly more complex path to the solution in order to focus on the computer
implementation of the finite element method. Thus, write (1.2.12a) as the summation of

contributions from each element

N
S 4;(V,U) = (V. f);]=0, WV eSY, (1.3.92)

7=1

where

A;(V,U) = A7 (V,U) + AY (V,U), (1.3.9b)
AS(V,U) = / | pV'U"dx, (1.3.9¢)
A;VI(V,U):/m_ qVUdz, (1.3.9d)
V.= [Vi (1.3.90

It is customary to divide the strain energy into two parts with AJS arising from internal
energies and Aé‘/" arising from inertial effects or sources of energy.
Matrices are simple data structures to manipulate on a computer, so let us write the

restriction of U(z) to [x;_1,z;] according to (1.3.7) as
U(z) = [¢j 1, ¢] [(/);;;Eg)] = [¢; 1(x), $j(2)] [Cgl] .z €lr1,a) (1.3.10a)

We can, likewise, use (1.2.3b) to write the restriction of the test function V() to [x;_1, z;]

in the same form

Vo) =) |) [=loi@a@l | G| selnaanl @i

12 Introduction

Our task is to substitute (1.3.10) into (1.3.9c-e) and evaluate the integrals. Let us begin
by differentiating (1.3.10a) while using (1.3.4a) to obtain

U'(x):[cj_l,cj]{_mﬂ:[-1/@,1/@][‘/’%1], velr o) (13.11a)

where

hj=x;—x;1, j=12...,N. (1.3.11b)
Thus, U'(x) is constant on [z,_1,z;] and is given by the first divided difference

U'(z) = 2—-L T € [xj_1, 7]

Substituting (1.3.11) and a similar expression for V'(x) into (1.3.9b) yields

A7 (V,U) = /;jlp[djhdj] { _%Zj] [=1/hj, 1/hy] { Cgl] dx

j_

awor=aan([o] 1) %]

The integrand is constant and can be evaluated to yield

or

AS(V,U) = [d;j—1, djK; { Cijl } . K; :hﬁj { _1 _1 } : (1.3.12)

The 2 x 2 matrix K is called the element stiffness matriz. It depends on j through hj,

but would also have such dependence if p varied with x. The key observation is that

K can be evaluated without knowing c¢;_i, ¢;, d;_1, or d; and this greatly simplifies the
automation of the finite element method.

The evaluation of A} proceeds similarly by substituting (1.3.10) into (1.3.9d) to

obtain

AN (VU) = / 7 dldy 1, dy] { ‘@j] (651, 0] {] dz.

j
:vj_l Cj
With ¢ a constant, the integrand is a quadratic polynomial in x that may be integrated
exactly (c¢f. Problem 1 at the end of this section) to yield
qgh; | 2 1
A;M(Vv, U) = [djfl,dJ]M] [cj_lcj] y M] = ?J |: 1 2 :| y (1313)
where M is called the element mass matriz because, as noted, it often arises from inertial

loading.

1.3. A Simple Finite Element Problem 13

The final integral (1.3.9e) cannot be evaluated exactly for arbitrary functions f(x).

Without examining this matter carefully, let us approximate it by its linear interpolant

f@) = fiadja(x) + fi¢i(z), @€ lrj,), (1.3.14)

where f; := f(x;). Substituting (1.3.14) and (1.3.10b) into (1.3.9e) and evaluating the
integral yields

(V. f); = / j [dj-1,d;] [qﬁé; } [Pj-1, @] [f}jl] dr = [d;j_1, d;]l; (1.3.15a)

j —
where

_hi P 2fia+
l; = EJ [fjjl+2fj‘] (1.3.15b)

The vector 1; is called the element load vector and is due to the applied loading f(x).

The next step in the process is the substitution of (1.3.12), (1.3.13), and (1.3.15) into
(1.3.9a) and the summation over the elements. Since this our first example, we’ll simplify
matters by making the mesh uniform with h; = h=1/N, j =1,2,..., N, and summing
A7, AM and (V, f); separately. Thus, summing (1.3.12)

ul al pl 1 —1]7(¢

s _ — i1
sa-swaa 1 1%]
7=1 7=1

The first and last contributions have to be modified because of the boundary conditions

which, as noted, prescribe ¢y = ¢y = dy = dy = 0. Thus,
s p 1 -1 C1
ZA 1][01] [dladZ]E |: 1 1 :| |: C :| + .-

iy, dy1E [o] [o] + v 2] fen]

CN-1

Although this form of the summation can be readily evaluated, it obscures the need for the
matrices and complicates implementation issues. Thus, at the risk of further complexity,

we’ll expand each matrix and vector to dimension N — 1 and write the summation as

1 el

Co
ZAS [dida, -+ dya]7 |

CN-1

14 Introduction

1 -1 ¢
—1 1
p C2
+[d17 d27 e 7dN71]E
CN-1
C1
p €2
+"'+[d17d27"' 7dN71]E
1 -1
-1 1 CN-1
C1
Co
+[d1,d2;"'dN—1]% .
1 CN-1

Zero elements of the matrices have not been shown for clarity. With all matrices and

vectors having the same dimension, the summation is

N
> A =d"Ke, (1.3.16a)
j=1
where
[2 -1 T
-1 2 -1
P -1 2 -1
K=73 _ : (1.3.16b)
-1 2 -1
I -1 2|
c=[c, e, en], (1.3.16¢)
d=[d,dy, - ,dy_1]". (1.3.16d)

The matrix K is called the global stiffness matriz. It is symmetric, positive definite, and
tridiagonal. In the form that we have developed the results, the summation over elements
is regarded as an assembly process where the element stiffness matrices are added into
their proper places in the global stiffness matrix. It is not necessary to actually extend the
dimensions of the element matrices to those of the global stiffness matrix. As indicated
in Figure 1.3.3, the elemental indices determine the proper location to add a local matrix

into the global matrix. Thus, the 2 x 2 element stiffness matrix K; is added to rows

1.3. A Simple Finite Element Problem

A5 = d, %[1] e

s 2]_ —]_ C1
~—~

—_——
A3
2 -1
-1 2 -1
-1 1
p
K==
h

15

- [dQ,de,]% { _1 _H [Z}

|

Figure 1.3.3: Assembly of the first three element stiffness matrices into the global stiffness

matrix.

j — 1 and j and columns j — 1 and j. Some modifications are needed for the first and

last elements to account for the boundary conditions.

The summations of A} and (V, f); proceed in the same manner and, using (1.3.13)

and (1.3.15), we obtain

§=0
where
(4 1
" 1 4 1
6
1 4
i 1
fo+4fi+ fo
l_h, fi+4fa+ f3

6

In—2 +4].£N—1 + fn

(1.3.17a)

(1.3.17b)

(1.3.17¢)

(1.3.17d)

16 Introduction

The matrix M and the vector 1 are called the global mass matriz and global load vector,
respectively.
Substituting (1.3.16a) and (1.3.17a,b) into (1.3.9a,b) gives

d'[(K+M)c -1 =0. (1.3.18)

As noted in Section 1.2, the requirement that (1.3.9a) hold for all V' € S{¥ is equivalent
to satisfying (1.3.18) for all choices of d. This is only possible when

(K +M)c =1 (1.3.19)

Thus, the nodal values ¢, k = 1,2,... , N — 1, of the finite element solution are deter-
mined by solving a linear algebraic system. With ¢ known, the piecewise linear finite
element U can be evaluated for any z using (1.2.3a). The matrix K + M is symmetric,
positive definite, and tridiagonal. Such systems may be solved by the tridiagonal algo-
rithm (¢f. Problem 2 at the end of this section) in O(N) operations, where an operation
is a scalar multiply followed by an addition.

The discrete system (1.3.19) is similar to the one that would be obtained from a

centered finite difference approximation of (1.3.1), which is [12]

(K +D)e =1, (1.3.20a)
where
1 fi él
Dogn| § . i=n é Coe=| 7| (1320m)
| 1 fN.A éN.fl

Thus, the qu and f terms in (1.3.1) are approximated by diagonal matrices with the
finite difference method. In the finite element method, they are “smoothed” by coupling
diagonal terms with their nearest neighbors using Simpson’s rule weights. The diagonal
matrix D is sometimes called a “lumped” approximation of the consistent mass matriz
M. Both finite difference and finite element solutions behave similarly for the present
problem and have the same order of accuracy at the nodes of a uniform mesh.

Example 1.3.1. Consider the finite element solution of
—u" +u=ur, 0<z<l, u(0) = u(1) =0,

which has the exact solution)
sinh

sinh 1’

u(z) =z —

1.3. A Simple Finite Element Problem 17

Relative to the more general problem (1.3.1), this example has p = ¢ =1 and f(z) = x.
We solve it using the piecewise-linear finite element method developed in this section on
uniform meshes with spacing h = 1/N for N = 4,8, ... ,128. Before presenting results,
it is worthwhile mentioning that the load vector (1.3.15) is exact for this example. Even
though we replaced f(z) by its piecewise linear interpolant according to (1.3.14), this
introduced no error since f(z) is a linear function of .

Letting
e(x) =u(r) — U(x) (1.3.21)

denote the discretization error, in Table 1.3.1 we display the maximum error of the finite

element solution and of its first derivative at the nodes of a mesh, i.e.,

oo o= max Je()l, oo = max [€ (2. (1.3.22)
We have seen that U'(x) is a piecewise constant function with jumps at nodes. Data in
Table 1.3.1 were obtained by using derivatives from the left, i.e., T; = lim,_,o x; —e. With
this interpretation, the results of second and fourth columns of Table 1.3.1 indicate that
le|so/h? and |€'|o /b are (essentially) constants; hence, we may conclude that |e|o, = O(h?)
and |e'|oc = O(h).

[N [lelo | leloo/B? | [efloo [le'loo/D]

4 [0.269(-3) | 0.430(-2) | 0.111(0) | 0.444
8 | 0.688(-4) | 0.441(-2) | 0.589(-1) | 0.471
16 | 0.172(-4) | 0.441(-2) | 0.303(-1) | 0.485
32 | 0.432(-5) | 0.442(-2) | 0.154(-1) | 0.492
64 | 0.108(-5) | 0.442(-2) | 0.775(-2) | 0.496
128 | 0.270(-6) | 0.442(-2) | 0.389(-2) | 0.498

Table 1.3.1: Maximum nodal errors of the piecewise-linear finite element solution and its
derivative for Example 1.3.1. (Numbers in parenthesis indicate a power of 10.)

The finite element and exact solutions of this problem are displayed in Figure 1.3.4 for
a uniform mesh with eight elements. It appears that the pointwise discretization errors
are much smaller at nodes than they are globally. We’ll see that this phenomena, called
superconvergence, applies more generally than this single example would imply.

Since finite element solutions are defined as continuous functions (of x), we can also
appraise their behavior in some global norms in addition to the discrete error norms used

in Table 1.3.1. Many norms could provide useful information. One that we will use quite

18 Introduction

0.06 T T T T T T T T T

0.05 ,

0.04 - n

0.03

0.02 N

0.01 N

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.3.4: Exact and piecewise-linear finite element solutions of Example 1.3.1 on an
8-element mesh.

often is the square root of the strain energy of the error; thus, using (1.3.2c)

lella = /Ale,) = {/Ol[p(e')2 n qu]dx}l/Z. (1.3.23a)

This expression may easily be evaluated as a summation over the elements in the spirit
of (1.3.9a). With p = ¢ =1 for this example,

lell3 = / ()2 + d.

The integral is the square of the norm used on the Sobolev space H'; thus,

1/2

lell: := {/01[(6’)2 + 62]dx} : (1.3.23b)

Other global error measures will be important to our analyses; however, the only one

1.3. A Simple Finite Element Problem 19

that we will introduce at the moment is the L norm

lello = [/01 ez(x)dx] " (1.3.23¢)

Results for the L? and strain energy errors, presented in Table 1.3.2 for this example,
indicate that |lel] = O(h?) and ||e||4 = O(h). The error in the H' norm would be
identical to that in strain energy. Later, we will prove that these a priori error estimates
are correct for this and similar problems. Errors in strain energy converge slower than
those in L? because solution derivatives are involved and their nodal convergence is O(h)
(Table 1.3.1).

| N [lello [llello/b? T Tlella [llella/h]
4 [0.265(-2) | 0.425(-1) | 0.390(-1) | 0.156
8 |0.656(-3) | 0.426(-1) | 0.195(-1) | 0.157
16 | 0.167(-3) | 0.427(-1) | 0.979(-2) | 0.157
32 | 0.417(-4) | 0.427(-1) | 0.490(-2) | 0.157
64 | 0.104(-4) | 0.427(-1) | 0.245(-2) | 0.157
128 | 0.260(-5) | 0.427(-1) | 0.122(-2) | 0.157

Table 1.3.2: Errors in L? and strain energy for the piecewise-linear finite element solution
of Example 1.3.1. (Numbers in parenthesis indicate a power of 10.)

Problems

1. The integral involved in obtaining the mass matrix according to (1.3.13) may, of
course, be done symbolically. It may also be evaluated numerically by Simpson’s
rule which is exact in this case since the integrand is a quadratic polynomial. Recall,

that Simpson’s rule is
h h
/ F(o)ds ~ ¢ [F(0) +4F(1/2) + F(1)].
0
The mass matrix is

zj .
M, :/ { ¢<§>-1] (651, byde.
Tj—1 J
Using (1.3.4), determine M; by Simpson’s rule to verify the result (1.3.13). The

use of Simpson’s rule may be simpler than symbolic integration for this example
since the trial functions are zero or unity at the ends of an element and one half at

its center.
2. Consider the solution of the linear system

AX =F, (1.3.24a)

20

Introduction

where F and X are N-dimensional vectors and A is an N x N tridiagonal matrix

having the form

ap €
by a Co

byvo1 an-1 cN-1
by an

Assume that pivoting is not necessary and factor A as

A=1U,

(1.3.24b)

(1.3.25a)

where L and U are lower and upper bidiagonal matrices having the form

Uy V2

Uny-1 UN-1
Un

(1.3.25h)

(1.3.25¢)

Once the coefficients [, j = 2,3,... ,N,u;,j =1,2,... ,N,andv;,j =1,2,... ,N—
1, have been determined, the system (1.3.24a) may easily be solved by forward and

backward substitution. Thus, using (1.3.25a) in (1.3.24a) gives

LUX =F.
Let
Uux =Y,
then,
LY =F.

2.1. Using (1.3.24) and (1.3.25), show

uyp = an,

lj:bj/ujfla uj:aj—ljcj,l, j:2,3,

v; = ¢4,]:2,3,,N

(1.3.26a)

(1.3.26h)

(1.3.26¢)

1.3. A Simple Finite Element Problem 21

2.2.

2.3.

2.4.

Show that Y and X are computed as
)/1 = F17
)/j:-F}_le}—la j:2737"'7N7
Xy =yn/un,
Xj:(}/}—Uij+1)/Uj,]:N—l,N—Q,,l
Develop a procedure to implement this scheme for solving tridiagonal systems.
The input to the procedure should be N and vectors containing the coefficients
aj, bj, ¢j, fj, 7 =1,2,...,N. The procedure should output the solution X.
The coefficients a;, b;, etc., j = 1,2,..., N, should be replaced by u;, v;, etc.,
j=1,2,...,N, in order to save storage. If you want, the solution X can be

returned in F.

Estimate the number of arithmetic operations necessary to factor A and for

the forward and backward substitution process.

3. Consider the linear boundary value problem

—pu" +qu=f(r), O<z<l, u(0)=4u(1)=0.

where p and ¢ are positive constants and f(z) is a smooth function.

3.1.

3.2.

Show that the Galerkin form of this boundary-value problem consists of finding

u € H} satisfying

1 1
A(v,u) — (v, f) = / (v'pu’ + vqu)dx — / vfdr =0, Yv € Hj.
0 0

For this problem, functions u(z) € Hy are required to be elements of H' and
satisfy the Dirichlet boundary condition «(0) = 0. The Neumann boundary

condition at x = 1 need not be satisfied by either u or v.

Introduce N equally spaced elements on 0 < x < 1 with nodes z; = jh,
j=0,1,... ,N (h=1/N). Approximate u by U having the form

Ulz) = Z crdr (),

where ¢;(z), j = 1,2,...,N, is the piecewise linear basis (1.3.4), and use
Galerkin’s method to obtain the global stiffness and mass matrices and the
load vector for this problem. (Again, the approximation U(z) does not satisfy
the natural boundary condition u'(1) = 0 nor does it have to. We will discuss

this issue in Chapter 2.)

22

Introduction

3.3. Write a program to solve this problem using the finite element method devel-
oped in Part 3.2b and the tridiagonal algorithm of Problem 2. Execute your
program with p =1, ¢ = 1, and f(z) = z and f(z) = z2. In each case, use
N =4, 8, 16, and 32. Let e(z) = u(z) — U(z) and, for each value of N, com-
pute |e|w, |€/(zn)], and ||e]|4 according to (1.3.22) and (1.3.23a). You may
(optionally) also compute ||e||p as defined by (1.3.23c). In each case, estimate

the rate of convergence of the finite element solution to the exact solution.

4. The Galerkin form of (1.3.1) consists of determining v € H{ such that (1.3.2) is
satisfied. Similarly, the finite element solution U € SY C H{ satisfies (1.2.12).
Letting e(x) = u(z) — U(x), show

Ale,e) = A(u,u) — A(U,U)

where the strain energy A(v,u) is given by (1.3.2¢). We have, thus, shown that the

strain energy of the error is the error of the strain energy.

Bibliography

1]

2]

3]

4]

7]

8]

9]

[10]

I. Babuska, J. Chandra, and J.E. Flaherty, editors. Adaptive Computational Methods
for Partial Differential Equations, Philadelphia, 1983. STAM.

I. Babuska, O.C. Zienkiewicz, J. Gago, and E.R. de A. Oliveira, editors. Accuracy
Estimates and Adaptive Refinements in Finite Element Computations. John Wiley
and Sons, Chichester, 1986.

M.W. Bern, J.E. Flaherty, and M. Luskin, editors. Grid Generation and Adaptive
Algorithms, volume 113 of The IMA Volumes in Mathematics and its Applications,
New York, 1999. Springer.

G.F. Carey. Computational Grids: Generation, Adaptation, and Solution Strategies.
Series in Computational and Physical Processes in Mechanics and Thermal science.
Taylor and Francis, New York, 1997.

K. Clark, J.E. Flaherty, and M.S. Shephard, editors. Applied Numerical Mathemat-
ics, volume 14, 1994. Special Issue on Adaptive Methods for Partial Differential
Equations.

R. Courant. Variational methods for the solution of problems of equilibrium and
vibrations. Bulletin of the American Mathematics Society, 49:1-23, 1943.

J.E. Flaherty, P.J. Paslow, M.S. Shephard, and J.D. Vasilakis, editors. Adaptive
methods for Partial Differential Fquations, Philadelphia, 1989. STAM.

A. Hrennikoff. Solutions of problems in elasticity by the frame work method. Journal
of Applied Mechanics, 8:169-175, 1941.

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-
ment method. Cambridge, Cambridge, 1987.

D.L. Logan. A First Course in the Finite Element Method using ALGOR. PWS,
Boston, 1997.

23

24 Introduction

[11] D. McHenry. A lattice analogy for the solution of plane stress problems. Journal of
the Institute of Civil Engineers, 21:59-82, 1943.

[12] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations.
Chapman and Hall, Pacific Grove, 1989.

[13] M.J. Turner, R.W. Clough, H.C. Martin, and L.J. Topp. Stiffness and deflection
analysis of complex structures. Journal of the Aeronautical Sciences, 23:805-824,
1956.

[14] R. Verfiirth. A Review of Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Teubner-Wiley, Stuttgart, 1996.

Chapter 2

One-Dimensional Finite Element
Methods

2.1 Introduction

The piecewise-linear Galerkin finite element method of Chapter 1 can be extended in
several directions. The most important of these is multi-dimensional problems; however,
we’ll postpone this until the next chapter. Here, we’ll address and answer some other

questions that may be inferred from our brief encounter with the method.

1. Is the Galerkin method the best way to construct a variational principal for a partial

differential system?

2. How do we construct variational principals for more complex problems? Specifically,

how do we treat boundary conditions other than Dirichlet?

3. The finite element method appeared to converge as O(h) in strain energy and O(h?)

in L? for the example of Section 1.3. Is this true more generally?

4. Can the finite element solution be improved by using higher-degree piecewise-

polynomial approximations? What are the costs and benefits of doing this?

We'll tackle the Galerkin formulations in the next two sections, examine higher-degree
piecewise polynomials in Sections 2.4 and 2.5, and conclude with a discussion of approx-

imation errors in Section 2.6.

2.2 Galerkin’s Method and Extremal Principles

“For since the fabric of the universe is most perfect and the work of a most
wise creator, nothing at all takes place in the universe in which some rule of

maximum or minimum does not appear.”

1

2 One-Dimensional Finite Element Methods
- Leonhard Euler

Although the construction of variational principles from differential equations is an
important aspect of the finite element method it will not be our main objective. We’ll
explore some properties of variational principles with a goal of developing a more thorough
understanding of Galerkin’s method and of answering the questions raised in Section 2.1.
In particular, we’ll focus on boundary conditions, approximating spaces, and extremal
properties of Galerkin’s method. Once again, we’ll use the model two-point Dirichlet

problem

Llu] .= —[p(x)u] + q(x)u = f(z), 0<z<l, (2.2.1a)

u(0) = u(l) =0, (2.2.1b)

with p(xz) > 0, ¢(x) > 0, and f(z) being smooth functions on 0 < z < 1.
As described in Chapter 1, the Galerkin form of (2.2.1) is obtained by multiplying
(2.2.1a) by a test function v € H{, integrating the result on [0,1], and integrating the

second-order term by parts to obtain

A(v,u) = (v, f), Vv € Hy, (2.2.2a)
where
1
= d 2.2.2b
w.)= [ord, (2.2.2b)
and
1
Av,u) = (v, pu’) + (v, qu) = / (v'pu’ 4+ vqu)dz, (2.2.2¢)
0

and functions v belonging to the Sobolev space H' have bounded values of
1
/ (') + o”]da.
0

For (2.2.1), a function v is in H} if it also satisfies the trivial boundary conditions
v(0) = v(1) = 0. As we shall discover in Section 2.3, the definition of H] will depend on
the type of boundary conditions being applied to the differential equation.

There is a connection between self-adjoint differential problems such as (2.2.1) and

the minimum problem: find w € H; that minimizes

I[w]:A(w,w)—2(w,f):/0 ()2 + qu? — 2w fdz. (2.2.3)

2.2. Galerkin’s Method and Extremal Principles 3

Maximum and minimum variational principles occur throughout mathematics and physics
and a discipline called the Calculus of Variations arose in order to study them. The initial
goal of this field was to extend the elementary theory of the calculus of the maxima and
minima of functions to problems of finding the extrema of functionals such as Ifw]. (A
functional is an operator that maps functions onto real numbers.)

The construction of the Galerkin form (2.2.2) of a problem from the differential form
(2.2.1) is straight forward; however, the construction of the extremal problem (2.2.3)
is not. We do not pursue this matter here. Instead, we refer readers to a text on the
calculus of variations such as Courant and Hilbert [4]. Accepting (2.2.3), we establish
that the solution u of Galerkin’s method (2.2.2) is optimal in the sense of minimizing
(2.2.3).

Theorem 2.2.1. The function u € H} that minimizes (2.2.3) is the one that satisfies
(2.2.2a) and conversely.

Proof. Suppose first that u(z) is the solution of (2.2.2a). We choose a real parameter €

and any function v(z) € H} and define the comparison function
w(x) = u(z) + ev(x). (2.2.4)

For each function v(z) we have a one parameter family of comparison functions w(z) € Hy
with the solution u(z) of (2.2.2a) obtained when € = 0. By a suitable choice of € and
v(z) we can use (2.2.4) to represent any function in Hj. A comparison function w(z)

and its variation ev(zr) are shown in Figure 2.2.1.

A uw
W(X)
€ V(X)
u(x)
0 1 X

Figure 2.2.1: A comparison function w(z) and its variation ev(x) from u(z).

Substituting (2.2.4) into (2.2.3)
Iw] = Iu+ ev] = A(u + ev,u + ev) — 2(u + €v, f).

4 One-Dimensional Finite Element Methods

Expanding the strain energy and L? inner products using (2.2.2b,c)
Iw] = A(u,u) — 2(u, f) + 2¢[A(v,u) — (v, f)] + € A(v,v).
By hypothesis, u satisfies (2.2.2a), so the O(¢) term vanishes. Using (2.2.3), we have
Iw] = I[u] + € A(v, v).

With p > 0 and ¢ > 0, we have A(v,v) > 0; thus, v minimizes (2.2.3).
In order to prove the converse, assume that u(z) minimizes (2.2.3) and use (2.2.4) to
obtain
Iu] < Iu + ev].

For a particular choice of v(z), let us regard I[u + ev] as a function ®(¢), i.e.,
Iu + ev] := ®(e) = A(u + ev,u + ev) — 2(u + ev, f).
A necessary condition for a minimum to occur at € = 0 is ®’(0) = 0; thus, differentiating
() = 2eA(v,v) + 2A(v,u) — 2(v, f)
and setting e = 0
®'(0) = 2[A(v,u) — (v, f)] = 0.
Thus, u is a solution of (2.2.2a). O
The following corollary verifies that the minimizing function w is also unique.
Corollary 2.2.1. The solution u of (2.2.2a) (or (2.2.3)) is unique.

Proof. Suppose there are two functions u,, u, € Hy satisfying (2.2.2a), i.e.,
A(v,uy) = (v, f), A(v,ug) = (v, f), Vv € Hj.

Subtracting
A(v,uy —ug) =0, Vv € H,.

Since this relation is valid for all v € H(}, choose v = u; — uy to obtain
A(Ul — U2, U] — UQ) =0.

If g(z) > 0, x € (0,1), then A(u; — ug,u; — uy) is positive unless u; = uy. Thus, it
suffices to consider cases when either (i) ¢(z) = 0, z € [0,1], or (ii) ¢(z) vanishes at
isolated points or subintervals of (0,1). For simplicity, let us consider the former case.
The analysis of the latter case is similar.

When ¢(z) =0, z € [0,1], A(u; — uz,u; — uy) can vanish when u} — u}, = 0. Thus,
u; — us is a constant. However, both u; and uy satisfy the trivial boundary conditions

(2.2.1b); thus, the constant is zero and u; = us. O

2.2. Galerkin’s Method and Extremal Principles 5t

Corollary 2.2.2. If u,w are smooth enough to permit integrating A(u,v) by parts then
the minimizer of (2.2.3), the solution of the Galerkin problem (2.2.2a), and the solution
of the two-point boundary value problem (2.2.1) are all equivalent.

Proof. Integrate the differentiated term in (2.2.3) by parts to obtain

Iw] = /1[—w(pw')' + qu® — 2 fw]dx + wpw'|;.
0
The last term vanishes since w € H}; thus, using (2.2.1a) and (2.2.2b) we have
Iw] = (w, L]w]) — 2(w, f). (2.2.5)
Now, follow the steps used in Theorem 2.2.1 to show
A(v,u) — (v, f) = (v, Llu] — f) =0, Vv € Hy,
and, hence, establish the result. O

The minimization problems (2.2.3) and (2.2.5) are equivalent when w has sufficient
smoothness. However, minimizers of (2.2.3) may lack the smoothness to satisfy (2.2.5).
When this occurs, the solutions with less smoothness are often the ones of physical
interest.

Problems

1. Consider the “stationary value” problem: find functions w(z) that give stationary

values (maxima, minima, or saddle points) of
1
Tw] :/ F(z,w,w")dz (2.2.6a)
0
when w satisfies the “essential” (Dirichlet) boundary conditions
w(0) = a, w(l) = g. (2.2.6b)

Let w € Hj,, where the subscript E denotes that w satisfies (2.2.6b), and consider
comparison functions of the form (2.2.4) where u € H}, is the function that makes

I[w] stationary and v € H} is arbitrary. (Functions in H] satisfy trivial versions of
(2.2.6b), i.e., v(0) =v(1) = 0.)

Using (2.2.1) as an example, we would have
F(z,w,w") = p(z)(w)? + q(@)w? — 2wf(x), a=04=0.

Smooth stationary values of (2.2.6) would be minima in this case and correspond
to solutions of the differential equation (2.2.1a) and boundary conditions (2.2.1b).

6 One-Dimensional Finite Element Methods

Differential equations arising from minimum principles like (2.2.3) or from station-

ary value principles like (2.2.6) are called Euler-Lagrange equations.

Beginning with (2.2.6), follow the steps used in proving Theorem 2.2.1 to determine
the Galerkin equations satisfied by u. Also determine the Euler-Lagrange equations

for smooth stationary values of (2.2.6).

2.3 Essential and Natural Boundary Conditions

The analyses of Section 2.2 readily extend to problems having nontrivial Dirichlet bound-

ary conditions of the form
u(0) = «, u(l) = 4. (2.3.1a)

In this case, functions u satisfying (2.2.2a) or w satisfying (2.2.3) must be members of
H' and satisfy (2.3.1a). We’ll indicate this by writing u,w € HL, with the subscript F
denoting that u and w satisfy the essential Dirichlet boundary conditions (2.3.1a). Since
u and w satisfy (2.3.1a), we may use (2.2.4) or the interpretation of ev as a variation
shown in Figure 2.2.1, to conclude that v should still vanish at x = 0 and 1 and, hence,
belong to H.

When u is not prescribed at = 0 and/or 1, the function v need not vanish there.

Let us illustrate this when (2.2.1a) is subject to conditions
u(0) = «, p(L)u'(1) = 3. (2.3.1b)

Thus, an essential or Dirichlet condition is specified at x = 0 and a Neumann condition is
specified at x = 1. Let us construct a Galerkin form of the problem by again multiplying
(2.2.1a) by a test function v, integrating on [0, 1], and integrating the second derivative

terms by parts to obtain

/0 v[—(pu') + qu — fldz = A(v,u) — (v, f) — vpu'|y = 0. (2.3.2)

With an essential boundary condition at z = 0, we specify u(0) = « and v(0) = 0;
however, u(1) and v(1) remain unspecified. We still classify u € Hj, and v € H; since
they satisfy, respectively, the essential and trivial essential boundary conditions specified
with the problem.

With v(0) = 0 and p(1)u'(1) = 3, we use (2.3.2) to establish the Galerkin problem
for (2.2.1a, 2.3.1b) as: determine u € H}, satisfying

A(v,u) = (v, f) +v(1)8, VYov € Hj. (2.3.3)

2.3. Essential and Natural Boundary Conditions 7

Let us reiterate that the subscript £ on H' restricts functions to satisfy Dirichlet (essen-
tial) boundary conditions, but not any Neumann conditions. The subscript 0 restricts
functions to satisfy trivial versions of any Dirichlet conditions but, once again, Neumann
conditions are not imposed.

As with problem (2.2.1), there is a minimization problem corresponding to (2.2.3):

determine w € H}, that minimizes
Iw] = A(w,w) — 2(w,) —2w(1)p. (2.3.4)

Furthermore, in analogy with Theorem 2.2.1, we have an equivalence between the Galerkin

(2.3.3) and minimization (2.3.4) problems.

Theorem 2.3.1. The function u € H}, that minimizes (2.3.4) is the one that satisfies
(2.3.3) and conversely.

Proof. The proof is so similar to that of Theorem 2.2.1 that we’ll only prove that the
function u that minimizes (2.3.4) also satisfies (2.3.3). (The remainder of the proof is
stated as Problem 1 as the end of this section.)

Again, create the comparison function
w(z) = u(x) + ev(x); (2.3.5)
however, as shown in Figure 2.3.1, v(1) need not vanish. By hypothesis we have

A uw

W(X)

) -4
ue) N

| .

0 1

Figure 2.3.1: Comparison function w(z) and variation ev(x) when Dirichlet data is pre-
scribed at x = 0 and Neumann data is prescribed at x = 1.

Iu) < Iu + ev] = ®(€) = A(u+ ev,u+ ev) — 2(u + ev,) — 2[u(l) + ev(1)]6.

8 One-Dimensional Finite Element Methods

Differentiating with respect to € yields the necessary condition for a minimum as
0'(0) = 2[A(v,u) — (v, f) —v(1)5] = 0;
thus, u satisfies (2.3.3). O

As expected, Theorem 2.3.1 can be extended when the minimizing function u is

smooth.

Corollary 2.3.1. Smooth functions u € HY satisfying (2.5.3) or minimizing (2.5.4) also
satisfy (2.2.1a, 2.5.1b).

Proof. Using (2.2.2¢), integrate the differentiated term in (2.3.3) by parts to obtain

/01 v[—(pu')' + qu — fldz 4+ v(1)[p(1)u'(1) — B] = 0, Vv € Hy. (2.3.6)

Since (2.3.6) must be satisfied for all possible test functions, it must vanish for those
functions satisfying v(1) = 0. Thus, we conclude that (2.2.1a) is satisfied. Similarly, by
considering test functions v that are nonzero in just a small neighborhood of x =1, we
conclude that the boundary condition (2.3.1b) must be satisfied. Since (2.3.6) must be
satisfied for all test functions v, the solution u must satisfy (2.2.1a) in the interior of the
domain and (2.3.1b) at x = 1. O

Neumann boundary conditions, or other boundary conditions prescribing derivatives
(c¢f. Problem 2 at the end of this section), are called natural boundary conditions be-
cause they follow directly from the variational principle and are not explicitly imposed.
Essential boundary conditions constrain the space of functions that may be used as trial
or comparison functions. Natural boundary conditions impose no constraints on the
function spaces but, rather, alter the variational principle.

Problems

1. Prove the remainder of Theorem 2.3.1, i.e., show that functions that satisfy (2.3.3)

also minimize (2.3.4).
2. Show that the Galerkin form (2.2.1a) with the Robin boundary conditions
p(0)u'(0) + vou(0) = ay, p(D)u'(1) + nu(l) = ay
is: determine u € H' satisfying
A(v,u) = (v, f) + v(1) (a1 — y1u(1)) — v(0)(ag — You(0)), Vv e H'.
Also show that the function w € H' that minimizes
Tw) = A(w, w) — 2(w, f) — 20,w(1) + yw(1)? + 200w (0) — ow(0)?

is u, the solution of the Galerkin problem.

2.4. Piecewise Lagrange Polynomials 9

3. Construct the Galerkin form of (2.2.1) when

w1 if0<az<1/2
PITT= 2, if1/2<2<1

Y

Such a situation can arise in a steady heat-conduction problem when the medium
is made of two different materials that are joined at x = 1/2. What conditions

must u satisfy at x = 1/27

2.4 Piecewise Lagrange Polynomials

The finite element method is not limited to piecewise-linear polynomial approximations
and its extention to higher-degree polynomials is straight forward. There is, however, a
question of the best basis. Many possibilities are available from design and approximation
theory. Of these, splines and Hermite approximations [5] are generally not used because
they offer more smoothness and/or a larger support than needed or desired. Lagrange
interpolation [2] and a hierarchical approximation in the spirit of Newton’s divided-

difference polynomials will be our choices. The piecewise-linear “hat” function

w, if Tj-1 <zr< T
Tj—Tj—1
X —T .
¢j(x) = 2= it oy <o <ayn (2.4.1a)
0, otherwise
on the mesh
To <11 <...<an (2.4.1Db)

is a member of both classes. It has two desirable properties: (i) ¢;(x) is unity at node
j and vanishes at all other nodes and (i7) ¢; is only nonzero on those elements contain-
ing node j. The first property simplifies the determination of solutions at nodes while
the second simplifies the solution of the algebraic system that results from the finite
element discretization. The Lagrangian basis maintains these properties with increasing
polynomial degree. Hierarchical approximations, on the other hand, maintain only the
second property. They are constructed by adding high-degree corrections to lower-degree
members of the series.

We will examine Lagrange bases in this section, beginning with the quadratic poly-
nomial basis. These are constructed by adding an extra node x;_;/, at the midpoint of
each element [z;_1,2;], 7 =1,2,..., N (Figure 2.4.1). As with the piecewise-linear basis
(2.4.1a), one basis function is associated with each node. Those associated with vertices

are

10 One-Dimensional Finite Element Methods

A UX

| | | | 3(
I I I I =

X lez Xy Xz % IXN-1 XNz XN

Figure 2.4.1: Finite element mesh for piecewise-quadratic Lagrange polynomial approxi-
mations.

1+ 3(:1:—%) + 2(1._:_13]‘)2, if Tj_1 S x < xZ;

h;) Ejm- .)
¢](£U) = 1_3(21_?1])‘1‘2(}”_’_1])27 if T Sl’<$j+1) J :0717"' 7N7 (242&)
0, otherwise

and those associated with element midpoints are

1 — 4(E5=12)2 i s < .
bi1/2(t) = o0 mase<a gy N (24m)
0, otherwise
Here
hj:Ij_xj—la]:1,2, ,N. (242C)
These functions are shown in Figure 2.4.2. Their construction (to be described) invovles
satsifying
bi(wg) =4 b =k g k=0,1/2,1,... , N—1,N—1/2,N. (2.4.3)
J 0, otherwise ’ ’ Ty ’ ’

Basis functions associated with a vertex are nonzero on at most two elements and those
associated with an element midpoint are nonzero on only one element. Thus, as noted,
the Lagrange basis function ¢; is nonzero only on elements containing node j. The
functions (2.4.2a,b) are quadratic polynomials on each element. Their construction and
trivial extension to other finite elements guarantees that they are continuous over the
entire mesh and, like (2.4.1), are members of H*.

The finite element trial function U(z) is a linear combination of (2.4.2a,b) over the

vertices and element midpoints of the mesh that may be written as

N N 2N
Uz) = ch¢j($) + ch—1/2¢j—1/2($) = ch/2¢j/2(a:). (2.4.4)

i=1

2.4. Piecewise Lagrange Polynomials 11

L L L L
0.2 0.4 0.6 0.8 1

Figure 2.4.2: Piecewise-quadratic Lagrange basis functions for a vertex at x = 0 (left) and
an element midpoint at x = —0.5 (right). When comparing with (2.4.2), set z,_; = —1,
Tj_172 = —05, Xy = 0, Tjy1/2 = 05, and Tjp1 = 1.

Using (2.4.3), we see that U(zy) = ¢, k=0,1/2,1,... ,N —1/2, N.

Cubic, quartic, etc. Lagrangian polynomials are generated by adding nodes to element
interiors. However, prior to constructing them, let’s introduce some terminology and
simplify the node numbering to better suit our task. Finite element bases are constructed
implicitly in an element-by-element manner in terms of shape functions. A shape function
is the restriction of a basis function to an element. Thus, for the piecewise-quadratic

Lagrange polynomial, there are three nontrivial shape functions on the element ; :=
[z, 75]:

e the right portion of ¢;_;(z)

Nj_yy(z)=1— 3(%"?"‘1) + 2(%"?"1)2, (2.4.52)
® dj1/2(2)
Nj-1y2,i(x) =1 = 4(%;‘”2)2, (2.4.5b)
e and the left portion of ¢;(x)
Nij(z) =143 ;jxj) +2(% ;jxj){ veQ;, (2.4.5¢)

(Figure 2.4.3). In these equations, Nj; is the shape function associated with node #,
k=j—1,7—1/2,j, of element j (the subinterval ;). We may use (2.4.4) and (2.4.5)

to write the restriction of U(z) to €, as

U(z) = ¢j_1Nj_1 + ¢j-1/2Nj-1/2, + ¢;Njj, z € ;.

12 One-Dimensional Finite Element Methods

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.4.3: The three quadratic Lagrangian shape functions on the element [z;_;,z;].
When comparing with (2.4.5), set 2;_1 =0, ;_1/» = 0.5, and z; = 1.

More generally, we will associate the shape function Ni.(x) with mesh entity k of
element e. At present, the only mesh entities that we know of are vertices and (nodes
on) elements; however, edges and faces will be introduced in two and three dimensions.

The key construction concept is that the shape function Ny .(z) is
1. nonzero only on element e and
2. nonzero only if mesh entity £ belongs to element e.

A one-dimensional Lagrange polynomial shape function of degree p is constructed
on an element e using two vertex nodes and p — 1 nodes interior to the element. The
generation of shape functions is straight forward, but it is customary and convenient to
do this on a “canonical element.” Thus, we map an arbitrary element Q. = [z;_1, 7;]
onto —1 < & <1 by the linear transformation

1€ 1+¢

l‘(f) = Tl’jfl + Tl’],

Nodes on the canonical element are numbered according to some simple scheme, i.e., 0
topwith§=—-1,§ =1,and 0 < & < & < ... <&y <1 (Figure 2.4.4). These are
mapped to the actual physical nodes z;_1,2; 141/p, ... ,2; on §, using (2.4.6). Thus,

1-¢ 1+¢ .
xj—l—l—i/p = Tgll'jl—FTgll'j, ZZO,L... ,P-

¢ e[-1,1]. (2.4.6)

2.4. Piecewise Lagrange Polynomials 13

P NGE

Figure 2.4.4: An element e used to construct a p th-degree Lagrangian shape function
and the shape function Ny .(x) associated with node k.

The Lagrangian shape function Njp.(§) of degree p has a unit value at node k of

element e and vanishes at all other nodes; thus,

1, it k=1
Nie(&) = 0 = { 0 ! , [=0,1,...,p. (2.4.7a)

otherwise

It is extended trivially when £ ¢ [—1,1]. The conditions expressed by (2.4.7a) imply that

T (-4 (E-h)E-8) -G DE—&n) - (E-6)
B U e R [B e [o R o
(2.4.7b)

We easily check that Ny, (7) is a polynomial of degree p in £ and (%) it satisfies conditions
(2.4.7a). Tt is shown in Figure 2.4.4. Written in terms of shape function, the restriction

of U to the canonical element is
p
U€) =Y cxNee(9). (2.4.8)
k=0

Example 2./.1. Let us construct the quadratic Lagrange shape functions on the

canonical element by setting p = 2 in (2.4.7b) to obtain

(€=&)(E =&)
(& — &) (& — &)’

(€-&)E-&)
(& — &) (& —&)

(€= &)~ &)

Noe(§) = (& —&)(& — &)’

Nl,e (5) =

NZ,e (5) =

14 One-Dimensional Finite Element Methods

Setting & = —1, & =0, and & = 1 yields

§€-1)

(€ +1)¢
5 ALY

5 (2.4.9)

NO,e(g) = Nl,e(g) = (1 - §2)7 NQ,B(g) =

These may easily be shown to be identical to (2.4.2) by using the transformation (2.4.6)
(see Problem 1 at the end of this section).
Ezample 2.4.2. Setting p =1 in (2.4.7b), we obtain the linear shape functions on the

canonical element as

1— 1
Nge:—g, Nlezig. (2410)
’ 2 ’ 2
The two nodes needed for these shape functions are at the vertices {§, = —1 and & = 1.

Using the transformation (2.4.6), these yield the two pieces of the hat function (2.4.1a).
We also note that these shape functions were used in the linear coordinate transformation
(2.4.6). This will arise again in Chapter 5.

Problems

1. Show the the quadratic Lagrange shape functions (2.4.9) on the canonical [—1,1]

element transform to those on the physical element (2.4.2) upon use of (2.4.6)

2. Construct the shape functions for a cubic Lagrange polynomial from the general
formula (2.4.7) by using two vertex nodes and two interior nodes equally spaced on
the canonical [—1, 1] element. Sketch the shape functions. Write the basis functions

for a vertex and an interior node.

2.5 Hierarchical Bases

With a hierarchical polynomial representation the basis of degree p + 1 is obtained as a
correction to that of degree p. Thus, the entire basis need not be reconstructed when
increasing the polynomial degree. With finite element methods, they produce algebraic
systems that are less susceptible to round-off error accumulation at high order than those
produced by a Lagrange basis.

With the linear hierarchical basis being the usual hat functions (2.4.1), let us begin
with the piecewise-quadratic hierarchical polynomial. The restriction of this function to

element €, = [;_1, ;] has the form
U(x) = U'(z) + cj,l/QNf_l/Q,e(x), x € Q,, (2.5.1a)
where U!(z) is the piecewise-linear finite element approximation on 2,

U'(z) = ¢jo1Nj_y o(z) + ¢;N] (). (2.5.1b)

2.5. Hierarchical Bases 15

Superscripts have been added to U and Nj . to identify their polynomial degree. Thus,

L2 ifre
N} = hj ¢ 2.5.1
Jfl’e(x) { O,] otherwise ’ (2
U=l it e
N} = hj ¢ 2.5.1d
i) { 0, otherwise ()

are the usual hat function (2.4.1) associated with a piecewise-linear approximation U (z).
The quadratic correction N].Q_l/z,e(x) is required to (7) be a quadratic polynomial, (i7)
vanish when x ¢ Q, and (ii7) be continuous. These conditions imply that Nj271/2,e is
proportional to the quadratic Lagrange shape function (2.4.5b) and we will take it to be
identical; thus,

_A(ETi—1/2N2
N?I/Q,eu):{l AT, itr e (25.10)

J 0, otherwise

The normalization fol/Zye(a:j,l/Q) = 1 is not necessary, but seems convenient.

Like the quadratic Lagrange approximation, the quadratic hierarchical polynomial has
three nontrivial shape functions per element; however, two of them are linear and only
one is quadratic (Figure 2.5.1). The basis, however, still spans quadratic polynomials.
Examining (2.5.1), we see that ¢;_; = U(x;_1) and ¢; = U(z,); however,

Cj—1+ ¢

Ulzjry2) = =—;

+ Cj_l/g.

Differentiating (2.5.1a) twice with respect to z gives an interpretation to c;_y/ as

h2
Ci-1j2 = =g UM @jo1p2)-

This interpretation may be useful but is not necessary.

A basis may be constructed from the shape functions in the manner described for
Lagrange polynomials. With a mesh having the structure used for the piecewise-quadratic
Lagrange polynomials (Figure 2.4.1), the piecewise-quadratic hierarchical functions have

the form
N N
Ulz) = Z Cj¢]1'(l") + Z Cj71/2¢§,1/2(l') (2.5.2)
j=0 j=1

where ¢7(x) is the hat function basis (2.4.1a) and ¢3(z) = N7 (z).
Higher-degree hierarchical polynomials are obtained by adding more correction terms
to the lower-degree polynomials. It is convenient to construct and display these poly-

nomials on the canonical [—1,1] element used in Section 2.4. The linear transformation

16 One-Dimensional Finite Element Methods

0.9 bl

0.8 bl

0.7 4

0.6 4

0.5 bl

0.4+ Bl

0.3 4

0.2 q

0.1 4

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.5.1: Quadratic hierarchical shape on [z;_1,z;]. When comparing with (2.5.1),
set Tj—1 = 0 and Ty = 1.

(2.4.6) is again used to map an arbitrary element [x;_;,z;] onto —1 < £ < 1. The vertex
nodes at £ = —1 and 1 are associated with the linear shape functions and, for simplicity,
we will index them as —1 and 1. The remaining p — 1 shape functions are on the element
interior. They need not be associated with any nodes but, for convenience, we will asso-
ciate all of them with a single node indexed by 0 at the center (£ = 0) of the element.

The restriction of the finite element solution U(£) to the canonical element has the form
p .
UE) =caNL (O +aN (€ +D aNy(©), €[-1,1]. (2.5.3)
i=2

(We have dropped the elemental index e on N},e since we are only concerned with ap-
proximations on the canonical element.) The vertex shape functions N'; and N/ are the

hat function segments (2.4.10) on the canonical element

NL© =155 NMEe="2 el (2.5.4)

Once again, the higher-degree shape functions N}(€), 7 = 2,3, ..., p, are required to have
the proper degree and vanish at the element’s ends £ = —1,1 to maintain continuity.
Any normalization is arbitrary and may be chosen to satisfy a specified condition, e.g.,
NZ(0) = 1. We use a normalization of Szabé and Babuska [7] which relies on Legendre
polynomials. The Legendre polynomial P;(£), ¢ > 0, is a polynomial of degree i in &
satisfying [1]:

2.5. Hierarchical Bases

1. the differential equation

(1-&)P' = 2P/ +i(i+1)P=0, -1<&<1, i>0;

2. the normalization

3. the orthogonality relation

1 2 1, ifi=y
/_le(f)Pj(f)dg = Tﬂ{ 0, otherwise ’

4. the symmetry condition

5. the recurrence relation
(i + 1) Pi1(§) = (20 + 1)EP(E) — iPi—1(€), 1> 1;
and

6. the differentiation formula

Pia(§) = i+ DR+ PLi(6), i>1
The first six Legendre polynomials are

P =1, P& =¢,
362 -1 563 — 3
Pz(ﬁ): 62) P3(f):%,
_ 356 — 3062 + 3 _ 636> — 7063 + 15€

2 ’ 8

P5(€)

Py(€)

With these preliminaries, we define the shape functions

Ng(g):,/%;l/gpi_l(a)da, P>
1

Using (2.5.5d,f), we readily show that

Pi(§) — Pi-a(§)
2(2i — 1)

No(§) =

17

(2.5.5a)

(2.5.5b)

(2.5.5¢)

(2.5.5d)

(2.5.5¢)

(2.5.5f)

(2.5.6)

(2.5.7a)

(2.5.7b)

18 One-Dimensional Finite Element Methods
Use of the normalization and symmetry properties (2.5.5b,d) further reveal that
Ny(=1) = Nj(1) =0, i>2, (2.5.7¢)

and use of the orthogonality property (2.5.5¢) indicates that

VAN (&) dN? -
/_1 d()g(g) ;g(g) df — 5Z_j, 1,7 > 2. (257(1)

Substituting (2.5.6) into (2.5.7b) gives

3 2 3 _L 2 _
Q—ﬁ(ﬁ—l), No(f)—Qm (€° 1),

drey U mra 2 5 :L 5 3
N3O = G B8 — 68+ 1), NJO) = (7 1087 430 (258)

Shape functions N:(€), i =2,3,...,6, are shown in Figure 2.5.2.

Ny (€) =
7

0.6

04r N

0.8 I I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 2.5.2: One-dimensional hierarchical shape functions of degrees 2 (solid), 3(o), 4
(x), 5 (+), and 6 (*) on the canonical element —1 < & < 1.

The representation (2.5.3) with use of (2.5.5b,d) reveals that the parameters ¢_; and
¢; correspond to the values of U(—1) and U(1), respectively; however, the remaining

parameters ¢;, i > 2, do not correspond to solution values. In particular, using (2.5.3),

2.5. Hierarchical Bases 19

(2.5.5d), and (2.5.7b) yields

p
1+ ,
U0) =< = C Y ang (o).
i=2,4

Hierarchical bases can be constructed so that ¢; is proportional to d'U(0)/d¢%, i > 2
(cf. [3], Section 2.8); however, the shape functions (2.5.8) based on Legendre polynomials
reduce sensitivity of the basis to round-off error accumulation. This is very important
when using high-order finite element approximations.

Example 2.5.1. Let us solve the two-point boundary value problem
—pu"” + qu = f(z), 0<z<l, u(0) = u(1) =0, (2.5.9)

using the finite element method with piecewise-quadratic hierarchical approximations.
As in Chapter 1, we simplify matters by assuming that p > 0 and ¢ > 0 are constants.

By now we are aware that the Galerkin form of this problem is given by (2.2.2). As
in Chapter 1, introduce (c¢f. (1.3.9))

zj
S _ 1!
Aj (v, u) —/ pv'u'dz.
Tj—1

We use (2.4.6) to map [z;_1, z;] to the canonical [—1, 1] element as

2 ' dvdu
S e p— —_
A (v,u) = n /_lpdﬁ dgdﬁ. (2.5.10)

Using (2.5.3), we write the restriction of the piecewise-quadratic trial and text functions

to [l‘j_l, l‘j] as

N! N!
-1 —1
U(g) = [Cj—lacjacjfl/Z] Nll s V(g) = [dj—ladj;dj—l/Z] Nll . (2511)
N2 NZ
0 0

Substituting (2.5.11) into (2.5.10)

Cj—1
A}'g(va U) = [dj-1, djadj—l/Z]Kj Cj (2.5.12a)

Cj—1/2
where K is the element stiffness matrix

N!
2p [t d Tl dia 1 A2

L= — — N, Ny, Ny|dE.
J h] . dé— N;2 dé—[1 1 0]

20 One-Dimensional Finite Element Methods

Substituting for the basis definitions (2.5.4, 2.5.8)

~1/2

K, = / 1 1\/; [—1/2,1/2,5@@.
JJ-1 3 %
Integrating

-2] N A e [5 0] e

NI\ s B se] Mo oo 2]

The orthogonality relation (2.5.7d) has simplified the stiffness matrix by uncoupling the
linear and quadratic modes.

In a similar manner,

T hs 1
AM(V,U) = / qVUdr = ‘]2—3/ VUE. (2.5.13a)
Tj—1 -1
Using (2.5.11)
Cj—1
A;V"(V, U) = [dj—hdj, dj—1/2]Mj Cj (2.5.13b)
Cj—1/2

where, upon use of (2.5.4, 2.5.8), the element mass matrix M; satisfies

Mj:%hj 1 H\fvlﬂ[zvil,Nf,Ng]dgzq—}”[i ; - gém
SRy |-V~ o5 (J |
2.5.13c

The higher and lower order terms of the element mass matrix have not decoupled. Com-
paring (2.5.12b) and (2.5.13c) with the forms developed in Section 1.3 for piecewise-linear
approximations, we see that the piecewise linear stiffness and mass matrices are contained
as the upper 2 x 2 portions of these matrices. This will be the case for linear problems;
thus, each higher-degree polynomial will add a “border” to the lower-degree stiffness and
mass matrices.

Finally, consider

x;) 1
(V2 f)j =/ Vfdr = %/1 V fd€. (2.5.14a)

j—

Using (2.5.11)

(V. f); = ldj—1, dj, dj—q 2]l (2.5.14b)

2.5. Hierarchical Bases 21

where
h. [} Nll
1, = —‘7/ Nl1 f(z())dE. (2.5.14c¢)
2 _1 Ng

As in Section 1.3, we approximate f(x) by piecewise-linear interpolation, which we write
as

f(a) = NL () fi1 + N{(6)f;
with f; := f(x;). The manner of approximating f(x) should clearly be related to the

degree p and we will need a more careful analysis. Postponing this until Chapters 6 and

7, we have
Nt 2fi—1+ fj
Y P) I o R
2w B L vap)

Using (2.2.2a) with (2.5.12a), (2.5.13a), and (2.5.14a), we see that assembly requires

evluating the sum
N

D AT (V.U) + AF(V,U) = (V. f);] = 0.

j=1
Following the strategy used for the piecewise-linear solution of Section 1.3, the local
stiffness and mass matrices and load vectors are added into their proper locations in
their global counterparts. Imposing the condition that the system be satisfied for all

choices of dj, j =1/2,1,3/2,...,N — 1, yields the linear algebraic system
(K +M)c =1. (2.5.15)

The structure of the stiffness and mass matrices K and M and load vector 1 depend on
the ordering of the unknowns c and virtual coordinates d. One possibility is to order

them by increasing index, i.e.,

C = [01/2, C1, 03/2, Co,... ,CN_1, CN_1/2]T. (2516)

As with the piecewise-linear basis, we have assumed that the homogeneous boundary
conditions have explicitly eliminated ¢y = ¢y = 0. Assembly for this ordering is similar
to the one used in Section 1.3 (¢f. Problem 2 at the end of this section). This is a natural
ordering and the one most used for this approximation; however, for variety, let us order

the unknowns by listing the vertices first followed by those at element midpoints, i.e.,
C1 C1/2

c c
c= [L } , c;, = ,2 , co = 3,/2) (2.5.17)

CN—1 CN-1/2

22 One-Dimensional Finite Element Methods

In this case, K, M, and 1 have a block structure and may be partitioned as

K;, 0] [M; Mg] [1]
K= , M = , = 2.5.18
K, M, M L] e
where, for uniform mesh spacing h; = h, j =1,2,..., N, these matrices are
2 —1] [2 |
-1 2 -1 2
p p
K;, =+ K Ko=~— 2.5.1
L h . 9 Q h,) (5 9)
-1 2 -1 2
I -1 2] I 2
(4 1] (11]
" 1 4 1 . 1 1
q q
L 6 .) LQ 6 9 .)
1 4 1 1 1
i 1 4 I 1 1]
B -
" 1
M, = % : (2.5.20)
1
- 1 -
fo+4fi+ fo fot+ fi
h +Afy+ h +
=l h fz K L o= S , N (2.5.21)
6 : V24 :
Ina2+4fna+fn SN+ fn

With N — 1 vertex unknowns c;, and N elemental unknowns cg, the matrices K; and
My are (N —1) x (N —1), Kg and Mg are N x N, and Mg is (N —1) x N. Similarly,
1;, and lg have dimension N —1 and [V, respectively. The indicated ordering implies that
the 3 x 3 element stiffness and mass matrices (2.5.12b) and (2.5.13c) for element j are
added to rows and columns 57 — 1, j, and N — 1 4 j of their global counterparts. The
first row and column of the element stiffness and mass matrices are deleted when j =1
to satisfy the left boundary condition. Likewise, the second row and column of these
matrices are deleted when j = N to satisfy the right boundary condition.
The structure of the system matrix K + M is

K. +M, Mg

K+ M= .
+ M?, Kq+ Mg

(2.5.22)

2.5. Hierarchical Bases 23

The matrix K; + My, is the same one used for the piecewise-linear solution of this
problem in Section 1.3. Thus, an assembly and factorization of this matrix done during a
prior piecewise-linear finite element analysis could be reused. A solution procedure using
this factorization is presented as Problem 3 at the end of this section. Furthermore, if
q¢ =0 then Mo =0 (c¢f. (2.5.20b)) and the linear and quadratic portions of the system
uncouple.

In Example 1.3.1, we solved (2.5.9) with p =1, ¢ = 1, and f(x) = x using piecewise-
linear finite elements. Let us solve this problem again using piecewise-quadratic hier-
archical approximations and compare the results. Recall that the exact solution of this

problem is
sinh z

sinh 1’

Results for the error in the L? norm are shown in Table 2.5.1 for solutions obtained

u(r) =z —

with piecewise-linear and quadratic approximations. The results indicate that solutions
with piecewise-quadratic approximations are converging as O(h?) as opposed to O(h?)
for piecewise-linear approximations. Subsequently, we shall show that smooth solutions

generally converge as O(h**!) in the L? norm and as O(h”) in the strain energy (or H')

norm.
N Linear Quadratic
DOF [Jleflo [[le[lo/h* [DOF [[le[lo [[le[lo/h’
4 3 0.265(-2) | 0.425(-1) 7 0.126(-3) | 0.807(-2)
8 7 0.656(-3) | 0.426(-1) | 15 | 0.158(-4) | 0.809(-2)
16 | 15 |0.167(-3) | 0.427(-1) | 31 | 0.198(-5) | 0.809(-2)
32| 31 |0.417(-4) | 0.427(-1)

Table 2.5.1: Errors in L? and degrees of freedom (DOF) for piecewise-linear and piecewse-
quadratic solutions of Example 2.5.1.

The number of elements N is not the only measure of computational complexity.
With higher-order methods, the number of unknowns (degrees of freedom) provides a
better index. Since the piecewise-quadratic solution has approximately twice the number
of unknowns of the linear solution, we should compare the linear solution with spacing h
and the quadratic solution with spacing 2h. Even with this analysis, the superiority of
the higher-order method in Table 2.5.1 is clear.

Problems

1. Consider the approximation in strain energy of a given function u(§), —1 < £ < 1,

by a polynomial U(£) in the hierarchical form (2.5.3). The problem consists of

24 One-Dimensional Finite Element Methods

determining U(€) as the solution of the Galerkin problem
AV,U) = A(V,u), YV e 8P,

where S? is a space of p th-degree polynomials on [—1, 1]. For simplicity, let us take
the strain energy as

A(v,u) = /1 veuedE.

1
With ¢_; = u(—1) and ¢; = u(1), find expressions for determining the remaining
coefficients ¢;, ¢ = 2,3,...,p, so that the approximation satisfies the specified

Galerkin projection.

2. Show how to generate the global stiffness and mass matrices and load vector for
Example 2.5.1 when the equations and unknowns are written in order of increasing
index (2.5.16).

3. Suppose K; + M}, have been assembled and factored by Gaussian elimination as
part of a finite element analysis with piecewise-linear approximations. Devise an

algorithm to solve (2.5.15) for ¢, and c¢ that utilizes the given factorization.

2.6 Interpolation Errors

Errors of finite element solutions can be measured in several norms. We have already
introduced pointwise and global metrics. In this introductory section on error analysis,
we’ll define some basic principles and study interpolation errors. As we shall see shortly,
errors in interpolating a function u by a piecewise polynomial approximation U will
provide bounds on the errors of finite element solutions.

Once again, consider a Galerkin problem for a second-order differential equation: find
u € H} such that

A(v,u) = (v, f), Vv € Hj. (2.6.1)
Also consider its finite element counterpart: find U € SJ such that
AV, U)=(V,f), vVesp. (2.6.2)

Let the approximating space Sy C H{} consist of piecewise-polynomials of degree p on
N-element meshes. We begin with two fundamental results regarding Galerkin’s method

and finite element approximations.

2.6. Interpolation Errors 25

Theorem 2.6.1. Letu € Hy and U € SYY C Hy satisfy (2.6.1) and (2.6.2), respectively,
then

AV,u—-U)=0, VvVesp. (2.6.3)

Proof. Since V € S} it also belongs to H{}. Thus, it may be used to replace v in (2.6.1).
Doing this and subtracting (2.6.2) yields the result. O

We shall subsequently show that the strain energy furnishes an inner product. With
this interpretation, we may regard (2.6.3) as an orthogonality condition in a “strain
energy space” where A(v,u) is an inner product and \/A(u,u) is a norm. Thus, the

finite element solution error
e(x) :=u(x) — U(x) (2.6.4)

is orthogonal in strain energy to all functions V' in the subspace Sj'. We use this orthog-
onality to show that solutions obtained by Galerkin’s method are optimal in the sence of

minimizing the error in strain energy.

Theorem 2.6.2. Under the conditions of Theorem 2.6.1,

Alu—U,u—U) = min A(u —V,u—1V). (2.6.5)

vesy

Proof. Consider
Alu—U,u—U) = A(u,u) — 2A(u,U) + A(U,U).
Use (2.6.3) with V replaced by U to write this as
Alu—U,u—U) = A(u,u) — 2A(u, U) + A(U,U) + 2A(u — U, U)

or

Alu—U,u—U) = A(u,u) — AU, U).
Again, using (2.6.3) for any V € SJ
Alu—U,u—U) = A(u,u) — A(U,U) + A(V,V) — A(V,V) = 24(u — U, V)

or

Alu—U,u—U)=Alu—-V,u—-V)— AU -V, U -V).

Since the last term on the right is non-negative, we can drop it to obtain
Alu—U,u—U) < A(u —V,u—=V), vV e Sy,

We see that equality is attained when V' = U and, thus, (2.6.5) is established. O

26 One-Dimensional Finite Element Methods

With optimality of Galerkin’s method, we may obtain estimates of finite element
discretization errors by bounding the right side of (2.6.5) for particular choices of V.
Convenient bounds are obtained by selecting V' to be an interpolant of the exact solution
u. Bounds furnished in this manner generally provide the exact order of convergence in
the mesh spacing h. Furthermore, results similar to (2.6.5) may be obtained in other
norms. They are rarely as precise as those in strain energy and typically indicate that
the finite element solution differs by no more than a constant from the optimal solution
in the considered norm.

Thus, we will study the errors associated with interpolation problems. This can be
done either on a physical or a canonical element, but we will proceed using a canonical
element since we constructed shape functions in this manner. For our present purposes,
we regard u(§) as a known function that is interpolated by a p th-degree polynomial U ()
on the canonical element [—1, 1]. Any form of the interpolating polynomial may be used.

We use the Lagrange form (2.4.8), where

U©) =Y cNe(€) (2.6.6)

k=0
with N (§) given by (2.4.7b). (We have omitted the elemental index e on Ny for clarity
since we are concerned with one element.) An analysis of interpolation errors whith hi-
erarchical shape functions may also be done (¢f. Problem 1 at the end of this section).
Although the Lagrangian and hierarchical shape functions differ, the resulting interpola-
tion polynomials U(§) and their errors are the same since the interpolation problem has
a unique solution [2, 6].
Selecting p+1 distinct points xi; € [—1,1],4 =0,1,... , p, the interpolation conditions

are

U(é-z) = u(&) = U =G,] = 07 17 Y 2 (267)

where the rightmost condition follows from (2.4.7a).

There are many estimates of pointwise interpolation errors. Here is a typical result.

Theorem 2.6.3. Let u(¢) € CPT—1,1] then, for each & € [—1,1], there exists a point
C(€) € (—1,1) such that the error in interpolating u(§) by a p th-degree polynomial U(§)
18
u®t () 1
e(f) = —/ —£). 2.6.8
© =77 g(g &) (2:6.8)

Proof. Although the proof is not difficult, we’ll just sketch the essential details. A com-
plete analysis is given in numerical analysis texts such as Burden and Faires [2], Chapter
3, and Isaacson and Keller [6], Chapter 5.

2.6. Interpolation Errors 27

Since
e(§p) =e(&)=...=¢e(§) =0
the error must have the form

p

e(€) = g(&) [(¢ - &)

=0

The error in interpolating a polynomial of degree p or less is zero; thus, g(£) must be

proportional to u»*Y). We may use a Taylor’s series argument to infer the existence of

(&) e (—1,1) and

p

e(§) = Cu (O] € - &).

=0
Selecting u to be a polynomial of degree p + 1 and differentiating this expression p + 1
times yields C' as 1/(p+ 1)! and (2.6.8). O

The pointwise error (2.6.8) can be used to obtain a variety of global error estimates.
Let us estimate the error when interpolating a smooth function u(£) by a linear polyno-
mial U(&) at the vertices §, = —1 and & = 1 of an element. Using (2.6.8) with p =1

reveals

u"(¢)

e(§) = 5= E+1E-1), fe(=1L1) (2.6.9)
Thus,
1
()] < 5 max [u"(€)] max [¢*—1]
Now,
=
Thus,
1
e(Ol < 5 max [u"()]-

Derivatives in this expression are taken with respect to &. In most cases, we would
like results expressed in physical terms. The linear transformation (2.4.6) provides the

necessary conversion from the canonical element to element j: [x;_, x;]. Thus,

d*u(€) B} d*u(§)
ez~ 4 da?

with hj =Tj; — Tj-1- Lettlng

1fOlloog = max [f(z)| (2.6.10)

zj—1<xT<7T;

28 One-Dimensional Finite Element Methods

denote the local “maximum norm” of f(z) on [x;_;,], we have

h?
le() oo < 5l (Voo (2.6.11)

(Arguments have been replaced by a - to emphasize that the actual norm doesn’t depend
on r.)

If u(x) were interpolated by a piecewise-linear function U(z) on N elements [z,_1, z;],
j=1,2,..., N, then (2.6.11) could be used on each element to obtain an estimate of the

maximum error as

h2
leClloo < 11" ()lloos (2.6.12a)
where
1 Ol = mas [1f(lloc.s: (2.6.12b)
and
h = lrsnjz%%(xj —Zj_1). (2.6.12c)

As a next step, let us use (2.6.9) and (2.4.6) to compute an error estimate in the L?

[=2 [e - npae

J

norm; thus,

Since €2 — 1] < 1, we have

/ ey < / (e

- 1

Introduce the “local L? norm” of a function f(z) as

2; 1/2
1f (o = (/ f2(:r)dfr> . (2.6.13)

1

(), < % [e

It is tempting to replace the integral on the right side of our error estimate by [|u"|[7 ;.

Then,

This is almost correct; however, (= ((£). We would have to verify that ¢ varies smoothly
with £&. Here, we will assume this to be the case and expand u” using Taylor’s theorem

to obtain

u"(¢) = u"(§) + u"(0)(¢ = &) =u" () + O(I¢ = &]), 0 € (&),

2.6. Interpolation Errors 29

or

u"(Q)] < Cl"(9)]-

The constant C' absorbs our careless treatment of the higher-order term in the Taylor’s

expansion. Thus, using (2.4.6), we have

|| ||0’] < 02_/ // d€ 02 J/ [”(l")]ZdiU,

where derivatives in the rightmost expression are with respect to z. Using (2.6.13)

4

eIz < 2O, (2.6.14)

If we sum (2.6.14) over the N finite elements of the mesh and take a square root we

obtain
le()llo < Ch?[|u"(+)lo, (2.6.15a)
where
N
LFCIE =D IFCIS,- (2.6.15b)
j=1

(The constant C' in (2.6.15a) replaces the constant C/8 of (2.6.14), but we won’t be
precise about identifying different constants.)

With a goal of estimating the error in H', let us examine the error u/(§) — U'(£).
Differentiating (2.6.9) with respect to &

III(C) dc

6 = () + 52

—(& - 1),

Assuming that d¢/d¢ is bounded, we use (2.6.13) and (2.4.6) to obtain

d /// d
1= [2 par = 2 [e T K e - e

dg
Following the arguments that led to (2.6.14), we find

') le; < Ch3Ilu" ()6 ;-
Summing over the N elements

le’ ()15 < Ch*[lu"()llo- (2.6.16)

30 One-Dimensional Finite Element Methods

To obtain an error estimate in the H' norm, we combine (2.6.15a) and (2.6.16) to get

le()[l1 < Chllu"()lo (2.6.17a)
where
IFONT = Z[Hf'(-)ll%,j + L OI5,]- (2.6.17b)

The methodology developed above may be applied to estimate interpolation errors of

higher-degree polynomial approximations. A typical result follows.

Theorem 2.6.4. Introduce a mesh a < xy < x1 < ... < xy < b such that U(x) is a
polynomial of degree p or less on every subinterval (zj_1,z;) and U € H'(a,b). Let U(x)
interpolate u(x) € HP*'{a,b] such that no error results when u(x) is any polynomial of

degree p or less. Then, there exists a constant C, > 0, depending on p, such that

|u— Ullo < CphPH Ju®)| (2.6.18a)
and
lu—Ully < Ch2[lulPtV |, (2.6.18b)
where h satisfies (2.6.12¢c).
Proof. The analysis follows the one used for linear polynomials. O
Problems

1. Choose a hierarchical polynomial (2.5.3) on a canonical element [—1,1] and show
how to determine the coefficients ¢;, j = —1,1,2,...,p, to solve the interpolation
problem (2.6.7).

Bibliography

[1] M. Abromowitz and I.A. Stegun. Handbook of Mathematical Functions, volume 55 of
Applied Mathematics Series. National Bureau of Standards, Gathersburg, 1964.

[2] R.L. Burden and J.D. Faires. Numerical Analysis. PWS-Kent, Boston, fifth edition,
1993.

[3] G.F. Carey and J.T. Oden. Finite Elements: A Second Course, volume II. Prentice
Hall, Englewood Cliffs, 1983.

[4] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 1. Wiley-
Interscience, New York, 1953.

[5] C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 1978.

[6] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley and Sons,
New York, 1966.

[7] B. Szabé and I. Babuska. Finite Element Analysis. John Wiley and Sons, New York,
1991.

31

Chapter 3

Multi-Dimensional Variational
Principles

3.1 Galerkin’s Method and Extremal Principles

The construction of Galerkin formulations presented in Chapters 1 and 2 for one-dimensional
problems readily extends to higher dimensions. Following our prior developments, we’ll

focus on the model two-dimensional self-adjoint diffusion problem

Llu] = =(p(z, Y)ua)s — (P(z, Y)uy)y + q(z,y)u = f(z,y), (z,9) €Q, (3.11a)
where Q C R? with boundary 99 (Figure 3.1.1) and p(z,y) > 0, ¢(z,y) > 0, (x,y) € Q.

Essential boundary conditions

u(z,y) = a(x,y), (x,y) € 00, (3.1.1b)
are prescribed on the portion 92 of 9€2 and natural boundary conditions
0
p(z, y)% = pVu - n = p(uycosf + u,sinf) = 3(x,y), (x,y) € 00y,

(3.1.1¢c)

are prescribed on the remaining portion 02y of 9€2. The angle 6 is the angle between
the z-axis and the outward normal n to 9Q (Figure 3.1.1).
The Galerkin form of (3.1.1) is obtained by multiplying (3.1.1a) by a test function v

and integrating over) to obtain
/ / v[=(pug)e — (puy)y + qu — fldrdy = 0, (3.1.2)
Q

In order to integrate the second derivative terms by parts in two and three dimensions,

we use Green’s theorem or the divergence theorem

/ V -adzdy = /a -nds (3.1.3a)

Q onN

2 Multi-Dimensional Variational Principles

> X

Figure 3.1.1: Two-dimensional region €2 with boundary 02 and normal vector n to 0.

where s is a coordinate on 992, a = [ay, ay)?, and

. aal 8a2
Vea=—"+ 3 (3.1.3h)

In order to use this result in the present circumstances, let us introduce vector notation
(Pus)e + (puy)y =V - (pVu)
and use the “product rule” for the divergence and gradient operators
V- (vpVu) = (Vv) - (pVu) + vV - (pVu). (3.1.3¢)

Thus,
// —vV - (pVu)dxdy = / [(Vv) - (pVu) = V - (vpVu)|dzdy.

Now apply the divergence theorem (3.1.3) to the second term to obtain

// —oV - (pVu da:dy—/ Vo - pVudxdy — /vqu-nds.

Thus, (3.1.2) becomes

/ Vv - pVu+v(qu — f)]dzdy — /vpunds =0 (3.1.4)
B

3.1. Galerkin’s Method and Extremal Principles 3

where (3.1.1c) was used to simplify the surface integral.

The integrals in (3.1.4) must exist and, with « and v of the same class and p and ¢

//(ui + up + u?)dedy
0

exists. This is the two-dimensional Sobolev space H!. Drawing upon our experiences

smooth, this implies

in one dimension, we expect u € Hp, where functions in H}, are in H' and satisfy the
Dirichlet boundary conditions (3.1.1b) on Q. Likewise, we expect v € H}, which denotes
that v = 0 on 0Qg. Thus, the variation v should vanish where the trial function u is
prescribed.

Let us extend the one-dimensional notation as well. Thus, the L? inner product is
(v, f) == // vfdzdy (3.1.5a)
Q

and the strain energy is

A(v,u) == (Vou,pVu) + (v, qu) = //[p(kuw + vyuy) + quuldrdy. (3.1.5b)

We also introduce a boundary L? inner product as

<v,w >= /des. (3.1.5¢)

00N

The boundary integral may be restricted to 92y since v = 0 on 02g. With this nomen-
clature, the variational problem (3.1.4) may be stated as: find u € H}, satisfying

A(v,u) = (v, f)+ < v, >, Yv € Hj. (3.1.6)

The Neumann boundary condition (3.1.1c) was used to replace pu, in the boundary
inner product. The variational problem (3.1.6) has the same form as the one-dimensional
problem (2.3.3). Indeed, the theory and extremal principles developed in Chapter 2 apply
to multi-dimensional problems of this form.

Theorem 3.1.1. The function w € Hj, that minimizes
Iw] = A(w,w) = 2(w, f) =2 < w, 3 >. (3.1.7)
is the one that satisfies (3.1.6), and conversely.

Proof. The proof is similar to that of Theorem 2.2.1 and appears as Problem 1 at the

end of this section. O

4 Multi-Dimensional Variational Principles

Corollary 3.1.1. Smooth functions u € H} satisfying (3.1.6) or minimizing (3.1.7) also
satisfy (3.1.1).

Proof. Again, the proof is left as an exercise. O

Ezxample 8.1.1. Suppose that the Neumann boundary conditions (3.1.1c) are changed

to Robin boundary conditions
Pun + yu = 3, (xz,y) € 00y. (3.1.8a)

Very little changes in the variational statement of the problem (3.1.1a,b), (3.1.8). Instead
of replacing pu, by § in the boundary inner product (3.1.5¢), we replace it by 3 — ~yu.
Thus, the Galerkin form of the problem is: find u € H}, satisfying

A(v,u) = (v, f)+ < v, 8 —yu >, Vv € Hy. (3.1.8b)

Example 3.1.2. Variational principles for nonlinear problems and vector systems
of partial differential equations are constructed in the same manner as for the linear
scalar problems (3.1.1). As an example, consider a thin elastic sheet occupying a two-
dimensional region . As shown in Figure 3.1.2; the Cartesian components (uq, us) of
the displacement vector vanish on the portion 0Q2j of of the boundary 02 and the com-

ponents of the traction are prescribed as (S, S3) on the remaining portion 9Qy of 0S).

The equations of equilibrium for such a problem are (cf., e.g., [6], Chapter 4)

oy 0012

= 1.
5% T oy 0, (3.1.9a)
0012 0099

= Q .1.9b
5z T oy 0, (=,y9)€Q, (3.1.9b)

where 045, 7, 7 = 1, 2, are the components of the two-dimensional symmetric stress tensor

(matrix). The stress components are related to the displacement components by Hooke’s

law
. E 8u1 8uz
011 = 1_1/2(oz +v 8y), (3110&)
. E 8u1 8uz
0929 — 11— 1/2 (l/ 83: ay), (3110b)
E 0 0
12 = (28 22y (3.1.10¢)

3.1. Galerkin’s Method and Extremal Principles 5t

Y

> X

Figure 3.1.2: Two-dimensional elastic sheet occupying the region 2. Displacement com-
ponents (ug, us) vanish on 0Qx and traction components (Sy, Se) are prescribed on 9y .

where F and v are constants called Young’s modulus and Poisson’s ratio, respectively.

The displacement and traction boundary conditions are

uy(z,y) =0, us(z,y) =0, (x,y) € 00g, (3.1.11a)
nio11 + nao1g = Si, n1012 + Nao2 = Sa, (z,y) € 0Qn, (3.1.11b)
where n = [ny,ny|" = [cos®,sinf]” is the unit outward normal vector to 9Q (Figure

3.1.2).

Following the one-dimensional formulations, the Galerkin form of this problem is
obtained by multiplying (3.1.9a) and (3.1.9b) by test functions v; and vy, respectively,
integrated over €2, and using the divergence theorem. With u; and us being components
of a displacement field, the functions v; and vy are referred to as components of the
virtual displacement field.

We use (3.1.9a) to illustrate the process; thus, multiplying by v; and integrating over

Q, we find
80'11 80'12 .
//vl[o T oy |dzdy = 0.
Q

The three stress components are dependent on the two displacement components and

are typically replaced by these using (3.1.10). Were this done, the variational principle

6 Multi-Dimensional Variational Principles

would involve second derivatives of u; and uy. Hence, we would want to use the divergence
theorem to obtain a symmetric variational form and reduce the continuity requirements
on u; and uy. We’ll do this, but omit the explicit substitution of (3.1.10) to simplify the
presentation. Thus, we regard oy; and 015 as components of a two-vector, we use the

divergence theorem (3.1.3) to obrain

v v
//[ax1 o11 + ayl Ulg]dl‘dy = /01[7110'11 +n2012]ds.
Q

o0

Selecting v; € Hj implies that the boundary integral vanishes on dQg. This and the

subsequent use of the natural boundary condition (3.1.11b) give

// 81}1 —o0 + aay oz|dxdy = / v151ds, Vv, € Hj. (3.1.12a)

a0
Similar treatment of (3.1.9b) gives
0 0
/ ﬁa'lg ﬂ0'22]d1'dy = / UQSQdS, VUQ € H& (3112b)
o0y

Equations (3.1.12a) and (3.1.12b) may be combined and written in a vector form.
Letting u = [uy, us]|”, etc., we add (3.1.12a) and (3.1.12b) to obtain the Galerkin problem:
find u € H} such that

A(v,u) =< v,S >, Vv € Hy, (3.1.13a)
where
ov ov ov ov
A(V, 11) = //[a—xla'll + 8—?;0'22 + (8—; + a—;)alz]dxdy, (3113b)
Q
<V, S >= / (U151 + ’UgSQ)dS. (31130)
0N

When a vector function belongs to H', we mean that each of its components is in H*.
The spaces H}, and Hj are identical since the displacement is trivial on 0.

The solution of (3.1.13) also satisfies the following minimum problem.

Theorem 3.1.2. Among all functions w = [wy, wq]T € HL the solution u = [uy, us]” of
(3.1.13) is the one that minimizes

8w1 Qwsy ow; 0wy,
Iiw] = 1_y2 //{1—u T+ (G (g + 2y

3.1. Galerkin’s Method and Extremal Principles 7

+(1;V)

0 0
G+ G2 rdy = [w15+ wnSi)ds,

NN

and conversely.

Proof. The proof is similar to that of Theorem 2.2.1. The stress components o0;;, i, 7 =

1,2, have been eliminated in favor of the displacements using (3.1.10). O
Let us conclude this section with a brief summary.

e A solution of the differential problem, e.g., (3.1.1), is called a “classical” or “strong”

solution. The function u € Hg, where functions in H? have finite values of
J [Ce)? 0y)+ @22 + ()7)y
0

and functions in H% also satisfy all prescribed boundary conditions, e.g., (3.1.1b,c).

e Solutions of a Galerkin problem such as (3.1.6) are called “weak” solutions. They
may be elements of a larger class of functions than strong solutions since the high-
order derivatives are missing from the variational statement of the problem. For
the second-order differential equations that we have been studying, the variational
form (e.g., (3.1.6)) only contains first derivatives and u € Hj. Functions in H'

have finite values of

/ / [(12)? + (uy)? + u?] dadly.

and functions in H} also satisfy the prescribed essential (Dirichlet) boundary con-
dition (3.1.1b). Test functions v are not varied where essential data is prescribed
and are elements of H}. They satisfy trivial versions of the essential boundary

conditions.

e While essential boundary conditions constrain the trial and test spaces, natural
(Neumann or Robin) boundary conditions alter the variational statement of the
problem. As with (3.1.6) and (3.1.13), inhomogeneous conditions add boundary

inner product terms to the variational statement.

e Smooth solutions of the Galerkin problem satisfy the original partial differential

equation(s) and natural boundary conditions, and conversely.

e Galerkin problems arising from self-adjoint differential equations also satisfy ex-
tremal problems. In this case, approximate solutions found by Galerkin’s method
are best in the sense of (2.6.5), i.e., in the sense of minimizing the strain energy of

the error.

8 Multi-Dimensional Variational Principles

Problems

1. Prove Theorem 3.1.1 and its Corollary.

2. Prove Theorem 3.1.2 and aslo show that smooth solutions of (3.1.13) satisfy the
differential system (3.1.9) - (3.1.11).

3. Consider an infinite solid medium of material M containing an infinite number of
periodically spaced circular cylindrical fibers made of material F'. The fibers are
arranged in a square array with centers two units apart in the x and y directions
(Figure 3.1.3). The radius of each fiber is @ (< 1). The aim of this problem is to
find a Galerkin problem that can be used to determine the effective conductivity

of the composite medium. Because of embedded symmetries, it suffices to solve a

>

Figure 3.1.3: Composite medium consisting of a regular array of circular cylindrical fibers
embedded in in a matrix (left). Quadrant of a Periodicity cell used to solve this problem
(right).

problem on one quarter of a periodicity cell as shown on the right of Figure 3.1.3.

The governing differential equations and boundary conditions for the temperature

3.1. Galerkin’s Method and Extremal Principles 9

(or potential, etc.) u(z,y) within this quadrant are

V. (pVu) =0, (z,y) € Qp UQu,
. (0,y) = us(1,y) =0, 0<y<1,
u(z,0) =0, u(z,1) =1, 0<z<1,
ueC?, pu, € C°, (z,y) € 2* +9* = a”.

(3.1.14)

The subscripts F' and M are used to indicate the regions and properties of the fiber

and matrix, respectively. Thus, letting
Q:={(z,y)|0<z <1, 0<y <1},
we have
Qp :={(r,0)|0<r<a, 0<0<7/2},
and
Qﬂliziﬂ-—glp.
The conductivity p of the fiber and matrix will generally be different and, hence, p

will jump at » = a. If necessary, we can write

| opr, 2?4+ y*<a®
p(z,y) = { par, if 22 442 > a?

Although the conductivities are discontinuous, the last boundary condition confirms

that the temperature v and flux pu, are continuous at r = a.

3.1. Following the steps leading to (3.1.6), show that the Galerkin form of this

problem consists of determining v € H}, as the solution of

// P(uzvy + uyvy)drdy = 0, Vv € Hj.

QprpUQ

Define the spaces H}, and H{ for this problem. The Galerkin problem appears
to be the same as it would for a homogeneous medium. There is no indication

of the continuity conditions at r = a.

3.2. Show that the function w € H}, that minimizes
Iw] = // p(w} + w})dxdy
QpURy

is the solution u of the Galerkin problem, and conversely. Again, there is little

evidence that the problem involves an inhomogeneous medium.

10 Multi-Dimensional Variational Principles

3.2 Function Spaces and Approximation

Let us try to formalize some of the considerations that were raised about the properties
of function spaces and their smoothness requirements. Consider a Galerkin problem in
the form of (3.1.6). Using Galerkin’s method, we find approximate solutions by solving
(3.1.6) in a finite-dimensional subspace SV of H'. Selecting a basis {¢;}}_, for SV, we

consider approximations U € S¥ of u in the form
N
Ulz,y) =Y cibi(x,y). (3.2.1)
7j=1

With approximations V' € SY of v having a similar form, we determine U as the solution
of

AV, U)=(V,)+ <V,B>, V¥V eSSy (3.2.2)

(Nontrivial essential boundary conditions introduce differences between SY and S}’ and
we have not explicitly identified these differences in (3.2.2).)

We’ve mentioned the criticality of knowing the minimum smoothness requirements
of an approximating space S. Smooth (e.g. C') approximations are difficult to con-
struct on nonuniform two- and three-dimensional meshes. We have already seen that
smoothness requirements of the solutions of partial differential equations are usually ex-
pressed in terms of Sobolev spaces, so let us define these spaces and examine some of
their properties. First, let’s review some preliminaries from linear algebra and functional

analysis.
Definition 3.2.1. V is a linear space if
1. u,v € Vthenu+v €V,
2. u € V then au € V, for all constants «, and
3. u,v € V then au + v € V, for all constants «, .

Definition 3.2.2. A(u,v) is a bilinear form on V x V if, for u,v,w € V and all constants
a and (3,

1. A(u,v) € R, and
2. A(u,v) is linear in each argument; thus,
A(u, av + fw) = aA(u,v) + fA(u, w),

Alau + pv,w) = aA(u, w) + BA(v, w).

3.2. Function Spaces and Approximation 11
Definition 3.2.3. An inner product A(u,v) is a bilinear form on V x V that

1. is symmetric in the sense that A(u,v) = A(v,u), Yu,v € V, and

2. A(u,u) >0, u#0and A(0,0) =0, Vu € V.
Definition 3.2.4. The norm || - |4 associated with the inner product A(u,v) is

lu|la = VA(u, u) (3.2.3)

and it satisfies

L lulla >0, u#0, [|0|4 =0,

2. flu+vlla < llulla+ ||lv]l4; and

3. ||aul|a = ||||ul| 4, for all constants a.

The integrals involved in the norms and inner products are Lebesgue integrals rather
than the customary Riemann integrals. Functions that are Riemann integrable are also
Lebesgue integrable but not conversely. We have neither time nor space to delve into
Lebesgue integration nor will it be necessary for most of our discussions. It is, however,
helpful when seeking understanding of the continuity requirements of the various function
spaces. So, we’ll make a few brief remarks and refer those seeking more information to
texts on functional analysis [3, 4, 5].

With Lebesgue integration, the concept of the length of a subinterval is replaced by
the measure of an arbitrary point set. Certain sets are so sparse as to have measure
zero. An example is the set of rational numbers on [0, 1]. Indeed, all countably infinite
sets have measure zero. If a function u € V possesses a given property except on a set
of measure zero then it is said to have that property almost everywhere. A relevant
property is the notion of an equivalence class. Two functions u,v € V belong to the same

equivalence class if

|lu —v||a = 0.

With Lebesgue integration, two functions in the same equivalence class are equal almost
everywhere. Thus, if we are given a function v € V and change its values on a set of
measure zero to obtain a function v, then u and v belong to the same equivalence class.

We need one more concept, the notion of completeness. A Cauchy sequence {u, }52 | €

VY is one where

lim ||ty — un|la = 0.
m,n—00

12 Multi-Dimensional Variational Principles

If {u,}5°, converges in || - ||4 to a function u € V then it is a Cauchy sequence. Thus,

using the triangular inequality,

Hm ||t — uplla < limoo{”um —ulla + ||u—uy|la} =0.

m,n— 00 m,n—

A space V where the converse is true, i.e., where all Cauchy sequences {u, }5°, converge

in || - ||4 to functions u € V, is said to be complete.

Definition 3.2.5. A complete linear space V with inner product A(u, v) and correspond-

ing norm |Ju||4, u,v € V is called a Hilbert space.

Let’s list some relevant Hilbert spaces for use with variational formulations of bound-
ary value problems. We’'ll present their definitions in two space dimensions. Their ex-

tension to one and three dimensions is obvious.

Definition 3.2.6. The space L*(f2) consists of functions satisfying
L*(Q) == {u] // u?dzdy < oo} (3.2.4a)
0

It has the inner product

(u,v) = // uvdxdy (3.2.4b)

and norm

[ullo = v/ (u, u). (3.2.4¢)

Definition 3.2.7. The Sobolev space H* consists of functions u which belong to L? with

their first £ > 0 derivatives. The space has the inner product and norm

(w,v) =Y _ (D"u, DFv), (3.2.5a)
K<k

ulle = v/ (u, wr, (3.2.5b)

where
k = [k, Ko]”, |K| = K1 + Ko, (3.2.5¢)

with x; and ko non-negative integers, and

8I€1+I€2u

DRy = — .
Y oxr1Qyt2

(3.2.5d)

3.2. Function Spaces and Approximation 13

In particular, the space H' has the inner product and norm

(uy,0)1 = (uy0) + (g, vg) + (uy, vy) = //(uv + ugpvy + uyvy)drdy (3.2.6a)
0
1/2
lulls = //(u2 +ud +ud)dady| (3.2.6b)
0

Likewise, functions u € H? have finite values of
|5 = //[ui,x + ui,y + “Zy +u? + “Z + u?]dady.
Q

Example 3.2.1. We have been studying second-order differential equations of the
form (3.1.1) and seeking weak solutions u € H' and U € S¥ C H' of (3.1.6) and (3.2.2),
respectively. Let us verify that H'! is the correct space, at least in one dimension. Thus,
consider a basis of the familiar piecewise-linear hat functions on a uniform mesh with
spacing h = 1/N

(x—zj_1)/h, ifz;; <z <,
pj(z) =< (wjy1—2x)/h, ifz; <z <wjip . (3.2.7)
0, otherwise

Since SV C H', ¢; and ¢ must be in L?, j = 1,2,..., N. Consider C* approximations of
¢j(z) and ¢}(x) obtained by “rounding corners” in O(h/n)-neighborhoods of the nodes
Tj_1, Tj, Tj11 as shown in Figure3.2.1. A possible smooth approximation of ¢(x) is

(z — xj11) (z — @)

1
¢i(x) = ¢}, (x) = ﬁ[tanh nT + tanh — — 2tanh -

(z —5)
h h I

A smooth approximation ¢;, of ¢; is obtained by integration as

h [cosh n((x —xj41)/h) coshn((z —x;_1)/h)

(1) = o " cosh® n((z — z;)/h)

Clearly, ¢;, and ¢}, are elements of L?. The “rounding” disappears as n — oo and

1

lim [[¢ ()]2dz ~ 2h(1/h)? = 2/h.

Jn
n—oo [, ’

The explicit calculations are somewhat involved and will not be shown. However, it
seems clear that the limiting function ¢ € L? and, hence, ¢; € SV for fixed h.

14 Multi-Dimensional Variational Principles

09r

08

0.7

061

051

041 b -0.21-

031 q 0.4

0.2r- q -0.6

01 1 _osl

09r

08

061

051

041

031

0.2r-

01r

Figure 3.2.1: Smooth version of a piecewise linear hat function (3.2.7) (top), its first
derivative (center), and the square of its first derivative (bottom). Results are shown
with z; 1 = -1, 2; =0, zj41 =1 (h=1), and n = 10.

Example 3.2.2. Consider the piecewise-constant basis function on a uniform mesh

. . 1, ifl'j_1§1'<l'j
0j(x) = { 0, otherwise ' (3.2.8)

A smooth version of this function and its first derivative are shown in Figure 3.2.2 and

may be written as

Pjn(T) = %[tanh % ~tanh M |
) = P ree2™E T1) e n(@ — 1)
¢j,n($) - 2h[SeCh : sech .]

As n — oo, ¢,, approaches a square pulse; however, qﬁ;’n is proportional to the combi-

nation of delta functions

d);n(x) x 0(z —xj_1) — 6(x — x;).

3.2. Function Spaces and Approximation 15

Thus, we anticipate problems since delta functions are not elements of L?. Squaring

0 (7)

bz (e @ —mi) o on(r—xa) o on(r — 1)) an(z —)
[¢j,n(x)] = (2h,) [sech . 2sech - sech . +sech .].

As shown in Figure 3.2.2, the function sechn(z — x;)/h is largest at z; and decays

exponentially fast from z;; thus, the center term in the above expression is exponentially

small relative to the first and third terms. Neglecting it yields

L~ (T 2lsechtME T e E)
[0 (7)] = (2h,) [sech 7 + sech ; !
Thus,
/1[¢/' (2)]%dx ~ L[tanh M(Q + SechQM)
o " T 12k h N

+ tanh M(? + sech2w)]é.

This is unbounded as n — oo; hence, ¢j(x) ¢ L* and ¢;(z) ¢ H'.

0 L L L ~10 L L
-0.5 0 05 1 15 -0.5 0 0.5 1 15

Figure 3.2.2: Smooth version of a piecewise constant function (3.2.8) (left) and its first
derivative (right). Results are shown with z; 1 =0, ; =1 (h = 1), and n = 20.

Although the previous examples lack rigor, we may conclude that a basis of continuous
functions will belong to H'! in one dimension. More generally, v € H* implies that
u € C*~1 in one dimension. The situation is not as simple in two and three dimensions.
The Sobolev space H* is the completion with respect to the norm (3.2.5) of C* functions
whose first k partial derivatives are elements of L?. Thus, for example, v € H' implies
that u, u,, and u, are all elements of L?. This is not sufficient to ensure that u is
continuous in two and three dimensions. Typically, if 92 is smooth then u € H* implies
that u € C*(QQ U JQ) where s is the largest integer less than (k — d/2) in d dimensions
[1, 2]. In two and three dimensions, this condition implies that u € C*~2.

Problems

16 Multi-Dimensional Variational Principles

1. Assuming that p(z,y) > 0 and ¢(z,y) > 0, (z,y) € Q, find any other conditions

that must be satisfied for the strain energy
Av,u) = //[p(vxux + vyuy) + quuldzdy
Q

to be an inner product and norm, i.e., to satisfy Definitions 3.2.3 and 3.2.4.

2. Construct a variational problem for the fourth-order biharmonic equation

A(pAu) = f(z,y), (z,y) € Q,

where

AU = Ugy + Uy,

and p(z,y) > 01is smooth. Assume that u satisfies the essential boundary conditions
u(z,y) =0, un(z,y) =0, (z,y) € 09,

where n is a unit outward normal vector to 2. To what function space should the

weak solution of the variational problem belong?

3.3 Overview of the Finite Element Method

Let us conclude this chapter with a brief summary of the key steps in constructing a finite-
element solution in two or three dimensions. Although not necessary, we will continue
to focus on (3.1.1) as a model.

1. Construct a variational form of the problem. Generally, we will use Galerkin’s
method to construct a variational problem. As described, this involves multiplying the
differential equation be a suitable test function and using the divergence theorem to get
a symmetric formulation. The trial function u € H}, and, hence, satisfies any prescribed
essential boundary conditions. The test function v € H{ and, hence, vanishes where
essential boundary conditions are prescribed. Any prescribed Neumann or Robin bound-
ary conditions are used to alter the variational problem as, e.g., with (3.1.6) or (3.1.8b),
respectively.

Nontrivial essential boundary conditions introduce differences in the spaces H}, and
H}. Furthermore, the finite element subspace S cannot satisfy non-polynomial bound-
ary conditions. One way of overcoming this is to transform the differential equation to
one having trivial essential boundary conditions (¢f. Problem 1 at the end of this sec-
tion). This approach is difficult to use when the boundary data is discontinuous or when

the problem is nonlinear. It is more important for theoretical than for practical reasons.

3.3. Overview of the Finite Element Method 17

The usual approach for handling nontrivial Dirichlet data is to interpolate it by the

finite element trial function. Thus, consider approximations in the usual form

chd)] z,Y); (3.3.1)
Jj=1
however, we include basis functions ¢, for mesh entities (vertices, edges) k that are on
00g. The coefficients ¢, associated with these nodes are not varied during the solu-
tion process but, rather, are selected to interpolate the boundary data. Thus, with a

Lagrangian basis where ¢y (z;,y;) = d, we have

Ul(zk, yr) = a(xk, yp) = Ck, (T, yr) € 0Qp.

The interpolation is more difficult with hierarchical functions, but it is manageable (cf.
Section 4.4). We will have to appraise the effect of this interpolation on solution accuracy.
Although the spaces Sy and SY¥ differ, the stiffness and mass matrices can be made
symmetric for self-adjoint linear problems (¢f. Section 5.5).

A third method of satisfying essential boundary conditions is given as Problem 2 at
the end of this section.

2. Discretize the domain. Divide () into finite elements having simple shapes, such
as triangles or quadrilaterals in two dimensions and tetrahedra and hexahedra in three
dimensions. This nontrivial task generally introduces errors near 0€). Thus, the problem
is typically solved on a polygonal region Q) defined by the finite element mesh (Figure
3.3.1) rather than on €. Such errors may be reduced by using finite elements with curved
sides and/or faces near 092 (cf. Chapter 4). The relative advantages of using fewer curved
elements or a larger number of smaller straight-sided or planar-faced elements will have
to be determined.

3. Generate the element stiffness and mass matrices and element load vector. Piece-
wise polynomial approximations U € Sy of u and V € S} of v are chosen. The approx-
imating spaces SN and SY are supposed to be subspaces of HL and H¢, respectively;
however, this may not be the case because of errors introduced in approximating the
essential boundary conditions and/or the domain Q. These effects will also have to be
appraised (cf. Section 7.3). Choosing a basis for SV, we write U and V in the form of
(3.3.1).

The variational problem is written as a sum of contributions over the elements and
the element stiffness and mass matrices and load vectors are generated. For the model
problem (3.1.1) this would involve solving

Na

SIAWVU) = (Vo f)em <ViB>]=0, YV eSy, (3.3.2a)

e=1

18 Multi-Dimensional Variational Principles

X
12345678 _
1
2
3 1*
4 o 00 5
: 3
K =7 o 00 g
8 o 00
6
T
I_8

4

T
J

Figure 3.3.1: Two-dimensional domain () having boundary 02 = 0Q2g U 0€)y with unit
normal n discretized by triangular finite elements. Schematic representation of the as-
sembly of the element stiffness matrix K, and element load vector 1, into the global

stiffness matrix K and load vector 1.

where

A (V,U) = //(prUI + V,pU, + VqU)dzdy, (3.3.2b)
Qe

R\

8

3.3. Overview of the Finite Element Method 19

Vi fe = // V fdxdy, (3.3.2¢)

<V,B >.= / V Bds, (3.3.2d)

80NN

Q). is the domain occupied by element e, and N is the number of elements in the mesh.
The boundary integral (3.3.2d) is zero unless a portion of 9€2, coincides with the boundary
of the finite element domain 9.

Galerkin formulations for self-adjoint problems such as (3.1.6) lead to minimum prob-
lems in the sense of Theorem 3.1.1. Thus, the finite element solution is the best solution
in SV in the sense of minimizing the strain energy of the error A(u — U,u — U). The
strain energy of the error is orthogonal to all functions V' in S¥ as illustrated in Figure
3.3.2 for three-vectors.

Figure 3.3.2: Subspace S of Hj illustrating the “best” approximation property of the
solution of Galerkin’s method.

4. Assemble the global stiffness and mass matrices and load vector. The element
stiffness and mass matrices and load vectors that result from evaluating (3.3.2b-d) are
added directly into global stiffness and mass matrices and a load vector. As depicted
in Figure 3.3.1, the indices assigned to unknowns associated with mesh entities (vertices
as shown) determine the correct positions of the elemental matrices and vectors in the

global stiffness and mass matrices and load vector.

20 Multi-Dimensional Variational Principles

5. Solve the algebraic system. For linear problems, the assembly of (3.3.2) gives rise

to a system of the form
d"[(K +M)c -1 =0, (3.3.3a)

where K and M are the global stiffness and mass matrices, 1 is the global load vector,

o

c 17, (3.3.3b)

C1,Coy ey CN
and
d” = [dy, ds, ..., dN]". (3.3.3¢)
Since (3.3.3a) must be satisfied for all choices of d, we must have
(K+M)c=1 (3.3.4)

For the model problem (3.1.1), K + M will be sparse and positive definite. With proper
treatment of the boundary conditions, it will also be symmetric (¢f. Chapter 5).

Each step in the finite element solution will be examined in greater detail. Basis
construction is described in Chapter 4, mesh generation and assembly appear in Chapter
5, error analysis is discussed in Chapter 7, and linear algebraic solution strategies are
presented in Chapter 11.

Problems

1. By introducing the transformation
U=u—«

show that (3.1.1) can be changed to a problem with homogeneous essential bound-

ary conditions. Thus, we can seek @ € H{.

2. Another method of treating essential boundary conditions is to remove them by
using a “penalty function.” Penalty methods are rarely used for this purpose, but
they are important for other reasons. This problem will introduce the concept and
reinforce the material of Section 3.1. Consider the variational statement (3.1.6) as

an example, and modify it by including the essential boundary conditions
A(v,u) = (v, f)+ < v, 8 >s0y +A < v, —u >0, Vo € H.

Here A\ is a penalty parameter and subscripts on the boundary integral indicate
their domain. No boundary conditions are applied and the problem is solved for u

and v ranging over the whole of H'.

3.3. Overview of the Finite Element Method 21

Show that smooth solutions of this variational problem satisfy the differential equa-
tion (3.1.1a) as well as the natural boundary conditions (3.1.1¢) and
p Ou

277 Qp.
utTEo=a (z,y) € Qp

The penalty parameter A must be selected large enough for this natural boundary
condition to approximate the prescribed essential condition (3.1.1b). This can be
tricky. If selected too large, it will introduce ill-conditioning into the resulting
algebraic system.

22

Multi-Dimensional Variational Principles

Bibliography

[1] R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Problems.
Academic Press, Orlando, 1984.

[3] C. Geoffman and G. Pedrick. First Course in Functional Analysis. Prentice-Hall,
Englewood Cliffs, 1965.

[4] P.R. Halmos. Measure Theory. Springer-Verlag, New York, 1991.

[5] J.T. Oden and L.F. Demkowicz. Applied Functional Analysis. CRC Press, Boca
Raton, 1996.

[6] R. Wait and A.R. Mitchell. The Finite Element Analysis and Applications. John
Wiley and Sons, Chichester, 1985.

23

Chapter 4

Finite Element Approximation

4.1 Introduction

Our goal in this chapter is the development of piecewise-polynomial approximations U
of a two- or three-dimensional function u. For this purpose, it suffices to regard u as
being known and to determine U as its interpolant on a domain 2. Concentrating on
two dimensions for the moment, let us partition {2 into a collection of finite elements and

write U in the customary form

Ulayy) =Y csoslay) (4.1.1)

As we discussed, it is convenient to associate each basis function ¢; with a mesh entity,
e.g., a vertex, edge, or element in two dimensions and a vertex, edge, face, or element
in three dimensions. We will discuss these entities and their hierarchical relationship
further in Chapter 5. For now, if ¢; is associated with the entity indexed by j, then, as
described in Chapters 1 and 2, finite element bases are constructed so that ¢; is nonzero
only on elements containing entity j. The support of two-dimensional basis functions

associated with a vertex, an edge, and an element interior is shown in Figure 4.1.1.

As in one dimension, finite element bases are constructed implicitly in an element-
by-element manner in terms of “shape functions” (¢f. Section 2.4). Once again, a shape
function on an element e is the restriction of a basis function ¢;(z,y) to element e.
We proceed by constructing shape functions on triangular elements (Section 4.2, 4.4),
quadrilaterals (Sections 4.3, 4.4), tetrahedra (Section 4.5.1), and hexahedra (Section
4.5.2).

2 Finite Element Approximation

Figure 4.1.1: Support of basis functions associated with a vertex, edge, and element
interior (left to right).

4.2 Lagrange Shape Functions on Triangles

Perhaps the simplest two-dimensional Lagrangian finite element basis is a piecewise-linear
polynomial on a grid of triangular elements. It is the two-dimensional analog of the hat
functions introduced in Section 1.3. Consider an arbitrary triangle e with its vertices
indexed as 1, 2, and 3 and vertex j having coordinates (z;,y;), j =1, 2,3 (Figure 4.2.1).

The linear shape function N;(z,y) associated with vertex j satisfies
Ni(@r, ye) = 0jks Jk=1,2,3. (4.2.1)

(Again, we omit the subscript e from N;. whenever it is clear that we are discussing a

single element.) Let N; have the form
Nj(z,y) =a+bz+cy, (z,y) €L,

where . is the domain occupied by element e. Imposing conditions (4.2.1) produces

T Yy c

Solving this system by Crammer’s rule yields

D
N;(z,y) = kcl*(::ly) k4145 jkl=1,2,3 (4.2.2a)
J’,

where

1 = y
Dk,l = det 1 Tk Yk s (422b)
Loy

4.2. Lagrange Shape Functions on Triangles 3

2 (%)

1
3

(1Y)

Figure 4.2.1: Triangular element with vertices 1, 2,3 having coordinates (z1,y1), (22, y2),
and (x3,y3).

@

Figure 4.2.2: Shape function NV; for Node 1 of element e (left) and basis function ¢ for
a cluster of four finite elements at Node 1.

L oz oy
Cj,k,l = det 1 Tk Yk . (4220)
Loz oy

Basis functions are constructed by combining shape functions on neighboring elements
as described in Section 2.4. A sample basis function for a four-element cluster is shown in
Figure 4.2.2. The implicit construction of the basis in terms of shape function eliminates

the need to know detailed geometric information such as the number of elements sharing

4 Finite Element Approximation

a node. Placing the three nodes at element vertices guarantees a continuous basis. While
interpolation at three non-colinear points is (necessary and) sufficient to determine a
unique linear polynomial, it will not determine a continuous approximation. With vertex
placement, the shape function (e.g., N;) along any element edge is a linear function of
a variable along that edge. This linear function is determined by the nodal values at
the two vertex nodes on that edge (e.g., j and k). As shown in Figure 4.2.2, the shape
function on a neighboring edge is determined by the same two nodal values; thus, the
basis (e.g., ¢;) is continuous.

The restriction of U(z,y) to element e has the form
U(.’L’,y) :ClNl(xay)+02N2(1‘7y)+c3N3(x7y)7 (x,y) GQB- (423)

Using (4.2.1), we have ¢; = U(x;,y,), j =1,2,3.
The construction of higher-order Lagrangian shape functions proceeds in the same

manner. In order to construct a p th-degree polynomial approximation on element e, we

introduce N;(z,y), j =1,2,...,n,, shape functions at n, nodes, where
1 2
n, = % (4.2.4)

is the number of monomial terms in a complete polynomial of degree p in two dimensions.

We may write a shape function in the form

Ni(z,y) =Y ag;(z,y) =a"q(z,y) (4.2.5a)
i=1
where
o' (zv,y) =[1,2,y, 2% zy,v% ...,). (4.2.5D)

Thus, for example, a second degree (p = 2) polynomial would have n, = 6 coefficients
and
ot

a’ (z,y) =[1,2,y,2% zy,y%.

Including all n, monomial terms in the polynomial approximation ensures isotropy in the
sense that the degree of the trial function is conserved under coordinate translation and
rotation.

With six parameters, we consider constructing a quadratic Lagrange polynomial by
placing nodes at the vertices and midsides of a triangular element. The introduction of
nodes is unnecessary, but it is a convenience. Indexing of nodes and other entities will be

discussed in Chapter 5. Here, since we're dealing with a single element, we number the

4.2. Lagrange Shape Functions on Triangles 5t

3

2

Figure 4.2.3: Arrangement of nodes for quadratic (left) and cubic (right) Lagrange finite
element approximations.

nodes from 1 to 6 as shown in Figure 4.2.3. The shape functions have the form (4.2.5)
with ny = 6

N;j = ay + ao® + azy + a4z’ + aszy + agy?,

and the six coefficients a;, j = 1,2,...,6, are determined by requiring

Nj(xkayk)zéj,ka j;k:1,2,...,6.

The basis
d)j = UiV:A1Nj,e(xa y)

is continuous by virtue of the placement of the nodes. The shape function N;. is a
quadratic function of a local coordinate on each edge of the triangle. This quadratic
function of a single variable is uniquely determined by the values of the shape functions
at the three nodes on the given edge. Shape functions on shared edges of neighboring
triangles are determined by the same nodal values; hence, ensuring that the basis is
globally of class C°.

The construction of cubic approximations would proceed in the same manner. A
complete cubic in two dimensions has 10 parameters. These parameters can be deter-
mined by selecting 10 nodes on each element. Following the reasoning described above,
we should place four nodes on each edge since a cubic function of one variable is uniquely
determined by prescribing four quantities. This accounts for nine of the ten nodes. The
last node can be placed at the centroid as shown in Figure 4.2.3.

The construction of Lagrangian approximations is straight forward but algebraically
complicated. Complexity can be significantly reduced by using one of the following two

coordinate transformations.

6 Finite Element Approximation

3(0,1)

1 (Xl’y 1) N 3 0 2 (Xz’y 2)
- / o 3
/ 1(0,0) 2(1,0)

Figure 4.2.4: Mapping an arbitrary triangular element in the (z,y)-plane (left) to a
canonical 45° right triangle in the (£, n)-plane (right).

1. Transformation to a canonical element. The idea is to transform an arbitrary
element in the physical (x,y)-plane to one having a simpler geometry in a computational
(&,m)-plane. For purposes of illustration, consider an arbitrary triangle having vertex
nodes numbered 1, 2, and 3 which is mapped by a linear transformation to a unit 45°
right triangle, as shown in Figure 4.2.4.

Consider N) and Nj as defined by (4.2.2). (A superscript 1 has been added to
emphasize that the shape functions are linear polynomials.) The equation of the line
connecting Nodes 1 and 3 of the triangular element shown on the left of Figure 4.2.4 is
N, = 0. Likewise, the equation of a line passing through Node 2 and parallel to the
line passing through Nodes 1 and 3 is N} = 1. Thus, to map the line N3 = 0 onto the
line £ = 0 in the canonical plane, we should set £ = Nj(z,y). Similarly, the line joining
Nodes 1 and 2 satisfies the equation N3 = 0. We would like this line to become the line
n = 0 in the transformed plane, so our mapping must be n = NJ (x,y). Therefore, using
(4.2.2)

| Y I =z y
det | 1 zy det | 1 =1
I z3 y3 Iz yo
£ = Ny(z,y) = —= = n=N(w,y) = —= = (426
Iz I x3 y3
det | 1 =z det | 1 z;
L1 x5 ys | |1 2 e

As a check, evaluate the determinants and verify that (z1,y;) — (0,0), (x2,y2) — (1,0),
and (x3,y3) — (0,1).
Polynomials may now be developed on the canonical triangle to simplify the algebraic

4.2. Lagrange Shape Functions on Triangles 7

Figure 4.2.5: Geometry of a triangular finite element for a cubic polynomial Lagrange
approximation.

complexity and subsequently transformed back to the physical element.

2. Transformation using triangular coordinates. A simple procedure for constructing
Lagrangian approximations involves the use of a redundant coordinate system. The
construction may be described in general terms, but an example suffices to illustrate the
procedure. Thus, consider the construction of a cubic approximation on the triangular
element shown in Figure 4.2.5. The vertex nodes are numbered 1, 2, and 3; edge nodes
are numbered 4 to 9; and the centroid is numbered as Node 10.

Observe that

e the line N = 0 passes through Nodes 2, 6, 7, and 3;
e the line N = 1/3 passes through Nodes 5, 10, and 8; and
e the line N! = 2/3 passes through Nodes 4 and 9.
Since N} must vanish at Nodes 2 - 10 and be a cubic polynomial, it must have the form
Ni(z,y) = aNy (N} — 1/3)(Ny —2/3)

where the constant « is determined by normalizing N7 (z1,4;) = 1. Since N} (z1,y1) = 1,
we find @ = 9/2 and

N3(ry) = S NLNY = 1/3)(V] — 2/3).

The shape function for an edge node is constructed in a similar manner. For example,

in order to obtain N} we observe that

e the line N = 0 passes through Nodes 1, 9, 8, and 3;

8 Finite Element Approximation

e the line N/ = 0 passes through Nodes 2, 6, 7, and 3; and
e the line N! = 1/3 passes through Nodes 5, 10, and 8.

Thus, N} must have the form
Ni(z,y) = aNy Ny (N} —1/3).

Normalizing N3 (x4, y4) = 1 gives

21 .2 1
N3 (24, y4) = agg(g - g)-

Hence, a = 27/2 and
27

Niw.o) = TNV} - 1/3).
Finally, the shape function N3, must vanish on the boundary of the triangle and is,
thus, determined as
Nio(z,y) = 27N} Ny N.

The cubic shape functions N7, N2, and N}, are shown in Figure 4.2.6.

The three linear shape functions le, j = 1,2,3, can be regarded as a redundant
coordinate system known as “triangular” or “barycentric” coordinates. To be more
specific, consider an arbitrary triangle with vertices numbered 1, 2, and 3 as shown
in Figure 4.2.7. Let

¢, = N7, (= Ny, (3 = N3, (4.2.7)

and define the transformation from triangular to physical coordinates as

T Ty Tz X3 G
y =1y v ¥y G |- (4.2.8)
1 1 1 1 (3

Observe that ({1, (s, (3) has value (1,0,0) at vertex 1, (0,1,0) at vertex 2 and (0,0,1) at
vertex 3.

An alternate, and more common, definition of the triangular coordinate system in-
volves ratios of areas of subtriangles to the whole triangle. Thus, let P be an arbitrary

point in the interior of the triangle, then the triangular coordinates of P are

_ Api2
- Y
Al

_ Apa
- Y
Al

_ Apas

Cl - A123)

G2

C3

(4.2.9)

where Ajo3 is the area of the triangle, Apy3 is the area of the subtriangle having vertices
P, 2 3, etc.

4.2. Lagrange Shape Functions on Triangles 9

12 12

0.8
0.6
0.4
0.2

Figure 4.2.6: Cubic Lagrange shape functions associated with a vertex (left), an
edge(right), and the centroid (bottom) of a right 45° triangular element.

The triangular coordinate system is redundant since two quantities suffice to locate
a point in a plane. This redundancy is expressed by the third of equations (4.2.8), which
states that

G+G+gG=1

This relation also follows by adding equations (4.2.9).

Although seemingly distinct, triangular coordinates and the canonical coordinates are
closely related. The triangular coordinate (5 is equivalent to the canonical coordinate &
and (3 is equivalent to 7, as seen from (4.2.6) and (4.2.7).

Problems

1. With reference to the nodal placement and numbering shown on the left of Figure
4.2.3, construct the shape functions for Nodes 1 and 4 of the quadratic Lagrange
polynomial. Derive your answer using triangular coordinates. Having done this,

also express your answer in terms of the canonical (£, 7) coordinates. Plot or sketch

10 Finite Element Approximation

3(0,0,1)

1(1,0,0)

2(0,1,0)

Figure 4.2.7: Triangular coordinate system.

the two shape functions on the canonical element.

2. A Lagrangian approximation of degree p on a triangle has three nodes at the vertices
and p — 1 nodes along each edge that are not at vertices. As we’ve discussed,
the latter placement ensures continuity on a mesh of triangular elements. If no
additional nodes are placed on edges, how many nodes are interior to the element
if the approximation is to be complete?

4.3 Lagrange Shape Functions on Rectangles

The triangle in two dimensions and the tetrahedron in three dimensions are the poly-
hedral shapes having the minimum number of edges and faces. They are optimal for
defining complete C° Lagrangian polynomials. Even so, Lagrangian interpolants are
simple to construct on rectangles and hexahedra by taking products of one-dimensional
Lagrange polynomials. Multi-dimensional polynomials formed in this manner are called
“tensor-product” approximations. we’ll proceed by constructing polynomial shape func-
tions on canonical 2 X 2 square elements and mapping these elements to an arbitrary
quadrilateral elements. We describe a simple bilinear mapping here and postpone more
complex mappings to Chapter 5.

We consider the canonical 2 x 2 square {(£,n)| —1 < &, 1 < 1} shown in Figure 4.3.1.
For simplicity, the vertices of the element have been indexed with a double subscript
as (1,1), (2,1), (1,2), and (2,2). At times it will be convenient to index the vertex
coordinats as & = —1, & =1, gy = —1, and 9, = 1. With nodes at each vertex, we

construct a bilinear Lagrangian polynomial U(£,n) whose restriction to the canonical

4.3. Lagrange Shape Functions on Rectangles 11

130 330 230

X

Y

Figure 4.3.1: Node indexing for canonical square elements with bilinear (left) and bi-
quadratic (right) polynomial shape functions.

element has the form

U€,n) =c1iNii(§,m) + c01N21(&,m) + c22N22(8, 1) + c1,2N12(€,m). (4.3.1a)

As with Lagrangian polynomials on triangles, the shape function N;;(£,n) satisfies

Nij(&em) = 6:xbi0n kol=1,2. (4.3.1b)
Once again, U(&,m) = cxy; however, now N;; is the product of one-dimensional hat
functions
Nij (& m) = Ni(§)N;(n) (4.3.1¢)
with
Ni(§) = l;Qf, (4.3.1d)
Ny(§) = IT% —-1<¢<1. (4.3.1e)

Similar formulas apply to N;(n), 7 = 1,2, with £ replaced by 5 and i replaced by j.
The shape function Ny ; is shown in Figure 4.3.2. By examination of either this figure or

(4.3.1c-e), we see that N; ;(£,n) is a bilinear function of the form
Nij(€n) = a1 + as€ + azn + asdn, —1<&n< L (4.3.2)

The shape function is linear along the two edges containing node (i, ;) and it vanishes
along the two opposite edges.
A basis may be constructed by uniting shape functions on elements sharing a node.

The piecewise bilinear basis functions ¢; ; when Node (4, j) is at the intersection of four

12 Finite Element Approximation

Figure 4.3.2: Bilinear shape function Ny ; on the [—1,1] x[—1, 1] canonical square element
(left) and bilinear basis function at the intersection of four square elements (right).

square elements is shown in Figure 4.3.2. Since each shape function is a linear polynomial
along element edges, the basis will be continuous on a grid of square (or rectangular) ele-
ments. The restriction to a square (or rectangular) grid is critical and the approximation
would not be continuous on an arbitrary mesh of quadrilateral elements.

To construct biquadratic shape functions on the canonical square, we introduce 9
nodes: (1,1), (2,1), (2,2), and (1,2) at the vertices; (3,1), (2,3), (3,2), and (1,3) at mid-
sides; and (3,3) at the center (Figure 4.3.1). The restriction of the interpolant U to this
element has the form
3
UE,m =2, cisNi(&n) (4.3.32)

=1 j=1
where the shape functions N, ;, i, 7 = 1, 2, 3, are products of the one-dimensional quadratic

polynomial Lagrange shape functions

Ni,j(ga 77) = Nz(g)N](n)a Za] =1,2,3, (433b)
with (c¢f. Section 2.4)
M) = —€(1-9)/2, (4.3.3¢)
M) = €0 +6)/2. (43:34)
Ny(§) = (1-¢%), -1<¢&<1. (4.3.3¢)

Shape functions for a vertex, an edge, and the centroid are shown in Figure 4.3.3.

Using (4.3.3b-e), we see that shape functions are biquadratic polynomials of the form

Nii(&,n) = a1 + aé + azn + a1 + asén + agn’ + arén’ + as€’n + agl’n’. (4.3.4)

4.3. Lagrange Shape Functions on Rectangles 13

1 /N
0’0‘0‘0“
. SR
LAXIECALIITIN
L TSSOSO
0 s e se e S e ee s
==———C——s oo os oo
== oS oSS oS oS o
02 e e = . .
—_——
05 == 0s
0 “‘ 0

0.5 -0.5 05 -05

0.8

0.6

0.4

Ny

//illlil" N

A
LN

0.2

|
»o

Ul t&\\\\\

0.5 -0.5
1 -1

Figure 4.3.3: Biquadratic shape functions associated with a vertex (left), an edge (right),
and the centroid (bottom).

Although (4.3.4) contains some cubic and quartic monomial terms, interpolation accuracy
is determined by the highest-degree complete polynomial that can be represented exactly,

which, in this case, is a quadratic polynomial.

Higher-order shape functions are constructed in similar fashion.

4.3.1 Bilinear Coordinate Transformations

Shape functions on the canonical square elements may be mapped to arbitrary quadri-
laterals by a variety of transformations (¢f. Chapter 5). The simplest of these is a
picewise-bilinear function that uses the same shape functions (4.3.1d,e) as the finite el-
ement solution (4.3.1a). Thus, consider a mapping of the canonical 2 x 2 square S to
a quadrilateral () having vertices at (x;;,v:;), ¢,j = 1,2, in the physical (z,y)-plane

(Figure 4.3.4) using a bilinear transformation written in terms of (4.3.1d,e) as

14 Finite Element Approximation

y AN 2,2
T
1
-
1
219 '
-~ 1w 1=

Figure 4.3.4: Bilinear mapping of the canonical square to a quadrilateral.

2 2
z(&,m) } [Zij }
= N; i (&,7), 4.3.5
{ y(&m) 2; y | Vi) 435)
where N;;(£,n) is given by (4.3.1b).
The transformation is linear on each edge of the element. In particular, transforming
the edge n = —1 to the physical edge (211, y11 - (z21,y21) yields

o I 1_—5 Toq 1—+§ -
[y]_{yll} 2 +{y21] 9 1<E<T.

As £ varies from -1 to 1, z and y vary linearly from (211, %11) to (221, y21). The locations
of the vertices (1,2) and (2,2) have no effect on the transformation. This ensures that a
continuous approximation in the (&, n)-plane will remain continuous when mapped to the
(x,y)-plane. We have to ensure that the mapping is invertible and we’ll show in Chapter
5 that this is the case when () is convex.

Problems

1. As noted, interpolation errors of the biquadratic approximation (4.3.3) are the same
order as for a quadratic approximation on a triangle. Thus, for example, the L?
error in interpolating a smooth function u(z, y) by a piecewise biquadratic function
U(z,y) is O(h?), where h is the length of the longest edge of an element. The
extra degrees of freedom associated with the cubic and quartic terms do not gen-
erally improve the order of accuracy. Hence, we might try to eliminate some shape
functions and reduce the complexity of the approximation. Unknowns associated
with interior shape functions are only coupled to unknowns on the element and can
easily be eliminated by a variety of techniques. Considering the biquadratic poly-

nomial in the form (4.3.3a), we might determine ¢33 so that the coefficient of the

4.4. Hierarchical Shape Functions 15

quartic term z2y? vanishes. Show how this may be done for a 2 x 2 square canon-
ical element. Polynomials of this type have been called serendipity by Zienkiewicz
[8]. In the next section, we shall see that they are also a part of the hierarchical
family of approximations. The parameter c; 3 is said to be “constrained” since it is
prescribed in advance and not determined as part of the Galerkin procedure. Plot

or sketch shape functions associated with a vertex and a midside.

4.4 Hierarchical Shape Functions

We have discussed the advantages of hierarchical bases relative to Lagrangian bases for
one-dimensional problems in Section 2.5. Similar advantages apply in two and three di-
mensions. We'll again use the basis of Szabé and Babuska [7], but follow the construction
procedure of Shephard et al. [6] and Dey et al. [5]. Hierarchical bases of degree p may
be constructed for triangles and squares. Squares are the simpler of the two, so let us
handle them first.

4.4.1 Hierarchical Shape Functions on Squares

We'll construct the basis on the canonical element {(£,7)] — 1 < &,n < 1}, indexing
the vertices, edges, and interiors as described for the biquadratic approximation shown
in Figure 4.3.1. The hierarchical polynomial of order p has a basis consisting of the
following shape functions.

Vertex shape functions. The four vertex shape functions are the bilinear functions
(4.3.1c-e)

Ny = Ni(ON;(m), 1,5 =1,2, (4.4.1a)
where

- 1-— . 1

Ni(§) = Tg Ny (§) = %5 (4.4.1b)

The shape function Nll,1 is shown in the upper left portion of Figure 4.4.1.
Edge shape functions. For p > 2, there are 4(p — 1) shape functions associated with
the midside nodes (3, 1), (2,3), (3,2), and (1, 3):

Niy(&m) = Ni(pN*(6), (4.4.2a)
N§,(&m) = Nao(n)N*(¢), (4.4.2b)
Nf,g(f,n) = _1(§)Nk(77)a (4.4.2¢)
Nys(€,m) = Na(E)N*(m), k=2,3,...,p, (4.4.2d)

16 Finite Element Approximation

where N*(£), k = 2,3,...,p, are the one-dimensional hierarchical shape functions given

by (2.5.8a) as
[2k -1 [¢
= 5 Py_1(0)do. (4.4.2¢)
-1

Edge shape functions Ngﬁl are shown for k£ = 2,3,4, in Figure 4.4.1. The edge shape

functions are the product of a linear function of the variable normal to the edge to which
they are associated and a hierarchical polynomial of degree k in a variable on this edge.
The linear function (N;(€), N;(n), 7 = 1,2) “blends” the edge function (N*(€), N*(n))
onto the element so as to ensure continuity of the basis.

Interior shape functions. For p > 4, there are (p—2)(p—3)/2 internal shape functions
associated with the centroid, Node (3, 3). The first internal shape function is the “bubble

function”
N§;§"’ = (1-€)(1—n?). (4.4.3a)

The remaining shape functions are products of Ni’g ¥ and the Legendre polynomials as

Nop? = NypPi(g), (4.4.3b)
N33t = :j,l:?OPl(U)a (4.4.3¢)
N33 = NggPPy(€), (4.4.3d)
Nyg' = Ng$PPi(&)Pi(n), (4.4.3¢)
N33? = Ny3“Py(n), ... (4.4.3f)

The superscripts k, A, and p, resectively, give the polynomial degree, the degree of Py (&),
and the degree of P,(n). The first six interior bubble shape functions Néﬁ?’“, A =k—4,
k = 4,5,6, are shown in Figure 4.4.2. These functions vanish on the element boundary
to maintain continuity.

On the canonical element, the interpolant U(&,n) is written as the usual linear com-

bination of shape functions

p p

2 2
1 k k kA nrk oA
E:E:Cz,] i) +§, C3JN3]+§: Z3Nz3+ E, €33 N3,3 .
i=1 j=1 k=2 j=1 k=4 Mpu=k—4

(4.4.4)

The notation is somewhat cumbersome but it is explicit. The first summation identifies
unknowns and shape functions associated with vertices. The two center summations
identify edge unknowns and shape functions for polynomial orders 2 to p. And, the

third summation identifies the interior unknowns and shape functions of orders 4 to p.

4.4. Hierarchical Shape Functions 17

0.4 0.25
0.2
0.15
0.1

0.05

-0.05
-0.1
-0.15

Figure 4.4.1: Hierarchical vertex and edge shape functions for k£ = 1 (upper left), k& = 2
(upper right), k = 3 (lower left), and k£ = 4 (lower right).

Summations are understood to be zero when their initial index exceeds the final index.
A degree p approximation has 4 + 4(p — 1)4 + (p — 2)4+(p — 3)+/2 unknowns and shape
functions, where ¢, = max(q,0). This function is listed in Table 4.4.1 for p ranging from
1 to 8. For large values of p there are O(p?) internal shape functions and O(p) edge

functions.

4.4.2 Hierarchical Shape Functions on Triangles

We’ll express the hierarchical shape functions for triangular elements in terms of trian-
gular coordinates, indexing the vertices as 1, 2, and 3; the edges as 4, 5, and 6; and the
centroid as 7 (Figure 4.4.3). The basis consists of the following shape functions.

Vertex Shape functions. The three vertex shape functions are the linear barycentric
coordinates (4.2.7)

Ni (G, Gs) = ¢ i=1,2,3. (4.4.5)

18 Finite Element Approximation

J /III' \
Ml

g ‘lroti\\\\

TSIy,
. “\\\\\“\‘Q«%lo‘ T
o

o RGN
LA RSSNRSBAGN
. "‘ﬁ%\\;zzglfzu\\\

7

Figure 4.4.2: Hierarchical interior shape functions Ni’g’o, Ni’;’o (top), Né’,’g’l, N36”§’0 (mid-
dle), and Ngi’?,l’l, N?i’??’2 (bottom).

4.4. Hierarchical Shape Functions 19

P Square Triangle
Dimension | Dimension

1 4 3

2 8 6

3 12 10

4 17 15

5 23 21

6 30 28

7 38 36

8 47 45

Table 4.4.1: Dimension of the hierarchical basis of order p on square and triangular
elements.

3(0,0,1)

(100 2(0,1,0)

%

Figure 4.4.3: Node placement and coordinates for hierarchical approximations on a tri-
angle.

FEdge shape functions. For p > 2 there are 3(p — 1) edge shape functions which are
each nonzero on one edge (to which they are associated) and vanish on the other two.
Each shape function is selected to match the corresponding edge shape function on a
square element so that a continuous approximation may be obtained on meshes with
both triangular and quadrilateral elements. Let us construct of the shape functions NJ,
k=23,...,p, associated with Edge 4. They are required to vanish on Edges 5 and 6

and must have the form

N (C1y o, () = GGYF(E), k=23,...,p, (4.4.6a)

where Y*(£) is a shape function to be determined and ¢ is a coordinate on Edge 4 that
has value -1 at Node 1, 0 at Node 4, and 1 at Node 2. Since Edge 4 is (3 = 0, we have

NE(G, 6o, 0) = GOXF(E), G +G=1.

20 Finite Element Approximation

The latter condition follows from (4.2.8) with (3 = 0. Along Edge 4, (; ranges from 1 to
0 and (> ranges from 0 to 1 as £ ranges from -1 to 1; thus, we may select
G=01-9/2, G=0+¢/2, G=0. (4.4.6b)

While ¢ may be defined in other ways, this linear mapping ensures that (; + (s = 1 on
Edge 4. Compatibility with the edge shape function (4.4.2) requires

-0 +8) &

N3 (G562, 0) = N(§) = ————="X(9)
where N*(€) is the one-dimensional hierarchical shape function (4.4.2¢). Thus,
_ AN*(€
X = 1— (52)- (4.4.6¢)

The result can be written in terms of triangular coordinates by using (4.4.6b) to obtain
§ = G2 — Gu; hence,

Nf((l, (2, (3) = ClCzik(Cz — (1), k=2,3,...,p. (4.4.7a)

Shape functions along other edges follow by permuting indices, i.e.,
NE(C1,Go,Gs) = GaGaX*(Gs — Ga), (4.4.7b)
Nek(Ch G2, (3) = C3C1>_<k(C1 - G), k=2,3,...,p. (4.4.7¢)

It might appear that the shape functions {*(€) has singularities at £ = £1; however, the
one-dimensional hierarchical shape functions have (1 — £2) as a factor. Thus, Y*(¢) is a

polynomial of degree k — 2. Using (2.5.8), the first four of them are

(&) =-V6, X =—-VI10g,
) = —\/g (&% —1), X&) = —\/g (76* — 3¢). (4.4.8)

Interior shape functions. The (p — 1)(p — 2)/2 internal shape functions for p > 3 are
products of the bubble function

NP = (16 (4.4.92)

and Legendre polynomials. The Legendre polynomials are functions of two of the three
triangular coordinates. Following Szabd and Babuska [7], we present them in terms of
CQ - Cl and Cg. ThUS,

N?’I’O _ N}O”O’OH(CQ —), (4.4.9b)
NAOL _ NBOOP (96), (4.4.9¢)
NZZO = NBOOP(c, — (), (4.4.9d)
NPV = NBOPP (¢ — ()P (26 — 1), (4.4.9¢)
NFOZ _ NBOOp (o 1), o (4.4.91)

4.4. Three-Dimensional Shape Functions 21

The shift in (3 ensures that the range of the Legendre polynomials is [—1, 1].

Like the edge shape functions for a square (4.4.2), the edge shape functions for a
triangle (4.4.7) are products of a function on the edge (Y*(¢;—¢;)) and a function ({;¢;, @ #
7) that blends the edge function onto the element. However, the edge functions for the
triangle are not the same as those for the square. The two are related by (4.4.6¢). Having
the same edge functions for all element shapes simplifies construction of the element
stiffness matrices [6]. We can, of course, make the edge functions the same by redefining
the blending functions. Thus, using (4.4.6a,c), the edge function for Edge 4 can be N*(¢)

if the blending function is
461G
1—¢&2

In a similar manner, using (4.4.2a) and (4.4.6¢), the edge function for the shape function

N3, can be x*(€) if the blending function is

Ni(n)(1 - ¢%)
4
Shephard et al. [6] show that representations in terms of ¥* involve fewer algebraic
operations and, hence, are preferred.

The first three edge and interior shape functions are shown in Figure 4.4.4. A degree
p hierarchical approximation on a triangle has 3+3(p—1)+(p—1);(p—2); /2 unknowns
and shape functions. This function is listed in Table 4.4.1. We see that for p > 1, there are
two fewer shape functions with triangular elements than with squares. The triangular
element is optimal in the sense of using the minimal number of shape functions for a
complete polynomial of a given degree. This, however, does not mean that the complexity
of solving a given problem is less with triangular elements than with quadrilaterals. This
issue depends on the partial differential equations, the geometry, the mesh structure, and
other factors.

Carnevali et al. [4] introduced shape functions that produce better conditioned ele-
ment stiffness matrices at higher values of p than the bases presented here [7]. Adjerid
et al. [1] construct an alternate basis that appears to further reduce ill conditioning at
high p.

4.5 Three-Dimensional Shape Functions

Three-dimensional finite element shape functions are constructed in the same manner as
in two dimensions. Common element shapes are tetrahedra and hexahedra and we will

examine some Lagrange and hierarchical approximations on these elements.

22 Finite Element Approximation

N

=0

X\
Nty

0%
RS
SRS
XK
B

o T

LU
N
N
SN

N
N

N

NSNS

\\\§\\\\\\\‘

N

/ % ° NS
/ / NSNS
,/%4 N
-05) o N N\\\\\SeSer/
" 4 o2 N/
0. -03 A\N /

7

0.8 0.2 0.8

0.6

0.25
0.2
0.15

0.1

X

7
.

=~
2

0.05

7
)

QL
SN

o
S

=
777
S

—-0.05

K

2

-0.1

=
o
&

Q

-0.15

-0.2

\\‘0 N
TSN
Y A
*\%&3!}&&83%;?%;3%\
~0.005 \\ 4\‘ 7] :

=i

0.2 0.8
0.4 0.6
0.6 0.4

Figure 4.4.4: Hierarchical edge and interior shape functions N7 (top left), N3 (top right),
N} (middle left), N2*° (middle right), N;""* (bottom left), N2*%! (bottom right).

4.5.1 Lagrangian Shape Functions on Tetrahedra

Let us begin with a linear shape function on a tetrahedron. We introduce four nodes
numbered (for convenience) as 1 to 4 at the vertices of the element (Figure 4.5.1). Im-

posing the usual Lagrangian conditions that N;(zy, vk, 2¢) = ik, J, k = 1,2,3,4, gives

4.4. Three-Dimensional Shape Functions 23

the shape functions as

4(0,0,0,1)

3(0,0,1,0)

1(1,0,0,0)

2(0,1,0,0)

Figure 4.5.1: Node placement for linear shape functions on a tetrahedron and definition
of tetrahedral coordinates.

Nj(z,y,z) = M, (4, k,1,m) a permutation of 1,2,3, 4, (4.5.1a)
ok olm
where
1z vy =z
Dy ym(z,y, 2) = det 1 i’; ‘Z’Z ZZ'; : (4.5.1b)
1 Ty Ym 2m

i Yi %
T Ye Zk
T y &
J“m ym Zm

Cj,k,l,m = det (451C)

U Gy G W S

Placing nodes at the vertices produces a linear shape function on each face that is uniquely
determined by its values at the three vertices on the face. This guarantees continuity of

bases constructed from the shape functions. The restriction of U to element e is

Ulx,y,z) = chNj(x,y,z). (4.5.2)

Jj=1

As in two dimensions, we may construct higher-order polynomial interpolants by
either mapping to a canonical element or by introducing “tetrahedral coordinates.” Fo-

cusing on the latter approach, let

¢ = Nj(z,y, 2), j=1,2,3,4, (4.5.3a)

24 Finite Element Approximation

4 ¢ 4(0,0,1)

4 2
X 1(0,0,0) 2(1,0,0)

Figure 4.5.2: Transformation of an arbitrary tetrahedron to a right, unit canonical tetra-
hedron.

and regard (;, j = 1,2, 3,4, as forming a redundant coordinate system on a tetrahedron.
The coordinates of a point P located at ({1, (o, (3,(4) are (Figure 4.5.1)

VP234 VP134 VP124 VP123
_ , _ , - : = , 4.5.3b
Cl ‘/1234 C2 ‘/1234 CS ‘/1234 C4 ‘/1234 ()

where Vjji; is the volume of the tetrahedron with vertices at 7, j, k, and [. Hence, the
coordinates of Vertex 1 are (1,0,0,0), those of Vertex 2 are (0,1,0,0), etc. The plane
¢ = 0 is the plane Ay34 opposite to vertex 1, etc. The transformation from physical to

tetrahedral coordinates is

z Ty T2 T3 T4 1

Yyl _ | Y2 Ys U G (4.5.4)
Z 21 X2 23 4 G| o
1 1 1 1 1 Ca

The coordinate system is redundant as expressed by the last equation.
The transformation of an arbitrary tetrahedron to a right, unit canonical tetrahedron

(Figure 4.5.2) follows the same lines, and we may define it as

£ = No(z,y,2), n = Ns3(z,y,2), ¢ = Ny(z,y, 2). (4.5.5)

The face Aj34 (Figure 4.5.2) is mapped to the plane £ = 0, the face A9 is mapped to
n =0, and Aj93 is mapped to (= 0. In analogy with the two-dimensional situation, this
transformation is really the same as the mapping (4.5.3) to tetrahedral coordinates.

A complete polynomial of degree p in three dimensions has

0y = (p+1)(pg2)(p+3) (4.5.6)

4.4. Three-Dimensional Shape Functions 25

monomial terms (cf., e.g., Brenner and Scott [3], Section 3.6). With p = 2, we have
ny = 10 monomial terms and we can determine Lagrangian shape functions by placing
nodes at the four vertices and at the midpoints of the six edges (Figure 4.5.3). With
p = 3, we have n3 = 20 and we can specify shape functions by placing a node at each of
the four vertices, two nodes on each of the six edges, and one node on each of the four
faces (Figure 4.5.3). Higher degree polynomials also have nodes in the element’s interior.
In general there is 1 node at each vertex, p— 1 nodes on each edge, (p —1)(p—2)/2 nodes
on each face, and (p —1)(p — 2)(p — 3)/6 nodes in the interior.

4

10

2

Figure 4.5.3: Node placement for quadratic (left) and cubic (right) interpolants on tetra-
hedra.

Ezample 4.5.1. The quadratic shape function N? associated with vertex Node 1 of a
tetrahedron (Figure 4.5.3, left) is required to vanish at all nodes but Node 1. The plane
(1 = 0 passes through face As3, and, hence, Nodes 2, 3, 4, 6, 9, 10. Likewise, the plane
¢1 = 1/2 passes through Nodes 5, 7 (not shown), and 8. Thus, N7 must have the form

N1, o, Gy Gr) = ali (G — 1/2).
Since N =1 at Node 1 (¢; = 1), we find & = 2 and
N7 (1 Co, Gy Ca) = 2G1 (G — 1/2).
Similarly, the shape function N2 associated with edge Node 5 (Figure 4.5.3, left) is

required to vanish on the planes (; = 0 (Nodes 2, 3, 4, 6, 9, 10) and ¢, = 0 (Nodes 1, 3,
4,7,8,10) and have unit value at Node 5 (¢; = (3 = 1/2). Thus, it must be

N52(<17 <27 <37 C4) — 4C1C2-

26 Finite Element Approximation

1,2,2
212
n
®
1,21 a
./

211 221

Figure 4.5.4: Node placement for a trilinear (left) and tri-quadratic (right) polynomial
interpolants on a cube.

4.5.2 Lagrangian Shape Functions on Cubes

In order to construct a trilinear approximation on the canonical cube {&,n,(| —1 <
&,n,¢ < 1}, we place eight nodes numbered (4, j,k), 7,7,k = 1,2, at its vertices (Figure
4.5.4). The shape function associated with Node (i, j, k) is taken as

Nij(€m,¢) = Ni(§)N; () Ni(C) (4.5.7a)
where N;(€), i = 1,2, are the hat function (4.3.1d,e). The restriction of U to this element

has the form

2 2 2
U&= 3> cijulNijul&n.0), (4.5.7b)

i=1 j=1 k=1
Once again, ¢; i = Ui jr = U(&, 05, Ck)-

The placement of nodes at the vertices produces bilinear shape functions on each
face of the cube that are uniquely determined by values at their four vertices on that
face. Once again, this ensures that shape functions and U are C° functions on a uniform
grid of cubes or rectangular parallelepipeds. Since each shape function is the product of

one-dimensional linear polynomials, the interpolant is a trilinear function of the form

U(&,n, () = a1 + asf + azn + as{ + as{n + agnC + a7CE + agdnq.

Other approximations and transformations follow their two-dimensional counterparts.
For example, tri-quadratic shape functions on the canonical cube are constructed by
placing 27 nodes at the vertices, midsides, midfaces, and centroid of the element (Figure
4.5.4). The shape function associated with Node (i, 7, k) is given by (4.5.7a) with N;(&)
given by (4.3.3b-d).

4.4. Three-Dimensional Shape Functions 27

4.5.3 Hierarchical Approximations

As with the two-dimensional hierarchical approximations described in Section 4.4, we use
Szabé and Babuska’s [7] shape function with the representation of Shephard et al. [6].
The basis for a tetrahedral or a canonical cube begins with the vertex functions (4.5.1)
or (4.5.7), respectively. As noted in Section 4.4, higher-order shape functions are written

as products

Nf(z,y,2) = X* (&,) Bi(&n,¢) (4.5.8)

of an entity function ¥* and a blending function g;.

e The entity function is defined on a mesh entity (vertex, edge, face, or element) and
varies with the degree k of the approximation. It does not depend on the shapes

of higher-dimensional entities.

e The blending function distributes the entity function over higher-dimensional enti-

ties. It depends on the shapes of the higher-dimensional entities but not on k.

The entity functions that are used to construct shape functions for cubic and tetra-

hedral elements follow.
Edge functions for both cubes and tetrahedra are given by (4.4.6¢) and (4.4.2e) as

V2(2k — 1)
X6 = T1-e / P k> 2, (4.5.9a)
where £ € [—1, 1] is a coordinate on the edge. The first four edge functions are presented
n (4.4.8).

Face functions for squares are given by (4.4.3) divided by the square face blending
function (4.4.3a)

ME) =P Pun), Atp=k-4, k>4 (4.5.9b)

Here, (£,n) are canonical coordinates on the face. The first six square face functions are

9_64’0’0 —1, —5 1,0 —¢,
_ _ 362 — 1
X5,0,1 — 1, X6,2,0 _ S
TP L |

2
Face functions for triangles are given by (4.4.9) divided the triangular face blending
function (4.4.9a)

Xk)\,u(Cl, C27 C3) — f)/\(é“2 Cl) (2C3 — 1) A+ W= k — 3, k > 3. (459C)

28 Finite Element Approximation

As with square faces, ((1,(s,(3) form a canonical coordinate system on the face. The

first six triangular face functions are

00 =1, Y =G - ¢,
3(G—)2 — 1
O =90 — 1, 0 = (G gl) ,
:) 3(2¢ — 1)2 — 1
P =(G-G)2G - 1), 02 = (26 5))

Now, let’s turn to the blending functions.

The tetrahedral element blending function for an edge is

B (€1, G2, G35 Ca) = GG (4.5.10a)

when the edge is directed from Vertex ¢ to Vertex j. Using either Figure 4.5.2 or Figure
4.5.3 as references, we see that the blending function ensures that the shape function
vanishes on the two faces not containing the edge to maintain continuity. Thus, if 1 =1
and j = 2, the blending function for Edge (1,2) (which is marked with a 5 on the left of
Figure 4.5.3) vanishes on the faces (; = 0 (Face Ayy) and (o = 0 (Face Ajzy).

The blending function for a face is

Biji(C1, G2, (3, Ca) = GGk (4.5.10b)

when the vertices on the face are 7, j, and k. Again, the blending function ensures that
the shape function vanishes on all faces but A;;,. Again referring to Figures 4.5.2 or
4.5.3, the blending function ;53 vanishes when ¢; = 0 (Face Aszy), (o = 0 (Face Ajz4),
and (3 =0 (Face Aja).

The cubic element blending function for an edge is more difficult to write with our
notation. Instead of writing the general result, let’s consider an edge parallel to the &
axis. Then

2
Broasel€m, Q) = TNy N(0) (45,11
The factor (1 — £2)/4 adjusts the edge function to (4.5.9) as described in the paragraph
following (4.4.9). The one-dimensional shape functions N;(n) and N (¢) ensure that the
shape function vanishes on all faces not containing the edge. Blending functions for other
edges are obtained by cyclic permutation of &, n, and ¢ and the index. Thus, referring
to Figure 4.5.4, the edge function for the edge connecting vertices 2,1,1 and 2,2,1 is

1—772 _ _
52,172,1(577774) = 1 N2(§)N1(C)-

Since Ny(—1) = 0 (¢f. (4.5.7b)), the shape function vanishes on the rear face of the cube

shown in Figure 4.5.4. Since N;(1) = 0, the shape function vanishes on the top face of

4.4. Three-Dimensional Shape Functions 29

the cube of Figure 4.5.4. Finally, the shape function vanishes at » = 4+1 and, hence, on
the left and right faces of the cube of Figure 4.5.4. Thus, the blending function (4.5.11a)
has ensured that the shape function vanishes on all but the bottom and front faces of
the cube of Figure 4.5.4.

The cubic face blending function for a face perpendicular to the & axis is

Bigw(€m,¢) = Ni(§)(1 = n*)(1 = ¢7). (4.5.11b)

Referring to Figure 4.5.4, the quadratic terms in n and ¢ ensure that the shape func-
tion vanishes on the right, left (n = +1), top, and bottom ({ = +1) faces. The one-
dimensional shape function N;(¢) vanishes on the rear (€ = —1) face when i = 1 and on
the front (£ = 1) face when i = 2; thus, the shape function vanishes on all faces but the
one to which it is associated.

Finally, there are elemental shape functions. For tetrahedra, there are (p — 1)(p —

2)(p — 3)/6 elemental functions for p > 4 that are given by

NG (G Coy Gy Ga) = C1GaCaCaPa(Co — 1) Pu(2G — 1) P, (26 — 1),
VA+pu+v=~k—4, k=4,5...,p. (4.5.12a)

The subscript 0 is used to identify the element’s centroid. The shape functions vanish
on all element faces as indicated by the presence of the multiplier (;(2(3(4. We could
also split this function into the product of an elemental function involving the Legendre
polynomials and the blend involving the product of the tetrahedral coordinates. However,
this is not necessary.

For p > 6 there are the following elemental shape functions for a cube

NgH (& Q) = (1=)1 =) (1 = OIROPmPAC), YA+ p+v=Fk—6.
(4.5.12b)

Again, the shape function vanishes on all faces of the element to maintain continuity.
Adding, we see that there are (p—5),(p—4)4(p—3)+/6 element modes for a polynomial
of order p.

Shephard et al. [6] also construct blending functions for pyramids, wedges, and prisms.
They display several shape functions and also present entity functions using the basis of
Carnevali et al. [4].

Problems

1. Construct the shape functions associated with a vertex, an edge, and a face node
for a cubic Lagrangian interpolant on the tetrahedron shown on the right of Figure

4.5.3. Express your answer in the tetrahedral coordinates (4.5.3).

30 Finite Element Approximation

3(0,1
- 01

10X,y 2(x,Y)
17 1 h3 2 ® g
1(0,0) 2(1,0

Y

Figure 4.6.1: Nomenclature for a finite element in the physical (x,y)-plane and for its
mapping to a canonical element in the computational (£, n)-plane.

4.6 Interpolation Error Analysis

We conclude this chapter with a brief discussion of the errors in interpolating a function u
by a piecewise polynomial function U. This work extends our earlier study in Section 2.6
to multi-dimensional situations. Two- and three-dimensional interpolation is, naturally,
more complex. In one dimension, it was sufficient to study limiting processes where mesh
spacings tend to zero. In two and three dimensions, we must also ensure that element
shapes cannot be too distorted. This usually means that elements cannot become too
thin as the mesh is refined. We have been using coordinate mappings to construct
bases. Concentrating on two-dimensional problems, the coordinate transformation from
a canonical element in, say, the (£, n)-plane to an actual element in the (z, y)-plane must
be such that no distorted elements are produced.

Let’s focus on triangular elements and consider a linear mapping of a canonical unit,
right, 45° triangle in the (£, n)-plane to an element e in the (x,y)-plane (Figure 4.6.1).
More complex mappings will be discussed in Chapter 5. Using the transformation (4.2.8)
to triangular coordinates in combination with the definitions (4.2.6) and (4.2.7) of the

canonical variables, we have

X r1T T2 I3 Cl 1 To I3 1— f —n
Yyl =1vn Y ys Gl=|un ¥ ys 3 : (4.6.1)
1 1 1 1 (3 1 1 1 n

The Jacobian of this transformation is

J, = { Te] . (4.6.2a)
Ye Yn

4.4. Three-Dimensional Shape Functions 31

Differentiating (4.6.1), we find the determinant of this Jacobian as

det(J.) = (wo — z1)(y3 — 1) — (23 — 1) (y2 — Y1)- (4.6.2b)

Lemma 4.6.1. Let h, be the longest edge and a, be the smallest angle of Element e,
then

h2
?e sin a, < det(J,) < A2 sin a. (4.6.3)

Proof. Label the vertices of Element e as 1, 2, and 3; their angles as a; < as < ag3; and
the lengths of the edges opposite these angles as hy, hy, and hy (Figure 4.6.1). With

a1 = a, being the smallest angle of Element e, write the determinant of the Jacobian as
det (Je) = h2h3 sin Qle.

Using the law of sines we have hy < hy < hy = h.. Replacing hy by hjz in the above
expression yields the right-hand inequality of (4.6.3). The triangular inequality gives
hs < hy + he. Thus, at least one edge, say, hy > h3/2. This yields the left-hand
inequality of (4.6.3). O

Theorem 4.6.1. Let 0(x,y) € H*(Q.) and 0(€,n) € H*(Qy) be such that 0(x,y) =
é(f, n) where Q. is the domain of element e and €y is the domain of the canonical element.
Under the linear transformation (4.6.1), there exist constants cs and Cy, independent of
0, 0, he, and o, such that

¢, sin® /2 achi 050, < |9~|5,Q0 < C,sin /2 achi 050, (4.6.4a)

where the Sobolev seminorm is

02, = > / / (D®0)?dxdy (4.6.4b)

|K|=s"q]
with D®u being a partial derivative of order |k| = s (cf. Section 3.2).

Proof. Let us begin with s = 0, where
/ / 0%dxdy = det(J,) / / 6%dcdn
Qe Qo

013 0, = det(To) 1615 -
Dividing by det(J.) and using (4.6.3)

or

216150,

sin . h?’

032 ~
o, _
sin a,.h?

2
0,00 >

32 Finite Element Approximation

Taking a square root, we see that (4.6.4a) is satisfied with ¢o = 1 and Cy = /2.

With s = 1, we use the chain rule to get
9,5 = égfx + énn:va Hy = égfy + énny-

Then,

|6

2 = / / (62 + 02)dady = det(J,) / / (91,602 + 292,00, + g5..02)d&dn
Qe Qo

where
2 2 _ 2 2
Gre =& + &, G2,e = Eaw + Eyy, g3,e = Ny + 10

Applying the inequality ab < (a? + b?)/2 to the center term on the right yields

1012, < det(J.) / / (91,608 + g2.0(0F + 02) + g3 02)dEdn.
Qo

Letting
6 = max(|gie + G2.el, |93,e + 92,])

and using (4.6.4b), we have
01 o, < det(J.)3101% g, (4.6.5a)

Either by using the chain rule above with # = x and y or by inverting the mapping
(4.6.1), we may show that

Ty e = — Ye ___Te
det(J,) T Tdet@) T T det(dn)

Y
gw_ K

= de@) T

From (4.6.2), |x¢l, |2y, [vel, |yn| < he; thus, using (4.6.3), we have ||, &, 72, [my| <
2/(hesin o). Hence,

§ < 16
~ (hesina,)?

Using this result and (4.6.3) with (4.6.5a), we find

16 -
— 017 - (4.6.5b)

01>, <
| |1’Qe sin a,

Hence, the left-hand inequality of (4.6.4a) is established with ¢; = 1/4.
To establish the right inequality, we invert the transformation and proceed from €2
to €2, to obtain

2

2 1,Q 6.6
sl . ° 4- . ;i
1.8% det(Je) ()

G

4.4. Three-Dimensional Shape Functions 33

with
5 = max(|§1,e + §2,6|7 |§3,e + §2,e|)7

gl,e = xz + :L.727’ 9276 = xfyg + xnyna 9376 = yg + y%

We've indicated that |z¢|, |2, [ve|, |yy| < he. Thus, § < 4h2 and, using (4.6.3), we find

~ 8
012, < ——
| |1’Q° ~ sina,

1013 g, - (4.6.6b)

Thus, the right inequality of (4.6.4b) is established with C; = 2v/2.
The remainder of the proof follows the same lines and is described in Axelsson and
Barker [2]. O

With Theorem 4.6.1 established, we can concentrate on estimating interpolation errors

on the canonical triangle. For simplicity, we’ll use the Lagrange interpolating polynomial

n

U(&m) =Y al,n)Ni(&,m), (4.6.7)

i=1

with n being the number of nodes on the standard triangle. However, with minor alter-
ations, the results apply to other bases and, indeed, other element shapes. We proceed

with one preliminary theorem and then present the main result.

Theorem 4.6.2. Let p be the largest integer for which the interpolant (4.6.7) is exact
when @(&,n) is a polynomial of degree p. Then, there exists a constant C' > 0 such that

i — Ulsgy < Clitlpr1.00, ~ Yu€ HYQ), s5=0,1,...,p+1. (4.6.8)

Proof. The proof utilizes the Bramble-Hilbert Lemma and is presented in Axelsson and
Barker [2]. O

Theorem 4.6.3. Let Q be a polygonal domain that has been discretized into a net of
triangular elements ., e = 1,2,..., Na. Let h and o denote the largest element edge
and smallest angle in the mesh, respectively. Let p be the largest integer for which (4.6.7)
is exact when (&, n) is a complete polynomial of degree p. Then, there exists a constant
C > 0, independent of w € HP™' and the mesh, such that

C'thrlfs

U< 2
Ju s < [sin o/

||y, Yu € HPT(Q), s=0,1. (4.6.9)

Remark 1. The results are restricted s = 0, 1 because, typically, U € H' n HP*!,

34 Finite Element Approximation

Proof. Consider an element e and use the left inequality of (4.6.4a) with 6 replaced by
u — U to obtain

lu — U|§,Qe < ¢t sin™ M b B2 0 — U|§,Qo'

Next, use (4.6.8)

lu — U|§,Qe < ¢;?sin~ %! aeh;25+20|ﬂ|§+1’90.

Finally, use the right inequality of (4.6.4a) to obtain

2 S22l 254202 oL p2py 12
lu—Ulq, <c,sin ach, = CC,, sin achPlul,, g -

Combining the constants
lu — U|§,Qe < Csin™% aehz(p+1_s)|u|12,+1,ge.
Summing over the elements and taking a square root gives (4.6.9). O

A similar result for rectangles follows.

Theorem 4.6.4. Let the rectangular domain €2 be discretized into a mesh of rectangular
elements ., e =1,2,..., Na. Let h and 3 denote the largest element edge and smallest
edge ratio in the mesh, respectively. Let p be the largest integer for which (4.6.7) is exact
when @(&€,n) is a complete polynomial of degree p. Then, there exists a constant C' > 0,
independent of u € HP™' and the mesh, such that

Chpti=s o1
|U—U|5 S T|U|p+1, Yue H (Q), 820,1. (4610)
Proof. The proof follows the lines of Theorem 4.6.3 [2]. O

Thus, small and large (near m) angles in triangular meshes and small aspect ratios
(the minimum to maximum edge ratio of an element) (3 in a rectangular mesh must be
avoided. If these quantities remain bounded then the mesh is uniform as expressed by

the following definition.

Definition 4.6.1. A family of finite element meshes A, is uniform if all angles of all
elements are bounded away from 0 and 7 and all aspect ratios are bounded away from
zero as the element size h — 0.

With such uniform meshes, we can combine Theorems 4.6.2, 4.6.3, and 4.6.4 to obtain

a result that appears more widely in the literature.

Theorem 4.6.5. Let a family of meshes Ay, be uniform and let the polynomial inter-
polant U of u € HP™' be exact whenever u is a complete polynomial of degree p. Then

there exists a constant C' > 0 such that

lu—Uls < ChP 5 lulyyy, s=0,1. (4.6.11)

4.4. Three-Dimensional Shape Functions 35

Proof. Use the bounds on o and 3 with (4.6.9) and (4.6.10) to redefine the constant C
and obtain (4.6.11). O

Theorems 4.6.2 - 4.6.5 only apply when v € HP*!. If u has a singularity and belongs
to H! ¢ < p, then the convergence rate is reduced to

lu —Uly < Ch™*|uly, s=0,1. (4.6.12)

Thus, there appears to be little benefit to using p th-degree piecewise-polynomial inter-
polants in this case. However, in some cases, highly graded nonuniform meshes can be

created to restore a higher convergence rate.

36

Finite Element Approximation

Bibliography

[1]

S. Adjerid, M. Aiffa, and J.E. Flaherty. Hierarchical finite element bases for triangular
and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering,
2000. to appear.

O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Problems.
Academic Press, Orlando, 1984.

S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, New York, 1994.

P. Carnevali, R.V. Morric, Y.Tsuji, and B. Taylor. New basis functions and com-
putational procedures for p-version finite element analysis. International Journal of
Numerical Methods in Enginneering, 36:3759-3779, 1993.

S. Dey, M.S. Shephard, and J.E. Flaherty. Geometry-based issues associated with
p-version finite element computations. Computer Methods in Applied Mechanics and
Engineering, 150:39 — 50, 1997.

M.S. Shephard, S. Dey, and J.E. Flaherty. A straightforward structure to construct
shape functions for variable p-order meshes. Computer Methods in Applied Mechanics
and Engineering, 147:209-233, 1997.

B. Szabé and 1. Babuska. Finite Element Analysis. John Wiley and Sons, New York,
1991.

0.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, New York, third edition,
1977.

37

Chapter 5

Mesh Generation and Assembly

5.1 Introduction

There are several reasons for the popularity of finite element methods. Large code seg-
ments can be implemented for a wide class of problems. The software can handle complex
geometry. Little or no software changes are needed when boundary conditions change,
domain shapes change, or coefficients vary. A typical finite element software framework
contains a preprocessing module to define the problem geometry and data; a processing
module to assemble and solve the finite element system; and a postprocessing module to
output the solution and calculate additional quantities of interest. The preprocessing

module

e creates a computer model of the problem domain €2, perhaps, using a computer
aided design (CAD) system;

e discretizes (2 into a finite element mesh;

e creates geometric and mesh databases describing the mesh entities (vertices, edges,
faces and elements) and their relationships to each other and to the problem ge-

ometry; and

e defines problem-dependent data such as coefficient functions, loading, initial data,

and boundary data.
The processing module
e generates element stiffness and mass matrices and load vectors;
e assembles the global stiffness and mass matrices and load vector;

e enforces any essential boundary conditions; and

2 Mesh Generation and Assembly

e solves the linear (or nonlinear) algebraic system for the finite element solution.
The postprocessing modules

e calculates additional quantities of interest, such as stresses, total energy, and a

posteriori error estimates, and
e stores and displaying solution information.

In this chapter, we study the preprocessing and processing steps with the exception of
the geometrical description and solution procedures. The former topic is not addressed

while the latter subject will be covered in Chapter 11.

5.2 Mesh Generation

Discretizing two-dimensional domains into triangular or quadrilateral finite element meshes
can either be a simple or difficult task depending on geometric or solution complexi-
ties. Discretizing three-dimensional domains is currently not simple. Uniform meshes
may be appropriate for some problems having simple geometric shapes, but, even there,
nonuniform meshes might provide better performance when solutions vary rapidly, e.g.,
in boundary layers. Finite element techniques and software have always been associated
with unstructured and nonuniform meshes. Early software left it to users to generate
meshes manually. This required the entry of the coordinates of all element vertices.
Node and element indexing, typically, was also done manually. This is a tedious and
error prone process that has largely been automated, at least in two dimensions. Adap-
tive solution-based mesh refinement procedures concentrate meshes in regions of rapid
solution variation and attempt to automate the task of modifying (refining/coarsening)
an existing mesh [1, 5, 6, 9, 11]. While we will not attempt a thorough treatment of
all approaches, we will discuss the essential ideas of mesh generation by (i) mapping
techniques where a complex domain is transformed into a simpler one where a mesh may
be easily generated and (i) direct techniques where a mesh is generated on the original

domain.

5.2.1 Mesh Generation by Coordinate Mapping

Scientists and engineers have used coordinate mappings for some time to simplify ge-
ometric difficulties. The mappings can either employ analytical functions or piecewise

polynomials as presented in Chapter 4. The procedure begins with mappings

v=fi(&n), y=rf2&m)

5.2. Mesh Generation

that relate the problem domain in physical (x,y) space to its image in the simpler (£, 7)

space. A simply connected region and its computational counterpart appear in Figure

5.2.1. It will be convenient to introduce the vectors

x"=[z,y], £(&n)" =1f1(&n), f(&n)] (5.2.1a)
and write the coordinate transformation as
x =f(&,n) (5.2.1b)
f (&1 22 n
172 2,2
1,2
f(on)
Y f(Ln)
11 &
X 21 11 21

f (&.0)

Figure 5.2.1: Mapping of a simply connected region (left) onto a rectangular computa-

tional domain (right).

In Figure 5.2.1, we show a region with four segments f(&,0), f(£,1), £(0,7), and f(1,n)
that are related to the computational lines £ =0, £ =1, n = 0, and n = 1, respectively.

(The four curved segments may involve different functions, but we have written them all

as f for simplicity.)
Also consider the projection operators

x = Pe(f) = N (OF(0,) + Na(Of(1,7),

where

and

(5.2.2a)

(5.2.2b)

(5.2.2¢)

(5.2.2d)

4 Mesh Generation and Assembly

are the familiar hat functions scaled to the interval 0 < ¢ < 1.

As shown in Figure 5.2.2, the mapping x = P¢(f) transforms the left and right edges
of the domain correctly, but ignores the top and bottom while the mapping x = P, (f)
transforms the top and bottom boundaries correctly but not the sides. Coordinate lines

of constant £ and 7 are mapped as either curves or straight lines on the physical domain.

2,2 2,2
12 12
y y
11
21 11 21
X

Figure 5.2.2: The transformations x = P¢(f) (left) and x = P,(f) (right) as applied to
the simply-connected domain shown in Figure 5.2.1.

22 2,2
1,2
1,2
y y
11 11
X 2,1 X 21

Figure 5.2.3: Illustrations of the transformations x = P¢P,(f) (left) and x = Pr @ P, (f)
(right) as applied to the simply-connected domain shown in Figure 5.2.1.

With a goal of constructing an effective mapping, let us introduce the tensor product

and Boolean sums of the projections (5.2.2) as

x = PP, (8) =3 3 NN ()i — 1.~ 1) (5.2.30)

5.2. Mesh Generation 5
X = Pe @ Py(f) = Pe(f) + Py(f) — PcPy(f). (5.2.3b)

An application of these transformations to a simply-connected domain is shown in Figure
5.2.3. The transformation (5.2.3a) is a bilinear function of £ and n while (5.2.3b) is clearly
the one needed to map the simply connected domain onto the computational plane. Lines
of constant & and 1 become curves in the physical domain (Figure 5.2.3).

Although these transformations are simple, they have been used to map relatively
complex two- and three-dimensional regions. Two examples involving the flow about an
airfoil are shown in Figure 5.2.4. With the transformation shown at the top of the figure,
the entire surface of the airfoil is mapped to n = 0 (2-3). A cut is made from the trailing
edge of the airfoil and the curve so defined is mapped to the left (£ = 0, 2-1) and right
(€ =0, 3-4) edges of the computational domain. The entire far field is mapped to the top
(n = 1, 1-4) of the computational domain. Lines of constant £ are rays from the airfoil
surface to the far field boundary in the physical plane. Lines of constant n are closed
curves encircling the airfoil. Meshes constructed in this manner are called “O-grids.” In
the bottom of Figure 5.2.4, the surface of the airfoil is mapped to a portion (2-3) of the
¢ axis. The cut from the trailing edge is mapped to the rest (1-2 and 3-4) of the axis.
The (right) outflow boundary is mapped to the left (1-5) and right (4-6) edges of the
computational domain, and the top, left, and bottom far field boundaries are mapped
to the top (n =1, 5-6) of the computational domain. Lines of constant £ become curves
beginning and ending at the outflow boundary and surrounding the airfoil. Lines of
constant 7 are rays from the airfoil surface or the cut to the outer boundary. This mesh
is called a “C-grid.”

5.2.2 Unstructured Mesh Generation

There are several approaches to unstructured mesh generation. Early attempts used
manual techniques where point-coordinates were explicitly defined. Semi-automatic mesh
generation required manual input of a coarse mesh which could be uniformly refined by
dividing each element edge into K segments and connecting segments on opposite sides of
an element to create K2 (triangular) elements. More automatic procedures use advancing
fronts, point insertion, and recursive bisection. We’ll discuss the latter procedure and
briefly mention the former.

With recursive bisection [3], a two-dimensional region €2 is embedded in a square “uni-
verse” that is recursively quartered to create a set of disjoint squares called quadrants.
Quadrants are related through a hierarchical quadtree structure. The original square
universe is regarded as the root of the tree and smaller quadrants created by subdivi-

sion are regarded as offspring of larger ones. Quadrants intersecting 02 are recursively

6 Mesh Generation and Assembly

Y~

2 airfoil

€

1 2 3 4

airfoil

Figure 5.2.4: “O-grid” (top) and “C-grid” (bottom) mappings of the flow about an airfoil.

quartered until a prescribed spatial resolution of €2 is obtained. At this stage, quadrants
that are leaf nodes of the tree and intersect 2 U 0f) are further divided into small sets
of triangular or quadrilateral elements. Severe mesh gradation is avoided by imposing a
maximal one-level difference between quadrants sharing a common edge. This implies a

maximal two-level difference between quadrants sharing a common vertex.

A simple example involving a domain consisting of a rectangle and a region within a
curved arc, as shown in Figure 5.2.5, will illustrate the quadtree process. In the upper
portion of the figure, the square universe containing the problem domain is quartered
creating the one-level tree structure shown at the upper right. The quadrant containing
the curved arc is quartered and the resulting quadrant that intersects the arc is quartered
again to create the three-level tree shown in the lower right portion of the figure. A
triangular mesh generated for this tree structure is also shown. The triangular elements
are associated with quadrants of the tree structure. Quadrants and a mixed triangular-

and quadrilateral-element mesh for a more complex example are shown in Figure 5.2.6.

Elements produced by the quadtree and octree techniques may have poor geometric

shapes near boundaries. A final “smoothing” of the mesh improves element shapes and

5.2. Mesh Generation 7

(b Boundary quadrant
@ Interior quadrant
O Exterior quadrant
A Finite element
} A'A
| AAA A
| A A A

Figure 5.2.5: Finite quadtree mesh generation for a domain consisting of a rectangle and
a region within a curved arc. One-level (top) and three-level (bottom) tree structures
are shown. The mesh of triangular elements associated with the three-level quadtree is
shown superimposed.

further reduces mesh gradation near 0f2. Element vertices on 02 are moved along the
boundary to provide a better approximation to it. Pairs of boundary vertices that are too
close to each other may be collapsed to a single vertex. Interior vertices are smoothed by a
Laplacian operation that places each vertex at the “centroid” of its neighboring vertices.
To be specific, let ¢ be the index of a node to be re-positioned; x; be its coordinates; P;
be the set of indices of all vertices that are connected to Node ¢ by an element edge; and

(; contain the indices of vertices that are in the same quadrant as Node ¢ but are not

8 Mesh Generation and Assembly

- N
) "“"\‘
/ \.
=
N / \
ffd
= \ /
i
\\ 1/
oy _,q/
-
st
o =Y
et
=
p v

v

Figure 5.2.6: Quadtree structure and mixed triangular- and quadrilateral-element mesh
generated from it.

connected to it by an edge. Then

< — 22 ien Xt 2 je0i X
" 2dim(P) + dim(Q;)

(5.2.4)

where dim(S) is the number of element vertices in set S. Additional details appear in

5.3. Data Structures 9

Bachmann et al. [2].

Arbitrarily complex two- and three-dimensional domains may be discretized by quadtree
and octree decomposition to produce unstructured grids. Further solution-based mesh
refinement may be done by subdividing appropriate terminal quadrants or octants and
generating a new mesh locally. This unites mesh generation and adaptive mesh refine-
ment by a common tree data structure [2]. The underlying tree structure is also suitable
for load balancing on a parallel computer [8, 7].

The advancing front technique constructs a mesh by “notching” elements from 0f2
and propagating this process into the interior of the domain. An example is shown in
Figure 5.2.7. This procedure provides better shape control than quadtree or octree but
problems arise as the advancing fronts intersect. Lohner [10] has a description of this and
other mesh generation techniques. Carey [6] presents a more recent treatment of mesh

generation.

Figure 5.2.7: Mesh generation by the advancing front technique.

5.3 Data Structures

Unstructured mesh computation requires a data structure to store the geometric infor-
mation. There is some ambiguity concerning the information that should be computed
at the preprocessing stage, but, at the very least, the processing module would have to

know
e the vertices belonging to each element,
e the spatial coordinates of each vertex, and
e the element edges, faces, or vertices that are on 0f).

The processing module would need more information when adaptivity is performed. It,

for example, would need a link to the geometric information in order to refine elements

10 Mesh Generation and Assembly

along a curved boundary. Even without adaptivity, the processing software may want
access to geometric information when using elements with curved edges or faces (cf.
Section 5.4). If the finite element basis were known at the preprocessing stage, space could
be reserved for edge and interior nodes or for a symbolic factorization of the resulting
algebraic system (cf. Chapter 11).

Beall and Shephard [4] introduced a database and data structure that have great
flexibility. It is suitable for use with high-order and hierarchical bases, adaptive mesh
refinement and/or order variation, and arbitrarily complex domains. It has a hierarchical
structure with three-dimensional elements (regions) having pointers to their bounding
faces, faces having pointers to their bounding edges, and edges having pointers to their
bounding vertices. Those mesh entities (elements, faces, edges, and vertices) on domain
boundaries have pointers to relevant geometric structures defining the problem domain.
This structure, called the SCOREC mesh database, is shown in Figure 5.3.1. Nodes may
be introduced as fixed points in space to be associated with shape functions. When done,

these may be located by pointers from any mesh entity.

Y

Geometric
Model
Entities v

(e)

A

\i

Figure 5.3.1: SCOREC hierarchical mesh database.

Let us illustrate the data structure for the two-dimensional domain shown in Figure
5.2.5. As shown in Figure 5.3.2, this mesh has 20 faces (two-dimensional elements), 36
edges, and 17 vertices. The face and edge-pointer information is shown in Table 5.3.1.
Each edge has two pointers back to the faces that contain it. These are shown within
brackets in the table. The use of tables and integer indices for pointers is done for

convenience and does not imply an array implementation of pointer data. The edge and

5.3. Data Structures 11

vertex-pointer information and the vertex-point coordinate data are shown in Table 5.3.2.
Backward pointers from vertices to edges and pointers from vertices and edges on the
boundary to the geometric database have not been shown to simplify the presentation.
We have shown a small portion of the pointer structure near Edge 18 in Figure 5.3.3.
Links between common entities allow the mesh to be traversed by faces, edges, or vertices

in two dimensions. Problem and solution data is stored with the appropriate entities.

3 14
10 5
. Xx 4/ 3%
7 16
13 20 25
5 21 35
11| 12 19 11| 20
I’ 8 19| 24 34
14 127, 18 33
15 18 6 1o 23 |27
22 26 32
17 28
31
16 30
29
6
5 17
4
3 9
8 12
2
11
. 13 16
10
14 15

Figure 5.3.2: Example illustrating the SCOREC mesh database. Faces are indexed
as shown at the upper left, edge numbering is shown at the upper right, and vertex
numbering is shown at the bottom.

12 Mesh Generation and Assembly

‘ Face ‘ Edge ‘ Edge ‘ Edge ‘
11 [1 11 7 [1 2] 6 [1 9]
21 2 [2 11 8 [2 3]| 7 [2 1]
31 8 [3 2] 9 [3 412 [3 6]
41 3 [4 J110 [4 5] 9 [4 3
5110 [5 4] (14 [5 7]13 [5 6]
6112 [6 3](13 [6 5] |11 [6 11]
T4 [T 115 [7 8|14 [7 5
8115 [8 771 5 [8 116 [8 13]
91 6 [9 11117 [9 10]|22 [9]

10 (17 [10 9]|19 [10 11]|18 [10 14]
11 (11 [11 6] |20 [11 12] |19 [11 10]
12 (20 [12 11] |21 [12 13] |24 [12 14]
1316 [13 8] |25 [13 20] |21 [13 12]
14 [18 [14 10] |24 [14 12] |23 [14 15]
15 (23 [15 14] |27 [15 18] |26 [15]
16 [29 [16]130 [16 17] |31 [16]
17 (28 [17 1132 [17 18] |30 [17 16]
18 |27 [18 15] |33 [18 19] |32 [18 17]
19 (33 [19 18] |35 [19 20] |34 [19]
20 |25 [20 13] |36 [20 1135 [20 19]

Table 5.3.1: Face and edge-pointer data for the mesh shown in Figure 5.2.5. Backward
pointers from edges to their bounding faces are shown in brackets.

o0 [[y [o s [[

To Edges 17 and 19l i Yy To Edges 24 and 23

—leders || [|| | [

)

To vertices 10 and 11

Figure 5.3.3: Pointer structure in the vicinity of Edge 18.

The SCOREC mesh database contains more information than necessary for a typi-
cal finite element solution. For example, the edge information may be eliminated and
faces may point directly to vertices. This would be a more traditional finite element
data structure. Although it saves storage and simplifies the data structure, it may be
wise to keep the edge information. Adaptive mesh refinement procedures often work by
edge splitting and these are simplified when edge data is available. Edge information

also simplifies the application of boundary conditions, especially when the boundary is

5.3. Data Structures 13

‘ Edge ‘ Vertices H Edge ‘ Vertices ‘

‘ Vertex ‘ Coordinates ‘

1] 1 2 19 7 11

1-1.00| 0.00
2] 2 3 200 9 11

21-0.90 | 0.50
31 3 4 211 9 12

31-0.80] 0.75
41 4 5 221 1 10

4 0.75 | 0.80
2 D 6 23110 12

5| -0.50 | 0.90
61 1 7 24111 12

6| 0.00 | 1.00
T 2 7 25| 12 6

71-0.75 1 0.50
8|1 3 7 26 |10 13

8 1-0.751 0.75
91 3 8 27113 12

91-0.50 | 0.75
10| 4 8 28113 14

10 | -0.50 | 0.00
11 7 9 29|14 15

11 1 -0.50 | 0.50
121 7 8 30 | 14 16

121 0.00 | 0.50
131 8 9 31115 16

13| 0.00 | 0.00
141 4 9 32113 16

14 | 0.00 | -1.00
151 5 9 33|16 12

15| 1.00 | -1.00
161 9 6 34116 17

16 | 1.00 | 0.00
171 7 10 3512 17 171 1001 1.00
18110 11 36| 6 17

Table 5.3.2: Edge and vertex-pointer data (left) and vertex and coordinate data (right)
for the mesh shown in Figure 5.2.5.

curved. Only pointers are required for the edge information and, in many implementa-
tions, pointers require less storage than integers. Nevertheless, let us illustrate face and
vertex information for the simple mesh shown in Figure 5.3.4, which contains a mixture
of triangular and quadrilateral elements. The face-vertex information is shown in Table
5.3.3 and the vertex-coordinate data is shown in Table 5.3.4. Assuming quadratic shape
functions on the triangles and biquadratic shape functions on the rectangles, a traditional
data structure would typically add nodes at the centers of all edges and the centers of
the rectangular faces. In this example, the midside and face nodes are associated with

faces; however, they could also have been associated with vertices.

Without edge data, the database generally requires additional a prior: assumptions.
For example, we could agree to list vertices in counterclockwise order. Edge nodes could
follow in counterclockwise order beginning with the node that is closest in the coun-
terclockwise direction to the first vertex. Finally, interior nodes may be listed in any
order. The choice of the first vertex is arbitrary. This strategy is generally a compromise
between storing a great deal of data with fast access and having low storage costs but
having to recompute information. We could further reduce storage, for example, by not

saving the coordinates of the edge nodes.

14 Mesh Generation and Assembly

Figure 5.3.4: Sample finite element mesh involving a mixture of quadratic approximations
on triangles and biquadratic approximations on rectangles. Face indices are shown in
parentheses.

‘ Face ‘ Vertices ‘ Nodes ‘
111 2 5 4] 9 12 14 11 21
212 3 6 5|10 13 15 12 22
314 5 7 14 17 16
415 8 7 18 20 17
5/5 6 8 15 19 18

Table 5.3.3: Simplified face-vertex data for the mesh of Figure 5.3.4.

The type of finite element basis must also be stored. In the present example, we could
attach it to the face-vertex table. With the larger database described earlier, we could
attach it to the appropriate entity. In the spirit of the shape function decomposition
described in Sections 4.4 and 4.5, we could store information about a face shape function
with the face and information about an edge shape function with the edge. This would

allow us to use variable-order approximations (p-refinement).

Without edge data, we need a way of determining those edges that are on 0€2. This
can be done by adopting a convention that the edge between the first and second vertices
of each face is Edge 1. Remaining edges are numbered in counterclockwise order. A
sample boundary data table for the mesh of Figure 5.3.4 is shown on the right of Table
5.3.4. The first row of the table identifies Edge 1 of Face 1 as being on a boundary of
the domain. Similarly, the second row of the table identifies Edge 4 of Face 1 as being a
boundary edge, etc. Regions with curved edges would need pointers back to the geometric
database.

5.4. Coordinate Transformations 15

‘ Vertex ‘ Coordinates ‘

11 0.00 0.00

2| 1.00 0.00

312.00 0.00

41 0.00 1.00

51 1.00 1.00

6| 2.00 1.00

71 0.50 2.00 ‘ Face ‘ Edge ‘
& | 1.50 2.00 1 1
910.50 0.00

10 | .50 0.00
111 0.00 0.50
12 1 1.00 0.50
131200 0.50
14 1 0.50 1.00
151 1.50 1.00
16 1 0.25 1.50
1710.75 1.50
18 1 1.25 1.50
191 1.75 1.50
211 0.50 0.50
221 1.50 0.50

CU k= W NN -
DN DN WN

Table 5.3.4: Vertex and coordinate data (left) and boundary data (right) for the finite
element mesh shown in Figure 5.3.4.

5.4 Coordinate Transformations

Coordinate transformations enable us to develop element stiffness and mass matrices
and load vectors on canonical triangular, square, tetrahedral, and cubic elements in a
computational domain and map these to actual elements in the physical domain. Useful
transformations must (i) be simple to evaluate, (ii) preserve continuity of the finite
element solution and geometry, and (iiz) be invertible. The latter requirement ensures
that each point within the actual element corresponds to one and only one point in the

canonical element. Focusing on two dimensions, this requires the Jacobian

Te T
Jooi=| ¢ 5.4.1

‘ [Ye Yn] ()
of the transformation of Element e in the physical (z,y)-plane to the canonical element
in the computational (£, n)-plane to be nonsingular.

The most popular coordinate transformations are, naturally, piecewise-polynomial

16 Mesh Generation and Assembly

functions. These mappings are called subparametric, isoparametric, and superparametric
when their polynomial degree is, respectively, lower than, equal to, and greater than
that used for the trial function. As we have seen in Chapter 4, the transformations use
the same shape functions as the finite element solutions. We illustrated linear (Section
4.2) and bilinear (Section 4.3) transformations for, respectively, mapping triangles and
quadrilaterals to canonical elements. We have two tasks in front of us: (7) determining
whether higher-degree piecewise polynomial mappings can be used to advantage and (i7)
ensuring that these transformations will be nonsingular.

Example 5./.1. Recall the bilinear transformation of a 2 x 2 canonical square to a

quadrilateral that was introduced in Section 4.3 (Figure 5.4.1)

22 (X Y)
y | 1,2 AN 2,2
® ®
}
1
v
- &
}
1
1,1
3 2l 1

Figure 5.4.1: Bilinear mapping of a quadrilateral to a 2 x 2 square.

{ Z%Z;] N iZ { i;] Nij(&m), (5.4.2a)

i=1 j=1
where
Nij(&n) = Ni(©)N;(n), i,j=1,2, (5.4.2b)
and
o [a=9)2 ifi=1
Ni(g)_{ Q1d)2 ifiz2 (5.4.2¢)

The vertices of the square (-1, —1), (1,—1), (=1,1), (1,1) are mapped to the vertices of
the quadrilateral (z11,y11), (T21,Y21), (®12,Y12), (T22,y22). The bilinear transforma-

tion is linear along each edge, so the quadrilateral element has straight sides.

5.4. Coordinate Transformations 17

Differentiating (5.4.2a) while using (5.4.2b,c)

To1 — T11

_ Too — T1o9 —
Te = 5]\71(77)4‘722 12N2(77)a

2

Y21 — Y11 Y22 — Y12
TNl(n) = Na(n),

T12 — T11

7y = N () + 2N (6),

2
Yi2 — Yn Y22 — Y21
Y= =5 Ni(&) + —5—N:(&).
Substituting these formulas into (5.4.1) and evaluating the determinant reveals that the
quadratic terms cancel; hence, the determinant of J. is a linear function of £ and 7 rather
than a bilinear function. Therefore, it suffices to check that det(J.) has the same sign at

each of the four vertices. For example,

det(Je(—1,-1)) = ze(—1, —=1)y, (=1, —1) — z, (=1, —-1)ye(—1, —1)

det(Je(—l, —1)) = (5U21 - 5U11)(y12 - yn) - (5U12 - 5U11)(y21 - y11)-

The cross product formula for two-component vectors indicates that
det(Je(—l, —1)) = hth sin a9,

where hq, hy, and «q9 are the lengths of two adjacent sides and the angle between them
(Figure 5.4.1). Similar formulas apply at the other vertices. Therefore, det(J.) will not
vanish if and only if a;; < 7 at each vertex, i.e., if and only if the quadrilateral is convex.

Polynomial shape functions and bases are constructed on the canonical element as
described in Chapter 4. For example, the restriction of a bilinear (isoparametric) trial
function to the canonical element would have the form

2 2
UEn) =Y ciiNij(n).
i=1 j=1
A subparametric approximation might, for example, use a piecewise-bilinear coordinate
transformation (5.4.2) with a piecewise-biquadratic trial function. Let us illustrate this
using the element node numbering of Section 4.3 as shown in Figure 5.4.2. Using (4.3.3),
the restriction of the piecewise-biquadratic polynomial trial function to the canonical

element is

3 3
=D Ny (5.4.3a)
i=1 j=1

18 Mesh Generation and Assembly

y A ni:a,z 22
o
2,3
33 '
o o -
§
) 31 21
o
11
> X
Figure 5.4.2: Bilinear mapping to a unit square with a biquadratic trial function.
3,2
2,2 n
y A 1,2 3,2 22
12 ® ®
23
2,3
1,3 3.3 '
—@ @ '—E
21
13
' 31 11
’ ' 31 21
@ @
11

> X

Figure 5.4.3: Biquadratic mapping of the unit square to a curvilinear element.

where the superscript 2 is used to identify biquadratic shape functions

NZ(Em) = N ©ONF (), i,j=1,2,3, (5.4.3b)
with
—£(1—-¢)/2, ifi=1
NI =] &(14¢€)/2, ifi=2 . (5.4.3c)
11—, if i =3

Example 5.4.2. A biquadratic transformation of the canonical square has the form
&)] oy [
’ = Ol NZ(E,n), 5.4.4
{y(&n)} ;;{yzy] (&) ()
where N2;(€,1), 1,7 =1,2,3, is given by (5.4.3).
This transformation produces an element in the (x, y)-plane having curved (quadratic)

edges as shown in Figure 5.4.3. An isoparametric approximation would be biquadratic

5.4. Coordinate Transformations 19

Ay 3

yx

1 4 2

Figure 5.4.4: Quadratic mapping of a triangle having one curved side.

and have the form of (5.4.3). The interior node (3,3) is awkward and can be eliminated
by using a second-order serendipity (cf. Problems 4.3.1) or hierarchical transformation
(cf. Section 4.4).

Example 5.4.3. The biquadratic transformation described in Example 5.4.2 is useful
for discretizing domains having curved boundaries. With a similar goal, we describe a
transformation for creating triangular elements having one curved and two straight sides
(Figure 5.4.4). Let us approximate the curved boundary by a quadratic polynomial and

map the element onto a canonical right triangle by the quadratic transformation
een) | _y [
= CNEE), 5.4.5a
e Z[y] (e (5.4.52)

where the quadratic Lagrange shape functions are (¢f. Problem 4.2.1)

N} =2G(G-1/2), j=123, (5.4.5b)
Nf =4GiG, NZ=4GGs, Ng =46, (5.4.5¢)

and
G=1-8-—n, G2 =&, G =1. (5.4.6)

Equations (5.4.5) and (5.4.6) describe a general quadratic transformation. We have a

more restricted situation with
ry = (11 + 12)/2, ys = (1 +y2)/2,

ze = (v1 + 13)/2, Yo = (y1 +y3)/2.

20 Mesh Generation and Assembly

This simplifies the transformation (5.4.5a) to

w&m) |] e L2 | A2 T3 | Ar2 Ts | xy2
{y(&n)]_{yl]Nﬁ{yQ]Nﬁ[%]Ng+{y5]N5, (5.4.7a)

where, upon use of (5.4.5) and (5.4.6),

N2 =N 4 (N24+NY)2=(=1—¢€—n, (5.4.7b)
N2 = N2+ N2/2=¢€(1-2n), (5.4.7¢)

N2 = N2 4 N2/2 =n(1 - 2€), (5.4.7d)

NZ = N2 = 4¢n. (5.4.7¢)

From these results, we see that the mappings on edges 1-2 (n = 0) and 1-3 (£ = 0) are
linear and are, respectively, given by

MR P O M R P LR M

The Jacobian determinant of the transformation can vanish depending on the location
of Node 5. The analysis may be simplified by constructing the transformation in two
steps. In the first step, we use a linear transformation to map an arbitrary element onto
a canonical element having vertices at (0,0), (1,0), and (0,1) but with one curved side.
In the second step, we remove the curved side using the quadratic transformation (5.4.7).
The linear mapping of the first step has a constant Jacobian determinant and, therefore,
cannot affect the invertibility of the system. Thus, it suffices to consider the second step
of the transformation as shown in Figure 5.4.5. Setting (x1,y1) = (0,0), (22, y2) = (1,0),
and (z3,y3) = (0,1) in (5.4.7a) yields

31 e[3]
L Y5
Using (5.4.7c-e)

g1l

Calculating the Jacobian

3, (Em) = [x,g Ty] _ [1 —=2n+4xsn —2&+ 4x5€

Ye Yn —2n+4ysn 1 =28 +4ys€ |’

5.4. Coordinate Transformations 21

1 4 2 1 4 2

Figure 5.4.5: Quadratic mapping of a right triangle having one curved side. The shaded
region indicates where Node 5 can be placed without introducing a singularity in the

mapping.
we find the determinant as

det(To(€,m) = 1+ (das — 2)n + (dys — 2)¢.

The Jacobian determinant is a linear function of £ and n; thus, as with Example 5.4.1,

we need only ensure that it has the same sign at each of its three vertices. We have
det(J.(0,0)) =1, det(J.(0,1)) = 4z5 — 1, det(J.(1,0)) = 4ys — 1.

Hence, the Jacobian determinant will not vanish and the mapping will be invertible when
x5 > 1/4 and y5 > 1/4 (c¢f. Problem 2 at the end of this section). This region is shown
shaded on the triangle of Figure 5.4.5.

Problems

1. Consider the second-order serendipity shape functions of Problem 4.3.1 or the
second-order hierarchical shape functions of Section 4.4. Let the four vertex nodes
be numbered (1,1), (2,1), (1,1), and (2, 1) and the four midside nodes be numbered
(3,1), (1,3), (2,3), and (3,2). Use the serendipity shape functions of Problem 4.3.1
to map the canonical 2 X 2 square element onto an eight-noded quadrilateral ele-
ment with curved sides in the (z,y)-plane. Assume that the vertex and midside
nodes of the physical element have the same numbering as the canonical element
but have coordinates at (x;;,v;;), 7,j = 1,2,3, i = j # 3. Can the Jacobian of the
transformation vanish for some particular choices of (z,y)? (This is not a simple
question. It suffices to give some qualitative reasoning as to how and why the

Jacobian may or may not vanish.)

22 Mesh Generation and Assembly

2. Consider the transformation (5.4.7) of Example 5.4.3 with x5 = y5 = 1/4 and sketch
the element in the (x, y)-plane. Sketch the element for some choice of 5 = y5 < 1/4.

5.5 Generation of Element Matrices and Vectors and
Their Assembly

Having discretized the domain, the next step is to select a finite element basis and
generate and assemble the element stiffness and mass matrices and load vectors. As a
review, we summarize some of the two-dimensional shape functions that were developed
in Chapter 4 in Tables 5.5.1 and 5.5.2. Nodes are shown on the mesh entities for the
Lagrangian and hierarchical shape functions. As noted in Section 5.3, however, the shape
functions may be associated with the entities without introducing modal points. The
number of parameters n, for an element having order p shape functions is presented for
p=1,2,3,4. We also list an estimate of the number of unknowns (degrees of freedom) N
for scalar problems solved on unit square domains using uniform meshes of 2n? triangular
or n? square elements.

Both the Lagrange and hierarchical bases of order p have the same number of param-
eters and degrees of freedom on the uniform triangular meshes. Without constraints for
Dirichlet data, the number of degrees of freedom is N = (pn + 1)? (¢f. Problem 1 at the
end of this section). Dirichlet data on the entire boundary would reduce N by O(pn)
and, hence, be a higher-order effect when n is large. The asymptotic approximation
N = (pn)? is recorded in Table 5.5.1. Similarly, bi-polynomial approximations of order p
on squares with n? uniform elements have N = (pn + 1)? degrees of freedom (again, cf.
Problem 1). The asymptotic approximation (pn)? is reported in Table 5.5.2. Under the
same conditions, hierarchical bases on squares have

N:{(Zp—l)n2+2pn—|—1, if p<4 ‘
(P> —p+4)n?/2+2pn+1, if p>4
degrees of freedom. The asymptotic values N ~ (2p — 1)N?, p < 4, and N ~ (p> —p +
4)n?/2, p > 4, are reported in Table 5.5.2.

The Lagrange and hierarchical bases on triangles and the Lagrange bi-polynomial
bases on squares have approximately the same number of degrees of freedom for a given
order p. The hierarchical bases on squares have about half the degrees of freedom of the
others. The bi-polynomial Lagrange shape functions on a square have the largest number
of parameters per element for a given p. The number of parameters per element affects the
element matrix and vector computations while the number of degrees of freedom affects
the solution time. We cannot, however, draw firm conclusions about the superiority of

one basis relative to another. The selection of an optimal basis for an intended level

5.5. Element Matrices and Their Assembly 23

D Lagrange Hierarchical | n, | N = p?n?
Stencil Stencil
1 /\ i
2 6 4n?
/.\
3 10 9n?
4 15 16n?

Table 5.5.1: Shape function placement for Lagrange and hierarchical finite element ap-
proximations of degrees p = 1,2, 3,4 on triangular elements with their number of param-
eters per element n, and degrees of freedom N on a square with 2n? elements. Circles
indicate additional shape functions located on a mesh entity.

of accuracy is a complex issue that depends on solution smoothness, geometry, and
the partial differential system. We’ll examine this topic in a later chapter. At least it
seems clear that bi-polynomial bases are not competitive with hierarchical ones on square

elements.

5.5.1 Generation of Element Matrices and Vectors

The generation of the element stiffness and mass matrices and load vectors is largely
independent of the partial differential system being solved; however, let us focus on the
model problem of Section 3.1 in order to illustrate the procedures less abstractly. Thus,

consider the two-dimensional Galerkin problem: determine u € H}, satisfying

A(v,u) = (v, f), Vv € Hy, (5.5.1a)

24 Mesh Generation and Assembly

P Lagrange Hierarchical
Stencil | ny, | N = Mn? Stencil | n, | N~ Mn®
1 4 n? 4 n?
o———0© o———O
e—© e—©
2 9 4n? 8 3n?
o—o 0 o—o 0
[J [[[J ®
o—0 0 o—0 0
3 16 In? 12 5n?
4 25 16n? 17 8n?

Table 5.5.2: Shape function placement for bi-polynomial Lagrange and hierarchical ap-
proximations of degrees p = 1, 2, 3,4 on square elements with their number of parameters
per element n, and degrees of freedom N on a square with n? elements. Circles indicate
additional shape functions located on a mesh entity.

where

(v, f) = // o fddy (5.5.1b)

A(v,u) = //[p(vmum + vyuy) + quuldrdy (5.5.1¢)

As usual, € is a two-dimensional domain with boundary 02 = 0Q; U 0€2y. Recall that
smooth solutions of (5.5.1) satisfy

—(pug)s — (puy)y + qu = f, (x,y) € Q, (5.5.2a)

5.5. Element Matrices and Their Assembly 25

u=q, (x,y) € 00g, (5.5.2b)

un =0, (x,y) € 00y, (5.5.2¢)

where n is the unit outward normal vector to 0€2. Trivial natural boundary conditions
are considered for simplicity. More complicated situations will be examined later in this
section.

Following the one-dimensional examples of Chapters 1 and 2, we select finite-dimensional
subspaces S§ and S}’ of H}, and H; and write (5.5.1b,c) as the sum of contributions
over elements

Na

(V)= (Vi f)e, (5.5.3a)
AV, U) = f:Ae(V, U). (5.5.3b)

Here, N is the number of elements in the mesh,

Vi f)e = // V fdzdy (5.5.3¢)

is the local L? inner product,

A, (V,U) = //[p(V};Um + V,U,) + ¢VU]dzxdy (5.5.3d)

is the local strain energy, and €2, is the portion of €2 occupied by element e.

The evaluation of (5.5.3¢,d) can be simple or complex depending on the functions
p, ¢, and f and the mesh used to discretize €2. If p and ¢ were constant, for example,
the local strain energy (5.5.3d) could be integrated exactly as illustrated in Chapters 1
and 2 for one-dimensional problems. Let’s pursue a more general approach and discuss
procedures based on transforming integrals (5.5.3¢,d) on element e to a canonical element
0 and evaluating them numerically. Thus, let Uy(&,n) = U(z(&,n),y(&,n)) and V4 (&, n) =
V(z(&,n),y(&,n)) and transform the integrals (5.5.3¢,d)) to element 0 to get

(V, f)e = / / Vol&,m) £ (2(€,m), y(€, m)) det(J,)dédn. (5.5.4a)

A,(V,U) = / / p(Vack + Vo) (Unc + Unyi) +
Qo

26 Mesh Generation and Assembly

p(%gé‘y + %nny)(U05€y + Uﬂnny) + Q%UO] det(Je)dgdn
where J, is the Jacobian of the transformation (cf. (5.4.1)).

Expanding the terms in the strain energy

A(V,U) = //[gle%gUog + g2¢(Vo Uo, + Vo, U) + 93V, U, + q¢VoUo] det(J.)dEdn
Qo

(5.5.4b)
where
g1e = p(x(&,m), y(€,m))[E + €], (5.5.4c)
92e = p((§,m), y(&, M) [Eante + Eyy], (5.5.4d)
gse = p(z (&), y(&,m)[ms +n7). (5.5.4e)

The integrand of (5.5.4b) might appear to be polynomial for constant p and a poly-
nomial mapping; however, this is not the case. In Section 4.6, we showed that the inverse

coordinate mapping satisfies

Yn Ty Ye Te¢
Tz = = = — y r — —) — . 555

“=Im@) YT TamEy T Tdmay T dmagy 000
The functions g;., ¢ = 1,2,3, are proportional to [1/det(J.)]?; thus, the integrand of
(5.5.4b) is a rational function unless, of course, det(J,) is a constant.

Let us write Uy and V} in the form

Up(&m) =cIN(&n) =N(En)T e, Vo(&,n) =dIN(E,n) =N n)'d. (5.5.6)

where the vectors ¢, and d. contain the elemental parameters and N(&,7) is a vector
containing the elemental shape functions.
Ezxample 5.5.1. For a linear polynomial on the canonical right 45° triangular element

having vertices numbered 1 to 3 as shown in Figure 5.5.1,

Ce,1 n

16—
Ce = Ce,2) N(é-a 77) = g
Ce,3 n

The actual vertex indices, shown as i, j, abd k, are mapped to the canonical indices 1,
2, and 3.
Example 5.5.2. The treatment of hierarchical polynomials is more involved because

there can be more than one parameter per node. Consider the case of a cubic hierarchical

5.5. Element Matrices and Their Assembly 27

j i1 j,2
Figure 5.5.1: Linear transformation of a triangular element e to a canonical right 45°
triangle.

function on a triangle. Translating the basis construction of Section 4.4 to the canonical

element, we obtain an approximation of the form (5.5.6) with
CZ = [Ce,la Ce,2y eny Ce,l()]

N = [Ni(&,m), Na(&, 1), ... Nio(&,m)].

The basis has ten shape functions per element (cf. (4.4.5-9)), which are ordered as
Nl(é-an):<1:1_€_777 N?(gan):CZZé-a N3(€777):<3:777

Ny(€,m) = —\/641@, Ns(&,n) = —\/642@, Ns(&,n) = _\/6C3C1,
Nz(&,n) = _\/EQCZ(QS - 1), Ng(&,n) = _\/E@CS(% - 1),
No(&,m) = =V10GG(1 = 20), Nig(€,m) = Gi6aG.

With this ordering, the first three shape functions are associated with the vertices, the
next three are quadratic corrections at the midsides, the next three are cubic corrections
at the midsides, and the last is a cubic “bubble function” associated with the centroid
(Figure 5.5.2).

An array implementation, as described by (5.5.6) and Examples 5.5. 1 and 5.5.2,
may be the simplest data structure; however, implementations with structures linked to
geometric entities (Section 5.3) are also possible.

Substituting the polynomial representation (5.5.6) into the transformed strain energy
expression (5.5.4b) and external load (5.5.4a) yields

A, (V,U) =d (K, + M,)c., (5.5.7a)

28 Mesh Generation and Assembly

1 4,7 2

Figure 5.5.2: Shape function placement and numbering for a hierarchical cubic approxi-
mation on a canonical right 45° triangle.

(V. e =d; £, (5.5.7b)
where
K, = / / [91eNeN{ + g2 (NeNT + Ny NY) + 93N, N | det (I)dédn, (5.5.8a)
Qo

M, = / / gNN" det(J,)dédn, (5.5.8b)

Qo
f. = // N f det(J.)dEdn. (5.5.8¢)

Qo

Here, K. and M, are the element stiffness and mass matrices and f, is the element load
vector. Numerical integration will generally be necessary to evaluate these arrays when
the coordinate transformation is not linear and we will study procedures to do this in
Chapter 6.

Element mass and stiffness matrices and load vectors are generated for all elements
in the mesh and assembled into their proper locations in the global stiffness and mass
matrix and load vector. The positions of the elemental matrices and vectors in their
global counterparts are determined by their indexing. In order to illustrate this point,
consider a linear shape function on an element with Vertices 4, 7, and 8 as shown in
Figure 5.5.3. These vertex indices are mapped onto local indices, e.g., 1, 2, 3, of the
canonical element and the correspondence is recorded as shown in Figure 5.5.3. After

generating the element matrices and vectors, the global indexing determines where to add

5.5. Element Matrices and Their Assembly 29

these entries into the global stiffnes and mass matrix and load vector. In the example
shown in Figure 5.5.3, the entry k{; is added to Row 4 and Column 4 of the global
stiffness matrix K. The entry k{, is added to Row 4 and Column 7 of K, etc.

The assembly process avoids the explicit summations implied by (5.5.3) and yields

A(V,U) = d" (K + M)c, (5.5.9a)
(V, f) =d’f, (5.5.9b)
where
CT = [Cl, Coy .y CN], (559C)
d’ = [dy,ds, ..., dy], (5.5.9d)

where K is the global stiffness matrix, M is the global mass matrix, f is the global load
vector, and N is the dimension of the trial space (or the number of degrees of freedom).

Imposing the Galerkin condition (5.5.1a)
AV, U) = (V,f)=d"[(K+M)c—f]=0, VvdecR", (5.5.10a)
yields

(K + M)c = f. (5.5.10b)

5.5.2 Essential and Neumann Boundary Conditions

It’s customary to ignore any essential boundary conditions during the assembly phase.
Were boundary conditions not imposed, the matrix K + M would be singular. Essential
boundary conditions constrain some of the ¢;, © = 1,2,..., N, and they must be imposed
before the algebraic system (5.5.10b) can be solved. In order to simplify the discussion,
let us suppose that either M = 0 or that M has been added to K so that (5.5.10) may

be written as

d'[Kc—f]=0, vde®", (5.5.11a)

Kc=f. (5.5.11b)

30 Mesh Generation and Assembly

‘ Global ‘ Local ‘

4 1
8 7 2 3
8 3
4 7 1 2
ki kiy ki [ff]
K. = k§1 k262 k263 f. = f2€
L kS, k5 ks J L f3 J
1234 56 7 8 9
_ 1] .
2
3
R kG, kG | 4 .
K = 5 f — +/1
6
+hs, kS, kg 7 e
+kS, +kSy kS, 8 2
9 | +f3 .

Figure 5.5.3: Assembly of an element stiffness matrix and load vector into their global
counterparts for a piecewise-linear polynomial approximation. The actual vertex indices
are recorded and stored (top), the element stiffness matrix and load vector are calculated
(center), and the indices are used to determine where to add the entries of the elemental
matrix and vector into the global stiffness and mass matrix.

5.5. Element Matrices and Their Assembly 31

Essential boundary conditions may either constrain a single ¢; or impose constraints

between several nodal variables. In the former case, we partition (5.5.11a) as
K K C1 f;]}
d,d — =0, 5.5.12a
[12]{[K21 K22:||:c2:| [fz ()
where the essential boundary conditions are
Co = (9. (5512b)

Recall (Chapters 2 and 3), that the test function V' should vanish on 0Qg; thus, corre-
sponding to (5.5.12b)

d, = 0. (5.5.12¢)

The second “block” of equations in (5.5.12a) should never have been generated and,

actually, we should have been solving
dl[Kiic, + Kioey — fi] = dl [Kyic, + Kpay — fi] = 0. (5.5.13a)
Imposing the Galerkin condition that (5.5.13a) vanish for all d,
Kiici =1 — Kpos. (5.5.13b)

Partitioning (5.5.11) need not be done explicitly as in (5.5.11). It can be done im-

plicitly without rearranging equations. Consider the original system (5.5.11b)

[ki klj Fiv 1 [a0] [f1]
kjl tr kjj T ij Cj = fj . (5514)
|kt kNj kEnn 1 L v L fn

Suppose that one boundary condition specifies ¢; = «, then the j th equation (row) of
the system is deleted, ¢; is replaced by the boundary condition, and the coefficients of ¢;

are moved to the right-hand side to obtain

i1 lﬁ,j—l kl,j+1 kin C1 fi— kl,jaj
kjioig - K ki o0 K ci—1 | _ | Ji-1 = k0
Kjivin - Kjrga Kjrga oo K Cjt1 fivr = kjpa 50y

kNt knj1 knja knn i Ly — ko

32 Mesh Generation and Assembly

When the algebraic system is large, the cost of moving data when rows and columns
are removed from the system may outweigh the cost of solving a larger algebraic system.
In this case, the boundary condition ¢; = «; can be inserted as the j th equation of
(5.5.14). Although not necessary, the j th column is usually moved to the right-hand

side to preserve symmetry. The resulting larger problem is

[ki 0 Fiv 1 [a] [1= kg]
0 -+ 1 .-+ 0 ¢ | = a;
| kNl 0 k'NN J L C¢N | L fN _kN,jaj .

The treatment of essential boundary conditions that impose constraints among several
nodal variables is much more difficult. Suppose, for example, there are [boundary

conditions of the form
Tc = o, (5.5.15)

where T is an [x N matrix and « is an [-vector. In vector systems of partial differential
equations, such boundary conditions arise when constraints are specified between different
components of the solution vector. In scalar problems, conditions having the form (5.5.15)

arise when a “global” boundary condition like

/ uds = «
a0

is specified. They could also arise with periodic boundary conditions which might, for
example, specify u(0,y) = u(1,y) if u were periodic in 2 on a rectangle of unit length.
One could possibly solve (5.5.15) for [values of ¢;, i = 1,2,..., N, in terms of the
others. Sometimes there is an obvious choice; however, often there is no clear way to
choose the unknowns to eliminate. A poor choice can lead to ill-conditioning of the
algebraic system. An alternate way of treating problems with boundary conditions such
as (5.5.15) is to embed Problem (5.5.11) in a constrained minimization problem which
may be solved using Lagrange multipliers. Assuming K to be symmetric and positive

semi-definite, (5.5.11) can be regarded as the minimum of
Ilc] = c"Kc — 2¢'f.
Using Lagrange multipliers, we minimize the modified functional

Ile,A] = c"Ke — 2¢7f 4+ 20" (Tc — a),

5.5. Element Matrices and Their Assembly 33

where X is an [-vector of Lagrange multipliers. Minimizing I with respect to ¢ and A

o) la]=lal (5510

The system (5.5.16) may or may not be simple to solve. If K is non-singular then the

yields

algorithm described in Problem 2 at the end of this section is effective. However, since
boundary conditions are prescribed by (5.5.15), K may not be invertible.

Nontrivial Neumann boundary conditions on 02y require the evaluation of an extra
line integral for those elements having edges on 0Q2y. Suppose, for example, that the

variational principle (5.5.1) is replaced by: determine u € H}, satisfying
A(v,u) = (v, f)+ < v, 8>, Vv € Hy, (5.5.17a)
where

<wv, 0 >= /an vB(x,y)ds, (5.5.17Db)

s being a coordinate on 0Qy. As discussed in Chapter 3, smooth solutions of (5.5.17)
satisfy (5.5.2a), the essential boundary conditions (5.5.2b), and the natural boundary

condition
pun = [, (x,y) € 00y (5.5.18)

The line integral (5.5.17b) is evaluated in the same manner as the area integrals and it
will alter the load vector f (cf. Problem 3 at the end of this section).
Problems

1. Determine the number of degrees of freedom when a scalar finite element Galerkin
problem is solved using either Lagrange or hierarchical bases on a square region

2 square elements. Express

having a uniform mesh of either 2n? triangular or n
your answer in terms of p and n and compare it with the results of Tables 5.5.1

and 5.5.2.

2. Assume that K is invertible and show that the following algorithm provides a
solution of (5.5.16).

Solve KW = T7 for W
Let Y = TW

Solve Ky = f for y

Solve YA =Ty— a for A
Solve Ke = f — TTX for c

34

Mesh Generation and Assembly

3. Calculate the effect on the element load vector f. of a nontrivial Neumann condition

having the form (5.5.18).

. Consider the solution of Laplace’s equation

Ugg + Uyy = 0, (1‘7 y) €,
on the unit square Q := {(x,y)|0 < z,y < 1} with Dirichlet boundary conditions
u=a, (x,y) € 0N.

As described in the beginning of this section, create a mesh by dividing the unit
square into n? uniform square elements and then into 2n? triangles by cutting each

square element in half along its positive sloping diagonal.

4.1. Using a Galerkin formulation with a piecewise-linear basis, develop the element
stiffness matrices for each of the two types of elements in the mesh.

4.2. Assemble the element stiffness matrices to form the global stiffness matrix.

4.3. Apply the Dirichlet boundary conditions and exhibit the final linear algebraic

system for the nodal unknowns.

. The task is is to solve a Dirichlet problem on a square using available finite element

software. The problem is
_uxx_uyy+f(xay):07 (x,y) EQ?

with u = 0 on the boundary of the unit square Q@ = {(z,y)[|0 < z,y < 1}. Select
f(z,y) so that the exact solution of the problem is

u(z,y) = e"ysin wx sin 27y.

The Galerkin form of this problem is to find v € H} satisfying

//[vxux + vyuy, + v fldrdy = 0, Vv € Hy.
Q

Solve this problem on a sequence of finer and finer grids using piecewise linear,
quadratic, and cubic finite element bases. Select a basic grid with either two or
four elements in it and obtain finer grids by uniform refinement of each element
into four elements. Present plots of the energy error as functions of the number of
degrees of freedom (DOF), the mesh spacing h, and the CPU time for the three

polynomial bases. Define h as the square root of the area of an average element.

5.5. Element Matrices and Their Assembly 35

You may combine the convergence histories for the three polynomial solutions on
one graph. Thus, you'll have three graphs, error vs. h, error vs. DOF, and error
vs. CPU time, each having results for the three polynomial solutions. Estimate the
convergence rates of the solutions. Comment on the results. Are they converging
at the theoretical rates? Are there any unexpected anomalies? If so, try to explain
them. You may include plots of solutions and/or meshes to help answer these

questions.
6. Consider the Dirichlet problem for Laplace’s equation
AU = Ugy + Uy, =0, (xz,y) € Q,

u(z,y) =alr,y), (z,y) €99,
where € is the L-shaped region with lines connecting the Cartesian vertices (0,0),

(1,0), (1,1), (-1,1), (-1,-1), (0,-1), (0,0). Select a(x,y) so that the exact solution
expressed in polar coordinates is

u(r,8) = r*3sin 3

with
x =rcosf, y =rsinf.
This solution has a singularity in its first derivative at r = 0. The singularity

is typical of those associated with the solution of elliptic problems at re-entrant

corners such as the one found at the origin.

Because of symmetries, the problem need only be solved on half of the L-shaped

domain, ¢.e., the trapezoidal region Q with lines connecting the Cartesian vertices
(070)7 (170)7 (171)7 ('171)7 (070)-

The Galerkin form of this problem consists of determining v € Hj,

//[Umum + vyu,|drdy = 0, Vv € Hj.

Q

Functions u € H}, satisfy the essential boundary conditions

u(z,y) =0, y =0, 0<x<l,

20
u(r,9)2r2/3sin§, xr =1, 0<y<1, y=1, —-1l<z <1

These boundary conditions may be expressed in Cartesian coordinates by using

r? = a? + 9, tan = 2.
x

36

Mesh Generation and Assembly

The solution of the Galerkin problem will also satisfy the natural boundary condi-

tion u, = uy = 0 along the diagonal y = —z.

Solve this problem using available finite element software. To begin, create a
three-element initial mesh by placing lines between the vertices (0,0) and (1,1)
and between (0,0) and (0,1). Generate finer meshes by uniform refinement and use

piecewise-polynomial bases of degrees one through three.

As in Problem 5, present plots of the energy error as functions of the number of
degrees of freedom, the mesh spacing h, and the CPU time for the three polyno-
mial bases. You may combine the convergence histories for the three polynomial
solutions on one graph. Define h as the square root of the area of an average ele-
ment. Estimate the convergence rates of the solutions. Is accuracy higher with a

high-order method on a coarse mesh or with a low-order method on a fine mesh?

If adaptivity is available, use a piecewise-linear basis to calculate a solution using
adaptive h-refinement. Plot the energy error of this solution with those of the
uniform-mesh solutions. Is the adaptive solution more efficient? Efficiency may
be defined as less CPU time or fewer degrees of freedom for the same accuracy.

Contrast the uniform and adaptive meshes.

5.6 Assembly of Vector Systems

Vector systems of partial differential equations may be treated in the same manner as the

scalar problems described in the previous section. As an example, consider the vector

version of the model problem (5.5.1): determine u € H}, satisfying

A(v,u) = (v,f), Vv € Hy, (5.6.1a)

where

(v,f) = // vIfdxdy, (5.6.1b)

Q

A(v,u) = //[vaux + v, Puy + v Qu]dzdy. (5.6.1c)
o

The functions u(z,y), v(z,y), and f(x, y) are m-vectors and P and Q are m x m matrices.
Smooth solutions of (5.6.1) satisfy

—(Pu,), — (Pu,), +Qu="F, (z,y)€Q, (5.6.2a)

5.5. Assembly of Vector Systems

u=aq, (x,y) € 0Qp, u, = 0, (x,y) € 00y.
Example 5.6.1. Consider the biharmonic equation

A*w = f(z,y), (z,y) €

where

A()::()M""()yy

37

(5.6.2b)

is the Laplacian and €2 is a bounded two-dimensional region. Problems involving bihar-

monic operators arise in elastic plate deformation, slow viscous flow, combustion, etc.

Depending on the boundary conditions, this problem may be transformed to a system of

two second-order equations having the form (5.6.2). For example, it seems natural to let

U = —Aw
then
—Auy = f.
Let w = —us to obtain the vector system
—Auy = f, —Auy +up =0, (x,y) € Q.

This system has the form (5.6.2) with

N |

The simplest boundary conditions to prescribe are

W= —Uy = (g, Aw = —u; = ay, (x,y) € 09.

With these (Dirichlet) boundary conditions, the variational form of this problem is

(5.6.1a) with

(v,) = / / oy fddy

and

AW = 100200+ @)y (10), + (02)2(0s + (02) (12), + v dady,

Q

The requirement that (5.6.1a) be satisfied for all vector functions v € H} gives the two

scalar variational problems

//[(Ul)x(ul)x + (v1)y(u1)y — v1 fldady = 0, Yo, € Hy,

38 Mesh Generation and Assembly

//[(W)m(uz)m + (v2)y (u2)y + vouq|dady = 0, Yuve € H&.

We may check that smooth solutions of these variational problems satisfy the pair of
second-order differential equations listed above.

We note in passing, that the boundary conditions presented with this example are
not the only ones of interest. Other boundary conditions do not separate the system as
neatly.

Following the procedures described in Section 5.5, we evaluate (5.6.1) in an element-
by-element manner and transform the elemental strain energy and load vector to the

canonical element to obtain

A (V,U) = / / [V, G1eUp, + Vi, Go Ug, + Vi Go U+
Qo

Vi, G3.Up, + Vi QU] det(J.)dédn, (5.6.3a)
where
G =P +&), G =Plamp+&nl, Gs=Pp+1n)], (5.6.3b)
and
(V. £), = / / VTE det (T,)d dn. (5.6.3¢)
Qo

The restriction of the piecewise-polynomial approximation Uy to element e is written

in terms of shape functions as

Up(&n) = ceiN;(€,m) (5.6.4a)
j=1

where n, is the number of shape functions on element e. We have divided the vector
c. of parameters into its contributions c.;, j = 1,2,...,n, from the shape functions of

element e. Thus, we may write

cl' =[c!), et cl . (5.6.4Db)

e’ Ve,2r) Ye,ny,

In this form, we may write Uy as

Uy = N'c, =c!N (5.6.4c)

5.5. Assembly of Vector Systems 39
where N is the n,m x m matrix
N” = [NL N, ..., N, 1. (5.6.4d)

and the identity matrices have the dimension m of the partial differential system. The
simple linear shape functions will illustrate the formulation.

Example 5.6.2. Consider the solution of a system of m = 2 equations using a
piecewise-linear finite element basis on triangles. Suppose, for convenience, that the
node numbers of element e are 1, 2, and 3. In order to simplify the notation, we suppress
the subscript 0 on Uy and V|, and the subscript e on c.. The linear approximation on

element e then takes the form

{ g;] = { o] Ni(€,m) + { o] Na(€,m) + { o] Ny(€,m),

Ca1 C22

where
N1(§a77):1—§—77: N2(fa77):§a N3(§777):77

The first subscript on ¢;; denotes its index in ¢ and the second subscript identifies the

vertex of element e. The expression (5.6.4c) takes the form

M

Substituting (5.6.4c) and a similar expression for V into (5.6.3a,e) yields

11
Ca21
N1 0 N2 0 N3 0 C12
|:0N10N20N3 €99
C13
C23

A, (V,U) =d! (K, +M,)c., (V,f), =d'f,, (5.6.5)
where

Ke = //[NﬁGleNg + NgG’ZeNZ; + NnGZeNg =+ NnG—?)eN;l;] det(Je)dng], (566&)
Qo

M, = Z / NQN” det(J,)dédn, £, = g / Nf det (J,)dEdn. (5.6.6b)

Problems

40 Mesh Generation and Assembly

1. It is, of course, possible to use different shape functions for different solution com-
ponents. This is often done with incompressible flows where the pressure is approx-
imated by a basis having one degree less than that used for velocity. Variational
formulations with different fields are called mized variational principles. The result-
ing finite element formulations are called mized methods. As an example, consider
a vector problem having two components. Suppose that a piecewise-linear basis is
used for the first variable and piecewise quadratics are used for the second. Using
hierarchical bases, select an ordering of unknowns and write the form of the finite el-
ement solution on a canonical two-dimensional element. What are the components
of the matrix N7 For this approximation, develop a formula for the element stiff-
ness matrix (5.6.6a). Express your answer in terms of the matrices Gy, i = 1,2, 3,

and integrals of the shape functions.

Bibliography

1]

2]

I. Babuska, J.E. Flaherty, W.D. Henshaw, J.E. Hopcroft, J.E. Oliger, and T. Tez-
duyar, editors. Modeling, Mesh Generation, and Adaptive Numerical Methods for
Partial Differential Equations, volume 75 of The IMA Volumes in Mathematics and
its Applications, New York, 1995. Springer-Verlag.

P.L. Baechmann, M.S. Shephard, and J.E. Flaherty. Adaptive analysis for automated
finite element modeling. In J.R. Whiteman, editor, The Mathematics of Finite
Elements and Applications VI, MAFELAP 1987, pages 521-532, London, 1988.
Academic Press.

P.L. Baehmann, S.L. Witchen, M.S. Shephard, K.R. Grice, and M.A. Yerry. Ro-
bust, geometrically-based, automatic two-dimensional mesh generation. Interna-
tional Journal of Numerical Methods in Engineering, 24:1043-1078, 1987.

M.W. Beall and M.S. Shephard. A general topology-based mesh data structure.
International Journal of Numerical Methods in Engineering, 40:1573-1596, 1997.

M.W. Bern, J.E. Flaherty, and M. Luskin, editors. Grid Generation and Adaptive
Algorithms, volume 113 of The IMA Volumes in Mathematics and its Applications,
New York, 1999. Springer.

G.F. Carey. Computational Grids: Generation, Adaptation, and Solution Strategies.
Series in Computational and Physical Processes in Mechanics and Thermal science.
Taylor and Francis, New York, 1997.

J.E. Flaherty, R. Loy, M.S. Shephard, B.K. Szymanski, J. Teresco, and L. Ziantz.
Adaptive local refinement with octree load-balancing for the parallel solution of
three-dimensional conservation laws. Parallel and Distributed Computing, 1998. to

appear.

J.E. Flaherty, R.M. Loy, C. Ozturan, M.S. Shephard, B.K. Szymanski, J.D. Teresco,
and L.H. Ziantz. Parallel structures and dynamic load balancing for adaptive finite
element computation. Applied Numerical Mathematics, 26:241-265, 1998.

41

42 Mesh Generation and Assembly

9] J.E. Flaherty, P.J. Paslow, M.S. Shephard, and J.D. Vasilakis, editors. Adaptive
methods for Partial Differential Equations, Philadelphia, 1989. STAM.

[10] R. Lohner. Finite element methods in CFD: Grid generation, adaptivity and par-
allelization. In H. Deconinck and T. Barth, editors, Unstructured Grid Methods for
Advection Dominated Flows, number AGARD Report AGARD-R-787, Neuilly sur
Seine, 1992. Chapter 8.

[11] R. Verfiirth. A Review of Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Teubner-Wiley, Stuttgart, 1996.

Chapter 6

Numerical Integration

6.1 Introduction

After transformation to a canonical element 2y, typical integrals in the element stiffness

or mass matrices (cf. (5.5.8)) have the forms

Q- z / o (€, n)N.NT det(3,) dédn, (6.1.1a)

where «(&,n) depends on the coefficients of the partial differential equation and the
transformation to Qg (¢f. Section 5.4). The subscripts s and t are either nil, &, or
n implying no differentiation, differentiation with respect to &, or differentiation with

respect to 7, respectively. Assuming that N has the form
N" =[Ny, Na,... , N,], (6.1.1b)
then (6.1.1a) may be written in the more explicit form

(%1)5(%1),5 (%1)5(%2),5 (%1)5(%%%
Q://a(ﬁ,n) (N2)s(N1)e (IN2)s(Na2): } (N2)s(Nn,)¢ det (3,)dedn,

(Na)s(V)e (Na)s(Na)e (Na)s(Noy)e
(6.1.1c)

Integrals of the form (6.1.1b) may be evaluated exactly when the coordinate trans-
formation is linear (J. is constant) and the coefficients of the differential equation are
constant (cf. Problem 1 at the end of this section). With certain coefficient functions and
transformations it may be possible to evaluate (6.1.1b) exactly by symbolic integration;

however, we’ll concentrate on numerical integration because:

e it can provide exact results in simple situations (e.g., when « and J, are constants)

and

2 Numerical Integration

e exact integration is not needed to achieve the optimal convergence rate of finite
element solutions ([2, 9, 11], and Chapter 7).

Integration is often called quadrature in one dimension and cubature in higher dimen-
sions; however, we’ll refer to all numerical approximations as quadrature rules. We’ll

consider integrals and quadrature rules of the form
1= [[e mdedn~ Y- wir(eim. (6.1.22)
o i=1

where W, are the quadrature rule’s weights and (&;,n;) are the evaluation points, i =
1,2,...,n. Of course, we’ll want to appraise the accuracy of the approximate integration

and this is typically done by indicating those polynomials that are integrated exactly.

Definition 6.1.1. The integration rule (6.1.2a) is ezact to order ¢ if it is exact when

f(&,m) is any polynomial of degree ¢ or less.

When the integration rule is exact to order ¢ and f(&,n) € HIT (), the error

E=1-) Wif(&mn) (6.1.2b)
i=1
satisfies an estimate of the form
B < Ol (i (6.1.20)

FEzxample 6.1.1. Applying (6.1.2) to (6.1.1a) yields
Q~ Y Wial&, m)N(&,mi)N" (&, mi) det (T (&, ms))-
i=1

Thus, the integrand at the evaluation points is summed relative to the weights to ap-
proximate the given integral.

Problems

1. A typical term of an element stiffness or mass matrix has the form

/ / cjdedn, gy 0.
Qo

Evaluate this integral when €y is the canonical square [—1,1] x [—1,1] and the

canonical right 45° unit triangle.

6.2. One-Dimensional Quadrature 3

6.2 One-Dimensional Gaussian Quadrature

Although we are primarily interested in two- and three-dimensional quadrature rules,
we’ll set the stage by studying one-dimensional integration. Thus, consider the one-

dimensional equivalent of (6.1.2) on the canonical [—1, 1] element

1 n
1= [r©ie=Y wisle) + £ (6.21)
-1 i=1
Most classical quadrature rules have this form. For example,the trapezoidal rule

I'~ f(-1)+ f(1)
has the form (6.2.1) with n =2, Wy = Wy =1, =& =& =1, and

_2f"0)

E = ,
3

o€ (—1,1).

Similarly, Simpson’s rule
1
I S [f(=1) +4f(0) + f(1)

has the form (6.2.1) with n =3, Wy = Wy/4=W;3=1/3, = =& =1, & =0, and
fi (o)
9 ’

Gaussian quadrature is preferred to these Newton-Cotes formulas for finite element

E=— o€ (—1,1).

applications because they have fewer function evaluations for a given order. With Gaus-
sian quadrature, the weights and evaluation points are determined so that the integration
rule is exact (E = 0) to as high an order as possible. Since there are 2n unknown weights
and evaluation points, we expect to be able to make (6.2.1) exact to order 2n — 1. This
problem has been solved [3, 6] and the evaluation points &;, i = 1,2,... ,n, are the roots
of the Legendre polynomial of degree n (c¢f. Section 2.5). The weights W;, i =1,2,... ,n,
called Christoffel weights, are also known and are tabulated with the evaluation points
in Table 6.2.1 for n ranging from 1 to 6. A more complete set of values appear in
Abromowitz and Stegun [1].

Ezxample 6.2.1. The derivation of the two-point (n = 2) Gauss quadrature rule is
given as Problem 1 at the end of this section. From Table 6.2.1 we see that W; =W, =1
and —& =& = 1/\/5 Thus, the quadrature rule is

/_ €~ F(=1/V3) + 1(1/V).

This formula is exact to order three; thus the error is proportional to the fourth derivative
of f (¢f. Theorem 6.2.1, Example 6.2.4, and Problem 2 at the end of this section).

Numerical Integration

+&i

Wi

0.00000 00000 00000

0.57735 02691 89626

0.00000 00000 00000
0.77459 66692 41483

0.33998 10435 84856
0.86113 63115 94053

0.00000 00000 00000
0.53846 93101 05683
0.90617 98459 38664

0.23861 91860 83197
0.66120 93864 66265
0.93246 95142 03152

2.00000 00000 00000

1.00000 00000 00000

0.88888 88888 88889
0.55555 55555 55556

0.65214 51548 62546
0.34785 48451 37454

0.56888 88888 88889
0.47862 86704 99366
0.23692 68850 56189

0.46791 39345 72691
0.36076 15730 48139
0.17132 44923 79170

Table 6.2.1: Christoffel weights W; and roots &;,1=1,2,...
of degrees 1 to 6 [1].

,n, for Legendre polynomials

Example 6.2.2. Consider evaluating the integral

! 2
I:/ e “dr =
0

by Gauss quadrature. Let us transform the integral to [—1, 1] using the mapping

gerf(l) = 0.74682413281243 (6.2.2)

E=2x—1

to get

1 ! ,(ﬂy
I = e ‘2) dE.
2./

The two-point Gaussian approximation is

_(1+12/\/§)2

-1
I~l==[e>

2 |

+e

Other approximations follow in similar order.

Errors I — I when [is approximated by Gaussian quadrature to obtain I appear in
Table 6.2.2 for n ranging from 1 to 6. Results using the trapezoidal and Simpson’s rules
are also presented. The two- and three-point Gaussian rules have higher orders than the

corresponding Newton-Cotes formulas and this leads to smaller errors for this example.

6.2. One-Dimensional Quadrature 5t

n | Gauss Rules | Newton Rules
Error Error

3.198(- 2)
2.294(- 4) | -6.288(- 2)
-9.549(- 6) | 3.563(- 4)
3.353(- 7)
-6.046(- 9)
7.772(-11)

SO W N

Table 6.2.2: Errors in approximating the integral of Example 6.2.2 by Gauss quadrature,
the trapezoidal rule (n = 2, right) and Simpson’s rule (n = 3, right). Numbers in
parentheses indicate a power of ten.

Ezample 6.2.3. Composite integration formulas, where the domain of integration [a, b]
is divided into N subintervals of width

A.’L’j:]}j—l‘j_l, j:1,2,...,N,

are not needed in finite element applications, except, perhaps, for postprocessing. How-

ever, let us do an example to illustrate the convergence of a Gaussian quadrature formula.

= /abf(x)dx: z:;fj

L= | Fw)ds

Thus, consider

where

The linear mapping

1-¢ 1+¢
r=2Tj-1 9 + 7 >
transforms [x;_1, z,] to [—1, 1] and
Az [1 1-¢ 14+¢
[] = —2J) f(ZUJ,1 5 +ZUJ 5)dé-

Approximating I; by Gauss quadrature gives

We'll approximate (6.2.2) using composite two-point Gauss quadrature; thus,

[j = %[e(ﬂﬁjlmAﬂf“j/(Z\/g))2 + e*(mj—1/2+A$j/(2\/§))2]

)

6 Numerical Integration

where x;_y/2 = (2; + x;_1)/2. Assuming a uniform partition with Az; = 1/N, j =

1,2,..., N, the composite two-point Gauss rule becomes

Z[e_(xj—l/2_1/(2N\/§))2 + 6_(%'—1/2"‘1/(2]\7\/3))2] .

Jj=1

1

[~ —
2N

The composite Simpson’s rule,

1 N—-1 N—-2
~ —T; —T; -1
IN—3N[1+4E e —|—2§ e +e]

i=1,3 i=2,4

on N/2 subintervals of width 2Axz has an advantage relative to the composite Gauss rule
since the function evaluations at the even-indexed points combine.

The number of function evaluations and errors when (6.2.2) is solved by the compos-
ite two-point Gauss and Simpson’s rules are recorded in Table 6.2.3. We can see that
both quadrature rules are converging as O(1/N*) ([6], Chapter 7). The computations
were done in single precision arithmetic as opposed to those appearing in Table 6.2.2,
which were done in double precision. With single precision, round-off error dominates the
computation as N increases beyond 16 and further reductions of the error are impossible.
With function evaluations defined as the number of times that the exponential is evalu-
ated, errors for the same number of function evaluations are comparable for Gauss and
Simpson’s rule quadrature. As noted earlier, this is due to the combination of function
evaluations at the ends of even subintervals. Discontinuous solution derivatives at inter-

element boundaries would prevent such a combination with finite element applications.

N Gauss Rules Simpson’s Rule
Fn. Eval. ‘ Abs. Error | Fn. Eval. ‘ Abs. Error
2 4 0.208(- 4) 3 0.356(- 3)
4 8 0.161(- 5) 5 0.309(- 4)
8 16 0.358(- 6) 9 0.137(- 5)
16 32 0.364(- 5) 17 0.244(-5)

Table 6.2.3: Comparison of composite two-point Gauss and Simpson’s rule approxima-
tions for Example 6.2.3. The absolute error is the magnitude of the difference between
the exact and computational result. The number of times that the exponential function
is evaluated is used as a measure of computational effort.

As we may guess, estimates of errors for Gauss quadrature use the properties of

Legendre polynomials (¢f. Section 2.5). Here is a typical result.

6.2. One-Dimensional Quadrature 7

Theorem 6.2.1. Let f(£) € C*[—1,1], then the quadrature rule (6.2.1) is exact to order
2n —1if &, i =1,2,...,n, are the roots of P,(§), the nth-degree Legendre polynomial,
and the corresponding Christoffel weights satisfy

_ 1 b P8 .
W, = P &) /1§_§id§’ i=1,2,...,n. (6.2.3a)

Additionally, there exists a point ¢ € (—1,1) such that

(2n) 1 n
p=? 2n!(C) /1 H(g — &)%de. (6.2.3b)

Proof. cf. [6], Sections 7.3, 4. O

Example 6.2.4. Using the entries in Table 6.2.1 and (6.2.3b), the discretization error

of the two-point (n = 2) Gauss quadrature rule is

Problems

1. Calculate the weights W; and W, and the evaluation points & and & so that the

two-point Gauss quadrature rule

/_ F(2) ~ Wif(&) + Waf (&)

is exact to as high an order as possible. This should be done by a direct calculation

without using the properties of Legendre polynomials.

2. Lacking the precise information of Theorem 6.2.1, we may infer that the error in
the two-point Gauss quadrature rule is proportional to the fourth derivative of f()

since cubic polynomials are integrated exactly. Thus,

E=Cf"(), ¢e(-11).

We can determine the error coefficient C' by evaluating the formula for any function
f(z) whose fourth derivative does not depend on the location of the unknown point
(. In particular, any quartic polynomial has a constant fourth derivative; hence,
the value of (is irrelevant. Select an appropriate quartic polynomial and show that
C =1/135 as in Example 6.2.4.

8 Numerical Integration

6.3 Multi-Dimensional Quadrature

Integration on square elements usually relies on tensor products of the one-dimensional
formulas illustrated in Section 6.2. Thus, the application of (6.2.1) to a two-dimensional

integral on a canonical [—1, 1] x [—1, 1] square element yields the approximation

1,1 L n .)
I:/I/lf(&??)didnz/I;Wif(&,n)dn:;Wiflf(&,n)dn

and

1 1 n n
1= [[fendeans 3> wavisn) (6.3.1)
—1J-1 i=1 j=1
Error estimates follow the one-dimensional analysis.
Tensor-product formulas are not optimal in the sense of using the fewest function
evaluations for a given order. Exact integration of a quintic polynomial by (6.3.1) would
require n = 3 or a total of 9 points. A complete quintic polynomial in two dimensions

has 21 monomial terms; thus, a direct (non-tensor-product) formula of the form

1 pl n
I = /1 /lf(g,n)dgdn% ;Wif(fi;m)

could be made exact with only 7 points. The 21 coefficients W;, &, n;, 1 = 1,2,...,7,
could potentially be determined to exactly integrate all of the monomial terms.
Non-tensor-product formulas are complicated to derive and are not known to very high
orders. Orthogonal polynomials, as described in Section 6.2, are unknown in two and
three dimensions. Quadrature rules are generally derived by a method of undetermined
coefficients. We’ll illustrate this approach by considering an integral on a canonical right

45° triangle
1= [[e mdedn =Y Wis(m) + E. (6.3.2)
Q0 i=1

Example 6.3.1. Consider the one-point quadrature rule

// f(&n)dédn =Wif(&,m) + E. (6.3.3)

Since there are three unknowns W7y, &, and 7y, we expect (6.3.3) to be exact for any linear
polynomial. Integration is a linear operator; hence, it suffices to ensure that (6.3.3) is

exact for the monomials 1, &, and 7. Thus,

6.3. Multi-Dimensional Quadrature 9

o I f(€0) = . 1

| [e =5 =w
o If f(&,n) =&

/ / €)dnde = ~ = Wié..
o If f(&,m) =

1 pl—€ 1
/ / (n)dnd€ = —=Win.
o Jo 6

The solution of this system is W7 = 1/2 and £ = n; = 1/3; thus, the one-point quadrature

rule is

1,11
J[#tenacan=35.5)+ (634
Qo

As expected, the optimal evaluation point is the centroid of the triangle.
A bound on the error E may be obtained by expanding f(&,7n) in a Taylor’s series

about some convenient point (&, 79) € 2y to obtain

where
= 0 0 6.3.5b
p1(&m) = f(&,m) + (€ - 50)8—6 + (n — Uo)a_n]f(foaﬁo) (6.3.5b)
and
Ri€n) = 36~ g + (1= m)g PI00), (B (6350)

Integrating (6.3.5a) using (6.3.4)

5= [[nen + Rulemldedn - 3l (. 3)+ Ril5)

Since (6.3.4) is exact for linear polynomials

1 11
E:é/m@m%m—§&§5»

Not being too precise, we take an absolute value of the above expression to obtain

1 1)|

B < / IRu(E mldedn + 5B (5 2

10 Numerical Integration

For the canonical element, | — &| < 1 and |p — 19| < 1; hence,
[B1(&;m)] < 2max [ID" £lloo,0

where

00,0 = Imax ;)|
fllo = max |F(€m)

Since the area of € is 1/2,

|E| < 2max ||DF f]]w0- (6.3.6)
K|=2

Errors for other quadrature formulas follow the same derivation ([6], Section 7.7).

Two-dimensional integrals on triangles are conveniently expressed in terms of trian-

gular coordinates as
[s sty =4,y Wiy + B (6.3.7)
o i=1

where ((%, (3, Ci) are the triangular coordinates of evaluation point i and A, is the area of
triangle e. Symmetric quadrature formulas for triangles have appeared in several places.
Hammer et al. [5] developed formulas on triangles, tetrahedra, and cones. Dunavant [4]
presents formulas on triangles which are exact to order 20; however, some formulas have
evaluation points that are outside of the triangle. Sylvester [10] developed tensor-product
formulas for triangles. We have listed some quadrature rules in Table 6.3.1 that also
appear in Dunavant [4], Strang and Fix [9], and Zienkiewicz [12]. A multiplication factor
M indicates the number of permutations associated with an evaluation point having a
weight W;. The factor M = 1 is associated with an evaluation point at the triangle’s
centroid (1/3,1/3,1/3), M = 3 indicates a point on a median line, and M = 6 indicates
an arbitrary point in the interior. The factor p indicates the order of the quadrature rule;
thus, E = O(hP*') where h is the maximum edge length of the triangle.

Ezample 6.3.2. Using the data in Table 6.3.1 with (6.3.7), the three-point quadrature
rule on the canonical triangle is

[#temdgan= Gl#(23.1/6,1/0) + £(1/6,1/6.2/3) + F(1/6,2/3,1/6)) + E:

The multiplicative factor of 1/6 arises because the area of the canonical element is 1/2 and
all of the weights are 1/3. The quadrature rule can be written in terms of the canonical
variables by setting (» = £ and (3 =7 (¢f. (4.2.6) and (4.2.7)). The discretization error

associated with this quadrature rule is O(h?).

6.3. Multi-Dimensional Quadrature

L]

Wi

§

G G

1

12

13

1.000000000000000

0.333333333333333

-0.562500000000000

0.520833333333333

0.109951743655322

0.223381589678011

0.225000000000000

0.125939180544827

0.132394152788506

0.050844906370207

0.116786275726379

0.082851075618374

-0.149570044467670

0.175615257433204

0.053347235608839

0.077113760890257

0.333333333333333

0.666666666666667

0.333333333333333

0.600000000000000

0.816847572980459

0.108103018168070

0.333333333333333

0.797426985353087

0.059715871789770

0.873821971016996

0.501426509658179

0.636502499121399

0.333333333333333

0.479308067841923

0.869739794195568

0.638444188569809

0.333333333333333
0.333333333333333

0.166666666666667
0.166666666666667

0.333333333333333
0.333333333333333
0.200000000000000
0.200000000000000

0.091576213509771
0.091576213509771
0.445948490915965
0.445948490915965

0.333333333333333
0.333333333333333
0.101286507323456
0.101286507323456
0.470142064105115
0.470142064105115

0.063089014491502
0.063089014491502
0.249286745170910
0.249286745170910
0.310352451033785
0.053145049844816

0.333333333333333
0.333333333333333
0.260345966079038
0.260345966079038
0.065130102902216
0.065130102902216
0.312865496004875
0.486903154253160

| M1p]
1
1
2
3
3
1
3
4
3
3
5
1
3
3
6
3
3
6
7
1
3
3
6

Table 6.3.1: Weights and evaluation points for integration on triangles [4].

11

12 Numerical Integration

Quadrature rules on tetrahedra have the form

J[[oty = v,y wir(c i+ £ (6.38)
Q. =1

where V, is the volume of Element e and ((i, %, ¢2, (i) are the tetrahedral coordinates of
evaluation point i. Quadrature rules are presented by Jinyun [7] for methods to order
six and by Keast [8] for methods to order eight. Multiplicative factors are such that
M =1 for an evaluation point at the centroid (1/4,1/4,1/4,1/4), M = 4 for points on
the median line through the centroid and one vertex, M = 6 for points on a line between

opposite midsides, M = 12 for points in the plane containing an edge an and opposite

midside, and M = 24 for points in the interior (Figure 6.3.1).

L]

Wi

C{a CZ

C?n C4

[M|p|

1

11

15

1.000000000000000

0.250000000000000

-0.800000000000000

0.450000000000000

-0.013155555555556

0.007622222222222

0.024888888888889

0.030283678097089

0.006026785714286

0.011645249086029

0.010949141561386

0.250000000000000
0.250000000000000

0.585410196624969
0.138196601125011

0.250000000000000
0.250000000000000
0.500000000000000
0.166666666666667

0.250000000000000
0.250000000000000
0.785714285714286
0.071428571428571
0.399403576166799
0.100596423833201

0.250000000000000
0.250000000000000
0.000000000000000
0.333333333333333
0.727272727272727
0.090909090909091
0.066550153573664
0.433449846426336

0.250000000000000
0.250000000000000

0.138196601125011
0.138196601125011

0.250000000000000
0.250000000000000
0.166666666666667
0.166666666666667

0.250000000000000
0.250000000000000
0.071428571428571
0.071428571428571
0.399403576166799
0.100596423833201

0.250000000000000
0.250000000000000
0.333333333333333
0.333333333333333
0.090909090909091
0.090909090909091
0.066550153573664
0.433449846426336

1

6

1

Table 6.3.2: Weights and evaluation points for integration on tetrahedra [7, 8].

6.3. Multi-Dimensional Quadrature 13

Figure 6.3.1: Some symmetries associated with the tetrahedral quadrature rules of Table
6.3.2. An evaluation point with M = 1 is at the centroid (C), one with M =4 is on a
line through a vertex and the centroid (e.g., line 3 — Pj34), one with M = 6 is on a line
between two midsides (e.g., line Q12 — (34), and one with M = 12 is in a plane through
two vertices and an opposite midside (e.g., plane 3 — 4 — Q1)

Problems

1. Derive a three-point Gauss quadrature rule on the canonical right 45° triangle
that is accurate to order two. In order to simplify the derivation, use symmetry
arguments to conclude that the three points have the same weight and that they
are symmetrically disposed on the medians of the triangle. Show that there are
two possible formulas: the one given in Table 6.3.1 and another one. Find both

formulas.

2. Show that the mapping

14w (1 =u)(1+4wv)
6_ 2) n= 4

transforms the integral (6.3.2) from the triangle 2 to one on the square —1 <
u,v < 1. Find the resulting integral and show how to approximate it using a

tensor-product formula.

14

Numerical Integration

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

M. Abromowitz and I.A. Stegun. Handbook of Mathematical Functions, volume 55
of Applied Mathematics Series. National Bureau of Standards, Gathersburg, 1964.

S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, New York, 1994.

R.L. Burden and J.D. Faires. Numerical Analysis. PWS-Kent, Boston, fifth edition,
1993.

D.A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the
triangle. International Journal of Numerical Methods in Engineering, 21:1129-1148,
1985.

P.C. Hammer, O.P. Marlowe, and A.H. Stroud. Numerical integration over simplexes
and cones. Mathematical Tables and other Aids to Computation, 10:130-137, 1956.

E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley and Sons,
New York, 1966.

Y. Jinyun. Symmetric Gaussian quadrature formulae for tetrahedronal regions.
Computer Methods in Applied Mechanics and Engineering, 43:349-353, 1984.

P. Keast. Moderate-degree tetrahedral quadrature formulas. Computer Methods in
Applied Mechanics and Engineering, 55:339-348, 1986.

G. Strang and G. Fix. Analysis of the Finite Element Method. Prentice-Hall, En-
glewood Cliffs, 1973.

P. Sylvester. Symmetric quadrature formulae for simplexes. Mathematics of Com-
putation, 24:95-100, 1970.

R. Wait and A.R. Mitchell. The Finite Element Analysis and Applications. John
Wiley and Sons, Chichester, 1985.

15

16 Numerical Integration

[12] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, New York, third
edition, 1977.

Chapter 7

Analysis of the Finite Element
Method

7.1 Introduction

Finite element theory is embedded in a very elegant framework that enables accurate a
priori and a posteriori estimates of discretization errors and convergence rates. Unfortu-
nately, a large portion of the theory relies on a knowledge of functional analysis, which
has not been assumed in this material. Instead, we present the relevant concepts and
key results without proof and cite sources of a more complete treatment. Once again, we

focus on the model Galerkin problem: find u € H} satisfying
A(v,u) = (v, f), Vv € Hy, (7.1.1a)

where

(v, f) = // vfdzdy, (7.1.1b)

Av,u) = //[p(vxux + vyuy) + quuldzdy, (7.1.1c)

where the two-dimensional domain €2 has boundary 02 = 0Qr U0 y. For simplicity, we
have assumed trivial essential and natural boundary data on 0Q2r and 0€)y, respectively.
Finite element solutions U € S}’ of (7.1.1) satisfy

AV, U)=(V,f), WV eSy, (7.1.2)

where SY¥ is a finite-dimensional subspace of H;.

As described in Chapter 2, error analysis typically proceeds in two steps:

1

2 Analysis of the Finite Element Method

1. showing that U is optimal in the sense that the error u — U satisfies

|lu—Ul|| = min ||lu—W]|| (7.1.3)
Wesy

in an appropriate norm, and
2. finding an upper bound for the right-hand side of (7.1.3).

The appropriate norm to use with (7.1.3) for the model problem (7.1.1) is the strain

energy norm

[olla = VA(v,v). (7.1.4)

The finite element solution might not satisfy (7.1.3) with other norms and/or problems.
For example, finite element solutions are not optimal in any norm for non-self-adjoint

problems. In these cases, (7.1.3) is replaced by the weaker statement

|lu—"Ul|| <C min |lu—W]|, (7.1.5)
wesy

C > 1. Thus, the solution is “nearly best” in the sense that it only differs by a constant
from the best possible solution in the space.

Upper bounds of the right-hand sides of (7.1.3) or (7.1.5) are obtained by considering
the error of an interpolant W of u. Using Theorems 2.6.4 and 4.6.5, for example, we

could conclude that
|lu— W5 < Ch”+1*s||u||p+1, s=0,1, (7.1.6)

if SN consists of complete piecewise polynomials of degree p with respect to a sequence of
uniform meshes (¢f. Definition 4.6.1) and u € H?*'. The bound (7.1.6) can be combined
with either (7.1.3) or (7.1.5) to provide an estimate of the error and convergence rate of
a finite element solution.

The Sobolev norm on H' and the strain energy norm (7.1.4) are equivalent for the
model problem (7.1.1) and we shall use this with (7.1.3) and (7.1.6) to construct error
estimates. Prior to continuing, you may want to review Sections 2.6, 3.2, and 4.6.

A priori finite element discretization errors, obtained as described, do not account for

such “perturbations” as
1. using numerical integration,
2. interpolating Dirichlet boundary conditions by functions in SV, and

3. approximating J2 by piecewise-polynomial functions.

7.2. Convergence and Optimality 3

These effects will have to be appraised. Additionally, the a priori error estimates supply
information on convergence rates but are difficult to use for quantitative error infor-
mation. A posteriori error estimates, which use the computed solution, provide more

practical accuracy appraisals.

7.2 Convergence and Optimality

While keeping the model problem (7.1.1) in mind, we will proceed in a slightly more
general manner by considering a Galerkin problem of the form (7.1.1a) with a strain
energy A(v,u) that is a symmetric bilinear form (¢f. Definitions 3.2.2, 3) and is also

continuous and coercive.

Definition 7.2.1. A bilinear form A(v,u) is continuous in H*® if there exists a constant
a > 0 such that

|A(v,u)| < a|ul|s]|v]s, Vu,v € H®. (7.2.1)

Definition 7.2.2. A bilinear form A(u,v) is coercive (H® — elliptic or positive definite)
in H? if there exists a constant 5 > 0 such that

A(u,u) > Bllul?, Vu € H®. (7.2.2)

Continuity and coercivity of A(v, u) can be used to establish the existence and unique-
ness of solutions to the Galerkin problem (7.1.1a). These results follow from the Lax-
Milgram Theorem. We’ll subsequently prove a portion of this result, but more complete
treatments appear elsewhere [6, 12, 13, 15]. We’ll use examples to provide insight into
the meanings of continuity and coercivity.

Example 7.2.1. Consider the variational eigenvalue problem: determine nontrivial
u € Hy and X € [0, 00) satisfying

A(u,v) = Mu,v), Vv € Hj.

When A(v,u) is the strain energy for the model problem (7.1.1), smooth solutions of this

variational problem also satisfy the differential eigenvalue problem
—(Pus)s — (Puy)y +qu=Au, (z,y) €,

u =0, (x,y) € 00, Uy =0, (x,y) € 00y

where n is the unit outward normal to 0f2.

4 Analysis of the Finite Element Method

Letting \. and u", r > 1, be an eigenvalue-eigenfunction pair and using the variational

statement with v = u = u", we obtain the Rayleigh quotient

A = AL
(ur, ur)
Since this result holds for all r, we have
A(u", u")

)\1 = rT‘nZl{I (U/T, U/T)

where \; is the minimum eigenvalue. (As indicated in Problem 1, this result can be

extended.)
Using the Rayleigh quotient with (7.2.2), we have
T2
[ul5
Since [|u"||s > ||u"||o, we have
>8>0, r>1.

Thus, 8 < A, r > 1, and, in particular, 8 < ;.
Using (7.2.1) in conjunction with the Rayleigh quotient implies

r

aflu|l3

A < 5 r>1.
CT el
Combining the two results,
|2 T2
P N U S
Iale Il

Thus, 3 provides a lower bound for the minimum eigenvalue and « provides a bound for
the maximum growth rate of the eigenvalues in H”.
Example 7.2.2. Solutions of the Dirichlet problem

—Ugy — Uyy = f(2,Y), (x,y) € Q, u =0, (z,y) € 09,
satisfy the Galerkin problem (7.1.1) with

A(v,u) = / Vu - Vudzdy, Vu = [ty u,]"
0

An application of Cauchy’s inequality reveals

A(v, u)| = |// Vo - Vudzdy| < [Vollo/[Vullo.
Q

7.2. Convergence and Optimality 5

where

IVul = [[w2+ u2)dsay.
0
Since [|Vul|o < ||u||1, we have
A, u)| < loll[lulls-

Thus, (7.2.1) is satisfied with s = 1 and a = 1, and the strain energy is continuous in
H'.

Establishing that A(v,u) is coercive in H' is typically done by using Friedrichs’s first
inequality which states that there is a constant v > 0 such that

IV ullg > vllul3- (7.2.3)
Now, consider the identity
Alu,u) = [[Vullg = (1/2)|Vullg + (1/2)|Vull
and use (7.2.3) to obtain
Alu,u) > (1/2)[IVulls + (1/2)yllullg = Bllul}

where § = (1/2) max(1,v). Thus, (7.2.2) is satisfied with s = 1 and A(u,v) is coercive
(H'-elliptic).
Continuity and coercivity of the strain energy reveal the finite element solution U to

be nearly the best approximation in SV

Theorem 7.2.1. Let A(v,u) be symmetric, continuous, and coercive. Let u € H} satisfy
(7.1.1a) and U € S C H} satisfy (7.1.2). Then

o= Ul < Gl =VIh, WV e s, (7.2.42)
with o and (3 satisfying (7.2.1) and (7.2.2).
Remark 1. Equation (7.2.4a) may also be expressed as
|lu—Ul; < CvigiN||u—V||1. (7.2.4b)
Thus, continuity and H'-ellipticity give us a bound of the form (7.1.5).

Proof. cf. Problem 2 at the end of this section. O

The bound (7.2.4) can be improved when A(v,u) has the form (7.1.1c).

6 Analysis of the Finite Element Method

Theorem 7.2.2. let A(v,u) be a symmetric, continuous, and coercive bilinear form;

u € HY minimize
Iw] = A(w,w) = 2(w, f), Yw € Hy; (7.2.5)
and SY be a finite-dimensional subspace of Hy. Then

1. The minimum of I[W)] and A(u — W,u—W), YW € SJ¥, are achieved by the same
function U.

2. The function U is the orthogonal projection of u onto SY with respect to strain

enerqy, i.e.,

AV,u—-U) =0, VYVes}. (7.2.6)

3. The minimizing function U € SY satisfies the Galerkin problem

AWV, U) = (V,), vV e sy (7.2.7)

In particular, if S’ is the whole of H}

A(v,u) = (v, f), Vv € Hj. (7.2.8)

Proof. Our proof will omit several technical details, which appear in, e.g., Wait and
Mitchell [21], Chapter 6.

Let us begin with (7.2.7). If U minimizes I[W] over S§' then for any e and any
VeSy

IU] < I[U + €V].
Using (7.2.5),
IU] < AU+ €V,U +€V) —2(U + €V, f)
or
I[U) < IUT+ 2e[A(V,U) = (V) f)] + €AV, V)
or
0 < 2e[A(V,U) = (V.)] + €AV, V).

This inequality must hold for all possible € of either sign; thus, (7.2.7) must be satisfied.
Equation (7.2.8) follows by repeating these arguments with SJ’ replaced by H}.
Next, replace v in (7.2.8) by V € S)¥ C H; and subtract (7.2.7) to obtain (7.2.6).
In order to prove Conclusion 1, consider the identity

AU Vw0 V) = A= U= U) =240 0V) + AV,

7.2. Convergence and Optimality 7

Using (7.2.6)
Alu—U,u—U)=Alu—-U—-V,u—-U—-V) = A(V,V).
Since A(V, V) >0,
Au—-Uu—-U)<Au-U-Vu-U-V), VvVes}.
Equality only occurs when V' = 0; therefore, U is the unique minimizing function. O

Remark 2. We proved a similar result for one-dimensional problems in Theorems
2.6.1, 2.

Remark 3. Continuity and coercivity did not appear in the proof; however, they are
needed to establish existence, uniqueness, and completeness. Thus, we never proved that
limy 00 U = u. A complete analysis appears in Wait and Mitchell [21], Chapter 6.

Remark 4. The strain energy A(v,u) not need be symmetric. A proof without this

restriction appears in Ciarlet [13].

Corollary 7.2.1. With the assumptions of Theorem 7.2.2,
Alu—U,u—U) = A(u,u) — AU, U). (7.2.9)
Proof. cf. Problem 3 at the end of this section. O

In Section 4.6, we obtained a priori estimates of interpolation errors under some
mesh uniformity assumptions. Recall (¢f. Definition 4.6.1), that we considered a family
of finite element meshes A, which became finer as h — 0. The uniformity condition
implied that all vertex angles were bounded away from 0 and 7 and that all aspect ratios
were bounded away from 0 as A — 0. Uniformity ensured that transformations from the
physical to the computational space were well behaved. Thus, with uniform meshes, we
were able to show (cf. Theorem 4.6.5) that the error in interpolating a function v € HP*!

by a complete polynomial W of degree p satisfies
lu —W||s < ChPT | par, s=0,1. (7.2.10a)

The norm on the right can be replaced by the seminorm
2 K, 12
[ulpr =Y ID"ull (7.2.10b)
(K|=p+1
to produce a more precise estimate, but this will not be necessary for our present appli-

cation. If singularities are present so that v € H9™! with ¢ < p then, instead of (7.2.10a),
we find

lu— Wl < ChYJul] s (7.2.10¢)

8 Analysis of the Finite Element Method

With optimality (or near optimality) established and interpolation error estimates

available, we can establish convergence of the finite element method.
Theorem 7.2.3. Suppose:
1. u€ H} and U € SYY C H{ satisfy (7.2.8) and (7.2.7), respectively
2. A(v,u) is a symmetric, continuous, and H'-elliptic bilinear form;

3. SV consists of complete piecewise-polynomial functions of degree p with respect to

a uniform family of meshes Ay; and
4. u € H} N HPFL
Then
Ju = Ully < Ch”|[ullp+1 (7.2.11a)
and

Alu—U,u —U) < Ch*||ul? (7.2.11b)

p+1°

Proof. From Theorem 7.2.2

Alu—Uu—U) = inf Alu—Viu—-V)<A(lu—W,u—W)
vesy
where W is an interpolant of u. Using (7.2.1) with s = 1 and v and u replaced by v — W
yields
Al = Wou = W) < allu — Wi

Using the interpolation estimate (7.2.10a) with s = 1 yields (7.2.11b). In order to prove
(7.2.11a), use (7.2.2) with s = 1 to obtain

Bllu U} < A(u = U,u—0).
The use of (7.2.11b) and a division by /8 yields (7.2.11a). O

Since the H' norm dominates the L? norm, (7.2.11a) trivially gives us an error esti-
mate in L? as
lu = Ullo < CRP||ullps1-

This estimate does not have an optimal rate since the interpolation error (7.2.10a) is con-
verging as O(hP*!). Getting the correct rate for an L? error estimate is more complicated

than it is in H'. The proof is divided into two parts.

7.2. Convergence and Optimality 9

Lemma 7.2.1. (Aubin-Nitsche) Under the assumptions of Theorem 7.2.3, let y(x,y) €
H} be the solution of the “dual problem”

A(v,v) = (v,e), Vv € Hy, (7.2.12a)
where
u—U
e= —- . (7.2.12b)
lu—Ullo

Let T' € SY¥ be an interpolant of v, then
lu=Ullo < allu=Ulji[ly = T (7.2.12¢)
Proof. Set V=T in (7.2.6) to obtain
AT, u—U) = 0. (7.2.13)
Take the L? inner product of (7.2.12b) with u — U to obtain
|lu—Ullo = (e,u —U).
Setting v = u — U in (7.2.12a) and using the above relation yields
lu=Ullo = A(u—U,7).

Using (7.2.13)
lu=Ullo = A(u = U,y =T).

Now use the continuity of A(v,u) in H' ((7.2.1) with s = 1) to obtain (7.2.12c). O

Since we have an estimate for |[u — Ul||{, estimating ||u — Ul|o by (7.2.12¢) requires
an estimate of ||y — I'[|;. This, of course, will be done by interpolation; however, use of
(7.2.10a) requires knowledge of the smoothness of . The following lemma provides the

necessary a priori bound.

Lemma 7.2.2. Let A(u,v) be a symmetric, H'-elliptic bilinear form and u be the solu-
tion of (7.2.8) on a smooth region Q. Then

[ull2 < C|| f]lo- (7.2.14)

Remark 5. This result seems plausible since the underlying differential equation is of
second order, so the second derivatives should have the same smoothness as the right-
hand side f. The estimate might involve boundary data; however, we have assumed
trivial conditions. Let’s further assume that 0Qg is not nil to avoid non-uniqueness

issues.

10 Analysis of the Finite Element Method

Proof. Strang and Fix [18], Chapter 1, establish (7.2.14) in one dimension. Johnson [14],
Chapter 4, obtain a similar result. O

With preliminaries complete, here is the main result.
Theorem 7.2.4. Given the assumptions of Theorem 7.2.3, then
lu=Ullo < CR"*Hlulps1. (7.2.15)
Proof. Applying (7.2.14) to the dual problem (7.2.12a) yields
7]z < Cllello = C,

since ||e||p = 1 according to (7.2.12b). With v € H,, we may use (7.2.10c) with ¢ = s =1

to obtain
|17 = Tll. < Chlly|l2 = Ch.

Combining this estimate with (7.2.11a) and (7.2.12¢) yields (7.2.15). O
Problems

1. Show that the function w that minimizes

A
A= min (w, w)
weH}, [lwloz0 (w,w)

is u', the eigenfunction corresponding to the minimum eigenvalue \; of A(v,u) =
v, u).

2. Assume that A(v,u) is a symmetric, continuous, and H'-elliptic bilinear form and,

for simplicity, that u,v € H].
2.1. Show that the strain energy and H' norms are equivalent in the sense that
Bllull < Alu,u) < allullf, Vu € Hy.

where o and (3 satisfy (7.2.1) and (7.2.2).
2.2. Prove Theorem 7.2.1.

3. Prove Corollary 7.2.1 to Theorem 7.2.2.

7.3 Perturbations

In this section, we examine the effects of perturbations due to numerical integration,

interpolated boundary conditions, and curved boundaries.

7.3. Perturbations 11

7.3.1 Quadrature Perturbations
With numerical integration, we determine U* as the solution of
AV, U =(V,f), YV ST, (7.3.1a)

instead of determining U by solving (7.2.8). The approximate strain energy A,(V,U)
or L? inner product (V, f), reflect the numerical integration that has been used. For

example, consider the loading

V=3V W= [[Vs asay

where (2, is the domain occupied by element e in a mesh of Na elements. Using an

n-point quadrature rule (¢f. (6.1.2a)) on element e, we would approximate (V, f) by

Na
Vih)e = (Vy flew (7.3.1b)
where
(Vi f)ew = Z WiV (@k, yr) [(Tr, Yi)- (7.3.1c)

k=1

The effects of transformations to a canonical element have not been shown for simplicity
and a similar formula applies for A, (V,U).

Deriving an estimate for the perturbation introduced by (7.3.1a) is relatively simple
it A(V,U) and A.(V,U) are continuous and coercive.

Theorem 7.3.1. Suppose that A(v,u) and A.(V,U) are bilinear forms with A being

continuous and A, being coercive in H'; thus, there exists constants o and 3 such that
|A(u, v)| < a|lul|i||v]]1, Yu,v € Hy, (7.3.2a)

and
A (U, U) > B|U3, YU € SY. (7.3.2b)

Then
. |A(V, W) — A (V, V)]
Jlu=U*li < C{llu=V]+ sup
wesy Wy

wesy WL

L, vvesy. (7.3.3)

12 Analysis of the Finite Element Method

Proof. Using the triangular inequality
lo = Ul = flu =V +V = Uy < [lu = V]l + W[y (7.3.4a)
where
wW=U"-V. (7.3.4Db)
Using (7.3.2b) and (7.3.4b)
BIWIE < AU = VW) = A (U, W) — A (V. W).
Using (7.3.1a) with V replaced by W to eliminate A,(U*, W), we get
BIWIT < (f, W), — AV, W),
Adding the exact Galerkin equation (7.2.8) with v replaced by W
BIWIE < (F, W) = (f, W) + A(u, W) — A (V, W),
Adding and subtracting A(V, W) and taking an absolute value
BIWIE < [(f, W) = (£,)] + [A(u = V, W) + AV, W) — A (V, W)].

Now, using the continuity condition (7.3.2a) with u replaced by u — V" and v replaced by

W, we obtain
BIWIT < 1(F W) = (W) + allu = VI [W L+ [AV, W) — AV, W)).
Dividing by g||W]{|1

1 ((f; W), = (LW)] | [AV, W) — AV, W)
Wil < Z{aflu =V + }-
s Wk Wl
Combining the above inequality with (7.3.4a), maximizing the inner product ratios over
W, and choosing C' as the larger of 1 + a//f or 1/ yields (7.3.3). O

Remark 1. Since the error estimate (7.3.3) is valid for all V' € S{¥ it can be written

in the form

AV, W) — AV, W
lu—=U*ly < C inf {|Jlu—V];+ sup [A() ()
vesy wesy Wl
W, f)— (W, f)«
wesy Wk

To bound (7.3.3) or (7.3.5) in terms of a mesh parameter h, we use standard interpola-
tion error estimates (¢f. Sections 2.6 and 4.6) for the first term and numerical integration
error estimates (cf. Chapter 6) for the latter two terms. Estimating quadrature errors is
relatively easy and the following typical result includes the effects of transforming to a

canonical element.

7.3. Perturbations 13

Theorem 7.3.2. Let J(&,n) be the Jacobian of a transformation from a computational
(€,n)-plane to a physical (x,y)-plane and let W € SY. Relative to a uniform family
of meshes Ay, suppose that det(J(&,n))Wo(&,n) and det(I(&,)W,y (&, n) are piecewise
polynomials of degree at most r1 and det(J(§,n))W(&,n) is a piecewise polynomial of
degree at most ry. Then:

1. If a quadrature rule is exact (in the computational plane) for all polynomials of

degree at most ri +r,

AV, W) — A (V,W)]

< CHW TV |lpsey YV, W € SY, (7.3.6a)
W1y

2. If a quadrature rule is exact for all polynomials of degree at most ro +r — 1,

|(f7 W) — (f7 W)*|

T, < OB g1, YW e SY. (7.3.6b)

Proof. cf. Wait and Mitchell [21], Chapter 6, or Strang and Fix [18], Chapter 4. O

Ezample 7.3.1. Suppose that the coordinate transformation is linear so that det(J (&, 7))
is constant and that S2 consists of piecewise polynomials of degree at most p. In this

case, 11 = p — 1 and 7y = p. The interpolation error in H' is

lu =Vl = O(h").
Suppose that the quadrature rule is exact for polynomials of degree p or less. Thus,
p=ri+rorr=p—p+1and (7.3.6a) implies that

AV, W) — A (V,W)]

G SCW PPV pprs, VYV, W e S,

With p =1+ 7 — 1 and ry = p, we again find » = p — p + 1 and, using (7.3.6b),

|(f7 W) — (fa W)*|
W1

< Chp_p+2||f||p—p+2v VIV € Sév-

e If p = 2(p—1) so that r = p—1 then the above perturbation errors are O(h?). Hence,

all terms in (7.3.3) or (7.3.5) have the same order of accuracy and we conclude that
lu = U*[[y = O(h”).

This situation is regarded as optimal. If the coefficients of the differential equation
are constant and, as is the case here, the Jacobian is constant, this result is equiv-
alent to integrating the differentiated terms in the strain energy exactly (cf., e.g.,
(7.1.1¢)).

14 Analysis of the Finite Element Method

e If p>2(p—1) so that r > p — 1 then the error in integration is higher order than

the O(hP) interpolation error; however, the interpolation error dominates and
Ju —U*[]y = O(h").

The extra effort in performing the numerical integration more accurately is not
justified.

e If p <2(p—1) so that » < p — 1 then the integration error dominates the interpo-

lation error and determines the order of accuracy as
lu = T"[li = O(R"77*).
In particular, convergence does not occur if p < p — 2.

Let us conclude this example by examining convergence rates for piecewise-linear (or
bilinear) approximations (p = 1). In this case, r; = 0, 7o = 1, and r = p. Interpolation
errors converge as O(h). The optimal order of accuracy of the quadrature rule is p = 0,
i.e., only constant functions need be integrated exactly. Performing the integration more
accurately yields no improvement in the convergence rate.

Example 7.3.2. Problems with variable Jacobians are more complicated. Consider

the term
det(J(&§,m)We(§,m) = J(Welo + Wyn2)

where J = det(J(£,n)). The metrics &, and 7, are obtained from the inverse Jacobian

J—1:|:§m é‘y:|:l|:y77 _:Uﬂ:|‘
Ne Ny J | Ve Te
In particular, {, =y, /J and 7, = —y¢/J and

det(J)W, = Wey,, — Wye.

Consider an isoparametric transformation of degree p. Such triangles or quadrilaterals
in the computational plane have curved sides of piecewise polynomials of degree p in the
physical plane. If W is a polynomial of degree p then W, has degree p — 1. Likewise,
x and y are polynomials of degree p in £ and 7. Thus, vy, and y, also have degrees
p — 1. Therefore, JW, and, similarly, JW, have degrees r; = 2(p — 1). With J being a
polynomial of degree 2(p — 1), we find JW to be of degree ry = 3p — 2.

For the quadrature errors (7.3.6) to have the same O(hP) rate as the interpolation
error, we must have r = p— 1 in (7.3.6a,b). Thus, according to Theorem 7.3.2, the order

p of the quadrature rules in the (£, n)-plane should be

p=ri+r=2p-1)+(p-1)=3(p-1)

7.3. Perturbations 15
for (7.3.6a) and
p=ro+r—1=0Bp-2)+(p-1)-1=4(p-1)

for (7.3.6b). These results are to be compared with the order of 2(p — 1) that was
needed with the piecewise polynomials of degree p and linear transformations considered
in Example 7.3.1. For quadratic transformations and approximations (p = 2), we need
third- and fourth-order quadrature rules for O(h?) accuracy.

7.3.2 Interpolated Boundary Conditions

Assume that integration is exact and the boundary 0f2 is modeled exactly, but Dirichlet
boundary data is approximated by a piecewise polynomial in SV, i.e., by a polynomial
having the same degree p as the trial and test functions. Under these conditions, Wait
and Mitchell [21], Chapter 6, show that the error in the solution U of a Galerkin problem
with interpolated boundary conditions satisfies

lu = Ul < C{Afullpr + B2} (7.3.7)

The first term on the right is the standard interpolation error estimate. The second term
corresponds to the perturbation due to approximating the boundary condition. As usual,
computation is done on a uniform family of meshes A, and u is smooth enough to be in
HP*!. Brenner and Scott [12], Chapter 8, obtain similar results under similar conditions
when interpolation is performed at the Lobatto points on the boundary of an element.

The Lobatto polynomial of degree p is defined on [—1, 1] as

dr 2

:@(1_§2)p71, 56 [_171]7 pZ 2.

Ly(€)

These results are encouraging since the perturbation in the boundary data is of slightly
higher order than the interpolation error. Unfortunately, if the domain €2 is not smooth
and, e.g., contains corners solutions will not be elements of HP*!. Less is known in these

cases.

7.3.3 Perturbed Boundaries

Suppose that the domain €2 is replaced by a polygonal domain Q as shown in Figure
7.3.1. Strang and Fix [18], analyze second-order problems with homogeneous Dirichlet

data of the form: determine u € H| satisfying

Av,u) = (v, f), Vv € Hy, (7.3.8a)

16 Analysis of the Finite Element Method

where functions in H| satisfy u(z,y) = 0, (z,y) € 9Q. The finite element solution
U e S’év satisfies
AV U)= (V. f), VvV eSy, (7.3.8b)

where functions in SY vanish on 9Q. (Thus, SY is not a subspace of H{.)

Figure 7.3.1: Approximation of a curved boundary by a polygon.

For piecewise linear polynomial approximations on triangles they show that |u —
Ull: = O(h) and for piecewise quadratic approximations ||u — U||; = O(h*/2). The poor
accuracy with quadratic polynomials is due to large errors in a narrow “boundary layer”
near 0€). Large errors are confined to the boundary layer and results are acceptable
elsewhere. Wait and Mitchell [21], Chapter 6, quote other results which prove that
|lu—Ul|1 = O(hP) for pth degree piecewise polynomial approximations when the distance
between 9Q and 9 is O(hP*!). Such is the case when 9Q is approximated by p th degree

piecewise-polynomial interpolation.

7.4 A Posteriori Error Estimation

In previous sections of this chapter, we considered a priori error estimates. Thus, we
can, without computation, infer that finite element solutions converge at a certain rate
depending on the exact solution’s smoothness. Error bounds are expressed in terms of
unknown constants which are difficult, if not impossible, to estimate. Having computed
a finite element solution, it is possible to obtain a posteriori error estimates which give
more quantitative information about the accuracy of the solution. Many error estimation
techniques are available and before discussing any, let’s list some properties that a good

a posteriori error estimation procedure should possess.

e The error estimate should give an accurate measure of the discretization error for

a wide range of mesh spacings and polynomial degrees.

7.4. A Posteriori Error Estimation 17

e The procedure should be inexpensive relative to the cost of obtaining the finite
element solution. This usually means that error estimates should be calculated
using only local computations, which typically require an effort comparable to the

cost of generating the stiffness matrix.

e A technique that provides estimates of pointwise errors which can subsequently be
used to calculate error measures in several norms is preferable to one that only
works in a specific norm. Pointwise error estimates and error estimates in local
(elemental) norms may also provide an indications as to where solution accuracy is

insufficient and where refinement is needed.
A posteriori error estimates can roughly be divided into four categories.

1. Residual error estimates. Local finite element problems are created on either an
element or a subdomain and solved for the error estimate. The data depends on

the residual of the finite element solution.

2. Fluz-projection error estimates. A new flux is calculated by post processing the
finite element solution. This flux is smoother than the original finite element flux

and an error estimate is obtained from the difference of the two fluxes.

3. Extrapolation error estimates. Two finite element solutions having different orders
or different meshes are compared and their differences used to provide an error

estimate.

4. Interpolation error estimates. Interpolation error bounds are used with estimates

of the unknown constants.

The four techniques are not independent but have many similarities. Surveys of error es-
timation procedures [7, 20] describe many of their properties, similarities, and differences.
Let us set the stage by briefly describing two simple extrapolation techniques. Consider a
one-dimensional problem for simplicity and suppose that an approximate solution U} (x)
has been computed using a polynomial approximation of degree p on a mesh of spacing
h (Figure 7.4.1). Suppose that we have an a priori interpolation error estimate of the

form

u(z) — UL (z) = Cp AP + O(RPT?).
We have assumed that the exact solution u(z) is smooth enough for the error to be
expanded in h to O(h?*?). The leading error constant Cp;; generally depends on (un-

known) derivatives of u. Now, compute a second solution with spacing h/2 (Figure 7.4.1)

to obtain)
u(@) = Uy (@) = Cp+1(§)”“ + O(hP*2).

18 Analysis of the Finite Element Method

2
o .
‘ Uiz
|

yx

Figure 7.4.1: Solutions U} and U,i/2 computed on meshes having spacing h and h/2 with

piecewise linear polynomials (p = 1) and a third solution U? computed on a mesh of
spacing h with a piecewise quadratic polynomial (p = 2).

Subtracting the two solutions we eliminate the unknown exact solution and obtain
1
Uy o(@) = Up () = Cppa kP (1 — rﬂ) +O(h"*?).

Neglecting the higher-order terms, we obtain an approximation of the discretization error

Upjo(x) = Uy (2)

1—1/2r41
Thus, we have an estimate of the discretization error of the coarse-mesh solution as
Up () = U (x)

1—1/2pt1

as

+1

u(z) —Up (x) =

The technique is called Richardson’s extrapolation or h-extrapolation. It can also be
used to obtain error estimates of the fine-mesh solution. The cost of obtaining the error
estimate is approximately twice the cost of obtaining the solution. In two and three
dimensions the cost factors rise to, respectively, four and eight times the solution cost.
Most would consider this to be excessive. The only way of justifying the procedure is
to consider the fine-mesh solution as being the result and the coarse-mesh solution as
furnishing the error estimate. This strategy only furnishes an error estimate on the coarse
mesh.

Another strategy for obtaining an error estimate by extrapolation is to compute a

second solution using a higher-order method (Figure 7.4.1), e.g.,
u(z) — UPT = Cpyah? ™2 4+ O(hPH3).
Now, use the identity

u(w) = Up(x) = [u(z) = U™ (@)] + U} (2) = UF).

7.4. A Posteriori Error Estimation 19

The first term on the right is the O(h?*!) error of the higher-order solution and, hence,

can be neglected relative to the second term. Thus, we obtain the approximation
u(z) — Up(x) = Uy (2) = Up(2).

The difference between the lower- and higher-order solutions furnish an estimate of the er-
ror of the lower-order solution. The technique is called order embedding or p-extrapolation.
There is no error estimate for the higher-order solution, but some use it without an error
estimate. This strategy, called local extrapolation, can be dangerous near singularities.
Unless there are special properties of the scheme that can be exploited, the work in-
volved in obtaining the error estimate is comparable to the work of obtaining the solu-
tion. With a hierarchical embedding, computations needed for the lower-order method
are also needed for the higher-order method and, hence, need not be repeated.

The extrapolation techniques just described are typically too expensive for use as
error estimates. We’ll develop a residual-based error estimation procedure that follows
Bank (¢f. [8], Chapter 7) and uses many of the ideas found in order embedding. We’ll

follow our usual course of presenting results for the model problem

—V - pVu+ qu = —(puy), — (puy)y + qu = f(z,y), (z,y) € Q, (7.4.1a)

u(z,y) = a, (z,y) € 0Qg, pun(z,y) =P, (z,y) € 0Q; (7.4.1b)

however, results apply more generally. Of course, the Galerkin form of (7.4.1) is: deter-
mine v € H}, such that

Av,u) = (v, f)+ < v, 5>, Vv € Hy, (7.4.2a)

where
(v, f) = // vfdxdy, (7.4.2b)

Q
Av,u) = //[va - Vu + quu|dzdy, (7.4.2¢)
Q
and
<v,u>= / vuds. (7.4.2d)
oy

Similarly, the finite element solution U € SN C Hj satisfies

AV, U)=(V,)i+ <V, 8>, VWes. (7.4.3)

20 Analysis of the Finite Element Method

We seek an error estimation technique that only requires local (element level) mesh
computations, so let’s construct a local Galerkin problem on element e by integrating
(7.4.1a) over Q. and applying the divergence theorem to obtain: determine u € H*(€,)
such that

Ac(v,u) = (v, fet < v, pugy >, Vv € H(Q.), (7.4.4a)

where
(v, f)e = // v fdxdy, (7.4.4D)

Qe
Ac(v,u) = //[va - Vu + quu)dxdy, (7.4.4c)
Qe
and
<v,u >e:/ vuds. (7.4.4d)
29,

As usual, €, is the domain of element e, s is a coordinate along 0€)., and n is a unit
outward normal to 0€),.
Let

u=U+e, (7.4.5)

where e(z,y) is the discretization error of the finite element solution, and substitute
(7.4.5) into (7.4.4a) to obtain

Ac(vye) = (v, fle — Ae(v,U)+ < v, puy >, Vv e H' (). (7.4.6)

Equation (7.4.6), of course, cannot be solved because (i) v, u, and e are elements of an
infinite-dimensional space and (i7) the flux pu, is unknown on 09,. We could obtain
a finite element solution of (7.4.6) by approximating e and v by E and V in a finite-
dimensional subspace S™(Q,) of H'(2,). Thus,

AV, E) = (V, f)e — A(V,U)+ < V,pun >, YV € SV(Q,). (7.4.7)

We will discuss selection of SN momentarily. Let us first prescribe the flux puy
appearing in the last term of (7.4.7). The simplest possibility is to use an average flux

obtained from pU,, across the element boundary, i.e.,

(V) + (V) _
2 (]

AV E)=(V, fle — A(V,U)+ <V, YV e SN(Q,), (7.4.8)

7.4. A Posteriori Error Estimation 21

where superscripts + and —, respectively, denote values of pU,, on the exterior and interior
of 0€2,.

Equation (7.4.8) is a local Neumann problem for determining the error approximation
E on each element. No assembly and global solution is involved. Some investigators prefer
to apply the divergence theorem to the second term on the right to obtain

(pUn)Jr + (pUn)i >
2 e

AV E) = (Vir)e— <V, (pUn)” > + <V,

or

AV, E) = (V, 7)ot < v, PUn) > Pln)” (7.4.92)

where
r(z,y) =f+ V- -pVU — qU (7.4.9b)

is the residual. This form involves jumps in the flux across element boundaries.

Now let us select the error approximation space SV. Choosing SV = SV does not
work since there are no errors in the solution subspace. Bank [10] chose SV as a space of
discontinuous polynomials of the same degree p used for the solution space S¥; however,
the algebraic system for E resulting from (7.4.8) or (7.4.9) could be ill-conditioned when
the basis is nearly continuous. A better alternative is to select SV as a space of piecewise
p+1 st-degree polynomials when S¥ is a space of p th degree polynomials. Hierarchical
bases (cf. Sections 2.5 and 4.4) are the most efficient to use in this regard. Let us
illustrate the procedure by constructing error estimates for a piecewise bilinear solution
on a mesh of quadrilateral elements. The bilinear shape functions for a canonical 2 x 2

square element are

N (&n) = Ni(©N; (), 4,5=1,2, (7.4.10a)

where
Ni(§) = :25 Ny(€) = 1T+§ (7.4.10b)

The four second-order hierarchical shape functions are

N3 (&m) = Nj(mN3(€), j=1,2, (7.4.11a)
N2 (&m) = Ni(©N; (), i=1,2, (7.4.11b)

where
N3(€) = € -1, (74.11c)

22 Analysis of the Finite Element Method

n
(1.2) (3.2 2.2)
® L
L) 23) E
o L
(1,1) ?(3,1) 2.1)

Figure 7.4.2: Nodal placement for bilinear and hierarchical biquadratic shape functions
on a canonical 2 X 2 square element.

Node indexing is given in Figure 7.4.2
The restriction of a piecewise bilinear finite element solution U to the square canonical

element is

2 2

UE,n) =YY cNy(E). (7.4.12)

i=1 j=1

Using either (7.4.8) or (7.4.9), the restriction of the error approximation E to the canon-

ical element is the second-order hierarchical function

2
j=1

i=1 j=1

The local problems (7.4.8) or (7.4.9) are transformed to the canonical element and solved
for the eight unknowns, c3;, i,j = 1,2, d, i = 1,2, d3;, j = 1,2, using the test functions
V= NZ’E, =123 k=12

Several simplifications and variations are possible. One of these may be called ver-
tex superconvergence which implies that the solution at vertices converges more rapidly
than it does globally. Vertex superconvergence has been rigorously established in certain
circumstances (e.g., for uniform meshes of square elements), but it seems to hold more
widely than current theory would suggest. In the present context, vertex superconver-
1,7 = 1,2, converges at a higher rate
i by =12,
j = 1,2. With this simplification,

gence implies that the bilinear vertex solution CZ],

than the solution elsewhere on Element e. Thus, the error at the vertices c?

may be neglected relative to d, i = 1,2, and d3;,

7.4. A Posteriori Error Estimation 23

(7.4.13) becomes
2 2
E(&n) =Y _diNA(E)+ dyNg (& m). (7.4.14)
=1 j=1

Thus, there are four unknowns d2;, da;, d3,, and d, per element. This technique may be
carried to higher orders. Thus, if SY contains complete polynomials of degree p, SN only
contains the hierarchical correction of order p+ 1. All lower-order terms are neglected in
the error estimation space.

The performance of an error estimate is typically appraised in a given norm by com-

puting an effectivity index as

_IEG)]

= el

(7.4.15)

Ideally, the effectivity index should not differ greatly from unity for a wide range of mesh
spacings and polynomial degrees. Bank and Weiser [11] and Oden et al. [17] studied
the error estimation procedure (7.4.8) with the simplifying assumption (7.4.14) and were

able to establish upper bounds of the form © < C' in the strain energy norm
lella, =V Ale, e).

They could not, however, show that the estimation procedure was asymptotically correct
in the sense that ® — 1 under mesh refinement or order enrichment.

Ezample 7.4.1. Strouboulis and Haque [19] study the properties of several different
error estimation procedures. We report results for the residual error estimation procedure
(7.4.8,7.4.14) on the “Gaussian Hill” problem. This problem involves a Dirichlet problem

for Poisson’s equation on an equilateral triangle having the exact solution
u(z,y) = 100e10l(z—4.5)%+(y-2.6)*]

Errors are shown in Figure 7.4.3 for unifom p-refinement on a mesh of uniform trian-
gular elements having an edge length of 0.25 and for uniform h-refinement with p = 2.
“Extrapolation” refers to the p-refinement procedure described earlier in this section.
This order embedding technique appears to produce accurate error estimates for all poly-
nomial degrees and mesh spacings. The “residual” error estimation procedure is (7.4.8)
with errors at vertices neglected and the hierarchical corrections of order p + 1 forming
SN (7.4.14). The procedure does well for even-degree approximations, but less well for
odd-degree approximations.

From (7.4.8), we see that the error estimate F is obtained by solving a Neumann

problem. Such problems are only solvable when the edge loading (the flux average across

24 Analysis of the Finite Element Method

2.40

1.40 3 s EXACT EFFECTIVITY INDEX 1 +++ee EXACT EFFECTIVITY INDEX
] soee2 EXTRAPOLATION] oeesa EXTRAPOLATION
ceeso] ce0eo RESIDUAL
e ooeoo gzdté)!c)om%z%mln : oeoeo FLUX PROJECTION
& 120 e ESIDUAL 1.90 1 oeeeo SUBDOMAIN RESIDUAL
z -
] Z.
Z 1.00 3 -
= 1 fa— >
=3 £
E E 1.40
g: 0.80 ‘E
&= &

=3

o

o
1

0.90

0.40
0 i 2 3 i 5 6 7

T T T T

UNIFORM GRID WITH DECREASING MESH SIZE h o 3 4 5

o
o
~

POLYNOMIAL ORDER p

Figure 7.4.3: Effectivity indices for several error estimation procedures using uniform h-
refinement (left) and p-refinement (right) for the Gaussian Hill Problem [19] of Example
7.4.1.

element edges) is equilibrated. The flux averaging used in (7.4.8) is, apparently, not
sufficient to ensure this when p is odd. We’ll pursue some remedies to this problem later
in this section, but, first, let us look at another application.

Ezxample 7.4.2. Aiffa [4] considers the nonlinear parabolic problem

Ugg + Uyy

5 , (xz,y) € (0,1) x (0,1), t >0,

up + qui(u — 1) =

with the inital and Dirichlet boundary conditions specified so that the exact solution is

1
u(r,y,t) = .
) = i

He estimates the spatial discretization error using the residual estimate (7.4.8) neglecting

the error at vertices. The error estimation space SV consists of the hierarchical corrections
of degree p + 1; however, some lower-degree hierarchical terms are used in some cases.
This is to provide a better equilibration of boundary terms and improve results. although
this is a time-dependent problem, which we haven’t studied yet, Aiffa [4] keeps the
temporal errors small to concentrate on spatial error estimation. With ¢ = 500, Aiffa’s
[4] effectivity indices in H! at ¢ = 0.06 are presented in Table 7.4.1 for computations
performed on uniform meshes of N, triangles with polynomial degrees p ranging from 1
to 4.

The results with SV consisting only of hierarchical corrections of degree p + 1 are

reasonable. Effectivity indices are in excess of 0.9 for the lower-degree polynomials p =

7.4. A Posteriori Error Estimation 25

p| SN Na
§ [32 [138 [512

11 2 | 1.228 | 1.066 | 1.019 | 1.005
21 3 [0.948 1 0.993 | 0.998 | 0.999
31 4 |0.951|0.938 | 0.938 | 0.938

4,2 3.766 | 1.734 | 1.221 | 1.039

41 5 [0.650 | 0.785 | 0.802 | 0.803
9,3 | 0.812 | 0.911 | 0.920 | 0.925

Table 7.4.1: Effectivity indices in H' at t = 0.06 for Example 7.4.2. The degrees of the
hierarchical modes used for SV are indicated in that column [4].

1,2, but degrade with increasing polynomial degree. The addition of a lower (third)
degree polynomial correction has improved the error estimates with p = 4; however,
a similar tactic provided little improvement with p = 3. These results and those of
Strouboulis and Haque [19] show that the performance of a posteriori error estimates is
still dependent on the problem being solved and on the mesh used to solve it.

Another way of simplifying the error estimation procedure (7.4.8) and of understand-
ing the differences between error estimates for odd- and even-order finite element solu-
tions involves a profound, but little known, result of Babuska (¢f. [1, 2, 3, 9, 22, 23]).
Concentrating on linear second-order elliptic problems on rectangular meshes, Babuska
indicates that asymptotically (as mesh spacing tends to zero) errors of odd-degree finite
element solutions occur near element edges while errors of even-degree solutions occur
in element interiors. These findings suggest that error estimates may be obtained by
neglecting errors in element interiors for odd-degree polynomials and neglecting errors
on element boundaries for even-degree polynomials.

Thus, for piecewise odd-degree approximations, we could neglect the area integrals
on the right-hand sides of (7.4.8) or (7.4.9a) and calculate an error estimate by solving

+ - .
AV, E) :<V,(pU“) ;(pU“) >, VYV esh (7.4.16a)

or

(pUn)+ — (pUn)™
2 >e7

A(V,E) =<V, vV e SV (7.4.16b)

For piecewise even-degree approximations, the boundary terms in (7.4.8) or (7.4.9a)

can be neglected to yield

AV, E) =V, f)e — A(V,U), VYV e SV, (7.4.17a)

26 Analysis of the Finite Element Method

or
AV, E) = (V,r)e, VYV €SV (7.4.17h)

Yu [22, 23] used these arguments to prove asymptotic convergence of error estimates
to true errors for elliptic problems. Adjerid et al. [2, 3] obtained similar results for
transient parabolic systems. Proofs, in both cases, apply to a square region with square
elements of spacing h = 1/y/Na. A typical result follows.

Theorem 7.4.1. Letuw € HL N HP™? and U € SY be solutions of (7.4.2) using complete

piecewise-bi-polynomial functions of order p.

1. If p is an odd positive integer then

le(-.)T = I1EC,)lIF + On**) (7.4.18a)
where
/N 4
1B1E = 50,7 +1 YD U (Pro))? (7.4.18b)
(2p e=1 i=1 k=1

Pie, k=1,2,3,4, are the coordinates of the vertices of Q., and [f(P)]; denotes the
jump in f(x) in the direction z;, i = 1,2, at the point P.

2. If p is a positive even integer then (7.4.18a) is satisfied with

AV, E)=(V, f)e — Ac(V;, U), (7.4.18c¢)
where
E(ZUl,QTQ) = bl,e®g+1(x1) + b2,eq)€+1(a?2), (7418d)
prt+1 Pr+1
Vi1, 22) = ;-8 (z) ®7(22) (7.4.18¢)
T i)

and @' (x) is the mapping of the hierarchical basis function

m—1 [¢
6)2\/2 5 1/_1Pm1(<)d< (7.4.18f)

from [—1,1] to the appropriate edge of €2,.

Proof. cf. Adjerid et al. [2, 3] and Yu [22, 23]. Coordinates are written as x = [z, 7]
instead of (z,y) to simplify notation within summations. The hierarchical basis element
(7.4.18f) is consistent with prior usage. Thus, the subscript 3 refers to a midside node as
indicated in Figure 7.4.2. U

7.4. A Posteriori Error Estimation 27

Remark 1. The error estimate for even-degree approximations has different trial and
test spaces. The functions V;(z1,x) vanish on 0Q.. Each function is the product of
a “bubble function” ®P*!(z;)®2T!(z,) biased by a variation in either the z; or the z,
direction. As an example, consider the test functions on the canonical element with

p = 2. Restricting (7.4.18e¢) to the canonical element —1 < &;,&, < 1, we have

V3 V3
V;Z(gla §2) = 67, NSg(fl) N3€(2€2), 1= 17 2.
Using (7.4.18f) with m = 3 or (2.5.8),
N3E) = =€ - 1),

~ 2J/10
Thus,

V&) = 2@ -D@-1), i=12

Remark 2. Theorem 7.4.1 applies to tensor-product bi-polynomial bases. Adjerid et
al. [1] show how this theorem can be modified for use with hierarchical bases.

Ezxample 7.4.3. Adjerid et al. [2] solve the nonlinear parabolic problem of Example
7.4.2 with ¢ = 20 on uniform square meshes with p ranging from 1 to 4 using the error
estimates (7.4.18a,b) and (7.4.18a,c-f). Temporal errors were controlled to be negligible
relative to spatial errors; thus, we need not be concerned that this is a parabolic and not
an elliptic problem. The exact H' errors and effectivity indices at ¢ = 0.5 are presented
in Table 7.4.2. Approximate errors are within ten percent of actual for all but one mesh

and appear to be converging at the same rate as the actual errors under mesh refinement.

P Na = 100 400 900 1600
lelli/lulls | © el /llulli | © [lelli/llulli | © | llelli/llul | ©
1] 0.262(-1) | 0.949 | 0.129(-1) | 0.977 | 0.858(-2) | 0.985 | 0.643(-2) | 0.989
2 | 0.872(-3) | 0.995 | 0.218(-3) | 0.999 | 0.963(-4) | 0.999 | 0.544(-4) | 1.000
3| 0.278(-4) | 0.920 | 0.348(-5) | 0.966 | 0.103(-5) | 0.979 | 0.436(-6) | 0.979
4] 0.848(-6) | 0.999 | 0.530(-7) | 1.000 | 0.105(-7) | 1.000 | 0.331(-8) | 1.000

Table 7.4.2: Errors and effectivity indices in H! for Example 7.4.3 on Na-element uniform
meshes with piecewise bi-p polynomial bases. Numbers in parentheses indicate a power
of ten.

The error estimation procedures (7.4.8) and (7.4.9) use average flux values on 02,.
As noted, data for such (local) Neumann problems cannot be prescribed arbitrarily. Let
us examine this further by concentrating on (7.4.9) which we write as

AV E) = (Vir)et <V, R >, (7.4.19a)

28 Analysis of the Finite Element Method

where the elemental residual r was defined by (7.4.9b) and the boundary residual is
R = k[(pUn)* — (pUa) |- (7.4.19b)

The function x on OS2, was taken as 1/2 to obtain (7.4.9a); however, this may not have
been a good idea for reasons suggested in Example 7.4.1.

Recall (cf. Section 3.1) that smooth solutions of the weak problem (7.4.19) satisfy
the Neumann problem

—V - pVE+qE =, (z,y) € Qe, (7.4.20a)

pE, =R, (z,y) € 0Qk. (7.4.20b)

Solutions of (7.4.20) only exist when the data R and r satisfy the equilibrium condition

/ / vz, y)dady + /8 Rlsds =0, (7.4.20¢)

This condition will most likely not be satisfied by the choice of k = 1/2. Ainsworth and

Oden [5] describe a relatively simple procedure that requires the solution of the Poisson

problem
—Aw, =, (x,y) € Q, (7.4.21a)
Ow,
= R, (z,y) € 0 — 00, (7.4.21b)
On
we = 0, (z,y) € 0. (7.4.21c)
The error estimate is
Na
1B = Ae(we, we)- (7.4.21d)
e=1

The function x is approximated by a piecewise-linear polynomial in a coordinate s on
09, and may be determined explicitly prior to solving (7.4.21). Let us illustrate the
effect of this equilibrated error estimate.

Ezxample 7.4.4. Oden [16] considers a “cracked panel” as shown in Figure 7.4.4 and

determines u as the solution of

A(v,u) = //(vxux + vyuy)drdy = 0.
0

7.4. A Posteriori Error Estimation

y A
u=r¥2 cos 6/2
r
o
Q
R
L 0 i
u=20 u=0
y
Figure 7.4.4: Cracked panel used for Example 7.4.4.
p|1/h O() O(2r) o)
With Without With Without With Without
Balancing | Balancing | Balancing | Balancing | Balancing | Balancing
1] 32 1.135 0.506 0.879 1.429 1.017 1.049
1| 64 1.118 0.498 0.888 1.443 1.012 1.044
32 1.162 0.578 0.835 1.175 1.008 0.921

29

Table 7.4.3: Local and global effectivity indices for Example 7.4.4 using (7.4.21) with
and without equilibration.

The essential boundary condition
u(r,0) = r? cos /2

is prescribed on all boundaries except x > 0, y = 0. Thus, the solution of the Galerkin
problem will satisfy the natural boundary condition u, = 0 there. These conditions have
been chosen so that the exact solution is the specified essential boundary condition. This
solution is singular since u, ~ 7~%/2 near the origin (r = 0).

Results for the effectivity indices in strain energy for the entire region and for the two
elements, (27 and (g, adjacent to the singularity are shown in Table 7.4.3. Computations
were performed on a square grid with uniform spacing h in each coordinate direction
(Figure 7.4.4). Piecewise linear and quadratic polynomials were used as finite element
bases.

Local effectivity indices on €27, and €2r are not close to unity and don’t appear to
be converging as either the mesh spacing is refined or p is increased. Global effectivity

indices are near unity. Convergence to unity is difficult to appraise with the limited data.

30 Analysis of the Finite Element Method

At this time, the field of a posteriori error estimation is still emerging. Error estimates
for problems with singularities are not generally available. The performance of error
estimates is dependent on both the problem, the mesh, and the basis. Error estimates
for realistic nonlinear and transient problems are just emerging. Verfiirth [20] provides

an exceelent survey of methods and results.

Bibliography

1]

[5]

(6]

7]

S. Adjerid, B. Belguendouz, and J.E. Flaherty. A posteriori finite element error
estimation for diffusion problems. Technical Report 9-1996, Scientific Computation
Research Center, Rensselaer Polytechnic Institute, Troy, 1996. STAM Journal on

Scientific Computation, to appear.

S. Adjerid, J.E. Flaherty, and I. Babuska. A posteriori error estimation for the finite
element method-of-lines solution of parabolic problems. Mathematical Models and
Methods in Applied Science, 9:261-286, 1999.

S. Adjerid, J.E. Flaherty, and Y.J. Wang. A posteriori error estimation with fi-
nite element methods of lines for one-dimensional parabolic systems. Numererishe
Mathematik, 65:1-21, 1993.

M. Aiffa. Adaptive hp-Refinement Methods for Singularly-Perturbed Elliptic and
Parabolic Systems. PhD thesis, Rensselaer Polytechnic Institute, Troy, 1997.

M. Ainsworth and J.T. Oden. A unified approach to a posteriori error estimation
using element residual methods. Numeriche Mathematik, 65:23-50, 1993.

O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Problems.
Academic Press, Orlando, 1984.

I. Babuska, T. Strouboulis, and C.S. Upadhyay. A model study of the quality of
a-posteriori estimators for linear elliptic problems. Part Ia: Error estimation in the
interior of patchwise uniform grids of triangles. Technical Report BN-1147, Institute

for Physical Science and Technology, University of Maryland, College Park, 1993.

I. Babuska, O.C. Zienkiewicz, J. Gago, and E.R. de A. Oliveira, editors. Accuracy
Estimates and Adaptive Refinements in Finite Element Computations. John Wiley
and Sons, Chichester, 1986.

I. Babuska and D. Yu. Asymptotically exact a-posteriori error estimator for bi-
quadratic elements. Technical Report BN-1050, Institute for Physical Science and
Technology, University of Maryland, College Park, 1986.

31

32

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Analysis of the Finite Element Method

R.E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Differential
Equations. Users’ Guide 6.0. SIAM, Philadelphia, 1980.

R.E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial
differential equations. Mathematics of Computation, 44:283-302, 1985.

S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, New York, 1994.

P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam, 1978.

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-
ment method. Cambridge, Cambridge, 1987.

J. Necas. Les Méthods Directes en Théorie des Equations Elliptiques. Masson, Paris,
1967.

J.T. Oden. Topics in error estimation. Technical report, Rensselaer Polytechnic
Institute, Troy, 1992. Tutorial at the Workshop on Adaptive Methods for Partial
Differential Equations.

J.T. Oden, L. Demkowicz, W. Rachowicz, and T.A. Westermann. Toward a universal
h-p adaptive finite element strategy, part 2: A posteriori error estimation. Computer
Methods in Applied Mechanics and Engineering, 77:113-180, 1989.

G. Strang and G. Fix. Analysis of the Finite Element Method. Prentice-Hall, En-
glewood Cliffs, 1973.

T. Strouboulis and K.A. Haque. Recent experiences with error estimation and adap-
tivity, Part I: Review of error estimators for scalar elliptic problems. Computer
Methods in Applied Mechanics and Engineering, 97:399-436, 1992.

R. Verfiirth. A Review of Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Teubner-Wiley, Stuttgart, 1996.

R. Wait and A.R. Mitchell. The Finite Element Analysis and Applications. John
Wiley and Sons, Chichester, 1985.

D.-H. Yu. Asymptotically exact a-posteriori error estimator for elements of bi-even
degree. Mathematica Numerica Sinica, 13:89-101, 1991.

D.-H. Yu. Asymptotically exact a-posteriori error estimator for elements of bi-odd
degree. Mathematica Numerica Sinica, 13:307-314, 1991.

Chapter 8

Adaptive Finite Element Techniques

8.1 Introduction

The usual finite element analysis would proceed from the selection of a mesh and basis
to the generation of a solution to an accuracy appraisal and analysis. Experience is the
traditional method of determining whether or not the mesh and basis will be optimal
or even adequate for the analysis at hand. Accuracy appraisals typically require the
generation of a second solution on a finer mesh or with a different method and an ad hoc
comparison of the two solutions. At least with a posteriori error estimation (cf. Section
7.4), accuracy appraisals can accompany solution generation at a lower cost than the
generation of a second solution.

Adaptive procedures try to automatically refine, coarsen, or relocate a mesh and/or
adjust the basis to achieve a solution having a specified accuracy in an optimal fashion.
The computation typically begins with a trial solution generated on a coarse mesh with a
low-order basis. The error of this solution is appraised. If it fails to satisfy the prescribed
accuracy, adjustments are made with the goal of obtaining the desired solution with
minimal effort. For example, we might try to reduce the discretization error to its desired
level using the fewest degrees of freedom. While adaptive finite element methods have
been studied for nearly twenty years [4, 5, 8, 13, 15, 18, 21, 36, 41|, surprising little is

known about optimal strategies. Common procedures studied to date include
e local refinement and/or coarsening of a mesh (h-refinement),
e relocating or moving a mesh (r-refinement), and
e locally varying the polynomial degree of the basis (p-refinement).

These strategies may be used singly or in combination. We may guess that r-refinement
alone is generally not capable of finding a solution with a specified accuracy. If the mesh

is too coarse, it might be impossible to achieve a high degree of precision without adding

2 Adaptive Finite Element Techniques

more elements or altering the basis. R-refinement is more useful with transient problems
where elements move to follow an evolving phenomena. By far, h-refinement is the most
popular [5, 13, 15, 18, 21, 41]. It can increase the convergence rate, particularly when
singularities are present (cf. [6, 33] or Example 8.2.1). In some sense p-refinement is the
most powerful. Exponential convergence rates are possible when solutions are smooth
[8, 36, 40]. When combined with h-refinement, these high rates are also possible when
singularities are present [31, 32, 36]. The use of p-refinement is most natural with a
hierarchical basis, since portions of the stiffness and mass matrices and load vector will
remain unchanged when increasing the polynomial degree of the basis.

A posteriori error estimates provide accuracy appraisals that are necessary to termi-
nate an adaptive procedure. However, optimal strategies for deciding where and how to
refine or move a mesh or to change the basis are rare. In Section 7.4, we saw that a pos-
teriori error estimates in a particular norm were computed by summing their elemental

contributions as
Na
1B =) IE|I2 (8.1.1)
e=1

where Ny is the number of elements in the mesh and || E||? is the restriction of the error
estimate ||F|? to Element e. The most popular method of determining where adaptivity
is needed is to use ||E||. as an enrichment indicator. Thus, we assume that large errors
come from regions where the local error estimate || E'||. is large and this is where we should
refine or concentrate the mesh and/or increase the method order. Correspondingly, the
mesh would be coarsened or the polynomial degree of the basis lowered in regions where
|E||c is small. This is the strategy that we’ll follow (cf. Section 8.2); however, we reiterate
that there is no proof of the optimality of enrichment in the vicinity of the largest local
error estimate.

Enrichment indicators other than local error estimates have been tried. The use of
solution gradients is popular. This is particularly true of fluid dynamics problems where
error estimates are not readily available [14, 16, 17, 19].

In this chapter, we’ll examine h-, p-, and hp-refinement. Strategies using r-refinement
will be addressed in Chapter 9.

8.2 h-Refinement

Mesh refinement strategies for elliptic (steady) problems need not consider coarsening.
We can refine an initially coarse mesh until the requested accuracy is obtained. This
strategy might not be optimal and won’t be, for example, if the coarse mesh is too

fine in some regions. Nevertheless, we’ll concentrate on refinement at the expense of

8.2. h-Refinement 3

coarsening. We’ll also focus on two-dimensional problems to avoid the complexities of

three-dimensional geometry.

8.2.1 Structured Meshes

Let us first consider adaptivity on structured meshes and then examine unstructured-
mesh refinement. Refinement of an element of a structured quadrilateral-element mesh
by bisection requires mesh lines running to the boundaries to retain the four-neighbor
structure (cf. the left of Figure 8.2.1). This strategy is simple to implement and has
been used with finite difference computation [42]; however, it clearly refines many more
elements than necessary. The customary way of avoiding the excess refinement is to
introduce irregular nodes where the edges of a refined element meet at the midsides of
a coarser one (cf. the right of Figure 8.2.1). The mesh is no longer structured and our

standard method of basis construction would create discontinuities at the irregular nodes.

Figure 8.2.1: Bisection of an element of a structured rectangular-element mesh creating
mesh lines running between the boundaries (left). The mesh lines are removed by creating
irregular nodes (right).

The usual strategy of handling continuity at irregular nodes is to constrain the basis.
Let us illustrate the technique for a piecewise-bilinear basis. The procedure for higher-
order piecewise polynomials is similar. Thus, consider an edge between Vertices 1 and 2
containing an irregular node 3 as shown in Figure 8.2.2. For simplicity, assume that the
elements are h X h squares and that those adjacent to Edge 1-2 are indexed 1, 2, and 3
as shown in the figure. For convenience, let’s also place a Cartesian coordinate system
at Vertex 2.

We proceed as usual, constructing shape functions on each element. Although not
really needed for our present development, those bilinear shape functions that are nonzero
on Edge 1-2 follow.

4 Adaptive Finite Element Techniques

y
1
2
1 3
3 X
—
2
Figure 8.2.2: Irregular node at the intersection of a refined element.
e On Element 1:
h+z y h+z h—y
Ny = = Ny = —
11 (h)(h,), 21 (h)(h)
e On Element 2:
h/2 —x y—h/2 h/2—x h—y
Nz = (TR Ne = (=)0,
e On Element 3:
h/2 —x h/2—y h/j2—x , y
Ny3 = N33 = —).

As in Chapter 2, the second subscript on Nj, denotes the element index.

The restriction of U on Element 1 to Edge 1-2 is
U(z,y) = ciNu(z,y) + c2Noy (7,).

Evaluating this at Node 3 yields
Cc1 + Co
2 Y
The restriction of U on Elements 2 and 3 to Edge 1-2 is

U(afg,yg) = x < 0.

c1Ni2(z,y) + c3Nso(z,y), if y > h/2

Vie,u) = { 2 Nos(x,y) + csNss(2,y), if y <h/2 ~

In either case, we have
Ul(xs,ys) = cs, x> 0.

Equating the two expressions for U(x3,y3) yields the constraint condition

(4] +CQ
C3 = 5 .

(8.2.1)

8.2. h-Refinement 5

Figure 8.2.3: The one-irregular rule: the intended refinement of an element to create two
irregular nodes on an edge (left) necessitates refinement of a neighboring element to have
no more than one irregular node per element edge (right).

Thus, instead of determining c3 by Galerkin’s method, we constrain it to be determined
as the average of the solutions at the two vertices at the ends of the edge. With the
piecewise-bilinear basis used for this illustration, the solution along an edge containing

an irregular node is a linear function rather than a piecewise-linear function.

Software based on this form of adaptive refinement has been implemented for elliptic
[27] and parabolic [1] systems. One could guess that difficulties arise when there are too
many irregular nodes on an edge. To overcome this, software developers typically use
Bank’s [9, 10] “one-irregular” and “three-neighbor” rules. The one-irregular rule limits
the number of irregular nodes on an element edge to one. The impending introduction
of a second irregular node on an edge requires refinement of a neighboring element as
shown in Figure 8.2.3. The three-neighbor rule states that any element having irregular

nodes on three of its four edges must be refined.

A modified quadtree (Section 5.2) can be used to store the mesh and solution data.
Thus, let the root of a tree structure denote the original domain €2. With a structured
grid, we’ll assume that €2 is square, although it could be obtained by a mapping of a
distorted region to a square (Section 5.2). The elements of the original mesh are regarded
as offspring of the root (Figure 8.2.4). Elements introduced by adaptive refinement are
obtained by bisection and are regarded as offspring of the elements of the original mesh.
This structure is depicted in Figure 8.2.4. Coarsening can be done by “pruning” refined
quadrants. It’s customary, but not essential, to assume that elements cannot be removed

(by coarsening) from the original mesh [3].

Irregular nodes can be avoided by using transition elements as shown in Figure 8.2.5.
The strategy on the right uses triangular elements as a transition between the coarse and
fine elements. If triangular elements are not desirable, the transition element on the left
uses rectangles but only adds a mid-edge shape functions at Node 3. There is no node

at the midpoint of Edge 4-5. The shape functions on the transition element are

h+z, ,y—~h/2 h+z h/2—y

Nuz(h)(h/2), N21:(h)(h/2)7

6 Adaptive Finite Element Techniques

Figure 8.2.4: Original structured mesh and the bisection of two elements (left). The tree
structure used to represent this mesh (right).

y
4 1
T :
3
1
3 X
—
S 2

Figure 8.2.5: Transition elements between coarse and fine elements using rectangles (left)
and triangles (right).

N (h+x) (7). f0<y<h/2
PR T G, ifh/2<y <h
—x. Y —x, h—y
Ny = (—) (= N5 = (—)(—).
41 (h)(h), 51 (h)(h)

Again, the origin of the coordinate system is at Node 2. Those shape functions associated
with nodes on the right edge are piecewise-bilinear on Element 1, whereas those associated
with nodes on the left edge are linear.

Berger and Oliger [12] considered structured meshes with structured mesh refinement,
but allowed elements of finer meshes to overlap those of coarser ones (Figure 8.2.6). This
method has principally used with adaptive finite difference computation, but it has had

some use with finite element methods [29].

8.2.2 Unstructured Meshes

Computation with triangular-element meshes has been done since the beginning of adap-
tive methods. Bank [9, 11] developed the first software system PLTMG, which solves

8.2. h-Refinement 7

N O
E

%

Figure 8.2.6: Composite grid construction where finer grids overlap elements of coarser
ones.

our model problem with a piecewise-linear polynomial basis. It uses a multigrid itera-
tive procedure to solve the resulting linear algebraic system on the sequence of adaptive
meshes. Bank uses uniform bisection of a triangular element into four smaller elements.
Irregular nodes are eliminated by dividing adjacent triangles sharing a bisected edge
in two (Figure 8.2.7). Triangles divided to eliminate irregular nodes are called “green
triangles” [10]. Bank imposes one-irregular and three-neighbor rules relative to green
triangles. Thus, e.g., an intended second bisection of a vertex angle of a green triangle
would not be done. Instead, the green triangle would be uniformly refined (Figure 8.2.8)

to keep angles bounded away from zero as the mesh is refined.

Figure 8.2.7: Uniform bisection of a triangular element into four and the division of
neighboring elements in two (shown dashed).

Rivara [34, 33] developed a mesh refinement algorithm based on bisecting the longest
edge of an element. Rivara’s procedure avoids irregular nodes by additional refinement as

described in the algorithm of Figure 8.2.9. In this procedure, we suppose that elements

8 Adaptive Finite Element Techniques

Figure 8.2.8: Uniform refinement of green triangles of the mesh shown in Figure 8.2.7 to
avoid the second bisection of vertex angles. New refinements are shown as dashed lines.

of a sub-mesh § of mesh A, are scheduled for refinement. All elements of § are bisected
by their longest edges to create a mesh A}, which may contain irregular nodes. Those
elements e of A} that contain irregular nodes are placed in the set p'. Elements of p' are
bisected by their longest edge to create two triangles. This bisection may create another
node () that is different from the original irregular node P of element e. If so, P and @)
are joined to produce another element (Figure 8.2.10). The process is continued until all

irregular nodes are removed.

procedure rivara(Ap, ¢)
Obtain A} by bisecting all triangles of 6 by their longest edges
Let p' contain those elements of A} having irregular nodes
1:=1
while p; is not () do
Let e € p; have an irregular node P and bisect e by its longest edge
Let () be the intersection point of this bisection
if P # () then
Join P and Q)
end if
Let Afl“ be the mesh created by this process
Let p"*! be the set of elements in A/ with irregular nodes
i:=14+1
end while
return A}

Figure 8.2.9: Rivara’s mesh bisection algorithm.

Rivara’s [33] algorithm has been proven to terminate with a regular mesh in a finite

number of steps. It also keep angles bounded away from 0 and 7. In fact, if « is the

8.2. h-Refinement 9

Q

Figure 8.2.10: Elimination of an irregular node P (left) as part of Rivara’s algorithm
shown in Figure 8.2.9 by dividing the longest edge of Element e and connecting vertices
as indicated.

smallest angle of any triangle in the original mesh, the smallest angle in the mesh obtained
after an arbitrary number of applications of the algorithm of Figure 8.2.10 is no smaller
than «/2 [35]. Similar procedures were developed by Sewell [37] and used by Mitchell
[28] by dividing the newest vertex of a triangle.

Tree structures can be used to represent the data associated with Bank’s [10] and
Rivara’s [33] procedures. As with structured-mesh computation, elements introduced
by refinement are regarded as offspring of coarser parent elements. The actual data
representations vary somewhat from the tree described earlier (Figure 8.2.4) and readers
seeking more detail should consult Bank [10] or Rivara [34, 33]. With tree structures, any
coarsening may be done by pruning “leaf” elements from the tree. Thus, those elements
nested within a coarser parent are removed and the parent is restored as the element.
As mentioned earlier, coarsening beyond the original mesh is not allowed. The process
is complex. It must be done without introducing irregular nodes. Suppose, for example,
that the quartet of small elements (shown with dashed lines) in the center of the mesh of
Figure 8.2.8 were scheduled for removal. Their direct removal would create three irregular
nodes on the edges of the parent triangle. Thus, we would have to determine if removal
of the elements containing these irregular nodes is justified based on error-indication
information. If so, the mesh would be coarsened to the one shown in Figure 8.2.11.
Notice that the coarsened mesh of Figure 8.2.11 differs from mesh of Figure 8.2.7 that
was refined to create the mesh of Figure 8.2.8. Hence, refinement and coarsening may

not be reversible operations because of their independent treatment of irregular nodes.

Coarsening may be done without a tree structure. Shephard et al. [38] describe an
“edge collapsing” procedure where the vertex at one end of an element edge is “collapsed”
onto the one at the other end. Aiffa [2] describes a two-dimensional variant of this
procedure which we reproduce here. Let P be the polygonal region composed of the union
of elements sharing Vertex V; (Figure 8.2.12). Let Vi, V5, ... , V} denote the vertices on the

k triangles containing V) and suppose that error indicators reveal that these elements may

10 Adaptive Finite Element Techniques

Figure 8.2.11: Coarsening of a quartet of elements shown with dashed lines in Figure
8.2.8 and the removal of surrounding elements to avoid irregular nodes.

v, v, V5
v v
v,
5
v
i i

Figure 8.2.12: Coarsening of a polygonal region (left) by collapsing Vertex Vj onto V}
(right).

be coarsened. The strategy of collapsing V; onto one of the vertices Vj, j =1,2,... ,k, is
done by deleting all edges connected to Vj and then re-triangulating P by connecting V;
to the other vertices of P (cf. the right of Figure 8.2.12). Vertex V} is called the collapsed

vertez and Vj is called the target vertex.

Collapsing has to be evaluated for topological compatibility and geometric validity
before it is performed. Checking for geometric validity prevents situations like the one
shown in Figure 8.2.13 from happening. A collapse is topologically incompatible when,
e.g., Vo is on 02 and the target vertex Vj is within Q. Assuming that V; can be collapsed,
the target vertex is chosen to be the one that maximizes the minimum angle of the
resulting re-triangulation of P. Aiffa [2] does no collapsing when the smallest angle that
would be produced by collapsing is smaller than a prescribed minimum angle. This might
result in a mesh that is finer than needed for the specified accuracy. In this case, the
minimum angle restriction could be waived when Vj has been scheduled for coarsening

more than a prescribed number of times. Suppose that the edges hic, hoe, h3e of an

8.2. h-Refinement 11

element e are indexed such that hy, < hg, < hg3., then the smallest angle a;. of Element

e may be calculated as
2A.

hZe h3e

sin i =

where A, is the area of Element e.

v
V"
\/3
¥ s
vy

Figure 8.2.13: A situation where the collapse of Vertex Vj (left) creates an invalid mesh
(right).

Figure 8.2.14: Swapping an edge of a pair of elements (left) to improve element shape
(right).

The shape of elements containing small or large angles that were created during
refinement or coarsening may be improved by edge swapping. This procedure operates on
pairs of triangles €2; and €25 that share a common edge F. If Q = Q; U€),, edge swapping
occurs deleting Edge E and re-triangulating () by connecting the vertices opposite to
Edge E (Figure 8.2.14). Swapping can be regarded as a refinement of Edge E followed
by a collapsing of this new vertex onto a vertex not on Edge E. As such, we recognize
that swapping will have to be checked for mesh validity and topological compatibility.

Of course, it will also have to provide an improved mesh quality.

8.2.3 Refinement Criteria

Following the introductory discussion of error estimates in Section 8.1, we assume the
existence of a set of refinement indicators €., e = 1,2,..., Na, which are large where

refinement is desired and small where coarsening is appropriate. As noted, these might

12 Adaptive Finite Element Techniques

be the restriction of a global error estimate to Element e
e = | El: (8.2.2)

or an ad hoc refinement indicator such as the magnitude of the solution gradient on the
element. In either case, how do we use this error information to refine the mesh. Perhaps
the simplest approach is to refine a fixed percentage of elements having the largest error
indicators, i.e., refine all elements e satisfying

€c > A max e;. (8.2.3)
1<j<Na

A typical choice of the parameter A € [0, 1] is 0.8.
We can be more precise when an error estimate of the form (8.1.1) with indicators

given by (8.2.2) is available. Suppose that we have an a priori error estimate of the form

le|| < Che. (8.2.4a)

After obtaining an a posteriori error estimate ||E|| on a mesh with spacing h, we could

compute an estimate of the error constant C' as

E
C =~ ”h—p“ (8.2.4b)

The mesh spacing parameter h may be taken as, e.g., the average element size

A

where A is the area of €.

Suppose that adaptivity is to be terminated when ||F|| &~ 7 where 7 is a prescribed
tolerance. Using (8.2.4a), we would like to construct an enriched mesh with a spacing
parameter h such that

ChP ~ 7.

Using the estimate of C' computed by (8.2.4b), we have

~ <||%II> " (8.2.5a)

Thus, using (8.2.4c), an enriched mesh of

~ 2 p2 2/p
Na=— ~ <L> (8.2.5b)

S| S

8.2. h-Refinement 13

elements will reduce ||E|| to approximately .

Having selected an estimate of the number of elements Na to be in the enriched
mesh, we have to decide how to refine the current mesh in order to attain the prescribed
tolerence. We may do this by equidistributing the error over the mesh. Thus, we would
like each element of the enriched mesh to have approximately the same error. Using

(8.1.1), this implies that
2
~ T
1B~ %
A

where ||E||. is the error indicator of Element e of the enriched mesh. Using this notion,

we divide the error estimate ||E||?> by a factor n so that
£z |,
n Na
Thus, each element of the current mesh is divided into n segments such that

LY (”E"e)Q. (8.2.6)
Na T

In practice, n and Nao may be rounded up or increased slightly to provide a measure
of assurance that the error criterion will be satisfied after the next adaptive solution.
The mesh division process may be implemented by repeated applications of a mesh-
refinement algorithm without solving the partial differential equation in between. Thus,
with bisection [34, 33], the elemental error estimate would be halved on each bisected
element. Refinement would then be repeated until (8.2.6) is satisfied.

The error estimation process (8.2.6) works with coarsening when n < 1; however,
neighboring elements would have to suggest coarsening as well.

Ezample 8.2.1 Rivara [33] solves Laplace’s equation
Uz + Uyy = 0, (z,y) € Q,

where (2 is a regular hexagon inscribed in a unit circle. The hexagon is oriented with
one vertex along the positive x-axis with a “crack” through this vertex for 0 < x < 1,
y = 0. Boundary conditions are established to be homogeneous Neumann conditions on
the z-axis below the crack and

0
u(r,8) = r/*sin 2

everywhere else. This function is also the exact solution of the problem expressed in a
polar frame eminating from the center of the hexagon. The solution has a singularity

at the origin due to the “re-entrant” angle of 27 at the crack tip and the change in

14 Adaptive Finite Element Techniques

boundary conditions from Dirichlet to Neumann. The solution was computed with a
piecewise-linear finite element basis using quasi-uniform and adaptive h-refinement. A
residual error estimation procedure similar to those described in Section 7.4 was used to
appraise solution accuracy [33]. Refinement followed (8.2.3).

The results shown in Figure 8.2.15 indicate that the uniform mesh is converging as
O(N~'®) where N is the number of degrees of freedom. We have seen (Section 7.2) that

uniform A-refinement converges as
lell; < CLR™RED = ¢, N~ min(e.a)/2 (8.2.7)

where ¢ > 0 depends on the solution smoothness and, in two dimensions, N o h%. For
linear elliptic problems with geometric singularities, ¢ = 7/w where w is the maximum
interior angle on 0. For the hexagon with a crack, the interior angles would be 7/3,
27/3, and 27. The latter is the largest angle; hence, ¢ = 1/2. Thus, with p = 1,
convergence should occur at an O(N~'/4) rate; however, the actual rate is lower (Figure
8.2.15).

The adaptive procedure has restored the O(N~'/2) convergence rate that one would
expect of a problem without singularities. In general, optimal adaptive hA-refinement will

converge as [6, 43]

||€||1 S Clhp = CQN_p/Q. (828)

8.3 p- and hp-Refinement

With p-refinement, the mesh is not changed but the order of the finite element basis is
varied locally over the domain. As with h-refinement, we must ensure that the basis
remains continuous at element boundaries. A situation where second- and fourth-degree
hierarchical bases intersect along an edge between two square elements is shown on the
left of Figure 8.3.1. The second-degree approximation (shown at the top left) consists of a
bilinear shape function at each vertex and a second-degree correction on each edge. The
fourth-degree approximation (bottom left) consists of bilinear shape functions at each
vertex, second, third and fourth-degree corrections on each edge, and a fourth-degree
bubble function associated with the centroid (cf. Section 4.4). The maximum degree of
the polynomial associated with a mesh entity is identified on the figure. The second- and
fourth-degree shape functions would be incompatible (discontinuous) across the common
edge between the two elements. This situation can be corrected by constraining the

edge functions to the lower-degree (two) basis of the top element as shown in the center

8.3. p- and hp-Refinement 15

S0 0
700

T

Siope = /g ~~

T

500
40.0

300

T

n
Q
Q

 Slope='/p

Energy norm of the error (%

150

1OO 1 1 1 1 1 1
5 10 30 50 100 300 500800

Number of degrees of freedom V

Figure 8.2.15: Solution of Example 8.2.1 by uniform (x) and adaptive (A) h-refinement
33).

portion of the figure or by adding third- and fourth-order edge functions to the upper
element as shown on the right of the figure. Of the two possibilities, the addition of the
higher degree functions is the most popular. Constraining the space to the lower-degree
polynomial could result in a situation where error criteria satisfied on the element on the
lower left of Figure 8.3.1 would no longer be satisfied on the element in the lower-center
portion of the figure.

Remark 1. The incompatibility problem just described would not arise with the
hierarchical data structures defined in Section 5.3 since edge functions are blended onto

all elements containing the edge and, hence, would always be continuous.

Szabé [39] developed a strategy for the adaptive variation of p by constructing error
estimates of solutions with local degrees p, p—1, and p—2 on Element ¢ and extrapolating
to get an error estimates for solutions of higher degrees. With a hierarchical basis, this
is straightforward when p > 2. One could just use the differences between higher- and
lower-order solutions or an error estimation procedure as described in Section 7.4. When
p = 2 on Element e, local error estimates of solutions having degrees 2 and 1 are linearly
extrapolated. Szabo [39] began by generating piecewise-linear (p = 1) and piecewise-
quadratic (p = 2) solutions everywhere and extrapolating the error estimates. Flaherty

and Moore [20] suggest an alternative when p = 1. They obtain a “lower-order” piecewise

16 Adaptive Finite Element Techniques

1 2 1 1 2 1 1 2 1
e o o e o ©° e O o
2@ W) 2@ | 2@ 'Y

2 2 4
lo—o-— 90! lo 0@ 10— 0 @1
4 2 4
10 410 Q4 10 410 Q4 10 410 Q4
o0 ° o0 ° o0 °
1 4 1 4 4 1 1 4 1

Figure 8.3.1: Second- and fourth-degree hierarchical shape functions on two square el-
ements are incompatible across the common edge between elements (left). This can be
corrected by removing the third- and fourth-degree edge functions from the lower ele-
ment (center) or by adding third- and fourth-degree edge functions to the upper element
(right). The maximum degree of the shape function associated with a mesh entity is
shown in each case.

constant (p = 0) solution by using the value of the piecewise-linear solution at the center
of Element e. The difference between these two “solutions” furnishes an error estimate
which, when used with the error estimate for the piecewise-linear solution, is linearly
extrapolated to higher values of p.

Having estimates of discretization errors as a function of p on each element, we can
use a strategy similar to (8.2.6) to select a value of p to reduce the error on an element
to its desired level. Often, however, a simpler strategy is used. As indicated earlier,
the error estimate ||E||. should be of size 7/Na on each element of the mesh. When
enrichment is indicated, e.g., when ||E|| > 7, we can increase the degree of the polynomial

representation by one on any element e where

-
€e > Ap—. 8.3.1a
e RNA ()
The parameter €, is an enrichment indicator on Element e, which may be ||E||., and
Ar =~ 1.1. If coarsening is done, the degree of the approximation on Element e can be
reduced by one when

.
- 3.1
€, < Ache e (8.3.1b)

where h, is the longest edge of Element e and A¢ =~ 0.1.
The convergence rate of the p version of the finite element method is exponential when

the solution has no singularities. For problems with singularities, p-refinement converges

8.3. p- and hp-Refinement 17

as
le]] < ONT1 (8.3.2)

where ¢ > 0 depends on the solution smoothness [22, 23, 24, 25, 26]. (The parameter
q is intended to be generic and is not necessarily the same as the one appearing in
(8.2.7)). With singularities, the performance of the p version of the finite element method
depends on the mesh. Performance will be better when the mesh has been graded near
the singularity.

This suggests combining h- and p-refinement. Indeed, when proper mesh refinement is

combined with an increase of the polynomial degree p, the convergence rate is exponential
le|]| < Cemn ™ (8.3.3)

where ¢; and ¢, are positive constants that depend on the smoothness of the exact solution
and the finite element mesh. Generating the correct mesh is crucial and its construction is
only known for model problems [22, 23, 24, 25, 26]. Oden et al. [30] developed a strategy
for hp-refinement that involved taking three solution steps followed by an extrapolation.
Some techniques do not attempt to adjust the mesh and the order at the same time, but,
rather, adjust either the mesh or the order. We’ll illustrate one of these, but first cite
the more explicit version of the error estimate (8.2.7) given by Babuska and Suri [7]
pmin(p,q)
leflr < CT”u“min(p,q)H- (8.3.4)
The mesh must satisfy the uniformity condition, the polynomial-degree is uniform, and
w € H9*!. In this form, the constant C' is independent of h and p. This result and the
previous estimates indicate that it is better to increase the polynomial degree when the
solution w is smooth (g is large) and to reduce h near singularities. Thus, a possible
strategy would be to increase p in smooth high-error regions and refine the mesh near
singularities. We, therefore, need a method of estimating solution smoothness and Aiffa
[2] does this by computing the ratio
P { (G)i(p)/ee(p Y i)ftflz(rgvisel) 7o (8.3.5)
where p is the polynomial degree on Element e. An argument has been added to the
error indicator on Element e to emphasize its dependence on the local polynomial degree.
As described in Section 8.2, ¢(p — 1) can be estimated from the part of U involving the

hierarchal corrections of degree p. Now

o If p. < 1, the error estimate is decreasing with increasing polynomial degree. If

enrichment were indicated on Element e, p-refinement would be the preferred strat-

egy.

18 Adaptive Finite Element Techniques

o If p. > 1 the recommended strategy would be h-refinement.

Aiffa [2] selects p-refinement if p, < v and h-refinement if p, > 7, with v &~ 0.6. Adjust-
ments have to made when p = 1 [2]. Coarsening is done by vertex collapsing when all
elements surrounding a vertex have low errors [2].

Ezxample 8.3.1 Aiffa [2] solves the nonlinear parabolic partial differential equation

UCECE + uyy

5 , (x,y) € Q, t>0,

uy — ou?(1 —u) =
with the initial and Dirichlet boundary data defined so that the exact solution on the
square Q = {(z,y)|0 < z,y < 2} is

1
u(x,y,t) =
(y) 1 +ea/a/2($+y7t\/a/2)

Although this problem is parabolic, Aiffa [2] kept the temporal error small so that spatial

errors dominate.

Aiffa [2] solved this problem with ¢ = 500 by adaptive h-, p-, and hp-refinement
for a variety of spatial error tolerances. The initial mesh for h-refinement contained
32 triangular elements and used piecewise-quadratic (p = 2) shape functions. For p-
refinement, the mesh contained 64 triangles with p varying from 1 to 5. The solution
with adaptive hp-refinement was initiated with 32 elements and p = 1, The convergence
history of the three adaptive strategies is reported in Figure 8.3.2.

The solution with A-refinement appears to be converging at an algebraic rate of ap-
proximately N9 which is close to the theoretical rate (¢f. (8.2.7)). There are no
singularities in this problem and the adaptive p- and hp-refinement methods appear to
be converging at exponential rates.

This example and the material in this chapter give an introduction to the essential
ideas of adaptivity and adaptive finite element analysis. At this time, adaptive software
is emerging. Robust and reliable error estimation procedures are only known for model

problems. Optimal enrichment strategies are just being discovered for realistic problems.

8.3. p- and hp-Refinement 19

10° ¢

=
°,
iy
T
I

Relative Error In H1 Norm

=
o,
o
T
I

107 1 ‘ 2 3
10 10 10 10

Number Of Degrees Of Freedom

Figure 8.3.2: Errors vs. the number of degrees of freedom NV for Example 8.3.1 at ¢ = 0.05
using adaptive h-, p- and hp-refinement (o, o, and >, respectively).

20

Adaptive Finite Element Techniques

Bibliography

1]

4]

[5]

(6]

9]

S. Adjerid and J.E. Flaherty. A local refinement finite element method for two-
dimensional parabolic systems. SIAM Journal on Scientific and Statistical Comput-
ing, 9:792-811, 1988.

M. Aiffa. Adaptive hp-Refinement Methods for Singularly-Perturbed Elliptic and
Parabolic Systems. PhD thesis, Rensselaer Polytechnic Institute, Troy, 1997.

D.C. Arney and J.E. Flaherty. An adaptive mesh moving and local refinement
method for time-dependent partial differential equations. ACM Transactions on
Mathematical Software, 16:48-71, 1990.

I. Babuska, J. Chandra, and J.E. Flaherty, editors. Adaptive Computational Methods
for Partial Differential Equations, Philadelphia, 1983. STAM.

I. Babuska, J.E. Flaherty, W.D. Henshaw, J.E. Hopcroft, J.E. Oliger, and T. Tez-
duyar, editors. Modeling, Mesh Generation, and Adaptive Numerical Methods for
Partial Differential Equations, volume 75 of The IMA Volumes in Mathematics and
its Applications, New York, 1995. Springer-Verlag.

I. Babuska, A. Miller, and M. Vogelius. Adaptive methods and error estimation for
elliptic problems of structural mechanics. In 1. Babuska, J. Chandra, and J.E. Fla-
herty, editors, Adaptive Computational Methods for Partial Differential Equations,
pages 57—73, Philadelphia, 1983. STAM.

I. Babuska and Suri. The optimal convergence rate of the p-version of the finite
element method. SIAM Journal on Numerical Analysis, 24:750-776, 1987.

I. Babuska, O.C. Zienkiewicz, J. Gago, and E.R. de A. Oliveira, editors. Accuracy
Estimates and Adaptive Refinements in Finite Element Computations. John Wiley
and Sons, Chichester, 1986.

R.E. Bank. The efficient implementation of local mesh refinement algorithms. In
I. Babuska, J. Chandra, and J.E. Flaherty, editors, Adaptive Computational Methods
for Partial Differential Equations, pages 74-81, Philadelphia, 1983. STAM.

21

22 Adaptive Finite Element Techniques

[10] R.E. Bank. PLTMG: A Software Package for Solving Flliptic Partial Differential
Equations. Users’ Guide 7.0, volume 15 of Frontiers in Applied Mathematics. STAM,
Philadelphia, 1994.

[11] R.E. Bank, A.H. Sherman, and A. Weiser. Refinement algorithms and data struc-
tures for regular local mesh refinement. In Scientific Computing, pages 3-17, Brus-
sels, 1983. IMACS/North Holland.

[12] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differ-
ential equations. Journal of Computational Physics, 53:484-512, 1984.

[13] M.W. Bern, J.E. Flaherty, and M. Luskin, editors. Grid Generation and Adaptive
Algorithms, volume 113 of The IMA Volumes in Mathematics and its Applications,
New York, 1999. Springer.

[14] R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel adaptive finite element methods
for conservation laws. Applied Numerical Mathematics, 14:255-284, 1994.

[15] K. Clark, J.E. Flaherty, and M.S. Shephard, editors. Applied Numerical Mathemat-
ics, volume 14, 1994. Special Issue on Adaptive Methods for Partial Differential
Equations.

[16] K. Devine and J.E. Flaherty. Parallel adaptive hp-refinement techniques for conser-
vation laws. Applied Numerical Mathematics, 20:367-386, 1996.

[17] M. Dindar, M.S. Shephard, J.E. Flaherty, and K. Jansen. Adaptive cfd analysis
for rotorcraft aerodynamics. Computer Methods in Applied Mechanics Engineering,
submitted, 1999.

[18] D.B. Duncan, editor. Applied Numerical Mathematics, volume 26, 1998. Special
Issue on Grid Adaptation in Computational PDEs: Theory and Applications.

[19] J.E. Flaherty, R. Loy, M.S. Shephard, B.K. Szymanski, J. Teresco, and L. Ziantz.
Adaptive local refinement with octree load-balancing for the parallel solution of
three-dimensional conservation laws. Parallel and Distributed Computing, 1998. to

appear.

[20] J.E. Flaherty and P.K. Moore. Integrated space-time adaptive hp-refinement meth-
ods for parabolic systems. Applied Numerical Mathematics, 16:317-341, 1995.

[21] J.E. Flaherty, P.J. Paslow, M.S. Shephard, and J.D. Vasilakis, editors. Adaptive
methods for Partial Differential Equations, Philadelphia, 1989. STAM.

8.3. p- and hp-Refinement 23

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

W. Gui and I. Babuska. The h, p, and h-p version of the finite element method in
1 dimension. Part 1: The error analysis of the p-version. Numerische Mathematik,
48:557-612, 1986.

W. Gui and I. Babuska. The h, p, and h-p version of the finite element method
in 1 dimension. Part 2: The error analysis of the h- and h-p-version. Numerische
Mathematik, 48:613-657, 1986.

W. Gui and 1. Babuska. The h, p, and h-p version of the finite element method in 1
dimension. Part 3: The adaptive h-p-version. Numerische Mathematik, 48:658-683,
1986.

W. Guo and I. Babuska. The h-p version of the finite element method. Part 1: The

basic approximation results. Computational Mechanics, 1:1-20, 1986.

W. Guo and I. Babuska. The h-p version of the finite element method. Part 2:
General results and applications. Computational Mechanics, 1:21-41, 1986.

C. Mesztenyi and W. Szymczak. FEARS user’s manual for UNIVAC 1100. Technical
Report Note BN-991, Institute for Physical Science and Technology, University of
Maryland, College Park, 1982.

W.R. Mitchell. Unified Multilevel Adaptive Finite Element Methods for Elliptic
Problems. PhD thesis, University of Illinois at Urbana-Champagne, Urbana, 1988.

P.K. Moore and J.E. Flaherty. Adaptive local overlapping grid methods for parabolic

systems in two space dimensions. Journal of Computational Physics, 98:54—63, 1992.

J.T. Oden, W. Wu, and M. Ainsworth. Three-step h-p adaptive strategy for the in-
compressible Navier-Stokes equations. In I. Babuska, J.E. Flaherty, W.D. Henshaw,
J.E. Hopcroft, J.E. Oliger, and T. Tezduyar, editors, Modeling, Mesh Generation,
and Adaptive Numerical Methods for Partial Differential Equations, volume 75 of
The IMA Volumes in Mathematics and its Applications, pages 347-366, New York,
1995. Springer-Verlag.

W. Rachowicz, J.T. Oden, and L. Demkowicz. Toward a universal h-p adaptive
finite element strategy, Part 3, design of h-p meshes. Computer Methods in Applied
Mechanics and Engineering, 77:181-212, 1989.

E. Rank and I. Babuska. An expert system for the optimal mesh design in the hp-
version of the finite element method. International Journal of Numerical methods
in Engineering, 24:2087-2106, 1987.

24

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Adaptive Finite Element Techniques

M.C. Rivara. Design and data structures of a fully adaptive multigrid finite element
software. ACM Transactions on Mathematical Software, 10:242-264, 1984.

M.C. Rivara. Mesh refinement processes based on the generalized bisection of sim-
plices. SIAM Journal on Numerical Analysis, 21:604—613, 1984.

[.G. Rosenberg and F. Stenger. A lower bound on the angles of triangles constructed
by bisecting the longest side. Mathematics of Computation, 29:390-395, 1975.

C. Schwab. P- And Hp- Finite Element Methods: Theory and Applications in Solid
and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Claren-
don, London, 1999.

E.G. Sewell. Automatic Generation of Triangulations for Piecewise Polynomial Ap-
proximation. PhD thesis, Purdue University, West Lafayette, 1972.

M.S. Shephard, J.E. Flaherty, C.L. Bottasso H.L. de Cougny, and C. Ozturan. Par-
allel automatic mesh generation and adaptive mesh control. In M. Papadrakakis,
editor, Solving Large Scale Problems in Mechanics: Parallel and Distributed Com-
puter Applications, pages 459-493, Chichester, 1997. John Wiley and Sons.

B. Szabé. Mesh design for the p-version of the finite element method. Computer
Methods in Applied Mechanics and Engineering, 55:181-197, 1986.

B. Szabé and 1. Babuska. Finite Element Analysis. John Wiley and Sons, New York,
1991.

R. Verfiirth. A Review of Posteriori Error FEstimation and Adaptive Mesh-
Refinement Techniques. Teubner-Wiley, Stuttgart, 1996.

H. Zhang, M.K. Moallemi, and V. Prasad. A numerical algorithm using multizone
grid generation for multiphase transport processes with moving and free boundaries.
Numerical Heat Transfer, B29:399-421, 1996.

0O.C. Zienkiewicz and J.Z. Zhu. Adaptive techniques in the finite element method.
Communications in Applied Numerical Methods, 4:197-204, 1988.

Chapter 9

Parabolic Problems

9.1 Introduction

The finite element method may be used to solve time-dependent problems as well as
steady ones. This effort involves both parabolic and hyperbolic partial differential sys-
tems. Problems of parabolic type involve diffusion and dissipation while hyperbolic
problems are characterized by conservation of energy and wave propagation. Simple
one-dimensional heat conduction and wave propagation equations will serve as model
problems of each type.

Ezxample 9.1.1. The one-dimensional heat conduction equation
Uy = Py, a<x<b, t >0, (9.1.1a)

where p is a positive constant called the diffusivity, is of parabolic type. Initial-boundary

value problems consist of determining u(z,t) satisfying (9.1.1a) given the initial data
u(z,0) = u’(z), a<xz<b, (9.1.1Db)
and appropriate boundary data, e.g.,

pug(a,t) + you(a,t) = Bo(t), pug(b,t) + y1u(b, t) = Bi(t). (9.1.1c)

As with elliptic problems, boundary conditions without the pu, term are called Dirichlet
conditions; those with v, = 0, 2 = 0,1, are Neumann conditions; and those with both
terms present are called Robin conditions. The problem domain is open in the time
direction t; thus, unlike elliptic systems, this problem is evolutionary and computation
continues in ¢ for as long as there is interest in the solution.

Example 9.1.2. The one-dimensional wave equation

Uy = gy, a<x<b, t >0, (9.1.2a)

2 Parabolic Problems

where ¢ is a constant called the wave speed, is a hyperbolic partial differential equation.
Initial-boundary value problems consist of determining u(zx,t) satisfying (9.1.2a) given
the initial data

u(z,0) = u’(z), ug(z,0) = 0°(z), a<xz<b, (9.1.2b)

and boundary data of the form (9.1.1c). Small transverse vibrations of a taut string
satisfy the wave equation. In this case, u(x,t) is the transverse displacement of the
string and ¢ = T'/p, T being the applied tension and p being the density of the string.
We'll study parabolic problems in this chapter and hyperbolic problems in the next.
We shall see that there are two basic finite element approaches to solving time-dependent
problems. The first, called the method of lines, uses finite elements in space and ordinary
differential equations software in time. The second uses finite element methods in both
space and time. We’ll examine the method of lines approach first and then tackle space-

time finite element methods.

9.2 Semi-Discrete Galerkin Problems: The Method
of Lines

Let us consider a parabolic problem of the form
ug + Llu] = f(x,y), (x,y) € Q, t>0, (9.2.1a)

where L is a second-order elliptic operator. In two dimensions, u would be a function of

x, y, and t and L[u] could be the very familiar

‘C[u] = _(pux):v - (puy)y + qu. (9.2.1b)

Appropriate initial and boundary conditions would also be needed, e.g.,

u(z,y,0) = u’(z,y), (z,y) € QU I, (9.2.1c)
u(z,y,t) = alz,y,t), (z,y) € 0, (9.2.1d)
Pun + yu = 3, (x,y) € 00y. (9.2.1e)

We construct a Galerkin formulation of (9.2.1) in space in the usual manner; thus, we

multiply (9.2.1a) by a suitable test function v and integrate the result over 2 to obtain

(0, ue) + (v, L[u]) = (v, f).

9.2. Semi-Discrete Galerkin Problems 3

As usual, we apply the divergence theorem to the second-derivative terms in £ to reduce
the continuity requirements on u. When £ has the form of (9.2.1b), the Galerkin problem
consists of determining u € Hj, X (t > 0) such that

(v,u) + A(v,u) = (v, f)+ < v, —yu >, Vv € Hy, t>0. (9.2.2a)

The L? inner product, strain energy, and boundary inner product are, as with elliptic

problems,
(v, f) = // vfdxdy, (9.2.2Db)
)
Av,u) = //[p(vxux + vyuy) + vquldzdy, (9.2.2¢)
0
and
< U, pUp >= / UpUpds. (9.2.2d)
oy

The natural boundary condition (9.2.1e) has been used to replace pu, in the boundary
inner product. Except for the presence of the (v,u;) term, the formulation appears to
the same as for an elliptic problem.

Initial conditions for (9.2.2a) are usually determined by projection of the initial data
(9.2.1c) either in L?

(v,u) = (v,u), Vv € Hy, t=0, (9.2.3a)
or in strain energy
Av,u) = A(v,u?), Vv € Hy, t=0. (9.2.3b)
Example 9.2.1. We analyze the one-dimensional heat conduction problem
u = (pug)e + f(x, 1), 0<z<l, t>0,
u(z,0) = u’(z), 0<z<1,

u(0,t) = u(1,t) =0, t>0,

thoroughly in the spirit that we did in Chapter 1 for a two-point boundary value problem.
A Galerkin form of this heat-conduction problem consists of determining u € Hj
satisfying
(v,ug) + A(v,u) = (v, f), Vv € Hy, t>0,

4 Parabolic Problems

U

N-1

X

0= x X N %=1

Figure 9.2.1: Mesh for the finite element solution of Example 9.2.1.

(v,u) = (v,u), Vv € Hy, t=0,

where)
A(U,u):/ VzppUpd.
0

Boundary terms of the form (9.2.2d) disappear because v = 0 at & = 0,1 with Dirichlet
data.
We introduce a mesh on 0 < x <1 as shown in Figure 9.2.1 and choose an approxi-

mation U of v in a finite-dimensional subspace S}’ of H} having the form

N-1

Ulx,t) =) ¢i(1)9;().

J=1

Unlike steady problems, the coefficients ¢;, 7 = 1,2,... , N—1, depend on ¢. The Galerkin
finite element problem is to determine U € S{¥ such that

(05, Up) + A9, U) = (¢, f), t>0,
(95, U) = (¢, u), t=0, j=1,2,... ,N—1.

Let us chose a piecewise-linear polynomial basis

T—Tp—1 :
P if vy 1 <2<y
— Tp4+1—T :
oi(z) = oo o <o < wpg
0, otherwise

This problem is very similar to the one-dimensional elliptic problem considered in Section
1.3, so we’ll skip several steps and also construct the discrete equations by vertices rather

than by elements.

9.2. Semi-Discrete Galerkin Problems 5

Since ¢; has support on the two elements containing node j we have

ZTj+1
A(¢;,U / ¢ pU,dx + / ¢/ pU,dz

Ty

where ()" =d()/dx. Substituting for ¢, and U,

A(¢;,U) :/ Kp(x)(JTJl)dxﬂL/ ——p(a) (LT
Tj—1 "] J T

- ; hjs1 hjt1

where
hj = IL'j — "L.j—l-
Using the midpoint rule to evaluate the integrals, we have

Dj- Dj
A5 U) m ZE (e~ ¢) = 50

I T (¢jt1 —¢j)

L

where p; 1/, = p(xj—l/z)-
Similarly,
Tj+1
¢], Ut / ¢]Utd$ + / ¢jUtd$

J
or

Tj+1
(6;,U) = / 6365 105 1 + E36)dx + / 61(¢50; + E101)do

J
where (1) = d()/dt. Since the integrands are quadratic functions of x they may be
integrated exactly using Simpson’s rule to yield

hj .. . h .
(& 4 265) + L2285+ &)

6 6

(0. 1) /qu d:c+/;’“¢Jf()

J

(¢j7 Ut) =

Finally,

Although integration of order one would do, we’ll, once again, use Simpson’s rule to

obtain . b
(05, f) = gJ(ijflﬁ + f) +]H (f5 + 2fj41/2)-

We could replace f;_i/; by the average of f;_; and fj to obtain a similar formula to the
one obtained for (¢;, U;); thus,

(5, f) ~ %(fj—l +2f;) + %(213 + fit1)-

Combining these results yields the discrete finite element system

hi L Pj-1/2 Pi+1/2
ey +2¢5) + T(?c] + ¢j1) +]hj (¢j = ¢j1) = m

6 (]+1 C)

6 Parabolic Problems

h; h; ,

(We have dropped the ~ and written the equation as an equality.)

If p is constant and the mesh spacing h is uniform, we obtain

h,. - p h
E(qu +4éj + ¢i) — E(qu —2¢j +cjp1) = g(fj—l +4f; + fi+),
j=1,2,.. N—1.

The discrete systems may be written in matrix form and, for simplicity, we’ll do so for

the constant coefficient, uniform mesh case to obtain

Mc¢+ Ke =1 (9.2.4a)
where
i) -
1 4 1
h
1 4 1
— 1 4 -
g -
-1 2 -1
p
-1 2 -1
- _1 2 =
Jot+4fi+ fo
h +4fs +
1= ¢ hitdhtss , (9.2.4d)
Ino+4fnor+ fn
C = [Cl, Coy ... ,CN,I]T. (9246)

The matrices M, K, and 1 are the global mass matrix, the global stiffness matrix, and
the global load vector. Actually, M has little to do with mass and should more correctly
be called a global dissipation matrix; however, we’ll stay with our prior terminology.
In practical problems, element-by-element assembly should be used to construct global
matrices and vectors and not the nodal approach used here.

The discrete finite element system (9.2.4) is an implicit system of ordinary differential

equations for ¢. The mass matrix M can be “lumped” by a variety of tricks to yield an

9.2. Semi-Discrete Galerkin Problems 7

explicit ordinary differential system. One such trick is to approximate (¢;, U;) by using

the right-rectangular rule on each element to obtain

Tj Tj4+1
(05, Ur) = / 05 (Cj 1051+ ¢5)d +/ i (¢j¢j + ¢jadja)de = he;.
.’tj_l X

J

The resulting finite element system would be
hI¢+Kc =1

Recall (¢f. Section 6.3), that a one-point quadrature rule is satisfactory for the conver-
gence of a piecewise-linear polynomial finite element solution.

With the initial data determined by L? projection onto SY, we have

(0;,U(-0) = (¢j,u®), j=1,2,...,N—1.

Numerical integration will typically be needed to evaluate (¢;,u°) and we’ll approximate

it in the manner used for the loading term (¢;, f). Thus, with uniform spacing, we have

ud + 4u? + ul
h ud + 4ud + uf
o (9.2.4f)

0 0 0
Un_o +4uy_; +uy

If the initial data is consistent with the trivial Dirichlet boundary data, i.e., if u® € H}

then the above system reduces to
¢;(0) = u’(z;), j=1,2,3,...,N—1.

Had we solved the wave equation (9.1.2) instead of the heat equation (9.1.1) using a

piecewise-linear finite element basis, we would have found the discrete system
Mc+Kc=0 (9.2.5)

with p in (9.2.4¢) replaced by ¢?.

The resulting initial value problems (IVPs) for the ordinary differential equations
(ODEs) (9.2.4a) or (9.2.5) typically have to be integrated numerically. There are several
excellent software packages for solving [VPs for ODEs. When such ODE software is used
with a finite element or finite difference spatial discretization, the resulting procedure is
called the method of lines. Thus, the nodes of the finite elements appear to be “lines”
in the time direction and, as shown in Figure 9.2.2 for a one-dimensional problem, the

temporal integration proceeds along these lines.

8 Parabolic Problems

X

0= x X N %=1

Figure 9.2.2: “Lines” for a method of lines integration of a one-dimensional problem.

Using the ODE software, solutions are calculated in a series of time steps (0, %],
(t1,t3], Methods fall into two types. Those that only require knowledge of the so-
lution at time ¢,, in order to obtain a solution at time ¢,,, are called one-step methods.
Correspondingly, methods that require information about the solution at ¢, and several
times prior to t,, are called multistep methods. Excellent texts on the subject are available
[2, 6, 7, 8]. One-step methods are Runge-Kutta methods while the common multistep
methods are Adams or backward difference methods. Software based on these methods
automatically adjusts the time steps and may also automatically vary the order of accu-
racy of a class of methods in order to satisfy a prescribed local error tolerance, minimize
computational cost, and maintain numerical efficiency.

The choice of a one-step or multistep method will depend on several factors. Gener-
ally, Runge-Kutta methods are preferred when time integration is simple relative to the
spatial solution. Multistep methods become more efficient for complex nonlinear prob-
lems. Implicit Runge-Kutta methods may be efficient for problems with high-frequency
oscillations. The ODEs that arise from the finite element discretization of parabolic
problems are “stiff” [2, 8] so backward difference methods are the preferred multistep
methods.

Most ODE software [2, 7, 8] addresses first-order IVPs of the explicit form

y(t) =f(t.y(#), y(0)=y" (9.2.6)

Second-order systems such as (9.2.5) would have to be written as a first-order system by,
e.g., letting
d=¢

9.2. Semi-Discrete Galerkin Problems 9

v | = | e |

Unfortunately, systems having the form of (9.2.4a) or the one above are implicit and

and, hence, obtaining

would require inverting or lumping M in order to put them into the standard explicit
form (9.2.6). Inverting M is not terribly difficult when M is constant or independent
of t; however, it would be inefficient for nonlinear problems and impossible when M is
singular. The latter case can occur when, e.g., a heat conduction and a potential problem
are solved simultaneously.

Codes for differential-algebraic equations (DAEs) directly address the solution of im-

plicit systems of the form

f(t,y(t),y(t) =0, y(0)=y" (9.2.7)

One of the best of these is the code DASSL written by Petzold [3]. DASSL uses variable-
step, variable-order backward difference methods to solve problems without needing M1
to exist.

Let us illustrate these concepts by applying some simple one-step schemes to problems
having the forms (9.2.1) or (9.2.4). However, implementation of these simple methods
is only justified in certain special circumstances. In most cases, it is far better to use
existing ODE software in a method of lines framework.

For simplicity, we’ll assume that all boundary data is homogeneous so that the bound-
ary inner product in (9.2.2a) vanishes. Selecting a finite-dimensional space S C Hj, we

then determine U as the solution of
V,U) + AV, U) = (V, f), YveSY. (9.2.8)

Evaluation leads to ODEs having the form of (9.2.4a) regardless of whether or not the
system is one-dimensional or the coefficients are constant. The actual matrices M and K
and load vector 1 will, of course, differ from those of Example 9.2.1 in these cases. The
systems (9.2.4a) or (9.2.8) are called semi-discrete Galerkin equations because time has
not yet been discretized.

We discretize time into a sequence of time slices (t,,t,41] of duration At with ¢, =
nAt, n =0,1,.... For this discussion, no generality is lost by considering uniform time
steps. Let:

e u(x,t,) be the exact solution of the Galerkin problem (9.2.2a) at t = t,,.
e U(x,t,) be the exact solution of the semi-discrete Galerkin problem (9.2.8) at t = t,,.

e U™(x) be the approximation of U(z, t,) obtained by ODE software.

10 Parabolic Problems

e cj(t,) be the Galerkin coefficient at ¢ = t,; thus, for a one-dimensional problem

For a Lagrangian basis, ¢;(t,) = U(x;,t,).

e ¢} be the approximation of ¢; (t,) obtained by ODE software. For a one-dimensional

problem

U"(z) = z_: i p; (x).

We suppose that all solutions are known at time ¢, and that we seek to determine
them at time ¢,,,. The simplest numerical scheme for doing this is the forward Euler

method where (9.2.8) is evaluated at time ¢, and

Un+1(ib‘) _ Un(x)

Uz, ty) ~ A7

(9.2.9)

A simple Taylor’s series argument reveals that the local discretization error of such an
approximation is O(At). Substituting (9.2.9) into (9.2.8) yields

Un+1 _yn

Vo —%3

)+ AV, U™ = (V, f"), YvesS). (9.2.10a)

Evaluation of the inner products leads to

cn+1 —cn
M—— + K"c" =1". 9.2.10b
A HK'e ()

We have allowed the stiffness matrix and load vector to be functions of time. The mass
matrix would always be independent of time for differential equations having the explicit
form of (9.2.1a) as long as the spatial finite element mesh does not vary with time.
The ODEs (9.2.10a,b) are implicit unless M is lumped. If lumping were used and, e.g.,
M =~ hI then ¢"*! would be determined as

At
"t =c" + =-[I" - K"c¢"].
h
Assuming that ¢” is known, we can determine c¢"*! by inverting M.
Using the backward Euler method, we evaluate (9.2.8) at ¢,,; and use the approxi-

mation (9.2.9) to obtain

Un+1 _ynr

Vi—x

)+ AV, U = (V, "), Ve e Sy (9.2.11a)

9.2. Semi-Discrete Galerkin Problems 11

and
ntl _ on
M—Fr——+ K"ttt =1, (9.2.11b)
The backward Euler method is implicit regardless of whether or not lumping is used.

"+l yequires inversion of

1
- M Kn+1.
AT

The most popular of these simple schemes uses a weighted average of the forward and

Computation of ¢

backward Euler methods with weights of 1 — 6 and 6, respectively. Thus,

Un+1 _yn
v T) + (1= 0)AV,U") + 0A(V, U™ = (1 =0)(V, f") +0(V, [,
vV e Sy (9.2.12a)
and
cn+1 _ cn
M—FC—+ (1 —0)K"c" + K " 'c" = (1 — 91" 4 1", (9.2.12b)

The forward and backward Euler methods are recovered by setting # = 0 and 1, respec-
tively.
Let us regroup terms involving ¢” and ¢"*' in (9.2.12b) to obtain

M + 0AtK" ' e™ = [M — (1 — 0)AtK"]c" + At[(1 — 0)1" + 1", (9.2.12c¢)

n+1

Thus, determination of ¢ requires inversion of

M + ALK,

In one dimension, this system would typically be tridiagonal as with Example 9.2.1. In
higher dimensions it would be sparse. Thus, explicit inversion would never be performed.
We would just solve the sparse system (9.2.12¢) for ¢"*!.

Taylor’s series calculations reveal that the global discretization error is
le(tn) — "] = O(At)

for almost all choices of # € [0, 1] [6]. The special choice # = 1/2 yields the Crank-Nicolson

method which has a discretization error
lc(tn) — [l = O(AP).

The foregoing discussion involved one-step methods. Multistep methods are also used

to solve time-dependent finite element problems and we’ll describe them for an ODE in

12 Parabolic Problems

the implicit form (9.2.7). The popular backward difference formulas (BDFs) approximate
y(t) in (9.2.7) by a k th degree polynomial Y (¢) that interpolates y at the k + 1 times
tnii—i, © = 0,1,... k. The derivative y is approximated by Y. The Newton backward
difference form of the interpolating is most frequently used to represent Y [2, 3], but

since we're more familiar with Lagrangian interpolation we’ll write

k
y(O) R Y () =D y"IN(E), t€ (tnsimk tus], (9.2.13a)
=0
where
ot —tas
Nty =] ntly (9.2.13b)

Piryel¥ tnpi—i — tnt1—j

The basis (9.2.13b) is represented by the usual Lagrangian shape functions (c¢f. Section

24), SO Nz’(tn+17j) = 6zy

n+1—z2 1

Assuming y ,i=1,2,...,k, to be known, the unknown y"*! is determined by

collocation at ¢,1. Thus, using (9.2.7)
f(tni1, Y(tni1), Y(tas1)) = O. (9.2.14)

Ezample 9.2.2. The simplest BDF formula is obtained by setting & = 1 in (9.2.13) to
obtain
Y (1) = y" " No(t) +y"Ni(1),

t—t t—t
No(t) = —— =, Ny (t) = 7"“,
tn+1 - tn tn - tn+1
Differentiating Y ()
R n+l _ ,n
Y(0) =
n+1 n

thus, the numerical method (9.2.13) is the backward Euler method

n+l _ n
n+1 y y

=0.
’ tn-i—l _tn)

f(tn+17 y
Ezample 9.2.3. The second-order BDF follows by setting £ = 2 in (9.2.13) to get

Y (t) = y" T No(t) + y"Ni(t) + y" " No(t)

— (t — tn—l—l)(t - tn)
Nalt) = SINE !

where time steps are of duration At.

9.3. Finite FElement Methods in Time 13

Differentiating and setting t = ¢,

3 . 2 . 1

NO(tn+1) eV Ni(tn+1) = N

Thus,
3yn+1 _ 4yn + yn—l
2At

Y(tn-l—l) =
and the second-order BDF is

il 3yn+1 _ 4yn + yn—l

f(t, 1, , =0.
(+1, Y IAL)
Applying this method to (9.2.4a) yields
3cntl —4em 4 et
M Kn+1cn+1 — 1n+1.
N *

Thus, computation of ¢®! requires inversion of

M

— + K.

2At

Backward difference formulas through order six are available [2, 3, 6, 7, 8].

9.3 Finite Element Methods in Time

It is, of course, possible to use the finite element method in time. This can be done
on space-time triangular or quadrilateral elements for problems in one space dimension;
on hexahedra, tetrahedra, and prisms in two space dimensions; and on four-dimensional
parallelepipeds and prisms in three space dimensions. However, for simplicity, we’ll focus
on the time aspects of the space-time finite element method by assuming that the spatial
discretization has already been performed. Thus, we’ll consider an ODE system in the
form (9.2.4a) and construct a Galerkin problem in time by multiplying it by a test

function w € L? and integrating on (t,,%,1] to obtain
(w,Me¢), + (w,Kc), = (w,]),, VYw € L?(ty, tnii), (9.3.1a)

where the L? inner product in time is
tpt1
(w,¢), = / wlcdt. (9.3.1b)
tn

Only first derivatives are involved in (9.2.4a); thus, neither the trial space for ¢ nor the
test space for w have to be continuous. For our initial method, let us assume that c(t)

is continuous at t¢,. By assumption, c(¢,) is known in this case and, hence, w(t,) = 0.

14 Parabolic Problems

Example 9.3.1. Let us examine the method that results when c(¢) and w(t) are linear

on (tn,t,+1]). We represent c(t) in the manner used for a spatial basis as

c(7) &~ "N, (1) + "N,y (1) (9.3.2a)
where
Ny (7) = ! ; L Nau(n) = I;T (9.3.2b)
are hat functions in time and
po 2ot =t t"At_ fn+1 (9.3.2¢)
defines the canonical element in time. The test function
w =N, (7)1, 1,..., 1)F (9.3.2d)

vanishes at ¢, (7 = —1) and is linear on (¢, t,11).
Transforming the integrals in (9.3.1a) to (—1, 1) using (9.3.2¢) and using (9.3.2a,b,d)
yields

(w,M¢),, = 5 M dr,

At/ll—l—T ¢t —¢»
4 2 At

At (11 1— 1
(w, Kc), = —/ mal RS R
>), 2 2 2

(Again, we have written equality instead of & for simplicity.) Assuming that M and K

are independent of time, we have
Cn+1 —cn

(w, M&), = M———.

At
(w,Kc), = FK(C” +2¢"th).

Substituting these into (9.3.1a)

ntl_en At At [Tl
ME L Dl 4ot = —/ T (r)ar (9.3.32)
2 6 2), 2
or, if 1 is approximated like c,
ntl e At At
M% + TK(e" 2 = S 21, (9.3.3b)

Regrouping terms

2 1 1
M+ SAMK]e" ! = [M - S ATK]e" + g A" + 21, (9.3.3¢)

9.3. Finite FElement Methods in Time 15

we see that the piecewise-linear Galerkin method in time is a weighted average scheme
(9.2.12¢) with @ = 2/3. Thus, at least to this low order, there is not much difference be-
tween finite difference and finite element methods. Other similarities appear in Problem
1 at the end of this section.

Low-order schemes such as (9.2.12) are popular in finite element packages. Our pref-
erence is for BDF or implicit Runge-Kutta software that control accuracy through au-
tomatic time step and order variation. Implicit Runge-Kutta methods may be derived
as finite element methods by using the Galerkin method (9.3.1) with higher-order trial
and test functions. Of the many possibilities, we’ll examine a class of methods where the
trial function c(t) is discontinuous.

Ezxample 9.3.2. Suppose that c(¢) is a polynomial on (¢, t,1] with jump disconti-
nuities at ¢,, n > 0. When we need to distinguish left and right limits, we’ll use the

notation

c"” =limc(t, —¢), c"t =limc(t, + ¢). (9.3.4a)

e—0 e—0

With jumps at ¢,,, we’ll have to be more precise about the temporal inner product (9.3.1b)

and we’ll define

tn+l_€ tn+1_5

(u,v)p— = lim uvdt, (u,v)py = lim uvdt. (9.3.4b)

e—0 tn—e e—0 e

The inner product (u,v),_ may be affected by discontinuities in functions at t,, but

(u,v)n+ only involves integrals of smooth functions. In particular:

e (u,v), = (u,v)py when u(t) and v(t) are either continuous or have jump discon-

tinuities at £,;

e (u,v),— exists and (u,v),; = 0 when either uw or v are proportional to the delta
function §(t — t,); and

e (u,v), doesn’t exist while (v,u),y = 0 when both u and v are proportional to

5t — t,).
Suppose, for example, that v(¢) is continuous at ¢, and u(t) = 6(t — ¢,). Then
tnt1—€
(u,v)p_ = lim §(t — tp)v(t)dt = v(ty,).
e—0 t—e

The delta function can be approximated by a smooth function that depends on € as was
done in Section 3.2 to help explain this result.

Let us assume that w(t) is continuous and write ¢(¢) in the form

c(t)=c" +[c(t) —c" |H(t —t,) (9.3.5a)

16 Parabolic Problems

where

1, ift>0
H(t) = { 0, otherwise (9-3.5b)

is the Heawviside function and € is a polynomial in .

Differentiating
¢(t) =[c(t) —c"J0(t —t,) +C(t)H(t —t,). (9.3.5¢)

With the interpretation that inner products in (9.3.1) are of type (9.3.4), assume that

w(t) is continuous and use (9.3.5) in (9.3.1a) to obtain
w (t,)M(t,) (™ — ") + (W, M&),y + (W, K&y = (W, 1)y, VYwe H'. (9.3.6)

The simplest discontinuous Galerkin method uses a piecewise constant (p = 0) basis

in time. Such approximations are obtained from (9.3.5a) by selecting
c(t) = ¢t = ¢t

Testing against the constant function
w(t) =[1,1,...,1]"

and assuming that M and K are independent of ¢, (9.3.6) becomes
tn+1
M(c" ™ — ") + Ke At = / 1(t)dt.
tn

The result is almost the same as the backward Euler formula (9.2.11b) except that the
load vector 1 is averaged over the time step instead of being evaluated at ¢, ;.

With a linear (p = 1) approximation for ¢(¢), we have
c(t) = c" N, (1) + "D N, (1)
where N,,y;, i = 0,1, are given by (9.3.2b). Selecting the basis for the test space as
wi(t) = N[, 1,..., 1", i=0,1,

assuming that M and K are independent of ¢, and substituting the above approximations
into (9.3.6), we obtain
1 At tnt1

M(c"" — ") + §M(c(”+1)7 —c") + FK(QCM +cl) = Ny (t)dt
tn

9.3. Finite FElement Methods in Time 17

and
1 (n+1)— n+ At n+ (n+1)— 1
5M(c —c")+ FK(C +2c)= Npl(t)dt.
tn
Simplifying the expressions and assuming that 1(¢) can be approximated by a linear

function on (t,,t,1) yields the system

n+ (n+1)— At At
M(EET ey 2l (eent et) = 2 e,
2 6 6
(n+)— _ ont At At
M= K" 2) = 2t

This pair of equations must be solved simultaneously for the two unknown solution vectors
c"t and c¢"*Y~ . This is an implicit Runge-Kutta method.

Problems

1. Consider the Galerkin method in time with a continuous basis as represented by
(9.3.1). Assume that the solution c(¢) is approximated by the linear function
(9.3.2a-c) on (ty,t,41) as in Example 9.3.1, but do not assume that the test space

w(t) is linear in time.

1.1. Specifying
w(r) = w(r)[L,1,...,1]"
and assuming that M and K are independent ot ¢, show that (9.3.1a) is the

weighted average scheme
M + 0AtK]c" ! = [M — (1 — 0)AtK]c" + At[(1 —)" + 1™+

with X
_ ff1 w(T)N1+1(T)dT

f_ll w(r)dr
When different trial and test spaces are used, the Galerkin method is called a
Petrov-Galerkin method.

1.2. The entire effect of the test function w(t) is isolated in the weighting factor 6.
Furthermore, no integration by parts was performed, so that w(t) need not be
continuous. Show that the choices of w(t) listed in Table 9.3.1 correspond to
the cited methods.

2. The discontinuous Galerkin method may be derived by simultaneously discretizing
a partial differential system in space and time on Q x (¢ — n—, ¢(,41)-). This form
may have advantages when solving problems with rapid dynamics since the mesh

may be either moved or regenerated without concern for maintaining continuity

18 Parabolic Problems

‘ Scheme ‘ w ‘ 0 ‘
Forward Euler (9.2.10b) | §(1+7) | 0
Crank-Nicolson (9.2.12b) §(T) 1/2

Crank-Nicolson (9.2.12b) 1 1/2
Backward Euler (9.2.11b) | §(1 —7) | 1
Galerkin (9.3.3) Ny (1) | 2/3

Table 9.3.1: Test functions w and corresponding methods for the finite element solution
of (9.2.4a) with a linear trial function.

between time steps. Using (9.2.2a) as a model spatial finite element formulation,
assume that test functions v(x,y,t) are continuous but that trial functions u(x, y, t)
have jump discontinuities at ¢,. Assume Dirichlet boundary data and show that

the space-time discontinuous Galerkin form of the problem is

(Ua Ut)ST + (U('v tn)? u('? tn-i—) - u('? tn—)) + AST(”? u) = (Ua f)5T7
Yv € H&(Q X (tn+,t(n+1)_)),

t(n+1),
(v,u)sr :/ // vudxdydt
bt K

Agr(v,u) = (vg, pug) st + (vy, puy) st + (v, qu) s

where

and

In this form, the finite element problem is solved on the three-dimensional strips
Q x (tn,,t(nJrl),), n=0,1,....

9.4 Convergence and Stability

In this section, we will study some theoretical properties of the discrete methods that
were introduced in Sections 9.2 and 9.3. Every finite difference or finite element scheme

for time integration should have three properties:

1. Consistency: the discrete system should be a good approximation of the differential

equation.

2. Convergence: the solution of the discrete system should be a good approximation

of the solution of the differential equation.

3. Stability: the solution of the discrete system should not be sensitive to small per-

turbations in the data.

9.4. Convergence and Stability 19

Somewhat because they are open ended, finite difference or finite element approxi-
mations in time can be sensitive to small errors, e.g., introduced by round off. Let us

illustrate the phenomena for the weighted average scheme (9.2.12c¢)
M + 0AtK]c" ! = [M — (1 — 0)AtK]c™ + At[(1 — 01" + 61" 1], (9.4.1)

We have assumed, for simplicity, that K and M are independent of time.
Sensitivity to small perturbations implies a lack of stability as expressed by the fol-

lowing definition.

Definition 9.4.1. A finite difference scheme is stable if a perturbation of size ||J]| in-

troduced at time ¢, remains bounded for subsequent times ¢ < T and all time steps
At < Atyp.

We may assume, without loss of generality, that the perturbation is introduced at
time ¢ = 0. Indeed, it is common to neglect perturbations in the coefficients and confine
the analysis to perturbations in the initial data. Thus, in using Definition 9.4.1, we

consider the solution of the related problem
M + 0ALK]e" ! = [M — (1 —) AtK]e" + At[(1 —)" 4 91" 1],
" =c"+6.
Subtracting (9.4.1) from the perturbed system
M + AtK]6" ™ = [M — (1 — 0) AtK]d", 6’ =4, (9.4.2a)
where
0" =c" —c". (9.4.2Db)

Thus, for linear problems, it suffices to apply Definition 9.4.1 to a homogeneous version
of the difference scheme having the perturbation as its initial condition. With these

restrictions, we may define stability in a more explicit form.

Definition 9.4.2. A linear difference scheme is stable if there exists a constant C' > 0
which is independent of At and such that

187 < C18°)] (9.4.3)

asn — oo, At 5 0,t<T.

20 Parabolic Problems

Both Definitions 9.4.1 and 9.4.2 permit the initial perturbation to grow, but only
by a bounded amount. Restricting the growth to finite times ¢ < 71" ensures that the
definitions apply when the solution of the difference scheme ¢ — co as n — oo. When
applying Definition 9.4.2, we may visualize a series of computations performed to time
T with an increasing number of time steps M of shorter-and-shorter duration At such
that T" = MAt. As At is decreased, the perturbations 6", n = 1,2,..., M, should settle
down and eventually not grow to more than C' times the initial perturbation.

Solutions of continuous systems are often stable in the sense that c(t) is bounded for

all £ > 0. In this case, we need a stronger definition of stability for the discrete system.
Definition 9.4.3. The linear difference scheme (9.4.1) is absolutely stable if
1871 < 1]8°]. (9.4.4)

Thus, perturbations are not permitted to grow at all.
Stability analyses of linear constant coefficient difference equations such as (9.4.2)

involve assuming a perturbation of the form
0" = (\)"r. (9.4.5)
Substituting into (9.4.2a) yields
M + 0AK](A)" e = [M — (1 — 0)AtK](A\)"r.

Assuming that A # 0 and M + #AtK is not singular, we see that A is an eigenvalue and

r is an eigenvector of
M + 0AtK] ™' M — (1 — 0)AtK]ry, = A1y, k=1,2,...,N. (9.4.6)

Thus, 6" will have the form (9.4.5) with A = A and r = rj, when the initial perturbation

6° = r;,. More generally, the solution of (9.4.2a) is the linear combination

N

k=1

when the initial perturbation has the form

N
8= oy (9.4.7b)
k=1

Using (9.4.7a), we see that (9.4.2) will be absolutely stable when

M| <1, k=1,2,...,N. (9.4.8)

9.4. Convergence and Stability 21

The eigenvalues and eigenvectors of many tridiagonal matrices are known. Thus, the
analysis is often straight forward for one-dimensional problems. Analyses of two- and
three-dimensional problems are more difficult; however, eigenvalue-eigenvector pairs are
known for simple problems on simple regions.

Ezample 9.4.1. Consider the eigenvalue problem (9.4.6) and rearrange terms to get

or
()\k — l)MI‘k = —[)\kg + (1 - 9)]AtKI‘k
or
—Kry = ppMry
where
A — 1

=00 + (1 — 0)]At
Thus, py is an eigenvalue and ry is an eigenvector of —M ™K.
Let us suppose that M and K correspond to the mass and stiffness matrices of the

one-dimensional heat conduction problem of Example 9.2.1. Then, using (9.2.4b,c), we

have
2 —1 Tk 4 1 Tk1
_2 -1 2 -1 Tk _ :U’Lh 1 4 1 Tk2
h T : 6 :
-1 2 ThN-1 I 4 TrN-1

The diffusivity p and mesh spacing h have been assumed constant. Also, with Dirichlet
boundary conditions, the dimension of this system is N — 1 rather than N.
It is difficult to see in the above form, but writing this eigenvalue-eigenvector problem

in component form

p ph ,
E(rjil —2’[“]' —|-7”j+1) = T(ijl —|—4’I“j—|—’l“j+1), j=12,... ,N—1,
we may infer that the components of the eigenvector are
for i
Thi :sin%, j=1,2,... N —1.

This guess of r;, may be justified by the similarity of the discrete eigenvalue problem to
a continuous one; however, we will not attempt to do this. Assuming it to be correct, we
substitute r; into the eigenvalue problem to find

p,. krn(j—1) kmj km(j+1)

E(Sl T — 2SinT +SIHT)

22 Parabolic Problems

h o kr(j—1 kg kr(j + 1
_“g (sin ”(]N)+4sin%+sin%), j=1,2,...,N—1.
But kr(j — 1 kr(j + 1 ki k
sin MU= i BTURL) g g M7 s 27
and k kg ok kg
%(COSWW—I)SHI%:%(COSNW—FQ)SHI%.
Hence,

_ [(6p)\ [coskm/N —1
Pe= 1\ 12) \ cos kn/N+2)"
With cos km/N ranging on [—1,1], we see that —12p/h? < p < 0. Determining)y in
terms of 1
= + (1 — 0)At . LAt
B 1-— /LkgAt N 1— ,U,].CGAt

We would like [A;| < 1 for absolute stability. With py, < 0, we see that the requirement

that Ay < 1 is automatically satisfied. Demanding the A\, > —1 yields

| AF(1 — 26) < 2.

If @ > 1/2 then 1 — 20 < 0 and the above inequality is satisfied for all choices of py and
At. Methods of this class are unconditionally absolutely stable. When 6 < 1/2, we have

to satisfy the condition
pAt 1

< .
h? — 6(1—20)
If we view this last relation as a restriction of the time step At, we see that the forward
Euler method (€ = 0) has the smallest time step. Since all other methods listed in Table

9.3.1 are unconditionally stable, there would be little value in using the forward Euler

method without lumping the mass matrix. With lumping, the stability restriction of the
forward Euler method actually improves slightly to pAt/h? < 1/2.
Let us now turn to a more general examination of stability and convergence. Let’s

again focus on our model problem: determine u € H} satisfying

(v, us) + A(v,u) = (v, f), Vv € Hy, t >0, (9.4.9a)

(v,u) = (v,u), Vv € Hy, t=0. (9.4.9b)
The semi-discrete approximation consists of determining U € S C H} such that

(V,Uy) + A(V,U) = (V, f), vV e sy, t>0, (9.4.10a)

9.4. Convergence and Stability 23

V,U) =V, u°), vwes), t=o. (9.4.10b)

Trivial Dirichlet boundary data, again, simplifies the analysis.
Our first result establishes the absolute stability of the finite element solution of the

semi-discrete problem (9.4.10) in the L? norm.

Theorem 9.4.1. Let § € S satisfy

(V,8,) + A(V,6) =0, vV e Sy, t >0, (9.4.11a)
(V,0) =(V,8°), wvesy, t=0. (9.4.11b)

Then
16(-, - D)]lo < [16°]]o, t > 0. (9.4.11c)

Remark 1. With d(z,t) being the difference between two solutions of (9.4.10a) satis-
fying initial conditions that differ by 6°(x), the loading (V, f) vanishes upon subtraction
(as with (9.4.2)).

Proof. Replace V in (9.4.11a) by § to obtain
(9,0:) + A(6,0) =0,

or

=251} + A.6) =0,
Integrating
t
186 DIE = 15C- - 0)|2 — 2 / A(5,6)dr.

The result (9.4.11c) follows by using the initial data (9.4.11b) and the non-negativity of
A(9,9). O

We've discussed stability at some length, so now let us turn to the concept of conver-
gence. Convergence analyses for semi-discrete Galerkin approximations parallels the lines
of those for elliptic systems. Let us, as an example, establish convergence for piecewise-
linear solutions of (9.4.10) to solutions of (9.4.9).

Theorem 9.4.2. Let S} consist of continuous piecewise-linear polynomials on a family
of uniform meshes Ay characterized by their mazimum element size h. Then there exists
a constant C > 0 such that

Jnax lu = Ullo < C(1 + [log 75 |) Jnax [[]l2- (9-4.12)

24 Parabolic Problems

Proof. Create the auxiliary problem: determine W € S{¥ such that

—(V,Wi(e, 7)) + AV, W (-, 7)) =0, vV e Sy, 7€ (0,1), (9.4.13a)

Wz, y,t) = E(z,y,t) =Ulz,y,t) — Ulz,y,t), (9.4.13b)
where U € SY satisfies
AWV, u(-, -, 1) =U(, 7)) =0, VYvesS), 7e(0,1)]. (9.4.13c)

We see that W satisfies a terminal value problem on 0 < 7 < ¢ ant that U satisfies an
elliptic problem with 7 as a parameter.
Consider the identity

(W)= (W,) + (W, E).

Integrate and use (9.4.13b)
B0 = (0, 0) + [10V, B) + (0 B
Use (9.4.13a) with V replaced by F
IEC, - B)llo = (W, E(,-,0)) + /Ut[A(W, E) + (W, E;)]dr. (9.4.14)
Setting v in (9.4.9) and V' in (9.4.10) to W and subtracting yields
Wyu, —U;) + AW, u—U) =0, T >0,

(W,u—U)(0) =0, T =0.
Add these results to (9.4.14) and use (9.4.13b) to obtain

t

||E(7 7t)||g = (W,Q(, ,0)) +/ [A(Wv 9) + (W, 97)](17',

0

where

0=u—U.

The first term in the integrand vanishes by virtue of (9.4.13c). The second term is
integrated by parts to obtain

|wamﬁ=UﬁﬂwJD—AﬂﬂﬁMr (9.4.15)

9.4. Convergence and Stability 25

This result can be simplified slightly by use of Cauchy’s inequality (|(W, V)| < [|[W||o||V [o)

to obtain
t
IE(, -, t)ll5 < ||W(-,-,t)||o||9(-,-,t)||o+/0 1Welol|0][odT (9.4.15b)

Introduce a basis on S and write W in the standard form

N
(x,y, T Zc] T)oi(x,y). (9.4.16)

J=0

Substituting (9.4.16) into (9.4.13a) and following the steps introduced in Section 9.2, we

are led to

—Me¢ + Kc =0, (9.4.17a)

where
Mij = (¢4, ¢5), (9.4.17b)
= A(di, 0), i,j=1,2,...,N. (9.4.17c)

Assuming that the stiffness matrix K is independent of 7, (9.4.17a) may be solved exactly
to show that (¢f. Lemmas 9.4.1 and 9.4.2 which follow)

W m)o < NIEG - t)]los 0<7<H, (9.4.18a)

/ IWrllodr < C(1 + |log 75 |)||E(, ,0)lo- (9.4.18b)
Equation (9.4.18a) is used in conjunction with (9.4.15b) to obtain
t
B 015 < (UG Dll+ [I o) mas 07 o
Now, using (9.4.18b)
IE(,-t)llo < C(1+ |log%|) max 0.+, 7) o (9.4.19)

Writing
u-U=u-U+U-U=0-F

and taking an L? norm
[l = Ullo < (1010 + [1E]]o-

26 Parabolic Problems

Using (9.4.19)

t
lu—="Ullo < C(1+ |logﬁ|) max [|6(-, -, 7)]o- (9.4.20a)
7€(0,t]
Finally, since 6 satisfies the elliptic problem (9.4.13c), we can use Theorem 7.2.4 to
write
10C-, -, 7)o < CR*||u(, -, 7)o (9.4.20b)
Combining (9.4.20a) and (9.4.20b) yields the desired result (9.4.12). O

The two results that were used without proof within Theorem 9.4.2 are stated as

Lemmas.

Lemma 9.4.1. Under the conditions of Theorem 9.4.2, there exists a constant C > 0
such that

C
AV V) < SlIVIEG - YV e Sy (9.4.21)

Proof. The result can be inferred from Example 9.2.1; however, a more formal proof is
given by Johnson [9], Chapter 7. O

Instead of establishing (9.4.18b), we’ll examine a slightly more general situation. Let

¢ be the solution of
Me¢+Ke=0, t>0, ¢(0)=c" (9.4.22)

The mass and stiffness matrices M and K are positive definite, so we can diagonalize
(9.4.22). In particular, let A be a diagonal matrix containing the eigenvalues of MK

and R be a matrix whose columns are the eigenvectors of the same matrix, i.e.,
M 'KR = RA. (9.4.23a)
Further let
d(t) =R 'c(t). (9.4.23b)
Then (9.4.22) can be written in the diagonal form
d+Ad=0 (9.4.24a)

by multiplying it by (MR)™! and using (9.4.23a,b). The initial conditions generally
remain coupled through (9.4.23a,b), i.e.,

d(0) =d’" =R 'c". (9.4.24b)

With these preliminaries, we state the desired result.

9.5. Convection-Diffusion Systems 27

Lemma 9.4.2. If d(t) is the solution of (9.4.24) then

: Cld®
|d| + |Ad| < % t>0, (9.4.25a)
where |d| = VdTd. If, in addition,
A
maxﬂ < % (9.4.25b)
Ex0 |€] h
then
T T
/ (1] + | Ad]dt < C(1 -+ [1og 5 DI (9.4.25¢)
0
Proof. cf. Problem 1. O
Problems

1. Prove Lemma 9.4.2.

9.5 Convection-Diffusion Systems

Problems involving convection and diffusion arise in fluid flow and heat transfer. Let us

consider the model problem
u+w-Vu=V-(pVu) (9.5.1a)
where w = [wy,ws]T is a velocity vector. Written is scalar form, (9.5.1a) is
Uy + Wity + watly = (Py)z + (Puy)y. (9.5.1b)

The vorticity transport equation of fluid mechanics has the form of (9.5.1). In this case,
u would represent the vorticity of a two-dimensional flow.

If the magnitude of w is small relative to the magnitude of the diffusivity p(z,y),
then the standard methods that we have been studying work fine. This, however, is not
the case in many applications and, as indicated by the following example, standard finite
element methods can produce spurious results.

Ezxample 9.5.1 [1]. Consider the steady, one-dimensional, convection-diffusion equa-

tion
—eu" +u' =0, 0<z<l, (9.5.2a)
with Dirichlet boundary conditions

w©0)=1, u(l)=2. (9.5.2b)

28 Parabolic Problems

The exact solution of this problem is

6—(1—:0)/6 o e—l/e

u(r) =1+ =y (9.5.2¢)

If 0 < € < 1 then, as shown by the solid line in Figure 9.5.1, the solution features
a boundary layer near x = 1. At points removed from an O(e) neighborhood of z = 1,

the solution is smooth with u =~ 1. Within the boundary layer, the solution rises sharply
from its unit value to u =2 at x = 1.

2F N odd Q [b
o VAN ’O\ K 9}\(\, /I
/ \\ /N 7N ?‘ N ./H N /)
4 / \ 7* N A - n /
1t / A Al L VA NN i
¥ il o o Iy o 1 ® I
\ / I ! |
\ \ I \
| I I I (I I
\ I o I oy]
oOF \ / \ I \ | | ! | | N
| I I | I \ ! | |
\ ! \ ! | | \ ! \ |
\ ! \ | \ | \ ! \ |
-1+ \ / \ / | | \ | \ | i
\ /I \ I | | \ ! \ I
\ \ I \ | | ! | I
\ I/ \ ! \ | \ ! | I
2k \ \ / \ | \ ! | | _
v v I ! o
I ! |
\ / (. Lo \ ! o
\ Vo L \ ! (I
v VI VI \ ! [
-3r ;é \/ N \I \]
* | \’ W
¥ I y
N even
Wl) |
| | | | | |
0 0.2 0.4 0.6 0.8 1

Figure 9.5.1: Solutions of (9.5.2) with e = 1073. The exact solution is shown as a solid
line. Piecewise-linear Galerkin solutions with 10- and 11-element meshes are shown as
dashed and dashed-dotted lines, respectively [1].

The term eu” is diffusive while the term u' is convective. With a small diffusivity
€, convection dominates diffusion outside of the narrow O(e) boundary layer. Within
this layer, diffusion cannot be neglected and is on an equal footing with convection.
This simple problem will illustrate many of the difficulties that arise when finite element
methods are applied to convection-diffusion problems while avoiding the algebraic and
geometric complexities of more realistic problems.

Let us divide [0, 1] into N elements of width & = 1/N. Since the solution is slowly

varying over most of the domain, we would like to choose h to be significantly larger than

9.5. Convection-Diffusion Systems 29

the boundary layer thickness. This could introduce large errors within the boundary layer
which we assume can be reduced by local mesh refinement. This strategy is preferable to
the alternative of using a fine mesh everywhere when the solution is only varying rapidly
within the boundary layer.

Using a piecewise-linear basis, we write the finite element solution as

N
U) =Y cgi(x), e=1, cy=2 (9.5.3a)
=0
where
%, if v < <uay
or(z) = 75:;1—_;1@’ if oy <o <xpyr - (9.5.3b)
0, otherwise

The coefficients ¢y and ¢y are constrained so that U(zx) satisfies the essential boundary
conditions (9.5.2b).
The Galerkin problem for (9.5.2) consists of determining U(x) € S such that

(U + (¢, U) =0, i=12,...,N-1 (9.5.4a)

Since this problem is similar to Example 9.2.1, we’ll omit the development and just write

the inner products

(¢, U") = %(%—1 —2¢; + ¢ita), (9.5.4b)

(6, U") = % (9.5.4c)

Thus, the discrete finite element system is
h h .
(]_ - 2_)Ci+1 - 2Ci + (]_ + 2_)Ci—1 = 0, 1=]_, 2, ce ,N — 1. (954d)
€ €

The solution of this second-order, constant-coefficient difference equation is

1 — %
Ci:].—f-ﬁ, iZO,l,...,N, (9546)
1+ h/2e
= D.4f
b 1—h/2e (9:5.40)

The quantity h/2e is called the cell Peclet or cell Reynolds number. If h/2e < 1, then

=140 o(h) = oLy,

€ €

30 Parabolic Problems

which is the correct solution. However, if h/2e¢ > 1, then 3 ~ —1 and

- J 1, ifiis even
71 2, ifiisodd

when N is odd and
O(1/e), if 7 is odd

when N is even. These two obviously incorrect solutions are shown with the correct

,N{ (N +14)/N, if iis even

results in Figure 9.5.1.
Let us try to remedy the situation. For simplicity, we’ll stick with an ordinary differ-

ential equation and consider a two-point boundary value problem of the form

Llu] = —eu" +wu' + qu = f, 0<az<l, (9.5.5a)

u(0) = u(1) = 0. (9.5.5b)

Let us assume that u,v € H] with u' and v’ being continuous except, possibly, at
x =& € (0,1). Multiplying (9.5.5a) by v and integrating the second derivative terms by
parts yields

(v, Llu]) = A(v,u) + [eu'v]=¢ (9.5.6a)

where
A(v,u) = e(v',u') + (v,wu’) + (v, qu), (9.5.6b)
[Qla=¢ = Lim[Q(¢ +6) — Q(§ — 9)]. (9.5.6¢)

We must be careful because the “strain energy” A(v,u) is not an inner product since
A(u,u) need not be positive definite. We’ll use the inner product notation here for
convenience.

Integrating the first two terms of (9.5.6b) by parts
(v, L[u]) = (L[v], u) — [e(v'u — u'v) + woulo—¢
or, since u and v are continuous
(v, L[u]) = (£L[v], u) — [e(v'u — u'v)]o= (9.5.7a)
The differential equation
L¥v] = —ev” — (wv) + qu. (9.5.7b)

with the boundary conditions v(0) = v(1) = 0 is called the adjoint problem and the

operator L£*[] is called the adjoint operator.

9.5. Convection-Diffusion Systems 31

Definition 9.5.1. A Green’s function G(§,x) for the operator L[| is the continuous

function that satisfies

LG x)] = —€Gpp — (WG), + qG =0, z e (0,§)U (1), (9.5.8a)
G(0)=G(E1)=0 (9.5.8b)

1
[Go(&,2)]ome = —= (9.5.8¢)

~-
Evaluating (9.5.7a) with v(z) = G(&, z) while using (9.5.5a, 9.5.8) and assuming that
u'(z) € H'(0,1) gives the familiar relationship

ul€) = (Clu), G(€,) = / G(&,) (x)de. (9.5.9a)

A more useful expression for our present purposes is obtained by combining (9.5.7a) and
(9.5.6a) with v(z) = G(§,x) to obtain

u(§) = Au, G(§,4))- (9.5.9b)

As usual, Galerkin and finite element Galerkin problems for (9.5.5a) would consist of
determining v € H} or U € S C H such that

A(v,u) = (v, f), Vv € Hj, (9.5.10a)
and
AV, U)=(V,f), VveSY. (9.5.10b)
Selecting v = V' in (9.5.10a) and subtracting (9.5.10b) yields
A(V,e) =0, YveSy, (9.5.10c)
where
e(x) = u(z) — U(x). (9.5.10d)

Equation (9.5.9b) did not rely on the continuity of u'(z); hence, it also holds when u
is replaced by either U or e. Replacing u by e in (9.5.9b) yields

e(§) = Ale, G(&,) (9.5.11a)

32 Parabolic Problems
Subtacting (9.5.10¢)
e(§) = Ale,G(E,) = V). (9.5.11b)
Assuming that A(v,u) is continuous in H', we have
le(O] < Cllelll[|G(E,) = Vs (9-5.11c)

Expressions (9.5.11b,c) relate the local error at a point £ to the global error. Equation
(9.5.11c) also explains superconvergence. From Theorem 7.2.3 we know that |le||; =
O(h?) when SY consists of piecewise polynomials of degree p and u € HPL. The test
function V is also an element of SY; however, G(&,z) cannot be approximated to the

same precision as u because it may be less smooth. To elaborate further, consider
N
G) = VIt =>_llGE) - VI,
j=1

where

lu

%,j = / [(u')? + u?]du.

-1
If € € (vg_1,2x), £ = 1,2,...,N, then the discontinuity in G.(§,x) occurs on some
interval and G(&,) cannot be approximated to high order by V. If, on the other hand,
& =ux, k=0,1,..., N, then the discontinuity in G,(§, x) is confined to the mesh and
G(&, x) is smooth on every subinterval. Thus, in this case, the Green’s function can be
approximated to O(h?) by the test function V' and, using (9.5.11c), we have

u(zy,) = Ch?, k=0,1,...,N. (9.5.12)

The solution at the vertices is converging to a much higher order than it is globally.

Equation (9.5.11¢) suggests that there are two ways of minimizing the pointwise error.
The first is to have U be a good approximation of v and the second is to have V be a
good approximation of G (&, z). If the problem is not singularly perturbed, then the two
conditions are the same. However, when ¢ < 1, the behavior of the Green’s function is
hardly polynomial. Let us consider two simple examples.

Ezample 9.5.2 [5]. Consider (9.5.5) in the case when w(z) > 0, x € [0,1]. Balancing
the first two terms in (9.5.5a) implies that there is a boundary layer near z = 1; thus,
at points other than the right endpoint, the small second derivative terms in (9.5.5) may

be neglected and the solution is approximately

wu'y + qug = f, 0<az<l1, ur(0) =0,

9.5. Convection-Diffusion Systems 33

where ug is called the reduced solution. Near x = 1 the reduced solution must be
corrected by a boundary layer that brings it from its limiting value of ug(1) to zero.
Thus, for 0 < € < 1, the solution of (9.5.5) is approximately

u(z) ~ ug(z) — ug(l)e” =DM/
Similarly, the Green’s function (9.5.8) has boundary layers at x = 0 and x = . At
points other than these, the second derivative terms in (9.5.8a) may be neglected and

the Green’s function satisfies the reduced problem
—(wGR) +qGr =0, z € (0,6)U (& 1), Gr(&,x) € C(0,1), Gr(£,1)=0.

Boundary layer jumps correct the reduced solution at x = 0 and x = £ and determine an
asymptotic approximation of G(&,) as

G e 0 —w(0)z/e if
G(& x) ~ c(§) { e—}gzg’sfj)(é)/e, wlt, O)e 7 ;f i § 2 '

The function ¢(£) is given in Flaherty and Mathon [5].
Knowing the Green’s function, we can construct test functions that approximate it

accurately. To be specific, let us write it as

N

G(&7) = G(& x))t() (9.5.13)

i=1

where ¢;(x), j =0,1,...,N, is a basis. Let us consider (9.5.5) and (9.5.8) with w > 0,
x € [0,1]. Approximating the Green’s function for arbitrary ¢ is difficult, so we’ll restrict
£ toxg, k=0,1,..., N, and establish the goal of minimizing the pointwise error of
the solution. Mapping each subinterval to a canonical element, the basis ¥;(z), = €
(Tj—1,Tj11) Is

ZL‘—l’j

by(2) = P(=——) (9.5.14a)
where
. e i —1<s<0
b(s)=q =28 if0<s<1 (9.5.14b)
0, otherwise
where
hi
p="" (9.5.14c)

34 Parabolic Problems

-0.2 0 0.2 0.4 0.6 0.8 1

Figure 9.5.2: Canonical basis element 1) (s) for p = 0, 10, and 100 (increasing steepness).

is the cell Peclet number. The value of @ will remain undefined for the moment. The
canonical basis element 1)(s) is illustrated in Figure 9.5.2. As p — 0 the basis (9.5.14b)

becomes the usual piecewise-linear hat function

1+s, if —1<s<0
1/)(5)25 l—s, if0<s<1
0, otherwise

As p — 00, (9.5.14b) becomes the piecewise-constant function

- 1, if —1<s<0
v(s) = { 0, otherwise '

The limits of this function are nonuniform at s = —1, 0.
We're now in a position to apply the Petrov-Galerkin method with U € SY and
Ve S’év to (9.5.5). The trial space SV will consist of piecewise linear functions and, for

the moment, the test space will remain arbitrary except for the assumptions

1
Pi(x) € H'0,1], Pi(zr) = dj, /I@E(S)ds:l, i k=1,2,... ,N—1.
(9.5.15)

9.5. Convection-Diffusion Systems 35
The Petrov-Galerkin system for (9.5.5) is

e, U") + (i, wU') + (i, qU) = (i,), i=1,2,...,N = 1. (9.5.16)

Let us use node-by-node evaluation of the inner products in (9.5.16). For simplicity, we’ll

assume that the mesh is uniform with spacing h and that w and ¢ are constant. Then
whv) =5 [o

where U(s) is the mapping of U(z) onto the canonical element —1 < s < 1. With a

piecewise linear basis for U and the properties noted in (9.5.15) for ¢;, we find

e(vi, U') = —%52@. (9.5.17a)
We've introduced the central difference operator

6¢; = Ciy1/2 — Ci—1/2 (9.5.17Db)
for convenience. Thus,

(SZCZ' = (5(501) =Cjt1 — 2Ci + Ci—1. (9517C)

Considering the convective term,

w(t, U') = w /_1 D(s)U' (s)ds = w(pd — v6%/2)¢; (9.5.18a)

where p is the averaging operator

HC; = (Ci+1/2 + Ci_l/g)/2. (9518b)
Thus,

poc; = p(de;) = (¢ — ¢i1)/2. (9.5.18c¢)

Additionally,

1 ~ ~
v== [16s) = d(-o)lds (9.5.184)
0
Similarly

q(i,U) = qh /_1 zﬁ(s)f](s)ds = qh(1 — Bud + ad®/2)¢ (9.5.19a)

36 Parabolic Problems

where

o= /_1 Is[db(s)ds, (9.5.19D)

1
B = —/ sib(s)ds. (9.5.19¢)
-1
Finally, if f(z) is approximated by a piecewise-linear polynomial, we have
(thi, [) = h(1 — Bud + ad?/2) f; (9.5.20)

where f; = f(z;).

Substituting (9.5.17a), (9.5.18a), (9.5.19a), and (9.5.20) into (9.5.16) gives a difference
equation for ¢;, Kk =1,2,..., N — 1. Rather than facing the algebraic complexity, let us
continue with the simpler problem of Example 9.5.1.

Example 9.5.3. Consider the boundary value problem (9.5.2). Thus, ¢ = f(z) =0 in
(9.5.17-9.5.20) and we have

e(l, U") +w(, U') = —%52@ + w(ud — v6*/2)c;, i=1,2,...,N—1, (9.5.21a)
or, using (9.5.14c), (9.5.17¢), and (9.5.18c¢)
1 2 Ciy1 — Ci1

- —=)(Cit1 — 2¢; + ¢
(4 Dfess ~ 2+ i) + P

y =0, i=12...,N—1. (9.5.21b)

This is to be solved with the boundary conditions
co =1, cy = 2. (9.5.21¢)

The exact solution of this second-order constant-coefficient difference equation is

1 — %
cl—1+1_fN, i=0,1,...,N. (9.5.22a)
where
2/p+1
(=2 tUrt (9.5.22b)
v+2/p—1

In order to avoid the spurious oscillations found in Example 9.5.1, we’ll insist that
¢ > 0. Using (9.5.22b), we see that this requires

2
v >sgnp — —. (9.5.22¢)
p

Some specific choices of v follow:

9.5. Convection-Diffusion Systems 37

1. Galerkin’s method, v = 0. In this case,

~ - 1—|s
9) = (s = 1L
Using (9.5.22), this method is oscillation free when
2
— > 1.
ol

From (9.5.14c¢), this requires h < 2|e/w|. For small values of |¢/w]|, this would be
too restrictive.

~

2. Il’in’s scheme. In this case, 1(s) is given by (9.5.14b) and
2

v = coth p_z

2 p

This scheme gives the exact solution at element vertices for all values of p. Either
this result or the use of (9.5.22¢) indicates that the solution will be oscillation free

for all values of p. This choice of v is shown with the function 1 — 2/p in Figure
9.5.3.

3. Upwind differencing, v = sgnp. When p > 0, the shape function 1/3(5) is the

piecewise constant function

. 1, if —1<5<0
v(s) = { 0, otherwise '

This function is discontinuous; however, finite element solutions still converge.
With v =1, (9.5.22b) becomes

_2(1+1/p)
o 2/p

In the limit as p — oo, we have (~ p; thus, using (9.5.22a)

¢

ci~1—p N0 i=01,...,N, p>1.
This result is a good asymptotic approximation of the true solution.

Examining (9.5.21) as a finite difference equation, we see that positive values of 7 can
be regarded as adding dissipation to the system.

This approach can also be used for variable-coefficient problems and for nonuniform
mesh spacing. The cell Peclet number would depend on the local value of w and the

mesh spacing in this case and could be selected as

Boio
p; = JT“’J (9.5.23)

38 Parabolic Problems

0.9

0.8

0.7 n

0.6 ,

0.5 ,

041 n

0 1 2 3 4 5 6 7 8 9 10

Figure 9.5.3: The upwinding parameter v = coth p/2 — 2/p for I'in’s scheme (upper
curve) and the function 1 — 2/p (lower curve) vs. p.

where h; = x; — x;_; and @, is a characteristic value of w(z) when z € [x;_1,%,), e.g.,
w; = pwjt1/2. Upwind differencing is too diffusive for many applications. II'in’s scheme
offers advantages, but it is difficult to extend to problems other than (9.5.5).

The Petrov-Galerkin technique has also been applied to transient problems of ther
form (9.5.1); however, the results of applying II’in’s scheme to transient problems have
more diffusion than when it is applied to steady problems.

Ezxample 9.5.4 [4]. Consider Burgers’s equation
EUgy — UUy; = 0, 0<z<l,

with the Dirichlet boundary conditions selected so that the exact solution is

1—
u(z) = tanh L
€

Burgers’s equation is often used as a test problem because it is a nonlinear problem with
a known exact solution that has a behavior found in more complex problems. Flaherty
[4] solved problems with h/e = 6,500 and N = 20 using upwind differencing and Il'in’s
scheme (the Petrov-Galerkin method with the exponential weighting given by (9.5.14b)).

9.5. Convection-Diffusion Systems 39

h/e Maximum Error
Upwind | Exponential

6 0.124 0.0766

500 | 0.00200 0.00100

Table 9.5.1: Maximum pointwise errors for the solution of Example 9.5.4 using upwind
differencing (v = sgnp) and exponential weighting (v = coth p/2 — 2/p) [4].

The cell Peclet number (9.5.23) used

U(a:]), if /,LUj_l/Q <0
(I)j == MU(.’L'j_I/Q), if /,LUj_l/Q =0 .
U(l‘j—l), if MUj,1/2 >0
The nonlinear solution is obtained by iteration with the values of U(x) evaluated at the
beginning of an iterative step.

The results for the pointwise error

eloo = max Ju(z) — Ulz;)]

are shown in Table 9.5.1. The value of h/e = 6 is approximately where the great-
est difference between upwind differencing (v = sgnp) and exponential weighting (v =
cothp/2 — 2/p) exists. Differences between the two methods decrease for larger and
smaller values of h/e.

The solution of convection-diffusion problems is still an active research area and much
more work is needed. This is especially the case in two and three dimensions. Those
interested in additional material may consult Roos et al. [10].

Problems
1. Consider (9.5.5) when w(z) =, q(z) > 0, z € [0,1] [5].

1.1. Show that the solution of (9.5.5) is asymptotically given by

u(z) ~ L8 () etV _ gy (1) (-2

q(x)
Thus, the solution has O(y/€) boundary layers at both z = 0 and x = 1.

1.2. In a similar manner, show that the Green’s function is asymptotically given

by
1 e EVa&)/e if o < €
2[e2q(2)q(OIV | e @OV if p >

The Green’s function is exponentially small away from =z = &, where it has

G(& x) ~

two boundary layers. The Green’s function is also unbounded as O(e~/2?) at
r=¢&ase— 0.

40

Parabolic Problems

Bibliography

1]

2]

[10]

S. Adjerid, M. Aiffa, and J.E. Flaherty. Computational methods for singularly per-
turbed systems. In J.D. Cronin and Jr. R.E. O’Malley, editors, Analyzing Multiscale
Phenomena Using Singular Perturbation Methods, volume 56 of Proceedings of Sym-
posia in Applied Mathematics, pages 47-83, Providence, 1999. AMS.

U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

K.E. Brenan, S.. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Fquations. North Holland, New York, 1989.

J.E. Flaherty. A rational function approximation for the integration point in ex-
ponentially weighted finite element methods. International Journal of Numerical
Methods in Engineering, 18:782-791, 1982.

J.E. Flaherty and W. Mathon. Collocation with polynomial and tension splines for
singularly-perturbed boundary value problems. SIAM Journal on Sciedntific and
Statistical Computation, 1:260-289, 1990.

C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice Hall, Englewood Cliffs, 1971.

E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer-Verlag, Berlin, second edition, 1993.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential Algebraic Problems. Springer-Verlag, Berlin, 1991.

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-
ment method. Cambridge, Cambridge, 1987.

H.-G. Roos, M. Stynes, and L. Tobiska. Numerical Methods for Singularly Perturbed
Differential Equations. Springer-Verlag, Berlin, 1996.

41

Chapter 10

Hyperbolic Problems

10.1 Conservation Laws

We have successfully applied finite element methods to elliptic and parabolic problems;
however, hyperbolic problems will prove to be more difficult. We got an inkling of this
while studying convection-diffusion problems in Section 9.5. Conventional Galerkin meth-
ods required the mesh spacing h to be on the order of the diffusivity € to avoid spurious
oscillations. The convection-diffusion equation (9.5.1) changes type from parabolic to hy-
perbolic in the limit as € — 0. The boundary layer also leads to a jump discontinuity in
this limit. Thus, a vanishingly small mesh spacing will be required to avoid oscillations,
at least when discontinuities are present. We’ll need to overcome this limitation for finite
element methods to be successful with hyperbolic problems.

Instead of the customary second-order scalar differential equation, let us consider
hyperbolic problems as first-order vector systems. Let us confine our attention to con-

servation laws in one space dimension which typically have the form

w, + £(u), = b(z, £, 1), (10.1.1a)
where
i it YA
awn=| PV = | P bt = v
(2, 1) fu(w) b (2, 1, 1)
(10.1.1b)

are m-dimensional density, flux, and load vectors, respectively. It’s also convenient to
write (10.1.1a) as

u; + A(u)u, = b(z,t,u) (10.1.2a)

2 Hyperbolic Problems

where the system Jacobian is the m X m matrix
A(u) = f(u),. (10.1.2b)

Equation (10.1.1a) is called the conservative form and (10.1.2a) is called the convective

form of the partial differential system.
Conditions under which (10.1.1) and (10.1.2) are of hyperbolic type follow.

Definition 10.1.1. If A has m real and distinct eigenvalues \; < Ay < ... < A, and,
hence, m linearly independent eigenvectors p("), p, ... p(™, then (10.1.2a) is said to

be hyperbolic.

Physical problems where dissipative effects can be neglected often lead to hyperbolic
systems. Areas where these arise include acoustics, dynamic elasticity, electromagnetics,
and gas dynamics. Here are some examples.

Example 10.1.1. The Euler equations for one-dimensional compressible inviscid flows

satisfy
pr+my =0, (10.1.3a)
2
7m+w%}+ppzo, (10.1.3b)
@+Ke+m%h:0. (10.1.3¢)

Here p, m, e, and p are, respectively, the fluid’s density, momentum, internal energy, and
pressure. The fluid velocity u = m/p and the pressure is determined by an equation of

state, which, for an ideal fluid is
p=(y—1)e— 2], (10.1.34)

where v is a constant. Equations (10.1.3a), (10.1.3b), and (10.1.3¢) express the facts that
the mass, momentum, and energy of the fluid are neither created nor destroyed and are,
hence, conserved. We readily see that the system (10.1.3) has the form of (10.1.1) with

s | H
u= : f(u)={ m?/ : b(z,t,u) =10 | . (10.1.4)
leJ @+g;Z t [OJ

Example 10.1.2. The deflection of a taut string has the form

Uy = a*uge + q(7), (10.1.5a)

10.1. Conservation Laws 3

ﬂ u(x,t)
T < o

=4

=0 X

I
ry

Figure 10.1.1: Geometry of the taut string of Example 10.1.2.

where a®> = T'/p with T being the tension and p being the linear density of the string (Fig-
ure 10.1.1). The lateral loading ¢(z) applied in the transverse direction could represent
the weight of the string.

This second-order partial differential equation can be written as a first-order system

of two equations in a variety of ways. Perhaps the most common approach is to let
uy = uy, Uy = Gy, (10.1.5b)

Physically, ui(x,t) is the velocity and wus(z,t) is the stress at point z and time ¢ in the
string. Differentiating with respect to ¢ while using (10.1.5a) and (10.1.5b) yields

(w1)r = uy = a*uyy + q(x) = a(uz), + q(z), (ug); = AUz = Aty = aluy),.

Thus, the one-dimensional wave equation has the form of (10.1.1) with

= [“1 }) = [—cu, } . blntu) = {‘J(Ox)] | (10.1.5¢)

—CU

In the convective form (10.1.2), we have

A= { 0 —a] . (10.1.5d)

10.1.1 Characteristics

The behavior of the system (10.1.1) can be determined by diagonalizing the Jacobian
(10.1.2b). This can be done for hyperbolic systems since A (u) has m distinct eigenvalues
(Definition 10.1.1). Thus, let

P=[pY,p?,. .. p™] (10.1.6a)
and recall the eigenvalue-eigenvector relation

AP = PA, (10.1.6b)

4 Hyperbolic Problems

where

Multiplying (10.1.2a) by P~" and using (10.1.6b) gives
P, + P 'Au, =P ', + AP 'y, =P 'b.
Let
w=Plu

so that

wi+Aw, =P 'y, + (P)yu+ AP 'u, + (P71),ul.

Using (10.1.7)
w; + Aw, = Qw + g,
where
Q=[P "), +AP)P, g=P'b.

In component form, (10.1.8a) is

(wi)y + Ni(w;) g quw]nLgZ, i=1,2,...,m.

(10.1.6¢)

(10.1.7)

(10.1.8a)

(10.1.8b)

(10.1.8¢)

Thus, the transformation (10.1.7) has uncoupled the differentiated terms of the original

system (10.1.2a).

Consider the directional derivative of each component w;, 2 =1,2,...

dw; d)
;2 = (wi): + (wi)xd_f, i=1,2,...,m,
in the directions
dx)
%ZM i=1,2,...,m,

and use (10.1.8¢) to obtain

d
wl quw]ﬂng, 1=1,2,...,m.

,m, of w,

(10.1.9a)

(10.1.9b)

10.1. Conservation Laws 5

The curves (10.1.9a) are called the characteristics of the system (10.1.1, 10.1.2). The
partial differential equations (10.1.2) may be solved by integrating the 2m ordinary dif-
ferential equations (10.1.9a, 10.1.9b). This system is uncoupled through its differentiated
terms but coupled through Q and g. This method of solution is, quite naturally, called
the method of characteristics. While we could develop numerical methods based on the

method of characteristics, they are generally not efficient when m > 2.

Definition 10.1.2. The set of all points that determine the solution at a point P(zy, %)

is called the domain of dependence of P.

Consider the arbitrary point P(z,%y) and the characteristics passing through it as
shown in Figure 10.1.2. The solution u(x,?y) depends on the initial data on the interval
[A, B] and on the values of b in the region AP B, bounded by [A, B] and the characteristic
curves £ = A\; and © = \,,,. Thus, the region APB is the domain of dependence of P.

t P(X,:t o)

7

X

Figure 10.1.2: Domain of dependence of a point P(xg,ty). The solution at P depends on
the initial data on the line [A, B] and the values of b within the region APB bounded
by the characteristic curves dx/dt = A\, \y.

Example 10.1.3. Consider an initial value problem for the forced wave equation
(10.1.5a) with the initial data

u(z,0) = u’(z), uy(z,0) = u°(x),

~—

0 < T <.

Transforming (10.1.5a) using (10.1.5b) yields the first-order system (10.1.2) with A and
b given by (10.1.5). Using (10.1.5b), The initial conditions become

uy (7,0) = a°(z), uy(w,0) = aul(z), —00 < & < 00.

6 Hyperbolic Problems

With A given by (10.1.5), we find its eigenvalues as A, » = £a. Thus, the character-
istics are

T = *a,
and the eigenvectors are
|
Since P~! = P, we may use (10.1.7) to determine the canonical variables as

U + Uo UL — Usy
) Wy =
V2

From (10.1.8), the canonical form of the problem is

w, =

S

(w1) — alwy), = (wa); + alwq), =

S
9

The characteristics integrate to
T = x9 — at, T = 29 + at,

and along the characteristics, we have

dwy _ 4
dt /2

Integrating, we find

0 I
wi(z,t) = wi(x) + ﬁ/o q(zo — at)dr

or
1 xo—at

wy(, t) = uf(20) — —= a(€)de.
av'2 Jg,
It’s usual to eliminate xy by using the characteristic equation to obtain
1 T

a\/§ z+at

wy(,t) = wi(z +at) — q(§)de.

Likewise
1 xr

a\/§ T—at 1

The domain of dependence of a point P(xg,to) is shown in Figure 10.1.3. Using the

wy(z,t) = w3 (x — at) + (&)dE.

bounding characteristics, it is the triangle connecting the points (zo, %), (z¢ — ato,0),
and (xy + atp,0). (Actually, with ¢ being a function of = only, the domain of dependence

only involves values of ¢(z) on the subinterval (zq — atg,0) to (x¢ + aty,0).)

10.1. Conservation Laws 7

th P(X ot)

dx/dt = -a

X

e
o

XO+ ato

xo-at 0

Figure 10.1.3: The domain of dependence of a point P(xy,y) for Example 10.1.3 is the
triangle connecting the points P, (xy — atg,0), and (zq + aty, 0).

Transforming back to the physical variables

(2,) = ——(wn +w2) = = [w(z + at) + wd(z — at)] + — / 2(€)de.

\/i \/5 2a —at
1 1, . 1, [° @
u(, 1) = ﬁ(wl —wy) = ﬁ[wl(:ﬁat) —wy (7 —at)] = —[/x q(&)d«SJr/“tq(&)d«S]-

a +at
Suppose, for simplicity, that u°(x) = 0, then

(,0) = 0 = —lw(x) + wh(o)],
0(z) = L wd(x) — wd(x
us(z,0) = auy(z) = \/5[1(@) — wy(2)].
Thus,
() = —wl(z) = auy(x)
wy (z) = o(7) = V2
and

a z+at
wlot) = Slud(o+at) ~ e —at] + 5 [a©)de
r—at

a 1 xr xr
i) = S1uo +at) + (e —at)] - oo [a(@de+ [aie)
2 2a z+at r—at
Since us = au,, we can integrate to find the solution in the original variables. In order
to simplify the manipulations, let’s do this with ¢(x) = 0. In this case, we have

uy(z,t) = g[ug(x + at) + ud(x — at)];

8 Hyperbolic Problems

hence,
m%w:%w%x+wy+m®—am.
The solution for an initial value problem when
r+1, if —1<x<0

w(z)=<{ 1—=z, if0<z<1
0, otherwise

is shown in Figure 10.1.4. The initial data splits into two waves having half the initial

amplitude and traveling in the positive and negative x directions with speeds a and —a,

respectively.
u(x,0) u(x,1/2a)
A A
T T >X i i >
1 1 1 1 X
u(x,la) u(x,3/2a)
A A
| — | —
-1 1 X -1 1 X

Figure 10.1.4: Solution of Example 10.1.3 at t = 0 (upper left), 1/2a (upper right), 1/a
(lower left), and 3/2a (lower right).

10.1.2 Rankine-Hugoniot Conditions

For simplicity, let us neglect b(x,¢,u) in (10.1.1a) and consider the integral form of the
conservation law
d [P
dt Jo
which states that the rate of change of u within the interval o < z < 3 is equal to the

udr = —f(u)|? = —f(u(B,t)) + f(u(a, 1)), (10.1.10)

change in its flux through the boundaries © = «, 5.

If f and u are smooth functions, then (10.1.10) can be written as

B
/[m+fm%ux:a

10.1. Conservation Laws 9

If this result is to hold for all “control volumes” («, /), the integrand must vanish, and,
hence, (10.1.1a) and (10.1.10) are equivalent.

To further simplify matters, let confine our attention to the scalar conservation law

w+ f(u), =0 (10.1.11a)
with
df (u)
= 10.1.11b
alw) = 5, (10.1.11b)
and
up + a(u)u, = 0. (10.1.11c)
The characteristic equation is
d
d—f =\ = a(u). (10.1.12a)

The scalar equation (10.1.11c) is already in the canonical form (10.1.8a). We calculate

the directional derivative on the characteristic as

du dz
- — - = =0. 10.1.12
o ugdt + Uy o =t a(u)uy, =0 (10 b)

Thus, in this homogeneous scalar case, u(x,t) is constant along the characteristic curve
(10.1.9a).
For an initial value problem for (10.1.11a) on —oo < x < oo, t > 0, the solution

would have to satisfy the initial condition
u(z,0) = u’(z), —00 < x < 00. (10.1.13)

Since u is constant along characteristic curves, it must have the same value that it had
initially. Thus, u = u°(zy) = uj) along the characteristic that passes through (z¢,0). From

(10.1.12a), we see that this characteristic satisfies the ordinary initial value problem

d
d_”tc =a(uf), t>0, x(0) = (10.1.14)

Integrating, we determine that the characteristic is the straight line
T = 29 + alug)t. (10.1.15)

This procedure can be repeated to trace other characteristics and thereby construct
the solution.

10 Hyperbolic Problems

L U(xt)

u(x,0) = @Xx) u(xt) = @(x-at)

a ~ X

at

Figure 10.1.5: Characteristic curves and solution of the initial value problem (10.1.11a,
10.1.13) when «a is a constant.

Ezample 10.1.4. The simplest case occurs when a is a constant and f(u) = au. All
of the characteristics are parallel straight lines with slope 1/a. The solution of the initial
value problem (10.1.11a, 10.1.13) is u(z,) = u’(x —at) and is, as shown in Figure 10.1.5,
a wave that maintains its shape and travels with speed a.

Ezample 10.1.5. Setting a(u) = v and f(u) = v?/2 in (10.1.11a, 10.1.11b) yields the
inviscid Burgers’ equation

1
u + §(u2)x = 0. (10.1.16)

Again, consider an initial value problem having the initial condition (10.1.13), so the

characteristic is given by (10.1.15) with ag = u(zg, 0) = u°(zp), i.e.,
x =z + u’(mp)t. (10.1.17)

The characteristics are straight lines with a slope that depends on the value of the

initial data; thus, the characteristic passing through the point (zg,0) has slope 1/u°(x).

10.1. Conservation Laws 11

The fact that the characteristics are not parallel introduces a difficulty that was not
present in the linear problem of Example 10.1.4. Consider characteristics passing through
(79,0) and (x1,0) and suppose that u’(zg) > u®(z;) for x; > xo. Since the slope of the
characteristic passing through (xg,0) is less than the slope of the one passing through
(x1,0), the two characteristics will intersect at a point, say, P as shown in Figure 10.1.6.

The solution would appear to be multivalued at points such as P.

Figure 10.1.6: Characteristic curves for two initial points zy and z; for Burgers’ equation
(10.1.16). The characteristics intersect at a point P.

In order to clarify matters, let’s examine the specific choice of u° given by Lax [20]

1, if x <0
wW(@)=4 1—z, if0<a<1 . (10.1.18)
0, if 1<z

Using (10.1.17), we see that the characteristic passing through the point (x¢,0) satisfies

To + t, if To <0
T = Ty + (1 — xo)t, ifo<z<1 . (10.1.19)
T, if1 <z

Several characteristics are shown in Figure 10.1.7. The characteristics first intersect at
t = 1. After that, the solution would presumably be multivalued, as shown in Figure
10.1.8.

It’s, of course, quite possible for multivalued solutions to exist; however, (i) they
are not observed in physical situations and (i) they do not satisfy (10.1.11a) in any
classical sense. Discontinuous solutions are often observed in nature once characteristics

of the corresponding conservation law model have intersected. They also do not satisfy

12 Hyperbolic Problems

1 X

Figure 10.1.7: Characteristics for Burgers’ equation (10.1.16) with initial data given by
(10.1.18).
A U(x,0) A u(x,12)

A u(x1) 1 u(x,3/2)

| - |
I T T T T b I T 1 T T

0 1 2 X 0 1 2 X

Figure 10.1.8: Multivalued solution of Burgers’ equation (10.1.16) with initial data given
by (10.1.18). The solution u(z,t) is shown as a function of x for ¢ = 0, 1/2, 1, and 3/2.

(10.1.11a), but they might satisfy the integral form of the conservation law (10.1.1). We
examine the simplest case when two classical solutions satisfying (10.1.11a) are separated
by a single smooth curve x = £(t) across which u(z,t) is discontinuous. For each t > 0

we assume that o < £(t) < (3 and let superscripts - and + denote conditions immediately

10.1. Conservation Laws 13

to the left and right, respectively, of z = £(t). Then, using (10.1.1), we have

+

O e = S [e [e =
— uar = — uazxr + uar| = —flu)l,
dt |, dt'), c

or, differentiating the integrals

3) B .
/ wdr +u & + / wdr — utET = —f(U)|Z
a '

The solution on either side of the discontinuity was assumed to be smooth, so (10.1.11a)
holds in (o, &) and (£, 3) and can be used to replace the integrals. Additionally, since
¢ is smooth, £~ = £+ = £. Thus, we have

—f@s +u €= fu)l —uté=—f(u)l,
or
E(ut —u™) = f(u™) — f(u). (10.1.20)
Let
d=q¢" —q (10.1.21a)
denote the jump in a quantity ¢ and write (10.1.20) as

[wlé = [f(w)]. (10.1.21D)

Equation (10.1.21b) is called the Rankine-Hugoniot jump condition and the discontinuity
is called a shock wave. We can use the Rankine-Hugoniot condition to find a discontinuous
solution of Example 10.1.5.

Example 10.1.6. For t < 1, the discontinuous solution of (10.1.16, 10.1.18) is as given
in Example 10.1.5. For t > 1, we hypothesize the existence of a single shock wave, passing
through (1,1) in the (z,%)-plane. As shown in Figure 10.1.9, the solution of Example
10.1.5 can be used to infer that v~ =1 and u* = 0. Thus, f(u") = (v")*/2 =1/2 and
f(ut) = (u™)?/2 = 0. Using (10.1.21Db), the velocity of the shock wave is

-1
£=5

Integrating, we find the shock location as

E=-t+ec.

14 Hyperbolic Problems

& = (t + 1)/2
At
1 —
0 1 X
Figure 10.1.9: Characteristics and shock discontinuity for Example 10.1.6.
A U(x,0) u(x,1/2)
I % w % % % - } % w % % % -
0 1 2 X 0 1 2 X
A u(x,1) A u(x,3/2)
| % —— | —
0 1 2 X 0 1 2 X

Figure 10.1.10: Solution u(zx,t) of Example 10.1.6 as a function of z at t = 0, 1/2, 1, and
3/2. The solution is discontinuous for ¢ > 1.

Since the shock passes through (1,1), the constant of integration ¢ = 1/2, and

§= %(t +1). (10.1.22)

10.1. Conservation Laws 15

The characteristics and shock wave are shown in Figure 10.1.9 and the solution u(z, t)
is shown as a function of x for several times in Figure 10.1.10.

Let us consider another problem for Burgers’ equation with different initial conditions
that will illustrate another structure that arises in the solution of nonlinear hyperbolic
systems.

Ezample 10.1.7. Consider Burgers’ equation (10.1.16) subject to the initial conditions

0, ifz<0
w(r)=4 z, if0<z<1 . (10.1.23)
1, if1 <z

Using (10.1.17) and (10.1.23), we see that the characteristic passing through (z¢,0) sat-
isfies
T, if <0

r=1 mo(l+t), if0<z<1 . (10.1.24)
Ty + 1, if1 <z

These characteristics, shown in Figure 10.1.11, may be used to verify that the solution,
shown in Figure 10.1.12, is continuous. Additional considerations and difficulties with
nonlinear hyperbolic systems are discussed in Lax [20].

Ezample 10.1.8. A Riemann problem is an initial value (Cauchy) problem for (10.1.1)
with piecewise-constant initial data. Riemann problems play an important role in the
numerical solution of conservation laws using both finite difference and finite element
techniques. In this introductory section, let us illustrate a Riemann problem for the

inviscid Burgers’ equation (10.1.16). Thus, we apply the initial data

. ur, if x <0
u(z,0) = { up ifr>0 (10.1.25)

As in the previous two examples, we have to distinguish between two cases when
ur, > ug and uyr, < ugr. The solution may be obtained by considering piecewise-linear
continuous initial conditions as in Examples 10.1.6 and 10.1.7, but with the “ramp”
extending from 0 to e instead of from 0 to 1. We could then take a limit as e — 0. The
details are left to an exercise (Problem 1 at the end of this section).

When u; > upg, the characteristics emanating from points zy < 0 are the straight
lines * = xy + urt (¢f (10.1.17)). Those emanating from points xy > 0 are x =
xo + ugrt. The characteristics cross immediately and a shock forms. Using (10.1.20), we
see that the shock moves with speed & = (ur, +ug)/2. The solution is constant along the

characteristics and, hence, is given by

oup, ifx/t < (up+ugr)/2
u(z,t) = { up, if 3/t > (g +ug)/2 ur, > Ug. (10.1.26a)

16 Hyperbolic Problems

0

Figure 10.1.11: Characteristics for Example 10.1.7.
A U(x,0) u(x,1/2)

1+ 11+

A u(x,1) u(x,3/2)

Figure 10.1.12: Solution u(zx,t) of Example 10.1.7 as a function of z at t = 0, 1/2, 1, and
3/2.

10.1. Conservation Laws 17

Several characteristics and the location of the shock are shown in Figure 10.1.13.

When u; < ug, the characteristics do not intersect. There is a region between the
characteristic z = urt emanating from 2y = 0~ and x = ugt emanating from z; = 0"
where the initial conditions fail to determine the solution. As determined by either
the limiting process suggested in Problem 1 or thermodynamic arguments using entropy
considerations [20], no shock forms and the solution in this region is an expansion fan.
Several characteristics are shown in Figure 10.1.13 and the expansion solution is given
by

ur, if z/t <uy
u(z,t) =< x/t, ifu, <z/t<ug , ur, < ug. (10.1.26b)
UR, if ZL‘/t Z UR

w [[/ 7z

Figure 10.1.13: Shock (left) and expansion (right) wave characteristics of the Riemann
problem of Example 10.1.8.

We conclude this example by examining the solution of the Riemann problem along
the line x = 0. Characteristics for several choices of initial data are shown in Figure
10.1.14 and, by examining these and (10.1.26), we see that

Uur,, if ur, Up > 0
UR, if ur, Up < 0

w(0,8) =< 0, ifu;, <0, ug>0)
ur, if up >0, ug <0, (UL+UR)/2>0
ug, if urp >0, ug <0, (UL+UR)/2<0

This data will be useful when constructing numerical schemes based on the solution of
Riemann problems.

Problems

18 Hyperbolic Problems

Y

x
X

<V
<V

\

X X

Figure 10.1.14: Characteristics of Riemann problems for Burgers’ equation when uy, ugp >
0 (top); ur,ur < 0 (center); up, > 0, ugr < 0, (ug + ug)/2 > 0 (bottom left); and
ur, < 0,ur > 0 (bottom right).

1. Show that the solution of the Riemann problem (10.1.16, 10.1.25) is given by

(10.1.26). You may begin by solving a problem with continuous initial data, e.g.,

UL, if v < —e¢
u(z,0) = ¢ FE(e—2)+ FE(e+a), if —e<z<e
UR, ife<ux

and take the limit as € — 0.

10.2. Discontinuous Galerkin Methods 19

10.2 Discontinuous Galerkin Methods

In Section 9.3, we examined the use of the discontinuous Galerkin method for time
integration. We’ll now examine it as a way of performing spatial discretization of con-
servation laws (10.1.1). The method might have some advantages when solving problems
with discontinuous solutions. The discontinuous Galerkin method was first used for to
solve an ordinary differential equation for neutron transport [21]. At the moment, it
is very popular and is being used to solve ordinary differential equations [24, 19] and
hyperbolic [5, 6, 7, 8, 12, 11, 13, 16], parabolic [14, 15], and elliptic [4, 3, 28] partial
differential equations. A recent proceedings contains a complete and current survey of
the method and its applications [10].

The discontinuous Galerkin method has a number of advantages relative to traditional
finite element methods when used to discretize hyperbolic problems. We have already
noted that it has the potential of sharply representing discontinuities. The piecewise
continuous trial and test spaces make it unnecessary to impose interelement continuity.
There is also a simple communication pattern between elements that makes it useful for
parallel computation.

We'll begin by describing the method for conservation laws (10.1.1) in one spatial
dimension. In doing this, we present a simple construction due to Cockburn and Shu [12]
rather than the (more standard) approach [19] used in Section 9.3 for time integra-
tion. Using a method of lines formulation, let us divide the spatial region into elements
(zj_1,2;), 7 =1,2,...,N, and construct a local Galerkin problem on Element (z;_;, ;)
in the usual manner by multiplying (10.1.1a) by a test function v and integrating to
obtain

x;
/ v + f(u),]dz = 0. (10.2.1a)
@1
The loading term b(x,¢,u) in (10.1.1a) causes no conceptual or practical difficulties and
we have neglected it to simplify the presentation.
Following the usual procedure, let us map (z;_1,z;) to the canonical element (—1, 1)

using the linear transformation

1— 1
xr = Tgl'j_l + %gl'j. (1021b)
Then, after integrating the flux term in (10.2.1a) by parts, we obtain
hs 1 1
5‘7/ viwdé +vif(u)t, = / ng(u)dg (10.2.1c)
—1 -1

where

hj =Tj; —Tj-1- (1021(1)

20 Hyperbolic Problems

Without a need to maintain interelement continuity, there are several options available
for selecting a finite element basis. Let us choose one based on Legendre polynomials.
As we shall see, this will produce a diagonal mass matrix without a need to use lumping.
Thus, we select the approximation U,(z,t) of u(x,t) on the mapping of (z,_1, z;) to the

canonical element as
p
Ui (60 =) et Pl (10.2.2a)
k=0

where c;(t) is an m-vector and Py () is the Legendre polynomial of degree £ in £. Recall

(cf. Section 2.5), that the Legendre polynomials satisfy the orthogonality relation

! 26
P(6)P;(€)dE = 4 i > 10.2.2b
[op©d = iz (10.2.20)
are normalized as
P(1)=1, i>0, (10.2.2¢)

P(§) = (-1)'P(=€), i>0. (10.2.2d)
The first six Legendre polynomials are

Pﬂ(g)zla Pl(é-)zga
2 _ 3 _
pO=2"2 pe=2%
_ 356 — 3067 + 3 _ 63¢° — T08% + 15¢

2 ’ 8

Py(€)

P5(¢) (10.2.3)

These polynomials are illustrated in Figure 10.2.1). Additional information appears in
Section 2.5 and Abromowitz and Stegen [1].
Substituting (10.2.2a) into (10.2.1c), testing against P;(¢), and using (10.2.2b-d) yields

S (U 0) — (O = [TS

i = 1,2,....,p (10.2.4a)

where () = d()/dt.
Neighboring elements must communicate information to each other and, in this form

of the discontinuous Galerkin element method, this is done through the boundary flux

10.2. Discontinuous Galerkin Methods 21

0.8 /

0.6f /]l

0.4

/'f
-1 L | | | | | | | | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 10.2.1: Legendre polynomials of degrees p =0,1,...,5.

terms. The usual practice is to replace the boundary flux terms f(U(xy,t), k =j — 1, j,

by a numerical flux function
f(U(ZL‘k,t) ~ F(Uk($k,t)),Uk+1(l'k,t)) (1024b)

that depends on the approximate solutions U, and U, on the two elements sharing the
vertex at xy. Cockburn and Shu [12] present several possible numerical flux functions.

Perhaps, the simplest is the average

F(Uy(26.1). g (. 1) = o)+ H0kia (1)) (10.2.52)

Based on our work with convection-diffusion problems in Section 9.5, we might expect

that some upwind considerations might be worthwhile. This happens to be somewhat
involved for nonlinear vector systems. We’ll postpone it and, instead, note that an
upwind flux for a scalar problem is

f(Uk(.'L'k,t)), if a(Uk(xk,t)) +Q(Uk+1(l‘k,t)) >0

f(Uk-l-l(xka t)), lf a(Uk(xk,t)) + Q(Uk+1(l‘k,t)) S 0
(10.2.5b)

F(Ug(zg, 1)), Upgr(ap, 1)) = {

where

a(u) = fu(u). (10.2.5¢)

22 Hyperbolic Problems

A simple numerical flux that is relatively easy to apply to vector systems and employs

upwind information is the Laz-Friedrichs function [12]

F(Ug(wg, 1), Upsr(z, 1)) = %[f(Uk(ﬂﬂka t)) + £(Ups1 (2, 1))
_)\maw(Uk+1(xk,t) — Uk(ib'k,t))], (1025d)

where A4, is the maximum absolute eigenvalue of the Jacobian matrix f,(u), u €
[Uk(7, 1)), Upgr (@, 1))
Example 10.2.1. The simplest discontinuous Galerkin scheme uses piecewise-constant
(p = 0) solutions
U;(€,1) = co;(t) Po(§) = coj-

In this case, (10.2.4a) becomes
hjégj + f(U(x], t)) — f(U(infl, t)) =0.

In this initial example, let’s choose a scalar problem and evaluate the flux using the

average (10.2.5a)

F(Ug(wg, 1)), Upgr (T3, 1)) = [(Ur(zp,1)) +2f(Uk+1(33k, t)) _ f(co,k) +2f(00,k+1)

and upwind (10.2.5b)

f(cor)s if a(cox) + a(cors1) >0

F(Uk(wx, 1)), Upya(2x, 1)) = { fcorsr), if a(cor) + alcoprr) <0

numerical fluxes. With these flux choices, we have the ordinary differential systems

f(coji1) = fleoj 1)

Coj + =0
o 2h;
and
) (1 —8;) f(coja1) + (L +05) f(coy) — (L —65-1) f(coy) — (1 4+ 0j-1) fcoj—1)
Cojy + =0
oh,
where

0j = sgn(alcoz) +alco,jr1))-

In the (simplest) case when f(u) = au with a a positive constant, we have the two

schemes
a(coj41— Coj1)

2h;

Coj + =0 j=01,...,J

and

=0, j=0,1,...,J.

10.2. Discontinuous Galerkin Methods 23

Initial conditions for ¢g;(0) may be specified by interpolating the initial data at the center
of each interval, i.e., ¢ ;(0) = u®(z; — h;/2), j=1,2,...,J.

We use these two techniques to solve an initial value problem with a = 1 and
u’(x,t) = sin 27z,

Thus, the exact solution is
u(z,t) = sin 2w (xz — t).

Piecewise-constant discontinuous Galerkin solutions with upwind and centered fluxes
are shown at ¢t = 1 in Figure 10.2.2. A 16-element uniform mesh was used and time inte-
gration was performed using the MATLAB Runge-Kutta procedure ode45. The solution
with the upwind flux has greatly dissipated the solution after one period in time. The

maximum error at cell centers

. [

0.8 N

0.6 ,

-1 1 | | 1 1 1 | \‘ | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 10.2.2: Exact and piecewise-constant discontinuous solutions of a linear kinematic
wave equation with sinusoidal initial data at ¢ = 1. Solutions with upwind and centered
fluxes are shown. The solution using the upwind flux exhibits the most dissipation.

le(+, t)]oo := max |u(z; — hj/2,t) — U(x; — h;/2,t)|

1<j<J
at ¢ = 1 is shown in Table 10.2.1 on meshes with J = 16, 32, and 64 elements. Since

the errors are decreasing by a factor of two for each mesh doubling, it appears that the

24 Hyperbolic Problems

upwind-flux solution is converging at a linear rate. Using similar reasoning, the centered
solution appears to converge at a quadratic rate. The errors appear to be smallest at the
downwind (right) end of each element. This superconvergence result has been known for

some time [19] but other more general results were recently discovered [2].

J | Upwind | Centered
le]oo le]oo
16 | 0.7036 0.1589
32 | 0.4597 0.0400
64 | 0.2653 0.0142

Table 10.2.1: Maximum errors for solutions of a linear kinematic wave equation with
sinusoidal initial data at ¢ = 1 using meshes with J = 16, 32, and 64 uniform elements.
Solutions were obtained using upwind and centered fluxes.

As a second calculation, let’s consider discontinuous initial data
i <
den={1 et
This data is extended periodically to the whole real line. Piecewise-constant discontin-
uous Galerkin solutions with upwind and centered fluxes are shown at ¢ = 1 in Fig-
ure 10.2.3. The upwind solution has, once again, dissipated the initial square pulse.
This time, however, the centered solution is exhibiting spurious oscillations. As with
convection-dominated convection-diffusion equations, some upwinding will be necessary

to eliminate spurious oscillations near discontinuities.

10.2.1 High-Order Discontinuous Galerkin Methods

The results of Example 10.2.1 are extremely discouraging. It would appear that we have
to contend with either excessive diffusion or spurious oscillations. To overcome these
choices, we investigate the use of the higher-order techniques offered by (10.2.4). With
c;; being an m-vector and i ranging from 0 to p, we have p+1 vector and m(p+1) scalar
unknowns on each element.

We will focus on the four major tasks: (i) evaluating the integral on the right side
of (10.2.4a), (ii) performing the time integration (iii) defining the initial conditions,
and (iv) evaluating the fluxes. The integral in (10.2.4a) will typically require numerical
integration and the obvious choice is Gaussian quadrature as described in Chapter 6.
This works fine and there is no need to discuss it further.

Time integration can be performed by either explicit or implicit techniques. The
choice usually depends on the spread of the eigenvalues A;, : = 1,2,... ,m, of the Jaco-

bian A (u). If the eigenvalues are close to each other, explicit integration is fine. Stability

10.2. Discontinuous Galerkin Methods 25

15f]

1]

0.5f]

I e I
> of \ |
I S I
—os5k]
b

-15f .
-2 L L L L L L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 10.2.3: Exact and piecewise-constant discontinuous solutions of a linear kinematic
wave equation with discontinuous initial data at ¢ = 1. Solutions with upwind and
centered fluxes are shown. The solution using the upwind flux is dissipative. The solution
using the centered flux exhibits spurious oscillations.

is usually not a problem. An implicit scheme might be necessary when the eigenvalues are
widely separated or when integrating (10.2.4) to a steady state. For explicit integration,
Cockburn and Shu [12] recommend a total variation diminishing (TVD) Runge-Kutta
scheme. However, Biswas et al. [8] found that classical Runge-Kutta formulas gave sim-
ilar results. Second- and third-order and fourth- and fifth-order classical Runge-Kutta
software was used for time integration of Example 10.2.1. If forward Euler integration of

(10.2.4a) were used, we would have to solve the explicit system

P U) + (U) = [T

o= 1,2,...,p.

(U7 (£))de,

The notation is identical to that used in Chapter 9; thus, U"(x) and c}; are the approx-
imations of U(z,t,) and c;;(t,), respectively, produced by the time integration software
and At is the time step. The forward Euler method is used for illustration because of its

simplicity. The order of the temporal integration method should be comparable to p.

26 Hyperbolic Problems

Initial conditions may be determined by L? projection as

/lB(g)[Uj(g,O)—uU(g)]dgzo, i=0,1,...,p, i=1,2,...,J (10.2.6)

1

One more difficulty emerges. Higher-order schemes for hyperbolic problems oscillate
near discontinuities. This is a fundamental result that may be established by theoretical
means (cf., e.g., Sod [25]). One technique for reduced these oscillations involves limiting
the computed solution. Many limiting algorithms have been suggested but none are
totally successful. We describe a procedure for limiting the slope 0U,(z,t)/0z of the
solution that is widely used. With this approach, 0U,(z,t)/0z is modified so that:

1. the solution (10.2.2a) does not take on values outside of the adjacent grid averages
(Figure 10.2.4, upper left);

2. local extrema are set to zero (Figure 10.2.4, upper right); and

3. the gradient is replaced by zero if its sign is not consistent with its neighbors (Figure

10.2.4, lower center).

Figure 10.2.4 illustrates these situations when the solution is a piecewise-linear (p = 1)
function relative to the mesh.
A formula for accomplishing this limiting can be summarized concisely using the

minimum modulus function as

%ZM = miand(%ij,t), VUj(l'j_l/Q, t), AU] (l'j_l/g, t)) (1027&)
U'mo i—1,1 . U,(z;-)1
OUjimod(Tj-151) _ mlnmod(m, VU;(xj_1/9,t), AU;(x;_1/2,)) (10.2.7b)
ox ox
where
minmod(a, b, C) — Sgn(a) mln(|a|7 |b|7 |C|)7 if Sgn(a) = Sgn(b) = sgn(c) (1027C)
0, otherwise
and V and A are the backward and forward difference operators
VU;(12:1) = Uj(j1/2,1) = Uj(25-3/2, 1), (10.2.7d)
and
AUj(-'L'j—l/Z, t) = Uj(l‘j+1/2, t) - Uj(l‘jfl/Q, t) (10276)

With 0U; ea(2-1,t)/0x and OU; eq(24,t)/0x, determined, (10.2.7a,b) are used to re-
computed the coefficients in (10.2.2a) to reduce the oscillations. However, (10.2.7a,b)

10.2. Discontinuous Galerkin Methods 27

>

]

/
= __ N __
/

L ___

I 1

j

Figure 10.2.4: Solution limiting: reduce slopes to be within neighboring averages (upper
left); set local extrema to zero (upper right); and set slopes to zero if they disagree with
neighboring trends.

only provide two vector equations for modifying the p vector coefficients ¢;;moa(t), ¢ =
1,2,...,p, in 0Uj(x,t)/0x. When p = 1, (10.2.7a,b) are identical and ¢y moa(t) is
uniquely determined. Likewise, when p = 2, the two conditions (10.2.7a,b) suffice to
uniquely determine the modified coefficients ¢ moeq(t) and €ajmod(t). Equations (10.2.7a,b)
are insufficient to determine the modified coefficients when p > 2 and Cockburn and
Shu [12] suggested setting the higher-order coefficients ¢;jmoa(t), i = 3,4,... ,p, to zero.
This has the disturbing characteristic of “flattening” the solution near smooth extrema

and reducing the order of accuracy. Biswas et al. [8] developed an adaptive limiter which

28 Hyperbolic Problems

applied the minimum modulus function (10.2.7c) to higher derivatives of U;. They began
by limiting the p th derivative of U; and worked downwards until either a derivative was
not changed by the limiting or they modified all of the coefficients. Their procedure,
called “moment limiting.” is described further in their paper [8].

Example 10.2.2. Biswas et al. [8] solve the inviscid Burgers’ equation (10.1.16) with

the initial data)
1+sinx

2
This initial data steepens to form a shock which propagates in the positive x direction.

u(z,0) =

Biswas et al. [8] use an upwind numerical flux (10.2.5b) and solve problems on uniform
meshes with A = 1/32 with p = 0,1, 2. Time integration was done using classical Runge-
Kutta methods of orders 1-3, respectively, for p = 0,1, 2. Exact and computed solutions
are shown in Figure 10.2.5. The piecewise polynomial functions used to represent the
solution are plotted at eleven points on each subinterval.

The first-order solution (p = 0) shown at the upper left of Figure 10.2.5 is character-
istically diffusive. The second-order solution (p = 1) shown at the upper right of Figure
10.2.5 has greatly reduced the diffusion while not introducing any spurious oscillations.
The minimum modulus limiter (10.2.7) has flattened the solution near the shock as seen
with the third-order solution (p = 2) shown at the lower left of Figure 10.2.5. There is
a loss of (local) monotonicity near the shocks. (Average solution values are monotone
and this is all that the limiter (10.2.7) was designed to produce.) The adaptive moment
limiter of Biswas et al. [8] reduces the flattening and does a better job of preserving local
monotonicity near discontinuities. The solution with p = 2 using this limiter is shown in
the lower portion of Figure 10.2.5.

Ezample 10.2.3. Adjerid et al. [2] solve the nonlinear wave equation
Upy — Ugy = u(2u? — 1) (10.2.8a)
which can be written in the form (10.1.1a) as
(u1)e + (u1)y = uo, (u)s — (u2)e = uy(2u] — 1) (10.2.8b)

with u; = u. The initial and boundary conditions are such that the exact solution of

(10.2.8a) is the solitary wave
1 . 1
u(z,t) = sech(x cosh§ + tsinh 5) (10.2.8¢)

(cf. Figure 10.2.1).
Adjerid et al. [2] solved problems on —7/3 < < 7/3, 0 < t < 1 by the discontin-

uous Galerkin method using polynomials of degrees p = 0 to 4. The solution at t = 1

10.2. Discontinuous Galerkin Methods 29

0.k 0.8

0.6 0.6

0d .4
02 0.2
= [NN I G A
-1 1 -1 0.5 0 0.5 1
[e R e BRI REAASEES S aRasEs s s e s s s E
p=2 p=2
Minmod Moment
08 '
0.6 . 06 L
114 ’ 0.4
in2 L 02
v \
[§] SIS S P U I A T I A S A R A S A R [FE TR AR N N R N
! 0.3 0 0.5 -1 -0.5 0 05 1

Figure 10.2.5: Exact (line) and discontinuous Galerkin solutions of Example 10.2.2 for
p=0,1,2, and h = 1/32. Solutions with the minmod limiter (10.2.7) and an adaptive
moment limiter of Biswas et al. [8] are shown for p = 2.

performed with p = 2 and J = 64 is shown in Figure 10.2.1. The entire solitary wave is

shown; however, the computation was performed on the center region —7/3 < x < 7/3.

30 Hyperbolic Problems

Discretization errors in the L' norm
J 2
et =3 [Wia.t) = UyGa.plda
j=1"Ti-1

are presented for the solution u for various combinations of h and p in Table 10.2.2.
Solutions of this nonlinear wave propagation problem appear to be converging as O (h?*")
in the Ly norm. This can be proven correct for smooth solutions of discontinuous Galerkin
methods [2, 11, 12].

09 -

08 -

0.7

06 -

05

04 -

03

02

01

L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 10.2.6: Solution of Example 10.2.3 at ¢ = 1 obtained by the discontinuous Galerkin
method with p =2 and N = 64.

‘ J‘ p=20 ‘ p=1 p=2 ‘ p=3 ‘ p=4
8 | 2.16e-01 | 5.12e-03 | 1.88e-04 | 7.12e-06 | 3.67e-07
16 | 1.19e-01 | 1.19e-03 | 2.32e-05 | 4.38e-07 | 1.12e-08
32 | 6.39e-02 | 2.88e-04 | 2.90e-06 | 2.70e-08 | 3.55e-10
64 | 3.32e-02 | 7.06e-05 | 3.63e-07 | 1.68e-09 | 1.10e-11
128 | 1.69e-02 | 1.74e-05 | 4.53e-08 | 1.04e-10 | 3.49e-13
256 | 8.58e-03 | 4.34e-06 | 5.67e-09

Table 10.2.2: Discretization errors at t = 1 as functions .J and p for Example 10.2.3.

Evaluating numerical fluxes and using limiting for vector systems is more complicated
than indicated by the previous scalar example. Cockburn and Shu [12] reported problems
when applying limiting component-wise. At the price of additional computation, they
applied limiting to the characteristic fields obtained by diagonalizing the Jacobian f,.
Biswas et al. [8] proceeded in a similar manner. “Flux-vector splitting” may provide a
compromise between the two extremes. As an example, consider the solution and flux

vectors for the one-dimensional Euler equations of compressible flow (10.1.3). For this

10.2. Discontinuous Galerkin Methods 31

and related differential systems, the flux vector is a homogeneous function that may be

expressed as
f(u) = Au=f,(u)u. (10.2.9a)

Since the system is hyperbolic, the Jacobian A may be diagonalized as described in
Section 10.1 to yield

f(u) = P~'APu (10.2.9b)

where the diagonal matrix A contains the eigenvalues of A

At

v e

= U . (10.2.9¢)
[u+c J

The variable ¢ = /0p/0p is the speed of sound in the fluid. The matrix A can be
decomposed into components

Am

A=A"+A" (10.2.10a)

where AT and A~ are, respectively, composed of the non-negative and non-positive com-
ponents of A
AE =)‘iiTW,

Writing the flux vector in similar fashion using (10.2.9)

i=1,2,...,m. (10.2.10Db)

f(u) =P (AT + A)Pu=f(u)" +f(u)". (10.2.10¢)

Split fluxes for the Euler equations were presented by Steger and Warming [26]. Van
Leer [27] found an improvement that provided better performance near sonic and stag-
nation points of the flow. The split fluxes are evaluated by upwind techniques. Thus, at
an interface x = z;, f is evaluated using U;(z;,t) and £~ is evaluated using U4, (z;,1).

Calculating fluxes based on the solution of Riemann problems is another popular
way of specifying numerical fluxes for vector systems. To this end, let w(x/t,uz, ug)
be the solution of a Riemann problem for (10.1.1a) with the peicewise-constant initial
data (10.1.25). The solution of a Riemann problem “breaking” at (z;,t,) would be
w((z—z;)/(t—1t,), Uj(xj,tn), Uj(xj11,t,)). Using this, we would calculate the numerical
flux at (z;,t), t > t,, as

F(Uj (xja tn), Uj-i—l(l"j, tn)) = £(w(0, U; ($j, tn), U ($j, tn))- (10.2.11)

32 Hyperbolic Problems

Example 10.2.4. Let us calculate the numerical flux based on the solution of a Rie-
mann problem for Burgers’ equation (10.1.16). Using the results of Example 10.1.8) we
know that the solution of the appropriate Riemann problem is

Uj if U]’,Uj_H >0
Uj+1, if Uj,Uj+1 <0
UJ(O, U]’, Uj+1) = 0, if Uj <0, Uj+1 >0 .
Uj if Uj>0,Uj+1<0, (Uj+Uj+1)/2>0
Uj+17 if U]’ >0,Uj+1 <0, (Uj+Uj+1)/2<0
(The arguments of U; and Uj;; are all (xj,t,). These have been omitted for clarity.)
With f(u) = u?/2 for Burgers’ equation, we find the numerical flux
U]2/2, if Uj,Uj+1 >0
Uj2+1/27 if Uj,Uj+1 <0
F(U]’, Uj-l-l) = 0, if Uj < 0, Uj+1 >0 .
U]2/2, if Uj>0, Uj+1<0, (Uj—|—Uj+1)/2>0
Uj2+1/27 if Uj>0, Uj+1<0, (Uj—|—Uj+1)/2<0
Letting

ut = max(u, 0), u~ = min(u, 0),
we can write the numerical flux more concisely as
F(U;, Ujsa) = max((U;)*/2, (Uj41)*/2].

When used with a piecewise-constant basis and forward Euler time integration, the result-
ing discontinuous Galerkin scheme is identical to Godunov’s finite difference scheme [18].
This was the first difference scheme to be based on the solution of a Riemann problem.
This early work and a subsequent work of Glimm [17] and Chorin [9] stimulated a great
deal of interest in using Riemann problems to construct numerical flux functions. A

summary of a large number of choices appears in Cockburn and Shu [12].

10.3 Multidimensional Discontinuous Galerkin Meth-
ods

Let us extend the discontinuous Galerkin method to multidimensional conservation laws

of the form
u, + V- f(u), =b(z,y, zt,u), (x,y,2) € Q, t >0, (10.3.1a)
where

f(u) = [f(u), g(u), h(u)] (10.3.1b)

10.3. Multidimensional Discontinuous Galerkin Methods 33

and
V- f(u) =f(u), + g(u), + h(u),. (10.3.1c)

The solution u(z,y, 2,t); componenets of the flux vector f(u), g(u), and h(u); and the
loading b(z, y, 2, ¢, u) are m-vectors and 2 is a bounde region of %*. Boundary conditions
must be prescribed on 0€2 along characteristics that enter the region. We’ll see what this

means by example. Initial condtions prescribe
u(z,y,2,0) =0, (z,y,2) € QUOIN. (10.3.1d)

Following our analysis of Section 10.2, we partition {2 into a set of finite elements (2;,
j=1,2,...,Na, and construct a weak form of the problem on an element. This is done,
as usual, by multiplying (10.3.1a) by a test function v € L?(€);), integrating over €;, and
applying the divergence theorem to the flux to obtain

(v,w);+<v,f-n>; —(Vv, f); = (v,b);, Vv € L*(9;), (10.3.2a)

where
(v,u); = / v udrdydz, (10.3.2b)

Q2
(Vv, f); = /Q [VIE() + v g () + v h(w)dadyd-, (10.3.2¢)
f-n=f,=f(u)n; +g(u)n, +h(u)ns, (10.3.2d)
and
<v,f-n >j:/ vl f, dS. (10.3.2¢)
09,

The vector n = [ny, ny, n3]T is the unit outward normal vector to 9 and dS is a surface
infinitessimal on 0€2;.

Only the normal component of the flux is involved in (10.3.2); hence, its approxi-
mation on d€); is the same as the one-dimensional problems of Section 10.2. Thus, the
numerical normal flux function can be taken as a one-dimensional numerical flux using
solution values on each side of 9€2;. In order to specify this more precisely, let nb;,
k=1,2,...,Ng, denote the indices of the Ng elements sharing the bounding faces of
Q; and let 04, k = 1,2,..., Ng, be the faces of Q; (Figure 10.3.1). Then, we write

(10.3.2a) in the more explicit form

Ng
(vou);j+ Y <V, Fo(U;,Up,,) > —(Vv, f); = (v,b);, Vv eL*(Q). (10.3.3)
k=1

34 Hyperbolic Problems

Figure 10.3.1: Element j and its neighboring elements indicating that the segments 0€2; ,
k:1,2,... ,NE, .

Without the need to maintain inter-element continuity, virtually any polynomial basis
can be used for the approximate solution Uj(x, y, 2, t) on ;. Tensor products of Legendre
polynomials can provide a basis on square or cubic canonical elements, but these are
unavailable for triangles and tetrahedra. Approximations on triangles and tetrahedra can
use a basis of monomial terms. Focusing on two-dimensional problems on the canonical

(right 45°) triangle, we write the finite element solution in the usual form

Uj(z,y,t) = eriNel&,m), (10.3.4)
k=1

where n, = (p+ 1)(p + 2)/2 is the number of monomial terms in a complete polynomial
of degree p. A basis of monomial terms would set

N1 ==]_, N2 = g, N3 =1, ey an = 77p. (1035)

10.3. Multidimensional Discontinuous Galerkin Methods 35

All terms in the mass matrix can be evaluated by exact integration on the canonical
triangle (¢f. Problem 1 at the end of this section) as long as it has straight sides;
however, without orthogonality, the mass matrix will not be diagonal. This is not a
severe restriction since the mass matrix is independent of time and, thus, need only be
inverted (factored) once. The ill-conditioning of the mass matrix at high p is a more

important concern with the monomial basis (10.3.5).

[ll-conditioning can be reduced and the mass matrix diagonalized by extracting an
orthogonal basis from the monomial basis (10.3.5). This can be done by the Gram-
Schmidt orthogonalization process shown in Figure 10.3.2. The inner product and norm

are defined in L? on the canonical element as

procedure gram(N)
Ny := Ni/||Nioo
for k:=1ton, do
t .= Nk — Z?:_II(N]C, Nz)gNl
Ny =t/||t

0,0
bt end for
return N
Figure 10.3.2: Gram-Schmidt process to construct an orthogonal basis N, k = 1,2, ..., np
from a basis of monomials Ny, k =1,2,...,n, .
1 pl—€
o= [[uvdgan, Julloo = (w,0))” (10.3.6a)
0o Jo

The result of the Gram-Schmidt process is a basis Ny, k =1,2,. .., n, that satisfies the

orthogonality condition

(NzaNk) == (5i,k7 i, k= 1, 2, vy Ny (1036b)

The actual process can be done using symbolic computation using a computer algebra

system such as MAPLE or MATHEMATICA (cf. Remacle et al. [22] and Problem 2
at the end of this section).

Example 10.3.1. We will illustrate some results using the discontinuous Galerkin

method to solve two- and three-dimensional compressible flow problems involving the

36 Hyperbolic Problems

Euler equations. This complex nonlinear system has the form of (10.3.1a) with

p m n [

m m*/p+p nm/p Im/p
u=|n [, f(u) = [f(u) g(u)h(u)]= mn/p n’lp+p Infp |,

! ml/p nl/p P/p+p

€ (e+p)m/p (e+p)n/p (e+p)b/p

b(z,t,u) = (10.3.7a)

S OO OO

Here, p is the fluid density; m, n, and [are the Cartesian components of the momentum
vector per unit volume; e is the total energy per unit volume; and p is the pressure, which

must satisfy an equation of state of the form
p=(y=1e— (m*+n*+1%)/2p]. (10.3.7b)

This equation of state assumes an ideal fluid with gas constant ~.

Let us consider a classical Rayleigh-Taylor instability which has a heavy (p = 2) fluid
above a light (p = 1) fluid (Figure 10.3.3). This hydrostatic configuration is unstable and
any slight perturbation will cause the heavier fluid to fall and the lighter one to rise. The
fluid motion is quite complex and Remacle et al. [22] simulated it using discontinuous
Galerkin methods. They considered two-dimensional motion (I = 0, 9/0z = 0 in (10.3.7))
with the initial perturbation

(1, if0o<y<1/2 [3/2—y, fO<y<1/2
P= 2 if1/2<y<1 PT 20—y, if1/2<y<1

_ : ATl _ PN T
U = €; sin8mxrcosmysin’ Ty, v = —€, cos8sin’ 7y.

Here u, v, and w are the Cartesian velocity components and v = 5/3, 7 = 6, and ¢, and
€, were chosen to be small. The boundary conditions specify that « = 0 on the sides and
top and v = 0 on the bottom.

Solutions for the density p at ¢ = 1.8 are shown in Figure 10.3 for computations
with p = 0 to 3. The mesh used for all values of p is shown in Figure 10.3. The total
number of vector degrees of freedom for two-dimensional discontinuous Galerkin methods
is Nan,. Since there are four unknowns per element (p, m, n, and €) for two-dimensional
flows, there are 2016, 6048, 12096, and 20160 unknowns for degrees p = 0, 1, 2, and
3, respectively. Fluxes were evaluated using Roe’s linearized flux approximation [23].
No limiting was used for this computation. A high-frequency filtering [22] was used to

suppress oscillations in the vicinity of the interface separating the two fluids.

10.3. Multidimensional Discontinuous Galerkin Methods 37

- /4 —

Figure 10.3.3: Configuration for the Rayleigh-Taylor instability of Example 10.3.1. There
are solid walls on the bottom and sides and open flow at the top.

The results with p = 0 show very little structure of the solution. Those with p =1
show more-and-more detail of the flow. There is no exact solution of this problem, so
it is not possible to appraise the effects of using higher degree polynomials; however,
solutions with more detail are assumed to be more correct.

Remacle et al. [22] also did computations using adaptive p-refinement. There is no
error estimate available for the Euler equations, so they used an error indicator E; on
element j consisting of

3

Ej:/ Vp-VpdV +)
Q.

J k=1

/ (Pj - pnbj,k)ds
09,

This can be shown [22] to be the length of the interface that separates the two fluids
on ;. Remacle et al. [22] increased the degree on elements where E; was above the
median of all error indicators. Results using this adaptive p-refinement strategy with p

ranging from 1 to 3 are shown in Figure 10.3. The mesh used for these computations was

38 Hyperbolic Problems

Figure 10.3.4: Densities for the Rayleigh-Taylor instability of Example 10.3.1 at ¢ = 1.8
and p = 0 to 3. The mesh used for all computations is shown at the left.

a uniform bisection of each element of the mesh shown in Figure 10.3 into four elements.

Successive frames in Figure 10.3 show the selected values of p and the density p at
t = 0.75, 1.2, and 1.5. The computations show the complex series of bifurcations that
occur at the interface between the two fluids.)

Ezample 10.3.2. Flaherty et al. [16] solve a flow problem for the three-dimensional Eu-
ler equations (10.3.7) in a tube containing a vent (Figure 10.3) using a piecewise-constant
discontinuous Galerkin method. A van Leer flux vector splitting (10.2.9 - 10.2.10) [27]
was used to evaluate fluxes. No limiting is necessary with a first-order method. The main
tube initially had a supersonic flow at a Mach number (ratio of the speed of the fluid to
the speed of sound) of 1.23. There was no flow in the vent. At time ¢ = 0 a hypothetical
diaphragm between the main and vent cylinders is ruptured and the flow expands into
the vent. Flaherty et al. citeFLS97 solve this problem using an adaptive h-refinement
procedure. They used the magnitude of density jumps across element boundaries as a
refinement indicator. Solutions for the Mach number at ¢ = 0 and 10.1 are shown on the

left of Figure 10.3 for a portion of the problem domain. The mesh used in each each case

10.3. Multidimensional Discontinuous Galerkin Methods 39

Figure 10.3.5: Density for the Rayleigh-Taylor instability of Example 10.1.1 at ¢ = 0.75,
1.2, and 1.5 (left to right) obtained by adaptive p-refinement. The values of p used on
each element are shown in the first, third, and fifth frames with blue denoting p = 1 and
red denoting p = 3.

is shown on the right of the figure.

A shock forms on the downwind end of the vent tube and expansion forms on the
upwind end. The mesh is largely concentrated in these regions where the rapid solution
changes occur. The initial mesh consisted of 28,437 elements. This rose to more than
400,000 elements during the adaptive enrichment. This computation was done on 16
processors of a parallel computer. The coloring of the images on the right of Figure 10.3
indicates processor assignments.

The discontinuous Galerkin method is still evolving and many questions regarding flux
evaluation, limiting, a posteriori error estimation, the treatment of diffusive problems,
and its efficiency relative to standard finite element methods remain unanswered.

Problems

1. Construct a typical term in the mass matrix on the canonical element by integrating

1 pl¢
/0 /0 Nou (€,)N (€, m)dédy

using the basis of monomials (10.3.5).

2. Use the monomial basis (10.3.5) and the Gram-Schmidt process of Figure 10.3.2

to construct an orthogonal basis on the canonical right triangle for polynomials of

40 Hyperbolic Problems

Figure 10.3.6: Mach contours (left) and adaptive meshes (right) used to solve the com-
pressible flow problem of Example 10.3.2 at ¢ = 0 (top) and ¢t = 10.1 (bottom).

degree p = 2 or less.

Bibliography

1]

2]

8]

9]

M. Abromowitz and I.A. Stegun. Handbook of Mathematical Functions, volume 55
of Applied Mathematics Series. National Bureau of Standards, Gathersburg, 1964.

S. Adjerid, K.D. Devine, J.E. Flaherty, and L. Krivodonova. A posteriori error esti-
mation for discontinuous Galerkin solutions of hyperbolic problems. In preparation,
2000.

F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method
for the numerical solution of the compressible navier-stokes equations. Journal of
Computational Physics, 131:267-279, 1997.

C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for

convection-diffusion problems. to appear, 1999.

K.S. Bey and J.T. Oden. hp-version discontinuous galerkin method for hyper-
bolic conservation laws. Computer Methods in Applied Mechanics and Engineering,
133:259-286, 1996.

K.S. Bey, J.T. Oden, and A. Patra. hp-version discontinuous galerkin method for hy-
perbolic conservation laws: A parallel strategy. International Journal of Numerical
Methods in Engineering, 38:3889-3908, 1995.

K.S. Bey, J.T. Oden, and A. Patra. A parallel hp-adaptive discontinuous galerkin
method for hyperbolic conservation laws. Applied Numerical Mathematics, 20:321—
386, 1996.

R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel adaptive finite element methods
for conservation laws. Applied Numerical Mathematics, 14:255-284, 1994.

A.J. Chorin. Random choice solution of hyperbolic systems. Journal of Computa-
tional Physics, 25:517-533, 1976.

41

42

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Hyperbolic Problems

B. Cockburn, G. Karniadakis, and C.-W. Shu, editors. Discontinous Galerkin Meth-
ods Theory, Computation and Applications, volume 11 of Lecture Notes in Compu-

tational Science and Engineering, Berlin, 2000. Springer.

B. Cockburn, S.-Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discon-
tinuous finite element method for conservation laws I1I: One-dimensional systems.
Journal of Computational Physics, 84:90-113, 1989.

B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous
finite element method for conservation laws II: General framework. Mathematics of
Computation, 52:411-435, 1989.

K. Devine and J.E. Flaherty. Parallel adaptive hp-refinement techniques for conser-
vation laws. Applied Numerical Mathematics, 20:367-386, 1996.

K. Ericksson and C. Johnson. Adaptive finite element methods for parabolic prob-
lems I: A linear model problem. SIAM Journal on Numerical Analysis, 28:12-23,
1991.

K. Ericksson and C. Johnson. Adaptive finite element methods for parabolic prob-
lems II: Optimal error estimates in llo and lylo. SIAM Journal on Numerical
Analysis, 32:706-740, 1995.

J.E. Flaherty, R. Loy, M.S. Shephard, B.K. Szymanski, J. Teresco, and L. Ziantz.
Adaptive local refinement with octree load-balancing for the parallel solution of
three-dimensional conservation laws. Journal of Parallel and Distributed Computing,
47:139-152, 1997.

J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations.
Communications on Pure and Applied Mathematics, 18:697-715, 1965.

S.K. Godunov. A finite difference method for the numerical computation of dis-
continuous solutions of the equations of fluid dynamics. Mat. Sbornik., 47:271-306,
1959.

C. Johnson. Error estimates and adaptive time step control for a class of one step
methods for stiff ordinary differential equations. SIAM Journal on Numerical Anal-
ysis, 25:908-926, 1988.

P.D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves. Regional Conference Series in Applied Mathematics, No. 11. STAM,
Philadelphia, 1973.

10.3. Multidimensional Discontinuous Galerkin Methods 43

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport
equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los
Alamos, 1973.

J.-F. Remacle, J.E. Flaherty, and M.S. Shephard. Adaptive order discontinuous
galerkin methods. In preparation, 2000.

P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43:357-372, 1981.

P. Le Saint and P. Raviart. On a finite element method for solving the newtron
transport equations. In C. de Boor, editor, Mathematical Aspects of Finite Elements
in Partial Differential Equations, pages 89-145, New York, 1974. Academic Press.

G.A. Sod. Numerical Methods in Fluid Dynamic. Cambridge University Press,
Cambridge, 1985.

J.L Steger and R.F. Warming. Flux vector splitting of the inviscid gasdynamic
equations with applications to finite difference methods. Journal of Computational
Physics, 40:263-293, 1981.

B. van Leer. Flux-vector splitting gor the Euler equations. Lecture Notes in Physics,
170:507-512, 1982.

M.F. Wheeler. An elliptic collocation-finite element method with interior penalties.
SIAM Journal on Numerical Analysis, 15:152-161, 1978.

	Introduction
	One Dimensional Finite Element Methods
	Hyperbolic Problems
	Multi Dimensional Variational Principles
	Finite Element Approximation
	Mesh Generation and Assembly
	Numerical Integration
	Analysis of the Finite Element Method
	Adaptive Finite Element Techniques
	Parabolic Problems

