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Preface 

This book covers the basic principles of the 
Part 1, Part 2 and much of the Part 3 Engineering 
Mechanics syllabuses of degree courses in 
engineering. The emphasis of the book is on the 
principles of mechanics and examples are drawn 
from a wide range of engineering applications. 

The order of presentation has been chosen to 
correspond with that which we have found to be 
the most easily assimilated by students. Thus, 
although in some cases we proceed from the 
general to the particular, the gentler approach is 
adopted in discussing first two-dimensional and 
then three-dimensional problems. 

The early part of the book deals with the 
dynamics of particles and of rigid bodies in 
two-dimensional motion. Both two- and three- 
dimensional statics problems are discussed. 
Vector notation is used initially as a label, in 
order to develop familiarity, and later on the 
methods of vector algebra are introduced as they 
naturally arise. 

Vibration of single-degree-of-freedom systems 
are treated in detail and developed into a study of 
two-degree-of-freedom undamped systems. 

An introduction to automatic control systems is 
included extending into frequency response 
methods and the use of Nyquist and Bode 
diagrams. 

Three-dimensional dynamics of a particle and 
of a rigid body are tackled, making full use of 
vector algebra and introducing matrix notation. 
This chapter develops Euler’s equations for rigid 
body motion. 

It is becoming common to combine the areas 
usually referred to as mechanics and strength of 
materials and to present a single integrated course 
in solid mechanics. To this end a chapter is 
presented on continuum mechanics; this includes 
a study of one-dimensional and plane stress and 
strain leading to stresses and deflection of beams 
and shafts. Also included in this chapter are the 
basic elements of fluid dynamics, the purpose of 
this material is to show the similarities and the 
differences in the methods of setting up the 
equations for solid and fluid continua. It is not 
intended that this should replace a text in fluid 

dynamics but to develop the basics in parallel with 
solid mechanics. Most students study the two 
fields independently, so it is hoped that seeing 
both Lagrangian and Eulerian co-ordinate sys- 
tems in use in the same chapter will assist in the 
understanding of both disciplines. 

There is also a discussion of axial wave 
propagation in rods (12.9), this is a topic not 
usually covered at this level and may well be 
omitted at a first reading. The fluid mechanics 
sections (12.10-16) can also be omitted if only 
solid mechanics is required. 

The student may be uncertain as to which 
method is best for a particular problem and 
because of this may be unable to start the 
solution. Each chapter in this book is thus divided 
into two parts. The first is an exposition of the 
basic theory with a few explanatory examples. 
The second part contains worked examples, many 
of which are described and explained in a manner 
usually reserved for the tutorial. Where relevant, 
different methods for solving the same problem 
are compared and difficulties arising with certain 
techniques are pointed out. Each chapter ends 
with a series of problems for solution. These are 
graded in such a way as to build up the confidence 
of students as they proceed. Answers are given. 

Numerical problems are posed using SI units, 
but other systems of units are covered in an 
appendix. 

The intention of the book is to provide a firm 
basis in mechanics, preparing the ground for 
advanced study in any specialisation. The 
applications are wide-ranging and chosen to show 
as many facets of engineering mechanics as is 
practical in a book of this size. 

We are grateful to The City University for 
permission to use examination questions as a 
basis for a large number of the problems. Thanks 
are also due to our fellow teachers of Engineering 
Mechanics who contributed many of the ques- 
tions. 

July 1993 H.R.H. 
T.N. 



1 
Co-ordinate systems and position vectors 

1.1 Introduction 
Dynamics is a study of the motion of material 
bodies and of the associated forces. 

The study of motion is called kinematics and 
involves the use of geometry and the concept of 
time, whereas the study of the forces associated 
with the motion is called kinetics and involves 
some abstract reasoning and the proposal of basic 
‘laws’ or axioms. Statics is a special case where 
there is no motion. The combined study of are in common use. 
dynamics and statics forms the science of 
mechanics. 

1.2 Co-ordinate systems 
Initially we shall be concerned with describing the 
position of a point, and later this will be related to 
the movement of a real object. 

The position of a point is defined only in 
relation to some reference axes. In three- 
dimensional space we require three independent 
co-ordinates to specify the unique position of a 
point relative to the chosen set of axes. 

One-dimensional systems 
If a point is known to lie on a fixed path - such as 
a straight line, circle or helix - then only one 
number is required to locate the point with 
respect to some arbitrary reference point on the 
path. This is the system used in road maps, where 
place B (Fig. 1.1) is said to be 10 km (say) from A 
along road R. Unless A happens to be the end of 

road R, we must specify the direction which is to 
be regarded as positive. This system is often 
referred to as a path co-ordinate system. 

Two-dimensional systems 
If a point lies on a surface - such as that of a 
plane, a cylinder or a sphere - then two numbers 
are required to specify the position of the point. 
For a plane surface, two systems of co-ordinates 

a) Cartesian co-ordinates. In this system an 
orthogonal grid of lines is constructed and a point 
is defined as being the intersection of two of these 
straight lines. 

In Fig. 1.2, point P is positioned relative to the 
x- and y-axes by the intersection of the lines x = 3 
andy = 2 and is denoted by P(+3, +2). 

Figure 1.2 

b) Polar co-ordinates. In this system (Fig. 1.3) 
the distance from the origin is given together with 
the angle which OP makes with the x-axis. 

If the surface is that of a sphere, then lines of 
latitude and longitude may be used as in 
terrestrial navigation. Figure 1.1 
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c) Spherical co-ordinates. In this system the 
position is specified by the distance of a point 
from the origin, and the direction is given by two 
angles as shown in Fig. 1.6(a) or (b). 

U 

Figure 1.3 

Three-dimensional systems 
Three systems are in common use: 
a) Cartesian co-ordinates. This is a simple 
extension of the two-dimensional case where a 
third axis, the z-axis, has been added. The sense is 
not arbitrary but is drawn according to the 
right-hand screw convention, as shown in 
Fig. 1.4. This set of axes is known as a normal 
right-handed triad. 

Figure 1.4 

b) Cylindrical co-ordinates. This is an extension 
of the polar co-ordinate system, the convention 
for positive 8 and z being as shown in Fig. 1.5. It is 
clear that if R is constant then the point will lie on 
the surface of a right circular cylinder. 

Figure 1.6 

Note that, while straight-line motion is one- 
dimensional, one-dimensional motion is not 
confined to a straight line; for example, path 
co-ordinates are quite suitable for describing the 
motion of a point in space, and an angle is 
sufficient to define the position of a wheel rotating 
about a fured axis. It is also true that spherical 
co-ordinates could be used in a problem involving 
motion in a straight line not passing through the 
origin 0 of the axes; however, this would involve 
an unnecessary complication. 

1.3 Vector representation 
The position vector 
A line drawn from the origin 0 to the point P 
always completely specifies the position of P and 
is independent of any co-ordinate system. It 
follows that some other line drawn to a 
convenient scale can also be used to re resent the 

In Fig. 1.7(b), both vectors represent the 
position of P relative to 0, which is shown in 
1.7(a), as both give the magnitude and the 
direction of P relative to 0. These are called free 
vectors. Hence in mechanics a vector may be 
defined as a line segment which represents a 
physical quantity in magnitude and direction. 
There is, however, a restriction on this definition 
which is now considered. 

position of P relative to 0 (written 3 0 ). 

Figure 1.5 Figure 1.7 
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Addition of vectors 
The position of P relative to 0 may be regarded 
as the position of Q relative to 0 plus the position 
of P relative to Q, as shown in Fig. 1.8(a). 

The position of P could also be considered as 
the position of Q’ relative to 0 plus that of P 
relative to Q’. If Q’ is chosen such that OQ’PQ is 
a parallelogram, i.e. OQ’ = QP and OQ = Q’P, 
then the corresponding vector diagram will also 
be a parallelogram. Now, since the position magnitude and is in the required direction. Hence 
vector represented by oq’, Fig. 1.8(b), is identical 
to that represented by qp, and oq is identical to 
q‘p, it follows that the sum of two vectors is 
independent of the order of addition. 

Conversely, if a physical quantity is a vector 
then addition must satisfy the parallelogram law. 
The important physical quantity which does not 
obey this addition rule is finite rotation, because it 
can be demonstrated that the sum of two finite 

Figure 1.9 

r may be written 

r = re (1.3) 
where r is the magnitude (a scalar). The modulus, 
written as 111, is the size of the vector and is 
always positive. In this book, vector magnitudes 
may be positive or negative. 

Components of a vector 
Any number of vectors which add to give another 
vector are said to be components of that other 
vector. Usually the components are taken to be 
orthogonal, as shown in Fig. 1.10. 

Figure 1.8 

rotations depends on the order of addition (see 
Chapter 10). 

The law of addition may be written symbolic- 
ally as 

s=g+ep=ep+s (1.1) 

Vector notation 
As vector algebra will be used extensively later, 
formal vector notation will now be introduced. It 
is convenient to represent a vector by a single 
symbol and it is conventional to use bold-face 
type in printed work or to underline a symbol in 
manuscript. For position we shall use 

S = r  
The fact that addition is commutative is 
demonstrated in Fig. 1.9: 

r=r l+r*=r2+rl  (1.2) 

Unit vector 
It is often convenient to separate the magnitude 
of a vector from its direction. This is done by 
introducing a unit vector e which has unit 

Figure 1.10 

I 

Figure 1.1 1 

In Cartesian co-ordinates the unit vectors in the 
x ,  y and z directions are given the symbols i , j  and 
k respectively. Hence the components of A 
(Fig. 1.11) may be written 

A = A,i+A,j+A,k, (1.4) 
where A,,  A, and A, are said to be the 
components of A with respect to the x - ,  y-, z-axes. 

It follows that, if B = B,i+B,j+ B,k, then 
A + B = (A, + B,)i + (A, + By) j  

+(Az+Bz)k (1.5) 
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It is also easily shown that Direction cosines 
Consider the vector A = A,i+A, , j+A,k .  The 
modulus of A is found by the simple application of 
Pythagoras's theorem to give 

(A + B )  +C = A  + (B + C )  
and also that 

aA = uA,i+uAyj+uA,k (1.6) I A ~  = V(A,~+A;+A:)  (1.9) 
where u is a scalar. The direction cosine, I ,  is defined as the cosine 

of the angle between the vector and the positive 
x-axis, i.e. from Fig. 1.13. 

Notice that 

because A and B are free vectors. 

Scalarproduct of two vectors 
The scalar product of two vectors A and B 
(sometimes referred to as the dot product) is 
formally defined as IA 1 IB 1 cos0, Fig. 1.12, where 
0 is the smallest angle between the two vectors. 
The scalar product is denoted by a dot placed 
between the two vector symbols: 

A * B = I A I 1 B I COS 0 (1.7) 
It follows from this definition that A . B  = B - A .  

I = c o s ( ~ P 0 L )  = A, /JA 1 (1.10a) 

similarly rn = cos(LP0M) = Ay/IA I (1.10b) 

n = cos(LP0N) = A,/IA I (1.10~) 

From equations 1.3 and 1.10, 

A A , A A  e=- = - i + + j + I k  
IAl IAl IAI IAl 

= li+rnj+nk 

that is the direction cosines are the components of 
the unit vector; hence 

12+m2+n2 = 1 (1.11) 

Figure 1.12 Discussion examples 
From Fig. 1.12 it is seen that [ A  I cos0 is the 

component of A in the direction of B; similarly 
I B 1 cos 0 is the component of B in the direction of 
A .  This definition will later be seen to be useful in 
the description of work and power. If B is a unit 
vector e ,  then 

(1'8) 
that is the scalar component of A in the direction 
of e. 

Example 1.1 
See Fig. 1.14. A surveying instrument at C can 
measure distance and angle. 

Relative to the fixed x- ,  y - ,  z-axes at C, point A 
is at an elevation of 9.2" above the horizontal ( x y )  
plane. The body of the instrument has to be 
rotated about the vertical axis through 41" from 
the x direction in order to be aligned with A. The. 
distance from C to A is 5005 m. Corresponding 
values for point B are 1.3", 73.4" and 7037 m. 

Determine (a) the locations of points A and B 
in Cartesian co-ordinates relative to the axes at C, 
(b) the distance from A to B, and (c) the distance 
from A to B projected on to the horizontal plane. 

A - e  = lAlcos0 

It is seen that 
i . i  = j . j  = k . k  = 1 

and i . j = i . k = j . k = O  



Figure 1.14 

Solution See Fig. 1.15. For point A,  r = 5005 m, 
e = 410, Q, = 9.2". 

z = rsinQ, = 5005sin9.2" = 800.2 m 
R = rcos4 = 5005~0~9.2" = 4941.0 m 
x = Rcose = 4941~0~41"  = 3729.0 m 
y = Rsin8 = 4941sin41" = 3241.0 m 

so A is located at point (3729, 3241,800.2) m. 
For point B, r =  7037m, 8 = 73.4", 4 = 1.3"; 

hence B is located at point (2010,6742,159.7) m. 
Adding the vectors 2 and 3, we have 
S+AB=S 

or AB=CB-CA 
= (2010i+6742j+ 159.78) 

- (3729i+ 3241j+ 800.2k) 
= (-1719i+3501j-640.5k) m 

The distance from A to B is given by 
131 = d[(-1791)2+ (3501)2+ (-640.5)2] 

= 3952 m 
and the component of AB in the xy-plane is 
d[( - 1719)2 + (3501)2] = 3900 m 

Example 1.2 
Point A is located at (0,3,2) m and point B at 
(3,4,5) m. If the location vector from A to C is 

(-2,0,4) m, find the position of point C and the 
position vector from B to C. 
Solution A simple application of the laws of 
vector addition is all that is required for the 
solution of this problem. Referring to Fig. 1.16, 

Figure 1.16 
+ +  Z= OA+AC 

= (3j+ 2k) + ( -2 i+ 4k) 
= -2i+3j+6k 

Hence point C is located at (-2,3, 6) m. 
Similarly Z = 3 + 2 

so that 
Z = Z - G  

= (-2i + 3j+ 6k) - (3 i  + 4j+ 5k) 
= ( -5 i -  lj+ l k )  m 

Example 1.3 
Points A,  B and P are located at (2, 2, -4) m, (5, 
7, - 1) m and (3, 4, 5) m respectively. Determine 
the scalar component of the vector OP in the 
direction B to A and the vector component 
parallel to the line AB. 
Solution To determine the component of a 
given vector in a particular direction, we first 
obtain the unit vector for the direction and then 
form the dot product between the unit vector and 
the given vector. This gives the magnitude of the 
component, otherwise known as the scalar 
component. 

The vector a is determined from the 
relationship 

thus s = O A - O B  

+ 

+ +  
O B + B A  = Z? 

- +  

= (2i + 2j  - 4k) - (5i + 7j - 1 k ) 
= -(3i+5j+3k) m 

The length of the vector 2 is given by 
BA = IS(  = ~ ' / ( 3 ~ + 5 ~ + 3 * )  = ~ 4 3  m 

and the unit vector 
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between two vectors and we can use the property 
of this product to determine this angle. By 

E x  -(3i+5j+3k) e = - =  
BA d 4 3  definition of the scalar product, 

The required scalar component is s.3 = (OC)(OD)cos(LCOD) 
$*e  = (3i+4j+5k) therefore cos (LCOD) 

* ( -3i  - 5j - 3k)/d43 
= - (3 x 3 + 4 x 5 + 5 x 3)/d43 
= -6.17 m (OC)(OD) 

- - 2.3 

The minus sign indicates that the component of 
OP (taking the direction from 0 to P as positive) 
parallel to BA is opposite in sense to the direction 

- ( l i  + 2j+ 4k).  (2i - lj+ lk)  
- d[ l2 + 2* + 42]d[22 + (- 1)2 + 12] 

l X 2 + 2 ( - 1 ) + 4 ~ 1  4 -- - from B to A. - 
If we wish to represent the component of OP in - d 2 1  d6 d 1 2 6  

the specified direction as a vector, we multiply the 
scalar component by the unit vector for the 
specified direction. Thus and LCOD = 69.12” 

= 0.3563 m 

-(3i + 5j + 3k)( -6.17)/d43 As a check, we can determine LCOD from the 
= (2.82+4.70j+2.82k) m cosine rule: 

OC2 + OD2 - CD2 

2(OC)(OD) 
cos(LC0D) = Example 1.4 

See Fig. 1.17. Points C and D are located at 
(1 ,2 ,4)  m and (2, -1 ,1)  m respectively. Deter- 
mine the length of DC and the angle COD, where 
0 is the origin of the co-ordinates. 

6 +  21 - 19 - - 
2 d 6  d 2 1  

4 
d 1 2 6  

as before. -- - 

Problems 
1.1 A position vector is given by OP = (3 i+2j+  l k )  
m. Determine its unit vector. 

1.2 A line PQ has a length of 6 m and a direction 
given by the unit vector g i + G + + k .  Write PQ as a 
vector. 

1.3 Point A is at ( 1 , 2 , 3 )  m and the position vector of 
point B, relative to A, is ( 6 i + 3 k )  m. Determine the 
position of B relative to the origin of the co-ordinate 

1.4 Determine the unit vector for the line joining 
points C and D,  in the sense of C to D, where C is at 

1.5 Point A is located at (5, 6, 7) m and point B at 
( 2 , 2 , 6 )  m. Determine the position vector (a) from A to 
B and (b) from B to A. 

1.6 P is located at point (0, 3 ,  2)  m and Q at point 
( 3 , 2 , 1 ) .  Determine the position vector from P to Q 

1.7 A is at the point (1, 1 , 2 )  m. The position of point 
B relative to A is ( 2 i + 3 j + 4 k )  m and that of point C 

Figure 1.17 
Solution If we first obtain an expression for CD system. 
in vector form, then the modulus of this vector 
will be the required length. 

z+ CD = 3, so that 
3=3-z 

From- the rule for vector addition, point (0, 3 ,  -2)  m and D is at ( 5 ,  5 3  O )  m- 

= (2i- lj+ lk)  - ( l i +  2j+ 4k) 
= ( l i -3j-3k)  m 

= 4.36 m 
and lal = d[12+(-3)2+(-3)2]  = d 1 9  and its unit vector. 

The scalar or dot product involves the angle 
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relative to B is ( - 3 i - 2 j + 2 k )  rn. Determine the 1.10 See Fig. 1.20. The location of an aircraft in 
location of C. spherical co-ordinates ( r ,  0,4) relative to a radar 

installation is (20000 m, 33.7", 12.5'). Determine the '" The dimensions Of a room at 6 m x 5 m x 4 m' as location in Cartesian and cylindrical co-ordinates. shown in Fig. 1.18. A cable is suspended from the point 
P in the ceiling and a lamp L at the end of the cable is 
1.2 rn vertically below P. 

Figure 1.20 

1.11 What are the angles between the line joining the 
origin 0 and a point at (2, -5 ,6)  m and the positive x-, 
y-, z-axes? 

1.12 In problem 1.7, determine the angle ABC. Determine the Cartesian and cylindrical co-ordinates 
of the lamp L relative to the x-, y-, z-axes and also find 1.13 A vector is given by (2i+ 3j+ l k )  m. What is the 
expressions for the corresponding cylindrical unit component of this vector (a) in the y-direction and (b) 
vectors e R ,  eo and e, in terms of i ,  j and k (see in a direction parallel to the line from A to B, where A 
Fig. 1.19). is at point (1,1,0) m and B is at (3 ,4 ,5 )  rn? 

1.14 Find the perpendicular distances from the point 
( 5 , 6 , 7 )  to each of the x-, y -  and z-axes. 

1.15 Points A, B and C are located at (1,2, 1) m, 
( 5 , 6 , 7 )  rn and (-2, -5, 6 )  rn respectively. Determine 
(a) the perpendicular distance from B to the line AC 
and (b) the angle BAC. 

1.9 Show that the relationship between Cartesian and 
cylindrical co-ordinates is governed by the following 
equations (see Fig. 1.19): 

x = RcosO, y = Rsin 0, 
R = (x2+y2)"', 

i = cos BeR - sin Beo, 

eR = cos Oi + sin Oj, 

0 = arctan(y/x) 

j = sin BeR + cos 8eo, k = e,  

eo = -sin Oi + cos ej, e; = k 



2 
Kinematics of a particle in plane motion 

2.1 Displacement, velocity and 
acceleration of a particle 
A particle may be defined as a material object 
whose dimensions are of no consequence to the SO v = limA,o -e, = 

describing the kinematics of such an object, the 
motion may be taken as being that Of a 
representative point. called speed. 

Displacement of a particle 
If a particle occupies position A at time tl and at a 
later time t2 it occupies a position B, then the 
displacement is the vector 3 as shown in 
Fig. 2.1. In vector notation, 

If e, is a unit vector tangential to the path, then 
as At+ 0 ,  Ar+ h e ,  

(2.2) 
problem under consideration. For the purpose of (: ) :et 

The tem &Idt is the rate of change of distance 
along the path and is a scalar quantity usually 

Acceleration of a particle 
The acceleration of a particle is defined (see 
Fig. 2.2) as 

Av dv d2 r  
dt dt2 

a = limAr+,,(--) = - = - (2.3) 

Figure 2.1 

rB = r A + A r  
or Ar=rg-rA (2.1) 

Here the symbol A signifies a finite difference. 

limA,o 1 Arl = ds, an element of the path. 

Velocity of a particle 
The average velocity of a particle during the time 
interval At is defined to be 

If the time difference At = t2 - tl is small, then 

A r  - _  - 
At Vaverage 

This is a vector quantity in the direction of Ar. 
The instantaneous velocity is defined as 

v = limA,+o - - - (:) - : 

Figure 2.2 

tangential to the path unless the path is straight. 

Having defined velocity and acceleration in a 
quite general way, the components of these 
quantities for a particle confined to move in a 
plane can now be formulated. 

It is useful to consider the ways in which a 
vector quantity may change with time, as this 
will help in understanding the full meaning of 
acceleration. 

Since velocity is defined by both magnitude and 
direction, a variation in either quantity will 
constitute a change in the velocity vector. 

If the velocity remains in a fixed direction, then 
the acceleration has a magnitude equal to the rate 

The direction of a is not obvious and will not be 
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of change of speed and is directed in the same 
direction as the velocity, though not necessarily in 
the same sense. 

The acceleration is equally easy to derive. Since 

v = i i + y j  

then 
v + A v  = (i + Ai ) i + ( y + Ay ) j 

giving 
A v  = A i i  + Ayj. 

A v  Ai Ay 
Figure 2.3 

If the speed remains constant, then the 
acceleration is due solely to the change in dt d t j  
direction of the velocity. For this case we can see 

triangle. In the limit, for small changes in time, 
and hence small changes in direction, the change 
in velocity is normal to the velocity vector. 

2.2 Cartesian co-ordinates 
See Fig. 2.4. 

a = limA,o (E) = limA,o (t i + t j )  

d? dy 
a = - i + -  (2.6) 

that the vector diagram (Fig. 2.3) is an isosceles = i i + y j  

(2.7) and l a l  = d(n2 + j 2 )  

the motion in Cartesian co-ordinates. 

i) Motion in a straight line with constant 
acceleration 
Choosing the x-axis to coincide with the path of 
motion, we have 

Let us consider two simple cases and describe 

x = Q  

Intregration with respect to time gives 

J i d t  = J(dv/dt) dt = v = Jadt = at + C1 (2.8) 

where C1 is a constant depending on v when t = 0. 
Integrating again, 

Figure 2.4 
JVdt=J(dx/dt)dt=x= J(at+CI)dt 

Ar = (x2 - XI ) i  + ( ~ 2  - Y I  ) j  = ~ u t 2 + C 1 t + C 2  (2.9) 
= h i +  Ayj 

- Ar = - 1 + - J *  A x .  Ay 
At At At 

where C2 is another constant depending on the 
value of x at t = 0. 

ii) Motion with constant speed along a 

For the circular path shown in Fig. 2.6, 
(2.4) circularpath v = l imk+o(z)  Ar = z i + z j  dx dy 

From Fig. 2.5 it is clear that x 2 + y 2  = R 2  (2.10) 

Ivl = d ( i 2 + y 2 )  
(2.5) 

where differentiation with respect to time is 
denoted by the use of a dot over the variable, Le. 
drldx = i. 

Figure 2.5 Figure 2.6 
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Differentiating twice with respect to time gives 

and 2 x i + 2 i 2 + 2 y y + 2 y 2  = 0 
2xx+2yy = 0 

Since 2i2 + 2y2 = 2v2, 

xx+yy = -v2 (2.11) 
We see that, when y = 0 and x = R,  Figure 2.8 
x = -v2 /R 

also, when x = 0 and y = R, 
y = -v2/R 

or, in general (Fig. 2.7),  the component of 
acceleration resolved along the radius is 

a, = fcosa+ysina 
= Xx/R + yy /R 

v 

Figure 2.9 

2.3 Path co-ordinates 
The displacement Ar over a time interval At is 
shown in Fig. 2.8,  where AY is the elemental path 
length. Referring to Fig. 2.9,  the direction of the 
path has changed by an angle A0 and the speed 
has increased by Av. Noting that the magnitude of 
v(t+At)  is (v+Av),  the change in velocity 
resolved along the original normal is 

f v + Av ) sin AO Figure 2.7 

Using equation 2.11 we see that hence the acceleration in this direction is 

a, = -v2/R 
a, = limA,o ((v::))sinAO 

For small AO, sinAO+AO; thus 

Resolving tangentially to the path, 

at =ycosa-Rsina 

vAO AvAO de 
a, = limAt-,o( z + r) = v- dt 

= YXIR - XylR 

Differentiating x 2  + y 2  = v2 with respect to 
time, we have 

and is directed towards the centre of curvature, 
i.e. in the direction of e,. 2ix + 2yy = 0 

hence If p is the radius of curvature, then 

y/x = -x/y ds = pdO 

ds de 
dt -'dt 

hence and from the differentiation of equation 2.10 we 
have _ -  

therefore 
PIX = -xly 

y/x = -x/y = y/x a = v - - = -  (2.12) 
giving 

1 ds v2 
n P d t  P 

Thus we see that a, = 0. 
This analysis should be contrasted with the 

more direct approach in terms of path and polar 
The change in velocity resolved tangentially to 

the path is 

co-ordinates shown later in this chapter. (V + AV)CosAO - v 



2.4 Polar co-ordinates 11 

= - e,+r - e, = ie,+rbee (2.17) 

Resolving the components of Av along the e, 

(2) (3 
and ee directions (Fig. 2.11) gives 

hence the acceleration along the path is 

( (V + AV);ps A 8  - v dv 
limAt-+O ) = z = a, (2.13) 

Summarising, we have 

v = vet =-e, (2.14a) 

(2.14b) 

=-e +-en (2.14~) 

We will now reconsider the previous simple 

ds 
dt 

dv d8 
a = -e,+v-en 

dt dt 

d2s v2 
dt2 t p 

cases. 

i) Straight-line motion with constant 
acceleration x (b+A8)sinA8-i]er 

or d2sldt2 = a (2.15) 

replaced by s .  

ii) Motion in a circle at constant speed 

2.4 Polar co-ordinates 
Polar co-ordinates are a special case of cylindrical 
co-ordinates with z =  0, or of spherical co- 
ordinates with 4 = 0. 

Figure 2.1 1 

A i  = [(i + Ai)cosAO- (r + Ar) 

a = ae, (e, fixed in direction) + [ i + Ai) sinA8 + (r + Ar) 
x (6 + Ab) cos A 8  - rb] ee 

a = lim*,o ( E )  = (z - r e Z )  e, 

de de d r .  + i-+r-+-O ee 

The so1ution is the Same as before, with x For small angles, sinA8+ A,g and C O S A ~ +  1; thus 

A i  d i  . d e  

a = (v2/p)en (v and p are constant) (2.16) 

(2.18) 

An alternative approach to deriving equations 

1 ( dt dt dt 

a = (i:-rb2)e,+(r8+2ib)ee 

2.17 and 2.18 is to proceed as follows. 

Figure 2.10 

Referring to Fig. 2.10, it can be seen that 

Ar = [(r + Ar) cosA8- r]  e, 
+ (r + Ar) sinA8ee 

hence the velocity is given by 

A r  
z, = limAr-0 ( E )  

Figure 2.1 
Consider the orthogonal unit vectors e, and ee 

which are rotating at an angular rate o = 8 as 
shown in Fig. 2.12. The derivative with respect to 
time of e, is 

Aer 
e r  = limii-0 (E)  

where Aer is the change in e, which occurs in the 
time interval At. During this interval e, and ee 
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r = constant for all time 
v = roe, 

Because r and ZJ are constant, e is constant; so 
a = -rO2e, = - ( v 2 d / r ) e ,  (2.22) 

We may also consider another simple example, 
that of a fly walking at a constant speed along a 
radial spoke of a wheel rotating at a constant 
speed. In this case Figure 2.13 

have rotated through the angle AB, as shown in 
Fig. 2.13, so that they become the new unit so we see that there is a constant component of 
vectors e’,  and e r e .  The difference between e’,  acceleration, 2ib, at right angles to the spoke, 
and e, is be ,  = e’,  - e , .  The magnitude of Ae, for independent of r .  This component is often called 
small AB is 1xAO since the magnitude of e,  is the Coriolis component, after the French 
unity, by definition. For vanishingly small AB, the engineer Gustav-Gaspard Coriolis. 
vector Ae, has the direction of eo, 
hence 2.5 Relative motion 

a = [ - r i 1 ~ ] e , + 2 i i 1 e ~  

In this section we shall adopt the following 
notation: Aer ABe, . e, = limm,A&o (I) = limA,o (T) = Bee 

(2.19) rB/A = position of B relative to A 
iB/A = velocity of B relative to A, etc. Similarly it can be shown that 

eo = -Be, (2.20) From Fig. 2.14, 
The velocity v is the derivative with respect to 

time of the position vector r = re,. From the chain 
rule for differentiation we obtain 

rB/O = rAI0 -k rBlA (2.23) 

Differentiation with respect to time gives 

d i B l 0  = +AI0 + iB/A (2.24) 
(2.25) dt and FBlo = FAIo + ;B/A 

v = i. = - (re,) = ie, + re, 

= fer + roee 

from equation 2.19, which is the result previously 
obtained in equation (2.17).  

The acceleration a can also be found from the 
chain rule, thus 

d 
dt Figure 2.14 a = C = - ( ie ,  + roe,) 

= re, + ie, + ihe, + ree, + rhe, 
[The notation i B  and FB may be used in place of Substituting from equations (2 .19 )  and (2.20) we fBl0 and fBlo for velocity and acceleration relative arrive at the result given in equation (2.18). (The 

differentiation of rotating vectors is dealt with 
more fully in Chapter 11). 

to the reference axes.l 
Consider now the case of a wheel radius r ,  

centre A, moving so that A has rectilinear motion 
in the x-direction and the wheel is rotating at 
angular speed w = h (Fig. 2.15). The path traced 
out by a point B on the rim of the wheel is 
complex, but the velocity and acceleration of B 
may be easily obtained by use of equations 2.24 
and 2.25. 

As before we consider the two simple cases. 

i) Motion in a straight line 
8 = 0 
a = re, 

for all time 
(2.21) 

ii) Motion in a circle at constant speed Referring to Fig. 2.15, 
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Figure 2.15 
Figure 2.16 

of change of speed. This quantity is also the 
component of acceleration tangential to the path, 
but it is not the total acceleration. 

i B / o  = i i +  (roeo) 
=ii- i+(-rwsinei+rwcosej)  (2.26) 

Similarly, 

F B / ~  = xi + ( -rw2e, + r k o  ) We may write 

= xi - rw2 (cos ~i + sin ej)  dv ds dv dv 
dt dt ds ds + rh(-sin Bi+ cos ej) 

= (a - rw'cos e - rhsin e) i 
= 2)- a - -= - -  t -  

Hence we have + (-rw2sinO+rhcos8)j (2.27) 

A special case of the above problem is that 
of rolling without slip. This implies that when 
8 = 3 ~ 1 2 ,  islo = 0. Since 

(2.28) 

Most problems in one-dimensional kinematics 
involve converting data given in one set of 
variables to other data. As an example: given the 
way in which a component of acceleration varies 
with displacement, determine the variation of 
speed with time. In such problems the sketching 
of appropriate graphs is a useful aid to the 

2.7 Graphical methods 

Speed-time graph (Fig. 2.17) 

dv d2s dv 
' -  dt dt2 - 'd,i a - - = - -  

i B / o  = ( i+rw) i+Oj= 0 
then X =  -rw 

Also, 

~ B l o  = (x+rh ) i+ ( rw2) j  

but solution. 

therefore 

x = -rh 

F B , ~  = rw2j 
Note that differentiating i B / o  (e  = 3 ~ 1 2 )  does not 
give &/()(e = 3~12) :  8 must be included as a 
variable of the differentiation. 

2.6 One-dimensional motion 
The description 'one-dimensional' is not to be 
taken as synonymous with 'linear', for, although 
linear motion is one-dimensional, not all one- 
dimensional motion is linear. 

We have one-dimensional motion in path 
co-ordinates if we consider only displacement 
along the path; in polar co-ordinates we can 
consider only variations in angle, regarding the 
radius as constant. Let us consider a problem in 
path co-ordinates, Fig. 2.16, the location of P 
being determined by s measured along the path 
from some origin 0. (This path could, of course, 
be a straight line.) 

Speed is defined as v = dsldt, and dvldt = rate 

Figure 2.17 

Slope of graph = - - = at (2.29) 
dt d i") dt 

Area under graph = I:: (:)dt 
= s2-s1 (2.30) 

Hence, 
and 

and 

slope = rate of change of speed 

area = change of distance 
If a, is constant, then the graph is a straight line 



14 Kinematics of a particle in plane motion 

area = i(v1+v2)(t2-tl) =s2-s1 (2.31) 

and slope = a, 

Distance-time graph (Fig. 2.18) 

Figure 2.21 

The advantages of sketching the graphs are many 
- even for cases of constant acceleration (see 
examples 2.2 and 2.3). Figure 2.18 

(2.32) Discussion examples ds 
dt 

Slope = - = v 

Example 2.1 
A point P moves along a path and its acceleration 
component tangential to the path has a constant 
magnitude ato. The distance moved along the 
path is s. At time t = 0, s = 0 and v = vo. Show 
that (3 v =  vo+atot, (b) s = vot+Ba,ot2, (c) 
v2 = vo + 2atos and (d) s = +(v + vo)t. 

Solution 

Rate-of-change-of-speed-time graph 
(Fig. 2.19) 

Figure 2.19 a) Since a, = dv/dt, 
dv = a,o dt 

(2.33) 
t2 dv 

Area = - dt = v2 - v1 
and I ' dv = utO [ I dt since ato is constant. 

Therefore v - vo = atot 

0 

I t ,  dt 
Q If a, is constant, then 

area = at(t2-tl)  = v2-vl (2.34) 
( 9  or v = vo + a,ot 

Rate-of-change-of-speed-displacement graph 
Fig. 2.20). Here we make use of equation b) Since v = ds/dt, 

f2.28). 
[ids = I:vdt= [r(vo+a,ot)df 0 

s = vot + ta,ot 2 (ii) 
c) From (i), t = (v - vo)/ato and substituting for t 
in (ii) gives 

Figure 2.20 v2 = 0; + 2atos (iii) 

d) Also from (i), ato = (v - vo)/t and substituting 

. -  

s2 dv (2.35) for ato in (ii) gives v- ds = i v 2  - ;vl2 Area = 
s = B(vo+v)t (iv) I,, ds 

[As these equations for constant acceleration are 
(2.36) often introduced before the case of variable 

acceleration has been discussed, it is a common 
mistake to try to apply them to problems dealing 
with variable acceleration. For such problems, 
however, the methods of section 2.7 should 
always be used (cf. example 2.3).] 

If a, is constant, then 

U t ( S 2 - S 1 )  = 4 0 2  2 -Bv12 

Inverse-speed-distance graph (Fig. 2.21) 

A~~~ = 1:; d h = 1:; 2 ds = t2 - tl (2.37) 



Example 2.2 Given that the initial forward speed is 3.0 m/s 
The variation with time of the tangential and the acceleration varies smoothly with 
acceleration a, of a vehicle is given in Fig. 2.22. At distance, find for s = 40 m (a) the speed and (b) 
time t = 0 the speed is zero. Determine the speed the time taken. 
when t = t 3 .  

Solution 
a) We are given a, in terms of s and require to 
find v, therefore we must use an expression 
relating these three parameters. The constant- 
acceleration formulae are of course not relevant 
here. The basic definition a, = dvldt cannot be 
used directly and we must use the alternative 
form a, = v(dv/ds), equation 2.28, which relates 
the three required parameters. Integration gives 

1: vdv = I::u,ds 

or 4 (v22 - v12) is equal to the area under the graph 
of a, versus s between s = s1 and s = s2, Fig. 2.23. 

Letting s1 = 0 and s2 = 40 m, the area is found 
to be 32.0 (m/s)’. This area can be determined by 
counting the squares under the graph, by the 
trapezium rule, by Simpson’s rule, etc., depend- 
ing on the order of accuracy required. (The 
trapezium rule and Simpson’s rule are given in 
Appendix 3 .) 

L 2  ‘3 Figure 2.22 

Solution Each portion of the graph represents 
constant acceleration and so we can use the 
appropriate formula (equation 2.34), a, (t2 - t l )  = 
v2 - v l ,  for each portion, using the final speed of 
one part as the initial speed of the next. 

Time 0 to tl : 

v1 -vug = a1 (tl - t o ) ,  

v2-v1 = a;!(t2-t1), v2 = a2(t2-t1)+01 

01 = Ultl 

Time tl to t2:  

= a2(2-t1)+a1t1 

v 3 - v 2 =  a s ( t 3 - t 2 ) ,  v 3  = a 3 ( t 3 - t 2 ) + 0 2  

0 3  = a 3 ( t 3  - t 2 )  + @ ( t 2  - tl ) + Ultl 

Time t2 to t 3 :  

Alternatively we can dispense with the con- 
stant-acceleration formulae and obtain the same 
result more rapidly by noting that the speed 
change is equal to the area under the graph of 

2.33), so that the speed at t = t3  can be written 
down immediately. 

tangential acceleration versus time (see equation 
v 

Figure 2.23 

Example 2.3 Thus ;(vm2 - 3 2 )  = 32, 
An accelerometer mounted in a vehicle measures 
the magnitude of the tangential acceleration a,. 
At the same time the distance travelled, s, is 
recorded with the following results (see 
section 3.3): 

v40 = d[2(32) + 3’1 = 8.54 m/s 

b) Given a, as a function of s, time cannot be 
found directly. We can, however, make use of the 
relationship v = ds/dt in the form dt = (l1v)ds 

a,/(m s-’) s/m a,/(m sp2) s/m provided we can first establish the relationship 
1.2 0 -1.3 25 between v and s. To find values of v at various 
2.1 5 -0.8 30 values of s, we can use repeated applications of 
2.6 10 0.1 35 the method of (a) above. 
2.1 15 0.9 40 It is useful to set out the calculations in tabular 
0.4 20 form: 
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v/(m s-') 
s/m area/(m2 s - ~ )  = [2(area + 2)02)]1'2 

0-5 8.4 5.08 
0-10 20.2 7.03 
CL15 32.6 8.61 
0-20 39.4 9.37 
0-25 36.8 9.09 
0-30 31.2 8.45 
0-35 29.0 8.91 
0-40 32.0 8.54 

Since t2 - tl = (l/v) ds, the area under the graph 
of l /v versus s will give the required time. 
Corresponding values are given below and are 
plotted in Fig. 2.24. 

Figure 2.25 

substitution of the numerical values gives 
The magnitude of a is d[S.2+(v2/p)2]  and 

3.0 = d[2'+ (52/p)2] 

and p =  11.18m 

Example 2.5 
See Fig. 2.26. The centre C of the wheel of radius 
0 .5m has a constant velocity of 2.5m/s to the 
right. The angular velocity of the wheel is 
constant and equal to 6 r ads  clockwise. Point P is 
at the bottom of the wheel and is in contact with a 
horizontal surface. Points Q and R are as shown 
in the figure. - 

I Y . y r v  

Figure 2.24 drn 

(l/v)/ s/m (l/v)/ s/m 
(s m-') (s m-') 

0.333 0 0.110 25 
0.197 5 0.118 30 
0.142 10 0.122 35 
0.116 15 0.117 40 Figure 2.26 
0.107 20 Determine (a) whether or not the wheel is 

slipping on the surface, (b) the velocities and 
5.6 s. accelerations of the points P and Q and (c) the 

velocity and acceleration of the point R. 
Example 2.4 Solution Usually the simplest way of dealing 
At a particular instant, a point on a mechanism with the motion of a point on a wheel which is 
has a speed of 5.0 m/s and a tangential rotating and translating is to determine the 
acceleration of magnitude 2.0 m/s2. If the motion of the wheel centre and add on the motion 
magnitude of the total acceleration is 3.0m/s2, of the point relative to the centre. So for an 
what is the radius of curvature of the path being arbitrary point A and centre C we can make use 

of 

Solution Choice of co-ordinates is not difficult vA = vc + z)Mc (see equation (2.24) 
for this problem since radius of curvature is and aA = ac + aA/c (see equation 2.25) featured only in path co-ordinates. In these 
co-ordinates the total acceleration a (see a) If the wheel is not slipping then the velocity 
Fig. 2.25) is given by of point P must be the same as the velocity of the 

surface, namely zero. 
From equation 2.17, the velocity of P relative 

= S.et + ( v 2 / p )  e, to C is given by 

The time taken is found to be approximately 

traced out by the point at this instant? 

a = atet + anen 

(see equations 2.14) 



vplc = i-e, + r6ee aQ = aC + aQ/C 

where r is the length of the line CP and I3 is the 
angle of the line CP measured from some datum 
in the plane of the motion. Since r has a constant 
value (0.5 m) then i- = 0 and vplc has no c) See Fig. 2.27(c). For the radial line CR, 
component in the direction of CP. The angular 
velocity of the line CP is 4 in the anticlockwise 
direction (since I3 is defined as positive in this 
sense); thus & = -6 rads, and [see Fig. 2.27(a)] 

but vc is constant, and so ac = 0. Therefore 

UQ = - 18j m/s2 

e, = sin 30"i + cos 307 = 4 i + t d 3 j  
and 

ee = -cos 30"i + sin 307 = - 4 d 3 i  + G 
VR/C = r$ee = O S (  -6)( - 4 d 3 i  + G )  

= (2.6i- 1.5j)  m/s 

and 

vR = vc+vwc = 2.5i+2.6i-  l . 5 j  
= (5 .1i-  1 .5j)  m / s  

The same result can be obtained from a velocity 
vector diagram, Fig. 2.28. Here vc and vR/c are 
drawn to some appropriate scale in the correct 
directions and are added graphically to give VR . 

.. 

Figure 2.27 Figure 2.28 
For the acceleration of R relative to C we have 

vplc = veee = roee = 0 .5 ( -6 ) i  = -3i m/s 
uwc = -rb2e, = - O S (  -6)2(4i + t d 3 j )  

which is the total acceleration of R, since ac = 0. 

Example 2.6 
At the instant under consideration, the trolley T, 
Fig. 2.29, has a velocity of 4 m/s to the right and is 
decelerating at 2 m/s2. The telescopic arm AB has 
a length of 1.5 m which is increasing at a constant 
rate of 2 d s .  At the same time, the arm has an 
anticlockwise angular velocity of 3 rads and a 
clockwise angular acceleration of 0.5 rads'. 

The velocity of C is v = 2 . 5  m/s and the total 
velocity of P is = (9i+ 15.6j) m/s2 

VP = vc + vP/c 
= 2.5-  3i = - 0 . 5  m / s  

The wheel is therefore slipping. 

b) See Fig- 2-27(b)- For the radial line CQ we 
have e, = j and e, = - i .  The velocity OfQ relative 
to C is 

vQ/C = &ee = ( - 3 ) ( - i )  = 3i m/s 

so that 

VQ = VC + vQ/C = 2.5i + 3i = 5 . 5  m / ~  

From equation 2.18, the acceleration of Q 
relative to C is given by 

uQIC = ( Y -  rh2)e,  + (re + 2i-6) e, 
= (-0.5)(-6)'er 
= - 18j m/s2 

The total acceleration of Q is Figure 2.29 
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= -18.54i+5.96jm/s2 
and the magnitude of the acceleration of B is 

laBl = [(-18.54)2+ (5.96)2]1/2 = 19.47 m/s2 

A graphical solution is again appropriate, 
and somewhat quicker. For the velocity vector 
diagram we first draw, to scale, vA, the velocity of 
A, 4 m / s  to the right (Fig. 2.31). The velocity of B 
relative to A, Z ) B / ~ ,  having the components i. = 2 
and re = 1.5(3) = 4.5 in the appropiate direc- 
tions, is then added to vA and the resultant is %, 
which can be scaled from the figure. 

Figure 2.30 

Determine for B (a) the velocity and speed, 
and (b) the acceleration and its magnitude. Give 
the vector quantities in terms of the unit vectors i 
and j. 
Solution Polar co-ordinates are again required, 
and we must first write down the expressions for 
e, and ee in terms of i and j (see Fig. 2.30). 

e, = cos 20"i + sin 203 
ee = -sin 20"i + cos 203 

From equation 2.17, 

Z)BIA=i.e,+rke wherer= 1.5andi .=2 Figure 2.31 

thus %/A = 2(0.940i+ 0.3421') 

= O.341i+4.91jm/s2 

For the acceleration vector diagram of Fig. 2.32 
we first draw a line to scale to represent the 
acceleration of A, aA. This is 2 m/s to the left. 
The acceleration of B relative to A, aB/A, is then 

From equation 2.24, added to aA. The components of aB/A are 
?-re2 = 0- 1.5(3)2 = -13.5 m/s2 in the e, direc- 
tion and r8+2i.h= 1.5(-0.5)+2(2)3 = 11.25 
m / s 2  in the eo direction. The acceleration of B, 
aB , can be scaled from the figure. 

+ 1.5(3)(-0.3423+ 0.940j) 

% = VA +%/A 

% = 4i + (0.34i+ 4.01j) 
thus 

= (4.34i+4.91.) m/s2 

The speed of B is the magnitude of VB : 
I % I = d(4.342 + 4.912) 

= 6.55 m/s 

The acceleration of B relative to A is, from 
equation 2.18, 

QB,A = (i '-  re2) e, + (re+ 2i.b) e, 
Figure 2.32 

and i: = 0 since i. is constant. 

aB/A = -1.5(3)2(0.940i+0.342j) Example 2.7 
+ [(1.5)(-0.5) +2(2)3] A racing car B is being filmed from a camera 

mounted on car A which is travelling along a 
straight road at a constant speed of 72 km/h. The 
racing car is moving at a constant speed of 144 
km/h along the circular track, centre 0, which has 
a radius of 200m. At the instant depicted in 
Fig. 2.33, A, B and 0 are co-linear. 

Determine the angular velocity and the angular 

x (-0.3423'+ 0.940j) 
= -16.54i+5.96jm/s2 

From equation 2.25 

a~ = a~ + ~ B I A  

= -2i+(-16.54i+5.96j) 



Figure 2.33 

acceleration of the camera so that the image of B 
remains centrally positioned in the viewfinder. 

Solution In order to find the required angular 
velocity and angular acceleration, we shall first 
need to determine the velocity and acceleration of 
B relative to A in the given polar co-ordinates and 
then make use of equations 2.17 and 2.18. 

The velocity of B is perpendicular to the line 
AB, so that 

% = l M ( E ) ( - e o )  = -Neo m / s  

The velocity of A is 

vA = 7 2 ( E ) i  = 20i m / s  

Resolving the unit vector i into the e, and e8 
directions we have 

vA = 20(-cos30"e8 - sin30"e,) 
= (-10e,- 17.32e8) m / s  

The velocity of B relative to A is 
%/A = %-vA = 10e,-22.68eo 

%lA = fer + roeo 

(9  
Also, from equation 2.17, 

(ii) 
Comparing equations (i) and (ii) and noting 

from Fig. 2.33 that 
r = (230/cos30") - 200 = 65.58 m 

we find 
i =  1 0 d s  

and the angular velocity of the camera is 
h = -22.5fU65.58 = -0.346 rads 

The acceleration of B is most conveniently 
found from path co-ordinates (equations 2.14) 
and is 
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4d 
200 

aB = Oeo+-e, = &, 

Since car A is travelling at a constant speed 
along a straight road, 

aA = 0 

aB/A = as- aA = &r 

Also, from equation 2.18, 

The acceleration of B relative to A is 

(iii) 

aB/A = (i- rb2)er + ( re+ 2ib)e0 (iv) 
Comparing equations (iii) and (iv) we see that 

0 = re+2fh = 65.588+2(10)(-0.346) 
hence the angular acceleration of the camera is 

8 = 20(0.346)/65.58 = 0.106 rads' 

Problems 
2.1 The position of a point, in metres, is given by 
r = (6t-5t2)i+ (7+8 t3 ) j ,  where t is the time in 
seconds. Determine the position, velocity and the 
acceleration of the point when t = 3 s. 

2.2 The acceleration of a point P moving in a plane is 
given by a = 3t2i + (4t + 5 ) j  d s 2 ,  where t is the time in 
seconds. When t =  2, the position and velocity are 
respectively (12i + 26.3333') m and (1Oi + 213') d s .  
Determine the position and velocity at t = 1. 

2.3 A point A is following a curved path and at a 
particular instant the radius of curvature of the path is 
16m. The speed of the point A is 8 d s  and its 
component of acceleration tangential to the path is 
3 d s 2 .  Determine the magnitude of the total accelera- 
tion. 

2.4 A point P is following a circular path of radius 5 m 
at a constant speed of 10 d s .  When the point reaches 
the position shown in Fig. 2.34, determine its velocity 
and acceleration. 

Figure 2.34 

2.5 A ship A is steaming due north at 5 knots and 
another ship B is steaming north-west at 10 knots. Find 
the velocity of B relative to that of A. (1 knot = 1 
nautical milem = 6082.66 ft/h = 0.515 d s . )  

2.6 A telescopic arm AB pivots about A in a vertical 
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plane and is extending at a constant rate of 1 d s ,  the 
angular velocity of the arm remaining constant at 
5 rads  anticlockwise, Fig. 2.35. When the arm is at 30" 
to the horizontal, the length of the arm is 0.5m. 
Determine the velocity and acceleration of B. 

2.10 A point moves along a curved path and the 
forward speed v is recorded every second as given in 
the table below. 

0 1 2 3 4 5 6  tls 
vlms-' 4.0 3.8 3.6 3.2 2.4 1.5 0.4 

It can be assumed that the speed vanes smoothly with 
time. 

(a) Estimate the magnitude of the tangential 
acceleration at time t = 3 s and the distance travelled 
between t = 0 and t = 6 s .  

(b) If, at t = 3 s ,  the magnitude of the total 
acceleration is 1.0 d s 2 ,  estimate the magnitude of the 
acceleration normal to the path and also the radius of 
curvature of the path. 

motion of a point is recorded at each metre of distance 
travelled, and the results are as follows. 

d m  0 1 2 3 4  
a,/ms-* 2.0 2.1 2.5 2.9 3.5 

Figure 2.35 

2.7 Repeat problem 2.6 assuming that the velocity of 
point A is (7i + 2j) d s  and its acceleration is (4i + 6j) 

the magnitude of its acceleration. 

2.8 For the mechanism shown in Fig. 2.36, determine 
the velocity of C relative to B and the velocity of C. 

d s 2 .  Also determine for this c a e  the speed of B and 2'11 The forward (tangential) acce1eration at Of the 

At s = 4 m, the forward speed is 4.6 d s .  

Estimate 
(a) the speed at s = 0 m, and 
(b) the time taken to travel from s = 0 to s = 4 m. 

Further problems involving variable acceleration are 
given in Chapter3, problems 3.3, 3.4, 3.6, 3.12, 3.14, 
3.15, 3.17, 3.18 and 3.19. Figure 2.36 

2.9 A point P moves along a straight line such that its 
acceleration is given by a = ( sS2  + 3s + 2) d s 2 ,  where s 
is the distance moved in metres. When s = 0 its speed is 
zero. Find its speed when s = 4 m. 



Kinetics of a particle in plane motion 

3.1 Introduction 
In the previous chapters we have studied the 
kinematics of a point moving in a plane; velocity 
and acceleration have been defined in various 
co-ordinate systems and for a variety of 
conditions. It is now necessary to consider the 
forces associated with the motion. 

The concept of force is useful because it 
enables the branches of mechanical science to be 
brought together. For example, a knowledge of 
the force required to accelerate a vehicle makes it 
possible to decide on the size of the engine and 
transmission system suitable as regards both 
kinematics and strength; hence force acts as a 
‘currency’ between thermodynamics or electro- 
technology or materials science. 

3.2 Newton’s laws of motion 
Newton’s laws define the concept of force in 
terms of the motion produced by the force if it 
acted alone - which is why we have yet to discuss 
statics. 

We will first state the three laws in the form 
that is most common in current literature. 

First law 
Every body continues in a state of rest or of 
uniform rectilinear motion unless acted upon by a 
force. 

Second law 
The rate of change of momentum of a body is 
proportional to the force acting on the body and is 
in the direction of the force. 

Third law 
To each action (or force) there is an equal and 
opposite reaction. 

The term ‘momentum’ is prominent in the 
formulation of the laws of mechanics and a formal 
definition is given below, together with a 

definition of mass. The reader concerned with the 
philosophical implications of the definitions of 
mass, length and time should consult a text on 
pure physics. 

Momentum 
Momentum is defined simply as the product of 
mass and velocity. 

Mass 
Mass is a measure of the quantity of matter in a 
body and it is regarded as constant. If two bodies 
are made from the same uniform material and 
have the same volume then their masses are 
equal. 

The first law says that if a body changes its 
velocity then a force must have been applied. No 
mention is made of the frame of reference - 
whether a change in velocity occurs depends on 
the observer! This point will be considered in 
detail in section 3.6. 

The second law establishes a relationship 
between the magnitude of the force and the rate 
of change of momentum: 

d 
dt 

force CC- (momentum) 

d dv 
dt dt 

or F x -  (mv) = m- = ma 

when all points on the body have the same 
acceleration. 

Equivalance of mass 
If two objects made from different materials 
collide, then by Newton’s third law they receive 
equal but opposite forces at any given time and it 
follows that the momentum gained by one body 
must be equal to that lost by the other. 

If we conduct a simple collision experiment and 
measure the velocities of the bodies before and 



Note that in this treatment the symbol 
representing the unit is considered as a simple 
algebraic quantity. This approach simplifies the 
conversion from one system of units to another. 

When plotting a graph of length against time, 
for example, the axes should be labelled as shown 
in Fig. 3.1, since pure numbers are being plotted 
(see Appendix 2, reference 3). 
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after impact, then we may obtain an expression 
for the ratio of their masses. Thus, equating the 
momentum before impact to that after impact, 

ml u1 + m2u2 = mlvl + m2v2 
hence ml(v l -u l )  =m2(u2-02) 

m2 v1- u1 and - -- 
m1 u2-212 

change in speed of mass 1 = I  change in speed of mass 2 

- 

I ( 3 4  

Therefore Newton’s laws provide, at least in 
principle, a means of measuring mass and also 
lead to the law of conservation of momentum (see 
section 8.3). 

3.3 Units 
At this stage it is convenient to consider the 
question of the units in terms of which the 
quantities encountered so far may be measured. 

A statement defining the length of an object 
requires two parts: a number and a unit. 
e.g. L = nm 
where L = symbol signifying length, It is given that 

Figure 3.1 

Time The unit for time is the second, symbol s ,  
so that time t = 4 s, where 4 is a pure number. 
Mars The unit for mass is the kilogram, symbol 
kg, in the SI and the pound, symbol lb, in the 
‘British’ absolute system. 

n = pure number, 
m = a unit, such as metre. 

1 lb = 0.45359237 kg exactly (see Appen- 

lb 

dix 2) 

or - =0.454 = 

Derived units 
Velocity 2) = dr/dt, so that, in SI units, the 
magnitude of the velocity is 

If other units are used, such as feet, then the 
length of the same object is kg 

L = p f t  
where p = a pure number 
and f t  = feet. 

n m  

4 s  
It is given that v = - = (;) m/s 

1 ft = 0.3048 m exactly (see Appendix 2) 
hence the unit for speed is m/s (metres per 
second) and similarly the unit for acceleration is 

The dimensions of these derived units are said 

ft 
m m/s2 (metres per second’). therefore - = 0.3048 

(read as 1 ftt 1 m, not as ft  per m) 

hence L = p f t = p  - m=p0 .3048m 

to be 
length (time)-’ (3 and 
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length (time)-2 respectively. 

Force The unit for force is chosen so that when 
applying Newton’s second law the constant of 
proportionality is unity. From the second law, 

force (mass)(acceleration) 

Using consistent units, 

F = m a  

that is, if the numerical values of mass and 
acceleration are unity then the numerical value of 
the force is also unity. In the SI, in which the basic 
units are kg, m and s, the unit of force is the 
newton, N, so that 

(P  N) = ( 4  kg)(r d s 2 )  
where p,  q and r are pure numbers. 

By definition, the numerical relationship is 

P = 4‘ 
and the units are related by 

m 
S2 

N = kg- 

We say that the ‘dimensions’ of the unit of force 
are kg m s - ~  when expressed in terms of the basic 
units. 

3.4 Types of force 
The nature of force is complex, so it is best to 
consider force as a concept useful in studying 
mechanics. It plays a role in mechanics similar to 
that of money in trade in that it enables us to 
relate a phenomenon in one discipline to one in 
another discipline. For example, in the simple 
case of a spring and a mass (Fig. 3.2) the results of 
Newton’s second law and Hooke’s law may be 
combined. 

A list of SI units appears in Appendix 2. 

From Hooke’s law * , 
F =  kx (k = constant) 

and from Newton’s second law, taking vectors 
acting to the right as positive 

d2x 
dt2 

- F = m -  

Figure 3.2 

Eliminating F between the two equations gives 

d2x 
kx+m, = 0 

dt (3-3) 

which is a differential equation relating displace- 
ment x to time t .  

Note that force is used to represent the effect 
that one body has on the other. Let us now 
consider the definition of force. We need a formal 
definition to avoid ambiguity since not all writers 
mean the same thing when they use the term 
‘force’. 

Definition of force 
Force is the action of one body upon another 
which produces, when acting alone, a change in 
the motion of a body. (Newton’s law gives the 
means of quantifying this force.) 

It is convenient to group forces into two classes: 
(a) long-range forces and (b) short-range forces. 
Long-range forces are gravitational, electrostatic 
and magnetic forces and are also known as body 
forces. Short-range forces are the forces due to 
contact of two bodies. It might be argued that the 
latter are only special cases of the former, but in 
mechanical applications the distinction remains 
clear. 

The forces of contact are often sub-divided into 
normal forces - i.e. normal to the tangent plane 
of contact - and tangential, shear or friction 
forces which are parallel to the plane of contact. 

Dry  friction 
The friction force between two dry unlubricated 
surfaces is a quantity which depends on a large 
number of factors, but consideration of an ideal 

* Hooke’s law states that any deformation produced by a given 
loading system is proportional to the magnitude of the 
loading. A body obeying Hooke’s law is said to be linearly 
elastic. 
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6.670 x lo-” x 5.98 x ld4 x 1 
F =  

(6.368 x 106)2 

= 9.8361 N 

If this force acts alone on a unit mass, it follows 
that the acceleration produced will be 

9.8361 d s 2  

This quantity is often called the acceleration due 
to gravity and is given the symbol g; thus 

gravitational force = mass X g 
We prefer to regard g as the gravitational field 
intensity measured in N/kg. 

The declared standard values of g is 

g, = 9.80665 m/s2 or N/kg 

This differs from the value calculated because the 
Earth is not a perfect sphere and also because 
the measured value is affected by the Earth’s 
rotation. 

Figure 3.3 

case known as Coulomb friction is often regarded 
as adequate. In this case the friction force is 
assumed to take any value up to a maximum or 
limiting value. This limiting value is considered to 
be proportional to the normal contact force 
between the two surfaces, 

i.e. F = p N  (see Fig. 3.3) (3.4) 
where p is called the cofficient of limiting friction. 

In practice p is found to vary with sliding speed 
and often drops markedly as soon as sliding 
occurs. 

So far we have considered the contact forces 
acting at a point, although they are most likely to 
be distributed over a finite area, A .  The intensity 
of normal loading defined by 

A P  d P  
limu+,o- = - 

A A d A  (3.5) 

is called ‘pressure’ or ‘normal stress’. 
It is conventional to speak of ‘pressure’ when 

dealing with fluids and ‘stress’ when dealing with 
solids. 

3.5 Gravitation 
Isaac Newton was also responsible for formulat- 
ing the law of gravitation, which is expressed by 

where F is the force of attraction between two 
bodies of masses m1 and m2 separated by a 
distance d ;  G is the universal gravitational 
constant and has a value 

G = (6.670f0.005) x lo-’’ m3 s - ~  kg-’ 
The mass of the Earth is taken to be 5.98 x 

kg and its mean radius is 6.368 x lo6 m. From 
equation 3.6, the force acting on 1 kg mass at the 
surface of the Earth is 

Weight 
The weight W of a body is usually defined as the 
force on the body due to gravity (mg); however it 
is normally interpreted as ‘the force equal and 
opposite to that required to maintain a body at 
rest in a chosen frame of reference’, that is 
relative to the surface of the Earth or relative to a 
freely orbiting spacecraft in the sense of 
‘weightlessness’. The difference between the two 
definitions on the Earth’s surface is only 0.4 per 
cent. 

Using the latter definition, W = mass Xg’, 
where g’ is the apparent field intensity. 

Unless otherwise stated, the value of g is taken 
to be g, . 

3.6 Frames of reference 
In the previous section the term ‘frame of 
reference’ was used. It is clear that in the 
interpretation of Newton’s first law we must have 
some reference frame from which to measure the 
velocity. For most elementary problems we 
consider the surface of the Earth to be a suitable 
frame, although we know that such a frame is 
rotating relative to the stars and is moving around 
the sun. 

Intuitively, we would guess that a frame having 
no acceleration relative to the sun and not 
rotating relative to the stars would be the best 
possible. Let us regard such a frame as ‘inertial’ 
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or ‘Galilean’. It follows that any other frame F, + CJ;, = m,?, (3.7) 
moving with constant velocity relative to our 
original inertial fmme will also be an inertial 
frame, since Newton’s laws will be equally nus 
applicable. This is because force depends on rate 
of change of velocity, which will be the same 
when measured in either frame. 

If we cannot observe the entire universe, how 
can we be sure that we have an inertial frame? 

I 

wherefi, is the force on particle i due to particle i. 

external force + sum of internal forces 
= mass x acceleration 

Note that 

The simple answer is that we cannot. Consider Cfi,=fin+fib+...+fil+...+fin (3.8) 
conducting experiments in a lift, with no means of 

no means of telling whether the force of gravity 

I 

observing the outside world. Assume that the lift 
is accelerating downwards, in which case we have 

has reduced or the lift is accelerating - even the 
use of the property of light travelling in straight 
lines would not help. Such considerations as these 
led Einstein towards the general theory of law is then said to exist in its weak form.) 
relativity. 

If we now consider experimenting on a rotating 
platform, we have the choice of assuming that the 
platform is rotating or, if this is denied, of 

observed phenomena and preserve Newton’s 
laws. 

By Newton’s third law, 

(3.9) 
and in most cases they are collinear. (Some cases 
exist in electromagnetic theory where the equal 
and opposite forces are not collinear; Newton’s 

If we now sum all equations of the form of 

A] = -41 

equation 3.7, we obtain 

C F , +  c (FA,) = c m,F, (3.10) 

The double summation is in fact quite simple, 
since for every A, there is an f,, such that 

inventing extra forces in order to explain the n n j = 1  n 

fi, + f / l  = 0. 
Hence we obtain 

C F, = C m,?, 
3.7 Systems of particles 
So far we have either considered only a single 
particle or tacitly assumed that there is a n n 

representative point whose motion may be 
described. However, any real object is an 3.8 Centreof mass 
assembly of basic particles constrained by internal The centre of mass (c.m.) of a body is defined by 
forces and acted upon by outside bodies and the equation 
surface forces. Cm,r,  = (Cm,)rG = MrG (3.12) 

Let us consider a collection of n particles of 
mass m, and position r, . The force acting on any where M is the total mass of the body and rG is the 
typical particle may be due (a) to external body position of the c.m. as shown in Fig. 3.5. 
forces, (b) to internal forces of one particle on 

Cm,x,=MXG; Cmly l=MYG;  another, or (c) if the particle is at the surface, 
then a contact force is possible. 

(3.11) 

In scalar form, 

For the ith particle (Fig. 3.4), Cm,z ,  = MzG (3.13) 

Figure 3.4 Figure 3.5 
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An alternative description may be obtained by 
writing 

r i = r G + p i  
and substituting into equation 3.12 gives 

hence C m i p i  = 0 (3.14) 
Differentiating equation 3.12 with respect to 

time gives 

Cmii i  = MiG and Cmi& = M?G (3.12a) 

Similarly, from equation 3.14, 

c m i p i  = 0 and Cmipi=O (3.14a) 

As an example of locating the centre of mass 
for a body with a continuous uniform distribution 
of matter, we shall consider the half cylinder 
shown in Fig. 3.6. 

2 mi (TG -k p i )  = (2 mi) rG 

Figure 3.6 

the z-axis. 
By symmetry, the centre of mass must lie on 

The mass of the element with density p is 
pb (rdt9) dr 

and its mass moment relative to the xy plane 
(Cmizi)  is 

pb(rdt9)drrsinO 
For an elemental cylinder of thickness dr and 

radius r, the moment of the mass is 
o= 77 I e=wpbr2 drsin Ode = pbr ’ (-cos 0) dr 

e=o l B = o  
= 2pbr’dr 

and for the whole body the moment of mass is 

[ r-a2pbr2dr = b p b  (+r3)]1: = $pba 3 

r - 0  

The mass of the whole body is pba’b so, by the 
definition of the centre of mass, 

2 mz JJpbr‘sin Bdrde 
Cm JJpb dr r de z G = - =  

- ipba 3 4 a  _--_ 
+pb?ra2- 3?r 

In terms of the c.m., equation 3.11 becomes 

CFi = h f F ~  (3.15) 

This equation states that the vector sum of the 
external forces acting on a particular set of 
particles equals the total mass times the 
acceleration of the centre of mass, irrespective of 
the individual motion of the separate particles. 
This equation is equally applicable to any system 
of particles, whether they are rigidly connected or 
otherwise. 

3.9 Free-body diagrams 
The idea of a free-body diagram (f.b.d.) is central 
to the methods of solving problems in mechanics, 
and its importance cannot be overstated. 

If we are to be able to use equation 3.15 
properly, then we must show clearly all the forces 
acting on any bodies, or collection of bodies, and 
to do this we must remove all other bodies from 
the diagram and replace their actions by forces. 
As an example, consider a rear-wheel-drive car 
towing a trailer (Fig. 3.7(a)) - the f.b.d. for the 
car is shown in Fig. 3.7(b). We will assume that W 
and Fare known. 

Because the earth has been removed from the 
diagram, we must introduce the contact forces 
between the tyres and the road (here we have 
made an engineering assumption that the 
tangential force at the front wheel is small). Also, 
we have the sum of all the gravitational 
attractions, C m i g  = W, acting at a point G, the 
centre of gravity of the body. It can be shown 
that, for a uniform field, the centre of gravity and 
the centre of mass are coincident points. 
Removing the trailer exposes the force on the 
towing bar, shown as two components for 
convenience. As the path of the vehicle is a 
straight line, j iG = 0 and fG = a, as yet unknown. 

Equation 3.15 gives 
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2 F, = MXG W l i + k X = O  

and CF,= M y ,  i.e. x =  --x (3.19) 
k 

Resolving the forces gives m 

F - P -  Wsina = MXG = Ma 

Q - Wcosa + R1 + R2 = M y ,  = 0 

(3.16) 

(3.17) 

A first integral can be obtained by writing 

dv k 
d x m  

X x = 2)- = -- and 

hence Jvdv= --xdx I% 
v2 k x 2  C 2  and - = --- + - 

v g  2 m 2  2 

(3.20) 
Thus v=-=J (c2 -mx2)  dx k 

Now a second integral involves a substitution - 
that is, some guesswork - so let us guess that 
x = A sin of, A and o being constants. Substitut- 
ing in equation 3.19 gives 

k 
m 

where C is a constant 

dt 
(b) 

( - 02)A sin wt = -- (A sin of) 

k 
therefore o2 = - 

m 
Figure 3.7 

If we now draw a free-body diagram for the 
trailer, another Useful equation may be derived. 
Note that on the free-bodY diagram, Fig. 3.7(C), f' 
and Q are drawn equal and opposite to the P and 
Q on the car, as required by Newton's third law. 

The same result would have been achieved had 
the substitution x = ~ ~ o ~ ~ t  been made, hence we 
conclude that the general solution of equation 
3.19 is 

Resolving parallel to the road, x = Asinof+ Bcosot 

The velocity at time t is 
where o = d(k /m)  (3.21) 

P -  W,sina = M , a  (3.18) 

Adding equations 3.16 and 3.18, we have 
dx 
dt F- (W+W,)s ina= ( M + M , ) a  v = - = wAcoswt- wBsinot 

Hence a is determined so that using equation 3.16 
the force P can be found. 

3.1 0 Simple harmonic motion xo = B and vo= o A  
As an example of one-dimensional motion we 
shall consider a special type of motion which is 

to forces such that the acceleration is proportional 
to the displacement from some equilibrium or rest 
position and is always directed towards that or alternatively 
position. In mathematical terms, 

The values of A and B depend on the initial 
conditions. If, when t = 0, x = xo and v = vo then 

This leads to 
very common in physics. The motion is that due VO x = -sinot+xocosot, w = d ( k / m )  

0 

x = Xsin (ot + 4) 
i K -x 

where X =  ~ [ ( v o l o ) 2 + x o 2 ]  and is called the 
amplitude and 4 = arctan(xow/vo) and is called a We have seen in section 3.4 that for a simple 

mass-and-spring system phase angle. 
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Figure 3.8 

A graph of x against t is shown in Fig. 3.8. 
The function of x is seen to repeat exactly after 

a time interval of T called the periodic time. We 
know that the sine function repeats when its 
argument has increased by 277, therefore if time 
increases by 277/w this must be equal to the 
periodic time. Hence 

2rrlw = T (3.22) 

The inverse of the periodic time is the 
frequency, Y. If the periodic time is measured in 
seconds then the frequency will be measured in 
cycles per second or, in SI units, hertz (Hz) - 
where 1 hertz = 1 cycle per second. 

1 0  
T 2rr 

Therefore frequency v = - = - (3.23) 

Referring to Fig. 3.9, it is seen that the 
projection of the line OA which is rotating at an 
angular velocity w rads produces simple har- 
monic motion. 

The integral 1I:Fdt is called the impulse and is 
usually given the symbol J .  (Note that impulse is a 
vector quantity.) 

or J = A(MvG) (3.25) 
This equation may be used directly if a 

force-time history is available as shown in 
Fig. 3.10. In this case the area under the curve is 
the impulse and may be equated to the change in 
momentum. 

Hence impulse = change in momentum 

- ,  
Figure 3.10 

In collision problems, the impulse-momentum 
relationship is used in conjunction with Newton's 
third law. By this law, the force of contact on one 
body during collision is equal and opposite to that 
on the other, and so the impulse received by one 
body will be equal and opposite to that received 
by the other. It follows that the momentum 
received by one body will be equal to that lost by 
the other. 

I 

Figure 3.9 
For the previously mentioned reason, w is 

called the circular frequency (or angular frequen- 
cy or pulsatance). 

3.1 1 Impulse and momentum 
Equation 3.15 may be written as 

dVG CF=M- 
dt 

Figure 3.1 1 

and B, as shown in Fig. 3.11. 
Consider the co-linear impact of two spheres A 

For mass A, 

1,'; Fdt = J = MA(u2-u1) 

and integrated to give For mass B, 
2 

1 I 
CI 2 Fdt = 1 Mdv, = Mv2 - Mvl (3.24) [f':-Fdt= -J= M B ( v 2 - v 1 )  



Adding these two equations, 

0 = MAU2 + MBV2 - (MAu1-k MBV1) 

or ( M A ~ ~ + M B V I )  = (MAU2+MBV2) (3.26) 
thus, momentum before impact = momentum 
after impact. A fuller treatment is given in 
Chapter 8. 

kg m2/s2 = (kg m/s2) m = N m = J 
Equation 3.29 was derived by integrating the 

equation of motion for a particle and thus it is not 
possible to include other forms of energy 
(thermal, rotational, etc.) in this development. 
Chapter 7 gives a fuller treatment of energy 
methods. 

Note that work and energy are scalar quanti- 
ties. 

3.12 Work and kinetic energy 
It is also possible to integrate equation 3.15 with 
respect to distance. In this case we rewrite the 
equation for a particle, F = mdvldt, in its 
component forms 

Each equation may now be integrated, to give 

JFxh = Jmvxdv, = $mvx2 + constant 
JFydy = Jmvydvy = ?mvy2 + constant 
JF,dz = Jmv,dv, = h v ?  + constant 

Adding these three equations, 
J ( F X h + F y d y +  F,dz) 

= $mv2+ constant (3.27) 

(3.28) 

The integral on the left-hand side is seen to be 

2 2  where v2 = v ' v  = vx2+vy +v, 

equivalent to JF. ds since 

JF-ds  = J(Fxi+ Fyj+ F,k) 
( h i  + dyj + dzk) 

= J (Fxh+Fydy+F,dz)  

Hence JF .ds  = 4mv2 + constant 

F .  ds = ?mvZ2 - Bmv12 (3.29) 

The term JF-ds  is defined as the work done by 
the force F when acting on a particle moving 
along a given path. The definition shows that only 
the component of force acting along the path does 
work on the particle. 

The term 4mv2 is called the kinetic energy of the 
particle; hence equation 3.29 reads 

work done = change in kinetic energy 
The dimensions of work are those of (force) X 

(distance), so in SI units the dimensions are 
N m = J (joules). 

The dimensions of kinetic energy are 

3.13 Power 
Power is defined as the rate at which work is being 
performed; therefore 

d 
dt 

power = - (work) 

Since for a particle 

work = kinetic energy + constant 

d d 
power = - (k.e.) = - (4mv-v) 

dt dt 
then 

dv 
thus F - v  = mv.- 

dt 

= m a - v  

The dimensions of power are 

N m/s = J/s = W (watts) 

(3.30) 

Discussion examples 
Example 3.1 
Figure 3.12 shows two small bodies which collide. 
The masses of the bodies are mA = 3m and 
mB = m. Before impact, A is stationary and B has 
a velocity uB in the direction shown. After impact 
the velocities are vA and vB as shown. 

Assuming that external forces have a negligible 
effect, determine in terms of uB the speeds vA and 
VB . 
Solution There is no change in momentum in 
the absence of external forces (section 3.2). 
Equating the initial and final momenta gives 
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where a is the acceleration of the body. Thus 
R + W = m u  
(3ti+0.4tj2) - (0.1)(2.36)j = ( 0 . 1 ) ~  
a = [30ti+ (2.36 + 4t')jl m/s ( 9  

To find the velocity we shall have to integrate 
equation (i). Now 

a = dvldt 

and 

Figure 3.12 I:dv= \"adt 
MB UB = mAvA + mBvB ( 9  (1 

v2-vl = [30fi+(2.36+4t2)j]dt I: For the x-components of equation (i), 

mUBCOS45' = 3mvAcos5"+ ~ ~ ~ c o ~ 7 0 °  (ii) 
Noting that i and j are fixed unit vectors, we 
obtain and, for the y-components, 

3 0 m 2  . v2 - (700i + 200j) = - 1 

rnuBsin45" = 3mvAsin5"+ mvBsin70" (iii) 
Solving for vA and vB from equations (ii) and 2 

+ 2.36(2)+- i 4(2)3 3 )i 
(iii), we find 

VA = 0.155uB 

and vB = 0.709uB 
~2 = (760i+ 215.4j) m / ~  

Example 3.2 
A force R = (3ti+0.4t2j) N is applied to a 
particle of mass 0.1 kg which can move freely in a 
gravitational field of intensity 2.36 N/kg. The 
gravitational force acts in the (-j)-direction and t 
is the time in seconds. 

At time t = 0 the velocity Of the particle is 
(700i + 200j) d s .  Determine its velocity when 
1 = 2.0 s. 
Solution The free-body diagram (Fig. 3.13) for 
the particle shows the force R and the weight W 
acting on it. 

Example3.3 
A box of mass m is being lowered by means of a 
rope ABCD which passes Over a fixed cylinder, 
the angle of embrace being (y as shown in 
Fig. 3.14. The stretch in the rope and its mass can 
both be neglected. 

Figure 3.14 
If the coefficient of friction between the rope 

and the cylinder is p, show that the tensions in the 
rope at B and C are governed by the relationship 

TCITB = e'"" 

If the downward acceleration of the box is a, 
determine the  tension T,. 

L 

Figure 3.13 
W = W ( - j )  = -mu' 

From Newton's second law (equation 3.1) 

C F = m a  
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no change in tension between C and D, as a 
free-body diagram and equation of motion would 
confirm. 

[CF, = mXG] 

From the f.b.d. for the box (Fig. 3.15(b)), 

mg- Tc = ma 
Tc = r n ( g - a )  (v) 

Figure 3.15 

Solution Figure 3.15(a) is the free-body diagram TB = m(g-a)ePpa 
for an element of the rope in contact with the 
cylinder which subtends the small angle AB at the 
centre of curvature. The change in tension across 
the d e ~ e n t  is h ~ ~ n  by the fOrces T and T +  AT. 
The contact force with the cylinder has been 
resolved into components in the e~ and ee 
directions. Since slip is occurring, the component 
in the eo direction is p times that in the eR 
direction (equation 3.4). 

Since AB12 is small we can replace cos(AB12) by 
unity and write 

[CFe = mael 

Combining equations (v) and (iv), 

Example 3.4 
n e  trolley with telescopic arm of example 2.6 is 
reproduced in Fig. 3.16. The arm carries a body 
of concentrated mass 3.0 kg. Determine the force 
R exterted by the arm on the body for the position 
shown. 

T +  pAN - ( T  + AT) = 0 6 )  
AT = pAN 

For the radial direction we can replace 
sin(ABl2) by AB12 and write Figure 3.16 

Solution The free-body diagram (Fig. 3.17) for 
B discloses only two forces: the weight W and the 
required force R. From equation 3.1 (Newton’s 

[CFR = maR] 
hN-(2T+AT)A&V2 = 0 

and, neglecting the term of second order of 
smallness, second law), 

TAB = AN (ii) 

Hence, eliminating AN, 

ATIT = p A B  (iii) 

In the limit as A0 approaches zero, equation Figure 3.17 
(iii) becomes 

x F = m a B  
R + W = m a B  

dTlT = pdB 

and [ Tr dTIT = p [  a dB 

assuming p is constant. Thus 

Since 
TB 0 

W = mg(-j)  
and aB (from example 2.6) is given by 

hl(Tc/TB) = /-t,a 
ag = (- 18.541+5.96j) m/s2 

then R = (3.0)(-18.541+5.96/’) 
TCITB = epa 6.) 

This is a well-known relationship. Note that the 
shape of the cylinder need not be circular. - (3.0)(9.81)(-j) 

= (-55.621+47.31j) N Since the mass of the rope is negligible, there is 
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[area under P-t curve from tl to t2] 
- 1782[t2-tl] = 1100[v2-vl] (ii) 

We require the velocity v2 at t = 5 s and know 
that when t = 0, v = 0. However, it would not be 
correct to substitute the values c1 = 0, t2 = 5 ,  
01 = 0 in the above relationship. Equation (i) 
applies only when the spacecraft is in flight. When 
the motors are first ignited the upthrust is less 
than the weight and contact forces will exist 
between the spacecraft and the surface of the 
Moon. The spacecraft remains in equilibrium 
until the thrust P exceeds the weight W = 1782 N, 

equation (i) applies. 
From Fig. 3.18 we note that P attains the value 

of 1782 N at time r = l.l s approximately. Using 
this value for c1 in relationship (ii) with V~ = o 
gives 

I, J 

Figure 3.18 

Example 3.5 
See Fig' 3.18. An unmanned 'pacecraft having a at which instant the contact forces disappear and mass of 1100 kg is to lift off vertically from the 
surface of the Moon where the value of g may be 
taken to be 1.62 N/kg. At time t = 0 the rocket 
motors are ignited and the variation of the thrust 
P of the motors with time l is shown. 

Neglecting the mass of fuel burnt, determine 
the velocity when t = 5 s. 

Fig. 3.19. Since there iS no air resistance On the 
Moon, the only forces acting on the spacecraft 
when in flight are its weight W = mg and the 

[area under P-t curve from c = 1.1 s 

Solution The free-body diagram is shown in to t = 5~]-1782[5-1.1] = 1 1 0 0 ~ 2 .  
The required area is found to be 9180 N s 
approximately and hence 

thrust P .  02 = 2.19 m / ~  

The motion of rocket-powered vehicles is 
considered in more detail in Chapter 8. 

Example 3.6 
The loaded cage of a vertical hoist has a total 
mass of 500 kg. It is raised through a height of 
130 m by a rope. The initial upwards acceleration 
of the cage is 1.65 m / s 2  and this remains constant 
until a speed of 1 0 d s  is reached. This speed 
remains constant until, during the final stage of 
the motion, the cage has a constant retardation 
which brings it to rest. The total time taken is 
16.7s. 

Calculate (a) the tension in the rope at each 

Figure 3.19 

The equation of motion is thus 

P - m g  = ma 6 )  
We shall have to integrate equation (i) to 

determine the required velocity. For the small 
time interval considered, we can neglect the 
variation ofg with height so that the weight W has 
the constant value of W = 1100(1.62) = 1782 N. 

stage, (b) the total work done by the tensi1e force 
On the cage and (c) the maximum power required. 

Writing a = dvldt and integrating equation (i) Solution 
a) The times and distances for each of the three 
stages of the motion can be found by writing 

I rPdt - [ r21782dt=  11 [wllOOdu simultaneous equations for constant acceleration 
for each stage and laboriously solving them. A 
more direct solution can be found by noting that 
the distance travelled is simply the area under the 
velocity-time graph, Fig. 3.20. 

we have 

D1 

P is not known as an analytic function of t and 
so a numerical method must be used to evaluate 
the first integral. This is equivalent to measuring 
the area under the P-t curve. Thus The time t A B  from A to B is found from 
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T - W T = m a  
= m(g+a) 

The different tensions are 
TAB = 500(9.81+ 1.65) 
TBC = 500(9.81+ 0)  

= 5730 N 
= 4905 N 

and TCD = 500(9.81- 7.47) = 1170 N 
Figure 3.20 b) Denoting the upward displacement by y, the 

work done by the tensile force T (see section 
3.12) is 

10 

 AB 
_ -  I:: F - d s  = 1:: F,dx - 1.65 

M.31 

0 0 

tAB = 6.061 s 
= I TAB&+ I”  TBcdr From the area under the graph, 

sAB = 1(6.061)10 = 30.31 m 
+ I 6.69 TCD du The remaining time, tBD, is 0 

tBD = 16.7 - 6.061 = 10.64 s 

and the remaining distance, s, is 
sBD = 130 - 30.31 = 99.69 m 

= 5730(30.3) + 4905(93) 

= 637600 N m 
= 637.6 kN m 

+ 1170(6.69) 

Also from the area under the graph, 

2 ) lo  

[It will be seen from the techniques of 
Chapter 7 that this final result could have been 
obtained simply by multiplying the weight of the 
cage by the total vertical distance travelled.] 

c) The power required to lift the cage (see 
equation 3.30) is 

s B D = (  ~ B C  + ~ B D  

and hence 
t B c  = 9.30 s 

The distance sBC = (velocity)(time) P =  T - v =  TV 
= (10)(9.30) = 93.0 

SCD = 130 - 30.31 - 93.0 = 6.69 m since the tension and the velocity are in the same 
direction. The power clearly has a maximum 
value just at the end of the first stage of motion. 
Thus 

P,,, = (5730)(10) = 57300 W 
= 57.3 kW 

and 
The time from C to D is 

tcD = 16.7-6.061-9.30 = 1.339 s 

Finally, the constant acceleration between C 
and D is 

Problems a,-D = -1011.339 = -7.468 m/s2 

The forces acting On the cage (Fig’ 3.21) are T 3.1 Two bodies A and B collide and coalesce. The 
masses of the bodies are mA = 1 kg and mB = 2 kg. The 
velocities before impact were vA = (15 + 30j) m/s and 
% = (-2Oi- l O j )  m/s.  Determine their velocity after 
the impact, assuming that only the impact forces are 
significant. 

3.2 A railway truck A of mass 3000kg is given a 
velocity of 4.0 m / s  at the top of a 1 in 100 incline which 
is 50 rn long. Neglecting all frictional resistance, 
determine the speed at the bottom of the incline. 

(due to the tension in the rope) and W = mg. 

Figure 3.21 
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Just beyond the bottom of the incline, truck A 
collides with a stationary truck B of mass 4OOO kg and 
the two trucks become coupled automatically. Deter- 
mine the speed of the trucks after the collision. 

3.3 A body of mass rn is initially at rest. Forces whose 
resultant is R = Ri and then applied to the body. 

3.7 The coefficient of friction between a box and a 
straight delivery chute is 0.5. The box is placed on the 
chute and is then released. Establish whether or not 
motion takes place and, if it does, the acceleration 
down the chute if its angle of inclination to the 
horizontal has the following values: (a) 200, (b) 300, (c) 
40". 

I 

Figure 3.22 
For the cases indicated in Fig. 3.22, which show the 

variation of the modulus R of the resultant with 
displacement x ,  find the velocity when x = xl. 

3.4 A resultant force R = Rxi+ R y j  acts on a body of 
mass 0.5 kg. R, = ( 1 0 + 3 t 2 ) N  and Ry = (2t3)N, where 
f is the time in seconds. At time t = 0, the velocity VG of 
the centre of mass G is ( 5 i + 3 j )  d s .  Find vG when 
t = 3 <  

Figure 3.25 
3.8 A car leaves a motorway at point A with a speed 
of 100 km/h and slows down at a uniform rate. Five 
seconds later, as it passes B, its speed is 50kdI-1 
(Fig. 3.25).  The radius of curvature of the exit road at B 
is 110 m. The mass of the car is 1500 kg. 

Find (a) the acceleration of the car at B and (b) the 
total force exerted by the car on the road at B. 

Figure 3.26 
3.9 A missile is launched from point A (Fig. 3.26) 
with a velocity v inclined at an angle p to the horizontal 
and strikes the plane inclined at a to the horizontal at 
B. Show that 

Figure 3.23 
3.5 A link AB of a mechanism moves in the xy-plane. 
The mass of the link is 3.2 kg and the velocity 
components vGX and "cy of the centre of mass G are 
shown in Fig. 3.23. Determine the resultant force 
acting on the link when t = 2 s. 

2v2sin y 

gcosa 
AB=- [cosy- tanasin y] 

where y = p - a. Neglect air resistance. 

' i o  ., - Figure 3.24 

3.6 A small military projectile is launched from rest 
by a rocket motor whose thrust components Fx and Fy 
vary with time of flight as shown in Fig. 3.24. The 
vertically upwards direction is + y  and the value of g 
may be taken as 10 N/kg. 

The mass of the projectile is 10 kg and is assumed 
to remain essentially constant. If air resistance is 
neglected, estimate (a) the magnitude of the velocity of 
the projectile after 10 s, and (b) the distance travelled 
by the projectile in the x-direction during this time. 

Figure 3.27 
3.10 For the missile launched with velocity v for the 
configuration shown in Fig. 3.27, show that the distance 
BC does not depend on the angle a if air resistance can 
be neglected. 

3.11 Figure 3.28 shows a block A on a horizontal 
surface and the coefficient of friction between block 
and surface is 0.7.  Body B is connected to block A by a 
cord passing over a light pulley with negligible friction. 
The mass of A is 2 kg and that of B is 1.6 kg. Draw 
free-body diagrams for A and B to establish that, if the 
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used to predict how T ,  the maximum tangential force 
obtainable between the road and the driving wheels, 
also varies with forward speed v. 

The results are given below: 

vl( km h- ' ) Dlnewton Tlnewton 

18 325 1500 
2000 36 350 

Figure 3.28 

system is released from rest, motion takes place, and 54 390 2200 
find the tension in the cord. Neglect the stretch in the 72 500 2100 
cord and its mass. 90 650 1900 

108 850 1600 
126 1150 1300 

3.12 A power boat whose mass is 2000 kg is heading 
towards a mooring buoy at a steady speed of 1Ods .  
The combined water and air resistance of the hull varies 
with speed as shown in Fig. 3.29. 

Estimate the minimum time in which the car can 
accelerate forwards from 1 8 k d h  to 126 km/h on a 
level road under conditions similar to those simulated 
in the tests. 

Figure 3.29 Figure 3.31 

The approach to the buoy is then in two stages. 

halved. After a further period at the steady lower 

deceleration immediately following the first reduction, 
and what steady speed is achieved during this stage? 

Calculate also the distance from the buoy at which 
final shut-down should occur, for the boat to come to 

3.15 See Fig. 3.31(a). The lifeboat B is travelling 

speed is 3.0 d s .  The coefficient of friction p varies with 

when it has travel1ed lo m past A. 
3.16 Car A is being driven along a main highway at a 
steady speed of 2 5 4 s  towards a junction. Car B is 
being driven at a steady speed of 2 0 d s  towards the 

Engine output is first reduced so that the thrust is 

speed, the engine is shut down completely. What is the 

down the inc1ine and as it Passes Point A (x = 'I its 

x as shown at (b). Estimate the speed Of the lifeboat 

rest at the buoy without further manoeuvring. same junction along a straight road up an incline of lo" 
to the horizontal. At a particular instant car A is at 
200 m from the junction and car B is at 135 m. A few 
seconds later the driver of car B observes car A and 
applies his brakes immediately, causing all four wheels 
to skid. His car just stops at the junction as car A passes 
through. 

Determine the coefficient of friction between the 
tyres of car B and the road. 

3.17 A road test is carried out on a sports car on a 
level road on a windless day, and the car is driven in 
such a way as to achieve the maximum possible 
acceleration through the gears. Results from the test 
are plotted in Fig. 3.32. 

Estimate the following: (a) the time taken to travel 
the first 0.4 km of the test, (b) the maximum gradient 
the car can ascend in still air at a steady speed of 
110 km/h in third gear and (c) the magnitude of the 
maximum possible acceleration for straight-line motion 
in still air at 160 km/h in fourth gear when the car is 
descending a gradient of 1 in 20. 

Figure 3.30 
3.13 The hovercraft illustrated in Fig. 3.30 has a total 
mass of 600kg with a centre of mass at G. The 
propulsion unit produces a thrust T on the craft of 
900 N which gives a top speed of 120 k d h  in still air. 

Assuming that the air resistance R is proportional to 
the square of the air speed, and that the tangential 
force between the craft and the ground is negligible, 
determine the acceleration of the craft when T = 900 N 
and the speed through still air is 50 k d h .  

3.14 A saloon motor car with driver has a mass of 
700 kg. Wind-tunnel tests are used to predict how D, 
the total resistance to motion on a level road, vanes 
with forward speed v. Engine and transmission tests are 
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force is equal to 0.02 times the normal reaction. Lift 
forces also act on the aircraft, and both the lift and drag 
vary with the horizontal velocity of the aircraft in the 
manner shown in Fig. 3.34. 

Estimate the minimum length of runway required for 
take-off. Assume that the jet thrust and drag are always 
horizontal and that the lift forces act only vertically 
during take-off. The entire aircraft can be considered to 
be a rigid body in translation with wheels of negligible 
mass. 

Figure 3.32 

3.18 In the test rig for an ejector seat (Fig. 3.33(a)) 
the seat containing a dummy has a total mass of 500 kg. 
It is propelled up the launching guide by a rocket which 
develops a thrust whose magnitude T varies as shown 
by the graph in Fig. 3.33(b). 

Figure 3.35 

3.20 See Fig. 3.35. A lunar module P of mass 
15000 kg is approaching the Moon, which has a surface 
gravity of 1.62 N/kg and a mean radius of 1738 km. The 
centre of the Moon is taken as an origin 0. When the 
module is 80km from the surface, its velocity ZJ is 
inclined at 45" from the line OP. The reverse thrust T of 
the descent engine then has a magnitude of 44.5 kN and 
is inc1ined at 15" to the line OP. 

Determine (a) the magnitude Of the component Of 
the acceleration of the module along the radial line OP 
and (b) the magnitude of the component of the 
acceleration of the module normal to its flight path. 

Figure 3.33 
a) Find the maximum acceleration to which the 
dummy is subjected. 
b) Estimate the velocity of the dummy 1.2 s after the 
rocket is fired. 
Air resistance and friction in the guides may be 
neglected. The mass of the fuel burned is small and may 
also be neglected. 

3.19 A small jet aircraft has a mass of 7350 kg and a 
jet thrust of 50kN. During take-off, resistance to 
motion is equal to the sum of the aerodynamic drag 
force and the rolling resistance of the wheels; the latter 

Figure 3.34 
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Force systems and equilibrium 

4.1 Addition of forces 
Force has been defined in Chapter 3 in the 
context of Newton’s laws of motion. The action of 
a single force has been quantified by the changes 
it produces in the motion of a particle. 

As we have shown that force is a vector 
quantity, any two forces acting at a Doint may be 
replaced by a resultant force R (Fig. 4.1). If a 
third force is now introduced, this may be added 
to R in just the same way as F2 was added to F ,  
(Fig. 4.2). 

specific point on that line. The difference between 
FIA and FIB is characterised by the separation d 
of the lines of action. 

4.2 Moment of force 
By definition, the magnitude of the moment of F 
(Fig. 4.4) about 0 is Fd. 

Figure 4.1 Figure 4.4 

Clearly any force F acting tangentially to a 
sphere, radius d ,  gives a moment of the same 
magnitude, but the effect is uniquely defined if we 
associate with the magnitude a direction perpen- 
dicular to the plane containing F and r in a sense 
given by the right-hand screw rule. The moment 
of a force may therefore be regarded as a vector 
with a magnitude Fd = Frsina and in a direction e 
as defined in ~ i ~ .  4.4. H~~~~ we may write the 
moment of the force F about the point 0 as 

(4.1) 

Figure 4.2 

It is obvious that the position of the point of 
application is important. Consider two forces, 
equal in magnitude and direction, acting on 

their effects are clearly not the same. If, now, the 
force at A is applied at C, the overall effect is not 4-3 
altered; however, the internal effects will be The vector Or Cross Product of two vectors A and 
different. B is written A X B  and is defined to have a 

We conclude that the overall effect is governed magnitude IA I IBl sins, where a is the angle 
by the line of action of the force and not by any between the two vectors. The direction of A X B is 

given by the right-hand screw rule as shown in 
Fig. 4.5. Note that the vector product is not 
commutative since by definition B x A = -A x B ,  
see Fig. 4.5. 

If A and B are expressed in terms of their 
Cartesian components, 

different points on a body as shown in Fig. 4.3; Mo = Frsinae = Fde 

Vector Product of two vectors 

Figure 4.3 
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Figure 4.6 
i.e. the moment of the resultant of F1 and F2 is 
equal to the vector sum of the moments of the 
components. 

If a force F is replaced by its Cartesian 
components then the moment about 0 is, by 
inspection of Fig. 4.7, 

Mo = (yF,-zFy)i+(zF,-xF,)j 
+ (XF,-yF,)k (4.5) 

Figure 4.5 
A X B = (A, i+Aj+A,k)  

X (B,i+ Byj+ B,k) 

We must first consider the vector product of 
orthogonal unit vectors. By inspection, 

i x j  = k =  - j x i  
j x k = i  = - k x j  
k x i = j  = - i x k  

also 

hence 

i x i  = j x j  = k x  k = 0 

A x B  =A,Byixj+A,B,ixk 
+Ay Bxj x i+ A, B j  x k 
+ A , Bx k X i + A , By k X j 

-Ay B, k + A, B,i 
+A, BjO- A, Byi 

Figure 4.7 

and this is seen to be the same as the 
vector-algebra definition 

= A, By k -A, B j  

= (AyB,-A,By) i+(A,B, -A,Bz) j  
M,=rxF=(xi+yj+zk)  

X (F,i+ Fyj+ F,k) + (AxBy- AyBx)k ( 4 4  

j k  
This result is summarised by the following 

1 determinant: 

X Y  z ( 4 4  - 1 j k  - 

A x B =  A, A, A, (4.3) F x  F y  Fz 

Bx By Bz 
4.5 Couple From Fig. 4.4 we note that by the definition of 

the vector product of two vectors, equation 4.1 
may be written as 

A couple is defined as a system of two 
non-collinear forces equal in magnitude but 
opposite in direction, i.e. in Fig. 4.8 F1 = -F2. 

Mo  = rX F = rFsinae 

4.4 Moments of components of a force 
Consider two forces F1 and F2 whose resultant is 
R acting at point A (Fig. 4.6). The moment about 
0 is 

M o = r x R  
= r x  (F, + F 2 )  

= r x  F1 + r x  F2 (4.4) Figure 4.8 
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The moment of the couple about 0 is 

Mo = r2 X F2 + rl X F1 
= r2 x F2 + rl X ( -F2)  
= ( r 2 - r l ) X F 2  

= (r2-rl)(sina)F2e = dF2e (4.7) Figure 4.10 

where e is normal to the plane containing d and F. resultant and the Same moment about any 
We see from this result that the moment of a arbitrarypoint. 

couple is independent of the origin 0 and its It follows directly that any set of co-planar 
magnitude is equal to  the magnitude of one of the forces may be replaced by a single force plus a 
forces times the shortest distance between their couple. n e  value of the couple depends on the 
lines of action. line of action chosen for the resultant, but the 

It should also be noted that the resultant force value of the resultant is, of course, constant. 
of a couple is zero and the moment of a couple is Since a single force may be replaced by a force 
often referred to as its torque. plus a couple, the converse is also true provided 

that the resultant is not zero. Hence we may make 
4.6 Distributed forces the following statement: 
In most cases we have regarded forces as being Any system of co-planar forces may be 
applied at a point, but in practice this Single force replaced by a single force, or a force plus a 
is the resultant of a distributed-force system couple. If the resultant is zero, then the system 
which may be considered to be many small forces may be replaced by a couple. 
closely spaced. 

Consider a small plane surface of area SA acted 
upon by a force having normal component SF, 
and tangential components ~ F X  and ~ F Y  (Fig. 4.9). 

4.7 
dimensions 
For a general system of forces, the resultant is 

Equivalent force system in three 

R = C F ,  (4.9) 

Mo = C r i x F i  (4.10) 

and the moment about some arbitrary origin 0 is 

We may therefore replace the system by a single 
force plus a couple. It is not generally possible to 

is possible to simplify this system to a single force 
plus a parallel couple. 

In Fig. 4.11 the couple C may be replaced by 
two components, one parallel to R and one 
perpendicular to R .  

Figure 4.9 

defined as 

(4*8) limsA,o - =(T or p 

When dealing with forces in solid mechanics this 
is referred to as a normal stress, (T, and in fluid 
mechanics it is called the pressure, p .  

The terms limsA~o[SFxlSA] and limsA-o[SFy/ 
6A] are called shear stresses (T). 

Equivalent co-planar force systems 
It is sometimes convenient to replace a single 
force by an equal force along some different line 
of action together with a couple, where the 
moment of the couple C is d x F ,  as shown in 
Fig. 4.10. 

In general, two systems of forces are said to be 
equivalent, or equipollent, if they have the same 

The intensity of loading normal to the surface is rep1ace this system by a single force; however, it 

[:I 

Figure 4.1 1 

By moving the line of application of R in the 
plane normal to C1 by a distance ~ C l ~ / ~ R ~ ,  the 
system is now replaced by a single force R ,  
the resultant, and a single co-axial couple C2 
called the wrench. 
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4.8 Equilibrium unknowns are F3,, F3y and d 3 .  Equations 4.14(a) 
There are two slightly different definitions of the and (b) determine F3, and F3y, therefore F3 is 
concept of equilibrium; they are now known in magnitude and direction. Equation 
i) a body is said to be in equilibrium when it is at 4.14(c) is used to find d3.  

rest (or, since velocity is relative, this implies The solution to this problem may also be found 
that all points have zero acceleration); graphically by drawing a force diagram to some 

ii) a system of forces is said to be in equilibrium convenient scale, as shown in Fig. 4.13 to find F3.  
when the resultant force is zero and the Since the resultant must be zero, F3 is the vector 
moment about any arbitrary point is zero. required to close the figure. The line of action can 

Condition (i) implies (ii), but (ii) does not easily be found. Because the moment about any 
imply (i). For example the external forces acting arbitrary point must be zero, it must be zero 
on a flywheel rotating at constant speed satisfies about the point of intersection of the lines of 
(ii) but not (i); also a spring being compressed by action of F1 and F 2 ;  hence F3 must pass through 
equal and opposite forces satisfies (ii) but not this same point, i.e. the three forces must be 
always (i). concurrent. 

4.9 Co-planar force system 
If we have a set of forces acting in the xy-plane 
then the condition for equilibrium of the system 
of forces is simply 

C F = O  (4.11) 

(4.12) 

Figure 4.13 
A simple plane frame will serve to examine 

some of the typical applications of equilibrium. 
Once again the concept of the free-body diagram 
is of great importance. 

and E M o  = 0 

or, in scalar form, 

1: } (4.13) 

For a force system in the xy-plane 
Mo, = MoY = 0, so that MoZ is often replaced by 
Mo without ambiguity. 

If the set consists of three forces and no couples 
then, from Fig. 4.12, 

CFX 
CFY 
E M o ,  = O .  

Figure 4.14 

Example The structure shown in Fig. 4.14 is 
constructed of bars which are assumed to be 
connected by frictionless pins at their ends. 

Figure 4.12 

FIX + F h  + F3x = 0 

Fly + FZy + F3y = 0 

(4.14a) 
(4.14b) 

(4.14c) 
As there are three independent equations there 

must be exactly three unknowns in the problem. 
For example, if F1 and F2 are known then the 

Figure 4.15 
A free-body diagram of a typical bar (Fig. 4.15) 

soon shows that the loading is purely axial in all 
bars provided that the loads are applied only at 
the joints. 

-Fid i -F2d2+ F3d3 = 0 

Equilibrium equations are 



CF,=O ... P - Q = O  
CF,,=O :. R + S = O  
C moments about 0 = 0 :. Sa = 0 

therefore S = 0, R = 0 and P = Q.  
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and horizontally 

TI + T~cos~OO- T~cos~OO = 0 

Consider the joint at A (Fig. 4.18) : 

Figure 4.18 

aP + T~cos~OO = 0 
T~cos~OO + T4 = 0 

Figure 4.16 

structure is shown in Fig. 4.16. For equilibrium 
the equations are therefore T3 = -~Plcos30° = -&312 

Hence we can solve for T2 and Tl above. 

minate, each joint may be considered in turn. 

The free-body diagram for the complete 

-H=O and T4 = -4T3 = &3/4 

R1+ R2+ P = 0 

and R2(2a) + P ( h )  = 0 

hence R = t P  

Because the structure itself is statically deter- 

R1= $P 
H = O  

Note that the form of support ensures that 
there are exactly three unknown reaction forces. 
The reactions in this case are said to be statically 
determinate. Too few supports would lead to the 
possibility of collapse and too many would mean 
that the reactions would depend on the elastic 
properties of the structure. 

If the forces acting on individual members of 
the structure are required, then these forces must 

producing a new free-body diagram. 

Figure 4.19 

It is not always necessary to solve for all the 
internal forces in order to determine just one 

by member BC is required, then the free-body 
diagram (Fig. 4.19) will expose the force in that 
member. Resolving forces in the vertical direction 
gives 

be exposed by suitab1y 'cutting' the structure and particular force. For example, if the load carried 

$ P -  P -  T ~ c o s ~ O "  = 0 
hence T2 = -P1(2v3) 

Similarly, moments about C will yield T I .  
It is seen that the key to the problem is drawing 

the right free-body diagrams, and practice is the 
Figure 4.17 

three unknowns but only two equations, since 
taking moments about B yields no information. 
However, resolving vertically, 

Consider the joint at B (Fig. 4.17). There are only Sure way to gain the essential experience. 

4-10 Equilibrium in three dimensions 
In three-dimensional problems there are six scalar 
equations, namely P + T2 c0s3Oo + T~cos~OO = 0 
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The component of MA along the x-axis is given 
(4.15) by 

MA-i = -&jX (-W)k-i 
- ~j X 270.3 + 0.707k) * i 

= ~ W U  - ~T(0.707) = 0 
therefore T = WA.414 

If v is required, then MA.e will exclude T 
since, by definition, T is parallel to e and will 
therefore have no moment about any axis parallel 
to e. 

MA-e = ( -&zj)x(-W)k.(-OSi+O.5j+0.707k)  
+ ai X (Uj + Vk) . ( - 0 3  + 0 . 3  + 0.707k) 

I C F , = O  c M o , = O  
C F y = O  C M o y  = O  
C F , = O  c M o , = O  

The basic problem is still the same, except that 
the geometry is more involved and simple plane 
force diagrams cannot be drawn. It is now that the 
benefits of vector algebra can be seen: as an 
example consider the problem shown in Fig. 4.20. 

= - f ~ W + ~ ( U 0 . 7 0 7 -  V0.5) = 0 
after some manipulation (see next section). 

Moments about a vertical axis through A give, 
by inspection, U =  0; hence V =  -4W. (This 
result can also be obtained by considering 
moments about the line AC.) 

4.1 1 Triple scalar product 
In the previous section use was made of the triple 
scalar product, the properties of which are now 
discussed. 

Figure 4.20 

A flap ABCD carries a load W at F and is 
hinged about the x-axis on two hinges, one at A 
and one at B. Only the hinge at A can resist a load 
in the x-direction. A cable EC supports the door 
in a horizontal plane. 

Free-body diagram 

Figure 4.21 Figure 4.22 
From Fig. 4.21, we see that there are six 

unknowns X, Y, Z, are the components of force 
F A  and U ,  V are the components of FB .T. is the 
tension in the cable and may be written as 

From section 4.3, A x B = ABsinak. 
ABsin a is the area of the parallelogram abcd in 

Fig. 4.22; therefore 
T =  Te A x B . C  = ABsinak-C 

where e is the unit vector in direction CE. = (ABsina)(Ccosp) 
= the volume of the parallelepiped -ai+ aj+ a d 2 k  

d ( a 2 + a 2 +  2422)  By symmetry, the volume is also B x C - A  
= C XA-B and, because the dot product is 
commutative, thevolumeisA.BxC = B - C X A  = 
C-A X B, so we see that the position of the dot 
and the cross may be interchanged. It is also clear 
that if any two vectors are parallel then the 

It is easily shown that the triple scalar product 

e = ciS//lZ~ = 

= - t i + g + k / d 2  
so that T = T(-OSi+0.5j+0.707k) 

Taking moments about A gives 

MA= (-taj)x(-W)k+ai product is zero. 
x (Uj+ Vk) + (ai- uj)-x T 



A x  A, A ,  
A X B * C = A - B X C =  Bx By B, 

cx c y  cz 

Figure 4.25 

pdA'cosa-pgdAh = 0 
but dA'cosa = dA 
hence p =pgh (4.18) 

Force on a plane submerged surface. In Fig. 
4.26, 

The weight of the element is pg+(dxdydz). 
Resolving forces in the vertical direction, 

dx 
(4.16) pydxdz-pdzds- -$pg(dxdydz) = 0 

Figure 4.24 Figure 4.26 
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force on the elemental area = pg(scosa)dA 
thus total force = J ~ ~ ( ~ ~ ~ ~ ~ ) ~ A  

= pgJsdAcOsa 
The integral JsdA is the first moment of area 

about XX and is equal to Ai, where i, by 
definition, is the location of the centroid of the 
area. the centre of buoyancy. 

Therefore the total force acting on the area is 
given by 4.15 Stability of floating bodies 

(4.19) 

the gravitational force. The weight of the fluid is 
pVg where V is the volume of the region so this 
must be equal to the value of the upthrust and this 
force acts at the centroid of the region. 

If the body floats then it will displace its own 
weight of fluid so the upthrust will act through the 
centroid of the submerged volume, also known as 

Figure 4.28 shows a vessel floating in the normal 
position. If the centre of gravity, G, of the vessel 
is below the centre of buoyancy the configuration 
is clearly stable. But if the centre of gravity is 
uppermost then we must investigate the condi- 
tions for stability. 

P = Apgicosa 
= area X (Pressure at the centroid) 

The moment of the force about XX is 
Pi = Jpg (s cos a) s dA 

= pgcosaJ-s2dA 

The position of the centre of pressure is 
denoted by s’. The integral Js2dA is defined to be 
the second moment of area about XX and is 
denoted by 1, = Akxx2. The term kxx is called 
the radius of gyration and is analogous to the term 
used in the description of the moment of inertia of 
a thin lamina (see Chapter 6). Thus 

P i  = pg COS d kxx 2 

- pgcosdkXX2 

Figure 4.28 
If the vessel is rotated by a small angle 6 as 

shown in Fig. 4.29 then the upthrust will be an 
amount equal to mg through the original centre of 
buoyancy B plus a couple due to the gain in 
buoyancy on the low side and the loss of 
buoyancy on the high side. 

giving S = 
Apgicosa 

= kXX2If (4.20) 

4.14 Buoyancy 
Consider a region of a fluid, density p, at rest 
bounded by a surface S as shown in Fig. 4.27. It is 
clear that the vector sum of the surface forces due 
to static pressure must be equal and opposite to 

Figure 4.27 



The moment due to an elemental area dxdy is 
pgx0xdxdy so writing dA = dxdy the total couple 

= j-pg0x2dA = pg0lx2dA 
where the integral is taken over the cross-section 
area at the water-line. This integral is, by 
definition, the second moment of area and will be 
denoted by I ,  so the couple C = pg6Z. 

The original upthrust mg = pVg, where V is the 
displacement of the vessel, and acts through the 
original centre of buoyancy B. This force plus the 
couple may be combined into a single force acting 
through a point M. The position of M can be 
found by the fact that the moment about M of the 
hydro-static forces has to be zero. 
Thus pVgBM0-C = O  

or pVgBM6 = pg01 
giving BM = IIV (4.21) 
The height of M above G is known as the 
metacentric height and the point M as the 
metacentre. 

Thus the metacentric height GM = BM - BG 
=W-BG. 

(4.22) 
Clearly for stability the metacentric height must 

be positive. 

Discussion examples 
Example 4.1 
In the simple structure shown in Fig. 4.30, links 
AB and BC are pinned together at B and to 
supports at A and C .  Neglect the effects of gravity 
and determine the forces in the pins in terms of 
the applied load P .  

Figure 4.30 

Solution One way of solving this problem is to 
resolve the forces into x- and y-components and 
write force and moment equations for each link. 

Figure 4.31 

Free-body diagrams for AB and BC are shown 
in Fig. 4.31 with the force components at B on 
AB equal and opposite to those at B on BC 
(Newton’s third law), the directions of the forces 
otherwise being chosen arbitrarily. 

Since each link is in e uilibrium, we can use 
equations 4.12: c F, = 0, I F Y  = 0 and 2 Mo = 0 
where the subscript 0 indicates an arbitrary axis 
perpendicular to the xy-plane. 

For link AB: 

CF,=A,-B,=O ( 9  
C Fy = A2 + Bz- P = 0 

C M A =  (0.5)B2- (0.25)P+ (l)Bl = 0 
(ii) 

(iii) 
For link BC: 

CF,=B,+C,=O (iv) 
(VI 

EM,  = -(l)BI+ (0.5)Bz = 0 (vi) 

Fy = -B2+ C2 = 0 

There are six independent equations, with six 
unknown, which can be laboriously solved to give 
Ai = QP, A2 = $P, B1= QP, P2 = $P, C1= -QP, 
e, = iP. 

The magnitudes of the forces in the pins are 

FA = [(A)’+ ($)2]1/2P 
FB = [(i)2 + ($)2]1/2P 
Fc = [(-Q)’+ (a)2]1/2P = 0.2795P 

= 0.7603P 
= 0.2795P 

If we draw a single free-body diagram 
(Fig. 4.32) for the two connected links, the forces 
at B become internal forces and do not appear on 
the diagram. 

(vii) 
(viii) 

C F, = A, - c1 = o 
Fy = A2- P+ C2 = 0 

M A  = (1)CZ - (0.25)P = 0 0x1 
Equations (viii) and (ix) give 
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2 MA = -(AF)P+ (AG)FB = 0 
The length AG is found to be 0.894, therefore 

-(0.25)P+ (0.894)FB = 0 
FB = 0.279P = Fc 

We can then use, for example, the two 
equations F, = 0, Fy = 0 to find AI  and A 2 .  
Thus we have reduced the number of equilibrium 
equations written to three. 

We still have not made use of the relationship 
that, if a body is in equilibrium under the action 
of three non-parallel forces, those forces must be 
concurrent (section 4.9). Link AB is such a body. 
We know the direction of the force at B from the 
properties of the two-force link BC. 

The force at B intersects the force P at point X 
on Fig. 4.34(a), and so the force at A also passes 
through this point. If we draw the linkage to scale 
to determine the location of X then we can draw 
the force triangle for forces P, F A  and F B  acting 
on AB and determine F A  and F B  in magnitude 
and direction (Fig. 4.34(b)). 

Figure 4.32 

A 2 = 4 P  and C2=$P 
and these results enable equations (i) and (vi) to 
be solved more easily. 

These solutions have made no use of the special 
relationships governing connected bodies in 
equilibrium where some of the bodies have only 
two forces or only three forces acting on them. 
For the former case, the forces must be equal, 
opposite and collinear, otherwise there would be 
a couple acting. Link BC is such a body and has 
one force at B, the other at C. The directions of 
these forces must therefore lie along BC. The 
free-body diagrams for the separate and con- 
nected links may now be drawn as shown in 
Fig. 4.33. 

Figure 4.34 

The solution to this problem has now been 
reduced to the drawing of a single force triangle. 

Where use is made of the special properties 
of two- or three-force links in equilibrium, the 
technique is known as a semi-graphical method. 
This technique is employed in the outline solution 
of the next problem. 

Example 4.2 
Figure 4.33 Figure 4.35, which is drawn to scale, shows a 

spring-assisted hinge mechanism for a motor-car 
We can see immediately that the single bonnet. Two such mechanisms are attached to the 

equation EMA = 0 for either AB alone or for the bonnet and are symmetrically disposed about the 
connected links will give the forces at B and C. fore-and-aft centre line of the bonnet. Each 
For link AB: mechanism consists of the cranked links ABCD 



Figure 4.35 

and EFG together with the two-pin links BH and 
DE,  and spring assistance is provided by the 
spring AJ. The bonnet weighs 130 N, its centre of 
gravity is at 0, and it is attached to pins at H 
and G .  

The system is in equilibrium in the position 
shown. Neglecting frictional effects and the 
weights of all the members other than that of the 
bonnet, (a) find the magnitudes of the forces at 
pins B, E and G;  (b) find the force in the springs 
and (c) state whether the springs are in tension or 
compression. 

Solution Each mechanism supports half the 
weight of the bonnet, so that the effective vertical 
load at 0 for one mechanism is 130/2 = 65 N. 

The two-force links are BH, DE and AJ, and 
the three-force links are OHG and EFG. ABCD 

is a four-force link. Hence the forces on OHG 
meet at the point X and those on EFG therefore 
meet at Y. The downward force W = 65 N at 0 is 
known and we can thus draw to scale the force 
triangle for OHG and determine the magnitudes 
and directions of forces FH and FG acting on this 
link. The force at G on EFG is equal and opposite 
to that on OHG and we can now draw the force 
triangle for GFE. Consideration of the free-body 
diagrams for BH and D E  shows that the forces at 
B and D on link ABCD are equal and opposite to 
those at H on OHG and E on EFG respectively. 

The magnitude and direction of the force at C is 
as yet unknown, but if we take moments about C 
for link ABCD, measuring the moment arms of 
the forces F A ,  FB and FD directly from the figure, 
FA can be determined. (The result is found to be 
FA = 222 N.) Alternatively we could replace the 
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known forces F B  and FD on ABCD by their 
resultant and thus convert ABCD to a three-force 
link, leaving FA to be found from a force triangle, 
and coincidently revealing FC . 

The free-body diagram for the spring shows it 
to be in tension. 

The required results are thus: (a) 192 N, 123 N, 
138 N; (b) 222 N; (c) tension. 

Example 4.3 Figure 4.37 
The mechanism shown in Fig. 4.36 is in equilib- 
rium. Link AB is light and the heavy link BC 
weighs 480N, its mass centre G being midway 
between B and C. Friction at the pins A and C is 
negligible. The limiting friction couple QB in the 
hinge at B is 10 N m. Pin C can slide horizontally 
and the horizontal force P is just sufficient to 
prevent the collapse of the linkage. 

The value of P could be found by writing one 
moment and two force equations for each link, 
resulting in six equations with six unknowns. A 
quicker solution can be obtained as follows. If we 
take moments about B for link BC only we shall 
obtain a relationship between P and the unknown 
force N c .  This force can be found by taking 
moments about A for the two connected links. 

For BC only [E MB = 01: Find the value of P. 

N C ( O . ~ ) - W ( O . ~ ~ ) - P ( O . ~ ) - Q B  = 0 
Nc(0.3) - 480(0.15) - P(0.2) - 10 = 0 (i) 

For the whole system [E MA = 01: 
Nc(0.4) - W(0.25) = 0 

Nc = 480(0.25)/0.4 

Substituting the value of Nc in equation (i), we 
Figure 4.36 find 

Solution If the line of action of an unknown 
force is known, but not the sense, problems can 
often be solved by assuming one of the two 
possible directions for the force and allowing the Example 4.4 
sign to 'take care of itself' in the ensuing Figure 4.38 shows a machine part in equilibrium. 
mathematical process. This is not the case for a The part is the cranked rod ABC, where angle 
friction force where slip is occurring or is about to ABC = 120". The rod is in contact with other 
take place. A similar point is applicable for the machine parts (not shown) at B and C and these 
case of a friction couple. cause the forces F B  and Fc and the couple Cc 

In the present problem the solution cannot to be applied to the rod. F B  = (-30k) N, 
proceed until the directions of Q ,  applied to each Fc = (- 1% - 15j- 10k) N and Cc = (-3i + 5 k )  
link have been determined. Since the linkage is N m .  
on the point of collapse, BC is about to rotate Determine the force and couple at A applied by 
anticlockwise relative to AB. Thus BC imparts an the rod to the support. Also determine the direct 
anticlockwise couple Q B  = 10 N m to AB. Simi- 
larly, or as a consequence of Newton's third law, 
AB imparts a clockwise couple to BC. 

The separate free-body diagrams for AB and 
BC are shown in Fig. 4.37. The directions of the 
weight W and of the couples at B are known. If 
any of the other arbitrarily chosen directions for 
the remaining forces were to be reversed, the 
result would be unaffected. 

P = 4 0 N  

This problem is considered again in Chapter 7. 

Figure 4.38 



Problems 49 

force, shear force, twisting moment and bending 
moment in a plane transverse section of the rod 

FA and CA are the force and couple acting on 
ABC. The force and couple acting on the support at A. 

Solution The free-body diagram (Fig. 4.39) S are -FA and -CA . 
shows F B  , Fc and Cc , together with the force FA See section 4.12. For the transverse plane 
and the couple CA applied to the arm by the section at A the direct force, Fd , is the component 
support S to maintain equilibrium. of FA which is parallel to the axis of the rod 

(Fig. 4.40). The unit vector e for this axis for the 
present case is i ,  and the component in this 
direction is 

CA = (6.463 - 14j- 2.69k) N m 

Fd = F A * e  = (15i+ 15j+ 40k) ’ i  = 15 N 

NOW ~ B / A  X Fh = i i k c h  = [CA’-c~]’’’ 
0.3 0 0 = [6.462 + 14’+ 2.69’ -6.462]’/2 

0 0  -30 = 14.26 N m 

i C / A X F C =  i j k 
0.5 0.346 0 Problems 
-15 -15 -10 
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Figure 4.41 
wise, the magnitude and sense of the couple Q. Take g 
to be 10N/kg. 

4.2 Figure 4.42 shows a plane pin-jointed structure 
which is drawn to scale. An anticlockwise couple Q is 
applied to the cranked link ABC, causing a force of 
40 N in link BD. 

Determine the magnitude of the forces in pins F and 
G. State whether EF is in tension or compression and 
find the magnitude of Q. 

4.3 The pin-jointed plane structure shown in Fig. 4.43 
is constructed from the light rigid links ABC, CDE, 
EF, DG, BH and AJ. The figure is drawn to scale. 

If the magnitude of the force on the pin at C is not to 
exceed 10 kN, determine by means of a semi-graphical 
method, or otherwise, the maximum permissible value 
of the load P. For this value of P, find the magnitude of 
the forces acting at A and B. 

4.4 The gantry illustrated in Fig. 4.44 lowers a 300 kg 
load with an acceleration of 2 m / s 2 .  The masses of the 
links of the gantry itself and the inertia of the pulley at 
D may be neglected. 

Find, assuming that the joints of the gantry are 
pinned, (a) the resultant force on the vertical post AE 
at A and (b) the force in the member AC (state 
whether compression or tension). 

4.5 Figure 4.45 is drawn to scale and shows a brake 
for a winding gear consisting of a drum D, of diameter 
1.2 m, and a flexible belt AB, whose angle of embrace 

Figure 4.42 

Figure 4.43 



Figure 4.44 
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Figure 4.46 
(-1Ok) N are applied to B and C respectively. What 
force and couple are applied to the wall? 

4.8 The bent rod ABD in Fig. 4.47 has a length AB in 
the y-direction and a length BD inclined at 30" to the 
xy-plane and parallel to the xz-plane. It is fixed to a wall 
at A and is subjected to forces Fs , FD and couples CB , 
CD applied as shown. 

F B  = -500k N 
FD=300i+200j-300kN 
CB = -70i+20jN m 
CD = 60i- l O j -  l00k N m 

Figure 4.45 
is 315". The coefficient of friction between the belt and 
pulley is 0.2 (see example 3.3). 

The belt is put in tension by applying a force 62 N to 
the pedal at K in a direction perpendicular to KH. The 
crank EHK is pivoted to link EJ at E. The links EJ, BJ, 
and FJ are pivoted to each other at J ,  and the end A of 
the belt is anchored to the link AO. The ends of the 
spring are secured at G and E; in the position shown 
the spring tension is 50 N. 

the magnitude and direction of the force on the crank 
EHK at H, and (b) the braking torque applied to the 
drum D which is rotating anticlockwise. All the pivots 
of the linkage may be assumed to be frictionless. 

4.6 The mechanism shown in Fig. 4.46 consists of two 
light links AB and AC. The system is in equilibrium 
under the action of the vertical load of 240N at B. 
Limiting friction in the hinge at B is 5 . 0 N m  and 
friction elsewhere can be neglected. 

Show that, if P is increased to more than 115 N, the 
mechanism will be set into motion. 

4.7 A light rod ABC lies in the xy-plane and is fixed to 
a support at A. The location of A, B and C are (0, 0,O) 
m , (1, 0,O) m and (1 ,1 ,0)  m respectively and sections 
AB and BC are straight. Forces of (-2Ok) N and 

- . . - - . . 

Figure 4.47 

Determine the magnitudes of the shear force and of 
the twisting and bending couples acting in a normal 

4.9 A screen is fastened rigidly to the free end P of a 
heavy pole clamped to a wall at 0 in the oblique 
position shown in Fig. 4.48. The screen has a mass of 
50 kg and its mass centre is at G. The pole has a 
uniform cross-section over its length and a mass per 
unit length of 5 kg/m, 

Find, for the position shown, neg1ecting gravity, (a) section at p, neglecting the weight of the rod, 

Figure 4.48 
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Estimate the magnitudes of the twisting couple and 
of the bending couple acting on a cross-section normal 
to the axis of the pole at 0. Determine the direction of 
the axis of this bending couple. Assume g = 10 N/kg. 

4.10 A system of forces can be reduced to a single 
force (46i+20j+30k) N, whose line of action passes 
through a point 0, and a couple (5Oi- 43j- 4%) N m. 
a) Show that the force and couple can be replaced by 
a single force. 
b) Express this force in vector form. 
c) Find the co-ordinates, relative to 0, of a point on 
the line of action of the single force. 

4.11 Figure 4.49 shows a reduction-gear unit and base 
which is secured to a cantilever I-beam. The input and 
output shafts are subject to couples M I  and A42 
respectively. The unit is also subject to forces P and W 
acting as indicated in the figure. 

M I = +  60iNm P=(-500i-800k)N 
M2 = +250j N m W = -700k N 

Calculate the following forces and moments acting 
on the I-beam at A: (a) the axial force, (b) the shear 
force, (c) the twisting moment and (d) the bending 
moment. 

4-12 The mass of the motor and Pulley assembly 
shown in Fig. 4.50 is 40 kg, and its mass centre is 
located at (6mj + 15Wk) mm relative to x-, Y-9 z-axes 
of origin 0 at the base of the pillar as shown. The 
1W mm diameter pulley is at 200i mm relative to the 
mass centre, and its plane of rotation is parallel to the 
yz-plane. The tension TI in the horizontal run of the 
belt is 12 N, and T2 is 20 N. 

Determine (a) the resultant force F at the centre of 
the pulley and the accompanying couple M ,  due to 
the belt tensions, (b) the bending moment, twisting 
moment, axial force and shear force at the base of the 
pillar, point 0, caused by the belt tensions. 

~i~~~~ 4-50 
4.13 The root fixing of an aircraft wing is shown in 
Fig. 4.51. It consists of three lugs, A, B and C, each of 
whic., can support a force only in its own plane; for 
example, lug C cannot support a load in the x-direction. 

Determine the load carried by each lug due to the 
given equivalent aerodynamic loading. 

Figure 4.51 
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Figure 4.52 Figure 4.53 

4.14 In Fig. 4.52 the cylinder of mass 1200 kg is rolling 
down the incline as the tractor reverses at constant 
speed. Determine the normal force that the blade of 
the tractor exerts on the cylinder. The coefficient of 
friction between the cylinder and the blade of the 
tractor is 0.4 and that between the cylinder and the 
ground is 0.45. Confirm that slipping does not take 
place between the cylinder and the ground. 

4.15 Figure 4.53 shows a tank with a rectangular 
opening 2 m deep and 1.5 m wide, sealed by a flat plate 
AB which is attached to a pin-jointed frame freely 
hinged at E. The level of water in the tank may be 
limited by suspending suitable masses from the end D 
of the rigid link ACD. 

Calculate the mass required at D to limit the total 
depth of water in the tank to 5 m and the resultant force 
in member BC. The mass of the plate and links and 
friction at the pins may be neglected. The density of 
water is loo0 kg/m3. 

4.16 A buoy is constmcted from a hollow sphere of 
radius R and a mast which passes through the centre of 
the sphere. The buoy is weighted so that the waterline 
is R/4 below the centre of the sphere and the centre of 
gravity is R/3 below the centre. 

Show using equation 4.21 that the metacentre is at 
the centre of the sphere and therefore the metacentric 
height is R/3. 



5 
Kinematics of a rigid body in plane motion 

5.1 Introduction 
A rigid body is defined as being a system of 
particles in which the distance between any two 
particles is !ked in magnitude. The number of 
co-ordinates required to determine the position 
and orientation of a body in plane motion is 
three: the system is said to have three degrees of 
freedom. 

Figure 5.3 

Figure 5.4 

time tl and t2 then the average angular speed is 

Figure 5.1 

is shown in Fig. 5*1* The position Of Some 
representative point such as A and the angle 
which a line AB makes with the x-axis are three 
possible co-ordinates. 

5.2 Types of motion As (t2-t1)+0, (02-4)+0,  and the angular 
The simplest type of motion is that of rectilinear 
translation, in which 8 remains constant and A 
moves in a straight line (Fig. 5.2). It follows that 
all particles move in lines parallel to the path of 
A; thus the velocity and acceleration of all points 
are identical. 

One way Of describing the position Of the body angle (e2 - el ). If this change takes place between 

6 2  - 81 

t2 - tl 
-- - waverage 

speed is defined as 

A0 de  
w = limAt+o- = - 

At dt (5.1) 

The angular velocity vector is defined as having 
a magnitude equal to the angular speed and a 
direction perpendicular to the plane of rotation, 
the positive sense being given by the usual 
right-hand screw rule. In the present case, 

o = wk (5.2) 
It should be noted that infinitessimal rotations 

This is still true if A is describing a curved path, and angular velocity are vector quantities, 
whereas finite angular displacement is not. 

A very important point to note is that the 
angular speed is not affected by the translation, 
therefore we do not have to specify any point in 
the plane about which rotation is supposed to be 
taking place. 

Figure 5.2 

since if 8 = constant all paths are identical in 
shape but displaced from each other. This motion 
is called curvilinear translation (Fig. 5.3). 

If the angle 0 changes during translation, then 
this motion is described as general plane motion 
(Fig. 5.4). In Fig. 5.4 the body has rotated by an 
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5.3 Relative motion between two points 
on a rigid body 
The definition of the vector product of two 
vectors has been already introduced in Chapter 4 
in connection with the moment of a vector; the 
same definition is useful in expressing the relative 
velocity between two points on a rigid body due 
to rotation. 

to the graphical solution of plane mechanisms are 
described in the following sections. 

5.4 Velocity diagrams 
One very simple yet common mechanism is the 
four-bar chain, shown in Fig. 5.6. It is seen that if 
the motion of AB is given then the motion of the 
rest of the mechanism may be determined. 

Figure 5.6 
This problem can be solved analytically, but the 

solution is surprisingly lengthy and is best left to a 
computer to solve if a large number of positions 
of the niechanism are being examined. However, 
a simple solution may be found by using vector 
diagrams; this also has an advantage of giving 
considerable insight into the behaviour of 
mechanisms. 

For the purpose of drawing velocity and 
acceleration vector diagrams it is helpful to define 
a convention for labelling. The convention is best 
illustrated by considering two particles P and Q in 
plane motion, Fin. 5.7. 

Figure 5.5 

Referring to Fig. 5.5, it is seen that %/A has a 
magnitude of vg/A = wr and is in the eo direction. 
From the definition of the vector product of two 
vectors given in section 4.3, 

O X r g / A = W k X r e , =  w r ( k x e , )  

= wreg = VB/A (5.3) 
If A and B are not in the same xy-plane, so that 

TB/A = TeR + Zk 

%/A = W x rB/A then 
= wk x (reR + zk) 
= oree 

k x k = 0. 

as in equation 5.3 
because 

A complete description of the motion of the 
body is possible if the motion of point A and the 
angular motion of AB are specified. We have that Figure 5.7 

The velocity of P relative to 0 is written vpJ0. It 
is clear that volp = -vplo, therefore if vplo is 
represented by an arrow thus 7 then volp is 
represented by I. This information can be 
concisely given by a single line P\, . Similarly the 
line oq may be drawn. Thus, for Fig. 5.7 we may 
draw a vector diagram as shown in Fi 5.8. The 
velocity of Q relative to P is then ) q  and the 
velocity of P relative to Q is,Nq. This convention 
will be used throughout. 

i B I 0  = iAI0 + iBlA 

and, from equation 2.17, 

(5.4) iB l0  = iAIO + wrB/AeO 

Similarly, from equation 2.18, 

?BJO = fAf/o + YB/A 

= YAIo+(-W2rB1Aer+ rBIAOeg) (5 .5)  
A special case of general plane motion is that of 

rotation about a fixed point. In this type of 
motion, one point, say A ,  is permanently at rest, 
so that 

rBIO = rBlA = rBIAmO (5.6) 
2 and FBI0 = Yg/A = --W rBJA e, + (;)rB/A eo (5.7) 

The applications of the equations of this section Figure 5.8 
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In Fig. 5.10 the instantaneous centre for 
member BC is found to be the intersection of AB 
and DC, since the velocity of B is perpendicular 
to AB and the velocity of C is perpendicular to 
CD . 

If the velocity of B is known then 

(5 * 8) 
VB OC VE 

we=-=-=- I2B 12C IZE 
Each point on link CB is, instantaneously, 
rotating about 12. Figure 5.9 

Returning to Fig. 5.6 and assuming that OAB is 
anticlockwise and of given magnitude, we can 5.6 Velocityimage 
place the points a, b and d on the diagram 
(Fig. 5.9). Note that U and dare  the same point as 
there is no relative velocity between A and D. 

TO construct the Point C we must view the 
motion of c from two vantage Points, namely D 
and B. Since DC is of fixed length, the only 
motion of C relative to D is perpendicular to DC; 
hence we draw dc perpendicular to DC. Similarly 
the velocity of c relative to B is perpendicular to 
CB; hence we draw bc perpendicular to BC. The 
intersection of these two lines locates c. 

The angular velocity of CB is obtained from 
v~/B/CB (clockwise). The direction of rotation is 
determined by observing the sense of the velocity 
of C relative to B and remembering that the 
relative velocity is due only to the rotation of CB. 

Note again that angular velocity is measured 
with respect to a plane and not to any particular 
point on the plane. 

5.5 Instantaneous centre of rotation 
Another graphical technique is the use of 
instantaneous centres of rotation. The axes of 
rotation of DC and AB are easily seen, but BC is 
in general plane motion and has no fixed centre of 
rotation. However, at any instant a point of zero 
velocity may be found by noting that the line 
joining the centre to a given point is perpendicu- 
lar to the velocity of that point. 

If the velocity diagram has been constructed for 
two points on a rigid body in plane motion, then 
the point on the velocity diagram for a third point 
on the link is found by constructing a triangle on 
the vector diagram similar to that on the space 
diagram. Hence in our previous example a point 
E situated at, say, one third of the length of BC 
from c will be represented on the velocity 
diagram by a point e such that ce/cb = 5, as shown 
in Fig. 5.9. 

More generally, see Fig. 5.11, since ab is 
perpendicular to AB, ac is perpendicular to AC 
and bc is perpendicular to BC, triangle abc is 
similar to triangle ABC. 

Figure 5.10 

Figure 5.1 1 

Problems with sliding joints 
In the mechanism shown in Fig. 5.12, the block or 
slider B is free to move in a slot in member AO. 
In order to construct a velocity diagram as shown 
in Fig. 5.13, we designate a point B’ fixed on the 
link A 0  coincident in space with B. The velocity 
of B relative to C is perpendicular to CB, the 
velocity of B’ relative to 0 is perpendicular to 
OB ’ and the velocity of B relative to B ’ is parallel 
to the tangent of the slot at B. 

Figure 5.12 
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-,- " 

Figure 5.13 

The two mechanisms used as examples, namely 
the four-bar chain and the slidercrank chain, 
employ just two methods of connection which are 
known as turning pairs and sliding pairs. It is 
remarkable how many mechanisms are con- 
structed using just these simple arrangements. 

Figure 5.17 
5.7 Acceleration diagrams The complete acceleration diagram for the 
Having constructed the velocity diagram, it is now mechanism can now be constructed as shown in 
possible to draw the relevant acceleration Fig. 5.17 (see also example 5.1). The acceleration 
diagram. The relative acceleration between two of C is given by the line ac and the angular 
points is shown in polar co-ordinates in Fig. 5.14. acceleration of CB is given by cc'/CB (clockwise), 

since cc ' = hcB CB. 

5.8 Acceleration image 
In the same way that the velocity of a point on a 
rigid body may be constructed once the velocities 
of any two other points are known, the 

I acceleration can be found from the known 
accelerations of two other points. 

uUA = --o rl erl + hrl eel 

Figure 5.14 
2 If AB is of fixed length, then only two 

depends on the angular velocity, which is known 
from the velocity diagram, and the other term 
depends on the angular acceleration, which is 
unknown in magnitude but is in a direction 
perpendicular to AB. 

components remain (see Fig. 5.15). One term 
am = --o 2 r2er2 + hrzee2 

._  
Figure 5.18 

From Fig. 5.18, the angle between (IUA and 
Figure 5.15 rNc is 

Referring to the four-bar chain shown in 
Fig. 5.6 and given the angular acceleration of link 
AB, the acceleration vector of B relative to A 
may be drawn (Fig-5.16)- Note carefully the 
directions of the accelerations: B is accelerating 
centripetally towards A. 

arctan (2) = arctan (3) 
which is independent of r l .  The angle between 
QUA and aB,C is therefore the Same as the angle 
between rl and r2; hence the triangle abc in the 
acceleration diagram is similar to triangle ABC. 

5.9 Simple spur gears 
When two spur gears, shown in Fig. 5.19, mesh 
together, the velocity ratio between the gears will 
be a ratio of integers if the axes of rotation are Figure 5.16 
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(5.11) @A- wC rB  

% - @ C  rA 

- -- or -- 

Figure 5.19 
fixed. If the two wheels are to mesh then they 
must have the same circular pitch, that is the 
distance between successive teeth measured along 
the pitch circle must be the same for both wheels. 

If T i s  the number of teeth on a wheel then the 
circular pitchpc is r D l T ,  where D is the diameter 
of the pitch circle. The term ‘diametral pitch’ is 
still used and this is defined as P = TID. Another 
quantity used is the module, m = DIT. 

The number of teeth passing the pitch point in 
unit time is 27rwT, so for two wheels A and B in 
mesh 

l @ A T A l =  Iw~TBI  
(5.9) 

@A DB TB 

% DA TA 

-- = -- - or -- 

the minus sign indicating that the direction of 
rotation is reversed. 

Figure 5.21 

that is the motion relative to the arm or carrier is 
independent of the speed of the arm. For 
example, if oc = 0 we have the case of a simple 
gear train where 

(5.12) OA rB 

% rA 

_ -  -- - 

Figure 5.22 

U W Figure 5.22 shows a typical arrangement for an 
epicyclic gear in which the planet is free to rotate 
on a bearing on the carrier, which is itself free to 
rotate about the central axis of the gear. If the 
carrier is fixed, the gear is a simple gear train so 
that the velocity ratio 

Figure 5.20 
Figure 5.20 shows a compound gear train in 

which wheel B is rigidly connected to wheel C; 
thus % = wc . The velocity ratio for the gear is 

OD % %  _ -  - - .- 
TS 

@s % 0s TA 
@A @C @A - @A ---=($)(-zi)= - w A %  -- 

= (3)( -2) = - T c  TA 
TD TB 

(5.10) Note that the direction of rotation of the 
annulus is the same as that of the planet, since the 
annulus is an internal gear. Also, we see that the 
number of teeth on the planet wheel does not 
affect the velocity ratio - in this case the planet is 
said to act an an idler. 

If the carrier is not fixed, then the above 
velocity ratio is still valid provided the angular 
speeds are relative to the carrier; thus 

5.10 Epicyclic motion 
If the axle of a wheel is itself moving on a circular 
path, then the motion is said to be epicyclic. 

Figure 5.21 shows the simplest type of epicyclic 
motion. If no slip occurs at P, the contact point, 
then the velocity of P is given as 

VPlOl = V O 2 / 0 1 +  VPl02  (5.13) @A-@C -3 -- - 
hence WArA=@C(rA+rB)-(L)SrB @S--@C TA 
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If two of the speeds are known then the third 
may be calculated. In practice it is common to fix 
one of the elements (i.e. sun, carrier or annulus) 
and use the other two elements as input and 
output. Thus we see that it is possible to obtain 
three different gear ratios from the same 
mechanism. 

5,ll Compound epicyclic gears 
In order to obtain a compact arrangement, and 
also to enable a gearbox to have a wider choice of 
selectable gear ratios, two epicyclic gears are 
often coupled together. The ways in which this 
coupling can occur are numerous so only two 
arrangements will be discussed. The two chosen 
are common in the automotive industry and 
between them form the basis of the majority of 
automatic gearboxes. 

Simpson gear train 
In the arrangement shown in Fig. 5.23(a), the two 
sun wheels are on a common shaft and the carrier 
of the first epicyclic drives the annulus of the 
second. This second annulus is the output whilst 
the input is either the sun wheel or the annulus of 
the first epicyclic. 

This design, used in a General Motors 3-speed 
automatic transmission, provides three forward 
gears and a reverse gear. These are achieved as 
follows. 

First gear employs the first annulus as input and 
locks the carrier of the second. Second gear again 
uses the first annulus as input but fixes the sun 
wheel shaft. Third is obtained by locking the first 
annulus and the sun wheel together so that the 
whole assembly rotates as a solid unit. Reverse 
gear again locks the second carrier, as for the first 
gear, but in this case the drive is via the sun 
wheel. 

Figure 5.23(b) shows a practical layout with 
three clutches and one band brake which carry 
out the tasks of switching the drive shafts and 
locking the second carrier or the sun wheel shaft. 

To engage first gear drive is applied to the 
forward clutch and the second carrier is fixed. In 
normal drive mode this is achieved by means of 
the one-way Sprag clutch. This prevents the 
carrier from rotating in the negative sense, 
relative to the drive shaft, but allows it to 
free-wheel in the positive sense. This means that 
no engine braking is provided during over-run. 
To provide engine braking the reverse/low clutch 
is engaged in the lock-down mode. For second 

gear the reverseAow clutch (if applied) is released 
and the intermediate band brake is applied, thus 
locking the sun wheel. For third gear the 
intermediate band is released and the direct 
clutch activated hence locking the whole gear to 
rotate in unison. For reverse gear the forward 
clutch is released, then the direct clutch and the 
reverse/low clutch are both engaged thus only the 
second epicyclic gear is in use. 

The operation of the various clutches and band 
brakes is conventionally achieved by a hydraulic 
circuit which senses throttle position and road 
speed. The system is designed to change down at 
a lower speed than it changes up at a given 
throttle position to prevent hunting. Electronic 
control is now used to give more flexibility in 
changing parameters to optimise for economy or 
for performance. 

To determine the gear ratios two equations of 
the same type as equation 5.13 are required and 
they are solved by applying the constraints 
dictated by the gear selected. A more convenient 
set of symbols will be used to represent rotational 
speed. We shall use the letter A to refer to the 
annulus, C for the carrier and S for the sun, also 
we shall use 1 to refer to the first simple epicyclic 
gear and 2 for the second. In this notation, for 
example, the speed of the second carrier will be 
referred to as C2. 

For the first epicyclic gear 

and for the second epicyclic gear 

(5.14) 

(5.15) 

Where R is the ratio of teeth on the annulus to 
teeth on the sun. In all cases S2 = S1 and 
C1 = A2 = wo , the output. 

With the first gear selected C2 = 0 and Al = oi, 
the input. 

From equation 5.14 S1 = -wi X R1 + wo(l+ R1 ) 

and from equation 5.15 S1 = -wo x R2 

wo (1 + R1+ R2 1 
R1 

Eliminating S1 wi = 

thus the first gear ratio = wi/wo = (1 + R1 + R t ) / R 1  
With second gear selected S1 = 0 and wi is 

still A I  . 
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Figure 5.23(a) 

Figure 5.23(b) 

From equation 5.14 0 = wo(l  + R1 ) - wi x R1 
thus the second gear ratio q l w g  = (1 + R1)/R1 

Summarising we have 
GEAR 
15t (1 + R1+ R2)lRI 
2nd 

GEAR RATIO 
The third gear is, of course, unity. 

For the reverse gear C2 = 0 and wi = S1 so from (1 + R1 )lRl 
equation 5.17 3rd 1 

milog = - R2 Reverse -R2 
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Figure 5.23(c) 

Figure 5.23(d) 

Ravigneaux gearbox 
The general arrangement of the Ravigneaux gear 
is shown in Fig. 5.23(c).  This gear is used in the 

Borg Warner automatic transmission which is to 
be found in many Ford vehicles. 

In this design there is a common planet carrier 
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Discussion examples 
Example 5.1 
The four-bar chain mechanism will now be 
analysed in greater detail. We shall consider the 
mechanism in the configuration shown in 
Fig. 5.24 and determine vc,  z+, oz, w 3 ,  a B ,  ac ,  
aE , ;2 and h, , and the suffices 1, 2, 3 and 4 will 
refer throughout to links AB, BC, CD and D A  
respectively. 

and the annulus is rigidly connected to the output 
shaft. The second epicyclic has two planets to 
effect a change in the direction of rotation 
compared with a normal set. In the actual design, 
shown in Fig. 5.23(d), the first planet wheel 
doubles as the idler for the second epicyclic gear. 

When first gear is selected, the front clutch 
provides the drive to the forward sun wheel and 
the common carrier is locked, either by the rear 
band brake in lock-down mode or by the free- 
wheel in normal drive. For second gear the drive 
is still to the forward sun wheel but the reverse 
sun wheel is fixed by means of the front band 
brake. For top gear drive both suns are driven by 
the drive shaft thereby causing the whole gear 
train to rotate as a unit. For the reverse gear the 
rear clutch applies the drive to the reverse sun 
wheel and the carrier is locked by the rear band 
brake. 

For the first gear the input w j =  S2 and 
C1 = C2 = 0, the output wo = Al  = AZ.  So, from 
equation 5.15, 

Figure 5.24 

Velocities 
In general, for any link PQ of length R and 
rotating with angular velocity w (see Fig. 5.25(a)) 
we have, from equation 2.17, 

SZ=R2XA 

therefore wi/wo = S21A = R2 
For second gear S2 is the input but SI = 0 
From equation 5.14 0 = -AX R1 + (1 + R I ) C  

and from equation 5.15 S2 = R2 X A + C ( l -  R2) 
Elimination of C gives 

S2 = R2 + A X RI X (1 - R2)/(1+ R1) 

R1 +R2 w ~ I w O  = S2IA = ___ 
1 + R l  

thus 

The top gear ratio is again unity. 
Reverse has C =  0 with input S1 so from 

equation 5.14 
S l = - R l X A  

giving the gear ratio 
witwo = S11A = -R1. 

Summarising we have 
GEAR GEAR RATIO 

1st R2 
2nd (Rl + R2)/(1+ R1) 
3rd 1 
Reverse -R1 

Figure 5.25 
VQfp = Rer + Roee 

If PQ is of fixed length then R = 0 and VQ/P has 
a magnitude Rw and a direction perpendicular to 
the link and in a sense according the the direction 
of 0. 

Velocity diagram (section 5.4). Since II is 
constant, the magnitude of vBIA is wllI  and its 
direction is perpendicular to AB in the sense 
indicated in Fig. 5.25(b), so we can draw to a 
suitable scale the vector ab- which represents 
Z ) B / ~ .  The velocity of C is determined by 
considering the known directions of v U B  and VUD 
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Link Velocity Direction Sense Magnitude ( d s )  Line 

AB %/A LAB \ (AB)wl = (0.15)12 = 1.8 ab 
BC Z)C/B LBC ? (BC)o, = ? bc 
CD ~ c r r )  I C D  ? (CD) w3 = ? cd 

From the concept of the velocity image we can 
find the position of e on bc from 

be BE 
bc E 
_ -  - 

Thus 

be = 1.28 - = 0 . 3 3 7 d s  
t:0) 

and by noting that (see equation 2.24) The magnitude of + is ae and this is found 
(i) 

ve1ocity. There are sufficient data to draw the Znstantaneous centre (section 5.5). In Fig. 5.28, 
ve1ocity triang1e representing equation (i) I, the instantaneous centre of rotation of BC, is at 
(Fig. 5.26). the intersection of AB and CD. The triangle IBC 

From this figure it can be Seen that the location rotates instantaneously about I. From the known 
of point C on the velocity diagram is the direction of vB, the angular velocity of the 
intersection of a line drawn through b perpen- triangle is clearly Seen to be clockwise. 
dicular to BC and a line drawn through a, d 
perpendicular to DC. By scaling we find that the 
magnitude of dc is 1.50 d s  and thus 

vUA = 'uC = 1.50 d s  14" 

from the diagram to be 1.63 d s .  Thus V U A  = %/A -k VUB 

and vUA = vUD since A and D each have zero V E  = 1.63 d~ 20" 

The magnitude of 02 is 

V B  wl(AB) 12(0.15) 
- = 6.7 rads Cr);!=-=-- IB IB 

and q = -6.7 k rads 

0.27 

The magnitude of w;? is 

bc 1.28 
BC 0.19 

w;?=- =- =6.7rad/s 

To determine the direction, we note that vuB, 
the velocity of C relative to B is the sense from b 
to c (and that %IC is in the opposite sense) so that 
BC is rotating clockwise (see Fig. 5.27). Thus 

% = -6.7 k rads 

The magnitude of q is 
where k is the unit vector coming out of the page. 

cd 1.5 
CD 0.15 

0 3 = - = - -  - 10 rads 

and the direction is clearly anticlockwise, so that 
o3 = 10 k rads 

e -  - - - - -  
The magnitude of vc is 

VC = %(IC) = 6.7(0.225) = 1.50 d s  
and the sense is in the direction shown. 

The magnitude of q is 
VC 1.47 

= 9.8 rads w3=-=-  CD 0.15 
and the sense is clearly anticlockwise so that 

w3 = 9.8k rads 
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Point E lies on link BC so that the instant- 
aneous centre for E is also I. The magnitude of % 
is 

and the sense is in the direction shown. 

are obviously due to inaccuracies in drawing. 

Accelerations 
For any link PQ of length R, angular velocity w 
and angular acceleration h (see Fig. 5.29) we 
have, from equation 2.18, 

+ = %(IE) = 6.7(0.245) = 1.64 m / s  

The discrepancies between the two methods 

The magnitude of 4 is 
C’C 4.7 
BC 0.19 

4 = - = - = 24.7 rads2 

To determine the sense of 4 we note that the 
normal component of urn is c’c in the sense of c’ 
to c; thus BC has a clockwise angular accelera- 
tion. 

uQIP = (R - Ro2) e, + (Rh + 2Ro) ee & = -24.7k rads2 
If PQ is of fixed length then R = R = 0 and uQIP 

has one component of magnitude Rw2 always in 
the sense of Q to P and another of magnitude Rh, 
perpendicular to PQ and directed according to CD 0.15 
the sense of h. 

Acceleration diagram (section 5.7). See Fig. 5.30. 
The radial and normal components of UB/A are 
both known, and summing these gives the total 
acceleration uB since A is a fixed point can find the position of e on bc from 
(ab’ + b’b = ab in the diagram). The radial 

directed from C to B. The normal component of 
uUB is perpendicular to BC but is as yet unknown 
in magnitude or sense. Similar reasoning applies 
to uUD. However we have enough data to locate 
point c on the acceleration diagram shown in 
Fig. 5.30. 

The magnitudes and directions of UB and uc are 

Similarly we find that the magnitude of ;3 is 

28 187rads2 o 3 = - = - =  
C”C 

and the sense is anticlockwise, 

;3 = 187krad/s2 

From the concept of the acceleration image we 
- + - + - - 9  

be BE 
bc BC 
_ -  component of uuB has a magnitude of l2 %2 and is -- 

Thus 

be = 0.99 - =0.260m/s2 (;io) 
The magnitude and direction of uE are taken 

from the diagram and we find 
taken directly from the diagram. - 

UE = auA = ae = 24.2 m / s 2  45” 
46“ 
43” 

2 + 
UB = uB/A = ab = 22.0 m / ~  

uc = ac/D = dc = 31.6 m / ~  
+ 

Link Acceleration Direction Sense Magnitude Line 
aB/A (radial) [(AB A/ l1oI2 = 0.15(12)2 = 21.6 ab‘ 
aB/A (normal) LAB 7 11 hi = 0.15(35) = 5.25 b‘b 
uuB (radial) IIBC A/ 1 2 ~ 2 ~  = 0.19(6.7)2 = 8.53 be’ 

AB { 
BC { 
CD { UC/D (normal) I C D  ? 13h3 = ? c”c 

UC/B (normal) I B C  ? 1 2 4  = ? c’c 
UQD (radial) llCD L 13w32 = 0.15(10)2 = 15.0 de’’ 



Vector-algebra methods 
Vector algebra can be used in the solution of 
mechanism problems. Such methods are a 
powerful tool in the solution of three-dimensional 
mechanism problems but usually take much 
longer than graphical methods for problems of 
plane mechanisms. They do, however, give a 
systematic approach which is amenable to 
computer programming. 

An outline of a vector-algebra solution to the 
present problem is given below. Students who are 
following a course leading to the analysis of 
three-dimensional mechanisms should find this a 
useful introduction and are encouraged to try 
these techniques on a few simple plane mechan- 
isms. 

values of d is consistent with the links BC and CD 
joining at C, and one of the values of c 
corresponds with the mechanism being in the 
alternative position shown dotted in Fig. 5.31. 
The vector Z2 can then be found from equation 
(ii). The results are 

Z1 = (0.075Oi+O.l299j) m 
Z2 = (0.1893i+O.l58Oj) m 
l3 = (0.0350i - 0.14571’) m 

Now, 

vC = %+vUB 

and, from equation 5.3, 

v , = 0 , x l , + O , x Z ,  

V c  = 0 3  x ( - 1 3 )  

0 1  x z1 +O, x z, + 0 3  x z3 = 0 

also 
(iv) 

(VI 

Equating the two expressions for vc 7 

Writing w1 = 12k, 02 = *k and o3 = u3k7 
and carrying out the vector products in equation 
(v), gives 

From Fig. 5.31 we note that 
(-1.559-0.01580, + O.1457~3)i 

+ (0.9 + 0.18930, + 0.035 65w3)j = 0 Z, + Z2 + l3 + 1, = 0 (ii) 

and the vectors 1, and l3 can be determined by first 
evaluating angles 13, and O3 by the methods of 

The vector I 1  = I1 (cos 61 i +  sin Od) is known Equating the coeffjcients of i and j to z e r ~  and 
solving for O, and w 3 ,  we find 

normal trigonometry and then writing O, = -6.634 

Z2 = 12 (cos 62i + sin 6d) 
Z3 = l3 (cos 63 i - sin 63j) 

Alternatively we can write 
Z2 = 12e2 = l2 (ai + bj)  
Z3 = 13e3 = 13(ci+dj) 

and w3 = 9.980 

Using % = w1 X Zl and equation (iv) leads to 

l%l  = d[(1.559)2+(0.9)2] = 1 .800ds  
% = -1.5593+0.9jm/s 

and 

and determine the values of a, b, c and d. Noting 
that 

(iii) 

vc = -(1.4533+0.3558j) m/s 
lvcl = d[(1.453)2+(0.3558)2] = 1.497 m/s 

A quicker way of finding vc, if 02 is not d = k d ( 1 -  c 2 )  
and substituting in equation (ii) with z4 = -14i and 
insertion of numerical values gives 

required, iS to note that Since DC/B is perpendicu- 
lar to BC, we can write 

0. 190e2 = (0.225 - 0.180~) i vC/B-z2 = o  
-[0.1299fO.l80d(l -c2)U or (vc-%).Z2 = 0 

Taking the modulus of this equation eliminates 
e2 and rearranging and squaring we find two 
values for c ,  each with two corresponding values 
of d from equation (iii). Only one of each pair of and carrying out the dot product we find 

% is known and writing from equation (iv) 
vc = o 3 k x  (-0.035 Oli+O.l457j) 
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w3 = 9.98 r ads  and hence vc may be determined. 
Differentiating equation (v) with respect to 

time, 

Solution As we attempt to draw the mechanism 
to scale, we are presented with an immediate 
difficulty. We know the location of B but we 
cannot readily determine the position of C. If we 
assume that B is fixed and D is not constrained by 
the slider, and we allow the four-bar chain BCEF 

Note that the product of vectors can be to move, then the correct configuration is 
obtained when D coincides with the slider centre 
line. Thus we need a trial-and-error method to 
determine the correct positions. The difficulty in 
drawing the mechanism suggests that there will 
also be difficulties in drawing a velocity diagram, 
and this proves to be the case. 

hl x i1 + 01 xi, + cj,! x i2+ 02 x i, . 
+ "3 x I' + O3 x l3 = o (') 

differentiated in a manner similar to that for the 
product of scalars, see Appendix 1. Since lI is 
constant in magnitude then 

i, = W ,  x I, since i, = %/A 

(see equation 5.3) 
and similarly for Z2 and Z3. Hence, We know that the magnitude of % is 
h, X I ,  + 0 1  x ( 0 1  X I )  VB = wAB(AB) = 3(0.07) = 0.21 m / ~  

+ 4 XI2 + 02 x (02 x 12) and that the diagram is horizontally to the left, so 
we can draw ab on the velocity diagram to 
represent Z)B,~ = %. 

We know the directions of vuB , vuE and %, 
h l = 3 5 k ,  h = q k  and ch3=m3k but more information is required before we can 

+ h3 x I ,+  q x (a3 x 1,) = 0 (vi) 
Substituting the previously obtained values 

together with 

proceed (see Fig. 5.33). 
and carrying out the vector products, we find 

cj,! = -22.77 rads2 and ;3 = 184.4 rad/s2 

Differentiating equation (iv), 

ac = ch, x (-1,) + 0 3  x [to3 x ( - I 3 ) ]  
Substituting the numerical values gives 

UC = -(23.32i+21.09j) m/s2 The instantaneous-centres method presents no 
difficulties once the mechanism has been drawn to 

and ac = 31.40 m/s2 scale. For the slider-crank chain FED the 
inStantaneOUS Centre iS at 1 1 ,  the intersection Of 

manner. the lines perpendicular to the velocities at D and 
E.  C has the same instantaneous centre since it is 

Example 5.2 rigidly attached to DE,  see Fig. 5.34. 
In the mechanism shown in Fig. 5.32, FED is an 
offset slider-crank chain which is given an 
oscillatory motion by the rotation of crank AB. 
When B is vertically above A,  the angular 
velocity of AB is 3.0 rads  anticlockwise. 
Determine the corresponding velocity of slider D. 
All the lengths are given in mm. 

The acceleration aB can be found in a similar 

The velocity of C is perpendicular to IIC and 
the velocity of B is perpendicular to AB. Thus the 
instantaneous centre for BC is at 12. 
For link BC: 

@C = vB/(I2B), OC = @C(12c) 
For link CDE: Figure 5.32 



h = 2 rads2, determine wCD and hcD if 8 = 30". 
Check this result from velocity and acceleration 
diagrams. 

Solution See Fig. 5.36. If we obtain an 
expression for the angle + in terms of r ,  f and 8, 
then differentiation will lead to the required 
results. 

%DE = vC/(IIc), OD = wCDE(I1D) 
Hence, 

(11 D)(I2 c, OB 
VD = 

(11 C)(I2B) 

= 0.20 m l s  
- (0.29)(0.187)(0.21) 
- 

(0.44)(0.129) 
Thus 2)D = 0.20 m/s 30" 

This example shows the advantage of the 
instantaneous-centres method for certain 
mechanisms, but it should be noted that, where a 
slider moves in a link which is itself rotating, as in 
the next example, this method is not helpful. A 
solution is however possible by the velocity- EC 1-rcos8 R-cos8 
diagram method. If, for instance, it is assumed 
that q, is 1 m l s  up the incline, then the velocity 
diagram can be constructed and the correspond- 
ing value of vB determined. The diagram can then 
be rescaled to make vB = 0.21 m/s and the correct 
value of vD may be found. A solution by this 
method is left as an exercise for the reader. 

Example 5.3 

of a linkage known as a quick-return mechanism. 
Crank AB rotates about A and slotted link CD 
rotates about C. Pin B on the end of AB engages 
in the slot of CD; AB = r  and A C = f .  The 

acceleration is hk. 

From the figure, 

t a n 4  = - = 
sin 8 

( 9  - - BE rsin8 

Differentiating with respect to time, using the 
quotient mle, 

. (R - cos 8)cos 8- sin B(sin 8) 
(R - cos 8)2 

sec24Q = w 

Rcos8- 1 
- - (ii) w 

Combining equations (i) and (ii) and noting 

(R -cos 8)' 

Figure 5.35 shows part of the essential kinematics 
that 

sec2+ = 1 + tan2+ 
we find 

angular velocity of AB is wk and its angular (Rcos8- l ) ~  
'= (iii) 

The angle + is positive in the clockwise sense so 

1+R2-2Rcos8  

that 

wCD = - +k 
hence the result. 

Differentiating again and rearranging and 
collecting the terms, we find the appropriate 
expression for 4 and 

If llr = R, d ~ o w  that the angular velocitY Of 

CD is 

(1 - Rcos8)w Cjc-D = -+k k 
1 + R 2 - 2R COS 8 Substituting the numerical values, we find 

WCD = 

and that its angular acceleration is wCD = -0.3571 k rads  
Rsin 8(R2 - 1)w2 and hcD = -0.1127k r ads  

(1 + R 2  - ~ R C O S  8 ) 2  

+ 
The mechanism is drawn to scale in Fig. 5.37(a) 

Velocity diagram (Fig. 5.37(b)) 
To draw the velocity diagram we let B1 be a point 
fixed on CD which is momentarily coincident with 

1. (1 - Rcos8)h 
1 + R 2  - ~ R C O S  8 

[ h , D  = 

If r = 50 mm, 1 = 140 mm, w = 1 rads  and 
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B. The velocity diagram will make use of the 
result 

%1=%+%1/B 

and we note that z ) ~ ~ ~  is parallel to the slot. 

Link Velocity Direction Sense Magnitude ( d s )  Line 

AB %/A I AB 7 (AB) WAB = 50( 1 )  = 50 ab 
%llB IICBlD ? bbi 

CB 1 D vB/C I C B i D  ? (CB1) OBC Cbl 
- 

From the velocity diagram we note that z ) ~ ~ ~  
has a magnitude of 35.25 m d s  and the sense is 
from b to bi .  The velocity zIBlIc = %I has a 
magnitude of 35.0 m d s ,  the sense being from c to 
bi .  The angular velocity wCB1 thus has a aBlm = Re, + 2Rwe 
magnitude of 

aB]/B = (d - Rw2) e, + (R;  + 2 k w )  ee 
then, if B and Bi momentarily coincide so that 
R = 0, 

We note that, for the general case where B and 
cbl 35 Bi are not necessarily coincident, the line BB1 

always lies on the line CD so that it always has the 
same angular velocity as CD. Thus, in the above 

and the sense is clockwise. equation we use. OCD = wCB1 for w .  
An attempt to use the method of instantaneous The term 2Rwe is known as the Coriolis 

centres would prove fruitless. component of acceleration. Its magnitude can be 
determined by means of the velocity diagram but 

AcceZeration diagram (Fig. 5.37(c)) we need to determine the direction before we can 
A feature not encountered in the previous complete the acceleration diagram. 
problem is the relative acceleration between We know from Chapter 2 that the direction 
coincident points such as B and B1. Since the depends on the directions of 1 ) ~ ~ ~  and %B] 

relative acceleration for any pair of points B and (=wCBl). It is convenient to note that the 
B, is direction is the same as that obtained by rotating 

W C B l  = - %‘IC - - - = - = 0.354 rads 
CBi CB1 99 



the vector z ) B ~ / ~  through 90” in the sense of the 
angular velocity wBl [note that this direction is 

In the present case the direction of %l/B = bbl 
is in the sense C to B1 and the angular velocity of 
CBl is clockwise. The direction of the Coriolis 
component of (2B1/B is thus in the direction eCor, 
shown in Fig. 5.38. Similarly the Coriolis compo- 
nent of u B / B ~  is in the opposite direction. 

We can now proceed to draw the lines of the 
acceleration diagram in the order listed below. 

r Link Acceleration Directiori Sense Magnitude (mm/s2) Line 

that of (%B1 x VBl/B)I* 

Figure 5.38 

uB/A (radial) IIAB J (AB)wAB2 = 50(1)2 = 50 ab’ 
aB/A (normal) LAB 7 (AB) h A B  = 50(2) = 100 b‘b 
u B ~ / B  (normal) LCB, ,/ ~(VB~/B)WCB~ = 2(35.25)(0.354) = 25.0 bbl’ 

AB 1 
- 1  
CBlD { 

u B ~ / B  (radial) IICB1 ? &Bi bl’bl 
aBlIc (radial) IICB1 b (CBl)wcB12 = 99(0.354)2 = 12.4 cbl” 

(CB1) h C B l  
U B l / c  (IlOllIlal) 1 CB1 ? b1”b 

- 
The component normal to CB1 of aBl/C is bl”b1 

and the sense is from bl” to bl .  The magnitude of 
hCB1 is wSllCl wSl-wCl - TAl 

hcBl = blt’bl/(CB1) = 11/99 = 0.111 rads2 wA1/Cl wA1- wC1 TSl 
lOOo-~cl 80 
wAl-”Cl  3o 

-- - -- - 

(9 - _- - and the sense is clockwise. 

Example 5.4 
Figure 5.39 shows the main features of a simple 
two-speed epicyclic gearbox. The sun wheel S1 is 
keyed to the input shaft I which is rotating at lo00 

for the left-hand gear: 

ws2Jc2 ws2-wC2 - TA2 _- - -- - 
rev/min. The sun wheel S2 is keyed to the annulus OA2IC2 wA2-wC2 TS2 
Al . The planet carriers C1 and C2 are both keyed 
to the output shaft 0. The numbers of teeth on 

Tsl = 30 and Ts2 = 28. 

Hence 

(ii) 
the annulus and sun wheels are TA1 = TA2 = 80, wAl-wC1 - -- go 

wA2-0C1 28 
- 

since ws2 = wA1 and wc2 = w c l .  

a) 
equations in wcl and wA2 gives 

Putting wAl = 0 and solving the simultaneous 

wcl = 272.7 rev/min = wo 

and wA2 = 368.2 rev/min 

b) Putting 0 A 2  = 0 and solving for wcl and wA1 
gives 

wcl = - 15 1.1 rev/min = wo 

and wAl = -582.7 rev/min 

in the opposite sense to that of the input shaft. 
The negative signs indicate that the rotation is 

Determine the speeds of the output shaft 0 and 
the non-stationary annulus (a) when annulus Al  is 
held fixed and (b) when annulus A2 is held fixed. 

Solution The effective radii of the wheels are 
proportional to the number of teeth. Writing 
down the relative angular-velocity equations, 
from equation 5.13, for the right-hand gear: 



70 Kinematics of a rigid body in plane motion 

Example 5.5 
A Simpson gear set of the type shown in Fig. 
5.23(a) has been designed to have the following 
gear ratios. First gear 2.84, second gear 1.60 and 
third gear direct. 

Determine the ratio of teeth on the annulus to 
those on the sun wheel for both the first and the 
second simple epicyclic gears which form the set. 

Suggest practical values for the number of teeth 
on each wheel to give a good approximation to 
the desired ratios. 
Solution From the example given in the text, 
section 5.11, we know that the second gear ratio 
depends only on the first simple epicyclic so 

therefore 
(1 + R1)/R1 = 1.60 

R1 = 1/(1.60- 1) = 1.67 

Now using the expression for the first gear ratio 
(1 + R1+ R2)/R1 = 2.84 

gives 
R2 = Ri(2.84) - 1 - R1 

= 1.67 X 2.84 - 1 - 1.67 = 2.07 

The reverse gear ratio is numerically equal to 

The diameter of the sun wheel plus twice that 
of the planets must equal the diameter of the 
annulus. For a meshing gear train all gears will 
have the same diametral pitch, that is the ratio of 
the number of teeth to the diameter is constant. It 
now follows that the number of teeth on the sun 
wheel plus twice those of the planets will be equal 
to the number of teeth on the annulus. For 
manufacturing reasons we will assume that no 
wheel is to have fewer than 15 teeth. If we take 
the planet wheels of the first epicyclic gear to have 
15 teeth then the number of teeth on the annulus 

R2 = 2.07. 

TA = Ts + 2 X 15 
but TA/Ts = 1.67 
therefore 
giving Ts = 45, to the nearest whole number 
and TA = 1.67 x Ts = 75, to the nearest whole 
number. 

These numbers satisfy the kinematic require- 
ments but, because the number of teeth on the 
sun wheel are exactly three times the number on 
the planet, the same teeth will mesh every three 

1.67 x Ts = Ts + 30 

revolutions of the planet relative to the carrier. 
The same ratio, to two places of decimals, can be 
achieved with TA = 85, Tp = 17 and T, = 51. 
Since T p ,  the number of teeth on the planet, is a 
prime number even wear on the teeth will be 
assured. 

We could start our design for the second simple 
epicyclic by taking the diameter of the annulus to 
be the same as the first gear so that, assuming the 
same diametral pitch, both annuli will have the 
same number of teeth, that is 85. 

This means that Ts2 = 8512.07 = 41, to the 
nearest whole number. The actual ratio 
85/41 = 2.07 to two places of decimals. The 
number of teeth on the planet = (85 - 41)/2 = 22. 

In this gear the number of teeth on the sun is a 
prime number and the number of teeth on the 
planet is 2 x (prime number) thereby assuring 
even wear. 

It is obvious that many other combinations of 
gear sizes are possible so there is no unique 
solution. 

Example 5.6 
A Ravigneaux gear as shown in Fig. 5.23d has 
gear wheels of the same diametral pitch. The 
number of teeth on the first (reverse) sun wheel is 
32 and on the second (forward) is 28. The long 
pinion has 17 teeth and the short pinion has 16. 
Determine the gear ratios for the three forward 
gears and one reverse. 

Solution The number of teeth on the annulus 
TA = TSl + 2 TP(1ong) 

= 3 2 + 2 x  17 = 66. 
For the first simple epicyclic the ratio TA/ 
Ts1= R1 

For the second simple epicyclic TA/TsZ = R2 
= 66/28 = 2.36. 
From the summary for the gearbox, page OOO 

= 66/32 = 2.06 

1st gear ratio = 2.36 
2nd gear ratio = (R, + R2)/(l + R,) 

= (2.06 + 2.36)/ 
(1 +2.06) = 1.44 

3rd gear ratio = 1 
and reverse gear ratio = - R1 = - 2.06. 
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5.4 Part of the control system for an engine is 
illustrated in Fig. 5.43. At the instant when the beam 

5.1 In the mechanism shown in Fig. 5.40, AB is OA passes through the horizontal position, its angular 
rotating anticlockwise at 10 rads. When 8 = 45”, speed w is found to be 1.1 rads. The motion of the 
determine the angular velocity of link BDC and the point A is transmitted through the push rod AB to the 
velocities of C and D. right-angled bell crank BCD. The cylindrical end at D 

is a sliding fit between the parallel faces of the collars 
fitted to the valve shaft EF. 

Problems 

Figure 5.40 
Solve this problem (a) by drawing a velocity diagram, 

(b) by the method of instantaneous centres and (c) 
analytically. 

5.2 The device shown in Fig. 5.41 is for testing the 
resistance to wear between the material of a road Y and 

10 rads  and the shoe is loaded such that contact is 
always maintained between the test surfaces and B lies 
on the line OD. 

For the configuration shown, find (a) the angular a ‘shoe’ x’ The crank OA is rotating c1ockwise at velocity of BCD and (b) the linear velocity v of the 
shafi EF. 
5.5 Figure 5.44 shows a four-slot Geneva mechanism 
which converts continuous rotation of a shaft with 
centre O1 to intermittent rotation of a parallel shaft 
with centre 02. Pin P rotates ar radius R about centre 
01, and engages with the slots of the Geneva wheel, 
centre 02. The slots are tangential to the path of the 
pin at entry and exit. 

For the instant when the angle f3 is 60°, determine (a) 
the rubbing speed between the two test materials and 
(b) the angular velocity of the shoe. 

5.3 A flat-footed follower F slides in guides G and 
engages with cam C as shown in Fig.5.42. The cam 
consists of a circular disc, centre A, radius r ,  rotating at 
constant speed w about point 0, and OA = e. The 
spring S maintains contact between the follower and 
the cam. 

If crank OIP rotates at a constant angular speed of 
30 rads,  determine the angular acceleration of the 
Geneva wheel just before the pin leaves a slot. 

5.6 In the engine mechanism shown in Fig. 5.45, 
crank AB rotates at a constant angular velocity wok. G 
is a point on the connecting rod BC such that BG = a, 
GC = b and a + b  = 1. 

Show that 

- 
Find expressions for the velocity v and acceleration a 

Figure 5.45 of the follower. 
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connected to piston C by link BC, and pistons C and E 
are in the same cylinder. 

When angle BOA = 60°, find the velocities and 
accelerations of each piston. 

5.9 An ‘up-and-over’ mechanism for a garage door 
comprises two identical units of the type shown in 
Fig. 5.48, mounted one on each side of the door. Each 
unit consists of a trunnion block T which runs on two 
0.1 m diameter rollers in a vertical guide, with the door 
carried on a pin at B. The link OA is pinned to the door 
at A and rotates about the fixed axis at 0. 

oBc=- ~ r;:::; 1 k 

[ i: )I 
vc = [ - r s inOwo+I~in4%~]i  

VG = [ - r ~ i n 8 w ~ + a s i n 4 o ~ ~ ] i -  [bc0s4%~1j  

(jBc = sec4 - sinOwoZ - sin40Bc2 k 

~c = - [ ~ ~ ~ s ~ w ~ ~ + I ( c o s ~ ~ ~ ~ - s i n ~ ~ ~ ~ ] i  

a~ = - [rcosowo2 + a (cos4%c2 - sin4(jBc )I i 
-b [sin4%c2 + C O S ~ ( ; ) B ~ ~ ~  

where sin4 = (r/l)sin 0 and o~~ = -4. 
5.7 Figure 5.46 shows one of the cylinders C of a 
petrol engine. The crankshaft AB is rotating anticlock- 
wise at a constant speed of 3000 rev/min about A. The 
piston E which slides in cylinder C is connected to the 
crankshaft by the connecting rod BD, and G is the mass 
centre of the connecting rod. 

Figure 5.48 

At the instant when the door is in the position shown, 
the trunnion block has an upward velocity of 0.75 d s .  
For this position determine (a) the angular velocity of 
the link OA, (b) the velocity of the h e r  edge of the 
door at c and (c) the angular velocity of the tNnnion 
block rollers, assuming no Slip. 

5.10 See Fig. 5.49. p is a representative water particle 
moving outward along the impeller blade of a 
‘centrifugal’ pump. The radius of C ~ ~ a t u r e  P of the 
blades at the tip is 150 mm. The impeller has an angular 
velocity of 30 rads clockwise and an angular aCCelera- 
tion of 0.01 rads’ in the same sense. At the blade tip 
the particle has, relative to the impeller blade, a 
tangential velocity of 15 d s  and a tangential accelera- 
tion of 10 m/s2. 

For angle DAB = 30°, determine (a) the velocities of 
E and G and the angular velocity of BD; (b) the 
accelerations of E and G and the angular acceleration 
of BD. Solve this Problem graphically and check Your 
results from the formulae of the previous question. 

5.8 Figure 5.47 shows part of an opposed-piston 
diesel engine running at 2000 rev/min. Connecting rods 
AB and DE are connected to the flywheel at A and D 
respectively, the crank radius being 160 mm. Slider B is 

Figure 5.47 Figure 5.49 
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Find the total velocity and the total acceleration of 
the water particle P as it is on the point of leaving the 
blade. A semi-graphical method is suggested. 

5'11 Figure 5S0 shows part Of a shutt1e drive 
mechanism for a sewing machine, the continuous 
rotation of crank AB at 60 rads  causing an oscillatory 
motion of the shuttle drive shaft G. A ,  D and G are 
fixed centres and the lengths are all given in 
millimetres. The slotted link CDE which rotates about 
D is driven by the connecting bar BC and in turn drives 
the crank G F  via the swivel block at F. 

5.13 Figure 5.52 shows the essential kinematics of a 
compound epicyclic gear designed to give a large speed 
reduction from the input shaft I to the output shaft 0. 
Camer C is keyed to the input shaft and cames a pin T 
on which the compounded planet wheels P1 and P2 are 

Figure 5.52 

free to rotate. P1 meshes with sun wheel S I ,  which is 
keyed to 0, and P2 meshes with sun wheel S2, which 
is fixed. The gear wheels all have teeth of the same 
pitch. The numbers of teeth are Npl = 20, N E  = 21, 

Show that Ns2 = 69 and that the speed ratio is 

5.14 The epicyclic gear shown in Fig. 5.53 consists of 
a sun wheel S which is fixed to the case, three 
compound planet wheels PI-P2 which are mounted on 

Ns1 = 70. 

~ 0 1 ~ 1  = 91147. 

Figure 5.50 

Find, for angle DAB = 150", the angular velocity and the carrier C, and an annulus A. 
angular acceleration of CDE and the sliding velocity of 
the block. Hence determine the angular velocity and 
angular acceleration of GF. 
5.12 In the mechanism shown in Fig. 5.51, the crank 
OB rotates with uniform clockwise angular velocity of 
1 rad/s. It drives link ABP whose end A is constrained 
to move vertically. The disc D rotates about the axis 
0; it is driven by a pin P, attached to ABP, which 
engages with the slot S. OB = 50 mm; AB = 90mm; 
BP = 90 mm; angle AOB = 30". 

The number of teeth are as follows: 

Gear S P1 p2 
No. of teeth 40 20 30 

The shaft attached to C has a speed of 1% reds; find 
the angular velocity of the output shaft attached 

5.15 Figure 5.54 illustrates the arrangement of an 
Construct the velocity and acceleration vector epicyclic gearbox. Wheel A is integral with the input 

shaft and drives the planet carrier C through the idler 
gear B. There is one compound planet DE. Wheel D 
meshes with wheel F, which is keyed to the output 
shaft, and wheel E meshes with the fixed gear G. All 
teeth are cut having a module of 4 mm. 

Figure 5.51 to A. 

diagrams for the mechanism in this position, and from 
these find (a) the magnitude and sense of the angular 
velocity of the disc D and (b) the magnitude and sense 
of the angular acceleration of the disc D. (Suggested 
scales: 1 cm = 0.01 m / s ,  1 cm = 0.01 m / s 2 . )  
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Figure 5.54 
a) For the numbers of teeth given in Fig. 5.54, show 
that the number of teeth on wheel G is 52. 
b) Determine the overall speed ratio of the gearbox. 
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Kinetics of a rigid body in plane motion 

(6.3) 
6.1 General plane motion d 
In this chapter we consider the motion of a rigid dt 
body in general plane motion, by which we mean 
that the centre of mass is moving in a plane and 
any rotation is about an instantaneous axis 
perpendicular to the plane. 

In Chapter 3 it was shown that the resultant of 
the external forces on a body is equal to the 
product of the total mass and the acceleration of 
the centre of mass. We must now consider the 
effect of the positions of the lines of action of the 
applied forces, remembering that the acceleration 
of the centre of mass is the same whether or not 
the line of action of the resultant passes through 
the centre of mass. 

Consider initially a group of particles in ran- 
dom motion. For a typical particle (see Fig. 6.1), 

(6-1) 

= - C (ri x m i i i )  

moment of external forces 
= C moment of (mass x acceleration) 
= moment of the rate of change of 

= rate of change of the moment of 

or 

momentum 

momentum 

We may n ~ ~ k e  use of the definition of the 
centre of mass and, by writing ri = rc +Pi  (see 
Fig. 6.21, equation 6.3 becomes 

c r i  x Fi = crG x mifG + CrG x mipi 

+ C p i  x mifG + C p i  x mipi 
= rG x ~f~ + C p i  x mipi (6.4) 

Cf, + Fi = miFi 
1 

Figure 6.2 

The second and third terms of the previous Figure 6.1 
wheref-,. is the force on particle i due to particle j equation are zero because of the properties of the 
and Fi is an externally applied force. centre of mass, see equations 3.14 and 3.14(a). 

Taking the moments of the forces about 0, we If the body is in plane motion as previously 
have specified, then pi is due solely to rigid-body 

rotation in the xy-plane. 
Using cylindrical co-ordinates (Fig. 6.3), ri X EAj + ri x Fj  = rj X ( r n i f i )  (6.2) 

The total moment of the internal forces is zero, 
since the internal forces occur in pairs of collinear 
forces equal in magnitude but opposite in sense, 
and so summing over all the particles gives 

I 

pi = RiGer + Zik (6.5) 
(6.6) pi = - W2RiG e R  + hR,G e, 

Considering moments about the Gz axis only, 

c rj X Fi = C ri X ( r n j f i )  MG = CpiXmip j .k  



but pi X mipi .  k = mi 

Figure 6.4 

RIG 0 2; MO = IG&+rGMaGe (6.12a) 
-02RiG &RiG 0 It is sometimes convenient to use vector algebra 

here, and we note that the final term of equation 0 



Figure 6.6 

X; = XG +xi’ and y; = yG + y;’ 
SO x?+Y?= ( X G ~ + ~ G ~ ) + ( X ; ’ ~ + ~ ; ’ ~ )  

+ h G X ; ’  + 2yGyj‘ 
= rG2 + R;G2 + hGx;’ + 2yGy;’ 

By virtue of the properties of the c.m., 

X G C  mjxj’ = 0 
and yGCm;y,’ = 0 
thus Zo = CmjrG2+xmiRiG 2 

= MrG2 + IG (6.14) 
= M(rG2 + kG2) = Mko2 (6.15) 

where ko is the radius of gyration about the 
z-axis. 

Perpendicular-axes theorem 
Consider the thin lamina in the xy plane shown in 
Fig. 6.7. 

6.3 Moment of inertia of a body about an axis 77 

Figure 6.8 

= (pLdrrdO)r2 
hence for the whole body 

2lr a 
pLr3 drd9 

IGz= I o  I o  
= 1,“ pLr3dr2.rr = pL2.rra414 = 4.rrpLa4 

The mass of the cylinder is p.rra2L, therefore 

I G ~  = Ma212 = MkG: 
ii) Moment of inertia about an end diameter. For 
a circular lamina, relative to its own centre of 
mass (Fig. 6.9), Z, = I y ;  hence, from the perpen- 
dicular-axes theorem, 

- 

1 x = I  y = q  2 z-4.rrpa4d~ -1 

Figure 6.7 
The moment of inertia about the x-axis may be 

found through the parallel-axes theorem. Hence, 
for the lamina, 

I ,  = Cmiy? 
Iy = Crn;x? 

and I , =  CrniR? I ,  = &pa4dz+ p.rra2dzz2 

= Cmi(x:-yyi2) 
= I, + Iy 

and integrating for the whole bar gives 
L (6.16) Zx = rpu2 Io (tu2 + r 2 )  dr 

a2 L2 Moment of inertia of a right circular uniform 

i) Moment of inertia about the axis of the cylinder. 
In Fig. 6.8, the mass of an elemental rod is 
pLdr(rdO), where p is the density of the material. 

cylinder = (pra2L)(g +3) 
We may use the parallel-axes theorem to find 

the moment of inertia about a diameter through 
the centre of mass: Moment of inertia about the axis 
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Eliminating F and N leads to 
I G ~ = M  -+- - M  - 

(6.21) 
e 
R 

T I - -  ( R) = M i  G - I G -  
1: 3 (4)' 
1: :;) and, since with no slip e = -XGlR, 

T ( 1 -  r / R )  = (M + ZG/R2)XG 

= M  -+- 

T ( 1 - r / R )  6.4 Application 
As an example of the use of the preceding theory, hence X G  = (6.22) 
consider the problem of the cable drum shown in ( M  + I ~ / R ~ )  

Since R > r ,  RG is positive and thus the drum Fig. 6.10. 
will accelerate to the right. As the drum startzd 
from rest, it follows that the motion is directed to 
the right. An intuitive guess might well have 
produced the wrong result. 

Discuss ion exam p les 
Let us assume that the drum has symmetry, Example6.1 

that the cable is horizontal and that the friction Figure 6.13 shows two pulleys, PI and P2, 
between the ground and the drum is sufficient to connected by a belt. The effective radius of pulley 
prevent slip. If the tension in the cable is T ,  what P2 is r and its axial moment of inertia is I. The 
is the acceleration of the drum and the direction system is initially at rest and the tension in the 
of motion? belt is To. The motor M which drives pulley PI is 

then started and it may be assumed that the 
average of the tensions TAB and TcD in sections 
AB and CD of the belt remains equal to To.  
Denoting the anticlockwise angular acceleration 
of pulley P2 by (Y and the clockwise resisting 
couple on the same axle by Q, find expressions for 
TAB and TCD, neglecting the mass of the belt. Figure 6.1 1 

The first and important step is to draw the 
free-body diagram as shown in Fig. 6.11. The next 
step is to establish the kinematic constraints (see 
Fig. 6.12). In this case the condition of no slip at 
the ground gives 

Solution The solutions of problems in this 
chapter start with a similar pattern to those of 
Chapter 3, first drawing the free-body diagram(s) 
and then writing down the appropriate equa- 
tion(s) of motion. 

and X G = - R e ,  j j G = O  (6.17) In the present problem there are four forces 
and one couple acting on pulley P2; these are 
shown in the free-body diagram (Fig. 6.14). TAB 
and TCD are the belt tensions and Q is the load motion (see equations 6.9-6.11 and Fig. 6.11): 
couple mentioned above. R is the contact force at 
the axle and W is the weight; these two forces can 
be eliminated by taking moments about the pulley 

Figure 6.12 

XG = -R&, jtG = O 

We can now write the three equations Of 

(6.18) 

(6'19) 

T - F =  MXG 
N - M g = O  
Tr-FR = IGe (6.20) axle. 



Figure 6.14 

- -  
Figure 6.16 

axle contact forces and WM and WD are the 
weights. The tension T in the vertical portion of 
the cable does not vary since its mass is negligible. 
CM is the required couple. 

Taking moments about the axle of the motor, 
from equation 6.11, 

CM - F?'M = IM I& ( 9  
where rM is the effective radius of the motor 
pinion. 

Taking moments about the axle of the drum, 

FrD- TR =ID& (ii) 

where rD is the effective radius of the drum gear 
wheel. 

The force equation for the load is 

T-mg=ma (iii) 

The numbers of teeth on the pinion and wheel 
are proportional to their radii and hence 

--- rM NM 
rD ND 

- 

and it follows that 

(iv) 
"M GM ND 
% & NM 
_-_ - -  - - 

The final required relationship is 

Figure 6.15 a=R& (VI 
since the rope does not stretch. 

Combining equations (i) to (v), we find Solution The free-body diagrams for the motor, 
drum and load are shown in Fig. 6.16. Forces 
which pass through the axles of the motor and the 
drum will be eliminated by taking moments about 
the axles. The contact force between the teeth has 
been resolved into a tangential (F) and normal 
(N) component. The forces PM and PD are the 

C M  = NIM [ b D  + I M  (zr + m R 2 } i  + Rmg] 
ND 

This type of problem is readily solved by the 
energy methods described in the next chapter. 
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Example 6.3 
Figure 6.17 shows an experimental vehicle 
powered by a jet engine whose thrust can be 
represented by the equivalent concentrated force 
P acting on the vehicle as shown. The vehicle is 
suspended from light wheels at A and B which 
run on the straight horizontal track. Friction at 
the wheels is negligible. The total mass of the 
vehicle is 4000 kg and the mass centre is at G.  

Figure 6.17 

a) If wind resistance can be neglected, deter- 
mine the maximum permissible value of P 
consistent with the wheel at B remaining in 
contact with the track. What would be the 
acceleration a of the vehicle for this value of P? 
b) If wind resistance were taken into account, 
would the maximum permissible value of P 
consistent with the wheel at B remaining in 
contact with the track necessarily always exceed 
that obtained in (a) above? Give reasons for your 
answer. 

Solution Let us first consider the motion of the 
wheels, whose mass is to be neglected. The 
right-hand side of any equation of motion for a 
body of negligible mass will be zero, and the 
equation will be the same as though the body 
were in equilibrium (Chapter4). In the present 
case there are only two forces (and no couples) 
acting on a wheel: the contact force at the axle 
and the contact force with the track. These forces 
must therefore be equal, opposite and collinear. 
The contact points lie on a vertical line so that the 
forces are vertical (Fig. 6.18(a)). 

a) The free-body diagram for the vehicle has 
vertical forces at A and B together with the thrust 
P and the weight W, as shown in Fig. 6.18(b). 

For the x-direction (E F, = &G) ,  

P = m a  (i) 
and, for the y-direction (E Fy = myG), 

RA + Rg - W = 0 (ii) 
If we next take moments about G, 

(iii) 
We have assumed that there is no rotation 
(h = 0). Denoting the required value of P by Po 
we note that when P = Po,  RB = 0 but Po is just 
not sufficient to cause rotation. Eliminating RA, 
we find 

( C M G  = I G h ) ,  
(e  - d ) P  + bRB - cRA = 0 

(iv) 
mgc P o = -  
e - d  

and, numerically, 

4000( 9.81)2 
Po = 

2.8 - 2 

= 981WN = 98.1 kN 

The corresponding acceleration, a. , from 
equation (i) is 

a. = Polm 
= 98 1OO/4000 = 24.53 m/s2 

Since RA is not required, we could have used a 
single equation for moments about A (and thus 
eliminated R A )  instead of equations (ii) and (iii). 
When taking moments about some general point 
0, the appropriate equation is 

E M o  = ZGh+ rGmaG8 (equation 6.12a) 

(equation 6.12b) 
Or 2 M o  = 1,; + (TG x maG) * k 

If the second of these equations is used directly, 
the positive direction for moments is determined 
by the sign convention for the vector product. 

In the present problem it is clear that the 
(anticlockwise) moment of maG about A is dma 
and it is unnecessary to carry out the vector 
products 

(TG X QG) * k  = [ (c i -  d j )  X mai l -k  
= dmak- k = dma 



Thus, from either equation 6.12a or 6.12b, taking 
moments about A and putting R B  = 0, P = Po,  

(VI 

coefficient of friction between the tyres and the 
road is 0.8, find the maximum possible accelera- 
tion, neglecting the resistance of the air and 
assuming that the acceleration is not limited by 
the power available. Neglect the mass of the 
wheels. 
Solution If we make the assumption that the 
front wheel is on the point of lifting (i.e. zerO 
force between front wheel and ground), the 
tangential component FR and the normal compo- 

c M A  = ePo-cmg = dma 
and substituting for a from equation (i) gives 

Po = mgcl(e - d )  

b) The answer to this part of the question is ‘not 
necessarily’. Suppose (see Fig. 6.19) that the 
resultant F of the wind resistance is horizontal 

as before. 

and that the centre Of pressure is a distance f 
be1ow the =le’* ‘1 is the va1ue Of ‘ that just nent N R  of the contact force between the rear 

wheel and the road can be determined. If FR is makes R B  = 0 under these conditions. Equation 
(i) becomes less than or  equal to pNR then the maximum 

acceleration is limited by front-wheel lift and our 
assumption was valid. If, on the other hand, F R  is 
found to be greater than pNR our assumption was 
invalid since this is not possible. The problem 
must then be reworked assuming that slip is 
taking place at the rear wheel. 

Front wheel on point of lifting ( F i g .  6.21) 
Taking moments about B, from equation 6.12a or 
6.12b, replacing 0 by B, P 1 - F = m a  

and equation (v) becomes 

eP1 - cmg - fF = mda 
Eliminating a gives 

mgc + F ( f -  d )  
e - d  

P1 is greater than Po only iff > d .  

Example 6.4 mgc = O+mah 
When predicting the maximum acceleration of a 
motorcycle, it is necessary to consider (a) the 
power available at a given speed, (b) the tendency 
of the front wheel to lift and (c) the tendency of 
the rear wheel to slip. 

A motorcycle and rider are travelling over a 
horizontal road, the combined centre of mass 
being 0.7m above the road surface and 0.8m in 
front of the axle of the rear wheel (see Fig. 6.20). 
The wheelbase of the motorcycle is 1.4m. If the 

P1= (vi) 

Comparing equations (iv) and (vi) we see that 

a = gclh 
= 9.81(0.8)/0.7 = 11.21 d s 2  

For the x-direction ( c F x  = ~ G ) ,  

-FR = m ( - a )  
FR = m(11.21) 

For the y-direction (E Fy = myG),  
NR-mg = 0 

NR = m (9.81) 

FR 11.21 
NR 9.81 

-- The ratio -- - - 1.143 

The ratio FIN cannot exceed the value of the 
coefficient of friction p, which is 0.8, and so the 
original assumption is invalid. The maximum 
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acceleration is therefore limited by rear-wheel Solution 
slip. Link OA. In the free-body diagram for the link 

OA (Fig. 6.24), S, the contact force with the pin 
Rear-wheel slip (Fig. 6.22) P, is perpendicular to the link since friction is 
Since the wheels are light, the contact force negligible. R is the contact force at the axis 0. 
between the front wheel and the ground is vertical 
(see example 6.3) and we can replace F R  by pNR . 

For the x-direction [C F, = mRG], 

Figure 6.24 
Since the link is rotating about a fixed axis, the 

appropriate moment equation is equation 6.13 
and our aim is to replace h by wdwJd8 and to 
integrate the equation to find w at the required 
value of 8. 

-pNR = m ( -a )  

For the y-direction [E F,, = my,], 

Taking moments about G [ ~ M G  = ZGh], 

NF+NR-mg = 0 [ C M O  = 1041 
d o  
de  

Q-Mgacos8-Slsec8=Zou- (i) 

We need a suitable expression for S before w at 
8 = 7d4 can be determined. Note that J t 4 Q d 8  is 
simply the area under the graph of Q against 8. 

Slider B. In the free-body diagram for the slider 

and opposite to that on the link OA). Denoting 
the upWard displacement of the block by y ,  the 

contact force of the guide on the slider. 

cNR - bNF - hpNR = O 
Substituting numerical values and eliminating 

NR and NF we find that a = 5.61 d s 2 .  

Example 6.5 

constrained to move in vertical guides. A pin P 
fixed to the slider engages with the slot in link OA 

and its moment of inertia about 0 is Io .  G is the 
mass centre of the link and OG = a. A spring of 
stiffness k restrains the motion of B and is 
unstrained when 8 = 0. 

See Fig. 6.23(a). The 'Iider B Of maSS m is B (Fig. 6.25), 'J is the force on the pin P (equal 

which rotates about 0. The maSS Of the link iS M downward spring force on the slider is ky. ~i~ the 

Figure 6.25 

[CF, = my,] 
Scos8- ky - mg = my (ii) 

From the geometry of the linkage, y = /tan8 Figure 6.23 
The system is released from rest at 8 = 0 under 

the action of the couple Q which is applied to link 
OA. The variation of Q with 8 is shown in Fig. 
6.23(b). Assuming that the couple is large enough 

determine the angular velocity w of the link OA 
to ensure that 0 attains the value of 45", 

and hence 

y = lsec28(h+2tan8w2) 
'J is thus given by 

S = Sec 8 mlsec28 (j I 2tan e02 + kltan e+ mg 1 1 at this angle. Neglect friction. [ (: 



where C F  is the sum of all the forces acting on 
the system. Summing the equations for moments 
about some point 0, we obtain from equation 
6.12b 

n n 

X M o  = c ZGjDi+ 2 ( r G i X m ~ G j ) . k  (ii) 

where E M o  is the sum of all the moments acting 
on the system. These equations are often useful 
when two or  more bodies are in contact, since the 
contact forces, appearing in equal and opposite 
pairs, do not appear in the equations. 

Let us start the present problem in the usual 
way by using the free-body diagram for BC alone. 
The forces acting on the link are the weight m2g 
and the contact force R B  (Fig. 6.28). 

I =  I r=l 

When this expression for S is substituted in 
equation (i), a cumbersome differential equation 
results. Since only the angular velocity of the link 
is required, we shall defer this problem to the 
next chapter, where it is readily solved by an 
energy method in Example 7.2. 

Example 6.6 
Figure 6.26 shows part of a mechanical flail which 
consists of links AB and BC pinned together at B. 
Link AB rotates at a constant anticlockwise 
angular velocity of 25 r ads  and, in the position 
shown, the instantaneous angular velocity of BC 
is 60 r ads  anticlockwise. The links are each made 
from uniform rod of mass 2 kg/m. 

Figure 6.26 
Determine the angular acceleration of BC and 

the bending moment in the rod AB at A.  
Solution Figure 6.27 shows the separate free- 
body diagrams for AB and BC. Subscripts 1 and 2 
relate to AB and BC respectively. R B  is the 
contact force at the pinned joint B. Since A is not 
pinned, there will be a force RA and a couple Q 
acting there. The magnitude of Q is the required 

- 
Since uG2 = uB + UGZB, the acceleration of G2 

has the three components shown. There are only 
two unknowns, RB and 4' so we can find the 
latter by taking moments about B. 

bending moment. [ C M B  = I G 2 4  

+ (moment of components of maG2 about B)] 

m2122 . (S sin 0)(m2g) = - 12 Y 

+ mz [2 12 (l 12 D2) - @ cos 8) (&)] 

E($) (9.81) = ("lz')' - &+- ( 0 . V  Y . 

Dividing by m2 and substituting numerical 
values, 

2 2 
0.5 -7 (4)(25)2(1) 

& = 963.0 rads2 
If we now combine the free-body diagrams for 

the two links the internal contact force at B will 
not appear and by taking moments about A for 
the whole system using equation (ii) we can find 
Q (see Fig. 6.29). 

- 
R B  can be found from equations of motion for 

link BC. If an equation for moments about A for 
link AB is then written, this will not contain RA 
and Q can be found. A solution using this 
approach is left as an exercise for the reader, but 
a technique will be described below which does 
not involve the determination of R B  . 

Just as equations of motion can be written for 
systems of particles, so they can be written for 
systems of rigid bodies. Suppose that n rigid 
bodies move in the xy-plane. If the force 
equations for the bodies are summed, we obtain 

n 

C F  = c miuGi ( 0  
, = I  
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Free-body diagram 

Figure 6.30 
6.3 A uniform solid hemisphere has a radius r .  Show 
that the mass centre is a distance rG = 3r/8 from the flat 
surface. 

6.4 Determine the location of the mass centre of the 
---: A-1... ...... y"u.v u..v .... .'. Fig. 6.31. ..-. f,.- .L:- -l-.- -L ___.- 1- 

Figure 6.29 
From equation (ii), 

[EM* = J c , I b l  + J c , 2 4  

+ (moment of m l U G 1  about A) 
+ (moment of Ilt2aG2 about A)] 

(AGl)mlg+ (AD)mzg+ Q = O+Zc,24+O Figure 6.31 

6.5 A couple C = k0 is applied to a flywheel of 

is a constant. When the flywheel has rotated through 
one revolution, show that the angular velocity is 

moment of inertia I whose angle of rotation is 0, and k 

27r/(klI) and the angular acceleration is 27rkII. 
6.6 A flywheel consists of a uniform disc of radius R 
and mass m. Friction at the axle is negligible, but 
motion is restrained by a torsional spring of stiffness k 
so that the couple applied to the flywheel is k0 in the 
opposite sense to 0, the angle of rotation. If the system 
is set into motion, show that it oscillates with periodic 
time 2?rRd[ml(2k)]. 
6.7 A light cord is wrapped round a pulley of radius R 
and axial inertia I and supports a body of mass m. If the 
system is released from rest, assuming that the cord 
does not slip on the pulley, show that the acceleration u 
of the body is given by 

1 
( 3 

[r 1 
05) io;) I 

12 12 
+ m2 [ 2  (EG2)- ;2 -k (AE)y 022 - (DG2) w1211 

0.5(2)(9.81) + 1 +0.25- (1)(9.81) + Q 

('.'I2 (963) + 1 - + 0.25 = 0.25- 

x - (963) + o.5 - (60)2 - (o. 125)(25)2(1) 

12 

Hence Q = -1383 N m 

Problems 
6.1 A thin uniform rod has a length I and a mass m. 
Show that the moments of inertia about axes through 
the mass centre and one end, perpendicular to the rod, 
are m12/12 and m12/3 respectively. 

6.2 The uniform rectangular block shown in Fig. 6.30 
has a mass m. Show that the moments of inertia for the 
given axes are 

a = mgR21(1+mR2) 
if friction at the axle is negligible. 

6.8 Repeat problem 6.7 assuming that there is a 
friction couple Co at the axle which is insufficient to 
prevent motion and show that 

1 u = (mgR2-CoR) / ( I+mR2)  
12 6.9 See Fig. 6.32. The coefficient of friction between 

body A and the horizontal surface :s p. The pulley has a 
radius R and axial moment of inertia I. Friction at the 1 

22 - 12 axis is such that the pulley will not rotate unless a 
couple of magnitude Co is applied to it. If the rope does 
not slip on the pulley, show that the acceleration a is 
given by 

Ill = - m ( 1 2 + b 2 ) ,  

I - -m(u2+b2) ,  

133 = m ( i / 2 + h u 2 )  1 
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Figure 6.32 

a =  

Figure 6.35 
(a) the magnitude of the force exerted by the pin on the 
member A and (b) the driving couple which must be 
applied to the crank OB. 
6.13 In problem 5.3, the spring S has a stiffness of 
4 kN/m and is pre-compressed such that when the line 
OA is perpendicular to the motion of the follower F the 
compressive force in the spring is 150N. The mass of 
the follower is 0.2 kg. The eccentricity e = 10 mm. 

Neglecting friction and the mass of the spring, 
determine the maximum speed at which the cam C can 
run so that the follower maintains continuous contact. 

6.14 The distance between the front and rear axles of 
a motor vehicle is 3 m and the centre of mass is 1.2 m 
behind the front axle and 1 m above ground level. The 
coefficient of friction between the wheels and the road 
is 0.4. 

Assuming front-wheel drive, find the maximum 
acceleration which the vehicle can achieve on a level 

During maximum acceleration, what are the vertical 
components of the forces acting on the road beneath 
the front and rear wheels if the mass of the vehicle is 

Neglect throughout the moments of inertia of all 
rotating parts. 

6.15 The car shown in Fig. 6.36 has a wheelbase of 
3.60111 and its centre of mass may be assumed to be 
midway between the wheels and 0.75 m above ground 
level. All wheels have the same diameter and the 
braking system is designed so that equal braking 
torques are applied to front and rear wheels. The 
coefficient of friction between the tyres and the road is 
0.75 under the conditions prevailing. 

g ( m - p M ) R 2 - C o R  

(m + M ) R 2  + I 

provided that m > pM + Co/ (gR) .  
6.10 Figure 6.33 shows a small service lift of 300 kg 
mass, connected via pulleys of negligible mass to two 
counterweights each of 100 kg. The cable drum is 
driven directly by an electric motor, the mass of all 
rotating parts being 40 kg and their combined radius of 
gyration being 0.5m. The diameter of the drum is 
0.8 m. 

Figure 6.33 road. 

calculate the tensions in the cables. 

6.11 The jet aircraft shown in Fig. 6.34 uses its 1000kg? 
engines E to increase speed from 5 d s  to 50 m/s in a 
distance of 500m along the runway, with constant 
acceleration. The total mass of the aircraft is 
120000 kg, with centre of mass at G. 

If the torque supp1ied by the motor is 50N m, 

Figure 6.34 
Find, neglecting aerodynamic forces and rolling 

resistance, (a) the thrust developed by the engines and 
(b) the normal reaction under the nose wheel at B 
during this acceleration. 
6.12 See Fig. 6.35. The crank OB, whose radius is 
100 mm, rotates clockwise with uniform angular speed 
9 = +5 rads. A pin on the crank at B engages with a 
smooth slot S in the member A, of mass 10 kg, which is 
thereby made to reciprocate on the smooth horizontal 
guides D. The effects of gravity may be neglected. 

For the position 9 = 45", sketch free-body diagrams 
for the crank OB and for the member A, and hence find 

.. 
When the car is coasting down the gradient of 1 in 8 

at 45 k d h ,  the brakes are applied as fully as possible 
without producing skidding at any of the wheels. 
Calculate the distance the car will travel before coming 
to rest. 
6.16 The track of the wheels of a vehicle is 1.4 m and 
the centre of gravity G of the loaded vehicle is located 



as shown in Fig. 6.37. The vehicle is travelling over a 
horizontal surface and negotiating a left-hand bend. 
The radius of the path traced out by G is 30 m and the 
steady speed of G is v. The coefficient of friction 
between tyres and road is 0.85. 

As a first estimate, the effects of the suspension 
system can be neglected. Determine the maximum 
value of v such that the vehicle neither tips nor slips. 

6.17 The vehicle shown in Fig. 6.38 travels along a 
level road and the friction coefficient between tyres and 
road is p. When the brakes are applied, the braking 
ratio R is given by 

couple applied to front wheels by brakes 

couple applied to rear wheels by brakes 
R =  

Figure 6.38 

the engine are to be neglected. 
a) 
deceleration d is given by 

The inertia of the wheels and any braking effect of 

Show that if only the rear wheels are locked the 

CLgb d =  
N ( l + R ) + p h  

and if only the front wheels are locked then 

Pg (I - b) d =  

If R ,  is the value of R for maximum deceleration, 

N ( 1 +  1/R) - ph 

b) 
show that 

R ,  = N(b - p h )  - 1 

and that this occurs when both front and rear wheels 
are locked. 
c) If I = 3.5 m, b = 1.6 m and h = 0.7, plot d against R 

86 Kinetics of a rigid body in plane motion 

for values of R from 0 to 4, assuming that p = 0.8, and 
plot R ,  against p for values of p from 0.2 to 1 . 1 .  

[It should be noted that in practice p is not constant 
but varies with, amongst other things, relative slip 
speed. One of the consequences of this is that for a 
vehicle fitted with rubber tyres the maximum braking 
effect is normally obtained when the wheels are near to 
the point of slipping but do not actually slip. An 
idealisation of this effect is made in the next problem.] 

6.18 Refer to problem 6.17 and assume that the 
brakes are applied to the rear wheels only (R = 0). The 
tyres are made from a material which, when in contact 
with the road surface, requires a tangential force to 
initiate slip of p s N ,  where N is the normal force 
between tyre and road, but once slip has started the 
tangential force is p d N  (p, and pd are known as the 
static and dynamic friction coefficients respectively). 
Assume that ps = 0.9 and pd = 0.7 - 0.004 v,, where v, 
is the relative slip speed in ( d s ) ,  and that I, b and h 
have the same numerical values as in the previous 
problem. 

If the vehicle is travelling at 30 d s  and the brakes are 
applied so that the rear wheels immediately lock, show 
that the stopping distance is about 177 metres. If, 
however, the brakes are applied so that slip does not 
quite occur, show that this distance is reduced by about 
25.5 per cent. 

[This problem not only shows the advantage of not 
allowing the wheels to slip but confirms the poor 
retardation available when only the rear-wheel brakes 
are operated.] 

6.19 The motorcycle illustrated in Fig. 6.39 can be 
'laid over' until 0 = 40" before the footrest touches the 
ground. 

. .=l-.- ---- 
During a cross-country scramble the track runs at a 

constant height in a curved path around the side of a 
hill which slopes at 30" away from the centre of 
curvature of the path as shown. The radius of curvature 
to the centre of mass can be taken as 30m. The 
coefficient of friction between the tyres and the ground 
is 0.65. 

Find the theoretical maximum speed at which the 
curve can be negotiated. State whether at this speed the 
motorcycle would be on the point of slipping down the 
slope or of digging the footrest into the ground. 

6.20 A hoist is driven by a motor and brake unit at E as 
shown in Fig. 6.40. The light cable passes over a drum 
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Figure 6.40 

which is pivoted at D and which has a mass of 15 kg, a 
radius of 0.6m and a radius of gyration about D of 
0.5 m, A maSS M of 20 kg is being lowered when the 
brake is applied such that the tension in the cable 
leaving the motor is 1.5 kN. 

Calculate (a) the acceleration of the load and (b) the 
tension in the Stay wire AC, neglecting the weight of 
the beam BD. 

is supported by a cable wound around a 4 m diameter 
winding drum. Attached to the same shaft is another 
drum of diameter 2 m  from which is suspended a 
counter-balance of mass 3000kg. An electric motor 
drives the drum shaft through a 20: 1 reduction gear. 

The moments of inertia of the rotating parts about 
their respective axes of rotation are 

rotor of the electric motor 60 kg m2 
winding drum 5000 kg m2 

Figure 6.42 

20 m/s2. Calculate (a) the tension T in the cable leading 
to the winding gear; (b) the horizontal force, parallel to 
the crane arm, which must be applied to the trolley to 
prevent it from moving. 

6.23 The dragster, complete with driver, illustrated in 
Fig. 6.43 has a total mass of 760 kg. Each rear wheel 

moment of inertia of 6 kg m2. The moment of inertia of 
the front whee1s may be neg1ected. 

6.21 See Fig. 6.41, A lift cage with a mass of 2000 kg has a maSS Of 6o kg, a rolling radius of O.4m and a 

Figure 6.43 

For the condition when the dragster is accelerating 
along a level road at 10.8 d s 2 ,  (a) draw freerbody 
diagrams (i) for one rear wheel and (ii) for the dragster 
with rear wheels removed and (b) find the driving 
torque which is being applied to the hub of each rear 
wheel (assume that these torques are equal and that 
there is no slipping between tyres and road). 

6.24 The excavator illustrated in Fig. 6.44 carries in 
its shovel a load of 400 kg with a centre of mass at G. 
The cab, arm and shovel assembly has a uniform 
angular acceleration from rest to 0.085k revls during 90" 
of rotation. Simultaneously, the centre of mass G of the 
load is moved horizontally towards the axis of rotation 
at a steady rate of 0.2 m l s .  

I 

If the torque acting on the rotor is 900 N m, what is 
the tension in the lift cage cable during an ascent? 

6.22 The winding cable for the crane illustrated in 
Fig. 6.42 passes over the light, frictionless pulleys in the 
trolley at A and B, under the 0.35 m diameter pulley at 
D, and is attached to the crane arm at C. The pulley D 
has a mass of 15 kg and a radius of gyration about the 
pivot axis of 0.1 m. 

The load is being raised with an acceleration of Figure 6.44 
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As the excavator passes through the 90" position, G 
is 3.5m from the axis. Find the force exerted on the 
load at this instant. 

6.25 Figure 6.45 shows an apparatus for performing 
an impact test on the specimen S. The rod AB of mass 
rn swings from two light, parallel wires of length 1, the 
inclination of the wires to the vertical being 8. 

Figure 6.45 

If the rod is released from rest at 8 = 30" and strikes 
the specimen just after 8 = 0, find for 8 = 0 (a) the 
angular velocity and angular acceleration of the wires 
and (b) the tension in each wire. 

6.26 Refer to problem 5.7. Figure 6.46 shows one of 
the cylinders C of a petrol engine. The crankshaft AB is 
rotating anticlockwise at a constant speed of 3000 
rev/min about A, which is its mass centre. The 
connecting rod BD has a mass of 2.0 kg and its mass 
centre is at G. The moment of inertia of the connecting 
rod about G is 5 x lO-3  kg m2. The mass of the piston E 
is 0.5 kg and the diameter of the cylinder C in which the 
piston slides is 90 mm. 

Figure 6.47 
a) Draw the velocity and acceleration vector diagrams 
for the mechanism at this instant and hence determine 
the acceleration of the mass centre of the connecting 
rod BC and the angular acceleration of BC. 
b) Write equations of motion for the connecting rod 
BC using the axes indicated and hence determine the 
forces acting on it at C and B. 

6.28 A uniform slender rigid beam of mass 800 kg and 
length 3 m is pivoted at one end and rests on an elastic 
support at the other. In the position of static 
equilibrium the beam is horizontal. Details of the beam 
are shown in Fig. 6.48. 

Figure 6.48 
It is observed that, if disturbed, the beam performs 

small oscillations in the vertical plane with S.H.M. of 
frequency 5 H z .  What is the stiffness of the elastic 

6.29 An impact testing machine has a pendulum 
which pivots about the z-axis, as shown in Fig. 6.49. It 
consists of a bar B, whose mass may be neglected, and a 
cylindrical bob C, of mass 50 kg. 

support? 

- 
Figure 6.46 

If the pressure p on top of the piston is 2.1 MPa when 
angle DAB = 30°, determine for this angle (a) the force 
in the gudgeon pin D and (b) the turning moment being Figure 6.49 
applied to the crankshaft. Neglect friction. a) Calculate the moment of inertia, Zoz, for the 
6.27 The four-bar chain mechanism shown in pendulum. 
Fig. 6.47 consists of a light crank AB of length 100 mm, b) Write the moment equation for rotation of the 
a light rocker arm CD of length 300 mm, and a uniform pendulum about the fixed z-axis when it is swinging 
connecting rod BC of length 400 mm, mass 4 kg and freely and is at an angle 8 from the horizontal. 
moment of inertia ZGz = 0.06 kg m2. AD = 400 mm. In c) The pendulum is released from rest in the position 
the position shown, AB and BC are collinear, and 8 = 0. At the instant when 0 = a", determine the 
angle ADC = 90". The crank AB has a constant acceleration of the mass centre of the bob, and the 
angular velocity given by wAB = -10k rads. The angular velocity and angular acceleration of the 
effects of gravity and friction are to be neglected. pendulum. 
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6.30 A uniform rectangular trapdoor of mass rn, 
hinged at one edge, is released from a horizontal 
position. 

Show that the maximum value of the horizontal 
component of the force at the hinge occurs when the 
trapdoor has fallen through 45". At this angle, calculate 
the magnitude of the total force in the hinge. 

6.31 Two uniform rods, AB and BC, each of length 
1 m and mass 1 kg, are pinned to each other at B and to 
supports at A and C as shown in Fig. 6.50. Determine 

Figure 6.50 
the force acting on the support at A before and 
immediately after the pin at C is withdrawn. Take g to 
be 10 N/kg. 



7 
Energy 

7.1 Introduction 
Energy is one of the most important concepts 
encountered in a study of mechanics because it 
can appear in many guises in almost all disciplines 
of physics and chemistry. In mechanics we are 
mainly concerned with energy due to motion of 

energy associated with configuration, concentrat- 

elastic strain energy; changes in other forms of 

chemical are regarded as ‘losses’. However, in 
other disciplines the description of useful energy 
and loss of energy may be different. The question 
of loss or gain of useful energy depends on the 
point of view, just as debit or credit in fl = force on ith particle due to the 
book-keeping depends on whose account we are 
considering, the same transaction appearing as a 
‘redit On One account yet as a debit On another’ 

Historically kinetic energy, called vis viva or 
‘living force’ by Leibnitz, was a rival to 
momentum or ‘quantity of motion’ as favoured by 
Newton. The controversy was over which 
quantity was the true measure of the ‘power’ of a 
body to overcome resistance. It had been 
observed that if the speed of a body were 
doubled, the body could rise to quadruple the 
original height in a gravitational field; however, 
the time to reach that maximum height was only 
doubled. The fact that the difference between the 
two approaches was really only one of termino- 
logy was pointed out by d’Alembert, who showed 
that the ‘living force’ methods could be obtained 
from momentum considerations. Later Lagrange 
generalised the treatment of mechanical energy of 
systems, and his work forms the basis for some of 
the more advanced techniques in theoretical 
mechanics. 

7.2 Work and energy for a system of 
particles 
In Chapter 3 the equations of motion for a single 

particle were integrated with respect to displace- 
ment to give 

1: F - ds = fmv22 + fmv12 (7.1) 

materia1 Objects - that is kineti‘ energy - and 

ing usua11y On gravitational potentia’ energy and 

or, work done on the particle equals the change in 

result is just the outcome of a mathematical 
kinetic energy. It must be emphasised that this 

manipulation and does not introduce any new 

particles, where we use the notation 

energy such as thermal, electromagnetic and principle. We now generalise to a system of 

F, = force on ith particle acting directly 
from some external agency 

action of the jth particle. 

Note that, from Newton’s third law, AI = -4, 
and these forces are collinear. Hence, for the ith 
particle (Fig. 7.1), 

(7.2) F, + EAl = m,?, 
I 

The summation is over all particles in the 
system; however, it d ~ ~ l d  be noted thatf,, has no 
meaning in this context. 

If we now form the scalar product of both sides 
of equation 7.2 with the velocity f~ > we obtain 

~ , - i ~ + i , .  EA, = m,?,.i, = - d [“ >i,.i, ] (7.3) 

It is now required to sum for all particles in the 
system. In this summation we find that for every 
term of the form i, -J;] there will occur a term il -4, 

I dt 2 
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and adding these two terms gives The first term is simply tMiG2 (where 
M = C m i ) ,  that is the kinetic energy if all the 

I 11 I 11 11 1 I mass were at the centre of mass. The second term 
The term (ii-ij) is the relative velocity vanishes by reason of the definition of the centre 

of mass, viz. iG. w x C mipi = 0, since C mipi = 0. 
The last term may be simplified by writing 

pi = a i+b i ,  where ai is parallel to w and b; is 
perpendicular to w (Fig. 7.2). Hence 

i . . f . .+i . .f . .= f . . . ( i . - i . )  

between the particles i and j ,  to which we will give 
the symbol iij . 

Summing equation 7.3 for all particles gives 

d m. xFi.i . + Z f . . . f . .  =-  C'i . . i .  
I j j  rl zI dr[ i 2 1 .] (7'4) w x p i  = w x  ( q + b ; )  

= A[ F ?ij.ii] (7.5) 

= wbie 
where cij signifies that all combinations of terms, 
other than ii, are to be summed. 

Integrating with respect to time gives 

7 I fF i .d r i+  C r j  I' 1 Jj .*; j  

where A indicates a finite difference. 
The first term on the left-hand side of the 

equation is the work done by external agencies, 
either by contact at the surface or by long-range 
body forces such as gravity and electromagnetic 
forces. The second term is the work done by 
internal forces and these, in general, are complex 
relationships. The right-hand side is, of course, 
just the change in the total kinetic energy. 

Equation 7.5 is quite general, but to make use 
of this expression we must first consider some 
special cases, the first of which is the rigid body. 

7.3 Kinetic energy of a rigid body 
The kinetic energy of a particle has been defined 
as tmv2 or &mi- i ,  so for any collection of particles 
the kinetic energy is 

f C miri.ri .  . .  
I 

We have seen (equation 5.3) that for a rigid 
body in plane motion the particle velocity can be 
written in the form 

i i - i G = w x p i  

so that 

f C m i i j .  ij = i C mi (iG + w x pi) 
I 

* ("r, + 0 x pi) 

+ i C h; (0 x p;) . (w x p;) 

(7.6) 
= ~ ( i . G ) 2 C m ; + i G . C m i o x p ;  

1 

Figure 7.2 

where e is a unit vector perpendicular to ai and bi 
so that 

(W x pi ) .  (0 x p;) = w2b: 

The total kinetic energy now becomes 

i M ( i G ) 2 + f ~ 2  C mib: 
1 

Cmib: is defined as in Chapter 6, as the 

moment of inertia about an axis through the 
centre of mass and parallel to the axis of rotation. 

Writing ZG- Cmib?, we obtain the kinetic 
energy: 

I 

(7.7) k.e. = & M ( i - G ) 2 + d Z ~ w  2 

The reader should notice that once again the 
use of the centre of mass has enabled us to 
separate the effects of translation and rotation. 

For the special case of rotation about a fixed 
axis (Fig. 7.3), equation 7.7 reduces to 
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k. e. = 4M (O x B ) - (W x B )  + 4ZG w2 

= ~ M B ~ ~ ~  + ~ I ~ w ~  
- 1  - % w  2 ( I G + M B 2 )  

= &w2 (7.8) 
where Zo = CmibO; = Cmib;+MB2 (7.9) 
This is the parallel-axes theorem and is easily 
verified from equation 7.6 by putting 

7.4 Potential energy 
For a rigid body there is no change in the 
separation between any two particles (dq = 0), 
hence the work done by the internal forces is 
zero. 

The left-hand side of equation 7.5 is now 
ciJ?Fi - dri, which is simply the work done by the 
external forces. However, in cases where the 
forces are conservative, a simplification is 
possible. 

A conservative force is defined as one for which 
the work done is independent of the path taken 
and depends solely on the limits, so that for 
conservative forces we may write 

? /;Fi.dri=%V2-%Vl (7.10) 

where W1 is a function of rl only and W2 is a 
function of r2 only. 

i G = W X r G .  

For orbital-motion problems it is convenient to 
consider the potential energy to be zero when r is 
infinity, in which case 

v =  -- 

Equation 7.5 is now 

W2 - %VI = (k.e.h - (k.e.)l 

(7.14) 
the conservative forces. It is convenient to regard 
this work as due to a reduction of some form of In problems where the variations in rare  small, 
stored energy called potential energy (see such as for motion close to the Earth's surface, 
Appendix 4) and given the symbol V. Therefore then with r = R + h ,  where R is the radius of the 
we may write Earth and mo is its mass, we have 

W2-%V, = -(V2- V,)  (7.11) 
So, for a system of particles acted on only by 
conservative forces, we have 

Gmom 
(W2 -%VI) is the work done on the system by r 

Gmom v =  -~ ( R  + h)  +constant 

Expanding by means of the binomial theorem, 
W2-W1 = -(V2-V1) = (k.e.)2-(k.e.)l &?E( - 1 + - 1) + constant 

Gmom( R 3 
energy. -Gmom (-1 + 2) 

or 0 = (k.e. + V), - (k.e. + V), (7.12) R 
The two most common forms of potential 

energy encountered in engineering mechanics are 
gravitational potential energy and elastic strain 

or v2- VI iT ~ -1 +- 

R 

Gravitational potential energy 
If a force system is conservative, then the 
potential energy is defined by 

V = - I F . & +  arbitrary constant 

In a gravitational field we have from Newton's 
law of gravitation that the force on m is given by 

F = - -  er (7.13) 

where mo and m are two masses (Fig. 7.4), the 
displacement of m from q is re,, and G is the 
universal gravitational constant. Hence we have 

v = -[ / ( - G y ) e r * c i s ]  +constant 

Gmom 
r 2  

dr 
= / Gmom, +constant 

Gmom +constant -~ - - 
r 
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other form which is not recoverable. 
Let us consider the case of a block being 

dragged along a plane by a constant force. We can 
draw the free-body diagram (Fig. 7.6) and write 
down the equation of motion as follows. 

= [%]rn(h2-hl) (7.15) 

The quantity [Grno/R2] is the gravitational field 
constant g ,  which is loosely called the acceleration 
due to gravity. (It should be remembered that the 
values usually quoted are apparent values derived 
as a result of considering the surface of the Earth 
to be unaccelerated.) 

Strain energy 
Another force law of great importance is when 
the force between two particles is proportional to 
the change in separation; that is (Fig. 7.5) For the x-direction, 

Po - pN = MXG 

and for the y-direction 
N - W = O  

giving 

dv 
Po-pW= Mv- 

Figure 7.5 dx 
Fi = -k{lrI + lal}e ,  where v = x. 

= -kAre, Integrating with respect to x gives 

where k is a constant. [ : P o d x - 1 2 p W d x =  [ 2 Mvdv 
Hence 1 1 

V = -J - k Are,. ds + constant = &Mv: - 4MvI2 (7.17) 
= +k(Ar)2 + constant since e,.& = d(Ar )  

It is usual to consider the energy to be zero 
The first term is the work done by the external 

force Po and the right-hand side is the change in 
when Ar is zero; this situation exists for kinetic energy of the system. However, the 
deformations in a material obeying Hooke’s law second term on the left-hand side is not a 
and is applicable to the deformation of linear work-done term as formally defined as we do not 
springs. This form of potential energy is referred know the detailed movement of the particle on 
to as strain energy. which the force is acting. As an exercise, consider 

Therefore the strain energy of a uniform linear the two extreme cases in Fig. 7.7. 
spring having a stiffness k is 

V = $k(Ar)2 (7.16) 
Ar being measured from the free length of the 
spring. 

Figure 7.7 7.5 Non-conservative systems 
The most common non-conservative force in Equation 7.17 is, however, completely valid 
mechanics is that of friction. When friction is since it was derived by integrating the equations 
present in a system, processes are irreversible and of motion, but it is not yet a new principle. 
the work done will probably depend on the path Further consideration of the physics of the 
taken. A system which has non-conservative problem based on experience suggests that other 
forces acting within its boundary is termed a measurable changes are taking place. In the first 
non-conservative system, since the mechanical place, one would expect there to be a change in 
energy is not conserved but is changed into some temperature and also one would expect some 

. .  
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local vibration giving rise to the production of 
noise. It is also possible that changes of state of 
the material would take place - i.e. melting - 
electrostatic charges might be developed and distance. 
other changes of a chemical nature might occur. 

In a study of mechanics these latter changes 
represent a loss to the system, but in other 
disciplines such ‘losses’ might well be ‘gains’. 

It is now convenient to propose the general 
energy principle. 

7.6 The general energy principle 
Although integration of the equations of motion 
with respect to displacement leads to a form of 
the energy equation, the general energy principle 
may be considered as a fundamental law of 
mechanics. Terms which appear as losses in the 

If we compare equations 7.17 and 7.18 we see 
that the ‘losses’ are equivalent to JpW&, i.e. the 
product of the frictional force and the slipped 

As a further example of the difference between 
the integrated form of the equations of motion 
and the general energy principle, consider the 
case of a smooth block being pulled along via a 
light spring (Fig. 7.9). 

Figure 7.9 

equation of motion is 

dv 
dr 

From the free-body diagram (Fig. 7.10) the 

general energy principle can sometimes have a Po = mjt = mv- numerical value ascribed to them by comparison 
with the integrated forms of the equations of 
motion. Integrating, 

In the context of engineering mechanics, the 
general energy principle may be stated as 

the work done on a system is equal to the 
change in kinetic energy plus potential energy 
plus losses. 

The kinetic and potential energies are energies 
which are stored inside the :::!em 2nd ?re 
recoverable: all other energy forms are therefore 
losses. The above principle is stated with respect 
to a specific system, therefore in any problem we 
must carefully define the system boundaries and 
consider only forces which do work across these 
boundaries. 

/ y p0dx = trnv22 - tmv12 (7.19) 

Figure 7.10 

principle gives 
From the system diagram (Fig. 7-11) the energy 

IfPo* = r7-+p2-x2)2 
2 k  I 

- [- 2 + 2 (SI - x1 1 ’1 (7.20) mol2 k 

Figure 7.8 Figure 7.1 1 

block problem (Fig. 7.8). 
Let us now reconsider the previous sliding- 

It should be noted that, in equation 7.19, 
JPo& is not the work done by Po since the 
distance moved by the particle on which Po is 
acting is s (and not x ) .  

Another common problem is that of the rolling 
cylinder. Consider first the case of pure rolling 
(Figs 7.12 and 7.13). 

Work done across boundary = [ ’ Po& 

= trnv22 + lrnvl* + ‘losses’ (7. 18) 
In this case there are no changes in potential 
energy. From the free-body diagram (Fig. 7.13), 



dz; 
P - F = M X = M v -  (7.21) 

dx 

and F r = I G 8 = I G W -  (7.22) 
dw 
de  

The kinematic constraint for no slipping is 
x = br 

or dx=rdO (7.23) 
Eliminating F between equations 7.21 and 7.22 

gives 
dv I ,  dw 

P=Mv-+-w- 
dx r d6 

and, using the constraint, equation 7.23 leads to 

dv I G v  dv ( 
$) E P=Mv-+- - -=  M+-  v- 

dx r r d x  

Integrating with respect to x gives 

P d x =  4 M+- ( v ~ ~ - v I ~ )  (7.24) I: ( $1 

( :Gj 

The energy equation gives 

/ f P d x = [ 4 M v 2 + ~  1 

(7.25) 

Here it should be noted that the friction force F 
progresses as the wheel rolls but the particle to 
which it is applied on the wheel moves at right 
angles to the force, thus F does no work. 

If slipping is occurring then there is no 

zG%212 
= 4  M+-?; (VZ2-Vl2) 
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kinematical restraint equation but the friction 
force is pN. Thus, as W - N = 0, 

dv 
P - p N =  MV- 

dx 
d o  

and pNr = IGw- 
d6 

The energy equation now gives J’: P& = [4Mv2+:IGw2]:+‘losses’ 

In this case, 

‘losses’ = pWl ( x  - r6)l 
the modulus of pW(x--6) is necessary as the 
‘loss’ must always be positive, irrespective of the 
direction of slip. 

7.7 Summary of the energy method 
The general energy principle, or first law of 
thermodynamics, which has as a corollary the 
conservation of energy, is a very powerful 
principle which has applications in all branches of 
physics. Since it has such wide interpretation it 
means that all forms of energy must be considered 
when forming the equation and care must be 
taken not to exclude changes such as thermal 
effects. The selection of a system boundary, 
which may not be a clear physical surface, 
requires experience and practice. 

The main points are as follows. 
Work The elemental work dW is force times the 
elemental distance moved by the particle on 
which the force acts, in the direction of the force. 

Kinetic energy of a rigid body 
k.e. = tMvG2 + f I G u 2  

Gravitational potential energy 

(7.26) 

or Mgh (7.27) Gm0 VG = -- 
r 

Linear elastic strain energy 
V, = Jk(Ar)2 for a spring having a stiffness k 
(Work done),,,,,,,l = [k.e. + VG + v~l (7 .28)  

+ ‘losses’ (7.29) 
- [ k . e . + v ~ + V ~ ] l  
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7.8 The power equation 
If the work-energy relationship is written for a 
small time interval At, then we have 

AW = A(k.e. + V )  + A(1osses) 

Dividing by At and going to the limt At-0 
leads to 

dW d d 
- = - (k.e. + V )  +-(losses) 
dt dt dt 

(7.30) 

or, power input equals the time rate of change of 
the internal energy plus power ‘lost’. 

Let us consider a simple case of a single particle 
acted upon by an external force P and also under 
the influence of gravity, then 

P - v  = -[4rnv-v+rngz] 

= mv-a+rngi 

d 
dt 

If the motion is planar, 

v = X i + i k  
a = x i + z k  

and P =  Pxi+P,k 

so that 

PxX + P,i = rn (Xx + iz) + mgi 

Px+Pztana  = rntan2cr+1)z+rngtancr 

Hence z may be found without considering the 
workless constraints. or P2cosa,- Plcoscrl = 0 (7.31) 

(7.32) 

Figure 7.15 

condition for equilibrium is 
If z = xtancr (Fig. 7.14) then dividing by x gives From the free-body diagram (Fig. 7.16) the 

C P = P , + P , =  w = o  

and P1 sin cyl + P2sin cr2 - rng = 0 

are not apparent, but the reader is asked to be 
patient as later examples will show some of its 
rewards. 

A virtual displacement is defined as any small 
displacement which is possible subject to the 
constraints. The word virtual is used because the 
displacement can be any displacement and not 
necessarily an actual displacement which may 
occur during some specific time interval. 

The notation used for a virtual displacement of 
some co-ordinate, say u, is Fu. This form of delta 
is the same as is used in mathematics to signify a 
variation of u;  indeed the concepts are closely 
related. 

The work performed by the forces in the system 
over this displacement is the virtual work and is 
given the notation 621r. 

Conditions for equilibrium 
Let us first consider a single particle which is free 
to move in a vertical plane subject to the action of 
two springs as shown in Fig. 7.15. 

Figure 7.14 Figure 7.16 

7.9 Virtual work and Fz respectively, then 
The concept of virtual work is one which saves a 
considerable amount of labour when dealing with 
complex structures, since there is no need to 
dismember the structure and draw free-body 
diagrams. Basically we shall be using the method 
as an alternative way of presenting the conditions 
for equilibrium and also to form a basis for the 
discussion of stability. In the early stages of 
understanding the principle the main advantages 

If equations 7.31 and 7.32 are multiplied by 6x 

i P,cosa2Fx- P ~ C O S c r , F X  = 0 
P,sincrlFz+P2sina2Fz-rngFz= 0 

or C P - F S  = 0 (7.33) 
These are the equations for the virtual work for 

the arbitrary displacements Fx and 6z - note, 
arbitrary displacements. In both cases we may 
state that the virtual work done by the forces over 



an arbitrary small displacement from the equilib- 
rium position is zero. 

If a system comprises many particles then the 
total virtual work done on all particles over any 
virtual displacement (or combination of displace- 
ments) is zero when the system is in equilibrium. 

Principle of virtual work 
We may now state the principle of virtual work as 
follows. 

If a system of particles is in equilibrium then 
the virtual work done over any arbitrary 
displacement, consistent with the con- 
straints, is zero: 

W = O  (7.34) 

Application to a system with a single degree of 
freedom 
Consider a rigid body freely pinned at A and held 
in equilibrium by a spring attached at B 
(Fig. 7.17). This body has one degree of freedom, 
that is the displacement of all points may be 
expressed in terms of one displacement such as 8, 
the angular rotation. If the spring is unstrained 
when AB is horizontal, then in a general position 
the active forces are the weight and the spring 
force; the forces at the pin do no work if friction is 
negligible. 

For a small displacement 68, the displacement 
of G is a 68 (Fig. 7.18) and the virtual work is 

W = Mg (a 68COS 8 )  - kR8 (R de) 
For equilibrium, 
w = o = (Mgacos8-kR2e)68 

Mgacos 8 - kR28 = 0 

and, as 68 is arbitrary, 

(7.35) 
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If, as in the previous example, the forces are 
conservative then equation 7.34 may be inter- 
preted as 

W=W,+W,+W' (7.36) 

gravitational potential energy) 

elastic strain energy) 

W' = virtual work done by external forces 

where WG = - SVG = -(variation of 

W E  = - - W E  = -variation of 

and 

Therefore 

W = W ' - 6 v E - 6 V G = o  
or W ' = 6 ( V E + V G )  (7.37) 

Reworking the last problem, 

0 = 6[-Mg~sin8+4k(R8)~] 
0 = [ - M~UCOS 8 + kR28] 68 

Stability 
Consideration of some simple situations shown in 
Fig. 7.19 will show that not all equilibrium 
configurations are stable. However, we cannot 
always rely on common sense to tell us which 
cases are stable. We have demonstrated that for 
equilibrium W = 0, but further consideration of 
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the value of W as the virtual displacement 
becomes large will lead to the conclusion that if 
W becomes negative then the force will be in the 
opposite direction to the displacement , showing 
that the forces are tending to return the system to 
the equilibrium configuration, which is therefore 
one of stable equilibrium. In mathematical 
notation, for stability 

S ( W ) < O  

or  6 2 W < ~  (7.38) 

Looking at our previous case once again, 

therefore 6 ( W )  = (-Mgasine- kR2)(Se)2 

state is stable. 

configuration is defined by 

w = (Mgacose- kR2e)6e 

For 0<8<7r it is seen that any equilibrium 

For a conservative system, the equilibrium 

6V= 0 

and stability is given by 

S ( W ) < O  

6(6V)>O 

But, since W = -SV, 

If V can be expressed as a continuous function 
of 8, then 

av 
ae av=-ae 

and 

a2v 
ae2 

a2v=- --e se=-(6e)2 ae a iaV ae ) 
Hence for equilibrium 

av 
ae 
- = o  

a2v 
ae2 and - > O  for stability 

(7.39) 

Systems having two degrees of freedom 
The configuration of a system having two degrees 
of freedom can be defined by any two indepen- 
dent co-ordinates q1 and q2.  The virtual work for 
arbitrary virtual displacements 6ql and 6q2 may 
be written in the form 

(7.41) W = QI 6qi  + Q2 642 

Since the virtual displacements are arbitrary, 
we may hold all at zero except for one and, as 
W = 0 for equilibrium, we have 

Qi = O  
and Q2 = 0 

The stability of a system having two degrees of 
freedom will be discussed for a conservative 
system. 

It will be remembered that constant forces are 
conservative, therefore the majority of cases may 
be considered to be of this type. 

If the independent co-ordinates - referred to as 
generalised co-ordinates - are q1 and q2,  then the 
total potential energy (gravitational plus strain) is 
V = V(ql ,q2); hence 

av av 
a41 a42 

6V = - 6ql +- 6q 

and, since SV = 0 for equilibrium, we have 

av av _ -  - - = o  
a41 a42 

(7.42) 

For stable equilibrium we must have @V>O for 
all possible values of 6ql and S q 2 .  The second 
variation may be written 

or, since a2V/aql aq2 = a2V/aq2aq1, then 

It is clear that, if 6q2 = 0, then 

a2v 
->0 
%I2 

and, if 6ql = 0, then 

a2v 
->O 
a4z2 

These are necessary conditions for stability, but 
not sufficient. To fully define stability, a2V must 
be >O for any linear combination of 6ql and 6q2. 



a2v 
->0 
a d  
a2v 
->0 
a422 
a2v a2v 

> 

2 
and -.-- ~ 

a d  a d  (aqd:dVq2) > O  , 

- 

Consider the conservative system shown in 
Fig. 7.20; the active forces, real and fictitious, are 
shown in Fig. 7.21. 

W = SV- m,xl ax1 -m2x2Sx2 - ZeSe 
= 6[thl2 + mlgxl - m2gxz + const.] 

+ (7.44) 
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I [ t i )  r2 

[ (3 r: I (3 
r1 

= k - x2 +mlg- -m2g Sx2 

or m2+ml - +> i 2 + k  - x2 

= m2g - ml (:)g (7.46) 

This approach does not involve the internal 
forces, such as the tension in the ropes or the 
workless constraints, but these may be brought in 
by dividing the system so that these forces appear 
as external forces. 

Equation 7.46 could have been derived by the 
application of the power equation with a similar 
amount of labour, but for systems having more 
than one degree of freedom the power equation is 
not so useful. 

Discussion examples 
Example 7.1 
A block of mass m can slide down an inclined 
plane, the coefficient of friction between block 
and plane being p. The block is released from rest 
with the spring of stiffness k initially compressed 
an amount x, (see Fig. 7.22). Find the speed when 
the block has travelled a distance equal to 1 .&, . 

Figure 7.22 

Solution If a free-body-diagram approach is 
used to solve this problem, the equation of 
motion will be in terms of an arbitrary 
displacement x (measured from, say, the initial 
position) and the acceleration R. Integration of 
this equation will be necessary to find the speed. 

If an energy method is used, consideration of 
the initial and final energies will give the required 
speed. The two methods are compared below. 
a) Integration of equations of motion. The 
free-body diagram (Fig. 7.23) enables us to write 
the following equations: 

[ C F ,  = mYG1 
W C O S ~ - N = O  .‘.N= W C O S ~  (i) 

[CFx = m.fG] 

Wsina-pN- T, = mx (ii) 

If we measure x from the initial position, the 
spring tension T, is given by T, = k(x - x , )  and 
we shall be integrating between the limits 0 and 
1 . 2 ~ ~ .  We could, on the other hand, choose to 
measure x from the position at which there is no 
force in the spring, giving T, = kx, and the limits 
of integration would be from -x, to +O.&,. 

Using the former, (i) and (ii) combine to give 
Wsina-pWcosa-k(x-x,) = m.f (iii) 

Since we are involved with displacements, 
velocities and accelerations, the appropriate form 
for R is vdvldx: the direct form f = dv/dt is clearly 
of no help here. 

Hence equation (iii) becomes 
1.kc 

0 I { W(sin a - pcos a) - k ( x  - x , ) }  dx 

= [‘mvdv 0 

I:&= {w(sin a - pcos a)  + kx, } x - tkx2 

= m[+o2]. 

[ 
0 

{ mg (sin a - p cos a) + kx, } 1 .kc - i k  (1. h,)’ 
= imv2 

and thus v can be found. 
The reader should check this result by 

measuring x from some other position, for 
instance the position at which the spring is 
unstrained, as suggested previously. 
b) Energy method. Since energy is lost due to 
the friction, we use equation 7.29 (see Fig. 7.24): 

[work d~ne],,,,,,~ = [k.e. + VG + V E ] ~  
- [k.e. + VG+ VGll + ‘losses’ (iv) 

where the ‘losses’ will be pN(  1 . 2 ~ ~ )  as explained 
in section 7.6. For the general case of both p and 
N varying, this loss will be Jb2”cpNdx. None of 
the external forces does any work, according to 
our definitions, and thus the left-hand side of 



If, however, the block had been following a 
known curved path, the spring tension T, could 
have been a complicated function of position 
giving rise to difficult integrals, possibly with no 
analytical solution. The energy method requires 
only the initial and final values of the spring 
energy and so the above complication would not 
arise. Variation in N could cause complications in 
both methods. In some cases the path between 
the initial and final positions may not be defined 

Figure 7.24 at all; here it would not be possible to define T, 
as a general function of position. An energy 
method would give a solution directly for cases equation (iv) is zero. 

It should be pointed out that the correct result where friction is negligib]e (see, for example, can be obtained by treating the friction force as problem7.2). external to the system and saying that this force 
does negative work since it opposes the motion. Example 7m2 The left-hand side of equation (iv) would then be See Fig. 7.25(a). The slider B of maSS rn is 

wou1d be Omitted' This is a common way Of fixed to the slider engages with the slot in link dealing with the friction force but is not OA. The moment of inertia of the link about o is 

Io and its mass is M ,  the mass centre being a considered to be a true energy method. 

Kinetic energy. In the initial position (x  = 0) the distance a from 0. The spring of stiffness k is 
speed and thus the k.e. are zero. In the final attached to B and is unstrained when 8 = 0. 
position (x  = 1 . 2 ~ ~ )  the k.e. is frnv2, from 
equation 7.26. 

Gravitational energy, V,. The datum for 
measuring gravitational energy is arbitrary and 
we may take as a convenient level that through 
the initial position; thus the initial g.e. is zero. 
Since the block then falls through a vertical 
distance of 1.2xCsina, the final gravitational 
energy is, from equation 7.27, -rng(l.2xcsina). 

Strain energy, VE . In the initial position, the 
Spring is compressed an amount x,  and thus, from 
equation 7.28, the strain energy is fkx:. In the 
final position the spring is extended b an amount 
O.&, and so the final s.e. is fk(0.2~~) . 

Note that only the gravitational energy can have 
a negative value. 

Equation (iv) becomes 

-pN(1*2rC) and the 'losses' tem On the right constrained to move in vertical guides. A pin P 

Figure 7-25 

The system is released from rest at 8 = 0 under 
the action of the torque Q which is applied to link 
OA. ne variation of Q with e is shown in Fig. 
7.25(b). 

Determine the angular speed of OA when 
8 = 45", neglecting friction. 

9 

O = [frnv2 - rng ( 1 .&,sin a) + fk (0.2x:)I 
- [0 + 0 + dhC2 J + p N ( 1 . 2 ~ ~ )  

We still need a free-body diagram to determine 
that N = mgcosa, as in equation (i), and then v 
can be found directly. 

For this particular problem there is little to 
choose between the free-body-diagram approach 
and the energy method. In the energy method we 
avoided the integration of the first method, which 
however presented no difficulty. 

Solution This problem has been approached in 
example 6.5 by drawing two free-body diagrams 
and writing two equations of motion involving the 
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a 
- I@, = ;IO I ~ I o A ~  + fmVg2 + Mg- 
32 d 2  

+mgl+Ikl']-[(I] (ii) 

Before we can evaluate wOA we need to express 

l1 [ 
contact force at the pin P. Since we are here 
concerned only with the angular velocity at a 
given position, and details of internal forces are 
not required, an energy method is indicated and 
will be seen to be easier than the method of 
Chapter 6.  

Equation 7.29 becomes 
VB in terms of 0 0 ~ .  Since y = ltan 8, 

(work done),,,,,,, = [k.e. + vG + v E ] 2  

- [k.e. + VG + VEII (i) 
since there are no losses. The left-hand side of 
this equation is the work done by the external 

and is thus Jf4 Qd8. This is simply the area under 
the curve of Fig. 7.25(b), which is found to be 
(11/32) r e , .  

The normal reaction N between the slider and 
the guides is perpendicular to its motion and the 
force R in the pin at 0 does not move its point of 
application: thus neither of these forces does 
work (see Fig. 7.26). 

VB = dyldt = 1 sec2 8d8ldt = lsec2 8wOA 

and at 8 = d 2 ,  V B  = 21IiIOA. 
Substitution in (ii) gives 

forces or couples on the system during the motion 11 
- TQ, = &(Io + 4ml2)  wOA2 
32 

+ g  M-+ml ++k12 
K 2  1 

from which I i I O ~  can be found. 
Comparison of this method with the free-body- 

diagram approach and the difficulty associated 
with integrating the equation of motion shows the 
superiority of the energy method for this 
problem. 

What if the force S on the pin P has been 
required? This force does not appear in the 
energy method, but this does not mean that the 
energy method is of no help. Often an energy 
method can be used to assist in determining an 
unknown acceleration and then a free-body- 
diagram approach may be employed to complete 
the solution. 

- -  

Kinetic energy. As the mechanism is initially at Example 7.3 
rest, the initial k.e. is zero. Since the motion of 
OA is rotation about a fixed axis, the final k.e. of 
OA,  from equation 7.8, is 41000A2. The slider B 
has no rotation and its final kinetic energy, from 
equation 7.7, is simply fmvB2. 
Gravitational energy, VG. We will take as 
datum levels the separate horizontal lines through 
the mass centres of link and slider when 8 = 0 and 
thus make the initial value of VG zero. When 
8 = 45" the mass centre of the link has risen 
through a height a / d 2  and that of the slider Figure 7.27 

through a height I, and so the final value of VG is CD has a moment of inertia about D of 6 kg m2 
M g a l d 2  + mgl. and its mass is 4.5 kg. BC has a moment of inertia 
Strain energy, VE . Initially the strain energy is about its mass centre E of 1.5 kg m2 and its mass is 
zero and in the final position the spring has been 4 kg. At  the instant when both AB and CD are 
compressed an amount I; the final value of VE is vertical, the angular velocity of AB is 10 rads  and 
thus Ik1'. its angular acceleration is 50 radls2, both 

measured in an anticlockwise sense. 

A four-bar chain ABCD with frictionless joints is 
shown in Fig. 7.27. 

Substituting in (i) gives 



Neglecting the inertia of AB, determine the From the velocity diagram we see that 
vE = - l O i  d s ;  the component of UE in the same 
direction is a E - i  = -(50- 25/d3)  d s 2 .  Substitut- 
ing into the power equation (1) gives 

torque T which must be applied at A to produce 
the above motion. 

Solution The velocity of B is o x 3  
= 10k x lj = - 1Oi d s .  The velocity diagram is 
shown in Fig. 7.28 and it can be seen that link BC 
is not rotating (I$ = 0). 

T10 = 4(10)(50 - 25/d3)  + 6(5)(25) 
and 

Example 7.4 
A slider-crank chain PQR is shown in Fig. 7.30 in 
its equilibrium position, equilibrium being main- 
tained by a spring (not shown) at P of torsional 
stiffness k .  Links PQ and QR are of mass m and 
2m and their mass centres are at GI and G2 
respectively- The slider R has a mass M .  The 
moment of inertia of PQ about P is Zp and that of 
QR about G2 is ZG2; also, PGI = G I Q  
= QG2 = G2R = a. 

T = 217.2 N m 

. ---. 1om/s 
b ,  c, e a, d 

Figure 7.28 
The kinetic energy of link BG is thus $MvE2 and 

that of CD, for fixed-axis rotation about D, is 
$ Z D ~ 2 .  'It would clearly not be correct to write the 
power equation (section 7.8) as 

d 
dt 

T - w  = T o  = - (4MvE2 + $ Z k 2 )  

since 4MvZ is not a general expression for the k.e. 
of link BC (it is the particular value when AB is 
vertical). As ZI, and a, do not have the same 
direction, the correct power equation is 

d 
dt 

Figure 7.30 

Find the frequency of small oscillations of the 
system about the equilibrium position, 0 = eo, 

since += 0. Solution Equations of motion for the links can 
of course be obtained from a free-body-diagram 
approach, but this would involve the forces in the 
pins and would be extremely cumbersome. 

Use of the power equation leads directly to 
= 5k r ads  and thus the required result. In this case we have 

power = d(energy)/dt = 0, since the energy is 
constant for the conservative system and clearly 
no power is fed into or taken out of the system. 

Let the link PQ rotate clockwise from the 
equilibrium position through a small angle /3 as 

+ = - = - = 2  .. cc' 50 5 rads2 shown in Fig.7.31. The new positions of the 

T o w =  T o  = - ( ( ~ M + - Z ) E + ~ I ~ ~ + $ Z D $ ~ )  

= M+ ' a E  + ID44 (i) neglecting friction. 

The acceleration of B is 

QB = [-l(5O)i- 1(10)j2] m/s2 

From the velocity diagram we find $ = 10W2 

ac = [ -242- 2(5)2j] d s 2  
The acceleration diagram is shown in Fig. 7.29 

and 6; is given by 

CD 2 various points are shown by a prime. 

Figure 7.29 

Kinetic energy. Link PQ has fixed-axis rotation 
about P and its k.e. is thus 4Zp@'. By symmetry, 
the angular speed of QR is also /3. The k.e. of QR 
is given by 4ZG2fi2 + 4 ( 2 r n ) ~ ~ ~ ~ ,  where 
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d 
dt 

= - [3acos (eo + p)i  - asin(Oo + pb] 

= -3asin(eo + p)Bi - acos(eo + B)j 

The k.e. of slider R is M v R 2  where 

d +  d 
v R = - ( P R ’ )  =-[4acos(Oo+p)i] 

dt dt 

= -hsin(e,+p)/% 

Gravitational energy. A convenient datum level 
is the horizontal through PR. The mass centre of 
each of the links PQ and QR is at a height 
asin(eo + p )  above the datum and their gravita- 
tional energy is thus, from equation 7.27, 

VG = mgasin(80++) + ( 2 m ) g a ~ i n ( 8 ~ + p )  

The slider R moves the datum level and thus 
has no gravitational energy with respect to this 
level. 
Strain energy. The couple applied by the spring 
to  the link PQ in the equilibrium position is 
clockwise and equal to kyo , where yo is the angle 
of twist. As link PQ rotates clockwise through an 
angle p,  the angle of twist is reduced to ( y o - p )  
and thus the strain energy, from equation 7.28, is 
I k (y0 -p ) ’ .  

The total energy E is thus 

E = {k.e.} + {VG} + { V E }  

= { +zPB + $z,, B + f(2m) 
x [9a’sin’(~~ + p )  + a’cos’( eo + p ) ]  8’ 
+ IM. 16u2sin2(8, + p )  B’ > 
+ {3mgasin(~o++)} + { b k ( y O - - ~ ) ’ }  

= constant (since the system is conservative) 
Since the above is a general expression for the 

energy, it can be differentiated to give the power 
equation. The term fi’ arises which is negligible 
for small oscillations. We note that, since p is 
small, sin( 0, + p )  = sin 0, and cos(8, + p )  =cos eo, 
but these approximations must not be made 
before differentiating. After dividing throughout 
by B ,  we find, since b2 is small, 

ZB + k p  = k yo - 3mga cos 80 ( 9  
where Z = Z, + ZG2 + 2m (9a’ sin’ eo 

+ a2cos2 0,) + 16Ma2sin2 0,. 

It can be shown by the method of virtual 
work, or otherwise that kyo = 3mgacos eo so that 
equation (i) reduces to ZB+ k p  = 0. Thus, for 
small p,  the motion about the equilibrium 
position is simple harmonic with a frequency of 
(1/27r)d( k/Z) . 

Example 7.5 
The mechanism shown in Fig. 7.32 is in 
equilibrium. Link AB is light and the heavy link 
BC weighs 480 N, its mass centre G being midway 
between B and C. Friction at the pins A and C is 
negligible. The limiting friction couple Qf in the 
hinge at B is 10 N m. 

Figure 7.32 

Pin C can slide horizontally, and the horizontal 
force P is just sufficient to prevent the collapse of 
the linkage. Find the value of P. 
Solution This problem has been solved earlier 
in Chapter 4 (example 4.3). There a free-body 
diagram was drawn for each of links AB and BC 
and the unknown forces were eliminated from the 
moment equations. It will now be solved by the 
method of virtual work and the two methods will 
be compared. 

If in the virtual-work method we treat forces 
due to gravity and springs and friction as being 
externally applied, the total virtual work done 
may then be equated to zero. In order to obtain 
the correct sign for the virtual work done by the 
internal friction couple Qf in the present problem, 
we may use the following rule: the virtual 
displacements must be chosen to be in the same 
direction as the actual or impending displacements 
and the virtual work done by friction is given a 
negative sign. 

Applying this rule, we let the virtual displace- 
ment of C be 6x to the right, since this is the 
direction in which it would move if the 
mechanism were to collapse. 

If a mechanism has a very small movement, the 
displacement vector of any point on the 
mechanism will be proportional to the velocity 
vector. Thus we can draw a small-displacement 
diagram which is identical in form with the 
corresponding velocity diagram. This results in 



very lengthy means of solution, whereas the 
virtual-work method disposes of the problem 
relatively quickly (see, for example, problem). 

Example 7.6 
A roller of weight W is constrained to roll on a 
circular path of radius R as shown in Fig. 7.34. 
The centre c of the roller is connected by a Spring 
of stiffness k to a pivot at 0. The position of the 
roller is defined by the angle 8 and the Spring is 
UnStretched when 8 = 90"- 

Fig. 7.33, where ab is drawn perpendicular to 
AB, bc is drawn perpendicular to BC and oc is of 
length Sx. 

Since the weight W acts vertically downwards 
and the vertical component (hg) of the displace- 
ment of G is also downwards, the virtual work 
done by W is positive and given by + W(hg). 

The virtual work done by P is - P ( o c ) ,  since 
the force P is opposite in sense to the assumed 
virtual displacement. 

The virtual work done by the friction couple Qf 
is -Qf IS+ I, where IS+ I is the magnitude of the 
change in the angle ABC. AB rotates clockwise 
through an ang1e ab/AB and BC rotates a) Show that the position 8 = 0 is one of stable 
anticlockwise through an angle bc/BC. [If equilibium only if W/(Rk) > 0.293. 

course the angular speed of AB would have been 
given by ab/AB, and so on.] The change in the 
angle ABC is thus 

Figure 7-34 

Fig. 7-33 had been a ve1ocity diagram then Of b) If W/(Rk) = 0.1, determine the positions of 
stable equilibium. 
Solution The strain energy V, in the spring is 
zero when centre C is at B. We can also make the 
gravitational energy VG zero for this position by ab bc a+=-+- 

AB BC taking AB as the datum level. 
Summing the virtual work to zero gives 

W(hg) - P ( o c )  - Qf - +- = 0 (:: 3 
The virtual displacements ab, bc and hg are 

Figure 7.35 

From Fig. 7.35, the stretch in the spring is 
OC - OB = 2R cos (8/2) - R d 2  and C is a vertical 
distance Rcos8 below AB. Thus, using equations 
7.27 and 7.28, the total potential energy Vis given 

scaled directly from the diagram to give 
480(0.1875 S X )  - P ( S X )  

0 .8386~  0.451 Sx 

which, on dividing throughout by S X ,  gives by 
P = 40.0 N. 

Comparing the virtual-work solution of this 
problem with that of the normal staticdfree-body- 
diagram approach of Chapter 4, it can be Seen 
that here we are not concerned with the forces at 
A and B and the vertical component of the force 
at C. However, for this simple problem the more 
straightforward approach of Chapter 4 is to be 
preferred. = R2k{sin8[W/(RR)-1] The virtual-work method comes into its own 
when many links are connected together. In such 
cases, drawing separate free-body diagrams for 
each link and writing the relevant equations is a 

-10 ~ ( 0.2235 +E) = o 

v =  v,+v, 
= - WR cos 8 + +k [2R cos( 8/2) - Rd2I2  

The equilibrium positions are given, from 

dV/d8 = WRsinO+ k[2Rcos(8/2)- R d 2 ]  
equation 7-39, by 

x [ - R sin( 0/2)] 

+ d2sin(8/2)) = o (i) 
a) 
NOW, 

One solution to equation (i) is clearly 8 = 0. 



requirements for AB and BC so that the structure 
is stable in the position shown. 
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d2 V 
de2 
~- - R2k{cosf?[W/(Rk)-1] 

+ (d2/2) COS( e/2)} (ii) 
and when 8 = 0, 

d2V 
de2 
- = R2k[W/(Rk) - 1 +0.707] 

= R2k[W/(Rk)-0.2931 Solution See Fig. 7.37. The elastic strain energy 
For stability, from equation 7.40, 

d2V/de2>0 Le. WIRk>0.293 

for a torsional spring is 

VE = (torque)dO 

but torque = k0 and therefore 

Io8 
Io8 

b) Substituting W/(Rk) = 0.1 in equation (i) 
gives 

dV/d8 = R2k[sin8(-0.9) + d2sin(8/2)] = 0 
V, = ked6 = kO2J2 

:. d2 sin( 8/2) = 0.9 sin 8 = 1.8 sin( 8/2) cos( 8/2) 
We know that the solution 8 = 0 represents 

unstable equilibrium. The other solutions are 
given by 

hence, 8 = k76.4". 

The type of stability at these two positions can 
be confirmed by substituting for e in equation (ii): 

For this system we have 

V, = kl e12/2 + k, (e, - el 12/2 

COS(W) = d2/1.8 = 0.786 The gravitational potential energy, taking AC 
as datum, is 

V, = Wa cos O1 + Wa cos 0, 
Hence v = kl 6?/2+kz(e2- 61 12/2 

+ Wa cos el + Wa cos 0, d2V/d8 2 

= R2k[0.235(0.1 - 1) + 0.707(0.786)] For equilibrium we have, from equation 7.42, 

- Wa sin 0 
= R2k[-0.211 + 0.5561 > O  aviae, =o=kle1+k2(e2-e1)(- i )  

Thus, at 8 =  f76.4", the system is in stable 
equilibrium. and avlae, = 0 = k2(e2- el)- Wasine2 

Example 7.7 
~~~i~~ the erection of a structure, three beams 
are connected as shown in Fig. 7.36. Beam ABC 
may be considered as k e d  at A and to deform in 
torsion only. The vertical beams BD and CE may 
be considered as equal rigid uniform members. 
The torsional stiffnesses of AB and BC are kl  and 
k2 respectively and the weights of BD and of CE 
are each W. Determine the torsional stiffness 

By inspection it is clear that 8, = 0, = 0 is one 
condition for equilibrium. To test for stability we 
use inequa1ities 7-44: 

a2v 
- = k1+k2- Wacos8,>0 ae12 
a2v 
- = k2- Wacos~,>O a e22 
a2v 

ae, ae, 

ae12 aeZ2 

- -  - -k2 

and -.-- a2v a2v (a;;re2y>o - 

Therefore, for stability when 8, = 6, = 0, we 
must have 

Figure 7.36 k1+k2- Wa>O (i) 



k2- Wa>O (ii) 

(iii) 
Expanding this last inequality and dividing by 

axis applied to the gear train less the case, we 
have the input torque, the output torque and the 
holding torque between the fixed case and that 
part of the gear which has been fixed by the 
operation of the various clutches and band brake. 

For first and second forward gears the forward 
clutch carries the input torque of 200 Nm, but for 

Wa Wa Wa Wa third gear the input torque is divided between the 
forward and direct clutches. In reverse the input 2(k21Wa) - 1 

(k21Wa) - 1 For first gear the output torque= 
-200 x 2.84 = -568 Nm and the sum Of the 
torques is zero for steady speed running, thus 

and (k ,+k2-  Wa)(kz- Wa)-k22>0 

( Wa)2 gives 

( k l ) (  - _  k 2 ) - (  -+- kl 2k2) + 1 > 0  

or (-$-)> (iv) torque is applied through the direct clutch. 

If we now plot (kl/Wa) against (k21Wa) we can 
see the range of values of stiffness (shown 

stable structure. 
cross-hatched in Fig. 7.38) which will ensure a 200- 568 + QH = 0 

or QH = 368 Nm. 

This torque is transmitted either through the 
Sprag clutch or through the lowheverse clutch 
depending on whether lock down or normal drive 
has been selected. (See the description of the 
operation of the gearbox in section 5.11 .) 

For second gear the output torque = 
-200 x 1.60 = -320 Nm so the moment equation 
gives 

Figure 7.38 200- 320 + Q h  = 0 

hence QH = 120 Nm. 
This torque is transmitted through the intermedi- 
ate band. 

For third gear the output torque is equa1 to the 
input torque so it follows that the holding torque 
is zero. It is left as an exercise for the reader to 
show that the proportion Of the input torque 

achieved by considering the equi1ibrium Of the 
input planets.) 

In reverse the output torque is 2.07 x 200 = 414 
Nm. NOW the moment equation gives 

Example 7.8 
A simpson gearset as shown in ~ i ~ .  5.23(b) has 
forward gear ratios of 2.84, 1.60, 1.00 and a 
reverse ratio of 2.07. The maximum input torque 
is 200 Nm. 

~~~~~i~~ that the efficiency of the gearbox is 
100% determine the output torque and the torque 

operative at a steady engine speed for each gear. 

Solution We can apply the Power equation to 
the gearbox and, since there is no change in 
kinetic energy and no losses, the net power into 
the system must be zero, that is 

on the clutches and/or band brake, which are carried by the forward clutch iS 1/(1.60). (This iS 

200+ 414+ QH = 0 
or Q H =  -614Nm 

and this torque is carried by the lowheverse 
clutch. 

An alternative method for finding the holding 
torques is to assume that the whole gear assembly 
is rotating at an arbitrary speed R, this means that 
the stationary parts of the gearbox are rotating at 
R and the input and output shafts have their 
speeds increased by R. The power equation now 
becomes 

power in -power out = 0 
Now 

power = torque x angular speed = Q x w 

so 

Qin Oin - Qout Wout = 0 
also qn/WOut  = the gear ratio G, therefore 

Qin = Qout X G. 
If we consider the torques about the central Qin (Win + a) + Qout (@out + a) + QHR = 0 
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or (Qin Win + Qout wout) If the speed of the car at point X is 2 d s ,  determine 
(a) the speed of the car and (b) the force on the track as 
the car passes the point D. 

7.4 a) A satellite of maSS m mOveS from a point p1 at a 
height hl to a point p2 at a height h2 above the Earth7s 
surface. The gravitational attraction between the Earth 
and the satellite obeys the inverse-square law, the 
distance concerned in this law being measured between 
the centres of Earth and satellite. 

Prove that the work done by gravity on the satellite 
asit travekfrom P1 toP2ism[gZ(hZ+R)-gl(hl+R)], 
where g, and g2 are the gravitational field strengths at 
the points P1 and P2 respectively, R is the effective 
radius of the Earth, and h is taken to be positive in a 
direction away from the centre of the Earth. 
b) A satellite is in orbit around the Earth. At one 
point in its trajectory it is at a height of SO00 km above 
the Earth’s surface and its speed is 4OOO d s .  Determine 
its speed when it is at a point 1O00 km above the Earth’s 
surface. 

Take the effective radius of the Earth to be 6370 km 
and g to be 10 N/kg at the surface of the Earth. Neglect 
air resistance. 

7.5 A lunar module is jettisoned by the parent craft 
when its height above the lunar surface is 100 km and 
the speed is 600 km/h. Determine the speed of the 
module just prior to impact with the lunar surface (a) 
neglecting the variation of g with height and (b) taking 
into account the variation of g. 

Take the value of g at the surface of the Moon to be 
1.62N/kg and the effective radius of the Moon to be 
1.74 x lo3 km. 

7.6 A four-bar linkage consists of three similar 
uniform rods AB, BC and CD as shown in Fig.7.42. 
Each has a length of 0.5m and a mass of 2.0kg. A 
torsion spring (not shown) at A has a stiffness of 40 
N d r a d ,  one end of the spring being fixed and the 
other end attached to AB. 

+ a ( Q i n  + Qout + QH) = 0 
and since fl is arbitrary this equation must be true 
for all values of 0, including zero, it follows that 
both bracketed terms must individua11y be equa1 
to zero, thus repeating the previous results. It 
should be noted that this method assumes no 
internal friction whereas the moment equation is 
always true. 

Problems 
7.1 A slider B of mass 1 kg is released from rest and 
travels down an incline a distance of 2 m before striking 
a spring S of stiffness 100N/m (see Fig. 7.39). The 
coefficient of friction between the slider and the plane 
is 0.1. Determine the maximum deflection of the 
spring. 

Figure 7.39 
7.2 See Fig. 7.40. A light rope, passing over a light 
pulley P, connects the sliding collar C, mass 2 kg, to the 
spring of stiffness 50N/m. The collar is released from 
rest in the position shown, the tension in the spring 
being 20 N in this position. Find the speed of the collar 
when it has travelled 40mm down the inclined rod. 
Neglect friction. 

Figure 7.40 

7.3 A small toy motor car A, mass 100 g, travels along 
a track T as shown in Fig. 7.41. The track consists of 
two circular arcs AB and BC which have centres 0 and 
O1 respectively and which lie in the same vertical plane. 
The motor torque remains constant at 7~ 10-4N m 
between A and C and the motor shaft rotates through 
one revolution while the car travels a distance of 1 cm. 

Figure 7.42 

Initially the mechanism is held with AB vertical, and 
in this position the spring exerts a clockwise couple of 
80 N m on AB. If the mechanism is then released, what 
is the angular speed of AB when 6 = 30”? 
7.7 A roller of radius R has an axial moment of inertia 
I and a mass m. Initially the roller is at rest and then it is 
pulled along the ground by means of a horizontal rope 
attached to its axle C, the tension in the rope being a 
constant To.  If the roller rolls without slipping show Figure 7.41 
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that, after it has travelled a distance 1, its speed is 
R [ ~ T , , u ( z +  m ~ ~ ) ] " ~ .  

7.8 A motor drives a load through a reduction 
gearbox. the torque developed between the rotor and 
the stator of the motor is T M .  The total moment of 
inertia of the motor shaft is I, and the damping torque 
is CM times the motor shaft speed OM. The effective 
moment of inertia of the load shaft is I L  and the 
damping torque on this shaft is CL times the load speed 
0 ~ .  The shaft drives a load torque TL. If % = n y ,  
show that small oscillations. 

Figure 7.44 

Determine the natural frequency of each system for 

7.13 An electric locomotive develops a constant 
power output of 4MW while hauling a train up a 
gradient of slope a,.cSin (1170). The maSS of train and 

~ T M  - TL = ( I L  + n2zM) ;L + (cL + ~ * c M )  y 

7.9 At a particular instant, the acceleration of a motor 
car is a and its speed is 'u. The engine power is 'E and 
the power Used uP in Overcoming friction, ro11ing and locomotive is 1 x 106 kg. The rotational kinetic energy 

is 10 per cent of the translational kinetic energy. n e  wind resistance is PL. The rear-axle ratio is n, : 1 and 
the gearbox ratio is ng : 1. The total mass of the car is M 
and the effective engine inertia I , .  The total wheel and 
axle inertia is I, and other inertias can be neglected. 
The rolling radius of the tyres is R. 

resistance to motion per unit maSS of train is given by 

R = (12.8+0.138~)10-'N/kg 

where 'u is in m/s. 
By use of the work energy principle, find (a) the 

acceleration of the train at the instant when its speed is 
15m/s; (b) the maximum speed at which the train is 
capab1e Of ascending the inc1ine. 

7-14 The mechanism shown in Fig. 7.45 is used to 
transmit motion between shafts at A and D. The 
moment of inertia of AB about A is 0.45 kg m2, that of 
BC about its mass centre G is 0.5 kg m2 and that of CD 
about D is 0.12 kg m2. The mass of BC is 20 kg. 

Show that 
P E  - P L  = [Ze(ngna/R)2 + Zw(1/R2) + M ] v a  

7.10 In problem 5.18 a steady input torque of 25k N m 
is applied to the shaft attached to carrier c .  Assuming 
that there is no loss in Power, find (a) the output 
torque, (b) the Power transmitted, (C) the fixing torque 
exerted by the casing on S. 
7.11 An epicyclic gear consists of a fixed annulus A,  
a spider X which carries four planet wheels P and a sun 
wheel S as shown in Fig. 7.43. The power input is to the 
sun wheel, and the spider drives the output shaft. The 
numbers of teeth on the annulus, each planet and the 
sun wheel are 200, 50 and 100 respectively. The axial 
moment of inertia of the sun wheel and the associated 
shafting is 0.06 kgm2 and that of the spider is 0.09 
kg m2. Each planet has a mass of 2.0 kg and an axial 
moment of inertia of 0.0025 kg m2. The centres of the 
Planet wheels are at a radius of 120mm from the 
central axis of the gear. 

Figure 7.45 

the torque applied to shaft A is 40Nm,  the angular 
velocity of AB is 10 rads  and its angular acceleration is 
30 rads2, all measured in a clockwise sense. 

Determine the torque applied to the shaft at D by the 
link CD. Neglect gravity. 

7.15 A motor car with rear-wheel drive is fitted with a 
conventional bevel differential gear. 
a) Neglecting inertial effects, show that at all times 

Figure 7.43 the torques applied to each rear wheel are equal and 
independent of the separate speeds of the wheels. 

the load torque in the Output shaft is * N m. curve at a constant speed such that the path of each 
wheel centre is a circular arc. L and R are the left- and Determine the angular acceleration of the load. 

7.12 The two mechanical systems shown in Fig. 7.44 right-hand rear wheels and RL and RR are the 
are in their equilibrium positions. At (a) a uniform corresponding radii of the paths. Denoting the angular 
cylinder of mass ml and radius r rests at the bottom of a speeds of L and R and the cage of the differential gear 
cylindrical surface of radius R ,  and at (b) a uniform rod by y, % and oc respectively, find expressions for % 
of mass m2 and length 1 rests at 30" to the vertical. and wR in terms of w c .  Hence show that the power 

When the mechanism is in the configuration shown, 

A torque Of 30 N n-~ is app'ied to the sun whee1, and b) See Fig.7.46. The car is being driven along a plane 
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Figure 7.49 
occurs when the beam is inclined at 22.5" to the 
horizontal, show that h = 0.948R. Also show that the 
least value of the coefficient of friction between the 
beam and the cylinder which prevents slip in the 

flows to wheels L and R are 
1 G 

- P  and - P 
l + G  l + G  unstable equilibrium position is 0.414. 

respectively, where P is the net power supplied by the 
engine and G = RR/RL.  Neglect transmission losses 
and slip at the wheels. 

7.16 Solve part (a) of problem 6.25 by an energy 
method. 

Figure 7.50 

7.21 In the system shown in Fig. 7.50, the spring has a 
stiffness of 600 N/m and is unstrained when its length is 
0.15 m. If the roller R has a mass of 3 kg, determine the 
value or values of x for an equilibrium configuration. 
State whether the equilibrium is stable or unstable. 

7.22 A uniform rod of mass m and length 1 can pivot 
about a frictionless pin at 0. The motion is controlled 
by a spring of torsional stiffness k. Figure 7.47 

7.17 See Fig. 7.47. The lOON and 250N forces are 
applied to the mechanism as shown. Equilibrium is 
maintained by the application of the couple T. 
Determine the magnitude of T ,  neglecting the effects of 
friction and gravity. 

7.18 Trace the car bonnet mechanism of example 4.2 
and find the force in the springs by the method of 
virtual work. 

7.19 A slider-crank chain ABC has attached to it at c 
a spring of stiffness 2600 Nlm as shown in Fig. 7.48. The 
spring is unstrained when 0 = 90". A constant couple of 

Figure 7.51 

a) If the system is to be in stable equilibrium when the 
rod is vertical, as shown in Fig. 7.51, show that 
k>mg1/2. 
b) If k = mg1/4, find the stable equilibrium positions. 

Figure 7.48 

5 0 N m  is applied to link AB and the system is in 
equilibrium. Determine the value of 0, neglecting 

7.20 A beam of rectangular cross-section rests across 
a cylinder of radius R as shown in Fig. 7.49. Show that, 
for the position shown to be one of stable equilibrium, 
R > h .  

The beam is then rolled without slipping around the 
cylinder to the unstable equilibrium position. If this 

gravity. Figure 7.52 
7.23 See problem 7.22. A second uniform rod of 
length 1, and mass m, is pinned to the first as shown in 
Fig. 7.52 and relative motion between the two rods is 
restrained by a torsional spring of stiffness k l .  If the 
system is to be in stable equilibrium in the position 
shown, what are the conditions that ensure stability? 



8 
Momentum and impulse 

8.1 Linear momentum LO = c R, (m, oR, ) 
We have shown in Chapter 3 that, for any system 
of particles or rigid body, 

(3.15) 

Integrating this equation with respect to time 

= wxrn,R,2 
Since c rn, R: is I o ,  the moment of inertia of 

the body about the z-axis, the total moment of 
momentum for this case is 

F = I M i f c  

L o  = l o w  (8-2) gives 

[f F d l =  [2Mi;;dt = ~ i ~ ~ - ~ i ~ ~  (8.1) 

The integral J:Fdt is known as the impulse and 

In Chapter 6 we showed that, for a rigid body in 

(6.11) 

Integrating this equation with respect to time 

1 general plane motion, 

MG = I G h  
is a vector quantity. Because 

c m,i, = MiG = the linear momentum gives 
we can write [ r MGdt = [ f IG h d t  = I G O ~  - IG 6J1 (8.3) impulse = change in linear momentum 
or, symbolically, that is, 

I =  AG moment of impulse = change in moment of 
momentum 

or, symbolically, 
8.2 Moment of momentum 
From Fig. 8.1 we see that the moment of 
momentum about the z-axis of a particle which is KG = ALG 

If rotation is taking place about a fixed axis 
then equation 6.13 applies which, when inte- 
grated, leads to 

[f M,dt = [f Iowdt = Io%- lowl  (8.4) 

or K o = A L o  

8.3 Conservation of momentum 
If we now consider a collection of particles or 

effects from bodies outside the system, then 
moving On a circu1ar path, radius R 1 ,  about the rigid bodies interacting without any appreciable z-axis is 

Lo = R, (m, OR, 1 Crn,Fl = o 
(8 .5)  

For a rigid body rotating about the z-axis with 
angular velocity w ,  the total moment of momen- 
tum is 

so that c ~ , ~ ,  = constant 

i.e. linear momentum is conserved. 
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Extending equation 6.12a for a system of 
bodies, 

c ZG h + TGMaGe = 0 (8.6) 

c ZG o + 2 rG MvGe = constant (8-7) 

Integrating with respect to time gives 

which is an expression of the conservation of 
moment of momentum. The term ‘angular 
momentum’ is often used in this context but is not 
used in this book since the term suggests that only 
the moments of momentum due to rotation are 
being considered whereas, for example, a particle 
moving along a straight line will have a moment 
of momentum about a point not on its path. 

8.4 Impact of rigid bodies 
We can make use of these conservation principles 
very effectively in problems involving impact. In 
many cases of collision between solid objects the 
time of contact is very small and hence only small 
changes in geometry take place during the contact 
period, although finite changes in velocity occur. 

As an example, consider the impact of a small 
sphere with a rod as shown in Fig. 8.2. The rod is 
initially at rest prior to the impact, so that u1 = 0 
and w1 = 0; u2 ,  v2 and y are the velocities after 
impact. 

Figure 8.2 
Conservation of linear momentum gives 

mvl = Mu2 + mv2 (8.8) 
and conservation of moment of momentum about 
an axis through G gives 

mvla = IG(r4?+mv2a (8.9) 
So far we have two equations, but there are three 
unknowns. To provide the third equation we shall 
make some alternative assumptions: 
i) the rigid-body kinetic energies are con- 
served, or 
ii) the two objects coalesce and continue as a 
single rigid body. 

Case (i) 
We shall call case (i) one of ideal impacf. By 
conservation of the rigid-body kinetic energy, 

fmv12 =  MU^^ + k I G y 2  + (8.10) 

This case is often called elastic impact, but in 
many cases we have elastic deformation of the 
bodies during impact after which the objects are 
left in a state of vibration. This vibration energy 
may easily account for all the initial rigid-body 
kinetic energy. 

An interesting consequence of equations 8.8 to 
8.10 is the relationship which exists between the 
velocity of approach and the velocity of recession 
of the points of contact. 

Velocity of approach = vl 
Velocity of recession = (u2 + y a )  - v2 (8.11) 

Rewriting equations 8.8 to 8.10, 

M 
m 

V I -  02 = - u2 (8.12) 

(8.13) 

(8.14) 

Substituting for u2 and ( y a )  in equation 8.14 

m 
M 

gives 

(01 - V2)(V1+ 02) = - (81 - V 2 l 2  

maL 

ZG 
+- (vl - v# 

or v l - v2= -+- (vl-v2) (; 7:) 
But u2+(r4?a= (v l -v2)  -+- (; 3 

= V l + V 2  

therefore (u2 + y a  - v2) = 01 (8.15) 

that is, the velocity of recession of the points of 
contact is equal to the velocity of approach. 

This result, which is called Newton’s rela- 
tionship, is often quoted only for simple linear 
impact but it can be shown to be true for the 
general case of ideal impact of rigid bodies. For 
non-ideal impact a coefficient of restitution, e, is 
introduced, defined by 



velocity of recession 
velocity of approach 

e =  

Great care must be exercised when using this 
coefficient since its value depends on the 
geometry of the colliding objects as well as on 
their material properties. 

Case (ii) 
This case is usually called inelastic or plastic 
impact. Here equation 8.14 is replaced by 

0 2  = u2+*a (8.16) 

We now have from equations 8.8, 8.9 and 8.16 
which corresponds to e = 0. 

v2 = (u2+*a) = v1 - +- (; 7:) 
( ; ;:rl x l+-+- (8.17) 

Using equations 8.13, 8.17 and 7.26, it can be 
shown that 

1 + (a/kG)2 
2 < 1  

- final k.e. 
initial k.e. 

- 
M/m + 1 + ( d k ~ )  

where kG = (ZG/M)1’2. 

8.5 Deflection of fluid streams 
If we regard a fluid stream as a system of 
particles, then we can determine the forces 
required to deflect the stream when under steady 
flow conditions. It is possible to equate the force 
to the sum of the separate mass-acceleration 
terms for each particle, but it is much easier to use 
rate of change of momentum directly as follows. 

If the fluid has a density p and is flowing at a 
constant rate then the velocity at any point in 
space will be constant in time. In Fig. 8.3 the 
boundary ABCD contains a specific number of 
particles which after a time At occupy a space 
A’B‘C’D’. The momentum within the region 
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A’B’CD does not change, so the change in 
momentum is simply 

momentum of DCC’D’ 

or pA2(CC’)v2-pA,(AA’)v1 

the same as within A’B’C’D’, 

-momentum of ABB’A’ 

Since the mass within the boundary ABCD is 

pA2(CC’) = pAi(AA’) 
But AA’ = VI At 

and CC’ = ~ 2 A t  

therefore the change in momentum is 

(PA2V*V* - PA1 VI Vl) At (8.18) 

and this must equal the impulse R A t  supplied by 
the external forces supporting the vane. 

The mass flow rate is pA2v2 
= pAlvl = rit (8.19) 

hence m(v2-vl)At= R A t  
or  R = (mass flow rate)(v2 - v l )  (8.20) 

In a similar manner the moment of the forces 
acting on the guide vane can be equated to the 
change in unit time of the moment of momentum, 
to give 

Mo = (mass flow rate)(r2 + v2 - rl x v1 ) 
(8.21) 

8.6 The rocket in free space 
The rocket is a device which depends for its 
operation on the ejection of mass, and again the 
mechanics is best understood by considering the 
rate of change of momentum. 

Figure 8.4 

notation: 
Referring to Fig. 8.4 and using the following 

mo = mass of rocket structure 
mf = mass of fuel 
me = mass of exhaust 
v 
vj 
rit 

= velocity of the rocket 
= velocity of the jet relative to the rocket 
= mass flow rate from rocket to exhaust 

the momentum of the complete system of rocket 
and exhaust is 



114 Momentum and impulse 

G = (mo+mf)v+m,ve (8.22) 
where v, is the average velocity of the exhaust 
gases. 

becomes 

following example may help to illuminate this 
point. 

Consider two trucks running, with negligible 
friction, on horizontal tracks one above the other 

moving at a speed v1 and then feeds sand at a 
constant rate via a hopper. The lower truck, 
empty mass M 2 ,  is at rest when it starts to receive 
the sand. What is its subsequent motion? 

After a time interva1 Of “7 the momentum as shown in Fig. 8.6. The upper truck is initially 

G + A G  = (mo+mf-hAt)(v+Av) 
+ m,v, + m At (v - vj) 

thus the change in momentum is 

AG = (mo+mf)Av-mAtvj-mAtAv (8.23) 

AG dv 
At-0 dt 

giving (x) = ( m o + m f ) - - ~ v j  

Hence, the external force acting on the system 

(8.24) 

If the rocket k in free space then the external 

Figure 8.6 
The line NN is moving at the same rate as the 

sand. Consider the mass of truck and sand above 
the line NN. me sand, Once it has left the truck, 
continues with the same horizontal velocity 

dv mvj throughout its free fall; therefore the horizontal 
component of riomentum does not alter during 
fall and so no force is required to maintain the dt mo + mf 

motion, even though the truck is itself losing 
momentum. The region below NN does exhibit a 
change in horizontal momentum G. 

G = (initial mass of sand in free fall)vl 

dG dv 
dt dt 

F = -  = (mo+mf)--rizvj 

forces on the system will be zero; therefore 

(8.25) _-___ - 

Figure 8.5 

If we draw the free-body diagram for the rocket 
and fuel only, as shown in Fig. 8.5, where Tis the 
thrust of the rocket motor, then 

+ ( M 2  + sand)v2 (8.28) 

After time At, 

G + AG = (initial mass of sand in free fall (8.26) 

because in this free-body diagram all particles 
have the same acceleration. 

dv 
dt -mAt)vl+(M2+sand+mAt)(v2+Av2) 

T = (mo + mf)- 

Hence the change in momentum is 

Comparing this with equation 8.24, we see that AG = -m Aml + ( M 2  + sand) Av2 
T=ritvj (8.27) + riz At A v ~  + riz Am2 

so that limA,o - = -m (vl - v2) 

dv2 

(2) 8.7 Illustrative example 
In problems such as that in the previous section, 
there is a temptation to write an expression for 
the momentum of the rocket plus fuel and then to 
differentiate this expression with respect to time 
in order to establish the external force required. 
The reason why this does not produce the correct 

to a specific group of particles whereas the mass 
of the rocket plus unburnt fuel is changing. A loss 
of momentum due solely to particles leaving a 
prescribed volume does not require that a force 
be applied to the boundary of that volume. The 

+ (M2 + sand) - 
dt 

Since the external horizontal force is zero, 

dV2 0 = -riz (VI - ~ 2 )  + (MZ + rizt) ~ 

dt 
result is simply that equations 8.24 and 8.26 apply (8.29) 

Alternatively we can write 
horizontal momentum of the system 

= constant 



( M 1 - r i z t ) v l + ( M 2 + r i z t ) v 2  = M1vl  (8*30) or E F - z p A v Z n  =-(momentum d within R) 

because we have already argued that v1 is dt (8.32) 
constant. Therefore 

The terms pAv2 could be regarded as fictitious 
forces acting on the surface of the region and 
directed towards the interior, for both inflow and 
outflow. 

Because velocity is not absolute, it is permis- 
sible to choose a region of fixed shape but moving 
at a constant velocity relative to some other 
inertial frame of reference. In this case all 
velocities should be reckoned relative to the 
moving region. 

jet engine moving at a constant speed v relative to 
the air. In Fig. 8.8 the inlet speed relative to the 
region R (often called the control volume) will be 

riztv, 
(8*31) 

If we attempt to use F =  z m a ,  we find 
difficulty in evaluating the acceleration Of the 
sand Particles as they hit the bwer  truck. 
 ever F =  z m a  may be usefully employed 
when considering the upper truck since we know 
that the sand in free fall has no horizontal 

truck, therefore the horizontal force must be 
zero. 

8.8 Equations of motion for a fixed 
region of space 
A further way of forming the equations of motion 
is to consider a fixed region of space. Initially we 
use the impulse-momentum relationship for the 
known number of particles which originally 
occupied the prescribed region. 

In Fig. 8.7, particles are leaving the region with 

0 2  = ____ 
M2 + rizt 

acceleration at any point prior to hitting the lower The method just described may be applied to a 

a ve1ocity Oa noma1 to the "Iface and entering 
the region with a ve1ocity o b .  The density Of the vi = 21, since the control volume is taken to have a 

velocity 21. The exit speed is the speed of the jet material is p and A is the area of the aperture. 
The unit vector n is in the direction of the 
outward normal to the surface of the region. 

relative to the nozzle, vj .  Thus 

- P + ~ ~ A ~ v ~ ~ - ~ ~ A ~ v ~  = o (8.33) 

since in this case there is no momentum change 
within the region. 

As we have steady flow conditions, the mass 
flow rate in must equal the mass flow rate out: 

(8.34) p,Aiv = poAovj = riz 
therefore equation 8.33 may be rewritten: 

P=riz(vj-v)  (8.35) 

Discussion examples 
Example 8.1 
Figure 8.9 shows two shafts AB and BC which can 
rotate freely in their respective bearings. Initially 
their angular velocities are w1 and q in the same 
sense. At time t = 0 the clutch B is operated and 
connects the shafts together. The clutch is 
spring-loaded and the maximum couple it can 
transmit is eo. The total axial inertia of shaft AB 
is II and that of BC is Z2. 
a) Find the final angular velocity and the time 

Figure 8.7 

Ncw 

impulse = change of momentum 

so 
c F A t  = A(momentum within region R) 

+ (PaAavaAt)vana 
- (PA b vb At) ob (-nb ) 
d 
dt 

Z F = - (momentum within R) 

+ Pa Aa ~2 na + ~ b ~ b  vb2nb 
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Until time t ,  when slipping ceases, the 
transmitted couple Qo is constant, so that 

1: Q ~ d t  = Q o ~  (iv) 

Combining equations (iii) and (iv) with either 
taken for slipping to cease. 
b) Show that the energy lost is 

:( ") (wl - *)2 

(i) or (ii), we find 

t =  1112(w1-.)2) 
Qo (11 + 12 1 

and note that, since we have already assumed 

The energy change (final energy minus initial 

1 1  + 12 

Solution The horizontal and vertical forces w1 > Y, the time taken is positive! 
acting on the system are shown in the free-bodY 
diagrams (Fig. 8.10) but are not relevant to this 
problem since they do not appear in the axial 

energy) is 

moment equations. i(Z1 +I2)wc2- (izlw12+:z2q?) 

which after substitution of wc from equation (iii) 
and some manipulation is equal to 

- i ( 3 L ) ( w l  -%)2 
11 + 12 

Example 8.2 
Figure 8.11 shows a box of mass m on a roller 
conveyor which is inclined at angle a to the 
horizontal. The conveyor consists of a set of 
rollers 1, 2, 3, . . ., each of radius r and axial 
moment of inertia I and spaced a distance 1 apart. 
The box is slightly longer than 31. 

While the clutch is slipping, the couple it 
transmits is Qo and when slipping ceases the 
shafts will have a common angular velocity, say 
wc. The directions for Q, are marked on the 
free-body diagrams on the assumption that 
Ol>Y. 

Shaft AB: 

[MG = IGh] 
-Qo = I1 dUAB ldt 

- I ' Q o d t =  0 IY1ldWAB=II(wc-W1) w1 (i) 

Figure 8.1 1 

If a = 30°, r = 50 mm, I = 0.025 kg m2, 
1 = 0.3 m and M = 30 kg, and if the box is released 
from rest with the leading edge just in contact 
with roller 4, (a) determine the velocity of the box 
just after the first impulsive reaction with roller 6 
takes place and (b) show that, if the conveyor is 
sufficiently long, the box will eventually acquire a 
mean velocity of 2.187 d s .  

Assume that the box makes proper contact with 
each roller it passes over and that the time taken 
for the slip caused by each impact is extremely 
short. Also assume that friction at the axles is 

Solution Let us consider a general case 
(Fig. 8.12) just after the front of the box has made 

Shaft BC: 

[MG = IGh] 

d%C + Q o  = 12- 
dt 

1; Qodt = 1 Wc 1 2  d%c = 12 (wc - Y) 

Adding equations (i) and (ii) we obtain 

(ii) 
Y 

( ~ 1 + 1 2 ) ~ c - ( ~ 1 w 1 + 1 2 4  = 0 
and we note that, for this case, there is no change 
in moment of momentum. The final angular negligible. 
velocity is 

wc = (11w,+12@2)/(11+12) (iii) 



rollers B, C and D. The velocity of the box just 
after the impact is denoted by V E ( ~ ) .  

For the box [ c F, = mfG 1, 
dv 

mgsina - PE + PD + Pc + PB = m- 
dt 

Integrating to obtain the impulse-momentum 
Figure 8.12 equation, 

velocity of the box is v ~ ( ~ )  where the subscript 

w of rollers A, B, C and D will he o = vD(a)/r. 

roller A which, in the absence of friction, 
continues to rotate at the same angular velocity. 
Until the next impact, energy will be conserved. 
The box accelerates under the action of gravity to 
a velocity +(b) just before it makes contact with 

impact’. 

contact with a roller D and slip has ceased. The 

‘(a)’ denotes ‘after impact’. The angular velocity 0 0 

It 
I I tmgsinadt-  j0It P,dt+ I PDdt 

The box then immediately loses contact with + jg‘Pcdt+  [It P,dt= m(DE(a)-VE(b)) (ii) 
0 

Since the impact forces are large, we assume that 
the first integral is negligible. 

For the rollers [ C M G  = IGhl, 

dt dt 
roller E, where the subscript ‘(b)’ denotes ‘before dWE dwD PEr = I-, -PDr = I-, 

The kinetic-energy increase is 
d o c  dw, -Pcr=I- and -PBr=I -  

[‘mvE(bt 2 -k2 2 I (  ?)’I dt dt 

r [ I tpEdt=  It? - 0) - r I “ PDdt 
- -mvD(a)2+-z - 0 0 

2 
= I( D;a) VEib))  

vE(a) = vE(b) (m + 4I/r2) 

[: 3 Pa))’] 
and the gravitational energy decrease is mglsina. 
Hence 

It A1 2mgl sin a 

2( 30)( 9.81)(0.3)( sin 30”) 

= -r[ Pcdt = - r I  PBdt 

Substituting into equation (ii) gives 
‘E@; = %a? + m + 311? 0 0 

- 
- vD(at+ 30 + 3(0.025)/(0.05)2 m + 31/r2 

vE(b) = [vD(a)*+ 1.4715]’/2 ( 9  
- 30 + 3(0.025)/(0.05)2 

vE(b)30 + 4(0.025)/(0.05)2 
The box then contacts roller E (Fig. 8.13) - 

which receives an impulsive tangential force P E  . 
vE(a) = 6vE(b)/7 (iii) 

Just before first contact with roller 5 [equation 
(i>l? 

v5(b) = [o+ 1.4715]”2 = 1.2131 m/s 

and, just after [equation (iii)], 

~ 3 ~ )  = 6(1.2131)/7 = 1.0398 m/s 

Similarly, 

vqb) = [(1.0398)2+ 1.4715]’/2 = 1.5977 m / S  

and v(j(a) = 6(1.5977)/7 = 1.3694 m / S  

Figure 8.13 
The equal and opposite force acting on the box 
rapidly changes its speed and at the same time 
impulsive reactions PB,  Pc, and PD occur with 
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If the box eventually acquires a steady mean 
velocity, then the velocity lost at each impact will 
be exactly regained at the end of the following 
impact-free motion. After a few trials we find 
that, if the velocity just before impact is 
2.3551 ds, the velocity just after the impact 
[equation (iii)] is 

v = 6(2.3551)/7 = 2.0187 m/s 

and the velocity just before the next impact 
[equation (i)] is 

z, = [(2.0187)2 + 1.4715]”2 = 2.3551 d~ 
which is the same as just before the previous 
impact. 

Since the acceleration between impacts is 
constant, the mean velocity v, is 

v, = i(2.0187 + 2.3551) = 2.1869 d~ 

Example 8.3 
A building block ABCD (Fig. 8.14) falls vertically 
and strikes the ground with corner A as shown. 
At the instant before impact the mass centre G 
has a downward velocity v0 of 4 d s  and the 
angular velocity wo of the block is 5 rads  
anticlockwise. The mass of the block is 36 kg and 
ZG = 1.3 kg m2. - 

the impact: the weight mg and the large impact 
force P .  

Now the moment of impulse about G for an 
impact time At is 

/omMGdt=zG(w,-wo) 

which is the change in moment of momentum. 
This does not help, since we cannot determine 
MG as all we know about P is its point of 
application. 

The moment of impulse about point A is 

/&M,dt 0 

= [moment of momentum at t = At]  
- [moment of momentum at t = 01 

M A  = mg(AG)sin eo and, since mg is a force 
of ‘normal’ magnitude, JpMAdt is negligible as At 
is very small. Thus there is no change in moment 
of momentum about A during the impact time At. 

(In general we note that, if a body receives a 
single blow of very short duration, during the 
blow the moment of momentum about a point on 
the line of action of the blow does not change.) 

Assuming that the impact force at A is of very 
short duration and that after impact the block 
rotates about A,  find (a) the angular velocity w1 
just after impact, (b) the energy lost in the impact 
and (c) the angular velocity q just before corner 
B strikes the ground. 

Solution The free-bodY diagram (Fig- 8.15) From Fig. 8.16 we can write for the moments of 
discloses the two forces acting on the block during momentum 

[LA]r=O = 1, wok + rG x mZ)GO 

and [LA]t=O = ZG~o+(AG)cos~o(mvo)  

and [LA]t=Ar= ZG w1 + (AG) mvl 

we have 

[LA]r=&= zGulk+rG XmZ)Gl 

Equating the moments of momentum about A, 

zGw0+ ( A G ) c o s ~ ~ ( ~ v ~ )  
z, + wz ( A G ) ~  

0 1  = 



- 1.3(5) + (d5/8)cos[45" + arctan(+)]36(4) 
- 

1.3 + 36(d5/8)2 

= 4.675 rads 
force P1 = 0 since the pressure in the fluid just 
outside the nozzle is assumed to be zero. The 
mass flow rate at the blade is pAv, the velocity 
change of the fluid stream is (0-v) and from 
equation 8.20 the force acting on the fluid stream 
at the blade is P2 = pAv(-v = -PA$ to the 
right, that is a force of pA to the left. The 
force acting on the blade to the right is thus PA$. 
The force R which holds the blade in equilibrium 
is also equal to pAv2. 

At time t = 0, the energy is 

h v o 2  + &ZG w2 = 4(36)(4)2 + +( 1 .3)(5)2 
= 304.3 J 

J At time t = At, the energy is 
+mvl2++ZGwl2 = [i(36)(d5/8)2++(1.3)] 

and the energy lost is 304.3 - 45.0 = 259.3 J. 
There is no energy lost from time t = At to the 

instant just before comer B strikes the ground, 
when the angular velocity is 02. In this interval, 
the centre of mass G falls through a vertical 
distance 

~ ( 4 . 6 7 5 ) ~  = 45.0 J 

ho = (AG)(sin 0, - sin45") b) The free-body diagram on the left of 
Fig. 8.19 is for a fixed quantity of fluid. If we now 
change the frame of reference to one moving at a 
constant velocity u with the plate, then the 
left-hand boundary will have a constant velocity 
(v - u).  Thus the change in momentum is 

= (d5/8)[sin (45" + arctan(&)} - sin45"I 
= 0.06752 m 

The gravitational energy lost is 

mgh0 = 36(9.81)(0.06752) = 23.85 J -PA (V - U)(V - U) = -PA (V - u ) ~  

PI-  P2 = -pA (V - u ) ~  The kinetic energy when the angular velocity is and 02 is 

~ [ Z G  + m (AG)2] 02' = 2.0560;?~ But P1 = 0 and therefore 
P2 = pA (V - u ) ~  = R Equating the total energies at the beginning 

and end of the interval, Alternatively, a control volume moving with 
the plate could be used, in which case the actual 
and 'fictitious' forces are as shown in Fig. 8.20. 

2.056022 = 45.0 + 23.85 
02 = 5.7842 rads 

Example 8.4 
A fluid jet of density p and cross-sectional area A 
is ejected from a nozzle N with a velocity v and 
strikes the flat blade B as shown in Fig. 8.17. 
Determine the force exerted on the blade by the 
fluid stream when (a) the blade is stationary and 
(b) the blade has a velocity u in the same direction 
as v (u<v). Assume that after impact the fluid 
flows along the surface of the blade. 

Hence, 
PI + pA (V - u ) ~  - P2 = 0 

since the change in momentum within the control 
volume is zero. 

Example 8.5 
An open-linked chain is piled over a hole in a 
horizontal surface and a length l1 of chain hangs 
below the hole as shown in Fig. 8.21. Motion is 
prevented by a restraining device just below the 
hole which is just capable of preventing motion if 
the length of chain below it is lo, the mass/unit 

Figure 8.17 

Solution 
a) The free-body diagram on the left of Fig. 8.18 
is for the fluid which is outside the nozzle. The 
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(mo + mc)g - N -  Fo 
d 
dt = - [{mo + P V l +  x )> V I  

[mo + P(ll +lo +x)lg 
Figure 8.21 dv 

length of the chain being p. An object of mass mo 
is hooked on to the lower end of the chain and is 
then released. 

If l1 = 1 m, lo = 3 m, mo = 5 kg, p = 1 kg/m and 
g = 10 Nkg, show that the velocity v of the object 
after it has fallen a distance x is given by 

20(18+4&+b2) 1’2 

= [ m o + P ( l l + x ) l ~  +d (ii) 
Substituting numerical values and replacing 

dvldt by vdvldx we have 

~ O ( ~ + X ) = V  ( ~ + x ) - + v  [ :I 
It is not necessary to use numerical methods 

with an equation of this type as it can readily be 
solved by making a substitution of the form 
z = (6+n)v [note that dd& = (6 +x)dv/&+ v] 
and multiplying both sides of the equation by 
(6+x).  This leads to 

v = [  (6 + x ) ~  1 
Neglect frictional effects apart from those in the 
restraining device and ignore any horizontal or 
vertical motion or clashing of the links above the 
hole. 

Solution If we consider the forces acting on the 
complete chain and attached object (Fig. 8.22), 
which is a system of constant mass, then we can 
write 

dz 
lO(3 + x ) ( ~ + x )  = Z- 

dx 
which when integrated gives the desired result. 

Example 8.6 
(i) A rocket-propelled vehicle is to be fired vertically 

from a point on the surface of the Moon where 
the gravitational field strength is 1.61 Nlkg. The 
total mass mR of the rocket and fuel is 4OOOO kg. 
Ignition occurs at time t = 0 and the exhaust gases 
are ejected backwards with a constant velocity 
vj = 3000 m/s relative to the rocket. The rate riz 
of fuel burnt varies with time and is given by 
h = ~ ( 1 -  e-0.05r ) kg/s. Determine when lift-off 
occurs and also find the velocity of the rocket 

Solution From equation 8.27, the effective 
upthmst T On the rocket is 

(i) 

d 
dt 

C forces = - (momentum) 

Figure 8.22 

attached object shows the weights mog and mcg 
acting downwards, mc being the maSS of the 
complete chain. The restraining force Fo, which 
we assume to be constant throughout the motion, 
and N, the resultant contact force with the 
surface, both act upwar&. F~ = plog and it is 
reasonable to assume that N is equal and opposite 
to the weight of the chain above the hole: 
N = [mc-p(ll + x ) ] g .  We note that the motion 
takes place since, when x = 0, numerically, 

The free-body diagram for the chain and after afurther 6s. 

T = hv .  = ~ ( 1 -  e-0.05r )(3000) 

w = (mR - mt)g 

1 

The weight W of the rocket plus fuel at time f is 

= [4OOOO-600(1 -e-0.05t)t](1.61) (ii) 
Motion begins at the instant T acquires the 

value of W. Using a graphical method or a 
trial-and-error numerical solution we find that 
lift-off begins at time t = 0.728 s. Thereafter the 
equation of motion is (see the free-body diagram, 
Fig. 8.23) 

(mo + mc)g> ( N +  Fo) 
The mass which is in motion is mo+p(ll + x )  

and its downward velocity is v. Thus, for equation 
(i) we can write 



Figure 8.23 
Figure 8.24 

Substituting for T and W, re-arranging and 
integrating we find that 

v = I ' f ( t ) d t  
to 

where 

and to = 0.728 s. 
We shall evaluate the integral numerically 

using Simpson's rule (Appendix 3) and calculate 
the values of f (t) at 1 s intervals from t = 0.728 s 
to t = 6.728 s .  

11s 0.728 1.728 2.728 3.728 4.728 5.728 6.728 
f ( t ) l  0 2.124 4.159 6.117 8.008 9.842 11.63 

ms-* 

The velocity at t = 6.728 s is given by 

v = +[O+ 11.63+4(2.124+6.117+9.842) 
+ 2(4.159 + 8.008)] 

= 36.1 m l s  

Example 8.7 
A sphere of mass ml is moving at a speed u1 in a 
direction which makes an angle 8 with the x axis. 
The sphere then collides with a stationary sphere 
mass m2 such that at the instant of impact the line 
joining the centres lies along the x axis. 

Derive expressions for the velocities of the two 
spheres after the impact. Assume ideal impact. 

For the special case when ml = m2 show that 
after impact the two spheres travel along paths 
which are 90" to each other, irrespective of the 
angle 6 .  

Solution This is a case of oblique impact but this 
does not call for any change in approach 
providing that we neglect any frictional effects 
during contact. Referring to Fig. 8.24 we shall 

apply conservation of linear momentum in the x 
and y directions and for the third equation we 
shall assume that, for ideal impact, the velocity of 
approach will equal the velocity of recession. 

Conservation of momentum in the x direction 
gives 

ml u1 cos 8 = ml v1 cos a + m2 v2 

mlulsin6 = mlvlsina (ii) 

Equating approach and recession velocities gives 

u lcose= V ~ - V ~ C O S ~  (iii) 

Note that the velocities are resolved along the line 
of impact. 

( 9  
and in the y direction 

Substituting equation (iii) into (i) 

ml u1 cos 6 = ml [v2 - u1 cos 61 + m2v2 

2rnl u1 cos 6 

(m1+m2) 
thus 0 2  = 

From (iii) 
(m1- m2) 

(m1+ m2) 
vlcosa = v2-ulCO~e= ulcose 

and from (ii) 

vlsina = ulcos8 

v12 = (vl sin a)2 + (vl cos a)' 

therefore as 

and 

From this equation it follows that if ml = m2 
a =90" for all values of 6 except when 8=0 ;  
which is of course the case for collinear impact. 
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Example 8.8 2 

A solid cylindrical puck has a mass of 0.6 kg and a 
diameter of 50mm. The puck is sliding on a 
frictionless horizontal surface at a speed of 10 m / s  
and strikes a rough vertical surface, the direction 
of motion makes an angle of 30' to the normal to 
the surface. 

Given that the coefficient of limiting friction 
between the side of the puck and the vertical 
surface is 0.2, determine the subsequent motion 
after impact. Assume that negligible energy is lost 
during the impact. 
Solution It is not immediately obvious how to 

that of recession, so we shall in this case use 
energy conservation directly. 

+ ..2(;) 
or 0 = J [ j [ l+  p2(1 + ( r / k ~ ) ~ ) ]  

For a non-trivial solution 
- 2vw (cos a + p sin a)] 

2v (cosa + psina) 
1 + p2(1 + (r/kG)2) ' 

Inserting the m m ~ ~ i c a l  values (noting that 

J =  

kG = r/d2) 

2X l o x  (cos30'+0.2Xsin30') J =  use the idea of equating velocity of approach with 1 + 0.22( 1 + 2) 

= 17.25 Ns/kg 

From (i) 
usinp = vsina-p.i 

= 10 X sin30' - 0.2 X 17.25 
= 1.55 

and from (ii) 
ucosp = J -  vcosa 

= 17.25 - 10 X ~ 0 ~ 3 0 '  
= 8.59 

Referring to Fig. 8.25, which is a plan view, and therefore 
resolving in the x and y directions 

u = (1.S2 + 8.592)1'2 = 8.73 m / s  

and -pJ = musinp-mvsina (9  
-J = -mucosp- (mvcosa) (ii) 

and considering moments about the centre of 
mass Also 

p = arctan(lSY8.59) = 10.23' 

pJr = I W  = mkG2W. (iii) wr = fl-(r/kG)2 = 0.2 X 17.25 x 2 
= 6.9 m / s  Equating energy before impact to that after gives 

or 
m 111 mkG2 

w = 6.910.025 = 276 rads w2 (iv) -v2=-u2+- 
2 2 2 

We stated previously that the speed of 
recession equals the speed of approach for the 
contacting particles. In this case the direction is 
not obvious but we may suspect that velocities 
resolved along the line of the resultant impulse is 
the most likely. The angle of friction y is the 
direction of the resultant contact force so 
y = arctan(p) = arctan(0.2) = 11.3'. The angle of 
incidence being 30" lies outside the friction angle 
so we expect the full limiting friction to be 
developed. We therefore resolve the incident and 
reflected velocities along this line. 

From (i) and (ii) with f = J/m 
u2 = (vsin a - d)' + ( J -  V C O S ~ ) ~  

= v2+J2(1 +p2)-2p.i(c0sa+psina) 
and from (iii) 

w = -  J r  
kG2 

substituting into (iv) gives 
v2 = v2+J2(1 +p2)-2vJ(cosa+psina) 
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Component of approach velocity 
= 10 X COS(~O" - 11.3") = 9.473 m / ~  

Component of recession velocity 
= u cos (p  + y) + wrcos (90" - y ) 

Figure 8.27 

to shaft CD. 

= 8.73 COS ( 10.23" + 11.3") + 6.9 COS (900 - 1 1.3") 
= 9.473 m / s  which justifies the assumption. 

impulse will be in a direction parallel to the 
incident velocity. 

Problems 
8.1 A rubber ball is droppeu iiuiIi a iieigiii ui Z LII UII 

to a concrete horizontal floor and rebounds to a height 
of 1.5m. If the ball is dropped from a height of 3 m ,  
estimate the rebound height. 

If the angle of incidence is less than y then the of ~~~~ $'tjsafter 'lipping ceases, the angu1ar ve1ocitY 

12%-(rC/rB)11w1 k "CD = 
12 + 11 ( r c h  l2 

Why is the moment of momentum not conserved? 

Figure 8.28 

8.4 See Fig. 8.28. A roundabout can rotate freely 
about its vertical axis. A child of mass m is standing on 
the roundabout at a radius R from the axis. The axial 
moment of inertia of the roundabout is I , .  When the 
angular velocity is o, the child leaps off and lands on 
the ground with no horizontal component of velocity. 
What is the angular velocity of the roundabout just 
after the child jumps? 

8.5 Figure 8.29 shows the plan and elevation of a puck 
resting on ice. The puck receives an offset horizontal 
blow P as shown. The blow is of short duration and the 
horizontal component of the contact force with the ice 
is negligible compared with P. Immediately after the 
impact, the magnitude of VG , the velocity of the centre 
of mass G,  is 0 0 .  

. -. . -, 
Figure 8.26 

8.2 Figure 8.26 shows a toy known as a Newton's 
cradle. The balls A ,  B, C, D and E are all identical and 
hang from light strings of equal length as shown at (a). 
Balls A, B and C are lifted together so that their strings 
make an angle 00 with the vertical, as shown at (b), and 
they are then released. Show that, if energy losses are 
negligible and after impact a number of balls rise 
together, then after the first impact balls A and B will 
remain at rest and balls C, D and E will rise together 
until their strings make an angle & to the vertical as 
shown at (c). 

8.3 Figure 8.27 shows two parallel shafts AB and CD 
which can rotate freely in their bearings. The total axial 
moment of inertia of shaft AB is I1 and that of shaft CD 
is 12. A disc B with slightly conical edges is keyed to 
shaft AB and a similar disc C on shaft CD can slide 
axially on splines. The effective radii of the discs are r, 
and rc respectively. 

Initially the angular velocities are o l k  and yk. A 
device (not shown) then pushes disc C into contact with 
disc B and the device itself imparts a negligible couple 

Figure 8.29 
If the mass of the puck is m and the moment of 

inertia about the vertical axis through G is I, determine 
the angular velocity after the impact. 

8.6 A uniform pole AB of length I and with end A 
resting on the ground rotates in a vertical plane about 
A and strikes a fixed object at point P, where AP = b. 
Assuming that there is no bounce, show that the 
minimum length b such that the blow halts the pole 
with no further rotation is b = 2113. 
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Figure 8.30 

8.7 A truck is travelling on a horizontal track towards 
an inclined section (see Fig. 8.30). The velocity of the 
truck just before it strikes the incline is 2 d s .  The 
wheelbase is 2 m and the centre of gravity G is located 
as shown. The mass of the truck is 1OOOkg and its 
moment of inertia about G is 650 kgm'. The mass of 
the wheels may be neglected. 
a) If the angle of the incline is 10" above the 
horizontal, determine the velocity of the axle of the 
leading wheels immediately after impact, assuming that 
the wheels do not lift from the track. Also determine 
the loss in energy due to the impact. 
b, If the ang1e Of the incline is 30" above the 
horizontal and the leading wheels remain in contact 
with the track, show that the impact causes the rear 
wheels to lift. 

8.8 A jet of water issuing from a nozzle held by a 
fireman has a velocity of 20 m / s  which is inclined at 70" 
above the horizontal. The diameter of the jet is 28 mm. 
Determine the horizontal and vertical components of 

hold it in position. Also determine the maximum height 
reached by the water, neglecting air resistance. 

Figure 8.33 

8-11 Figure 8,33 shows part of a transmission system. 
The chain C of mass per unit length p passes over the 
chainwheel W, the effective radius of the chain being 
R .  The angular velocity and angular acceleration of the 
chainwheel are o and a respectively, both in the 
clockwise sense. 
a) Obtain an expression for the horizontal momen- 
tum of the chain. 
b) Determine the horizontal component of the force 
the chainwheel exerts on its bearings B. 

and a receiver R, Initially the hopper contains a 
quantity of grain and the receiver is empty, flow into 
the receiver being prevented by the closed valve V. The 
valve is then opened and grain flows through the valve 
at a constant mass rate ro . 

the force that the fireman mu't app1y to the nozz1e to 8-12 A container (Fig. 8.34) consists of a hopper H 

Figure 8.31 

8.9 See Fig. 8.31. A jet of fluid of density 950 k g h 3  
emerges from the nozzle N with a velocity of 10 d s  and 
diameter 63 mm. The jet impinges on a vertical gate of 
mass 3.0 kg hanging from a horizontal hinge at A. The 
gate is held in place by the light chain C. Neglecting any 
horizontal velocity of the fluid after impact, determine 
the magnitude of the force in the hinge at A. 
8.10 A jet of fluid is divefled by a fixed curved blade 
as shown in Fig. 8.32. The jet leaves the nozzle N at 

Figure 8.34 

At a certain instant the column of freely falling grain 
has a length 1. The remaining grain may be assumed to 
have negligible velocity and the rate of change off with 
time is small compared with the impact velocity. Show 
that (a) the freely falling grain has a mass rO(21/g)l'* 
and (b) the force exerted by the container on the 
ground is the same as before the valve was opened. 

8.13 An open-linked chain has a mass per unit length 
of 0.6 kg/m. A length of 2 m  of the chain lies in a 
straight line on the floor and the rest is piled as shown 
in Fig. 8.35. The coefficient of friction between the 
chain and the floor is 0.5. 

If a constant horizontal force of 12N is applied to Figure 8.32 

2 5 d s  at a mass flow rate of 20kg/s. Neglecting the 
effects of friction between the fluid and the blade, 
determine the direct force, the shear force and the 
bending moment in the support at section AA. 
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8.16 a) A rocket bums fuel at a constant mass rate r 
and the exhaust gases are ejected backwards at a 
constant velocity u relative to the rocket. At time t = 0 
the motor is ignited and the rocket is fired vertically and 
subsequently has a velocity v. 

If air resistance and the variation in the value of g can 
both be neglected, and lift-off occurs at time t = 0, 
show that 

end A of the chain in the direction indicated, show, 
neglecting the effects of motion inside the pile, that 
motion will cease when A has travelled a distance of 
3.464 m. (Take g to be 10 N/kg.) 
8.14 Figure 8.36 shows a U-tube containing a liquid. 
The liquid is displaced from its equilibrium position and 

v = u l n  - - g t  
(MMJ 

Where M is the initial maSS of the rocket plus fuel. 

of the Moon ( g  = 1.61 N/kg). The vehicle is loaded with 
30000 kg of fuel which after ignition burns at a steady 
rate of 500 kg/s. The initial acceleration is 36 d s 2 .  

Find the mass of the rocket without fuel and the 
velocity after 5 s. 

8.17 An experimental vehicle travels along a horizon- 
tal track and is powered by a rocket motor. Initially the 
vehicle is at rest and its mass, including 260 kg of fuel, is 
2000 kg. At time t = 0 the motor is ignited and the fuel 
is burned at 20 kg/s, the exhaust gases being ejected 
backwards at 2 0 2 0 d s  relative to the vehicle. The 
combined effects of rolling and wind resistance are 
equivalent to a force opposing motion of (400 + 1.0V2) 
N, where v is the velocity in d s .  At the instant when all 
the fuel is burnt, brakes are applied causing an 
additional constant force opposing motion of 6OOO N. 

Determine the maximum speed of the vehicle, the 
distance travelled to reach this speed and the total 
distance trave11ed. 

then oscillates. By considering the Inonlent Of b) A space vehicle is fired vertically from the surface 

Figure 8.36 

momentum about point 0, show that the frequency f of 
the oscillation is given, neglecting viscous effects, by 

f = I J L  2 7 ~  21+7rR' 

Also solve the problem by an energy method. 
8.15 A length of chain hangs over a chainwheel as 
shown in ~ i ~ ,  8.37 and its maSS per unit length is 
1 kg/m. The chainwheel is free to rotate about its axle 
and has an axial moment of inertia of 0.04 kg m2. 

Figure 8.37 
When the system is released from this unstable 

equilibrium position, end B descends. If the upward 
displacement in metres of end A is x, show that the 
downward force F on the ground for 1 <x<2 is given 
by 

IN  4 - 3x -x2 
F =  9.81 (X - 1) + [ 6.628+x 



9 
Vi bration 

SECTION A or m i + k x = m g  (9.1) 
One-degree-of-freedom 
systems 
9.1 Introduction 
Mechanical vibration is said to occur when parts or my+ ky = 0 (9.2) 
of a system execute periodic motion about a 
static-equilibrium configuration. In the simplest 
cases only one co-ordinate is required to describe 
the position of the system, which is thus defined 
to have one degree of freedom. If friction is very 
small, this co-ordinate performs oscillations with 
simple harmonic motion - at least for small 
oscillations. 

Any real system can deform in many ways and 
therefore requires many co-ordinates to describe 
its position - it is said to possess many degrees of 
freedom. However, the result of analysis which 

systems, one many-degrees-of-freedom system is 
equivalent to many one-degree-of-freedom sys- 

By letting y = x-mg/k ,  i.e. y is the deflection 
from the static equilibrium position, we obtain 

my + kO, +mg/k )  = mg 

Figure 9.2 

The so1ution Of equation 9e2 iS (see Chapter21 
y = A cos wn f + B sin wnf (9.3) 

follows in Section B indicates that, for linear where on = d(k/m) (9.4) 

tems, thus a detailed study of one-degree-of- y = wn(-Asinwnt+Bcoswnt) (9.5) 

freedom systems is a necessary prerequisite. and y = -wn2(Acoswnt+Bsinwnf) (9.6) 

9.2 Free vibration of undamped systems 
One of the simplest systems is the combination of 
a rigid body and a light linear spring as shown in 
Fig. 9.1. The mass m is supported by a light spring 
which has a constant stiffness k.  If x is the 

Differentiation with respect to time gives 

2 = -wn y 
thereby justifying the solution given in equation 
9.3. 

The constants A and B depend on the initial 
conditions so that if, when f = 0, y = V and y = Y, 
substitution of these values into equations 9.3 and 
9.5 gives 

Y = A  
and V=wnB 
thus y = Ycos wnf + ( Mun) sin wnt 

y = Ccos(w,t - 4) 

(9-7) 

(9.8) 

Figure 9.1 
extension of the spring, the free-body diagram is 
as shown in Fig. 9.2. Thus the equation of motion 
is where C = d ( Y 2  + V2/w:) 

An alternative form for equation 9.7 is 

m g - k x = m i  and tan+ = V/(wnY) 
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fmr? = fmC2w,2sin2(wnt- 4) 
and, since o2 = k/m , we have 

fmr? = fkC2sin2(wnt- 4) 

,kx2 = fk[Ccos(w,t-+)+mg/k]* 
the strain energy in the spring is 

= fkC2cos2(wnt- 4) 
+ kCcos(w,t- +)mg/k+ fk(mg/R) 

A plot of y against time is shown in Fig. 9.3, in 
which the following terms are defined. 

i) Amplitude, C - the maximum displacement 
reckoned from the mean position. Twice C is 
referred to as the peak-to-peak amplitude. 
ii) Periodic time, T- the minimum time interval 
after which the motion is repeated. 

performed in unit time; hence v = UT. 

represented by the projection of a line OA, 
rotating about 0 at an angular speed w, , on to a 
diameter of the circle as shown in Fig. 9.4. 

and the gravitational potential energy is 

-mgy = -mgCcos(w,t- +) 

E = fmr? + tkx2 + (-mgy) 
The totalenergyis 

= lkC2 + fk(mg/k)2 (9.12) 

and is the strain energy in the spring when in the 
One cycle of this periodic motion may be static-equilibrium position; hence the energy 

associated with the vibration is 

E, = &kC2 = fmon2C2 (9.13) 
or, maximum strain energy reckoned from the 
static-equilibrium position = maximum kinetic 
energy = E,.  

We see that constant forces, such as gravity, 
merely change the static-equilibrium position and 
do not affect the vibration, so it is customary to 
consider only motion and energies relative to the 
static-equilibrium configuration. 

iii) Frequency, v - the number Of cyc1es The second term in equation 9.12 is a constant 

Reworking our example, we may write 
- ky = my 

knowing that the weight is opposed by an equal 
but opposite spring force. From this figure it is clear that the time for a 

complete cycle is given by Alternatively, using energy, we write 

wnT = 27r E, = fmy2 + fky2 = constant 
dE,ldt = myy + kyy = 0 thus T=27r/wn (9.9) 

and v = wn/(27r) (9.10) thus my + ky = 0 

9.4 Pendulums 
A case in which gravity may not be neglected, of 
course, is in the study of pendulums. Here, 
however, the effect of gravity does not produce a 
constant effect - as we shall show. 

For the simple pendulum shown in Fig. 9.5 we 
have, by considering moments about 0, 

From equation 9.8 we have 

v = dy/dt = -on Csin(w,t- 4) (9.11) 
and from Fig. 9.4 we see that the projection on 
the vertical axis is 

Csin(wnt - 4) = - d w n  

-mglsin 8 = lob' 9.3 Vibration energy 
The kinetic energy of the system discussed in 
section 9.2 is For a simple pendulum (light rod with 
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concentrated mass m), Io = m12, so 
-mgIsin e = m128 (9.14) 

This equation is non-linear, but, as is true for 
most systems, if we consider only small oscilla- 
tions about the equilibrium position the equation 
becomes linear. For small 8, sinO+O; hence 
equation 9.14 becomes 

-mgle = mL20 
or e+ ( g / l )  8 = 0 (9.15) 

thus on = 8 and v, = -/- 
27r 1 
1 g  Figure 9.6 

so that, on a graph of log8 against logv, lines of 
constant d appear as straight lines of slope - 1 and 
lines of constant f appear as lines of slope +1, as 
shown in Fig. 9.6. 

9.6 Damping 
In all mechanical systems there is some means by 
which the vibrational energy is reduced, so 

Using the parallel-axes theorem without external stimulus any system will even- 
10 = I ,  + m12 = mkG2 + m12 tually come to rest. The most common means are 

some form of internal friction which converts the 
vibrational energy into thermal energy or the 

w,2 = - 4 = m d  - g dissipation of energy into the surroundings by 
the generation of sound and vibration in any 
supporting structure or surrounding fluid. 

thus v,=- (9.17) A system in which energy is dissipated is said to 
be damped. If the damping is large then periodic 
motion will not occur and the system, once 
disturbed, will return toward an equilibrium 9.5 Levels of vibration 

At this point it is helpful to consider the orders position without the velocity reversing. Such of magnitude of vibration in terms of human motion is called aperiodic. 
One means of providing extra damping is to comfort and machine tolerance. It is convenient 

Figure 9.7(a) shows a damper of the dashpot against log(frequency). 
type, in which oil is forced through holes in the 
piston by a force proportional to the velocity of 
the piston relative to the cylinder. The usual 
symbol for a viscous damper is shown in Fig. 
9.7(b). 

Another form of damping is eddy-current 
damping, in which a conductor is moved relative 
to a magnetic field. This also requires a force 

If the mass is not concentrated, then 

-mgle = Io 6 

or e+ (mgl/Io) e = 0 (9.16) 

Where I is the distance of the centre of mass 
from 0. 

leads to 

I o  mkG2+mP - f ( 1 + k G 2 / f 2 )  

27r l(1 + kG2/12) ' /  g 

to consider a plot Of log(velocity amp1itude) make use of the viscous propeaies of fluids. 

The velocity amplitude is given by 
6 = 27rv(displacement amplitude) = 27rvf 

b = 27rh = (27rv)Zf 
and the acceleration amplitude by 

therefore 
and logf = -logv+log6-log27r 

logb = log v +  log6 + log27r 
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giving In (x/xo) = -(k/c)t 
or x = Xoe-(k/c)' 

So for small and large damping the solution for 
x is of the form 

x = A e k  
therefore we shall try this form as a general 
solution to equation 9.18. Thus if 

x = A e N  
then x = , U e k  

- and 1 = A2Aek 

Substituting these terms into equation 9.18 proportional to the relative velocity of the 
conductor and field. 

9.7 
The system shown in Fig. 9.8 consists of a rigid 
body of mass m, a spring of stiffness k and a 
damper having a damping coefficient c such that 
the force exerted on the damper is c i .  The 

gives 
Free vibration of a damped system (mh2+cA + k)AeN = 0 

which, for a non-trivial solution, means that 
mA2 + cA + k = 0 

Solving for A gives 

(9.19) 

h = -(c/2m) k V'[(c/2m)'- k/m] 

When ( ~ / 2 m ) ~ > k / m ,  both values of A are real 
and negative so that the form of the solution is 

..\\\\ 
x = A ,-AI t+  Be A' Figure 9.8 

equation of motion for the mass is and we see that the motion is aperiodic. 
When ( ~ / 2 m ) ~  < k/m, 

-kx-cx = rnx 
A = -(c/2rn) k jd [k /m - ( ~ / 2 m ) ~ ]  

x = A'exp{-(c/2m)t+j[k/m- (~ /2rn)~] ' /~ t}  

+ B'exp{ -(c/2m)t- j [k/m - (c/2m)* ]'"t} 

de=  cosO+jsinO or x = exp[-(c/2m)t]{Acos[k/m - ( ~ / 2 r n ) ~ ] ' / ~ t  

which is usually written as 
in which case 

m i ' + c i + k x = O  (9.18) 
If c = 0 the motion is simple harmonic and, 

remembering that 

where j = V'(-l), we may write the solution of 
equation 9.18 as 

+ Bsin(k/m - (~ /2 rn )~ ] ' /~ t}  (9.20) 

It is convenient to introduce some characteris- 
tic parameters so that equation 9.20 is readily 
applicable to other physically similar situations. 
We have noticed that when c/2m>d(k/m) the 
motion is aperiodic and when c/2m < d(k /m)  the 
motion is periodic; hence critical damping is 
defined by 

x = 6(A-jB)eJ"nf+:(A+jB)e-J""' 
= Acosw,t+ Bsinw,t 

where w, = d(k/m) .  

be small, so that the motion is described by 
For very large damping the inertia effects will 

Ccfit. - & cx+kx = 0 
or drldt = -(k/c)x 2m 

Thus I" ( l / x ) d x  = - (k/c)dt 
or ccfit. = 2d(km)  (9.21) 

10 I: The damping ratio, 6,  is defined by 
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C C [=- = 
Grit. 2 d / ( k m )  

Since d ( k / m )  = w, , the undamped natural 
frequency, we have 

cCrit. = 2 m d ( k / m )  = 2mwn 
and 

now be written 

c = 5ccrit. = m250, 
The equation of motion, equation 9.18, can 

mi: + m25w,x + m (k/m)x = 0 

x + 2Lwnf + on% = 0 
giving finally 

(9.22) 

Noting that c/2m = [w,, equation 9.20 may be 

(9.23) 

written 
Figure 9.10 x = e-cwnr [A COSOdf+BSinWdf] 

where wd = [ k / m  - ( ~ / 2 m ) ~ ] ” ~  Logarithmic decrement 
= (w,2 - 52w,2)1’2 

= w n d ( l  - 6 2 )  

A convenient way of indicating the amount of 
damping is to quote the logarithmic decrement 
(‘1og.dec.’) which, referring to Fig. 9.9, is defined 
as 

(9.24) 
Differentiating equation 9.23 with respect to 

time gives 6 = ln(x,/x,+l) 

- e i o n  T - 
e- lwnrf(wt) - 

cwnr  [(Bud - A5f.dn) COS wdf f = e- 
Xn 

f (ut + T )  e- l O ” ( f + T )  But -- 
- (Awd + B&,)sinwdf] (9.25) xn+1 

The constants A and B depend on the initial thus 
conditions. For example if, when t = 0, x = xo and 6 = [wnT = 5 0 , 2 l ~ / [ ~ , , d / ( l -  5’)] 
f = 0, then = 27r5/d( 1 - 5 2 )  (9.27) 

and 0 = Bwd-ALw, 6 = 27r5 (9.28) 

Hence x = xoe- 5mnr[coswdt 

XO = A and for small damping 

B = CW,A/Wd = Xo [/d( 1 - 5’) 
Specific loss 
A further way of indicating the amount of 
damping in lightly damped systems is to evaluate 

energy at the start of the cycle. 

+ {</d(l - 5’)) sinwdt] (9-26) 

A plot of x against t is shown in Fig. 9.9. The the enerfl lost per cyc1e as a fraction Of the 
periodic time Tis  given by 

Specific loss = (&xn2 - &kxn+:)/(&kx,2) 
= 1 - (x,+1/x,)2 
= 1 - exp [ - 2 & ,  T ]  

so, for small damping, 
specific loss = 1 - [ 1 - 25wn T + . . .] 

== 25w, T== 4 7 4 ~  26 (9.29) 

Coulomb damping 
When the damping force has a constant Figure 9.9 

w ~ T  = 2 l ~  

21T 21T 
SO T = - =  

wd @ n d ( 1 - ! ? )  
and the damped natural frequency 

o n  

21T 

The variation of wd/w, with 5 is shown in 

v d =  T - l = - d ( I - [ ’ )  

Fig. 9.10. 



magnitude and always opposes the motion, it is 
known as Coulomb damping. 

In Fig. 9.11 the coefficient of sliding friction is 
taken to be constant, so the equation of motion is 

m i + k x = T f  (9.30) 
-kx - f(sign of i )  = mx 

9.8 Phase-plane method 
A plot of velocity against displacement is known 
as a phase-plane diagram. The phase-plane 
method is readily adapted to give a graphical 
means of solving any single-degree-of-freedom 
vibration problem. In this book we shall be using 
it only for linear systems, or systems where the 
motion can be described by a number of linear 
differential equations (sometimes known as 
piecewise linear systems). 

The phase-plane method is based on the fact 
that, for a constant external force, a graph of x 
against X/wn is a circle. In Fig. 9.4 we saw that the 
projection of a rotating radius gave x and -X/q, 
on the horizontal and vertical axes respectively. 
In order to plot x/q, in the positive sense, it is 
simply necessary to reverse the sense of rotation. 
In general, the equation 

a i +  bx = A = constant 

transforms to a circle with centre at x = Alb, 
i/q, = 0. If the initial conditions are given, then 
one point on a circle of known centre completely 
defines the circle, as shown in Fig. 9.12. If after a 
given interval of time or at a specific value of x or 
i the constant changes, this just alters the position 
of the centre of the circle, the radius, of course, 
changing so that the trajectory on the phase plane 
is continuous. 
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Application to Coulomb damping 
From equation 9.30, 

&+kx = -f ( X > O )  
m i + k x  = +f ( X t O )  

Assuming initial conditions t = 0, x = xo , X = 0, 
we may draw part of a circle on the phase plane, 
see Fig. 9.13, for f < O .  At point A the velocity 
changes sign and the centre of the circle moves 

from x = flk to x = -f/k. This process continues 
until a point C is reached such that 

-flk < x < flk 
at which instant the motion ceases. 

The amplitude of vibration drops by 2flk each 
half cycle, thus the decay rate is linear with time 
and not exponential; also, it is seen that the 
periodic time is not affected by the damping. 

9.9 Response to simple input forces 
Consider the two systems shown in Fig. 9.14 in 
which P = P ( t )  and xo = xo( t ) .  In both cases x is 

Figure 9.14 

the extension of the spring. The equation of 
motion for (a) is 

-kx - cx + P = mi 

or x + 2lq,.i + on2x = PIm (9.31) 
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and for (b), 

or x + 2 < o n i +  wn2x = -xo (9.32) change in momentum, 
We note that equations 9.31 and 9.32 are of the 
same form. 

Response to impulsive input 
If at t = 0 a short-duration impulse P r  is applied, 
then at t =  0, x = O  and, since impulse equals 

-kx-ex = m(xo+x) 

x = Prfm 
giving 

Response to a step input pr e-i"d 
Assume P = Po for t>O and P = 0 for t<O. x = -  sin o d  t (9.35) 

The solution of equation 9.31 is mo, d ( 1 -  12) 
X = e- '"'' [A COSOd f + Bsin W d  f ] a graph of which is shown in Fig. 9.16. 

+ Po/mwn2 
= complementary function 

+ particular integral 

It is seen that the particular integral Po/ 
mon2 = Polk is simply the final steady-state 
solution after the complementary function has 
become zero. There are many formal mathema- 
tical methods for determining the narticiilar 
integral, but for these simple cases the result can Response to a ramp input 
be achieved by inspection. A ramp input is of the form 

P = O  for t<O 
then 0 = A +Polk = a t  for t s O  
and O = Bod- AlW, thus the equation of motion is 

hence x = -e-S"n'(Po/k) m f + c x + k x = a t  

If, when t =  0, x = 0 andx = 0 

or x + 2<mnx + wn2x = atIm 

In this case the steady-state solution is a 
constant velocity V ,  or x = Vt+ b, so for large t ,  

x [cosodt + [Id( 1 - 12)  sin mdt] + Polk 

or x/( Polk) = (1 - e- Conrcos o d  t )  
,-i""'l . 

sin wd t (9.33) when x = 0, 

(9*34) 

A graph of x against time is shown in Fig. 9.15. 

- 
do- t2) 

- i0J.r 250, V + on2 (Vt + b)  = atfm e 
sin wd t Thus, equating the coefficients of powers of t ,  

- x and - 
o n  (Polk) ~ ' ( 1 -  c 2 )  

25wn V +  on2b = 0 
and on2v = a / m  
therefore V = afmon2 = a f k  
and 

Hence the general solution is 

- b = 2{V/wn = 25a10, k 

X = e- i o n r  [ A  COS Wd t + B Sin Wd f ] 
+ atlk - 25a1wn k The overshoot (xmaX - Polk) occurs when the 

(xma,- Polk) = ( P o / k ) e x p [ - 5 r / d ( l -  l*)] 
velocity is first zero, i.e. when o d t  = r, so For initial conditions x = 0, X = 0, 

O=A-21alwnk 
Xmax-Polk - and O = ( B w d - A l ~ , ) + a f k  

or = e <"for small damping. 
Polk hence A = 25a/w, k 



25% a 
and B =  

kw,V(l - c2) - kw,V(l- 12) 

- -a(l-252) 
- 

kwnV( 1 - 12) 
giving 

1 (1-212) . 

Vu - P I  sin wd t x = e - L u n t  2[ca wd f - 

a 
+w,t-25 - (9.36) 

lwnk 

i [  

Figure 9.17 shows the form of the response. 

9.10 Periodic excitation 
By use of the Fourier theorem, any periodic 
function representing a physical disturbance may 
be replaced by a series of sinusoidal disturbances. 

The total response to this excitation applied to 
a linear system is the sum of the individual 
responses to each of the sinusoidal disturbances - 
this is known as the principle of superposition. 

Fourier series 
Consider a function of time that repeats after a 
periodic time T, 

i.e. f (t) = f(t + T) 

As an example consider the square wave shown Assume that 
f ( t )  =ao+a,coswot+.  . .+a,cosnwot 

+ . . . (where q, = 27dT) 

in Fig. 9.18. By the Fourier theorem, 
+.  . . + blsinwot+. . . + b,sinnwot a0 = 0 

and a, = O  
as the wave is asymmetrical about the t = 0 axis, This is known as a Fourier series. 

ing over one cycle gives 
Multiplying both sides by cosnwot and integrat- 

b, = 2 x -  Asinnwotdr 

- 4A [ c o , ~  t ] TI2 

T 0 

'T I," 
Jorf(t)cosnwordt = a, cos' nwotdt 

-_  -~ 
IoT 

All other terms are zero since 
2A 1 -cosn r  

[or(cosnwotsinmwot)dt = 0 =-[ n- n ] 

9.10 Periodic excitation 133 

~or(cosnwotcosmw~t)dt  = 0 for n f m  

lor(sinnwotsinmw,t)dt = 0 for n f m  

However, when m = n ,  

lor cos2nwotdt = TI2 

hence 1 Tf(t)cmnwotdt = a,T/2 

and similarly 

0 

IoTf(r)sinnw0tdf = b, TI2 

To summarise, we have 

(9.37) 1 T  
a 0 = - [  f(t)dt 

T o  
r 

a, = 2 [ f(t)cosnq,tdt 
T o  

(9.38) 

b, = - f(t)sinnwotdt (9.39) 'T 1: 
where wo = 2 d T  (9.40) 
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Substituting integer values for n in the above 
expression gives 

n 1 2 3 4 5  

?r 
b " G  2 0 3 0 g  

Figure 9.19 shows the result of taking the first 
three non-zero terms, i.e. n = 5, and also a plot 
using the first nine non-zero terms, i.e. n = 17. 

9.1 1 Work done by a sinusoidal force 
If a sinusoidal force F = Focos(wt + +) acts on a 
particle moving with simple harmonic motion 
such that x = Xcos%t, then the work done is 

JFdx  = -JFocos(%t++)%Xsinm,$dt 
= 00 FOX[ -cos +J(cos of sin oot ) dt 

+ sin+J(sinotsino@)dt] 

If the integration is taken over a long period of 
time then the integral will tend to zero unless 
o = 00. (This statement may be proved by 
methods similar to those used in the development 
of the Fourier theorem.) 

With o = 00 the work done per cycle is 

, / f = T  ~ d x  = w ~ ~ ~ [ - c o s + ( ~ )  +sin+(~/2)1 

= .rrFoXsin+ (9.41) 
Hence we see that the maximum work done per 

cycle occurs when + = No, i.e. when the force is 
in phase with the velocity. 

The phasor diagram shown in Fig. 9.20 shows 
the displacement x as the projection on to a 
horizontal diameter of the rotating line ON. 
Similarly the velocity 

t=O 

v = -oxsinof = -Vsinot 

and the acceleration 

a = -02Xcosot = -Acosot 

can be depicted by rotating lines on the diagram. 
V and A are the velocity and acceleration 
amplitudes respectively. 

9.12 Response to a sinusoidal force 
The linear damped single-degree-of-freedom 
system shown in Fig. 9.14(a) has a sinusoidally 
varying force applied to the mass. Measuring x 
from the position of no strain in the spring, the 
equation of motion is 

F O C O S  of- kx - CX = mi' 
or mi+cX+kx = Focoswt (9.42) 

The solution of equation 9.42 is in two parts: 
the complementary function, which is a solution 
when Fo = 0, plus the particular integral. 

The complementary function has been dis- 
cussed in section 9.7 and is seen to be a transient 
term leading to no motion as time increases. The 
particular integral is a steady-state solution which 
exists when the transient has died away. 

There are many ways of finding the steady-state 
solution, but we will base our solution on physical 
reasoning. 

We assume that the steady-state solution is of 
the form 

x = Xcos(wt - 4) (9.43) 

where w is the forcing frequency. Energy must be 
transferred to the system, since the damper is 
dissipating energy, hence the steady-state- 
response frequency is the same as the forcing 
frequency for reasons given in the preceding 
section. The amplitude X and the phase angle + 
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are constants to  be determined. 

gives 

If the real part of one side of an equation is equal 
to the real part of the other side then so must the 
imaginary parts be equal; we may therefore drop 
the reference to real part and write 

f + 2&,X + wn2x = (Fo/m) eJ W f  (9.48) 

x = x&-te - j  @ 

Substituting equation 9.43 into equation 9.42 

-mw2Xcos(ot- 4) - ocXsin(wt- 4) 
+ kXcos(wt - 4) = Focoswt (9.44) 

This equation is represented on the phasor (9.49) 
diagram shown in Fig. 9.21. From the diagram, Substituting equation 9.49 into equation 9.48 

gives 

thus -w2X+2~w,jwX+wn2X= (Fo/m)&@ 
( -w2 + 2&jw + wn2)XeJ W' e-' @ = (Fo/m) e'd 

Fo2 = (kX- mw2X)' + (ocX)' This may be represented on an Argand diagram 
as shown in Fig. 9.22. This figure is seen to have 
the same form as Fig. 9.21 and obviously 
equations 9.46 and 9.47 are obtained. Equation 
9.45 may be written in non-dimensional form as 

thus x = Fo/d[(k - mw2)2 + W2c2] (9.45) 
If w is small then the maximum value of X is 

Folk. Dividing both numerator and denominator 
in equation 9.45 by k leads to 

~- - 
X 

(Folk) 

d { [ l  -(w/on)2]2+(2~w/w,)2} 

Folk 
X =  (9.46) 

d { [ l  -(o/on)2]2+(2Jw/w,)2} 1 
= p (9.50) 

where p is known as the dynamic magnifier. A 
plot of p against w/w, for various values of 3 is 

where 0, = d(k /m)  

and 5 = c/cCrit. = c/(2dkm) 

From Fig. 9.21, 

tan 4 = wcX/(kX- mw2X) = wc/(k - mw2) 

An alternative mathematical treatment using 
complex numbers will now be given. It is known 
that 

= 25(0/wn)/[1 - (w/w,)2] (9.47) 

cos 8 k j  sin 8 ,+j 0 = 

where j = d ( - l ) ,  so the real part of 
e' Of = Re(eJ W ' )  = coswt. Also 

Re[ej("'-@)] = cos(wt- 4) 
Equation 9.42 may be written 

f + 2434,f + wn2x = (Fo/m) Re(eJ ,') 
and its steady-state solution as 

x = XRe(eJ W'e-j @) 

given in Fig. 9.23 and a plot of phase angle 4 
against w/wn is shown in Fig. 9.24. 
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it being understood that only the real part is 
finally required. Making the usual assumption for 
steady-state vibration that x = XeJ wte-J #’, we 
obtain 

-w2X+ 250, WX + wn2X = w2X0 d#’ (9.52) 

9.1 3 Moving foundation 
In Fig. 9.25 the system is disturbed owing to the 
vibration of the foundation and it is assumed that 
the base movement xo is not affected by the 
subsequent motion of the mass. This type of 
vibration occurs in many situations ranging from 
the vibration of an instrument on a moving 
vehicle to the motion of a building during an 
earthquake. 

We have a choice of co-ordinate to specify the 
motion of the system. We can measure the 
motion of the mass relative either to the base or 
to an inertial frame of reference. Both are useful 
but we shall use the former as it is the strain in the 
elastic member which is usually of greater 
interest; hence x here will be the movement of the 
mass relative to the base, giving the absolute 
motion of the mass as x + xo . 

The equation of motion for the mass is 

-kx - c i  = m(Xo +i)  

or m i + c i +  kx = -mio 
which may be written 

x + 250,X + w,2x = -20 (9.51) 

If the base movement is xo = Xocoswt 

then io = -02Xcosot 

hence x + 25w,X + wn2x = w2XoeJ W f  

The Argand diagram representation of equa- 
tion 9.52 is shown in Fig. 9.26. From the diagram 
we obtain 

w2xo 
X =  

d [ ( w n 2  - o ~ ) ~  + 452;20n2~2] 

(9.53) 

- - (9.54) 

- - (w/wn )2Xo 
V{ [ 1 - ( o / w , ) ~ ] ~  + 4C2 ( w/w,)’ } 

25(w/mn) 250, ox 
and t a n 4  = 

( o , 2 -  w2)X [l - (w/w,)2] 

A plot of XIXo is shown in Fig. 9.27. 

9.14 Rotating out-of-balance masses 
The problem of vibration generated by rotating 
machinery is very common because it is 
impossible to manufacture a machine which is 
perfectly balanced. We will idealise the problem 
to that of a rigid frame carrying a rotating wheel 
with its centre of mass eccentric. In Fig. 9.28 the 
total mass is M and the mass of the rotating part is 
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Using complex notation, 
kXej ( wf - 4) + jcxw e j ( wf-  4) = ~ ~ , J ( w r -  P )  

which leads to 

k X +  jcX = Ft e’( +- p ,  

or, dividing through by M ,  
wn2X+j2&+,wX= (Ft /M)eJ(4-8)  

(9.58) 

From Fig. 9.29, 

Ft = X ( k 2  + c2w2)112 

Ft/M = X[wn4 + (2&,~)’]‘/~ 

but x = (ew2m/Mwn2){ [I - ( w / w , , ) ~ ] ~  
m, with its centre of mass eccentric by an amount 
e from the axis of rotation. 

motion is 

+ (2&0/w, )2  } - ”2 

From the free-body diagram, the equation of thus ~ Ft 1 + (2&J/wn)2 
mw2e = JI1- (w/w,)2]2 + (2&dwn)2 

-kx-cx  = (M-m)X (9.59) 
+ m d2(ecoswt + x + const .)/dt2 

= ( M  - m)x + m ( -w2ecos wt + x ) 
= MX - mew2 cos wt 

The ratio of the transmitted force to the 
‘out-of-balance’ force Ft/mw2e is known as the 
transmissibility of the mounting. Curves of 

or MX + cx + kx = meo2coswt (9.55) transmissibility against w/w, are plotted in 
or x + 25w,x + wn2x = (mew2/M)coswt (9.56) Fig- 9.30. 

This equation has the same form as equation 
9.51 therefore a detailed solution need not be 
given, but the resulting Argand diagram is shown 
in Fig. 9.29. 

9.15 Transmissibility 
It is often required to determine the magnitude of 
the force which is transmitted to the foundation. 
For the above case it will be the sum of the spring 
force and the damping force; thus 

transmitted force 
= h + C X  

= kXcos(wt-+)-cXwsin(wt-4)  

where Ft is the modulus of the transmitted force 
and p is a phase angle. 

= Ft COS (wt - p ) (9.57) 

It is seen from Fig. 9.30 that the amplitude of 
the force transmitted is adversely affected by the 
presence of damping at the higher frequencies, 
although for w/w, > d 2  the force transmitted is 
still less than the ‘out-of-balance’ force exerted on 
the bearings of a rigidly mounted frame. 

A similar problem exists when a body is to be 
isolated from a moving foundation. In this case 
the absolute amplitude of the mass compared to 
the amplitude of motion of the foundation is also 
known as the transmissibility - see example 9.5. 



138 Vibration 

1 - 
1 _ -  9.1 6 Resonance 

a sinusoidal excitation, exhibiting a maximum 
response to a given input. If the damping of the 
system is very small then resonance occurs when 
w = w, ,  at which frequency all parameters - 

deflections, etc. - tend to large values. However, 
when the damping is larger, 0.1 < [<0.4 say, the 
various parameters reach their maxima at 
different frequencies. 

In the case of a constant-amplitude applied 
force, the amplitude resonance occurs at a 
frequency lower than w, given by 

Resonance is the condition of a system, subject to 8s" [l - (w/un)2]2+ 452(0/0")2 

or (w/wn)4-(2-4~2)(w/on)2+(~ -8p) = 0 

The two roots of the quadratic are 
displacement, velocity, acceleration, spring (w/wn)172 = (1 - 212) k d[(l - 252)2 

- (1 - 812)1 
= 1 - 212 f d(4S4 + 412) 

hence (2r - (2r 
= 2d(4$  + 412) = 4 1 v ( 1 +  12) 

so that ~ %--* ~ wl+y = 4 [ q ( 1 + l 2 )  ores .  = wn ~ ' ( 1 -  212) (9.60) 
For the moving-foundation case, the maximum ( o n  )i o n  1 

amplitude of relative motion occurs at 
(9.61) 

In both cases we see that resonance does not 

For small damping ([<0.3), the response at 
resonance is close to that when w = w, so for the 
first case 

(9.62) 

If the damping is small, c 2 e l ,  and 
or,,. = w , / d ( l  - 212) (q + q ) / 2  = on, we obtain 

(9.64) 
%--l 

wn 
-- occur when C> l / d 2 .  - 23 

In other words, the width of the resonance peak 
at 0.707 of the height of the peak equals 2&4,. 

SECTION B 
Two-degree-of-f reedom 

x/(Fo/k)max.  = 1/21 
and for the second case 

(X/XO)Inax. = 1/21 (9.63) systems 
9.17 Estimation of damping from the 
width of the peak 9.18 Free vibration 
Figure 9.31 is a sketch of a resonance peak for If a system requires two independent co-ordinates 
small damping. It is obvious that the lower the to define its configuration then it is said to have 
damping the sharper the peak. Equation 9.50 two degrees of freedom. The simplest example is 
gives the two-mass two-spring system shown in 

Fig. 9.32. The choice of co-ordinates is arbitrary, 
the most obvious ones being x1 and x2 which are 
the displacements of the individual masses. 
However another convenient set would be the 
extensions of the springs which are x1 and 
(x2-x1) respectively. We shall use both of these 
sets in turn. 

X/(F&) = l / d $ [ l -  (w/0n)2]2 
+ 41 ( o / o n ) 2  1 

Figure 9.32 
The values of w when X/(F,Ik) = (1/25)/d2 are 

found from 



Using the first arrangement we see from 

(9.65) 
Fig. 9.33 that the equations of motion are 

-k lx l  + k 2 ( x 2 - x 1 )  = mlxl  

and - k 2 ( x 2 - x 1 )  = m2x2 (9.66) 
Re-arranging gives 

m l i 1  + ( k ,  + k2)x1  - k2x2 = 0 (9.67) 

and m2x2 - k2x1 + k2x2 = 0 (9.68) 

These equations may also be written in matrix 
form as 

["I 0 m2 O ] p ]  

+ [ ( k f k 7 )  -,: x1 
] [ x 2 ]  = [:I (9.69) 

In compact form the above equation may be 
written 

[ M I G )  + [Kl (x)  = (0) 
where the square matrix [MI is known as the mass 
matrix and the square matrix [K]  as the stiffness 
matrix. 

We shall now assume that both masses oscillate 
with simple harmonic motion at the same 
frequency. Our intention is to see what conditions 
must prevail if the assumption is valid. 

Thus we assume that 
x 1  = Ae"' 

and x2 = Be"'. 

We have again used the complex form knowing 
that with A imaginary the motion is sinusoidal. 
x = Xsin(wt) would be a suitable form of 
assumption in this case but the complex form is 
preferred as it simplifies the algebra for more 
advanced problems. 

Substituting into equations 9.67 and 9.68 and 
dividing through by the common factor e"' we 
obtain 

[ml A2 + ( k ,  + k2 )]A - k2 B = 0 
-k2A + [m2A2 + k 2 ]  B = O. 

These are a pair of simultaneous homogeneous 
equations and so cannot be solved for A and B 
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directly, however two expressions for the ratio 
BIA can be found, i.e. 

(9.70) - k2 - 
B m l A 2 + k l + k 2  
A k2 m2A2 + k2 
- -  - 

From the second equality we find 

ml m2A4 + [ml k2 + m2kl  + m2k2]  A' 
+ k2k1 = 0 (9.71) 

This is a quadratic in A2 with positive real 
coefficients. From the theory of linear equations 
both roots will be real and negative; let these 
roots be -w12 and - ~ 2 ~ .  

Thus the four roots are + j w l ,  k j q  where 
j = d-1, and the general solution is 

x1 = AleJ"'"+A2e-'"" 
+ A3 ,I "2' + A4 ,-I " 2 1  

x2 = BleJ"'"+B2e-J"'" 
+B3elW"+ B4e-J"2' 

Since ele = cos B+jsin 8, the above two equations 
can be written in the form 

x 1  = [Ecos(wlt)+ Fsin(wlt)] 

x2 =pl[Ecos(wlt)+Fsin(wlt)]  
+ [Gcos(w2t) + Hsin(w2t)] 

(9.72) 

The constants E, F,  G and H are functions of the 
A and B coefficients, their values depending on 
the initial displacements and velocities of the 
masses; pl and p2 are defined in the next 
paragraph. 

The ratio BIA has two values one when w = w1 
and the other when w = q. Using the first 
equality in equation 9.72 the amplitude ratios pl 
and p2 are defined (the second equality would 
lead to the same result). 

+p2 [ G cos (q t ) + Hsin ( w2 t)] 

- m l w 1 2 + k l + k 2  B1 B2 

- m l q 2 + k l + k 2  B3 B4 

- _ - _ -  - 1 1 1  - - 
k2 A1 A2 

k2 A3 A4 
- _ - _ -  

- P2 and - - 

From the above argument it is seen that it is 
possible to choose the starting conditions such 
that G = H =  0, in which case both masses 
vibrate with a frequency w1/(27r) and the ratio 
of their amplitudes is p l .  Similarly, if initial 
conditions are chosen such that E and F are zero 
then the system may oscillate at a frequency w;? 
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and with an amplitude ratio of p2.  
It now follows that for any arbitrary starting 

conditions the motion may be considered as the 
sum of the two special cases just mentioned, the +(+l)[Gcos(9t)+Hsin(9t)] 
proportion of each case depending on the actual 
values of the starting conditions. +( - l)[Gcos (9t) + Hsin (st)] 

This fact is the cornerstone of the analysis of Let us aSSume that the system starts from rest 
multi-degree-of-freedom vibrating systems. We With initial displacement of x1 = 0 and 
see that for the two-degree-of-freedom system x2 = 0.01 m to the right. ~ i f f ~ ~ ~ ~ ~ i ~ ~ i ~ ~  the 
there are just two distinct frequencies at which expressions for displacement we obtain the 
vibration can occur, these are known as the velocities 
principal natural frequencies and associated with 
each is a unique amplitude ratio known as a 
principal mode shape. 

Example 
We shall now consider a simple problem in detail 
in order to fix our ideas of principal modes. 

The general solution is 

x1 = [Ecos(7t)+Fsin(7t)] 

x2 = [Ecos(7t) + Fsin(7t)l 

XI = 7[Esin (7t) + Fcos (7t)l 

x 2  = 7[Esin(7t) + Fcos(7t)l 
+ (+9)[Gsin(9t) +Hcos(9t)] 

+ (-9)[ G sin (9t) + Hcos (st)] 

Substituting for time t = 0 
XI = O =  E +  G 
21 = 0 = 7 F + 9 H  
~2 = 0.01 = E - G 
X2 = 0 = 7F- 9H 

(a) 
(b) 
(c) 
(dl 

From (b) and (d) F = H = 0 and from (a) and (b) 
we obtain 

E = 0.005 and G = -0.005 

so finally 

XI = 0.005cosf7t) +0.005cos(9t) 
x2 = 0 . 0 0 5 ~ 0 ~  (7t) - 0 . 0 0 5 ~ 0 ~  (9t) Figure 9.34 

These two equations may be written in matrix 
form as Figure 9.34 shows a symmetrical two mass 

three spring system. The equations of motion 
0.005 t-0.005 using SI units are E;] = [,.,,I cos (7t 1 + [-,.,,I cos (9t) 

-98x1 + 3 2 ( ~ 2 - ~ l )  = 2 i l  
and 

or [' O]1["'1+ [ 130 -32]["'] = [:] 
Substituting x1 = Ae"' and x2 = Be"* we obtain 

-98x2 + 32(x1 -x2) = 2i2 from which we can see that the motion is the sum 
of an in-phase motion of equal amplitudes at a 
frequency of 7/(27~) Hz plus an out-of-phase 

0 2 X2 -32 130 ~2 motion with equal amplitudes at a frequency of 
9/(27~) Hz. 

The principal frequencies and mode shapes are 
shown in Fig. 9.35. 32B = (2A2+ 130)A 

32A = (2A2+ 130)B 
BIA = (2A' + 130)/32 = 32/(2A2 + 130) 9.19 Coupling of co-ordinates 

Let us return to the first system shown in 
Fig. 9.32. Instead of using the displacement of the 
masses as co-ordinates we are now going to use 
the deflection of the springs denoting the 
extension of the left spring by x and the extension 
of the right spring by y .  The motions of the 
masses will be x and ( x  + y )  respectively. 

SO 

yielding (2A2 + 130)2 = 32' 

therefore 2A2+ 130 = +32 
so 

and 
hence 

A' = -49 or -81 
A = a17 or kJ9 

BIA = +1 or -1. The equations of motion are now 



- k l x  + k 2 y  = m l  (2) (9.73) 

and - k z y  = m2 (i + y) (9.74) 

In comparison with the previous co-ordinates 

x = x l  and y =  (x2-x1). 

If we look at the matrix equation 9.69 we see that 
both the square matrices are symmetrical but if 
we form the matrix equation from 9.73 and 9.74 
this will not be so. It can be shown that by 
re-arranging the equations the mass and the 
stiffness matrices can both become symmetrical. 
In this case we can achieve this end by adding 
equation 9.73 to equation 9.74 to give equation 
9.75 and forming the matrix expression from 
equations 9.75 and 9.73. 

Thus - k l x  = (rnl+rn2)x+m2y (9.75) 

and [m,+m2 m2 m2]k] m2 

+[: !2]kI =[:I (9.76) 

It should be noted that the numerical method 
used for the previous example does not require 
the matrices to be in symmetrical form. 

If there are no off-diagonal terms in the 
stiffness matrix then the co-ordinates are said to 
be statically uncoupled. Similarly, as in equation 
9.69, if there are no off-diagonal terms in the 
mass matrix then the co-ordinates are said to be 
dynamically uncoupled. It is important to note 
that it is the co-ordinates which are coupled or 
uncoupled and coupling therefore depends only 
on the choice of co-ordinates and is not a function 
of the system. 

9.21 Principle of orthogonality 141 

Clearly it would be advantageous if co- 
ordinates could be chosen such that uncoupling 
occurs in both mass and stiffness matrices, in 
which case we would be left with two single- 
degree-of-freedom equations and the solution 
would be simple. 

9.20 Normal modes 
Since any motion of our system can be 
represented by the addition of the principal 
modes it is possible to write 

kl =L1 ;21[;:l (9.77) 

or XI = 771 ( t )  + 772 ( t )  
x2 = P I  771 ( t )  + P2 772 ( t )  

The square matrix is known as the modal 
matrix since each column is a mode shape. The 
new time dependent variables ql,  q2 are known as 
the principal co-ordinates. We will write equation 
9.77 in a compact form as 

(x) = [Al(rl) 

[mI(f) + [kI(x) = (0) 

and the equation of motion as 

Substituting equation 9.77 into the equation of 
motion gives 

[ml[Al(.ii) + [kl[Al(rl) = (0) 
The modified matrices will not be symmetrical so 
we now pre-multiply by [AIT, the transpose of the 
modal matrix, giving 

[AIT[~l[Al[;il[AIT+ [klPl[rll = PI 
We next prove that the modified mass and 
stiffness matrices are diagonal. 

9.21 Principle of orthogonality 
Each of the principal modes is a solution to the 
equation of motion so it follows that 

~ 1 2 [ 4 4 1 ) + [ k 1 ( A l )  = (0) (9.78) 

If we pre-multiply e uation 9.78 by (A2)= and 
equation 9.79 by ( A , )  we get 

AZ2 [ 4 4 2  1 + [kl(A2 1 = (0) 

9. 
~12(A2)T[ml(A1)+(A2)T[~l(Al) = 0 (9.80) 
A22(AI)T[ml('42) + (AdT[kl(A2) = 0 (9.81) 

(9.79) 

Each of the terms in the above two equations is 
a scalar so must equal its own transpose. The 
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transpose of a product is a product of transposed 
matrices taken in reverse order. Therefore the 
second terms in the equations are identical, 
providing that the mass and stiffness matrices are 
symmetrical. Similarly the first terms are the same 
apart from the different A. 

Subtracting equation 9.80 from 9.81 gives 

(A22 - A12)(A1 )[ml(A2) = 0. 
Since, in general, A2 does not equal Al , it follows 
that 

(A,)[ml(A2) = 0 

and (Al)[kI(A2) = o  
If we apply this principle to the numerical 

example 

36 -32 2 0  
where [k] = [-32 361 and lm1=[0 21 

[: -:I the modal matrix [A] = [(Al) (Az)] = 

['r SO [A]'[k][A] = 

and [A]'[m][A] = 

The corresponding scalar equations are 

4*] + 19672 = 0 
and 4fj2 + 324q2 = 0. 
The two natural frequencies are v(196/4) = 7 
rads and d(324/4) = 9 rads. 

As we have already calculated the natural 
frequencies there is no need to diagonalise both 
mass and stiffness matrices: either one will do. 
Further, because of the orthogonality principle, 
we know that all off-diagonal terms are zero so 
only the diagonal terms require to be calculated. 
Thus, in general, the ith mode modal mass is 
(Ai)=[m](Ai). For the problem just considered 

2 0 1  
M1=(1  2][1]=4 

~ ~ = ( 1  -if 0 O][ 2 -1 ' ] = 4  

We have shown the application of principal or 
normal mode analysis to a simple free system but 
the method is also applicable to forced systems as 
shown in the next section. 

9.22 Forced vibration 
Consider again the system shown in Fig. 9.32 but 
this time with a forcing termfl (t) applied to mass 
1. The matrix form of the equations of motion are 
as before except for the non-zero term on the 
right. 

For the general case where fl is an arbitrary 
function of time it is easiest to use the normal 
mode analysis. So the first step is to solve for 
the free vibration case, to obtain the natural 
frequencies and the modal matrix, and use this to 
uncouple the equations. Hence 

[AlT[ml[AI(4 + [AIT[kl[Al(v) = [AI$] 

leading to 

MI V I +  u12M1 vi = (Ai)'(fi O)= 
M2 v 2  + %2M2 7 2  = (fl WT 

These equations can be solved for q1 and q2 and 
then the values of x1 and x2 can be found by use of 
the modal matrix. 

If the forcing term is sinusoidal then the 
steady-state solution can be found directly from 
the equations of motion by assuming that the 
response is also sinusoidal and at the same 
frequency as the forcing function. If 
fi = Fl cos (ut) then we assume that 

where X l  and X2 are the unknown amplitudes. 

dividing through by the time function we obtain 
Substitution into the equation of motion and 

kl + k2 - w2ml 
k2 - w2m2 

This is a pair of simultaneous equations and can 
be solved for X l  and X 2 .  In full we have 

(kl + k2 - w2ml)X,  + (- k2)X2 = Fl 
( -k2 )X1  + (k2 - w2m2)X2 = 0 



Hence 

x, = 

and 

x -  
Notice that the denominators are the same in 
both expressions and are identical to the left-hand 
side of the frequency equation 9.71 with h2 
replaced by -w2. It follows that when the forcing 
frequency equals either of the natural frequencies 
w1 or 02 the amplitudes become infinite. A plot of 
the amplitude versus frequency is shown in 
Fig. 9.36 from which it should be noted that a 
negative amplitude indicates that the displace- 
ment is out of phase with the force. 

they require different analytical techniques which 
are outside the scope of this book. 

Fl (k2 - w2m2) 

Discussion examples w4mlm2 - w2 (m2kl + m2k2 + ml k2) + kl k2 

Example 9.1 
Find the natural frequency of small oscillations of 

2 - w4m,m2 - u~ (m2kl + m2k2 + ml k2) + kl k2 the inverted simple pendulum shown in 
Fig. 9.37(a). 

Fl k2 

Figure 9.37 

Solution As is usually the case, the motion is 
considered to consist of small oscillations about 
the static-equilibrium position. This implies that 
for small angles cos 0+ 1 and sin 0+ 0, thus the 
spring force acting on the rod will be sensibly 
horizontal. 

From the free-body diagram shown in Fig. 
9.37(b) we have, by considering moments about 
A, 

mg10-k(112)0(112) = m126 

or a+(k/4rn-g/l)0=0 (9  
thus the natural frequency is given by 

k g  An interesting condition exists when w equals 

driven mass becomes zero, the second mass is 
acting as a vibration absorber. 
In this section we have seen that a two-degree-of- 21r 4 x 2  1.4 
freedom system has two natural frequencies and it 
follows that a system with n degrees of freedom 
will have n natural frequencies. Many of the 
analytical techniques introduced above can gravitational potential energy = mglcos 0 
readily be applied to systems with three or more 
degrees of freedom - these are known as lumped kinetic energy = &m12(b)2 
parameter systems. 

Continuous systems, such as vibrating beams or 
shafts, have an infinite number of degrees of 
freedom and can be shown to have an infinite 
number of discrete frequencies and mode shapes; 

vk2/m2.  At this frequency the amplitude of the V" = 2- J(- --) 
21r 4m 1 

= 1 J( 100 - %) = 0.37 & (ii) 

Alternatively, an energy approach may be 
used: 

strain energy = tkx2 

:. total energy 
E = mglcos 0 
+&X2+tm12(9)2 
dEldt = -mglsin 09 + kxx + mP0b = 0 so 



144 Vibration 

For small angles, 

thus -mg18+k(l/2)28+m120 = 0 
or d + ( k / 4 m - g 1 1 ) 8 = 0  (iii) 

Notice that in this method we cannot use the 
small-angle approximations until after the dif- 
ferentiation has been completed, otherwise the 
potential-energy term would have been lost. 

Another interesting point is that if k/4m < g / l  
the frequency becomes imaginary, in which case 
the solution of equation (iii) is 

8 = Ae”‘+ Be-Af 
where A = ( g l l -  k/4m)”2. For example, if 8 = 68, 
e = 0 when t = 0, then 

x = $18 and x = $16 

6 8 = A + B  
e =  o = AA-AB 

A = B = $68 

thus 8 = f68(eAr + e-Ar)  = 68coshAt 

From this result we see that for a small 
disturbance from the equilibrium position, 8 
increases with time showing that the system is 
unstable. 

.. 

Example 9.2 
A simple weighing machine is constructed as 
shown in Fig. 9.38(a). The beam and scale-pan 
together form a rigid body which has a moment of 
inertia about the pivot of 0.084 kg m’. The spring 
stiffness is 7000 N/m. 

a) Find the force per unit velocity for a viscous 
damper placed in the position indicated such that 
the motion is just aperiodic when there is no load 
on the scale-pan. 

b) With the system as specified in part (a), a 
mass of 4.5 kg is placed in contact with the 
scale-pan and is then released. Find the maximum 
deflection of the beam. Assume that the system 
performs small oscillations. 
Solution In this example the effect of gravity, 
for small displacements, is merely to change the 
datum position. Hence we have the choice of 
measuring the deflection either from the position 
of zero strain in the spring or from the 
static-equilibrium configuration. Using the latter 
choice, the free-body diagram (Fig. 9.38(b)) 
shows only the forces additional to the self- 
balancing static set. 

Taking moments about 0 gives 
- k f l O $ l - c f l & l =  Zoe 

or e+ [cl2/(4Z0)]8+ [k12/(4Z0)]8 = 0 (i) 
From equation 9.21 we see that the critical value 
of ( ~ 1 ’ / 4 1 ~ )  is 2d(k12 /410)  

7000 x 0.084 
= 4/ (%)  = 4 / (  O.3OO2 ) 
= 323 N s/m 

When a mass is placed on the scale-pan it has 
two effects: firstly the moment of inertia of the 
beam is increased and secondly the equilibrium 
position is altered, so once again we have a choice 
of datum position. Let us keep the same datum as 
used in part (a) of the example so that now 8 = 0 
is not an equilibrium position. The free-body 
diagram is as shown in Fig. 9.38(c). 

The equation of motion is 

Mgl-  (k1’/4)8- (c12/4)b = (Io+ M12)8 
where the parallel-axes theorem has been used to 
determine the new moment of inertia about 0. 
Hence 

0 + [cl2/4(ZO + M1’)8+ [k1’/4(10 + M1’)]8 
= Mgl/(Zo + M12) (ii) 

Figure 9.38 
323 x 0.150’ 

0.084 + 4.5 x 0.32 
= 14.86 = 2424, - - c (1/2)2 

but 
lo + M1’ 



7000 x 0. 152 
0.084 + 4.5 x 0.32 

- - =322.1=w: 
k (112) 2 

Io + MI2 
and 

1 
2?r 

thus v,, = - V322.1 = 2.86 Hz 
Figure 9.39 

ment be used if the above ratio is to be in the 
range l.o_+ lo%? 

Solution This type of transducer is designed to 
operate at frequencies higher than the natural 
frequency of the internal spring-mass system such 
that, in the operating range, the mass is sensibly 
stationary. The output signal, which is propor- 
tional to the velocity of the mass relative to the 
case, is closely proportional to the velocity of the 
case. 

In the free-body diagram, Fig. 9.39(b), x is the 
displacement of the mass relative to the case and 
xo is the displacement of both the case and the 
object to which the transducer is attached. 

The damping ratio 5 = 14.86/(2V322.1) Over which frequency range may the instru- 
= 0.414. 

The particular integral of equation (ii) is the 
steady-state solution, which is just the final 
equilibrium position, and is, by inspection, 

l ~ ( N 2 ) ~  7000x0.15d 
e,, = - Mgl = 4.5 x 9.81 x 0.3 

= 0.084 rad = 4.82" 

The general solution is 
e = e- jwnf (A COS W d f  + Bsin Odf)  + e,, 

The initial conditions are r = 0, 8 = - O s , ,  6 = 0; 
hence 

The equation of motion is 

-kx - cx = m (,to +i) 

o = A + e,, 
Now 6 = e- w 5 n r  { (- 5wnA -t Bud) COSwd t 

+ (-5WnB-A6Jd)SinWdf} 
or m i + c i +  kx = -mZ0 ( 9  

thus O = -[wnA + Bud 
Given that 

so that A = - e,, and B = -&on &/wd 
xo = X,coswt = Re(XoeJ "") 

The maximum value of 8 will occur when 8 = 0, 
the steady-state solution is assumed to be 

i.e. ij = e- i w n f  6,s ( c2 wn2/wd + wd) sin wd f = 0 
x = Xcos(wt - 4) 

6 will be zero when sinwdt = 0, and so the first = Re(Xej(w'-@')) 
maximum will be when wdt = ?r. 

Substitution into equation (i) gives 

( -mw2X+ cjwX+ kx)eJ(wf-@') 
Hence e,,, = e - lwn m'wd ( - e,, COS ?r) + e,, 

+ 11 = JmX,ej wf 
cw. mlwd = @,,[e- 

so thus kX+jcwX-mw2X= mXow2eJ@' 
0, = 4.82"{exp[-d.414lV(1 -0.4142)] + l }  

which is shown on an Agrand diagram in 
Fig. 9.40. = 1.15"+4.82" = 5.97" 

Example 9.3 
The basic construction of a vibration velocity 
transducer is shown in Fig. 9.39(a). The mass of 
0.042kg is suspended by a spring having a 
stiffness of 52.9 N/m and the viscous damping 
force is 0.707 of the critical value. If the 
transducer is vibrating with s.h.m., derive an 
expression for the ratio 

velocity amplitude of the mass relative to the case 
velocity amplitude of the base 

From the diagram we see that 

mw2Xo = ~ V [ ( k - m w ~ ) ~ + c ~ w ' ]  
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The ratio required is working range, will be delayed by the same time 
lag. Thus the output waveform will be that of the 
input. mw2 

- 
w x  x 
wXo X, d [ ( k - m w 2 ) 2 + c 2 w 2 ]  

but klm = w: = 52.Y0.042 = 1250 

and clm = 2 N ( k m ) / m  = 2[on 

X w2 
thus - = 

Xo d [ ( w n 2  - o ~ ) ~  + 4[2~n2w2] damping coefficient. 

-- --- 

Example 9.4 
A rack of electronic instruments (Fig. 9.41(a)) is 
isolated from a vibrating floor by four antivibra- 
tion mountings, each with the same stiffness and 

- ( d o n  ) 2  - 
d { [ l -  (0/wn)2]2+4[~((01wn)2} 

With [=  U d 2 ,  

xix, = (w/wn ) W [ I  + (dw, )4 1 

0.92 [ 1 + (w/wn 14 1 = (dwn 14 

which, by inspection, is less than unity, therefore 
putting XIXo = 0.9 gives 

thus w = 50.867 

and 
Thus, above 8.1 Hz  the response is such that 

The same mechanical arrangement is suitable 
for an accelerometer, but the transducer is now 
used below the natural frequency so that the mass 
and case have small relative movement. The 
output is made proportional to the strain in the 
spring which, in an ideal situation, is proportional 
to the acceleration of the instrument. The 
sensitivity of the accelerometer is proportional to 
X/w2Xo where 

v = 50 .867 /2~  = 8.1 Hz 

0.9<wx1wx0< 1.0. 

1 2 
_ -  - i (2)  - d{ [ 1 - ( w / o , ) ~ ] ~  + 4[2(w/wn)2} 

see Fig. 9.23. 
It is interesting to note that in this transducer 

the choice of [=  l / d 2  has the added advantage 
of delaying the output relative to the input by a 
constant time lag, due to the fact that the phase 
angle is nearly proportional to the frequency (see 
Fig. 9.24). 

If the output is x=Xcos(wt-qb), then if 
qb = aw, where a is a constant, we have 

x = Xcosw(t-a) 
hence a is a time lag, which is independent of 
frequency. This implies that if the waveform is 
not sinusoidal no distortion of the waveform will 
take place since all the harmonics, within the 

Figure 9.41 

A free-vibration test is carried out and it is 
recorded that the amplitude of vertical vibrations 
drops by 90% in 4 cycles or 1.5 seconds. If the 
floor is vibrating vertically what will be the 
amplitude of vibration of the rack (a) when the 
frequency is 3 Hz and the amplitude is 1 mm, (b) 
when the frequency is 30 Hz and the amplitude is 
0.1 mm? 

Solution The characteristics of the system are 
determined by the natural frequency and the 
damping ratio, both of which may be found from 
the free-vibration trace. 

From the definition of log. dec., 

S = ln(Xl/X2) = ln(X2/X3) etc. 

= 36 
but 

thus S = Bln(lOl1) = 0.767 
From equation 9.27, 

In(X1 1x4 ) = In( Xl X2 )( X2/X3 )( X3 /X4) 

6 = 2T[Id( 1 - [’) 
Since 6 is small, 

[ = 6 / 2 ~  = 0.76712~ = 0.122 
The damped natural frequency is 4/1.5 = 2.67 



Hz and, since 5 is small, 0,"wd = 2.67 X 27r 
= 8.38 S - ' .  

The equation of motion for the rack (see Fig. 
9.41(b)) is 

thus the amplitude of motion of the rack is 
2.71 x 1 = 2.71 mm. 

For part (b) , 

I 1 + 4  x 0.1222 x 11.252 
(1 - 11.252)2 + 4 x 0.1222 x 11.25* 

z =J[  -kx -cx  = r n ( R o + R )  XO 
( 9  = 0.023 or i + 2 5 u n i +  wn2x = -p0 

where x is the movement of the rack relative to 
the base. 

If the movement of the base is xo = Xoejof, 
then we assume that x = ~ e ' ( ~ ' -  +), which, when 
substituted into (i), gives 

(ii) 

thus 

Example 9m6 
Figure 9.43(a) shows a light elastic structure in 
the form of a quadrant which is supporting an 
object which may be modelled as a concentrated 
mass of 16 kg. Static tests on the structure at A 
were carried out to determine the elastic 
characteristics. The results of the tests are as 
follows. 

A steady force of 100 N in the y direction 
produced a deflection of 19.6mm in the y 
direction and 12.5 mm in the x direction. A steady 
force of 100N in the x direction produced a 
deflection of 8.9mm in the x direction and 
12.5 mm in they  direction. 

Determine the natural frequencies of free 
vibration in the xy plane and the associated mode 
shapes. 

z = o.023 x o.l = o.0023 mm 

- w 2 ~ + 2 ~ w , j w ~ +  on2x = x0e'+ 
The Argand diagram is shown in Fig. 9.42. 

Figure 9.42 

z = x + xo . Letting 
We require the absolute motion of the rack, 

z = Zej(o'- B) 

then 
Ze-JB=Xe-j++X or 0 

zeJ("J- 6) = Xej(w'-  +) +xej"  

thus w2ZeJ('#- 6) = w2X+ w2Xd'#' - 
so on the diagram w2Z is the vector OA. 

The diagram yields 

w 2 z  = Xd[w,4 + (25wnw)2] 

Z w,4 + (25w, w)2 

but w2Xo = X d [ ( w n 2 -  w2)2  + (250,0)~] 
Figure 9.43 

Solution In the free-body diagrams, Fig. 
9.43(b), P and Q are the forces (in Newtons) 
acting on the structure in the x and y directions 
respectively, so from the test data the deflections 
in the x and y directions will be 

) thus - XO = J((w2 - w2)2 + (25W" w)2 

x = (0.089P+0.125Q)10-3 m (9 

) 

3 

1 + 452(w/wn)2 
= J( [ l -  ( w / w , ) ~ ] ~  + 452(w/w,)2 

This equation is identical to equation 9.59 and 

For part (a) of the example, 
therefore gives the transmissibility. 

y = (0.125P+0.196Q)10-3 m (ii) 

wlw, = ulv, = 3/2.67 = 1.125 and t= 0.122 For the mass 
-P= 16i  

and -Q = 16y 
Substituting these values of P and Q into 

1 + 4 x 0.1222 x 1.125* 
(1 - 1. 1252)2 + 4 X 0. 1222 X 1. 1252 

so " = J [  XO 

= 2.71 
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equations (i) and (ii) gives 

x = - 1 6 ~  1OP6(893+ 125y) 
y = - 16 X loP6 (1252 + 196j;) 

We now assume that x = Xe"' and y = Ye" from 
which x = XA2eAt and y = XA2eAt. Substitution 
gives 

X(1+ 89AZ 16 x lov6) + Y125A2 16 X 1O-6 = 0 (iii) 
X125A2 16 x loP6 + Y( 1 + 196A2 16 x lo-6) = 0 (iv) 

For ease of calculation let 11' = A2 16 x loP6 so 
that from equation (iii) we have 

It is helpful to re-order the data in standard 
matrix format. The structural data may be written 
as 

XIY = - 125A2/( 1 + 89A2) (v) 

XIY = -(1+ 196A2)/125A2 (vi) 

E] = 
1o-6[ 

89 "'I['] 

[ $1 = r: JL] 

125 196 Q 
and from (iv) 

inverting this equation gives 

Equating the two expressions for XIY given by 
(v) and (vi) we have -68719 48928 

[ ZJ = [ 107751 -68719]E] 

( 1 2 5 ~ l ~ ) ~  = (1 + 89A2)(1 + 196A2) 

and this leads to a quadratic equation in A2 

From the free-body diagram 

(196 X 89 - 1252)A4 + (196 + 89)A2 + 1 = 0 

or 1819A4 + 285A2 + 1 = 0 therefore by eliminating P and Q 

The roots of this equation are A2 = -0.00359 and 
-0.153 so A2 = -3590/16 and -153000/16 there- 0 16 -68719 48928 

[ 16 O ] k ]  + [ 107751 -68719]E] = [:] 
fore A = kj14.98 and kj97.79. 

This means that the circular frequencies 
(w  = j A )  are 14.98 and 97.79 (w2 = 224 and 9563) 

from which the frequencies ( 4 2 ~ ) )  are 

The matrix equation is solved by assuming that 

E] = e"'[:] 

2.38 Hz and 15.56 Hz. and substituting into the previous equation gives 

From equation (vi) (or we could have used (v)) 16A2 + 107751 
-68719 I["] = [:I we obtain two values for XIY, one for 

A2 = -0.00359 and one for A2 = -0.153 

SO XIY = -(1- 1 9 6 ~  0.00359)/ 

[ -68719 16A2+48928 Y 
Putting the determinant of the square matrix 
equal to zero yields the same quadratic in A2 as 
before and hence the same natura1 frequencies. 
The mode shapes are found from one of the two 
scalar equations which form the matrix equation. 

The modal matrix with the x deflection taken as 

(125 x 0.00359) 
= -0.660 
= -(1- 196X 0.153)/(125 x 0.153) 
= +1.516 

and 

To visualise the meaning of mode shape in this unity is used to transform to the principal 
example the direction of motion for the two 
modes is plotted in Fig. 9.44. From this figure it is 
clear that the directions are at right angles to each 
other: that is they are orthogonal. This is also 
demonstrated by the condition for two lines to 
be normal to each other that is, the product of 
their gradients shall be -1. In this case 

co-ordinates 71 and 7 2  

K]= [-01660 1.516 1 1[7'l q2 

Transforming the mass matrix 

[ i - ~ : ~ ] ~ ~  l;][Ok60 1.516 l 1  (-0.660) X (1.516) = -1.00. 



rotation. This does not interfere with setting up 
the equations of motion and finding the natural 
frequencies, but the forcing term is best treated 
by the use of the normal mode method. Therefore 
we will start by considering the free vibration 
problem. However we shall set up the equations 
with the forcing term included for future 

From the free-body diagrams shown in 
Fig. 9.46 we obtain, by moments about the axis of 
rotation, for wheel A 

= ri:: 5E] 
A~ a check we will transform the stiffness 

matrix 

[ 1 1.516][ -68'719 48928 -0.660 1.516 convenience. l l  

1 -0.660 107751 -68719][ 1 

= [220 O 1103 
0 11.8 

The two uncoupled scalar equations are 

2 3 . 0 ~ ~  + 220 x 1 0 3 ~ ~  = o 
and 52 .37)2+l l .8x103q2=0 

from which we find that wI2 = 220 x lo3/ 
23.0 = 9565 (rad/s)2 and w22 = 11.8 x lo3/ 
52.3 = 226 (rad/s)2. These two values compare 
well with the values obtained previously, the 
small differences being due entirely to rounding 
errors. 

Example 9.7 
The system shown in Fig. 9.45 consists of two 
wheels connected by a flexible shaft. The whole 
assembly is free to rotate in two journal bearings. 
This arrangement is a model of an electric motor 
driving a load. The load, A ,  has a moment of 
inertia ZA = 0.03 kg m2 and the moment of inertia 
of the rotor, B, is ZB = 0.05 kg m2. The torsional 
stiffness of the shaft is 5000 N d r a d .  

Figure 9.45 

The system is initially at  rest when a constant 
torque of 16 Nm is suddenly applied to the rotor, 
B. Derive an expression for the torque in the 
shaft. 

Solution This example has a feature not 
specifically mentioned in the text, which is that 
one of the natural modes is that of rigid body 

T = IAeA 
and for wheel B 

To- T =  ZBOB 
For the shaft we have T = k ( &  - 6,) which when 
substituted into the two equations of motion lead 
to 

0 = IA 6~ + k6A - k& ( 9  
To = -k6A + k6B + I,& (ii) 

or in matrix form 

r: :][ 21 + [ !k ik][ 21 = [ ;o] 
Assume [ :] = [ ;] e"for the case when To = 0 

Substitution into the previous equation and 
dividing through by e '' gives 

-k  IBh2+k - k  I[;]=[:] IAh2 -k k [ 
The characteristic equation is given by putting the 
determinant of the square matrix equal to zero 

(1, A' -k k ) ( I B  h2 -k k )  - k2 = 0 
which leads to 

z ~ z ~ h ~  + (1, + zB)kh2 = 0 

therefore 
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=rR" 0.048 O 1 
Similarly the transformed stiffness matrix is 

[o" 12:00] 

The right-hand side of the equation becomes 

So we see that one natural frequency is zero 
corresponding to the rigid body mode and the 
other frequency is 

The corresponding mode shapes are found from 
either of the two equations involving A and B, 
i.e. 

The first value of unity shows that for the rigid 
body mode both wheels move in unison as 
expected. The second vibratory mode shows that 
the motions are out of phase. 

Putting numbers to the expressions we have 

First mode frequency = 0 
modeshapeB:A= 1 : l  

Second mode frequency 

5000 = 82.19 Hz 

mode shape B : A = -0.003 : 0.005 = -3 : 5 

In order to solve the forced vibration problem 
we shall in this case use modal analysis. We know 
that using the modal matrix to change to principal 
co-ordinates will enable us to reduce the coupled 
equations to two single degree of freedom 
equations. 

The transformation relationship is 

( 6 )  = [AKrl) 

[: -;I51 
where the modal matrix [A] = 

and we now use this to diagonalise the equations 
of motion 

[MI(& + [ m e )  = ( F )  
[AlT[MI[Al(4 + [AITIKIIAl(rl) = [AIT(F) 

For the mass matrix 

So the two uncoupled equations are now 

0.08ql+ 0 = 16 
O.O487j;+ 1 2 8 0 0 ~ = 9 . 6  

or q'l = 200 
and 

Now 6, = v1 + q2 and b = v1 - 0 . 6 ~ ~  

so the torque in the shaft T = k(& - 6A) = 
k (- 1.6772) therefore we only need to solve for v2.  

The initial condition is a state of rest hence at 
t =  0, q2 = 0 and j/2 = 0. The complementary 
function plus the particular solution of the 
equation is 

q 2  + 516.'12v2 = 200 

q2 = Gcos(516.4t) +Hsin(516.4t) 
+ 200/516.42 

at t = 0 q2 = 0 therefore G = -200/516.42. 

j/2 = 516.4(-Gsin(516.4t) +Hcos(516.4t)) 
at t = 0 j/2 = 0 therefore H = 0 
hence v2 = 200/516.42(1 - cos(516.4t)) 
and finally the torque 

T =  - 5 0 0 0 ~  1.6 
X (200/516.42)(1 -~0~(516.4t))  

T = -6.0(1 -cos(516.4t)) Nm. 

This method of solution is general and may be 
followed for more complex problems, however 
for this particular case, and with the benefit of 
hindsight the co-ordinates can be changed by 
inspection to remove the rigid body mode. 

If we add equations (i) and (ii) we have 
I ,  9, + I B  9, = To 

and if we subtract ZB x (i) from I A  x (ii) 

I A I B  (& - 8A ) + k(IA + I B  )( 6B - 6A ) = I A  To 



Let OB - 8, = 4, the twist in the shaft 

This equation can now be solved for 4 in the same 
way as in the previous method, the torque in the 
shaft simply being k 4 .  

Example 9.8 
The trailer shown in Fig. 9.47(a) consists of a 
body supported by springs on an axle having two 
wheels. The mass of the body is 360 kg and the 
wheels plus axle assembly has a mass of 90 kg. 
The stiffness of the suspension is 72 kN/m and the 
stiffness of the tyres is 180 kN/m (both stiffnesses 
are total). 

Figure 9.47 

The trailer is drawn along a road which has a 
sinusoidal surface with a wavelength of 3 m and 
an amplitude of 10mm. Determine the critical 
speeds of the trailer and the speed at which the 
axle will have no vertical motion. Calculate also 
the response at a steady 50 k d h r .  
Solution Figure 9.47(b) shows the free-body 
diagrams for the system considering vertical 
motion and forces. The displacement at the 
bottom of the tyre is xo=Xocos(wt). The 
frequency v depends on the speed on the trailer V 
and the wavelength A. These quantities are 
related by V = Av. 

The equations of motion are 
kl  ( x g  -xl ) - k2 (xl - x 2 )  = mlxl 

k2 (x l  - x 2 )  = m2f2 
Now in complex form xo = XOeJw', therefore in 
matrix form the equations of motion are 

The solution of this equation is in two parts, the 
complementary function which is the free 
vibration response and the particular integral or 
steady state response. Any real system will have 
sufficient inherent damping to ensure that the free 
vibration will die away leaving only the steady 
state motion. 

For the steady state solution we assume 

Substituting into (i) and dividing through by the 
common factor elw' we obtain the algebraic 
equations 

-ml w2 + kl + k2 
-m2w2 + k2 

Inserting the numerical values 

[ -72000 
-900~ + 252000 

Evaluation of X1 and X2 may be achieved by 
pre-multiplying both sides of the equation by the 
inverse of the square matrix. 

[;I = 

72000 I[ l;m] (ii) 
1 7 2 0 0 0 - 3 6 0 ~ ~  --[ A 72000 252000 - 90w2 

where A = (72000 - 360w2)(252000 - 90w2) 
- (72000)2 

is the determinant of the square matrix. 
It should be noticed that putting A = 0 leads to 

a quadratic in w2 which is identical to the 
characteristic equation with A2 = -w2. As might 
be expected the two frequencies for which A = 0 
are the natural frequencies of free vibration with 
xo = 0. At  these frequencies the amplitudes tend 
to infinity and the system is said to resonate. Note 
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that resonance simply means that the amplitude 
of vibration is a maximum. 

Expanding the equation A = 0 gives a quadratic 
in w2 

360 X 90w4 - (72000 x 90 + 252000 x 3 6 0 ) ~ ~  
+ (72OOO X 252000 - 72ood) = 0 

Figure 9.48 

9.2 A body of mass rn hangs from a hinged support at 
0. The centre of mass G is at a distance a from 0. 
When the body is given a slight disturbance from the 
equilibrium position, it oscillates with a frequency v. 
Determine the moment of inertia about 0. 

3 2 . 4 ~  103w4-97.2x 106w2+12.96x lo9 = 0 
the roots of which are w2 = 140 or 2860 

The corresponding frequencies (v) are 

and d2860/(2?~) = 8.51 Hz. 
The corresponding road speeds are (V = Av) 

3 X 1.88 = 5.64 m / s  (20.3 km/hr) 
and 3 x 8.51 = 25.53 m / s  (91.9 kdhr) .  

d140/(2?~) = 1.88 Hz 

From equation (ii) we see that 
XI = (72000 - 36Ow2)1800/A 

and X2 = 72000 x 18OO/A 
thus X I  = 0 when 

or w = 14.14 
so that frequency = 14.14/(2?~) = 2.25 Hz the 
road speed being 3 x 2.25 = 6.75 m / s  (24.3 
kdhr) .  

At 50 km/hr V=50/3.6= 13.9 m/s and 
w = (13.9/3)2?~ = 29.11 

so A = 3 2 . 4 ~  1d(29.11)4 

w2 = 72000/360 = 200 

-97.2x 106(29.11)2+ 12.96x lo9 
= -46 x 109 

therefore 
XI = (72W - 360 X 29.1 12)1800/A 

= 9.12 mm 
and X2 = 72000 x 18OO/A = -2.82 mm 
The amplitude of compression of the tyre 
= X , - X ,  = 10-9.12 = 0.88 mm and the 
compression of the spring = X I  - X2 = 9.12 
- (-2.82) = 11.94 mm. 

Problems 
9.1 
systems shown in Figs 9.48(a) and (b). 

Determine the frequency of oscillation of the 

9.3 Determine the natural frequency of small 
oscillations of the bell-crank lever shown in Fig. 9.49. 
Neglect the mass of the arms. Take BC as horizontal 
when in the static equilibrium position. 

. .  
Figure 9.50 
9.4 An electric motor of mass rn is supported by four 
springs, each having a stiffness k, as shown in Fig. 9.50. 
If the polar moment of inertia is J o ,  find the natural 
frequency of small oscillations (a) for vertical motion 
and (b) for torsional motion about G. 
9.5 A flywheel with a polar moment of inertia of 0.65 
kg mz is supported in frictionless bearings and is under 
the control of a torsion spring having a torsional 
stiffness of 4 N d r a d  and a viscous damper. When the 
flywheel is displaced from its equilibrium position and 
released, the ratio of successive amplitudes of 
oscillation of the flywheel in the same sense is 10: 1. 

a) Determine the frequency of the damped oscilla- 
tions of the flywheel. 
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b) The flywheel is displaced through 1 radian from its 
position of static equilibrium and held at rest; it is then 
released. Determine its angular velocity after a time 
interval equal to one quarter of the damped periodic 
time. 

9.6 A homogeneous solid sphere, of radius a ,  rolls in 
a hemispherical cup of radius R. Determine the natural 
frequency of small oscillations about the equilibrium 
position. 

9.7 A balanced wheel, with its axle contacting two 
parallel rails bent into circular arcs, oscillates in a 
vertical plane as shown in Fig. 9.51. The radius of the 
axle is r ,  that of the arcs is R, and the radius of gyration 
for the wheel about its axis is k. 

frequency, (b) the maximum deflection if a current of 
50 p A  is suddenly passed through the instrument. 

9.11 A large structure has a mass M and a natural 
frequency w. As shown in Fig. 9.53 damping is 
provided by a damper connected to a rigid body of mass 
m. Assuming that the motion of the structure is still 
approximately simple harmonic, determine the moun t  
of energy absorbed per cycle by the damper. What 
value of C Will give maximum energy absorption Per 
Cycle? 

Assuming that the amplitude of the oscillation is kept 
small, and that no slip occurs, derive from first 
principles a differential equation representing the 
motion of the wheel and hence show that the frequency 
of the oscillation is the same as that of a simple 
pendulum of length 

L = ( R  - r ) [ l  + ( k W ) ]  
9.8 A mass of 0.2 kg is supported by a spring of 
stiffness 500 N/m. A mass of 0.6 kg is dropped through 
a height of 20mm on to the smaller mass and does not ~i~~~~ 9-54 
rebound. Find the frequency and amplitude of 

9.12 A shock-absorber consists of a solid buffer, a vibration. 

9.9 When a package of mass 1.2 kg is placed on the spring, and a piston rod and piston as indicated in 
platform of a weighing machine, the platform comes to Fig. 9.54. The piston moves in an oil-filled cylinder and 
rest 60mm below its unloaded position when all this arrangement may be assumed to give a force, 
oscillations have ceased. In order to reduce oscillation resisting motion, that is proportional to velocity. The 
and expedite the weighing procedure, a dashpot is shock-absorber is to be tested by placing it horizontally 
added to the mechanism, providing viscous damping of and projecting a body of mass 3.6 kg against it. This 
magnitude 14.4 N at a platform velocity of 1 d s .  body is to strike the buffer at a speed of 1 d s  and may 

Identical packages are delivered to the platform for be assumed to remain in contact with the buffer until 
checking by means of a chute, and it may be assumed brought to a halt. Assuming the damping to be adjusted 
that a package has a vertical velocity of 35 m d s  when it to give the critical value for this arrangement, and using 
makes contact with the weighing platform. the data given below, estimate the distance the buffer 

Determine the greatest height to which the platform should travel. The spring has no initial compression and 
will rise above the static-loaded position on the first its stiffness is 525 N/m. The mass of the moving parts of 
upward swing after acceptance of a package. the shock absorber is 1.7 kg. The mass of the spring is 

negligible. 9.10 A mirror galvanometer is constructed as shown 
diagrammatically in Fig. 9.52, damping being provided 9.13 A support platform carrying a machine can be 
by a fluid in the casing. The instrument has an represented by a 5200kg mass mounted on two 
undamped natural frequency of 100 Hz, damping is relatively long light pillars as shown in Fig. 9.55. The 
64% of the critical damping, and the d.c. sensitivity is platform is constrained to move in the plane containing 
16 rad/mA. Determine (a) the damped natural the centre-lines of the pillars. Measurements show that, 
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exerts a viscous damping force of 9600 N at 1 d s .  Part 
of the machine moves vertically with simple harmonic 
motion through a stroke of 40mm and has a mass of 
8 kg. 

Calculate the amplitude of forced vibrations when 
the machine is running at 380 strokeshin. 

9.18 A motor is mounted on flexible supports which 
permit it to oscillate through a small angle about the 
axis of the motor frame. The torsional stiffness of the 
supports acting on the motor frame is 3 kNddegree  
and the moment of inertia of the motor frame about the 
axis of rotation is 14.4 kgm'. When the motor is 

mass, the resulting horizontal displacement of the mass 1500sin30t N m, where w is the rotor speed and t is the 
time. is 1.5 mm. 

a) Calculate the operating speed of the machine Determine the amplitude of steady-state torsional 
which should be avoided to reduce the risk of oscillation Of the motor frame when the rotor speed is 
appreciable vibration of the platform. 400 rev/min. If, under resonant conditions, this 

amplitude must not exceed 5 degrees, what percentage 
b) During tests with the machine switched off, the of critical damping must be applied? 
platform is made to vibrate at its natural frequency and 

- 
when a horizonta1 force Of 7500 N is app1ied to the running, the frame is subjected to a reaction torque of 

a velocity pick-up indicates a peak horizontal velocity 
of 0.09 m/s.  Find (i) the amplitude of horizontal 
vibrations and (ii) the peak value of the horizontal 
acceleration of the platform. 

9.14 A machine which is subjected to a vertical 
sinusoidal force of constant amplitude is to be mounted 
on a rigid foundation. Discuss the problem of limiting 
the force transmitted to the foundation for each of the 
following cases (a) the forcing frequency has a fixed 
value which is rapidly attained after starting; (b) the 
forcing frequency is a variable, having a known upper 
limit. 

Sketch vector diagrams and response curves to 
illustrate your answer. 
9.15 A light shaft, which has a stiffness in torsion of 
108 N d r a d ,  is fixed at one end and carries a wheel 

length. If the free end of the shaft is given a torsional 
oscillation with an amplitude of 1" and a frequency of 
3 Hz, find the amplitude of steady-state oscillations of 
the flywheel. 
9.16 A recording instrument is used in a location 
where the floor is subject to vertical simple harmonic 
vibrations of frequency 6.37 Hz and amplitude 1 mm. 

The mass of the instrument is 4.5 kg and it is 
separated from the vibrating floor by spring mountings 
of stiffness 1800N/m and some internal viscous 
damping. The amplitude of steady-state vertical 
vibrations of the instrument is observed to be 
0.412 mm. 

Write down the equation of motion of the instrument 
and find the degree of damping in the mountings, 
expressed as a percentage of the critical value. 
9.17 A punching machine of mass 510 kg is supported 
by a mounting which has a stiffness of 240 kN/m and 

9.19 A velocity pick-up is constructed as shown in 
Fig. 9.56. The output voltage is 0.2 v for a relative 
velocity between the seismic mass and the case Of 1 d s .  
The details of the instrument are seismic mass 0.01 kg, 
spring stiffness 160N/m, and viscous damping co- 
efficient 1.75 ~ d ~ .  ne caSe is rigidly attached to a 
surface which is vibrating sinusoidally at 25 H ~ .  

with a moment of inertia of 0.84 kg m2 midway along its 1 

What is the peak output voltage when the peak 
velocity of the surface is 1 d s ?  
9-20 Figure 9.57 shows part of a recording inst,.,,- 
ment. The light spring AB of torsional stiffness S is 
connected to the pointer DE via the coupling C. 
Backlash in the coupling permits a relative angular 
rotation /30 between shafts BC and CD. The pointer 
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DE has an axial moment of inertia I ,  and all other 
inertias are to be neglected. End A is held fixed, and 
the pointer is oscillating with an angular amplitude ao. 
Determine the periodic time T of the oscillation and 
sketch the graph of T against a o .  

9.21 A spring of torsional stiffness 0.200 N m/rad of 
twist is fixed at one end and attached to a flywheel of 
moment of inertia 5 x lO-4  kg m2 at the other end. The 
motion of the flywheel is opposed by dry friction such 
that the torque required to initiate motion is 0.022 N m 
but once motion has started the resisting torque is 
0.015 N m. Viscous damping is negligible. 

The flywheel is held in a position where the torque in 
the spring is 0.200 N m and is then released. Find (a) 
the time taken for all motion to cease and (b) the 
residual torque in the spring. 

9.22 A simple model of a motor vehicle suitable for 
investigating the relationship between pitch and bounce 
is shown in Fig. 9.58. The mass of the vehicle is 1300 kg 
and its moment of inertia about a transverse axis 
through the centre of mass is 1500 kgm’. The 
combined spring stiffness at the front axle is 28 kN/m 
and that at the rear axle is 24 kN/m. 

Figure 9.59 

9.24 An overhead gantry crane has a trolley, of mass 
225 kg, which is driven along a horizontal track by 
means of a cable and is shown in Fig. 9.60. When the 
drive mechanism to the cable is held stationary the free 
vibrations of the trolley along the track have a natural 
frequency of 1.65 Hz. 

Figure 9.60 
Determine the possible natural frequencies of 

vibration of the trolley along the track when it is 
supporting a load of mass 225 kg by means of a light 
inextensible cable having a free length of 0.6m, the 
drive mechanism to the cable again being stationary. 

9.25 An instrument is to be mounted on a foundation 
which is vibrating at 50Hz. A spring is inserted 
between the foundation and the instrument, and a 
vibration absorber having the same mass as the 
instrument is connected to the instrument by a spring 
identical to that used between the instrument and the 
foundation. 

If the mass of the instrument is 0.6 kg, determine the 
stiffness of the springs so that the amplitude of the 
vibration of the instrument is zero. 

What will then be the natural frequencies of the 
complete system? 

Show that, if the effects of damping are neglected, 
the natural frequencies for motion in the fore and aft 
vertical plane are 1.0 Hz and 1.31 Hz. Show also that 
the corresponding mode shapes expressed in terms of 
angle of pitch to amplitude of bounce, B/x, are +0.114 
rad/m and -7.654 rad/m. 

9.23 Determine the natural frequencies of free 
torsional vibration of the rotor system shown in 
Fig. 9.59. The moment of inertia of the rotor at A is 
sufficiently large for the end at A to be considered as 
fixed. 

The moments of inertia of rotors B and C are 
0.5 kgm’ and 1.5 kgm’ respectively. The shaft is hollow 
with an outside diameter Do of 50 mm and an internal 
diameter Dj  of 45 mm. The length L of shaft between A 
and B is 1.0 m and between B and C it is 0.3 m. The 
shear modulus G for the material of the shaft is 
80 GN/m2. 9.26 Figure 9.61 shows a double pendulum consisting 

Note that from Chapter 12 the torsional stiffness of a of two equal uniform slender bars each of mass rn and 
shaft is G7r(Do4- D?)l(32L). length L. Friction at the pivots is to be neglected. 

Figure 9-61 
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Determine the natural frequencies for small oscilla- point A and one at point B. The static deflections when 
tions about the equilibrium position. the machine at A is installed are 5 mm at A and 2 mm at 
(Hint: The small angle approximation implies that all B. When the machine at B is added the deflection at B 

non-linear terms can be excluded. Such terms are the is increased to 6 mm and that at A becomes 8 mm. If a 
centripetal accelerations and any product of co- 7 Hz sinusoidal force of amplitude equal to 1% of the 
ordinates.) weight of machine A is applied to the machine at A 

what is the amplitude of motion of the structure at A 
9.27 A structure carries two heavy machines, one at and B? Find also the natural frequencies of the system. 



10 
Introduction to automatic control 

10.1 Introduction 
This chapter is devoted to an examination of 
elementary mechanical control systems. The 
discussion will be limited to the class of systems 
whose motion can be described by linear 
differential equations with constant coefficients. 
In practice many control systems have non-linear 
elements, but the overall motion can very often 
be closely approximated to that of a purely linear 
system. The main features of all control systems 
can be introduced by discussing specific examples. 

Let us consider the position control of a 
machine tool which has only straight-line motion. 
Let the actual position of the tool be defined by x, 
and the desired position by xi .  The variables x, 
and xi are referred to as the system output and the 
system input respectively. 

The system error, x, , is formally defined by 

x,  =xi-x, (10.1) 

and it is the object of the control system to take 
corrective action and reduce this error to zero. 

Assume that the tool is initially at rest and that 
the system has zero error. If a new position is 
required, the appropriate input is applied, giving 
rise to an error in position. The controller then 
acts, attempting to reduce the error to zero, and, 
for a linear system, the motion of the tool will be 
described by a linear differential equation. 

A human operator often forms part of a control 
system. As an example of this consider the case of 
a man driving a car at a speed which he wishes to 
remain constant at 100 k d h .  This constitutes a 
speed-control system where the desired speed or 
input, v i ,  is 100 k d h .  The output, v, , is the actual 
speed of the car, and the error, v,, is the 
difference between input and output. 

If, for example, the car meets a headwind, the 
drop in speed (the error) will be noticed by the 
driver who, among other things, is acting as an 
error-sensing device, and he will take corrective 
action by adjusting the position of the accelerator 

pedal in an attempt to reduce the error to zero. If 
the head wind is such as to cause a rapid increase 
of error, the corrective action will not be the same 
as that for a slow change. Thus we observe that 
the driver’s control action takes account not only 
of the magnitude of the error, v,, but also the rate 
of change of error, dv,ldt. 

Later we shall see that in some control systems 
a measure of the integral Jv,dt is useful. When a 
human operator is part of the control process, his 
reaction time introduces a finite delay into the 
system, making it non-linear. Such systems are 
not discussed further here. 

10.2 Position-control system 
We can now examine in some detail a particular 
elementary position-control system and use it to 
introduce the block-diagram notation by which 
control systems are often represented. 

A rotatable radar aerial has an effective 
moment of inertia 1. The aerial is driven directly 
by a d.c. motor which produces a torque T, equal 
to kl times the motor voltage V ;  thus 

T , = k l V  (10.2) 

The motor voltage V is effectively the 
difference between two voltages V,  and vb which 
are applied to the two motor terminals so that 

I / =  Va-Vb (10.3) 
and, of course, if V ,  and V ,  were identical the 
motor would have zero output torque. A 
potentiometer-and-amplifier system produces the 
voltage V ,  proportional to the desired angular 
position 6, of the aerial, the constant of 
proportionality being k 2 .  Thus 

v, = k26i (10.4) 

A position transducer, attached to the aerial 
whose angular position is 6, (the system output) 
produces the voltage vb such that 

Vb = k3 6, (10.5) 
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If 6, and 6, are equal, then the position error 
defined by 

(10.6) 
is zero and for this condition it is required that the 
voltage V and hence the torque T, be zero. The 
voltage V, represents the desired position or 
input, and the voltage V,, represents the actual 
position or output. The voltage V thus represents 
the error, and we conclude that k2 must equal k3 
and equations 10.3 to 10.6 can be combined to 
give 

V = k20e (10.7) 

6, = 6i - 6, 

Equation 10.2 can be written as 

T, = kl k2 6, (10.8) 
and we see that the motor torque is proportional 
to the error. 

Equation 10.8 represents the control action of 
the system. In order to determine the motion of 
the system for a particular input 6 , ,  we need to 
incorporate the dynamics of the aerial itself. (In 
mechanical control systems, the object whose 
position or speed is being controlled is usually 
referred to as the load.) 

If the aerial has negligible damping, the only 
torque applied to it is that from the motor; thus 

T,  = Id2 6,1dt2 (10.9a) 
or T,,, =ID28, (10.9b) 

where D is the operator ddt. 
Eliminating T,,, from equations 10.8 and 

10.9( b) , 
k l  k2 6, = ID2 6, (10.10) 

For any control system, the relationship 
between input and output is of major importance. 
From equations 10.6 and 10.10, 

kl kZ(0i- 0,) = ID2 6, 

(ID2 + kl k2) 6, = kl  k ,  ei 
IO, + kl k2 0, = kl k2 0, 

( 10.1 la) 
or (10.1 lb) 
By solving equations 10.11, we can find the 
output 0, as a function of time for a given function 
01. 

Note that a purely mechanical analogue of this 
system could consist of a flywheel of moment of 
inertia I connected to a shaft of torsional stiffness 
K = kl  k 2 ,  as shown in Fig. 10.1. 

10.3 Block-diagram notation 
It is common practice to represent control 
systems in block-diagram form. There are three 
basic elements: an adderlsubtracter, a multiplier, 
and a pick-off point as shown in Figs 10.2, 10.3, 
and 10.4. 

In Fig. 10.3, the simplest form of the multiplier 
E will be a constant, and the most complicated 
form can always be reduced to a ratio of two 
polynomials in operator D. We can write 

- = E  0, 
e, 

and E is called the transfer operator between 6, 
and 6,. Note that if 6, = E61 and 6, = Fez, as 
shown in Figs 10.5(a) and (b), then 6, = EF&, as 
shown in Fig. 10.5(c). 

Equations 10.2, 10.6, 10.7, and 10.9(b) are 



represented by the block-diagram elements 
shown in Fig. 10.6. Note that there is an 
implication of cause and effect: the output of a 
block-diagram element is the result of applying 
the input(s). In equation 10.9(b), the angular 
rotation e, is the result of applying the torque T, . 
The equation is thus rewritten as T,(1D2) = e,, 
so that Fig. 10.6(d) can be drawn with T, as 
input. 

10.4 System response 159 

where w, = ( k ,  k2/1)”*, as shown in Fig. 10.10. 

- 
Rather than taking up the required position 

e, = ao7 the load oscillates about this position 
with circular frequency w,. This performance is 

Noting that the output of Fig. 10.6(d) is one of clearly unsatisfactory and it is evident that some 
the inputs to Fig. 10.6(b), and connecting the four form of damping must be introduced. The 
elements in the appropriate order, we obtain the response would then take the form of either Fig. 
system block diagram shown in Fig. 10.7. From 10.11(a) or (b), depending on the amount of 
this figure we note that a control system is a damping. 
closed-loop system. One of the variables (0,) is 
subtracted from a variable (0,) which precedes it; 
this is known as negative feedback. 

Using the techniques of Fig. 10.5, Fig. 10.7 can 
be reduced to Fig. 10.8. 

10.4 System response 
Returning to equations 10.11 7 we can determine 
the response of the system to particular inputs 0,. 
Suppose we want the load suddenly to rotate 
through an angle a. at time t = 0 .  This 
corresponds to the step input 0, = 0, t < O ;  0, = ao, 
t 2 O  shown in Fig. 10.9. It is left as an exercise for 
the reader to show that the response to this input 
is given by 

e, = ao( i  -coSw,t) (10.12) 

- 
One way of providing damping is to attach a 

damper to the load. If the damper provides a 
torque Td which opposes the motion of the load 
and is proportional to the velocity (viscous 
damping), the constant of proportionality being 
C ,  then equation 10.9(a) is replaced by 

(10.13) 
T, - CDO, = ID28, (10.14) 

T, - Td = ld20,dt2 

T = (ID2 + CD)O, 
T,l(ZD2 + CD) = 8, 

The block diagram for the damped load is 
shown in Fig. 10.12. We note that the effect of 



160 Introduction to automatic control 

tachogenerator is proportional to its angular 
velocity, so that 

Vt = k4D0, (10.18) 
and the block-diagram form is shown in 
Fig. lo.14. adding the damper is to replace ID2 in the 

undamped system by I D 2 +  CD. Hence, for the 
damped system of Fig.lO.13 (cf. equation 
10.11 (a) ) 7 

Consider the case of the undamped load with a 
tachogenerator attached. The tachogenerator is a 
relatively small device and applies a negligible 
torque to the load so that equations 10.9 are 
applicable. Assume that the voltage V, is 
subtracted from the voltage V by an operational- 
amplifier system so that the voltage V, applied to 
the motor is 

( 10.19) 

The system block diagram for this case is shown in 
Fig. 10.15 and we observe that the tachogenerator 

component parts of the system are listed below. 

(ID2 + C D  + K)Oo = Kei (10.15) 

where K = kl k2. Dividing by I to obtain the 
standard form (see equation 9.22) we have 

(10.16) 

where w: = KII and 5 = C/2d(KI). 

equation 10.16 are (see also equation 9.33) 

v, = v- v, (D* + 2 c U , , ~  + w,,2)eo = w,,%i 

For the Same input7 Fig. lo.9> the so1utions to appears in an inner loop. The equations for the 

(10.6) 
V=k28, (10.7) 

v, = v- v, (10.19) 

e, = ao{i-e-~wnr[cosUdt e, = ei - e, 

+([/d12- l)sinhw,t]} [>1 T,  = kl V, 
T, = ID28, (10.9b) 

Vt = k4 D 0, (10.18) 

Eliminating T,, V,  , V, V, and 0, 7 we obtain 

[<I + (l/d/l - 12) sin wd t ] }  

= ao{l -e -cwnr[ l+wnt]}  [=1 (10.17) 
= a. { 1 - e- c w n r  [cosh wet 

w h e r e c o d = q , d l - [ 2 a n d w , = w n d 1 2 - l .  

The output 0, does not settle to the required 
value of a. until (theoretically) an infinite time 
has elapsed. In practice, small amounts of 

(ID2+klk4D+klk2)8, = klk2Bi (10.20) reasonably quickly. 
The viscous damper wastes power and cannot 

readily be constructed to give a precise amount of The amount of damping in the system can be 
damping. There are other methods of introducing altered by regulating the techogenerator voltage 
the first-derivative term (CDO,) into the system by a potentiometer circuit. This method of 
equation 10.15, and one of these makes use of a introducing damping is known as output velocity 
d.c. device known as a tachogenerator, driven by feedback. Another common way of introducing 
the load. The voltage Vt produced by the damping is to use proportional-plus-derivative 

action (see problem 10.5). 

Coulomb (dry) friction ensure that motion ceases ID28, = kl [k2(@ - 0,) - k4D8,] 

Figure 10.15 
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10.5 System errors 0, = 0. What would be the steady-state error 
A system equation relates one of the loop following the application of a constant external 
variables to the input(s). It is conventional to torque To to the load? 
have the loop variable on the left-hand side of the 
equation and the input(s) on the right. For 
example, in Fig. 10.13, e,, V ,  T, and 0, are loop 
variables and 0, is the input; equation 10.15 is an 
output-input system equation. To obtain the 
error-input system equation we can replace 0, in 
this equation by 0,- 0, from equation 10.6, to 
obtain 

Equation 10.14 is replaced by 
(10.24) 

or T, + To = (ID2 + CD)Oo (10.25) 

We could equally well have written -To, since 
the direction was unspecified. Putting 
T = T,+ To and T/(ZD2+CD) = eo ,  we can 
draw the system block diagram (Fig. 10.16). 
Notice that the external torque To appears as an 
extra input to the system. Combining equations 
10.25, 10.8, and 10.6 and putting 0, = 0, we have 

(10.26) 

This system equation is identical in form with 
equation 10.15 with 0, and KOi replaced by 0, and 
-TO respectively and SO the solutions can be 
written down immediately from equation 10.17. 
The steady-state error can be obtained by letting 
t-+ 00 and is found to be 

T, - CDO, + To = ID2O0 

(ID2 + CD + K ) ( @  - ee)  = KO, 
(ZD2 + C D  + K)ee = ( ID2 + CD)@ 

(10.21) 

If 0, has the constant value a. as shown in 
Fig. 10.9 then all its derivatives are zero and, for 
this input, equation 10.21 becomes, for t > O ,  

(1o-22) 

We already have the solution for eo, equations 
10.17. Subtracting these functions of 0, from 0, we 
obtain 

k,k20e+ To = ( ID2+ CD)(-ee) 
( ID2 + C D  + kl k2)Oe = - To 

(ID2 + C D  + K ) e e  = 0 

e, = croe-conr {coswdt 

= aoe- wnf { 1 + w,t}  
= age- lwnr  {coshw,t 

[eel,-- = [eels, = -To/(klkz) 

l= 1 (10.23) which is independent of the amount of damping. 
(Note that for zero damping the system oscillates 
indefinitely with a mean error value of -To/ 

The complete solution of equation 10.26 
+ [l/V(J2 - l ) ]  sinhwet} l> 1 

where w 2  = KII and 5 = iC/V(ZK) .  Each of the 
above three equations contains the negative consists of (a) the complementary function, which 
exponential term e-5wnr so that, as t+ 00, ee+O is the transient part of the solution and dies away 
and we say that the final or steady-state error is with time, provided some positive damping is 
zero and write present, and (b) the particular integral or 

steady-state solution which remains after the 
transients have died away. For a constant forcing 

We do not need to solve equation 10.22 to find function, the steady-state solution must be a 
the steady-state value of 0, since this is merely the constant function. 
particular-integral part of the solution, which is Equation 10.26 describes the system for all time 
clearly zero. That the steady-state error is not from 0 to 00. In the steady-state, therefore, 
always zero can be seen from the following 
example. 

Consider the position-control system with 
viscously damped load which has already been 
described. Assume that the system is at rest with 

(kl k2 1). I + [</V(I - <2)]sinwdt} l< 1 

[eelr-m = [eelss = 0 

Dee = D20e = 0 and equation 10.26 becomes 

k ~ k z [ f ) ~ ] , , =  -To 
and the steady-state error is 

[Oelss = - T o / ( ~ I ~ z )  
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Consider once again Fig. 10.13. Assume that 
the system is initially at rest then, at time t = 0, it 
is required that the load have a constant angular 
velocity Ri.  The desired position or input is 
therefore 

e, = o ,  t < o  

and Oj=Rit,  t r O  

as shown in Fig. 10.17. This is known as a ramp 
input. 

The error-input equation for this particular 
input is, from equation 10.21, 

(ID2 + C D  + K ) e e  
= ( ID2+ CD)Ri t  = CRi (10.27) 

The steady-state error is equal to C Q / K  and 
the error response will be of the same form as 
equations 10.17. Since 0, = 0, - e,, the output 
response can be obtained by subtracting the error 
response from the input function. The result is 
illustrated in Figs 10.18(a) and (b). 

in Fig. 10.19. 
The error-input equation for this system can be 

written down directly from equation 10.27, with 
K = kl  k2 replaced by kl (kZ + k5/D). Thus 

[ID2 + C D  + kl (k2 + ks/D)]ee = CRj 
To convert this to a purely differential equation 

we simply differentiate with respect to time by 
multiplying by D: 

[ID3 + CD2 + klk2D + kl k5]ee 
= DCRi = 0 (10.29) 

since CRj is constant. The steady-state error is the 
particular integral of the above equation so that, 
for the ramp input, 

[ e e  1 s  = 0 

10.6 Stability of control systems 
The introduction of integral action in the above 
example had the effect of removing the steady- 
state error to a ramp input. It also had the effect 
of raising the order of the system. The order is 
defined as the highest power of D on the left-hand 
side of a system equation, and in the example it 
was raised from two to three. 

For any particular control system, the system- 
equation loop variable, whichever one is chosen, 
will be preceded by the same polynomial in 
operator D (see problem 10.2). Thus the 
complementary functions (transient responses) 
for the loop variables will have different initial 

A control system with a residual error is conditions but will otherwise be of the same form. 
normally unsatisfactory. Certain steady-state Before the concept of integral action was 
errors can be overcome by using a controller introduced in the previous section, all the system 
which incorporates integral action. Suppose that, equations were of order two; that is, they were of 
in the above example, the voltage V,  applied to the form 
the motor, instead of being directly proportional ( 10.30) to the error e,, is given by 

The transient response, and thus the stability of 
v, = k2ee+k,/ 'eedt such a system, depends only on the coefficients 

provided that a,>O and a2>0,  the com- 
plementary function will not contain any positive 
time exponentials and the system will be stable. If 
a, = 0 (zero damping) the complementary func- 
tion will oscillate indefinitely with constant 
amplitude and, although not strictly unstable, this 
represents unsatisfactory control. Such a system is 

[a2D2+alD+ao]x =f(D)y 

(10.28) 
0 ao, a , ,  and a2. Assuming that ao>O, then, 

In D-operator form this is written 

v,,, = ( k 2 + 3 e e  

and so the block diagram representation of this 
proportional-plus-integral controller is as shown 



described as marginally stable. If either al<O 
(negative damping) or  a2 < 0 (negative mass), the 
transient will contain positive exponentials and 
the system will be unstable. Figure 10.20 
illustrates the various types of stability. 

iii) 
a1 a2 > aOa3 (10.32) 

Hurwitz conditions for stability of a control 
We give below, without proof, the Routh- 
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Consider now the array 

al a0 0 > O  

a3 a2 a1 

(10.46) 
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x = ReAeJ""' (10.47) 
where 0, is the natural circular frequency of the 
oscillation and A is the real amplitude. 

We will use as an illustration the third-order 
system described by equation 10.31. With the 
right-hand side set equal to zero we have, for the 
complementary function, 

(10.48) 

where we assume that a. , al , a2 and a3 are all real 
and positive. 

[a3 D3 + a2 D2al D +%]A e'"nt = 0 

Now 
DA e i o n t  = j w ~  ei"d (10.49) 

(10.50) D ~ A  ei0.t = ( j w ) 2 ~  ei"d 

and it follows that 

D'Ael"n'= (jwn)'A e i o n f  (10.51) 

where r is any integer. 
Equation 10.48 becomes 

[a3 (jwd3 + a2 ( i w J 2  
+al(jw,)+ao]Ae'""'= 0 (10.52) 

so that 

a3 O'wrJ3 + a2 (jwn12 
+al(jw,)+ao = 0 (10.53) 

sinceAei""#O. 

Hence 

or 

The real and imaginary parts must separately be 
zero, hence 

-a3 jw; - a2 wn2 + al jw, + a. = 0 

( -a2wn2 + ao) + 0, ( -a3wn2 + al ) j = o 

( 10.54) 

We conclude that if ala2 = ~ 0 ~ 3  then the 
third-order system will be marginally stable and 
will oscillate at a circular frequency 0, given by 
equation 10.54. We learned above (inequality 
10.32) that if a1a2>aoa3 the system will be stable. 
It is clear that if this inequality is reversed the 
system will be unstable. 

A physical reason why this inequality deter- 
mines the stability of the system can be found by 
considering a small applied sinusoidal forcing 
term, Fe' "', where F is a complex force amplitude 
and w is close to w, . 

The Argand diagram without the forcing term 
is as shown in Fig. 10.21(a) and that with the 
forcing term is shown in Fig. 10.21(b). For energy 

W , 2 = -  a0 =-. a1 

a2 0 3  

Y 

to be fed info the system the force must have a 
component which is in phase with the velocity 
(i.e. the imaginary part of the force must be 
positive). It follows that if energy is required to 
keep the system oscillating then the system must 
be stable. So we see that 

a1 W >  U 3  W3 

or a1>a3w2. 

Now since w is close to w, we can write 

a0 = U2W,2 = a2(w+ E)' 

where E is a small quantity. So as E+O then 
w2+ ao/a2. 

Hence for a stable system 

a1 > a3 (ao/a2 1 
or ala2>a3ao 
Note that as previously mentioned all the a's must 
be positive because if any one a is negative the 
output will diverge for zero input. 

10.7 Frequency response methods 
An assessment of the behaviour of a closed-loop 
control system can be made from an examination 
of the frequency response of the open-loop 
system. Graphical methods are often employed in 
this work. 

The main reasons for using open-loop system 
response methods are 

(a) the overall open-loop system response can 
be built up quickly using standard response curves 
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of the component parts of the system; In frequency response methods we are only 
(b) in practice most open-loop systems are concerned with the steady-state oscillations 

stable which is an advantage if experimental (particular integral) part of the solution and so we 
techniques are used! ignore the transient (complementary function) 

Consider again a simple position-control sys- response. Since the system is linear, the particular 
tem with proportional control driving an inertia integral solution of equation 10.58 must be 
load with viscous damping. The block diagram for sinusoidal and at the same frequency w as the 
the closed-loop system is shown in Fig. 10.22 input. The steady-state solution is therefore of the 
which corresponds to Fig. 10.13 with K = k l  k 2 .  form 

0, = Be I w'. 

Substituting for 0, in equation 10.58, 

D (1 + rD)  B e  I"' = KOA e I"' (10.59) 

or, from equation 10.51 

jw(l+rjw)BeJ"'= K,AeJw' (10.60) 
The forward-pafh Operator (3 (Dl  is given by We see that, for sinusoidal inputs of frequency w 

to the open loop system, the ratio of output to 

If we disconnect the feedback loop we have the - -- - KO = G(jw) (10.61) 
open-loop system of Fig. 10.23 and it can be seen 8 AeJw' jw(l+rjw) 

K 00 
0, ID2 + CD G ( D )  = - = (10.55) input is 

0, B el "' - -  

that G ( D )  is ako the open-loop transfer Operator- 
Here ei is simp1y the input to the open-loop 

which corresponds to the transfer operator G ( D )  
of equation 10.56 with D replaced by jw .  G ( j w )  is 

system. known as the open-loop transfer function. 
We turn our attention now to the closed-loop 

system with unity feedback. A unity feedback 
system is, by definition, one for which the error 
0, = 0, - 0, and therefore, since 

e, = G ( D )  e, (10.62) 

eliminating 0, we obtain 

[ l+G(D)]Oo = G ( D ) e l .  (10.63) 

(For a system with non-unity feedback see 
example 10.7.) 

Suppose now, as was discussed at the end of 
G ( D )  = (10.56) section 10.6, that the closed-loop system is 

marginally stable, i.e. it oscillates continuously at 
frequency w, say, for no input. In this case the 
particular integral part of the solution is zero, but 
the complementary function, or 'transient' part is 

We can write G ( D )  in standard form as 

KO 
D ( l + r D )  

where K, = KIC and r = IIC. (Note that rhas  the 
dimensions of time.) So, for the open-loop 

D ( i + a ) e o = = , e  (10*57) sinusoidal 

0, = Ce Jwn'. 
We wish to consider the frequency response of 

the open-loop so the input must be sinusoidal and 
we can write Substituting into equation 10.63, with the 

right-hand side set equal to zero we have, for the 
complementary function 0 = AeJ  wr 

[ l+G(jw,)]CeJ"n '= 0 where A is complex. Equation 10.57 now 
becomes 

(10.58) 
therefore 

D (1 + rD)  0, = KOA elw' 
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1 + G(jw,) = 0 Therefore 

(10.69) 

A particular real, positive value of w ,  say wl, can 
be found such that I G ( j w )  I = 1 which is 

since Ce i o n r  + 0. KO G ( j w )  = 
What we have shown is that, for marginal W d [ l  + (OT)’] 

stability of the closed-loop system, 

G(jw,) = -1 (10.64) 

In other words, if there exists a particular value of 
w (Le. w = w,) which makes the open-loop 

1 
~1 = - d[ -4 + V($ + KO’ 2)]. 

T 
transfer function, G( jw) ,  have the (real) value of 
- 1, then the closed-loop system will be marginally 
stable and will oscillate continuously at the 
frequency w = 0,. Thus we can see that the 
open-loop transfer function G ( jw)  can give us 
information about the closed-loop performance. 

Returning to our example of the open-loop 

The phase angle between input and output is 

C#J = argG(jw) = argKo+arg 7 +arg - C:) (l+’Tjw) 

( ; j )  ( 1-jTw ) = argKo+arg - +arg 
transfer function 10.61 1 + (WT)’ 

(10.70) 

Is there a value of w which gives C#J the value -r? 
There is only one, which is when w is infinitely 
large. There is therefore no value of w which 
makes G ( j w )  = -1 which shows that the closed- 

stable. This is a result we already knew, since the 
second-order system is always stable. 

KO The polar, or Argand, diagram of the 
open-loop frequency response is known as a 
Nyquist diagram (after H. Nyquist’s work in the 
early 1930s). A sketch of the Nyquist diagram for 
the transfer function of equation 10.61 is shown in 
Fig. 10.24 where the arrow shows the direction of 
increasing frequency. It can be seen that G ( j w )  
never has the critical value of - 1. The plotting of 
Nyquist diagrams and a logarithmic form of 

1 K 0 ~ = K o .  (1o.66) frequency response are discussed later in this 
chapter. 

7T 
KO = 0-- -arctan(w~). 

G ( j w )  = 2 jw (1 + Tjw) 

we can check if a value of w can be found which 
makes G ( jw)  = - 1. In other words, does a value 
of w exist which simultaneously makes the 

angle have the value of - 180” or - 7~ radians? 
amp1itude ratio have unity va1ue and the phase loop system of Fig. 10.22 can never be marginally 

The amplitude ratio is 

1:1= I c ( Jw) l=  l jw( l+Tjw)  1 
(10.65) 

1 

= l K o 1 1 ; l l ~ l  
KO is real so that 

Further 

1 1  1 l i l  = - l - l  w i  = t / - j /  =; 
(10.67) 

and 

1 1 - Tjw 
IG 1 = 1(1+ Tjw)(1- Tjw) 1 = 1 :+-(:;2 1 

- I 1 - Tjw 1 - d [ 1 +  (wT)’] - 
1 + (137)’ - 1 + (WT)* 

1 
- - (1 0.68) 

d [ 1  -k (WT)’] 



10.7 Frequency response methods 167 

Sketches of the Nyquist diagrams for the 
open-loop response of the above system with 
proportional-plus-integral are shown in Fig. 
10.25. It will be observed that the plot for T =  T~ 

passes through the critical point G (jw) = - 1. The 
frequency response of equation 10.73 is discussed 
again in example 10.5. 

Assume now that the proportional controller of 
the above example is replaced by a controller with 
proportional-plus-integral action. The open-loop 
transfer operator of equation 10.55 is thus 
replaced by 

K + Ki/D 
G ( D )  = (10.71) 

ZD2 + CD 

which we can write in the form 

(10.72) KO (1 + 7oD) G ( D )  = 
D ~ ( I + ~ D )  

where KO = Ki/C, T~ = KIKi and 7 = IIC. 
For sinusoidal inputs of circular frequency w we 
can replace D by j w  as before to obtain the 
open-loop transfer function 

KO (1 + 70jw) 
(jw)’ (1 + 7jw) 

Ki G(jo) = K + -  
1 W 

I( jo)’+ Cjo 

- KO( 1 + ?do) 
(jw)*( 1 + Tjw) 

(10.73) 

It is easy to show (see example 10.5) that the 
amplitude ratio is Figure 10.25 

G(jw) = 

- 

Substituting for G ( D )  from equation 10.72 into 
(10.74) the closed-loop inputloutput system equation 

[7D3 + D2+ K07, D + K O ]  0, 

~ o d / [ 1 +  (w70>21 I G (jw) 1 = w2 v[ 1 + (w7)2 1 
10.63 we obtain 

and the phase angle is 

4 = argG(jw) = arctan(w7,) = [KOTOD+ &]0i 
-7r- arctan(w7) (10.75) 

To check for marginal stability of the closed- 
loop system we look for the possibility of a value 
of w which simultaneously gives 1 G(jw) I the 
value of unity and 4 the value of -7r. We note 

If the system is marginally stable. we have an 
equation of the form 10.48 for the complementary 
function, where a. = K O ,  al = K o ~ o ,  a2 = 1 and 
a3 = 7. From equation 10.54, we find 

KO K07o 
1 7 
_-- that, from equation 10.75,4 will have the value of 

- - 7 ~  if T =  T~ for any value of w .  If IG(jw)I = 1 
- 

or  T ~ =  7 

which confirms the result found from considera- 
tion of the open-loop frequency response. 

Bode diagrams 
The overall open-loop amplitude ratio is the 
product of the amplitude ratios of the component 
parts, and the overall phase angle is the sum of 
the phase angles of the component parts (see, for 
examples, equations 10.65 and 10.70). 

When graphical techniques are employed it is 
convenient to plot the logarithm of the amplitude 
ratio I GI (logarithms to the base 10 are always 
used). Traditionally, although not essentially, the 
logarithm of the amplitude is multiplied by 20 to 
give the ratio in the form of decibels (dB). When 

then, from equation 10.74 with 7 = T~ 

Kolw2 = 1 
so, from equation 10.72 

w2 = KO = Ki/C = KII,  
We have shown that, for the open-loop frequency 
response, the amplitude ratio will be unity and 
simultaneously the phase lag will be - 7 ~  radians at 
the excitation frequency w = d ( K / I )  provided 
that Ki/C = KII or CK = IKi.  This is equivalent 
to saying that the closed-loop system will be 
marginally stable provided that 

CK = IKi 

and, if this is the case, the system will oscillate 
continuously at the frequency d ( K / I ) .  
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the frequency response information is presented 
in the form of two graphs, one log I G ( j w )  1 or 
20 log I G ( j w )  I plotted against logw and the other 
the phase angle 4 plotted against logw, the graphs 
are known as Bode diagrams after H. W. Bode 
who presented his work in the 1940s. 

It is useful to build up a number of standard 
Bode diagrams of simple functions since know- 
ledge of these enables (a) the rapid sketching of 
the overall frequency response plots and (b) the 
reduction of experimental results into component 
parts to assist with analysis. Below we use the 
notation E ( D )  for the transfer operator of a Figure ,o.27 ' component part and G (D) for the transfer 
operator of the OPen-IooP. E ( b J )  and G (io) are (iii) E3 (D) = 1/( 1 + 7D) ,  the first order lag 
the corresponding frequency response transfer 
functions. The amplitude ratio I E3 ( j w )  I = [ 1 + ( w ~ ) ~ ] - ~ ' ~  

from equation 10.68 and the phase angle is 
(i) 4 = arg (1 + 7jw)-l = -arctan (07) from equation 
The amplitude ratio IEl(iw)I of the frequency 10.70. With regard to the overall shape of the 
response is simply K and the phase angle 4 is zero Bode diagrams for this function we note that at 
at all frequencies so that the Bode diagrams for low frequencies (small w ) ,  I E3 ( j w )  I + 1 and 
this function are as shown in Fig. 10.26. 4-0 whereas at high frequencies (large w ) ,  

lE3(jw)1+(w7)-' and 4 + - ~ / 2 .  So at low 
frequencies log I E ( j w )  I+ -logo- log7 or 
-logw+log(1/7) which is a straight line of slope 
-1 on the graph of logIE(jo)/ plotted against 
logw (or if decibels are used the slope is -20 
dB/decade or -6 db/octave). 

The log amplitude ratio and phase graphs are 
each therefore asymptotic to straight lines at 
both low and high frequencies. At the particular 
frequency w =  1/7, known as the break 
or corner frequency, I E, ( jw)  I = 2-"* and 
loglE,(jw)l= -0.1505 (and 2010gIE3(jw)1=-3 
dB) also 4 = arctan(-1) = -7d4 radians or -45". 
The Bode diagrams for this function are shown in 
Fig. 10.28. 

E , ( D )  = K ,  a constant 

(ii) E,(D) = 1/D, the integral operator 
The amplitude ratio 1 E2( jw)  I = l / o  from 
equation 10.67. The log of the amplitude ratio 
is log(l/w) = -logw (or, in decibel form, 
-20 log w ) .  The phase angle 4 = arg ( - j /w)  = - ~ / 2  
at all values of the frequency w .  The Bode 
diagrams for this function are shown in Fig. 10.27. 
Each graph is a straight line with the log(ampli- 
tude ratio) graph having a slope of -1. (If 
decibels are used for this graph the gradient is 
-20. A tenfold increase in frequency is known as 
a decade and log10 = 1 so that this slope is often 
described as -20dB/decade. A doubling in 
frequency is known as an octave and 
log2 = 0.3010 so the slope can also be described 
as -6 dB/octave since 20 x 0.3010 = 6.02 = 6). 



As an aid to sketching the phase graph of 
Fig. 10.28 it should be noted that the gradient of 
the graph at the break frequency w = 1/r is 
-(ln10)/2 or -1.151 radians per decade = 
-66"/decade (the proof of this is left for problem 
10.25). 

Accurate values of amplitude ratios in decibel 
form and phase angles for the function E3 ( j w )  are 
listed in the table below and plotted to scale in 
Fig. 10.29 where a logarithmic scale is used for 
the frequency axis. In practice log graph paper is 
normally used for Bode diagrams. 
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the logw axis for any other value of 7. The same 
applies to the phase graph c$ = arg[E3(jw)]. The 
proof of this phenomenon is left to the reader. 

(iv) E,(D) = 1 + TO, the first order lead 
It is left to the reader to show that the log 
amplitude ratios and the phase curves are those 
for the transfer operator E3(D) = (1 + TO)-' 
rotated about the logw axis, as shown in 
Fig. 10.30. 

Assessment of closed-loop stability 
We know that if ,  at a particular value of 
excitation frequency in the open-loop frequency 
response, the amplitude ratio is unity and 
simultaneously the phase angle is -180" (i.e. 
G ( j w )  = -1) the loop, when closed by unity 
feedback, will be marginally stable. The closeness 
of the open-loop Nyquist plot to the critical point, 
G ( j w )  = -1, is a measure of the closed-loop 
stability. 

Take, as an example, a control system with an 
open-loop transfer function of the form 

Figure 10.29 K 
G ( D )  = (10.76) 

D (1 + 71 D )  (1 + 7 2  D) 
w/(rads-') 20ioglE3(.b)l'dB +'degrees The Nyquist diagrams of G ( j w )  for three 

1/(107) -0.04 -5.71 particular values of K are sketched in Figs 
1/(4~) -0.26 -14.04 10.31(a), (b) and (c). 
1 /(2 7) -0.97 -26.57 In Fig. 10.31(b) a value of K has been chosen 
1 / r  -3.01 -45.00 which makes the curve pass through the critical 
2/r -6.99 -63.43 
4/7 - 12.30 -75.96 

1 o/r -20.04 -84.29 

Once scales for the graphs have been chosen, 
all of the graphs of log I E3 ( j w )  I will have the same 
shape, independent of the value of 7. A template 
can be made of the curve which has been drawn 
for a particular value of 7, the break point being 
w = 1/7, then the template can be moved along 
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point (marginally stable closed-loop) while in Figs 
10.31(a) and (c) smaller and larger values of K 
than that used in (b) are used respectively. 

The closed-loop equation, from equation 10.63, 
is 

[I + D ( 1 +  ~ l D ) ( 1 +  K 5 - 2 0 )  ]e0 
K - - 

D (1 + T~ D)(1+  72 D )  e, 
hence 

[7172D3 + ( 7 1  + T ~ ) D ~ +  D +  K]  0, = KO, 

determining, from the open-loop response, 
whether or not the closed-loop system is stable 
and will suffice for all systems described in this 
chapter. There are a group of transfer functions 
where this rule does not apply, but they are 
outside the scope of this book and for these the 
reader is referred to more advanced texts on 
frequency response methods). 

The closeness of the open-loop frequency 
response curve to the critical point is an indication 
of the performance of the closed-loop system and 
a measure of the closeness can be obtained from 
the phase margin +,,, and the gain margin g ,  
which are defined in the open-loop Nyquist 
diagram of Fig. 10.32. 

The phase margin is given by $,,, = 180"+ 4 
when the amplitude ratio is unity. It is the angle 
between the negative real axis and the G ( j w )  
vector when I G ( j w )  I = 1. 

The gain margin is the reciprocal of the 
amplitude ratio when the phase angle 4 = -180". 

If the gain K i n ,  for example, equation 10.76 is 
multiplied by an amount equal to the gain margin, 
the open-loop will then pass through the critical 
point and the corresponding closed-loop will be 
marginally stable. 

Typical values for satisfactory closed-loop 
performance are: 4, should not be less than 
about 45" and g,  should not be less than about 2 
or 6 dB. 

Comparing this with the standard form of 
equation 10.31 and applying inequality 10.32 we 
find, for a stable system, 

K<(7* +72)/(5-172) 

It follows that if K = ( T ~  + ~ ~ ) / ( 7 ~ 7 2 )  the closed- 
loop system will be marginally stable and if 
K >  (71 + 72) / (~1  T ~ )  the closed-loop system will be 
unstable. Figure 10.31(b) corresponds, as men- 
tioned previously, to a marginally stable system 
while Figs 10.31(a) and (c) correspond to stable 
and unstable closed-loop systems respectively. 

If one considers walking along the curve of Fig. 
10.31(a) (stable closed-loop) in the direction of 
increasing frequency it will be observed that the 
critical point G ( j w )  = -1 falls to the left of the 
curve. Similarly for Fig. 10.31(c) (unstable 
closed-loop) the critical point falls to the right. 
This idea can be used as a rule of thumb for 

The phase margin and gain margin can of 
course be found from Bode diagrams and these 
are illustrated in Fig. 10.33. 



Discussion examples 
Example 10.1 
Figure 10.34 shows a hydraulic relay with 
feedback used in a control system. Oil under 
pressure is supplied at P via the spool valve to the 
power ram and can exhaust to the drain at either 
Q or R. The value contains a sliding sleeve and 
the displacements of the spool and sleeve 

Figure 10.34 

measured from the centralised position are x 1  and 
x respectively. Neglecting compressibility and 
inertias, the volumetric flow rate q through the 
valve can be taken to be proportional to the 
effective valve opening; that is, 

q = k(x1 - x )  

The power ram, whose displacement is x 2 ,  has an 
effective area A ,  and the sleeve is connected to 
the ram by the slotted lever EFG, which pivots 
about F. 

Draw a block diagram for the relay and show 
that the transfer operator between x2 and x 1  is of 
the form 

Figure 10.37 
The complementary function (c.f.) of equation 

(iii) is the solution of (TD + 1)xZ = 0, which is of 
the form x2 = X2emr;  hence 

mX2emr+ XZemr = 0 
x2 --- - K and, dividing by X2emr, 
x1 T D + ~  rn = -117 

The c.f. is therefore Find the values of the gain K and the first-order 
time-constant T and determine the response of the 
relay to a step change in x1 of magnitude XI. 

Solution The velocity v2 of the ram downwards 
is equal to the product of the flow q and the area 
A :  

x2 = X2e-r'T 
The particular integral is 

~2 = KX1 
and so the complete solution is 

x2 = X2epr 'T+KXI ( V I  

~2 = D x ~  = qA = k(xl - x ) A  6) 
From the geometry of the feedback link 

(Fig. 10.35), At t = 0, x2 = 0, so that 

xla = x2/b  (ii) 

and equations (i) and (ii) are represented by the 
block diagram of Fig. 10.36. 

Eliminating x from equations (i) and (ii), 

Dx2 = k(xl - ax2/b)A 
(D + kaA/b)x2 = kAxl 

(bDl(kaA) + 1)x2  = (b /a)x l  
or (TD + 1)x2 = Kxl (iii) 

where T = b/(kaA) and K = bla. 

The transfer operator is 

(iv) 
x2 K --- - 
x 1  T D + ~  

which can be represented by the block diagram of 
Fin. 10.37. 
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0 = X , ( l ) + K X ,  
Xz = -KX1 

and substituting for X 2  in equation (v) gives 

x2 = K X l  (1 - e-r'T) 

system which drives the power ram R whose 
vertically upward displacement is w. The velocity 
I.i, of the ram is basically kl  times the displacement 
y, but the pneumatic system introduces a 
first-order lag of time-constant T. The ram adjusts 
valve V, and the flow qi into the tank from a 
constant-head supply is k2 times the ram 
displacement w. A dashpot of damping constant 
C and a spring of stiffness S connect end N to the 
ram and to ground respectively. The mass of all 
the links can be neglected. 

a) Draw a block diagram for the system and 
show that it contains proportional-plus-integral 
action. 

The response is sketched in Fig. 10.38. The b) Show that there will be no steady-state error 
transfer operator (iv) thus represents Propor- in level following a sudden change in the desired 
tional control (the constant of proportionality level hi or demand qo. 
being K )  with a first-order lag of time-constant T. C) Determine the necessary and sufficient 

conditions for system stability. 

Sofurion Considerink? sma1l disp1acements Of 

link GHJ, from similar triangles (Fig. 10.40), 

Example 10.2 
Figure 10.39 shows a level-control rig. The tank T 
has a horizontal cross-syfi-,:! area A ,  and liquid 
flows into the tank at a rate qi and out at a rate qo. 
The height h, of liquid in the tank is sensed by the 
float F, which displaces end G of link GHJ, where 
G H  = HJ = l l .  The desired height hi can be 
adjusted by altering the vertical position of 
end J. Link LMN is connected as shown; ( h i - x y f l  = ( h , + x ) / f ,  

(i) x = ;(hi - h ) = ' h  LM = MN = f 2 .  Point M, whose vertically down- o 2 e  
ward displacement is y ,  is connected to the 
flapper U of a pneumatic flapper-nozzle valve where x is the downward displacement of H (and 

L) and he is the error in level. Similarly, denoting 
the upward displacement of N by z ,  

y = t(x-z) (ii) 

The motion of the ram R is given by 

Dw = [kl/(l  + T D ) ] ~  (iii) 
The downward force acting on N due to the 

spring is Sz, and the upward force due to the 
dashpot is C ( w - 2 ) .  Since the links are light, 
the net force must be zero, 

i.e. S z - C ( + - 2 )  = 0 
(CD + S ) z  = CDw (iv) 

4, = k2W (VI 

The flow into the tank is 

and the net inflow is equal to the area A times the 
rate of change of height h,: 

41 - 40 = ADho ( 4  
Equations (i) to (vi) are represented in the 



Figure 10.41 

which leads to 

A (C + TS)(  kl C2/2 - .S2) > k l  k2 C 3  714 (ix) 
We note that this inequality cannot be satisfied 
unless condition (viii) is satisfied. 

Example 10.3 
In a simple angular-position control system the 
driving torque on the load is k times the error 0,. 
The load is a flywheel of moment of inertia I 
whose motion is opposed by a dry friction torque 
which can be assumed to have a constant 
magnitude Tf . Viscous damping is negligible. 
Numerical values are k = 0.2 N d r a d ,  
I = 1 x lO-3 kg m2, and Tf = 0.015 N m. 

Initially the system is at rest with zero error and 
then the double step input 0, shown in Fig. 10.42 
is applied. Find (a) the final position and (b) the 
time taken for all motion to cease. 

block diagram of Fig. 10.41. The transfer oper- 
ator for the inner loop can be obtained by 
eliminating y and z from equations (ii), (iii), and 
(iv). The result is 

Ik (CD + S) 
D(TD + l)(CD + S) + Ik1 CD 

TC D~ + ( TS + c )D + (S + t k ,  C )  

which indicates proportional-plus-integral action 
with a second-order lag. Eliminating x ,  w, and qi 
and replacing h, by hi - h e ,  we find 

[ A d D 4  +A(TS+ C)D3 + A(S + bk1 C)D2 

W - 
x 
- - 

Ik1 (C  + S/D) - - 

+aklk2CD+4klk2S]he 
=AD2[KD2+(7S+C)D 

+ (S + Ik1 C ) ]  hi 
+ D[7CD2 + (TS + C)D 
+ (S + Ikl C ) ]  qo (vii) 

Note that, for step changes in desired level hi or in 
demand qo, the right-hand side of the system 
equation (vii) is zero and therefore the steady- 
state or particular-integral value of the error he is 
zero. 

The system equation is of the fourth-order form 
(a4D4+a3D3+u2D2+alD+ao)he = . . . 

The first condition for stability is that all the 
coefficients a. , al , a 2 ,  a 3 ,  u4 be positive, which is 
satisfied. The next condition is 

Solution If we choose to denote 0, (and hence 
Oi and 0,) as positive in the anticlockwise 
sense, then the positive direction Of its deriva- 
tives, bo and e,, is also anticlockwise. If the 
flywheel happens to be rotating anticlockwise 
(b,>O), then the friction torque Tf will be 
clockwise and vice versa (see Figs 10.43(a) and 
(b) ). 

u 1  a2 > (13% 

( k  1 kz C/4) (S + k 1 C/2)A 
>A(TS+C)(klk2S/4) 

which reduces to 
k l  c2/2> 7 S 2  (viii) 

The final condition for a fourth-order system is 
al(a2a3)-u~a32-u12a4>0 
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The two equations of motion are overcome the static friction torque Tf. So, 
whenever 6, = 0, motion will not continue unless 
0.2 I 0, I > 0.015 or I 0, I > 0.075. This corresponds 
to the range AB, 0.9255 0,s 1.075, when 0, = 1 
and to the range CD, 1.425r8,11.575, when 
0, = 1.5 (see Fig. 10.44). 

Immediately after .the input 0, is applied, 
0, = 0, = 0 and so the trajectory starts at point 
(a). The initial error is 0, - 0, = 1 - 0 = 1 and the 
initial driving torque ke, = (0.2)(1) = +0.2 N m, 
causing the load velocity 6, to be positive. The 
appropriate centre for the trajectory is 0, = 0.925 

=0.925 (6,>0) ei= 1 (iii) (point A). We could have arrived at the same 
conclusion by noting that the trajectories always 

(iv) follow a clockwise pattern so that, when motion 
commences, the velocity 6, will be positive and 
the centre of the arc at point A. 

(VI The input 0, = 1 for 0.625 s. The angle swept by 
the radii which generate the trajectory is equal to 

= 1.075 (6,<0) 

I (vi) o,t so that, while 0, = 1,  the total angle of = 1.575 (6,<0) 
Each equation is a second-order linear differ- rotation will be [1/(5 x lO-3)]’/2 x 0.625 radians or 

entia1 equation with constant coefficients, no 506.4 degrees; that is, one revolution plus 146.4 
(viscous) damping term e,, and a constant forcing degrees. After point (b), 6, becomes negative so 
term. Thus the equations represent simple we shift the centre to point B and so on until point 
harmonic motion and we know (section 9.8) that (c) is reached. 0, then takes on the value of 1.5 rad 
if we draw a phase-plane plot of 6,/w, against 0, and so the appropriate centres become points C 
the result will be a series of circular arcs with and D. The trajectory continues and then ceases 
centres on the 0, axis corresponding to the at point (e), due to insufficient driving torque. 
particular integral or ‘equilibrium’ position for The final position is 0, = 1.48 rad, and the 
the relevant equation. Since the equations have trajectory makes 2.5 revolutions so that the 
been arranged to have a unity coefficient for e,, total time is 2.5(27~/0,) = 2.5(27~)/(5 X lO-3)-’/2 
the right-hand sides of the equations are the = 0.89s. 
particular integrals. It should be noted that this technique can be 

Each time the velocity 6, = 0, we must check used for any input function 0, if it is approximated 
whether there is sufficient driving torque k0, to by a series of small steps as shown in Fig. 10.45. 

(i) 
(ii) 

ke, - T, = le, (for 6, > 0) 
ke, + Tf = le, (for 6, < 0) 

le, + ke, = kei - Tf (6 ,  >0) 
le, + ke, = kei + Tf (6,<0) 

Replacing 0, by 0, - e,, we obtain 

Substituting numerical values and dividing by 
k = 0.2, 

I (5 x i0-’)eO + e, 

(5 x io-’)e0 + e, 

(5 x i0-’)eO + e, 

(5 x 10-’)8, + e, 
= 1.425 (bo>O) 0, = 1.5 

Figure 10.44 



torque TL so that 

T , - T ~ ~ , - ( ~ ~ , + T ~ ) = o  
To = ( C +  Tb)W, + TL 

= (0.2) + 0.35)200 
+50= 160Nm 

a) When the speed is varying, the equation of 
motion for the load with the brake removed and 
the governor disconnected (Le. 4 remaining 
constant at O O ) ,  allowing for the time lag 7, is Example 10.4 

directly to a load. The total effective moment of 
inertia is I and the damping constant is C. A 

carburettor by N degrees for each rads of speed 
change. For steady-state operation over a 
particular operating range, the torque TD driving 

increase in throttle angle and decreases by Tb for 
each rads increase in the engine speed 0,. 

During speed variation, the carburettor intro- 
duces a first-order lag of time-constant 7. 
Numerica1 va1ues are I = 3 kg m2, c = o.2 N m 
per rad/s, N = lo, Ta = 4 N m 7  Tb = 0-35 N m, 
and T = 0.15 s. 

A brake app1ies a torque TL Of 50 N m to the 

‘Onstant ’peed Of 200 rads. The brake is then 
removed. Assuming that the system is linear, 

A four-cylinder petrol engine is connected TD/( 1 + TD) - CO, = IDw, 
To - Tb O, = ( 1 + 7D)(ID + C) W, 

[ h D 2 + ( I + c T ) D + ( c +  Tb)]W,= To governor increases the throttle angle 4 of the 
Substituting numerical values, 

[0.45D2 + 3.03D + 0.551 o, = 160 
the ‘rankshaft increases by Ta for each degree The final value of 0, is the particular integral of 

the above equation, which is 

b) When the governor is connected, it will 
operate in such a way as to increase the torque if 
the speed drops and vice versa. We can assume 
that, before the load was removed, the error in 
speed o, was zero; i.e. wi, the desired speed, is 

by the governor is found from the two equations 

w, = 160/0.55 = 290.9 rads 

load which is being driven by the engine at a equal to 200 rads. The extra torque Tg provided 

obtain the differential equation which describes 4 = No,  
the engine speed (a) if the governor is Tg = Ta4 
disconnected and (b) if the governor is connected. 
Find the final speed for each case and draw a 
block diagram of the system for case (b). 

so that 

Tg = NTaw, 
and TD in part (a) is replaced by 

TD= To-Tbo,+Tg 
Substituting q - w, for o, , the resulting 

equation is 
[ITD~+(Z+CT)D+(C+ Tb+NTa)]wo 

= To+ NTao,  
[0.45D2 + 3.03D + 40.551 o, = 8160 

Solution Let us measure the throttle angle 4 
from its original position when the engine speed is 
steady at 200 rads. Figure 10.46 shows the engine 
torque TD for 4 = 0 and steady-speed operation 
and is of the form 

The SteadY-state value of 00 is 
w, = 8160140.55 = 201.2 rads 

A block diagram of the control system is shown 
in Fig. 10.47. 

TD = To-  TbW, 
The engine torque TD for this case is simply equal 
to the damping torque Coo plus the braking 
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Figure 10.47 

Example 10.5 
Consider the control system with proportional- 
plus-integral action with the forward path transfer 
operator 

Assuming next that TO<T (i.e. 1 / ~ 0 > 1 / ~ )  the 
break points of Eb and Ed are interchanged 
resulting in the Bode diagrams of Fig. 10.49. 

Finally, if ro = 7, the numerator and denomina- 
tor terms (1 + T ~ ~ o )  and (1 + +) in equation 
10.77 cancel so that the transfer function reduces K + K i / D  - K o ( l + ~ o D )  G ( D )  = - 

ID2 + CD D2 (1 + TD) to 

as in equations 10.71 and 10.2 and obtain sketches KO 
(jwI2 

G ( j w )  = - for T ~ > T ,  T~ = T and T ~ < T  of the overall 
open-loop frequency response in Bode and 
Nyquist form. 

Solution The open-loop frequency response 
transfer function 

G ( j w )  = 

Again letting KO = 1, the Bode diagrams for this 
system are simply the straight line graphs shown 
in Fig. 1o.5o. 

For any positive value of KO not equal to unity 
an additional component of log KO would be 
added to the amplitude ratio plots, so that the 
overall frequency response amplitude ratio curves 
obtained above would simply be moved upwards 
by an amount equal to logKO. If the above Bode 
diagrams are re-plotted in Nyquist form, the 
curves of Fig. 10.25 result. 

KO (1 + TOjW) (1o-77) 

can be broken down into its individual compo- 
nents 

(jO)2(1 + TjU)  

Ea(iW) = KO 

&(io) = l/(jw)2 
E,, ( j w )  = 1 + To jw  

Ed (io) = 1/( 1 + T j O )  . Example 10.6 
The forward path transfer function of a control 
system is given by 

G ( D )  = 

The Bode diagrams for E,, Eb and Ed have been 
discussed above, see Figs 10.26, 10.30 and 10.28. 

C ( D  + 5 )  
D (D + 2)(D + 3) E = -  - 

From the open-loop frequency response deter- 
mine 

a) 
b) 
c) 
Solution We can rewrite the transfer operator in 
standard fom as 

G ( D )  = 

c tw)k) 
so, combining two sets of Bode diagrams as in 
Fig. 10.27 the amplitude part for Ec( jw)  is a 
straight line of gradient -2 passing through the 
origin and the phase angle is constant at -180". 

The break frequencies for Eb and Ed are at 
w = l/To and w = 1 / ~  respectively. 

Let us assume first that T ~ > T  (Le.  TO< UT) 
and initially, for simplicity, that KO = 1 and only 

the amplitude ratio graph. The component parts 
of the transfer function are shown with the dashed 
lines in Fig. 10.48 and the overall open-loop where KO = 5C/6, r1 = 1/5, T~ = 1/2 and T~ = 1/3. 
response with the full lines. The Bode diagrams for each of the five 

the phase margin &, if C = 10, 
the value of C if &, = 45", and 
the gain margin for each case. 

the straight line approximations are required on KOU+ 71D) 

D(1+72D)(1+730) 



Figure 10.48 

Figure 10.49 
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- 
component parts of C ( j w )  can be drawn, and the 
overall open-loop frequency response can be 
obtained by combining the components as in 
example 10.5. The phase margin and the gain 
margin can then be determined as in Fig. 10.33. 
This method is left as an exercise to the reader. 

Alternatively we can work directly from the 
overall amplitude ratio and phase functions, as 
follows. 

The overall open-loop frequency response 
function is 

KO (1 + T l b )  G ( j w )  = 
j w  (1 + 72jw)( 1 + T+) 

The amplitude ratio is Determine (a) the closed-loop transfer oper- 
ator and (b) equivalent unity feedback system. 

a) The difference between the desired input and 
the signal which is now fed back is 

Kod[1 + (T1w)21 410.78) Solution 
' G ( j w ) I  =0d1+(T20)2d[1+(T3W) 

and the phase angle is 
4 = arctan(T1w)- ~/2-arctan(72w) e: = e, - H ( D )  e, 

e, = G ( D )  e: = G (D) e, - G(D)H(D)  e, 
(10.79) therefore the output - arctan ( T~ w )  

a) To find the phase margin we need to establish 

the numerical values into equations 10.78 and 
10.79 and by trying a few values of w ,  we obtain 

the value of w at which 1 G ( j w )  I = 1. Substituting 

the following table e, = 

thus 

G ( D )  ei 
1 + G(D)H(D) 

IW4l ddwrees so that the transfer operator is given by w/(rad s-') ;:" - - 123.7 146.9 !%= G ( D )  
1.27 - 1 60.3 e, 1 + G ( D ) H ( D )  

b) Figure 10.51(b) shows the equivalent unity 
0.72 - 167.3 

The amplitude ratio is seen to be unity 
somewhere between w = 3 and w = 4 rads. By 
trial and error we find that, at w = 3.34 rads, I G ( j w )  I = 1.O001 and the phase angle is -163.8". 

The phase margin is therefore 
& = 180 - 163.8 = 16.2". 

(This would be too small in a practical system; the 
closed loop response would be too oscillatory). 
b) If the phase margin c&, is to be 45" we need 
to find the value of w at which 
4 = - 180" + 45" = - 135". From the above table 
we see this occurs somewhere between w = 1 and 
w = 2  rads. By trial and error we find that at 
w = 1.427 rads the phase angle C$ = -135.02". 
Using the value of C = 10 as in a) above we find 
that the corresponding value of 'I G ( j w )  1 is 4.464. 
For a phase margin of 45" this value of I G ( j w )  1 
should be unity so C needs to be reduced by a 
factor of 4.464. This gives C = 1014.464 = 2.24. 

Example 10.7 
Figure 10.51(a) shows the block diagram for a 
system where the feedback is operated on by a 
transfer operator H ( D ) .  
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feedback system such that the closed-loop [ZDZ+(C+K2)D+K1K3]0,= KIK30i 
transfer operator is the same as (a) 

i.e. 

or G + G G ' =  G'+GHG' 

10.4 A voltage V is produced which is K1 times the 
error in a position-control system. The load is a 
flywheel of moment of inertia I ,  and the damping 
torque at the load is equal to C times the angular 
velocity of the load. The moment of inertia of the rotor 
of the motor which drives the load is I, and the torque 
developed between the rotor and the stator is given by 
T, = K2 V. Obtain the system equation for the output 
0, and also determine the damping factor for each of finally G' = 
the following cases: (a) the motor is directly connected 
to the load; (b) as (a) with an external torque QL 

Note that the open-loop transfer 'perator for (a) applied to the load; (c) a gearbox is placed between the 
is GH and if G ( jw)H(  j w )  equals -1  then the motor and the load such that OM = n q  . 
closed-loop system is marginally stable. Also for 
(b) the open-loop transfer operator is Gt and if 10.5 The amount of damping in a position-control 

system is increased by using proportional-plus- 

stab1e. A little a1gebra ''On shows that applied to the load is given by TD = kl  0, + k2 e,, where 
G ' ( j w )  = -1 implies that G ( j w ) H ( b )  = -1, So e, is the error. The moment of inertia of the load is I 
that all the analysis carried out in this chapter and the viscous damping constant is C. If the damping 
considering unity feedback applies equally well to ratio of the system is 4, show that k,Z = (C+ k2)'. 

the appropriate open-loop transfer operator. by a spool valve V. It can be assumed that the ram 
velocity is proportional to the spool displacement 
measured from the centralised position, the constant of 
proportionality being k. The slotted link PQR is 
connected to the spool and ram as shown. 

G ( D )  - - G ' ( D )  
1 + G(D)H(D)  1 + G ' ( D )  

G = G ' ( l +  G H - G )  

G 
( l + G H - G )  

G ' (io) equa1s -' then this system is margina11y &rjvatjve action such that the driving tqrque TD 

systems with non-unity feedback Operators using 10.6 Figure 10.54 shows a hydraulic power ram B fed 

Problems 
10.1 
of Fig. 10.52, obtain the transfer operator for x l y .  

For the system represented by the block diagram 

10.2 For the control system of Fig. 10.53, obtain the 
system equation for each of the loop variables. 

Show that the transfer operator for the arrangement 
is of the form x l y  = A/( l+  TD) and write down ex- 
pressions for the gain A and first-order time-constant T .  

10.7 The hydraulic relay of problem 10.6 is modified 
by the addition of a spring of stiffness S and a damper 
of damping constant C, as shown in Fig. 10.55. Show 
that the modified arrangement gives proportional-plus- 
integral action with a first-order lag of time-constant T 

by obtaining the transfer operator in the form 

10.3 A motor used in a position-control system has its 
input voltage V ,  , its output torque T,  , and its angular 
velocity om related by the equation 

T, = K1 V, -  K ~ w ,  

The motor is connected directly to a load of moment of 
inertia I whose motion is opposed by a viscous damping 

If the motor voltage V ,  is given by K3 e,, where 0, is 
the position error, show that the output-input system 
equation is 

x (1 + ~ / ( T ~ D ) )  

Y (1 + TD) 
torque equal to C times the angular velocity of the load. - = A  
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10.14 See problem 9.21. In a position-control system, 
the driving torque on the load is 0.2 N d r a d  of error. 
The load is a flywheel of moment of inertia 5 x lO-4 
kg m2 whose motion is opposed by a dry-friction torque 
such that the torque required to initiate motion is 
0.022Nm but once motion has started the resisting 
torque is 0.015 N m. Viscous damping is negligible. 
Initially the system is at rest and then a step input of 1 
radian is applied. Find (a) the time taken for all motion 
to cease and (b) the steady-state error. 

10.15 In an angular-position control system the load 
consists of a flywheel of moment of inertia IL and the 
driving torque is K times the position error. Damping 
of the load is brought about by a viscous Lanchester 
damper in the form of a second flywheel of moment of 
inertia I D  mounted coaxially with the first and con- 
nected to it by a viscous damper. The torque transmit- 
ted through the damper is C times the relative angular 
velocity of the flywheels. 

a) Show that the system is stable. 

b) Determine the steady-state errors following inputs 
of the form (i) Au( t ) ,  (ii) Atu(t),  and (iii) At2u(t)  
where A is constant and u ( t )  = 0 for t < 0 ,  u ( t )  = 1 for 
t z  0. 

by a motor M having an Output torque Q .  Flywhee1 A 
drives flywheel B by viscous action, the torque trans- 
mitted being C times the relative angular velocity. One 
end of a spring of torsional stiffness S is attached to B, 

and B are In and IB respectively; the inertia of M is 
negligible. 

Evaluate the constant A ,  the lag constant T, and the 
integral time constant T ~ .  

10.8 Consider the level-control system of example 
10.2 with the spring removed and the dashpot replaced 
by a rigid link. The system is steady, supplying a 
constant demand Q,. Show that if the demand is 
increased by lo%, the level drops by 0.2 Q o / k 2 .  
10.9 The load of a position-control System is an 
undamped flywheel of moment of inertia I. The driving 
torque on the load may be assumed to be KO times the 

amplifier whose output is V have a combined transfer 
operator 

motor input voltage I/. A three-term controller and l0.l6 Figure ''-56 shows a flywheel A which is driven 

Vl0, = (K, + K2D + K3ID) 

where 0, is the position emor, and D the operator dd t .  the Other end being fixed. The moments Of inertia Of A 

- a) Show that the maximum value of K3 for stability is 

b) Show that the steady-state position error for each 
of the following inputs is zero: (i) step input, (ii) ramp 
input, and (iii) acceleration input. 

10.10 A simple position-control system has a vis- 
cously damped load. The moment of inertia of the load 
is 4 kg m2 and the damping constant is 8 N m per rads. 
The driving torque applied to the load is K times the 
position error and the system has a damping ratio of 
unity. (a) Find the value of K .  (b) If the system is 
initially at rest and then at t = 0 the input shaft is 
rotated at 0.4 rads, find the steady-state position error. 

10.11 For the previous problem, show that the posi- 
by tion of the load is given 

seconds. Find when the maximum acceleration of the 
load occurs and determine its value. 
10.12 Derive all of equations 10.17. 

10.13 See example 10.3. Rewrite equations (iii) to 
(vi) in terms of 0, instead of 0,. Draw the phase-plane 
plot of 0,/w, against 0, and hence show that the final 
error 0, is 0.02 rad. 

KO K1 K2lI. 

a) Derive a differential equation relating Q to the 
angular position 0.4 of A. 

b) If A is the load in a position-control system and Q 
is K times the error, obtain the fourth-order output- 
input system equation and show that the system is 
always stable. 

10.17 In a speed-control system, the driving torque 

for each rads of errOr w,. The load consists of a 
flywheel of moment of inertia 0.5 kgm2 with viscous 
damping amounting to 0.04 N m  per rads  of load 
speed. 

a) If the load is running at a constant speed of 150 
rads  with no error, determine the equation relating TD 
to we and find the time-constant of the system. 

e~ = 0.4t-0.8[1 - e-'(1 +i t ) ]  where t is the time in T,, which is applied to the load increases by 0.01 N m 



the displacement x of the trolley such that 
D2x = ( A  + BD) 6 where A and B are positive con- 
et-ntc 

Frequency (w)/ Amplitude Phase lag/ 
(rad/-') ratio degrees 

- 0.6 17.0 
1 10 80 
2 5.5 69 
3 4.0 60 
4 3.2 50 
5 2.7 45 

10 2.2 29 
20 2.1 16 

100 2.0 5 

mics of the pendulum are represented by 
(g - &D2) 6 = D2x and that the control will be success- 
ful provided that A >g. 

Initially the control is switched off and the pendulum 
held at an angle 6 = e l .  At time t = 0 the pendulum is 
released and simultaneously the control is brought into 
action. Show that, in the steady-state, the trolley has a 
constant velocity to the right and determine this 
velocity. 

10.21 Obtain accurate Bode plots of the transfer 

Frequency (w)/ Amplitude Phase lag/ 
(rad/s-') ratio degrees 

1 5.0 96 
2 2.5 1 00 
4 1.1 110 
8 0.5 130 

20 0.1 155 
50 0.02 170 

100 - 175 
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a) What is the appropriate value of K? 
b) What is the gain margin? 

c) What is the damping ratio of the closed-loop 
system? 

10.26 The transfer function of a first-order lag is of 
the form E ( j w )  = (1 + dw) - ' .  Show that, at the break 
frequency w = UT, the slope of the phase-frequency 
plot is -66"/decade. 



11 
Dynamics of a body in three-dimensional 
motion 

11.1 Introduction 
A particle in three-dimensional motion requires 
three independent co-ordinates to specify its 
position and is said to have three degrees of 
freedom. For a rigid body the positions of three 
points specify the location and orientation of the 
body uniquely. The nine co-ordinates are not, 
however, independent because there are three 
equations of constraint expressing the fact that 
the distances between the three points are and reversing the order transforms P to P'. 
constant; thus there are only six independent 
co-ordinates. An unrestrained rigid body there- 
fore has six degrees of freedom. 

Another way of defining the position of a body 
is to locate one Point of the body - three 
co-ordinates - then to specify the direction of a 
line fixed to the body, two co-ordinates, and 
finally a rotation about this line giving six 
co-ordinates in total. 

In order to simplify the handling of three- 
dimensional problems it is frequently convenient 
to use translating and/or rotating axes. These axes 
may be regarded kinematically as a rigid body, so 
a study of the motion of a rigid body will be 
undertaken first. 

11.2 Finite rotation 
It has already been stated that finite rotation does 
not obey the laws of vector addition; this is easily 
demonstrated with reference to Fig. 11.1. 

The displacement of point P to P' has been 
achieved by a rotation of 90" about the X-axis 
followed by a rotation of 90" about Z-axis. If the 
order of rotation had been reversed, the point P 
would have been moved to I"', which is clearly a 
different position. If the rotations are defined 
relative to axes fixed to the body, it is found that a 
rotation of 90" about the X-axis followed by a 90" 
rotation about the new Z-axis transforms P to P 

The change in position produced by a rotation 
about the X-axis followed by a rotation about the 
Z-axis can be effected by a single rotation about 
an axis through 0. The direction of thi_s axis is 
easily found since the displacements PP', s', 
and Rxt are all normal to the axis of rotation; 
therefore the forming of the vector product of any 
two will give a vector parallel to the axis of 
rotation - see Fig. 11.2. 

Two of the displacement vectors are 
P T  = i(3 - 1) + j ( l - 2 )  + k(2 - 3) 

SQ' = i(3 - 1) + j ( l -  1) +k(l -3) 
= 2i- lj- lk 

= 2i- 2k 
and 
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+ -  
PP’xQQ’=  

1 j k 

2 -1 -1 

2 0 -2 

example 11.1). 
In conclusion, we now state the following 

theorems. 

i) Any finite displacement of a rigid body may 
be reduced to a single rotation about an axis plus 
a translation parallel to the same axis. This axis is 
known as Poinsot’s central axis. (It should be 
noted that only the displacements are equivalent 
and not the paths taken by the points.) 

ii) If a point on a rigid body does not change its 
position then any series of successive rotations 
can be compounded to a rotation about a single 
axis (Euler’s theorem). 

iii) Any displacement of a rigid body may be 
compounded from a single rotation about any 
given point plus a translation of that point 
(Chasles’s theorem). 

11.3 Angular velocity 
First consider Fig. 11.3(a) which shows the sur- 
face of a sphere radius r .  The finite displacement 
PP’ has a magnitude 2tan48,INN’I and is in a 
direction parallel to i x NN’ or to i x s’. 

+ 
+ 

[ b/ - 
We see that - 

PP‘ = 2 tan 40,i x t(oP + 5’) (11.1) - -  
since &(OP+OP‘) = Sr, see Fig. 11.3(b). 
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Similarly, represented by a single angular velocity about an 
axis through that point; 

iii) any motion of a rigid body may be represented 
by the velocity of a point plus an angular velocity 
about an axis through that point. 

and ?$-+66+r So far we have discussed angular displacement 
and angular velocity, so a few words on angular 

thus acceleration will be timely. Angular acceleration, 
and dwldt, is not as significant as the acceleration of 

the centre of mass of a body because, as we shall 
therefore a = PP’ + P’Q = A r  see, the moment of the forces acting externally on 
or the body are related to the rate of change of the 

moment of momentum, which in many cases 
cannot be written as a constant times the angular 
acceleration (exceptions being fixed-axis rotation 
and cases where the inertial properties of the 
body do not depend on orientation). 

11.4 Differentiation of a vector when 
expressed in terms of a moving set of (3 axes 

FQ = 2tanf0,k x :(S + 66) 

2 tan fat?, i-+ A& i 

For small angles, 

- 
PP’ = (AOxi) x r 

F Q  = (AOzk) x r 
- +  

A r  = (A&i+ A8,k) x r 

If this change takes place in a time At then 

v = limAf+o- - limA,o - i + ~ k x r 

v = ( w x i +  w ,k )  x r 
(2 2 )  - 

A r  
At 

SO 

where w = limA,o - 

It is clear that if a third rotation about the y-axis 
is added then 

v =  ( w x i + w y j + o , k ) x r  
= w X r  (11.2) 

where w is the angular velocity vector; therefore 
angular velocity is equal to the sum of its 
component parts in the same manner as any other 
vector quantity. 

It is worth noting that a given angular velocity 
w gives rise to a specific velocity v of a point 
having a position vector r. However the inverse is 
not unique because a given velocity v of a point at 
r can be produced by any angular velocity vector, 
of appropriate magnitude, which lies in a plane 

an axis along r does not alter o, we see that 

The vector AB shown in Fig. 11.4 may be 
expressed in terms of its components along a fixed 
set of X-, Y-,  Z-axes as 

(11.3) 
normal to v.  Because an angular velocity or about - 

AB 1 Cxl+ CyJ + C Z K  

v = w x r = ( w , + w , ) x r  or along a moving set of x-, y-, z-axes as - 
thus only on, the component of o normal to r, 
can be found. 

It is obvious that if the three theorems 
previously quoted apply to finite displacements 
then they must apply to infinitesimal displace- 
ments and thus to angular velocities. Hence in 
terms of angular velocities we may state 
i) any motion of a rigid body may be described 
by a single angular velocity plus a translational 
velocity parallel to the angular velocity vector; 
ii) any motion of a body about a point may be 

AB =c , i+cJ+c ,k  (11.4) 

In all future work we must carefully distinguish 
between a vector expressed in terms of different 
base vectors and a vector as seen from a moving 
set of axes. In the first case we are merely 
expressing the same vector in different compo- 
nents, whereas in the second case the vector 
quantity may be different. 

Imagine two observers, one attached to the 
fixed set of axes and the other attached to the 
moving x-, y - ,  z-axes. Both observers will agree 
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= - j + > j + - k  (2 : 2 )  on the magnitude and direction of s although 
they will express the vector in terms of different 
base vectors, as in equations 11.3 and 11.4. 

If AB is fixed with respect to the x- ,  y-, z-axes 
then [d(s)/dt] , ,  = 0, the subscript xyz meaning 
'as seen from the moving x- ,  y-, z-axes'. Our 
observer attached to the X-,  Y-, Z-axes will detect 
a change in the vector AB if the x- ,  y,  z-axes are 
rotating. Pure translation will not produce any 
change in the vector AB because its length and 
orientation will not be affected. 

If 0' is moving relative to 0 with a velocity 
vo.lo and in addition the x- ,  y-, z-axes are rotating 
at an angular velocity o relative to the X-, Y-,  
Z-axes, then the absolute velocity of point B, 
which is fixed in the xyz-frame, is given by 

+ (a,@ x i + ayw x j +  a z o  x k )  (11.6) 

The first group of three terms gives the rate of 
change of the vector as seen from the moving 
frame of reference, for which we shall use the 
notation aA/at = [ d A / d t ] ~ .  The last group can be 
rearranged to give 

+ 

- 
+ 

wX(a,i+a,,j+a,k) = o X A  

Thus equation 11.6 becornes 

(11.7) 

where dAldt = [dA/dt],, is the rate of change of 
a vector as seen from the fixed set of axes, 
aAlat = [dA/dt],, is the rate of change of a vector 
as seen from the rotating set of axes, and o is the 
angular velocity of the moving set of axes relative 
to the fixed set of axes. Equation 11.7 is very 
important and will be used several times in the 
remaining part of this chapter. 

11.5 Dynamics of a particle in three- 
dimensional motion 

(11 3) Cartesian co-ordinates 

dA dA 
+ o x A  -= -  

dt at 

UBI0 = VO'IO + VBIO' 

= V0'10 + 0 x pBI0' 
(from equation 11.2) 

The velocity of A is 

VAIO = VO'/O + o x PAIO' 

Thus V B ~ A  = vB/O - UNO = O x p ~ l o ,  - o x PAIO, 
3 

= w X ( p ~ 1 0 '  -pAIo, ) = o x AB - + 
or 

which, as stated earlier, is independent of vo,/o. 

VBIA = d(AB)/dt = o x AB 
The equation of motion for the particle shown in 
Fig. l lS is simP1Y Although s has been considered to be a 

displacement vector, it could represent any vector F=mF (11.8) 
which is constant as seen from the xyz-frame. 

A unit vector attached to the xyz-frame is a 
vector of the type just considered; hence, from 
equation 11.5, 

d(i)ldt = o x i 
d(j)ldt = o x j 

and d(k)/dt = o x  k 

Writing o = wxi+wyj+w,k 
we see that d(i)dt = -wyk+ e> Figure 11.5 

d(j)ldt = oxk-w,i 
d(k)/dt = w d +  wyi so the main task is to express the acceleration in a 

suitable co-ordinate system governed by the type 
of problem in hand. If the force is readily 
expressed in terms of Cartesian co-ordinates then 
it is convenient to express the acceleration in the 
same co-ordinates. This system poses no new 
problems for three-dimensional motion and the 
expressions for displacement, velocity, and 
acceleration are listed below for the sake of 

Consider now a vector A = a,i+a,,j+a,k. By 
the usual rule for the differentiation of a product, 

dA z = (%i+ux:)+(%j+ay$) 

+ --+a,- (2 dk dt ) completeness: 



r = x i  + y j +  zk (11.9) 

v = i = x j + y j + i k  (11.10) 

a =  i = y = i i + y j + &  (1 1.11) 

If the force is expressible in cylindrical or  
spherical co-ordinates then we shall need expres- 
sions for acceleration in these systems, or if the 
particle is constrained to move along a prescribed 
path then path co-ordinates may be required. 
These systems of co-ordinates will now be 
considered. 

Cylindrical co-ordinates 
Cylindrical co-ordinates are a simple extension of 
the polar co-ordinates encountered in Chapter 2: 
the position of a point is now defined by the 
co-ordinates R ,  8, and z as shown in Fig. 11.6. 
The unit vectors e R ,  e0 and k form an 
orthonormal triad, where eR is in the direction of 
R, e0 is normal to eR and lies in the xy-plane, in 
the sense shown in the figure, and k is in the 
z-direction. 
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= ReR + ( R e  + R 6 )  e0 + 2k + &?e0 - R e 2  eR 

= (R  - R#2)eR 
+(2R8+ R$)e0+2k ( 1 1.14) 

Compare this derivation with those used in 
Chapter 2.  

Path co-ordinates 
In Fig. 11.7, t i s  the unit vector which is tangent to 
the path taken by the particle, n is the unit vector 
normal to the path and directed towards the 
centre of curvature, and b completes the 
orthonormal triad of unit vectors. 

In this system, 

Figure 11.7 

r = r, + J(dst)  (11.15) 

and v = (ds/dt)t (1 1.16) 

where s is the distance measured along the path. 
The angular velocity of the triad as the point 

moves along the path is wb, since t and n both lie 
in the osculating plane of the curve; hence 

a = dv/dt = (d2s/dt2)t+ (dsldt)(dt/dt) 
- 
If the point P moves along any path then the 

triad will rotate about the z-axis at a rate 8, so that 
the angular velocity of the triad is w = 6k. = S t +  (dsldt) wb x t 

= st + Swn The position of P is given by (1 1.17) 

If the radius of curvature of the path at P is p, r =  R e R + z k  (1 1.12) 
then 

the velocity v = dr/dt = ReR + RiR + i k  
v = w x p = wb x p(-n) = wpt 

Using equation 11.7 to evaluate iR, 
therefore S = wp 
Again this should be compared with the approach V = k ? R  + R w  x eR+ i k  

= k e R + R 8 k X e R + i k  in Chapter 2. 
= ReR + R6e0 + ik (1 1.13) 

The acceleration iS found by applying equation 
Spherical co-ordinates 
The unit vectors shown in ~ i ~ .  11.8 are in 
directions such that e, is in the direction of 
increasing radius, 19 and 4 constant. The direction 
of e0 is the same as the displacement of the point P 
if only 8 varies, and e+ is similarly defined. 

11.7 again: 

a =  dv /d t+wxv  

= [Re, + (Re + R 6 )  e0 + Zk] 
+ 6k x (ReR + R6ee + ik) The angular velocity of the triad is 
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r = R + r '  (11.21) 

j - = R + F  (1 1.22) 

i '=R+)"  (1 1.23) 

If the force acting on the ith particle of a group 

F . =  m.i'.= 1 1  m.R++.i'.' 1 1  (1 1.24) 

is F j ,  then 

Summing for the group, 

w = @ k - & ,  c Fj  = 2 external forces 
= Bsin 4er + ecos +?+ - 4 x 8  = Mk+CmjFj' (11.25) 

Provided that R is zero then equation 11.25 is of 
the same form as that obtained using inertial axes, 
therefore any set of axes moving at a constant 
velocity, without rotation, relative to inertial axes 
are also inertial axes. 

For cases when R is not zero, equation 11.25 

Now r = re, (1 1.18) 

and, using equation 11.7, 

v=Le ,+roxe ,  

= Le,+ r(ecos+?, + &+) 

= Le, + recos +?e + i+e4 (11.19) may be written 
Differentiating again using equation 11.7, we CF;-MR = Emiri' 

have the acceleration: 
thus from the point of view of an observer moving 
with the x- ,  y - ,  z-axes it appears that a body force, 

+(i4+rc$)e4 similar to weight, is acting on the system. Indeed, 
without the means of observing the rest of the 
universe it is impossible to distinguish between a 

+ &in+ -4 ecos 4 real gravitational force and the apparent one 
which arises if the moving set of axes is taken as a 
frame of reference. 

For example, imagine an observer descending 
in a lift which has a constant acceleration less than 
that due to gravity so that the observer does not 
leave the floor. There is no experiment which can 
be performed within the lift which will tell the 
observer whether the lift is accelerating or 
whether the strength of the gravitational field has 

a = i ' e , + ( i . 8 c o s < b + r e c o s ~ - r i s i n ~ ~ ) e 8  

e, e8 e4 

L recos4 r 4  
Expanding the determinant and collecting the 

terms gives 

a = (i'-r+rb2cos24)e, 
+ (recos4-2re4sin4+2L8cos~)ee 
+ (rc$+ 2L&+ re2sin4cos4)e4 (11.20) 

11.6 Motion relative to translating axes been reduced. 
In many problems it is often easier to express the 
motion of a system in terms of co-ordinate axes 11.7 
which are themselves in motion. Consider first the We will now consider the case in which the x - ,  y - ,  
motion of a particle expressed in terms of z-axes shown in Fig. 11.10 are rotating at an 
co-ordinates which are moving, but not rotating, angular velocity w relative to the inertial axes. 
relative to a set of inertial axes. From Fig. 11.9 we We shall use primed symbols to indicate that the 
have vector is as seen by an observer attached to the 

rotating frame. v 

Motion relative to rotating axes 

Figure 11.9 
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The displacement vector is the same when 
viewed from either frame, although each observer 
may use different base vectors. Therefore 

(11 .26 )  
and by using equation 11.7 the velocity is given by 

(1 1‘27)  

locate the other body on which the equal and 
opposite force acts, whereas F is due to contact 
with another body or a body force of gravitational 
or electromagnetic origin, again due to the 
presence of some identifiable body. 

The second term on the left-hand side of 
equation 11.30 is a ‘force’ due to the acceleration 
of the axes, and the third term is due to the 
angular acceleration of the axes. The fourth term 
is a ‘force’ acting on the particle in a direction 
mutually perpendicular to v’ and o and is known 
as the Coriolis force. The fifth term is the 
‘centrifugal force’, since it is always directed away 
from the origin and is normal to the axis of 
rotation of the axes. 

r = r’ 

drldt = ar‘lat + o x r’ 
v = v’+ o x r’ 

Similarly, the acceleration is given by 

a = dvldt 
= a ( d  + o x  r’)lat+ o x  (v’ + o x  r ’ )  
= a’ + ( a d a t )  x r’ + o x  v’ + w + v ’  

Since doldt = a d a t  + o x w = awlat 

we may without ambiguity use the dot notation to 
give 

+o x (0 x r ’ )  

a = a’ + W x r + 2 o  x v’ + w x ( O X  r )  
(1 1.28) 

Coriolis’s theorem 
Equation 11.28 may easily be extended to cover 
the condition when the axes are also translating. 
Referring to Fig. 1 1 . 1 1 ,  we have 

a = d2R/dt2 +a’  + W x r+  2 0  x v‘ 
+ o X ( w X r )  (11.29) 

It is instructive to consider an experiment 
carried out in a rotating room as-shown in Fig. 
11.12. Let us assume that W = 0, R = 0, and that 
rotation is about the z-axis. Equation 11.30 
reduces to 

F - m 2 o x v ’ - m w x ( o X r )  =ma‘  

and, using the expansion for the triple vector 
product (equation A1.16), 

F-2mw x v’ - m o ( w . r )  + mw2r = ma‘ This result is known as Coriolis’s theorem. 

relative to the inertial frame of reference is Further, if the motion is confined to the 
Now the equation of motion for a particle 

xy-plane, F = m a  
war = 0 but, if we choose to regard the moving frame of 

reference as an inertial frame, then thus (11.31) 

Let us consider a simple spring-mass system 
such that the force of the spring acting on the 
particle is F = -kre,’, where k is the stiffness of 
the spring. In terms of the rotating Cartesian 
co-ordinates, 

F - m2w X v’ + mw’r = ma’ 
F - mR - mi, x r -  m 2 o  x v’ 

- m o x  ( o x  r )  = ma‘ (11.30) 
The consequence of this choice of axes is that, 

in order to preserve Newton’s laws of motion, 
four fictitious forces have to be introduced. We 
call them fictitious forces because we cannot r = x i + y j  
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so that F = - k ( x i + y j )  must be added to equation 11.33. Thus 
Equation 11.31 may now be written as mi= - (k-mw2)x  

0 = t2mwx -k F,, -kx i -ky j -2mokx ( i i+y j )  + mw2 (x i  + y j )  = m (xi + y j )  
11.8 Kinematics of mechanisms 

Consider a link AB (Fig. 11.13) and denote 3 
by 1. Assume, for example, that vA and I are 
known completely but vB is known only in 
direction. If the link is of fixed length (1 = 0) then, 

giving the two scalar equations 
- ( k  - mw2)x + 2mwy = mi (11.32) Introduction 

- (k-mw2)y-2mwx=my (11.33) 

If we assume solutions of the form 

x = Xexp(ht) and y = Yexp(ht) 

equations 11.32 and 11.33 become 

[mh2+ ( k - m w 2 ) ] X =  (2mwh)Y 
[mh2+(k-mw2) ]Y  = - (2 m wh)X 

X 2mwh 
Y 

therefore - = 
[mh2 + ( k  - rnw’)] 

-[rnh2 + (k  - mu’)] 
Figure 11.13 
relative to A, B has no component of velocity 

From the last equality, vB,A’I = 0 ( 1 1.36) 
[mh2 + ( k  - ma2)]’ + (2mwh)’ = 0 (1 1.37) 

Expanding and collecting terms gives The only unknown in equation 11.37 is vB,  and 
A4 + 2 [ (k /m)  + w2]A2 + [ (k /m)  - w2I2 = 0 performing the dot product leads to the value 

Solving the quadratic in h2 yields Consider now the case where the position of B 
A’ = - [ V ( k / m )  f w12 is not known, although the path along which it 

travels is known. An example is the three- 
dimensional slider-crank chain shown in A = kj [ V ( k / m )  k w] 

Fig. 11.14. Crank OA rotates about 0 with 
angular velocity wj = hj, and slider B travels along 

x = X1 cos [ V ( k / m )  - w]t 

- - (11.34) 
2mwh along AB, so that 

(vBf?B - z)A) ’ 1 = 0 

of V B .  

and, since exp (j 6 )  = cos 6 + j sin 6 ,  we can write 

+ X, sin [V(k/rn) - w]t  

+ X ,  cos [ d ( k / m )  + w]t 
+ x4sin [ V ( k / m )  + w]t  (1 1.35) 

with a similar expression for y where Y is 
obtained from equation 11.34 with appropriate 
values of A .  

Equation 11.35 shows that the motion is stable 
except when w = d ( k / m ) ;  under these conditions 
the first two terms are X1 +X2t. The four values 
of X depend on the initial conditions for x ,  x, y ,  
and y .  

It is interesting to note that, if the particle is 
constrained to move only in the x-direction, the 
motion is unstable for w > d ( k / m ) .  Equations 
11.32 and 11.33 are easily modified for y = 0, 
y = 0, and y = 0; also, a constraining force F,, 

F~~~~~ 11.14 
a known straight line passing through 0, the unit 
vector for 0s being denoted by e~ SO that s = beB = b. 

Suppose that r ,  I and 6 are known and it is 
required to determine the position of B. From the 
triangle OAB we have 
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r+Z= b 

r(sin &' + cos 6k)  + h?AB = b e B  (11.38) 

In this equation, eAB and b are unknown. 
Rewriting this as 

(11.39) 

and taking the modulus of both sides eliminates 
eAB and enables b to be found directly. Putting 
the known value of b back in equation 11.39 gives 
CAB. 

A vector method for determining the position 
of a mechanism was given in example 5.1. For the 
slider-crank chain just considered, the position of 
point B can readily be determined by trigo- 
nometry. 

k A B  = b e B  - r(Sin 8i + cos 6k)  

Angular velocity of a link 
It has already been pointed out that, if the 
relative velocity between two points on a body is 
known, this information alone does not permit the 
angular velocity w of the body to be found; only 
the component of w which is perpendicular to the 
line joining the two points can be determined. 

Figure 11.15 
Consider (Fig. 11.15) the link AB which is 

pinned to the forked member C at A and 
connected by a ball-and-socket joint at B to slider 
S. The direction of the axis of the pin is denoted 
by the unit vector e l .  The member C can rotate 
about the axis 001 and translate along it so that 

w, = @,e2 

and v, = vA = vAe2 

The velocity of point B is 
VB = VBeB 

and we shall assume that vA and = I  are 
known completely and that % is known only in 
direction. 

We know that 

VB- VA = oAB X I (1 1.40) 

so let us determine wAB . Writing equation 11.40 
as 

v B e B - v A =  (w,i+w,,j+w,k)XI (11.41) 

we see that equation 11.41 contains four 
unknowns. Carrying out the cross product and 
comparing the coefficients of i, j ,  and k we find 
that the resulting three equations are not 
independent, although vB can be found. Refer- 
ring again to Fig. 11.15, we see that the angular 
velocity of AB can be represented by the angular 
velocity relative to C plus the angular velocity of 
C; thus 

(1 1.42) 

where w1 and wc are unknown. We observe that 
the link has no angular velocity component in the 
direction e3 = el x e2, so 

OAB = w1 el + wce2 

W A B ' e 3 =  ( w , i + w y j + w , k ) - e 3 = 0  (11.43) 

If we perform the dot product and combine the 
resulting equation with any two of the three 
non-independent equations mentioned above, we 
shall have three independent equations contain- 
ing the three unknowns w, , wy, and w, , which can 
thus be found. The components w1 and wc can 
then be found if required from equation 11.42. 

The method for finding the angular velocity 
oAB described above is rather tedious, and 
fortunately it is possible to determine wAB from a 
single equation. If equation 11.40 is pre-cross- 
multiplied by the unit vector representing the 
direction for which WAS has no component, 
namely e3, we obtain 

e3 vB/A = e3 (OAB I )  
and expanding the triple vector product (equation 
A1.16) gives 

e 3  x VB/A =  AB (e3 .1)  - I ( e 3 .  w A B )  (1 1.44) 

From equation 11.43, the second product on 
the right is zero, so 

 AB = (e3 x VBA )/(e3. I )  
from which oAB can be found directly. 

Consider now the case where the link AB has 
ball-and-socket joints at each end, as shown in 
Fig. 11.16. In this case it is clear that any rotation 
the link may have about the line AB has no effect 
on the relative motion between A and B and in 
any case cannot be determined. We can thus 
assume that oAB. I = 0, and pre-cross-multiplying 
equation 11.40 by I leads to 
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Figure 11.16 

WAB = (zxvB/A)/( l*t!)  = (Ix VB/A)/12 (11.45) 

If there is a pinned joint at A or B but only the 
component of wAB perpendicular to AB is of 
interest, we can use eqnatinn 11.45 to find this. 

Angular acceleration of a link 
Suppose now that aA, the acceleration of A in 
Fig. 11.15, is known completely and the accelera- 
tion of B is known apart from its magnitude a B .  

(1 1.46) 

Using equation 11.7, where the moving axes 
are attached to the link AB, we can write 
equation 11.46 as 

UB/A = d ( O A B  X I)ldt 

UB -uA = &AB X I +  oAB X (wAB X I )  (11.47) 

and equation 11.47 contains four unknowns, 
namely the magnitude of QB and the three 
components of &AB. The vector product &AB x I 
is perpendicular to both &AB and I so if we 
perform the dot product of I with & A B X l  the 
result is zero. Thus if the dot product with I of 
each term in equation 11.47 is carried out, the 
term containing &AB is eliminated and the 
magnitude of aB can be found. 

If the component of &AB in the direction of AB 
is irrelevant, we can let &AB - I  = 0 and pre-cross- 
multiplying equation 11.47 by I we have after 
expanding the triple vector product containing 
&AB 

IxuB/A = &AB(Z-Z) 

+ Ix  [WAB x (@AB x I ) ]  (11.48) 

and we thus find the angular acceleration of the 
link, perpendicular to the line AB. 

Note that if the link has ball-and-socket joints 
at each end, so that we can write wAB - I  = 0, then 
in equation 11.47, 

W A B X ( W A B X ~ )  = W A B ( O A B . ~ )  

- I (wAB.wAB) == -wAB2Z (11.49) 
and in equation 11.48 

I X  [WAB x  AB x 1 )  
= Ix [-WAB2z] = 0 (11.50) 

11.9 Kinetics of a rigid body 

Linear momentum 
The linear momentum of a rigid body is the vector 
sum of all the individual momenta of its 
constituent particles, thus the total linear momen- 
tum is given by 

(1 1.51) p = Cpi = Cmivi 
and using the definition of the centre of mass 

Cmivi  = vG(Cmi)  = vGm 

gives p = m v G  (1 1.52) 

This result is true for any group of particles, 
rigidly connected or not. 

For a single particle Fi = dpi/dt, where the 
force Fi may be due to other particles in the group 
or to external bodies. If we sum over the whole 
group, the contribution of the internal forces 
must be zero according to Newton’s third law; 
hence 

C F i  = (CFi)extemaI = Cdpi/dt= 
= d(mvG)/dt = mdvG/dt (11.53) 

i.e. the sum of the external forces is equal to the 
total mass times the acceleration of the centre of 
mass, and is independent of any rotation. 

Moment of momentum 
The moment of momentum of a particle about a 
point 0 is defined to  be r, xpi,  where ri is the 
position of the particle relative to 0. For a group 
of particles the total moment of momentum about 
0 is 

~ ~ = C r ~ x p ~ = C m ~ r , x v ~  (1 1.54) 

For a rigid body, the velocity of the particle can 
be written as the vector sum of the velocity of a 
specific point and the velocity of the particle 
relative to that point due to the rotation of the 
body. 

We shall now consider two particular cases. 

a) 
centre of mass of the body (see Fig. 11.17). 

Motion, relative to fixed axes, referred to the 

In this case, 

v i  = V G + W + P ,  

and ri = rG+pi 

hence equation 11.54 becomes 

LO = Cmi(rG +pi )  x (VG f 0 xf$) 
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Equations 11.56 and 11.57 are both of the form 

L = C m i r i x ( o x r i )  

Using the expansion for the triple vector 
product (equation A l .  16), 

L = Cmiw(r i - r i ) -Cmir i (w.r i )  

Expressing w and r in terms of Cartesian 
co-ordinates, 

= fG x mvG+fG x ( o x  Cm;p j )  L = c mi (wxi + oyj+  w,k)(x: + y: + 2:) 
- c mi (xi  i + y$ + zj k )  ( wxxi + my yi + o, zi ) 

Carrying out the multiplication and collecting 

+ (C m;p;) x VG + C m;pi x (0 x pi) 

Since c mi = m and c mipi = 0 ,  we have 

LO = fGxmvG+Cmip;x ( w x p ; )  (11.55) the termsgives 

If we choose 0 to be coincident with G, the 

centre momentum of mass, about then G fG is = 0 so that the moment of [.:;'I 
+ L,k (1 1.56) 

Motion, relative to fixed axes, referred to a 1 i(wx(yi" + zi") - wyxiyi - W,XiZ j )  

= C mi + j ( w y  (2: +x: )  - o,yizi - wxyixi) [ + k ( ~ , ( ~ ? + Y ~ ) - ~ , Z ; X i -  o,z~Y;) 

LG = c mipi x (0 x p;)  

b) 
stationary point on the body (see Fig. 11.18). 

[ + k ( 4 , 2 -  ~ x ~ u - W y 4 y )  I (11.60) 

i ( 4 ,  - mylxy - 4 x 2 )  

= +.i@yZyy - 4 y z -  4 y x )  

where Zxx = c mi(y? + z?) is the moment of 
inertia about the x-axis and Zxy = Zyx = c mixiyi is 
the product of inertia for the xy-plane. The other 
terms are similarly defined. 

The three scalar equations may be written in 
matrix form as 

[:]-[I: -2 -:] [z] (11.61) 

The 3 x 3  symmetrical matrix is known as the 
inertia matrix. 

11 . IO  Moment of force and rate of 
change of moment of momentum 
Consider the moment of a force acting on a single 
particle. Since 

In this case, with 0 as the fixed point, 

v; = 0 x ri 

thus equation 11.54 becomes 
~ ~ = C m ~ r , x ( w x r , )  (11.57) L X  1, -Ixy -1xz  WX 

It will be noticed that equation 11.57 is of the 
same form as equation 11.56. 

Moment of momentum is an instantaneous 
quantity, therefore it is of no consequence 
whether or  not we regard the point about which 
moments are taken to be fixed. However, it is 
important to state whether the velocities are 
relative to fixed or moving axes. If moments are 
taken about the centre of mass even this 
distinction is not required, as in equation 11.56 

the centre of mass enables rotation and transla- 
tion to be treated separately: 

p = mvG (1 1.58) 
(1 1.59) 

LG is independent of vG.  Hence the concept of F, = dpjldt 
then ri x Fi = ri x (dpildt) 

= d(rj xpi ) ld t  
= d(moment of momentum)ldt 

LG = C mi pi X ( w X pi ) (11.62) 
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the last statement being true since (dr,ldt) xpi  
= ri x mi?; = 0. 

Summing over the whole body and noting that 
the internal forces occur in equal, opposite, and 
collinear pairs, 

momentum relative to the translating axes. 

G then, since fG'  = 0, 
If the point A coincides with the centre of mass 

(11.67) 
Differentiation of L is sometimes difficult 

because the moment of inertia changes if the body 
or M o  = dLo/dt (11.63) moves relative to the reference axes; however, 

the problem can be simplified if we choose a set of 
where Mo is the total moment of the externally axeS moving in such a way that the moment of 

inertia is constant with respect to these moving applied forces about the point 0. 
Expressing Lo as in equation 'lS5 and axes. One obvious set will be axes fixed to the 

body; also, if the body has an axis of symmetry, differentiating with respect to time, we obtain 
then the body may rotate relative to an axis 

altering the moment of inertia. 

with respect to a moving set of axes, 
~~ M = r l l  ~~ lrlt = 21 tat I I.. y L 

MG = LG = LG' 

C (ri x Fi)external= d[C (ri x ~ i ) I l d t  

MO = LO ='G x mG + d[C miPi x ( w  x Pi)]'dt coinciding with the axis of symmetry without 
= f G  x m G  + LG (11.64) 

Using equation 11.7 for differentiating a vector 

(1 1.68) 

where w is the angular velocity of the moving 
axes. 

Moment of momentum referred to translating 
axes 

.-. .. ~~ 

In terms of Cartesian co-ordinates, 

L = L x i +  L y j +  L,k 

and o = wxi+ wyj+  o,k 

so M =  - i + - j + - k  
(a: 'a? 'a? ) 

) ('a? 

1 ia2 
(ad? y 4 

In Fig. 11.19 the X-, Y- ,  Z-axes are inertial and 
the x- ,  x - ,  z-axes are translating but not rotating. 
Taking moments about 0 we have for the total 
moment of the external forces 

+ (wx i+  wyj+  o , k )  x (L,i+ L,j+ L ,k )  

or M x i  + M y j +  M,k 

= i  -+w,L, -w,L,  M o  = dLo/dt = C ri x miYi 
= d ( z r i  x mii;)ldt 

(1 1.69) 

+ j  - + o , L , - w , L ,  Replacing ri by R+r i ' ,  where the prime 
indicates a vector as seen from the moving axes, 
we may write the moment about a fixed point in 
space coincident with A as + k  - + + , L , - o  L 

MA = C(R+rjf)Xmj(R+Yj')  From equation 11.60, 
R = O  (11.65) 

Lx = fixzxx - flylxy - fi,Zx, 
or M A = d [ C . ( R i + r i ' ) X m i ( R + i i ' ) ] / d t  L, = -fixzyx+ayzyy-~,zy, 

= dLA/dt (1 1.66) L, = -fixzz - ayz2, + a,z,, (1 1.70) 
where a = a x i +  ~ , j +  a2 ,k  is the angular velocity 
of body when different to o, the angular velocity 
of the reference axes. Substituting equation 11.70 
into 11.69 will give the full set of general 
equations. These equations are rarely used in this 
form because some form of simplification is 

where LA' = x r i ' x m j i j '  is the moment of generally possible by choosing axes to coincide 

In equation 11.66 the vector R must be retained 
since R # 0. 

Expanding equation 11.66 and Putting R = o, 
MA = x m i r i ' x R + x r i '  x m.F' I 1  

= fG' x mlii + LAr 



+ 
1 j k 

Wx W.V W, 

IXXWX I,,,,W,, I,,% 

If principal axes are chosen, equation 11.61 
becomes + 

k 1 j 

Wx @? W, 

I x x f i x  I,,St, ~ , z %  



For the rotor shown in Fig. 11.21, assume that 
the moment of inertia is known relative to the x-, 
y-, z-axes which are attached to the body. From 
equation 11.60, with w, = wy = 0, 

L, = - Ixzw, 
L, = -Iyzw, 

L, = I z z w ,  

The angular velocity of the body and of the 
axes o = w,k and is assumed to be constant. Thus 

1 j k 

M A = o x L =  0 0 wz 

- I x z w ,  - I y z W z  I z z w z  

= iIyz w,2 - jI,,  0,' (11.75) 

In practice, the products of inertia are small 
and may be considered to be due to the addition, 
or subtraction, of point masses to an otherwise 
perfect rotor, in which case I,, and I,, are easily 
calculated. 

A variation of the same problem occurs when a 
perfect rotor is misaligned as shown in Fig. 11.22. 

The angular velocity of rotor and axes, referred 
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giving the three scalar equations 

M ,  = ~, ,aa , /a t+~, i , ,a , -~ ,~yy~y  
M,  = I,,, aa, /a t  + 0, I,, a, - W, I,, a, 
M ,  = I,,aa,/at+ ~ , i , ~ a ~  - ~,i,,a, (11.74) 

It must be emphasised that the above equations 
apply equally for moments about either a fixed 
point on the body or the centre of mass. The 

for the point considered. 

11.1 1 Rotation about a fixed axis 
This case is of practical interest in connection with 
the forces appearing at the bearings of an 
imperfect rigid motor. By imperfect we mean that 
the centre of mass of the rotor is not on the axis of 
rotation and/or the axis of rotation does not 

Inoments of inertia must, of course, be evaluated to the rotating axes which are coincident with the 
principal axes, is 

o = w,cos ak - w,sin aj 

so LG = I,,w,cos f f k  - zyy w,sin f f j  

Hence, assuming wz to be constant, 

M G = o X L G  

k coincide with a principal axis. 1 j 
= O  -w,sina 0, cos a 

= iw,2(IyY- 1,,)tsin2a 

0 -Iyyw,sina I,,w,co~a 

(11.76) 

See example 11.8 and refer to problem 11.13 for 
the case of non-constant angular velocity. 

11.12 Euler's angles 
A convenient set of co-ordinates for describing 
the position of a rigid body are the Euler angles. 
Referring to Fig. 11.23, the x-, y-, z-axes are 
attached to the body and the X-, Y-, Z-axes are 
fixed in space. The position is defined by a 

" 
rotation Cp about the Z-axis followed by a rotation 
8 about the displaced x-axis. Finally a rotation + 
about the z-axis completes the displacement. This 
last rotation will lift the x-axis out of the 
XY-plane in which it is shown in the figure. It is 
seen that the z-axis is given some prominence and 
is chosen to coincide with the axis of symmetry of 
the body, should the body possess one. 



A well-known problem covered by equation 
+ e  $sin e $COS e 11.78 is that of the freely spinning top. From 

I,& Io&ine z,($+&ose) Fig. 11.25 we see that 
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are shown in Fig. 11.27. Since there is no applied 
thus ($+ 4cos8) = flz = constant couple about the Z-axis, the moment of 

momentum about this axis must be constant. 
Thus For steady precession, equation 11.79 gives 

Wlsin e = I,fl,&sin 8 - I ,  &’sin ecos 8 L= = Izfizcos8+lo4sin28 = constant 
or wi= zzflz4+zo42cose (1 1.82) 

This relationship is true for all conditions of free 
motion. 

11.14 Kinetic energy of a rigid body 
The total kinetic energy T = 2 $ m i v i . v i .  If the 
body is rotating about a fixed point 0, then 
vi = o x  r i ,  SO 

hence cos8 = ~ ~ f i ~ / ~ ~ ~ -  w i /1~4~  (11.80) 

We must take I,fi, as a constant since whatever 
torques are applied in order to establish steady 
precession they cannot produce a torque on the 
body about the z-axis as we are assuming 
frictionless conditions. 

Letting 114 = T/27r, where T is the periodic 
time of the precession, T = C a m i ( o  X ri). (o X ri )  

when expressed in Cartesian co-ordinates is 

T =  Cimi[wYzi -wzy i ) ’+  (w,xi-wXzi)’ 

or 2~ = w,2C mi($ + y: )  + w,2C mi(-$ + 2:) 
+ w,2 C mi(x? + y: ) - ~ ~ 0 . 2  C miziyi 

- w z w x 2 C  mixizi - w, wy2C miyixi 

(11.81) 

A plot of cos8 against T/27r is shown in 
Fig. 11.26. 

Wl T ’ 
c0s8 = E)(;) - (l,)iG) 

+ (wxyi-wyxi)’] 

and, using the definitions of the moments of 
inertia, 

T = L  2% 2 1  xx + L  2wy21yy + f W , 2 I Z Z  

- wy %Iyz - w, O x  I,, - wx wy I,, 
By direct matrix multiplication it is seen that 

T = &(wx ,wy ,wz) - 
From the graph it is seen that, if 

(Izfl,)’r4I0W1, it is possible for the top to 
‘sleep’; that is, for 8 to be zero. In this condition 
precession has no meaning. For a given value of 8 
between 0 and 90”, if steady precession occurs 
there are two precession rates both with + > O ;  
however, for 9 0 ” ~  8< 180” there are always two 
precession rates, one positive and one negative. 
In practice it is the slower of the precession rates 
which is observed. 

The components of the moment of momentum 

x - Iyx  I x x  - IYY  Ixy  I;:] [3 
[-Iz -1, I,, w, (11.83) 

If principal axes are used, then 



= ( v G x O ) . ( C m r p i )  QQ’xF$= 
hence T = 4mvG2 + C t m i ( m  X p i ) .  (w X pi )  

0 -1 -1 

1 0 -1 
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position of the axis of rotation will move OPQ 
to O’F”’Q, it is necessary to show that the 
displacement 66’’ (or P-) is wholly normal to 
the axis of rotation. Solution 

We see that S-66” = S(i- j+k) . ( i+j)  = 0; 
therefore there is no component of displacement 
along the axis, so a single fixed hinge line is 
possible. From equation 11.7, 

Express A and dAldt in terms of both sets of 
axes for the conditions t = 2 s, a = arcsin(315) 
and CU = 3 rads.  

a) In terms o f i ,  j ,  k 

A = 2i+tj+33r2k ( 9  

dA1dt = aA/at + w x A 

where w (the angular velocity of the moving 
axes) = 3j  

so dAldt = (j+ 6tk) + 3j x (2i + t j  + 3t2k) 
= 9t2i+j+(6t-6)k (ii) 

Thus, when t = 2 s, 
A = (2i+2j+ 12k)m (iii) 

and dAldt = (36i + j  + 6 k ) d s  (iv) 

b) 
To express the vectors in terms of the unit vectors 

Figure 11.29 is a view looking along the axis of I, J, K associated with the fixed axes, we must first 
rotation, i.e. along the normal to the plane establish the transformation relationships be- 
containing NPP’. Because all displacements take tween i , j ,  k and I, J, K. 
place in parallel planes, the displacements are the 
same as the displacements of their projections on i = cosd-s in& to the NPP’ plane. 

The intersection of the new axis of rotation j = J  
with the NPP plane, point M, must lie on the k =  sind+coscrK 
perpendicular bisector of 00” projected and be 
such that the angle OMO” projected is 120”. For 

line passes through (1,0,0) and is parallel to 
vector ( i - j+k) .  The angle of rotation is 120”. 

Example 11.2 
Figure 11.30 shows a set of x - ,  y-, z-axes rotating Now A = ( i j , k )  [ : r ]  = (2,t,3t2) [i ] 
at a constant angular velocity 3j rads  about the 
Y-axis of a fixed set of X-, Y-, Z-axes. A vector 
OA is given as A = (2i+ tj+ 3t2k)m, where t is the 

In terms of I, J, K 

Referring to Fig. 11.31 we see that 

-sina Or I 

O cos a l i l l  (VI [ ; ] = [ ? a  O 1 

= (2J23r2)[~inff]  x [ 0 J ]  

this case, M is clearly the point P’; thus the hinge 

sina 0 

--+ cosa 0 -sina I 
time associated in seconds with the and moving i, j ,  k x - ,  are y-, the z-axes. unit vectors 

cos a K  

= [ (2cos a + 3t2sin a)  ,t, 

(-2sina - 3t2cosa)I [ i] 
A = [(44/5)1+21+ (42f5)Klm (vii) 

(vi) 
When t = 2, s ina = 315, and cosa = 415, 
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i j  k 
+ 9  0 12 

-3.12 7.2 -4.16 

Figure 1 1.33 

Determine the velocity and acceleration of a 
point P on the cannister which has a y-component 
of R + r .  

Solution We shall find the velocity of P from the 
relative-velocity equation 

VP = V B  + V P I B  (i) 
and denote the absolute angular velocity of the 
cannister by 

4 k  = ( b +  $ ) k  (ii) 
For the arm AB, from equation 11.13, replacing 
eR by j and eo by ( - i )  we have 

VB = R j + R b ( - i ) + v k  (iii) 

Similarly, noting that the cannister has no 
vertical velocity relative to the arm, and that 
r = constant, 

%IB = r&( - i )  (iv) 
Combining equations (i), (ii), (iii) and (iv), the 

velocity of P is 

vp = - [(R + r ) b +  r$] i+ kj+ vk 
The relative-acceleration equation is 

up = aB + aPm 
From equation 11.14, noting that R = 0, the 

acceleration of B is 

(VI 

ag = - R b ? + ( R 6 + 2 k b ) ( - i ) + ~ k  (vi) 
and the relative acceleration between P and B is 

aPm = -r+?+rc$(-i) (vii) 

where 

$ = e + $  (viii) 

Combining equations (v), (vi), (vii) and (viii), 
the acceleration of P is 

up = - [ ( R + r ) 6 + r $ + 2 k b ] i  
- [(R + r )b2  + r$* +2rb$u+uk 

Example 1 1.5 
See Fig. 11.34. A radar station A continuously 
measures, relative to the fixed X - ,  Y-, Z-axes, the 
spherical co-ordinates r ,  8, and C#I of an aircraft B. 
The derivatives of these co-ordinates are com- 
puted and, at a particular instant, the numerical 
values are 

r = 20370 m 
i- = -288.7 m l s  

$ = 22.35" 
= 0.02556 rads  



j ,  = -sin 8Z + cos OJ 
k l = K  

or, in matrix notation, 

cos8 sin 8 0 Z [i] = [-En8 ;so :I[:] (ii) 
Also e, = cos 4i1 + sin 4 k l  

eo = j ,  
e+ = -sin 4il + cos +kl  r = 15.74 d s 2  e = 7.518 x lop4 r ads  

4 = 11.69” 
4 = 0.006223 r ads  or e, cos4  0 s in4  i l  

Determine 4 the = 5.197 velocity x lop4 of the rads’ aircraft relative 
to the X-, Y-,  Z-axes, the speed of the aircraft, 
and the angle of inclination of the velocity to the 
horizontal XY-plane. Also find the acceleration er cos4  0 s in4  
of the aircraft relative to the X - ,  Y-,  Z-axes. 

Solution The velocity and acceleration in spher- 
ical co-ordinates (see equations 11.19 and 11.20) 
are given in terms of the unit vectors e,, eo, and e+ 
corresponding to the x-, y - ,  z-axes in Fig. 11.35. 

[ :j = [-:in+ A : o s j  b] (iii) 

Eliminating il  , jl , and k l  , we obtain [:I = [-:in4 : :osJ 

[ 

cos8 sin8 

X [ - in8 ;se i] [i] 
cos +cos 0 cos +sin 8 sin 4 

0 ] [ i] (iv) -sin&cos8 -sin+sin8 cos4 

eo = -sin 81 + cos 8J ] (.I or e, = cos  COS OZ + cos 4sin OJ + sin 4 K  

e+ = -sin &cos 8Z - sin +sin OJ + cos 4 K  

1 

= -sin8 COS e 

The 3 x 3 matrices which convert one set of unit 
vectors to another set are known as transforma- 
tion matrices. The inverse of such matrices is 
obtained simply by exchanging the appropriate 

c o s ~ c o s 8  -sin8 -sin+cos8 

[ i] = [;;:sin, 
cos 8 -sin 4sin 8 

Substituting the given numerical values into 
equation 11.19, we obtain 

’u = (-288.7e,+ 509’9eo + 126’8e@) d s  (i) elements across the leading diagonal: 
The directions of the x-. y - ,  z-axes can be 

obtained by considering the rotation of a set of 
axes, originally coincident with the X - ,  Y-,  
Z-axes. The first rotation is about the Z-axis 
through an angle O to the orientation xl, y l ,  z1 
with associated unit vectors il , j l ,  k l  . The second 
rotation is about the y l  axis through an angle 4 to 
the orientation x ,  y ,  z with the associated unit 

0 cos 4 

x [:I 
vectors e,, eo, e+. From the figure we observe that e+ ( 4  

il = cos 81 + sin 8J Substituting equations (v) into equation (i), we 



204 Dynamics of a body in three-dimensional motion 

obtain the velocity of the aircraft: Since the relative velocity vuB is perpendicular 

(ii) 

v = (-479.11+354.3J+65.64K) m / s  to z, 
The speed is the magnitude of v,  which is 
599.5 I d s .  where s= Z-AB 

Denoting the angle which v makes with the 
horizontal by A (Fig. 11.36) we have 

( V U B - Z )  = 0 

= (20i+ 70j+ 1OOk) - 50j 
= (20i+ 20j+ 1OOk) mm 

 tan^ = v z / ~ ( v x 2 + v y 2 )  
Substituting in equation (ii) we have A = arctan [65.64/d(479. l2 + 354.32)] 

= 6.286" (-3O%,i+50i).(2Oi+20j+ lOOk = 0 
-6ooWCD + 100 = O  

wCD = 13 rad/s 
and oCD = lgk r ads  

From equation (i), 

vC = -30(13)i = -5Oi mm/s 
Substituting equations (v) into equation 11.20, We note that, for the given position, vc = a so 

that vuB = 0 and hence %c = 0, from equation 
11.45. 

we obtain the acceleration of the aircraft: 

a = (0.46751- 0.63981+ 9.877K) m/s2 

Example 11.6 QUA = QUB + QBIA = a m  (iii) 
since both A and D are fixed points. The A three-dimensional four-bar chain is shown in 

Fig. 11.37. Crank DC is driven by crank AB via 
acceleration components of B in cylindrical the connecting link BC which has ball-and-socket 
co-ordinates are shown in Fig. 11.38. joints at each end. A and D are located at points 

(0, 0,O) mm and (20,40,1OO) mm respectively. 
At the instant under consideration, AB and DC 
are parallel and crank AB has an angular velocity 
of l k  rad/s and an angular acceleration of 2k 
rad/s2. 

Now the acceleration of C is given by 

a B  = a B / A  = -TAB @AB 2. J - TAB h A B  i 

= -50(1)?-50(2)i 

= (-5Oj- 1OOi) m d s 2  Figure 11.37 

Determine the velocity and acceleration of C 
and the angular velocity and angular acceleration 
of DC. = -30(1$)?-30&ci 
Solution The velocity of B is given by = - (250/3)j - 3Obc i 

Similarly, 
2.  a~ = a~n, = - ~ D C O D C  J - ~ D C ~ C ~  

(iv) 
VB =  AB X  AB The relative acceleration is given by 

= l k  x 50j = -5Oi mm/s am=*-aB 
and the velocity of C by = -(100/3)j-(3Ocj,c- 1OO)i (v) 

O c  = woc x rDc Now 
= W D c k  X 30j = -3O%ci mm/S (i) ac/B = d(%C x rBC )/dt 



= ;SC x ~ B C  + %C x (%c X ~ B C )  

but %c = 0 

SO that U u B  = cr)Bc x T B c  (vi) 
To eliminate the unknown and unwanted 

vector hC, we carry out the dot product with rBC 
of each side of equation (vi) and obtain 

rBc. am = 0 (vii) 

Combining equations (v), (vi), and (vii), we 
since rBC is perpendicular to hC x r B C .  

obtain 
(20i + 20j+ 1OOk) 

. [ - ( 3 O b c  - 1OO)i - (1OO/3) j ]  = 0 
-60043c + 2000 - 2000/3 = 0 

kc = 2019 = 2.222 rad/s2 
and bC = 2.222k rad/s2 

The acceleration of C is now obtained from 
equation (iv): 

ac = -[30(20/9)]i-(250/3)j  
= -(66.671+ 83.333') m d s 2  

Example 1 1.7 
The cylinder C shown in Fig. 11.39 is mounted on 
the cranked arm OAB which is rotating about the 
fixed Y-axis with angular velocity qJ and angular 
acceleration qJ. Relative to the arm the cylinder 
has angular velocity p k  and angular acceleration 
pk.  The cylinder is uniform, its mass is m ,  its 
centre of mass is at G, its length is 6 ,  and its 
radius is r.  Determine the moments, about the 
axes Gx, Gy, and Gz, of the forces being applied 
to the cylinder by assuming that (a) the x - ,  y-, 
z-axes are fixed to the arm and (b) the x-, y-, 
z-axes are fixed to the cylinder. 

Figure 11.39 

Solution 
a) The angular velocity of the axes is 
w = qJ = a*. These are principal axes and so, 

from equation 11.72, the moment of momentum 
about G is 

LG = Zxxflxi+Zyyflyj+Zzzfizk 
= 0 + Z y y q j +  Z,,pk (i) 

The moment of the forces about G is given by 

M~ = L~ = a(LG)xyz/at + x LG (ii) 

NOW a(LG),yz/at = z y , , ~ + z z z p k  (iii) 

equation 11.68: 

and w X L ,  = qjX(Zyyqi+Zz2pk) 
= ZzzPqi 6.) 

Substituting equations (iii) and (iv) into 
equation (ii) we find 

MG = Z,,pqi + Zyy Q + Zzzpk (VI 

Evaluation of the moments of inertia gives 
the results Zyy = m (312 + b2)/12 and I,, = mr2/2. 

b) The angular velocity of the axes is now 
o = q * + p k .  The moment of momentum LG is the 
same as that given in equation (i) but this is nof a 
general expression in terms of the axes fixed to 
the cylinder; it is the particular value when the 
axes are aligned as shown in Fig. 11.39. We can 
obtain a general expression for LG by allowing the 
axes to rotate through an angle (I, as shown in 
Fig. 11.40, and putting (I, = 0 after carrying out 
the partial derivative. 

Figure 11.40 

The angular velocity of the axes is 
o = f2 = $k+q(sin+i+cos+j) 

LG = Z , , ~ , i + Z y y f i y j + Z , , ~ . k  
= Z,qsin I@ + Zyyqcos +j+ I,, $k 

+ Z,, (-qsin (I,$ + qcos +)j+ Z,,$k 

(vi) 

a(LG ),,/at = I, (q cos +$ + 4 sin (I,) i 

Putting + = 0, $ = p and $ = p, we have 

a(LG)xyz/at = Z,qpi+ Z y y @ +  Z,,pk 

NOW o X L G  = ( q j + p k )  X (Zyyqi+Zzzpk) 
= (I22 - l y y  1 P @  (vii) 
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Substituting equations (vi) and (vii) into equation 
(ii) we find the same result as equation (v), since 

Example 11.8 
Figure 11.41 shows an electric motor fixed to a 
plate P which is mounted in bearings A and B. 
The motor drives a thin uniform disc of diameter 
200 mm and of mass 3.0 kg. 

I x x  = Iyy . 

Figure 11.42 

The moment of momentum about G is 

LG = Io&+I,$k 

The moment of the forces applied to the disc is 

= Z o ~ + I z r j ; k + ~ x ( I o 8 i + I , $ k )  

MG=HG=dHG/dt+WXLG 

= I o & -  IzO&+ I,$k ( 9  
The moment of inertia I ,  about the disc axle is 

mr2/2 and, since the disc is thin, we can use the 
perpendicular-axis theorem to show that the 
moment of inertia Io about a diameter is mr2/4. 

MG = [3 x (0.1)~/4](-500)i- [(3 x (O.1)’/2] 
Figure 11.41 

angular velocity and acceleration of the disc, 
measured relative to the plate P, are 300k rads  and 

angular velocity and acceleration of the plate are 
-6Oi r ads  and -5OOi rads2 respectively. Find the 
anticlockwise couple which is being applied to the 
shaft AB and the components, in the y -  and 
z-directions, of the forces acting on the bearings 
at A and B due to the inertial effects of the disc. 

Solution Section 11.13 referred to the rotation 
about a fixed point 0 of a body with an axis of A free-body diagram for the disc is shown in 
symmetry. Expressions were obtained for Lo, the Fig. 11.43. The motor shaft applies the couple C 
moment of momentum about 0, and Mo, the to the disc and C = M G .  To determine the force F 
moment of the forces about 0. In the present applied to the disc by the shaft, we must first 
example the disc does not rotate about a fixed determine the acceleration of G. Referring to 
point. We have emphasised the interchangeability Fig. 11.44, we note that G is rotating about the 
of expressions for Lo and Mo for a fixed point 0 fixed point 0 and the components of the 
with expressions for LG and MG , and so acceleration of G in cylindrical co-ordinates are as 
expressions similar to those in section 11.13 can 
be used with 0 replaced by G, the centre of mass. 

In Fig. 11.42 the x - ,  y-, z-axes are attached to 
the motor frame and the disc rotates relative to 
these axes with an angular velocity $k. The 
angular velocity of the axes is w = &. We note 
that, although the disc rotates relative to the axes, 
the moments of inertia relative to the axes do not 
change, due to symmetry. The angular velocity of 
the body is 

When the system is in the position shown, the x (-60)(3OO)j+ [3 X (0.1)2/2](1000)k 
= (-3.75i+ 270j+ 15k) N m (ii) 

IOOOk rad/s2 respectively. At the same time the - 

shown. 

n = ei+ *k 
aG = -(r&os a + re2 sin a ) j  

+ (r8sin a - r&*cosa) k 



= - [0.1(-500) +0.05(60)21j Example 11.9 
Figure 11.46 shows a three-dimensional mechan- 
ism. Collar C can rotate about the Z-axis and 
slide along it. Slider S is constrained to a path 
parallel to the X-axis. Connecting link AB is 
pinned to the collar at A and attached to the 
slider at B by a ball-and-socket joint. The path of 
B intersects the Y-axis and is 150mm from the 
X-axis as shown. Collar C is travelling towards 0 
at a constant speed of 600 m d s ,  pushed by 
component E. A bearing between E and C 
ensures that the torque transmitted about the 
Z-axis between E and C is negligible. Link AB is 
200 mm long and may be considered as a thin 
uniform rod of mass 0.12 kg. The mass of slider S 
is 0.5 kg and that of collar c is negligible. 

+ [0.05(-500) -0.1(60)2]k 
UG = -( 130j+ 38%) m/s2 

The force F is obtained from 

F = maG 

where m = 3 kg; hence 

(iii) 
The free-body diagram of the system excluding 

the disc is shown in Fig. 11.45. Q is the required 
couple, the forces FA and FB applied to the shaft 
AB by the bearings at A and B are shown in their 
Y -  and z-components. The force and couple at G 
are equal and opposite to those on the disc. Note 
that we shall treat this part of the system as 
inertialess since we are concerned with the 
inertial effects of the disc only. 

F = -(390j+ 115%) N 

Taking moments about A we have 

Q + ~ A G X ( - F )  
+TAB X (FByj+ FB,k) + (-C) = 0 

where Q = -Qi Figure 11.46 
+ When the pin at A is 100 mm from the 

XY-plane determine the force at B applied to the 
slider by link AB, neglecting friction. 

hence (-e+ 18.75+3.75)i Solution The geometry of the mechanism is such 
that the simplest way of obtaining the necessary 
velocities and accelerations is generally by 
differentiation of trigonometric and algebraic 
equations which define the configuration. The 
techniques of section 11.8 and example 11.6 can 
be used, but these are left as problems for the end 
of the chapter. 

In Fig. 11.47 the shaded plane ADBE is 
attached to the collar c and the link AB rotates in 
this plane. From the figure, 

TAG = AG = (0.2i + 0.05j+ 0. lk) m 
TAB = a = (0.4i) m 

- (231 + 0.4FB, + 270)j 
+(78+0.4FBy-15)k=0 

Equating each of the coefficients of i ,  j ,  and k to 
zero, we find 

Q = 22.5 N m FBz = -1252.5 N 
and FBy = -157.5 N 
Then, either by taking moments about B or, mOre 
simply, by summing the forces to zero, we find 

FAy = -232.5 N FAz = 97.5 N 0 . 2 ~  = q 2 + 2  (i) 

The forces applied to the bearings at A and B p = q + 0.03 
p 2  = 0.152+x2 

(ii) 

(iii) are equal and opposite to those on the shaft. 

t ana  = xIO.15 (iv) 



= - a - Pil + &Bjl 
which is the same as equation (ix), since 
il = cos d - sin d and jl = sin d + cos d. Substi- 
tuting numerical values from equations (vi), we 
find 

wAB = 2.5571-2.3375- 1.865K (x) 
and L ~ A B  = -9.4731-0.096J+46.05K (xi) 

The acceleration of B is 
a B  = XI = -5.1561 d s 2  (xii) 

Using cylindrical co-ordinates (equation 
11.14), the acceleration of A (see Fig. 11.48) is 

. 2. aA = r&il - ra j 1  

= r& (cos d - sin d) 
- rci 2( sin d+ cos a ~ )  

= (- 1.0901 + 0.85481) d s 2  (xiii) 
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sin@ = 210.20 (v) 

Figure 11.47 

The angle a defines the rotation of collar C and 
angle p defines the rotation of AB in the plane 
ADBE. From equations (i) to (v), with z = 0.1 m, 
i = -0.6 d s ,  and Z = 0, the following results are 
obtained: 

a = 42.42” 
p=30” B = -3.464 rads  
x = 0.1371 m 

c i  = -46.05 rads2 
B = 6.928 rads2 

dr = 1.865 r ads  

i = 0.5135 d s  

X = -5.156 d s 2  (vi) 
If we attach axes xl, yl , z1 with unit vectors il , 

j l ,  and kl to the plane ADBE as shown, then the 
angular velocity of these axes is 

The acceleration of G, the centre of mass of the 

(xiv) 

link AB, is given by 

a~ = a~ + ~ G I A  

W x , y , z ,  = -a = oc (vii) 
where aG/A = 0 . 5 a B / A  = 0 . 5 ( a B - a A )  

since G is at the mid-point of AB. Hence The total angular velocity of link AB is its 
angular velocity relative to the axes plus the aG = (-3.1231 + 0.42745) d s 2  (xv) 
angular velocity of the axes: 

We have now determined all the necessary 
kinematics. To determine the force at B it is 
necessary to write equations of motion for the 
link AB, the slider S ,  and the collar C, making 
use of free-body diagrams. 

w A B  = -a+ (-p)i1 
= - a - p ( c o s a Z - s i n d )  (viii) 

Equation (viii) is a completely general expres- 
sion for w A B ,  and I, J, and K are fixed vectors. 
The total or absolute angular acceleration of AB 
is therefore 

L j A B  = - a - j j ( c o s d - s i n a J )  
- p( -sin a d  - cosadr~)  (ix) 

Alternatively, we can use equation 11.7, using 
Figure 11.49 the xl-, yl-, zl-axes as the rotating set of axes: 

= -a - Bil + [-a x (-a - pil ) I  
Figure 11.49 shows the forces acting on slider S. 
The force N is the action of the guide on the 

slider and is horizontal because of the lack of 
LjAB = a [ ~ A B ] l a t +  WC x oAB 



friction. The equation of motion is 

Ws+N+FB = mSaB (xvi) 
where Ws = msg (-1) 

= -(0.5)(9.81)1= -4.9051 N 

Let FB = FBXI + F B y J +  FBzK (xvii) 
- Taking the X-components of equation (xvi) to v 

eliminate N, LG = I,,w,i+I,,w,k (xxii) 

Note that I-yy = 0 since the rod is thin, and that x ,  
y, z are principal axes. 

Denoting the unit vectors for the x - ,  y-, z-axes 
by i ,  j, and k ,  we find 

(xviii) 

(xxiii) 

(xxiv) 

I 
I 

i =  il 
j = cos pj1 - sin pkl  
k = sinpj, + cosPkl 

j = 0.58421 + 0.63935 - 0.5K 
k = 0.33731 + 0.369lJ + 0.8660K 

Now I,, = mZ2/12 = (0.12)(0.2)2/12 
= 4 x 10-4 kg m2 

Figure 11.50 

Figure 11.50 shows the free-body diagram for 
the collar C. F A  and Fc are, respectively, the 
forces applied by the link AB and by the shaft 
along which the collar slides. There will also be a 
contact force (not shown) in the Z-direction 
applied by component E. The couple CA applied 
by link AB has no component in the xl-direction 
SO we can write CA as 

hence i = 0.7382Z-0.6746J 

and, from equations (x) and (xxiv), 

w, = oAB. i = 3.464 r ads  
w, = oAB. k = - 1.615 r ads  

Note that, as a check, w, = wxl = -b. 
CA = c A y j l +  CAZK 

= CAY (0.67461 + 0.73821) + CAZK 
The couple Cc has no component in the 

Z-direction. Taking moments about 0 we have 

cc + CA + rOA x F A  = 0 (xix) 
since the collar is massless. Taking the dot 
product with K of equation (xix) to eliminate Cc , 

Substituting into equation (xxii), we obtain 

LG = 1OP4(6.4531- 13.479J 
+ 3.221K) kg m2/s (xxv) 

The rate change of the moment of momentum is, 
from equation 11.68, 

i, = a(LG)xyz/at+ oxy. x LG 
CAZ+K.(rOAXFA)=O (xx) 

NOW rOA = TOA (sin d + COSCJ) 
= Ixxhx i + I,, h j  + wAB X LG (xxvi) 

Note that the derivative of the angular velocity 
of the body with respect to the moving x - ,  y-, 
z-axes is the same as the absolute angular 
acceleration since oxy, and wAB are one and the 
same. From equations (xi) and (xxiv), 

h, = hAB. i = -6.928 rads2 
hz = &AB. k = 36.645 rads2 

where TOA = 0.03 m 
hence rOA = (0.020241+0.02215J) m 

Writing F A  = FkvZ + FAyJ + FAzK 
and substituting in equation (xx) we find 

C A z - 0 . 0 2 2 1 5 F ~ + O . O 2 0 2 4 F ~ y  = 0 (mi) 

To determine the kinetic relationships for the 

as shown in Fig. 11.51. The x-axis is parallel to the 
x,-axis, the y-axis lies along the link, and the 
z-axis lies in the ADBE-plane. The moment of 
momentum about G is (equation 11.61) 

link, let US attach a set Ofx-7 Y-, z-axes to the link Substituting the numerical values into equation 
(xxvi) gives 

i, = (-3.68 x 1OP4I + 5.252 x 10-3J 
+ 1.0756 x lO-’K) N m (xxvii) 
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Now, L ,  = M , ,  the sum of the moments of We can obtain three further scalar equations by 
forces about G. If we take moments of forces comparing the coefficients of 1, J, and K in 
about G ,  our equation will involve seven equations (xxxiii) and (xxix). Combining these 
unknowns. We can eliminate the three compo- with equations (xxi), (xxx), (xxxi), and (xxxii) we 
nents of FA by taking moments about A, using can determine, after some labour, all the 
equation 11.64: unknown scalars. For the force at B the results 

F B ~  = 2.765 N and FB, = -3.181 N 

(xxviii) are M~ = i, + rAG x maG 

NOW TAB = 0.203’=O.11681+0.1279J-O.1K 

Problems and 

and, using equation (xv), 

rAG = 0.5rAB = 0.05841 + 0.0639 - 0.05K 

11.1 A packing case is to be moved from the ground 
to a platform as shown in Fig. 11.53, with points P, Q, 
and R moving to points P’, Q‘ and R’ respectively. The 
movement is to be in two stages: (i) a translation of 
point Q to Q’ without rotation of the case and (ii) a 
rotation about a fixed hinge line. 

rAG x maG = 0.12(0.021371 
+ 0.15621 + 0.2245K) 

hence MA = (2.196 x 1 0 ~ ~ 1 - t  2.399 X 1OP2J 
( n i x )  

Figure 11.52 shows the free-body diagram for 

+ 3.77n x lnP2K\  N m 

link AB, where 

a) Find the direction of the hinge line and the 
required angle of rotation. 
b) Could the movement have been accomplished by a 
single rotation about a fixed axis? 

W = mg(-1)  = (0.12)(9.81)(-1) 
= -1.1771 N 

Summing the forces, we have 

-FA + w- F B  = mUG 

-(FHt+FAyJ+ FAzK) 
+ 1.177Z-(2.3271+ FBYJ+FBZK) 

= 0.12( - 3.123 1I + 0.4274.J) 

hence - F M =  3.129 (xxx) 
-FAY- F B y  = 0.05129 (xxxi) 

-FAz- FBZ = 0 (xxxii) 

Taking moments about A,  

MA = (-CA) + TAG x w +  TAB x (-FB) 
= ( -0.6746CAy - 7.522 x lo-* 

+0.1279F~z+O. lF~y)z  
+ (-O.7382CAy + 6.877 X 1O-2 
-0.1168F~z- 0.2327F~y)J 
+ (-CAZ + 0.1 168F~ y - 0.2976) K 

(xxxiii) 

11.2 See Fig. 11.54. A radar station R is tracking an 
aircraft A which is flying horizontally at a constant 
velocity at an altitude of 2.0km. The Cartesian 
co-ordinates of the aircraft relative to the radar station 
are (4.3, 2.7,2.0) km. The velocity of the aircraft in the 
same co-ordinates is (-7OOi + 4OOj). k d h .  Deter- 
mine the numerical values of r ,  +,@, i., +, 8, r, & and e. 
11.3 In Fig. 11.55, rod AB, which is 400mm long, 
pivots about pin B. The angular velocity of arm CB is 
10k rads and its angular acceleration is 506 rads2. The 
angle CBA is denoted by 8, and 8 = a”, 8 = 20 rads, e = -100 rads2. Determine the velocity and accelera- 
tion of point A. 
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Figure 11.55 

11.4 A cranked arm PQRS carries at S a rotating 
wheel W of radius r as shown in Fig. 11.56. The x-, y-, 
z-axes are attached to the arm. The angular velocity 
and angular acceleration of the wheel relative to the 
arm are owj and ; w j  respectively. The angular velocity 
and angu~ar acceleration of the arm are wAk and wAk 

a point fixed in the xyz-frame coincident with B.  

~ - -  - - - - - -  
11-6 See Fig. 11.58. ABC is a cranked arm, with angle 
ABC a right ang1e. BC is in the XZ-plane, AB.= r* and 
BC = a. The arm rotates at a constant speed 8 relative 
to block C, which is itself rotating at constant speed C$ 

from a mass rn at A ,  find the force exerted by the 
cranked arm on the block. Express the force in terms of 
unit vectors (a) fixed to the block and (b) fixed in space. 

respectively. B is a point attached to the wheel and B' is about the fixed Y-axis. Neglecting all inertias apart 

Figure 11.56 
a) Find v,, and z ) B / ~ - ,  and hence find v, . 
b) Find uB, and U B B , ,  and hence find ug . 
c) Find the angular velocity and angular acceleration 
of the wheel. Figure 11.59 

11.7 In Fig. 11.59, collar C can slide along the fixed 
rod 00' and also rotate about it. AB is a 
ball-and-socket-jointed telescopic link. When the 
mechanism is in the configuration shown, vc = 4i rn!~ 
and wc = 20i rads. Find the velocity of B,  the rate of 
extension of link AB, and the angular velocity of the 
line AB. 
11.8 Use the methods of section 11.8 to determine the 
velocity of B and the angular velocities of the collar C 
and the link AB in the mechanism of example 11.9. 
11.9 See Fig. 11.60. Crank OA rotates in the xy-plane 
at a constant angular velocity wk. Slider B moves along 
path PQ, which is parallel to the z-axis and lies in the 
yz-plane. The connecting rod AB has ball-and-socket 
joints at each end. OA = r and AB = 1. Show that the 
velocity and acceleration of B are given by 

v, = -[brw(cos8)/z]k 
uB = (brw2/z3)(z2sin8- brcos'8)k 

11-5 Figure 11.57(a) shows the elevation of the track 
ABCDE for a Small toy motor car T; the Plan view is 
shown at (b). BCDE is a helix of radius 0.25 m and the 
helix angle a iS such that the pitch is 0.6 m. The track 
rests on the ground and is released from rest. 
Determine the velocity and acceleration of the toy as it 
passes point C. (If necessary it may be assumed that the 
radius of curvature of a helix of radius r is r sec2 a.)  
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Figure 11.62 

Figure 11.60 

where z = (1’ - b2 - r2  - 2brsin e)112. Also, find ex- 
pressions for the angular velocity and angular 
acceleration of AB, neglecting their components along 
AB. 

Figure 11.61 

11.10 A three-dimensional slider-crank chain is 
shown in Fig. 11.61. Crank OA rotates about the fixed 
y-axis with a constant angular velocity of 3j rads. 
Connecting link AB is pinned to the yoke Y which is 
free to rotate about the axis OA. The pin axis is 
perpendicular to OA and to AB. A ball-and-socket 
joint at B connects the link to slider S. The motion of 
the slider is such that the path of B is a straight line 
passing through 0. At the instant under consideration 
A is located at point (0, 0, 1) m and B is at point ( -1 ,2 ,  
1.5) m. Find the velocity of B and the angular velocity 
of AB. Also find the acceleration of B. 

11.11 Figure 11.62 shows a uniform rectangular prism 
of sides a,  b, and c and mass M. Determine the 
following moments and products of inertia: I,, , Iyy , I z z ,  

11.12 A thin uniform rod is bent into the shape shown 
in Fig. 11.63. BC = CD = DE = a and the mass per 
unit length of the rod is p .  Determine the moment of 
inertia Izz and the products of inertia I,; and I y z .  

I, ,  7 IXl 1 

Figure 11.63 
11.13 Show that, if o is not constant, the moment 
equation for rotation about a fixed axis (see section 
11.11) becomes 

M = ( -Znbz + I , ,w;) i  - (Iy,&, + I , zw:) j+  I,,&,k 

Also show that this equation applies to the more 
general case for moments about G where the axis is not 
necessarily fixed, but the angular velocity vector is 
constant in direction. 

11.14 Refer to problem 11.12. The cranked rod is 
rotating about the fixed z-axis with. an angular velocity 
R,k and an angular acceleration R,k. Determine the 
twisting and bending moments in AB at B. 

Figure 11.64 
11.15 In Fig. 11.64, the cranked rigid rod ABCD is 
used to stir the contents of container E. The mass per 
unit length of the rod is 4 kg/m. Determine for the rod 
the moment of inertia I,, and the product of inertia I,, . 
If the rod has an angular velocity of 1Ok rads  and an 
angular acceleration of -100k rads2, determine the 
magnitudes of the twisting and bending couples in the 
rod at A due to the inertia and weight of the rod. 
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Figure 11.65 

11.16 The freely spinning thin disc shown in 
Fig. 11.65 is rotating at an angular velocity lOOk r a d s  
relative to the arm PQ which is 100mm long. At the 
same time, the arm has an angular velocity of -lOK 
r a d s  and an angular acceleration of loOK rads2. The 
disc has a radius of 80 mm and its mass is 1.0 kg. The 
moment of inertia about the Z-axis of arm PQ is 
2.5 x kg m2. Determine the external couple C 
which is being applied to the arm and the bending 
moment a t  P. 

Figure 11.66 
11.17 Figure 11.66 shows part of a machine used for 
compacting sand. Arms A B  and A C  are of equal length 
and are each connected t o  the vertical post A D  by a 
horizontal pin at A .  Rollers B and C, each of mass rn 
and radius r. are mounted on bearings at the ends of the 
arms and roll over a horizontal surface. The constant 
angular speed of the post AD is w. Show that, if 
w = 2 d ( g / r ) ,  the contact force between the rollers and 
the surface will be three times greater than when the 
post is not rotating. Neglect the horizontal component 
of the contact force and the mass of the arms. 

Figure 11.67 
11.18 An aircraft has a single gas turbine, the rotor of 
which rotates clockwise when viewed from the front. 
The moment of inertia of the rotor is 15 kgm'. The 
engine is mounted on trunnions which would allow it to  
pitch about the axis 0, but this motion is prevented by 
the provision of the link L between the engine and the 
airframe as shown in Fig. 11.67. Axis 0 passes through 
the centre of mass of the engine. If the rotor speed is 

loo00 revlmin and the aircraft is turning to  port at 3"/s 
and banked at  30°, find the load in the link. 

Figure 11.68 
11.19 In Fig. 11.68 arm AB, of length 0.2 m,  is free to  
rotate about the Z-axis and its moment of inertia about 
this axis is 5 x kg m2. A thin disc of radius 0.1 m 
and mass 1 kg is mounted in a bearing at the end of the 
arm and is set spinning at 125 r a d s  in the direction 
indicated, the arm A B  being stationary. A couple 
C = 0.X N m is then applied to  the arm. Neglecting 
friction, determine the time taken until the disc 
reverses its direction of rotation relative to  the arm. 

Figure 11.69 

11.20 In Fig. 11.69, platform O A  rotates about the 
fixed axis 00' with angular velocity 4j and angular 
acceleration &. Motor B is fixed to the platform and 
carries disc D on its output shaft. The radius of the disc 
is R and its mass per unit area is p. A small hole H of 
diameter d is drilled in the disc a t  a radius r from the 
axle. The angular velocity and angular acceleration of 
the disc, relative to the platform, are Jlk and Jlk 
respectively. When the hole is in the position shown, 
determine the couple being applied to  the disc by the 
motor shaft. 

11.21 An aircraft is flying at a constant speed vo in a 
horizontal circle of radius R .  The angular speed of the 
propeller relative to  the aircraft is wo and the centre of 
the propeller is at C. By treating the propeller as a thin 
uniform rod of mass m and length I ,  show that, due to  
the inertia of the propeller, the magnitude of the 
bending moment in the propeller shaft at C is equal to 
(cosO)m12vOwo/(6R) and the magnitude of the twisting 
moment is equal to  m1'vo2sin28/(24R2), where O is the 
angle the propeller makes with the vertical. 

11.22 In the three-dimensional mechanism of 
Fig. 11.70, sliders A ,  B, and C move in their respective 
guides and are connected by the light rigid links AB 
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and BC. Link AB moves in the xz-plane. Each link has 
a length of d 2  m and the connections to the sliders are 
by ball-and-socket joints. In the configuration shown, 
v, = -6k d s  and BC is in the yz-plane. 
a) Determine the velocities of B and C and the 
angular velocity of the line BC. 
b) Find the acceleration of C and show that it is 
independent of the acceleration of B for this 
configuration. 
c) If the mass of slider C is 4kg, determine the 
magnitude of the force in link BC, neglecting friction, 
and state whether this link is in tension or compression. 



12 
Introduction to continuum mechanics 

SECTION A 
One-dimensional continuum 
12.1 Introduction 
In the previous chapters physical objects have 
been modelled mainly as rigid bodies which may 
translate and rotate but not deform. The concept 
of an ideal spring was used to represent a body 
having no mass but capable of being deformed, 
the deformation being proportional to the applied 
load. 

Any real body consists of a finite number of 
molecules each of which can translate and rotate, 
so that the number of degrees of freedom a body 
will have, in the mechanical sense, is six times 
(that is three translational and three rotational) 
the number of molecules. This is a very large 
number even for a particle 1 micron in diameter. 
Because of this the concept of a continuous 
distribution of matter is postulated. 

Matter will be regarded here as being either 
solid or fluid. Both states require forces to be 
applied to change their volumes, but a fluid 
requires no force to change the shape of an 
element in the static condition. 

Fluids are further divided into liquids and 
gases. A gas expands into any vessel but liquids 
will form a free surface with another fluid, also 
gases are much more compressible than liquids. 

These descriptions are idealisations but many 
engineering materials behave in a manner which 
approximates to these ideal substances. 

Internal friction can usually be ignored for most 
structural metals, but some materials are de- 
signed to have high internal damping characteris- 
tics for use when vibration is a problem. Fluid 
friction, viscosity, is an important consideration 
when dealing with oils, but for air or water the 
effects of viscosity are confined to a thin layer 
adjacent to a solid boundary known as the 
boundary layer. As internal friction complicates 
the governing equations they will not be included 

in this chapter. However such an approximation 
is quite common in a first approach to many 
engineering problems. 

The reader is advised that the sections on 
fluid dynamics (12.9 to 12.15) are not intended 
to replace a text in fluid dynamics but are 
incluried to draw Mention to the similarities 
and the differences in setting-up the basic 
equations. They may be omitted i f  solid 
mechanics only is required. 

12.2 Density 
The average mass density of a substance is 
defined as the quotient of mass to volume; and for 
a continuum it is assumed that no matter how 
small a volume is considered, the ratio remains 
finite so that the point mass density, or simply 
density, is defined by 

p = limit (Amass/Avolume) 

as the volume tends to zero. 

space having a volume V 
Conversely we may write that for a region of 

mass = JpdV (12.1) 

where the integration is over the whole volume. 

12.3 One-dimensional continuum 
The term one-dimensional here means that only 
one spatial co-ordinate is required to describe the 
position of an element. 

A simple one-dimensional continuum is a 
straight uniform solid bar or a fluid contained in a 
straight pipe of constant bore. 

The co-ordinate system used to define the 
location and movement of an element of a 
substance is usually different when dealing with 
fluids from that used for solids. It is very 
important that these methods are understood, so 
to this end we shall consider a pipe and fluid as 
shown in Fig. 12.1. 



216 Introduction to continuum mechanics 

the device would give a reading for a specific 
point in space and does not follow a particular 
particle of fluid. A flow velocity device would also 
be attached to the pipe. 

A system of co-ordinates which relates prop- 
erties to a specific point in space is known as 
Eulerian. Thus pressure p is a function of x and 
time t .  

The particle velocity is here defined by 

dr 
dt 

Figure 12.1 v = -  (12.5) 
Consider first how measurements of deforma- 

tion are made for the pipe itself. TO determine note here that the partial derivative is not 
how much the material has been stretched we required, however the velocity will be a function 
could measure the relative movement of two of both x and t. 
marks, one at x = xA and the other at x = xB. In summary, Lagrangian co-ordinates refer to a 
Note that if the Pipe moves as a rigid body the particular particle whilst Eulerian co-ordinates 
marks will move with the pipe SO the marks will refer to a particular point in space. 
not be at their original locations. We must regard 
XA and XB as being the ‘names’ of the marks: that 12.6 Ideal continuum 
is they define the original positions of the marks. An ideal solid is defined as one which is 
In this context x does not vary, SO we must use a homogeneous and isotropic, by which we mean 
different symbol to denote the displacement of that the properties are uniform throughout the 
the marks from their original positions. The region and SO not depend on orientation. In 
symbols uA and uB will be used. addition we will assume that the material only 

undergoes small deformation and that this 
deformation is proportional to the applied 12.4 Elementary strain 

The longitudinal, or axial, strain is defined to be loading system. This last statement is known as the change in length per unit length Hooke’s law. 
UB - UA An ideal fluid is also homogeneous and 

thus the strain I = ~ (12-2) isotropic and the term is usually restricted to 
incompressible, inviscid fluids. This is clearly a XB -XA 

As the distance between the marks approaches to good approximation to the properties of water in 
zero conditions where the compressibility is negligible 

and the effects of viscosity are confined to a thin 
(12.3) layer close to a solid surface known as the 

boundary layer. For gases such as air, which are 
The partial differential is required since strain very compressible, it is found that the effects of 
could vary with time as well as with position. compressibility in flow processes are not signi- 

ficant until relative velocities approaching the 12.5 Particle velocity 
The velocity of a particle at a given value of x, say ’peed Of sound are reached. 
xA, is simply 12.7 Simple tension 

au 
E = -  

ax 

v = -  dU 
at 

(12.4) 

Again the partial derivative is used to indicate 
that x is held constant. 

The above co-ordinate system is known as 
Lagrangian. 

If we are concerned with the fluid in the pipe 
then a pressure measuring device would be fixed 
to the pipe and, assuming that the pipe is rigid, 

Figure 12.2 shows a straight uniform bar length L ,  
cross-section area A and under the action of a 
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tensile force F. The state of tension along the bar 

surface is F to the right and on a left-facing 

d2U 
is constant, this means that if a cut is made ( F + E & ) - F =  (PA&) ,  

at anywhere along the bar the force on a right-facing 

surface it is F to the left. 
It follows that at. any point the tensile load 

divided by the original cross-section area, F/A,  is 
constant and this quantity is cajled the stress (+. A 
negative stress implies that the load is compres- 

strain E = 61L. - = p , , Z  (12.9) 

aF d2U 
or - -  - PA? (12.8) 

Since nominal or engineering stress is defined as 
force/original area, then dividing both sides of 
equation 12.8 bY A gives 

ax 

sive. If the extension under this load is 6 then the a a  a2u 
ax By Hooke’s law 6 m F so E ~c a or 

We have already shown that the strain u =  EE (12.6) 
a U  

where the constant of proportionality E is a E = -  (12.10) 
property of the material known as Young’s ax 

andalso u =  EE (12.11) modulus. 
Re-arranging the above equations gives 

so substituting 12.11 into 12.9 and using 12.10 we 
(12.7) finally obtain FL a=-- 

A E  
a2u a2u 

ax2 at2 
E- = p- (12.12) A state of tension resulting in an extension is 

regarded as being associated with a positive stress 
and a positive strain. (See Appendix 8 for a 
discussion of material properties. ) 

12.8 Equation of motion for a one- 
dimensional solid giving 
Figure 12.3 shows an element of a uniform bar 
which has no external loads applied along its 
length, the external loads or constraints occurring 
only at the ends. The material is homogeneous the solution of which is u = a + bx where a and b 
with a density P l  Young’s modulus E and a are constants depending on the boundary 

conditions. constant cross-section area A .  

du 
dx 

This is a very common equation in applied physics 
and is known as the wave equation. 

In a statics case the right-hand side of equation 
12.12 is zero so that u is a function of x only, 

d2 u - = o  
dx2 

Now strain 

E = - = b = VIE = (F/A) /E 

so if at x = 0 u = 0 then a = 0, u = Fx/(AE). At 
x = L the displacement is equal to FL/(AE) ,  as 
expected. 

12.9 The control volume 
The equations of motion developed for rigid 
bodies and commonly used for a solid continuum 
refer to a fixed amount of matter. However for 
fluids it is usually more convenient to concentrate 
on a fixed region of space with a volume V and a 
surface S. The properties of the fluid are 
expressed as functions of spatial position and of 
time, it being noted that different particles will 
occupy a given location at different times. 

The mass of an element of length dx is pAdx 
and this is constant as these quantities refer to the 
original values. 

Resolving the forces in the x direction and 
equating the net force to the mass of the element 
times its acceleration gives 
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p by pv in the development of the continuity 
equation. This is possible since p is the mass per 
unit volume and pv is the momentum per unit 
volume. Thus the change in momentum in time At 
is 

a(pv) dV 
AG = [I, pv ( v -  &) + 1, at ] 

AG 
Now force F = limAt-o- 

At 

= [ p ( v - d S ) +  [ " Y d V  (12.14) 
5 

At time t the control volume is shown in 
Fig. 12.4 by the solid boundary. At time t+ At the 12.12 Streamlines 
position of the set of particles originally within the A streamline is a line drawn in space at a specific 
control volume is indicated by the dashed time such that the velocity of the fluid at that 
boundary. instant is, at all points, tangent to the streamline. 

The velocity of the fluid at an elemental part of The distance along the streamline is s and, as in 
the surface is z, and the outward normal to the path co-ordinates, e, is the unit tangent vector and 
surface is e,. e, is the unit normal vector; as shown in Fig. 12.5. 

At the elemental surface area, dS, the increase 
in mass in the time At is 

p(dSvAtcosa) = pv-e,dSAt = pv-dSAt. 

Note that the area vector (dS = ends )  is defined 
as having a magnitude equal to the elemental 
surface area and a direction defined by the 
outward normal unit vector, e,. 

Integrating over the whole surface we obtain 
the net total mass gained by the original group 
due to the velocity at the surface. In addition to 
this there is a further increase in mass due to the 
density over the whole volume changing with 
time. 

Thus the change in mass, 
ds 
dt 

Thus v = vet = - e, 

Am = [ I s p v - d S +  Iv$dV]At If the flow is steady, that is the velocity at any 
point does not vary with time, a streamline is also 
a path line. 

12.10 Continuity 
Since the mass must remain constant 

Am 12.13 Continuity for an elemental 
- = [ spv-dS+[  ?dV=O (12.13) volume 
At v at The continuity equation, 12.13, is in the form for 

this is known as the continuity equation. a finite volume. We now wish to obtain an 
expression for an elemental volume correspond- 

12.1 1 ing to that derived for the solid. 
To obtain the equations of motion we need to Figure 12.6 shows a rectangular element with 
consider the time rate of change in linear sides dx, dy and dz. Considering the continuity 
momentum. This is achieved by simply replacing 

Equation of motion for a fluid 

equation we first evaluate the surface integral 
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component of velocity u since the streamlines at 
this surface may be diverging. 

A stream tube could have been used where the 
curved surface is composed of streamlines, but 
this means that the cross-section area would be a 
variable and the effect of pressure on this surface 
would have to be considered. 

\,pu-dS = pvx+-dx dydz-pv,dydz [ a 2 ]  
[ a:1 
[ a P I  

+ pvy+-dy dzdx-pvydzdx 

+ pv,+-dz dxdy-pv,dxdy 

First we need to apply the continuity equation 
- -  - [ apvx +- apvy + ””.I & dy dz. so with reference to Fig. 12.7 

ax ay az 

The vector operator V is defined, in Cartesian 
(p+$ds)(v+E*)dA co-ordinates, to be 

aP 
at 

a a a  - pvdA + p(u dS ’) + - dA ds = 0 V = i- +j -  + k -  
ax ay az 

Neglecting second order terms SO with pu = ipv, + jpv, + kpv, 
av aP aP 

l , pu .dS  = V-pudxdydz. as dS at 
p-dV+ v- dV+pudS+- d V =  0 (12.16) 

where dV = dsdA. 
In applying the force equation we are going to 

include a body force, in this case gravity, in 
addition to the pressure difference. Resolving 

The operation V . (pu) is said to be the divergence 
of the pv field and is often written as div(pu). 

Also [ v 2dV=-dxdydz at at  forces along the streamline 

so the complete continuity equation is 

aP 

d F = p d A -  p+-ds dA ( E )  
[V-pu+$]dxdydz = 0 - pgds dA cos ff 

or or 

d F =  --pgcOSa dsdA. (12.17) 

12.14 Euler’s equation for fluid flow The rate of change of momentum is, from 
In applying the momentum equation we shall 
choose a small cylindrical element with its axis 

surface, of area dS ’, there could be a small radial 

(2 1 (12.15) aP 
at 

v*pu+- = o  

equation 12.14, 

along a streamline. However at the curved d G = ( p + g d s ) ( V + % d s )  av 2 dA-pvudA 
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av aP 
as as 

= 2pv-dsdA +v2-dsdrdA +puudS’ 

The right-hand side of this expression can be 
simplified by subtracting v times equation 12.16 to 
give 

combining with 12.17 and dividing through by 
dsdA 

and finally re-arranging gives 

1 ap av av 
-gcosa-- - = v- +- 

p as as at 
(12.18) 

This is known as Euler’s equation for fluid flow. 
Since v = v(s, t ) ,  

dv av ds av dt av av 
dt as dt at dt as at 
---- - +--=-v+- 

the right-hand side of 12.18 may be written as 

dv 
dt . 
- 

12.15 Bernoulli’s equation 
If we consider the case for steady flow where the 
velocity at a given point does not change with 
time, Euler’s equation may be written 

1 do dv 

the partial differentials have been replaced by 
total differentials because v is defined to be a 
function of s only. Multiplying through by ds and 
integrating gives 

-I gcosads- I - -- - +constant 

now cos ads = dz thus 

I f + + gz  = constant 

If p is a known function of p then the integral can 
be determined but if we take p to be constant we 
have 

+ ”’ + gz = constant 
P 2  

(12.19) 

this is known as Bernoulli’s equation. 
This equation is strictly applicable to steady 

flow of a non-viscous, incompressible fluid; it is, 
however, often used in cases where the flow is 
changing slowly. The effects of friction are usually 
accounted for by the inclusion of experimentally 
determined coefficients. As has already been 
mentioned, the effects of compressibility can 
often be neglected in flow cases where the relative 
speeds are small compared with the speed of 
sound in the fluid. 

SECTION B 
Two- and three-dimensional 
continua 
12.1 6 Introduction 
We are now going to extend our study of solid 
continua to include more than one dimension. In 
our treatment of one-dimensional tension or  
compression we did not consider any changes in 
the lateral dimensions. Although we are going to 
use three dimensions we shall restrict the analysis 
to plane strain conditions. By plane strain we 
mean that any group of particles which lie in a 
plane will, after deformation, remain in a plane. 
It is possible that the plane will be displaced from 
the original plane but will still be parallel to it. 

It is an experimental fact that a stress applied in 
one direction only will produce strain in that 
direction and also at right angles to the stress axis. 
If a specimen is strained within the x-y plane 
then, if the strain in the z direction is to be zero, 
there must be a stress in the z direction as well as 
in the x and y directions. Conversely, if stresses 
are applied in the x and y directions with a zero 
stress in the z direction, there will be a resulting 
strain in the z direction as well as those in the x 
and y directions. The two-dimensional analyses 
presented later are based on the latter case. 



12.17 Poisson’s ratio 
If Hooke’s law is obeyed, then the transverse 
strain produced in axial tension will also be 
proportional to the applied load; thus it follows 
that the lateral strain will be proportional to the 
axial strain. The ratio 

transverse strain 
axial strain 

- - - v  

where v is known as Poisson’s ratio. 

If a uniform rectangular bar, as shown in Fig. 
12.8, is loaded along the x axis then 

E, = u x / E  
E~ = -vu,/E 

and E, = - vc, /E.  

12.1 8 Pure shear 
Figure 12.9 shows a rectangular element which is 
deformed by a change in shape such that the 
length of the sides remain unaltered. The shear 
strain yxy is defined as the change in angle 
(measured in radians) of the right angle between 
adjacent edges. This is a small angle consistent 
with our discussion of small strains. 
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Figure 12.10 

This shows the equivalence of the complementary 
shear stresses. 

Again by Hooke’s law, shear stress is 
proportional to the shear strain 

Txy = Tyx (12.21) 

Txy = GYxy (12.22) 

where G is known as the Shear Modulus or as the 
Modulus of Rigidity. 

- 

Referring to Fig. 12.11 it is seen that the shear 
strain can be expressed in terms of partial 
differential coefficients as 

Yxy = Y1+ Y2 

auy au, 
ax ay 

yxy = - +- 
12.19 Plane strain 
The rectangular element, shown in Fig. 12.12, has 
one face in the XY plane and is distorted such that 
the corner Points A ,  B ,  c and D rnOve in the XY 
plane only. 

The translation of point A is u and that of point 
C is u + du. For small displacements 

( 12.23) 

The loading applied to the element to produce 
pure shear is as shown in Fig. 12.10. This set of 
forces is in equilibrium, SO by considering the sum 
of the moments of the two couples in the xy plane 

(12.m) F,dr-F,dy=O 

rXy = F,/(dydz) 
The shear stress is defined as 

d u =  -dx+-dy i+ 2dx+Ldy 
and ryX = Fy/(drdz) [z a u ~  ay ] [z au ay li 
Substitution into equation 12.20 gives or in matrix form 
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au, au, [:::I= k 4 [;] (12.24) 

Let us now introduce the notation 

Figure 12.13 

1 au 0 =-Ay_- 
xy 2 (  ax $) 

(see Fig. 12.13). 
The 112 in the strain matrix spoils the simplicity 

of the notation therefore it is common to replace Figure 12.12 

a u x  - 

aY 
4Yxy by Exy . 

~ - u , , ~  etc. 

In this notation the strain in the x direction 12.20 Plane stress 
The triangular elements shown in Fig. 12.14 are in 
equilibrium under the action of forces which have 
components in the x and y directions but not in 
the z direction. Note that the surface abcd has 
area dydzi and area abef has an area dxdzj; these 
are the vector components of the area e’f’c’d’. 
The sense of the stress component, shown on the 
diagram, is such that when multiplied by the area 
vector it gives the force vector. 

Ex, = ux,x 

similarly EYY = UY,Y 

and the shear strain 

and equation 12.24 becomes 
yxy = uy,x + u , , ~  

[::;I = [:::I :;::][;I 
The square matrix can be written as the sum of a 
symmetrical and an anti-symmetrical matrix. By 
this means the shear strain can be introduced. 

I 
1 + [a(.x,y - uy,x) 0 

ux,x I (ux ,y  + uy,x 1 

0 -%uy,x- UXJ 

[I::: :::I 7 [l(ux,y + uy,x) 

[::;I =(I ...I J 

UY 3 Y  

therefore 

Ex, iv.... 1 ~ 

4Yxy Eyy Figure 12.14 

Resolving in the x direction we obtain +[lY -?I} [;I (12-25) 
where Oxy is the rigid body rotation in the xy 
plane given by 

F, = u,dydz+ rxydxdz 
Fy = c,dxdz+ rxydydz 

or, in matrix form, 



dy dz [ :] = [ rz :][ dxdz] 

Letting dydz = S,  and dxdz = S,  [;I = [r: :I[;] (12.26) 

In many texts rXy is replaced by mxy . 

12.21 Rotation of reference axes 
The values of the components of stress and strain 
depend on the orientation of the reference axes. 
In Fig. 12.15 the axes have been rotated by an 
angle 8 about the z axis. 
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they may now be transformed by use of the 
transformation matrix. 

12.22 Principal strain 
Since (du) = [T](du’) and (dx) = [TI(&’) we can 
write 

[TKdu’) = (1.1 + [aLIWl(d4 

(du‘) = [TIT{[El + [filI[Tl(dx’)- 

and pre-multiplying by [TIT we obtain 

The rotation [a] is not affected by the change 
in axes because they are rotated in the xy plane. 
The transformed strain matrix is 

[&’I = [TIT[&] IT1 
- cos0 sin8 E,, 

[-sin e cos e ] [  E,, 2::] 
cos0 -sine 

x [  sine cos@ 

= [I:; 3 

- 

1 
where 

E’ ,, = E,, cos2 e + E,, sin2 e 

E’,, = E , ~ C O S ~  e + &,sin2 e 

E’,, = ( E ~ -  ~,,)sinBcose 

(Eyy-Exx) . 

From the figure we have + ~,,2cosesinB (12.28) 

x = x’cos8-y’sine 
y =y’cose+x‘sine - ~,,2cosesinB (12.29) 

which, in matrix form, becomes 

K] = [cose -sins]kr] sin8 cos0 

(x) = ITl(x‘>. 

+ E,, (cos’ e - sin2 e) 

- - sm28+ E , , C O S ~ ~  (12.30) 

also (E’,,+ E’~,)  = ( E ,  + E ~ )  (12.31) 

From equation 12.30 it is seen that it is possible 

(12.27) 
2 

or, in abbreviated form 

The matrix [T1 is a transformation matrix. It is 

inversion that the inverse of this matrix is the 
same as its transpose. 

easily shown from the geometry or by matrix to choose a va1ue for 8 such that &’xy = 0- The 
value of 8 is found from 

(12.32) 

The axes for which the shear strain is zero are 
Writing equations 12.25 and 12.26 in abbrevi- known as the principal strain axes. Let us 

therefore take our original axes as the principal 
axes, that is E,, = 0. The longitudinal strains are 
now the principal strains and will be denoted by E~ 

in the x direction and by E~ in the y .  

2Exy 
( E ,  - Eyy 1 

tan28 = I cose sin8 
-sine cos6 

[TI-’ = [TIT = [ 
ated form as 

(du) = {[El + [a1 I (k ) 
and ( F )  = [u](S) 
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From equations 12.28 and 12.29 we now have expressed in terms of rotated co-ordinates we 
may write 

(Ef,-&’ ) ( E 1 - E 2 ) ~ ~ ~ 2 e  
f l =  

2 2 (F) = [T](F’) and (S) = [T](S’) 
thus [ T ] ( F ’ )  = [a][T](Sf) 

so pre-multiplying by [TIT gives 
and from equation 12.30 

( E ~  - ~ ~ ) s i n 2 8  
2 ( F ’ )  = [TIT[ul[TI(S’) 

[of] = P I T  [a1 [TI 

- E l x y  = 

A simple geometric construction, known as 

strains and the angle 8. Figure 12.16 shows a 

axis, the ordinate being the negative shear strain. 
The location of the centre is given by the average 
strain, and the radius of the circle is half the 
difference between the principal strains. It is seen 
that this diagram satisfies the above equations. 

therefore 
Mohr’s circle, gives the relationship between the 

circle plotted with its centre on the normal strain cos0 sin8 a,, aXy 

[-sine wse][uxy uy,] 

cos0 -sine .[ sin8 cos0 

= [;:I; ;:;;I 
- - 

I 
where 

a’ xx = a,, cos2 e + cry, sin2 e 

urYy = uyy cos2 e + a,, sin2 e 

dXy = (ayy - u,,) sin ecos e 

+ aXy2cosBsin 8 (12.33) 

- uxy2cosBsin8 (12.34) 

+ oxy (cos2 e - sin2 e) 

2 
- - (uyy - uxx) sin 28 + a,, cos20 (12.35) 

also (a’,, + dYy) = (a, + uyy) 

From equations 12.33 and 12.34 we now have 

(ufxx - utyy) - (ul - u 2 ) ~ ~ ~ 2 e  - 
2 2 

and from equation 12.35 

(ul -u2)sin28 
2 

-(+Ixy = 

The form of these equations is the same as 
those for strain therefore a similar geometrical 
construction can be made, which is Mohr’s circle 
for stress as shown in Fig. 12.17. 

Because we have taken the material to be 
isotropic it follows that the principal axes for 
stress coincide with those for strain. This is 
because normal stresses cannot produce shear 
strain in a material which shows no preferred 
directions. 

Figure 12.16 

It can be seen that when 6 = 7d4 the shear 
strain is maximum and the normal strains are 
equal. If the circle has its centre at the origin then 
for 0 = 7r/4 the normal strains are zero. So for the 
case of pure shear the principal strains are equal 
and opposite with a magnitude E,, = y,,/2. 

In the case of uniaxial loading E~ = - vsl hence 
the radius of the circle is ( E ~  + m1)/2 which also 
equals the maximum shear strain at 8 = 7~14. 

so yx,=E, ( l+v)=ul ( l+Z)) /E .  

12.23 Principal stress 
Equation 12.26 can also be written in abbreviated 
form as 

( F )  = [ m )  
and since the components of any vector can be 
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Because of the symmetry b must be equal to c so 
we can write 

~1 = ( b + ( ~ - b ) ) ~ i + b ~ 2 + 6 ~ 3  
or u1 = ~ ( E ~ + E ~ + E ~ ) + ( U - ~ ) E ~ .  
Let b = A and (a - b)  = 2p  where A and p are the 
Lame constants, and introducing dilatation A, the 
sum of the strains, we have 

~1 = AA+2p~1 (12.37) 

and again because of symmetry 

~2 = AA + 211~2 (12.38) 
Figure 12.17 ~ 3 = A A + 2 p ~ 3 .  (12.39) 

12.24 The elastic constants 
So far we have encountered three elastic 
constants namely Young's modulus ( E ) ,  the shear 
modulus (G) and Poisson's ratio (v). There are 
three others which are of importance, the first of 
which is the bulk modulus. 

For small strains the change in volume of a 
rectangular element with sides dx, dy and dz is 

(&xx &I dY dz+ (&yydY ) dzdx + (E==dZ) dxdY- Figure 12-18 
The volumetric strain, also known as the 
dilatation, is the ratio of the change in volume to 
the original volume; thus the dilatation 

A = E,, + eyy + E, Let us now consider the case of pure shear, see 
Fig. 12.18- We have already Seen that (+I = - ~ X Y  9 

a 2  = rxy ,  s1 = - E , ~  and E~ = e,y so substituting 
into equations 12.37 and 12.38 we have 

It should be remembered that shear strain has no 
effect on the volume. 

The average stress 

a,,,. = (ax, + c y ,  + a, 113 -rxy = h A + 2 p ( - ~ , ~ )  

rxy = AA + 2 p X y .  and the bulk modulus K is defined by and 

Solving the last two equations shows that A = 0 
and rxy = 2peXy giving 

p = k = 3 L G  (12.40) 

Now consider the case of pure tension, see 
Fig- 12-19> such that u z  = 0 and Ez = - V E I .  

(12.36) 
(For fluids the average stress is the negative of the 
pressure p ) .  

The two other constants are the Lame 
constants and they will be defined during the 
following discussion. 

In general every component of stress depends 

consider an element which is aligned with the 
principal axes of stress and strain, then each 
principal stress will be a function of each principal 
strain, thus from which u1 = 2p(1+ v)cl 

f l a w . =  KA 

2Exy Y x y  

linearly on each component of strain. If we Substitution into equations 12.38 and 12.39 gives 

~1 = AA + 2 ~ ~ 1  
0 = AA- ~ / A . v E ~  

u1 = UE1+ be1 + C E 3 .  SO u1/&] = E = 2/41 + v) = 2C(1+ v) (12.41) 
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12.25 Strain energy 
If a body is strained then work is done on that 
body and if the body is elastic then, by definition 
of the term elastic, the process is reversible. 
Consider a unit cube of material so that the force 
on a face is numerically equal to the stress, and 
the extension is equal to the strain. For the case 
where only normal stresses are acting the increase 
in work done is 

d U =  u x x d ~ x , + u y y d ~ y y + u u d ~ ,  

For a linearly elastic material obeying Hooke’s 
law where stress is proportional to strain, the total 
energy may be found by applying the load in each 
uirtxiion sequenriaiiy racier than simultaneously. 
Applying the load in the x direction first the work 
done is the area under the stress-strain graph, so 
since the strain is due to uxx only 

If we add together the three equations 12.37 to 
12.39 we obtain 

3uaVe. = 3AA + p A  = (3A + 2p)A 
U X X  u x x  u =-- 

= A + 2 d 3 .  (12.42) x 2 E  
Ui3V.Z. 

SO K = -  
A 

we now apply uyy slowly whilst ax, remains 
‘Onstant 

(For an ideal fluid p = 0 and A = K). 

OxOy axes as principal axes 
Using equation 12.28 it is seen that taking the 

a;, U Y Y  C Y  Y U y  = - - + uXx (- V) - thus 
E,, = E~ cos2 e + e2sin2 8 2 E  E 

and using equation 12.33 a, u7.2 mu 0, 

ax, = u1 cos2 e + u2 sin2 e. 2 E  E E 
and U z = - - + u x x ( - v ) - + u y y ( - v ) -  

The total energy due to normal stresses is Substituting from equations 12.37 and 12.38 leads 
to u= ux+uy+uz 

ax, = [AA + 2 p 1  ] cos2 6 + [AA + 2p-521 sin2 8 
u x x  u x x  lJ 

2 E E  = - (- - - (uyy + u22 1) 

1 
) 

= AA + 2p[[flcos2 e + &*sin2 e] 

U Y Y  U Y Y  v 
2 E E  i 

a22 ffz v 
2 E E  

+- ---(u,+uxx) 

+- - - - (uxx+uyy)  

= AA + 2p~, ,  . 
In general we may write 

( 12.43) 

and 7ij = 2pqj  ( i f j )  (12.44) 

This can also be written in matrix form as 
+-+- 

( 
u,, = AA + 2 p ~ , ,  

U X X E X X  U y y E y y  U u E z z  

2 2 2 
-- - (01 = AA[Z] + 2 p [ ~ ]  12.45) 

where [ I ]  is the identity matrix. 
Note that for a homogeneous isotropic elastic 

material there are only two independent elastic 

In the case of pure shear strain the strain 
energy is simply 

moduli. 7xy Yxy 

2 

and since the shear strains are independent the 
total strain energy can be written 
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U X X E X X  c y y e y y  U z E z  We assume that a light, rigid plate is resting on 
2 2 2 top of a tube which is concentric with a solid rod. 

The rod is slightly shorter than the tube by an 
+-+-+- Txy x y  Tyz Yyz 7zx Yzx (12.46) amount e which is very small compared with the 

The problem is to find the stresses in the 
component parts when the plate is axially loaded 
with a sufficiently large compressive force that the 
gap is closed and the rod further compressed. 

The solution is to consider equilibrium, 
compatibility and the elastic relationship. 

Equilibrium of the plate is considered with 
reference to the free body diagram depicted in 
Fig. 12.21 where P is the applied load and PR and 
PT are the compressive forces in the rod and the 

12.26 Introduction P - PR - PT = 0 (12.47) 
The exact solution to the three-dimensional stress 
strain relationships are known for only a small 
number of special cases. So for the common 
engineering problems - involving prismatic bars 
under the action of tension, torsion and bending - 
certain simplying assumptions are made. The 
most important of these is that any cross-section 
of the bar remains plane when under load. This 
assumption provides very good solutions except 
for very short bars or ones which have a high 
degree of initial curvature. 

12.27 Compound column 
To illustrate the use of the simple tensionl 
compression formulae we shall consider a 
compound column as shown in Fig. 12.20. 

I/=- +-+- 

2 2 2 length L. 
or in indicia1 notation 

@.E. .  u - 'I 'I 

2 

where summation is taken over all values of i and 
j .  (Remember that e = $2, eij = eji  and u,, = u,, .) 

SECTION C 
Applications to bars and beams tube respectively. 

The compatibility condition is that the final 
length of the tube shall be the same as that of the 
rod. So with reference to Fig. 12.22 we see that 
the compression of the tube is equal to the initial 
lack of fit plus the compression of the rod. 

& = e + &  (12.48) 

The application of Hooke's law to the tube and 

-PTIAT = - E T ( & - / L )  (12.49) 

and -PRIAR = -ER(SR/L) (12.50) 

rod in turn gives 
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Substituting these last three equations into 
equation 12.47 gives 

P- ~ E T A T I L -  (h- e)ERAR/L = O 
LP- eERAR 

or h= (12.51) 

and from 12.48 
ETAT+ERAR 

6R = % - e  (12.52) 

From equations 12.49 and 12.50 the forces in each 
component can be found and hence the stresses. 

12.28 Torsion of circular cross-section 
shafts 
As an example of the use of shear stress and strain 
we now develop the standard formulae for 
describing the torsion of a uniform circular 
cross-section shaft. Other forms of cross-section 
lead to more difficult solutions and will not be 
covered in this book. 

r d F  = r3G(O/L)dOdr. 

Figure 12.24 

For an annulus d e  is replaced by 27r thus 
integrating over the radius from 0 to a gives the 
total torque 

T =  G(O/L)lar327rdr= 0 G(O/L) (3 ~ . 

The integral Jr327rdr = Jr2dA, where dA is 
the elemental area, is known as the second polar 
moment of area and the usual symbol is J .  

The above expression for torque may now be 
written 

T = G (O/L)J (12.54) 

Combining this with equation 12.53 we have 

(12.55) 

Figure 12.23 shows a length of shaft, radius a 
and length L ,  under the action or a coupie in a T = torque 

J = second polar moment of area plane normal to the shaft axis. This couple is 

G = shear modulus known as the torque. 

8 = angle of twist 
a) the material is elastic, L = length of shaft 
b) plane cross-sections remain plane and r = shear stress 
c) the shear strain vanes linearly with radius. 

From Fig. 12.23 and the definition of shear 
strain the shear strain at the surface 'ya = aO/L and 
the shear stress at the surface r, = Gy, = GaO/L. 
Therefore at a radius r 

where 

The following assumptions are to be made 

r = radius at which stress is required. 

For a hollow shaft with outside radius a and inside 
radius b the second polar moment of area is 
7r(a4- b4)/2. 

12.29 Shear force and bending moment 
(12.53) in beams 7 = GrOlL 

We can now form an expression for the torque In the case of rods, ties and columns the load is 
carried by the shaft. Consider an elemental area axial, and for shafts we considered a couple 
of cross-section as shown in Fig. 12.24. The applied in a plane normal to the axis of the shaft. 
elemental shear force is In the case of beams the loading is transverse to 

the axis of the beam. In practice the applied 
loading may well be a combination of the three 
standard types, in which case for elastic materials 

d F  = 4rdOdr) = (GrO/L)(rdOdr) 

and the torque due to this is 
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( : 1: undergoing small deflections the effects are dM 
M + - d x - M - V d x / 2 -  v+-dx - = o  

dM = v  or ~ 

dx 

Substituting equation 12.57 into 12.56 gives 

simply additive. dx 

and usually loaded in they direction. Figure 12.25 

A beam is a prismatic bar with its unstrained 
axis taken to be coincident with the x direction 

shows an element of such a beam. 

(12.57) 

= w  (12.58) 

If the loading w ( x )  is a given function of x, then 

d’M dV 
dx’ dx 

- ~- - 

by integration 

v =  wdx (12.59) J 
It is assumed that the angle that the axis of the (12.60) 

beam makes with the x axis is always small. The 
lateral load intensity is w and is a measure of the However in the majority of practical problems 
load per unit length of the beam. The resultant the loading is not of a continuous nature but 
force acting on the cross-section is expressed as a frequently consists of loads concentrated at 
shear force v and a couple M known as the discrete points. In these cases it is often 
bending moment. The convention for a Positive advantageous to use a graphical or semi-graphical 
bending mO~~-~ent  is that which gives rise to a method. These methods are especially useful 
positive curvature: concave upwards. Note that when only maximum values of shear force and 
this does not follow a vector sign convention since bending moment are required. 
the moments at the ends of the element are of 
opposite signs. 

Figure 12.26 shows the free body diagram for 
the element, note that the x dimension has been 
exaggerated. 

and M = 11 w&& = 1 Vdx 

Figure 12.27 
As an example of the use of graphical 

techniques we will consider the case of a simply 
supported beam as shown in Fig. 12.27. 

- 
We resolve forces in the y direction and equate 

to zero since in this analysis dynamic effects are 
not to be included. 

so w d x + v -  v+- = o  i 3 
dV 
dx 

leads to - = w  (12.56) 
The free body diagram for the beam is given in 

By taking moments about the centre of the Fig. 12.28 from which, resolving in the y 
element and again equating to zero direction, 
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RA -I- RB - W = 0 
and by moments about A (anticlockwise positive) 

RBL-Wa=O 

therefore RA = WbIL and RB = WaIL 

Figure 12.29 is the shear force and bending 
moment diagram for the beam and is constructed 
in the following way. 

The shear force just to the right of A is positive 
and equal to RA. The value remains constant 
until the concentrated load W is reached, the 
shear force is now reduced by W to RA - W which can be expressed as 

CD -AB (R -y)d6- RdO 
= -y/R - E =  - 

AB Rd6 

therefore the stress (T = EE = -Ey/R (see Fig. 
12.31) 

or ---- - (12.61) 

where R is the radius of curvature of the beam. 
Note that in many texts, due to a choice of 
different sign convention, the above equation 
appears without the minus sign. 

u E  
Y R  

is equal to -RB . This value remains constant until 
reduced to zero by the reaction of point B. 

The bending moment is found by integrating 
the shear force which is, of course, just the area 
under the shear force diagram. Since the shear 
force is constant between A and C it follows that 
the bending moment will be linear. Because point 
A is a pin joint the bending moment is, by 
definition, zero. The rest of the diagram can be 
constructed by continuing the integration or by 
starting from end B. The maximum bending 
moment is 

RAa = -RB(-b) = WabIL 

12.30 Stress and strain distribution 
within the beam 
Consider the element of the beam, shown in 
Fig. 12.30, under the action of a pure bending 
moment (Le. no shear force). The beam 
cross-section is symmetrical about the yy axis and 
its area is A .  It is clear that the upper fibres will be 
in compression and the lower fibres will be in 
tension, so there must be a layer of fibres which 
are unstrained. This is called the neutral layer and 
the z axis is defined to run through this layer. 

We shall now assume that plane cross-sections 

Figure '*m3' 

tothe surfaceis 
The resultant load acting on the section normal 

p=h2 y=h2 Eyb 
y=-hl  y = - h l  R wbdy = - I -dY I 

- -E [ y = h 2  ybdy remain plane so that the strain in a layer y from - 
the neutral layer (which retains its original length) R y = - h l  
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Since this must equate to zero as a pure couple 
has been applied 

v=hz 

v=-h l  

1. ybdy = 0 

This is the first moment of area so by definition 
the centroid of the cross-section area lies in the 
neutral layer. 

If we now take moments about the z axis we 
obtain an expression for the bending moment 

The integral Jy’bdy = Jy’dA is known as the 
second moment of area and denoted by I. Similar 
to moment of inertia, the second moment of area 
is often written as I = A k 2  where A is the 
cross-section area and k is known as the radius of 
gyration. 

The parallel axes theorem relates the second 
moment of area about an arbitrary axis to that 
about an axis through the centroid, by the 
formula 

(12.63) 

where h is the distance between the xx and the 
GG axes. 

The perpendicular axes theorem states that for 
a lamina in the yz plane 

(1 2.64) 

The proofs of these two theorems are similar to 
those given for moments of inertia in section 6.3. 

Using the definition of second moment of area 
equation 12.62 becomes 

I ,  = IGG + Ah2 

I,, = Iyy = I ,  

E 
R 

M = - I  

M E  
or --- 

I R  
- (12.65) 

and combining this with equation 12.61 we obtain 

(12.66) 

engineer’s theory of bending, and is widely used 
even for cases where the shear force is not zero as 
the effect of shear has little effect on the stresses 
as defined above. However the bending does have 
a significant effect on the distribution of shear 
stress over the cross-section. 

12.31 Deflection of beams 
The governing equation for beam deflection is 

M E  
I R  
_ - -  - 

For small slope (i.e. dyldx < 1) the curvature 

1 d2y 
R dx2 

M d2y 
E I  dr2 

- 

- so 

Integrating with respect to x we have 

and y = [[ g d x d x .  

(12.67) 

(12.68) 

( 12.69) 

As an example of calculating the deflection of a 
beam we will consider the cantilever shown in 
Fig. 12.32. The loading is uniformly distributed 
with an intensity of w. 

Where u is the stress at a fibre at a distance y from 
the neutral layer, M is the bending moment, I is 
the second moment of area, E is Young’s 
modulus and R is the radius of curvature 
produced in the beam. 

Equation 12.66 is sometimes referred to as the Figure 12.32 
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- e  dY _ -  From the free body diagram the shear and 
bending at the fixed end are found to be W L  and 
- wL2/2 respectively. We now use equations 12.59 
and 12.60 to evaluate the shear force and bending 
moment as functions of x .  

dx 
SO integrating between limits 

y2-y1 = ["edx 
V =  (-w)dx+constant = - w x + w L  XI 

and integrating by parts we obtain I 
I M = (- wx + w L )  dx + constant 1 2  1 2  dB 

Y2-Y1 = ex II, -I,, x z d x  
wx * 

-- + wLx+(-wL2/2) .  We know that - - 
2 

- - _ _  - _ - _  
R 1 - d x d x  d idyl- dx do - E l  M 

Now using equations 12.68 and 12.69 

+wxL-wL2/2  dx and by choosing x1 as the origin we may write 

(xz-xl) M 
EI 

I x-dx (12.71) 

The interpretation of the last equation can be 
seen in Figs 12.33 and 12.34. The difference in 
deflection between positions 1 and 2 ,  relative to 
the tangent at point 2,  is the moment of the area 
under the MIEI diagram, between points 1 and 2 ,  

Y Z - Y l =  62(x2-x1)- 

) - dY =-I 1 (-- wx 2 

dx E l  2 

+ constant 
0 

1 
E l  

= - (- wx 3/6 + wx 2L/2 - wL2x/2 + 0) 

the constant is zero since the slope is zero at the 
fixed end. 

y = - ( -wx3/6+ wx2L/2-  wL2xI2)dx about the point 1 .  
El  'I 
+constant 

-wx4/24+ wx3L/6- wL2x2/4+0 . 1 =-( 1 
EI 

The maximum deflection clearly is at the 
right-hand end of the beam where x = L 

1 
EI 

y,,, = - wL4 (- 1/24 + 116 - 114) 

wL4 
8EI 

- -- - 

12.32 Area moment method 
The double integration of M / ( E I )  can be 
performed in a semi-graphical way by a technique 
known as the area moment method. Integrating 
equation 12.67 between the limits x1 and x2 gives 

_ _ - -  dY dY - @,-e ,  = rX2gdx (12.70) 

or O2 - O1 = area under the M / ( E I )  diagram as 
shown in Fig. 12.33. 

Now by definition 

J X I  L;1 As a simple example of the use of the area 
moment method we will consider the case of a 
cantilever, length L, with a concentrated load at a 
distance a from the fixed end, as shown in Fig. 

dx2 dx, 



rod is subjected to a constant tension F.  
Assuming that the taper is slight so that the 

stress distribution across the cross-section is 
uniform, derive an expression for the change in 
length of the rod. 

Solution From Fig. 12.36 we see that the 
diameter at a position x is 

(D2 - D1 ) x  d = D 2 -  
L 

3 

and the cross-section area A = 7rd2/4. The stress 
u = F/A and the strain 

.E = a /E  = 
4F 

E T ( D ~ -  ( 0 2 -  Dl)x/L)'  
Figure 12.35 

au du 
ax dr 

Now & = - = -  

12.35. We wish to find the slope and deflection at 
the free end. 

diagram which is linear from B to A and has a 
maximum value of - Wu at A.  

The change in slope between A and C is the 
area of the MIEI diagram thus 

The first step is to sketch the bending moment so u = - d x  = -- I: : ET 4 F f L  n ( u - ~ x ) *  dx 

1 l L  
EI 2 hence u ="[ 1 -'I 

F - - 
EA/T b ( a  - b x )  o 

where a = D2 and b = ( 0 2 -  D 1 ) / L  
wu u 

0, - 0 = -- -, since 0, = 0. 
ET b ( ~ - b L )  b~ 

4FL ( 0 2  - D1) 
Applying equation 12.71 

- - 
y - y  = e x  - --- - ( L - U / ~ )  . T E A ( D , - D d I  DlDZ 1 

4FL - - 
c a a ,  (E)( ) 

ETD1D2 As both y ,  and 0, are zero 

Wa2 ( L - a/3) 
2EI Example 12.2 Y c  = - 

A load washer is a device which responds to a 
compressive load, producing an electrical output 
proportional to the applied force. In order to 
make a load cell capable of registering both 
compression and tension it is precompressed by a 
bolt as shown on Fig. 12.37. The stiffness of the 
load washer is k and the bolt is made out of a 

Discussion examples 
Example 12.1 
A circular cross-section rod, made from steel, has 
a length L and tapers linearly from a diameter D2 
at one end to a diameter of D 1  at the other. The 
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b) From the free-body diagram 

P =  FB-Fw 
substituting in (i) 

nh = Fwlk+ ( P +  Fw)LI(AE) 

nhk - PkL/(A E )  
1 + kLl(AE)  

k 

gives Fw = 

- AFw thus - - - 

The sensitivity of the load cell will be that of the 
load washer reduced by the ratio kl(AEIL + k ) .  

Note that the above equations are only valid 
whilst 

AP A E I L t k '  

P<nAAEIL 

Example 12.3 
A flat steel plate with dimensions a ,  b,  c in the x,  
y ,  z directions is under the action of a uniform 
stress in the x direction only, see Fig. 12.38. Show 
from first principles that if Poisson's ratio is 0.29 
then the longitudinal strain is zero when 
6 = 61.7". 

1 

material whose Young's modulus is E. 

a) If the lead of the thread on the bolt is A 
determine the compressive load on the load 
washer if the nut is tightened by n turns. 

b) Also find the change in load on the washer as 
a fraction of the change in load on the load cell for 
a pre-tightening of n turns. 

By drawing Mohr's circles for stress and for 
Solution strain confirm the previous result. Show also that 
a) We will assume that the head of the bolt and the maximum shear stress and the maximum 
the region covered by the nut have negligible shear strain occur when o =  450. By further 
distortion. In this case there is an initial lack of fit consideration of the diagrams at o = 450, prove 
of nh, which means that in the assembled state the that E = 2G(1+ .). 
stretch in the bolt plus the compression of the 
washer must equal nh. Also, by equilibrium, the Solution In Fig. 12.38 the point P is situated a 
tensile force in the bolt must equal the distance L from the origin of the axes, the line OP 
compressive force in the washer. being at an angle 0 to the x axis. The relative 

movement in the x direction is F , X  and in the y 
the tensile force in the bolt is FB then direction it is - vc,y. Resolving along OP 

If the compressive force in the washer is Fw and 

nh = Fw/k + FBL/(AE) (9 F , X C O S ~ -  vFxysinO= ELL 
since Fw = FB where eL is, by definition, the strain in the 

direction of L .  Now x = LcosO and y = Lsin 0 so nh 
F -  

w - llk + L / ( A E )  sL = F,[COS~O- vs in2~] .  



E - - ux /3 For E~ = 0 K = -  - p  - - 
tan28 = l / v  = 1/0.29 AV/V ~ ~ ( 1 - 2 ~ )  3 ( 1 - 2 ~ )  

= 158.7 GN/m2 
200 x 109 therefore 8 = 61.7”. - - 

3(1- 2 x 0.29) By measurement on the Mohr’s circle for 
strain, Fig. 12.39, zero normal strain Occurs at 
approximately 62”. 

(Because all elastic moduli must be positive, it is 
clear from the general expression for K that 
v<0.5.) 

Example 12.5 
Obtain an expression for the strain energy per 
unit volume for an isotropic homogeneous 
material in terms of its principal stresses. Find 
also an expression for the strain energy associated 
with the change in volume, and hence find an 
expression for strain energy associated with 
distortion. 

Solution The total strain energy per unit volume 

forces acting on the surface of a unit cube. 
From the diagrams it is readi1y Seen that the can be found from the work done by the normal maximum shear stress occurs when 28 = 90” and 

also occurs at 8 = 45” and has a value of (1 + v) E,. 

has a va1ue Of ux/2. The maximum shear strain The work done equals the total strain energy 

v- - v- 
ux/2 a, 1 1 ‘ - 2  E ~2 E 7 E 

u - -  -- 
(TI [“I 

From the values just quoted 

---- T 
G = - =  - -E- 

+- - - v v - - v y -  ,r2 2 E  U3 E u1 E 1 
?[: u2 E “‘I E 

y (l+Y)EX E,  2(1+v) 2(1+v) 

or E = 2 G ( l + v )  

Using Example the same 12.4 data as in example 12.3 evaluate 
the values of the shear modulus and the bulk 1 
modulus, given that Young’s modulus is 200 
GN/m2 and Poisson’s ratio is 0.29. 

Solurion From example 12.3 

200 x io9 
2( 1 + 0.29) 

+- --------- 

= -[u12+u2~+u3* 
2E 

- 2 4 0 2  u 3  + u 3  u1+ u1 e 2  ) I  
The work done in changing the volume of the 

unit cube is 
- = 77.5 GN/m2 G=-- E 

2( 1 + v) 
The change in volume 

uv=i  - P I / = - -  ’( IAV :: 
AV = a&, bc - bve,ac - cvexab In the general case - p  = the average stress 

= ( U I  + uz + u3)/3 

u, = - 

= abcs, (1 - 2v) 
1 (a1 + u 2  + u3)2 thus the volumetric strain 
2 9K AV/V= ~ ~ ( 1 - 2 ~ )  

1 
2 x 9 K  

The mean pressure - p  = -(average stress) - - [ u12 + u22 + u32 
= -ux/3 so by definition the bulk modulus 

+ 2 ( c 2 @ 3  + c 3  (TI + UI 0 i ) l  
The total strain energy is the sum of the 

volumetric strain energy and the distortional or 
shear strain energy, i.e. 
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ut = U"+ us and strain which occur at 45" to the bar axis. The 
strain energy based on this calculation is therefore 

1 1 2  U = - [  u1/2]2 = - u1 us = ut- U" 
2G 8G 

= 1 [ (' -L) (a12 + u22 + u 3 2 )  The difference is due to the fact that in this 
situation the element is still being distorted, 
because the transverse stress is still zero even 
though the other two normal stresses are equal to 
each other. 

Example 12.7 
A thin-walled cylindrical pressure vessel shown in 
Fig. 12.40 contains a gas at pressure p. The 
diameter of the shell is 0.6 m and the thickness of 

2 E 9K 

1 - -+- ( u l u 2 + u ~ u ~ + u 3 u l )  ri l K )  
E 

3( 1 - 2~) 
Now E = 2G(1+ v) and K = 

so K =  2G(1+ v) 

Substituting these values into the previous 
equation 

us = 

3(1- 2 ~ )  ' 

1 2(1+v) 
[ u12 + f722 + u 3 2  

4 G ( l + v )  3 

- (UI u2 + a 2  @3 + u 3  (+I 11 the steel is 6mm. Given that the yield stress of 
steel is 300MN/m2 find the maximum allowable 
pressure based on the stresses on the curved 
surfaces remote from the ends. 

Solution The material is under the action of a 
longitudinal stress and a hoop stress as shown in 
Fig. 12.41. We shall consider the equilibrium of a 
unit length of the cylinder. Resolving in the y 
direction 

1 1  
2G 6 

= - - [(ai - ~ 2 ) ~  + ( u 2  - u 3 l 2  + ( ~ 3  - vi )'I 

Example 12.6 
The von Mises-Hencky theory of failure for 
ductile materials suggests that, under the action 
of multi-axial stresses, failure will occur when the 
maximum shear strain energy is equal to that 
which occurs when failure occurs in a simple 
tensile test. 

Show that this leads to the formula 

((TI - u2)2 + (u2 - u 3 ) 2  + (u3 - u1 )2 = 2u: 

where uy = the yield stress. 

Solution From example 12.4 the expression for 
shear strain energy is 

1 1  
2G 6 

- "- 

u, = - - [(VI - a2)2 + (0, - u 3 ) 2  + (u3 - (+I )'I Figure 1 2-41 

p2r - 2tuH = 0 
In a simple tensile test u2 = u3 = 0, so 

1 1 
12G 6G 

where uH is known as the hoop stress therefore 

us = - [2u12] = -u1 2 where u1 = uy P' 
t 

@H = - 

therefore 
(a] - u2)2 + (u2 - u3)2 + (q - r1)2 = 2uy2 

It is interesting to note that the shear strain 
energy in the simple tensile test is greater than 
that calculated from the maximum shear stress 

Considering the equilibrium of one part of the 
cylinder 

p r r2  - uL2rr t  = o 
so the longitudinal stress 



P' 
UL = - 

2t 

As there is no shear on the element aH and uL 
are by definition the principal stresses u1 and u2 . 
The third principal stress is taken to be zero, 
because with r+>t it follows that u1 and u2 are 
much greater than p. Substitution into the von 
Mises-Hencky equation, 

i@)2 [ (2  - 1 ) 2  + ( 1  -0)Z + (0-2)2] = 2 4  

2 
or (5) (6) = 2a: 

giving will be wL/2. The shear force at x = 0 is therefore 
+wL/2. A sketch of the shear force diagram and 
of the bending moment diagram is shown in 
Fig. 12.43. 

2uYt - 2 x 300 x lo6 x 0.006 
- = 6.9 MPa P = 7 G  d 3  x 0.300 

The corresponding hoop and longitudinal WL v =  Vo= ( -w)dx  = - - wx I: 2 
stresses are 

6.9 x lo6 x 0.300 
2 x 0.006 

6.9 x lo6 x 0.300 

a L  = = 173 MPa and the bending moment is 

M = M ~ + J ' V ~ ~  
Un = = 346 MPa 0 

WLX wx2 Note that uH>uY. This is because a high =o+--- 
2 2  

The slope of the beam 

0.006 

proportion of the strain energy is associated with 
a change in volume of the material while it is the 
shear strain energy which relates to failure. 

dy dy x M _ - _  
Example 12.8 d x - d x o + b I d x  
Figure 12.42 shows a simply supported beam 

w. The beam is made from a material with a 
Young's modulus E and the second moment of 
area of the beam cross-section is I. 

dy 1 wLx2 wx3 - -- +---- 
duo E l [  4 6 ] carrying a uniformly distributed load of intensity 

and the deflection 

.x dY 
Y = Y O +  i, dy d" 

0 = - L + - [- -4 
=o+-x+-[----] dy 1 wLx3 wx4 

d u o  EI 12 

Now at x = L the deflection is zero, so 
Figure 12.42 

dy 1 wL4 wL4 Obtain an expression for the shear force, 
bending moment and deflection of the beam. Use d ~ o  EI 12 
the area-moment method to check the expression 
for the deflection at the centre. 

Solution 
W L  and by symmetry the reactions at the supports 

therefore 

dy wL3 
dr0 24EI' 
_ -  The total load carried by the beam is - -- 



238 Introduction to continuum mechanics 

Finally Using the area moment method determine the 

By taking moments about the point A 

deflection at the point C. 
Solution 
the reaction at point B may be found 

y = -wL4 [ (5) - 2 (t)' + (31 24EI L 

The area moment method states that the first 
moment of the area under the MIEZ diagram 
about point 1 gives the change in deflection of the 
beam between points 1 and 2 relative to the 
tangent at point 2. In this case we may make use 

seen that the slope at the centre is zero. Therefore 
the moment of the area between one end and the 
centre about the pin joint will equal the maximum 
deflection. 

Rg L - wa = 0 

or RB = WaIL 

and by resolving vertically upwards 
of the symmetry of the system from which it is RA + Rg - W = 0 

SO R A = R B - W =  W6IL 

Figure 12.44 gives the standard properties of a 
parabola from which we can write the deflection 

2 wL2 L 5 L 
Y o - Y u 2  = -Yu2 = - 3 (  - 8 X i j ( 8 X i )  

5wL4 
384 

- - - 

Example 12.9 
Figure 12.45 shows a uniform beam resting on 
simple supports with a load of 12 kN applied 4 m 
from A .  The second moment of area of the beam 
cross-section is 0.0004 m4 and Young's modulus is 
200 GN/m2. 

The shear force and bending moment diagrams 
may now be sketched as shown in Fig. 12.46. The 
peak bending moment is readily shown to be 
Wa6lL = 12000 x 4 x U6 = 16OOO Nm. 

The application of the area moment method is 
a little more difficult because we do not know the 
position for zero slope. We know that the 
deflection at B is zero, so the moment about B of 
the area under the MIEI diagram between A and 
B will give the deflection at B relative to the 
tangent line at A.  This deflection is also seen to be 
given by the product of the slope at A and the 
distance between A and B. 

Wa6 a Wa6 6 26 
Y B N  = E 5 [ 6 +:] +E 2 3 

16000 - - 
2 x 10" x 0.oO04 

x (4 x 212 + 4 x 416 + 2  x 2 x 216) 
= 1 . 6 ~  10-3m 

dY 
h 0  

NOW - = y,N/L = 1.6 X 10-3/6 

= 0.267 x lop3 rad. 



The deflection at C relative to the tangent at A is 

ycM = Wab [' (b + d 3  + C )  + 4 (2b/3 + c)] 
EIL 2 

16000 
2 x 10l1 x 0.0004 

- - 

x [; (2 + 4/3 + 3) +; (2 x 2/3 + 3)] 

= 3.4 x lo-3 m 

dY 
&O 

Thus y c = y c M - - ( ~ + b + c )  

= 3.4 x lop3 - 0.267 x 1OP3(4 + 2 + 3) 
yc = 1.00 mm 

Example 12.10 
A channel, the cross-section details of which are 
given in Fig. 12.47(a), is used for the beam shown 
in Fig. 12.47(b). This is loaded by a force parallel 
to the beam axis but offset by 0.3 m. 

Determine the maximum tensile and compres- 
sive stresses in the beam due to bending. 

Solution By taking moments about A ,  from the 
free-body diagram of Fig. 12.47(c) 

lOOOOX0.3-Rc3=0 
R c = 1 0 0 0 N  

and resolving vertically upwards 

Rc+R,=O 
so R,t, = -1000 N. 

The alternative separate free-body diagrams of 
Fig. 12.47(d) show that a couple of 3 kNm is 
applied to the beam at B. 

The shear force and bending moment diagrams 
are shown in Fig. 12.47(e). Note that the shear 
force is constant along the beam which usually 
implies a constant slope to the bending moment 
diagram. However, the couple applied at B 
causes a step of 3000Nm into the bending 
moment diagram. 

From the diagram we see that the maximum 
positive bending moment is 1000Nm and the 
largest negative bending moment is -2000 Nm. 

We now require to find the position of the 
neutral axis and the second moment of area about 
this axis. This will be done by breaking the 
cross-section shape into two rectangles for which 
we know the geometric properties. The two 
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1 
2 

c 

I Area A X AP I,, 1 
50 x 125 = 6250 62.5 390625 50 x 1253/3 = 32.55 x lo6 
250 x 25 = 6250 12.5 78125 250 x 2S/3 = 1.30 x lo6 

12500 468750 33.85 X lo6 

flanges will be considered as a single one of twice 
the width, see Fig. 12.47(f). 

In the table below X is the position of the 
centroid of the individual parts from the XX axis. 
All dimensions are in mm. 

The intersection of the neutral layer with a 
given cross section is known as the neutral axis 

The position of the centroid 
(NA)- 

ZAP 468750 
= 37.5 mm. XNA - = ___ 

ZA 12500 
Using the parallel axes theorem 

2 INA = I,, - ( ~ A ) X N A  
= 33.85 x lo6- 12500 x 37.52 
= 16.25 X lo6 mm4. 

Just to the right of B the maximum compressive 
stress occurs in the top layers where y = 87.5 mm 
so 

M io00 x 103 
87.5 

16.25 x lo6 u c = - - y = -  I 
= -5.83 N/mm2 = -5.38 MN/m2 

and the maximum tensile stress occurs at the 
bottom fibres where y = -37.5 mm so 

(-37.5) = 2.31 MN/m2. 
io00 x 103 

ut = - 
16.25 x lo6 

Just to the left of B the bending moment is twice 
the magnitude of, but of opposite sign to, that just 
to the right therefore the bending stresses are 

and ut = 10.76 MN/m2 in the upper fibres. 

In the section between A and B there is a 
tensile force of 10 kN so there is a uniform tensile 
stress of 

looOo/12500 = 0.8 N/mm2 = 0.8 MN/m2 
and this has to be added to the bending stresses, 
so finally 

uc = 4.62 MN/m2 in the lower fibre 

uc = 4.62 -0.80 = 3.82 MN/m2 
ut = 10.76 + 0.80 = 11.56 MN/m2. and 

Example 12.11 
A shaft 0.5 m long is required to transmit 80 kW 
at 300 rev/min. It is specified that the twist shall 
not exceed 0.25" and the shear stress is not to be 
greater than 36 MN/m2. The shear modulus of the 
material is 85 GN/m2. 

Determine (a) the minimum diameter of a solid 
shaft to satisfy the specification; and (b) the inside 
and outside diameters of a hollow shaft to meet 
the specification. 

What is the weight ratio of the two designs? 

Solution The torque to be transmitted is 
found from 

power = torque x angular speed 

80x  lo00 
torque T = = 2546 Nm 

300 x 27~160 
and the allowable twist 

0 = 0.25 x 2d360 = 0.0044 rad. 

a) From 
T GO r 

J L r  
- - 

J J 7rD3 T 2546 70.7x106 
r Dl2 16 7 3 6 ~ 1 0 ~  

or D >  1 = 71.1mm 

- - -=  - ->-=-= 

116 x 70.7 x lo6 1'3 

L 7T J 
2546 x 0.5 

85 x lo9 x 0.0044 
= 3.4 x m4 

T L  
GO 

Also J > -  = 

since J = n-D4/32 

r32 x 3.4 x lop6 'I4 
D >  1 = 76.7mm 

L 7T 1 
From the two calculations it is seen that the 

twist requirement is more demanding, hence a 
diameter of 76.7 mm will satisfy both criteria. 

Because we are dealing with inequalities some 
care must be exercised on the choice of equations. 
We must not choose expressions where both twist 
and stress appear together, since both criteria 
cannot be satisfied simultaneously. 



b) With two unknown diameters to be deter- 
mined it is possible to satisfy both criteria 
simultaneously. Denoting the outer diameter by 
D and the inner by d we may write 

D TL 3 6 ~ 1 0 ~ ~ 0 . 5  
2 G6 8 5 x  109x0.0044 

r = - = - z  = 48.1 mm 

so D = 96.2 mm 

Also 

2564 x O‘’ 
= 3.43 x 10-6 m4 

TL 
G6 

J = - =  
85 x lo9 x 0.0044 

r ( D 4 - d 4 )  
J =  = 3.43 x 1o-6 

D4-dd4 = 

32 
32 x 3.43 x lop6 

= 34.90 x lop6 
7r 

d = [0.09624 - 34.90 x 10-6]”4 

The ratio of the weights of the two designs is 

= 84.4 mm 

the same as the ratio of the cross-section areas 

76.72 
= 2.76 

96.22 - 84.42 

Example 12.12 
A close-coiled helical spring, shown in Fig. 12.48, 
is loaded axially. The mean diameter of the coil is 
D and the diameter of the wire is d. The number 
of turns of the helix is N and G is the modulus of 
rigidity of the wire material. 

G = 85 GN/m2, Tallowable = 300 MN/m2, D = 15 
mm, d = 2 mm a n d N =  8. 

Solution The implication of the term close- 
coiled is that the helix angle /3 is small, which in 
turn means that the strain due to bending is small. 
It will also be assumed that the index of the spring 
(Dld) is large and this allows us to neglect 
distortion due to the shear force. 

Consider the free-body diagram shown in Fig. 
12.49(a). The downward force at the section must 
be equal in magnitude to P, and the couple of 
magnitude P(D/2) about the axis perpendicular 
to the plane containing the two P forces is 
required for equilibrium. If the force and the 
couple at the section are then resolved into axial 
and transverse directions for the wire, as shown in 
Fig. 12.49(b), we obtain 

the torque T =  P(D/2)cosp 
the bending moment M = P(D/2)sinP 
the axial force F = PsinP 
and the shear force S = Pcosp. 

The full analysis is very complicated but very 
good agreement between theory and practice may 

Derive (a) an expression for the stiffness of the be obtained for cases where p is small. We shall 
spring; (b) an expression for the maximum axial use a strain energy method and because of the 
tension; and (c) given the following data, assumptions stated only the strain energy due to 
determine the stiffness of the spring, the torsion will be significant. 
maximum tensile load and the extension at this The strain energy due to torsion in a small 
load. 

a) 
length ds of wire is 
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Td6 = 1.24, therefore p = arctan( (2+ 1.24)1(rD)) 
dU=-  = 3.93". This angle is still small. 2 

- T = G- d6 Example 12.13 
J ds One common type of strain gauge is a small metal 

grid often formed from etched foil which is 
cemented to a surface for which the stress level is 
to be measured. To enable the principal strains 
and stresses to be determined three gauges may 

The change in resistance of the gauges when 
strained can be related to the strain along the 
gauge axis. 

but 

T 2  
therefore d U  = - ds. 

2GJ 

Integrating Over the whole length s Of the wire be arranged into a rosette as shown in Fig. 12.50. 
T2S UZ-- 
2GJ 

Now the length of the wire, for small p, is TDN 
and the torque T = PD12, so substitution gives 

P D 2 r D N  PD3N - 8PD3N -- - U =  - 
8GJ 8Gd4132 2Gd4 

Since the strain energy stored must be equal to 
the external work done it follows that 

PS u=- 
2 

8PD3N 
hence 6 = ~  

Gd 

so the stiffness 

P Gd4 GD d 4 

6 8ND3 8N ( E )  
k = - = - = -  

b) The maximum allowable tensile load P is 
found from 

PD/2 Tallowable --- - 
J dl2 
- r 5 4  4rard4I32 r d 3  -- 8D ~al lowable  thus P=a-  - - - 

c) Inserting the values given 

Dd Dd 

k = 6.3 Nlmm 
P = 62.8 N 

and the extension 

6 = 62.816.3 = 9.98 mm 

As a check on the helix angle let us assume that 
initially the coils of the spring are touching so that 
the distance between the coils is d. It follows 
that the helix angle is arctan dl(.irD) = 2.4". After 
the application of the maximum load the coil 
separation will be increased by 61N = 9.8818 

' lhe  rosette is cemented to the surface of a 
specimen and the specimen is then loaded. The 
strains indicated by the three strain gauges are 

Ea = 700p&, Eb = 200jLE and E, = loop&. 

Calculate the values of the principal strains and 
of the principal stresses, given that Young's 
modulus E =200 GN/m2 and Poisson's ratio 
u = 0.29. 

Solution Figure 12.51 shows a sketch of a 
Mohr's circle for strain. The three strains, in this 
case all are positive, are laid out along the 
abscissa. Since gauges a and c are at 90" to each 
other the radii OA and OC will be at NO", that is 
COA is a diameter of the circle the centre of 
which is at the mean of the two strains 
(700+ 100)12 = 4 0 0 ~ ~ .  The angle 26 must be 
chosen such that the projection of the radius OB 
on the abscissa is the strain read from gauge b. 
From the geometry, OA = 3OOlcos(28) and 
OB = 200lsin(28) and since OA = OB it follows 
that tan(26) = 2001300 giving 28 = 33.69" and 
8 =  16.85'. The radius of the circle is 300/ 



200 x 10' 
(1 -0.292) 

- - (700 + 0.29 x 100) lo-' = 159 MN/m2 

E 
u 2  = ~ (l-2)(E2+VE1) 

200 x 109 
- - 

= 66.2 MN/m2 

(100 + 0.29 x 700) lo-' 
(1 - 0.292) 

Example 12.14 
Show that for a beam the strain energy stored due 
to bending is given by (cos20) = 3 6 0 . 5 6 ~ ~  hence the principal strains 

are 
. r = ~  M 2  

x=o 2EI 
.=I -dx ~1 = 400 + 360.56 = 7 6 0 . 5 6 ~ ~  

Where M is the bending moment, x is the distance and 
To calculate the principal stresses we refer to measured along the beam axis, E is Young's 

Fig. 12.52 and note that, because the gauge is on modulus and I is the second moment of area. 
the surface u3 = 0; this does not imply that E~ is Use this expression to show that the deflection 
necessarily zero. of a simply supported beam with a central 

E~ = 400 - 360.56 = 3 9 . 4 4 ~ ~ .  

concentrated load W is 

WL3 a=--- 
48EI. 

Solution Consider a length of the beam, AL, 
under the action of pure bending. This implies 
that the only loading is that due to couples M 
applied at each end. The work done is 

U = $Md0 

where 0 is the difference in rotation between the 
ends of the beam. 

From equation 12.67 --+ M - d'y d 2 ) = -  d0 
EI dx' dx dx dx 

so if M is constant 

M d0 8 

EI dx AL 
_ -  _ - -  - -  

leading to 

El8 EIe2 M ~ A L  -do=-=-. u= I AL 2AL 2EI 

This expression is based on the assumption that 
the bending moment is constant, however if the 
strain energy due to shear distortion in a beam is 
negligible then this expression may be used for 
cases where the bending moment is a function of 

u1 u2v 
E1 =--- E E  

v 2  u1 v and e 2 = - - -  
E E  

E~ + 17.5~ = ul- (1-2) 

( 1 - 2 )  

therefore 
E 

and 

leading to 

E 2  + YE1 = 02- 
E 

E 
U] = ___ (1 - 2 )  ( E l  + V E 2 )  
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x. Thus by replacing AL by dx we have 

x=o 2EI 

For a simply supported beam with a central 
load the reaction at each end will be W/2, so 
between the end and the centre the bending 
moment is (W/2)x. The strain energy can be 
found for one half the beam and the result 
doubled thus 

x = ~ 2  ( ~ 1 2 ) ~ ~ ~  - ( ~ 1 2 ) ~  ( ~ / 2 ) ~  
- 

x=o 2EI E13 
- W2L3 
- 

32 x 3EI 

This must be equal to  the work done by the 
applied load 

u= W6/2. 
Equating these expressions gives 

WL3 a=-- 
48EI 

Problems 
12.1 A hydraulic press exerts a force of 5 MN. This 
load is carried by two similar steel rods supporting the 
upper head of the press. Calculate the diameter of each 
rod and find the extension of each rod in a length of 
2 m. The safe stress is 85 MN/m2 and Young's modulus 
is 200 GN/m2. 

12.2 A steel and a brass wire of 3 m  lengths and of 
diameter 2 mm and 2.5 mm respectively hang vertically 
from two points in the same horizontal plane and 
125mm apart. To the lower ends of the wires is 
attached a light rod which supports a weight of 0.45 kN 
hung midway between the wires. Find the angle at 
which the rod will set to the horizontal. Young's 
modulus for brass is 85GN/m2 and that for steel is 
193 GN/m2. 
12.3 If the ultimate shearing stress of mild steel is 
340MN/m2 calculate the force necessary to punch a 
26 mm diameter hole in a plate 13 mm thick. 

12.4 A square of material initially 160 mm x 160 mm 
is deformed to a rectangle 176 mm X 156 mm. 

Determine from first principles (a) the longitudinal 
strains along directions 0", 30", 45", 60" and 90" to the 
longer edge; and (b) the shear strains corresponding to 
the directions in part (a). 

12.5 A flat plate of thickness t tapers from a width of 
b1 to a greater width b2 over a length L. The plate is 

subjected to an axial tensile load P. Assuming that the 
stress distribution is uniform across the width and that 
the limit of proportionality is not exceeded, show that 
the modulus of elasticity of the material is 

where 6 is the total extension. 

12.6 A short horizontal rigid bar is supported by a 
vertical steel wire in the centre and a vertical brass wire 
at each end. The wires are attached to a rigid sup- 
port and each has a cross-section area of 160 mm2 and 
length 6 m. A load of 20 kN is applied to the centre of 
the bar. 

Calculate (a) the stress in each wire; and (b) the 
extension of each wire. 
Take Esteel = 207 GN/m2 and Ebrass = 87 GN/m2. 
12.7 Calculate the thickness of a spherical steel vessel 
2 m internal diameter to sustain an internal pressure 
of 2MN/m2 with a tensile stress of 125MN/m2. Also 
find the change of volume due to the pressure. 

Young's modulus = 210 GN/m2 and Poisson's 
ratio = 0.28. 
12.8 A cylinder is 2 m long and 0.75 m in diameter. Its 
wall thickness is 10 mm. It is closed at the ends by flat 
end plates and the end effects may be disregarded. 

The internal pressure is raised by 1 MN/m2, calculate 
for the cylinder (a) the increase in length; (b) the 
increase in diameter; and (c) the increase in volume. 
Take E = 200 GN/m2 and Y = 0.30. 

12.9 Sketch in good proportion the shear force and 
bending moment diagrams for the beams shown in Figs 
12.53(a) to 12.53(f). In each case state the maximum 
values of shear force and bending moment, also show 
the position of any points of contraflexure. 

12.10 Find the bending moment which may be 
resisted by a cast iron pipe 200mm external and 
150 mm internal diameter when the greatest allowable 
stress due to bending is 10 MN/m2. 

12.11 A beam of rectangular cross-section, width b 
and depth d, is freely supported at its ends. It is just 
sufficiently strong to support its own weight of w h i t  
length. If the length, width and depth are all halved, 
what uniformly distributed loadunit length would the 
beam now support in addition to the new self-weight? 
12.12 Evaluate the second moment of area about the 
XX axis through the centroid of the I section shown in 
Fig. 12.54. 

12.13 An I section beam has flanges 75 mm X 10 mm 
and web 125 mm x 10 mm and rests on supports 4 m 
apart. The beam carries a concentrated load W at its 
centre and a load W/2 one quarter of the way along. 
Calculate the magnitude of W if the maximum stress 
induced by bending is 60 MN/m2. 



Figure 12.54 

12.14 If the permissible stresses are 30MN/m2 in 
compression and 15 MN/m2 in tension, evaluate the 
maximum uniformly distributed load which the beam of 
problem 12.13 can safely carry. 

12.15 A compound girder is built up of two 330 mm 
deep rolled steel joists placed side by side and joined 
top and bottom by flange plates 350mm wide and 
12.5 mm thick. Determine the safe uniformly distri- 
buted load for a simply supported girder on a span of 
6 m  when the working stress is 120MN/m2. The 
relevant second moment of area for one joist is 
0.0012 m4. 

12.16 A uniform cantilever of length L has a load W 
applied at a distance a from the fixed end. Show that 
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the slope and deflection at the end of the cantilever are 
given by, 

wu2 

2EI 
8 = Wu2/ (2EI )  and 6 = - [L -a/3]. 

If the load is uniformly distributed, derive new 
expressions for the slope and deflection at the end of 
the cantilever. 

12.17 A cantilever of length L carries a concentrated 
load W at its free end and is propped at a distance u 
from the fixed end to the same level as the fixed end. 

Find (a) the load in the prop; and (b) the point of 
contraflexure. 
(Hint: Consider the force P in the prop to be an 
externally applied load. Calculate the deflection at the 
prop due to W alone and then apply P such that the 
deflection at the prop is again zero.) 

12.18 A simply supported uniform beam, length L ,  
carries a concentrated load W a distance b from the left 
hand end. Show that the maximum deflection occurs 
between 42.3% and 57.7% of the span of the beam as b 
varies from 0 to L. 

12.19 A uniform beam AB, length 2 L ,  is simply and 
symmetrically supported at its ends on another uniform 
simply supported beam CD of length 4L. Beam AB 
carries a concentrated load W at its centre. If the 
second moment of area of CD is three times that of AB, 
derive an expression for the total deflection at the 
mid-point ofAB. Both beams are of the same material. 

12.20 A hollow shaft is 125 mm external and 75 mm 
internal diameter. Compare the torsional strength of 
this shaft with that of a solid shaft of the same weight 
per unit run, the maximum shearing stresses being 
equal. 

12.21 Find the least possible diameter of a solid shaft 
to transmit 7.46 kW at 3oooO rev/min, if the shearing 
stress is not to exceed 90 MN/m2. 

12.22 A solid alloy shaft 60mm diameter is to be 
coupled in series with a hollow steel shaft of the same 
external diameter. Find the internal diameter of the 
hollow shaft if its angle of twist is to be 80% of that of 
the alloy shaft for the same torque. Determine the 
power that can be safely transmitted at a speed of 800 
rev/min if the limits of shearing stress are 50 and 
80 MN/m2 in the alloy and the steel respectively. The 
modulus of rigidity for steel is 24 times that for the 
alloy. 

12.23 Find the maximum axial load which may be 
applied to a helical spring having a wire diameter 
12.5 mm, a mean coil diameter of 75 mm and 18 turns if 
the maximum shear stress is not to exceed 420 MN/m2. 

Also find the corresponding deflection if the modulus 
of rigidity is 84 GN/m2. 

12.24 Two helical springs of the same height are made 
from the same 12.5 mm diameter circular cross-section 
wire and have the same number of turns. The mean 
diameters of the springs are 75 mm and 100 mm. They 
are nested together and are then compressed between 
two parallel planes. Determine the load in each spring 
for an applied load of 500 N. 

12.25 A strain gauge rosette is made from three 
equally spaced strain gauges a,  b and c. The rosette is 
cemented on to the surface of a specimen, and when 
the specimen is loaded the individual gauge readings 
are 364, -300 and 364 micro strain respectively. 

Determine the magnitude and direction of the 
principal strains and the maximum shear strain. Find 
also the corresponding stresses. 



Appendix 1 
Vector algebra 

A vector in the context of mechanics is defined as a 
quantity having magnitude and a direction and 
therefore may be represented by a line segment. A 
vector V may be written as Ve where V is the scalar 
magnitude and e is a unit vector in the direction of V. In 
this book a distinction is made between the always 
positive modulus 1 VI and the scalar magnitude V which 
may be positive or negative. 

A1 -2 Multiplication of vectors 

Sca[arproduct 

Figure Al.2 

The scalar product of two vectors (Fig. A1.2) is defined 
as 

(A1.5) 
A.l Addition of vectors 
By definition two vectors are added by the parallelo- A . B =  IAI /B/cosa=B.A 
gram law as shown in Fig. A1.l. Hence i . i = j . j = k . k =  1 

and i . j = j . k =  k . i =  0 

therefore A.B = A,B,+A,B,+A,B, (A1.6) 

If one vector is a unit vector e, then 

A . e =  IAlcosa (A1.7) 

The work done by a force F over a displacement ds is 

d W = F - d s  (A1.8) 

which is the component of A in the direction of e.  

and the power is 

ds 

dt 

Vector product 

F - -  = F - v  (A1.9) 

If i ,  j and k are unit vectors in the x-, y- and 

(Al. l)  

z-directions respectively, then 

V = V,i+ Vy j+  V,k 

By Pythagoras’s theorem, 
where V, , V, and V ,  are the scalar components of V. 

IVI =d(v,z+vyz+v:) (A1.2) 

From Fig. A l . l  it is seen that 

A + B  = (A ,+B, ) i+ (A ,+B, ) j  
+ (A ,+B, )k  (A1.3) 

= B + A  

Since V =  Ve, 

V,i+ V y j +  V,k 
e =  (A1.4) 

d ( v , z + v y z + V : )  

= l i+mj+ni  The vector product of two vectors (Fig. A1.3) is defined 
as 

AXB=/AI IBIs inae=-BXA (A 1.10) 
where I, m and n are the direction cosines of the unit 
vector e relative to the x- ,  y- and z-axes respectively. 



A X B =  (Al.l l)  See Fig. A1.5. By definition 
i i 

Bx By B, 

A ,  A ,  A ,  
dV V(t  + At) - V ( t )  

(A1.19) _ -  - limat+o 



Appendix 2 
Units 

A physical quantity is expressed as the product of a 
pure number and a unit. Physical laws which exist 
between physical quantities are conveniently expressed 
in systems of consistent units such that the form of the 
equation is independent of the system of units chosen. 

Four systems will be listed here, namely the Systeme 
International d’UnitCs (SI); the centimetre, gram, 
second system (c.g.s.); the British absolute system 
based on the foot, pound and second (f.p.s.); and the 
British Engineering system based on the foot, slug and 
second (f .s.s. ) . 

In all these systems F = ma and weight W = mg, 
where g is the gravitational field strength. A standard 
value of the field strength at the surface of the earth is 
given as 9.80665 N/kg (m/s2) or approximately 31.174 
ft/s2 or pdUlb or IbUslug. 

By definition, 

1 slug = 32.174 lb 

1 Ibf = 32.174 pdl 

also 1 kgf = 9.80665 N 

Note that these are exact relationships and do not 

Conversion of British units to SI units is achieved 
vary with location as does g. 

using the following exact conversion factors: 

1 ft = 0.3048 m 
1 Ib = 0.45359237 kg 

Using these values, 

ft 
l p d l = l I b -  = l k g  

S2 

= 1 kg 0.4536 m 0.3048 s-* 
= 0.1383 kg m sK2 
= 0.1383 N 

1 Ibf = 1 (z) - pdl 
= l ( g ) ( $ ) N  

= lx32.174x0.1383N 
= 4.448 N 

Table A2.1 

Quantity I i $ f a n d s y m b o l  
C.Q.S. f.p.s. 

Mass 
Length 
Time 
Angle 
Force 
Energy 
Work 
Power 
Pressure 
Moment of force 
Moment of inertia 
Velocity 
Acceleration 

f.s.s. 

kilogram, kg gram, g pound, Ib slug 
metre, m centimetre, cm foot, ft foot, ft 
second, s second, s second, s second, s 
radian, rad radian, rad radian, rad radian, rad 
newton (kg m s-‘), N dyne poundal, pdl pound force, Ibf 

I joule (m N), J erg foot poundal, ft pdl foot pound force 

watt (J s-’) ,  W erg s-l ft pdl s-’ ft Ibf s-l 

pascal (N m-‘), Pa dyne cmP2 pdl ft-* 16f ft-’ 
N m  dyne cm pdl ft Ibf ft 
kg m2 g cm2 
m s-l crn s-l ft s-1 ft s-’ 
m sP2 crn sP2 ft s-2 ft 5-2 

Ib ft2 slug ft2 

[l micron = 1 0-6 m, 1 litre = 1 0-3 rn3, 1 tonne = 1 O3 kg, 1 bar = 1 O5 Pa] 



250 Appendix 2: Units 

Similarly for work and energy: 

1 ft pdl = 0.042 J 
1 ft  Ibf = 1.356 J 

also 1 h.p. = 550 ft  lbf s-l = 745.700 W 

Other useful conversion factors are 

Density 
Pressure 

1 Ib K3 = 16.0185 kg mP3 
1 Ibf inp2 = 6894.76 N rn-’ (Pa) 
1 atmosphere (atm) = 1.01325 

x I d  N m-’ 

Note that in the above calculations the symbol for the 
unit is treated as if it were an ordinary algebraic 
quantity. 

Table A2.2 
Factor Prefix Symbol 

10‘2 

1 09 
1 o6 
103 

Id 
10’ 
lo-’ 
10-2 
10-3 

10-6 

10-9 
10-12 

10-15 

1 o-l8 

tera 
gigs 
mega 
kilo 
hecto 
deca 
deci 
centi 
milli 
micro 
nano 
pic0 
femto 
atto 

T 
G 
M 
k 

m 
CL 
n 
P 
f 
a 

The use of the prefixes is illustrated by the following: 

O.OOOOO1 m = 1 pm (micron) 
1OOOOOO N = 1 MN (meganewton) 

0.1 m = 100 mm 
lo4 N = 10 kN 
Id kg = 1 Mg (not 1 kkg) 

Other systems of units are still seen in which the use 
of a mass unit is avoided by writing m = (W/g) so that 
F = (W/g)a .  Alternatively the acceleration may be 
expressed as multiples of g to give F = W(a/g) .  

The use of variable units of force such as the pound 
weight (Ibwt) and the gram weight (gmwt) is now 
moribund and must be discouraged. For practical 
purposes a force equal to the weight of the unit mass 
will often find favour in elementary applications, so the 
kilogram force (kgf), or its close equivalent 1 da N, 
may continue to be used in non-scientific applications. 

Occasionally one sees the use of systems involving 
Ibf, in, s; or kgf, cm, s. In these cases the corresponding 

unit masses are 386 Ib and 981 kg respectively. 
When labelling the axes of graphs or writing the 

headings for tables of values, the following scheme is 
unambiguous. 

The approximate value for the density of steel (p) is 
7850 kg/m3, so 

p = 7850 kg m-3 
= 7.850 x I d  kg mP3 
= 7.850 Mg mV3 

It follows that 

= 7850 P 
kg m-3 

= 7.850 P 
lo3 kg m-3 

P 
Mg m-3 

= 7.850 

The practice of heading a list of numbers in the manner 
p lo3 kg m3 leaves a doubt as to whether the I d  refers 
to the physical quantity or to its unit of measurement. 
However 

P 
lo3 kg m3 ’ 

for example, has no such ambiguity. 

References 
For further information, the following booklets should 
be consulted: 
1. British Standards Institution, BS 5555: 1993 (incor- 

porating I S 0  IOOO), spec8cution for SI units and 
recommendations for use of their multiples and of 
certuin other units. 
The Symbol Committee of the Royal Society, 
Quantities, units, and symbols 

2. 



Appendix 3 
Approximate integration 

The trapezoidal tule 
The area under the curve shown shaded in Fig. A3.1 is 
divided into equal strips of width w and the ordinates 
are labelled al to a,. The curve is then approximated to 
straight lines between the ordinates. 

The area is fw {(first + last ordinate) 
+ 2(remaining ordinates)} (A3.1) Figure ~3.1 

Simpson’s rule 
The area is divided into an even number of strips but 
this time the curve is approximated to a parabola 
between three consecutive ordinates. In terms of the 
ordinates, the area is 

fw [first + last + 4 (even) 
+2(remaining odd)] (A3.2) 



Appendix 4 
Conservative forces and potential energy 

Notes on conservative forces 
If the work done by a force in moving a particle from 
position 1 to postion 2 is independent of the path taken 
(see Fig. A4.1) then the force is said to be conservative. 

Figure A4.3 

F,dr+ F,+-dr ( r+dr)d8  
Figure A4.1 ( 2 )  

thus I f F . d s + B l ’ F . d s = O  2 (2) 2 
= F e r d e +  Fr+-d8 dr 

If..ds = B 1 2 F - d s  = - 
A 1 B 2  I ’  F.ds ( 2 )  

therefore F,+ - r =- (A4.3) 

A 

Potential energy or the integral around a closed path is zero: 
Potential energy is defined as 

$F.ds = 0 (A4.1) 
V =  -JF.ds+constant 

= - J F,dx - J Fy dy +constant 
= - F - d s =  -Fxdx-Fydy 

dV 

But, from the theory of differentials, 

av av 
- 4  ax ay 

dV = - dx +- dy 

Figure A4.2 hence 

For an element of path (Fig. A4.2), the work done 
along path ABC must equal that along path ADC, thus F, = -- 

F =- -  ”,” 1 (A4.4) 

av 
F,,dy+ F +-dy dx and 

( 1 ;  ) 
=F,dx+ F,+-dx dy y dY ( 2 )  

aF, aF, 
therefore - - - - (A4.2) 

ax ay 

In polar co-ordinates (Fig. A4.3), 
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In polar co-ordinates, 

d V =  -F,dr-FOrdO 

av 
but dV=-dr+ 

ar 

av 
ao - d0 

av 
hence F,= -- 

ar 

and 

For a uniform gravitation field -a, 
V = mgy + constant (A4.6) 

For an inverse-square-law field, - ( g r 2 )  e, where 
p = a constant, 

P 

r 
V = - - + constant (A4.7) 

(A4.5) For a linear spring with a stiffness k, 

V = 4ka2 (A4.8) 
where 6 is the extension of the spring. 



Appendix 5 
Properties of plane areas and rigid bodies 

(A5.6~) Centroid C mizi 
ZG = - 

Also 2 mipi = 0 or, in scalar form, 

M The position of the centroid of a plane area is given by 

(A5.1) 

where dA is an elemental area and JdA is the 
area, A.  

Second moment of area 

SY dA 
SdA 

and y G = -  
$1 dA 
Id.4 

XG = - 

C mipxi = 0, etc. 

Moment of inertia 

The second moment of area about the x axis is 

Iox = $x2dA =Aka? (A5.2) 

Parallel-axes theorem 
10, = 1% + h G 2  (A5.3) 

Perpendicular-axes theorem Figure A5.2 
I o z  = I o x  + 10, (A5.4) 

In Fig. A5.2, the moment of inertia about the z-axis is 

Centre of mass I,, = Mko: = 2mi(x:+y?) (A5.7) 

 oxy = C mixiyi (A5.8) 

Parallel-axes theorem 
IO, = ZGz + M (xG2 + YG2 ) 

I o x y  = I G ~ Y  + MXGYG 

(A5.9) 

(A5.10) 

Figure A5.1 Perpendicular-axes theorem 
The position of the centre of mass G (Fig. A5.1) is 
defined by 

For a thin lamina in the xy-plane, 

(A5.11) 10, = I o x  + I o y  

(A5.5) C miri 
rG = - 

M 
or by the three scalar equations 

(A5.6a) 

(A5.6b) 

C mixi 
XG=- 

M 
C miyi 

YG =- M 
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Properties of plane areas and rigid bodies 
Table A5.1 
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Table A5.1 - continued 



Appendix 6 
Summary of important relationships 

Kinematics 
a) Cartesian co-ordinates: 

v = x i + y j +  Ik (A6.1) 

a = x i + y j + z k  (A6.2) 

b) Cylindrical co-ordinates: 

v = Re,+ R0e, + i k  

a = ( R  - O'R)e,+ (R6+2R0)e0 + z k  

(A6.3) 

(A6.4) 

c) Path co-ordinates: 

v = Set (A6.5) 

a = fee,+--, (A6.6) 
s2 
P 

d) Spherical co-ordinates 

v = /e, + r%cos&, + rie,  

a = (i'-r&'-r0'cos24)e, 

(A6.7) 

+ (r6cosd- 2rB$sin4+ 2/8cos4)ee 
+ (rdi,+2/i+r0'sin4cos4)e, (A6.8) 

Kinetics (Planar motion) 

(A6.9) 
C F, = M Z ,  

C F, = ~ j i ~  

C M ,  = I,$ (A6.10) 

Work-energy 
Kinetic energy: f IGw2 + f M v c 2  (A6.11) 

Potential energy: 

i )  gravitational, mgy (A6.12) 

ii) strain, for simple spring, f k a 2  (A6.13) 

Work done by non-conservative forces 
= (k .e .+~ .e . )~- (k .e .+p.e . )~+' losses '  (A6.14) 

Free vibration of a linear damped system 
If the equation of motion is of the form 

mr + cx+kx  = 0 

undamped natural frequency 

critical damping = eerie,. = 2(km)'/' 

(A6.15) 

(A6.16) 

(A6.17) 

(A6.18) 

= w, = (k /m)  'I2 

damping ratio = [ = C / C , , ~ .  

Equation A6.15 may be rewritten 

x+25w,x+w,2x=o (A6.19) 

For [< 1, 

x = eCi""'(Acoswdt+ Bsinwdt) (A6.20) 

where wd = 0, (1 - C2)"' 
For [ =  1, 

x = e-"','(, + Bt) (A6.21) 

For [> 1, 

x = A exp[- [- d(12 - l)]w,t 

or x = eCc"'n'{Acosh[wnd([2- l)]t 

+ Bexp [- [+ d([2 - l)] w,t (A6.22) 

+ B sinh [w, d([2 - l)] t }  (A6.23) 

Logarithmic decrement 
6 = 2.rr5/(1- [2)'/2 (A6.24) 

Steady-state forced vibration 
If the equation of motion is of the form 

mx + cx + kx = Focoswt 

or R + 2[wnx + w 2 x  = Re Foexp (jwt) 

then the steady-state solution is 

(A6.25) 

(A6.26) 

x=Xcos(wt-4)  =XRe{exp[j(wt-+)]} 

where 

and t a n 4  = 25(w/wn)/[1 - ( w / ~ , ) ~ ] " ~  (A6.28) 
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Vibration of many degrees-of-freedom 
systems 
The general matrix equation is 

b I ( 4  + [kI(x) = (0) 
which has solutions of the form 

(A6.29) 

(x) = (A)e*‘ (A6.30) 

The characteristic equation is 

Det[A2[m] + [k]] = 0 

Principle of orthogonality 

(A6.3 1) 

(A,)[mI(A2) = 0 (A6.32) 

and (AI)[kI(AZ) = 0 (A6.33) 

Stability of linear system 
Systems up to the fifth order, described by an equation 
of the form 

(a5D5 + a4D4 + a3D3 + a2D2 + al D + ao)x =f(t) 

where D = dldt, are stable provided that 

a5>0, al>O, a2>0a3>0, a4>0, a5>0 

azal>a3ao and 
(asao + a3a2)a1 >al2a4+a?% (A6.34) 

Differentiation of a vector 
dVldt = aviat + w x v (A6.35) 

where o is the angular velocity of the moving frame of 
reference. 

Kinetics of a rigid body 
For a body rotating about a fixed point, 

M~ = a d d t  = aL,iat + w x L,  

also MG = dLGldt = aL&t + w x LG 

(A6.36) 

(A6.37) 

Referred to principal axes, the moment of momen- 
tum is 

L = Ixxwxi+Iyywyj+Z,,w,k 

Euler’s equations are 

1 M x  = I x x  b x  - ( I y y  - Iz , )  wy wz 
M y  = I y y  b y  - (Izz - I ,  1 wz wx 

Mz = I,,;, - ( I ,  - I y y  1 %wy 

Kinetic energy 
For a body rotating about a fixed point, 

k.e. = fw.Lo 
= I { W > T I I ] { W >  

(A6.38) 

(A6.39) 

(A6.40) 

Referred to principal axes, 

k.e. = 41xxw2 + $Iyy w: + I,,w? 

In general, 

k.e. = fw’LG+fmvG.VG 

Continuum mechanics 
Wave equation 

a2u a2u 
ax at  

c = V(E/p)  

E- = p~ 

Wave speed 

Continuity equation 

Am 
- = Ispv.dS+[ apdV=O. 
At at 

Equation of motion for a fluid 
AP F = limAl+o- 
At 

Euler’s equation 

1 ap av av 
-gcosa--- = 0- +- 

p as as at 

Bernoulli’s equation 

P v2 
P 2  
- + - + gz = constant 

Plane stress and strain 

(A6.4 1) 

(A6.42) 

(A6.43) 

(A6.44) 

(A6.45) 

(A6.46) 

(A6.47) 

(A6.48) 

E!, = E, cos2 e + sin2 e 

&lyy = cos2 e + sin’ e 

dXy = - E ~ ~ )  sin Bcos 8 

+ E,,~COS esin 8 (A6.49) 

- ~ , ~ 2 ~ 0 ~ B s i n e  (A6.50) 

+ E , ~  (cos2 e - sin’ e )  

- - (Eyy-Exx) sin28+ E , ~ C O S ~ ~  (A6.51) 
2 

utxx = uxx cos2 o + uyy sin2 e 

utyy = uYy cos2 e + a,, sin2 e 
+ ~ ~ ~ 2 c o s B s i n 8  (A6.52) 

- ~ ~ ~ 2 c o s e s i n e  (A6.53) 
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dxy = (cyy - cxx) sin Bcos 8 
+ cxy (cos’e - sin’e) 

- - - uxx) sin20 + E , ~ C O S ~ B  (A6.54) 
2 

(A6.55) 

(A6.56) 

(A6.57) 

Elastic constants 

E = 2p(1+ v) = 2G(1+ v) 

K = A + 2pJ3 = E/3( 1 - 2 ~ )  

(A6.58) 

(A6.59) 

Strain energy 

U x x  E ,  u y y  Eyy  u z ,  E Z Z  u=-+-+- 
2 2 2 

Txy Y x y  T y z Y y z  Trr Y u  
2 2 2 

f- +-+- 

Torsion of circular cross-section shafts 

T G8 T 

J L r  
- - 

(A6.60) 

Shear force and bending moment 

V = J w d x  

and M = J J w d x d x  = JVdx 

Bending of beams 

u M E  - _ - _ - -  - -  
Y I R  

Deflection of beams 

M 
El  

and y =  JJ-c~xdx 

(A6.62) 

(A6.63) 

(A6.64) 

(A6.65) 

(A6.66) 

(A6.67) 

(A6.68) 

(A6.61) 



Appendix 7 
Matrix methods 

A7.1 Matrices 
A matrix is a rectangular array of numbers. A matrix 
with rn rows and n columns is said to be of order rn X n 
and is written 

4 2 .  . . . . . a1, 

am1 a r n 2 . .  . 

Special matrices 
a) Rowmatrix 

[ai ~ 2 .  . . a,] = 1AJ 

b) Column matrix 

[ ;] = { A }  

a m  

c) Square matrix, one for which rn = n 

d) Diagonal matrix, a square matrix such that 
non-zero elements occur only on the leading diagonal: 

. ann 

0 0 .  
a 2 2  0 . 

e) Unit matrix or identity matrix, where 

a11  = a 2 2  = . . . = ann = 1, 

all other elements being zero. 

N.B. [Z][A] = [A][I] = [A] 

f )  Symmetric matrix, where aji = ajj 

g) Null matrix, [O], all elements are zero 

A7.2 Addition of matrices 
The addition of matrices of the same order is defined as 
the addition of corresponding elements, thus 

[AI + P I  = P I  + [AI 

- - 

A7.3 
If [C] = 

(a12 + b l 2 )  . . .  

(arnn + bmn 1 
(A7.1 I 

Multiplication of matrices 
[A][B] then the elements of [C] are defined by 

C,j = U,k b k j  

where k equals the number of columns in [A], which 
must also equal the number of rows in [B]. This is 
illustrated by the following scheme which can be used 
when evaluating a product. 

1 
. . . . . .  
. . . . . .  

c21 c22  c23 c24 

fi .Tr 
[AI [CI = [AI[Bl 

(A7.2) 
e.g. c13  = a 1 1 b 1 3 + a 1 2 b 2 3 + a 1 3 b 3 3  

In general, [A][B] # [B][A] 

A7.4 Transpose of a matrix 
The transpose of a matrix [A], written [AIT, is a matrix 
such that its ith row is the ith column of the original 
matrix 
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T 
e.g. 

- - 

A7.5 Inverse of a matrix 

all a21 

a22 J 
a13 a23 (A7.3) 

The inverse of a matrix [A], written [AI-', is defined by 

(A7.4) 

The inverse can be defined only for a square matrix 
and even for these matrices there are cases where the 
inverse does not exist. In this book we need not be 
concerned with the various methods for inverting a 
matrix. 

A7.6 Matrix representation of a vector 
By the definition of matrix multiplication, the vector 

V =  v,i+vJ+v,k 

may be written as either 

Thus, noting that [VI = {V}T, 

v = {V}T{e} = {e}T{V} (A7.5) 

A7.7 Change of co-ordinate system 
A vector may be represented in terms of a set of 
orthogonal unit vectors i', j ' ,  and k' which are 
orientated relative to a set i ,  j ,  and k; thus 

V=[vx vy VZI [;I = W T { e l  

= [vx' vy' v,'] 

The unit vectors of one set of co-ordinates is 
expressible in terms of the unit vectors of another set of 
co-ordinates; thus 

i '  = a l l i + a l j + a 1 3 k  
j '  = ~ ~ , i + a ~ j + a ~ ~ k  

k '  = 

where for example a l l ,  a12, and a13 are the components 
of the unit vector i' and are therefore the direction 
cosines between i ' and the x- ,  y - ,  z-axes respectively. 

In matrix notation, 

a12 

(A7.6) 

or @ ' I  = [A] {e }  

transformation matrix, then 

since V =  {V'}T{e>' = {V>T{e} 

and because this is true for any arbitrary { V} it follows 
that 

If we assume {V'} = [Q]{V}, where [Q] is some 

{V>TIQITIAI{e> = {V>T{e> 

[QITIAl = VI 
or [elT = [A]-' (A7.6) 

The magnitude of a vector is a scalar independent of 
the co-ordinate system, so 

showing that the inverse of [Q] is its transpose. Such 
transformations are called orthogonal. From equations - 
A7.6 and A7.7 we see that 

[A]-' = [e]-' or [A] = [Q] 

Summarising, we have 

{e'> = @]{e> {V'I = [AI{Vl 
{e} = [AlT(e'} 

From equation A7.6 

{V}  = [AIT{V'} 

i ' . i '  = a l 1 2 + a 1 2 2 + a 1 ~ =  1 

with similar expressions for j '  - j '  and k' . k. 
Also, from equations A7.6 and A7.9, 

i ' . j '  = alla21 +a12a22+a13a23 = 0 

with similar expressions for j ' . k '  and k ' . i '  

(A7.8) 

(A7.9) 

(A7.10) 
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by multiplication 

bll = u x x  - mJ, - d, 
b12 = -Uxy + dyy - d, 
b13 = - u x z  + d y z  + d z z  

and Jxx’ = 12Jxx + m2JYy + n2Jzz 
-2(Jxylm + Jxzln + JYzmn) 

Jxy’ = -(I1 ’Jxx + mm‘Jyy + nn’J,,) 
+ (Im‘ + ml ’)Ixy + (In‘ + nl ’)Ixz 
+ (mn’ + nm’)Iyz (A7.15) 

(A7.14) 

Rotation about the z-axis 
From Fig. A7.1, it is seen that 

x ’  = xcos0+ysin0 
y ’  = -xsin0+ycos0 
z’ = z 

cos0 sin0 0 x 

or {v’} = [ 51 = [;sin0 

o][y] 1 z  
{V’} = [AI{V} (A7.11) 

A7.8 Change of axes for moment of 
inertia 
In this section [J] will be used for moment of inertia, to 
avoid confusion with the identity matrix [I]. 

The kinetic energy of a rigid body rotating about a 
fixed point (or relative to its centre of mass) is given by 
equation 11.83 which can be written as 

t{  [J]{ w }  = t { o ’ } ~  [J ’1 { w ‘ }  

This is a scalar quantity and therefore independent of 
the choice of axes so 

if { w ’ }  = [A]{w} 

then { 

thus [J] = [AIT[J’][A] 

or [J’I = [AI[J][AIT (A7.12) 

If the X I -  and the y’-axes have direction cosines of I ,  
m, n and l ’ ,  m’,  n’ respectively, 

[J ’1 { w ‘ }  = { W } ~ [ A ] ~  [J ’][A { w )  
= {o>*[JI{4 

A7.9 Transformation of the components 
of a vector 
a) Cylindrical to Cartesian co-ordinates: 

VX cos0 -sin0 0 V,  

Vy = sin0 cos0 0 v, 
v z  0 0 1 V, (A7.16) 

{ V > c  = [Ale {V>cy~ .  

Spherical to cylindrical co-ordinates (see Figs 1.5 b) 
and 1.6(a)): 

VR cos4 0 -sin4 V, 

Ve = 0 1 0 Ve 

v z  sin4 0 cos4 v, 
{v>cyi .  = {Vlsph.  (A7.17) 

Using the following multiplication scheme: 

[AIT 
V 

-Jxy -Jxz  I ’  

[JI 3 [-: Jyy - J y ]  E 1,‘ 51 
[AI - J ,  - J ,  JZz 
V 

.R. .R. 
[AI[Jl = PI [J’l 

(A7.13) 
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c )  Spherical to Cartesian co-ordinates: 

{VI, [Ale 
V V 

cos0 -sin0 

I"r 9 
[AI+ {v>sph.  

cosOcos~#~ -sin6 -cosf?sin+ 

sin 4 0 cos l#l 

L41w = [Ale[Al+ 
I"r 

= [A]O+{V)sph. (A7.18) 



Appendix 8 
Properties of structural materials 

Our attention here is centred mainly on ferrous and 
non-ferrous metals. However the principles apply to 
other solid materials. 

A8.1 Simple tensile test 
In principle the tensile test applies an axial strain to a 
standard specimen and measurements are taken of the 
change in length between two specified marks, defined 
as the gauge length, and also of the resulting tensile 
load. Alternatively, the test could be carried out by 
applying a dead load and recording the subsequent 
strain. 

The point a is the limit of proportionality, i.e. up to 
this point the material obeys Hooke’s law. Point b is the 
elastic limit, this means that any loading up to this point 
is reversible and the unloading curve retraces the 
loading curve. In practice the elastic limit occurs just 
after the limit of proportionality. After this point any 
unloading curve is usually a straight line parallel to the 
elastic line. Point c is known as the yield point, 
sometimes called the upper yield point. Point d is called 
the lower yield point. If the test is carried out by 
applying a load rather than an extension then the 
extension will increase from point c without any 
increase in load to the point c ’ .  Further straining will 
cause plastic deformation to take place until the 
maximum load is reached at point e. This is known as 
the ultimate tensile load. After this a ‘neck’ will form in 
the specimen resulting in a large reduction in the 
cross-section area until failure occurs at point f. 

Figure A8.1 

Figure A8.1 shows a typical specimen where A is the 
original cross-section area. Figure A8.2 shows the 
load-extension plot for a mild steel specimen. Note that 
loadoriginal-cross-section area is the nominal stress 
and extensiodgauge length is the strain so the shape of 
the stress-strain curve is the same. The extension axis is 
shown broken since the extensions at e and f are very 
much greater than that at points a to d.  

Figure A8.2 

Figure A8.3 

Figure A8.3 shows a similar plot for a non-ferrous 
metal where it is noticed that no well-defined yield 
point appears. At the point c the stress is known as a 
proof stress. For example a 0.2% proof stress is one 
which when removed leaves a permanent strain of 
0.002. 

A strain of 0.002 can also be referred to as 2 
milli-strain (m.) or as 2000 micro-strain  LE). 

Both the above cases are for ductile materials and the 
degree of ductility is measured either by quoting the 
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final strain in the form of a percentage elongation, or in 
the form of the percentage reduction of area at the 
neck. 

For brittle materials failure occurs just after the 
elastic limit there being little or no plastic deformation. 



Answers to problems 

1.1 0.80i+0.53j+0.27k 
1.2 (4i+4j+2k) m 
1.3 (7,2,6)m 
1.4 (0.87i+0.35j+0.35k) 
1.5 (-3i-4j-k)m, 

(3i+4j+k)m 
1.6 (3i-j-k) m, 

(0.90i- 0.30j- 0.30k) 
1.7 (0,2,8)m 
1.8 (3,2.8,2.8) m,  

(4.104m, 43.03", 2.8 m) 
1.10 (16.25, 10.84,4.33) km, 

(19.53 km, 33.7", 4.33 km) 
1.11 75.6", 128.3", 41.9" 
1.12 79.62' 
1.13 3 m,  2.92 m 
1.14 9.2 m, 8.6 m, 7.8 m 
1.15 8.17m, 97.7" 

2.1 (-27i+223j)m, 
(-24i+216j) d s ,  
(-1Oi+ 144j) m / s 2  

2.2 (6.25i+ 11.17j) m, 
(3i+ 1Oj) d s  

2.3 5 d s '  
2.4 (8.66i+ 5.0j) d s ,  

2.5 
(-lOi+ 17.32j) d s 2  
7.368 knots, W 16" 19' N 

(-15.83i+2.41j) d s 2  

(-11.83i+8.41j) d s ' ,  
8.09 d s ,  14.51 m / s 2  

2.6 (-0.384i+ 2.663') m / s ,  

2.7 (6.623+ 4.661') d s ,  

2.8 (2.0i-t 3.45j) d s ,  

2.9 17.89ds 
2.10 a) 0.6 d s ' ,  17.8 m, 

b) 0.8 d s 2 ,  12.0 m 
2.11 a) l . O d s ,  

b) 1.6s 

(-0.12i + 5.58j) m / s  

3.1 (-8.333+3.33j) d s  
3.2 5.08 d s .  2.18 d s  

3.3 a) ~ ' [ 2 ~ ~ x ~ / m ] i ,  4.13 FA = (-2i+247.5j) N, 
b) d[Roxl/m]i, 
c) d/[3~,x,/(2m)]i, 

FB = (-252.5j- 11.9k) N, 
F c  = (5j+ 1.9k) N 

d) d[2Rox1/(3m)]i 4.14 4204N 
3.4 (61i+ 19j) d s  4.15 7000 kg, 69.4 kN 

3.5 (320i- 160j)N 5.1 -6.64k rads, -0.998ids, 
3.6 64 d s ,  320 m (-0.8981+ 0.3993') d s  
3.7 a) No motion, 

b) 0.657 d s 2 ,  
c) 2.55 d s '  

3.8 3.29 d s 2 ,  15.52 kN 
3.11 14.82N 5.4 a) 3.95 anticlockwise, 
3.12 0.163 d s 2 ,  6.5 d s ,  260m 
3.13 1 .24ds2  5.5 900 rads2 anticlockwise 
3.14 24.0s 5.7 a) (-7.8Oi) d s ,  

3.16 0.65 (-75.8k)rads, 

3.18 41.5 d s 2 ,  39.5 d s  
3.19 544m (129004 rads2 

5.8 vc = 30% d s ,  3.20 1.385 d s 2 ,  0.436 d s 2  

4.1 87.0 N m anticlockwise 
4.2 

4.3 21.0 kN, 3.49 kN, 14.4 kN 5.9 a) 0.5 rads anticlockwise, 
4.4 a) (-2lOi+505Oj) N, 

4.5 a) 190N h 52", 

4.7 -30kN, (-10i+30j) 5-11 39krad/s, 3330krad/s2, 
4.8 
4.9 

5.2 3.71 d s ,  
4.47 rads anticlockwise 

5.3 v = -esinOw, 
a = -ecos emz 

b) 0.934 d s  .+ 

3.15 6 . 4 d s  (-6.751+ 7.5j) d s ,  

3.17 17.5 s, 1 in 7,0.91 d s 2  b) (-3980i)dsZ, 
(-35901'- 1360j) d s 2 ,  

vE = -24.2im/s, 
ac = 3080i d s 2 ,  
aE = -46301' d s 2  

b) 1.02 d s  4 73", 
c) 15 rads 

910 d s '  5 20" 

2.15 d s ,  150k rads, 
- 1450 rads2 

5.12 a) 0.72 rads anticlockwise, 
b) 2.39 rads2, anticlockwise 

5.14 25k reds 

39 N, 22 N, tension, 0.92 N m 

b) 5830 N, compression 

b) 285 N m clockwise 

228.8 N, 102 N m, 192 N m 
363.3 N m, 9323 N m, 
a = 62.63", p = 88.81", 
y = -27.39" 

4.10 b) (46i+ 20j+ 30k) N, 

4.11 500 N. 1500N, 120 N m, 
1700 N m 6.4 (6.67, 14.17) mm 

4.12 a) (29.32j- 10k) N, 6.10 220 N, 1133 N 
0.4i N m, 6.11 a) 297 kN, b) 204 kN 
b)0.59Nm,28.5Nm,394N, 6.12 a) 17.68N, 
29.3 N 

5.10 7.3 d s  - so, 

c) e.g. (1.433,1.667,0) 5-15 @A/% = -9.68 

1.25 N m clockwise 
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6.13 
6.14 

6.15 
6.16 
6.19 
6.20 

6.21 
6.22 
6.23 
6.24 
6.25 

6.26 

6.27 

308.2 rads 7.19 
2.077 d s 2 ,  5.194 kN, 7.21 
4.616 kN 7.22 
18.0 m 7.23 
15.46 d s  (tipping) 
3.94 d s  
a) 42.86 d s 2 ,  
b) 7637 N 

a) 2.81 kN, b) 98.0 N+ 8.4 
b) 1804 N m 8.5 

a) 0.518d(g/l), zero, 8.8 

b) TAol = 1.268cmgl(b+c), 8.9 
TBoz = 1.268brng/(b+c) 8-10 

b) 209 N m anticlockwise 8.16 
a) (-11.311'+4.69j) d s 2 ,  8.17 

20.44 kN 8.1 

(23481'- 540j+ 3924k) N 8.7 

a) 11.4kN, 8.11 

(23.4k) rads', 
b) (-54.4i-tO.23) N,  
(9.371'+ 12.5j) N 

6.28 263.2 kN/m 
6.29 a) 99 kg m', 

C) (-12.601'+ 12.12j) d~', 
3.464k rads, 3.465k rads' 

6.30 1.776mg 
6.31 (17.32i- lOj) N, 

(4.731'- 6.09j) N 

7.1 
7.2 
7.3 

7.4 
7.5 
7.6 
7.10 

7.11 

0.45 m 
1.01 d s  
a) 3.52 d s ,  
b) (-0.441'+3.96k) N 
5668 d s  
a) 593.1 d s ,  b) 166.7 d s  
93.7 rads 
a) 15k N m, b) 2.356 kW, 
c) -10kN m 
107.8 rads' 

1 
2ir 

7.12 - X  

9. I 

9.2 
9.3 
9.4 

9.5 
9.6 
9.8 
9.9 
9.10 
9.11 
9.12 
9.13 
9.15 
9.16 
9.17 
9.18 
9.19 
9.20 
9.21 
9.23 
9.24 

70.0" 
0.056 m (stable) 
k108.6" from vertical 
kl> h g l l ,  
k + kl > (tm + ml)gl, 
[k + kl - ( t m + m l ) g l ]  x 
[ k l - h l g l l ] > k 1 2  

2.25 m 
( I ,  + mR2)wo/IA 
(rnv,alZ)k 
2.154 d s ,  28.3 J 
84.24 N, 231.5 N, 18.0 m 
31.76 N 
433 N ,  750 N, 100 N m 
a) 2pR 2w+ , b) 2pR 2a 
9880 kg, 194.2 d s  
176.7 d s ,  1392 m, 2933 m 

a) (1/2rr)d(k/m), 
b) (1/2rr)d(klm) 
mga/(2irv)' 
(a/2irb)d( klm) 
a) (1/2?~)~(4kIm),  
b) (1/2~)V(4k~' / Io)  
0.37 Hz, 1.47 d s  
( 1/2ir)d[5ga2/7(R - a ) ]  
25/2.rr Hz, 22.2 mm 
2.08 mm 
80 Hz, 49" 
rrcw/[l+ (cwlm)'], c = mw 
25 mm 
2.9 mm, 2.79 d s '  
1.6" 
20% 
0.37 mm 
1.5", 5% 
0.17 V 

a) 0.94 s ,  b) 0.02 N m 
13.47 Hz, 66.89 Hz 
1.79 Hz, 0.60 Hz 

2[n+ 2Po42ao- Po)ld/(Nk) 

9.25 59.22 kN/m, 30.8 Hz, 80.8 Hz 
9.26 0.136d/(g/L), 0.365d(g/L) l ) { m g / r +  kl(n -')}I 

- 

where n = Rlr,  9.27 92pm,41.5pm,6.0Hz, 11.3 
H2 . ._ 

10.1 G/( 1 + GH) 
10.2 (ABC + i)e, = e, + c y ,  

(ABC + 1)x = AO, + AC,,,, 
(ABC+ 1)w = ABO, 

1 ka - mg cos 30" N2 ' 2rr /[ mI2/3 

7.13 a) 0.0105 d s ' ,  b) 26.8 d s  
7.14 10.9 N m clockwise 
7.16 0.268gl1, zero + ABCy, 
7.17 54.2Nm (ABC+l)z=ABO,-y,  

(ABC + i)eo = ABCO~ - cy 
10.4 a) [(Im + IL)D2 + C D  + 

K1 K2]00 = KI Kz O i ,  
(C/2)[(Im +I,)Ki  Kz]"', 
b)[(I, + IL)D2 + C D  + 
K1 Kz]Oo = K1 Kz Oi - Q L ,  
(C/2)[(1,+ I L ) K ~ K ~ ] ~ ' ' ,  
c) [(n2I, + IL)DZ + C D  + 
n K1 K2 ] = nK1 K2 4 ,  
(C/2)[(nz~,+ZL)nKl K2)'I2 

10.7 A = A1/AzwhereAl = 12c, 
10.6 1 2 / 1 1 ,  ( 1 1  + 12)/(11 k) 

A > =  l ~ C + S ( l l + l ~ ) / k ,  
T =  C(l1+lz)l(kA2), 
q = Clk 

10.10 4 N d r a d ,  0.8 rad 
10.11 t = 1 s ,  0.147 rads2 
10.14 a) 0.94 s .  

b) 0.1 rad 
10.15 zero, zero, 2A ( I ,  + IL)/K 
10.16 a) [ I , IBD~+C(I ,+IB)D~ 

+ SIAD2+ SCDIOA = 
[IgD2 + CD + S ] Q ,  
b) [ I , IB  D4 + c(I, + I B ) D ~  
+ ( S I ,  + KI,)D' + 
C(K +S)D + SKJOA = 
K ( I B D 2 +  C D + S ] O i  

b) 156 rads 

(0.6D' + 4.9D + 36)w0 
= 8640 

10.19 ala2 = 4oa3, 

10.20 gBOlI(A -g )  

10.17 a) Td = 6 + O.Olw,, 10 s ,  

10.18 360Nm, 

( 112 4 d ( a o  a2 

10.22 a )  10.46, 

10.23 50 

10.24 a) 

b) 25 

10( 1 + 0.2jw) 

jm 

10.25 a) 3543 N d r a d ,  
b) infinity, 
c) 0.42 

120", (b) No 
11.1 a) Parallel to (i- j+k),  

11.2 5.457 km, 21.50", 32.13", 

7.092 x rads, 
3.890 x IOp2 rads, 

-98.24 d s ,  
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7.422 d s 2 ,  
-2.604 x 10-~ rads2, 
1.618 x rads2 

11.3 (6.9281'+3j+4k) d s ,  
(15.359i-C 153.56j- 
158.56k) m/s2 

11.4 a) (row-awA)i-bwAj. 
b) (rhw - ah, + bWA2)i 
+ (2rwA 0, - bhA - 
awA2)j -  rw,k, 

-wAwwi+ hwj+ hAk 
11.5 (3.584j+ 1.369k) d s ,  

(51.371 - 1.743- 0.667k) d s 2  
11.6 a)rn((b2+$')rcosOi 

+ ri12sinoj+ 
- 2b$r sin 0) k } , 
b) rn { [ ( e 2  + $2)rcos 0 
cos 4 + (a+2 - 2b$r sin 0) 
sin411 + rb'sin OJ - 
[(b2+$2)rcosOsin4 

- 2b$rsin 0)  
cos 41 k} 

c) Uwj+wAk, 

11.7 (4i-2j) d s ,  2.4m/s, 

11.9 w, = wr[brsin@cosO 
-(3.2i+6.4j+2.4k) rads 

+(b2+t)cos8]l(12z) 
wy = wr[-brcos20 
+ 1 s i n  e]/(i2z) 
w, = wr[r+bsin0]/l2 
h, = -[aB(rsine+b) 
+ w2rzsin 0]/I2 
by = [aBrcosO+ 
w2rzcos~]/12 
W, = w2rbcos 0/l2 

( -0.3 li - 0.16j + 
1.2k) rads, 
(2.2i-4.3j-3.2k) m / s 2  

11.10 (0.52i- 1.04j-0.78k) d s ,  

11.11 M(b2+c2)/3, 

M ( a 2 +  b2)/3, 
MabI4, MacI4, MbcI4 

11.12 11p3/3, p3/2,  p3 /2  
11.14 11p3fi2,/3, 

11.15 0.0112 kg m2, 

M (a2 + c2)/3, 

~ / 2 ~ ~ 3 ( f i ; 2  + n:)1/212 
-0.0167 kg m2, 1.222 N m, 
1.853 N m 

11.16 1.41KNm,3.50Nm 
11.18 1.425 kN 
11.19 46.1 s 
11.20 C, = IMR2$$+ rnr 

( I & ~  - 2r&$), 

CZ = 4MR2$+rnr 
(14 - r$)  where M = mR2p 
and rn = rrd2p/4 

11.22 a) 6i d s ,  zero, 
3(-j+k)rad/s, 

c) 148.2 N (tension) 

e,. = ~ ~ ~ 4 1 4 ,  

b) -36k d s 2 ,  

12.1 193 mm, 0.85 mrn 
12.2 0.231" 
12.3 0.36MN 
12.4 a) 0.100,0.069,0.038,0.006, 

-0.025, 
b)0.000, -0.11, -0.12, 
-0.11,0.00 
a) OB = 28.54 MN/m2, 
us = 67.93 MN/rn2, 
b) 1.97 mrn 

12.6 

12.7 8 rnm, 5.39 X m3 
12.8 a) 0.075 mm, 

b) 0.12 mm, 
c) 314.8 x m3 

12.9 Point ot 
Max S.F. Max B.M. contraflexure 

- a 68 190 
b -53.3 71.1 
C -117.5 132 6.87 
d +/-30 90 7.0 
e -33.3 64.17 

- 

- 

f MIL -bMIL (a  < b) U 

12.10 5.39 kNrn 
12.11 w'= w/4 
12.12 2.49 x lo6 mm4 
12.13 5.61 kN 
12.14 10.086 kN/m 
12.15 75 kN/m 
12.16 e = WL~/(~EI) ,  

6 = WL3/(8EI) 
12.17 P = W(3L/a - 1)/2, d 3  
12.19 6 = -7WL3/(6ZcD) 
12.20 Ratio = 1.7 
12.21 5.1 mm 
12.22 50.5 mm, 142 kW 
12.23 4.3 kN, 127.6 mm 
12.24 352 N,  148 N 
12.25 E ,  = 500p at 30" to a,  

~2 = -300/.~, y = 800/~. ,  
u1 = 9.02 MN/m2, u2 = -2.86 
MN/m2, 
7 = 5.94 MN/m2 



Index 

Acceleration 8 
Acceleration diagrams 57 
Acceleration, centripetal eq. 2.12 10 
Acceleration, coriolis 12 
Angular velocity 54, 184 
Automatic gearbox 60 
Axes, rotating 188 
Axes, translating 188 

Beams, deflection 231 
Beams, deflection, area moment 

Bending moment 43,229 
Bernoulli’s equation 220 
Block diagram 158 
Bode diagram 167 
Boundary layer 215 
Bulk modulus 225 
Buoyancy 44 

Centre of mass 25,75 
Chasles’s theorem 184 
Closed loop 159 
Closed loop system 165 
Coefficient of restitution 112 
Column, short 227 
Conservative force 92 
Continuity 218 
Control action 158 
Control volume 217 
Coordinates 1 
Coordinates, Cartesian 1,2,9,  186 
Coordinates, cylindrical 2, 187 
Coordinates, path 10, 187 
Coordinates, polar 1 , 1 1  
Coordinates, spherical 2 
Coriolis’s theorem 189 
Coulomb damping 131 
Couple 38 
Critical damping 129 

D’Alembert’s principle 99 
Damping 128 
Damping ratio 129 
Damping, width of peak 138 
Decibel 167 
Degrees of freedom 54 
Density 215 
Dilatation 225 
Displacement 8 

Elastic constants 225 
Epicyclic gears 58 
Equilibrium 40 
Error, system 157 
Euler’s angles 196 
Euler’s equation, fluid flow 219 
Euler’s equation, rigid body 

methods 232 

motion 195 

Euler’s theorem 184 
Eulerian coordinates 216 

Feedback 159 
Finite rotation 183 
Fluid stream 113 
Force 23 
Force, addition 37 
Force, conservative 92 
Force, moment of 37 
Force, non conservative 93 
Fourier series 133 
Fourier theorem 133 
Four bar chain 55,62,207 
Frames of reference 24 
Frame 40 
Free body diagram 26 
Frequency 127 
Friction 23 

Geneva mechanism 71 
Gravitation 24 
Gyroscope 197 

Helical spring 241 
Hooke’s law 217 

Impact 112 
Impulse 28,111 
Instantaneous centre 56 
Integral action 162 

Jet engine 115 

Kinetic energy 29 
Kinetic energy, rigid body 91,198 

Lagrangian coordinates 216 
Lam6 constants 225 
Logarithmic decrement 130 

Mass 21 
Metacentre 44 
Modulus of rigidity 221 
Mohr’s circle 224 
Momentum 21 
Momentum, conservation of 111 
Momentum, linear 111, 192 
Momentum, moment of 11 1,192 
Moment of force 37 
Moment of inertia 76,193 
Moment of inertia, principal axes 
Motion, curvilinear 54 
Motion. rectilinear 54 

195 

Newton, laws 21 
Normal modes 141 
Nutation 197 
Nyquist diagram 166 

Openloop transfer function 165 
Orthogonality 141 
Output velocity feedback 160 

Parallel axes theorem 76 
Pendulum 127 
Periodic time 127 
Perpendicular axes theorem 77 
Phase plane 131, 174 
Phasor diagram 134 
Pinjoint 40 
Poinsot’s central axis 184 
Poisson’s ratio 221 
Potential energy 92 
Power 29 
Precession 197 
Pressure 43 
Principal mode shape 140 
Principal natural frequency 140 
Proportional plus derivative action 160 

Quick return mechanism 65 

Ramp input 132 
Relative, motion 12 
Resonance 128 
Rigid body 54 
Rocket 113 
Rotating out of balance masses 
Rotation 54 
Rotation, finite 183 
Routh Hurwitz 163 

Shear force 43,229 
Shear modulus 221 
Simple harmonic motion 27 
Slider crank chain 66, 190 
Specific loss 130 
Spurgears 57 
Stability 97 
Steady state error 161 
Step input 132 
Strain 216 
Strain energy 93,226 
Strain gauge 242 
Strain, plane 221 
Strain, principal 223 
Strain, volumetric 225 
Streamlines 218 
Stress, plane 222 
Stress, principal 224 

Tension 216 
Top 197 
Top, sleeping 198 
Torsion 228 
Transfer operator 158 
Translation 54 
Transmissibility 137 

136 
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Triple scalar product 42 
Twisting moment 43 

Units 22 
Unity feedback 165 

Vectors 2 
Vectors, addition 3 
Vectors, components 3 
Vectors, scalar product 4 
Vectors, triple scalar product 42 

Vectors, unit 3 
Vectors, vector product 37 
Velocity 8 
Velocity diagrams 55 
Velocity image 56 
Velocity transducer 145 
Velocity, angular 54, 184 
Vibration absorber 142,143 
Vibration level 128 
Vibration, amplitude 127 
Virtual work 96 

Vircosity 215 
Viscous damper 129 
Von Mises-Hencky, theory of 

failure 236 

Wave equation 217 
Weight 24 
Work 29 
Work, virtual 96 

Young’s modulus 217 


