
http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author �� xxxvii

About the Technical Reviewers ��� xxxix

Acknowledgments ��xli

Introduction ��xliii

Chapter 1: Introduction to Servlets ■ ���1

Chapter 2: JavaServer Pages ■ ��53

Chapter 3: The Basics of JavaServer Faces ■ ��97

Chapter 4: Facelets ■ ��159

Chapter 5: JavaServer Faces Standard Components ■ ��199

Chapter 6: Advanced JavaServer Faces and Ajax ■ ���255

Chapter 7: JDBC ■ ���317

Chapter 8: Object-Relational Mapping ■ ���369

Chapter 9: Enterprise JavaBeans ■ ��409

Chapter 10: The Query API and JPQL ■ ���447

Chapter 11: Oracle’s GlassFish ■ ��471

Chapter 12: Contexts and Dependency Injection ■ ���497

Chapter 13: Java Message Service ■ ���517

Chapter 14: Authentication and Security ■ ��537

Chapter 15: Java Web Services ■ ���563

Chapter 16: Enterprise Solutions Using Alternative Programming Languages ■ ���������������597

http://www.it-ebooks.info/

■ Contents at a GlanCe

vi

Chapter 17: WebSockets and JSON-P ■ ��605

Chapter 18: JavaFX in the Enterprise ■ ��615

Chapter 19: Concurrency and Batch Applications ■ ���647

Appendix A: Java EE Development with NetBeans IDE ■ ��671

Index ���683

http://www.it-ebooks.info/

xliii

Introduction

The Java platform is one of the most widely used platforms for application development in the world. The platform
is so popular, that there are several different flavors of Java that can be used for developing applications that run on
different mediums. From development of desktop or mobile, to web applications and hardware operating systems,
Java can be utilized for development of just about any solution. As such, Java has become a very popular platform for
development of enterprise applications, offering web services, reliability, security, and much more.

Java Enterprise Edition was originally released in 1999 as Java 2 Platform, Enterprise Edition (J2EE). Although
several enterprise frameworks were available for development of reliable and secure applications on the Java
platform, it made sense to standardize some solutions in order to minimize customization and help to make
Java Enterprise development more prevalent in the industry. The platform originally included a terse number
of specifications for standardization, including Java Servlet, JavaServer Pages, RMI, Java Database Connectivity
(JDBC), Java Message Service API (JMS), Java Transaction API (JTA), and Enterprise JavaBeans. Development of
J2EE applications had a large learning curve, and it was cumbersome because it required the use of XML for lots of
configuration. Even with these setbacks, it became popular amongst larger organizations and companies due to the
prevalence of Java and its well-known security benefits. In 2001, J2EE 1.3 was released, adding more specifications to
the platform, including the JavaServer Pages Standard Tag Library (JSTL) and Java Authentication and Authorization
Service (JAAS). Other specifications, such as Java Servlet, also gained enhancements under the J2EE 1.3 release,
making evolutionary enhancements to the platform. The release of J2EE 1.4 in 2003 marked a major milestone for
Java Enterprise, as many new specifications were added to the platform, providing standards for even more Java
technologies. The release of J2EE 1.4 marked the first iteration of Web Services for J2EE 1.1, JavaServer Faces (JSF),
and Java APIs for XML solutions such as JAXP, JAXR, and more. Although the release of J2EE 1.4 included many
specifications, it was still deemed as “difficult to learn” and “cumbersome.”

Over the next few years, J2EE was reworked in an attempt to make it easier to learn and utilize. Although XML
is an excellent means for configuration, it can be cumbersome and hard to manage, so configuration was a big item
that was addressed for the next release. Technologies such as Enterprise JavaBeans (EJB) included some redundant
characteristics, making EJB coding time-consuming and difficult to manage, so an overhaul of EJB was also in order.
In May of 2006, Java EE 5 was released, leaving the J2EE acronym behind, and changing to simply Java EE. The Java EE 5
platform was significantly easier to use and maintain because features such as annotations were introduced, cutting
down the amount of XML configuration significantly. EJBs were made easier to develop, making EJB a marketable
technology for object-relational mapping once again. Java Enterprise Edition has since become a widely adopted and
mature platform for enterprise development. Java EE 6 was released in 2009, making configuration and technologies
even easier, and adding more specifications to the platform. Specifications such as Contexts and Dependency
Injection and Bean Validation were introduced, making usability even easier and development more productive.

This latest release, Java EE 7, enhances the platform even more by adding new specifications such as WebSockets
and JSON-P. Specifications such as JSF and EJB were enhanced, adding even more features to increase productivity
and functionality. This book focuses on Java Enterprise as a whole, covering most of the widely used specifications
that make up Java EE. You will learn how to make use of each of the major specifications, through real-world examples
and solutions. This book will cover APIs that have not been updated for Java EE 7, as well as those that have been
enhanced, providing complete coverage for those who are newer to the platform. It also features recipes that cover the
newest features of the platform, so that seasoned Java EE developers can skip those introductory concepts and delve
into newer material.

http://www.it-ebooks.info/

■ IntroduCtIon

xliv

I work with Java Enterprise on a daily basis, and I have a deep passion for the technologies involved in the
platform. I hope that this book increases your passion of Java EE and the Java platform in its entirety.

Who This Book Is For
This book is intended for all those who are interested in learning Java Enterprise Edition (Java EE) development and/
or already know Java EE but would like some information regarding the new features included in Java EE 7. Those who
are new to Java EE development can read this book, and it will allow them to start from scratch to get up and running
quickly. Intermediate and advanced Java developers who are looking to update their arsenal with the latest features
that Java EE 7 has to offer can also read the book to quickly update and refresh their skill sets.

How This Book Is Structured
This book is structured so that it does not have to be read from cover to cover. In fact, it is structured so that developers
can chose which topic(s) they’d like to read about and jump right to them. Each recipe contains a problem to solve,
one or more solutions to solve that problem, and a detailed explanation of how the solution works. Although some
recipes may build upon concepts that have been discussed in other recipes, they will contain the appropriate
references so that the developer can find other related recipes that are beneficial to the solution. The book is designed
to allow developers to get up and running quickly with a solution, so that they can be home in time for dinner.

Conventions
Throughout the book, I’ve kept a consistent style for presenting Java code, SQL, command-line text, and results.
Where pieces of code, SQL, reserved words, or code fragments are presented in the text, they are presented in
fixed-width Courier font, such as this (working) example:

public class MyExample {
 public static void main(String[] args){
 System.out.println("Java EE 7 is excellent!");
 }
}

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link can be found
on the book’s information page under the Source Code/Downloads tab. This tab is located underneath the “Related
Titles” section of the page.

Note ■ the sources for this book may change over time to provide new implementations that incorporate the most
up-to-date features in Java ee. that said, if any issues are found within the sources, please submit them via the apress
web site “errata” form, and code will be adjusted accordingly.

http://www.apress.com
http://www.it-ebooks.info/

■ IntroduCtIon

xlv

Configuring a Database for the Book Sources
This book’s sources have been developed using the Apache Derby database, which ships with NetBeans IDE and
GlassFish. The book sources have also been optimized for use with an Oracle 11g database. Please install and
configure the database for use with the book sources using either of those database choices prior to working with
the sources. The database configuration involves creation of a database schema or user, as well as execution of the
create_database.sql script (contained within the book sources) that goes along with the database of your choice.
You must also place the appropriate database JDBC driver into the GlassFish CLASSPATH. You can do this by copying
the ojdbc6.jar (Oracle) or derbyclient.jar (Apache Derby) JAR file into your Integrated Development Environment
(IDE) project for the book sources, or into the <GlassFish-Home>\glassfish4\domains\domain1\lib\ext directory. If
copying into the GlassFish lib directory, then once the JAR file has been copied into place, the GlassFish server will
need to be restarted, if it is already running.

Once the database has been installed/configured, and the SQL scripts contained within the book sources have
been executed, please log into the GlassFish administrative console and set up a database connection pool to work
with the database of your choice. For more information, please see Recipe 11-5.

After a connection pool has been configured, please update the persistence.xml file that is contained within
the book sources accordingly, so that the data source name aligns with the one you’ve assigned to the GlassFish
JDBC resource.

Setting Up a NetBeans Project
Before setting up a NetBeans project for the book sources, please install and configure GlassFish v4 accordingly. For
more information, please see Recipe 11-1.

Note ■ Before setting up a netBeans project for the book sources, please install and/or configure apache derby
or oracle database accordingly. a note regarding dependencies: this project depends upon the use of the third-party
PrimeFaces library. at the time of this book publication, the PrimeFaces 4.0 release was not yet available to the public.
that said, the sources can be obtained from the Google Code repository, and the dependency Jar can be built from the
sources. Please see the Google Code repository at http://code.google.com/p/primefaces/source/checkout.

Please perform the following steps to set up the NetBeans project:

1. Open NetBeans IDE 7.3 or greater.

2. Choose the File ➤ New Project ➤ Java Web ➤ Web Application menu option.

3. Title the project JavaEERecipes and choose a desired Project Location.

4. Server and Settings:

a. If you have not yet registered your GlassFish v4 server with NetBeans, please click
the Add button in this dialog, and add the server. To do so, you will need to know the
location of the GlassFish server on your file system.

b. Java EE Version: Java EE 7 Web.

5. Frameworks:

a. Select JavaServer Faces, and then accept all defaults.

http://code.google.com/p/primefaces/source/checkout
http://www.it-ebooks.info/

■ IntroduCtIon

xlvi

6. Click Finish.

7. Go to your file system and copy the contents from within the JavaEERecipes-BookSources\
NBProject\src directory into your new NetBeans project src directory.

8. Add the required library dependencies to your project by right-clicking the project and
choosing the Properties option. Once the Properties dialog is open, select the Libraries,
and add the following dependencies:

a. Jython 2.5.3 or later

b. Groovy 2.0.1 or later

c. PrimeFaces 4.0 or later

d. Database JDBC JAR file, if not already placed within the GlassFis0h lib directory

http://www.it-ebooks.info/

1

Chapter 1

Introduction to Servlets

Java servlets were the first technology for producing dynamic Java web applications. Sun Microsystems released the
first Java Servlet specification in 1997. Since then it has undergone tremendous change, making it more powerful
and easing development more with each release. The 3.0 version was released as part of Java EE 6 in December 2009.
Servlets are at the base of all Java EE applications. Although many developers use servlet frameworks such as Java
Server Pages (JSP) and Java Server Faces (JSF), both of those technologies compile pages into Java servlets behind the
scenes via the servlet container. That said, a fundamental knowledge of Java servlet technology could be very useful
for any Java web developer.

Servlets are Java classes that conform to the Java Servlet API, which allows a Java class to respond to requests.
Although servlets can respond to any type of request, they are most commonly written to respond to web-based
requests. A servlet must be deployed to a Java servlet container in order to become usable. The Servlet API provides
a number of objects that are used to enable the functionality of a servlet within a web container. Such objects include
the request and response objects, pageContext, and a great deal of others, and when these objects are used properly,
they enable a Java servlet to perform just about any task a web-based application needs to do.

As mentioned, servlets can produce not only static content but also dynamic content. Since a servlet is written in
Java, any valid Java code can be used within the body of the servlet class. This empowers Java servlets and allows them
to interact with other Java classes, the web container, the underlying file server, and much more.

This chapter will get you started developing and deploying servlets. You will learn how to install Oracle’s
GlassFish application server, a robust servlet container, which will enable you to deploy sophisticated Java enterprise
applications. You will be taught the basics of developing servlets, how to use them with client web sessions, and how
to link a servlet to another application. All the while, you will learn to use standards from the latest release of the Java
Servlet API, which modernizes servlet development and makes it much easier and more productive than in years past.

Note ■ You can run the examples within this chapter by deploying the JavaEERecipes.war file (contained in
the sources) to a local Java EE application server container such as GlassFish v4. You can also set up the NetBeans
project entitled JavaEERecipes that is contained in the sources, build it, and deploy to GlassFish v4. Otherwise, you
can run the examples in Chapter 1 stand-alone using the instructions provided in Recipe 1-3. If you deploy the
JavaEERecipes.war file to a Java EE application server container, you can visit the following URL to load the
examples for this chapter: http://localhost:8080/JavaEERecipes/faces/chapter01/index.xhtml.

http://localhost:8080/JavaEERecipes/faces/chapter01/index.xhtml
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

2

1-1. Setting Up a Java Enterprise Environment
Problem
You want to set up an environment that you can use to deploy and run Java servlets and other Java enterprise
technologies.

Solution
Download and install Oracle’s GlassFish application server from the GlassFish web site. The version used for this
book is the open source edition, release 4.0, and it can be downloaded from http://glassfish.java.net/ in the
“Download” section. Select the .zip or .tar.gz download format, and decompress the downloaded files within a
directory on your workstation. I will refer to that directory as /JAVA_DEV/Glassfish. The GlassFish distribution
comes prepackaged with a domain so that developers can get up and running quickly. Once the .zip file has been
unpacked, you can start the domain by opening a command prompt or terminal and starting GlassFish using the
following statement:

/PATH_TO_GLASSFISH/Glassfish/bin/asadmin start-domain domain1

The domain will start, and it will be ready for use. You will see output from the server that looks similar to
the following:

Waiting for domain1 to start
Successfully started the domain : domain1
domain Location: /PATH_TO_GLASSFISH/glassfish/domains/domain1
Log File: /PATH_TO_GLASSFISH/glassfish/domains/domain1/logs/server.log
Admin Port: 4848
Command start-domain executed successfully.

How It Works
The development of Java EE applications begins with a Java EE–compliant application server. A Java EE–compliant
server contains all the essential components to provide a robust environment for deploying and hosting enterprise
Java applications. The GlassFish application server is the industry standard for Java EE 7, and there are two versions of
the server: open source, and licensed by Oracle. For the purposes of this book, the open source edition will be used.
However, in a production environment, you may want to consider using the Oracle-licensed version so that technical
support will be available if needed.

Installing GlassFish is easy. It consists of downloading an archive and uncompressing it on your development
machine. Once you’ve completed this, the application server will make use of your locally installed Java development
kit (JDK) when it is started. Once the server starts, you can open a browser and go to http://localhost:4848
to gain access to the GlassFish administrative console. Most Java EE developers who deploy on GlassFish use the
administrative console often. The administrative console provides developers with the tools needed to deploy web
applications, register databases with Java Naming and Directory Interface (JNDI), set up security realms for a domain,
and do much more. To access the GlassFish administrative console for the first time, use the user name of admin and
the password of adminadmin. You should take some time to become familiar with the administrative console because
the more you know about it, the easier it will be to maintain your Java EE environment.

Installing the GlassFish application server is the first step toward developing Java applications for the enterprise.
While other applications servers such as JBoss, Apache TomEE, and WebLogic are very well adopted, GlassFish offers
developers a solid environment that is suitable for production use and easy to learn. It also has the bonus of being an
open source application server and the reference implementation for Java EE 7.

http://glassfish.java.net/
http://localhost:4848/
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

3

1-2. Developing a Servlet
Problem
You want to develop a web page that enables you to include dynamic content.

Solution
Develop a Java servlet class, and compile it to run within a Java servlet container. In this example, a simple servlet is
created that will display some dynamic content to the web page. The following is the servlet code that contains the
functionality for the servlet:

package org.javaeerecipes.chapter01.recipe01_02;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 1-2: Developing a Servlet
 * @author juneau
 */
public class SimpleServlet extends HttpServlet {

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 // Place page output here
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet SimpleServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Servlet SimpleServlet at " + request.getContextPath() + "</h2>");
 out.println("
Welcome to Java EE Recipes!");

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

4

 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 /**
 * Handles the HTTP GET
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP POST
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Returns a short description of the servlet for documentation purposes.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }// </editor-fold>
}

The following code is the web deployment descriptor. This file is required for application deployment to a
servlet container. It contains the servlet configuration and mapping that maps the servlet to a URL. In Recipe 1-4 you
will learn how to omit the servlet configuration and mapping from the web.xml file to make servlet development,
deployment, and maintenance easier.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

5

<?xml version="1.0"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>org.javaeerecipes.chapter1.recipe01_02.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file> /SimpleServlet </welcome-file>
 </welcome-file-list>
</web-app>

Note ■ Many web applications use a page named index.html or index.xhtml as their welcome file. there is nothing
wrong with doing that, and as a matter of fact, it is the correct thing to do. the use of /SimpleServlet as the welcome
file in this example is to make it easier to follow for demonstration purposes.

To compile the Java servlet, use the javac command-line utility. The following line was excerpted from the
command line, and it compiles the SimpleServlet.java file into a class file. First, traverse into the directory
containing the SimpleServlet.java file; then, execute the following:

javac -cp /JAVA_DEV/Glassfish/glassfish/modules/javax.servlet-api.jar SimpleServlet.java

Once the servlet code has been compiled into a Java class file, it is ready to package for deployment.

Note ■ You may want to consider installing a Java integrated development environment (IdE) to increase your development
productivity. there are several very good IdEs available to developers, so be sure to choose one that contains the features
you find most important and useful for development. as the author of this book on Java EE 7, I recommend installing Net-
Beans 7.3 or newer for development. NetBeans is an open source IdE that is maintained by Oracle, and it includes support
for all the cutting-edge features that the Java industry has to offer, including EJB development with Java EE 7, JavaFX 2.0
support, and more. to learn more about working with NetBeans and Java EE 7, please see the appendix of this book.

How It Works
Java servlets provide developers with the flexibility to design applications using a request-response programming
model. Servlets play a key role in the development of service-oriented and web application development on the
Java platform. Different types of servlets can be created, and each of them is geared toward providing different
functionality. The first type is the GenericServlet, which provides services and functionality. The second type,

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_0.xsd
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

6

HttpServlet, is a subclass of GenericServlet, and servlets of this type provide functionality and a response that uses
HTTP. The solution to this recipe demonstrates the latter type of servlet because it displays a result for the user to see
within a web browser.

Servlets conform to a life cycle for processing requests and posting results. First, the Java servlet container calls
the servlet’s constructor. The constructor of every servlet must take no arguments. Next, the container calls the servlet
init method, which is responsible for initializing the servlet. Once the servlet has been initialized, it is ready for use.
At that point, the servlet can begin processing. Each servlet contains a service method, which handles the requests
being made and dispatches them to the appropriate methods for request handling. Implementing the service
method is optional. Finally, the container calls the servlet’s destroy method, which takes care of finalizing the servlet
and taking it out of service.

Every servlet class must implement the javax.servlet.Servlet interface or extend another class that does. In
the solution to this recipe, the servlet named SimpleServlet extends the HttpServlet class, which provides methods
for handling HTTP processes. In this scenario, a browser client request is sent from the container to the servlet;
then the servlet service method dispatches the HttpServletRequest object to the appropriate method provided by
HttpServlet. Namely, the HttpServlet class provides the doGet, doPut, doPost, and doDelete methods for working
with an HTTP request. The HttpServlet class is abstract, so it must be subclassed, and then an implementation can
be provided for its methods. In the solution to this recipe, the doGet method is implemented, and the responsibility of
processing is passed to the processRequest method, which writes a response to the browser using the PrintWriter.
Table 1-1 describes each of the methods available to an HttpServlet.

Table 1-1. HttpServlet Methods

Method Name Description

doGet Used to process HTTP GET requests. Input sent to the servlet must be included in the
URL address. For example: ?myName=Josh&myBook=JavaEERecipes.

doPost Used to process HTTP POST requests. Input can be sent to the servlet within
HTML form fields. See Recipe 1-7 for an example.

doPut Used to process HTTP PUT requests.

doDelete Used to process HTTP DELETE requests.

doHead Used to process HTTP HEAD requests.

doOptions Called by the container to allow OPTIONS request handling.

doTrace Called by the container to handle TRACE requests.

getLastModified Returns the time that the HttpServletRequest object was last modified.

init Initializes the servlet.

destroy Finalizes the servlet.

getServletInfo Provides information regarding the servlet.

A servlet generally performs some processing within the implementation of its methods and then returns
a response to the client. The HttpServletRequest object can be used to process arguments that are sent via the
request. For instance, if an HTML form contains some input fields that are sent to the server, those fields would be
contained within the HttpServletRequest object. The HttpServletResponse object is used to send responses to
the client browser. Both the doGet and doPost methods within a servlet accept the same arguments, namely, the
HttpServletRequest and HttpServletResponse objects.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

7

Note ■ the doGet method is used to intercept http GET requests, and doPost is used to intercept http POST
requests. Generally, the doGet method is used to prepare a request before displaying for a client, and the doPost
method is used to process a request and gather information from an htML form.

In the solution to this recipe, both the doGet and doPost methods pass the HttpServletRequest and
HttpServletResponse objects to the processRequest method for further processing. The HttpServletResponse
object is used to set the content type of the response and to obtain a handle on the PrintWriter object in the
processRequest method. The following lines of code show how this is done, assuming that the identifier referencing
the HttpServletResponse object is response:

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

A GenericServlet can be used for providing services to web applications. This type of servlet is oftentimes
used for logging events because it implements the log method. A GenericServlet implements both the Servlet and
ServletConfig interfaces, and to write a generic servlet, only the service method must be overridden.

1-3. Packaging, Compiling, and Deploying a Servlet
Problem
You have written a Java servlet and now want to package it and deploy it for use.

Solution
Compile the sources, set up a deployable application, and copy the contents into the GlassFish deployment directory.
From the command line, use the javac command to compile the sources.

javac -cp /PATH_TO_GLASSFISH/Glassfish/glassfish/modules/javax.servlet-api.jar SimpleServlet.java

After the class has been compiled, deploy it along with the web.xml deployment descriptor, conforming to the
appropriate directory structure.

QUICK Start

to quickly get started with packaging, compiling, and deploying the example application for the servlet recipes in
this chapter on GlassFish or other servlet containers such as apache tomcat, follow these steps:

1. Create a single application named SimpleServlet by making a directory named
SimpleServlet.

2. Create the WEB-INF, WEB-INF/classes, and WEB-INF/lib directories inside SimpleServlet.

3. drag the Chapter 1 sources (beginning with the org directory) in the WEB-INF/classes
directory you created, as well as the contents of the web folder, into the root of your
SimpleServlet directory.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

8

4. Copy the web.xml file that is in the source’s recipe01_02 directory into the WEB-INF
directory you created.

5. download the JavaMail apI code from Oracle, and copy the mail.jar file from the
download into the WEB-INF/lib directory you created. this apI will be used to send mail
in future recipes.

6. Set your CLASSPATH to include the mail.jar file you downloaded in step 5.

7. at the command prompt, change directories so that you are in the classes directory you
created in step 2. Compile each recipe with the command javac org\javaeerecipes\
chapter01\recipe1_x*.java, where x is equal to the recipe number.

8. Copy your SimpleServlet application directory to the /JAVA_DEV/Glassfish/
glassfish/domains/domain1/autodeploy directory for GlassFish or the
/Tomcat/webapps directory for tomcat.

test the application by launching a browser and going to http://localhost:8080/SimpleServlet/servlet_name,
where servlet_name corresponds to the servlet name in each recipe. If using tomcat, you may need to restart
the server in order for the application to deploy.

How It Works
To compile the sources, you can use your favorite Java IDE such as NetBeans or Eclipse, or you can use the command
line. For the purposes of this recipe, I will do just that. If you’re using the command line, you must ensure you are
using the javac command that is associated with the same Java release that you will be using to run your servlet
container. In this example, we will say that the location of the Java SE 7 installation is at the following path:

/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home

This path may differ in your environment if you are using a different operating system and/or installation
location. To ensure you are using the Java runtime that is located at this path, set the JAVA_HOME environment variable
equal to this path. On OS X and *nix operating systems, you can set the environment variable by opening the terminal
and typing the following:

export JAVA_HOME=/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home

If you are using Windows, use the SET command within the command line to set up the JAVA_HOME
environment variable.

set JAVA_HOME=C:\your-java-se-path\

Next, compile your Java servlet sources, and be sure to include the javax.servlet-api.jar file that is packaged
with your servlet container (use servlet-api.jar for Tomcat) in your CLASSPATH. You can set the CLASSPATH by using
the –cp flag of the javac command. The following command should be executed at the command line from within the
same directory that contains the sources. In this case, the source file is named SimpleServlet.java.

javac -cp /path_to_jar/javax.servlet-api.jar SimpleServlet.java

http://localhost:8080/SimpleServlet/servlet_name
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

9

Next, package your application by creating a directory and naming it after your application. In this case, create a
directory and name it SimpleServlet. Within that directory, create another directory named WEB-INF. Traverse into
the WEB-INF directory, and create another directory named classes. Lastly, create directories within the classes
directory in order to replicate your Java servlet package structure. For this recipe, the SimpleServlet.java class
resides within the Java package org.javaeerecipes.chapter01.recipe01_02, so create a directory for each of
those packages within the classes directory. Create another directory within WEB-INF and name it lib; any JAR files
containing external libraries should be placed within the lib directory. In the end, your directory structure should
resemble the following:

SimpleServlet
|_WEB-INF
 |_classes
 |_org
 |_javaeerecipes
 |_chapter01
 |_recipe01_02
 |_lib

Place your web.xml deployment descriptor within the WEB-INF directory, and place the compiled
SimpleServlet.class file within the recipe01_02 directory. The entire contents of the SimpleServlet directory can
now be copied within the deployment directory for your application server container to deploy the application.
Restart the application server if using Tomcat, and visit the URL http://localhost:8080/SimpleServlet/SimpleServlet
to see the servlet in action.

1-4. Registering Servlets Without WEB-XML
Problem
Registering servlets in the web.xml file is cumbersome, and you want to deploy servlets without modifying web.xml at all.

Solution
Use the @WebServlet annotation to register the servlet, and omit the web.xml registration. This will alleviate the
need to modify the web.xml file each time a servlet is added to your application. The following adaptation of the
SimpleServlet class that was used in Recipe 1-2 includes the @WebServlet annotation and demonstrates its use:

package org.javaeerecipes.chapter01.recipe01_04;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

http://localhost:8080/SimpleServlet/SimpleServlet
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

10

/**
 * Recipe 1-4 - Registering Servlets without WEB-XML
 * @author juneau
 */
@WebServlet(name = "SimpleServletNoDescriptor", urlPatterns = {"/SimpleServletNoDescriptor"})
public class SimpleServletNoDescriptor extends HttpServlet {

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 /*
 * TODO output your page here. You may use following sample code.
 */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet SimpleServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Servlet SimpleServlet at " + request.getContextPath() + "</h2>");
 out.println("
Look ma, no WEB-XML!");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 /**
 * Handles the HTTP <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

11

 /**
 * Handles the HTTP <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

}

In the end, the servlet will be accessible via a URL in the same way that it would if the servlet were registered
within web.xml.

Note ■ Remove the existing servlet mapping within the web.xml file in order to make use of the @WebServlet
annotation.

How It Works
There are a couple of ways to register servlets with a web container. The first way is to register them using the
web.xml deployment descriptor, as demonstrated in Recipe 1-2. The second way to register them is to use the
@WebServlet annotation. The Servlet 3.0 API introduced the @WebServlet annotation, which provides an easier
technique to use for mapping a servlet to a URL. The @WebServlet annotation is placed before the declaration of a
class, and it accepts the elements listed in Table 1-2.

Table 1-2. @WebServlet Annotation Elements

Element Description

description Description of the servlet

displayName The display name of the servlet

initParams Accepts list of @WebInitParam annotations

largeIcon The large icon of the servlet

loadOnStartup Load on start-up order of the servlet

name Servlet name

smallIcon The small icon of the servlet

urlPatterns URL patterns that invoke the servlet

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

12

In the solution to this recipe, the @WebServlet annotation maps the servlet class named
SimpleServletNoDescriptor to the URL pattern of /SimpleServletNoDescriptor, and it also names the servlet
SimpleServletNoDescriptor.

@WebServlet(name="SimpleServletNoDescriptor", urlPatterns={"/SimpleServletNoDescriptor"})

The new @WebServlet can be used rather than altering the web.xml file to register each servlet in an application.
This provides ease of development and manageability. However, in some cases, it may make sense to continue using
the deployment descriptor for servlet registration, such as if you do not want to recompile sources when a URL pattern
changes. If you look at the web.xml listing in Recipe 1-2, you can see the following lines of XML, which map the servlet
to a given URL and provide a name for the servlet. These lines of XML perform essentially the same function as the
@WebServlet annotation in this recipe.

<servlet>
 <servlet-name>SimpleServletNoDescriptor</servlet-name>
 <servlet-class>org.javaeerecipes.chapter01.recipe01_04.SimpleServletNoDescriptor</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>SimpleServletNoDescriptor</servlet-name>
 <url-pattern>/SimpleServletNoDescriptor</url-pattern>
</servlet-mapping>

1-5. Displaying Dynamic Content with a Servlet
Problem
You want to display some content to a web page that may change depending upon server-side activity or user input.

Solution
Define a field within your servlet to contain the dynamic content that is to be displayed. Post the dynamic content on
the page by appending the field containing it using the PrintWriter println method. The following example servlet
declares a Date field and updates it with the current Date each time the page is loaded:

package org.javaeerecipes.chapter01.recipe01_05;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 1-5: Displaying Dynamic Content with a Servlet
 *
 * @author juneau
 */

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

13

@WebServlet(name = "CurrentDateAndTime", urlPatterns = {"/CurrentDateAndTime"})
public class CurrentDateAndTime extends HttpServlet {

 Date currDateAndTime;

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet CurrentDateAndTime</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet CurrentDateAndTime at " + request.getContextPath() + "</h1>");
 out.println("
");
 synchronized(currDateAndTime){
 currDateAndTime = new Date();
 out.println("The current date and time is: " + currDateAndTime);
 }
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

/**
 * Handles the HTTP
 * <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

14

 /**
 * Handles the HTTP
 * <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
}

Note■ Servlets are mutithreaded, and many client requests may be using a servlet concurrently. When a field is
declared as a Servlet class member (not within a method) as you have done with currDateAndTime, you have to assure
that only one client request can manipulate the field at any instance. You do this by synchronizing around the use of the
field, as shown in the processRequest() method. You synchronize around the smallest block of code you can manage in
order to minimize latency.

synchronized(currDateAndTime) {
 currDateAndTime = new Date();
 out.println("The current date and time is: " + currDateAndTime);
}

The resulting output from this servlet will be the current date and time.

How It Works
One of the reasons why Java servlets are so useful is because they allow dynamic content to be displayed on a web
page. The content can be taken from the server itself, a database, another web site, or many other web-accessible
resources. Servlets are not static web pages; they are dynamic, and that is arguably their biggest strength.

In the solution to this recipe, a servlet is used to display the current time and date on the server. When the servlet
is processed, the doGet method is called, which subsequently makes a call to the processRequest method, passing
the request and response objects. Therefore, the processRequest method is where the bulk of the work occurs.
The processRequest method creates a PrintWriter by calling the response.getWriter method, and the PrintWriter
is used to display content on the resulting web page. Next, the current date and time are obtained from the server
by creating a new Date and assigning it to the currDateAndTime field. Lastly, the processRequest method sends the
web content through the out.println method, and the contents of the currDateAndTime field are concatenated to a
String and sent to out.println as well. Each time the servlet is processed, it will display the current date and time at
the time in which the servlet is invoked because a new Date is created with each request.

This example just scratches the surface of what is possible with a Java servlet. Although displaying the current
date and time is trivial, you could alter that logic to display the contents of any field contained within the servlet.
Whether it be an int field that displays a calculation that was performed by the servlet container or a String field
containing some information, the possibilities are endless.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

15

1-6. Handling Requests and Responses
Problem
You want to create a web form that accepts user input and supply a response based upon the input that has
been received.

Solution
Create a standard HTML-based web form, and when the submit button is clicked, invoke a servlet to process the
end-user input and post a response. To examine this technique, you will see two different pieces of code. The
following code is HTML that is used to generate the input form. This code exists within the file recipe01_06.html.
Please browse to /SimpleServlet/recipe01_06.html to execute the example. Pay particular attention to the <form>
and <input> tags. You will see that the form’s action parameter lists a servlet name, MathServlet.

<html>
 <head>
 <title>Simple Math Servlet</title>
 </head>
 <body>
 <h1>This is a simple Math Servlet</h1>
 <form method="POST" action="MathServlet">
 <label for="numa">Enter Number A: </label>
 <input type="text" id="numa" name="numa"/>

 <label for="numb">Enter Number B: </label>
 <input type="text" id="numb" name="numb"/>

 <input type="submit" value="Submit Form"/>
 <input type="reset" value="Reset Form"/>
 </form>
 </body>
</html>

Next, take a look at the following code for a servlet named MathServlet. This is the Java code that receives the
input from the HTML code listed earlier, processes it accordingly, and posts a response.

package org.javaeerecipes.chapter01.recipe01_06;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;

import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

/**
 * Recipe 1-6: Handling Requests and Responses
 */
// Uncomment the following line to run example stand-alone
//@WebServlet(name="SessionServlet", urlPatterns={"/MathServlet"})

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

16

// The following will allow the example to run within the context of the JavaEERecipes example
// enterprise application (JavaEERecipes.war distro or Netbeans Project
@WebServlet(name = "MathServlet", urlPatterns = {"/chapter01/MathServlet"})public class MathServlet
extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {

 res.setContentType("text/html");

 // Store the input parameter values into Strings
 String numA = req.getParameter("numa");
 String numB = req.getParameter("numb");

 PrintWriter out = res.getWriter();
 out.println("<html><head>");
 out.println("<title>Test Math Servlet</title>");
 out.println("\t<style>body { font-family: 'Lucida Grande', "
 + "'Lucida Sans Unicode';font-size: 13px; }</style>");
 out.println("</head>");
 out.println("<body>");

 try {
 int solution = Integer.valueOf(numA) + Integer.valueOf(numB);

 /*
 * Display some response to the user
 */
 out.println("<p>Solution: "
 + numA + " + " + numB + " = " + solution + "</p>");

 } catch (java.lang.NumberFormatException ex) {
 // Display error if an exception is raised
 out.println("<p>Please use numbers only. . .try again.</p>");
 }
 out.println("

");
 out.println("Add Two More Numbers");
 out.println("</body></html>");

 out.close();
 }
}

4

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

17

Note ■ to run the example, copy the previous htML code into an htML file within the web root of your JavaEERecipes
application named recipe1_6.html, and then enter the following address into your browser: http://localhost:8080/
JavaEERecipes/recipe1_6.html. this assumes you are using default port numbers for your application server installation.
If using the NetBeans project that was packaged with the sources, you do not need to worry about copying the code as
everything is pre-configured.

How It Works
Servlets make it easy to create web applications that adhere to a request and response life cycle. They have the
ability to provide HTTP responses and also process business logic within the same body of code. The ability to
process business logic makes servlets much more powerful than standard HTML code. The solution to this recipe
demonstrates a standard servlet structure for processing requests and sending responses. An HTML web form
contains parameters that are sent to a servlet. The servlet then processes those parameters in some fashion and
publishes a response that can be seen by the client. In the case of an HttpServlet object, the client is a web browser,
and the response is a web page.

Values can be obtained from an HTML form by using HTML <input> tags embedded within an HTML <form>.
In the solution to this recipe, two values are accepted as input, and they are referenced by their id attributes as numa
and numb. There are two more <input> tags within the form; one of them is used to submit the values to the form
action, and the other is used to reset the form fields to blank. The form action is the name of the servlet that the
form values will be passed to as parameters. In this case, the action is set to MathServlet. The <form> tag also accepts
a form-processing method, either GET or POST. In the example, the POST method is used because form data is being
sent to the action; in this case, data is being sent to MathServlet. You could, of course, create an HTML form as
detailed as you would like and then have that data sent to any servlet in the same manner. This example is relatively
basic; it serves to give you an understanding of how the processing is performed.

The <form> action attribute states that the MathServlet should be used to process the values that are contained
within the form. The MathServlet name is mapped back to the MathServlet class via the web.xml deployment
descriptor or the @WebServlet annotation. Looking at the MathServlet code, you can see that a doPost method is
implemented to handle the processing of the POST form values. The doPost method accepts HttpServletRequest
and HttpServletResponse objects as arguments. The values contained with the HTML form are embodied within the
HttpServletRequest object. To obtain those values, call the request object’s getParameter method, passing the id
of the input parameter you want to obtain. In the solution to this recipe, those values are obtained and stored within
local String fields.

String numA = req.getParameter("numa");
String numB = req.getParameter("numb");

Once the values are obtained, they can be processed as needed. In this case, those String values are converted
into int values, and then they are added together to generate a sum and stored into an int field. That field is then
presented as a response on a resulting web page.

int solution = Integer.valueOf(numA) + Integer.valueOf(numB);

As mentioned, the HTML form could be much more complex, containing any number of <input> fields.
Likewise, the servlet could perform more complex processing of those field values. This example is merely the tip
of the iceberg, and the possibilities are without bounds. Servlet-based web frameworks such as Java Server Pages
and Java Server Faces hide many of the complexities of passing form values to a servlet and processing a response.
However, the same basic framework is used behind the scenes.

http://localhost:8080/JavaEERecipes/recipe1_6.html
http://localhost:8080/JavaEERecipes/recipe1_6.html
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

18

1-7. Listening for Servlet Container Events
Problem
You want to have the ability to listen for application start-up and shutdown events.

Solution
Create a servlet context event listener to alert when the application has started up or when it has been shut down.
The following solution demonstrates the code for a context listener, which will log application start-up and shutdown
events and send e-mail alerting of such events:

package org.javaeerecipes.chapter01.recipe01_07;

import java.util.Properties;
import javax.mail.Message;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;
import javax.servlet.annotation.WebListener;

@WebListener
public class StartupShutdownListener implements ServletContextListener {

 public void contextInitialized(ServletContextEvent event) {
 System.out.println("Servlet startup. . .");
 System.out.println(event.getServletContext().getServerInfo());
 System.out.println(System.currentTimeMillis());
 sendEmail("Servlet context has initialized");
 }

 public void contextDestroyed(ServletContextEvent event) {
 System.out.println("Servlet shutdown. . .");
 System.out.println(event.getServletContext().getServerInfo());
 System.out.println(System.currentTimeMillis());
 // See error in server.log file if mail is unsuccessful
 sendEmail("Servlet context has been destroyed. . .");
 }

 /**
 * This implementation uses the GMail smtp server
 * @param message
 * @return
 */
 private boolean sendEmail(String message) {
 boolean result = false;
 String smtpHost = "smtp.gmail.com";
 String smtpUsername = "username";

http://smtp.gmail.com
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

19

 String smtpPassword = "password";
 String from = "fromaddress";
 String to = "toaddress";
 int smtpPort = 587;
 System.out.println("sending email. . .");
 try {
 // Send email here

 //Set the host smtp address
 Properties props = new Properties();
 props.put("mail.smtp.host", smtpHost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");

 // create some properties and get the default Session
 Session session = Session.getInstance(props);

 // create a message
 Message msg = new MimeMessage(session);

 // set the from and to address
 InternetAddress addressFrom = new InternetAddress(from);
 msg.setFrom(addressFrom);
 InternetAddress[] address = new InternetAddress[1];
 address[0] = new InternetAddress(to);
 msg.setRecipients(Message.RecipientType.TO, address);
 msg.setSubject("Servlet container shutting down");
 // Append Footer
 msg.setContent(message, "text/plain");
 Transport transport = session.getTransport("smtp");
 transport.connect(smtpHost, smtpPort, smtpUsername, smtpPassword);

 Transport.send(msg);

 result = true;
 } catch (javax.mail.MessagingException ex) {
 ex.printStackTrace();
 result = false;
 }
 return result;
 }
}

Note ■ to run this example, you may need additional external JaRs in your CLASSPATH. Specifically, make sure you
have mail.jar and javaee.jar.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

20

How It Works
Sometimes it is useful to know when certain events occur within the application server container. This concept can be
useful under many different circumstances, but most often it would likely be used for initializing an application upon
start-up or cleaning up after an application upon shutdown. A servlet listener can be registered with an application
to indicate when it has been started up or shut down. Therefore, by listening for such events, the servlet has the
opportunity to perform some actions when they occur.

To create a listener that performs actions based upon a container event, you must develop a class
that implements the ServletContextListener interface. The methods that need to be implemented are
contextInitialized and contextDestroyed. Both of the methods accept a ServletContextEvent as an argument,
and they are automatically called each time the servlet container is initialized or shut down, respectively. To register
the listener with the container, you can use one of the following techniques:

Utilize the •	 @WebListener annotation, as demonstrated by the solution to this recipe.

Register the listener within the •	 web.xml application deployment descriptor.

Use the •	 addListener methods defined on ServletContext.

For example, to register this listener within web.xml, you would need to add the following lines of XML:

<listener>
 <listener-class> org.javaeerecipes.chapter01.recipe01_07.StartupShutdownListener</listener-class>
</listener>

Neither way is better than the other. The only time that listener registration within the application deployment
descriptor (web.xml) would be more helpful is if you had the need to disable the listener in some cases. On the other
hand, to disable a listener when it is registered using @WebListener, you must remove the annotation and recompile
the code. Altering the web deployment descriptor does not require any code to be recompiled.

There are many different listener types, and the interface that the class implements is what determines the
listener type. For instance, in the solution to this recipe, the class implements the ServletContextListener interface.
Doing so creates a listener for servlet context events. If, however, the class implements HttpSessionListener, it would
be a listener for HTTP session events. The following is a complete listing of listener interfaces:

javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttrbiteListener
javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.HttpSessionListener
javax.servlet.HttpSessionAttributeListener

It is also possible to create a listener that implements multiple listener interfaces. To learn more about listening
for different situations such as attribute changes, please see Recipe 1-10.

t

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

21

1-8. Setting Initialization Parameters
Problem
A servlet you are writing requires the ability to accept one or more parameters to be set upon initialization.

Solution #1
Set the servlet initialization parameters using the @WebInitParam annotation. The following code sets an initialization
parameter that is equal to a String value:

package org.javaeerecipes.chapter01.recipe01_08;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.*;
import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

@WebServlet(name="SimpleServletCtx1", urlPatterns={"/SimpleServletCtx1"},
initParams={ @WebInitParam(name="name", value="Duke") })
public class SimpleServletCtx1 extends HttpServlet {

 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 /* Display some response to the user */

 out.println("<html><head>");
 out.println("<title>Simple Servlet Context Example</title>");
 out.println("\t<style>body { font-family: 'Lucida Grande', " +
 "'Lucida Sans Unicode';font-size: 13px; }</style>");
 out.println("</head>");
 out.println("<body>");

 out.println("<p>This is a simple servlet to demonstrate context! Hello "
 + getServletConfig().getInitParameter("name") + "</p>");

 out.println("</body></html>");
 out.close();
 }
}

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

22

To execute the example using the sources for this book, load the following URL into your web browser:
http://localhost:8080/JavaEERecipes/SimpleServletCtx1. The resulting web page will display the following text:

This is a simple servlet to demonstrate context! Hello Duke

Solution #2
Place the init parameters inside the web.xml deployment descriptor file. The following lines are excerpted from the
web.xml deployment descriptor for the SimpleServlet application. They include the initialization parameter names
and values.

<web-app>
 <servlet>
 <servlet-name>SimpleServletCtx1</servlet-name>
 <servlet-class> org.javaeerecipes.chapter01.recipe01_08.SimpleServletCtx1</servlet-class>

 <init-param>
 <param-name>name</param-name>
 <param-value>Duke</param-value>
 </init-param>
 . . .
 </servlet>
 . . .
</web-app>

How It Works
Oftentimes there is a requirement to set initialization parameters for a servlet in order to initialize certain values.
Servlets can accept any number of initialization parameters, and there are a couple of ways in which they can be set.
The first solution is to annotate the servlet class with the @WebInitParam annotation, as demonstrated in Solution #1,
and the second way to set an initialization parameter is to declare the parameter within the web.xml deployment
descriptor, as demonstrated in Solution #2. Either way will work; however, the solution using @WebInitParam is based
upon the newer Java Servlet 3.0 API. Therefore, Solution #1 is the more contemporary approach, but Solution #2
remains valid for following an older model or using an older Java servlet release.

To use the @WebInitParam annotation, it must be embedded within the @WebServlet annotation. Therefore, the
servlet must be registered with the web application via the @WebServlet annotation rather than within the web.xml
file. For more information on registering a servlet via the @WebServlet annotation, see Recipe 1-4.

The @WebInitParam annotation accepts a name-value pair as an initialization parameter. In the solution to this
recipe, the parameter name is name, and the value is Duke.

@WebInitParam(name="name", value="Duke")

Once set, the parameter can be used within code by calling getServletConfig().
getInitializationParameter() and passing the name of the parameter, as shown in the following line of code:

out.println("<p>This is a simple servlet to demonstrate context! Hello "
 + getServletConfig().getInitParameter("name") + "</p>");

The annotations have the benefit of providing ease of development, and they also make it easier to maintain
servlets as a single package rather than jumping back and forth between the servlet and the deployment descriptor.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

23

However, those benefits come at the cost of compilation because in order to change the value of an initialization
parameter using the @WebInitParam annotation, you must recompile the code. Such is not the case when using the
web.xml deployment descriptor. It is best to evaluate your application circumstances before committing to a standard
for naming initialization parameters.

1-9. Filtering Web Requests
Problem
You want to invoke certain processing if a specified URL is used to access your application. For instance, if a specific
URL were used to access your application, you would want to log the user’s IP address.

Solution
Create a servlet filter that will be processed when the specified URL format is used to access the application. In this
example, the filter will be executed when a URL conforming to the format of /* is used. This format pertains to any
URL in the application. Therefore, any page will cause the servlet to be invoked.

package org.javaeerecipes.chapter01.recipe01_09;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.*;

/**
 * Recipe 1-9 This filter obtains the IP address of the remote host and logs
 * it.
 *
* @author juneau
 */
@WebFilter("/*")
public class LoggingFilter implements Filter {

 private FilterConfig filterConf = null;

 public void init(FilterConfig filterConf) {
 this.filterConf = filterConf;
 }

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {
 String userAddy = request.getRemoteHost();
 filterConf.getServletContext().log("Vistor User IP: " + userAddy);
 chain.doFilter(request, response);
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

24

 @Override
 public void destroy() {
 throw new UnsupportedOperationException("Not supported yet.");
 }
}

The filter could contain any processing; the important thing to note is that this servlet is processed when a
specified URL is used to access the application.

Note■ to invoke the filter, load a URL for the application with which the filter is associated. For the purposes of
this example, load the following URL (for the previous recipe) to see the filter add text to the server log:
http://localhost:8080/JavaEERecipes/SimpleServletCtx1.

How It Works
Web filters are useful for preprocessing requests and invoking certain functionality when a given URL is visited.
Rather than invoking a servlet that exists at a given URL directly, any filter that contains the same URL pattern will be
invoked prior to the servlet. This can be helpful in many situations, perhaps the most useful for performing logging,
authentication, or other services that occur in the background without user interaction.

Filters must implement the javax.servlet.Filter interface. Methods contained within this interface include
init, destroy, and doFilter. The init and destroy methods are invoked by the container. The doFilter method is
used to implement tasks for the filter class. As you can see from the solution to this recipe, the filter class has access to
the ServletRequest and ServletResponse objects. This means the request can be captured, and information can be
obtained from it. This also means the request can be modified if need be. For example, including the user name in the
request after an authentication filter has been used.

If you want to chain filters or if more than one filter exists for a given URL pattern, they will be invoked in the
order in which they are configured in the web.xml deployment descriptor. It is best to manually configure the filters
if you are using more than one per URL pattern rather than using the @WebFilter annotation. To manually configure
the web.xml file to include a filter, use the <filter> and <filter-mapping> XML elements along with their associated
child element tags. The following excerpt from a web.xml configuration file shows how the filter that has been created
for this recipe may be manually configured within the web.xml file:

<filter>
 <filter-name>LoggingFilter</filter-name>
 <filter-class>LoggingFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>LogingFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Of course, the @WebFilter annotation takes care of the configuration for you, so in this case the manual
configuration is not required.

Note■ as of Servlet 3.1 apI, if a filter invokes the next entity in the chain, each of the filter service methods must run
in the same thread as all filters that apply to the servlet.

http://localhost:8080/JavaEERecipes/SimpleServletCtx1
http://localhost:8080/JavaEERecipes/SimpleServletCtx1
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

25

1-10. Listening for Attribute Changes
Problem
You want to have the ability to do something within a servlet when a servlet attribute is added, removed, or updated.

Solution
Generate an attribute listener servlet to listen for such events as attributes being added, removed, or modified.
The following class demonstrates this technique by implementing HttpSessionAttributeListener and listening
for attributes that are added, removed, or replaced within the HTTP session:

package org.javaeerecipes.chapter01.recipe01_10;

import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;
import javax.servlet.annotation.WebListener;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpSessionAttributeListener;
import javax.servlet.http.HttpSessionBindingEvent;

/**
 * Recipe 1-10: Attribute Listener
 */
@WebListener
public final class AttributeListener implements ServletContextListener,
 HttpSessionAttributeListener {

 private ServletContext context = null;

 public void attributeAdded(HttpSessionBindingEvent se) {
 HttpSession session = se.getSession();
 String id = session.getId();
 String name = se.getName();
 String value = (String) se.getValue();
 String message = new StringBuffer("New attribute has been added to session: \n").
append("Attribute Name: ").append(name).append("\n").append("Attribute Value:").append(value).
toString();
 log(message);
 }

 public void attributeRemoved(HttpSessionBindingEvent se) {
 HttpSession session = se.getSession();
 String id = session.getId();
 String name = se.getName();
 if (name == null) {
 name = "Unknown";
 }
 String value = (String) se.getValue();
 String message = new StringBuffer("Attribute has been removed: \n")

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

26

 .append("Attribute Name: ").append(name).append("\n").append("Attribute Value:")
 .append(value).toString();
 log(message);
 }

 public void attributeReplaced(HttpSessionBindingEvent se) {
 String name = se.getName();
 if (name == null) {
 name = "Unknown";
 }
 String value = (String) se.getValue();
 String message = new StringBuffer("Attribute has been replaced: \n ").append(name).
toString();
 log(message);
 }

 private void log(String message) {
 if (context != null) {
 context.log("SessionListener: " + message);
 } else {
 System.out.println("SessionListener: " + message);
 }
 }

 @Override
 public void contextInitialized(ServletContextEvent event) {
 this.context = event.getServletContext();
 log("contextInitialized()");
 }

 @Override
 public void contextDestroyed(ServletContextEvent event) {
// Do something
 }
}

Messages will be displayed within the server log file indicating when attributes have been added, removed,
or replaced.

How It Works
In some situations, it can be useful to know when an attribute has been set or what an attribute value has been set to.
The solution to this recipe demonstrates how to create an attribute listener in order to determine this information.
To create a servlet listener, you must implement one or more of the servlet listener interfaces. To listen for HTTP
session attribute changes, implement HttpSessionAttributeListener. In doing so, the listener will implement
the attributeAdded, attributeRemoved, and attributeReplaced methods. Each of these methods accepts
HttpSessionBindingEvent as an argument, and their implementation defines what will occur when an HTTP session
attribute is added, removed, or changed, respectively.

In the solution to this recipe, you can see that each of the three methods listed in the previous paragraph contains
a similar implementation. Within each method, the HttpSessionBindingEvent is interrogated and broken down into
String values, which represent the ID, name, and value of the attribute that caused the listener to react. For instance,

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

27

in the attributeAdded method, the session is obtained from HttpSessionBindingEvent, and then the session
ID is retrieved from that via the use of getSession. The attribute information can be obtained directly from the
HttpSessionBindingEvent using the getId and getName methods, as shown in the following lines of code:

HttpSession session = se.getSession();
String id = session.getId();
String name = se.getName();
String value = (String) se.getValue();

After these values are obtained, the application can do whatever it needs to do with them. In this recipe,
the attribute ID, name, and session ID are simply logged and printed.

String message = new StringBuffer("New attribute has been added to session: \n")
.append("Attribute Name: ").append(name).append("\n")
.append("Attribute Value:").append(value).toString();
log(message);

The body of the attributeReplaced and attributeRemoved methods contain similar functionality. In the
end, the same routine is used within each to obtain the attribute name and value, and then something is done with
those values.

A few different options can be used to register the listener with the container. The @WebListener annotation is the
easiest way to do so, and the only downfall to using it is that you will need to recompile code in order to remove the
listener annotation if you ever need to do so. The listener can be registered within the web deployment descriptor,
or it can be registered using one of the addListener methods contained in ServletContext.

Although the example in the recipe does not perform any life-changing events, it does demonstrate how to create
and use an attribute listener. In the real world, such a listener could become handy if an application needed to capture
the user name of everyone who logs in or needed to send an e-mail whenever a specified attribute is set.

1-11. Applying a Listener to a Session
Problem
You want to listen for sessions to be created and destroyed so that you can count how many active sessions your
application currently contains as well as perform some initialization for each session.

Solution
Create a session listener, and implement the sessionCreated and sessionDestroyed methods accordingly. In the
following example, a servlet is used to keep track of active sessions. Each time someone works with the application,
a counter has one added to it. Likewise, each time a person leaves the application, then the counter goes down by one.

package org.javaeerecipes.chapter01.recipe01_11;

import javax.servlet.annotation.WebListener;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSessionListener;

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

28

/**
 * Recipe 1-11: Applying a Session Listener
 *
 * @author juneau
 */
@WebListener
public class SessionListener implements HttpSessionListener {

 private int numberOfSessions;

 public SessionListener() {
 numberOfSessions = 0;
 }

 public int getNumberOfSessions() {
 return numberOfSessions;
 }

 @Override
 public void sessionCreated(HttpSessionEvent arg) {
 HttpSession session = arg.getSession();
 session.setMaxInactiveInterval(60);
 session.setAttribute("testAttr", "testVal");
 synchronized (this) {
 numberOfSessions++;
 }
 System.out.println("Session created, current count: " + numberOfSessions);
 }

 @Override
 public void sessionDestroyed(HttpSessionEvent arg) {
 HttpSession session = arg.getSession();
 synchronized (this) {
 numberOfSessions--;
 }
 System.out.println("Session destroyed, current count: " + numberOfSessions);
 System.out.println("The attribute value: " + session.getAttribute(("testAttr")));
 }
}

Each time a new visitor visits the application, a new session is started, and testAttr is set. When the session
times out, then it will be destroyed, and any attributes that have been set for the session will be removed.

How It Works
A meaningful way to track web application users is to place values in their HttpSession object. Using a Java servlet,
session attributes can be set, which will exist for the life of the HttpSession. Once the session is invalidated, the
attributes will be removed. To set up a session listener, create a Java servlet, annotate it with the @WebListener
annotation, and implement javax.servlet.http.HttpSessionListener. Doing so will force the implementation of
both the sessionCreated and sessionDestroyed methods, which is where the session magic occurs.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

29

In the example to this recipe, the sessionCreated method first obtains a handle on the current HttpSession
object by calling the HttpSessionEvent object’s getSession method. The handle is assigned to an HttpSession
variable named session. Now that you have that variable initialized with the session object, it can be used to set the
time of life and place attributes that will live and die with the session’s life. The first session configuration performed
in the example is to set the maximum inactive life to 60 (seconds), after which time the servlet container will
invalidate the session. Next an attribute named testAttr is set in the session and given a value of testVal.

HttpSession session = arg.getSession();
session.setMaxInactiveInterval(60);
session.setAttribute("testAttr", "testVal");

A field within the servlet named numberOfSessions is declared, and it is incremented each time a new session
is started. Following the session.setAttribute() call, the counter is incremented within a synchronized statement.
Finally, a message is printed to the server log indicating that a new session was created and providing the total active
session count.

Note ■ placing the increment within the synchronized statement helps avoid concurrency issues with the field.
For more information on Java synchronization and concurrency, please see the online documentation at
http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html.

The sessionDestroyed method is called on a session once the maximum number of inactive seconds has passed.
In this example, the method will be called after 60 seconds of inactivity. Within the sessionDestroyed method,
another synchronization statement decrements the numberOfSessions field value by one, and then a couple of lines
are printed to the server log indicating that a session has been destroyed and providing the new total number of active
sessions.

Session listeners can be used to set cookies and perform other useful tactics to help manage a user’s experience.
They are easy to use and very powerful.

1-12. Managing Session Attributes
Problem
You want to maintain some information regarding an individual session on a per-session basis when a user visits
your site.

Solution
Make use of session attributes to retain session-based information. To do so, use the HttpServletRequest object to obtain
access to the session, and then use the getAttribute() and setAttribute() methods accordingly. In the following
scenario, an HTML page is used to capture a user’s e-mail address, and then the e-mail address is placed into a session
attribute. The attribute is then used by Java servlets across different pages of the application in order to maintain state.

The following code demonstrates what the HTML form (recipe01_12.html) may look like in this scenario:

<html>
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>

http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

30

 <body>
 <h1>Provide an email address to use with this transaction</h1>

 <form method="POST" action="SessionServlet">
 <input type="text" id="email" name="email"/>

 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

Next, the Java servlet named SessionServlet using a URL pattern of /SessionServlet is initiated when the form
is submitted. Any form input values are passed to SessionServlet and processed accordingly.

package org.javaeerecipes.chapter01.recipe01_12;

import java.io.*;
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

// Uncomment the following line to run example stand-alone
//@WebServlet(name="SessionServlet", urlPatterns={"/SessionServlet"})

// The following will allow the example to run within the context of the JavaEERecipes example
// enterprise application (JavaEERecipes.war distro or Netbeans Project
@WebServlet(name="SessionServlet", urlPatterns={"/chapter01/SessionServlet"}) public class
SessionServlet extends HttpServlet {
 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // Obtain he Session object

 HttpSession session = req.getSession(true);

 // Set up a session attribute

 String email = (String)
 session.getAttribute ("session.email");
 if (email == null) {
 email = req.getParameter("email");
 session.setAttribute ("session.email", email);
 }
 String sessionId = session.getId();

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<html>");
 out.println("<head><title>Working with sessions</title></head>");
 out.println("<body>");

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

31

 out.println("<h1>Session Test</h1>");
 out.println ("Your email address is: " + email + "

");
 out.println ("Your session id: " + sessionId);
 out.println("</body></html>");
 }
}

In the end, the e-mail address that was entered within the original HTML form was captured and used
throughout the different pages in the application.

How It Works
Since the beginning of web development, session attributes have been used to retain important information regarding
a user’s session. This concept holds true when developing using Java servlets as well, and servlets make it easy to set
and get the attribute values. All HttpServlet classes must implement doGet or doPost methods in order to process
web application events. In doing so, these methods have access to the HttpServletRequest object as it is passed to
them as an argument. An HttpSession object can be gleaned from the HttpServletRequest, and therefore, it can be
used to retrieve and set attributes as needed.

In the solution to this recipe, an HTTP session attribute is used to store an e-mail address. That address is then
used throughout the application within different servlet classes by obtaining the session object and then retrieving the
attribute value.

// Obtain the Session object
 HttpSession session = req.getSession(true);
// Set up a session attribute
 String email = (String)
 session.getAttribute ("session.email");
 if (email == null) {
 email = req.getParameter("email");
 session.setAttribute ("session.email", email);
 }

Any attributes will remain in the HttpSession object as long as the session remains valid. The session ID will
remain consistent when traversing between pages. You can see that the solution to this recipe obtains and prints the
current session ID for reference. Using attributes in the HttpSession is a good way to pass data around to maintain a
session’s state.

1-13. Downloading a File
Problem
You want to enable your servlet application to have the ability to download a given file.

Solution
Write a servlet that will accept the name and path of a chosen file and then read the file and stream it to the file
requestor. The following web page can be used to select a file for the servlet to download. Although the following

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

32

HTML (recipe 01_13.html) contains a statically typed file name, it could very well contain a dynamic list of files from
a database or other source:

<!DOCTYPE html>
<html>
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
 <h1>Click on the link below to download the file.</h1>

 Download test file

 </body>
</html>

Note ■ For the example in this recipe, you can create and edit a file in your root directory and name the file
downloadTest.txt to see the servlet transfer the data to your browser client.

When a user clicks the link presented on the web page from the previous HTML, the following servlet will be used
to download the given file by passing the HttpServletRequest and HttpServletResponse objects to it along with the
file that should be downloaded:

package org.javaeerecipes.chapter01.recipe01_13;

import java.io.DataInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 1-13
 *
 * @author juneau
 */
// Uncomment the following line to run example stand-alone
//@WebServlet(name = "DownloadServlet", urlPatterns = {"/DownloadServlet"})

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

33

// The following will allow the example to run within the context of the JavaEERecipes example
// enterprise application (JavaEERecipes.war distro or Netbeans Project
@WebServlet(name = "DownloadServlet", urlPatterns = {"/chapter01/DownloadServlet"})public class
DownloadServlet extends HttpServlet {

 /**
 * Handles the HTTP
 * <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 // Read parameter from form that contains the filename to download
 String fileToDownload = request.getParameter("filename");
 // Call the download method with the given file
 System.err.println("Downloading file now. . .");
 doDownload(request, response, fileToDownload);
 }

 /**
 * Sends a file to the output stream.
 *
 * @param req The request
 * @param resp The response
 * @param original_filename The name the browser should receive.
 */
 private void doDownload(HttpServletRequest request, HttpServletResponse response,
 String originalFile) throws IOException {
 final int BYTES = 1024;
 int length = 0;
 ServletOutputStream outStream = response.getOutputStream();
 ServletContext context = getServletConfig().getServletContext();

 response.setContentType((context.getMimeType(originalFile) != null) ?
 context.getMimeType(originalFile) : "text/plain");
 response.setHeader("Content-Disposition", "attachment; filename=\"" + originalFile + "\"");

 InputStream in = context.getResourceAsStream("/" + originalFile);
 byte[] bbuf = new byte[BYTES];

 while ((in != null) && ((length = in.read(bbuf)) != -1))
 {
 outStream.write(bbuf,0,length);
 }

 outStream.flush();
 outStream.close();
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

34

 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }
}

The servlet will not produce a response; it will simply download the given file to the end user when the user clicks
the link to download the file.

How It Works
Downloading files is an essential task for almost any web application. Performing the steps that are provided by this
recipe will make it easy to achieve this task. The example in this recipe demonstrates an easy case in which users can
visit a web page, click a file to download, and have the file retrieved from the server and copied to their machine.
The HTML is very simplistic in this example, and it lists a URL link that invokes the servlet and passes the name of the
file that is to be downloaded. When the user clicks the link, the name of the file is passed to /DownloadServlet as a
parameter with the name filename. When the link is clicked, the servlet doGet method is invoked. The first task that
is performed in the doGet method is to read the filename parameter from the invoking web page. That information is
then passed to the doDownload method along with the HttpServletRequest and HttpServletResponse objects.

In the doDownload method, the ServletOutputStream is obtained from the HttpServletResponse object, and
the ServletContext is obtained for later use. To download a file, the servlet must provide a response of the same
type that matches that of the file to be downloaded. It must also indicate in the response header that an attachment
is to be included. Therefore, the first tasks to be performed by the doDownload method involve setting up the
HttpServletResponse appropriately.

response.setContentType((context.getMimeType(originalFile) != null) ?
 context.getMimeType(originalFile) : "text/plain");
response.setHeader("Content-Disposition", "attachment; filename=\"" + originalFile + "\"");

The file name, in this case originalFile, is used to obtain the MIME type of the file. If the MIME type of the file is
null, then text/plain will be returned. The attachment is set up in the response header as well, by appending the file
name as an attachment to the Content-Disposition. Next, the doDownload method obtains a reference to the file that
is to be downloaded by calling the ServletContext getResourceAsStream method and passing the name of the file.
This will return an InputStream object that can be used to read the contents of the indicated file. A byte buffer is then
created, which will be used to obtain chunks of data from the file when it is being read. The final real task is to read the
file contents and copy them to the output stream. This is done using a while loop, which will continue to read from
the InputStream until everything has been processed. Chunks of data are read in and written to the output stream
using the loop.

while ((in != null) && ((length = in.read(bbuf)) != -1))
{
 outStream.write(bbuf,0,length);
}

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

35

Lastly, the ServletOutputStream object’s flush method is called to clear the contents, and it is then closed
to release resources. The magic of downloading files using a Java servlet may be a bit obfuscated by this example,
however, because a static file is being used as the download source in this example. In real life, the HTML page would
probably contain a list of files that are contained within a database, and then when the user selects a file to download,
the servlet will process that file accordingly, even extracting the file from the database if necessary.

1-14. Dispatching Requests
Problem
You want to write a servlet that hands off requests to other servlets based upon the task that needs to be
accomplished. Furthermore, you want the requests to be handed off without redirecting the client to another site,
and therefore, the URL in the browser should not change.

Solution
Create a request dispatcher servlet, which will decide which task needs to be completed and then send the request to
an appropriate servlet to achieve that task. The following example demonstrates this concept via an HTML form that
accepts two numbers from the user and allows the user to decide what type of mathematical evaluation should be
performed by the server. The servlet processes the request by first determining which type of mathematical evaluation
should be performed and then dispatching the request to the appropriate servlet to perform the task.

The following HTML form accepts two numbers from the user and allows them to choose which type of math to
perform against the numbers:

<html>
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
 <h1>Request Dispatch Example</h1>
 <p>Perform a mathematical evaluation. Insert two numbers to be evaluated and then
 choose the type of evaluation to perform.</p>
 <form method="POST" action="MathDispatcher">
 <label for="numa">Enter Number A: </label>
 <input type="text" id="numa" name="numa"/>

 <label for="numb">Enter Number B: </label>
 <input type="text" id="numb" name="numb"/>

 <select id="matheval" name="matheval">
 <option value="add">Add the numbers</option>
 <option value="subtract">Subtract the numbers</option>
 <option value="multiply">Multiply the numbers</option>
 <option value="divide">Divide the numbers</option>
 </select>
 <input type="submit" value="Submit Form"/>
 <input type="reset" value="Reset Form"/>
 </form>
 </body>
</html>

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

36

The next piece of code is the servlet that will dispatch requests accordingly depending upon the value of the
matheval field:

package org.javaeerecipes.chapter01.recipe01_14;

import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 *
 * @author juneau
 */
// Uncomment the following line to run example stand-alone
//@WebServlet(name = "MathDispatcher", urlPatterns = {"/MathDispatcher"})

// The following will allow the example to run within the context of the JavaEERecipes example
// enterprise application (JavaEERecipes.war distro or Netbeans Project
@WebServlet(name = "MathDispatcher", urlPatterns = {"/chapter01/MathDispatcher"})
public class MathDispatcher extends HttpServlet {

 /**
 * Handles the HTTP
 * <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println("In the servlet. . .");
 // Store the input parameter values into Strings
 String eval = request.getParameter("matheval");
 ServletContext sc = getServletConfig().getServletContext();
 RequestDispatcher rd = null;
 int evaluate = 0;
 int add = 0;
 int subtract = 1;
 int multiply = 2;
 int divide = 3;
 if(eval.equals("add"))
 evaluate = add;

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

37

 if (eval.equals("subtract"))
 evaluate = subtract;
 if (eval.equals("multiply"))
 evaluate = multiply;
 if(eval.equals("divide")){
 evaluate = divide;
 }
 switch(evaluate){
 case(0): rd = sc.getRequestDispatcher("/AddServlet");
 rd.forward(request, response);
 break;
 case(1): rd = sc.getRequestDispatcher("/SubtractServlet");
 rd.forward(request, response);
 break;
 case(2): rd = sc.getRequestDispatcher("/MultiplyServlet");
 rd.forward(request, response);
 break;
 case(3): rd = sc.getRequestDispatcher("/DivideServlet");
 rd.forward(request, response);
 break;
 }

 }

 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }
}

Next is an example of one of the servlets that the request will be dispatched to. The following is the code for the
AddServlet, which will add the two numbers and return the sum to the user:

package org.javaeerecipes.chapter01.recipe01_14;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 *
 * @author juneau
 */

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

38

// Uncomment the following line to run example stand-alone
//@WebServlet(name = "AddServlet", urlPatterns = {"/AddServlet"})

// The following will allow the example to run within the context of the JavaEERecipes example
// enterprise application (JavaEERecipes.war distro or Netbeans Project
@WebServlet(name = "AddServlet", urlPatterns = {"/chapter01/AddServlet"})
public class AddServlet extends HttpServlet {

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 // Store the input parameter values into Strings
 String numA = request.getParameter("numa");
 String numB = request.getParameter("numb");
 int sum = Integer.valueOf(numA) + Integer.valueOf(numB);
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>The Sum of the Numbers</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Sum: " + sum + "</h1>");
 out.println("
");
 out.println("Try Again");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 /**
 * Handles the HTTP
 * <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

39

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Handles the HTTP
 * <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }
}

Each of the other servlets is very similar to AddServlet, except the mathematical evaluation is different. To see a
full listing of the code, please take a look at the sources for this book.

How It Works
Sometimes it is a good idea to hide the forwarding of requests from the end user. Other times it just makes sense to
hand off a request from one servlet to another so that another type of processing can take place. These are just two
examples of when it is handy to perform a request dispatch within a servlet. Forwarding a request versus dispatching a
request is different because a forwarded request hands off the request on the client side, whereas a dispatched request
hands off the request on the server side. The difference can be quite large since the end user has no idea of server-side
dispatches, whereas the browser is redirected to a different URL when the request is forwarded on the client side.

Dispatching requests is an easy task. The facilities for doing so are built right into the ServletContext, so
once you obtain a reference to ServletContext, then you simply call the getRequestDispatcher method to obtain
a RequestDispatcher object that can be used to dispatch the request. When calling the getRequestDispatcher
method, pass a String containing the name of the servlet that you want to hand off the request to. You can actually
obtain a RequestDisptacher object for any valid HTTP resource within the application by passing the appropriate
URL for the resource in String format to the getRequestDispatcher method. Therefore, if you’d rather dispatch

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

40

to a JSP or HTML page, you can do that as well. After a RequestDispatcher object has been obtained, invoke its
forward method by passing the HttpServletRequest and HttpServletResponse objects to it. The forward method
performs the task of handing off the request.

rd = sc.getRequestDispatcher("/AddServlet");
rd.forward(request, response);

In the case of the example in this recipe, you can dispatch requests to different servlets in order to perform a
specific task. Once handed off, the servlet that has obtained the request is responsible for providing the response to
the client. In this case, the servlet returns the result of the specified mathematical evaluation.

1-15. Redirecting to a Different Site
Problem
You need to redirect the browser to another URL when a specific URL within your application is visited.

Solution
Use the HttpServletResponse object’s sendRedirect() method to redirect from the servlet to another URL. In the
following example, when a URL that matches the /redirect pattern is used, then the servlet will redirect the browser
to another site:

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

@WebServlet(name="RedirectServlet", urlPatterns={"/redirect"})
public class RedirectServlet extends HttpServlet {

 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {
 String site = "http://www.apress.com";

 res.sendRedirect(site);
 }
}

In this example, the servlet will redirect to the www.apress.com web site.

How It Works
There are some cases in which a web application needs to redirect traffic to another site or URL within the
same or another application. For such cases, the HttpServletResponse sendRedirect method can be of use.
The sendRedirect method accepts a URL in String format and then redirects the web browser to the given URL.
Given that sendRedirect accepts a String-based URL makes it easy to build dynamic URLs as well. For instance,

http://www.apress.com/
http://www.apress.com/
http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

41

some applications may redirect to a different URL based upon certain parameters that are passed from a user.
Dynamic generation of a URL in such cases may look something like the following:

String redirectUrl = null;
If(parameter.equals("SOME STRING")
 redirectUrl = "/" + urlPathA;
else
 redirectUrl = "/" + urlPathB;
res.sendRedirect(redirectUrl);

The sendRedirect() method can also come in handy for creating the control for web menus and other page
items that can send web traffic to different locations.

Note ■ this simple redirect, as opposed to servlet chaining, does not pass the HttpRequest object along to the
target address.

1-16. Securely Maintaining State Within the Browser
Problem
You have the requirement to save a user’s state within the browser for your application.

Solution
Use “HTTP only” browser cookies to save the state. In the following example, one servlet is used to place some session
information into a cookie in the browser. Another servlet is then called, which reads the cookie information and
displays it to the user. The following servlet demonstrates how to store a cookie in the browser using a Java servlet:

package org.javaeerecipes.chapter01.recipe01_16;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 1-16: Securing State within the Browser
 * @author juneau
 */
@WebServlet(name = "SetCookieServlet", urlPatterns = {"/SetCookieServlet"})
public class SetCookieServlet extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

42

 PrintWriter out = response.getWriter();
 Cookie cookie = new Cookie("sessionId","12345");
 cookie.setHttpOnly(true);
 cookie.setMaxAge(-30);
 response.addCookie(cookie);
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>SetCookieServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet SetCookieServlet is setting a cookie into the browser</h1>");
 out.println("

");
 out.println("Display the cookie contents.");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

}

The next code listing demonstrates a servlet that reads the cookies in the browser and prints out the contents:

package org.javaeerecipes.chapter01.recipe01_16;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 1-16: Securely Maintaining State within the Browser
 * @author juneau
 */

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

43

@WebServlet(name = "DisplayCookieServlet", urlPatterns = {"/DisplayCookieServlet"})
public class DisplayCookieServlet extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 Cookie[] cookies = request.getCookies();

 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Display Cookies</title>");
 out.println("</head>");
 out.println("<body>");
 for(Cookie cookie:cookies){
 out.println("<p>");
 out.println("Cookie Name: " + cookie.getName());
 out.println("
");
 out.println("Value: " + cookie.getValue());
 out.println("</p>");
 }
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

}

How It Works
Using cookies to store data within the browser is a technique that has been in practice for years. Since Servlet 3.0 API,
the ability to mark a cookie as HTTP only has become available. This allows the cookie to be safeguarded against
client-side scripting attacks, making the cookie more secure. Any standard servlet can create a cookie and place it
into the current session. Similarly, any servlet that is contained within the same session can read or update a session’s
cookies values. In the example for this recipe, two servlets are used to demonstrate how cookies work. The first servlet

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

44

that is listed is responsible for creating a new cookie and setting it into the browser session. The second servlet is
responsible for displaying the contents of the cookie to the user.

To create a cookie, simply instantiate a new javax.servlet.http.Cookie object and assign a name and value
to it. Passing both the name and value into the Cookie constructor at the time of instantiation can assign a name and
value, or it can be done by passing values to the cookie’s setName and setValue methods. Once the cookie has been
instantiated, properties can be set that will help to configure the cookie. In the example to this recipe, the cookie’s
setMaxAge and setHttpOnly methods are called, setting the time of life for the cookie and ensuring that it will be
guarded against client-side scripting. For a complete listing of cookie properties, please refer to Table 1-3. Finally, the
cookie is placed into the response by passing it to the response object’s addCookie method.

Cookie cookie = new Cookie("sessionId","12345");
cookie.setHttpOnly(true);
cookie.setMaxAge(-30);
response.addCookie(cookie);

Table 1-3. Cookie Property Methods

Property Description

setComment Sets a comment to describe the cookie.

setDomain Specifies the domain in which the cookie belongs.

setHttpOnly Marks the cookie as HTTP only.

setMaxAge Sets the maximum lifetime of the cookie. A negative value indicates that the cookie will expire
when the session ends.

setPath Specifies a path for the cookie to which the client should return it.

setSecure Indicates that the cookie should be sent only using a secure protocol.

setValue Assigns a value to the cookie.

setVersion Specifies the version of the cookie protocol that the cookie will comply with.

The second servlet, DisplayCookieServlet, in the example is responsible for reading and displaying the
session’s cookies values. When DisplayCookieServlet is invoked, its processRequest method is called, which
obtains the cookies within the response object by calling response.getCookies() and setting the result to an array of
Cookie objects.

Cookie[] cookies = request.getCookies();

The cookie object array can now be iterated over in order to obtain each cookie and print out its contents.
The servlet does so by using a for loop and printing out each cookie’s name and value.

for(Cookie cookie:cookies){
 out.println("<p>");
 out.println("Cookie Name: " + cookie.getName());
 out.println("
");
 out.println("Value: " + cookie.getValue());
 out.println("</p>");
}

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

45

1-17. Finalizing Servlet Tasks
Problem
There are some resources you want to have your servlet clean up once the servlet is no longer in use.

Solution
The solution to the problem is twofold. First, provide code for performing any cleanup within the servlet destroy
method. Second, in the case that there are potentially long-running methods, code them so that you will become
aware of a shutdown and, if necessary, halt and return so that the servlet can shut down cleanly. The following code
excerpt is a small example of a destroy method. In this code, it is being used to initialize local variables and is setting
the beingDestroyed boolean value to indicate that the servlet is shutting down.

. . .
/**
 * Used to finalize the servlet
 */
 public void destroy() {
 // Tell the servlet it is shutting down
 setBeingDestroyed(true);
 // Perform any cleanup
 thisString = null;

 }
. . .

The code within the destroy method may successfully achieve a full cleanup of the servlet, but in the case where
there may be a long-running task, then it must be notified of a shutdown. The following excerpt is a block of code
that signifies a long-running task. The task should stop processing once the shutdown is indicated by the
beingDestroyed value becoming true.

for (int x = 0; (x <= 100000 && !isBeingDestroyed()); x++) {
 doSomething();
}

How It Works
The finalization of a servlet can be very important, especially if the servlet is using some resources that may lead to a
memory leak, making use of a reusable resource such as a database connection or in order to persist some values for
another session. In such cases, it is a good idea to perform cleanup within the servlet destroy method. Every servlet
contains a destroy method (which may be implemented to overload default behavior) that is initiated once the
servlet container determines that a servlet should be taken out of service.

The destroy method is called once all of a servlet’s service methods have stopped running. However, if there is a
long-running service method, then a server grace period can be set that would cause any running service to be shut
down when the grace period is reached. As mentioned earlier, the destroy method is the perfect place to clean up
resources. However, the destroy method is also a good place to help clean up after long-running services. Cleanup
can be done by setting a servlet-specific local variable to indicate that the servlet is being destroyed and by having the
long-running service check the state of that variable periodically. If the variable indicates that the destroy method
has been called, then it should stop executing.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

46

1-18. Reading and Writing with Nonblocking I/O
Problem
You want to read and write I/O in an asynchronous, nonblocking manner.

Solution
Use the Non-Blocking I/O API that is part of the Servlet 3.1 release. To use the new technology, implement the
new ReadListener interface when performing nonblocking reads, and implement the WriteListener interface
for performing nonblocking writes. The implementation class can then be registered to a ServletInputStream or
ServletOutputStream so that reads or writes can be performed when the listener finds that servlet content can be
read or written without blocking.

The following sources are those of a ReadListener implementation that reside in the source file
org.javaeerecipes.chapter01.recipe01_18.AcmeReadListenerImpl.java, and they demonstrate how to
implement the ReadListener:

package org.javaeerecipes.chapter01.recipe01_18;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.AsyncContext;
import javax.servlet.ReadListener;
import javax.servlet.ServletInputStream;

public class AcmeReadListenerImpl implements ReadListener {

 private ServletInputStream is = null;
 private AsyncContext async = null;

 public AcmeReadListenerImpl(ServletInputStream in, AsyncContext ac) {
 this.is = in;
 this.async = ac;
 System.out.println("read listener initialized");
 }

 @Override
 public void onDataAvailable() {
 System.out.println("onDataAvailable");
 try {
 StringBuilder sb = new StringBuilder();
 int len = -1;
 byte b[] = new byte[1024];
 while (is.isReady()
 && (len = is.read(b)) != -1) {
 String data = new String(b, 0, len);
 System.out.println(data);
 }
 } catch (IOException ex) {
 Logger.getLogger(AcmeReadListenerImpl.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

47

 @Override
 public void onAllDataRead() {
 System.out.println("onAllDataRead");
 async.complete();

 }

 @Override
 public void onError(Throwable thrwbl) {
 System.out.println("Error: " + thrwbl);
 async.complete();
 }

}

Next, use the listener by registering it to a ServletInputStream (in the case of the ReadListener)
or a ServletOutputStream (in the case of a WriteListener). For this example, I’ll show a servlet that
utilizes the AcmeReadListenerImpl class. The sources for the following class reside within the file
org.javaeerecipes.chapter01.recipe01_18.AcmeReaderExample.java:

package org.javaeerecipes.chapter01.recipe01_18;

import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.concurrent.CountDownLatch;
import javax.servlet.AsyncContext;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletInputStream;
import javax.servlet.ServletOutputStream;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(urlPatterns = {"/AcmeReaderServlet"}, asyncSupported=true)
public class AcmeReaderServlet extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try (PrintWriter output = response.getWriter()) {
 String filename = "test.txt";
 ServletContext context = getServletContext();

 InputStream in = context.getResourceAsStream(filename);
 output.println("<html>");
 output.println("<head>");
 output.println("<title>Acme Reader</title>");
 output.println("</head>");

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

48

 output.println("<body>");
 output.println("<h1>Welcome to the Acme Reader Servlet</h1>");
 output.println("

");
 output.println("<p>Look at the server log to see data that was read asynchronously from
a file<p>");
 AsyncContext asyncCtx = request.startAsync();
 ServletInputStream input = request.getInputStream();
 input.setReadListener(new AcmeReadListenerImpl(input, asyncCtx));

 output.println("</body>");
 output.println("</html>");
 } catch (Exception ex){
 System.out.println("Exception Occurred: " + ex);
 }
 }

 // Http Servlet Methods . . .
. . .
}

The last piece of code that we need is the servlet that invokes the AcmeReaderServlet, passing the message that
needs to be processed. In this example, a file from the server is passed to the AcmeReaderServlet as input, which
then is asynchronously processed via the AcmeReadListenerImpl class. The following code is taken from
org.javaeerecipes.chapter01.recipe01_18.ReaderExample.java.

package org.javaeerecipes.chapter01.recipe01_18;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "ReaderExample", urlPatterns = {"/ReaderExample"})
public class ReaderExample extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

49

 String filename = "/WEB-INF/test.txt";
 ServletContext context = getServletContext();

 InputStream in = context.getResourceAsStream(filename);
 try (PrintWriter out = response.getWriter()) {
 String path = "http://"
 + request.getServerName()
 + ":"
 + request.getServerPort()
 + request.getContextPath()
 + "/AcmeReaderServlet";
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Intro to Java EE 7 - Servlet Reader Example</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet ReaderExample at " + request.getContextPath() + "</h1>");
 out.println("Invoking the endpoint: " + path + "
");
 out.flush();
 URL url = new URL(path);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setChunkedStreamingMode(2);
 conn.setDoOutput(true);
 conn.connect();
 if (in != null) {
 InputStreamReader inreader = new InputStreamReader(in);
 BufferedReader reader = new BufferedReader(inreader);
 String text = "";
 out.println("Beginning Read");
 try (BufferedWriter output = new BufferedWriter(new OutputStreamWriter(conn.
getOutputStream()))) {
 out.println("got the output. . .beginning loop");
 while ((text = reader.readLine()) != null) {
 out.println("reading text: " + text);
 out.flush();
 output.write(text);

 Thread.sleep(1000);
 output.write("Ending example now..");
 out.flush();
 }
 output.flush();
 output.close();
 }
 }
 out.println("Review the GlassFish server log for messages. . .");
 out.println("</body>");
 out.println("</html>");
 } catch (InterruptedException | IOException ex) {
 Logger.getLogger(ReaderExample.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

50

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 @Override
 public String getServletInfo() {
 return "Short description";
 }
}

When the servlet is visited, the asynchronous, nonblocking read of the test.txt file will occur, and its text will be
displayed in the server log.

How It Works
Servlet technology has allowed only traditional (blocking) input/output during request processing since its inception.
In the Servlet 3.1 release, the new Non-Blocking I/O API makes it possible for servlets to read or write without any
blocking. This means other tasks can be performed at the same time that a read or write is occurring, without any
wait. Such a solution opens up a new realm of possibilities for servlets, making them much more flexible for use along
with modern technologies such as the WebSockets protocol.

To implement a nonblocking I/O solution, new programming interfaces have been added to ServletInputStream
and ServletOutputStream, as well as two event listeners: ReadListener and WriteListener. ReadListener and
WriteListener interfaces make the servlet I/O processing occur in a nonblocking manner via callback methods that
are invoked when servlet content can be read or written without blocking. Use the ServletInputStream.setReadList
ener(ServletInputStream, AsyncContext) method to register a ReadListener with a ServletInputStream, and use
the I/O read ServletInputStream.setWriteListener(ServletOutputStream,AsyncContext) method for registering
a WriteListener. The following lines of code demonstrate how to register a ReadListener implementation with a
ServletInputStream:

AsyncContext context = request.startAsync();
ServletInputStream input = request.getInputStream();
input.setReadListener(new ReadListenerImpl(input, context));

Note ■ In Servlet 3.0, AsyncContext was introduced to represent an execution context for an asynchronous operation
that is initiated on a servlet request. to use the asynchronous context, a servlet should be annotated as a @WebServlet,
and the asyncSupported attribute of the annotation must be set to true. the @WebFilter annotation also contains the
asyncSupported attribute.

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

51

After a listener has been registered with a ServletInputStream, the status on a nonblocking read can be checked
by calling the methods ServletInputStream.isReady and ServletInputStream.isFinished. For instance, a read can
begin once the ServletInputStream.isReady method returns a true, as shown here:

while (is.isReady() && (b = input.read()) != -1)) {
len = is.read(b);
String data = new String(b, 0, len);
}

To create a ReadListener or WriteListener, three methods must be overridden: onDataAvailable,
onAllDataRead, and onError. The onDataAvailable method is invoked when data is available to be read or
written, onAllDataRead is invoked once all the data has been read or written, and onError is invoked if an error is
encountered. The code for AcmeReadListenerImpl in the solution to this recipe demonstrates how to override
these methods.

The AsyncContext.complete() method is called in the onAllDataRead method to indicate that the read has been
completed and to commit the response. This method is also called in the onError implementation so that the read
will complete, so it is important to perform any cleanup within the body of the onError method to ensure that no
resources are leaked, and so on.

To implement a WriteListener, make use of the new ServletOutputStream.canWrite() method, which determines
whether data can be written in a nonblocking fashion. A WriteListener implementation class must override a couple
of methods: onWritePossible and onError. The onWritePossible method is invoked when a nonblocking write can
occur. The write implementation should take place within the body of this method. The onError method is much the
same as its ReadListener implementation counterpart, because it is invoked when an error occurs.

The following lines of code demonstrate how to register a WriteListener with a ServletOutputStream:

AsyncContext context = request.startAsync();
ServletOutputStream os = response.getOutputStream();
os.setWriteListener(new WriteListenerImpl(os, context));

The WriteListener implementation class must include overriding methods for onWritePossible and onError.
The following is an example for a WriteListener implementation class:

import javax.servlet.AsyncContext;
import javax.servlet.ServletOutputStream;
import javax.servlet.WriteListener;

public class WriteListenerImpl implements WriteListener {

 ServletOutputStream os;
 AsyncContext context;

 public WriteListenerImpl(ServletOutputStream out, AsyncContext ctx){
 this.os = out;
 this.context = ctx;
 System.out.println("Write Listener Initialized");
 }

 @Override
 public void onWritePossible() {
 System.out.println("Now possible to write. . .");
 // Write implementation goes here. . .
 }

http://www.it-ebooks.info/

ChaptER 1 ■ INtROdUCtION tO SERvLEtS

52

 @Override
 public void onError(Throwable thrwbl) {
 System.out.println("Error occurred");
 context.complete();
 }

}

Note ■ In most cases, the ReadListener and WriteListener implementation classes can be embedded within
the calling servlet. they have been broken out into separate classes for the examples in this book for demonstration
purposes.

The new Non-Blocking I/O API helps bring the Servlet API into compliance with new web standards. The new
API makes it possible to create web-based applications that perform well in an asynchronous fashion.

http://www.it-ebooks.info/

53

Chapter 2

JavaServer Pages

The JavaServer Pages (JSP) web framework introduced a great productivity boost for Java web developers over the Java
Servlet API. When the JSP technology was introduced in 1999, it was Sun’s answer to PHP and ASP, which provided
web developers with a quick way to create dynamic web content. JSPs contain a mix of XML and HTML but can also
contain embedded Java code within scripting elements known as scriptlets. Indeed, JSPs are easy to learn and allow
developers to quickly create dynamic content and use their favorite HTML editor to lay out nice-looking pages.
JSP was introduced several years ago and still remains one of the most important Java web technologies available.
Although JSP technology has changed over the years, there are still many applications using older JSP variations in the
world today.

Over the years, the creation of dynamic web content has solidified, and the techniques used to develop web
applications have become easier to maintain down the road. Whereas early JSP applications included a mix of Java
and XML markup within the pages, today the separation of markup from business logic is increasingly important.
Newer releases of the JSP technology have accounted for these changes in the web space, and the most recent releases
allow developers the flexibility to develop highly dynamic content without utilizing any embedded Java code but,
instead, making use of markup and custom tags within pages.

This chapter will show you the ins and outs of JSP development. Starting with creating a simple JSP application,
you will learn how to develop applications using JSP technology from the ground up and harness the productivity and
power that the technology has to offer. The chapter also brushes upon advanced techniques such as the development
of custom JSP tags and the invocation of Java functions utilizing conditional tags. Although entire books have
been written on JSP, the recipes within this chapter will lay a solid foundation on which you can begin to develop
applications utilizing JSP.

Note ■ Utilizing a Java integrated development environment (IDE) can significantly reduce development time,
especially when working with Java web technologies such as JSP. To start learning how to create a JSP application
using the NetBeans IDE, please see the appendix of this book.

2-1. Creating a Simple JSP Page
Problem
You want to develop a web page using HTML markup that enables you to include dynamic content.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

54

Solution
Use JavaServer Pages to create a web page that combines standard markup with blocks of Java code that
are embedded within the markup. The following JSP markup demonstrates how to include dynamic code
into a page:

<%--
 Document : recipe02_01
 Author : juneau
--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JSP Page Example</title>
 </head>
 <body>
 <jsp:useBean id="dateBean" scope="application"
 class="org.javaeerecipes.chapter02.recipe02_01.DateBean"/>
 <h1>Hello World!</h1>

 <p>
 The current date is: ${dateBean.currentDate}!
 </p>
 </body>
</html>

The previous JSP code uses a JavaBean to pull the current date into the page. The following Java code is the
JavaBean that is used by the JSP code:

package org.javaeerecipes.chapter02.recipe02_01;

import java.util.Date;

/**
 * Recipe 2-1: Creating a Simple JSP
 * @author juneau
 */
public class DateBean {

 private Date currentDate = new Date();

 /**
 * @return the currentDate
 */
 public Date getCurrentDate() {
 return currentDate;
 }

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

55

 /**
 * @param currentDate the currentDate to set
 */
 public void setCurrentDate(Date currentDate) {
 this.currentDate = currentDate;
 }

}

The following output would result. Of course, the page will display the current date when you run the code.

Hello World!
The current date is: Fri Dec 23 10:41:07 CST 2011!

How It Works
The JavaServer Pages technology makes it easy to develop web pages that can utilize both static and dynamic web
content by providing a set of tags and value expressions to expose dynamic Java fields to a web page. Using the JSP
technology, a page developer can access the underlying JavaBeans classes to pass content between the client and the
server. In the example within this recipe, a JSP page is used to display the current date and time, which is obtained
from a JavaBean class on the server. Therefore, when a user visits the JSP page in a browser, the current time and date
on the server will be displayed.

A JSP page should use a document extension of .jsp if it is a standard HTML-based JSP page. Other types of
JSP pages contain different extensions; one of those is the JSP document type. A JSP document is an XML-based
well-formed JSP page. You can learn more about JSP documents in Recipe 2-6. JSP pages can contain HTML
markup, special JSP tags, page directives, JavaScript, embedded Java code, and more. This example contains the
<jsp:useBean> tag, as well as a value expression to display the content of a field that is contained within the JavaBean.
The <jsp:useBean> tag is used to include a reference to a Java class that will be referenced in the JSP page. In this
case, the class that is referenced is named org.javaeerecipes.chapter02.recipe02_01.DateBean, and it will be
referenced as dateBean within the page. For a full description of the <jsp:useBean> tag, please reference Recipe 2-3.

<jsp:useBean id="dateBean" scope="application" class="org.javaeerecipes.chapter02.recipe02_01.DateBean"/>

Since the <jsp:useBean> tag contains a reference to the DateBean Java class, the JSP page that includes the tag
can make use of any public fields or methods that are contained within the class or private fields through public
“getter” methods. This is demonstrated by the use of the Expression Language (EL) value expression, which is
enclosed within the ${} characters. To learn more about JSP EL expressions, please see Recipe 2-4. In the example,
the value of the JavaBean field named currentDate is displayed on the page. The value of the private field is retrieved
automatically via the pubic “getter” method, getCurrentDate.

The current date is: ${dateBean.currentDate}!

LIFe CYCLe OF a JSp paGe

The life cycle of a JSP page is very much the same as that of a Java servlet. This is because a JSP page is
translated to a servlet (the HttpJspBase JSP servlet class) behind the scenes by a special servlet. When a request
is sent to a JSP page, the special servlet checks to ensure that the JSP page’s servlet is not older than the page
itself. If it is, the JSP is retranslated into a servlet class and compiled. The JSP-to-servlet translation is automatic,
which is one of the most productive reasons to use JSP.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

56

When a JSP page is translated, a servlet with a name such as 0002fjspname_jsp.java is created, where
jspname is the name of the JSP page. If errors result during the translation, they will be displayed when the JSP
page response is displayed.

Different portions of the JSP page are treated differently during the translation to a Java servlet.

Template data is translated into code.•	

JSP scripting elements are inserted into the JSP page’s servlet class.•	

•	 <jsp:XXX .../> elements are converted into method calls.

after translation, the life cycle works similarly to the servlet life cycle:

If the JSP page’s servlet does not already exist, then the container does the following:•	

1. Loads the servlet class

2. Instantiates the servlet class

3. Initializes the servlet instance with a call to the jspInit method

This recipe contains only beginning knowledge of what is possible with the JSP technology. To learn more
regarding the technology and best practices when using JSP, please continue reading the recipes in this chapter.

2-2. Embedding Java into a JSP Page
Problem
You want to embed some Java code into a standard JSP web page.

Solution
Use JSP scripting elements to embed Java code into the page and then display Java fields. The following JSP code
demonstrates how to import the Java Date class and then use it to obtain the current date without using a server-side
JavaBean class:

<%--
 Document : recipe02_02
 Author : juneau
--%>

<%@page import="java.util.Date"%>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%! Date currDate = null; %>
<% currDate = new Date(); %>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Recipe 2-2: Embedding Java in a JSP</title>
 </head>

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

57

 <body>
 <h1>Hello World!</h1>

 The current date and time is: <%= currDate %>

 </body>
</html>

This page will display the current system date from the server that hosts the JSP application.

How It Works
Using scripting elements within a JSP page allows you to embed Java code directly in a web page. However, it should
be noted that this is not the best approach to web development. Scripting element programming used to be one of
the best ways to code web applications using JSP technology. However, when it came time to perform maintenance
activities on a JSP page or to introduce new developers to a code base that used scripting elements in JSP, nightmares
ensued because in order to debug a problem, the developer had to search through scripts embedded within HTML,
as well as Java classes themselves. Sometimes it is still nice to have the ability to embed Java code directly into a page,
even if for nothing more than testing, so that is why I show how it is done in this recipe. A better approach would be to
separate the business logic from the view code, which you will see in Recipe 2-3.

In the example, the current date is pulled into the JSP page via the use of the Java Date class. A new Date instance
is assigned to a field that is named currDate. An import page directive is used to import the java.util.Date class into
the JSP page using the following line:

<%@page import="java.util.Date"%>

The declaration of currDate is done within a declaration scripting element. Declaration scripting elements begin
with the character sequence <%! and end with the character sequence %>. Excerpted from the example, the currDate
field is declared in the following line of code:

<%! Date currDate = null; %>

Anything that is contained inside declarations goes directly to the jspService() method of the generated JSP
servlet class, creating a global declaration for the entire servlet to make use of. Any variable or method can be declared
within declarations’ character sequences.

Note ■ Declarations are executed only once for the JSP page, when it is initially converted into a servlet. If any code on
the JSP page changes, it will be translated to a servlet again, and the declaration will be evaluated again at that time. If
you want for code to be executed each time the JSP page is loaded by the browser, do not place it in a declaration.

In the example for this recipe, you can see that there are no JSP tags used to reference a server-side JavaBean
class to create a new instance of the Date class, and that is because the instantiation is done right within the JSP code
in between character sequences known as scriptlets, <% %>. Scriptlets basically have the same syntax as declarations,
except that they do not include the exclamation point in the first character sequence. Scriptlets are used to embed
any Java code that you want to have run each time the JSP is loaded, at request-processing time. At translation
time, anything contained within a scriptlet is placed into a method named _jspService within the translated JSP

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

58

servlet, and that method is executed with each request on the JSP page. Scriptlets are the most common place to use
embedded Java in a JSP page. Since in this example you want the current date to be displayed each time the page is
loaded, the new Date class is instantiated and assigned to the currDate variable within a scriptlet.

<% currDate = new Date(); %>

Later in the JSP page, the currDate field is displayed using an expression, which is enclosed using the <%= and %>
character sequences. Expressions are used to display content, and anything that is contained within an expression
is automatically converted to a String when a request is processed. After the String conversion, it is displayed as
output on the page.

The current date and time is: <%= currDate %>

Note ■ If the code within an expression is unable to be converted into a String, an exception will occur.

While embedding Java code in a JSP page is possible to do, it is frowned upon within the Java community
since the Model-View-Controller (MVC) paradigm makes coding much cleaner. To learn more about coding JSP
applications without using scripting elements, please see the next recipe, Recipe 2-3.

2-3. Separating Business Logic from View Code
Problem
You want to separate the business logic from the code that is used to create a view within your web application.

Solution
Separate the business logic into a JavaBean class, and use JSP tags to incorporate the logic into the view. In the
following example, a JavaBean is referenced from within a JSP page, and one of the JavaBean fields is displayed on the
page. Each time the page is refreshed, the field value is updated because the page calls the underlying JavaBean field’s
getter method, where the field is initialized.

The following JSP markup contains a reference to a JavaBean named RandomBean and displays a field from the
bean on the page:

<%--
 Document : recipe02_03
 Author : juneau
--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Recipe 2-3: Separating Business Logic from View Code</title>
 </head>

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

59

 <body>
 <jsp:useBean id="randomBean" scope="application"

class="org.javaeerecipes.chapter02.recipe02_03.RandomBean"/>
 <h1>Display a Random Number</h1>

 <p>
 Your random number is ${randomBean.randomNumber}. Refresh page to see another!
 </p>
 </body>
</html>

The next code is that of the JavaBean class referenced in the JSP code, known as RandomBean:

package org.javaeerecipes.chapter02.recipe02_03;

import java.util.Random;

/**
 * Recipe 2-3
 * @author juneau
 */
public class RandomBean {
 Random randomGenerator = new Random();
 private int randomNumber = 0;

 /**
 * @return the randomNumber
 */
 public int getRandomNumber() {
 randomNumber = randomGenerator.nextInt();
 return randomNumber;
 }

}

The resulting output for the page resembles the following, although the random number will be different every
time the page is loaded:

Your random number is -1200578984. Refresh page to see another!

How It Works
Sometimes embedding Java code directly into a JSP page can be helpful, and it can satisfy the requirement. However,
in most cases, it is a good idea to separate any Java code from markup code that is used to create the web view. Doing
so makes maintenance easier, and it allows a page developer to focus on creating nice-looking web pages rather
than wading through Java code. In some organizations, a Java developer can then write the server-side business logic
code, and a web developer can focus on the view. In many organizations today, the same person is performing both
tasks, and using the MVC methodology can help separate the logic and increase productivity.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

60

In the early days of JSP, embedding Java directly into a JSP page was the only way to go, but as time went on,
the MVC paradigm caught on, and JSP has been updated to follow suit. As a best practice, it is good to use JSP tags
to separate Java code from page markup. In the example, the <jsp:useBean> element is used to reference a server-
side JavaBean class so that the public fields and methods from that class, as well as private fields via public “getter”
methods, can be incorporated into the JSP page. The jsp:useBean element requires that you provide an ID and a
scope, along with a class name or a beanName. In the example, the id attribute is set to randomBean, and this id is used
to reference the bean within the JSP page. The scope attribute is set to application, which means that the bean can
be used from any JSP page within the application. Table 2-1 displays all the possible scopes and what they mean. The
class attribute is set to the fully qualified name of the Java class that will be referenced via the name that is set with
the id attribute, in this case, randomBean.

Table 2-1. jsp:useBean Element Scopes

Scope Description

page (default) The bean can be used within the same JSP page that contains the jsp:useBean element.

request The bean can be used from any JSP page processing the same request.

session The bean can be used from any JSP page within the same session as the JSP page that contains the
jsp:useBean element that created the bean. The page that creates the bean must have a page
directive with session="true".

application The bean can be used from any JSP within the same application as the JSP page that created it.

After the jsp:useBean element has been added to a page, JavaBean properties can be used in the JSP page,
and public methods can be called from the page. The example demonstrates how to display the value of a JavaBean
property using the ${ } notation. Any variable that contains a “getter” and a “setter” method in the JavaBean can
be accessed from a JSP page by referencing the class member field in between the ${ and } character sequences,
better known as an Expression Language expression. To learn more about EL expressions, please see Recipe 2-4.
The following excerpt from the example demonstrates how to display the randomNumber field from the JavaBean:

Your random number is ${randomBean.randomNumber}. Refresh page to see another!

The key to separating business logic from view logic in the JSP technology is the jsp:useBean element. This
will allow you to use JavaBean classes from within the JSP page, without embedding the code directly in the page.
Separating business logic from view code can help make it easier to maintain code in the future and make the code
easier to follow.

2-4. Yielding or Setting Values
Problem
You want to display values from a JavaBean in a JSP page. Furthermore, you want to have the ability to set values in
a JSP page.

Solution
Expose the values from a JavaBean in a JSP page using EL expressions with the ${ bean.value } syntax. In the
following JSP code, a Java class by the name of EasyBean will be used to hold the value that is entered into a text field
by a user. The value will then be read from the bean and displayed on the page using EL expressions.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

61

The following code shows a JSP page that contains an input form and displays the value that is entered into
the text box:

<%--
 Document : recipe02_04
 Author : juneau
--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Recipe 2-4: Yielding and Setting Values</title>
 </head>
 <body>
 <jsp:useBean id="easyBean" scope="page"
 class="org.javaeerecipes.chapter02.recipe02_04.EasyBean"/>
 <jsp:setProperty name="easyBean" property="*"/>
 <form method="post">
 Use the input text box below to set the value, and then hit submit.

 Set the field value:
 <input id="fieldValue" name="fieldValue" type="text" size="30"/>

 The value contained within the field is currently:
 <jsp:getProperty name="easyBean" property="fieldValue"/>

 <input type="submit">
 </form>
 </body>
</html>

Next, the JavaBean class, which is used to hold the value that is used by the page, looks like the following:

package org.javaeerecipes.chapter02.recipe02_04;

/**
 * Recipe 2-4: Yielding and Setting Values
 * @author juneau
 */
public class EasyBean implements java.io.Serializable {
 private String fieldValue;

 public EasyBean(){
 fieldValue = null;
 }

 /**
 * @return the fieldValue
 */

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

62

 public String getFieldValue() {
 return fieldValue;
 }

 /**
 * @param fieldValue the fieldValue to set
 */
 public void setFieldValue(String fieldValue) {
 this.fieldValue = fieldValue;
 }

}

This simple example demonstrates how to enter a value, “set” it into the JavaBean variable, and then display
it on the page.

How It Works
Perhaps one of the most useful web constructs is the input form, which allows a user to enter information into text
boxes on the page and submit them to a server for processing. JSP makes it easy to submit values from an HTML
form, and it is equally easy to display them back on a page. To do so, a field is declared in a Java class and accessor
methods (aka getters and setters) are provided so that other classes can save values to the field and obtain values that
are currently stored in it. Sometimes Java classes that contain fields with accessor methods are referred to as JavaBean
classes. The classes can also contain other methods that can be used to perform tasks, but it is a best practice to keep
JavaBeans as simple as possible. JavaBean classes should also implement java.io.Serializable so that they can be
easily stored and resurrected.

In the example for this recipe, a Java class named EasyBean contains a private field named fieldValue. The
accessor methods getFieldValue and setFieldValue can be used to obtain and store the value in fieldValue,
respectively. Those accessor methods are declared as public, and thus they can be used from another Java class or JSP
page. The JSP page uses the jsp:useBean element to obtain a reference to the EasyBean class. The scope is set to page
so that the class can be used only within the JSP page that contains the jsp:useBean element. Table 2-1, which can be
found in the previous recipe, lists the different scopes available for use with the jsp:useBean element.

<jsp:useBean id="easyBean" scope="page" class="org.javaeerecipes.chapter02.recipe02_04.EasyBean"/>

Next, an HTML form is defined in the JSP page with the POST method, and it contains an input field named
fieldValue, which allows a user to enter a String of text that will be submitted as a request parameter when the
form is submitted. Note that the form in the example does not have an action specified; this means that the same
URL will be used for form submission, and the same JSP will be used for form submission and will be displayed again
once the form is submitted. Since the JSP has a jsp:useBean element specified on the page, all request parameters
will be sent to that bean when the page is submitted. The key to ensuring that the value entered into the fieldValue
input text field is stored into the fieldValue variable within the Java class is using the jsp:setProperty element
within the form. The jsp:setProperty element allows one or more properties to be set in a JavaBean class using the
corresponding setter methods. In the example, <jsp:useBean> is used to instantiate the EasyBean Java class, and
<jsp:setProperty> is used to set the value that is entered within the fieldValue input text box to the fieldValue
variable within the EasyBean class. The jsp:setProperty name attribute must equal the value of the jsp:useBean
id attribute. The jsp:setProperty property attribute can equal the name of the field within the Java class that you

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

63

want to set in the bean, or it can be a wildcard * character to submit all input fields to the bean. The value attribute of
jsp:setProperty can be used to specify a static value for the property. The following excerpt from the example shows
how the jsp:setProperty tag is used:

<jsp:setProperty name="easyBean" property="*"/>

Note ■ The ordering of the JSP elements is very important. <jsp:useBean> must come before <jsp:setProperty>
because the jsp:useBean element is responsible for instantiating its corresponding Java class. Since the JSP page
is executed from the top of the page downward, the bean would be unavailable for use to any elements prior to when
jsp:useBean is specified.

When the user enters a value into the input field and submits the request, it is submitted as a request parameter
to the Java class that corresponds to the jsp:useBean element for that page. There are a couple of different ways
to display the data that has been populated in the JavaBean field. The example demonstrates how to use the
jsp:getProperty element to display the value of the fieldValue variable. The <jsp:getProperty> element must
specify a name attribute, which corresponds to the id of the Java class that was specified within the jsp:useBean
element. It must also specify a property attribute, which corresponds to the name of the JavaBean property that you
want to display. The following excerpt from the example demonstrates the use of the jsp:getProperty tag:

<jsp:getProperty name="easyBean" property="fieldValue"/>

It is also possible to display the value of a JavaBean property using EL expressions, using the id of specified in the
jsp:useBean element, along with the property name. To try this, you can replace the jsp:getProperty element with
the following EL expression:

${easyBean.fieldValue}

The JSP framework makes the development of web applications using Java technology much easier than using
servlets. Input forms such as the one demonstrated in this example show how much more productive JSP is compared
to standard servlet coding. As with anything, both servlets and JSP technology have their place in your toolbox. For
creating simple data entry forms, JSP definitely takes the cake.

2-5. Invoking a Function in a Conditional Expression
Problem
You want to use a Java function to perform a conditional evaluation within your JSP. However, you do not want to
embed Java code into your JSP page.

Solution
Code the function in a JavaBean class and then register the bean with the JSP via the <jsp:useBean> tag. You will
then need to register the function within a tag library descriptor (TLD) so that it can be made usable on the JSP page
via a tag. Finally, set up a page directive for the TLD in which the function is registered, and use the function tag
within the page. In the example that follows, a JSP page will use a function to tell the user whether a given Java type is
a primitive type. The user will enter a String value into a text box, and that value will be submitted to a JavaBean field.
The contents of the field will then be compared against a list of Java primitive types to determine whether it is a match.
If the value entered into the field is a primitive, a message will be displayed to the user.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

64

The following code is the Java class that contains the implementation of the function, which is going to be used
from within the JSP. The bean also contains a field that will be used from the JSP page for setting and getting the value
that is entered by the user.

package org.javaeerecipes.chapter02.recipe02_05;

/**
 * Recipe 2-5
 * @author juneau
 */
public class ConditionalClass implements java.io.Serializable {
 private String typename = null;
 public static String[] javaTypes = new String[8];

 public ConditionalClass(){
 javaTypes[0] = "byte";
 javaTypes[1] = "short";
 javaTypes[2] = "int";
 javaTypes[3] = "long";
 javaTypes[4] = "float";
 javaTypes[5] = "double";
 javaTypes[6] = "boolean";
 javaTypes[7] = "char";
 }

 public static boolean isPrimitive(String value){
 boolean returnValue = false;
 for(int x=0; x<=javaTypes.length-1; x++){
 if(javaTypes[x].equalsIgnoreCase(value)){
 returnValue = true;
 }
 }
 return returnValue;
 }

 /**
 * @return the typename
 */
 public String getTypename() {
 return typename;
 }

 /**
 * @param typename the typename to set
 */
 public void setTypename(String typename) {
 this.typename = typename;
 }
}

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

65

The field typename will be used from the JSP page to set the value that is entered by the user and to retrieve it for
passing to the function named isPrimitive();, which is used to compare the given value to a list of Java primitives.
Next is a listing of the TLD that is used to register the function so that it can be used as a tag within the JSP. For
simplicity, the TLD file is named functions.tld.

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-jsptaglibrary_2_1.xsd">
 <tlib-version>1.0</tlib-version>
 <short-name>fct</short-name>
 <uri>functions</uri>
 <function>
 <name>isPrimitive</name>
 <function-class>org.javaeerecipes.chapter02.recipe02_05.ConditionalClass</function-class>
 <function-signature>boolean isPrimitive(java.lang.String)</function-signature>
 </function>
</taglib>

Last is the JSP code that contains the page directive for using the TLD and the conditional call to the function
isPrimitive() via a tag:

<%--
 Document : recipe02_05
 Author : juneau
--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%@ taglib uri="http://java.sun.com/jcp/jstl/core"
 prefix="c" %>
<%@ taglib uri="/WEB-INF/tlds/functions.tld" prefix="fct" %>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Recipe 2-5: Invoking a Function in an Expression</title>
 </head>
 <body>

 <form method="get">
 <p>Name one of the primitive Java types:
 <input type="text" id="typename" name="typename" size="40"/>
 </p>

 <input type="submit">
 </form>

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-jsptaglibrary_2_1.xsd
http://xmlns.jcp.org/xml/ns/javaee/web-jsptaglibrary_2_1.xsd
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

66

 <jsp:useBean id="conditionalBean" scope="page"
class="org.javaeerecipes.chapter02.recipe02_05.ConditionalClass"/>

 <jsp:setProperty name="conditionalBean" property="typename"/>
 <c:if test="${fct:isPrimitive(conditionalBean.typename)}" >
 ${ conditionalBean.typename } is a primitive type.
 </c:if>

 <c:if test="${conditionalBean.typename ne null and !fct:isPrimitive(conditionalBean.typename)}" >
 ${ conditionalBean.typename } is not a primitive type.
 </c:if>
 </body>
</html>

Following the strategy used in this solution, you can create a conditional test that is usable via a JSP tag
for your pages.

How It Works
You need to take a few different steps before a Java function can become accessible from a JSP page. One of the most
commonly overlooked conditions is that the function must be declared with a static modifier in the Java class. In
the example for this recipe, the function isPrimitive is declared as static, and it returns a boolean value indicating
whether the web page user types the name of a Java primitive type.

The next step toward making a function accessible via a JSP page is to register it with a TLD. In the example,
a TLD named functions.tld is created, although if there is already a custom TLD in your application, then you
could register the function with it rather than creating an additional one if you want. The TLD in this example has a
short-name attribute of fct, which will be used from within JSP tags. To actually register the function, you must create
a function element within the TLD, provide a function name, indicate the class that the function resides within, and,
finally, specify the function signature.

<function>
 <name>isPrimitive</name>
 <function-class>org.javaeerecipes.chapter02.recipe02_05.ConditionalClass</function-class>
 <function-signature>boolean isPrimitive(java.lang.String)</function-signature>
</function>

The function is now ready for use within the JSP. To make the function accessible via the JSP, register the TLD that
contains the function element by including a taglib directive specifying the uri and prefix for the TLD. The uri is the
path to the TLD, and the prefix should match the name given in the short-name element of the TLD. The following
excerpt from the JSP in this example shows the taglib directive:

<%@ taglib uri="/WEB-INF/tlds/functions.tld" prefix="fct" %>

The function will now be accessible via an EL expression within the JSP by specifying the taglib prefix along with
the name of the function as it is registered in the TLD. The EL expression in the example calls the function, passing the
typename parameter. The isPrimitive function is used to determine whether the text contained within the typename
bean field is equal to one of the Java primitive types.

<c:if test="${fct:isPrimitive(conditionalBean.typename)}" >

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

67

The solution in this recipe also uses the Java Standard Tag Library (JSTL) core. Depending upon the server
environment being used, this may be a separate download. The JSTL provides an extension to the standard set of tags
provided with the JSP API. For more information regarding JSTL, please refer to the online documentation, which can
be found at www.oracle.com/technetwork/java/index-jsp-135995.html.

The JSTL <c:if> tag can be used to test conditions, executing the markup between its opening and closing tags
if the condition test returns a true value. Not surprisingly, the <c:if> tag includes a test attribute that specifies an
EL expression that indicates the test that needs to be performed. In the example, the isPrimitive function is called
within the EL expression, passing the bean value. If the test returns a true, then a message is printed indicating that
the given value is equal to a Java primitive type. Another <c:if> test follows the first in the example, and this time
it tests to ensure that the property value is not equal to null and also that it is not a Java primitive type. Expression
Language is used to determine whether the property value is equal to null via the ne expression. The and expression
ties both the first and second conditional expressions together within the EL expression, meaning that both of the
expressions must evaluate to a true value in order for the condition to be met. If both conditions are met, then the
value specified by the user is not a Java primitive type, and a corresponding message is printed.

<c:if test="${conditionalBean.typename ne null and !fct:isPrimitive(conditionalBean.typename)}" >
 ${ conditionalBean.typename } is not a primitive type.
</c:if>

It takes only a few easy steps to create a conditional function for use within JSPs. First, in the JavaBean class,
you must create a public static function, which returns a boolean value. Second, create a TLD, which will make the
function available via a JSP tag. Lastly, use the custom tag from within the JSP page along with JSTL conditional test
tags to display the content conditionally.

2-6. Creating a JSP Document
Problem
Rather than using standard HTML format, you want to ensure that your JSP code follows the XML standard and
contains only valid HTML and JSP tags.

Solution
Create a JSP document rather than a standard JSP. A JSP document is an XML-based representation of a standard JSP
document that conforms to the XML standard. The following JSP document contains the same code that is used in the
JSP code for Recipe 2-5, but it uses the JSP document format instead. As you can see, not much is different because
well-formed tags were already used to create the standard JSP document. The page is also saved with an extension
of jspx rather than jsp.

<!--
 Document : recipe02_06
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 xmlns:fct="/WEB-INF/tlds/functions.tld">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

68

 <body>
 <form method="get">
 <p>Name one of the primitive Java types:
 <input type="text" id="typename" name="typename" size="40"/>
 </p>

 <input type="submit"/>
 </form>
 <jsp:useBean id="conditionalBean" scope="request"

class="org.javaeerecipes.chapter02.recipe02_05.ConditionalClass"/>
 <jsp:setProperty name="conditionalBean" property="typename"
 value="${param.typename}" />
 <c:if test="${fct:isPrimitive(conditionalBean.typename)}" >
 ${ conditionalBean.typename } is a primitive type.
 </c:if>

 <c:if test="${fn.length(conditionalBean.typename) > 0 and !fct:isPrimitive(conditionalBean.typename)}" >
 ${ conditionalBean.typename } is not a primitive type.
 </c:if>

 </body>
</html>

This JSP document will yield the same output as the one in Recipe 2-5. However, a well-formed document will be
enforced, and this will exclude the use of scripting elements within the page.

How It Works
As foreshadowed in Recipe 2-3, separating business logic from markup code can be important for many reasons.
Standard JSP pages can adhere to the MVC paradigm, but they are not forced into doing so. Sometimes it makes sense
to enforce the separation of business logic, by strictly adhering to a well-formed XML document using only JSP tags to
work with server-side Java classes. Well-formed means that there should be only one root element, and each starting
tag must have a corresponding ending tag. Creating a JSP document is one answer because such documents enforce
well-formed XML and do not allow scripting elements to be used within the JSP page.

Several JSP tags can be used to communicate with Java classes, perform JSP-specific functionality, and make
markup easy to follow. As such, modern JSP-based applications should make use of well-formed JSP documents
utilizing such JSP tags, rather than embedding scripting elements throughout markup. Table 2-2 describes what the
different JSP tags do.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

69

Table 2-2. JSP Tags

Tag Description

<jsp:attribute> Defines attributes for a JSP page.

<jsp:body> Defines an element body.

<jsp:declaration> Defines page declarations.

<jsp:directive> Defines page includes and page directives.

<jsp:doBody> Executes the body of the JSP tag that is used by the calling JSP page to invoke the tag.

<jsp:element> Generates an XML element dynamically.

<jsp:expression> Inserts the value of a scripting language expression, converted into a string.

<jsp:forward> Forwards a request to another page. The new page can be HTML, JSP, or servlet.

<jsp:getProperty> Obtains the value of a bean property and places it in the page.

<jsp:include> Includes another JSP or web resource in the page.

<jsp:invoke> Invokes a specified JSP fragment.

<jsp:output> Specifies the document type declaration.

<jsp:plugin> Executes an applet or bean with the specified plug-in.

<jsp:root> Defines standard elements and tag library namespaces.

<jsp:scriptlet> Embeds code fragment into a page if necessary.

<jsp:setProperty> Sets specified value(s) into a bean property.

<jsp:text> Encloses template data.

<jsp:useBean> References and instantiates (if needed) a JavaBean class using a name and providing a scope.

Creating a well-formed JSP can lead to easier development, ease of maintenance, and better overall design. Since
it is so important, the remaining recipes in this chapter will use the JSP document format.

2-7. Embedding Expressions in EL
Problem
You want to use some conditional expressions and/or arithmetic within your JSP without embedding Java code using
scripting elements.

Solution
Use EL expressions within JSP tags to perform conditional and/or arithmetic expressions. This solution will look
at two examples of EL expressions. The first example demonstrates how to perform conditional logic using EL
expressions. Note that the JSTL tag library is also used in this case, to conditionally display a message on the page
if the expression results to true.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

70

<!--
 Document : recipe02_07a
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-7: Embedding Expressions in EL</title>
 </head>
 <body>
 <h1>Conditional Expressions</h1>
 <p>
 The following portion of the page will only display conditional expressions
 which result in a true value.
 </p>
 <c:if test="${1 + 1 == 2}">
 The conditional expression (1 + 1 == 2) results in TRUE.

 </c:if>

 <c:if test="${'x' == 'y'}">
 The conditional expression (x == y) results in TRUE.

 </c:if>

 <c:if test="${(100/10) gt 5}">
 The conditional expression ((100/10) > 5) results in TRUE.

 </c:if>

 <c:if test="${20 mod 3 eq 2}">
 The conditional expression (20 mod 3 eq 2) results in TRUE.

 </c:if>
 </body>
</html>

This JSP page will result in the following output being displayed:

...
The conditional expression (1 + 1 == 2) results in TRUE.
The conditional expression ((100/10) > 5) results in TRUE.
The conditional expression (20 mod 3 eq 2) results in TRUE.
...

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

71

Arithmetic expressions can also be evaluated using EL. The following JSP code demonstrates some examples
of using arithmetic within EL:

<!--
 Document : recipe02_07b
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-7: Embedding Expressions in EL</title>
 </head>
 <body>
 <jsp:useBean id="expBean" class="org.javaeerecipes.chapter02.recipe02_07.Expressions"/>
 <h1>Arithmetic Expressions</h1>
 <p>
 The following expressions demonstrate how to perform arithmetic using EL.
 </p>
 10 - 4 = ${10 - 4}

 85 / 15 = ${85 / 15}

 847 divided by 6 = ${847 div 6}

 ${expBean.num1} * ${expBean.num2} = ${expBean.num1 * expBean.num2}

 </body>

</html>

The preceding JSP will result in the following output being displayed:

...
10 - 4 = 6
85 / 15 = 5.666666666666667
847 divided by 6 = 141.16666666666666
5 * 634.324 = 3171.62
...

How It Works
The JSP technology makes it easy to work with expressions. Conditional page rendering can be performed using
a combination of EL value expressions, which are enclosed within the ${ } character sequences, and JSTL tags.
Arithmetic expressions can also be performed using EL expressions. To make things easier, the Expression Language
contains keywords or characters that can be used to help form expressions. The example for this recipe contains
various expressions and conditional page rendering using the JSTL <c:if> tag.

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

72

In the first JSP page displayed in the example, there are some examples of conditional page rendering. To use the
<c:if> tag to perform the conditional tests, you must be sure to import the JSTL tag library with the JSP page. To do so,
add an import for the JSTL tag library and assign it to a character or string of characters. In the following excerpt from
the recipe, the JSTL library is assigned to the character c:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

An EL value expression is contained within the ${ and } character sequences. Anything within these characters
will be treated as EL, and as such, the syntax must be correct, or the JSP page will not be able to compile into a servlet,
and it will throw an error. All expressions using the ${ } syntax are evaluated immediately, and they are read-only
expressions. That is, no expressions using this syntax can be used to set values into a JavaBean property. The JSP
engine first evaluates the expression, and then it converts into a String and lastly returns the value to the tag handler.
Four types of objects can be referenced within a value expression. Those are JavaBean components, collections,
enumerated types, and implicit objects. If using a JavaBean component, the JavaBean must be registered with the
JSP page using the jsp:useBean element (see Recipe 2-3 for details). Collections or enumerated types can also be
referenced from a JavaBean that has been registered with the page. Implicit objects are those that allow access to page
context, scoped variables, and other such objects. Table 2-3 lists different implicit objects that can be referenced from
within EL expressions.

Table 2-3. Implicit JSP Objects

Object Type Description

pageContext Context Provides access to the context of the page and various subobjects

servletContext Page context Context for JSP page servlet and web components

session Page context Session object for the client

request Page context Request that invoked the execution of the page

response Page context Response that is returned by the JSP

param N/A Responsible for mapping parameter names to values

paramValues N/A Maps request parameter to an array of values

header N/A Responsible for mapping a header name to a value

headerValues N/A Maps header name to an array of values

cookie N/A Maps a cookie name to a single cookie

initParam N/A Maps a context initialization parameter to a value

pageScope Scope Maps page scope variables

requestScope Scope Maps request scope variables

sessionScope Scope Maps session scope variables

applicationScope Scope Maps application scope variables

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

73

The following are some examples of expressions that make use of JavaBean components, collections, enumerated
types, and implicit objects:

// Displays the value of a variable named myVar within a JavaBean referenced as elTester
${ elTester.myVar }
// Does the same thing as the line above
${ elTester["myVar"] }

// Evaluates an Enumerated Type in which myEnum is an instance of MyEnum
${ myEnum == "myValue" }
// Reference a getter method of the Enum named getTestVal()
${ myEnum.testVal}

// References a collection named myCollection within the JavaBean referenced as elTester
${ elTester.myCollection }

// Obtain the parameter named "testParam"
${ param.testParam } // Same as: request.getParameter("testParam")
// Obtain session attribute named "testAttr"
${ sessionScope.testAttr } // Same as: session.getAttribute("testAttr")

In the recipe example, the <c:if> tag is used to test a series of value expressions and conditionally display page
content. The test attribute of <c:if> is used to register a test condition, and if the test condition returns a true result,
then the content contained between the <c:if> starting and ending tags is displayed. The following excerpt from the
example demonstrates how a test is performed:

<c:if test="${'x' == 'y'}">
 The conditional expression (x == y) results in TRUE.

</c:if>

EL expressions can contain a series of reserved words that can be used to help evaluate the expression. For
instance, the following expression utilizes the gt reserved word to return a value indicating whether the value
returned from the calculation of 100/10 is greater than 5:

<c:if test="${(100/10) gt 5}">
 The conditional expression ((100/10) > 5) results in TRUE.

</c:if>

Table 2-4 lists all the JSP EL expression reserved words and their meanings.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

74

Arithmetic expressions are demonstrated by the second example in this recipe. The following arithmetic
operators can be utilized within expressions:

+ (addition), - (binary and unary), * (multiplication), / and div (division), %, and mod (modulus)•	

and, &&, or, ||, not, !•	

==, !=, <, >, <=, >=•	

X ? Y : Z (ternary conditional)•	

Entire chapters of books have been written on the use of EL expressions within JSPs. This recipe only touches
upon the possibilities of using value expressions. The best way to get used to expressions is to create a test JSP page
and experiment with the different options that are available.

2-8. Accessing Parameters in Multiple Pages
Problem
You want to access a parameter from within multiple pages of your web application.

Table 2-4. EL Expression Reserved Words

Reserved Word Description

and Combines expressions and returns true if all of them evaluate to true

or Combines expressions and returns true if one of them evaluates to true

not Negates an expression

eq Equal

ne Not equal

lt Less than

gt Greater than

le Less than or equal

ge Greater than or equal

true True value

false False value

null Null value

instanceof Used to test whether an object is an instance of another object

empty Determines whether a list or collection is empty

div Divided by

mod Modulus

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

75

Solution
Create an input form to submit parameters to the request object, and then utilize the request object to retrieve the
values in another page. In the example that follows, a JSP page that contains an input form is used to pass values
to another JSP page by setting the HTML form action attribute to the value of the JSP page that will utilize the
parameters. In the case of this example, the receiving JSP page merely displays the parameter values, but other work
could be performed as well.

The following JSP code demonstrates the use of an input form to save parameters into the request object and pass
them to a page named recipe02_08b.jspx:

<!--
 Document : recipe02_08a
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-8: Passing Parameters</title>
 </head>
 <body>

 <h1>Passing Parameters</h1>
 <p>
 The following parameters will be passed to the next JSP.
 </p>
 <form method="get" action="recipe02_08b.jspx">
 Param 1: <input id="param1" name="param1" type="text" value="1"/>

 Param 2: <input id="param2" name="param2" type="text" value="2 + 0"/>

 Param 3: <input id="param3" name="param3" type="text" value="three"/>

 <input type="submit" value="Go to next page"/>
 </form>
 </body>
</html>

The next JSP code receives the parameters and displays their values:

<!--
 Document : recipe02_08b
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://xmlns.jcp.org/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

76

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-8: Passing Parameters</title>
 </head>
 <body>

 <h1>Passing Parameters</h1>
 <p>
 The following parameters will were passed from the original JSP.
 </p>
 <form method="post" action="recipe02_08a.jspx">
 Param 1: <jsp:expression>request.getParameter("param1") </jsp:expression>

 Param 2: <jsp:expression> request.getParameter("param2") </jsp:expression>

 Param 3: <jsp:expression> request.getParameter("param3") </jsp:expression>

 OR using value expressions

 Param 1: ${ param.param1 }

 Param 2: ${ param.param2 }

 Param 3: ${ param.param3 }

 <input type="submit" value="Back to Page 1"/>
 </form>
 </body>

</html>

As you can see, a couple of variations can be used to display the parameter values. Both of the variations will
display the same result.

How It Works
Request parameters are one of the most useful features of web applications. When a user enters some data into a web
form and submits the form, the request contains the parameters that were entered into the form. Parameters can also
be statically embedded within a web page or concatenated onto a URL and sent to a receiving servlet or JSP page. The
data contained in request parameters can then be inserted into a database, redisplayed on another JSP page, used to
perform a calculation, or a myriad of other possibilities. The JSP technology provides an easy mechanism for using
request parameters within other JSP pages, and the example in this recipe demonstrates how to do just that.

Note ■ request parameters are always translated into String values.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

77

Note that in the example, the first JSP page uses a simple HTML form to obtain values from a user and submit
them to the request. Another JSP page named recipe02_08b.jspx is set as the form action attribute, so when the form
is submitted, it will send the request to recipe02_08b.jspx. The input fields on the first JSP page specify both an id
attribute and a name attribute, although only the name attribute is required. The name that is given to the input fields is
the name that will be used to reference the value entered into it as a request parameter.

Note ■ It is a good programming practice to always include an id attribute. The ID is useful for performing work with
the DOM and for referencing elements via a scripting language such as JavaScript.

The receiving action, recipe02_08b.jspx in this example, can make a call to response.getParameter(),
passing the name of a parameter (input field name) to obtain the value that was entered into its corresponding text
field. To adhere to JSP document standards, the scriptlet containing the call to response.getParameter() must be
enclosed within <jsp:expression> tags. The following excerpt demonstrates how this is done:

Param 1: <jsp:expression>request.getParameter("param1") </jsp:expression>

Optionally, an EL expression can contain a reference to the implicit param object and obtain the request
parameter in the same way. When the expression ${param.param1} is called, it is evaluated by the JSP engine, and it is
translated into response.getParameter("param1"). The following excerpt demonstrates this use of EL expressions:

Param 1: ${ param.param1 }

Either technique will perform the same task; the named request parameter will be obtained and displayed
on the page.

2-9. Creating a Custom JSP Tag
Problem
You want to create a JSP tag that provides custom functionality for your application.

Solution
Create a custom JSP tag using JSP 2.0 simple tag support. Suppose you want to create a custom tag that will insert
a signature into the JSP where the tag is placed. The custom tag will print out a default signature, but it will also
accept an authorName attribute, which will include a given author's name to the signature if provided. To get
started, you'll first need to define a Java class that extends the SimpleTagSupport class. This class will provide the
implementation for your tag. The following code is the implementation for a class named Signature, which provides
the implementation for the custom tag.

Note ■ To compile the following code, you will need to add javax.servlet.jsp to classpath:

cd recipe02_09

javac -cp ...\glassfish4\glassfish\modules\javax.servlet.jsp-api.jar *.java

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

78

package org.javaeerecipes.chapter02.recipe02_09;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.SimpleTagSupport;

/**
 * Recipe 2-9: Creating a Custom JSP Tag
 * @author juneau
 */
public class Signature extends SimpleTagSupport {

 private String authorName = null;

 /**
 * @param authorName the authorName to set
 */
 public void setAuthorName(String authorName) {
 this.authorName = authorName;
 }

 @Override
 public void doTag() throws JspException {
 PageContext pageContext = (PageContext) getJspContext();
 JspWriter out = pageContext.getOut();

 try {
 if(authorName != null){
 out.println("Written by " + authorName);
 out.println("
");
 }
 out.println("Published by Apress");

 } catch (Exception e) {
 System.out.println(e);
 }

 }
}

Next, a TLD to be created to map the Signature class tag implementation to a tag. The TLD that includes the
custom tag mapping is listed here:

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/
ns/javaee/web-jsptaglibrary_2_1.xsd">
 <tlib-version>1.0</tlib-version>
 <short-name>cust</short-name>
 <uri>custom</uri>

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-jsptaglibrary_2_1.xsd
http://xmlns.jcp.org/xml/ns/javaee/web-jsptaglibrary_2_1.xsd
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

79

 <tag>
 <name>signature</name>
 <tag-class>org.javaeerecipes.chapter02.recipe02_09.Signature</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>authorName</name>
 <rtexprvalue>true</rtexprvalue>
 <required>false</required>
 </attribute>
 </tag>
</taglib>

Once the class implementation and the TLD are in place, the tag can be used from within a JSP page. The
following JSP code is an example of using the custom tag on a page:

<!--
 Document : recipe02_09
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 xmlns:cust="custom"
 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-9: Creating a Custom JSP Tag</title>
 </head>
 <body>

 <h1>Custom JSP Tag</h1>
 <p>
 The custom JSP tag is used as the footer for this page.

 </p>
 <cust:signature authorName="Josh Juneau"/>

 </body>

</html>

The custom tag output will now be displayed in place of the cust:signature element within the JSP page.

How It Works
One of the most useful new features of JSP 2.0 was the inclusion of the SimpleTagSupport class, which provides an
easier way for developers to create custom tags. Prior to the 2.0 release, custom tag creation took a good deal of more
work, because the developer had to provide much more code to implement the tag within the tag's implementation
class. The SimpleTagSupport class takes care of much implementation for the developer so that the only thing left
to do is implement the doTag method in order to provide an implementation for the custom tag.

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

80

In the example for this recipe, a custom tag is created that will print out a signature on the JSP page in the
position where the tag is located. To create a custom tag implementation, create a Java class that will extend the
SimpleTagSupport class, and provide an implementation for the doTag method. The example class also contains
a field named authorName, which will be mapped within the TLD as an attribute for the custom tag. In the doTag
method, a handle on the JSP page context is obtained by calling the getJspContext method. getJspContext is a
custom method that is implemented for you within SimpleTagSupport and makes it easy to get ahold of the JSP
page context. Next, to provide the ability to write to the JSP output, a handle is obtained on the JspWriter by
calling PageContext's getOut method.

PageContext pageContext = (PageContext) getJspContext();
JspWriter out = pageContext.getOut();

The next lines within doTag provide the implementation for writing to the JSP output via a series of calls to
out.println. Any content that is passed to out.println will be displayed on the page. Note that in the example,
the authorName field is checked to see whether it contains a null value. If it does not contain a null value, then it
is displayed on the page; otherwise, it is omitted. Therefore, if the tag within the JSP page contains a value for the
authorName attribute, then it will be printed on the page. The out.println code is contained within a try-catch block
in case any exceptions occur.

Note ■ To allow your tag to accept scriptlets, you will need to use the Classic Tag handlers. The Classic Tag handlers
existed before the JSP 2.0 era and can still be used today alongside the Simple Tag handlers. The Simple Tag handlers
revolve around the doTag() method, whereas the Classic Tag handlers deal with a doStartTag() method and a
doEndTag() method, as well as others. Since the Simple Tag handlers can be used alongside the Classic Tag handlers,
it is possible to use some of the more complex Classic Tag methods, while utilizing Simple Tag methods in the same
application. This eases the transition from the Classic Tag handlers to the Simple Tag handlers. For more information
regarding the differences between the two aPIs, please see some online documentation by searching for the keywords
Simple vs. Classic Tag Handlers.

That's it; the implementation for the tag is complete. To map the implementation class to the Document Object
Model (DOM) via a tag name, a TLD must contain a mapping to the class. In the example, a TLD is created named
custom.tld, and it contains the mapping for the class. The short-name element specifies the name that must be
used within the JSP page to reference the tag. The uri element specifies the name of the TLD, and it is used from
within the JSP page to reference the TLD file itself. The meat of the TLD is contained within the tag element. The
name element is used to specify the name for the tag, and it will be used within a JSP page in combination with the
short-name element to provide the complete tag name. The tag-class element provides the name of the class that
implements the tag, and body-content specifies a value to indicate whether the body content for the JSP page will be
made available for the tag implementation class. It is set to empty for this example. To specify an attribute for the tag,
the attribute element must be added to the TLD, including the name, rtexprvalue, and required elements. The name
element of attribute specifies the name of the attribute, rtexprvalue indicates whether the attribute can contain an
EL expression, and required indicates whether the attribute is required.

To use the tag within a JSP page, the custom.tld TLD must be mapped to the page within the <html> element in a
JSP document or a taglib directive within a standard JSP. The following lines show the difference between these two:

<!—JSP Document syntax -->
xmlns:cust="custom"

<!—JSP syntax -->
<%@taglib prefix="cust" uri="custom" %>

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

81

To use the tag within the page, simply specify the TLD short-name along with the mapping name for the tag
implementation and any attributes you want to provide.

<cust:signature authorName="Josh Juneau"/>

Creating custom tags within JSP is easier than it was in the past. Custom tags provide developers with the ability
to define custom actions and/or content that can be made accessible from within a JSP page via a tag rather than
scriptlets. Custom tags help developers follow the MVC architecture, separating code from business logic.

2-10. Including Other JSPs into a Page
Problem
Rather than coding the same header or footer into each JSP, you want to place the content for those page sections into
a separate JSP page and then pull them into JSP pages by reference.

Solution
Use the <jsp:include> tag to embed other static or dynamic pages in your JSP page. The following example
demonstrates the inclusion of two JSP pages within another. One of the JSP pages is used to formulate the header of
the page, and another is used for the footer. The following page demonstrates the main JSP page, which includes two
others using the <jsp:include> tag. The JSPX files named recipe02_10-header.jspx and recipe02_10-footer.jspx
are included within the body of the main JSP page in order to provide the header and footer sections of the page.

<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-09: Including Other JSPs into a Page</title>
 </head>
 <body>
 <jsp:include page="recipe02_10-header.jspx" />
 <h1>This is the body of the main JSP.</h1>
 <p>
 Both the header and footer for this page were created as separate JSPs.
 </p>
 <jsp:include page="recipe02_10-footer.jspx"/>
 </body>

</html>

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

82

Next is the JSP code that comprises the page header. It’s nothing fancy but is a separate JSP page nonetheless.

<html xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <p>This is the page header</p>
</html>

The next JSP code makes up the page footer:

<html xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>

 <p>This is the page footer</p>

</html>

In the end, these three pages create a single page that contains a header, a body, and a footer.

How It Works
Including other JSP pages helps increase developer productivity and reduces maintenance time. Using this technique,
a developer can extract any JSP features that appear in multiple pages and place them into a separate JSP page. Doing
so will allow a single point of maintenance when one of these features needs to be updated.

To include another page within a JSP page, use the <jsp:include> tag. The <jsp:include> tag allows embedding
a static file or another web component. The tag includes a page attribute, which is used to specify the relative URL or
an expression that results in another file or web component to include in the page.

Note ■ The tag also has an optional flush attribute, which can be set to either true or false to indicate whether the
output buffer should be flushed prior to the page inclusion. The default value for the flush attribute is false.

Optionally, <jsp:param> clauses can be placed between the opening and closing <jsp:include> tags to pass
one or more name-value pairs to the included resource if the resource is dynamic. An example of performing this
technique would resemble something like the following lines of code. In the following lines, a parameter with a name
of bookAuthor and a value of Juneau is passed to the header JSP page.

<jsp:include page="header.jspx">
 <jsp:param name="bookAuthor" value="Juneau"/>
</jsp:include>

The ability to include other content within a JSP page provides a means to encapsulate resources and static
content. This allows developers to create content once and include it in many pages.

http://java.sun.com/JSP/Page
http://java.sun.com/JSP/Page
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

83

2-11. Creating an Input Form for a Database Record
Problem
You want to create a JSP page that will be used to input information that will be inserted as a database record.

Solution
Create an input form and use a Java servlet action method to insert the values into the database. This solution requires
a JSP document and a Java servlet in order to complete the database input form. In the following example, an input
form is created within a JSP document to populate records within a database table named RECIPES. When the user
enters the information into the text fields on the form and clicked the submit button, a servlet is called that performs
the database insert transaction.

The following code is the JSP document that is used to create the input form for the database application:

<!--
 Document : recipe02_11
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <head>
 <title>Recipe 2-11: Creating an Input Form</title>
 </head>
 <body>
 <h1>Recipe Input Form</h1>
 <p>
 Please insert recipe details using the text fields below.
 </p>
 ${ recipeBean.message }
 <form method="POST" action="/JavaEERecipes/RecipeServlet">
 Recipe Number: <input id="recipeNumber" name="recipeNumber" size="30"/>

 Recipe Name: <input id="name" name="name" size="30"/>

 Recipe Description: <input id="description" name="description" size="30"/>

 Recipe Text: <input id="text" name="text" size="30"/>

 <input type="submit"/>
 </form>
 </body>
</html>

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

84

Next is the code for a servlet named RecipeServlet. It is responsible for reading the request parameters from the
JSP document input form and inserting the fields into the database.

package org.javaeerecipes.chapter02.recipe02_11;

import java.io.IOException;
import java.io.PrintWriter;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Recipe 2-11: Creating an Input Form
 * @author juneau
 */
@WebServlet(name = "RecipeServlet", urlPatterns = {"/RecipeServlet"})
public class RecipeServlet extends HttpServlet {

 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 int result = -1;
 try {
 /*
 * TODO Perform validation on the request parameters here
 */
 result = insertRow (request.getParameter("recipeNumber"),
 request.getParameter("name"),
 request.getParameter("description"),
 request.getParameter("text"));
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet RecipeServlet</title>");
 out.println("</head>");
 out.println("<body>");

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

85

 out.println("<h1>Servlet RecipeServlet at " + request.getContextPath() + "</h1>");
 out.println("

");

 if(result > 0){
 out.println("Record successfully inserted!");
 out.println("

Insert

another record");
 } else {
 out.println("Record NOT inserted!");
 out.println("

Try Again");
 }

 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 public int insertRow(String recipeNumber,
 String name,
 String description,
 String text) {

 String sql = "INSERT INTO RECIPES VALUES(" +
 "RECIPES_SEQ.NEXTVAL,?,?,?,?)";
 PreparedStatement stmt = null;
 int result = -1;
 try {
 CreateConnection createConn = new CreateConnection();
 Connection conn = createConn.getConnection();
 stmt = (PreparedStatement) conn.prepareStatement(sql);
 stmt.setString(1, recipeNumber);
 stmt.setString(2, name);
 stmt.setString(3, description);
 stmt.setString(4, text);
 // Returns row-count or 0 if not successful
 result = stmt.executeUpdate();
 if (result > 0){
 System.out.println("-- Record created --");
 } else {
 System.out.println("!! Record NOT Created !!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

86

 ex.printStackTrace();
 }
 }

 }
 return result;
 }

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
}

If the request is successful, the record will be inserted into the database, and the user will be able to click a link
to add another record. Of course, in a real-life application, you would want to code some validation using JavaScript
either within the input form or within the server-side Java code to help ensure database integrity.

How It Works
A fundamental task to almost every enterprise application is the use of a database input form. Database input forms
make it easy for end users to populate database tables with data. When using JSP technology along with servlets,
this operation can become fairly simple. As you have seen in the example to this recipe, writing a JSP input form is
straightforward and can be coded using basic HTML. The key is to set up a Java servlet to receive a submitted request
and process the records using the servlet. This provides an easy mechanism for separating web content from the
application logic.

In the example, a JSP document named recipe02_11.jspx contains a standard HTML form with a method of
POST and an action of /JavaEERecipes/RecipeServlet. The input form contains four fields, which map to database
columns into which the data will eventually be inserted. The input tags contain the name of four corresponding fields
(recipeNumber, name, description, and text), which will be passed to the form action when submitted. As you can
see, the only reference to the Java code is the name of the servlet that is contained within the form action attribute.

The Java servlet named RecipeServlet is responsible for obtaining the request parameters that were submitted
via the JSP document, validating them accordingly (not shown in the example), and inserting them into the
database. When the page is submitted, RecipeServlet is invoked, and the request is sent to the doPost method
since the HTML action method is POST. Both the doGet and doPost methods are really just wrapper methods for a
processing method named processRequest, which is responsible for most of the work. The processRequest method
is responsible for obtaining the request parameters, inserting them into the database, and sending a response to
the client. A PrintWriter object is declared and created by making a call to response.getWriter() first because
this object will be used later to help form the response that is sent to the client. Next, an int value named result is
set up and initialized to -1. This variable will be used for determining whether the SQL insert worked or failed. After
those declarations, a try-catch block is opened, and the first line of the try block is a call to the insertRow method,
passing the request parameters as values. The result variable is going to accept the int value that is returned from the
execution of the insertRows method, indicating whether the insert was successful.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

87

result = insertRow (request.getParameter("recipeNumber"),
 request.getParameter("name"),
 request.getParameter("description"),
 request.getParameter("text"));

As such, an SQL insert statement is assigned to a String named sql, and it is set up using the PreparedStatement
format. Each question mark in the SQL string corresponds to a parameter that will be substituted in the string when
the SQL is executed.

String sql = "INSERT INTO RECIPES VALUES(" +
 "RECIPES_SEQ.NEXTVAL,?,?,?,?)";

Next, a PreparedStatement and int values are initialized, and then a try-catch-finally block is opened,
which will contain the SQL insert code. Within the block, a Connection object is created by calling a helper class
named CreateConnection. If you want to read more about this helper class, then you can read Chapter 7 on JDBC.
For now, all you need to know is that CreateConnection will return a database connection that can then be used
to work with the database. If for some reason the connection fails, the catch block will be executed, followed by
the finally block. A PreparedStatement object is created from the successful connection, and the SQL string that
contains the database insert is assigned to it. Each of the request parameter values, in turn, is then set as a parameter
to the PreparedStatement. Lastly, the PreparedStatement’s executeUpdate method is called, which performs an
insert to the database. The return value of executeUpdate is assigned to the result variable and then returned to
the processRequest method. Once the control is returned to processRequest, the servlet response is created using
a series of PrintWriter statements. If the insert was successful, then a message indicating success is displayed.
Likewise, if unsuccessful, then a message indicating failure is displayed.

Developing database input forms with JSP is fairly easy to do. To preserve the MVC structure, using a Java servlet
for handing the request and database logic is the best choice.

2-12. Looping Through Database Records Within a Page
Problem
You want to display the records from a database table on your JSP page.

Solution
Encapsulate the database logic in a Java class and access it from the JSP page. Use the JSTL c:forEach element to
iterate through the database rows and display them on the page. Two Java classes would be used for working with the
data in this situation. One of the classes would represent the table, which you are querying from the database, and
it would contain fields for each column in that table. Another JavaBean class would be used to contain the database
business logic for querying the database.

The example for this recipe will display the first and last names of each author contained within the AUTHORS
database table. The following code is used to create the JSP document that will display the data from the table using a
standard HTML-based table along with the JSTL <c:forEach> tag to loop through the rows:

<!--
 Document : recipe02_12
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

88

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <jsp:useBean id="authorBean" scope="session"
 class="org.javaeerecipes.chapter02.recipe02_12.AuthorBean"/>
 <head>
 <title>Recipe 2-12: Looping Through Database Records within a Page </title>
 </head>
 <body>
 <h1>Authors</h1>
 <p>
 The authors from the books which Josh Juneau has worked on are printed below.
 </p>
 <table border="1">

 <c:forEach items="${authorBean.authorList }" var="author">
 <tr>
 <td> ${ author.first } ${ author.last }</td>
 </tr>
 </c:forEach>
 </table>
 </body>
</html>

As you can see, <c:forEach> is used to loop through the items contained within ${authorBean.authorList}.
Each item within the list is an object of type Author. The following Java code is that of the Author class, which is used
for holding the data contained within each table row:

package org.javaeerecipes.chapter02.recipe02_12;

/**
 *
 * @author juneau
 */
public class Author implements java.io.Serializable {
 private int id;
 private String first;
 private String last;

 public Author(){
 id = -1;
 first = null;
 last = null;
 }

 /**
 * @return the id
 */
 public int getId() {
 return id;
 }

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

89

 /**
 * @param id the id to set
 */
 public void setId(int id) {
 this.id = id;
 }

 /**
 * @return the first
 */
 public String getFirst() {
 return first;
 }

 /**
 * @param first the first to set
 */
 public void setFirst(String first) {
 this.first = first;
 }

 /**
 * @return the last
 */
 public String getLast() {
 return last;
 }

 /**
 * @param last the last to set
 */
 public void setLast(String last) {
 this.last = last;
 }
}

Lastly, the JSP document makes reference to a JavaBean named AuthorBean, which contains the business
logic to query the data and return it as a list to the JSP page. The following code is what is contained within the
AuthorBean class:

package org.javaeerecipes.chapter02.recipe02_12;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.List;
import org.javaeerecipes.common.CreateConnection;

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

90

/**
 * Recipe 2-12
 * @author juneau
 */
public class AuthorBean implements java.io.Serializable {

 public static Connection conn = null;
 private List authorList = null;

 public AuthorBean(){

 }

 public List queryAuthors(){
 String sql = "SELECT ID, FIRST, LAST FROM BOOK_AUTHOR";
 List <Author> authorList = new ArrayList<Author>();
 PreparedStatement stmt = null;
 ResultSet rs = null;
 int result = -1;
 try {
 CreateConnection createConn = new CreateConnection();
 conn = createConn.getConnection();
 stmt = (PreparedStatement) conn.prepareStatement(sql);

 // Returns row-count or 0 if not successful
 rs = stmt.executeQuery();
 while (rs.next()){
 Author author = new Author();
 author.setId(rs.getInt("ID"));
 author.setFirst((rs.getString("FIRST")));
 author.setLast(rs.getString("LAST"));
 authorList.add(author);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 }
 return authorList;
 }

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

91

 public List getAuthorList(){
 authorList = queryAuthors();
 return authorList;
 }
}

The names of the authors contained within the records in the table will be displayed on the page.

How It Works
Almost any enterprise application performs some sort of database querying. Oftentimes results from a database
query are displayed in a table format. The example in this recipe demonstrates how to query a database and return
the results to a JSP page for display in a standard HTML table. The JSP page in this example makes use of the JSTL
c:forEach element to iterate through the results of the database query. Note that there is more than one way to
develop this type of database query using JSP; however, the format demonstrated in this recipe is most recommended
for use in a production enterprise environment.

As mentioned previously, the JSP page in this recipe uses a combination of the jsp:useBean element and the
c:forEach element to iterate over the results of a database query. The logic for querying the database resides within
a server-side JavaBean class that is referenced within the jsp:useBean element on the page. In the example, the
JavaBean is named AuthorBean, and it is responsible for querying a database table named AUTHORS and populating
a list of Author objects with the results of the query. When the c:forEach element is evaluated with the items
attribute set to ${authorBean.authorList}, it calls upon the JavaBean method named getAuthorList because
JSP expressions always append "get" to a method call behind the scenes and also capitalizes the first letter of the
method name within the call. When the getAuthorList method is called, the authorList field is populated via a call
to queryAuthors. The queryAuthors method utilizes a Java Database Connectivity (JDBC) database call to obtain the
authors from the AUTHORS table. A new Author object is created for each row returned by the database query, and each
new Author object is, in turn, added to the authorList. In the end, the populated authorList contains a number of
Author objects, and it is returned to the JSP page and iterated over utilizing the c:forEach element.

The c:forEach element contains an attribute named var, and this should be set equal to a string that will
represent each element in the list that is being iterated over. The var is then used between the opening and closing
c:forEach element tags to reference each element in the list, printing out each author's first and last names.

This recipe provides some insight on how to combine the power of JSTL tags with other technologies such as
JDBC to produce very useful results. To learn more about the different JSTL tags that are part of JSP, please visit the
online documentation at www.oracle.com/technetwork/java/jstl-137486.html. To learn more about JDBC,
please read Chapter 7 of this book.

2-13. Handling JSP Errors
Problem
You want to display a nicely formatted error page if a JSP page encounters an error.

Solution
Create a standard error page, and forward control to the error page if an exception occurs within the JSP page.
The following JSP document, in JSP format (not JSPX), demonstrates a standard error page to display if an error
occurs within a JSP application. If an exception occurs within any JSP page in the application, the following error
page will be displayed.

http://www.oracle.com/technetwork/java/jstl-137486.html
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

92

Note ■ The example in the solution for this recipe uses the JSTL fmt library, which provides convenient access to
formatting capabilities that allow for localization of text as well as date and number formatting. Text localization
capabilities allow locales to be set so that text can be formatted into different languages, depending upon the user
locale. Tags used for date manipulation make it easy for developers to format dates and times easily within a JSP page
and also provide a way to parse dates and times for data input. Lastly, number-formatting tags provide a way to format
and parse numeric data within pages. To learn more about the JSTL fmt tag library, please refer to the online
documentation at http://jstl.java.net/.

<%--
 Document : recipe02_13_errorPage
 Author : juneau
--%>

<%@ page contentType="text/html" pageEncoding="UTF-8"%>
<%@ page isErrorPage="true" %>
<%@ taglib uri="http://java.sun.com/jcp/jstl/core"
 prefix="c" %>
<%@ taglib uri="http://java.sun.com/jcp/jstl/fmt"
 prefix="fmt" %>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JSP Error Page</title>
 </head>
 <body>
 <h1>Error Encountered</h1>

 <p>
 The application has encountered the following error:

 <fmt:message key="ServerError"/>: ${pageContext.errorData.statusCode}

 </p>
 </body>
</html>

For example, the following JSP would create an error (NullPointerException) if the parameter designated as
param is null. If this occurs, the indicated error page would be displayed.

<!--
 Document : recipe02_13
 Author : juneau
-->
<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jcp/jstl/core"
 version="2.0">

http://jstl.java.net/
http://xmlns.jcp.org/jsp/jstl/core
http://xmlns.jcp.org/jsp/jstl/fmt
http://java.sun.com/JSP/Page
http://xmlns.jcp.org/jsp/jstl/core
http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

93

 <jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
 <jsp:directive.page errorPage="recipe02_13_errorPage.jsp"/>

 <head>
 <title>Recipe 2-13: </title>
 </head>
 <body>
 <h1>There is an error on this page</h1>
 <p>
 This will produce an error:
 <jsp:scriptlet>
 if (request.getParameter("param").equals("value")) {
 System.out.println("test");
 }
 </jsp:scriptlet>
 </p>
 </body>

</html>

How It Works
One of the most annoying issues for users while working with applications is when an error is thrown. A nasty, long
stack trace is often produced, and the user is left with no idea how to resolve the error. It is better to display a nice
and user-friendly error page when such an error occurs. The JSP technology allows an error page to be designated by
adding a page directive to each JSP page that may produce an error. The directive should designate an error page that
will be displayed if the page containing the directive produces an error.

The second JSP document in the solution to this recipe demonstrates a JSP page that will throw an error if the
parameter being requested within the page is null. If this were to occur and there were no error page specified, then a
NullPointerException error message would be displayed. However, this JSP indicates an error page by designating it
within a page directive using the following syntax:

<jsp:directive.page errorPage="recipe02_13_errorPage.jsp"/>

When an error occurs on the example page, recipe02_13.errorPage.jsp is displayed. The first JSP document
listed in the solution to this recipe contains the sources for the recipe02_13.errorPage.jsp page. It is flagged as an
error page because it includes a page directive indicating as such:

<%@ page isErrorPage="true" %>

An error page is able to determine the error code, status, exception, and an array of other information by using
the pageContext implicit object. In the example, the ${pageContext.errorData.statusCode} expression is used
to display the status code of the exception. Table 2-5 displays the other possible pieces of information that can be
gleaned from the pageContext object.

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

94

Providing user-friendly error pages in any application can help create a more usable and overall more functional
experience for the end user. JSP and Java technology provide robust exception handling and mechanisms that can be
used to help users and administrators alike when exceptions occur.

2-14. Disabling Scriptlets in Pages
Problem
You want to ensure that Java code cannot be embedded into JSP pages within your web application.

Solution
Set the scripting-invalid element within the web deployment descriptor to true. The following excerpt from a web.
xml deployment descriptor demonstrates how to do so:

<jsp-config>
 <jsp-property-group>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-group>
</jsp-config>

How It Works
When working in an environment that encourages the use of the Model-View-Controller architecture, it can be useful
to prohibit the use of scriptlets within JSP pages and documents. When JSP 2.1 was released, it provided solutions
to help developers move Java code out of JSP pages and into server-side Java classes where it belonged. In the early
years of JSP, pages were cluttered with scriptlets and markup. This made it difficult for developers to separate business
logic from content, and it was hard to find good tools to help develop such pages effectively. JSP 2.1 introduced tags,
which make it possible to eliminate the use of scriptlets within JSP pages, and this helps maintain the use of the MVC
architecture.

Table 2-5. pageContext Implicit Object Exception Information

Expression Value

pageContext.errorData Provides access to the error information

pageContext.exception Returns the current value of the exception object

pageContext.errorData.requestURI Returns the request URI

pageContext.errorData.servletName Returns the name of the servlet invoked

pageContext.errorData.statusCode Returns the error status code

pageContext.errorData.throwable Returns the throwable that caused the error

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

95

To prohibit the use of scriptlets within JSP pages in an application, add the jsp-config element within the web.
xml file of the application of which you want to enforce the rule. Add a subelement of jsp-property-group along with
the scripting-invalid element. The value of the scripting-invalid element should be set to true.

2-15. Ignoring EL in Pages
Problem
You want to turn off EL expression translation within your JSP page so that older applications will be able to pass
through expressions verbatim.

Solution #1
Escape the EL expressions within the page by using the \ character before any expressions. For instance, the following
expressions will be ignored because the \ character appears before them:

\${elBean.myProperty}
\${2 + 4}

Solution #2
Configure a JSP property group within the web.xml file for the application. Within the web.xml file, a
<jsp-property-group> element can contain child elements that characterize how the JSP page evaluates specified
items. By including an <el-ignored>true</el-ignored> element, all EL within the application's JSP documents will
be ignored and treated as literals. The following excerpt from web.xml demonstrates this feature:

<jsp-property-group>
 <el-ignored>true</el-ignored>
</jsp-property-group>

Solution #3
Include a page directive including the isELIgnored attribute, and set it to true. The following page directive can be
placed at the top of a given JSP document to allow each EL expression to be treated as a literal:

<jsp:directive.page isELIgnored="true"/>

or in a standard JSP:

<%@ page isELIgnored="true" %>

http://www.it-ebooks.info/

ChaPTEr 2 ■ JavaSErvEr PagES

96

How It Works
There may be a situation in which the evaluation of JSP EL expressions should be turned off. This occurs most often
in cases of legacy applications using older versions of JSP technology; EL expressions were not yet available. There
are a few different ways to turn off the evaluation of EL expressions, and this recipe demonstrates each of them.

In the first solution to this recipe, the escape technique is demonstrated. An EL expression can be escaped
by placing the \ character directly before the expression, as shown in the example. Doing so will cause the JSP
interpreter to treat the expression as a string literal, and the output on the page will be the expression itself,
rather than its evaluation. The second solution to this recipe demonstrates adding a jsp-property-group to the
web.xml deployment descriptor in order to ignore EL. All EL within an application will be ignored by including the
isELIgnored element and providing a true value for it. Lastly, the final solution demonstrates how to ignore EL on a
page-by-page basis by including a page directive with the isELIgnored attribute set to true.

Each of the different solutions for ignoring EL allows coverage to different parts of the application. The solution
you choose should depend upon how broadly you want to ignore EL throughout an application.

http://www.it-ebooks.info/

97

Chapter 3

The Basics of JavaServer Faces

In 2004 Sun Microsystems introduced a Java web framework called JavaServer Faces (JSF) in an effort to help simplify
web application development. It is an evolution of the JavaServer Pages (JSP) framework, adding a more organized
development life cycle and the ability to more easily utilize modern web technologies. JSF uses XML files for view
construction and Java classes for application logic, making it adhere to the MVC architecture. JSF is request-driven,
and each request is processed by a special servlet named the FacesServlet. The FacesServlet is responsible
for building the component trees, processing events, determining which view to process next, and rendering the
response. JSF 1.x used a special resource file named the faces-config.xml file for specifying application details such
as navigation rules, registering listeners, and so on. While the faces-config.xml file can still be used in JSF 2.x, the
more modern releases of JSF have focused on being easy to use, minimizing the amount of XML configuration, and
utilizing annotations in place of XML where possible.

The framework is very powerful, including easy integration with technologies such as Ajax and making it
effortless to develop dynamic content. JSF works well with databases, using either JDBC or EJB technology to work
with the back end. JavaBeans, known as JSF managed beans, are used for application logic and support the dynamic
content within each view. They can adhere to different life spans depending upon the scope that is used. Views can
invoke methods within the beans to perform actions such as data manipulation and form processing. Properties can
also be declared within the beans and exposed within the views, providing a convenient way to pass request values.
JSF allows developers to customize their applications with preexisting validation and conversion tags that can be used
on components with the view. It is also easy to build custom validators, as well as custom components, that can be
applied to components in a view.

This chapter includes recipes that will be useful for those who are getting started with JSF and also those who
are looking to beef up their basic knowledge of the framework. You will learn how to create managed beans, work
with standard components, and handle page navigation. There are also recipes that cover useful techniques such
as building custom validators and creating bookmarkable URLs. The recipes are refined to include the most current
techniques and provide the most useful methodologies for using them. After studying the recipes in this chapter, you
will be ready to build standard JSF applications, sprinkling in some custom features as well.

Note ■ Many people prefer to work within an integrated development environment (IDE) for increased productivity.
To get started with learning how to create a new JSF project and manage it with the NetBeans IDE, please see the
appendix of this book.

3-1. Writing a Simple JSF Application
Problem
You want to get up and running quickly by creating a simple JSF application.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

98

Solution #1
Create a simple JSF web application that is comprised of a single XHTML page and a single JSF managed bean,
along with the other required JSF configuration files. The application in this recipe simply displays a message that
is initialized within a JSF managed bean.

Note ■ It is recommended that you utilize a Java IDE to make life easier. If you have not yet created a JSF application
and are interested in learning how to create one from scratch with an IDE, then please see Solution #2 to this recipe. This
book features the NetBeans IDE, a cutting-edge Java development environment that is usually the first to support new
Java features. however, there are many excellent IDE choices. You can choose the IDE you want and follow along with its
instructions for working with JSF.

Displaying a JSF Managed Bean Field Value
The following code makes up the XHTML view that will be used to display the JSF managed bean field value:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-1 A Simple JSF Application
Author: J. Juneau
Filename: chapter03/recipe03_01.xhtml
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-1: A Simple JSF Application</title>
 </h:head>
 <h:body>
 <p>
 This simple application utilizes a request-scoped JSF managed bean
 to display the message below. If you change the "hello" variable value within the
 managed bean's constructor and then recompile and run the application, the
 new message appears.

 #{helloWorldController.hello}

 or

 <h:outputText id="helloMessage" value="#{helloWorldController.hello}"/>
 </p>
 </h:body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

99

As you can see, the JSF page utilizes a JSF expression, #{helloWorldController.hello}. Much like JSP technology,
a backing JavaBean, otherwise known as a JSF managed bean, is referenced in the expression along with the field to expose.

Examining the JSF Managed Bean
The following code is that of HelloWorldController, the JSF managed bean for this recipe example:

import java.io.Serializable;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

/**
 * Recipe 3-1: A Simple JSF Application
 * @author juneau
 */
@ManagedBean(name = "helloWorldController")
@RequestScoped
public class HelloWorldController implements Serializable {
 private String hello;

 /**
 * Creates a new instance of HelloWorldController
 */
 public HelloWorldController() {
 hello = "Hello World";
 }

 /**
 * @return the hello
 */
 public String getHello() {
 return hello;
 }

 /**
 * @param hello the hello to set
 */
 public void setHello(String hello) {
 this.hello = hello;
 }
}

Note ■ prior to JSF 2.0, in order to enable the JSF servlet to translate the XhTML page, you needed to ensure that the
web.xml file contained a servlet element indicating the javax.faces.webapp.FacesServlet class and its associated
servlet-mapping UrL. Since the release of JSF 2.0, if using a Servlet 3.x container, the FacesServlet is automatically
mapped for you, so there is no requirement to adjust the web.xml configuration.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

100

Ensuring the JSF Application Functions Properly in a Pre-JSF 2.0 Environment
The listing that follows is an excerpt taken from the web.xml file for the sources to this book, and it demonstrates the
features that must be added to the web.xml file in order to make the JSF application function properly.

...
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
...
 <welcome-file-list>
 <welcome-file>faces/index.xhtml</welcome-file>
 </welcome-file-list>

Let’s take a deeper look at the web.xml configuration for a JSF application. It is not very complex, but a few
elements could use some explanation. The javax.faces.webapp.FacesServlet servlet must be declared within the
web.xml file. The declaration must contain a servlet-name; the servlet-class element, which lists the fully qualified
class name; and a load-on-startup value of 1 to ensure that the servlet is loaded when the application is started up
by the container. The web.xml file must then map that servlet to a given URL within a servlet-mapping element. The
servlet-mapping element must include the servlet-name, which is the same value as the servlet-name element that
is contained in the servlet declaration, and a url-pattern element, which specifies the URL that will be used to map
JSF pages with the servlet. When a URL is specified that contains the /faces/ mapping, the FacesServlet will be used
to translate the view.

To load the application in your browser, visit http://localhost:8080/JavaEERecipes/faces/chapter03/
recipe03_01.xhtml, and you will see the following text:

This simple application utilizes a request-scoped JSF managed bean to display the message below. If you
change the “hello” variable within the managed bean’s constructor and then recompile and run the application,
the new message appears.

Hello World
or
Hello World

Solution #2
Use an IDE, such as NetBeans, to create a JSF application. To get started with NetBeans, first download the most recent
release of NetBeans from the Netbeans.org web site. The examples in this solution make use of NetBeans 7.3. For more
information about downloading and installing NetBeans, please see the appendix to this book. Once installed, create
a new project by clicking the File ➤ New Project menu option.

Follow the directions in the book’s appendix (in the “Creating a NetBeans Java Web Project” section). Once
completed, the index.xhtml file will open in the editor, which will be the default landing page for your application.
Modify the index.xhtml file by making the page the same as the JSF view that is listed in Solution #1’s “Displaying JSF
Managed Bean Field Value” section. Once done, add the managed bean to your application that will be used to supply

http://localhost:8080/JavaEERecipes/faces/chapter03/recipe03_01.xhtml
http://localhost:8080/JavaEERecipes/faces/chapter03/recipe03_01.xhtml
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

101

the business logic for the index.xhtml page. To create the managed bean, right-click the Source Packages navigation
menu for your project, and choose New ➤ JSF Managed Bean from the context menu. This will open the New JSF
Managed Bean dialog (Figure 3-1), which will allow you to specify several options for your managed bean, including
the name, location, and scope.

Figure 3-1. New JSF managed bean

For the purposes of this recipe, change the name of the bean to HelloWorldController, and leave the rest of the
options at their defaults; then click Finish. Copy and paste the code from Solution #1’s “Examining the JSF Managed
Bean” section into the newly created managed bean class. Once finished, right-click the application project from the
Project navigation menu and choose Deploy to deploy your application.

To load the application in your browser, visit http://localhost:8080/WebApplication1/faces/index.xhtml,
and you will see the following text:

This simple application utilizes a request-scoped JSF managed bean to display the message below. If you change
the “hello” variable within the managed bean’s constructor and then recompile and run the application, the new
message appears.

Hello World
or
Hello World

http://localhost:8080/WebApplication1/faces/index.xhtml
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

102

How It Works
This recipe merely scratches the surface of JSF, but it is meant as a starting point to guide you along the path of
becoming a JSF expert. The example in this recipe demonstrates how closely related JSF and JSP technologies are.
In fact, the only difference in the two view pages is the use of the JSF expression #{} rather than the standard JSP value
expression ${}. Thanks to the JSP 2.0 unified expression language, Java web developers now have an easy transition
between the two technologies, and they now share many of the same expression language features.

Note ■ JSF 2.x can make use of Facelets view technology to produce even more sophisticated and organized designs.
To learn more about Facelets view technology, please refer to Chapter 4.

Breaking Down a JSF Application
Now for the real reason you are reading this recipe…the explanation for building a JSF application! A JSF application is
comprised of the following parts:

If using or maintaining JSF applications written using JSF 1.•	 x, the web.xml deployment
descriptor that is responsible for mapping the FacesServlet instance to a URL path

One or more web pages on which JSF components are used to provide the page layout (may or •	
may not utilize Facelets view technology)

JSF component tags•	

One or more managed beans, which are simple, lightweight container-managed objects that •	
are responsible for supporting page constructs and basic services

Optionally, one or more configuration files such as •	 faces-config.xml that can be used to
define navigation rules and configure beans and other custom objects

Optionally, supporting objects such as listeners, converters, or custom component•	

Optionally, custom tags for use on a JSF view•	

Life CyCLe of a JSf appLiCation

The JSF view processing life cycle contains six stages. These stages are as follows:

1. restore view

2. apply request values

3. process validations

4. Update Model values

5. Invoke application

6. render response

restore view is the first phase in the JSF life cycle, and it is responsible for constructing the view. The component
tree then applies the request parameters to each of the corresponding component values using the component

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

103

tree’s decode method. This occurs during the apply request values phase. During this phase, any value
conversion errors will be added to FacesContext for display as error messages during the render response
phase. Next, all of the validations are processed. During the process validations phase, each component that has
a registered validator is examined, and local values are compared to the validation rules. If any validation errors
arise, the render response phase is entered, rendering the page with the corresponding validation errors.

If the process validations phase exits without errors, the Update Model values phase begins. During this phase,
managed bean properties are set for each of the corresponding input components within the tree that contain
local values. once again, if any errors occur, then the render response phase is entered, rendering the page
with the corresponding errors displayed. after the successful completion of the Update Model values phase, the
application-level events are handled during the Invoke applications phase. Such events include page submits or
redirects to other pages. Finally, the render response phase occurs, and the page is rendered to the user. If the
application is using JSp pages, then the JSF implementation allows the JSp container to render the page.

The example in this recipe uses the minimum number of these parts. To run the example, you will need to ensure
that the web.xml file contains the proper JSF configuration if running in a pre-JSF 2.x environment. You will need to
have a managed bean declaring the field that is exposed on the JSF view along with the necessary accessor methods
to make it work properly. And lastly, you will need to have the XHTML JSF view page containing the JSF expression
that exposes the field that is declared within the managed bean.

A JSF managed bean is a lightweight, container-managed object that is associated with a JSF page. The managed
bean is much like a JSP JavaBean in that it provides the application logic for a particular page so that Java code does
not need to be embedded into the view code. Components (a.k.a. JSF tags) that are used within a JSF view are mapped
to server-side fields and methods contained within the JSF managed bean. Oftentimes, JSF managed beans contain
Controller within their name because they are indeed the controllers for the page logic. In the example, the JSF
managed bean is named HelloWorldController, and a field named hello is declared, exposing itself to the public via
the getHello and setHello methods. The JSF managed bean is instantiated and initialized when a page that contains
a reference to the bean is requested, and the managed bean scope determines the life span of the bean. In the case of
this example, the managed bean contains a request scope, via the @RequestScoped annotation. Therefore, its life span
is that of a single request, and it is re-instantiated each time the page in the example is reloaded. To learn more about
the scope and annotations that are available for a managed bean, please see Recipe 3-2.

JSF technology utilizes a web view declaration framework known as Facelets. Facelets uses a special set of XML
tags, similar in style to the standard JSF tags, to help build componentized web views. To learn more about Facelets,
please see Chapter 4. While this example does not use Facelets, it is a vital part of JSF view technology. Facelets pages
typically use XHTML, which is an HTML page that is comprised of well-formed XML components. The example JSF
view in this recipe is well-structured, and it contains two JSF EL expressions that are responsible for instantiating the
managed bean and displaying the content for the hello field. When the EL expression #{helloWorldBean.hello} is
translated by the FacesServlet, it makes the call to the HelloBeanController’s getHello() method.

Lots of information was thrown at you within this introductory recipe. The simple example in this recipe provides
a good starting point for working with JSF technology. Continue with the recipes in this chapter to gain a broader
knowledge of each component that is used for developing JavaServer Faces web applications.

3-2. Writing a Managed Bean
Problem
You want to use a server-side Java class from within your JSF application web pages.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

104

Solution
Develop a JSF managed bean, a lightweight container-managed component, which will provide the application logic for
use within your JSF application web pages. The example in this recipe is comprised of a JSF view and a JSF managed bean.
The application calculates two numbers that are entered by the user and then adds, subtracts, multiplies, or divides them
depending upon the user’s selection. The following code is the managed bean that is responsible for declaring fields for
each of the numbers that will be entered by the user, as well as a field for the result of the calculation. The managed bean
is also responsible for creating a list of Strings that will be displayed within an h:selectOneMenu element within the JSF
view and retaining the value that is chosen by the user.

Although it may seem as though this managed bean is doing a lot of work, it actually is very simple to make it
happen! The managed bean is really a beefed-up Plain Old Java Object (POJO) that includes some methods that can
be called from JSF view components.

Managed Bean
The following code is for the managed bean that is used for the calculation example. The bean is named
CalculationController, and it is referenced as calculationController from within the JSF view. JSF uses convention
over configuration for its naming conventions. By default, JSF views can contain EL that references a managed bean by
specifying the class name with the first character in lowercase.

package org.javaeerecipes.chapter03.recipe03_02;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.faces.bean.ManagedBean;
import javax.faces.application.FacesMessage;
import javax.faces.bean.SessionScoped;
import javax.faces.context.FacesContext;
import javax.faces.model.SelectItem;

/**
 * Recipe 3-2: Writing a JSF Managed Bean
 * @author juneau
 */

@SessionScoped
@ManagedBean(name="calculationController")
public class CalculationController implements Serializable {

 private int num1;
 private int num2;
 private int result;
 private String calculationType;
 private static String ADDITION = "Addition";
 private static String SUBTRACTION = "Subtraction";
 private static String MULTIPLICATION = "Multiplication";
 private static String DIVISION = "Division";
 List<SelectItem> calculationList;

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

105

 /**
 * Creates a new instance of CalculationController
 */
 public CalculationController() {
 // Initialize variables
 num1 = 0;
 num2 = 0;
 result = 0;
 calculationType = null;
 // Initialize the list of values for the SelectOneMenu
 populateCalculationList();
 }

 /**
 * @return the num1
 */
 public int getNum1() {
 return num1;
 }

 /**
 * @param num1 the num1 to set
 */
 public void setNum1(int num1) {
 this.num1 = num1;
 }

 /**
 * @return the num2
 */
 public int getNum2() {
 return num2;
 }

 /**
 * @param num2 the num2 to set
 */
 public void setNum2(int num2) {
 this.num2 = num2;
 }

 /**
 * @return the result
 */
 public int getResult() {
 return result;
 }

 /**
 * @param result the result to set
 */

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

106

 public void setResult(int result) {
 this.result = result;
 }

 /**
 * @return the calculationType
 */
 public String getCalculationType() {
 return calculationType;
 }

 /**
 * @param calculationType the calculationType to set
 */
 public void setCalculationType(String calculationType) {
 this.calculationType = calculationType;
 }

 public List<SelectItem> getCalculationList(){
 return calculationList;
 }

 private void populateCalculationList(){
 calculationList = new ArrayList<SelectItem>();
 calculationList.add(new SelectItem(ADDITION));
 calculationList.add(new SelectItem(SUBTRACTION));
 calculationList.add(new SelectItem(MULTIPLICATION));
 calculationList.add(new SelectItem(DIVISION));
 }

 public void performCalculation() {
 if (getCalculationType().equals(ADDITION)){
 setResult(num1 + num2);
 } else if (getCalculationType().equals(SUBTRACTION)){
 setResult(num1 - num2);
 } else if (getCalculationType().equals(MULTIPLICATION)){
 setResult(num1 * num2);
 } else if (getCalculationType().equals(DIVISION)){
 try{
 setResult(num1 / num2);
 } catch (Exception ex){
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
"Invalid Calculation", "Invalid Calculation");
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 }
 }
 }
}

Next is the view that composes the web page, which is displayed to the user. The view is composed within an
XHTML document and is well-formed XML.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

107

JSF View
The view contains JSF components that are displayed as text boxes into which the user can enter information, a pick-list
of different calculation types for the user to choose from, a component responsible for displaying the result of the
calculation, and an h:commandButton component for submitting the form values.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-2 Writing a JSF Managed Bean
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-2: Writing a JSF Managed Bean</title>
 </h:head>
 <h:body>
 <f:view>

 <h2>Perform a Calculation</h2>
 <p>
 Use the following form to perform a calculation on two numbers.

 Enter the numbers in the two text fields below, and select a calculation to

 perform, then hit the "Calculate" button.

 <h:messages errorStyle="color: red" infoStyle="color: green" globalOnly="true"/>

 <h:form id="calulationForm">
 Number1:
 <h:inputText id="num1" value="#{calculationController.num1}"/>

 Number2:
 <h:inputText id="num2" value="#{calculationController.num2}"/>

 Calculation Type:
 <h:selectOneMenu id="calculationType"
 value="#{calculationController.calculationType}">
 <f:selectItems value="#{calculationController.calculationList}"/>
 </h:selectOneMenu>

 Result:
 <h:outputText id="result" value="#{calculationController.result}"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

108

 <h:commandButton action="#{calculationController.performCalculation()}"
 value="Calculate"/>
 </h:form>
 </p>
 </f:view>
 </h:body>
</html>

The resulting JSF view looks like Figure 3-2 when displayed to the user.

Figure 3-2. Resulting JSF view page

How It Works
The JSF managed bean is responsible for providing the application logic for a JSF-based web application. Much like
the JavaBean is to a JSP, the managed bean is the backbone for a JSF view. They are also referred to as backing beans,
because there is typically one JSF managed bean per each JSF view. Managed beans have changed a bit since the
JSF technology was first introduced. There used to be configuration required for each managed bean within a
faces-config.xml configuration file and also within the web.xml file for use with some application servers. Starting
with the release of JSF 2.0, managed beans became easier to use, and coding powerful JSF applications is easier than
ever. This recipe focuses on newer managed bean technology.

The example for this recipe demonstrates many of the most important features of a JSF managed bean. The view
components refer to the managed bean as calculationController. By default, a JSF managed bean can be referred
to within a JSF view using the name of the bean class with a lowercase first letter. However, using the @ManagedBean
annotation, the string that is used to reference the bean from within a view can be changed. In the example,
calculationController is also used as the name passed to the @ManagedBean annotation, but it could have easily
been some other string. The @ManagedBean annotation should be placed before the class declaration.

@ManagedBean(name = "calculationController")

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

109

Scopes
The bean in the example will be initialized when it is first accessed by a session and destroyed when the session is
destroyed. It is a managed bean that “lives” with the session. The scope of the bean is configured by an annotation on
the class, just before the class declaration. There are different annotations that can be used for each available scope.
In this case, the annotation is @SessionScoped, denoting that the managed bean is session-scoped. All of the possible
managed bean scopes are listed within Table 3-1.

Table 3-1. Managed Bean Scopes

Scope Annotation Description

@ApplicationScoped Specifies that a bean is application scoped. Initialized when the application is
started up. Destroyed when the application is shut down. Managed beans with
this scope are available to all application constructs in the same application
throughout the life of a session.

@ConversationScoped Specifies that a bean is conversation scoped. Initialized when a conversation is
started and destroyed when the conversation ends. Managed beans with this
scope are available throughout the life cycle of a conversation, and belong to a
single HTTP session. If the HTTP session ends, all conversation contexts that were
created during the session are destroyed.

@CustomScoped Specifies that the runtime must act as if a <managed-bean-scope>VALUE<managed-
bean-scope> element was declared for the corresponding managed bean, where
VALUE is the value of the value() attribute, which must be an EL expression that
evaluates to a String. This allows the scope to be customized depending upon
code-based values.

@Dependent Specifies that a bean belongs to a dependent pseudo-scope. Beans that use this
scope behave differently than managed beans containing any of the other scopes.
To learn more about using this scope, please see Recipe 6-20.

@NoneScoped Specifies that the runtime must act as if a <managed-bean-scope>none<managed-
bean-scope> element was declared for the corresponding managed bean. This
implies that there is no scope for the managed bean. This causes the bean to be
instantiated each time it is referenced. This is useful in situations where beans
reference each other and the referenced bean should not maintain a state.

@RequestScoped Specifies that a bean is request scoped. Initialized when a request to the bean is
made and destroyed when the request is complete.

@SessionScoped Specifies that a bean is session scoped. Initialized when first accessed within a
session. Destroyed when the session ends. Available to all servlet requests that are
made within the same session.

@ViewScoped Specifies that the runtime must act as if a <managed-bean-scope>view<managed-bean-
scope> element was declared for the corresponding managed bean. In this case, the
scope persists for a single web page (view) of an application within a user session.

The @ManagedBean annotation specifies to the application server container that the class is a JSF managed bean.
Prior to JSF 2.0, a managed bean had to be declared within the faces-config.xml file. The addition of annotations
has made JSF managed beans XML configuration-free. It is important to note that the managed bean implements
java.io.Serializable; all managed beans should be specified as serializable so that they can be persisted to disk by
the container if necessary.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

110

Fields declared within a managed bean should be specified as private in order to adhere to object-oriented
methodology. To make a field accessible to the public and usable from JSF views, accessor methods should be
declared for it. Any field that has a corresponding “getter” and “setter” is known as a JSF managed bean property.
Properties are available for use within JSF views by utilizing lvalue JSF EL expressions, meaning that the expression
is contained within the #{ and } character sequences and that it is readable and writable. For instance, to access
the field num1 that is declared within the managed bean, the JSF view can use the #{calculationController.num1}
expression, as you can see in the JSF view code for the example.

Any pubic method contained within a JSF managed bean is accessible from within a JSF view using the same EL
expression syntax, that is, by specifying #{beanName.methodName} as the expression. In the example to this recipe, the
performCalculation method of the managed bean is invoked from within the JSF view using an h:commandButton JSF
component. The component action is equal to the EL expression that will invoke the JSF managed bean method. To
learn more about JSF components and how to use them in view, please see Recipe 3-3 and Chapter 5.

<h:commandButton action="#{calculationController.performCalculation()}" value="Calculate"/>

Note ■ The input form for this example contains no action attribute. JSF forms do not contain action attributes since
JSF components within the view are responsible for specifying the action method, rather than the form itself.

JSF managed beans are a fundamental part of the JSF web framework. They provide the means for developing
dynamic, robust, and sophisticated web applications with the Java platform.

3-3. Building Sophisticated JSF Views with Components
Problem
You want to create a sophisticated user interface comprised of prebundled components.

Solution
Make use of bundled JSF components within your JSF views. JSF components contain bundled application logic and
view constructs that can be used within applications by merely adding tags to a view. In the following example, several
JSF components are used to create a view that displays the authors for an Apress book and allows for a new author to
be added to the list. The following code is the XHTML for the JSF view:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-3 Organizing the Presentation for a JSF View
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

111

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-3: Building Sophisticated JSF Views with Components</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>JSF Components, Creating a Sophisticated Page</h1>
 <p>
 The view for this page is made up entirely of JSF standard components.

As you can see, there are many useful components bundled with JSF out of the box.

 </p>
 <p>Book Recommendation: Java 7 Recipes

 <h:graphicImage id="java7recipes" library="image" name="java7recipes.png"/>

 <p>
 Use the following form to add an author to the list.
 </p>
 <h:outputLabel for="newAuthorFirst" value="New Author First Name: "/>
 <h:inputText id="newAuthorFirst" value="#{authorController.newAuthorFirst}"/>

 <h:outputLabel for="newAuthorLast" value="New Author Last Name: "/>
 <h:inputText id="newAuthorLast" value="#{authorController.newAuthorLast}"/>

 <h:outputLabel for="bio" value="Bio:"/>

 <h:inputTextarea id="bio" cols="20" rows="5"
 value="#{authorController.bio}"/>

 <h:commandButton id="addAuthor" action="#{authorController.addAuthor}"
 value="Add Author"/>

 <h:dataTable id="authorTable" value="#{authorController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:outputText id="authorName" value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 </p>
 </h:form>
 </h:body>
</html>

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

112

This example utilizes a JSF managed bean named AuthorController. The managed bean declares a handful of
properties that are exposed in the view, and it also declares and populates a list of authors that is displayed on the
page within a JSF h:dataTable component.

package org.javaeerecipes.chapter03.recipe03_03;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.inject.Named;

/**
 * Recipe 3-3
 * @author juneau
 */
@ManagedBean(name = "authorController")
@SessionScoped
public class AuthorController implements Serializable {

 private String newAuthorFirst;
 private String newAuthorLast;
 private String bio;
 private List<Author> authorList;

 /**
 * Creates a new instance of RecipeController
 */
 public AuthorController() {
 populateAuthorList();
 }

 private void populateAuthorList(){
 System.out.println("initializng authors");
 authorList = new ArrayList<>();
 authorList.add(new Author("Josh", "Juneau", null));
 authorList.add(new Author("Carl", "Dea", null));
 authorList.add(new Author("Mark", "Beaty", null));
 authorList.add(new Author("John", "O'Conner", null));
 authorList.add(new Author("Freddy", "Guime", null));

 }

 public void addAuthor() {
 getAuthorList().add(
 new Author(this.getNewAuthorFirst(),
 this.getNewAuthorLast(),
 this.getBio()));
 }

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

113

 /**
 * @return the authorList
 */
 public List<Author> getAuthorList() {
 return authorList;
 }

 /**
 * @param authorList the authorList to set
 */
 public void setAuthorList(List<Author> authorList) {
 this.authorList = authorList;
 }

 /**
 * @return the newAuthorFirst
 */
 public String getNewAuthorFirst() {
 return newAuthorFirst;
 }

 /**
 * @param newAuthorFirst the newAuthorFirst to set
 */
 public void setNewAuthorFirst(String newAuthorFirst) {
 this.newAuthorFirst = newAuthorFirst;
 }

 /**
 * @return the newAuthorLast
 */
 public String getNewAuthorLast() {
 return newAuthorLast;
 }

 /**
 * @param newAuthorLast the newAuthorLast to set
 */
 public void setNewAuthorLast(String newAuthorLast) {
 this.newAuthorLast = newAuthorLast;
 }

 /**
 * @return the bio
 */
 public String getBio() {
 return bio;
 }

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

114

 /**
 * @param bio the bio to set
 */
 public void setBio(String bio) {
 this.bio = bio;
 }
}

Finally, the Author class is used to hold instances of Author objects that are loaded into the authorList.
The following code is for the Author class:

package org.javaeerecipes.chapter03.recipe03_03;

/**
 * Recipe 3-3
 * @author juneau
 */
public class Author implements java.io.Serializable {
 private String first;
 private String last;
 private String bio;

 public Author(){
 this.first = null;
 this.last = null;
 this.bio = null;
 }

 public Author(String first, String last, String bio){
 this.first = first;
 this.last = last;
 this.bio = bio;
 }
 /**
 * @return the first
 */
 public String getFirst() {
 return first;
 }

 /**
 * @param first the first to set
 */
 public void setFirst(String first) {
 this.first = first;
 }

 /**
 * @return the last
 */

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

115

 public String getLast() {
 return last;
 }

 /**
 * @param last the last to set
 */
 public void setLast(String last) {
 this.last = last;
 }

 /**
 * @return the bio
 */
 public String getBio() {
 return bio;
 }

 /**
 * @param bio the bio to set
 */
 public void setBio(String bio) {
 this.bio = bio;
 }
}

The resulting web page would resemble the page shown in Figure 3-3.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

116

How It Works
JSF views are comprised of well-formed XML, being a mixture of HTML and JSF component tags. Any well-formed
HTML can be used within a JSF view, but the components are the means by which JSF communicates with managed
bean instances. There are components shipped with JSF that can be used for adding images to views, text areas,
buttons, checkboxes, and much more. Moreover, there are several very good component libraries that include
additional JSF components, which can be used within your applications. This recipe is meant to give you an overall
understanding of JSF components and how they work. You can learn more details regarding JSF components and the
use of external component libraries by reading the recipes in Chapter 5.

Figure 3-3. Sophisticated JSF view example

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

117

The first step toward using a component within a JSF view is to declare the tag library on the page. This is done
within the HTML element at the top of the page. The example in this recipe declares both the JSF core component
library and the JSF HTML component library within the HTML element near the top of the page. These two libraries
are standard JSF component libraries that should be declared in every JSF view.

...
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
...

Once a library is declared, a component from within that library can be used in the view by specifying the library
namespace, along with the component you want to use. For instance, to specify an HTML element for displaying text,
use the JSF h:outputText component tag, along with the various component attributes.

Prior to JSF 2.0, it was important to enclose a JSF view along with all of the components within the f:view tag.
As of JSF 2.0, the tag is no longer required because the underlying Facelets view technology is part of every JSF view
by default, so it takes care of specifying the view automatically. However, the f:view element can still be useful for
specifying locale, content type, or encoding. Please see the online documentation for more information regarding the
use of those features: http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/
facelets/index.html.

The <h:head> and <h:body> tags can be used to specify the header and body for a JSF web view. However, using
the standard HTML <head> and <body> tags is fine also. Some Java IDEs will automatically use <h:head> and <h:body>
in place of the standard HTML tags when writing JSF views. An important note is that you must enclose any content
that will be treated as an HTML input form with the <h:form> JSF tag. This tag encloses a JSF form and renders an
HTML form using a POST method if none is specified. No action attribute is required for a JSF form tag because the JSF
managed bean action is invoked using one of the JSF action components such as h:commandButton or h:commandLink.

Tip ■ always specify an id for the h:form tag because the form id is added as a prefix to all JSF component tag ids
when the page is rendered. For instance, if a form id of myform contained a component tag with an id of mytag, the
component id will be rendered as myform:mytag. If you do not specify an id, then one will be generated for you automatically.
If you want to use JavaScript to work with any of the page components, you will need to have an id specified for h:form,
or you will never be able to access them.

Note ■ This recipe provides a quick overview of a handful of the standard JSF components. For an in-depth explanation
of JSF components and their usage, please see Chapter 5.

The standard JSF component library contains a variety of components, and a few of them are utilized in the
example. The h:graphicImage tag can be used to place an image on the page and utilize a JSF managed bean if
needed. The h:graphicImage tag is rendered into an HTML component, and as with all of the other JSF components,
it accepts JSF EL expressions within its attributes, which allows for the rendering of dynamic images. In this recipe,
a static image is specified with the url attribute, but an expression could also be used, making use of a JSF managed
bean field. The library attribute is used to specify the directory in which the resource, in this case an image, resides.

<h:graphicImage id="java7recipes" library="image" name="java7recipes.png"/>

The h:outputLabel tag is useful for reading managed bean properties and displaying their values when the view
is rendered. They are rendered as a label for a corresponding field within the view. The example utilizes static values
for the h:outputLabel component, but they could include JSF expressions if needed. The h:outputText component

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/index.html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

118

is also useful for reading managed bean properties and displaying their values. This component renders basic text
on the page. The difference between h:outputLabel and h:outputText is that they are rendered into different HTML
tags. Both components can accept JSF managed bean expressions for their value attributes.

In the example, a couple of text fields are displayed on the page using the h:inputText component, which renders
an input field. The value attribute for h:inputText can be set to a JSF managed bean field, which binds the text field
to the corresponding managed bean property. For instance, the example includes an h:inputText component with a
value of #{authorController.newAuthorFirst}, which binds the component to the newAuthorFirst property within
the AuthorController class. If the field contains a value, then a value will be present within a text field when the page
is rendered. If a value is entered into the corresponding text field and the form is submitted, the value will be set into
the newAuthorFirst field using its setter method. The h:inputText tag allows for both reading and writing of managed
bean properties because it uses lvalue JSF EL expressions. The h:inputTextarea tag is very similar to h:inputText in
that it works the same way, but it renders a text area rather than a text field.

The h:commandButton component is used to render a submit button on a page. Its action attribute can be set to a
JSF managed bean method. When the button is pressed, the corresponding managed bean method will be executed,
and the form will be submitted. The request will be sent to the FacesServlet controller, and any properties on the
page will be set. Please see Recipe 3-1 for more details regarding the JSF life cycle. The h:commandButton used in
the example has an action attribute of #{authorController.addAuthor}, which will invoke the addAuthor method
within the AuthorController managed bean. As you can see from the method, when invoked it will add a new Author
object to the authorList, utilizing the values that were populated within the corresponding h:inputText components
for the newAuthorFirst, newAuthorLast, and bio fields. The following excerpt from the example’s JSF view lists the
h:commandButton component:

<h:commandButton id="addAuthor" action="#{authorController.addAuthor}"
 value="Add Author"/>

The last component in the example that bears some explanation is the h:dataTable. This JSF component is
rendered into an HTML table, and it enables developers to dynamically populate tables with collections of data
from a managed bean. In the example, the h:dataTable value attribute is set to the managed bean property of
#{authorController.authorList}, which maps to an instance of ArrayList that is populated with Author objects.
The dataTable var attribute contains a String that will be used to reference the different objects contained within
each row of the table. In the example, the var attribute is set to author, so referencing #{author.first} within
the dataTable will return the value for the current Author object’s first property. The dataTable in the example
effectively prints out the first and last names of each Author object within the authorList. This is just a quick
overview of how the JSF dataTable component works. For more details, please refer to Recipe 3-12.

As you work more with constructing JSF views, you will become very familiar with the component library.
The tags will become second nature, and you will be able to construct highly sophisticated views for your application.
Adding external JSF component libraries into the mix along with using Ajax for updating components is the real icing
on the cake! You will learn more about spreading the icing on the cake and creating beautiful and user-friendly views
in Chapter 5!

3-4. Displaying Messages in JSF Pages
Problem
You have the requirement to display an information message on the screen for your application users.

Solution
Add the h:messages component to your JSF view and create messages as needed within the view’s managed bean
using FacesMessage objects. The following JSF view contains an h:messages component tag that will render any
messages that were registered with FacesContext within the corresponding page’s managed bean. It also includes an

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

119

h:message component that is bound to an h:inputText field. The h:message component can display messages that
are specific to the corresponding text field.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-4 Displaying Messages in JSF Pages
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-4: Displaying Messages in JSF Pages</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>JSF Messages</h1>
 <p>
 This page contains a JSF message component below. It will display
 messages from a JSF managed bean once the bean has been initialized.
 </p>
 <h:messages errorStyle="color: red" infoStyle="color: green" globalOnly="true"/>

 Enter the word Java here:
 <h:inputText id="javaText" value="#{messageController.javaText}"/>
 <h:message for="javaText" errorStyle="color: red" infoStyle="color: green"/>

 <h:commandButton id="addMessage" action="#{messageController.newMessage}"
 value="New Message"/>

 </h:form>
 </h:body>
</html>

The managed bean in this example is named MessageController. It will create a JSF message upon initialization,
and then each time the newMessage method is invoked, another message will be displayed. Also, if the text java is
entered into the text field that corresponds to the h:inputText tag, then a success message will be displayed for that
component. Otherwise, if a different value is entered into that field or if the field is left blank, then an error message
will be displayed. The following listing is that of MessageController:

package org.javaeerecipes.chapter03.recipe03_04;

import java.util.Date;
import javax.annotation.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

120

/**
 * Recipe 3-4
 * @author juneau
 */
@SessionScoped
@ManagedBean
public class MessageController implements java.io.Serializable {
 int hitCounter = 0;
 private String javaText;

 /**
 * Creates a new instance of MessageController
 */
 public MessageController() {
 javaText = null;
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO, "Managed Bean
Initialized", null);

 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 }

 public void newMessage(){
 String hitMessage = null;
 hitCounter++;
 if(hitCounter > 1){
 hitMessage = hitCounter + " times";
 } else {
 hitMessage = hitCounter + " time";
 }

 Date currDate = new Date();
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "You've pressed that button " + hitMessage + "! The current date and time: "
 + currDate, null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 if (getJavaText().equalsIgnoreCase("java")){
 FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Good Job, that is the correct text!", null);
 FacesContext.getCurrentInstance().addMessage("componentForm:javaText", javaTextMsg);
 } else {
 FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "Sorry, that is NOT the correct text!", null);
 FacesContext.getCurrentInstance().addMessage("componentForm:javaText", javaTextMsg);
 }
 }

 /**
 * @return the javaText
 */

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

121

 public String getJavaText() {
 return javaText;
 }

 /**
 * @param javaText the javaText to set
 */
 public void setJavaText(String javaText) {
 this.javaText = javaText;
 }
}

The message will be displayed on the page in red text if it is an error message and in green text if it is an informational
message. In this example, the initialization message is printed green, and the update message is printed in red.

How It Works
It is always a good idea to relay messages to application users, especially in the event that some action needs to be
taken by the user. The JSF framework provides an easy façade that allows messages to be added to a view from the JSF
managed bean. To use the façade, add the h:message component to a view for displaying messages that are bound
to specific components, and add the h:messages component to a view for displaying messages that are not bound
to specific components. The h:message component contains a number of attributes that can be used to customize
message output and other things. It can be bound to a component within the same view by specifying that component’s
id in the for attribute of h:message. The most important attributes for the h:message component are as follows:

•	 id: Specifies a unique identifier for the component

•	 rendered: Specifies whether the message is rendered

•	 errorStyle: Specifies the CSS styles to be applied to error messages

•	 errorClass: Indicates the CSS class to apply to error messages

•	 infoStyle: Specifies the CSS styles to be applied to informational messages

•	 infoClass: Indicates the CSS class to apply to informational messages

•	 for: Specifies the component for which the message belongs

For a list of all attributes available for the h:message component, please refer to the online documentation. In the
example for this recipe, the h:message component is bound to the h:inputText component with an id of javaText.
When the page is submitted, the newMessage method within the MessageController class is invoked. That method
is used in this example for generating messages to display on the page. If the text entered within the javaText
property matches Java, then a successful message will be printed on the page. To create a message, an instance
of the javax.faces.application.FacesMessage class is generated, passing three parameters that correspond to
message severity, message summary, and message detail. A FacesMessage object can be created without passing
any parameters, but usually it is more productive to pass the message into the constructor at the time of instantiation.
The general format for creating a FacesMessage object is as follows:

new FacesMessage(FacesMessage.severity severity, String summary, String detail)

Passing a static field from the FacesMessage class specifies the message severity. Table 3-2 shows the possible
message severity values along with their descriptions.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

122

In the example, if the value entered for the javaText property equals Java, then an informational message
is created. Otherwise, an error message is created. In either case, once the message is created, then it needs to be
passed into the current context using FacesContext.getCurrentInstance().addMessage(String componentId,
FacesMessage message). In the example, the method is called, passing a component ID of componentForm:javaText.
This refers to the component within the JSF view that has an ID of javaText (h:inputText component). The
componentForm identifier belongs to the form (h:form component) that contains the h:inputText component, so
in reality the h:inputText component is nested within the h:form component. To reference a nested component,
combine component IDs using a colon as a delimiter. The following is an excerpt from the example, demonstrating
how to create a message and send it to the h:message component:

FacesMessage javaTextMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "Sorry, that is NOT the correct text!", null);
FacesContext.getCurrentInstance().addMessage("componentForm:javaText", javaTextMsg);

The h:messages component can be used for displaying all messages that pertain to a view, or it can be used
for displaying only non-component-related messages by using the globalOnly attribute. All other attributes for
h:messages are very similar to the h:message component. By indicating a true value for the globalOnly attribute,
you are telling the component to ignore any component-specific messages. Therefore, any FacesMessage that is
sent to a specific component will not be displayed by h:messages. In the example, the message that is displayed by
h:messages is generated in the same manner as the component-specific message, with the exception of specifying
a specific component to which the message belongs. The following excerpt demonstrates sending an error message
to the h:messages component. Note that the last argument that is sent to the FacesMessage call is a null value. This
argument should be the clientId specification, and by setting it to null, you are indicating that there is no specified
client identifier. Therefore, the message should be a global message rather than tied to a specific component.

FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "You've pressed that button " + hitMessage + "! The current date and time: "
 + currDate, null);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);

Displaying the appropriate message at the right time within an application is very important. By utilizing
FacesMessages objects and displaying them using either the h:message or h:messages component, you can ensure
that your application users will be well informed of the application state.

3-5. Navigation Based Upon Conditions
Problem
Your JSF application contains multiple pages, and you want to set up navigation between them.

Table 3-2. FacesMessage Severity Values

Severity Description

SEVERITY_ERROR Indicates that an error has occurred

SEVERITY_FATAL Indicates that a serious error has occurred

SEVERITY_INFO Indicates an informational message rather than an error

SEVERITY_WARN Indicates that an error may have occurred

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

123

Solution
Utilize one of the following techniques for performing navigation within JSF applications:

Utilize explicit navigation through the use of a JSF managed bean method along with a •	
corresponding faces-config.xml configuration file to control the navigation for your application.

Use implicit navigation for specifying the next view to render from within the managed bean.•	

Use implicit navigation by specifying the name of the view to render as the •	 action attribute of
a component tag, bypassing the managed bean altogether.

The example in this recipe consists of four JSF views, and each one contains h:commandButton components
that invoke navigation to another view. The h:commandButton components are linked to managed bean methods
that are present within the view’s corresponding managed bean named NavigationController. The first view listed
here contains two h:commandButton components, each of which invokes a method within the managed bean named
NavigationController. The first button utilizes explicit JSF navigation, and the second uses implicit navigation.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-5
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-5</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>JSF Navigation - Page 1</h1>
 <p>
 Clicking the submit button below will take you to Page #2.
 </p>

 <h:commandButton id="navButton" action="#{navigationController.pageTwo}"
 value="Go To Page 2"/>

 <h:commandButton id="navButton2" action="#{navigationController.nextPage}"
 value="Implicitly Navigate to Page 3"/>

 </h:form>
 </h:body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

124

The source for the second JSF view is very similar, except that a different managed bean method is specified
within the action attribute of the view’s h:commandButton component.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-5
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-5: JSF Navigation</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>JSF Navigation - Page 2</h1>
 <p>
 Clicking the submit button below will take you to Page #1.
 </p>

 <h:commandButton id="navButton" action="#{navigationController.pageOne}"
 value="Go To Page 1"/>
 </h:form>
 </h:body>
</html>

The third JSF view contains an h:commandButton component that invokes a managed bean action and utilizes
conditional navigation, rendering pages depending upon a conditional outcome within the faces-config.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-5
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-5: JSF Navigation</title>
 </h:head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

125

 <h:body>
 <h:form id="componentForm">
 <h1>JSF Navigation - Page 3</h1>
 <p>
 The button below will utilize conditional navigation to take a user
 to the next page.
 </p>

 <h:commandButton id="loginButton" action="#{navigationController.login}"
 value="Login Action"/>
 </h:form>
 </h:body>
</html>

Lastly, the fourth JSF view in the navigational example application contains an h:commandButton that invokes
a method and uses implicit navigation to return to the third JSF view, specifying the view name within the action
attribute directly and bypassing the managed bean altogether.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-5
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-5: JSF Navigation</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>JSF Navigation - Page 4</h1>
 <p>
 Clicking the submit button below will take you to Page #1 using conditional
 navigation rules.
 </p>

 <h:commandButton id="navButton2" action="recipe03_05c"
 value="Implicitly Navigate to Page 3"/>
 </h:form>
 </h:body>
</html>

Now let’s take a look at the source listing for NavigationController. It contains the methods that are specified
within each page’s h:commandButton action attribute. Some of the methods return a String value, and others do not.
However, after the methods are invoked, then the FacesServlet processes the request, and the faces-config.xml
configuration file is traversed, if needed, to determine the next view to render.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

126

 package org.javaeerecipes.chapter03.recipe03_05;

import javax.faces.bean.Named;
import javax.faces.bean.RequestScoped;

/**
 * Recipe 3-5
 * @author juneau
 */
@ManagedBean(name = "navigationController")
@RequestScoped
public class NavigationController implements java.io.Serializable{

 private boolean authenticated = false;

 /**
 * Creates a new instance of NavigationController
 */
 public NavigationController() {
 }

 public String pageOne(){
 return "PAGE_1;
 }

 public String pageTwo(){
 return "PAGE_2;
 }

 /**
 * Utilizing implicit navigation, a page name can be returned from an
 * action method rather than listing a navigation-rule within faces-config.xml
 * @return
 */
 public String nextPage(){
 // Perform some task, then implicitly list a page to render

 return "recipe03_05c";
 }

 /**
 * Demonstrates the use of conditional navigation
 */
 public void login(){
 // Perform some task and then return boolean
 setAuthenticated(true);
 System.out.println("Here");
 }

 /**
 * @return the authenticated
 */

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

127

 public boolean isAuthenticated() {
 return authenticated;
 }

 /**
 * @param authenticated the authenticated to set
 */
 public void setAuthenticated(boolean authenticated) {
 this.authenticated = authenticated;
 }
}

At the heart of the navigation is the faces-config.xml file. It specifies which view should be displayed after a
corresponding outcome. Two of the navigation-rules use standard JSF navigation, and the last navigation-rule
makes use of conditional navigation.

<?xml version='1.0' encoding='UTF-8'?>

<!-- =========== FULL CONFIGURATION FILE ================================== -->

<faces-config version="2.0"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">
 <navigation-rule>
 <from-view-id>/chapter03/recipe03_05a.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>PAGE_2/from-outcome>
 <to-view-id>/chapter03/recipe03_05b.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <from-view-id>/chapter03/recipe03_05b.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>PAGE_1</from-outcome>
 <to-view-id>/chapter03/recipe03_05a.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <navigation-case>
 <from-action>#{navigationController.login}</from-action>
 <if>#{navigationController.authenticated}</if>
 <to-view-id>/chapter03/recipe03_05d.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
</faces-config>

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

128

How It Works
One of the most daunting tasks when building a web application is to determine the overall page navigation. Many web
frameworks have instituted XML configuration files for organizing page navigation. This holds true for the JavaServer
Faces web framework, and the navigational XML is placed within a JSF application’s faces-config.xml configuration
file. When using standard navigation, JSF utilizes navigation rules to determine which view to render based upon the
outcome of page actions. If using standard JSF navigation, when a page action occurs, the managed bean method that
is associated with the action can return a String value. That value is then evaluated using the navigational rules that are
defined within the faces-config.xml file and used to determine which page to render next.

The standard navigation infrastructure works well in most cases, but in some instances it makes more sense
to directly list the next page to be rendered within the managed bean, rather than making a navigation rule in the
configuration file. When a managed bean action is invoked, it can return the name of a view, without the .xhtml
suffix. Such navigation was introduced with the release of JSF 2.0, and it is known as implicit navigation. As shown in
the fourth example for the solution, you can also perform implicit navigation by specifying the name of a view without
the suffix for an action attribute of the component tag.

Yet another type of navigation was introduced with JSF 2.0, taking navigation to the next level by allowing the
use of JSF EL expressions within the faces-config.xml navigation rules. Conditional navigation allows for an <if>
element to be specified within the navigational rule, which corresponds to a JSF EL condition. If the condition
evaluates to true, then the specified view is rendered.

Navigation rules are constructed in XML residing within the faces-config.xml descriptor, and each rule has a
root element of navigation-rule. Within each rule construct, the from-view-id element should contain the name
of the view from which the action method was invoked. A series of navigation-cases should follow the from-
view-id element. Each navigation-case contains a from-outcome element, which should be set to a String value
corresponding to the String value that is returned from a subsequent action method. For instance, when the pageOne
method is invoked in the example, the String "PAGE_1" is returned, and it should be specified within the from-
outcome element within a navigation-case in the faces-config.xml file. Lastly, the to-view-id element should
follow the from-outcome element within the navigation-case, and it should specify which view to render if the
String in from-outcome is returned from the action method. The following excerpt shows the standard navigation
rule that allows for navigation from page 1 to page 2 of the application:

<navigation-rule>
 <from-view-id>/chapter03/recipe03_05a.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>PAGE_1</from-outcome>
 <to-view-id>/chapter03/recipe03_05b.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

Implicit navigation does not require any XML navigation rules to be declared. The action method that is invoked
via an h:commandButton returns a String that is equal to the name of the view that should be rendered next. In the
example, the second h:commandButton on view 1 invokes the nextPage managed bean method, which returns the name
of the next view that should be rendered.

public String nextPage(){
 // Perform some task, then implicitly list a page to render

 return "recipe03_05c";
}

If you want to use implicit navigation, you can bypass the managed bean altogether and specify the name of the
view that you want to render directly within the action attribute of h:commandButton or h:commandLink. The fourth
JSF view in the example demonstrates this technique.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

129

The third view in the example, named recipe03_05c.xhtml, demonstrates conditional navigation. Its
h:commandButton action invokes the login method within the NavigationController managed bean. That
method does not contain much business logic in this example, but it does set the bean’s authenticated field
equal to true. Imagine that someone entered an incorrect password and failed to authenticate; in such a case,
then the authenticated field would be set to false. After the login method is executed, the faces-config.xml file
is parsed for the next view to render, and the conditional navigation rule utilizes JSF EL to specify the navigation
condition. The from-action element is set equal to the JSF EL that is used to invoke the login method, and
an <if> element is specified, referencing the navigationController.authenticated field via JSF EL. If that
field is equal to true, then the view specified within the to-view-id element will be rendered. Note that the
<redirect/> is required to tell JSF to redirect to the view listed in the <to-view-id> element since JSF uses a
redirect rather than a forward.

<navigation-rule>
 <navigation-case>
 <from-action>#{navigationController.login}</from-action>
 <if>#{navigationController.authenticated}</if>
 <to-view-id>/chapter03/recipe03_05d.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
</faces-config>

Standard JSF navigation allows enough flexibility for most cases, and its architecture is much more sophisticated
than other web frameworks. However, in JSF 2.0, two new navigational techniques known as implicit and conditional
navigation were introduced. With the addition of the new techniques, JSF navigation is more robust and easier to manage.

3-6. Updating Messages Without Recompiling
Problem
Rather than hard-coding messages into your managed bean classes, you want to specify the messages within a
property file so that they can be edited on the fly.

Solution
Create a resource bundle, and specify your messages within it. Then retrieve the messages from the bundle and add
them to the FacesMessages objects rather than hard-coding a String value. In the example that follows, a resource
bundle is used to specify a message that is to be displayed on a page. If you need to change the message at any time,
simply modify the resource bundle and reload the page in the browser.

The following code is for a JSF view that contains the h:messages component for displaying the message from a
corresponding managed bean:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-6
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

130

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-6: Specifying Updatable Messages</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>Utilizing a resource bundle</h1>
 <p>
 The message below is displayed from a resource bundle. The h:outputText
 component has been added to the page only to instantiate the bean for this
 example. To change the message, simply modify the corresponding message within
 the bundle and then refresh the page.
 </p>
 <h:outputText id="exampleProperty" value="#{exampleController.exampleProperty}"/>

 <h:messages errorStyle="color: red" infoStyle="color: green" globalOnly="true"/>
 </h:form>
 </h:body>
</html>

Next, the managed bean class is responsible for creating the message and sending it to the h:messages component
via the FacesContext. The following source is for ExampleController, which is the managed bean for the JSF view in
this example:

package org.javaeerecipes.chapter03.recipe03_06;

import java.util.ResourceBundle;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

@ManagedBean(name = "exampleController")
@RequestScoped
public class ExampleController {
 private String exampleProperty;

 /**
 * Creates a new instance of ExampleController
 */
 public ExampleController() {
 exampleProperty = "Used to instantiate the bean.";
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 ResourceBundle.getBundle("/org/javaeerecipes/chapter03/Bundle").
 getString("ExampleMessage"), null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 }

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

131

 /**
 * @return the exampleProperty
 */
 public String getExampleProperty() {
 return exampleProperty;
 }

 /**
 * @param exampleProperty the exampleProperty to set
 */
 public void setExampleProperty(String exampleProperty) {
 this.exampleProperty = exampleProperty;
 }
}

The resource bundle, which contains the message, is read by the managed bean to obtain the message. If you want
to update the message, you can do so without recompiling any code.

This file is an example resource bundle
ExampleMessage=This message can be changed by updating the message bundle!

When the page is loaded, the h:outputText component instantiates ExampleController, which in turn creates the
FacesMessage objects that are used to display the message on the screen.

How It Works
Oftentimes it is useful to have the ability to update custom system or user messages rather than hard-coding them.
This could be useful in the case that some custom information that is contained within a particular message may
have the possibility of changing in the future. It’d be nice to simply update the message in text format rather than
editing the code, recompiling, and redeploying your application. It is possible to create updateable messages using a
resource bundle. A resource bundle is simply a properties file, which contains name-value pairs. When adding custom
messages to a bundle, name the message appropriately and then add the custom message as the value portion of the
property. An application can then look up the property by name and utilize its value. In this case, the value is a String
that will be used to create a FacesMessage instance.

In the example, the bundle contains a property named ExampleMessage, along with a corresponding value. When
the JSF view is loaded into the browser, the ExampleController managed bean is instantiated, causing its constructor
to be executed. A FacesMessage instance is created, generating a message of type FacesMessage.SEVERITY_INFO,
and it reads the resource bundle and obtains the value for the ExampleMessage property. The following excerpt
demonstrates how to obtain a specified message value from the resource bundle:

ResourceBundle.getBundle("/org/javaeerecipes/chapter03/Bundle").getString("ExampleMessage"), null);

After the message is created, it is added to the current instance of FacesContext and, subsequently, displayed on
the page when it is rendered. Using a resource bundle to specify your messages can make life much easier because
you’ll no longer be required to recompile code in order to update such messages.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

132

3-7. Validating User Input
Problem
You want to add the ability for your application to validate any data that is entered into a JSF form.

Solution
Register a JSF validator on any text field components or other input components that need to be validated. Use
predefined JSF validators where applicable, and create custom validator classes when needed. The example for this
recipe utilizes predefined validators for two h:inputText components in order to ensure that the values entered into
them are of proper length. A custom validator is added to a third text field, and it is responsible for ensuring that the
text contains a specified String. The three fields make up an employee input form, and when an employee is entered
and the data validates successfully, a new Employee object is created and added to a list of employees. An h:dataTable
element in the view is used to display the list of employees if there are any. This is perhaps not the most true-to-life
example, but you can apply the basic philosophy to validate real-world needs within your own applications.

The following listing is for the JSF view that constructs the employee input form, including the validation tags for
each input text field:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-7
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-7: Validating Data</title>
 </h:head>
 <h:body>
 <h:form id="employeeForm">
 <h1>Java Developer Employee Information</h1>

 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>

 <h:dataTable id="empTable" var="emp"
 border="1" value="#{employeeController.employeeList}"
 rendered="#{employeeController.employeeList.size() > 0}">
 <f:facet name="header">
 Current Employees
 </f:facet>
 <h:column id="empNameCol">
 <f:facet name="header">Employee</f:facet>
 <h:outputText id="empName" value="#{emp.employeeFirst} #{emp.employeeLast}"/>
 </h:column>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

133

 <h:column id="titleCol">
 <f:facet name="header">Title</f:facet>
 <h:outputText id="title" value="#{emp.employeeTitle}"/>
 </h:column>

 </h:dataTable>
 <p>
 Please use the form below to insert employee information.
 </p>
 <h:panelGrid columns="3">
 <h:outputLabel for="employeeFirst" value="First: />
 <h:inputText id="employeeFirst" value="#{employeeController.employeeFirst}">
 <f:validateLength minimum="3" maximum="30"/>
 </h:inputText>
 <h:message for="employeeFirst" errorStyle="color:red"/>

 <h:outputLabel for="employeeLast" value="Last: " />
 <h:inputText id="employeeLast" value="#{employeeController.employeeLast}">
 <f:validateLength minimum="3" maximum="30"/>
 </h:inputText>
 <h:message for="employeeLast" errorStyle="color:red"/>

 <h:outputLabel for="employeeTitle" value="Title (Must be a Java Position): " />
 <h:inputText id="employeeTitle" value="#{employeeController.employeeTitle}">
 <f:validator validatorId="employeeTitleValidate" />
 </h:inputText>
 <h:message for="employeeTitle" errorStyle="color:red"/>

 </h:panelGrid>
 <h:commandButton id="employeeInsert" action="#{employeeController.insertEmployee}"
 value="Insert Employee"/>
 </h:form>
 </h:body>
</html>

The third h:inputText component in the view utilizes a custom validator. The f:validator tag is used to specify
a custom validator, and its validatorId attribute is used to specify a corresponding validator class. The following
listing is the Java code for a class named EmployeeTitleValidate, the custom validation class for the text field:

package org.javaeerecipes.chapter03.recipe03_07;

import java.util.Date;
import java.util.Locale;
import java.util.ResourceBundle;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

134

/**
 *
 * @author juneau
 */
@FacesValidator("employeeTitleValidate")
public class EmployeeTitleValidate implements Validator {

 @Override
 public void validate(FacesContext facesContext, UIComponent uiComponent, Object value)
 throws ValidatorException {

 checkTitle(value);

 }

 private void checkTitle(Object value) {
 String title = value.toString();
 if (!title.contains("Java")) {
 String messageText = "Title does not include the word Java";
 throw new ValidatorException(new FacesMessage(FacesMessage.SEVERITY_ERROR,
 messageText, messageText));
 }
 }
}

Now let’s take a look at the JSF managed bean for the JSF view that contains the validation tags. The managed bean
class is named EmployeeController, and the action method, insertEmployee, is used to add new Employee objects
containing valid data to an ArrayList.

package org.javaeerecipes.chapter03.recipe03_07;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.ResourceBundle;
import javax.faces.bean.SessionScoped;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.bean.ManagedBean;

/**
 * Recipe 3-7
 * @author juneau
 */
@ManagedBean(name = "employeeController")
@SessionScoped
public class EmployeeController implements Serializable {

 private String employeeFirst;
 private String employeeLast;
 private String employeeTitle;

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

135

 private List <Employee> employeeList;

 public EmployeeController(){
 employeeFirst = null;
 employeeLast = null;
 employeeTitle = null;
 employeeList = new ArrayList();
 }

 public void insertEmployee(){
 Employee emp = new Employee(employeeFirst,
 employeeLast,
 employeeTitle);
 employeeList.add(emp);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO, "Employee
Successfully Added", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 }

 /**
 * @return the employeeFirst
 */
 public String getEmployeeFirst() {
 return employeeFirst;
 }

 /**
 * @param employeeFirst the employeeFirst to set
 */
 public void setEmployeeFirst(String employeeFirst) {
 this.employeeFirst = employeeFirst;
 }

 /**
 * @return the employeeLast
 */
 public String getEmployeeLast() {
 return employeeLast;
 }

 /**
 * @param employeeLast the employeeLast to set
 */
 public void setEmployeeLast(String employeeLast) {
 this.employeeLast = employeeLast;
 }

 /**
 * @return the employeeTitle
 */

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

136

 public String getEmployeeTitle() {
 return employeeTitle;
 }

 /**
 * @param employeeTitle the employeeTitle to set
 */
 public void setEmployeeTitle(String employeeTitle) {
 this.employeeTitle = employeeTitle;
 }

 /**
 * @return the employeeList
 */
 public List <Employee> getEmployeeList() {
 return employeeList;
 }

 /**
 * @param employeeList the employeeList to set
 */
 public void setEmployeeList(List <Employee> employeeList) {
 this.employeeList = employeeList;
 }
}

Finally, the Employee class is a POJO that declares three fields: employeeFirst, employeeLast, and employeeTitle.
Each of these three fields is declared as private, and there are accessor methods that are used by the JSF view for
accessing the fields.

package org.javaeerecipes.chapter03.recipe03_07;

import java.io.Serializable;

/**
 * Recipe 3-7
 * @author juneau
 */
public class Employee implements Serializable {
 private String employeeFirst;
 private String employeeLast;
 private String employeeTitle;

 /**
 * Creates a new instance of EmployeeController
 */
 public Employee() {
 employeeFirst = null;
 employeeLast = null;
 employeeTitle = null;
 }

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

137

 public Employee(String first, String last, String title){
 employeeFirst = first;
 employeeLast = last;
 employeeTitle = title;
 }

 /**
 * @return the employeeFirst
 */
 public String getEmployeeFirst() {
 return employeeFirst;
 }

 /**
 * @param employeeFirst the employeeFirst to set
 */
 public void setEmployeeFirst(String employeeFirst) {
 this.employeeFirst = employeeFirst;
 }

 /**
 * @return the employeeLast
 */
 public String getEmployeeLast() {
 return employeeLast;
 }

 /**
 * @param employeeLast the employeeLast to set
 */
 public void setEmployeeLast(String employeeLast) {
 this.employeeLast = employeeLast;
 }

 /**
 * @return the employeeTitle
 */
 public String getEmployeeTitle() {
 return employeeTitle;
 }

 /**
 * @param employeeTitle the employeeTitle to set
 */
 public void setEmployeeTitle(String employeeTitle) {
 this.employeeTitle = employeeTitle;
 }
}

In the end, the validators will raise exceptions if a user attempts to enter an employee first or last name using an
invalid length or a title that does not contain the word Java. When user input validation fails, error messages are displayed
next to the components containing the invalid entries.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

138

How It Works
The JSF framework contains many features that make it more convenient for developers to customize their
applications. Validators are one of those features, because they can be used to solidify application data and ensure
data is correct before storing in a database or other data store. The JSF framework ships with a good deal of validators
that are already implemented. To use these predefined validators, simply embed the appropriate validator tag within
a component tag in a view to validate that component’s data values. Sometimes there are cases where the standard
validators will not do the trick. In such cases, JSF provides a means for developing custom validator classes that can
be used from within a view in the same manner as the predefined validators.

In the example for this recipe, two of the h:inputText components contain standard JSF validators used to
validate the length of the values entered. The f:validateLength tag can be embedded into a component for String
length validation, and the tag’s minimum and maximum attributes can be populated with the minimum and maximum
String length, respectively. As mentioned previously, JSF ships with a good number of these predefined validators.
All that the developer is required to do is embed the validator tags within the components that they want to validate.
Table 3-3 lists all standard validator tags and what they do. For a detailed look at each of the validator attributes,
please see the online documentation.

Table 3-3. Standard Validators

Validator Tag Description

validateLength Checks the length of a String

validateLongRange Checks the range of a numeric value

validateDoubleRange Checks the range of a floating-point value

validateRequired Ensures the input field is not empty (also an alternative to using the
required attribute on an input field component tag)

validateRegex Validates the component against a given regular expression pattern

Oftentimes, there is a need for some other type of validation to take place for a specified component. In such
cases, developing a custom validator class may be the best choice. Many developers shy away from writing their own
validators, because it seems to be a daunting task at first glance. However, JSF 2.0 took great strides toward making
custom validator classes easier to write and understand.

To create a custom validator class, implement the javax.faces.validator.Validator class. Annotate
the validator class with the @FacesValidator annotation, specifying the string you want to use for registering
your validator within the f:validator tag. In the example, the name used to reference the validator class is
employeeTitleValidate. The only requirement is that the validator class overrides the validate method, which is
where the custom validation takes place. The validate method contains the following signature:

public void validate(FacesContext facesContext, UIComponent uiComponent, Object value)
 throws ValidatorException

Utilizing the parameters that are passed into the method, you can obtain the current FacesContext, a handle
on the component being validated, as well as the component’s value. In the example, a helper method is called
from within the validate method, and it is used to check the component’s value and ensure that the word Java is
contained somewhere within it. If it does not validate successfully, a ValidatorException is created and thrown.
The message that is placed within the ValidatorException is what will appear next to the component being

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

139

validated if the validation fails. The following excerpt from the validation class demonstrates creating and throwing a
ValidatorException:

throw new ValidatorException(new FacesMessage(FacesMessage.SEVERITY_ERROR,
 messageText, messageText));

So, when does the validation occur? That is the key to the validator, isn’t it? The answer is immediately, before the
request is sent to the managed bean action method. Any validation occurs during the process validation phase, and if
one or more components being validated within a view throw a ValidatorException, then the processing stops, and
the request is not sent to the action method. When the user clicks the submit button, the validation takes place first,
and if everything is OK, then the request is passed to the action method.

Note ■ a means of validating that an input component simply contains a value is to use the required attribute. The
required attribute of input component tags can be set to true in order to force a value to be entered for that component.

The validation of components within a JSF view using standard validators can really save a developer some time
and increase the usability and precision of an application. The ability to create custom validators allows validation
to be performed for any scenario. Be constructive, use validation on all of your application’s input forms, and create
custom validators to perform validation using unique techniques. Your application users will appreciate it!

3-8. Evaluation of Page Expressions Immediately
Problem
You want to have some of your JSF component values evaluated immediately, rather than waiting until the form
is submitted.

Solution
Specify true for the component tag’s immediate attribute, and also specify the component’s onchange attribute and set
it equal to submit(). This will cause the input form to be submitted immediately when the value for the component
is changed, and JSF will skip the render response phase when doing so and will execute all components that specify
an immediate attribute set to true during the Apply Request Values phase. The example for this recipe uses the same
employee form that was demonstrated in Recipe 3-7. However, instead of waiting until the form is submitted, the first
and last h:inputText components will be evaluated and validated during the Apply Request Values phase immediately
when their values change. The following source is for the JSF view named recipe03_08.xhtml:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-8
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

140

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-8: Immediate View Evaluation</title>
 </h:head>
 <h:body>
 <h:form id="employeeForm">
 <h1>Java Developer Employee Information</h1>

 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>

 <h:dataTable id="empTable" var="emp"
 border="1" value="#{employeeController.employeeList}"
 rendered="#{employeeController.employeeList.size() > 0}">
 <f:facet name="header">
 Current Employees
 </f:facet>
 <h:column id="empNameCol">
 <f:facet name="header">Employee</f:facet>
 <h:outputText id="empName" value="#{emp.employeeFirst} #{emp.employeeLast}"/>
 </h:column>
 <h:column id="titleCol">
 <f:facet name="header">Title</f:facet>
 <h:outputText id="title" value="#{emp.employeeTitle}"/>
 </h:column>

 </h:dataTable>
 <p style="width: 40%;">
 Please use the form below to insert employee information. The first and
 last text fields will result in immediate evaluation during the apply request
 values phase, whereas the text field in the middle will result in standard
 evaluation and be validated during the invoke application phase.

 To test, try inserting just one character in the first text field
 and then tab to the next field. You should see an immediate result.
 </p>
 <h:panelGrid columns="3">
 <h:outputLabel for="employeeFirst" value="First: " />
 <h:inputText id="employeeFirst" immediate="true" onchange="submit()"
 value="#{employeeController.employeeFirst}">
 <f:validateLength minimum="3" maximum="30"/>
 </h:inputText>
 <h:message for="employeeFirst" errorStyle="color:red"/>

 <h:outputLabel for="employeeLast" value="Last: " />
 <h:inputText id="employeeLast" value="#{employeeController.employeeLast}">
 <f:validateLength minimum="3" maximum="30"/>
 </h:inputText>
 <h:message for="employeeLast" errorStyle="color:red"/>

 <h:outputLabel for="employeeTitle" value="Title (Must be a Java Position): " >
 <h:inputText id="employeeTitle" immediate="true" onchange="submit()"
 value="#{employeeController.employeeTitle}">

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

141

 <f:validator validatorId="employeeTitleValidate" />
 </h:inputText>
 <h:message for="employeeTitle" errorStyle="color:red"/>

 </h:panelGrid>
 <h:commandButton id="employeeInsert" action="#{employeeController.insertEmployee}"
 value="Insert Employee"/>
 </h:form>
 </h:body>
</html>

As you can see, the h:inputText components with ids of employeeFirst and employeeTitle specify both
the immediate="true" and the onchange="submit()" attributes. These two attributes cause the components to be
validated immediately rather than when the h:commandButton action is invoked.

How It Works
Event handling that occurs immediately can be useful in cases where you do not want to validate the entire form in
order to process input but, rather, when you want chosen components to be validated immediately. As mentioned
in Recipe 3-1, when a JSF view is processed, a number of phases are executed. As such, when a form is submitted,
the Invoke Application phase initiates the event handlers for view components, and validation occurs. When the
immediate attribute for a component is set to true, the event handlers for that component execute during the Apply
Request Values phase, which occurs before the Process Validation phase, where component validation normally
occurs. This allows for an immediate validation response for the specified components, resulting in immediate error
messages if needed.

As mentioned previously, specify the immediate attribute for a component and set it to true if you want to have
that component evaluated immediately. This will cause the component to be evaluated and validated during the
Apply Request Values phase. The real fun comes into play when you also specify the onclick attribute and set it equal
to submit(), causing the form to be submitted when the value for the component changes. Specifying attributes as
such will cause any component within the view that has an immediate attribute set to true to be validated when the
component value changes.

Note ■ The immediate attribute can also be useful when used on a commandButton component in such instances
where you do not want any form processing to take place, such as if you want to set up a Cancel button or another button
that bypasses form processing.

3-9. Passing Page Parameters to Methods
Problem
You want to pass parameters to managed bean methods from within a JSF view.

Solution
Use a standard JSF EL expression to invoke a managed bean method, and enclose the parameters that you want to
pass to the method within parentheses. In the example for this recipe, an h:dataTable component is used to display
a list of Author objects in a view. Each row within the h:dataTable contains an h:commandLink component, which

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

142

invokes a JSF managed bean method when selected. The h:commandLink displays the current row’s author name and
invokes the AuthorController class displayAuthor method when clicked, passing the last name for the author being
displayed in the current row. In the displayAuthor method, the list of authors is traversed, finding the element that
contains the same last name as the parameter, which is passed into the method. The current author is then displayed
in a subsequent page, which is rendered using implicit navigation.

The following source is for the JSF view entitled recipe03_09a.xhtml, which displays the list of authors using an
h:dataTable component:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-9 Passing Page Parameters to Methods
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-9: Passing Page Parameters to Methods</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>Author List</h1>
 <p>
 Below is the list of authors. Click on the author's last name
 for more information regarding the author.
 </p>

 <h:graphicImage id="java7recipes" style="width: 10%; height: 20%" library="image"
name="java7recipes.png"/>

 <h:dataTable id="authorTable" border="1" value="#{authorTableController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:commandLink id="authorName"
action="#{authorTableController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 </h:form>
 </h:body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

143

The next listing is that of the managed bean controller for the preceding JSF view. The managed bean populates
an ArrayList with Author objects upon instantiation.

package org.javaeerecipes.chapter03.recipe03_09;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

/**
 * Recipe 3-9
 *
 * @author juneau
 */
@ManagedBean(name = "authorTableController")
@SessionScoped
public class AuthorController implements Serializable {

 private List<Author> authorList = null;
 private String juneauBio =
 "Josh Juneau has been developing software"
 + " since the mid-1990s. PL/SQL development and database programming"
 + " was the focus of his career in the beginning, but as his skills developed,"
 + " he began to use Java and later shifted to it as a primary base for his"
 + " application development. Josh has worked with Java in the form of graphical"
 + " user interface, web, and command-line programming for several years. "
 + "During his tenure as a Java developer, he has worked with many frameworks"
 + " such as JSF, EJB, and JBoss Seam. At the same time, Josh has extended his"
 + " knowledge of the Java Virtual Machine (JVM) by learning and developing applications"
 + " with other JVM languages such as Jython and Groovy. His interest in learning"
 + " new languages that run on the JVM led to his interest in Jython. Since 2006,"
 + " Josh has been the editor and publisher for the Jython Monthly newsletter. "
 + "In late 2008, he began a podcast dedicated to the Jython programming language.";

 private String deaBio = "This is Carl Dea's Bio";
 private String beatyBio = "This is Mark Beaty's Bio";
 private String oConnerBio = "This is John O'Connor's Bio";
 private String guimeBio = "This is Freddy Guime's Bio";
 private Author current;
 /**
 * Creates a new instance of RecipeController
 */
 public AuthorController() {
 populateAuthorList();
 }

 private void populateAuthorList() {

 if(authorList == null){
 System.out.println("initializng authors list");

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

144

 authorList = new ArrayList<Author>();
 authorList.add(new Author("Josh", "Juneau", juneauBio));
 authorList.add(new Author("Carl", "Dea", deaBio));
 authorList.add(new Author("Mark", "Beaty", beatyBio));
 authorList.add(new Author("John", "O'Conner", oConnerBio));
 authorList.add(new Author("Freddy", "Guime", guimeBio));
 }
 }

 public String displayAuthor(String last){
 for(Author author:authorList){
 if(author.getLast().equals(last)){
 current = author;
 break;
 }
 }
 return "recipe03_09b";
 }

 /**
 * @return the authorList
 */
 public List getAuthorList() {
 System.out.println("Getting the authorlist =>" + authorList.size());
 return authorList;
 }

 /**
 * @return the current
 */
 public Author getCurrent() {
 return current;
 }

 /**
 * @param current the current to set
 */
 public void setCurrent(Author current) {
 this.current = current;
 }
}

The Author class is the same Author POJO that was utilized in Recipe 3-3. For the source of the Author class,
please refer to that recipe. Lastly, the following code is for a JSF view entitled recipe03_09b.xhtml, the detail
view for each author. When an author name is clicked from the h:dataTable component in the first view, the
component’s corresponding managed bean method is invoked, and then this view is rendered to display the selected
author’s information.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

145

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-9 Passing Page Parameters to Methods
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-9: Passing Page Parameters to Methods</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>#{authorTableController.current.first} #{authorTableController.current.last}</h1>
 <p>
 <h:graphicImage id="java7recipes" style="width: 10%; height: 20%"
url="../images/java7recipes.png"/>

 #{authorTableController.current.bio}
 </p>

 <h:link value="Go Back to List" outcome="recipe03_09a"/>

 </h:form>
 </h:body>
</html>

How It Works
The release of JSF 2.0 contained many enhancements that made the life of JSF developers much easier than before.
The ability to pass parameters to managed bean methods from within JSF views is one such enhancement. As you
can see from the example for this recipe, it is possible to pass parameters to a method within a JSF EL construct in
the same manner that you would call any method with parameters in Java: by enclosing the argument(s) within
parentheses after the method name. It cannot get much simpler than that!

Let’s take a look at the lines of code that make this example hum. The first JSF view displays a table of author
names, and each name is displayed using an h:commandLink component. The value attribute for the h:commandLink
component is set to the author name, and the action attribute is set to the JSF EL, which invokes a managed bean
action method named displayAuthor. Notice that within the call to the managed bean method, the EL for the
author’s last name is passed as a String parameter.

<h:dataTable id="authorTable" border="1" value="#{authorTableController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

146

 <h:column>
 <h:commandLink id="authorName"
action="#{authorTableController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

The displayAuthor method within the managed bean accepts a String parameter value, which is the author’s
last name, and then finds an Author object within the list of authors that contains the same last name. When found, a
class field named current is set equal to the Author object for the matching List element. The subsequent JSF view
then displays content utilizing the current Author information.

Prior to JSF 2.0, developers were unable to pass parameters to managed bean methods from within a view.
This made it a bit more difficult to perform such techniques and usually involved a bit more code.

3-10. Arithmetic and Reserved Words in Expressions
Problem
You want to perform some arithmetic and combine expressions within your JSF views.

Solution
JSF EL expressions can contain arithmetic using standard arithmetic operators. It is also possible to combine two or
more expressions utilizing some of JSF ELs reserved words. In the following example, some JSF EL expressions are
used to display mathematical results on a page. Both the usage of arithmetic and reserved words are used within
the expressions.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-10 Arithmetic and Reserved Words
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:c="http://java.sun.com/jsp/jstl/core">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-10: Arithmetic and Reserved Words</title>
 </h:head>
 <h:body>
 <h:form id="componentForm">
 <h1>JSF Arithmetic and Reserved Words in EL</h1>
 <p>
 The following examples use JSF EL to perform some arithmetic.
 </p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://java.sun.com/jsp/jstl/core
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

147

 1 + 1 = #{1 + 1}

 <h:outputText value="20 / 5 = #{20 / 5}"/>

 <h:outputText rendered="#{1 + 1 eq 2}" value="1 + 1 DOES equal 2"/>

 <h:outputText rendered="#{5 * 4 ne 20}" value="Is 5 * 4 equal to 20?"/>

 <h:outputText rendered="#{5 * 5 eq 25 and 1 + 1 eq 2}" value="Combining some expressions"/>

 <c:if test="#{evaluationController.expr1()}">
 This will be displayed if expr1() evaluates to true.
 </c:if>

 <c:if test="#{evaluationController.expr2() or evaluationController.field1}">
 This will be displayed if expr2() or field1 evaluates to true.
 </c:if>
 </h:form>
 </h:body>
</html>

Some of the expressions contain managed bean references for a bean named EvaluationController. The listing
for this managed bean is as follows:

package org.javaeerecipes.chapter03.recipe03_10;

import javax.faces.bean.Named;
import javax.faces.bean.RequestScoped;

/**
 * Recipe 3-10
 * @author juneau
 */
@ManagedBean(name = "evaluationController")
@RequestScoped
public class EvaluationController {

 private boolean field1 = true;

 /**
 * Creates a new instance of EvaluationController
 */
 public EvaluationController() {
 }

 public boolean expr1(){
 return true;
 }

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

148

 public boolean expr2(){
 return false;
 }

 /**
 * @return the field1
 */
 public boolean isField1() {
 return field1;
 }

 /**
 * @param field1 the field1 to set
 */
 public void setField1(boolean field1) {
 this.field1 = field1;
 }
}

The resulting page will look as follows:

The following examples use JSF EL to perform some arithmetic.
1 + 1 = 2
20 / 5 = 4.0
1 + 1 DOES equal 2

Combining some expressions
This will be displayed if expr1() evaluates to true.
This will be displayed if expr1() or field1 evaluates to true.

How It Works
It is possible to use standard arithmetic and combine expressions using reserved words within JSF EL expressions. All
standard arithmetic operators are valid within EL, but a couple of things are different. For instance, instead of writing an
expression such as #{1 + 1 = 2}, you could use the eq reserved characters so that the expression reads #{1 + 1 eq 2}.
Similarly, the != symbol could be used to specify that some value is not equal to another value, but rather, in this example,
the ne reserved word is used. Table 3-4 describes all such reserved words.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

149

Table 3-5 lists the available operators that can be used within JSF EL expressions, in order of precedence.

Table 3-4. JSF EL Reserved Words

Reserved Word Description

and Combines two or more expressions

div Used to divide

empty Used to refer to an empty list

eq Equal to

false Boolean false

ge Greater than or equal to

gt Greater than

instanceof Used to evaluate whether an object is an instance of another

le Less than or equal

lt Less than

mod Modulus

ne Not equal

not Used for negation

null Evaluates a null value

or Combines two or more expressions

true Boolean true

Table 3-5. Operators for Use in Expressions

Operator

[]

()

- (unary), not, !, empty

*, /, div, %, mod

+, - (binary)

<, >, <=, >=, lt, gt, le, ge

==, !, eq, ne

&&, and

||, or

?, :

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

150

3-11. Creating Bookmarkable URLs
Problem
You want to enable your application to allow URLs that will be linked to display specific objects. For instance, you
want to use a GET URL such as http://myserver.com/JavaEERecipes/chapter03/chapter03_11.xhtml?last=juneau
in order to display a page containing information on the author with the specified last name.

Solution
Add view parameters to a JSF view for which you want to create a bookmarkable URL by defining the parameter in
an f:viewParam tag, which is a subtag of the f:metadata tag. Doing so will allow a page to become accessible via a
URL that contains request parameters that can be used for record identification. In this example, the view contains
a view parameter, via the f:viewParam tag, that allows for the specification of an author’s last name when the view
is requested. For the example, the managed bean that was created in Recipe 3-9 has been modified to include a new
property named authorLast in order to accommodate the new view parameter.

The sources for the view named recipe03_11.xhtml are listed next. They are very similar to the view named
recipe03_09b.xhtml, except that they include an f:viewParam element, which is enclosed between opening and
closing f:metadata elements.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-11 Creating Bookmarkable URLs
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-11: Creating Bookmarkable URLs</title>
 </h:head>
 <h:body>

 <f:metadata>
 <f:viewParam name="authorLast" value="#{authorTableController.authorLast}"/>
 </f:metadata>
 <h:form id="componentForm">
 <h1>#{authorTableController.current.first} #{authorTableController.current.last}</h1>
 <p>
 <h:graphicImage id="java7recipes" style="width: 10%; height: 20%"
url="../images/java7recipes.png"/>

 #{authorTableController.current.bio}
 </p>

 <h:link value="Go Back to List" outcome="recipe03_09a"/>

http://myserver.com/JavaEERecipes/chapter03/chapter03_11.xhtml?last=juneau
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

151

 </h:form>

 </h:body>
</html>

The updated code for the org.javaeerecipes.chapter03.recipe03_09.AuthorController managed bean
class is listed next:

package org.javaeerecipes.chapter03.recipe03_09;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.faces.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean(name = "authorTableController")
@SessionScoped
public class AuthorController implements Serializable {

 ...
 private String authorLast;
 ...

 /**
 * @return the authorLast
 */
 public String getAuthorLast() {
 return authorLast;
 }

 /**
 * @param authorLast the authorLast to set
 */
 public void setAuthorLast(String authorLast) {
 displayAuthor(authorLast);
 }
}

As mentioned previously, a property has been added to the bean named authorList. This property makes it
possible for the JSF view listed in the example to accept a request parameter named authorList via a GET URL and
pass it to the bean when the page is requested. In the end, the URL for accessing the view and requesting the details
for the author Josh Juneau would be as follows:

http://my-server.com/JavaEERecipes/chapter03/chapter03_11.xhtml?authorLast=Juneau

http://my-server.com/JavaEERecipes/chapter03/chapter03_11.xhtml?authorLast=Juneau
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

152

How It Works
In the past, JSF applications had a weakness in that they used to require a launch view, which created an entry point
for accessing the application. This gave the application a view that would set up an initial state for the application
session. While this concept is nice because each user session would begin their session with an initialized application
state, it prohibited the ability for records to be linked directly via a URL. Sometimes it is very useful to have the ability
to link a view to a URL that contains request parameters so that record(s) matching the given parameters can be
returned to the view without further user interaction; for instance, say a web site included information regarding a
book and wanted to include a URL to find out more about the book’s author. It’s much nicer to directly link to a view
containing that author’s information rather than redirecting the user to a web site that requires them to perform a
manual search for the author. Such URLs are also known as bookmarkable URLs because the URL contains all of the
state that is required to make the request. Therefore, they allow the user of a web application to bookmark the URL for
direct access to a specific point within an application.

JSF 2.0 introduced the ability to include view parameters, adding the ability for views to accept request
parameters. Utilizing a GET-based URL, a request parameter can be appended to the end along with its value, and
a view containing the new view parameter can then pass the parameter to a managed bean before the response
is rendered. The bean can then accept the parameter value and query a database or search through some other
collection of data to find a record that matches the given value before rendering the response.

To include one or more view parameters within a view, you must add an opening and closing f:metadata element
to the view and embed the number of f:viewParam elements between them. The f:viewParam element includes two
attributes that must have values, those being the name and value attributes. The name attribute specifies the name of
the request parameter as you would like it to appear within the bookmarkable URL, and the value attribute specifies
the managed bean field that should be mapped to that request parameter. In the example for this recipe, the JSF view
contains a view parameter named authorLast, and the associated authorLast field within the managed bean contains
a setter method, which is invoked when the page is requested. The following excerpt from the view demonstrates the
lines for adding the metadata and view parameter:

<f:metadata>
 <f:viewParam name="authorLast" value="#{authorTableController.authorLast}"/>
</f:metadata>

With the addition of the view parameter, the page can be requested with a URL containing the authorLast
request parameter as follows:

http://my-server.com/JavaEERecipes/chapter03/chapter03_11.xhtml?authorLast=Juneau

When the page is requested, the view parameter’s value invokes the setAuthorLast method within the managed
bean, which then searches for an author record that contains a last name equal to the given request parameter value.

...
public void setAuthorLast(String authorLast) {
 displayAuthor(authorLast);
 }
...

The addition of view parameters to JSF 2.0 has made it easy to create bookmarkable URLs. This allows applications
to be more flexible and produce results immediately without requiring a user to navigate through several pages before
producing a result.

http://my-server.com/JavaEERecipes/chapter03/chapter03_11.xhtml?authorLast=Juneau
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

153

3-12. Displaying Lists of Objects
Problem
You want to display a list of objects within your rendered JSF page.

Solution
Use a JSF h:dataTable component to display the list objects, iterating over each object in the list and displaying the specified
values. The h:dataTable component is very customizable and can be configured to display content in a variety of layouts.
The following JSF view contains two h:dataTable components that are used to display the authors for the Java 7 Recipes
book using managed beans developed in previous recipes. The first table in the view is straightforward and displays the
names of each author. It has been formatted to display alternating row colors. The second table contains two rows for
each corresponding list element, displaying the author names on the first row and their bios on the second.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 3-12 Displaying Lists of Objects
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 3-12: Displaying Lists of Objects</title>

 <link href="#{facesContext.externalContext.requestContextPath}/css/styles.css"
 rel="stylesheet" type="text/css" />

 </h:head>
 <h:body>

 <h:form id="componentForm">
 <p>

 <h:graphicImage id="java7recipes" style="width: 10%; height: 20%"
url="../images/java7recipes.png"/>

 #{authorTableController.current.bio}
 </p>

 <h:dataTable id="authorTable" border="1"
 value="#{authorTableController.authorList}"
 styleClass="authorTable"
 rowClasses="authorTableOdd, authorTableEven"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

154

 </f:facet>
 <h:column>
 <h:outputText id="authorName" value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 <h:dataTable id="authorTable2" border="1" value="#{authorTableController.authorList}"
 var="author" width="500px;">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:panelGrid columns="2" border="1" width="100%">
 <h:outputText id="authorFirst" value="#{author.first}" style="width: 50%"/>
 <h:outputText id="authorLast" value="#{author.last}" style="width:50%"/>

 </h:panelGrid>
 <h:outputText id="authorBio" value="#{author.bio}"/>
 </h:column>
 </h:dataTable>

 </h:form>

 </h:body>
</html>

The example utilizes a cascading style sheet to help format the colors on the table. The source for the style sheet
is as follows:

.authorTable{
 border-collapse:collapse;
}
.authorTableOdd{
 text-align:center;
 background:none repeat scroll 0 0 #CCFFFF;
 border-top:1px solid #BBBBBB;
}

.authorTableEven{
 text-align:center;
 background:none repeat scroll 0 0 #99CCFF;
 border-top:1px solid #BBBBBB;
}

The resulting page should look similar to Figure 3-4.

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

155

Figure 3-4. JSF DataTable component examples

How It Works
A JSF h:dataTable component can be used to display lists of objects within a page. When rendered, an HTML table
is constructed, populating the cells of the table with the data for each list element or record of data. The h:dataTable
can iterate over a collection of data, laying it out in a columnar format including column headers and the ability to
customize the look using Cascading Style Sheets (CSS). The component contains a number of important attributes,
as listed in Table 3-6. Perhaps the most important of them are the value and var attributes. The value attribute

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

156

specifies the collection of data to iterate, and the var attribute lists a String that will be used to reference each
individual row of the table. The collection usually comes from the managed bean, such as in the example for this
recipe. The legal data types for the value attribute are Array, DataModel, List, and Result. The var attribute is used
within each column to reference a specific field within an object for the corresponding row.

Table 3-6. DataTable Attributes

Attribute Description

id ID for the component

border An integer indicating border thickness; 0 is default

bgcolor Background color of table

cellpadding Padding between the cell wall and its contents

cellspacing Spacing within the cells

width Overall width of the table, specified in pixels or percentages

first The first entry in the collection to display

rows Total number of rows to display

styleClass, captionClass,
headerClass, footerClass,
rowClasses, columnClasses

CSS attributes

rendered Boolean value indicating whether the component will be rendered

The h:dataTable can contain any number of columns, and each is specified within the h:dataTable component
in the JSF view. The h:column nested element encloses the output for each column. A column can contain just about
any valid component or HTML, even embedded dataTables. An h:column normally does not have any attributes
specified, but it always contains an expression or hard-coded value for display.

<h:column>my column value</h:column>

or

<h:column>#{myTable.myColValue}</h:column>

Normally, columns within an HTML table contain headers. You can add headers to the h:dataTable or
individual columns by embedding an f:facet element within the h:dataTable and outside of the column
specifications or within each h:column by specifying the name attribute as header. The f:facet element can also
specify caption for the name attribute in order to add a caption to the table. The following excerpt from the example
demonstrates an h:dataTable that includes each of these features:

<h:dataTable id="authorTable" border="1"
 value="#{authorTableController.authorList}"
 styleClass="authorTable"
 rowClasses="authorTableOdd, authorTableEven"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

157

 <h:column>
 <h:outputText id="authorName" value="#{author.first} #{author.last}"/>
 </h:column>
</h:dataTable>

In the example, you can see that the h:dataTable value attribute is listed as #{authorTableController.
authorList}, a List of Author objects declared within the managed bean. The var attribute establishes a variable
named author that refers to the current author who is being processed from the author list. The author variable can
then be accessed from within each h:column, displaying the data associated with the current list element.

An important piece of the puzzle to help make tables easier to read and follow is the CSS that can be used to
style the table. The h:dataTable supports various attributes that allow you to apply externally defined CSS classes to
your table, specifically, the styleClass, captionClass, headerClass, footerClass, rowClasses, and columnClasses
attributes. Each of them can contain a CSS class specification for formatting. The example demonstrates this feature.

3-13. Invoking Managed Bean Actions on Life-Cycle Phase Events
Problem
You want to automatically invoke a managed bean action when a specific JSF life-cycle phase event occurs. For
instance, when a view is loading, you want to invoke a managed bean action that performs a conditional verification
based upon the user who is visiting the page.

Solution
Utilize a JSF view action by adding the f:viewAction facet to the JSF view. Use the facet to specify the managed
bean action to invoke, as well as when to invoke the action. In the following excerpt from the view chapter03/
recipe03_13.xhtml, a managed bean method action named validateUser is invoked:

<f:metadata>
 <f:viewAction action="#{viewActionManagedBean.validateUser()}"/>
</f:metadata>

How It Works
In JSF 2.1 and prior, it was difficult to invoke action methods within a managed bean unless they were bound to a
command component. Sometimes it makes sense to invoke a method when the page is loading, after the page has
been fully loaded, and so on. In the past, this was done by using a preRenderView event listener, which invokes a
method contained within a managed before the view is rendered. Utilization of the preRenderView event listener
works, but it does not provide the level of control that is required to invoke a method during different phases of the
view life cycle. The preRenderView also requires developers to programmatically check the request type and work
with the navigation handler.

In the JSF 2.2 release, a new technique can be used to invoke action methods within a managed bean during
specified life-cycle events that occur within the view. A new tag, f:viewAction, can be bound to a view, and it can be
incorporated into the JSF life cycle in both non-JSF (initial) and JSF (postback) requests. To use the tag, it must be a
child of the metadata facet. View parameters can be specified within the metadata facet as well, and they will become
available from within the managed bean when the action method is invoked.

In the example, the action method named validateUser is invoked using the viewAction. In the example
method, a String is returned, which enables implicit navigation based upon the action method results. If null
is returned, the navigation handler is invoked, but the same view will be rendered again so long as there are no

http://www.it-ebooks.info/

ChapTEr 3 ■ ThE BaSICS oF JavaSErvEr FaCES

158

navigation condition expressions that change the navigation. If a String-based view name is returned, then the
navigation handler will render that view once the method has completed. This can come in handy for situations such
as authentication handling, where an action method is used to check the user’s role and then the appropriate view is
rendered based upon the authenticated user role.

public String validateUser() {
 String viewName;
 System.out.println("Look in the server log to see this message");
 // Here we would perform validation based upon the user visiting the
 // site to ensure that they had the appropriate permissions to view
 // the selected view. For the purposes of this example, this
 // conditional logic is just a prototype.
 if (visitor.isAdmin()){
 // visit the current page
 viewName = null;
 System.out.println("Current User is an Admin");
 } else {
 viewName = "notAdmin";
 System.out.println("Current User is NOT an Admin");
 }
 return viewName;
 }

As mentioned previously, f:viewAction facet can be customized to allow the action method to be invoked at
different stages within the view life cycle. By default, the viewAction will be initiated before postback because the
specified action method is expected to execute whether the request was Faces or non-Faces. However, this can be
changed by setting the onPostback attribute of the f:viewAction tag to true.

<f:viewAction action="#{viewActionManagedBean.validateUser()}" onPostback="true"/>

If you need to get even more granular and invoke a view action during specified life-cycle phase, it is possible by
setting the phase attribute to the phase required. Table 3-7 specifies the different phases along with their phase value.

Table 3-7. JSF Life-Cycle Phases

Phase Tag Value

Restore View RESTORE_VIEW

Apply Request Values APPLY_REQUEST_VALUES

Process Validations PROCESS_VALIDATIONS

Update Model Values UPDATE_MODEL_VALUES

Invoke Application INVOKE_APPLICATION

Render Response RENDER_RESPONSE

The following example demonstrates the f:viewAction facet that will cause the action to be invoked during the
Process Validations phase:

<f:viewAction action="#{viewActionManagedBean.validateUser()}"
 phase="PROCESS_VALIDATIONS"/>

http://www.it-ebooks.info/

159

Chapter 4

Facelets

In the early days of web development, web pages consisted of many HTML tables for structuring layout and lots of
redundancy across application pages. This made development of web pages cumbersome and difficult to maintain at
best. Over the years, other technologies such as Cascading Style Sheets (CSS) have come along to help web developers
organize and style their pages. Such technologies encouraged organization by allowing developers to encapsulate
styles into separate files, leaving the markup within pages easier to follow. Other technologies such as Tiles came
along to help reduce the amount of redundancy that was incurred by providing a similar layout to all pages of an
application. Tiles allowed developers to construct a single layout and apply it to several different web pages. Facelets
is a view definition language that was introduced to help organize JSF views. Facelets follows in the footsteps of Tiles,
in that it allows developers to encapsulate layouts into separate files and apply them to different JSF views. . . and
that functionality only scratches the surface! While Facelets can be used to create layouts and build templates for JSF
applications, it also brings with it many other significant advantages.

Facelets became the default view definition language of JSF with the release of JSF 2.0. Prior to that, Facelets had
to be applied to an application separately. Developers of JSF 2.0+ applications can begin to use Facelets out of the
box, without any additional application configuration. In addition to helping build application templates, Facelets
provides built-in components to facilitate iteration over collections of data, debugging, inserting view fragments into
other views, and so forth.

This chapter will cover an array of recipes to help developers gain an understanding of some beginning,
intermediate, and advanced Facelets techniques.

4-1. Creating a Page Template
Problem
You want to make each of the JSF views within your application follow the same structure. Moreover, you want to have
the ability to reuse the same layout for each view.

Solution
Create a page template using the Facelets view definition language. Facelets ships as part of JavaServer Faces, and you
can use it to create highly sophisticated layouts for your views in a proficient manner. The template demonstrated in
this recipe will be used to define the standard layout for all pages within an application. The demo application for this
chapter is for a bookstore web site. The site will display a number of book titles on the left side of the screen, a header
at the top, a footer at the bottom, and a main view in the middle. When a book title is clicked in the left menu, the
middle view changes, displaying the list of authors for the selected book.

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

160

To create a template, you must first develop a new XHTML view file and then add the appropriate HTML/JSF/XML
markup to it. Content from other views will displace the ui:insert elements in the template once the template has
been applied to one or more JSF views. The following source is that of a template named custom_template.xhtml; this
is the template that will be used for all views within the application:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-1
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <link href="./../../resources/css/default.css" rel="stylesheet" type="text/css" />
 <link href="./../../resources/css/cssLayout.css" rel="stylesheet" type="text/css" />
 <title>#{faceletsAuthorController.storeName}</title>
 </h:head>

 <h:body>

 <div id="top">
 <h2>#{faceletsAuthorController.storeName}</h2>
 </div>
 <div>
 <div id="left">
 <h:form id="navForm">
 <h:commandLink action="#{faceletsAuthorController.populateJavaRecipesAuthorList}" >
Java 7 Recipes</h:commandLink>

 <h:commandLink action="#{faceletsAuthorController.populateJavaEERecipesAuthorList}">
Java EE 7 Recipes </h:commandLink>
 </h:form>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 <div id="bottom">
 Written by Josh Juneau, Apress Author
 </div>

 </h:body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

161

The template defines the overall structure for the application views. However, it uses a CSS style sheet to declare
the formatting for each of the <div> elements within the template. The style sheet, entitled default.css, should be
contained within a resources directory in the application so that it will be accessible to the views.

Note ■ the Css style sheets are automatically generated for you if using the NetBeans IDe.

There are also a couple of JSF EL expressions utilized within the template. The EL references a JSF managed bean
by the name of AuthorController, which is referenced by faceletsAuthorController. While the source for this class
is very important for the overall application, you’ll wait to look at that code until Recipe 4-2 since it does not play a
role in the application template layout.

How It Works
To create a unified application experience, the views should be coherent in that they look similar and function in a
uniform fashion. The idea of developing web page templates has been around for a number of years, but unfortunately
many template implementations contain duplicate markup on every application page. While duplicating the same
layout for every separate web page works, it creates a maintenance nightmare. What happens when there is a need to
update a single link within the page header? Such a conundrum would cause a developer to visit and manually update
every web page for an application if the template was duplicated on every page. The Facelets view definition language
provides a robust solution for the development of view templates, and it is one of the major bonuses of working with
the JSF technology.

Facelets provides the ability for a single template to be applied to one or more views within an application. This
means a developer can create one view that constructs the header, footer, and other portions of the template, and then
this view can be applied to any number of other views that are responsible for containing the main view content. This
technique mitigates issues such as changing a single link within the page header, because now the template can be
updated with the new link, and every other view within the application will automatically reflect the change.

To create a template using Facelets, create an XHTML view, declare the required namespaces, and then add
HTML, JSF, and Facelets tags accordingly to design the layout you desire. The template can be thought of as an
“outer shell” for a web view, in that it can contain any number of other views within it. Likewise, any number of
JSF views can have the same template applied, so the overall look and feel of the application will remain constant.
Figure 4-1 provides a visual demonstrating the concept of an application template.

Figure 4-1. Visual representation of a Facelets template and client

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

162

You may have noticed from the view listing in the solution to this recipe that there are some tags toting the ui:
prefix. Those are the Facelets tags that are responsible for controlling the view layout. To utilize these Facelets tags,
you’ll need to declare the XML namespace for the Facelets tag library in the <html> element within the template. Note
that the XML namespace for the standard JSF tag libraries is also specified here.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
...

Note ■ the Facelets template must include the <html>, <head>, or <h:head>, and <body> or <h:body>, elements
because they are what define the overall layout for each view that uses it. the <h:head> and <h:body> elements will be
covered in detail in Chapter 5. each view that makes use of a Facelets template is known as a composition. One template
can be used by multiple compositions or views. In actuality, everything outside of the <ui:composition> opening and
closing tags within a composition is ignored. You’ll learn more about that in recipe 4-2!

Facelets contains a number of special tags that can be used to help control page flow and layout. Table 4-1 in
Recipe 4-2 lists the Facelets tags that are useful for controlling page flow and layout. The only Facelets tag that is used
within the template for this recipe example is ui:insert. The ui:insert tag contains a name attribute, which is set to
the name of the corresponding ui:define element that will be included in the view. Taking a look at the source for
this recipe, you can see the following ui:insert tag:

<ui:insert name="content">Content</ui:insert>

If a view that uses the template, a.k.a. template client, specifies a ui:define tag with the same name as the
ui:insert name, then any content that is placed between the opening and closing ui:define tags will be inserted
into the view in that location. However, if the template client does not contain a ui:define tag with the same name
as the ui:insert tag, then the content between the opening and closing ui:insert tags within the template will be
displayed.

Templates can be created via an IDE, such as NetBeans, to provide a more visual representation of the layout you
are trying to achieve. To create a Facelets template from within NetBeans, right-click the project folder into which
you want to place the template, and select New ➤ Other from the contextual menu to open the New File window.
Once that’s open, select JavaServer Faces from the Category menu and then Facelets Template from within the file
types, as shown in Figure 4-2.

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

163

After you’ve selected the Facelets Template file type, click the Next button to open the New Facelets Template
window (Figure 4-3). This window will allow you to select the overall layout that you would like to compose for your
application views, as well as choose the location and name for the template.

Figure 4-2. Creating a Facelets template from within NetBeans

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

164

After you’ve selected the layout of your choice and filled in the other options, the template will be opened within the
NetBeans code editor, and you can begin to apply the template to JSF view clients (see Recipe 4-2). Using a wizard such
as the one offered by NetBeans can help since a visual representation of the template can be chosen at creation time.

In summary, a Facelets template consists of HTML and JSF markup, and it is used to define a page layout.
Sections of the template can specify where page content will be displayed through the usage of the ui:insert tag. Any
areas within the template that contain a ui:insert tag can have content inserted into them from a template client. To
learn more about applying a template to your views, please see Recipe 4-2.

4-2. Applying a Template to Your Views
Problem
You have created a template for use within your JSF web views and you want to apply it to the views of your application.

Solution
Use the ui:composition tag within each view that will utilize the template. The ui:composition tag should be used
to invoke the template, and ui:define tags should be placed where content should be inserted. The following listings
demonstrate how Facelets templates are applied to various views.

Figure 4-3. New Facelets Template window in NetBeans

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

165

View #1: recipe04_01a.xhtml
recipe04_01a.xhtml is the markup for a view within the bookstore application that is used to display the authors for
the Java 7 Recipes book. The template that was created in Recipe 4-1 is applied to the view, and individual ui:define
tags are used within the view to specify the content that should be inserted into the page/view.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-1
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="./layout/custom_template.xhtml">
 <ui:define name="top">
 </ui:define>
 <ui:define name="left">
 </ui:define>

 <ui:define name="content">
 <h:form id="componentForm">
 <h1>Author List for Java 7 Recipes</h1>
 <p>
 Below is the list of authors. Click on the author's last name
 for more information regarding the author.
 </p>

 <h:graphicImage id="javarecipes" style="width: 100px; height: 120px" library="image"
 name="java7recipes.png"/>

 <h:dataTable id="authorTable" border="1"
value="#{faceletsAuthorController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:commandLink id="authorName"
action="#{faceletsAuthorController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

166

 </h:form>
 </ui:define>

 <ui:define name="bottom">
 bottom
 </ui:define>

 </ui:composition>
 </body>
</html>

View #2: recipe04_01b.xhtml
recipe04_01b.xhtml contains the sources for the second view within the bookstore application. It is used to list the
authors for the Java EE 7 Recipes book. Again, note that the template has been applied to the view by specifying the
template attribute within the ui:composition tag.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-1
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="./layout/custom_template.xhtml">

 <ui:define name="top">
 </ui:define>

 <ui:define name="left">
 </ui:define>

 <ui:define name="content">
 <h:form id="componentForm">
 <h1>Author List for Java EE 7 Recipes</h1>
 <p>
 Below is the list of authors. Click on the author's last name
 for more information regarding the author.
 </p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

167

 <h:graphicImage id="javarecipes" style="width: 100px; height: 120px" library="image"
 name="java7recipes.png"/>

 <h:dataTable id="authorTable" border="1"
value="#{faceletsAuthorController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:commandLink id="authorName"
action="#{faceletsAuthorController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 </h:form>
 </ui:define>

 <ui:define name="bottom">
 bottom
 </ui:define>

 </ui:composition>
 </body>
</html>

View #3: recipe04_01c.xhtml
recipe04_01c.xhtml contains the sources for another view listing that is part of the bookstore application. This view
is responsible for displaying the individual author detail. Again, the template is applied to this page.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-1
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 4-1: Facelets Page Template</title>
 </h:head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

168

 <h:body>
 <ui:composition template="./layout/custom_template.xhtml">

 <ui:define name="top">
 </ui:define>

 <ui:define name="left">
 </ui:define>

 <ui:define name="content">
 <h:form id="componentForm">
 <h1>#{faceletsAuthorController.current.first}
#{faceletsAuthorController.current.last}</h1>
 <p>
 <h:graphicImage id="java7recipes" style="width: 10%; height: 20%"
url="../images/java7recipes.png"/>

 #{faceletsAuthorController.current.bio}
 </p>
 </h:form>
 </ui:define>

 <ui:define name="bottom">
 bottom
 </ui:define>

 </ui:composition>
 </h:body>
</html>

Managed Bean Controller: AuthorController
Of course, all the business logic and navigation is occurring from within a JSF managed bean. AuthorController is
the bean that handles all the logic for the bookstore application. Note that the @ManagedBean annotation specifies a
String value of faceletsAuthorController, which is used to reference the bean from within the views.

package org.javaeerecipes.chapter04.recipe04_01;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

/**
 * Recipe 4-1
 *
 * @author juneau
 */

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

169

@ManagedBean(name = "faceletsAuthorController")
@SessionScoped
public class AuthorController implements Serializable {

 private List <Author> authorList;
 private String storeName = "Acme Bookstore";

 private String juneauBio =
 "Josh Juneau has been developing software"
 + " since the mid-1990s. PL/SQL development and database programming"
 + " was the focus of his career in the beginning, but as his skills developed,"
 + " he began to use Java and later shifted to it as a primary base for his"
 + " application development. Josh has worked with Java in the form of graphical"
 + " user interface, web, and command-line programming for several years. "
 + "During his tenure as a Java developer, he has worked with many frameworks"
 + " such as JSF, EJB, and JBoss Seam. At the same time, Josh has extended his"
 + " knowledge of the Java Virtual Machine (JVM) by learning and developing applications"
 + " with other JVM languages such as Jython and Groovy. His interest in learning"
 + " new languages that run on the JVM led to his interest in Jython. Since 2006,"
 + " Josh has been the editor and publisher for the Jython Monthly newsletter. "
 + "In late 2008, he began a podcast dedicated to the Jython programming language.";
 private String deaBio = "This is Carl Dea's Bio";
 private String beatyBio = "This is Mark Beaty's Bio";
 private String oConnerBio = "This is John O'Connor's Bio";
 private String guimeBio = "This is Freddy Guime's Bio";
 private Author current;
 private String authorLast;

 /**
 * Creates a new instance of RecipeController
 */
 public AuthorController() {
 populateJavaRecipesAuthorList();
 }

 pubilc String populateJavaRecipesAuthorList() {

 authorList = new ArrayList<>();
 authorList.add(new Author("Josh", "Juneau", juneauBio));
 authorList.add(new Author("Carl", "Dea", deaBio));
 authorList.add(new Author("Mark", "Beaty", beatyBio));
 authorList.add(new Author("John", "O'Conner", oConnerBio));
 authorList.add(new Author("Freddy", "Guime", guimeBio));
 return "recipe04_01a";
 }

 public String populateJavaEERecipesAuthorList() {
 System.out.println("initializng authors list");
 authorList = new ArrayList<>();
 authorList.add(new Author("Josh", "Juneau", juneauBio));
 return "recipe04_01b";

 }

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

170

 public String displayAuthor(String last) {
 for (Author author : authorList) {
 if (author.getLast().equals(last)) {
 current = author;
 }
 }
 return "recipe04_01c";
 }

 /**
 * @return the authorList
 */
 public List getAuthorList() {
 return authorList;
 }

 /**
 * @return the current
 */
 public Author getCurrent() {
 return current;
 }

 /**
 * @param current the current to set
 */
 public void setCurrent(Author current) {
 this.current = current;
 }

 /**
 * @return the authorLast
 */
 public String getAuthorLast() {
 return authorLast;
 }

 /**
 * @param authorLast the authorLast to set
 */
 public void setAuthorLast(String authorLast) {
 this.authorLast = authorLast;
 }

 /**
 * @return the storeName
 */
 public String getStoreName() {
 return storeName;
 }

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

171

 /**
 * @param storeName the storeName to set
 */
 public void setStoreName(String storeName) {
 this.storeName = storeName;
 }
}

In the end, the overall application will look like Figure 4-4. To run the application from the sources, deploy
the WAR file distribution to your application server, and then load the following URL into your browser:
http://your-server:port_number/JavaEERecipes/faces/chapter04/chapter04_01a.xhtml.

Figure 4-4. Application using Facelets template

How It Works
Applying a Facelets template to individual views within a JSF application is quite easy. Views that make use of a
template are known as template clients. As mentioned in Recipe 4-1, a view template can specify individual ui:insert
tags, along with the name attribute, in any location on the template where view content could be inserted. The name
attribute within the ui:insert tag will pair up with the name attribute within the ui:define tag in the template client
in order to determine what content is inserted.

Note ■ as noted in recipe 4-1, each view that uses a Facelets template can be referred to as a composition.
It can also be referred to as a template client. It is important to note that a template client, or composition, contains
an opening and closing <ui:composition> tag. everything outside of those tags is actually ignored at rendering time
because the template body is used instead. You can also omit the <html> tags within a template client and just open
and close the view using the <ui:composition> tags instead. please see the “Opening/Closing template Clients with
<ui:composition>” sidebar for an example.

http://your-server:port_number/JavaEERecipes/faces/chapter04/chapter04_01a.xhtml
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

172

Opening/ClOsing template Clients with <ui:COmpOsitiOn>

It is common to see template client views using opening and closing <html> tags, as demonstrated with the
example views in the solution to this recipe. however, since everything outside of the <ui:composition> tags
is ignored at rendering time, you can omit those tags completely. It is sometimes useful to open and close a
template client with the <ui:composition> tag. however, some page editors will be unable to work with the code
or errors will be displayed because the view does not include the <html> element at its root. here’s an example of
using <ui:composition> as the opening and closing elements of a template client:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h=http://xmlns.jcp.org/jsf/html
 template="./layout/custom_template.xhtml">

<<same as code per the view samples in the solution to this recipe>>

 </ui:composition>

Use the technique that suits your application the best! remember, JsF and Facelets will treat each view the same,
and you can save a few lines of code specifying <ui:composition> as the root.

Applying Templates
A template can be applied to a view by specifying it within the template attribute within the view’s ui:composition
tag. For instance, all the views within this example specify the same template, as you can see in the following excerpt:

<ui:composition template="./layout/custom_template.xhtml">

The name of the template in the example is custom_template.xhtml, and the path to the template is ./layout/.
The ui:composition tag should encapsulate all other markup within a Facelets view. All views that are to use the
template must specify the ui:composition tag. A number of other useful Facelets template tags come along with
Facelets, as described in Table 4-1.

Table 4-1. Facelets Page Control and Template Tags

Tag Description

ui:component Defines a template component and specifies a file name for the component

ui:composition Defines a page composition and encapsulates all other JSF markup

ui:debug Creates a debug component, which captures debugging information, namely, the state of the
component tree and the scoped variables in the application, when the component is rendered

ui:define Defines content that is inserted into a page by a template

ui:decorate Decorates pieces of a page

ui:fragment Defines a template fragment, much like ui:component, except that all content outside of tag is
not disregarded

(continued)

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

173

The ui:define tag encloses content that will be inserted into the template at the location of the template’s
ui:insert tags. The ui:define tag is matched to a template’s ui:insert tag based on the value of the name attribute
that is common to each tag. As you can see from the first view listing in this example, the first ui:define tag specifies
top for the name attribute, and this will correspond to the template ui:insert tag with a name attribute equal to top.
But the template does not specify such a tag! That is OK; there does not have to be a one-to-one match between the
ui:define and ui:insert tags. A view can specify any number of ui:define tags, and if they do not correspond to
any of the ui:insert tags within the template, then they are ignored. Likewise, a template can specify any number of
ui:insert tags, and if they do not correspond to a ui:define tag within the template client view, then the content that
is defined within the template in that location will be displayed.

Looking at the same view, another ui:define tag contains a name attribute value equal to content, and this
tag does correspond with a ui:insert tag within the template that also has a name attribute value of content. The
following excerpt is taken from the template, and it shows the ui:insert tag that corresponds to the view’s ui:define
tag with the same name attribute. You can see the full listing for the template in Recipe 4-1.

<div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
</div>

The following excerpt, taken from recipe04_01a.xhtml, is the corresponding ui:define tag that will be inserted
into the template at this location:

<ui:define name="content">
 <h:form id="componentForm">
 <h1>Author List for Java 7 Recipes</h1>
 <p>
 Below is the list of authors. Click on the author's last name
 for more information regarding the author.
 </p>

 <h:graphicImage id="javarecipes" style="width: 10%; height: 20%" library="image"
name="java7recipes.png"/>

 <h:dataTable id="authorTable" border="1"
value="#{faceletsAuthorController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>

Tag Description

ui:include Allows another XHTML page to be encapsulated and reused within a view

ui:insert Inserts content into a template

ui:param Passes parameters to an included file or template

ui:repeat Iterates over a collection of data

ui:remove Removes content from a page

Table 4-1. (continued)

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

174

 <h:column>
 <h:commandLink id="authorName"
action="#{faceletsAuthorController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 </h:form>
 </ui:define>

As you can see, it can be very powerful to define a view template that can be applied to several views within
an application. Facelets templating provides a very powerful solution for defining such a template, allowing for
consistent page layout and reusable page code.

4-3. Ensuring Resource Availability from All Views
Problem
You want to include resources, such as CSS, images, and JavaScript code, within your views that are accessible for
use from every view within your application. For instance, rather than hard-coding a URL to an image, you want to
reference the image location and have the application dynamically create the URL to the image location at runtime.

Solution
Create a resource directory and, optionally, subfolders within the resources directory to contain the resources that
your application will utilize. Any CSS files, images, and so on, that are placed within subdirectories in the resources
folder can be referenced within a JSF view via a JSF component’s library attribute, rather than specifying the full
path to the resource. In the following example, a cascading style sheet is used to style the table of authors within
the application. For this recipe, you will use the styles.css sheet that was applied to the h:dataTable in Recipe
3-12. The style sheet declaration will reside within the custom_template.xhtml template, and you will use an
h:outputStylesheet component rather than a <link> tag. As a matter of fact, all of the <link> tags will be removed
and replaced with h:outputStylesheet components to take advantage of the resources folder. The directory
structure should look like Figure 4-5 when set up correctly.

Figure 4-5. Utilizing the resources directory

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

175

The following listing is the updated custom_template.xhtml, because it now utilizes the h:outputStylesheet
component rather than the <link> tag. Note that the library attribute is specified as css.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-3
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet library="css" name="default.css"/>
 <h:outputStylesheet library="css" name="cssLayout.css"/>
 <h:outputStylesheet library="css" name="styles.css"/>
 <title>#{faceletsAuthorController.storeName}</title>
 </h:head>

 <h:body>

 <div id="top">
 <h2>#{faceletsAuthorController.storeName}</h2>
 </div>
 <div>
 <div id="left">
 <h:form id="navForm">
 <h:commandLink
action="#{faceletsAuthorController.populateJavaRecipesAuthorList}" >Java 7
Recipes</h:commandLink>

 <h:commandLink
action="#{faceletsAuthorController.populateJavaEERecipesAuthorList}">Java EE 7
Recipes </h:commandLink>
 </h:form>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 <div id="bottom">
 Written by Josh Juneau, Apress Author
 </div>

 </h:body>

</html>

i

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

176

The h:dataTable component that is used to list the authors within the views of the Acme Bookstore application
can now make use of the styles that are listed within styles.css. The following excerpt from the XHTML document
named recipe04_03.xhtml demonstrates the h:dataTable component with the styles applied:

<h:dataTable id="authorTable" border="1" value="#{faceletsAuthorController.authorList}"
 styleClass="authorTable"
 rowClasses="authorTableOdd, authorTableEven"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:commandLink id="authorName"
 action="#{faceletsAuthorController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

The table should now look like Figure 4-6 when rendered on a page.

Figure 4-6. Author table with styles applied

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

177

How It Works
It is easy to add a resource to a JSF application because there is no need to worry about referring to a static path when
declaring the resources. Since the release of JSF 2.0, the resources folder can be used to list subfolders, also known as
libraries, into which the resources can be placed. The JSF components that can use resources now have the library
attribute baked into them. This allows a specific library to be specified for such components so that the component
will know where to find the resources that it requires.

To use the new resources folder, create a folder at the root of an application’s web directory and name it
resources. That resources folder can then contain subfolders, which will become the libraries that can be utilized
within the JSF components. For instance, subfolders can be named css and images, and then those names can be
specified for the library attribute of JSF components that utilize such resources. In the example, cascading style
sheets are placed into the resources/css folder, and then they are referenced utilizing the h:outputStylesheet
component and specifying the css library as follows:

<h:outputStylesheet library="css" name="default.css"/>

Other resources can be placed within such libraries. The h:graphicImage component also contains the
library attribute, so the images for the books can be moved into a folder named resources/image, and then the
h:graphicImage tag can reference the image as such:

<h:graphicImage id="javarecipes"
 library="image" style="width: 100px; height: 120px"
 name="java7recipes.png"/>

It has always been a challenge referencing resource files from the pages of a web application. To do so, a
developer needs to know the exact path to the resource, and sometimes the path can be broken if folder names are
changed or if the application is deployed in a different server environment. The use of the resources folder in JSF 2.0
along with the new library attribute has greatly reduced the complexity of managing such resources.

4-4. Creating Reusable Templates That Act As Components
Problem
You want to encapsulate a component along with its validator and styling so that it can be reused in any JSF view
within your application.

Solution
Create a new XHTML document that includes namespace declarations as required for use of the Facelets and JSF
components, along with the Facelets tags required to create a composite component. The document can contain any
valid JSF components or HTML markup needed to develop the component you desire. The Facelets tags that can be
used to help develop composite components are <composite:interface> and <composite:implementation>. Any
attributes that a component will accept will be declared within the <composite:interface> element, and the actual
component implementation will be declared within the <composite:implementation> element. The component can
then be used within another JSF view by declaring the namespace to the component XHTML document and then
adding the component tag to the view. Let’s take a look at an example.

The example in this recipe contains a handful of source listings, each of which is required to construct and
utilize the composite component. In this example, you’ll create a component that will act as a search mechanism
for authors who have books within the Acme Bookstore. A user will be able to type the name of an author in order
to search for their bio. The search component will include an h:inputText component for accepting the search

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

178

text, an h:commandButton for submitting the search text to the managed bean, and an h:outputText component for
displaying a message if the search is unsuccessful. The component will utilize its own JSF managed bean for providing
the business logic that is required to perform the search activity. Once the component construction is completed,
a simple JSF tag can be added to any page in order to include said search component.

Creating the Composite Component: search.xhtml
You’ll start by taking a look at the source for the composite component itself. The following code is for an XHTML
document entitled search.xhtml, and it declares the composite component layout. The file should be saved into the
resources folder within a JSF application, and for this example it is saved in the folder resources/components/util.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:composite="http://xmlns.jcp.org/jsf/composite">

 <!—OPTIONAL INTERFACE -->
 < composite:interface>
 < composite:attribute name="searchAction"
default="#{searchController.searchAuthors
(completeAuthorController.completeAuthorList)}"
 method-signature="java.lang.String action(java.util.List)"/>
 </ composite:interface>

 <!-- IMPLEMENTATION -->
 < composite:implementation>
 <h:form id="searchForm">
 <h:outputText id="error" value="#{searchController.errorText}"/>

 <h:inputText id="searchText" styleClass="searchBox" size="75"
value="#{searchController.searchText}"/>

 <h:commandButton id="searchButton" value="Search" action="#{cc.attrs.searchAction}"/>

 </h:form>
 </ composite:implementation>
</html>

Managed Bean Controller for Composite Component: SearchController.java
Next, let’s look at the code for the JSF managed bean that is used for containing the business logic used for the
component. The bean class is named SearchController.

package org.javaeerecipes.chapter04.recipe04_04;

import javax.faces.bean.RequestScoped;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.ManagedProperty;
import org.javaeerecipes.chapter04.recipe04_01.Author;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

179

/**
 * Recipe 4-4
 * @author juneau
 */
@ManagedBean(name = "searchController")
@RequestScoped
public class SearchController implements java.io.Serializable {

 private String searchText;
 private String errorText;

 @ManagedProperty(value="authorController")
 private AuthorController authorController;

 /**
 * Creates a new instance of SearchController
 */
 public SearchController() {

 }

 public String searchAuthors(List <Author> authorList){
 String fullName = null;
 String returnString = null;

 for (Author author: authorList){
 fullName = author.getFirst() + " " + author.getLast();
 if (author.getFirst().equalsIgnoreCase(searchText)){
 returnString = getAuthorController().displayAuthor(author.getLast());
 } else if (author.getLast().equalsIgnoreCase(searchText)){
 returnString = getAuthorController().displayAuthor(author.getLast());
 } else if (fullName.equalsIgnoreCase(searchText)){
 returnString = getAuthorController().displayAuthor(author.getLast());
 }
 }
 if(returnString == null){
 setErrorText("No Author Found");
 returnString = "recipe04_04a";
 }
 return returnString;
 }

 /**
 * @return the searchText
 */
 public String getSearchText() {
 return searchText;
 }

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

180

 /**
 * @param searchText the searchText to set
 */
 public void setSearchText(String searchText) {
 this.searchText = searchText;
 }

 /**
 * @return the authorController
 */
 public AuthorController getAuthorController() {
 return authorController;
 }

 /**
 * @param authorController the authorController to set
 */
 public void setAuthorController(AuthorController authorController) {
 this.authorController = authorController;
 }

 /**
 * @return the errorText
 */
 public String getErrorText() {
 return errorText;
 }

 /**
 * @param errorText the errorText to set
 */
 public void setErrorText(String errorText) {
 this.errorText = errorText;
 }
}

Managed Bean Controller: AuthorController.java
Note that the managed bean contains an annotation, @ManagedProperty, which has not yet been covered up to this
point in the book. I’ll discuss that annotation a bit in the following section. Also note that in the composite component
document, search.xhtml, another managed bean is referenced by the name of completeAuthorController. This
managed bean is essentially the same as the JSF managed bean that was constructed in Recipe 4-1, with an added
List declaration named completeAuthorList. This List is used to contain all of the Author objects for those who have
books listed in the Acme Bookstore. The source listing for the updated AuthorContoller managed bean is as follows:

package org.javaeerecipes.chapter04.recipe04_04;

import org.javaeerecipes.chapter04.recipe04_01.*;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

181

import javax.annotation.ManagedBean;
import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

/**
 * Recipe 4-4
 *
 * @author juneau
 */
@Named(value = "completeAuthorController")
@SessionScoped
@ManagedBean
public class AuthorController implements Serializable {

 private List <Author> authorList;
 private List <Author> completeAuthorList
 private String storeName = "Acme Bookstore";

 private String juneauBio =
 "Josh Juneau has been developing software"
 + " since the mid-1990s. PL/SQL development and database programming"
 + " was the focus of his career in the beginning, but as his skills developed,"
 + " he began to use Java and later shifted to it as a primary base for his"
 + " application development. Josh has worked with Java in the form of graphical"
 + " user interface, web, and command-line programming for several years. "
 + "During his tenure as a Java developer, he has worked with many frameworks"
 + " such as JSF, EJB, and JBoss Seam. At the same time, Josh has extended his"
 + " knowledge of the Java Virtual Machine (JVM) by learning and developing applications"
 + " with other JVM languages such as Jython and Groovy. His interest in learning"
 + " new languages that run on the JVM led to his interest in Jython. Since 2006,"
 + " Josh has been the editor and publisher for the Jython Monthly newsletter. "
 + "In late 2008, he began a podcast dedicated to the Jython programming language.";
 private String deaBio = "This is Carl Dea's Bio";
 private String beatyBio = "This is Mark Beaty's Bio";
 private String oConnerBio = "This is John O'Connor's Bio";
 private String guimeBio = "This is Freddy Guime's Bio";
 private Author current;
 private String authorLast;

 /**
 * Creates a new instance of RecipeController
 */
 public AuthorController() {
 populateJavaRecipesAuthorList();
 populateCompleteAuthorList();

 }

 public String populateJavaRecipesAuthorList() {

 authorList = new ArrayList <Author> ();
 authorList.add(new Author("Josh", "Juneau", juneauBio));

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

182

 authorList.add(new Author("Carl", "Dea", deaBio));
 authorList.add(new Author("Mark", "Beaty", beatyBio));
 authorList.add(new Author("John", "O'Conner", oConnerBio));
 authorList.add(new Author("Freddy", "Guime", guimeBio));
 return "recipe04_04a";
 }

 public String populateJavaEERecipesAuthorList() {
 System.out.println("initializng authors list");
 authorList = new ArrayList <Author>();
 authorList.add(new Author("Josh", "Juneau", juneauBio));
 return "recipe04_04b";

 }

 private String populateCompleteAuthorList() {

 setCompleteAuthorList(null);

 setCompleteAuthorList(new ArrayList <Author>());
 getCompleteAuthorList().add(new Author("Josh", "Juneau", juneauBio));
 getCompleteAuthorList().add(new Author("Carl", "Dea", deaBio));
 getCompleteAuthorList().add(new Author("Mark", "Beaty", beatyBio));
 getCompleteAuthorList().add(new Author("John", "O'Conner", oConnerBio));
 getCompleteAuthorList().add(new Author("Freddy", "Guime", guimeBio));
 return "recipe04_04a";
 }

 public String displayAuthor(String last) {
 for (Author author : authorList) {
 if (author.getLast().equals(last)) {
 current = author;
 }
 }
 return "recipe04_04c";
 }

 /**
 * @return the authorList
 */
 public List <Author> getauthorList() {
 return authorList;
 }

 /**
 * @return the current
 */
 public Author getCurrent() {
 return current;
 }

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

183

 /**
 * @param current the current to set
 */
 public void setCurrent(Author current) {
 this.current = current;
 }

 /**
 * @return the authorLast
 */
 public String getAuthorLast() {
 return authorLast;
 }

 /**
 * @param authorLast the authorLast to set
 */
 public void setAuthorLast(String authorLast) {
 displayAuthor(authorLast);
 }

 /**
 * @return the storeName
 */
 public String getStoreName() {
 return storeName;
 }

 /**
 * @param storeName the storeName to set
 */
 public void setStoreName(String storeName) {
 this.storeName = storeName;
 }

 /**
 * @return the completeAuthorList
 */
 public List <Author> getCompleteAuthorList() {
 return completeAuthorList;
 }

 /**
 * @param completeAuthorList the completeAuthorList to set
 */
 public void setCompleteAuthorList(List <Author> completeAuthorList) {
 this.completeAuthorList = completeAuthorList;
 }
}

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

184

Utilizing the Composite Component: custom_template_search.xhtml
Now that all of the necessary sources have been written for the component, it can be utilized within a page.
The Acme Bookstore would like to have the search component displayed at the top of each page, so you’ll add it
to the site template that was created in Recipe 4-1. The following code shows the updated markup for the template,
and it has been saved into an XHTML document named custom_template_search.xhtml in the same folder as the
original template:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-4
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:util="http://xmlns.jcp.org/jsf/composite/components/util">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet library="css" name="default.css"/>
 <h:outputStylesheet library="css" name="cssLayout.css"/>
 <h:outputStylesheet library="css" name="styles.css"/>
 <title>#{faceletsAuthorController.storeName}</title>
 </h:head>

 <h:body>

 <div id="top">
 <h2>#{faceletsAuthorController.storeName}</h2>

 <util:search id="searchAuthor"/>
 </div>
 <div>
 <div id="left">
 <h:form id="navForm">
 <h:commandLink
action="#{completeAuthorController.populateJavaRecipesAuthorList}" >Java 7
Recipes</h:commandLink>

 <h:commandLink
action="#{completeAuthorController.populateJavaEERecipesAuthorList}">Java EE 7
Recipes </h:commandLink>
 </h:form>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite/components/util
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

185

 <div id="bottom">
 Written by Josh Juneau, Apress Author
 </div>

 </h:body>

</html>

The search component is added to the template using the tag <s:search id="searchAuthor"/>, and it will
now appear at the top of each page within the Acme Bookstore application. Figure 4-7 shows what the updated store
application looks like.

Figure 4-7. Acme bookstore layout with search component

Note ■ as of the release of JsF 2.2 with Java ee 7, it is possible to create composite components using Java code only
with no markup.

How It Works
Creating JSF components has been a boon for the JSF technology because it allows portions of web views to
be saved and reused in many places. The problem is that creating JSF components has always been a bit of a
daunting task because there is quite a bit of work required to develop custom JSF components. However, when JSF
2.0 came about, the Facelets view definition language was baked in, and it included the ability to save portions of
JSF views into their own components by utilizing the Facelets ui:component tag. Such components are referred to

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

186

as composite components. Composite components are easy to develop and include most of the functionality that is
required for standard application use.

The development of composite components consists of the creation of a separate XHTML document to contain
the composite component layout, as well as an optional managed bean controller for containing any business logic that
the composite component requires. In the example, an XHTML document entitled search.xhtml contains the layout
for the composite component. The Facelets view definition language contains a handful of tags that can be useful for
developing composite components. To use them, the required namespace must be declared within the composite
component XHTML document. The following code excerpt from the search.xhtml document shows the declaration:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:composite"http://xmlns.jcp.org/jsf/composite">

Note ■ JsF views that use composite components are referred to as using views.

As specified in the example namespace declaration, a prefix, such as composite, can be used to reference
the Facelets tags for creating composite components by declaring the prefix in the namespace. As such, the
composite:interface and composite:implementation tags are useful for developing composite components, and
they are used in the example. The composite:interface tag is optional as of JSF 2.2, and it can be used to specify any
attributes that the component should be able to accept. In the example, an attribute by the name of searchAction is
declared within the composite:interface elements. This attribute contains a default value and a method-signature,
and it can be specified within a using view to override the default implementation method for the search component.
Since the attribute specifies a default value, it is not required for the component’s use within a view.

<composite:interface>
 <composite:attribute name="searchAction"
default="#{searchController.searchAuthors(completeAuthorController.completeAuthorList)}"
 method-signature="java.lang.String action(java.util.List)"/>
</cc:interface>

Any number of attributes can be declared for a component, and if the attribute is used to specify a value rather
than a method, then the method-signature attribute for the composite:interface tag does not have to be present.
For instance, to declare an attribute that accepts a particular value for the name of a label, you may include an
attribute such as the following:

<composite:attribute name="searchLabel" default="searchComponent"/>

The implementation for a composite component should be defined between opening and closing
composite:implementation tags. The composite component in the example includes an h:form that will be used to
submit search text to the SearchController managed bean. The composite component implementation also includes
three JSF components: h:inputText to accept the search text, h:commandButton to invoke the searchAuthors method,
and h:outputText to display a message if the search fails.

<composite:implementation>
 <h:form id="searchForm">
 <h:outputText id="error" value="#{searchController.errorText}"/>

 <h:inputText id="searchText" styleClass="searchBox" size="75"
value="#{searchController.searchText}"/>

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

187

 <h:commandButton id="searchButton" value="Search" action="#{cc.attrs.searchAction}"/>

 </h:form>
</composite:implementation>

The action that is specified for the h:commandButton is #{cc.attrs.searchAction}, and this corresponds to the
searchAction attribute that was defined within the composite:interface element within the composite component
view. Any attribute that is defined within the view can be referenced using the cc.attrs prefix. The word cc in
JavaServer Faces is a reserved identifier for use with composite components. The cc.attrs identifier can be used to
access composite component attributes. The default method that will be specified for the searchAction attribute in
the example is #{searchController.searchAuthors}, but a using view can specify another method if needed. The
value for both the h:inputText and h:outputText components within the composite component implementation are
properties that are exposed from the SearchController managed bean class.

The SearchController managed bean class encapsulates the business logic for the search component. Within
the class, an @ManagedProperty annotation is specified. The @ManagedProperty annotation is used to inject a value
into the annotated property. In the example, the AuthorController managed bean is injected, so now any of the
public fields or methods contained within AuthorController can be utilized from within the SearchController
managed bean. The properties searchText and errorText are declared within the bean, and they are used within
the component for setting the search text and displaying an error message, respectively. When the composite
component’s h:commandButton is clicked, the searchAuthors method is invoked, passing the complete list of authors,
completeAuthorList, from the AuthorController managed bean. Taking a look at the method, it goes through each
Author object within the complete author list and evaluates whether the searchText matches either the first, last, or
full name of any author. If so, the AuthorController’s displayAuthor method is invoked, passing the last field for the
matching Author object, returning a String for the view name that should be rendered next. If the searchText does
not match any of the Author objects, then the errorText property is populated with an error message, and the view
named recipe04_04a.xhtml is displayed.

To use the composite component within a view, the XML namespace for the composite component must be
declared and assigned a prefix. After doing so, the name of the composite component XHTML document should be
specified as the tag name, followed by any attributes that are required. In the example, the namespace is declared as
follows:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:util"http://xmlns.jcp.org/jsf/composite/components/util">

The composite component can then be utilized within the page as follows:

<util:search id="searchAuthor"/>

Developing components for use within JSF applications has never been easier. The Facelets ui:component tag has
certainly made component creation much easier on developers and allows for the reuse of view fragments throughout
JSF applications.

4-5. Handling Variable-Length Data on a Page
Problem
You are interested in iterating over a collection of data using a technique other than an h:dataTable component
because you want to use standard HTML table markup for each row and column of the table.

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite/components/util
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

188

Solution
Use the Facelets ui:repeat tag for iterating over a collection of data rather than the h:dataTable component. Doing
so allows for the same style of collection iteration, but it does not force the use of the h:dataTable component
elements. For this recipe, the Acme Bookstore application has been rewritten so that it now contains the ability to list
each author’s books separately on their bio page. When an author name is chosen from the book listing or when an
author is searched, then the bio page will appear, and the author’s bio is displayed along with each of the books that
the author has written.

Note ■ the example for this recipe has been rewritten to make the application more robust. a new Book class has
been created so that each book is now its own object. the Author class has been rewritten so that one or more Book
objects can now be added to each Author object. the AuthorController has been rewritten so that the new Book
and Author objects can be used to populate the author listing tables, and a new method has been added that
allows for the initialization of each Book and Author object. to use the new classes, the application template
(custom_template_neworg.xhtml), search component (search_neworg.xhtml), and each of the application views
(recipe04_05a.xhtml, recipe04_05b.xhtml, recipe04_05c.xhtml) have been rewritten. please refer to the sources
in the org.javaeerecipes.chapter04.recipe04_05 package and the recipe’s corresponding XhtMl documents for
complete listings.

The ui:repeat tag is used to iterate over a collection of the selected author’s books within the author bio view,
named recipe04_05c.xhtml. The author bio page can be reached by selecting an author from a listing of authors or
searching for an author using the search component. The following code shows the view, recipe04_05c.xhtml, which
is the bio view:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-5
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 4-5: Facelets Page Template</title>
 </h:head>
 <h:body>
 <ui:composition template="./layout/custom_template_search_neworg.xhtml">
 <ui:define name="content">
 <h:form id="componentForm">
 <h1>#{uiRepeatAuthorController.current.first}
#{uiRepeatAuthorController.current.last}</h1>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

189

 <p>
 #{uiRepeatAuthorController.current.bio}
 </p>

 <h1>Author's Books</h1>
 <table>
 <ui:repeat id="bookList" var="book"
value="#{uiRepeatAuthorController.current.books}">
 <tr>
 <td>
 <h:graphicImage id="bookImage"
 library="image"
 style="width: 100px; height: 120px"
name="#{book.image}"/>
 </td>
 </tr>
 <tr>
 <td>
 #{book.title}
 </td>
 </tr>
 </ui:repeat>
 </table>
 </h:form>
 </ui:define>

 </ui:composition>
 </h:body>
</html>

Each Author object contains a list of books that an author has written, and when the bio page is rendered, it looks
like Figure 4-8, displaying the list of books that the author has written using the ui:repeat tag.

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

190

How It Works
The Facelets ui:repeat tag is a nice alternative to the h:dataTable component if you need to have more control over
the HTML table that is rendered. The h:dataTable component is powerful in that it makes it easy to iterate over a
collection of objects and display them within a page. However, sometimes it is useful to control the layout a bit more,
and ui:repeat provides that level of control.

The ui:repeat tag has a handful of attributes that need to be specified in order to bind the tag to a collection of
data within a managed bean. Specifically, the value and var attributes, much like those of the h:dataTable component,
are used to specify the collection to iterate over and the variable that will be used to refer to a single object within the
collection, respectively. In the example, the value attribute is set to #{uiRepeatAuthorController.current.books},
which is a collection of Book objects that is attached to the currently selected Author, and the var attribute is set to the
value book.

The markup and JSF tags placed between the opening and closing ui:repeat tags will be processed for each
iteration over the collection of objects. In the example, two table rows are placed inside ui:repeat; one row contains
the book cover image, and the other contains the name of the book. The Book object fields are referenced within
ui:repeat using the value of the var attribute, book.

Figure 4-8. Displaying a collection of objects with ui:repeat

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

191

In the example for this recipe, the views that display the complete author list for each of the books use a List
named authorList. The authorList is declared within the AuthorController managed bean and populated with
Author objects. When an author is selected from the list, the displayAuthor method within AuthorController is
invoked, which populates the current Author object. Let’s take a look at the AuthorController for this recipe, which
has been rewritten since its use within previous recipes.

package org.javaeerecipes.chapter04.recipe04_05;

import org.javaeerecipes.chapter04.recipe04_04.*;
import org.javaeerecipes.chapter04.recipe04_01.*;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.annotation.ManagedBean;
import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

/**
 * Recipe 4-5
 *
 * @author juneau
 */
@Named(value = "uiRepeatAuthorController")
@SessionScoped
@ManagedBean
public class AuthorController implements Serializable {

 private List <Author> authorBookList;
 private List <Author> authorList;
 private List <Author> completeAuthorList;
 private String storeName = "Acme Bookstore";

 private String juneauBio =
 "Josh Juneau has been developing software"
 + " since the mid-1990s. PL/SQL development and database programming"
 + " was the focus of his career in the beginning, but as his skills developed,"
 + " he began to use Java and later shifted to it as a primary base for his"
 + " application development. Josh has worked with Java in the form of graphical"
 + " user interface, web, and command-line programming for several years. "
 + "During his tenure as a Java developer, he has worked with many frameworks"
 + " such as JSF, EJB, and JBoss Seam. At the same time, Josh has extended his"
 + " knowledge of the Java Virtual Machine (JVM) by learning and developing applications"
 + " with other JVM languages such as Jython and Groovy. His interest in learning"
 + " new languages that run on the JVM led to his interest in Jython. Since 2006,"
 + " Josh has been the editor and publisher for the Jython Monthly newsletter. "
 + "In late 2008, he began a podcast dedicated to the Jython programming language.";
 private String deaBio = "This is Carl Dea's Bio";
 private String beatyBio = "This is Mark Beaty's Bio";
 private String oConnerBio = "This is John O'Connor's Bio";
 private String guimeBio = "This is Freddy Guime's Bio";
 private Author current;
 private String authorLast;

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

192

 /**
 * Creates a new instance of RecipeController
 */
 public AuthorController() {
 populateAuthors();
 populateJavaRecipesAuthorList();
 populateCompleteAuthorList();
 }

 private void populateAuthors(){

 Book book1 = new Book("Java 7 Recipes", "java7recipes.png");
 Book book2 = new Book("Java EE 7 Recipes", "javaEE 7recipes.png");
 Book book3 = new Book("Java FX 2.0: Introduction By Example", "javafx.png");
 authorBookList = new ArrayList <Author>();

 Author author1 = new Author("Josh", "Juneau", juneauBio);
 author1.addBook(book1);
 author1.addBook(book2);
 authorBookList.add(author1);

 Author author2 = new Author("Carl", "Dea", deaBio);
 author2.addBook(book1);
 author2.addBook(book3);
 authorBookList.add(author2);

 Author author3 = new Author("Mark", "Beaty", beatyBio);
 author3.addBook(book1);
 authorBookList.add(author3);

 Author author4 = new Author("John", "O'Conner", oConnerBio);
 author4.addBook(book1);
 authorBookList.add(author4);

 Author author5 = new Author("Freddy", "Guime", guimeBio);
 author5.addBook(book1);
 authorBookList.add(author5);
 }

 /**
 * Searches through all Author objects and populates the authorList
 * with only those authors who were involved with the Java 7 Recipes book
 * @return
 */
 public String populateJavaRecipesAuthorList() {
 authorList = new ArrayList<>();
 for(Author author:authorBookList){
 List<Book>books = author.getBooks();
 for(Book book:books){

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

193

 if(book.getTitle().equals("Java 7 Recipes")){
 authorList.add(author);
 }
 }
 }

 return "recipe04_05a";
 }

 /**
 * Searches through all Author objects and populates the authorList
 * with only those authors who were involved with the Java EE 7 Recipes book
 * @return
 */
 public String populateJavaEERecipesAuthorList() {
 authorList = new ArrayList<>();
 for(Author author:authorBookList){
 List<Book>books = author.getBooks();
 for(Book book:books){
 if(book.getTitle().equals("Java EE 7 Recipes")){
 authorList.add(author);
 }
 }
 }
 return "recipe04_05b";

 }

 /**
 * Populates completeAuthorList with each existing Author object
 * @return
 */
 private void populateCompleteAuthorList() {
 completeAuthorList = new ArrayList();
 for(Author author:authorBookList){
 completeAuthorList.add(author);
 }

 }

 public String displayAuthor(String last) {
 for (Author author : authorList) {
 if (author.getLast().equals(last)) {
 current = author;
 }
 }
 return "recipe04_05c";
 }

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

194

 /**
 * @return the authorList
 */
 public List getauthorList() {
 return authorList;
 }

 /**
 * @return the current
 */
 public Author getCurrent() {
 return current;
 }

 /**
 * @param current the current to set
 */
 public void setCurrent(Author current) {
 this.current = current;
 }

 /**
 * @return the authorLast
 */
 public String getAuthorLast() {
 return authorLast;
 }

 /**
 * @param authorLast the authorLast to set
 */
 public void setAuthorLast(String authorLast) {
 displayAuthor(authorLast);
 }

 /**
 * @return the storeName
 */
 public String getStoreName() {
 return storeName;
 }

 /**
 * @param storeName the storeName to set
 */
 public void setStoreName(String storeName) {
 this.storeName = storeName;
 }

 /**
 * @return the completeAuthorList
 */

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

195

 public List <Author> getCompleteAuthorList() {
 return completeAuthorList;
 }

 /**
 * @param completeAuthorList the completeAuthorList to set
 */
 public void setCompleteAuthorList(List <Author> completeAuthorList) {
 this.completeAuthorList = completeAuthorList;
 }
}

When displayAuthor is invoked, the current Author object is populated with the currently selected author, and
the bio page is rendered. The bio page source is listed in the solution to this recipe. Each Author object contains a
List of Book objects that correspond to the books that particular author has written. The ui:repeat tag is used to
iterate over this list of books.

The ui:repeat tag can be effective in various use cases. When deciding to use h:dataTable or ui:repeat, it is
best to determine whether customization is going to be imperative. For those situations where more control is desired,
ui:repeat is certainly the best choice.

4-6. Debugging View Content
Problem
You are running into view issues and want to perform some debugging on your view layout.

Solution
Insert the ui:debug tag into the JSF view that you want to debug. One of the JSF views for the Acme Bookstore has
been rewritten to include the ui:debug tag. The source for the view is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 4-6
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="./layout/custom_template_search_neworg.xhtml">
 <ui:define name="content">
 <ui:debug/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

196

 <h:form id="componentForm">
 <h1>Author List for Java 7 Recipes</h1>
 <p>
 Below is the list of authors. Click on the author's last name
 for more information regarding the author.
 </p>

 <h:graphicImage id="javarecipes" style="width: 100px; height: 120px"
url="../images/java7recipes.png"/>

 <h:dataTable id="authorTable" border="1"
value="#{uiRepeatAuthorController.authorList}"
 var="author">
 <f:facet name="header">
 Java 7 Recipes Authors
 </f:facet>
 <h:column>
 <h:commandLink id="authorName"
action="#{uiRepeatAuthorController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

Once the view has been rendered in a browser, pressing the Ctrl+Shift+D keys will bring up a debug window for
the page that looks like Figure 4-9.

Figure 4-9. The ui:debug output window

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

197

How It Works
Debugging JSF views can sometimes prove to be frustrating, especially if there is an issue within some JSF EL
within the view. Facelets provides a convenient tool known as ui:debug that helps satisfy the requirement of
debugging troubled JSF views. To use the tool, add the ui:debug tag to the JSF view that you want to debug. In most
environments, it can be most useful to add the tag to the application template so that each template client view
inherits the tag. When the view is rendered in a browser, press the Ctrl+Shift+D keys to open the debug window for the
view. The debug window contains a lot of information regarding the current state of the component tree, as well as the
scoped variables within the application.

The ui:debug tag contains a rendered attribute that can be used to determine when the tag should be included
in the view. For instance, an EL expression can be used for the rendered attribute to signify whether the environment
is in development or production, returning a Boolean value that either renders the tag or not. The ui:debug tag also
includes a hotkey attribute, which can be used to change the key that is pressed along with Ctrl+Shift in order to open
the debug window. By default, the hot key is D, which stands for “debug.”

4-7. Writing a Custom Resolver for Locating Facelets
Templates and Resources
Problem
You want to enable your application to have the ability to locate Facelets resource files from an external JAR.
This would allow you to package all resources within a single JAR that could be used by a suite of your applications.

Solution
Package your resources into a JAR file or WAR file, and then write a custom ResourceResolver class to locate those
resources. FacesServlet will then use the custom resolver class to find the Facelets files you request. The following
source listing, for a class named FaceletsResourceResolver, can be used to resolve the URL to the resource you
require rather than using the native Facelets ResourceResolver.

package org.javaeerecipes.chapter04.recipe04_07;

 import java.net.URL;
import javax.faces.view.facelets.ResourceResolver;
/**
 * Recipe 4-7
 * @author juneau
 */
@FaceletsResourceResolver
public class FaceletsResourceResolver extends ResourceResolver {

 private ResourceResolver parent;

 public FaceletsResourceResolver(ResourceResolver parent) {
 this.parent = parent;
 }

http://www.it-ebooks.info/

Chapter 4 ■ FaCelets

198

 @Override
 public URL resolveUrl(String path) {
 System.out.println("Resolving URL " + path);
 URL url = parent.resolveUrl(path);
 if (url == null) {

 if (path.startsWith("/")) {
 path = path.substring(1);
 }
 url = Thread.currentThread().getContextClassLoader().
 getResource(path);
 }
 return url;
 }

}

When the application is redeployed, the new FaceletsResourceResolver class will be used to resolve the URL for
accessing resources, rather than the default resolver.

How It Works
Sometimes it makes sense to package resources into a JAR or WAR file so that they can be shared across multiple
applications or with a number of different developers. The problem is that simply adding the JAR or WAR file to the
application CLASSPATH will not allow for such resources to become accessible to the application. You must write a
custom resource resolver in order to find the path to the custom resource, rather than relying upon the default resolver.

To write a resolver class, extend the ResourceResolver abstract class, and override the resolveUrl(String)
method with the custom resolver implementation. The custom implementation should search the CLASSPATH for the
resource and return a URL that corresponds to the resource’s location. To register the resolver with Facelets, you can
annotate the class using the @FaceletsResourceResolver annotation or modify the web.xml deployment descriptor
(as described in the following note).

Note ■ prior to JsF 2.2, a Facelets ResourceResolver had to be manually configured within the web.xml deployment
descriptor. the ability to annotate the class with the @FaceletsResourceResolver was a new feature of Java ee 7
and JsF 2.2. It is good to note that if you have a resource resolver defined via an annotation and also via web.xml, the
resolver defined within the web.xml file will take precedence.

If you are using JsF 2.1 or earlier, then to manually configure the resourceresolver for the example in this recipe, place the
following lines of XMl into the web.xml deployment descriptor:

<context-param>

 <param-name>facelets.resOUrCe_resOlVer</param-name>

 <param-value>org.javaeerecipes.chapter04.recipe04_07.Faceletsresourceresolver</param-value>

</context-param>

http://www.it-ebooks.info/

199

Chapter 5

JavaServer Faces Standard
Components

The JSF framework allows developers to build applications utilizing a series of views, and each view consists of a
series of components. The framework is kind of like a puzzle in that each piece must fit into its particular place in
order to make things work smoothly. Components are just another piece of the puzzle. Components are the building
blocks that make up JSF views. One of the strengths of using the JSF framework is the abundance of components that
are available for use within views. To developers, components can be tags that are placed within the XHTML views.
Components resemble standard HTML tags; they contain a number of attributes, an opening tag and a closing tag,
and sometimes components that are to be embedded inside of others. Components can also be written in Java code,
and their tags can be bound to Java code that resides within a JSF managed bean.

A number of components come standard with the JSF framework. The recipes in this chapter will cover the
standard components in detail, and it will provide examples that will allow you to begin using components in your
applications right away.

This chapter focuses on the JSF standard component library, and toward the end it features some recipes
showing how to use external component libraries. The example in this chapter will grow from the first recipe
throughout each recipe to the final recipe. In the end, a newsletter page for the Acme Bookstore will be complete and
full-featured.

Before tackling the recipes, though, the following section provides a brief overview of the standard JSF
components and associated common component tags. This will help you get the most out of the recipes.

Component and Tag Primer
Table 5-1 lists the components that are available with a clean install of the JSF framework.

Table 5-1. JSF HTML Components

Component Tag Description

UIColumn h:column Represents a column of data in the dataTable component

UICommand h:commandButton Submits a form

h:commandLink Links pages or actions

UIData h:dataTable Represents a table used for iterating over collections of data

UIForm h:form Represents an input form

(continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

200

Component Tag Description

UIGraphic h:graphicImage Displays an image

UIInput h:inputHidden
h:inputSecret
h:inputText
h:inputTextarea

Includes a hidden variable in a form
Allows text entry without displaying the actual text
Allows text entry
Allows multiline text entry

UIOutcomeTarget h:link Links to another page or location

UIMessage h:message Displays a localized message

UIMessages h:messages Displays localized messages

UIOutput h:outputFormat
h:outputLabel
h:outputLink

Displays a formatted localized message
Displays a label for a specified field
Links to another page or location

UIPanel h:panelGrid
h:panelGroup

Displays a table
Groups components

UISelectBoolean h:selectBooleanCheckbox Displays a Boolean choice

UISelectItem h:selectItem Represents one item in a list of items for selection

UISelectItems h:selectItems Represents a list of items for selection

UISelectMany h:selectManyCheckbox Displays a group of check boxes that allow multiple
user choices

h:selectManyListbox
h:selectManyMenu

Allows a user to select multiple items from a list
Allows a user to select multiple items from a
drop-down menu

UISelectOne h:selectOneListbox
h:selectOneMenu

h:selectOneRadio

Allows a user to select a single item from a list
Allows a user to select a single item from a
drop-down menu
Allows a user to select one item from a set

Table 5-1. (continued)

JSF provides a number of core tags that can be used to provide more functionality for the components.
For example, these tags can be embedded inside JSF component tags and specify rules that can be used to convert the
values that are displayed or used as input for the component. Other uses of the core tags are to provide a list of options
for a select component, validate input, and provide action and event listeners. Table 5-2 describes the JSF core tags.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

201

Note ■ the common sources and the completed classes to run the application for Chapter 5 are contained within the
org.javaeerecipes.chapter05 package, and one or more recipes throughout this chapter will utilize classes contained
within that package.

Common Component Tag Attributes
Each standard JSF component tag contains a set of attributes that must be specified in order to uniquely identify it
from the others, register the component to a managed bean, and so on. There is a set of attributes that are common
across each component tag, and this section lists those attributes, along with a description of each. All attributes
besides id can be specified as JSF EL.

•	 binding: A managed bean property can be specified for this attribute, and it can be used
to bind the tag to a component instance within a managed bean. Doing so allows you to
programmatically control the component from within the managed bean.

•	 id: This attribute can be set to uniquely identify the component. If you do not specify a value
for the id attribute, then JSF will automatically generate one. Each component within a view
must have a unique id attribute, or an error will be generated when the page is rendered.
I recommend you specify a value for the id attribute on each component tag, because then it will

Table 5-2. JSF Core Tags

Tag Function

f:actionListener Registers an action listener method with a component

f:phaseListener Registers a PhaseListener to a page

f:setPropertyActionListener Registers a special form submittal action listener

f:valueChangeListener Registers a value change listener with a component

f:converter Registers an arbitrary converter with a component

f:convertDateTime Registers a DateTimeConverter instance with a component

f:convertNumber Registers a NumberConverter with a component

f:facet Adds a nested component to particular enclosing parents

f:metadata Registers a particular facet with a parent component

f:selectItem Encapsulates one item in a list

f:selectItems Encapsulates all items of a list

f:validateDoubleRange Registers a DoubleRangeValidator with a component

f:validateLength Registers a LengthValidator with a component

f:validateLongRange Registers a LongRangeValidator with a component

f:validator Registers a custom validator with a component

f:validateRegex Registers a RegExValidator with a component (JSF 2.0)

f:validateBean Delegates validation of a local value to a BeanValidator (JSF 2.0)

f:validateRequired Ensures that a value is present in a parent component

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

202

be easy to statically reference the tag from a scripting language or a managed bean if needed.
If you let JSF automatically populate this attribute, it may be different each time, and you will
never be able to statically reference the tag from a scripting language.

•	 immediate: This attribute can be set to true for input and command components in order
to force the processing of validations, conversions, and events when the request parameter
values are applied.

•	 rendered: The rendered attribute can be used to specify whether the component should
be rendered. This attribute is typically specified as a JSF EL expression that is bound to a
managed bean property yielding a Boolean result. The EL expression must be an rvalue
expression, meaning that it is read-only and cannot set a value.

•	 style: This attribute allows a CSS style to be applied to the component. The specified style will
be applied when the component is rendered as output.

•	 styleClass: This attribute allows a CSS style class to be applied to the component. The
specified style will be applied when the component is rendered as output.

•	 value: This attribute identifies the value of a given component. For some components, the
value attribute is used to bind the tag to a managed bean property. In this case, the value
specified for the component will be read from, or set within, the managed bean property.
Other components, such as the commandButton component, use the value attribute to specify
a label for the given component.

Common JavaScript Component Tags
Table 5-3 lists a number of attributes that are shared by many of the components, which enable JavaScript
functionality to interact with the component.

Table 5-3. Common Component Atrributes

Attribute Description

onblur JavaScript code that should be executed when the component loses focus.

onchange JavaScript code that should be executed when the component loses focus and the value changes.

ondblclick JavaScript code that should be executed when the component has been clicked twice.

onfocus JavaScript code that should be executed when the component gains focus.

onkeydown JavaScript code that should be executed when user presses a key down and the component is in
focus.

onkeypress JavaScript code that should be executed when user presses a key and the component is in focus.

onkeyup JavaScript code that should be executed when key press is completed and the component is in
focus.

onmousedown JavaScript code that should be executed when user clicks the mouse button and the component
is in focus.

onmouseout JavaScript code that should be executed when user moves mouse away from the component.

onmouseover JavaScript code that should be executed when user moves mouse onto the component.

(continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

203

Binding Components to Properties
All JSF components can be bound to managed bean properties. Do so by declaring a property for the type of
component you want to bind within the managed bean and then by referencing that property using the component’s
binding attribute. For instance, the following dataTable component is bound to a managed bean property and then
manipulated from within the bean.

In the view:

<h:dataTable id="myTable" binding="#{myBean.myTable}" value="#{myBean.myTableCollection}"/>

In the bean:

// Provide getter and setter methods for this property
private javax.faces.component.UIData myTable;
. . .
myTable.setRendered(true);
. . .

Binding can prove to be very useful in some cases, especially when you need to manipulate the state of a
component programmatically before re-rendering the view.

5-1. Creating an Input Form
Problem
You want to add input fields to a form within your application.

Solution
Create an input form by enclosing child input components within a parent form component. There are four JSF
components that will allow for text entry as input. Those components are inputText, inputSecret, inputHidden, and
inputTextarea. Any or all of these components can be placed within a form component in order to create an input
form that accepts text entry.

In the example for this recipe, you will create an input form that will be used to sign up for the Acme Bookstore
newsletter. The user will be able to enter their first and last names, an e-mail address, a password, and a short
description of their interests.

Attribute Description

onmousemove JavaScript code that should be executed when user moves mouse within the component.

onmouseup JavaScript code that should be executed when mouse button click is completed and the
component is in focus.

onselect JavaScript code that should be executed when the component is selected by user.

Table 5-3. (continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

204

The View: recipe05_01.xhtml
The following code is for the view recipe05_01.xhtml, which constructs the layout for the input form:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE7 Recipes
Recipe: 4-7
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
 <h:form id="contactForm">
 <h1>Subscribe to Newsletter</h1>
 <p>
 Enter your information below in order to be added to the Acme Bookstore

newsletter.
 </p>

 <label for="first">First: </label>
 <h:inputText id="first" size="40" value="#{contactController1.current.first}"/>

 <label for="last">Last: </label>
 <h:inputText id="last" size="40" value="#{contactController1.current.last}"/>

 <label for="email">Email: </label>
 <h:inputText id="email" size="40" value="#{contactController1.current.email}"/>

 <label for="password">Enter a password for site access:</label>
 <h:inputSecret id="password" size="40" value="#{contactController1.current.

password}"/>

 <label for="description">Enter your book interests</label>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController1.current.description}"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

205

 <h:commandButton id="contactSubmit" action="#{contactController1.subscribe}"
value="Save"/>

 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

Note ■ as you can see from the example, htmL can be mixed together with JSF component tags. an htmL label tag
is used to specify a label for each input component in this recipe. In recipe 5-3, you will learn about the JSF component
that is used to render a label.

to learn more about how the commandButton component works, please see recipe 5-2.

Managed Bean: ContactController.java
Each view that contains an input form needs to have an associated managed bean, right? The managed bean in this
case is RequestScoped, and the name of the bean class is ContactController. The listing for the ContactController
class is as follows:

package org.javaeerecipes.chapter05.recipe05_01;

import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import javax.faces.application.FacesMessage;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.event.ValueChangeEvent;
import javax.faces.model.SelectItem;
import javax.faces.validator.ValidatorException;
import javax.inject.Inject;

/**
 * Chapter 5
 *
 * @author juneau
 */
@RequestScoped
@ManagedBean(name = "contactController")

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

206

public class ContactController implements java.io.Serializable {

 private Contact current;

 /**
 * Creates a new instance of ContactController
 */
 public ContactController() {

 }

 /**
 * Obtain the current instance of the Contact object
 * @return Contact
 */
 public Contact getCurrent(){
 if (current == null){
 current = new Contact();
 }
 return current;
 }

 /**
 * Adds a subscriber to the newsletter
 * @return String
 */
 public String subscribe(){
 // No implementation yet, will add to a database table in Chapter 7
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Successfully Subscribed to Newsletter for " + getCurrent().getEmail(), null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 return "SUBSCRIBE";
 }

 /**
 * Navigational method
 * @return String
 */
 public String add(){
 return "ADD_SUBSCRIBER";
 }
}

Note ■ at this time, nothing happens when the submit button is clicked other than a nice “Success” message being
displayed on the screen. Later in the book, you will revisit the subscribe method and add the code for creating a record
within an underlying database. the input screen should look like Figure 5-1 when rendered.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

207

How It Works
The JavaServer Faces framework ships with a slew of standard components that can be utilized within JSF views.
There are four standard components that can be used for capturing text input: inputText, inputSecret, inputHidden,
and inputTextarea. These component tags, as well as all of the other standard JSF component tags, share a common
set of attributes and some attributes that are unique to each specific tag. To learn more about the common attributes,
please see the related section in the introduction to this chapter. In this recipe, I will go over the specifics for each of
these input components. The form component, specified via the h:form tag, is used to create an input form within
a JSF view. Each component that is to be processed within the form should be enclosed between the opening and
closing h:form tags. Each form typically contains at least one command component, such as a commandButton. A view
can contain more than one form component, and only those components that are contained within the form will be
processed when the form is submitted.

Note ■ I recommend you always specify the id attribute for each component. most importantly, specify the id attribute
for the form component. If you do not specify the id attribute for a given JSF component, then one will be automatically
generated for you. the automatic generation of JSF component ids prohibits the ability to statically reference a component
from within a scripting language, such as JavaScript, or a managed bean. For instance, in the example for this recipe,
the form id attribute is set to contactForm, and the first inputText component id is set to first. this allows you
to reference the component statically by appending the form id to the component id from a scripting language or
managed bean. In the case of the example, you’d reference the first component as contactForm:first.

Each of the input tags support the list of attributes that is shown in Table 5-4, in addition to those already listed as
common component attributes in the introduction to this chapter.

Figure 5-1. JSF input form for subscribing to the Acme Bookstore newsletter

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

208

Table 5-4. Input Component Tag Attributes

Attribute Description

converter Allows a converter to be applied to the component’s data.

converterMessage Specifies a message that will be displayed when a registered converter fails.

dir Specifies the direction of text displayed by the component. (LTR is used to indicate
left-to-right, and RTL is used to indicate right-to-left.)

immediate Flag indicating that, if this component is activated by the user, notifications should
be delivered to interested listeners and actions immediately (that is, during the
Apply Request Values phase) rather than waiting until the Invoke Application phase.

label Specifies a name that can be used for component identification.

lang Allows a language code to be specified for the rendered markup.

required Accepts a Boolean to indicate whether the user must enter a value for the given
component.

requiredMessage Specifies an error message to be displayed if the user does not enter a value for a
required component.

validator Allows a validator to be applied to the component.

valueChangeListener Allows a managed bean method to be bound for event-handling purposes.
The method will be called when there is a change made to the component.

The inputText component is used to generate a single-line text box within a rendered page. The inputText
component value attribute is most commonly bound to a managed bean property so that the values of the property
can be retrieved or set when a form is processed. In the recipe example, the first inputText component is bound to
the managed bean property named first. The EL expression #{contactController1.current.first} is specified
for the component value, so if the managed bean’s first property contains a value, then it will be displayed within
the inputText component. Likewise, when the form is submitted, then any value that has been entered within the
component will be saved within the first property in the managed bean.

The inputSecret component is used to generate a single-line text box within a rendered page, and when text is
entered into the component, then it is not displayed; rather, asterisks are displayed in place of each character typed.
This component makes it possible for a user to enter private text, such as a password, without it being displayed on
the screen for others to read. The inputSecret component works identically to the inputText component, other than
hiding the text with asterisks. In the example, the value of the inputSecret component is bound to a managed bean
property named password via the #{contactController1.current.password} EL expression.

The inputTextarea component is used to generate a multiline text box within a rendered page. As such, this
component has a couple of additional attributes that can be used to indicate how large the text area should be. The
inputTextarea has the rows and cols attributes, which allow a developer to specify how many rows (height) and
how many columns (wide) of space the component should take up on the page, respectively. Other than those two
attributes, the inputTextarea component works in much the same manner as the inputText component. In the
example, the value attribute of the inputTextarea component is specified as #{contactController1.current.
description}, so the description property will be populated with the contents of the component when the form is
submitted.

The input component I have not yet discussed is the inputHidden component. This component is used to place
a hidden input field into the form. It works in the same manner as the inputText component, except that it is not
rendered on the page for the user to see. The value for an inputHidden component can be bound to a managed bean
property in the same way as the other components. You can use such a component for passing a hidden token to and
from a form.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

209

As you can see, the days of passing and receiving request parameters within JSP pages are over. Utilizing the
JSF standard input components, it is possible to bind values to managed bean properties using JSF EL expressions.
This makes it much easier for developers to submit values from an input form for processing. Rather than retrieving
parameters from a page, assigning them to variables, and then processing, the JSF framework takes care of that
overhead for you. Although I have not covered the usage of all input component attributes within this recipe, I will
cover more in the recipes that follow as I will build upon the Acme Bookstore newsletter subscription page.

5-2. Invoking Actions from Within a Page
Problem
You want to trigger a server-side method to be invoked from a button or link on one of your application pages.

Solution
Utilize the commandButton or commandLink components within your view to invoke action methods within a managed
bean. The command components allow for the user invocation of actions within managed beans. Command
components bind buttons and links on a page directly to action methods, allowing developers to spend more time
thinking about the development of the application and less time thinking about the Java servlet–processing life cycle.

In the example for this recipe, a button and a link are added to the newsletter page for the Acme Bookstore.
The button that will be added to the page will be used to submit the input form for processing, and the link will allow
a user to log into the application and manage their subscription and bookstore account.

Note ■ this recipe will not cover any authentication features; it focuses only on invoking actions within managed
beans. For more information regarding authentication, please see Chapter 14.

The View: recipe05_02.xhtml
The following code is for the newsletter subscription view including the command components. The sources are for
the file named recipe05_02.xhtml.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE7 Recipes
Recipe: 5-2
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

210

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
 <h:form id="contactForm">
 <h1>Subscribe to Newsletter</h1>
 <p>
 Enter your information below in order to be added to the Acme

Bookstore newsletter.
 </p>

 <label for="first">First: </label>
 <h:inputText id="first" size="40" value="#{contactController2.current.first}"/>

 <label for="last">Last: </label>
 <h:inputText id="last" size="40" value="#{contactController2.current.last}"/>

 <label for="email">Email: </label>
 <h:inputText id="email" size="40" value="#{contactController2.current.email}"/>

 <label for="password">Enter a password for site access:</label>
 <h:inputSecret id="password" size="40"

value="#{contactController2.current.password}"/>

 <label for="description">Enter your book interests</label>

 <h:inputTextarea id="description" rows="5" cols="100"

value="#{contactController2.current.description}"/>

 <h:commandButton id="contactSubmit"

action="#{contactController2.subscribe}" value="Save"/>

 <h:commandLink id="manageAccount" action="#{contactController2.manage}"

value="Manage Subscription"/>
 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

Managed Bean: ContactController.java
The managed bean that contains the action methods is named ContactController, which was created in Recipe 5-1.
The following code excerpt is taken from the ContactController class, and it shows the updates that have been made
to the methods for this recipe.

Note ■ the complete implementation of ContactController resides within the package org.javaeerecipes.chapter05.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

211

. . .
 /**
 * Adds a subscriber to the newsletter
 * @return String
 */
 public String subscribe(){
 // Using a list implementation for now,
 // but will add to a database table in Chapter 7

 // Add the current contact to the subscription list
 subscriptionController.getSubscriptionList().add(current);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Successfully Subscribed to Newsletter for " + getCurrent().getEmail(), null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 return "SUBSCRIBE";
 }

 /**
 * Navigational method
 * @return String
 */
 public String add(){
 return "ADD_SUBSCRIBER";
 }

 /**
 * This method will allow a user to navigate to the manageAccount view.
 * This method will be moved into another managed bean that focuses on
 * authentication later on.
 * @return
 */
 public String manage(){
 return "/chapter05/manageAccount";
 }
. . .

When the view is rendered, the resulting page looks like Figure 5-2.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

212

How It Works
The command components make JSF vastly different from using JSP technology. In the older technologies, form
actions were used to handle request parameters and perform any required business logic with them. With the JSF
command components, Java methods can be bound directly to a button or a link and invoked when the components
are activated (button or link clicked). In the example for this recipe, both the commandButton and commandLink
components are utilized. The commandButton component is used to submit the form request parameters for
processing, and the commandLink component is bound to an action method that performs a redirect to another
application page.

The command components have a handful of attributes that are of note. Those attributes, along with a
description of each, are listed in Table 5-5 and Table 5-6.

Figure 5-2. Utilizing command components within a view

Table 5-5. commandButton Component Additional Attributes

Attribute Description

action EL that specifies a managed bean action method that will be invoked when the user activates
the component.

actionListener EL that specifies a managed bean action method that will be notified when this component is
activated. The action method should be public and accept an ActionEvent parameter, with a
return type of void.

class CSS style class that can be applied to the component.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

disabled A Boolean to indicate whether the component is disabled.

image Absolute or relative URL to an image that will be displayed on the button.

(continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

213

Table 5-6. commandLink Component Additional Attributes

Attribute Description

action EL that specifies a managed bean action method that will be invoked when the user activates
the component.

accessKey Access key value that will transfer the focus to the component.

cords Position and shape of the hotspot on the screen.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

disabled Specifies a Boolean to indicate whether the component is disabled.

hreflang Language code of the resource designated by the hyperlink.

immediate Flag indicating that, if this component is activated by the user, notifications should be delivered
to interested listeners and actions immediately (that is, during the Apply Request Values phase)
rather than waiting until the Invoke Application phase.

lang Code for the language used for generating the component markup.

rel Relationship from the current document to the anchor specified by the hyperlink.

rev Reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating number of tab button presses it takes to bring the component into focus.

target Name of a frame where the resource retrieved via the hyperlink will be displayed.

title Tooltip that will be displayed when the mouse hovers over component.

type Indicates type of button to create. Values are submit (default), reset, and button.

charset Character encoding of the resource designated by the hyperlink.

Attribute Description

immediate Flag indicating that, if this component is activated by the user, notifications should be
delivered to interested listeners and actions immediately (that is, during the Apply Request
Values phase) rather than waiting until the Invoke Application phase.

label Name for the component.

lang Code for the language used for generating the component markup.

readonly Boolean indicating whether the component is read only.

rendererType Identifier of renderer instance.

tabindex Index value indicating number of tab button presses it takes to bring the component
into focus.

title Tooltip that will be displayed when the mouse hovers over component.

transient Boolean indicating whether component should be included in the state of the
component tree.

type Indicates type of button to create. Values are submit (default), reset, and button.

Table 5-5. (continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

214

The commandButton and commandLink components in the example to this recipe specify only a minimum number
of attributes. That is, they both specify id, action, and value attributes. The id attribute is used to uniquely identify
each of the components. The action attribute is set to the JSF EL, which binds the components to their managed bean
action methods. The commandButton component has an action attribute of #{contactController2.subscribe},
which means that the ContactController class’s subscribe method will be invoked when the button on the page
is clicked. The commandLink has an action attribute of #{contactController2.manage}, which means that the
ContactController class’s manage method will be invoked when the link is clicked. Each of the components also
specifies a value attribute, which is set to the text that is displayed on the button or link when rendered.

As you can see, only a handful of the available attributes are used within the example. However, the components
can be customized using the additional attributes that are available. For instance, an actionListener method can
be specified, which will bind a managed bean method to the component, and that method will be invoked when the
component is activated. JavaScript functions can be specified for each of the attributes beginning with the word on,
activating client-side functionality.

Command components vastly change the landscape of Java web application development. They allow the
incorporation of direct Java method access from within user pages and provide an easy means for processing request
parameters.

5-3. Displaying Output
Problem
You want to display text from a managed bean property within your application pages.

Solution
Incorporate JSF output components into your views. Output components are used to display static or dynamic text
onto a page, as well as the results of expression language arithmetic. The standard JSF component library contains
four components that render output: outputLabel, outputText, outputFormat, outputLink, and link. The Acme
Bookstore utilizes each of these components within the bookstore newsletter application façade.

The View: recipe05_03.xhtml
In the following example, the newsletter subscription view has been rewritten to utilize some of the output
components:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE7 Recipes
Recipe: 5-3
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

215

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
 <h:form id="contactForm">
 <h1>Subscribe to Newsletter</h1>
 <p>
 <h:outputText id="newsletterSubscriptionDesc"
 value="#{contactController.newsletterDescription}"/>
 </p>

 <h:outputLabel for="first" value="First: "/>
 <h:inputText id="first" size="40" value="#{contactController.current.first}"/>

 <h:outputLabel for="last" value="Last: "/>
 <h:inputText id="last" size="40" value="#{contactController.current.last}"/>

 <h:outputLabel for="email" value="Email: "/>
 <h:inputText id="email" size="40" value="#{contactController.current.email}"/>

 <h:outputLabel for="password" value="Enter a password for site access: "/>
 <h:inputSecret id="password" size="40"

value="#{contactController.current.password}"/>

 <h:outputLabel for="description" value="Enter your book interests"/>

 <h:inputTextarea id="description" rows="5" cols="100"
 value="#{contactController.current.description}"/>

 <h:commandButton id="contactSubmit" action="#{contactController.subscribe}"
 value="Save"/>

 <h:commandLink id="manageAccount" action="#{contactController.manage}"
 value="Manage Subscription"/>

 <h:outputLink id="homeLink" value="home.xhtml">Home</h:outputLink>
 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

Managed Bean: ContactController.java
The ContactController managed bean has been modified throughout the recipes within this chapter to
incorporate new functionality as the recipes move forward. In this recipe, a new property has been added to the
ContactController that contains the description of the newsletter.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

216

Note ■ the hard-coded newsletter description is not a good idea for use in a production application. It is used in this
example for demonstration purposes only. For a production application, utilization of resource bundles or database
storage would be a more viable approach for storing Strings of text.

The following source excerpt from the ContactController class shows the changes:

. . .
private String newsletterDescription;

 /**
 * Creates a new instance of ContactController
 */
 public ContactController() {
 current = null;
 newsletterDescription = "Enter your information below in order to be " +
 "added to the Acme Bookstore newsletter.";
 }
. . .
/**
 * @return the newsletterDescription
 */
 public String getNewsletterDescription() {
 return newsletterDescription;
 }

 /**
 * @param newsletterDescription the newsletterDescription to set
 */
 public void setNewsletterDescription(String newsletterDescription) {
 this.newsletterDescription = newsletterDescription;
 }
. . .

The resulting page looks like Figure 5-3. Note that the text is the same, because it is merely reading the same text
from a managed bean property. Also note that there is now an additional link added to the bottom of the page, which
reads Home.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

217

How It Works
Output components can be used to display output that is generated within a managed bean or to render a link to
another resource. They can be useful in many cases for displaying dynamic output to a web view. The example
for this recipe demonstrates three out of the five different output component types: outputText, outputLink, and
outputLabel. Each of the components shares a common set of attributes, which are listed in Table 5-7.

Note ■ the outputText component has become a bit less important since the release of JSF 2.0 because the Facelets view
definition language implicitly wraps inline content with a similar output component. therefore, the use of the outputText tag
within JSF 2.0 is necessary only if you want to utilize some of the tag attributes for rendering, JavaScript invocation, or the like.

Figure 5-3. Utilizing output components within a view

Table 5-7. Common Output Component Attributes (Not Listed in Introduction)

Attribute Description

class CSS class for styling

converter Converter that is registered with the component

dir Direction of text (LTR: left-to-right; RTL: right-to-left)

escape Boolean value to indicate whether XML- and HTML-sensitive characters are escaped

lang Code for language used when generating markup for the component

parent Parent component

title Tooltip text for the component

transient Boolean indicating whether component should be included in the state of the component tree

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

218

The outputText component in the example contains a value of #{contactController.newsletterDescription},
which displays the contents of the newsletterDescription property within ContactController. Only the common
output component attributes can be specified within the h:outputText tag. Therefore, an attribute such as class or
style can be used to apply styles to the text displayed by the component. If the component contains HTML or XML,
the escape attribute can be set to true to indicate that the characters should be escaped.

The outputFormat component shares the same set of attributes as the outputText component. The
outputFormat component can be used to render parameterized text. Therefore, if you require the ability to alter
different portions of a String of text, you can do so via the use of JSF parameters (via the f:param tag). For example,
suppose you wanted to list the name of books that someone has purchased from the Acme Bookstore; you could use
the outputFormat component like in the following example:

<h:outputFormat value="Cart contains the books {0}, {1}, {2}"/>
 <f:param value="Java 7 Recipes"/>
 <f:param value="JavaFX 2.0: Introduction by Example"/>
 <f:param value="Java EE 7 Recipes"/>
</h:outputFormat>

The outputLink and outputLabel components can each specify a number of other attributes that are
not available to the previously discussed output components. The additional attributes are listed in Table 5-8
(outputLink) and Table 5-9 (outputLabel). The outputLink component can be used to create an anchor or link that
will redirect an application user to another page when the link is clicked. In the example, the outputLink component
is used to redirect a user to a view named home.xhtml. The value for the outputLink component can be set to a static
page name, as per the example, or it can contain a JSF EL expression corresponding to a managed bean property. It is
also possible to pass parameters to another page using the outputLink component by nesting f:param tags between
opening and closing h:outputLink tags as follows:

<h:outputLink id="homeLink" value="home.xhtml">
 <h:outputText value="User Home Page"/>
 <f:param name="username" value="#{contactController.current.email}"/>
 </h:outputLink>

Table 5-8. outputLink Additional Attributes

Attribute Description

acccessKey Access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

charset The character encoding of the resource designated by this hyperlink.

cords Position and shape of the hotspot on the screen.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

disabled Specifies a Boolean to indicate whether the component is disabled.

fragment Identifier for the page fragment that should be brought into focus when the target page
is rendered.

(continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

219

Table 5-9. outputLabel Additional Attributes

Attribute Description

acccessKey Access key value that will transfer the focus to the component.

binding ValueExpresssion linking this component to a property in a backing bean.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

escape Flag indicating that characters that are sensitive in HTML and XML markup must be escaped.

for Client identifier of the component for which this element is a label.

lang Code for the language used for generating the component markup.

tabindex Index value indicating number of Tab button presses it takes to bring the
component into focus.

title Tooltip that will be displayed when the mouse hovers over component.

type Type of button to create. Values are submit (default), reset, and button.

The previous example would produce a link with the text User Home Page when rendered on the page. It would
produce the following HTML link, where emailAddress corresponds to the EL expression of #{contactController.
current.email}:

Home Page

Similarly, rather than displaying a link as text on the page, an image can be used by embedding a
graphicImage component (see Recipe 5-6 for details).

The outputLabel component renders an HTML <label> tag, and it can be used in much the same way as
the outputText component. In the example, the outputLabel component values are all using static text, but they
could also utilize JSF EL expressions to make use of managed bean property values if that is more suitable for the
application.

Attribute Description

hreflang Language code of the resource designated by the hyperlink.

lang Code for the language used for generating the component markup.

rel Relationship from the current document to the anchor specified by the hyperlink.

rev Reverse anchor specified by this hyperlink to the current document.

shape Shape of the hotspot on the screen.

tabindex Index value indicating number of Tab button presses it takes to bring the

component into focus.

target Name of a frame where the resource retrieved via the hyperlink will be displayed.

title Tooltip that will be displayed when the mouse hovers over component.

type Type of button to create. Values are submit (default), reset, and button.

Table 5-8. (continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

220

The last output component that I’ll cover in this recipe is the link component. It was introduced to JSF in release
2.0, and it makes the task of adding links to a page just a bit easier. Both the outputLink and link components
produce similar results, but link has just a couple of different attributes that make it react a bit differently. The value
attribute of the h:link tag specifies the label or text that should be used when the link is rendered on the page, and the
outcome attribute specifies the page that should be linked to. The following example of the link component produces
the same output as the outputLink component in the example for this recipe:

<h:link id=""homeLink"" value=""Home"" outcome=""home""/>

Parameters and images can also embedded within the h:link tag, in the same manner as with outputLink.
The link component also contains some custom attributes, as listed in Table 5-10.

Table 5-10. link Component Additional Attributes

Attribute Description

charset Character encoding of the resource that is designated by the hyperlink.

cords Position and shape of the hotspot on the screen, usually used when generating maps or
images containing multiple links.

disabled Flag to indicate that the component should never receive focus.

fragment Identifier for the page fragment that should be brought into focus when the link is clicked.
The identifier is appended to the # character.

hreflang Language of the resource designated by this link.

includeviewparams Boolean indicating whether to include page parameters when redirecting.

outcome Logical outcome used to resolve a navigational case.

rel Relationship from the current document to the resource specified by link.

rev Reverse link from the anchor specified from this link to the current document.

shape Shape of the hotspot on the screen.

target Name of the frame in which the resource linked to is to be displayed.

type Content type of resource that is linked to.

This recipe provided a high-level overview of the JSF standard output components. In JSF 2.0+, it is important
to note that you can simply include a JSF EL expression without using an output component to display text within a
page. However, these components can still be quite useful under certain circumstances, making them an important
set of components to have within your arsenal.

5-4. Adding Form Validation
Problem
To ensure that valid data is being submitted via your form, you need to incorporate some validation on your input fields.

Solution #1
Utilize prebuilt JSF validator tags on the view’s input components where possible. JSF ships with a handful of
prebuilt validators that can be applied to components within a view by embedding the validator tag within the
component you want to validate. The following code excerpt is taken from a JSF view that defines the layout for

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

221

the newsletter subscription page of the Acme Bookstore application. The sources can be found in the view named
recipe05_04.xhtml, and the excerpt demonstrates applying prebuilt validators to some inputText components.

. . .
<h:outputLabel for="first" value="First: "/>
<h:inputText id="first" size="40" value="#{contactController.current.first}">
 <f:validateLength minimum="1" maximum="40"/>
 </h:inputText>

<h:message id="firstError"
 for="first"
 errorStyle="color:red"/>

<h:outputLabel for="last" value="Last: "/>
<h:inputText id="last" size="40" value="#{contactController.current.last}">
 <f:validateLength minimum="1" maximum="40"/>
</h:inputText>

<h:message id="lastError"
 for="last"
 errorStyle="color:red"/>

. . .

In the preceding code excerpt, you can see that the f:validateLength validator tags have been embedded in
different inputText components. When the form is submitted, these validators will be applied to the values within the
inputText component fields and will return an error message if the constraints have not been met.

Solution #2
Utilize JSF bean validation by annotating managed bean fields with validation annotations. It is possible to perform
validation from within the managed bean by annotating the property field declaration with the validation annotations
that are needed. When the form is submitted, then the bean validation will be performed.

Note ■ an f:validateBean tag can be embedded within the component in the view if making use of
validationGroups in order to delegate the validation of the local value to the Bean validation apI. If using f:validateBean,
the validationGroups attribute will serve as a filter that instructs which constraints should be enforced.

The following code excerpt is taken from the JSF view that defines the layout for the newsletter subscription page
of the Acme Bookstore application. The sources can be found in the view named recipe05_04.xhtml.

. . .
<h:outputLabel for="email" value="Email: "/>
<h:inputText id="email" size="40" value="#{contactController.current.email}"/>

<h:message id="emailError"
 for="email"
 errorStyle="color:red"/>
. . .

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

222

Next is an excerpt from the ContactController managed bean that demonstrates applying a validator annotation
to the email property field declaration:

. . .
@Pattern(regexp = "[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-zA-Z0-9]+", message = "Email format is invalid.")
 private String email;
. . .

When the form is submitted, the validation on the email field will occur. If the value entered into the inputText
component does not validate against the regular expression noted in the annotation, then the message will be
displayed within the corresponding messages component.

Solution #3
Create a custom validator method within a managed bean, and register that method with an input component by
specifying the appropriate EL for the component’s validator attribute. The following code excerpt is taken from the
JSF view that defines the layout for the newsletter subscription page of the Acme Bookstore application. The sources
can be found in the view named recipe05_04.xhtml, and the excerpt demonstrates a custom validator method to a
component by specifying it for the validator attribute.

 . . .
<h:outputLabel for="password" value="Enter a password for site access: "/>
<h:inputSecret id="password" size="40" redisplay="true"
value="#{contactController.current.password}"/>

<h:outputLabel for="passwordConfirm" value="Confirm Password: "/>
<h:inputSecret id="passwordConfirm" size="40" redisplay="true"
 validator="#{contactController.validatePassword}"/>

<h:message id="passwordConfirmError"
 for="passwordConfirm"
 style="color:red"/>
. . .

Note ■ If you are thinking outside of the box, you’ll see that the previous code fragment would be an excellent choice
for creating into a composite component! If a composite component is created, then it would be as simple as adding a
tag such as <custom:passwordValidate> to your form. please see recipe 4-4 for more details on developing composite
components.

The validator attribute specifies the validatePassword method within the ContactController managed bean.
The following excerpt is taken from ContactController, and it shows the validator method’s implementation:

. . .
/**
 * Custom validator to ensure that password field contents match
 * @param context
 * @param component
 * @param value
 */

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

223

 public void validatePassword(FacesContext context,
 UIComponent component,
 Object value){
 Map map = context.getExternalContext().getRequestParameterMap();
 String passwordText = (String) map.get(("contactForm:password"));
 String confirmPassword = value.toString();

 if (!passwordText.equals(confirmPassword)) {
 throw new ValidatorException(new FacesMessage("Passwords do not match"));
 }
 }
. . .

When the form is submitted, the validatePassword method will be invoked during the Process Validations
phase. The method will read the values of both the password and passwordConfirm fields, and an exception will be
thrown if they do not match. For example, if the input form for the newsletter subscription page is submitted without
any values, then the page should be re-rendered and look like Figure 5-4.

Figure 5-4. Validation errors on input fields

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

224

How It Works
There are a few different ways in which to apply validation to form input fields. The easiest way to apply validation to
an input component is to utilize the prebuilt validator tags that ship with JSF. There are prebuilt tags for validating data
for a specified length, range, and so on. Please see Table 5-2 in the introduction to this chapter for the complete list
of validator tags. You can also choose to apply validation to input components using bean validation. Bean validation
requires validation annotations to be placed on the property declaration within the managed bean. Yet another
possible way to perform validation is to create a custom validation method and specify the method within the input
component’s validator attribute. This section will provide a brief overview of each prebuilt validation tag, cover the
basics of bean validation, and demonstrate how to build a custom validation method.

Note■ It is possible to create a class that implements the Validator interface to perform validation. For more
information, please see recipe 3-7.

No matter which validation solution you choose to implement, the validation occurs during the Process
Validations phase of the JSF life cycle. When a form is submitted, via a command component or an Ajax request,
all validators that are registered on the components within the tree are processed. The rules that are specified within
the attributes of the component are compared against the local value for the component. At this point, if any of the
validations fails, the messages are returned to the corresponding message components and displayed to the user.

To utilize the prebuilt validation tags, they must be embedded between opening and closing input component
tag and specify attributes according to the validation parameters you want to set. In Solution #1 for this recipe, you
learned how to use the f:validateLength validator tag, which allows validation of component data for a specified
length. The minimum and maximum attributes are set to the minimum string length and maximum string length,
respectively.

The f:validateLongRange validator can be used to check the range of a numeric value that has been entered.
The minimum and maximum attributes of f:validateLongRange are used to determine whether the value entered
falls within the lower and upper bounds, respectively.

Similar to f:validateLongRange is the f:validateDoubleRange validator, which is used to validate the range of a
floating-point value. Again, the minimum and maximum attributes of f:validateDoubleRange are used to determine
whether the value entered falls within the lower and upper bounds, respectively.

New with the release of JSF 2.0 was the f:validateRequired validator, which is used to ensure that an input field
is not empty. No attributes are needed with this validator; simply embed it within a component tag to ensure that the
component will not contain an empty value.

Another new validator that shipped with the JSF 2.0 release was the f:validateRegex validator. This validator
uses a regular expression pattern to determine whether the value entered matches the specified pattern. The
validator’s pattern attribute is used to specify the regular expression pattern, as shown in the example for Solution #1
to this recipe.

In Solution #2, JSF bean validation is demonstrated, which was also a new feature of the JSF 2.0 release. Bean
validation allows you to annotate a managed bean field with constraint annotations that indicate the type of validation
that should be performed. The validation automatically occurs on the annotated fields when a form is submitted that
contains input components referencing them. A handful of standard constraint annotations can be applied to bean
fields, as listed in Table 5-11. Each annotation accepts different attributes; please see the online documentation at
http://docs.oracle.com/javaee/6/api/ for more details.

http://docs.oracle.com/javaee/6/api/
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

225

When using bean validation, the input component that references an annotated bean field can contain an
f:validateBean tag to customize behavior. The f:validateBean tag’s validationGroups annotation can be used to
specify validation groups that can be used for validating the component. For instance, such a solution may resemble
something like the following:

<h:inputText id="email" value="#{contactController.email}">
 <f:validateBean validationGroups="org.javaeerecipes.validation.groups.EmailGroup"/>
</h:inputText>

Note ■ validation groups define a subset of constraints that can be applied for validation. a validation group is
represented by an empty Java interface. the interface name can then be applied to annotation constraints within a
bean class in order to assign such constraints to a particular group. For instance, the following field that is annotated
with @Size specifies a group of Email.class:

@Size(min=2, max=30, groups=email.class)

private String email;

When utilizing the f:validateBean tag, any constraint annotations that are contained within the specified group will be
applied to the field for validation.

Table 5-11. Constraint Annotations Used for Bean Validation

Annotation Description

@AssertFalse The annotated element must be false.

@AssertTrue The annotated element must be true.

@DecimalMax The annotated element must be a decimal that has a value less than or equal to the
specified maximum.

@DecimalMin The annotated element must be a decimal that has a value greater than or equal to the
specified minimum.

@Digits The annotated element must be a number within the accepted range.

@Future The annotated element must be a date in the future.

@Max The annotated element must be a number that has a value less than or equal to the
specified maximum.

@Min The annotated element must be a number that has a value greater than or equal to the
specified minimum.

@NotNull The annotated element must not be null.

@Null The annotated element must be null.

@Past The annotated element must be a date in the past.

@Pattern The annotated element must match the pattern specified in the regular annotation’s
regular expression.

@Size The annotated element must be between the specified boundaries.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

226

When using bean validation, a custom error message can be displayed if the validation for a field fails. To add a
custom message, include the message attribute within the annotation, along with the error message that you want to
have displayed. As a best practice, error messages should be pulled from a message bundle.

The example for Solution #3 demonstrates the use of a custom validator method in order to perform validation
on an input component. The input component’s validator attribute can reference a managed bean method that has
no return type and accepts a FacesContext, a UIComponent, and an Object, as a validation method. The method can
utilize the parameters to gain access to the current FacesContext, the UIComponent that is being validated, and the
current value that is contained in the object, respectively. The validation logic can throw a javax.faces.validator.
ValidatorException if the value does not pass validation and then return a message to the user via the exception.
In the example, the method named validatePassword is used to compare the two password field contents to ensure
that they match. The first two lines of code within the method are used to obtain the value of the component with the
id of password and save it into a local variable. The actual validation logic compares that value against the incoming
parameter’s Object value, which is the current value of the component being validated, to determine whether there
is a match. If not, then a ValidationException is thrown with a corresponding message. That message will then be
displayed within the messages component that corresponds to the component being validated.

As mentioned at the beginning of this recipe, there are a few ways to validate input. None of them is any better
than the other; their usage depends upon the needs of your application. If you are going to be changing validation
patterns often, then you may want to stick with the prebuilt validator tags so that you do not need to recompile code
in order to change the validation. On the other hand, if you know that your validation will not change, then it may be
easier for you to work with the bean validation technique. Whatever the case, validation can be made even easier with
Ajax, and that topic will be covered in Chapter 6.

5-5. Adding Select Lists to Pages
Problem
You want to provide a list of options to choose from for some of the input fields within your page.

Solution
Use the JSF selectOneMenu, selectManyMenu, selectOneListbox, or selectManyListbox component, depending
upon the type of list your application requires. Each of these selection components allows for either one or many
selections to be made from a particular set of values. The example for this recipe adds to the newsletter subscription
page of the Acme Bookstore. The bookstore application will allow the customer to select their occupation from a
drop-down list and to select one or more newsletters to which they would like to subscribe from a multiple-select list.
Since they’ll be selecting only a single option for their occupation, a selectOneMenu is used. However, since multiple
newsletter selections can be made, a selectManyListbox is the best choice.

The View: recipe05_05.xhtml
The following excerpt is taken from the JSF view named recipe05_05.xhtml, and it demonstrates the usage of these
components:

. . .
<h:outputLabel for="occupation" value="Occupation: "/>
<h:selectOneMenu id="occupation" value="#{contactController.current.occupation}">
 <f:selectItem itemLabel="" itemValue=""/>
 <f:selectItems value="#{contactController.occupationList}"/>
</h:selectOneMenu>

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

227

<h:outputLabel for="newsletterList" value="Newsletters:"/>
<h:selectManyListbox id="newsletterList" value="#{contactController.current.newsletterList}">
 <f:selectItems value="#{contactController.allNewsletters}"/>
</h:selectManyListbox>
. . .

Managed Bean: ContactController.java
The components are bound to properties within the ContactController managed bean. The following excerpt, taken
from ContactController, shows the declaration of the properties, along with their corresponding accessor methods:

. . .
// Declaration of the managed bean properties
private List<String> occupationList;
private Map<String, Object> allNewsletters;
. . .
// Example of populating the object
private void populateOccupationList(){
 occupationList = new ArrayList();
 occupationList.add("Author");
 occupationList.add("IT Professional");
}

// Example of populating the object
private void populateNewsletterList(){
 newsletterList = new LinkedHashMap<String,Object>();
 newsletterList.put("Java 7 Recipes Weekly", "Java");
 newsletterList.put("JavaFX Weekly", "FX");
 newsletterList.put("Oracle PL/SQL Weekly", "Oracle");
 newsletterList.put("New Books Weekly", "New Books");
}

. . .
/**
 * @return the occupationList
 */
public List<String> getOccupationList() {
 return occupationList;
}

/**
 * @param occupationList the occupationList to set
 */
public void setOccupationList(List<String> occupationList) {
 this.occupationList = occupationList;
}

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

228

/**
 * @return the newsletterList
 */
public Map<String,Object> getNewsletterList() {
 return newsletterList;
}

/**
 * @param newsletterList the newsletterList to set
 */
public void setNewsletterList(Map<String,Object> newsletterList) {
 this.newsletterList = newsletterList;
}
. . .

The newly updated newsletter subscription page should look like Figure 5-5.

Figure 5-5. Selection components including lists of values

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

229

How It Works
To ensure data integrity, it is always a good idea to include input components that are prepopulated with data if
possible. Doing so ensures that users are not entering free-text values of varying varieties into text boxes, and it also
gives the user a convenient choice of options. Utilizing selection components provides the user with a list of values to
choose from, allowing one or more selections to be made. The standard JSF component library ships with four input
components that accept lists of data from which a user can choose one or more selections. The selection components
are selectOneListbox, selectManyListbox, selectOneMenu, and selectManyMenu. Each of these components shares
a common set of attributes. Those common attributes that were not already displayed within Table 5-2 are listed
within Table 5-12.

Table 5-12. Select Component Attributes

Attribute Description

accesskey Access key that, when pressed, transfers focus to the component

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left)

disabled Boolean value to indicate whether the component is disabled

disabledClass CSS style class to apply to the rendered label on disabled options

enabledClass CSS style class to apply to the rendered label on enabled options

label Localized user-presentable name for the component

lang Code describing the language used in the generate markup for the component

size Number of available options to be shown at all times (selectManyListbox)

tabindex Index value indicating number of Tab button presses it takes to bring the component into focus

title Tooltip that will be displayed when the mouse hovers over component

Populating the Select Lists
Before diving into each of the four components and a brief description of how they work, it is important to note
that each component displays a collection of data, and the f:selectItem or f:selectItems tags are used to
specify that set of data. If you want to list each data item separately, then the f:selectItem tag should be used.
One f:selectItem tag represents one element within the collection of values. The f:selectItem tag contains
several attributes, but I will cover only some of the important ones in this discussion. Every f:selectItem tag should
minimally contain both the itemValue and itemLabel attributes, specifying the value for the element and the label
that is to be displayed, respectively. These attributes accept a JSF EL expression, or a string of text. In the example,
both the itemValue and itemLabel attributes are left blank, which will render an empty selection for the first menu
choice. When the user selects an option from the list, the itemValue attribute value is set into the corresponding
selection component’s value.

The f:selectItems tag can be used to specify a collection of data that should be used for the component.
A List of SelectItem objects can be built within a managed bean and specified for the f:selectItems tag. Much
like the f:selectItem tag, several attributes can be used with this tag, and I’ll cover the essential ones here. Both the
itemValue and itemLabel attributes can also be specified for the f:selectItems tag, corresponding to a List or Map
of values, and a string label, respectively. However, most often, the value attribute is specified, referencing a managed
bean property that contains a Collection or array of objects. The Collection or array can contain any valid Java
object, and in the example a LinkedHashMap is used to populate the newsletterList property. Oftentimes it is easier

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

230

to populate individual SelectItem objects and then load them into a List for use with the f:selectItems tag. The
following lines of code show how to utilize SelectItem objects to populate the newsletters:

private void populateNewsletterList() {
 allNewsletters = new LinkedHashMap<String, Object>();
 allNewsletters.put("Java 7 Recipes Weekly", "Java");
 allNewsletters.put("JavaFX Weekly", "FX");
 allNewsletters.put("Oracle PL/SQL Weekly", "Oracle");
 allNewsletters.put("New Books Weekly", "New Books");
 }

Regarding Each Component Type
The selectOneMenu is probably the most commonly used selection component, and it renders a collection of data
into a drop-down list. The user can select one entry from the menu, and the selected entry will be set into the
managed bean property that is specified for the value attribute of the component. In the example to this recipe, the
value is set to #{contactController.current.occupation}, so when an entry from the list is selected, then it will be
set into the currently selected Contact object’s occupation field.

The selectOneListbox allows a user to select one value from a list of data. The user can see at least a
few of the entries within the list within a box on the screen and can select one of the options from the list box.
The selectOneListbox contains an additional attribute named collectionType, which allows the type of collection
to be specified using a literal value.

Both the selectManyMenu and selectManyListbox components allow the user to choose more than one option
in the selection list. The example demonstrates how to use a selectManyListbox component, allowing the user to
choose more than one newsletter from the list. The main difference when using one of these components is that the
managed bean property value for the component must be able to accept more than one value. In the example, the
selectManyListbox component value references the Contact class’s newsletterList field. The newsletterList field
is declared as a List of String objects, so when the user selects more than one value from the newsletterList, all of
the choices can be stored in the current Contact object.

In the example for this recipe, two components are used to display lists of options for selection. One of the
components allows a user to select one value from the collection and displays the options in a drop-down list, and the
other allows a user to select more than one value and displays the options within a list box.

5-6. Adding Graphics to Your Pages
Problem
You want to incorporate a graphic into your site template or other select application pages.

Solution
Place the images that you want to display into a library within your application’s resources folder, and then use
the graphicImage component to display them. The book.xhtml view for the Acme Bookstore application contains
an image of each book in the store. To render the image, the book image name is populated from the image field
of the Book managed bean. The following code excerpt taken from book.xhtml demonstrates how to use the
h:graphicImage tag:

<h:graphicImage id="bookImage"
 library="image"
 style="width: 100px; height: 120px" name="#{book.image}"/>

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

231

How It Works
Since the inception of JSF, the graphicImage component has been used to display images. Using the library attribute
of the graphicImage component, a JSF view can reference an image resource without needing to specify a fully
qualified path to the image file. In the solution to this recipe, the value specified for the library attribute is image,
meaning that the image can be found within the resource\image folder. It also provides the convenience of accepting
JSF EL in attributes as needed so that images can be dynamically loaded based upon the current values within the
corresponding managed bean properties. The graphicImage component makes it easy to display images, both
dynamically and statically.

The h:graphicImage tag supports a number of attributes, above and beyond the standard JSF component
attributes, as listed in Table 5-13.

Table 5-13. graphicImage Component-Specific Attributes

Attribute Description

alt Alternate textual description of the element rendered by the component

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left)

height Overrides the height of the image

ismap Boolean indicating whether the image is to be used as a server-side image map

lang Code describing the language used in the generated markup for the component

longdesc URI to a long description of the image represented by the element

title Advisory title information about the markup elements generated by the component

usemap Name of a client-side image map for which this element provides the image

width Overrides the width of the image

When the page is rendered in the example to this recipe, the image that resides within the application’s
resources/image directory that corresponds to the name attribute on the tag will be displayed. If the user selects a
different book from the menu, then that book’s image will be displayed using the same graphicImage component,
because the name specified for the image can be changed depending upon the currently selected book object in the
managed bean.

By utilizing a graphicImage within your views, you enable your images to take on the dynamic characteristics
of standard JSF components.

5-7. Adding Check Boxes to a View
Problem
You need to add check box fields within an application view.

Solution
Utilize the selectOneCheckbox and selectManyCheckbox components within the view. These components allow
you to specify a Boolean value as input by simply checking a box for a true value and deselecting the check box for a
false value.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

232

The View: recipe05_07.xhtml
The following code excerpt is taken from the view named recipe05_07.xhtml, and it demonstrates the usage of
these components:

. . .
<h:outputLabel for="notifyme" value="Would you like to receive other promotional email?"/>
<h:selectBooleanCheckbox id="notifyme"

value="#{contactController.current.receiveNotifications}"/>

<h:outputLabel for="notificationTypes"
 value="What type of notifications are you interested in recieving?"/>
<h:selectManyCheckbox id="notifyTypes" value="#{contactController.current.notificationType}">
 <f:selectItems value="#{contactController.notificationTypes}"/>
</h:selectManyCheckbox>
. . .

Managed Bean Controllers
Each of the components is bound to a Contact object, so when the form is submitted, the current Contact object
will receive the data if valid. The following listing contains excerpts from the updated Contact class, an object that is
used to hold the contact’s information. For the complete listing, please see the Contact.java sources within the
org.javaeerecipes.chapter05 packages in the sources.

. . .
private boolean receiveNotifications;
private Map<String, Object> notificationType;
. . .

/**
 * @return the receiveNotifications
 */
public boolean isReceiveNotifications() {
 return receiveNotifications;
}

/**
 * @param receiveNotifications the receiveNotifications to set
 */
public void setReceiveNotifications(boolean receiveNotifications) {
 this.receiveNotifications = receiveNotifications;
}

/**
 * @return the notificationTypes
 */
 public Map<String, Object> getNotificationTypes() {
 return notificationTypes;
 }

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

233

 /**
 * @param notificationTypes the notificationTypes to set
 */
 public void setNotificationTypes(Map<String, Object> notificationTypes) {
 this.notificationTypes = notificationTypes;
 }

The last piece of the puzzle is the list of notification types that are bound to the f:selectItems tag that is
embedded within the h:selectManyCheckbox component. These are bound to a property named notificationTypes
in the ContactController managed bean. The following listing contains the relevant excerpts from that class.

. . .
// Declaration
private Map<String, Object> notificationTypes;
. . .
// Population occurs within the constructor, calling the populateNotificationTypes method
/**
 * Creates a new instance of ContactController
 */
public ContactController() {
 current = null;
 passwordConfirm = null;
 newsletterDescription = "Enter your information below in order to be " +
 "added to the Acme Bookstore newsletter.";
 populateOccupationList();
 populateNewsletterList();
 populateNotificationTypes();

}

private void populateNotificationTypes() {
 notificationTypes = new HashMap<>();
 notificationTypes.put("Product Updates", "1");
 notificationTypes.put("Best Seller Alerts","2");
 notificationTypes.put("Spam", "3");

 }
. . .

The resulting newsletter subscription input screen for the Acme Bookstore application including the new check
box components will look like Figure 5-6.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

234

Figure 5-6. Incorporating check boxes into your pages

How It Works
Check boxes are very common in applications because they provide an easy means for a user to enter a Boolean value.
The box is either checked or not, and a checked box relates to a true value, leaving an unchecked box relating to a
false value. The JSF standard component library ships with a couple of different check box selection components,
namely, the selectBooleanCheckbox and the selectManyCheckbox. The selectBooleanCheckbox renders a single
HTML input element with type="checkbox" on the page, whereas the selectManyCheckbox component renders
multiple HTML input elements with type="checkbox". As with all JSF components, the check box selection
components share a standard set of attributes above and beyond the common JSF component attributes, which are
listed in Table 5-14.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

235

A selectBooleanCheckbox component value attribute EL expression should correspond to a Boolean
property within the managed bean. In the example to this recipe, the selectBooleanCheckbox value is set to
#{contactController.current.receiveNotifications}, a Boolean field in the current Contact object that indicates
whether the contact wants to receive notifications. If the user checks the box for the component, then the value for
the receiveNotifications field will be set to true; otherwise, it will be set to false. The value attribute is the only
attribute that is required for use. However, oftentimes the valueChangeListener attribute is set to a method within a
managed bean that will be invoked if the value for the component value changes. This is most useful when using an
Ajax form submit so that the client can see the results of a ValueChangeEvent immediately, rather than after the form
is re-rendered. To learn more about working with valueChangeListeners, please see Chapter 6.

The selectManyCheckbox component displays one or more check boxes on a page. The value attribute for
this component should correspond to a String array. Each check box contained within the component has a
corresponding String value. Now you are probably thinking to yourself, what does a String have to do with a Boolean
value? In fact, each String in the array corresponds to a check box on the page, and when a box is checked, the
String that corresponds to that box is added to the array. If no boxes are checked, then there are no Strings added
to the array. Therefore, the presence of the String signifies that the check box corresponding to that String value
has been checked. To add check boxes, individual f:selectItem tags can be used for each check box, or a collection
of check boxes can be added using the f:selectItems tag. If using f:selectItem, then the itemValue attribute is set
to the String value that corresponds to that check box, and the itemLabel attribute is set to the check box label. In
the example, the f:selectItems tag is used to populate check boxes for the component. The f:selectItems tag in
the example contains a value attribute that is set to #{contactController.notificationTypes}, which corresponds
to the notificationTypes field in the ContactController class. If you take a look at the notificationTypes field,
you will see that it is declared as a Map<String, Object>, and each element in the array will correspond to a check
box. When the ContactController class is instantiated, the populateNotificationTypes method is called, which
populates the Map with the values for each check box. The following listing is that of the populateNotificationTypes
method. Each element in the Map corresponds to a check box.

private void populateNotificationTypes() {
 notificationTypes = new HashMap<>();
 notificationTypes.put("Product Updates", "1");
 notificationTypes.put("Best Seller Alerts","2");
 notificationTypes.put("Spam", "3");

 }

Table 5-14. Check Box Selection Component Attributes

Attribute Description

accessKey Access key that, when pressed, transfers focus to the element

border Width of the border to be drawn around the table containing the options list (selectManyCheckbox)

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left)

disabled Boolean value indicating whether the element must receive focus or be included in a submit

label Localized user presentable name for the component

lang Code describing the language used in the generated markup for the component

layout Orientation of the options list to be created (selectManyCheckbox)

readonly Boolean indicating whether the component is read-only

tabindex Index value indicating number of Tab button presses it takes to bring the component into focus

title Tooltip that will be displayed when the mouse hovers over component

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

236

Check boxes make it easy for a user to indicate a true or false (checked or unchecked) value for a given option.
The JSF check box selection components help organize content on a page, and they provide a good means of ensuring
data integrity since the user does not have to enter free text.

5-8. Adding Radio Buttons to a View
Problem
You want to display a set of items on a page in the form of radio buttons and allow the user to select only one of them.

Solution
Use radio buttons on your page to provide the user the option of selecting one item from a set. Radio buttons are
often a nice solution when you want to display all options on the screen at once but allow only one selection. For this
recipe, the Acme Bookstore wants to add a radio button on the newsletter subscription page to determine whether the
subscriber is male or female.

The View: recipe05_08.xhtml
The following excerpt is taken from the JSF view named recipe05_08.xhtml, and it demonstrates the selectOneRadio
component:

. . .
<h:outputLabel for="gender" value="Gender: "/>
<h:selectOneRadio id="gender" value="#{contactController.current.gender}">
 <f:selectItem itemValue="M" itemLabel="Male"/>
 <f:selectItem itemValue="F" itemLabel="Female"/>
</h:selectOneRadio>

<h:message id="genderError"
 for="gender"
 errorStyle="color:red"/>

. . .

Managed Bean
The component is bound to a managed bean property named gender that has been added to the Contact class. The
following listing contains excerpts from the Contact class, which show the updates for incorporating the new field:

. . .
private String gender;
. . .
/**
 * @return the gender
 */
public String getGender() {
 return gender;
}

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

237

/**
 * @param gender the gender to set
 */
public void setGender(String gender) {
 this.gender = gender;
}
. . .

When the selectOneRadio component is rendered on the screen, it adds a radio button for each of the available
options. The updated Acme Bookstore newsletter page looks like that in Figure 5-7.

Figure 5-7. Using a selectOneRadio component

How It Works
Radio buttons are very similar to check boxes in that they provide the user with an on or off value for a designated
page value. The value added to using radio buttons is that they make it easy to display several options on the
screen at once and allow the user to select only one of them. If a user tries to select a different option, then the
currently selected item becomes unselected, forcing the user to select only one option. The JSF selectOneRadio
component is used to render radio buttons on a page, and the component works in much the same manner as the
selectManyCheckbox (Recipe 5-7).

The selectOneRadio shares all of the same attributes as the selectBooleanCheckbox component. Please see
Table 5-14 for a listing of those attributes. The selectOneRadio component also contains a number of additional
attributes, as listed in Table 5-15.

Table 5-15. selectOneRadio Attributes (in Addition to Those Listed in Table 5-14)

Attribute Description

disabledClass CSS style class to apply to the rendered label on disabled options

enabledClass CSS style class to apply to the rendered label on enabled options

To use the selectOneRadio component, the value attribute should be set to a String. In the example, the value
for the selectOneRadio component is set to the gender field in the current Contact object. When one of the radio
buttons is selected, the String value corresponding to that button will be set into the field value. The radio buttons
are populated using either the f:selectItem tag or the f:selectItems tag, much like the selectManyCheckbox
component (Recipe 5-7). In the example, two f:selectItem tags are used to add two radio buttons to the component;
the itemValue attribute is the String that will be submitted for the selected button, and the itemLabel attribute is the
String that is displayed next to the corresponding button.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

238

If you want to use an f:selectItems tag to populate a collection of radio buttons, the f:selectItems value
attribute should be set to a managed bean property that is declared as a String array, a Map, or a List of SelectItem
objects. To see an example, please review the example for the selectManyCheckbox component in Recipe 5-7.

Radio buttons are an easy way to display multiple options to a user and allow them to select one. If you
understand how a selectManyCheckbox component works, then the selectOneRadio is very similar.

5-9. Structuring View Layout
Problem
Your page layout is becoming too crowded and unorganized so you want to organize it better by separating
components into different sections.

Solution
Construct the page using a number of panelGrid and panelGroup components. The panelGrid component renders
into an HTML table, so it allows JSF components to be organized using a table structure. For this recipe, the newsletter
subscription page of the Acme Bookstore has been reorganized using a series of panelGrid and panelGroup
components in an attempt to better organize the components into page sections. The components within each
section of the page now correspond to each other so that the form is more intuitive for a user to populate.

The following listing is that of the view named recipe05_09.xhtml, which is the reorganized JSF view for the
newsletter subscription page:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE7 Recipes
Recipe: 5-9
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
 <h:form id="contactForm">
 <h1>Subscribe to Newsletter</h1>
 <p>
 <h:outputText id="newsletterSubscriptionDesc"
 value="#{contactController.newsletterDescription}"/>
 </p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

239

 <h:panelGrid columns="2" bgcolor="" border="0">
 <h:panelGroup>
 <h:outputLabel for="first" value="First: "/>
 <h:inputText id="first" size="40" value="#{contactController.current.first}">
 <f:validateLength minimum="1" maximum="40"/>
 </h:inputText>
 </h:panelGroup>
 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>
 <h:inputText id="last" size="40" value="#{contactController.current.last}">
 <f:validateLength minimum="1" maximum="40"/>
 </h:inputText>
 </h:panelGroup>

 <h:message id="firstError"
 for="first"
 errorStyle="color:red"/>

 <h:message id="lastError"
 for="last"
 errorStyle="color:red"/>
 <h:panelGroup>
 <h:outputLabel for="email" value="Email: "/>
 <h:inputText id="email" size="40" value="#{contactController.current.email}"/>
 </h:panelGroup>
 <h:panelGroup/>
 <h:message id="emailError"
 for="email"
 errorStyle="color:red"/>
 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"
 value="#{contactController.current.gender}">
 <f:selectItem itemValue="M" itemLabel="Male"/>
 <f:selectItem itemValue="F" itemLabel="Female"/>
 </h:selectOneRadio>
 <h:panelGroup>
 <h:outputLabel for="occupation" value="Occupation: "/>
 <h:selectOneMenu id="occupation"

value="#{contactController.current.occupation}">
 <f:selectItems itemvalue="#{contactController.occupationList}"/>
 </h:selectOneMenu>
 </h:panelGroup>
 <h:message id="genderError"
 for="gender"
 errorStyle="color:red"/>

 </h:panelGrid>

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

240

 <h:outputLabel for="description" value="Enter your book interests"/>

 <h:inputTextarea id="description" rows="5" cols="75"
 value="#{contactController.current.description}"/>

 <h:panelGrid columns="2">
 <h:outputLabel for="password" value="Enter a password for site access: "/>
 <h:inputSecret id="password" size="40"
 value="#{contactController.current.password}"/>

 <h:outputLabel for="passwordConfirm" value="Confirm Password: "/>
 <h:inputSecret id="passwordConfirm" size="40"
 value="#{contactController.passwordConfirm}"
 validator="#{contactController.validatePassword}"/>
 </h:panelGrid>
 <h:message id="passwordConfirmError"
 for="passwordConfirm"
 style="color:red"/>

 <hr/>

 <h:panelGrid columns="3">
 <h:panelGroup>
 <h:outputLabel for="newsletterList" value="Newsletters:" style=" "/>
 <h:selectManyListbox id="newsletterList"
 value="#{contactController.current.newsletterList}">
 <f:selectItems value="#{contactController.newsletterList}"/>
 </h:selectManyListbox>
 </h:panelGroup>
 <h:panelGroup/>
 <h:panelGroup>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="notifyme"
 value="Would you like to receive other promotional email?"/>
 <h:selectBooleanCheckbox id="notifyme"
 value="#{contactController.current.receiveNotifications}"/>
 </h:panelGroup>
 <h:panelGroup/>
 <hr/>
 <h:panelGroup/>
 <h:panelGroup>
 <h:outputLabel for="notificationTypes"
 value="What type of notifications are you interested in recieving?"/>

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

241

 <h:selectManyCheckbox id="notifyTypes"
 value="#{contactController.current.notificationType}">
 <f:selectItems value="#{contactController.notificationTypes}"/>
 </h:selectManyCheckbox>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGroup>
 </h:panelGrid>
 <hr/>

 <h:commandButton id="contactSubmit" action="#{contactController.subscribe}"
 value="Save"/>
 <h:panelGrid columns="2" width="400px;">
 <h:commandLink id="manageAccount" action="#{contactController.manage}"
 value="Manage Subscription"/>

 <h:outputLink id="homeLink" value="home.xhtml">Home</h:outputLink>
 </h:panelGrid>
 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

When the reorganized page is rendered, it will look similar to what is shown in Figure 5-8.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

242

How It Works
Sometimes it makes sense to organize the layout of a web page using Cascading Style Sheets. This is often the case
when there are a series of page sections, images that must be placed in precise locations, and fonts of varying styles
and sizes. Other times it makes sense to organize the layout of a web page using HTML tables. Such is true when there
are various fields that share similar fonts and organization needs to be uniform, whereas the fields are laid out with
respect to the fields around them. Table-based layout is usually easy to apply to input forms that include a multitude
of input components with corresponding labels. Uniform layout for input forms can help the overall user experience,
making page flow that creates an easy experience. The JSF standard component known as the panelGrid is rendered
into an HTML table, and it can be used to create uniform layout with ease.

Figure 5-8. Organizing page content with panelGrid and panelGroup

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

243

You may ask, why would I use a panelGrid when a standard HTML table will do? There are a few good reasons to
use a panelGrid as opposed to an HTML table. The best reason is for readability. To create a three-column table using
HTML markup, you would have to write something similar to the following code:

<table>
 <tr>
 <td>
 <h:outputText value="#{myBean.myValue}"/>
 </td>
 </tr>
 <tr>
 <td>
 <h:outputText value="#{myBean.myValue}"/>
 </td>
 </tr>
 <tr>
 <td>
 <h:outputText value="#{myBean.myValue}"/>
 </td>
 </tr>
</table>

If using a panelGrid, the code would resemble the following listing:

<h:panelGrid columns="3">
 <h:outputText value="#{myBean.myValue}"/>
 <h:outputText value="#{myBean.myValue}"/>
 <h:outputText value="#{myBean.myValue}"/>
</h:panelGrid>

As you can see from the previous variance, the panelGrid component makes for much more readable markup.
The other reasons to use panelGrid include the ability to utilize ValueExpressions for each of the attributes and
the ability to bind panelGrids to managed bean properties. In the code for the solution to this recipe, the newsletter
subscription page has been reworked to include a section on the top pertaining to the personal information about
the contact individual, as well as a section at the bottom pertaining to the subscription. Fields have been organized
using panelGrid components, along with some panelGroup components nested throughout. The panelGrid
component contains a set of attributes that allow you to style the header, rows, footer, and so forth. Table 5-16 contains
a listing of the attributes, with the exception of JavaScript code attributes that are shared with the other JSF standard
components.

Table 5-16. panelGrid Attributes

Attribute Description

bgcolor Name or code of the background color for the table.

bodyrows Comma-separated list of row indices for which a new <tbody> element should be started.

border Width (pixels) of the border to be drawn around the table.

captionClass Space-separated list of CSS style classes that will be applied to any caption generated for the table.

captionStyle CSS style(s) to be applied when the caption is rendered.

(continued)

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

244

Attribute Description

cellpadding Definition of how much space the user agent should leave between the border of each cell
and its contents.

cellspacing Definition of how much space the user agent should leave between the left side of the table
and the leftmost column, the top of the table and the top of the top side of the topmost row,
and so on, for the right and bottom of the table. This also specifies how much space to leave
between cells.

columnClasses Comma-delimited list of CSS styles that will be applied to the columns of the table. A space-
separated list of classes may also be specified for any individual column.

columns Number of columns to render before starting a new row.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

footerClass Space-separated list of CSS style classes that will be applied to any footer generated for the
table.

frame Code specifying which sides of the frame surrounding the table will be visible.

headerClass Space-separated list of CSS style classes that will be applied to any header generated for the
table.

lang Code describing the language used in the generated markup for the component.

rowClasses Comma-delimited list of CSS style classes that will be applied to the rows of the table.
A space-separated list of classes can also be specified for each individual row.

rules Code specifying which rules will appear between the cells of the table. Valid values include
none, groups, rows, cols, and all.

summary Summary of the table’s purpose and structure, for user agents rendering to nonvisual media.

title Advisory title information about markup elements generated for the component.

width Width of the entire table.

Table 5-16. (continued)

When using a panelGrid, the columns and rows attributes determine how many columns and rows the
rendered table will include. For instance, a panelGrid that specifies columns="3" and rows="4" will have four rows
of three columns of cells, for a total of 12 cells. The panelGroup component can be utilized for grouping one or more
JSF components together so they occupy a single cell within the panelGrid. Any number of components can be
embedded inside opening and closing h:panelGroup tags in order to have them treated as a single component within
the table and, therefore, have them grouped into the same table cell. The panelGroup component contains a number
of attributes, but they are rarely needed. In the example for this recipe, the panelGroup component is used to group
the input fields together with their labels in most cases. The following excerpt from the example demonstrates the use
of the panelGroup component:

<h:panelGroup>
 <h:outputLabel for="newsletterList" value="Newsletters:" style=" "/>
 <h:selectManyListbox id="newsletterList"
 value="#{contactController.current.newsletterList}">
 <f:selectItems value="#{contactController.newsletterList}"/>
 </h:selectManyListbox>
</h:panelGroup>

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

245

Just like HTML tables, panelGrid components can be nested inside each other. If there comes a need to create a
table within a table, then doing so is very easy. The newly formatted newsletter subscription page contains a nested
panelGrid component for laying out the subscription details section.

Page layout can be very important for the usability of an application. If a page is difficult to navigate, then users
will become frustrated, and the application will be difficult to use at best. For years, HTML tables have been used as a
means of structuring forms in an organized fashion. The panelGrid component adds value to this technique, making
it the preferred way to organize JSF views in situations where CSS is not going to be a major benefit.

5-10. Displaying a Collection of Data
Problem
You are interested in displaying a collection of data within one of your JSF application pages.

Solution
Utilize a dataTable component to display a collection of data. A dataTable component can be used to iterate over a
collection of data, providing a handle for each row object so that column data can be interrogated if need be or simply
displayed. For this example, the book page is being updated to display the table of contents for a chosen book. The
table of contents will be displayed within a dataTable component that has been customized for readability.

The View: recipe05_10.xhtml
The following listing is that of the view named recipe05_10.xhtml, which is an incomplete snapshot of the
book.xhtml view:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Recipe 5-10
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Acme Bookstore</title>
 </h:head>
 <h:body>
 <ui:composition template="./layout/custom_template_search.xhtml">

 <ui:define name="content">
 <h:form id="componentForm">
 <h1>Author List for #{ch5AuthorController.currentBook.title}</h1>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

246

 <p>
 Below is the list of authors. Click on the author's last name
 for more information regarding the author.
 </p>

 <h:graphicImage id="javarecipes" library="image"
 style="width: 100px; height: 120px"
 name="#{ch5AuthorController.currentBook.image}"/>

 <h:dataTable id="authorTable" border="1" value="#{ch5AuthorController.authorList}"
 var="author">
 <f:facet name="header">
 #{ch5AuthorController.currentBook.title} Authors
 </f:facet>
 <h:column>
 <h:commandLink id="authorName" action="#{ch5AuthorController.

displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>
 </h:column>
 </h:dataTable>

 <h:dataTable id="bookDetail" border="1"
 value="#{ch5AuthorController.currentBook.chapters}"
 var="book" style="width:100%"
 rowClasses="tocTableOdd, tocTableEven" columnClasses="col1">
 <f:facet name="header">
 #{ch5AuthorController.currentBook.title} Details
 </f:facet>

 <h:column>
 <f:facet name="header">
 Chapter
 </f:facet>
 <h:outputText value="#{book.chapterNumber}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 Title
 </f:facet>
 <h:outputText value="#{book.title}"/>
 </h:column>

 </h:dataTable>

 </h:form>
 </ui:define>
 </ui:composition>
 </h:body>
</html>

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

247

CSS
The dataTable utilizes some CSS style classes in order to make it easier to read. The following excerpt is taken from
the Acme Bookstore application style sheet named styles.css, and it contains the styles utilized by the table.
The styles.css sheet is linked to the view because it is declared as a resource within the template.

.tocTableOdd{
 background: #c0c0c0;
}

.tocTableEven{
 background: #e0e0e0;
}

.col1{
 text-indent: 15px;
 font-weight: bold;
}

Managed Bean
To accommodate the new table, a class named Chapter has been added to the application. The Chapter class is an
object that will contain the chapter number, the title, and a description of each chapter. There is to be one Chapter
object instantiated for each chapter in every book. To view the listing, please see the org.javaeerecipes.chapter05.
Chapter class in the sources. To populate the Chapter objects for each book, the AuthorController managed bean
has been updated. The following excerpt is taken from the AuthorController managed bean, and it shows how the
chapters are populated into the Book objects.

Note ■ the example demonstrates hard-coding of Strings within Java classes. this is generally a bad idea, and the
use of a database or resource bundle for obtaining Strings is a better fit for enterprise applications. this code is for
demonstration purposes only; to learn more about using databases to store Strings, please refer to later chapters of
this book.

. . .
public void populateAuthors(){
. . .
 Book book1 = new Book("Java 7 Recipes", "java7recipes.png");
 book1 = addChapters1(book1);
. . .
}
. . .
private Book addChapters1(Book book){
 Chapter chapter1 = new Chapter(1, "Getting Started with Java 7", null);
 Chapter chapter2 = new Chapter(2, "Strings", null);
 Chapter chapter3 = new Chapter(3, "Numbers and Dates", null);
 Chapter chapter4 = new Chapter(4, "Data Structures, Conditionals, and Iteration", null);
 Chapter chapter5 = new Chapter(5, "Input and Output", null);

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

248

 Chapter chapter6 = new Chapter(6, "Exceptions, Logging, and Debugging", null);
 Chapter chapter7 = new Chapter(7, "Object Oriented Java", null);
 Chapter chapter8 = new Chapter(8, "Concurrency", null);
 Chapter chapter9 = new Chapter(9, "Debugging and Unit Testing", null);
 Chapter chapter10 = new Chapter(10, "Unicode, Internationalization, and Currency Codes", null);
 Chapter chapter11 = new Chapter(11, "Working with Databases (JDBC)", null);
 Chapter chapter12 = new Chapter(12, "Java 2D Graphics and Media", null);
 Chapter chapter13 = new Chapter(13, "Java 3D", null);
 Chapter chapter14 = new Chapter(14, "Swing API", null);
 Chapter chapter15 = new Chapter(15, "JavaFX Fundamentals", null);
 Chapter chapter16 = new Chapter(16, "Graphics with JavaFX", null);
 Chapter chapter17 = new Chapter(17, "Media with JavaFX", null);
 Chapter chapter18 = new Chapter(18, "Working with Servlets", null);
 Chapter chapter19 = new Chapter(19, "Applets", null);
 Chapter chapter20 = new Chapter(20, "JavaFX on the Web", null);
 Chapter chapter21 = new Chapter(21, "Email", null);
 Chapter chapter22 = new Chapter(22, "XML and Web Services", null);
 Chapter chapter23 = new Chapter(23, "Networking", null);
 List <Chapter> chapterList = new ArrayList();
 chapterList.add(chapter1);
 chapterList.add(chapter2);
 chapterList.add(chapter3);
 chapterList.add(chapter4);
 chapterList.add(chapter5);
 chapterList.add(chapter6);
 chapterList.add(chapter7);
 chapterList.add(chapter8);
 chapterList.add(chapter9);
 chapterList.add(chapter10);
 chapterList.add(chapter11);
 chapterList.add(chapter12);
 chapterList.add(chapter13);
 chapterList.add(chapter14);
 chapterList.add(chapter15);
 chapterList.add(chapter16);
 chapterList.add(chapter17);
 chapterList.add(chapter18);
 chapterList.add(chapter19);
 chapterList.add(chapter20);
 chapterList.add(chapter21);
 chapterList.add(chapter22);
 chapterList.add(chapter23);
 book.setChapters(chapterList);
 return book;

}
. . .

The resulting table of contents within the book page will look like Figure 5-9.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

249

Figure 5-9. Using a dataTable component

How It Works
The JSF dataTable component can be used to display collections of data in a uniform fashion.
The dataTable component is easy to work with, and it allows the flexibility to work with each field within a data
collection. There are other means of displaying collections of data, such as the ui-repeat Facelets tag or the use
of a panelGrid component, but a dataTable makes a developer’s life easy if the table does not need to be customized
to the nth degree.

The dataTable component contains various attributes that can be used to customize the look and feel of the
table, as well as some behavioral characteristics. Each of those attributes is listed in Table 5-17. Each dataTable also
contains column components, which are declared within a dataTable component using the h:column tag. As with any
other JSF tag, there are many attributes that correspond to the h:column tag, as listed in Table 5-18.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

250

Table 5-17. dataTable Attributes

Attribute Description

bgcolor Name or code of the background color for the table.

bodyrows Comma-separated list of row indices for which a new <tbody> element should be started.

border Width (pixels) of the border to be drawn around the table.

captionClass Space-separated list of CSS style classes that will be applied to any caption generated for the
table.

captionStyle CSS style to be applied when the caption is rendered.

cellpadding Definition of how much space the user agent should leave between the border of each cell and
its contents.

cellspacing Definition of how much space the user agent should leave between the left side of the table
and the leftmost column, the top of the table and the top of the top side of the topmost row,
and so on, for the right and bottom of the table. This also specifies how much space to leave
between cells.

columnClasses Comma-delimited list of CSS styles that will be applied to the columns of the table.
A space-separated list of classes can also be specified for any individual column.

columns Number of columns to render before starting a new row.

dir Direction indication for text (LTR: left-to-right; RTL: right-to-left).

footerClass Space-separated list of CSS style classes that will be applied to any footer generated for the
table.

frame Code specifying which sides of the frame surrounding the table will be visible.

headerClass Space-separated list of CSS style classes that will be applied to any header generated for the
table.

lang Code describing the language used in the generated markup for the component.

rowClasses Comma-delimited list of CSS style classes that will be applied to the rows of the table.
A space-separated list of classes may also be specified for each individual row.

rules Code specifying which rules will appear between the cells of the table. Valid values include
none, groups, rows, cols, and all.

summary Summary of the table’s purpose and structure for user agents rendering to nonvisual media.

title Advisory title information about markup elements generated for the component.

width Width of the entire table.

Table 5-18. h:column Attributes

Attribute Description

footerClass CSS class that will be applied to the column footer

headerClass CSS class that will be applied to the column header

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

251

The easiest way to describe the dataTable is to walk through an example. The solution to this recipe contains
a JSF view, in which there are two dataTable components utilized. The first dataTable has an id attribute of
authorTable, and the second has an id attribute of bookTable. You are most interested in the second dataTable,
whose id attribute equals bookTable, although the first dataTable functions in much the same way. The bookTable
component is used to iterate over a collection of Chapter objects and display the corresponding chapter number
and title for the currently selected book. The value attribute of the dataTable is set to #{ch5AuthorController.
currentBook.chapters}, which corresponds to a List<String> property within the AuthorController managed
bean. A dataTable can iterate over many different collection types, including a List, DataModel, and array. Beginning
with the release of JSF 2.2, the common Collection interface also became supported. The var attribute of the
dataTable component is used to specify a handle that allows access to the collection data at the row level. This means
you can hone in on a specific field of the data collection if needed. The dataTable tag does not display anything on its
own; it must have column components embedded within it in order to display the content. Each h:column tag within a
dataTable correlates to a single column of the resulting table when it is rendered. For instance, if you look at the first
h:column tag within the dataTable that has an id of bookDetail, it has an embedded outputText component, which
specifies a value of #{book.chapterNumber}. This specific column is used to display the chapter number, which is a
field within the Chapter object that correlates to the currentBook object’s chapters List.

A column component can contain any valid JSF component, or it can contain plain JSF EL correlating to a data
field within the collection. If you look at the dataTable that has an id attribute of authorTable, you will see that a
commandLink component is used within one of the columns. Oftentimes such is the case, because you may want to
link to the currently selected row’s data from within a table cell. The dataTable with an id of authorTable contains
a good example of doing just that. The commandLink in the table contains an action attribute that specifies a method
within the AuthorController class, and the currently selected row’s value, lastName, is passed to the method as a
parameter. The underlying method uses that parameter to retrieve all the data for the selected row and display it in a
different view.

<h:commandLink id="authorName" action="#{ch5AuthorController.displayAuthor(author.last)}"
 value="#{author.first} #{author.last}"/>

To place a header or footer on the table, you must embed a facet into the table using an f:facet tag.
The f:facet tag contains a number of typical JSF component attributes, but one that stands out for this component
is the name attribute. The name attribute is used to specify what type of facet the tag is, and in the case of the dataTable
those names are header and footer. To create the table header or footer, simply embed the f:facet tag, specifying
the name of the facet (type of facet to create) inside the dataTable component.

Note ■ a unique data type that can be used for a dataTable collection is the DataModel. to have the ability to display
row numbers, use a DataModel.

The dataTable component can be extremely useful in situations when you need to display a collection of data.
One of the pitfalls to using the dataTable is that it does not provide an overabundance of customizability. However,
it is very possible to extend the functionality of the dataTable to suit one’s need. There are plenty of third-party
component libraries that do just that; they provide extended dataTables that feature sorting, row expansion, inline
editing, and so forth. To learn more about using these custom dataTable components, please see Chapter 6.

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

252

5-11. Utilizing Custom JSF Component Libraries
Problem
You want to include components from an external JSF library in your application pages.

Solution
Obtain the latest stable version of the JSF component library that you’d like to utilize, and configure it for use within
your application. This recipe will cover the configuration of the RichFaces and PrimeFaces component libraries, both
of which contain a number of customized components that can add a great deal of functionality to your applications.
To download RichFaces, please visit the site www.richfaces.org, and to download the PrimeFaces library, please visit
the site www.primefaces.org. Each of these component sites can be used together within a single JSF application.

Once you have downloaded the libraries, add them to your JSF application by adding the component library
JAR file to the WEB-INF/lib directory within your application’s web source directory. Note that you may also need to
include additional JAR files with your application in order to utilize external libraries. For instance, the PrimeFaces
library recommends that you also include external libraries such as commons-collections.jar and commons-
beanutils.jar, among others. Please see each library’s documentation for complete details on each external JAR that
needs to be included within your application in order to gain full functionality.

After the libraries have been placed within the WEB-INF/lib directory, you can begin to utilize the library’s
components within your application by declaring their corresponding tag libraries within the application views in
which you want to use them. The following tag declarations are used to allow usage of RichFaces 4.x and PrimeFaces
4.x+ components within a JSF view:

xmlns:rich="http://richfaces.org/rich"
xmlns:a4j="http://richfaces.org/a4j"
xmlns:p="http://primefaces.org/ui"

How It Works
The JSF standard component library contains a vast number of components for use within applications. However,
many individuals and organizations require the use of more customized components and components that build
upon the functionality of the standard components. Utilizing a third-party JSF component library is very easy and
usually involves nothing more than downloading the distribution, including the recommended JAR files within
your application, and referencing the tag libraries from within the views. However, it is best to take care when
utilizing more than one third-party JSF component library within the same application, because there may be some
compatibility issues/conflicts that arise between them.

Once you have followed the procedures outlined in the solution to this recipe, you will be able to begin
adding components from the RichFaces and PrimeFaces libraries into your views. These libraries include exciting
components such as the autoComplete component, which renders an input text box that will automatically complete
a string of text when the user begins to type. While I will not delve into any details of the components in this chapter,
you will begin using them within Chapter 6.

http://www.richfaces.org/
http://www.primefaces.org/
http://richfaces.org/rich
http://richfaces.org/a4j
http://primefaces.prime.com.tr/ui
http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

253

5-12. Implementing File Uploading
Problem
You want to add a file upload component to your application.

Solution
Make use of the JSF file upload component to create an Ajax or non-Ajax-based file upload system for your
application. To utilize the inputFile component, it must be placed within a JSF form that has an enctype set to
multipart/form-data and does not specify an id attribute. The h:form element contains the attributes enctype and
prependId, which can be used to specify these requirements, respectively. A JSF command component or the f:ajax
tag should be set to an action method within the managed bean that will save the file to disk.

The following JSF view demonstrates the use of the inputFile component in a non-Ajax solution:

<h:form prependId="false" enctype="multipart/form-data">
 Choose a file to upload to the server:

 <h:inputFile id="uploadFile" value="#{ajaxBean.file}"/>

 <h:commandButton action="#{ajaxBean.uploadFile()}" value="Upload File"/>
</h:form>

The sources for the uploadFile method that is invoked via the commandButton are as follows:

public void uploadFile() {

 try(InputStream is = file.getInputStream();) {
 byte[] b = new byte[1024];
 is.read(b);
 String fileName = file.getName();
 FileOutputStream os = new FileOutputStream("/Java_Dev/" + fileName);

 } catch (IOException ex) {
 Logger.getLogger(AjaxBean.class.getName()).log(Level.SEVERE, null, ex);
 }
}

How It Works
JSF 2.2 includes a new file upload component that relies upon new Servlet 3.1 file upload support. The file upload
support can be Ajax-enabled or non-Ajax-enabled. A new JSF component named inputFile has been added to the
list of standard JSF components. This component can be used with or without the f:ajax tag, so files can be uploaded
with a page refresh (non-Ajax) or without (Ajax).

The following line of code demonstrates how to set the attributes for a form containing an inputFile component:

<h:form prependId="false" enctype="multipart/form-data">

http://www.it-ebooks.info/

Chapter 5 ■ JavaServer FaCeS Standard ComponentS

254

The value attribute of the inputFile component is set to a variable of type javax.servlet.http.Part within
the AjaxBean managed bean, and the commandButton has an action set to the managed bean’s uploadFile method.
To make the solution utilize Ajax, simply embed an f:ajax tag into the commandButton, which invokes the underlying
managed bean method.

The addition of a native file upload component to JSF is much welcomed. For years now, JSF developers have had
to rely on third-party libraries to handle file-uploading procedures. The scope of components that requires third-party
integration is becoming more narrow, and the default JSF component tool set is becoming complete enough to be the
only requirement for standard enterprise applications.

http://www.it-ebooks.info/

255

Chapter 6

Advanced JavaServer Faces
and Ajax

A task that can be run in the background, independent of other running tasks, is known as an asynchronous task. JavaScript
is the most popular modern browser language that is used to implement asynchronous tasking in web applications. Ajax is
a set of technologies that allows you to perform asynchronous tasks using JavaScript in the background, sending responses
from the client browser to the server, and then sending a response back to the client. That response is used to update
the page’s Document Object Model (DOM). Enhancing an application to make use of such asynchronous requests and
responses can greatly improve the overall user experience. The typical web applications from years past included a series
of web pages, including buttons that were used to navigate from one page to the next. The browser had to repaint each new
page, and when a user was finished with the next page, they’d click another button to go to a subsequent page, and so on.
The days of page reloads are long gone, and client-side asynchronous processing is now the norm. Ajax technology has
overtaken the industry of web application development, and users now expect to experience a richer and more desktop-like
experience when using a web application.

The JSF framework allows developers to create rich user experiences via the use of technologies such as Ajax and
HTML5. Much of the implementation detail behind these technologies can be abstracted away from the JSF developer
using JSF components so that the developer needs to worry only about how to use a JSF component tag and relate it to
a server-side property.

This chapter delves into using Ajax with the JSF web framework. Along the way, you will learn how to spruce up
applications and make the user interface richer and more user friendly so that it behaves more like that of a desktop
application. You’ll also learn how to listen to different component phases and system events, allowing further
customization of application functionality.

Note ■ This chapter contains examples using the third-party component library PrimeFaces. To use PrimeFaces with
Java EE 7 or greater, you must utilize PrimeFaces 4.x+, as earlier releases are not compatible with JSF 2.2.

6-1. Validating Input with Ajax
Problem
You want to validate the values that are entered into text fields of a form, but you want them to be evaluated
immediately, rather than after the form is submitted.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

256

Solution
Perform validation on the field(s) by embedding the f:ajax tag within each component whose values you want to
validate. Specify appropriate values for the event and render attributes so that the Ajax validation will occur when the
field(s) loses focus, and any validation errors will be identified immediately. The following listing is the JSF view for the
newsletter subscription page of the Acme Bookstore application. It has been updated to utilize Ajax validation so that
the validation occurs immediately, without the need to submit the form before corresponding errors are displayed.

Note ■ To utilize the f:ajax tag, you must be sure to declare the document head section within the <h:head>
</h:head> tags. The component looks for the h:head tags when searching for various <script> tags. In the solution
below, the document head section resides within the template.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 6-1
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
 <h:form id="contactForm">
 <h1>Subscribe to Newsletter</h1>
 <p>
 <h:outputText id="newsletterSubscriptionDesc"
 value="#{ch6ContactController.newsletterDescription}"/>
 </p>

 <h:panelGrid columns="2" bgcolor="" border="0">
 <h:panelGroup>
 <h:outputLabel for="first" value="First: "/>
 <h:inputText id="first" size="40"
value="#{ch6ContactController.current.first}">
 <f:validateLength minimum="1" maximum="40"/>
 <f:ajax event="blur" render="firstError"/>
 </h:inputText>
 </h:panelGroup>
 <h:panelGroup>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

257

 <h:outputLabel for="last" value="Last: "/>
 <h:inputText id="last" size="40"
 value="#{ch6ContactController.current.last}">
 <f:validateLength minimum="1" maximum="40"/>
 <f:ajax event="blur" render="lastError"/>
 </h:inputText>
 </h:panelGroup>

 <h:message id="firstError"
 for="first"
 errorStyle="color:red"/>

 <h:message id="lastError"
 for="last"
 errorStyle="color:red"/>
 <h:panelGroup>
 <h:outputLabel for="email" value="Email: "/>
 <h:inputText id="email" size="40"
 value="#{ch6ContactController.current.email}">
 <f:ajax event="blur" render="emailError"/>
 </h:inputText>
 </h:panelGroup>
 <h:panelGroup/>
 <h:message id="emailError"
 for="email"
 errorStyle="color:red"/>
 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"
 value="#{ch6ContactController.current.gender}">
 <f:selectItem itemValue="M" itemLabel="Male"/>
 <f:selectItem itemValue="F" itemLabel="Female"/>
 </h:selectOneRadio>
 <h:panelGroup>
 <h:outputLabel for="occupation" value="Occupation: "/>
 <h:selectOneMenu id="occupation"
 value="#{ch6ContactController.current.occupation}">
 <f:selectItems value="#{ch6ContactController.occupationList}"/>
 </h:selectOneMenu>
 </h:panelGroup>
 <h:message id="genderError"
 for="gender"
 errorStyle="color:red"/>

 </h:panelGrid>

 <h:outputLabel for="description" value="Enter your book interests"/>

 <h:inputTextarea id="description" rows="5" cols="75"
 value="#{ch6ContactController.current.description}"/>

 <h:panelGrid columns="2">

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

258

 <h:outputLabel for="password" value="Enter a password for site access: "/>
 <h:inputSecret id="password" size="40"
 value="#{ch6ContactController.current.password}">
 <f:validateRequired/>
 <f:ajax event="blur" render="passwordError"/>
 </h:inputSecret>

 <h:outputLabel for="passwordConfirm" value="Confirm Password: "/>
 <h:inputSecret id="passwordConfirm" size="40"
 value="#{ch6ContactController.passwordConfirm}"
 validator="#{ch6ContactController.validatePassword}">
 <f:ajax event="blur" render="passwordConfirmError"/>
 </h:inputSecret>
 </h:panelGrid>
 <h:message id="passwordError"
 for="password"
 style="color:red"/>

 <h:message id="passwordConfirmError"
 for="passwordConfirm"
 style="color:red"/>

 <hr/>

 <h:panelGrid columns="3">
 <h:panelGroup>
 <h:outputLabel for="newsletterList" value="Newsletters:" style=" "/>
 <h:selectManyListbox id="newsletterList"
 value="#{ch6ContactController.current.newsletterList}">
 <f:selectItems value="#{ch6ContactController.newsletterList}"/>
 </h:selectManyListbox>
 </h:panelGroup>
 <h:panelGroup/>
 <h:panelGroup>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="notifyme"
 value="Would you like to receive other promotional email?"/>
 <h:selectBooleanCheckbox id="notifyme"

value="#{ch6ContactController.current.receiveNotifications}"/>
 </h:panelGroup>
 <h:panelGroup/>
 <hr/>
 <h:panelGroup/>
 <h:panelGroup>
 <h:outputLabel for="notificationTypes"
 value="What type of notifications are you interested in recieving?"/>

 <h:selectManyCheckbox id="notifyTypes"

value="#{ch6ContactController.current.notificationType}">

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

259

 <f:selectItems value="#{ch6ContactController.notificationTypes}"/>
 </h:selectManyCheckbox>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGroup>
 </h:panelGrid>
 <hr/>

 <h:commandButton id="contactSubmit"
 action="#{ch6ContactController.subscribe}" value="Save"/>
 <h:panelGrid columns="2" width="400px;">
 <h:commandLink id="manageAccount"
 action="#{ch6ContactController.manage}" value="Manage Subscription"/>

 <h:outputLink id="homeLink" value="home.xhtml">Home</h:outputLink>
 </h:panelGrid>
 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

Once the input components have been “Ajaxified” by embedding the f:ajax tag within them, then tabbing
through the fields (causing the onBlur event to occur for each field) will result in a form that resembles Figure 6-1.

Figure 6-1. Ajax validation using the f:ajax tag

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

260

How It Works
In releases of JSF prior to 2.0, performing immediate validation required the manual coding of JavaScript or a third-party
component library. The f:ajax tag was added to the JSF arsenal with the release of 2.0, bringing with it the power to easily
add immediate validation (and other asynchronous processes) to JSF views using standard or third-party components.
The f:ajax tag can be embedded within any JSF input component in order to immediately enhance the component,
adding Ajax capabilities to it. This provides many benefits to the developer in that there is no longer a need to manually
code JavaScript to perform client-side validation. It also allows validation to occur on the server (in Java code within
a JSF managed bean) asynchronously, providing seamless interaction between the client and server and generating
an immediate response to the client. The result is a rich Internet application that behaves in much the same manner as
a native desktop application. Validation can now occur instantaneously in front of an end user’s eyes without the need
to perform several page submits in order to repair all of the possible issues.

To use the f:ajax tag, simply embed it within any JSF component. There are a number of attributes that can be
specified with f:ajax, as described in Table 6-1. If an attribute is not specified, then the default values are substituted.
It is quite possible to include no attributes in an f:ajax tag, and if this is done, then the default attribute values for the
component in which the f:ajax tag is embedded will take effect.

Table 6-1. f:ajax Tag Attributes

Attribute Description

delay A value that is specified in milliseconds, corresponding to the amount of delay between sending
Ajax requests from the client-side queue to the server. The value none can be specified to disable this
feature.

disabled Boolean value indicating the tag status. A value of true indicates that the Ajax behavior should not be
rendered, and a value of false indicates that the Ajax behavior should be rendered. The default value
is false.

event A String that identifies the type of event to which the Ajax action shall apply. If specified, it must be
one of the supported component events. The default value is the event that triggers the Ajax request for
the parent component of the Ajax behavior. The default event is action for ActionSource components
and is valueChange for EditableValueHolder components.

execute A collection that identifies a list of components to be executed on the server. A space-delimited String
of component identifiers can be specified as the value for this attribute, or a ValueExpression (JSF EL)
can be specified. The default value is @this, meaning the parent component of the Ajax behavior.

immediate Boolean value indicating whether the input values are processed early in the life cycle. If true, then
the values are processed, and their corresponding events will be broadcast during the Apply Request
Values phase; otherwise, the events will be broadcast during the Invoke Applications phase.

listener Name of the listener method that is called when an AjaxBehaviorEvent has been broadcast for the
listener.

onevent Name of the JavaScript function used to handle UI events.

onerror Name of the JavaScript function used to handle errors.

render Collection that identifies the components to be rendered on the client when the Ajax behavior is
complete. A space-delimited String of component identifiers can be specified as the value for this
attribute, or a ValueExpression (JSF EL) can be specified. The default value is @none, meaning that no
components will be rendered when the Ajax behavior is complete.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

261

The execute and render attributes of the f:ajax tag can specify a number of keywords to indicate which
components are executed on the server for the Ajax behavior or which are rendered again after the Ajax behavior is
complete, respectively. Table 6-2 lists the values that can be specified for both of these two attributes.

Table 6-2. f:ajax Tag execute and render Attribute Values

Attribute Value Description

@all All component identifiers

@form The form that encloses the component

@none No component identifiers (default for render attribute)

@this The Ajax behavior parent component

Component IDs Space-separated list of individual component identifiers

JSF EL Expression that resolves to a collection of string identifiers

In the example for this recipe, an f:ajax tag has been embedded inside many of the input components within
the form. Each of those components has been Ajaxified, in that the data entered as the value for the components will
now have the ability to be processed using the JavaScript resource library associated with JSF. Behind the scenes,
the jsf.ajax.request() method of the JavaScript resource library will collect the data for each component that has
been Ajaxified and post the request to the JavaServer Faces life cycle. In effect, the data is sent to the managed bean
property without submitting the page in a traditional fashion. Notice that the event attribute specifies a JavaScript
event that will be used to trigger the Ajax behavior. The JavaScript events that can be specified for the event attribute
are those same JavaScript event attributes that are available on the parent component’s tag, but the on prefix has been
removed. For instance, if you want to perform an Ajax behavior on an inputText component when it loses focus, you
would specify blur for the f:ajax event attribute rather than onBlur. Applying this concept to the example, when
a user leaves the first or last name field, they will be validated using their associated f:validate tags immediately
because the f:ajax tag has been embedded in them and the event on the f:ajax tag is specified as blur. When the
Ajax behavior (the validation in this case) is complete, then the components whose identifiers are specified in the
f:ajax render attribute will be re-rendered. In the case of the first and last inputText fields, their associated message
components will be re-rendered, displaying any errors that may have occurred during validation.

Utilizing an aCtion listener

It is possible to bind an action listener to an f:ajax tag so that when the invoking action occurs, the listener
method is invoked. Why would you want to bind an action listener? There are any reasons to do so. For instance,
suppose you wanted to capture the text that a user is typing into a text field. You could do so by binding an
action method within a managed bean to the listener attribute of an inputText field’s corresponding f:ajax
tag and then obtaining the current component’s value from the AjaxBehaviorEvent object within the action
method. For instance, suppose that you wanted to test a password for complexity and display a corresponding
message indicating whether a password was strong enough. The inputSecret component for the password
could be modified to include an f:ajax tag with an event specification of keyup and a listener specified as
#{ch6ContactController.passwordStrength}, such as the following listing demonstrates.

Within the view:

<h:outputLabel for="password" value="Enter a password for site access: "/>
<h:inputSecret id="password" size="40"
 value="#{ch6ContactController.current.password}">

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

262

 <f:validateRequired/>
 <f:ajax event="keyup" listener="#{ch6ContactController.passwordStrength}"
 render="passwordStrengthMessage"/>
</h:inputSecret>
...

Within the managed bean:

public void passwordStrength(AjaxBehaviorEvent event){
 UIInput password = (UIInput) event.getComponent();
 boolean isStrong = false;
 String input = password.getValue().toString();

 if(input.matches("((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).{6,})")) {
 isStrong = true;
 }

 if(isStrong == true){
 setPasswordStrengthMessage("Password is strong");
 } else {
 setPasswordStrengthMessage("Password is weak");
 }
 }

The code in this example would create a listener event that, when a user types a value, would check the present
entry to determine whether it met the given criteria for a secure password. a message would then be displayed to
the user to let them know whether the password was secure.

Using the f:ajax tag makes it easy to add Ajax behavior to a JSF component. Before the f:ajax tag, special
third-party JavaScript libraries were often used to incorporate similar behaviors within JSF views. f:ajax adds the
benefit of allowing the developer to choose between using Ajax behaviors, without the need for coding a single line
of JavaScript.

6-2. Submitting Pages Without Page Reloads
Problem
You want to enable your input form to have the ability to submit input fields for processing without reloading the
page. In essence, you want your web application input form to react more like that of a desktop application rather
than navigating from page to page in order to process data.

Solution
Embed an <f:ajax/> tag within the command component in the view so that the managed bean action is invoked
without the page being submitted. Enable f:ajax to update the messages component in the view so that any errors or
success messages that result from the processing can be displayed. In this example, the newsletter subscription page
for the Acme Bookstore will be changed so that the form is submitted using Ajax, and the commandLink component is

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

263

processed without submitting the form in a traditional manner. The following excerpt from the newsletter subscription
form sources from recipe06_02.xhtml, which demonstrates how to add Ajax functionality to the action components
within the form:

<h:commandButton id="contactSubmit" action="#{ch6ContactController.subscribe}"
 value="Save">
 <f:ajax event="action" execute="@form" render="@all"/>
</h:commandButton>
<h:panelGrid columns="2" width="400px;">

When the button or link is clicked, JavaScript will be used in the background to process the request so that the
results will be displayed immediately without needing to refresh the page.

How It Works
The user experience for web applications has traditionally involved a point, click, and page refresh mantra. While this
type of experience is not particularly a bad one, it is not as nice as the immediate response that is oftentimes presented
within a native desktop application. The use of Ajax within web applications has helped create a more unified user
experience, allowing a web application the ability to produce an “immediate” response much like that of a native
desktop application. Field validation (covered in Recipe 6-1) is a great candidate for immediate feedback, but another
area where immediate responses work well is when forms are being submitted.

The f:ajax tag can be embedded in an action component in order to invoke the corresponding action method
using JavaScript behind the scenes. The f:ajax tag contains a number of attributes, covered in Table 6-1 (see Recipe 6-1),
that can be used to invoke Ajax behavior given a specified event and re-render view components when that Ajax behavior
is complete. Please refer to Table 6-2 to see the values that can be specified for the execute and render attributes of the
f:ajax tag.

In the example for this recipe, the commandButton component with an identifier of contactSubmit contains an f:ajax
tag that specifies the event attribute as action, the execute attribute as @form, and the render attribute as @all. This
means that when the button is invoked, the ch6ContactController.subscribe() method will be called asynchronously
using JavaScript, and it will send all the input component values from the form to the server (managed bean) for processing.
When the Ajax behavior (subscribe method) is complete, all of the components within the view will be re-rendered.
By re-rendering all the components in the view, this allows those message components to display any messages that have
been queued up as a result of failed validation or a successful form submission. It is possible to process or render only
specified components during an Ajax behavior; to learn more about doing so, please see Recipe 6-3.

Note ■ note that the event attribute has a default value of action when the f:ajax tag is embedded within a
UICommand component. however, it is specified in the code for this example for consistency.

Adding Ajax actions to a page has been simplified since the addition of the f:ajax tag with the 2.0 release of JSF.
Validation and page actions are easy to process asynchronously by utilizing a single tag, f:ajax, to incorporate Ajax
functionality into any JSF component.

6-3. Making Partial-Page Updates
Problem
You want to execute only a section of a page using an Ajax event and then render the corresponding section’s
components when the Ajax behavior is complete.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

264

Solution
Use the f:ajax tag to add Ajax functionality to the components that you want to execute and render when the Ajax
behavior is completed. Specify only the component identifiers corresponding to those components, or @form, @this,
or one of the other execute keywords, for the f:ajax tag execute attribute. Likewise, specify only the component
identifiers for the corresponding message components within the render attribute.

Suppose that the Acme Bookstore wants to execute the submission of the newsletter subscription form values
and update the form’s global message only when the submission is complete. The following commandButton
component would execute only the form in which it is placed and the component corresponding to the identifier
newsletterSubscriptionMsgs:

<h:commandButton id="contactSubmit" action="#{ch6ContactController.subscribe}" value="Save">
 <f:ajax event="action" execute="@form" render="newsletterSubscriptionMsgs"/>
</h:commandButton>

When the button is clicked, the current form component values will be processed with the request, and the
ContactController managed bean’s subscribe method will be invoked. Once the subscribe method is complete,
the component within the form that contains an identifier of newsletterSubscriptionMsgs (in this case, a messages
component) will be re-rendered.

Note■ In the case of the newsletter subscription form for the acme Bookstore, a partial-page render upon completion
is a bad idea. This is because the form will never be submitted if the values within the form do not validate correctly.
In this case, if some of the form values do not validate correctly, then nothing will be displayed on the page when the
Save button is clicked because the subscribe method will never be invoked. If the f:ajax tag’s render attribute is set
to @all, then all of the components that failed validation will have a corresponding error message that is displayed.
This example should demonstrate how important it is to process the appropriate portions of the page for the result you
are trying to achieve.

How It Works
The f:ajax tag makes it simple to perform partial-page updates. To do so, specify the identifiers for those components
that you want to execute for the f:ajax execute attribute. As mentioned in the example for this recipe, suppose you want
to execute only a portion of a page, rather than all of the components on the given page. You could do so by identifying
the components that you want to execute within the view, specifying them within the f:ajax execute attribute, and
then rendering the corresponding message components when the Ajax behavior was completed. If nothing is specified
for an f:ajax execute attribute, then the f:ajax tag must be embedded inside a component, in which case the parent
component would be executed. Such is the default behavior for the f:ajax execute attribute. In the example, the execute
attribute of the f:ajax tag specifies the @form keyword, rather than a specific component id. A number of keywords can
be specified for both the execute and render attributes of the f:ajax tag. Those keywords are listed in Table 6-2, which
describes that the @form keyword indicates that all components within the same form as the given f:ajax tag will be
executed when the Ajax behavior occurs. Therefore, all fields within the newsletter subscription form in this example will
be sent to the managed bean for processing when the button is clicked.

The same holds true for the render attribute, and once the Ajax behavior has completed, any component
specified for the render attribute of the f:ajax tag will be re-rendered. Thus, if a validation occurs when a component
is being processed because of the result of an f:ajax method call, a corresponding validation failure message can
be displayed on the page after the validation fails. Any component can be rendered again, and the same keywords
that can be specified for the execute attribute can also be used for the render attribute. In the example, the
newsletterSubscriptonMsgs component is rendered once the Ajax behavior is completed.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

265

Partial-page updates, a common use of the f:ajax tag, are easy to implement and can enhance the functionality
and usability of an application. Later in this chapter you will learn how to utilize some third-party component libraries
to perform partial-page updates, creating highly usable interfaces for editing data and the like.

6-4. Applying Ajax Functionality to a Group of Components
Problem
You want to apply Ajax functionality to a group of input components, rather than to each component separately.

Solution
Enclose any components to which you want to apply Ajax functionality within an f:ajax tag. The f:ajax tag can
be the parent to one or more JSF components, in which case each of the child components inherits the given Ajax
behavior. Applying Ajax functionality to multiple components is demonstrated in the following code listing. In
the example, the newsletter subscription view of the Acme Bookstore application is adjusted so that each of the
inputText components that contains a validator is enclosed by a single f:ajax tag. Given that each of the inputText
components is embodied within the same f:ajax tag, the f:ajax render attribute has been set to specify the message
component for each of the corresponding inputText fields in the group.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 6-4
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:form id="contactForm">
 <h1>Subscribe to Newsletter</h1>
 <p>
 <h:outputText id="newsletterSubscriptionDesc"
 value="#{ch6ContactController.newsletterDescription}"/>
 </p>

 <h:messages id="newsletterSubscriptionMsgs" globalOnly="true"
 errorStyle="color: red" infoStyle="color: green"/>

 <f:ajax event="blur" render="firstError lastError emailError genderError
 passwordError passwordConfirmError">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

266

 <h:panelGrid columns="2" bgcolor="" border="0">
 <h:panelGroup>
 <h:outputLabel for="first" value="First: "/>
 <h:inputText id="first" size="40"
 value="#{ch6ContactController.current.first}">
 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>
 </h:panelGroup>
 <h:panelGroup>

 <h:outputLabel for="last" value="Last: "/>
 <h:inputText id="last" size="40"
 value="#{ch6ContactController.current.last}">
 <f:validateLength minimum="1" maximum="40"/>

 </h:inputText>
 </h:panelGroup>

 <h:message id="firstError"
 for="first"
 errorStyle="color:red"/>

 <h:message id="lastError"
 for="last"
 errorStyle="color:red"/>
 <h:panelGroup>
 <h:outputLabel for="email" value="Email: "/>
 <h:inputText id="email" size="40"
 value="#{ch6ContactController.current.email}">

 </h:inputText>
 </h:panelGroup>
 <h:panelGroup/>
 <h:message id="emailError"
 for="email"
 errorStyle="color:red"/>
 <h:panelGroup/>

 <h:selectOneRadio title="Gender" id="gender"
 value="#{ch6ContactController.current.gender}">
 <f:selectItem itemValue="M" itemLabel="Male"/>
 <f:selectItem itemValue="F" itemLabel="Female"/>
 </h:selectOneRadio>
 <h:panelGroup>
 <h:outputLabel for="occupation" value="Occupation: "/>
 <h:selectOneMenu id="occupation"
 value="#{ch6ContactController.current.occupation}">
 <f:selectItems value="#{ch6ContactController.occupationList}"/>
 </h:selectOneMenu>
 </h:panelGroup>

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

267

 <h:message id="genderError"
 for="gender"
 errorStyle="color:red"/>

 </h:panelGrid>

 <h:outputLabel for="description" value="Enter your book interests"/>

 <h:inputTextarea id="description" rows="5" cols="75"
 value="#{ch6ContactController.current.description}"/>

 <h:panelGrid columns="2">
 <h:outputLabel for="password" value="Enter a password for site access: "/>
 <h:inputSecret id="password" size="40"
 value="#{ch6ContactController.current.password}">
 <f:validateRequired/>
 <f:ajax event="keyup" listener="#{ch6ContactController.passwordStrength}"
 render="passwordStrengthMessage"/>
 </h:inputSecret>

 <h:outputLabel for="passwordConfirm" value="Confirm Password: "/>
 <h:inputSecret id="passwordConfirm" size="40"
 value="#{ch6ContactController.passwordConfirm}"
 validator="#{ch6ContactController.validatePassword}">

 </h:inputSecret>
 </h:panelGrid>
 <h:panelGroup>
 <h:outputText id="passwordStrengthMessage"
 value="#{ch6ContactController.passwordStrengthMessage}"/>
 <h:message id="passwordError"
 for="password"
 style="color:red"/>
 </h:panelGroup>

 <h:message id="passwordConfirmError"
 for="passwordConfirm"
 style="color:red"/>

 <hr/>

 <h:panelGrid columns="3">
 <h:panelGroup>
 <h:outputLabel for="newsletterList" value="Newsletters:" style=" "/>
 <h:selectManyListbox id="newsletterList"
 value="#{ch6ContactController.current.newsletterList}">
 <f:selectItems value="#{ch6ContactController.newsletterList}"/>
 </h:selectManyListbox>
 </h:panelGroup>

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

268

 <h:panelGroup/>
 <h:panelGroup>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="notifyme" value="Would you like to receive
 other promotional email?"/>
 <h:selectBooleanCheckbox id="notifyme"
 value="#{ch6ContactController.current.receiveNotifications}"/>
 </h:panelGroup>
 <h:panelGroup/>
 <hr/>
 <h:panelGroup/>
 <h:panelGroup>
 <h:outputLabel for="notificationTypes" value="What type of
 notifications are you interested in recieving?"/>

 <h:selectManyCheckbox id="notifyTypes"
 value="#{ch6ContactController.current.notificationType}">
 <f:selectItems value="#{ch6ContactController.
 notificationTypes}"/>
 </h:selectManyCheckbox>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGroup>
 </h:panelGrid>
 <hr/>

 </f:ajax>
 <h:commandButton id="contactSubmit" action="#{ch6ContactController.subscribe}"
 value="Save">
 <f:ajax event="action" execute="@form" render="@all"/>
 </h:commandButton>
 <h:panelGrid columns="2" width="400px;">
 <h:commandLink id="manageAccount" action="#{ch6ContactController.manage}"
 value="Manage Subscription">
 <f:ajax event="action" execute="@this" render="@all"/>
 </h:commandLink>
 <h:outputLink id="homeLink" value="home.xhtml">Home</h:outputLink>
 </h:panelGrid>
 </h:form>
 </ui:define>
 </ui:composition>

 </body>
</html>

When the page is rendered, each component will react separately given their associated validations. That is, if
validation fails for one component, only the message component that corresponds with the component failing validation
will be displayed, although each component identified within the f:ajax render attribute will be re-rendered.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

269

Note ■ as a result of specifying a global f:ajax tag, the password component can now execute two ajax requests.
One of the ajax requests for the field is responsible for validating to ensure that the field is not blank, and the other is
responsible for ensuring that the given password String is strong.

How It Works
Grouping multiple components with the same Ajax behavior has its benefits. For one, if the behavior needs to be adjusted
for any reason, one change can now be made to the Ajax behavior, and each of the components in the group can benefit
from the single adjustment. However, the f:ajax tag is smart enough to enable each component to still utilize separate
functionality, such as validation or actions, so each can still have their own customized Ajax behavior. To group components
under a single f:ajax tag, they must be added to the view as subelements of the f:ajax tag. That is, any child components
must be enclosed between the opening and closing f:ajax tags. All of the enclosed components will then use Ajax to send
requests to the server using JavaScript in an asynchronous fashion.

In the example for this recipe, a handful of the inputText components within the newsletter subscription view
have been embodied inside an f:ajax tag so that their values will be validated using server-side bean validation when
they lose focus. The f:ajax tag that is used to group the components has an event attribute set to blur, and its render
attribute contains the String-based identifier for each of the message components corresponding to the components
that are included in the group. The space-separated list of component ids is used to re-render each of the message
components when the Ajax behavior is complete, displaying any errors that occur as a result of the validation.

6-5. Custom Processing of Ajax Functionality
Problem
You want to customize the Ajax processing for JSF components within a view in your application.

Solution
Write the JavaScript that will be used for processing your request, and utilize the jsf.ajax.request() function
along with one of the standard JavaScript event-handling attributes for a JSF component. The following example
is the JSF view for the newsletter subscription page for the Acme Bookstore application. All of the f:ajax tags that
were previously used for validating inputText fields (Recipe 6-1) have been removed, and the onblur attribute of
each inputText component has been set to use the jsf.ajax.request() method in order to Ajaxify the component.
The following excerpt is taken from the view named recipe06_05.xhtml, representing the updated newsletter
subscription JSF view:

...
<h:outputScript name="jsf.js" library="javax.faces" target="head"/>
<h1>Subscribe to Newsletter</h1>
<p>
 <h:outputText id="newsletterSubscriptionDesc"
 value="#{ch6ContactController.newsletterDescription}"/>
</p>

<h:messages id="newsletterSubscriptionMsgs" globalOnly="true"
 errorStyle="color: red" infoStyle="color: green"/>

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

270

<h:panelGrid columns="2" bgcolor="" border="0">
 <h:panelGroup>
 <h:outputLabel for="first" value="First: "/>
 <h:inputText id="first" size="40"
 value="#{ch6ContactController.current.first}"
 onblur="jsf.ajax.request(this, event, {execute: 'first', render: 'firstError'});
 return false;">
 <f:validateLength minimum="1" maximum="40"/>
 </h:inputText>
 </h:panelGroup>
 <h:panelGroup>
 <h:outputLabel for="last" value="Last: "/>
 <h:inputText id="last" size="40"
 value="#{ch6ContactController.current.last}"
 onblur="jsf.ajax.request(this, event, {execute: 'last', render: 'lastError'});
 return false;">
 <f:validateLength minimum="1" maximum="40"/>
 </h:inputText>
 </h:panelGroup>

 <h:message id="firstError"
 for="first"
 errorStyle="color:red"/>

 <h:message id="lastError"
 for="last"
 errorStyle="color:red"/>
 <h:panelGroup>
 <h:outputLabel for="email" value="Email: "/>
 <h:inputText id="email" size="40"
 value="#{ch6ContactController.current.email}"
 onblur="jsf.ajax.request(this, event, {execute: 'email', render: 'emailError'});
 return false;"/>
 </h:panelGroup>
 <h:panelGroup/>
 <h:message id="emailError"
 for="email"
 errorStyle="color:red"/>
 <h:panelGroup/>
...

Using this technique, the inputText components that specify Ajax behavior for the onblur event will asynchronously
have their values validated when they lose focus. If any custom JavaScript code needs to be used, it can be added to the
same inline JavaScript call to jsf.ajax.request().

Note ■ Method calls cannot be made using the jsf.ajax.request() technique, so it is not possible to invoke a
listener explicitly with the ajax request.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

271

How It Works
The JavaScript API method jsf.ajax.request(), a JSF 2.x feature, can be accessed directly by a Facelets application,
enabling a developer to have slightly more control than using the f:ajax tag. Behind the scenes, the f:ajax tag is
converted into a call to jsf.ajax.request(), sending the parameters as specified via the tag’s attributes. To use this
technique, you must include the jsf.js library within the view. A JSF outputScript tag should be included in the
view, specifying jsf.js as the script name and javax.faces as the library. The jsf.js script within this example will
be placed in the head of the view, which is done by specifying head for the target attribute of the outputScript tag.
The following excerpt from the example demonstrates what the tag should look like:

<h:outputScript name="jsf.js" library="javax.faces" target="head"/>

Note ■ To avoid nested Ids, it is a good idea to specify the h:form attribute of prependId="false" when using
jsf.ajax.request() manually. For instance, the form tag should look as follows:

<h:form prependId="false">

The jsf.ajax.request() method can be called inline, as is the case with the example for this recipe, and it
can be invoked from within any of the JavaScript event attributes of a given component. The format for calling the
JavaScript method is as follows:

jsf.ajax.request(component, event,{execute:'id or keyword', render:'id or keyword'});

Usually when the request is made using an inline call, the this keyword is specified for the first parameter, signifying
that the current component should be passed. The event keyword is passed as the second parameter, and it passes with
it the current event that is occurring against the component. Lastly, a map of name-value pairs is passed, specifying the
execute and render attributes along with the component identifiers or keywords that should be executed and rendered
after the execution completes, respectively. For a list of the valid keywords that can be used, please refer to Table 6-2.

Note ■ You can also utilize the jsf.ajax.request() method from within a managed bean by specifying the
@ResourceDependency annotation as follows:

@ResourceDependency(name="jsf.js" library="javax.faces" target="head")

The majority of developers will never need to utilize a manual call to the JSF JavaScript API. However, if the need
ever arises, calling the jsf.ajax.request() method is fairly straightforward.

6-6. Custom Conversion of Input Values
Problem
You want to automatically convert the values of some input text so that it better conforms to the needs of your
application. However, the conversion that you want to perform is outside the scope of those conversions that are
available via the JSF standard converter library.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

272

Solution
Create a custom converter class containing the logic that is required for converting the values, and then apply that
converter to the inputText components as needed. For this example, the Acme Bookstore has decided that it would
like all first and last names in the subscriber list to appear in uppercase. The store would also like all e-mail addresses
in lowercase. Therefore, a custom converter will be developed to perform the String conversion automatically behind
the scenes.

The following listing is for the conversion class, LowerConverter, which accepts values from registered
components and returns a formatted String value in lowercase:

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.FacesConverter;

/**
 *
 * @author juneau
 */
@FacesConverter("org.javaeerecipes.converter.LowerConverter")
public class LowerConverter implements Converter {

 @Override
 public Object getAsObject(FacesContext context, UIComponent component, String value) {
 // Return String value in lower case
 return value.toString().toLowerCase();
 }

 @Override
 public String getAsString(FacesContext context, UIComponent component, Object value) {
 // Return String value
 return value.toString().toLowerCase();

 }
}

The code that is used to create the uppercase converter is very similar, except that the getAsObject and getAsString
methods make use of different String functions to return the uppercase values. The sources reside within a class named
org.javaeerecipes.chapter6.converter.UpperConverter, and they are nearly identical to the LowerConverter class
with the exception of calling the toUpperCase() method, rather than toLowerCase().

Now that the conversion classes have been built, it is time to apply the converters to the JSF components where
applicable. The following excerpt is taken from the newsletter subscription page of the Acme Bookstore application,
and it demonstrates the use of the converters for the first, last, and e-mail input components.

...
<h:panelGroup>
 <h:outputLabel for="first" value="First: "/>
 <h:inputText id="first" size="40" value="#{ch6ContactController.current.first}">
 <f:validateLength minimum="1" maximum="40"/>
 <f:converter converterId="org.javaeerecipes.converter.UpperConverter"/>
 </h:inputText>
</h:panelGroup>

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

273

<h:panelGroup>
 <h:outputLabel for="last" value="Last: "/>
 <h:inputText id="last" size="40" value="#{ch6ContactController.current.last}">
 <f:validateLength minimum="1" maximum="40"/>
 <f:converter converterId="org.javaeerecipes.converter.UpperConverter"/>
 </h:inputText>
</h:panelGroup>

<h:message id="firstError"
 for="first"
 errorStyle="color:red"/>

<h:message id="lastError"
 for="last"
 errorStyle="color:red"/>
<h:panelGroup>
 <h:outputLabel for="email" value="Email: "/>
 <h:inputText id="email" size="40" value="#{ch6ContactController.current.email}">
 <f:converter converterId="org.javaeerecipes.converter.LowerConverter"/>
 </h:inputText>
</h:panelGroup>
<h:panelGroup/>
<h:message id="emailError"
 for="email"
 errorStyle="color:red"/>
<h:panelGroup/>
...

Now if a user types in lowercase for the first or last name or in uppercase for the e-mail field, the values will
automatically be converted during the Apply Request Values phase.

How It Works
How many times have you seen an application’s data become unmanageable because of inconsistencies? Maybe you
have seen some records where a particular field contains a value in lowercase and other records contain the same
value in uppercase…maybe even a mixture of cases! Applying conversion to data before it is persisted (usually in
a database) is the best way to ensure data integrity. As you may have read about in Recipe 3-13, the JSF framework
ships with a library of standard converters that can be applied to JSF components in order to convert data into a
manageable format. While the standard converters will do the job for most applications, there may be situations when
custom converters are needed in order to manipulate values into a manageable format for your application. In such
cases, JSF custom converter classes can be used to develop the custom conversion logic; they are very easy to develop
and apply to JSF components with minimal configuration.

Note ■ Beginning with JSF 2.2, converters and validators can be used as injection targets. For information regarding
injection of classes, please see Chapter 12.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

274

To develop a custom converter class, you must implement the javax.faces.convert.Converter interface,
overriding two methods: getAsString and getAsObject. The getAsString method should accept three parameters:
FacesContext, UIComponent, and a String. It should perform the desired conversion and return the converted value
in String format. In the case of the LowerConverter example, simply applying toLowerCase() to the String and
returning it is all the functionality you require. The getAsObject method should accept the same parameters as the
getAsString method, and it should also apply the desired conversion and then return an object of any type. In the case
of LowerConverter, you return a String in lowercase, just like the getAsString method. If you follow along and look
through the same methods in UpperConverter, the opposite conversion is applied, returning an uppercase String.

To make a converter class available for use within a view, you must annotate the class by applying
@FacesConverter to the class declaration. Pass a String into the annotation, being the String-based fully qualified
name of the converter class. The UpperConverter @FacesConverter annotation reads as follows:

@FacesConverter("org.javaeerecipes.converter.UpperConverter")

Once the converter class has been written and annotated as required, the converter can be used just like a
standard JSF converter tag. The logic contained within the converter can be much more complex than that which
is demonstrated in this example, and given the wide variety of prebuilt converters, a custom converter usually does
contain complex conversion logic.

6-7. Maintaining Managed Bean Scopes for a Session
Problem
Your application has the requirement to maintain some managed beans that are retained for the entire session and
others that are retained only for a single request.

Solution
Develop using the proper JSF managed bean scope that your situation requires. Managed beans utilize annotations
to determine how long they are retained, so if your application needs to maintain state within a managed bean for a
certain time frame, the scope can be set by annotating the managed bean class. In this example, you will be adding
a shopping cart to the Acme Bookstore web site. The cart will be maintained for a browser session at this time, so
if a book is added to the cart, then it will remain there until the current session ends. This recipe builds upon those
concepts that were covered in Recipe 3-2 because it demonstrates how to use SessionScoped managed beans.

Let’s take a look at the JSF views that are being used for the shopping cart implementation. You are adding a couple
of views to the application and modifying one view to accommodate the navigational buttons for the cart. The following
excerpt is taken from the book view, which is displayed when a user clicks one of the book titles from the left menu. You
are adding buttons to the bottom of the page to add the book to the cart and to view the current cart contents. To view
the sources in entirety, please see the view located within the sources: web/chapter06/book.xhtml.

...
<h:panelGrid columns="2" width="45%">
 <h:commandButton id="addToCart" action="#{ch6CartController.addToCart}"
 value="Add to Cart">
 <f:ajax render="shoppingCartMsgs"/>
 </h:commandButton>
 <h:commandButton id="viewCart" action="#{ch6CartController.viewCart}"
 value="View Cart">
 </h:commandButton>
</h:panelGrid>
...

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

275

The two buttons that have been added to the book view reference a new class, referred to as ch6CartController,
although the name of the class is CartController. The CartController class is a JSF managed bean that contains
the shopping cart implementation. The new buttons in the book view are used to add the current book title to the
shopping cart and to view the cart. At this time, the shopping cart is a list of Item objects, and each Item object
contains a Book object and a quantity. The sources for the Item class can be seen in the next listing:

package org.javaeerecipes.chapter06;

/**
 * Object to hold a single cart item
 * @author juneau
 */
public class Item implements java.io.Serializable {
 private Book book = null;
 private int quantity = 0;

 public Item(Book book, int qty){
 this.book = book;
 this.quantity = qty;
 }

 /**
 * @return the book
 */
 public Book getBook() {
 return book;
 }

 /**
 * @param book the book to set
 */
 public void setBook(Book book) {
 this.book = book;
 }

 /**
 * @return the quantity
 */
 public int getQuantity() {
 return quantity;
 }

 /**
 * @param quantity the quantity to set
 */
 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }

}

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

276

For the new shopping cart implementation, the Book class has been updated to include a description field; to see
the sources for the Book class, please refer to src/org/javaeerecipes/chapter06/Book.java. The most important
class in this example is the CartController managed bean. The sources for this class are listed here:

package org.javaeerecipes.chapter06;

import java.io.Serializable;
import javax.faces.bean.ManagedBean;
import javax.faces.application.FacesMessage;
import javax.faces.bean.SessionScoped;
import javax.faces.context.FacesContext;
import javax.inject.Inject;

/**
 * Chapter 6
 *
 * @author juneau
 */
@SessionScoped
@ManagedBean(name = "ch6CartController")
public class CartController implements Serializable {

 private Cart cart = null;
 private Item currentBook = null;
 @Inject
 AuthorController authorController;

 /**
 * Creates a new instance of CartController
 */
 public CartController() {
 }

 public String addToCart() {
 if (getCart() == null) {
 cart = new Cart();
 getCart().addBook(authorController.getCurrentBook(), 1);
 } else {
 System.out.println("adding book to cart...");
 getCart().addBook(authorController.getCurrentBook(),
 searchCart(authorController.getCurrentBook().getTitle())+1);
 }
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Succesfully Updated Cart", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 return null;
 }

 /**
 * Determines if a book is already in the shopping cart
 * @param title
 * @return
 */

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

277

 public int searchCart(String title) {
 int count = 0;

 for (Item item : getCart().getBooks()) {
 if (item.getBook().getTitle().equals(title)) {
 count++;
 }
 }
 return count;
 }

 public String viewCart() {
 if (cart == null) {
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "No books in cart...", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 }

 return "/chapter06/cart";
 }

 public String continueShopping(){
 return "/chapter06/book";
 }

 public String editItem(String title) {
 for (Item item : cart.getBooks()) {
 if (item.getBook().getTitle().equals(title)) {
 currentBook = item;
 }
 }
 return "/chapter06/reviewItem";

 }

 public String updateCart(String title) {
 Item foundItem = null;
 if (currentBook.getQuantity() == 0) {
 for (Item item : cart.getBooks()) {
 if (item.getBook().getTitle().equals(title)) {
 foundItem = item;
 }
 }
 }
 cart.getBooks().remove(foundItem);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Succesfully Updated Cart", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 return "/chapter06/cart";
 }

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

278

 /**
 * @return the cart
 */
 public Cart getCart() {
 return cart;
 }

 /**
 * @param cart the cart to set
 */
 public void setCart(Cart cart) {
 this.cart = cart;
 }

 /**
 * @return the currentBook
 */
 public Item getCurrentBook() {
 return currentBook;
 }

 /**
 * @param currentBook the currentBook to set
 */
 public void setCurrentBook(Item currentBook) {
 this.currentBook = currentBook;
 }
}

There is another class that has been added to the application in order to accommodate the shopping cart.
The Cart class is an object that is used to hold the List of books in the shopping cart. The listing for the Cart class is
as follows:

public class Cart implements java.io.Serializable {
 // List containing book objects
 private List<Item> books = null;

 public Cart(){
 books = null;
 }

 /**
 * @return the books
 */
 public List <Item> getBooks() {
 return books;
 }

 /**
 * @param books the books to set
 */

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

279

 public void setBooks(List books) {
 this.books = books;
 }

 /**
 * Utility method to add a book and quantity
 */
 public void addBook(Book title, int qty){
 if (books == null){
 books = new ArrayList();
 }
 books.add(new Item(title, qty));
 }
}

Lastly, let’s take a look at the views that are used to display the contents of the shopping cart. The cart view is used
to display the Cart object contents. The contents are displayed using a dataTable component, and each row in the
table contains a commandLink that can be clicked to edit that item’s quantity. The cart.xhtml listing is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Acme Bookstore</title>
 </h:head>
 <h:body>
 <ui:composition template="./layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:form id="shoppingCartForm">
 <h1>Shopping Cart Contents</h1>
 <p>
 Below are the contents of your cart.
 </p>
 <h:messages id="cartMessage" globalOnly="true"
 errorStyle="color: red" infoStyle="color: green"/>

 <h:dataTable id="cartTable" value="#{ch6CartController.cart.books}" var="book"
 border="1" rendered="#{ch6CartController.cart.books ne null}">
 <h:column id="title">
 #{book.book.title}
 </h:column>
 <h:column id="quantity">
 <h:inputText readonly="true" size="10" value="#{book.quantity}"/>
 </h:column>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

280

 <h:column id="edit">
 <h:commandLink id="editItem"
 action="#{ch6CartController.editItem(book.book.title)}" value="Edit"/>
 </h:column>

 </h:dataTable>

 <h:outputText id="emptyCart" value="No items currently in cart."
 rendered="#{ch6CartController.cart.books eq null}"/>

 <h:commandLink id="continueLink" action="#{ch6CartController.continueShopping}"
 value="Continue Shopping"/>
 </h:form>
 </ui:define>
 </ui:composition>
 </h:body>
</html>

The cart view will look like Figure 6-2 when it is rendered.

Figure 6-2. Shopping cart view

Finally, when the edit link is clicked, the current book selection quantity can be edited. The view for editing the
shopping cart items is named reviewItem.xhtml, and the sources are as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

281

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Acme Bookstore</title>
 </h:head>
 <h:body>
 <ui:composition template="./layout/custom_template_search.xhtml">

 <ui:define name="content">
 <h:form id="bookForm">
 <h1>Review Item</h1>

 <h:messages id="reviewMsg" globalOnly="true"
 errorStyle="color: red" infoStyle="color: green"/>

 #{ch6CartController.currentBook.book.title}

 <h:graphicImage id="javarecipes" library="image"
 style="width: 100px; height: 120px"
 name="#{ch6CartController.currentBook.book.image}"/>

 <h:outputLabel for="quantity" value="Quantity: "/>
 <h:inputText id="quantity"
 value="#{ch6CartController.currentBook.quantity}">

 </h:inputText>

 <h:panelGrid columns="2">
 <h:commandButton id="updateCart"
 action="#{ch6CartController.updateCart
 (ch6CartController.currentBook.book.title)}"
 value="Update"/>

 <h:commandButton id="viewCart" action="#{ch6CartController.viewCart}"
 value="Back To Cart">
 </h:commandButton>
 </h:panelGrid>

 </h:form>
 </ui:define>
 </ui:composition>

 </h:body>
</html>

Figure 6-3 demonstrates what the item review form will look like once it is rendered.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

282

Note ■ The session scope is not the best implementation for a shopping cart because it ties the managed bean
contents to a particular browser session. What happens when the user needs to leave for a few minutes and then comes
back to the browser to see that the session has expired or the browser has been closed? a more functional scope for
handling this situation is the Conversation scope, which is covered in Chapter 12.

How It Works
Annotating the managed bean class with the scope annotation corresponding to how long you need your managed
bean to remain valid controls scope. Typically, one or more JSF views belong to a corresponding managed bean
controller. Scope refers to how long a JSF view value needs to be retained in a browser session. Sometimes the value
can be reset after a request is placed, and other times the value needs to be retained across several pages. Table 3-1
in Chapter 3 lists the annotations.

Note ■ Be aware that two different sets of annotations are available for use with Java EE 7. To apply a scope to a JSF
managed bean, be sure you import the correct annotation class, or your results may vary. Typically, the classes you need
to be importing for managing the JSF managed bean scopes reside within the package javax.faces.bean.

In this example, you will focus on the use of the @SessionScoped annotation. The shopping cart managed bean,
CartController, has been annotated with @SessionScoped, so it becomes instantiated when a new session begins,
and values that are stored within the bean are maintained throughout the client session. When someone visits the
Acme Bookstore and decides to add a book to their shopping cart, they click the commandButton labeled Add to Cart

Figure 6-3. Review cart item

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

283

on the book view. When this occurs, the addToCart method within the CartController is invoked, and if a Cart
instance has not yet been created, then a new instance of Cart is instantiated. After that, the currently selected Book
object is added to the cart. If the Cart instance already exists, then the Book objects within the Cart are traversed to
make sure that the book does not already exist. If it does already exist, the quantity is bumped up by 1; otherwise, a
quantity of 1 is added to the Cart for the currently selected book.

After a book has been added to the Cart, a user can elect to continue shopping or edit the contents of the Cart.
This is where the @SessionScoped annotation does its magic. The user can go to any other page within the application
and then re-visit the cart view, and the selected Book object and quantity are still persisted. If the user elects to edit the
Cart object, they can update the quantity by clicking the Update button, which invokes the CartController class’s
updateCart method, adjusting the quantity accordingly.

This is an exhaustive example to demonstrate a simple task, marking a managed bean as @SessionScoped. If the
bean had been annotated with @RequestScoped, then the Cart contents would be lost when the user navigates to a
new page in the application.

6-8. Listening for System-Level Events
Problem
You want to invoke a method within your application whenever a system-level event occurs.

Solution
Create a system event listener class by implementing the SystemEventListener interface and overriding the
processEvent(SystemEvent event) and isListenerForSource(Object source) methods. Implement these
methods accordingly to perform the desired event processing. The following code listing is for a class named
BookstoreAppListener, and it is invoked when the application is started up or when it is shutting down:

package org.javaeerecipes.chapter06.recipe06_08;

import javax.faces.application.Application;
import javax.faces.event.*;

/**
 * Recipe 6-8: System Event Listener
 * @author juneau
 */
public class BookstoreAppListener implements SystemEventListener {

 @Override
 public void processEvent(SystemEvent event) throws AbortProcessingException {
 if(event instanceof PostConstructApplicationEvent){
 System.out.println("The application has been constructed...");
 }

 if(event instanceof PreDestroyApplicationEvent){
 System.out.println("The application is being destroyed...");
 }
 }

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

284

 @Override
 public boolean isListenerForSource(Object source) {
 return(source instanceof Application);
 }

}

Next, the system event listener must be registered in the faces-config.xml file. The following excerpt is taken
from the faces-config.xml file for the Acme Bookstore application:

...
<application>

 <system-event-listener>
 <system-event-listener-class>
org.javaeerecipes.chapter06.recipe06_08.BookstoreAppListener
 </system-event-listener-class>
 <system-event-class>
 javax.faces.event.PostConstructApplicationEvent
 </system-event-class
 </system-event-listener>

 <system-event-listener>
 <system-event-listener-class>
org.javaeerecipes.chapter06.recipe06_08.BookstoreAppListener
 </system-event-listener-class>
 <system-event-class>
 javax.faces.event.PreDestroyApplicationEvent
 </system-event-class
 </system-event-listener>

 </application>
...

When the application is started, the message “The application has been constructed…” will be displayed in
the server log. When the application is shutting down, the message “The application is being destroyed…” will be
displayed in the server log.

How It Works
The ability to perform tasks when an application starts up can sometimes be useful. For instance, let’s say you’d
like to have an e-mail sent to the application administrator each time the application starts. You can do this by
performing the task of sending an e-mail within a class that implements the SystemEventListener interface. A class
that implements SystemEventListener must then override two methods, processEvent(SystemEvent event) and
isListenerForSource(Object source). The processEvent method is where the real action occurs, because it is the
method into which your custom code should be placed. Whenever a system event occurs, the processEvent method
is invoked. In this method, you will need to perform a check to determine what type of event has occurred so that you
can process only those events that are pertinent. To determine the event that has occurred, perform an instanceof
check on the SystemEvent object. In the example, there are two if statements used to determine the type of event that

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

285

is occurring and to print a different message for each. If the event type is of PostConstructApplicationEvent, then
that means the application is being constructed. Otherwise, if the event type is of PreDestroyApplicationEvent, the
application is about to be destroyed. The PostConstructApplicationEvent event is called just after the application
has been constructed, and PreDestroyApplicationEvent is called just prior to the application destruction.

The other method that must be overridden within the SystemEventListener class is named
isListenerForSource. This method must return true if this listener instance is interested in receiving events from
the instance referenced by the source parameter. Since the example class is built to listen for system events for the
application, a true value is returned if the source parameter is an instance of Application.

After the system event listener class has been written, it needs to be registered with the application. In the example,
you want to listen for both the PostConstructApplicationEvent and the PreDestroyApplicationEvent, so there
needs to be a system-event-listener element added to the faces-config.xml file for each of these events. Within the
system-event-listener element, specify the name of the event listener class within a system-event-listener-class
element and the name of the event within a system-event-class element.

6-9. Listening for Component Events
Problem
You want to invoke a listener method when a specified component event is occurring. For instance, you want to listen
for a component render event.

Solution
Embed an f:event tag within the component for which you want to listen for events. The f:event tag allows
components to invoke managed bean listener methods based upon the current component state. For instance, if
a component is being rendered or validated, a specified listener method could be invoked. In the example for this
recipe, an outputText component is added to the book view of the Acme Bookstore application to specify whether
the current book is in the user’s shopping cart. When the outputText component is being rendered, a component
listener is invoked that checks the current state of the cart to see whether the book is contained within it. If it is in the
cart, then the outputText component will render a message stating so; if not, then the outputText component will
render a message stating that it is not in the cart.

The following excerpt is taken from a view named recipe06_09.xhtml, a derivative of the book view for the
application. It demonstrates the use of the f:event tag within a component. Note that the outputText component
contains no value attribute because the value will be set within the event listener.

...
<h:outputText id="isInCart" style="font-style: italic; color: ">
 <f:event type="preRenderComponent" listener="#{ch6CartController.isBookInCart}"/>
</h:outputText>
...

The CartController class contains a method named isBookInCart. The f:event tag in the view references
this listener method via the CartController managed bean name, ch6CartController. The listener method is
responsible for constructing the text that will be displayed in the outputText component.

public void isBookInCart(ComponentSystemEvent event) {
 UIOutput output = (UIOutput) event.getComponent();
 if (cart != null) {

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

286

 if (searchCart(authorController.getCurrentBook().getTitle()) > 0) {
 output.setValue("This book is currently in your cart.");
 } else {
 output.setValue("This book is not in your cart.");
 }
 } else {
 output.setValue("This book is not in your cart.");
 }
}

How It Works
Everything that occurs within a JSF application is governed by the JSF application life cycle. As part of the life cycle,
JSF components go through different phases within their lifetimes. Listeners can be added to JSF components to
perform different tasks when a given phase is beginning or ending. There are two pieces to the puzzle for creating a
component listener: the tag that is embedded within the component for which your listener will perform tasks and
the listener method itself. To add a listener to a component, the f:event tag should be embedded within the opening
and closing tags of the component that will be interrogated. The f:event tag contains a handful of attributes, but
only two of them are mandatory for use: type and listener. The type attribute specifies the type of event that
will be listened for, and the listener attribute specifies the managed bean listener method that will be invoked
when that event occurs. The valid values that could be specified for the name attribute are preRenderComponent,
postAddToView, preValidate, and postValidate. In addition to these event values, any Java class that extends
javax.faces.event.ComponentSystemEvent can also be specified for the name attribute.

The listener method must accept a ComponentSystemEvent object. In the example, the listener checks to see
whether the shopping cart is null, and if it is, then a message indicating an empty cart will be set for the outputText
component’s value. Otherwise, if the cart is not empty, then the method looks through the List of books in the
cart to see whether the currently selected book is in the cart. A message indicating whether the book is in the cart
is then added to the value of the outputText component. Via the listener, the actual value of the component was
manipulated. Such a technique could be used in various ways to alter components to suit the needs of the situation.

6-10. Invoking a Managed Bean Action on Render
Problem
You want to invoke an application-specific action when a JSF view is rendered.

Solution
Add an f:metadata tag to the head of your view, and then embed a viewAction component within it, specifying
the action method you want to invoke. This technique can be handy for executing back-end code prior to loading
a page. As such, this technique can also be used to replace the f:event tag in order to create a bookmarkable URL.
In this example, the Acme Bookstore author bio page has been updated so that it can be directly linked to, passing
in an author’s last name as a view parameter via the URL. The viewAction component is executed before the view
is rendered, invoking the business logic to search for the requested author by last name and to populate the view
components with the found author’s information.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

287

The following listing is for recipe06_10.xhtml, and it can be invoked by visiting a URL such as
http://your-server:8080/JavaEERecipes/faces/chapter06/recipe06_10.xhtml?authorLast=juneau

<?xml version="1.0" encoding="UTF-8"?>
<!--
Book: Java EE 7 Recipes
Author: J. Juneau
-->
<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 template="./layout/custom_template_search.xhtml">
 <f:metadata>
 <f:viewParam name="authorLast" value="#{ch6AuthorController.authorLast}"/>
 <f:viewAction action="#{ch6AuthorController.findAuthor}" />
 </f:metadata>
 <ui:define name="content">
 <h:form id="componentForm">
 <h1>#{ch6AuthorController.current.first}

#{ch6AuthorController.current.last}</h1>
 <p>
 #{ch6AuthorController.current.bio}
 </p>

 <h1>Author's Books</h1>
 <ui:repeat id="bookList" var="book"
 value="#{ch6AuthorController.current.books}">
 <tr>
 <td>
 <h:graphicImage id="bookImage"
 library="image"
 style="width: 100px; height: 120px"
 name="#{book.image}"/>
 </td>
 </tr>
 <tr>
 <td>
 #{book.title}
 </td>
 </tr>
 </ui:repeat>
 </h:form>
 </ui:define>

 </ui:composition>

The next piece of code is an excerpt from the AuthorController managed bean class. This method is the
implementation for the action method that is specified within the viewAction component. This method is
responsible for finding the author by last name and loading the current Author object with the found object.

http://your-server:8080/JavaEERecipes/faces/chapter06/recipe06_10.xhtml?authorLast=juneau
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

288

public void findAuthor(){
 if (this.authorLast != null){
 for(Author author:authorList){
 if(author.getLast().equalsIgnoreCase(authorLast)){
 this.current = author;
 }
 }
 } else {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 facesContext.addMessage(null,
 new FacesMessage("No last name specified."));

 }
}

How It Works
The viewAction component was added to JSF in release 2.2, and with it comes the ability to perform evaluations
before a page is rendered. The viewAction component is very similar to f:event, except for some notable differences.

The view action timing is controllable.•	

The same context as the •	 GET request can be used for the action.

Both the initial and postback requests are supported since the view action is incorporated into •	
the JSF life cycle.

•	 viewAction supports both implicit and explicit navigation.

Table 6-3. viewAction Component Attributes

Attribute Description

action Method expression representing the application action to invoke when this
component is activated by the user

onPostback Boolean value to indicate whether the action should operate on postback
(default: false)

if Boolean value to indicate whether the component should be enabled
(default: true)

immediate Boolean value to indicate whether notifications should be delivered to interested listeners and
actions immediately, during the Apply Requests Values phase

phase String that specifies the phase in which the action invocation should occur using the name of
the phase constraint in the PhaseId class (default: INVOKE_APPLICATION)

The viewAction component contains a number of attributes, as described in Table 6-3.
In the example for this recipe, the viewAction component is used to invoke a managed bean method, which

searches for the author whose last name equals that which is contained within the authorLast property. An action
method must accept no parameters, and it must return a String, which is then passed to the NavigationHandler for
the application.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

289

6-11. Asynchronously Updating Components
Problem
You want to provide periodic, asynchronous updates to portions of your view so that the user does not have to refresh
the page in order to see the most up-to-date information.

Solution
Utilize an Ajax polling component (available from a third-party JSF component library) to poll the data
asynchronously and re-render display components with the updated data without any user interaction. In this
example, the site template for the Acme Bookstore application has been updated to include the current time and date.
The clock will be updated each second so that, from a user’s point of view, it resembles a digital clock.

The following code is that of the view template entitled chapter06/layout/custom_template_search.xhtml, and
it demonstrates how to use the PrimeFaces poll component:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://primefaces.org/ui"
 xmlns:s="http://xmlns.jcp.org/jsf/composite/components/util">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet library="css" name="default.css"/>
 <h:outputStylesheet library="css" name="cssLayout.css"/>
 <h:outputStylesheet library="css" name="styles.css"/>

 <title>#{ch6AuthorController.storeName}</title>
 </h:head>

 <h:body>

 <div id="top">
 <h2>#{ch6AuthorController.storeName}</h2>

 <h:panelGrid width="100%" columns="2">
 <s:search id="searchAuthor"/>

 <h:form>
 <p:poll id="poll" interval="1" update="dayAndTime"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://primefaces.org/ui
http://xmlns.jcp.org/jsf/composite/components/util
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

290

 <h:outputText id="dayAndTime" value="#{bookstoreController.dayAndTime}"/>
 </h:form>
 </h:panelGrid>
 </div>
 <div>
 <div id="left">
 <h:form id="navForm">
 <h:commandLink action="#{ch6AuthorController.populateJavaRecipesAuthorList}" >
 Java 7 Recipes</h:commandLink>

 <h:commandLink action="#{ch6AuthorController.populateJavaEERecipesAuthorList}">
 Java EE 7 Recipes </h:commandLink>

 <h:commandLink action="#{ch6ContactController.add}">Subscribe to
 Newsletter</h:commandLink>
 </h:form>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 <div id="bottom">
 Written by Josh Juneau, Apress Author
 </div>

 </h:body>

</html>

Here’s the class:

package org.javaeerecipes.chapter06;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
import java.util.Date;
import javax.faces.bean.ManagedBean;

/**
 *
 * @author juneau
 */
@ManagedBean(name = "bookstoreController")
@SessionScoped
public class BookstoreController implements Serializable {

 private Date dayAndTime = null;

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

291

 /**
 * Creates a new instance of BookstoreController
 */
 public BookstoreController() {
 }

 /**
 * @return the dayAndTime
 */
 public Date getDayAndTime() {
 dayAndTime = new Date();
 return dayAndTime;
 }

 /**
 * @param dayAndTime the dayAndTime to set
 */
 public void setDayAndTime(Date dayAndTime) {
 this.dayAndTime = dayAndTime;
 }
}

The date and time will appear on the right side of the header for the bookstore. The resulting solution should
resemble that in Figure 6-4.

Figure 6-4. Ajax poll component used to update date/time

How It Works
The poll component of the PrimeFaces JSF component library can be used to update a specified portion of a view
asynchronously on a timed interval. This can make web site content more dynamic because features can refresh in
real time without any user interaction. For instance, the poll component would work well for a stock market graph to
asynchronously update the graph every minute or so. In the example for this recipe, the PrimeFaces poll component
is used to display the current time and date within the Acme Bookstore application, updating the time every second.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

292

For starters, you must ensure you have installed the PrimeFaces component library to utilize the poll component.
To learn more about installing a third-party component library, please see Recipe 5-11. Both PrimeFaces and RichFaces
have a poll component, so you can take your pick of which to use. Neither is better than the other, but you may choose
one over the other based upon the library that you like to use best. After the library has been installed, you must add
the namespace for the taglib reference to each page in which the components will be utilized. In the example, the
xmlns:p="html://primefaces.org/ui" namespace is added within the <html> tag. After the namespace has been
referenced in the view, the PrimeFaces components can be added to the view.

The poll component can be added to a view by including a tag that uses the p prefix, therefore, p:poll. To utilize
the p:poll tag, you must set an update interval. This can be done by setting the interval attribute to a numerical
value, which defines an interval in seconds between the previous response and the next request. In the example, the
interval is set to 1 and, therefore, every second. The update attribute of the poll component is used to specify which
component(s) to update each time the specified interval of time goes by. It is really as easy as that. In the example, the
update attribute is set to the component identifier of dayAndTime. If you look down a few lines in the code, you can see
that dayAndTime is actually an outputText component that is used to display the current contents of the dayAndTime
property within the BookstoreController managed bean via the EL #{bookstoreController.dayAndTime}. Diving
into the code for the managed bean, it is easy to see that each time the dayAndTime property is obtained, it is set equal
to a new Date() object. A new Date() object contains the current time and date at the time of instantiation. Therefore,
the date and time will always remain current.

The poll component is just one simplistic example of how third-party component libraries can assist in the
development of more dynamic applications. Although the poll component is not very complex or difficult to use, it
provides a large amount of functionality for an application view in just one line of code. I recommend you download
the latest user guides for both the RichFaces and PrimeFaces component libraries and read about all the components
that are available. If you have a basic understanding of what is available, it will help you formulate a plan for the
development of your application when starting your next project.

6-12. Developing JSF Components Containing HTML5
Problem
You are interested in adding some HTML5 component functionality into your web application.

Solution
Create a composite component for JSF using the HTML5 component of your choice. For this example, an HTML5
video component will be constructed into a JSF composite component. The composite component will declare
attributes, which will be passed through to the HTML5 video component in a seamless manner.

The first listing is that of the composite component, which resides in the resources/components/html5/video.xhtml
file of the sources for this book.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite">

 <!-- INTERFACE -->
 <cc:interface>
 <cc:attribute name="id"/>
 <cc:attribute name="width" default="450"/>
 <cc:attribute name="height" default="300"/>

http://html://primefaces.org/ui
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

293

 <cc:attribute name="controls" default="controls"/>
 <cc:attribute name="library" default="movie"/>
 <cc:attribute name="source"/>
 <cc:attribute name="type" default="video/mp4"/>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 <video width="#{cc.attrs.width}" height="#{cc.attrs.height}"
 controls="#{cc.attrs.controls}">
 <source src="#{cc.attrs.source}" type="#{cc.attrs.type}" />

 Your browser does not support the video tag.
 </video>
 </cc:implementation>
</html>

To keep an aesthetically pleasing look to your pages, you will place a video component within the Acme Bookstore
view named recipe06_12.xhtml. And the view that uses the component will look as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE 7 Recipes
Recipe: 6-12
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h5="http://xmlns.jcp.org/jsf/composite/components/html5">
 <head>
 </head>

 <body>

 <ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">

 <h1>Bear Movie</h1>
 <p>
 <h5:video id="myvideo" width="300"
 source="http://www.w3schools.com/html5/movie.mp4"/>
 </p>

 </ui:define>
 </ui:composition>

 </body>
</html>

When the view is rendered, the user will see a page that resembles Figure 6-5.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/composite/components/html5
http://www.w3schools.com/html5/movie.mp4
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

294

How It Works
The use of HTML5 has become prevalent across the Web over the past few years. It is becoming the standard markup
for producing web components that contain rich user interfaces. The JSF 2.2 release is being aligned with HTML5 so
that the two technologies can coexist within the same views seamlessly. Prior to JSF 2.2, this was still a possible option,
but some issues still may have been encountered when attempting to utilize some of the HTML5 components.

In the example for this recipe, an HTML5 component is embedded within a JSF composite component, and
the result is a JSF-based video component that has the ability to accept the same attributes as the HTML5 video
component and configure default attributes where possible. If you have not yet reviewed how to create composite
components, please go to Recipe 4-4 and review the content there. The following are the major differences between
the example in Recipe 4-4 and this recipe:

HTML5 is specifically used in this recipe, and it is not in Recipe 4-4.•	

No server-side code is written for this composite component.•	

The composite component is placed within the resources/components/html5 folder, so it will be made available
for use within the application views automatically. All that is required for use within a client view is the definition of
the taglib namespace within the html element. The name of the XHTML file that contains the composite component
markup is video.xhtml, and it defines the namespace for the JSF composite component library inside the <html>
element.

xmlns:cc="http://xmlns.jcp.org/jsf/composite".

The HTML5 video component accepts a number of attributes, and each of these is made available to the
resulting JSF composite component by adding an interface to the component. This is done by supplying the opening
and closing cc:interface tags, and each of the attributes that are to be made available for use with the composite
component should be declared between the opening and closing tags. Each attribute is declared by adding a

Figure 6-5. Using HTML5 components within JSF 2 composite components

http://xmlns.jcp.org/jsf/composite/components/html5
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

295

cc:attribute tag, along with the name of the attribute and a default value if needed. Here, you can see that the width
attribute for the component will default to 450px if the user does not specify a width:

<cc:attribute name="width" default="450"/>

The actual component implementation takes place between the opening and closing cc:implementation tags,
and the HTML5 video component is placed there. As you can see, each of the attributes is obtained from the composite
component’s interface, so any of the attributes specified for the composite component will accept values and pass them
through to their corresponding attributes within the video component using the #{cc.attrs.X} syntax, where X is the
name of the attribute that is being passed. That’s it…the component is now ready to be used within a view.

To use the component, specify the namespace to the taglib within the client view’s <html> element, and then
the tag will be made available. As you can see in the example, the namespace given to the taglib for this JSF HTML5
video component is h5:

xmlns:h5="http://xmlns.jcp.org/jsf/composite/components/html5"

Once that has been completed, the composite component can be used in the same manner as any standard JSF
component or one from a third-party library. HTML5 can add exciting features to your web applications, and I expect
the number of JSF custom components utilizing HTML5 (a mix of JavaScript and markup) to increase.

6-13. Listening to JSF Phases
Problem
You want to invoke a method within your application each time a particular JSF phase event occurs.

Solution
Create a class that implements the javax.faces.event.PhaseListener interface, and then implement the class’s
beforePhase, afterPhase, and getPhaseId methods to suit the needs of your application. The following class
demonstrates the creation of a PhaseListener:

package org.javaeerecipes.chapter06;

import javax.faces.context.FacesContext;
import javax.faces.event.PhaseEvent;
import javax.faces.event.PhaseId;

public class BookstorePhaseListener implements javax.faces.event.PhaseListener {

 @Override
 public void beforePhase(PhaseEvent event) {
 FacesContext.getCurrentInstance().getExternalContext().log("Before the Phase - "
 + event.getPhaseId());
 }

 @Override
 public void afterPhase(PhaseEvent event) {
 FacesContext.getCurrentInstance().getExternalContext().log("After the Phase - "
 + event.getPhaseId());
 }

http://xmlns.jcp.org/jsf/composite/components/html5
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

296

 @Override
 public PhaseId getPhaseId() {
 return PhaseId.ANY_PHASE;
 }
}

Any view that wants to use the PhaseListener should then be registered with the listener by adding an
f:phaseListener tag to the view as follows:

<f:phaseListener type="org.javaeerecipes.chapter06.BookstorePhaseListener" />

In the end, when the application is launched and any view containing the f:phaseListener tag shown previously
is rendered, a series of events will be published to the server log such as the following whenever a component is
accessed:

INFO: PWC1412: WebModule[null] ServletContext.log():Before the Phase - APPLY_REQUEST_VALUES 2
INFO: PWC1412: WebModule[null] ServletContext.log():Before the Phase - APPLY_REQUEST_VALUES 2
INFO: PWC1412: WebModule[null] ServletContext.log():After the Phase - APPLY_REQUEST_VALUES 2
INFO: PWC1412: WebModule[null] ServletContext.log():After the Phase - APPLY_REQUEST_VALUES 2
INFO: PWC1412: WebModule[null] ServletContext.log():Before the Phase - PROCESS_VALIDATIONS 3
INFO: PWC1412: WebModule[null] ServletContext.log():Before the Phase - PROCESS_VALIDATIONS 3
INFO: PWC1412: WebModule[null] ServletContext.log():After the Phase - PROCESS_VALIDATIONS 3
INFO: PWC1412: WebModule[null] ServletContext.log():After the Phase - PROCESS_VALIDATIONS 3
INFO: PWC1412: WebModule[null] ServletContext.log():Before the Phase - RENDER_RESPONSE 6
INFO: PWC1412: WebModule[null] ServletContext.log():Before the Phase - RENDER_RESPONSE 6
INFO: PWC1412: WebModule[null] ServletContext.log():After the Phase - RENDER_RESPONSE 6
INFO: PWC1412: WebModule[null] ServletContext.log():After the Phase - RENDER_RESPONSE 6

Note ■ For more detail regarding the life-cycle phases of a JSF application, please visit the online documentation at
http://docs.oracle.com/javaee/7/tutorial/doc/bnaqq.html, or refer to recipe 3-1 for a brief explanation.

How It Works
It is possible to listen to individual phases for each of the components within a view. Sometimes developers want to
do this so that they can customize the component activity during these phases. A custom class can implement the
PhaseListener interface in order to perform this level of scrutiny against components in your views. The class can
then override the beforePhase and afterPhase methods to implement custom tasks that will be performed prior to or
after the phase of your choice.

To create a PhaseListener class, implement the javax.faces.event.PhaseListener interface. Doing so will force
you to implement the abstract methods: beforePhase, afterPhase, and getPhaseId. The getPhaseId method returns
the phase that the listener will fire its actions against. In the example, the getPhaseId returns PhaseId.ANY_PHASE,
which will cause the listener to be invoked before and after each phase. There are static identifiers for each of the
other phases too, so you can cause the PhaseListener to invoke its actions only when a specific phase is occurring.
Specifically, the other options are APPLY_REQUEST_VALUES, INVOKE_APPLICATION, PROCESS_VALIDATIONS,
RENDER_RESPONSE, RESTORE_VIEW, and UPDATE_MODEL_VALUES.

The beforePhase method takes a PhaseEvent object, and it is invoked before the phase that is returned by the
getPhaseId method. Therefore, in the case of the example, the beforePhase method will be fired before any phase
occurs. The example simply prints out to the server log which phase is currently beginning.

http://docs.oracle.com/javaee/7/tutorial/doc/bnaqq.html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

297

The afterPhase method also takes a PhaseEvent object, and it is invoked after the phase that is returned by the
getPhaseId method occurs. Therefore, in the case of the example, the afterPhase method will be fire after any phase
occurs. The example prints out to the server log which phase has just ended.

To register a view with the PhaseListener, you need to add an f:phaseListener tag to it and set the tag’s type
attribute to the PhaseListener class that you have created. Doing so will register the listener with the view such that
when the view is rendered, the PhaseListener will kick in and begin listening for the phases that are specified by the
getPhaseId method.

6-14. Adding Autocompletion to Text Fields
Problem
You want to add autocompletion to a text field so that when the user of your application begins to type, possible
entries are displayed and made selectable via a drop-down list.

Solution
Utilize a third-party component library, and add an autocomplete text field to your application. For this example,
the search box that is used for querying books and authors within the example Acme Bookstore application will be
adjusted so that it autopopulates with text when a user starts typing. The following code is that of the custom search
component view named search.xhtml, contained within the web/resources/components/util directory of the
JavaEERecipes NetBeans project bundle. It has been updated to utilize a PrimeFaces autoComplete component as
opposed to standard inputText.

Note ■ This source comprises a JSF composite component. To learn more about JSF composite components, please
refer to recipe 4-4.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:composite="http://xmlns.jcp.org/jsf/composite"
 xmlns:p="http://primefaces.org/ui">

 <!-- INTERFACE -->
 <composite:interface>
 <composite:attribute name="searchAction" default="#{bookstoreSearchController.searchAuthors
 (ch6AuthorController.completeAuthorList)}"
 method-signature="java.lang.String action(java.util.List)"/>
 </composite:interface>

 <!-- IMPLEMENTATION -->
 <composite:implementation>
 <h:form id="searchForm">
 <h:outputText id="error" value="#{bookstoreSearchController.errorText}"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite
http://primefaces.org/ui
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

298

 <!-- implementation without autocomplete is commented -->
 <!--h:inputText id="searchText" styleClass="searchBox" size="75" value="#{bookstoreSearc

hController.searchText}"/-->

 <p:autoComplete id="searchText" value="#{bookstoreSearchController.searchText}"
 completeMethod="#{ch6AuthorController.complete(bookstoreSearchController.

searchText)}"/>
 <h:commandButton id="searchButton" value="Search" action="#{cc.attrs.searchAction}"/>

 </h:form>
 </composite:implementation>
</html>

Note that the autoComplete component contains a value attribute, which is set to the searchText property of
the BookstoreSearchController managed bean, and a completeMethod attribute, which is used to specify the name
of the method to use for autocompletion of the text. In this case, the method is named complete, and it resides within
the AuthorController class. The following excerpt of code shows the complete method, which is excerpted from the
AuthorController class (contained in the sources for Chapter 6):

/**
 * Auto-completes author names from the authorBookList
 *
 * @param text
 * @return
 */
public List<String> complete(String text){
 List<String> results = new ArrayList();
 // This should print each time you type a letter in the autocomplete box
 System.out.println("completing: " + text);
 for (Author author:authorBookList){
 if(author.getLast().toUpperCase().contains(text.toUpperCase())){
 results.add(author.getLast().toUpperCase() + " " + author.getFirst().toUpperCase());
 }
 }
 return results;
}

Note ■ The searching logic in this application is suitable for smaller data sets. For larger data sets, a different
 approach would likely be used, such as a fully featured search engine solution.

When the component is rendered on the page and the user begins to type, then a drop-down list of matching author
names will appear, allowing the user to choose one from the list. The drop-down will resemble that in Figure 6-6.

 <p:autoComplete id="searchText" value="#{bookstoreSearchController.searchText}"
 completeMethod="#{ch6AuthorController.complete(bookstoreSearchController.
searchText)}"/>

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

299

How It Works
The autocomplete text box is one of the most sought after components for anyone looking to build a web input form.
They are an ingenious invention because they help the user to choose from a list of available options, while narrowing
down that list as the user types characters. In the end, the user will be less likely to enter invalid data since a selection
list is made available while typing, and this will decrease the likelihood for invalid data. Unfortunately, the standard
JSF component library does not ship with an autocomplete component, but luckily there are several available for
use from other third-party libraries. This recipe covers usage of the PrimeFaces autoComplete component. The
PrimeFaces autoComplete component provides a myriad of choices to the developer, and a handful of them will be
covered here. For complete documentation regarding the autoComplete component, please visit the PrimeFaces
online documentation.

To use the PrimeFaces component, the namespace must be declared for the PrimeFaces tag library within
the view where the autoComplete component will be used. In the example, the namespace is declared as p, so the
autoComplete tag is written as p:autoComplete. The example makes use of only three attributes, and two of them
are essential for the use of the component. The first attribute is id, which is the unique identifier for the component
within the view. Next is the value attribute, which is set to a managed bean property where the ending value will be
stored. The value attribute for the autoComplete component is analogous to the value attribute of an inputText
component. The final attribute used in the example is completeMethod, which is set to the managed bean method
used to perform the autocompletion of the text.

The completeMethod is where the real work occurs, because this is where the text that has been entered into the
component is compared against a list of values to determine which of the list elements are possible choices for the
autoComplete component value. A List of Strings is returned from the completeMethod, and the values of the List
will be displayed within a drop-down menu below the component when the results are returned. The completeMethod
is executed each time the user presses another key, and the text that has been entered into the component thus far is
sent to the method each time for evaluation. In the example, the text is compared to the author’s last name, and any
author whose last name contains the text that has been entered will be added to the return List. Oftentimes the text
from the component is compared against database table record values, as opposed to List elements, but the List
demonstrates the technique fine too.

Figure 6-6. The PrimeFaces autoComplete component

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

300

Those pieces of the puzzle that have been addressed already are the only essential pieces for making the
autoComplete component function as expected. However, the PrimeFaces autoComplete component has a variety
of attributes that can be used to customize the functionality of the autoComplete component. For instance, the
component contains a minQueryLength attribute that can specify the minimum number of characters that need to be
typed before the completeMethod will be invoked. The effect attribute can specify a range of different effects to apply
to the autocomplete animation. The forceSelection attribute can be set to true to force a user to make a selection,
and so forth. As mentioned previously, for a complete set of documentation covering the PrimeFaces autoComplete
component, along with each of its attributes, please refer to the online documentation at www.primefaces.org.

The ability to autocomplete a user’s text entry while they are typing the characters provides a wide variety of
benefits to an application. First, the data integrity of the application can benefit from the use of standard entries that
are displayed via the autocomplete feature, as opposed to freehand text entries from many different users. Second,
autocomplete solutions provide a more unified user experience, allowing the user to choose from an available list of
options rather than guessing what the entry should contain.

6-15. Developing Custom Constraint Annotations
Problem
You want to create an annotation that can be applied to a managed bean property to perform bean validation.

Solution
Create a custom annotation class, specifying the properties you want the annotation to accept, and create a validator
class that will perform the actual validation on the property. In this example, you’ll create a constraint annotation that
can be used to validate the length of an inputSecret component value, that is, the length of a password. The following
code is for a class named PasswordLength, which is used for creating the annotation that will be used for validating
the password length:

package org.javaeerecipes.chapter06.annotation;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.validation.Constraint;
import javax.validation.Payload;
import org.javaeerecipes.chapter06.validator.CheckPasswordValidator;

@Target({ METHOD, FIELD, ANNOTATION_TYPE })
@Retention(RUNTIME)
@Constraint(validatedBy = CheckPasswordValidator.class)
@Documented
public @interface PasswordLength {

 String message() default "{org.javaeerecipes.constraints.password}";

http://www.primefaces.org/
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

301

 * @return password length
 */
 int passwordLength();

}

Note that in the annotation class there is a reference to the CheckPasswordValidator class, which is where
the actual validation takes place. The validator class for the annotation contains the logic for performing the actual
validation, and the sources for the CheckPasswordValidator class are as follows:

package org.javaeerecipes.chapter06.validator;

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import org.javaeerecipes.chapter06.annotation.PasswordLength;

/**
 * Custom validation class to ensure password is long enough
 * @author juneau
 */
public class CheckPasswordValidator implements
 ConstraintValidator<PasswordLength, Object> {
 private int passwordLength;

 private String password;
 @Override
 public void initialize(PasswordLength constraintAnnotation) {
 // Initilize implementation here
 passwordLength = constraintAnnotation.passwordLength();
 }

 @Override
 public boolean isValid(Object value, ConstraintValidatorContext context) {
 boolean returnValue = false;
 if (value.toString().length() >= passwordLength){
 returnValue = true;
 } else {
 returnValue = false;
 }
 return returnValue;
 }
}

To make use of the annotation, place it before a field declaration just as with standard bean validation.

@PasswordLength(passwordLength=8)
 private String password;

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

302

How It Works
Annotations can be placed before a class, method, variable, package, or parameter declaration to indicate that it
be treated in a different manner than a standard class or method. Annotations have been referred to as syntactic
metadata, and they change the way that a piece of code functions at runtime. To create an annotation, you must
create a piece of code that is very similar to a standard Java interface. At a glance, the main feature that separates a
standard interface from an annotation is the @ character that is prefixed on the interface keyword. However, they
have many differences, and special guidelines must be followed when creating them.

The name of the annotation when it is in use will be the same as the name of the @interface that is used to
create the annotation. In the example, the annotation being created has a signature of @interface PasswordLength,
and later the annotation will be used by specifying @PasswordLength, along with any parameters that go along with
it. Annotations can contain method declarations, but the declaration must not contain any parameters. Method
declarations should not contain any throws clauses, and the return types of method declarations should be one of the
following:

String•	

Class•	

Enum•	

Primitive•	

Array•	

Annotations can contain special annotations themselves that can be used only within the context of annotations.
Those annotations are @Target, @Retention, @Constraint, @Documented, and @Inherited. I will briefly cover each
of these annotation types, but it is important to note that custom constraint annotations require the @Constraint
annotation to be placed before the @interface declaration, whereas other types of annotations do not.

The @Target annotation is used to signify which program elements can make use of the annotation. Table 6-4
describes the options that can be used within the @Target annotation.

Table 6-4. @Target Annotation Values

Value Description

TYPE The annotation can be placed on a class, interface, or enum.

FIELD The annotation can be placed on a class member field.

METHOD The annotation can be placed on a method.

PARAMETER The annotation can be placed on a method parameter.

CONSTRUCTOR The annotation can be placed on a constructor.

LOCAL_VARIABLE The annotation can be placed on a local variable or a catch clause.

ANNOTATION_TYPE The annotation can be placed on an annotation type.

PACKAGE The annotation can be placed on a Java package.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

303

For the purposes of creating a constraint annotation, the @Target annotation usually contains the following, as in
the example to this recipe:

@Target({ METHOD, FIELD, ANNOTATION_TYPE })

The @Retention annotation is used to indicate how long the annotation will be retained. The options are class,
source, and runtime. Table 6-5 describes these three types of retention.

Table 6-5. Annotation Retention Values

Value Description

class The annotation is discarded during the class load.

source The annotation is discarded after compilation.

runtime The annotation is never discarded, available for
reflection at runtime.

The @Documentation annotation can be added to ensure that the @interface is added to the JavaDoc for the
specific project that it is contained within. The @Constraint annotation is used to declare which constraint class
will be used for testing the validity of the value contained within the field being annotated. In the example, the
@Constraint annotation contains a validatedBy parameter value of CheckPasswordValidator.class, and this
signifies that the CheckPasswordValidator class will be used to validate the value. You will take a more in-depth look
at the CheckPasswordValidator class in a moment.

The last annotation that can be specified within an @interface declaration is @Inherited. This is used to allow
the annotation to inherit properties of another class. In other words, if the @Inherited annotation is placed on an
@interface declaration, then the properties of an annotation that has been placed on a class can be inherited by
another class, which extends it. Therefore, if ClassA contains your custom annotation and the @Inherited annotation
has been specified in the declaration of the custom annotation, then if ClassB extends ClassA, it also inherits the
properties of the custom annotation.

To briefly explain the annotation member elements and methods, both the message() and passwordLength()
elements are exposed for use with the annotation, so a developer can specify @PasswordLength(message="some
message" passwordLength=6), for instance. You can add any number of elements to the annotation, utilizing any
data type that makes sense for your annotation requirements, although most of the time an int or String data type
is specified. In the case of the validation annotation, you may want to expose one or more of the elements within the
validator class. I’ll show you how to do that after a brief explanation of how the validator class works.

Note ■ any member element in an annotation @interface can contain a default value by specifying the keyword
default and specifying the default value afterward. doing so would enable a developer to use the annotation without
specifying the element when using the annotation.

The last piece of the puzzle for developing a custom validator annotation is the validator class itself. The validator
class must implement ConstraintValidator. In the validator class, override the initialize and isValid methods
for the implementation. The initialize method accepts an object of the annotation type that you created. In the
example, you can see that the intialize method accepts a PasswordLength object. The initialize method is
where you set up all the local fields that will be needed to validate the contents of the field that the annotation has
been placed on. In the example, a couple of member fields have been declared: passwordLength and password.
The passwordLength field is set to the value specified by the annotation element that is exposed to the developer.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

304

To capture this value, in the initialize method, the annotation object is used to obtain the value. In the example,
passswordLength is set equal to constraintAnnotation.passwordLength(). The isValid method is then invoked,
and the actual value that is contained within the annotated managed bean property is passed into this method. This is
where the actual validation occurs. The isValid method should return a Boolean value indicating whether the value
is valid. In the example, if the value is greater than or equal to the passwordLength field value, then it is valid, and
isValue returns a true value.

Although there are a few pieces, it isn’t difficult to create a custom validation annotation once you’ve done it a
time or two. There are some good use cases for developing custom annotations, so they make for a good tool to have
in your arsenal.

6-16. Customizing Data Tables
Problem
You want to create a more customized table than the standard JSF dataTable component allows. For instance, you
want to add the capability to edit the table cells inline.

Solution
Use a third-party component library dataTable component to provide custom options for your application needs.
In this example, you’ll use the PrimeFaces dataTable component to create a editable dataTable for the Acme
Bookstore shopping cart. Rather than clicking a link within a table row in order to edit the data for that row, this
updated implementation will allow you to edit the table data inline, without the need to navigate to different page for
editing the data. Everything will be done asynchronously via the use of Ajax, and the best part is that all of the dirty
work is done for you. There is no need to code a single line of JavaScript. Let’s take a look at this solution!

Let’s look at an listing for the cart view that has been updated to use the p:dataTable (PrimeFaces dataTable
component) and its inline row-editing capabilities. The following listing is the updated cart view, which resides in the
file named recipe06_16.xhtml:

<?xml version="1.0" encoding="UTF-8"?>

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://primefaces.org/ui"
 template="./layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:form id="shoppingCartForm">
 <h1>Shopping Cart Contents</h1>
 <p>
 Below are the contents of your cart.
 </p>
 <h:messages id="cartMessage" globalOnly="true"
 errorStyle="color: red" infoStyle="color: green"/>

 <p:dialog id="updateDialog" widgetVar="updateDlg"
 modal="true"
 height="40" resizable="false"
 closable="false" showHeader="false" >

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://primefaces.org/ui
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

305

 <h:graphicImage id="loading" library="image" name="ajaxloading.gif"/>
 </p:dialog>
 <p:dataTable id="cartTable" value="#{ch6CartController.cart.books}" var="book"
 rendered="#{ch6CartController.cart.books ne null}">
 <p:ajax id="rowEditAjax" event="rowEdit" execute="@this" update="@this"
 listener="#{ch6CartController.updateRowData}"
 onstart="updateDlg.show();"
 oncomplete="updateDlg.hide();"
 onerror="updateDlg.hide();"/>

 <p:column id="title" headerText="Title">
 #{book.book.title}
 </p:column>
 <p:column id="quantity" headerText="Quantity">
 <p:cellEditor>
 <f:facet name="output">
 <h:inputText readonly="true" size="10" value="#{book.quantity}"/>
 </f:facet>
 <f:facet name="input">
 <h:inputText id="bookQty" size="10" value="#{book.quantity}"/>
 </f:facet>
 </p:cellEditor>
 </p:column>
 <p:column id="edit" headerText="Edit">
 <p:rowEditor />
 </p:column>

 </p:dataTable>

 <h:outputText id="emptyCart" value="No items currently in cart."
 rendered="#{ch6CartController.cart.books eq null}"/>

 <h:commandLink id="continueLink" action="#{ch6CartController.continueShopping}"
 value="Continue Shopping"/>
 </h:form>
 </ui:define>
</ui:composition>

Note that the view also contains another PrimeFaces component, the dialog. It is used to present a pop-up dialog,
and in this case it shows an animation when the updating is occurring. Next, let’s look at the code behind the logic of
the inline editing and the shopping cart in general. The following listing is an excerpt from the CartController class
(in the Chapter 6 sources), showing a method named updateRowData, which is responsible for updating the data in
the table.org.primefaces.event.RowEditEvent class into the source in order to make use of the RowEditEvent:

...

 public void updateRowData(RowEditEvent e) {
 System.out.println("Perform editing logic here...");
 currentBook = (Item)e.getObject();

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

306

 // Call the updateCart method, passing the title of the current book.
 updateCart(((Item)e.getObject()).getBook().getTitle());
 }
...

When the final cart view is rendered, it will look like that in Figure 6-7 when the table is being edited inline.

Figure 6-7. PrimeFaces dataTable Component: inline table editing

How It Works
The world of custom dataTable components is ever-changing, and there are a number of available implementations
from which to choose. The RichFaces library offers its own flavor of the custom dataTable, providing sorting and
editing options just like the PrimeFaces dataTable. To see a demo of each, please visit the RichFaces demo at
http://livedemo.exadel.com/richfaces-demo/index.jsp and the PrimeFaces demo at www.primefaces.org/
showcase/ui/home.jsf. This recipe demonstrates the editable dataTable available from the PrimeFaces component
library. As always, the first step to using a component from a third-party library is to install the library for your
application to use. If you have not yet done this, please see Recipe 5-11; otherwise, let’s continue learning more about
the PrimeFaces dataTable.

It should be noted that the PrimeFaces dataTable offers many options, and this recipe covers only one of them,
that is, inline editing. There are options for sorting, adding headers and footers, filtering, selecting one or more rows,
grouping, and so on. An entire chapter could be written about using the many options of the PrimeFaces dataTable.
I will not cover these features in this recipe; please see the PrimeFaces documentation for more information on
using those features. I think you will find that PrimeFaces takes a “recipe” approach for demonstrating the use of its
components. You can visit its showcase, see the components in action, and then look at the code on the same page.
In this recipe, I will cover one of the more difficult features to customize: inline data editing.

Out of the box, the inline editing feature for PrimeFaces dataTables is very simple. A p:dataTable component
works in the same manner as a standard JSF dataTable component, in that it accepts a List, DataModel, or
Collection of data.

Note ■ In a later chapter that makes use of database tables and entity classes, you will see a version of this recipe
 utilizing collections for the dataTable data type. The use of collections for dataTable components is new in JSF release 2.2.

http://livedemo.exadel.com/richfaces-demo/index.jsp
http://www.primefaces.org/showcase/ui/home.jsf
http://www.primefaces.org/showcase/ui/home.jsf
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

307

In the example, you can see the p:dataTable component accepts a value of #{ch6CartController.cart.books},
which is a List of Item objects. The Item objects are those that are contained within the current session’s cart. If you
look directly below the p:dataTable component, you will notice a p:ajax tag, which will provide extra functionality
to the p:dataTable. You can ignore the p:ajax tag for now; it is not necessary to implement the inline editable table.
However, in this example, you use it to gain control over the underlying update of the row.

Moving down the code, the column declarations are also very similar to that of a standard h:dataTable component.
Instead of denoting columns with h:column, use p:column tags, and reference the data for each column using the
p:dataTable’s var attribute keyword. In the example, var is set to book, so #{book.book.title} will return the title of the
book, which is the first column’s output. Note that the second column contains an embedded p:cellEditor component.
A p:cellEditor component indicates that this column will be made editable, and each p:cellEditor component must
contain two facets, one for the output and another for the input. The <f:facet name="ouput"> tag should be used to
enclose what the column’s output should display. In the example, an inputText component with a readonly attribute
set to true is used to display the book quantity. The other facet within the p:cellEditor component is for the input, the
facet tag should read <f:facet name="input">, and it should enclose the input component for this column’s value. In
the example, an inputText component is embedded within the input facet, and the value is set to #{book.quantity}.
This time, the readonly attribute is not specified, and therefore the inputText component renders an editable text field.
Following the input facet is a closing p:cellEditor tag, followed by the closing p:column tag for that column.

The last column of the table is also a p:column component, and embedded inside is a p:rowEditor component,
which will display a pencil icon that the user can click to toggle the row of data and make it editable. Following
along with the p:cellEditor logic that was covered in the previous paragraph, when the table is initially rendered,
the content that is embedded within the cellEditor’s output facet is displayed. When the edit icon is clicked, the
cellEditor’s output facet contents are hidden, and the input facet contents are displayed. At this point, the rowEditor
component turns into a check mark and an X. If the user makes a change to the editable row contents, they can click
the check mark to save the changes; otherwise, they can click the X to close the editable row and cancel the change.

The editable dataTable component works fine with just the constructs I’ve discussed, and all of the row editing
takes place behind the scenes. That is, PrimeFaces does a good job of abstracting the implementation details from
the developer, allowing the developer more time to work on other more important tasks. However, what if you want
to perform some custom business logic when the row is edited? Perhaps you want to validate the data or track what
data has been changed. Intercepting the edit is easy to do, and it has been done in this example. By adding the p:ajax
tag to the p:dataTable component, you can intercept the rowEdit event. When the rowEdit event is executed, it is
intercepted by the p:ajax listener, which in the example is set to the updateRowData method of the CartController
class. To create a listener method for a rowEdit event, you must write a method that has no return value and accepts
a RowEditEvent object. The RowEditEvent contains the actual row contents that are being edited. In the case of
this example, the RowEditEvent is an Item object, and the listener method sets the currentBook object in the
CartController class equal to the Item object and updates the cart accordingly.

Note ■ If you do not want to intercept the rowEdit event, simply leave out the embedded p:ajax tag. doing so will
cause the p:dataTable to take care of the update logic behind the scenes.

In this recipe, I touched upon one of the most widely used components in any data-related JSF application, the
dataTable. There are many ways in which a dataTable can be customized, and plenty of third-party component
libraries ship with customized dataTable components. This example demonstrates the use of the PrimeFaces
dataTable component, which I highly recommend to anyone looking for a custom and easy-to-use dataTable
component. Utilizing a PrimeFaces dataTable component and making it editable allows for the inline editing of
table row data. This will provide users with the ability to edit data in a spreadsheet-like fashion, which is sometimes
much easier than drilling into each record separately. To learn more about all of the custom options available with the
PrimeFaces dataTable, please check out http://primefaces.org.

http://primefaces.org/
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

308

Note ■ as mentioned in the introduction to this chapter, in order to use PrimeFaces with Java EE 7, you must download
and utilize the PrimeFaces 4.x release, as PrimeFaces 3.x or prior will not work correctly with JSF 2.2. Therefore, this
recipe will only work with PrimeFaces 4.x.

6-17. Developing a Page Flow
Problem
You want to develop a flow of pages within your application that share information with one another.

Solution
Define a page flow using the new faces flow technology that was introduced in JSF 2.2. The faces flow solution allows
a defined set of views to be interrelated with one another to share a common set of data, and views outside of the
flow do not have access to the flow’s data. Flows also have their own set of navigational logic, so they are almost like a
subprogram within an application. To enable an application to utilize faces flow, a <flow-definition> section should
be added to the faces-config.xml file. The section can be empty, because the navigational logic can instead reside in
a separate configuration file for the flow. The following faces-config.xml file demonstrates how to enable faces flow
for an application:

<faces-config version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">
 ...
<flow-definition>
 </flow-definition>
 ...
</faces-config>

The views belonging to a flow should be separated from the rest of the application views and placed into a folder
at the root of the application’s web directory. The folder containing the flow views should be named the same as the
flow identifier. Navigation and configuration code is contained within a separate XML configuration file that resides
within the flow view directory, and the file is named flowname-flow.xml, where flowname is the flow identifier. The
following configuration file demonstrates the configuration for a very basic flow identified by exampleFlow. You can
find more information regarding the different elements that can be used within the flow configuration in the “How It
Works” section.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:j="http://xmlns.jcp.org/jsf/flow">

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/flow
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

309

 <f:metadata>
 <j:faces-flow-definition id="exampleFlow">

 <!-- A faces-flow-definition in a facelet page without any other
 children declares a faces flow equivalent to this:

 <start-node>the name of this page without any extension</start-node>
 <view id="the name of this page without any extension">
 <vdl-document>the name of this page with the extension</vdl-document>
 </view>

 -->
 </j:faces-flow-definition>
 </f:metadata>
</html>

The views belonging to the flow should reside within the flow folder alongside the flow configuration file. Each
of the views can access a managed bean that is dedicated to facilitating the flow. The flows share a context that begins
when the flow is accessed and ends when the flow exits. The following view demonstrates the entry point to a flow
named exampleFlow. This example view can be found in the book sources in the file recipes06_17.xhtml.

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 template="layout/custom_template.xhtml">
 <ui:define name="content">
 <h:messages globalOnly="true" errorStyle="color: red" infoStyle="color: green"/>
 <h:form id="flowForm">
 <p>
 Faces Flow Example
 </p>
 <h:commandButton value="Begin Flow" action="exampleFlow"/>
 <h:commandButton value="Stay Here" action="stay"/>

 </h:form>
 </ui:define>
</ui:composition>

Next, let’s take a look at a view that is accessing the managed bean that is dedicated to the flow. In the following
view, the managed bean named FlowBean is accessed to invoke a method, which will return an implicit navigational
String directing the application to the next view in the flow. Notice that this view also accesses the facesContext.
application.flowHandler, which I will discuss more in the “How It Works” section.

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 template="../layout/custom_template.xhtml">
 <ui:define name="content">

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

310

 <h:form>
 <p>
 This is the first view of the flow.

 Flow ID: #{facesContext.application.flowHandler.currentFlow.id}

 <h:commandLink value="Go to another view in the flow" action="#{flowBean.navMethod()}"/>
 </p>
 </h:form>
 </ui:define>
</ui:composition>

Each subsequent view within the flow can also access the resources of the flow’s managed bean. Lastly, you’ll
look at the code that is contained within org.javaeerecipes.chapter06.FlowBean, which is the managed bean that
is dedicated to the flow.

import javax.faces.flow.FlowScoped;
import javax.inject.Named;

@Named
@FlowScoped("exampleFlow")
public class FlowBean implements java.io.Serializable {

 private String flowValue;
 private String parameter1;
 /**
 * Creates a new instance of FlowBean
 */
 public FlowBean() {
 }

 /**
 * Initializes the flow
 */

 public void initializeIt(){
 System.out.println("Initialize the flow...");
 }
 /**
 * Finalizes the flow
 */

 public void finalizeIt(){
 System.out.println("Finalize the flow...");
 }

 public String navMethod(){
 return "intermediateFlow";
 }

 public String testMethod(){
 return "intermediate";
 }

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

311

 public String endFlow(){
 return "endingFlow";
 }

 /**
 * @return the flowValue
 */
 public String getFlowValue() {
 return flowValue;
 }

 /**
 * @param flowValue the flowValue to set
 */
 public void setFlowValue(String flowValue) {
 this.flowValue = flowValue;
 }

 /**
 * @return the parameter1
 */
 public String getParameter1() {
 return parameter1;
 }

 /**
 * @param parameter1 the parameter1 to set
 */
 public void setParameter1(String parameter1) {
 this.parameter1 = parameter1;
 }
}

This solution provided a quick overview of the files that are required for creating a flow within a JSF application.
In the next section, I’ll cover the features in more detail.

How It Works
The concept of session management has been a difficult feat to tackle since the beginning of web applications. A web
flow refers to a grouping of web views that are related and must have the ability to share information with each view
within the flow. Many web frameworks have attempted to tackle this issue by creating different solutions that would
facilitate the sharing of data across multiple views. Oftentimes, a mixture of session variables, request parameters, and
cookies are used as a patchwork solution.

In JSF 2.2, a solution has been adopted for binding multiple JSF views to each other, allowing them to share
information among each other. This solution is referenced as faces flow; and it allows a group of interrelated views
to belong to a flow instance, and information can be shared across all the views belonging to a flow instance. Flows
contain separate navigation that pertains to the flow itself and not the entire application. As such, flow navigation can
be defined in an XML format or via code. A flow contains a single point of entry, and it can be called from any point
within an application.

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

312

Defining a Flow
As mentioned in the solution to this recipe, the faces-config.xml file for a JSF application that will utilize the flow
feature must contain a <flow-definition> section. This section of the faces-config.xml file can contain information
specific to one or more flows residing within an application. However, for the purposes of this recipe, the solution
utilizes a separate XML configuration file for use with the flow. Either way will work; the syntax does vary just a
bit because the XML configuration file that is flow-specific uses a new JSF taglib for accessing the flow-specific
configuration tags. To learn more about using the faces-config.xml file for flow configuration, please refer to the
online documentation. Even if a flow is not using the faces-config.xml file for defining the flow configuration, the
<flow-definition> section must exist to tell the JSF runtime that flows are utilized within the application.

The flow-specific configuration file and all flow-related views should reside within the same folder, at the root of
the application’s web directory. The name of the folder should be the same as the flow identifier. As mentioned in the
solution, the flow configuration file should be named flowname-flow.xml, where flowname is the same as the flow
identifier. The URI, http://xmlns.jcp.org/jsf/flow, should be added to the flow configuration file in order to make
flow-specific tags available for configuration use. The taglib declarations for a simple JSF view that includes flows
may look like the following:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:j="http://xmlns.jcp.org/jsf/flow">
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"

The Flow Managed Bean
A flow contains its own managed bean annotated as @FlowScoped, which differs from @SessionScoped because the
data can be accessed only by other views (ViewNodes) belonging to the flow. The @FlowScoped annotation relies upon
Contexts and Dependency Injection (CDI), because FlowScoped is a CDI scope that causes the runtime to consider
classes with the @FlowScoped annotation to be in the scope of the specified flow. A @FlowScoped bean maintains a
life cycle that begins and ends with a flow instance. Multiple flow instances can exist for a single application, and if a
user begins a flow within one browser tab and then opens another, a new flow instance will begin in the new tab. This
solution resolves many lingering issues around sessions and new-age browsers that allow users to open multiple tabs.
To maintain separate flow instances, the ClientId is used by JSF to differentiate among multiple instances.

Each flow can contain an initializer and a finalizer (that is, a method that will be invoked when a flow is
entered and a method that will be invoked when a flow is exited, respectively). To declare an initializer, specify a child
element named <initializer> within the flow configuration <flow-definition>. The initializer element can be an
EL expression that declares the managed bean initializer method, as such:

...
<initializer>#{flowBean.initializeIt}></initializer>
...

Similarly, a <finalizer> element can be specified within the flow configuration to define the method that will be
called when the flow is exited. The following demonstrates how to set the finalizer to an EL expression declaring the
managed bean finalizer method:

...
<finalizer>#{flowBean.finalizeIt}></finalizer>
...

http://xmlns.jcp.org/jsf/flow
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/flow
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

313

Flows can contain method calls and variable values that are accessible only via the flow nodes. These methods
and variables should be placed within the FlowScoped bean and used the same as standard managed bean methods
and variables. The main difference is that any method or variable that is defined within a FlowScoped bean is available
only for a single flow instance.

Navigating Flow View Nodes
Flows contain their own navigational rules, which can be defined within the faces-config.xml file or the individual
flow configuration files. These rules can be straightforward and produce a page-by-page navigation, or they can
include conditional logic. There are a series of elements that can be specified within the navigation rules, which will
facilitate conditional navigation. Table 6-6 lists the different elements, along with an explanation of what they do.

Table 6-6. Flow Navigational Elements

Element Description

view Navigates to a standard JSF view.

switch Represents one or more EL expressions that conditionally evaluate to true or false. If true, then
navigation occurs to the specified view node.

flow-return Outcome determined by the caller of the flow.

flow-call Represents a call to another flow; creates a nested flow.

method-call Arbitrary method call that can invoke a method that returns a navigational outcome.

The following navigational sequence is an example of a flow navigation that contains conditional logic using the
elements listed in Table 6-6:

<j:flow-definition>

 <start-node>exampleFlow</j:start-node>

 <switch id="startNode">
 <navigation-case>
 <if>#{flowBean.someCondition}</if>
 <from-outcome>newView</from-outcome>
 </navigation-case>
 </switch>

 <view id="oneFlow">
 <vdl-document>oneFlow.xhtml</vdl-document>
 </view>

 <flow-return id="exit">
 <navigation-case>
 <from-outcome>exitFlow</from-outcome>
 </navigation-case>
 </flow-return>

 <finalizer>#{flowBean.finalizeIt}</finalizer>

 </j:flow-definition>

http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

314

Flow EL
Flows contain a new EL variable named facesFlowScope. This variable is associated with the current flow, and it is a
map that can be used for storing arbitrary values for use within a flow. The key-value pairs can be stored and read via
a JSF view or through Java code within a managed bean. For example, to display the content for a particular map key,
you could use the following:

The content for the key is: #{facesFlowScope.myKey}

6-18. Constructing a JSF View in Pure HTML5
Problem
You want to utilize HTML5 tags instead of JSF components, but you still want to utilize JSF and all of its capabilities
within your application.

Solution
Utilize the HTML-friendly markup for use within JSF views. By using HTML5 within JSF views directly, you can take
advantage of the entire JSF stack while coding views in pure HTML5. To use this solution, HTML5 tags have the ability
to access the JSF infrastructure via the use of a new taglib URI specification xmlns:jsf="http://xmlns.jcp.org/jsf",
which can be utilized within JSF views beginning with JSF 2.2 and beyond. In views that specify the new taglib URI,
HTML tags can utilize attributes that expose the underlying JSF architecture.

In the following example view, HTML5 tags are used to compose an input form that is backed by a JSF managed
bean. To visit the sources for this example, please visit the view recipe06_18.xhtml within the sources for the book.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:jsf="http://xmlns.jcp.org/jsf">
 <head jsf:id="head">
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 </head>
 <body jsf:id="body" prependId="false">

 <form jsf:id="form">
 <details jsf:id="outputMessage">
 <summary>Message</summary>
 <p>#{ajaxBean.status}</p>
 </details>
 <input type="text" jsf:id="value1" value="#{ajaxBean.value1}">
 <f:ajax execute="@this"/>
 </input>

http://xmlns.jcp.org/jsf
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf
http://www.it-ebooks.info/

ChaPTEr 6 ■ advanCEd JavaSErvEr FaCES and aJax

315

 <input type="text" jsf:id="value2" value="#{ajaxBean.value2}">
 <f:ajax execute="@this"/>
 </input>

 <input type="submit" jsf:id="status" jsf:value="#{ajaxBean.status}"
 jsf:action="#{ajaxBean.process()}" value="Process">
 <f:ajax execute="@this" render="outputMessage"/>
 </input>

 </form>
 </body>
</html>

Note ■ This feature is only available to views written in Facelets. It is not available to views written in JSP.

How It Works
The JSF 2.2 release includes the ability to utilize HTML5 markup within JSF views. As a matter of fact, the markup is
not limited to HTML5; it can also include HTML4, and so on. The addition of a new taglib URI makes this possible,
because it allows existing HTML tags to be bound to the JSF life cycle via the use of new namespace attributes. It is
now possible to develop entire JSF views without using any JSF tags at all.

To utilize the new namespace attributes, your JSF view must import the new taglib URI
xmlns: jsf="http://xmlns.jcp.org/jsf". The new taglib can then be referenced as attributes within existing
HTML tags, setting the underlying JSF attributes that are referenced. For instance, to utilize an HTML input tag with
JSF, you would add the jsf:id attribute and set it equal to the JSF ID that you want to assign to that component. You
would then set an attribute of jsf:value equal to the managed bean value.

Note ■ There is no need to import the http://xmlns.jcp.org/jsf/html taglib because you are no longer utilizing
JSF component tags in the view.

The new syntax provides several benefits for web developers. Although not all web developers are familiar with
JSF component tags, HTML tags are well known. Utilizing the new syntax, both JSF and HTML developers alike can
create web views that utilize the power of JSF along with the flexibility of HTML. The new syntax also makes it easier
to bind HTML tags with JavaScript, if needed. You no longer need to worry about JSF view IDs getting in the way when
working with HTML and JavaScript. With the addition of new JSF taglib namespace for use with HTML tags, both JSF
and HTML alike have been improved.

http://xmlns.jcp.org/jsf
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

317

Chapter 7

JDBC

The Java Database Connectivity (JDBC) API is a standard for accessing relational database management systems
(RDBMSs) via Java. It has been in use for years and can be used when developing all types of Java applications,
including desktop, stand-alone, and web. Almost every nontrivial application utilizes an RDBMS for storing and
retrieving data. Therefore, it is important for application developers of all types to learn how to work with JDBC.

Enterprise application development has proved to be more productive for developers when working directly
with Java objects as opposed to database access. While the JDBC API is still very mainstream for the development of
enterprise applications, many developers have begun to adopt object-relational mapping programming interfaces
as a standard. One of the easiest ways to map Java objects to database tables is to encapsulate JDBC logic into classes
containing private methods for performing database access and exposing those methods using public methods that
work with objects instead of SQL. This chapter contains recipes to demonstrate the technique of abstracting JDBC
logic from ordinary business logic, sometimes referred to as creating data access objects.

There are recipes in this chapter that will teach developers how to utilize a database within a web application,
from how to obtain a connection to how to display database results via a JSF dataTable. The Java 7 release introduced
some new features into the JDBC API to make working with databases a bit easier, and this chapter includes recipes
that cover some of those new features as well. After reviewing the recipes included in this chapter, you should be
comfortable using JDBC within your Java web applications.

Note ■ The Acme Bookstore application has been completely rewritten for this chapter in order to utilize a relational
database rather than simple Java lists of data. Please run the create_database.sql script within your database prior
to working with the examples from this chapter. Also, you will need to provide the necessary database connection
 properties for your database within the db_props.properties file and/or within the code examples for this chapter.
If you are utilizing a database other than Oracle or Apache Derby, you should be able to adjust the SQL accordingly to
work with that database. To access the Acme Bookstore application utilizing the database, be sure to deploy the
JavaEERecipes web application to your GlassFish application server, and visit the URL
http://localhost:8080/JavaEERecipes/faces/chapter07/home.xhtml.

7-1. Obtaining Database Drivers and Adding Them
to the CLASSPATH
Problem
You need to have the ability to utilize a database from your application, so you need to obtain drivers and configure
the databases for your application.

http://localhost:8080/JavaEERecipes/faces/chapter07/home.xhtml
http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

318

Solution
Download the appropriate drivers for the database that you will be working with, and add them to the
CLASSPATH for your application. In this solution, I will assume you are going to develop an enterprise-level web
application and deploy it to the GlassFish application server. The application will utilize Oracle Database for
persistence. In this case, you will need to download the most current Oracle database driver for Java Database
Connectivity (JDBC). At the time of this writing, the driver is ojdbc6.jar, but you can find the latest online at
www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html.

Once you have downloaded the required drivers for your database, add them to the application CLASSPATH.
If using an IDE, you can adjust the project properties for your application project accordingly to include the JAR that
contains your database driver. If you are working from the command line or terminal, you can add the driver to your
CLASSPATH by issuing one of the following commands, depending upon the OS platform you are using.

Use the following on Unix-based systems or OS X:

export CLASSPATH=/path-to-jar/ojdbc6.jar

Use the following on Windows:

set CLASSPATH=C:\path-to-jar\ojdbc6.jar

You should now be able to work with the database from your application, but in order to deploy to the GlassFish
application server, you will need to make the database driver available for GlassFish. You can do this by copying the
JAR containing the database driver into the GlassFish lib directory. If using GlassFish v4, the database driver JAR
should be placed within a domain rather than at the application server level. Therefore, if your domain is named
domain1 (the default), then the path to where the JAR should be placed would be as follows:

/GlassFish_Home/glassfish4/glassfish/domains/domain1/lib/databases

Restart the application server, and you are ready to deploy your database application.

How It Works
The first step to working with any database from an application is to configure the database driver for the specific
vendor of your choice. Whether you decide to use MySQL, PostgreSQL, Oracle, Microsoft SQL, or another database,
most enterprise-level databases have a JDBC driver available. This driver must be added to the application CLASSPATH
and integrated development environment (IDE) project CLASSPATH if using one. If working from the command line
or terminal, you will need to set the CLASSPATH each time you open a new session. If using an IDE, your settings can
usually be saved so that you need to configure them only one time. After the driver for your database has been added
to the application or project CLASSPATH, you are ready to begin working with the database.

When it comes time to deploy the application to a server, you will need to ensure that the server has access to
the database driver. If using GlassFish v4, you can simply add the driver JAR for your database to the domain’s lib
directory and restart the server. Once you’ve done this, then you can either deploy your JDBC-based application or set
up a database connection pool for your database. Please see Recipe 7-2 for more information on how to connect to
your database from within an application using standard JDBC connectivity or how to set up a JDBC connection pool
via the GlassFish application server.

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

319

7-2. Connecting to a Database
Problem
You need to connect to a database so that your application can perform database transactions.

Solution #1
Perform a JDBC connection to the database from within your application. Do this by creating a new Connection
object, and then load the driver that you need to use for your particular database. Once the Connection object is
ready, call its getConnection() method. The following code demonstrates how to obtain a connection to an Oracle
database:

public final static class OracleConnection {

 private String hostname = "myHost";
 private String port = "1521";
 private String database = "myDatabase";
 private String username = "user";
 private String password = "password";

 public static Connection getConnection() throws SQLException {
 Connection conn = null;
 String jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":"
 + this.port + ":" + this.database;
 conn = DriverManager.getConnection(jdbcUrl, username, password);
 System.out.println("Successfully connected");
 return conn;
 }
}

The method portrayed in this example returns a Connection object that is ready to be used for database access.

Solution #2
Configure a database connection pool within an application server, and connect to it from your application. Use a
DataSource object to create a connection pool. The DataSource object must have been properly implemented and
deployed to an application server environment. After a DataSource object has been implemented and deployed,
it can be used by an application to obtain a connection to a database.

Note ■ A connection pool is a cluster of identical database connections that are allocated by the application server
(container-managed connection pool) to be utilized by applications for individual client sessions.

To create a connection pool using the GlassFish administrative console, first log into the console by visiting
http://localhost:4848 (assuming you are on the same machine as the server and that your GlassFish installation
is using the default port numbers). Once successfully logged into the console, click the JDBC menu under Resources,
and then expand the JDBC Connection Pools menu, as shown in Figure 7-1.

http://localhost:4848/
http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

320

Click the New button on the JDBC Connection Pools screen, and it will then navigate you to the New JDBC
Connection Pool (Step 1 of 2) screen. There, you can name the pool, select a resource type, and select a database
driver vendor. For this example, I am using Oracle Database 11gR2. Therefore, the entries should be specified like
those shown in Figure 7-2, although you could change the pool name to something you like better.

When the next screen opens, it should automatically contain the mappings for your Oracle database
DataSource Classname as oracle.jdbc.pool.OracleDataSource. If it does not look like Figure 7-3, then you may
not yet have the ojdbc6.jar database driver in the application server lib directory. Be sure to check the Enabled
check box next to the Ping option.

Figure 7-1. Displaying the GlassFish JDBC connection pools

Figure 7-2. Creating a GlassFish JDBC connection pool

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

321

Figure 7-3. Data source class name automatically populates

Figure 7-4. Populating the additional properties for your database

Lastly, go down to the bottom of the second screen, and check all the properties within the Additional Properties
table with the exception of User, Password, and URL. Please specify the information for these properties according to
the database you will be connecting against, as shown in Figure 7-4. Once you populated them accordingly, click the
Finish button.

After clicking Finish, you should see a message indicating that the “ping” has succeeded. Now you can set up
your JDBC resource by clicking the JDBC Resources menu within the left tree menu. When the JDBC Resources screen
appears, click the New… button. Enter a JNDI name for your resource, beginning with jdbc/, and then select the
pool name for the database connection pool you just created. The screen should resemble Figure 7-5. Once you’ve
populated it accordingly, click the OK button to complete the creation of the resource.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

322

Figure 7-5. Creating a JDBC resource

Note ■ JNDI is the communication technology that allows applications to communicate with services by name within
an application server container.

You can use the following code to obtain a database connection via a DataSource object:

public static Connection getDSConnection() {
 Connection conn = null;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/OracleConnection");
 conn = ds.getConnection();
 } catch (NamingException | SQLException ex) {
 ex.printStackTrace();
 }
 return conn;
}

Notice that the only information required in the DataSource implementation is the name of a valid DataSource
object. All the information that is required to obtain a connection with the database is managed within the
application server.

How It Works
You have a couple of options for creating database connections for use within Java applications. If you are writing a
stand-alone or desktop application, usually a standard JDBC connection is the best choice. However, if working with
an enterprise-level or web-based application, DataSource objects may be the right choice. Solution #1 for this recipe
covers the former option, and it is the easiest way to create a database connection in a stand-alone environment.
I will cover the creation of a JDBC Connection via Solution #1 first.

Once you’ve determined which database you are going to use, you will need to obtain the correct driver for the
database vendor and release of your choice. Please see Recipe 7-1 for more information on obtaining a driver and

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

323

placing it into your CLASSPATH for use. Once you have the JAR file in your application CLASSPATH, you can use a JDBC
DriverManager to obtain a connection to the database. As of JDBC version 4.0, drivers that are contained within the
CLASSPATH are automatically loaded into the DriverManager object. If you are using a JDBC version prior to 4.0, the
driver will have to be manually loaded.

To obtain a connection to your database using the DriverManager, you need to pass a String containing the
JDBC URL to it. The JDBC URL consists of the database vendor name, along with the name of the server that hosts the
database, the name of the database, the database port number, and a valid database user name and password that
has access to the schema you want to work with. Many times, the values used to create the JDBC URL can be obtained
from a properties file so that the values can be easily changed if needed. To learn more about using a properties file to
store connection values, please see Recipe 7-4. The code that is used to create the JDBC URL for Solution #1 looks like
the following:

String jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":" +
this.port + ":" + this.database;

Once all the variables have been substituted into the String, it will look something like the following:

jdbc:oracle:thin:@hostname:1521:database

Once the JDBC URL has been created, it can be passed to the DriverManager.getConnection() method
to obtain a java.sql.Connection object. If incorrect information has been passed to the getConnection method,
a java.sql.SQLException will be thrown; otherwise, a valid Connection object will be returned.

Note ■ The prefix of the jdbcurl connection string in the example, jdbc:oracle:thin, indicates that you will be
using the Oracle drivers, which are located within the ojdbc6.jar. DriverManager makes the association.

If running on an application server, such as GlassFish, the preferred way to obtain a connection is to use
a DataSource. To work with a DataSource object, you need to have an application server to deploy it to. Any
compliant Java application server such as Apache Tomcat, GlassFish, Oracle WebLogic, or JBoss will work. Most
of the application servers contain a web interface that can be used to easily deploy a DataSource object, such as
demonstrated via GlassFish in Solution #2 to this recipe. However, you can manually deploy a DataSource object by
using code that will look like the following:

org.javaeerecipes.chapter7.recipe07_02.FakeDataSourceDriver ds =
new org.javaeerecipes.chapter7.recipe07_02.FakeDataSourceDriver();
ds.setServerName("my-server");
ds.setDatabaseName("JavaEERecipes");
ds.setDescription("Database connection for Java EE 7 Recipes");

This code instantiates a new DataSource driver class, and then it sets properties based upon the database you
want to register. DataSource code such as that demonstrated here is typically used when registering a DataSource in
an application server or with access to a JNDI server. Application servers usually do this work behind the scenes if you
are using a web-based administration tool to deploy a DataSource. Most database vendors will supply a DataSource
driver along with their JDBC drivers, so if the correct JAR resides within the application or server CLASSPATH, it should
be recognized and available for use. Once a DataSource has been instantiated and configured, the next step is to
register the DataSource with a JNDI naming service.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

324

The following code demonstrates the registration of a DataSource with JNDI:

try {
 Context ctx = new InitialContext();
 DataSource ds =
 (DataSource) ctx.bind("jdbc/OracleConnection");
} catch (NamingException ex) {
 ex.printStackTrace();
}

Once the DataSource has been deployed, any application that has been deployed to the same application
server will have access to it. The beauty of working with a DataSource object is that your application code doesn’t
need to know anything about the database; it needs to know only the name of the DataSource. Usually the name
of the DataSource begins with a jdbc/ prefix, followed by an identifier. To look up the DataSource object, an
InitialContext is used. The InitialContext looks at all the DataSources available within the application server,
and it returns a valid DataSource if it is found; otherwise, it will throw a java.naming.NamingException exception.
In Solution #2, you can see that the InitialContext returns an object that must be cast as a DataSource.

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/OracleConnection");

If the DataSource is a connection pool cache, the application server will send one of the available connections within
the pool when an application requests it. The following line of code returns a Connection object from the DataSource:

conn = ds.getConnection();

Of course, if no valid connection can be obtained, a java.sql.SQLException is thrown. The DataSource
technique is preferred over manually specifying all details and passing to the DriverManager because database
connection information is stored in only one place: the application server, not within each application. Once a valid
DataSource is deployed, it can be used by many applications.

After a valid connection has been obtained by your application, it can be used to work with the database. To learn
more about working with the database using a Connection object, please see the recipes within this chapter regarding
working with the database.

7-3. Handling Database Connection Exceptions
Problem
A database activity in your application has thrown an exception. You need to handle that SQL exception so your
application does not crash.

Solution
Use a try-catch block to capture and handle any SQL exceptions that are thrown by your JDBC connection or SQL
queries. The following code demonstrates how to implement a try-catch block in order to capture SQL exceptions:

try {
// perform database tasks
} catch (java.sql.SQLException) {
// perform exception handling
}

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

325

How It Works
A standard try-catch block can be used to catch java.sql.Connection or java.sql.SQLException exceptions.
Your code will not compile if these exceptions are not handled, and it is a good idea to handle them in order to
prevent your application from crashing if one of these exceptions is thrown. Almost any work that is performed
against a java.sql.Connection object will need to perform error handling to ensure that database exceptions are
handled correctly. In fact, nested try-catch blocks are often required to handle all the possible exceptions. You need
to ensure that connections are closed once work has been performed and the Connection object is no longer used.
Similarly, it is a good idea to close java.sql.Statement objects for memory allocation cleanup.

Because Statement and Connection objects need to be closed, it is common to see try-catch-finally blocks
used to ensure that all resources have been tended to as needed. It is not unlikely that you will see JDBC code that
resembles the following style:

try {
 // perform database tasks
} catch (java.sql.SQLException ex) {
 // perform exception handling
} finally {
 try {
 // close Connection and Statement objects
 } catch (java.sql.SQLException ex) {
 // perform exception handling
 }
}

As shown in the previous pseudo-code, nested try-catch blocks are often required in order to clean up unused
resources. Proper exception handling sometimes makes JDBC code rather laborious to write, but it will also ensure
that an application requiring database access will not fail, causing data to be lost.

7-4. Simplifying Connection Management
Problem
Your application requires the use of a database. To work with the database, you need to open a connection. Rather
than code the logic to open a database connection every time you need to access the database, you want to simplify
the connection process.

Solution
Write a class to handle all the connection management within your application. Doing so will allow you to call that
class in order to obtain a connection, rather than setting up a new Connection object each time you need access to the
database. Perform the following steps to set up a connection management environment for your JDBC application:

1. Create a class named CreateConnection.java that will encapsulate all the connection
logic for your application.

2. Create a properties file to store your connection information. Place the file somewhere on
your CLASSPATH so that the CreateConnection class can load it.

3. Use the CreateConnection class to obtain your database connections.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

326

Note ■ If utilizing an application server, you can handle a similar solution via a container-managed connection pool.
however, if the application is not deployed to an application server container, then building a connection management
utility such as the one in this solution is a good alternative.

The following code is the org.javaeerecipes.chapter07.CreateConnection class that can be used for
centralized connection management:

package org.javaeerecipes.chapter07;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

public final class CreateConnection {

 static Properties props = new Properties();
 static String hostname = null;
 static String port = null;
 static String database = null;
 static String username = null;
 static String password = null;
 static String jndi = null;

 public CreateConnection() {

 }

 public static void loadProperties() {
 // Return if the host has already been loaded
 if(hostname != null){
 return;
 }

 try(InputStream in =

Files.newInputStream(FileSystems.getDefault().getPath(System.getProperty("user.dir")
+ File.separator + "db_props.properties"));) {
 // Looks for properties file in the root of the src directory in Netbeans project

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

327

 System.out.println(FileSystems.getDefault().getPath(System.getProperty("user.dir")
 + File.separator + "db_props.properties"));
 props.load(in);

 } catch (IOException ex) {
 ex.printStackTrace();
 }

 hostname = props.getProperty("host_name");
 port = props.getProperty("port_number");
 database = props.getProperty("db_name");
 username = props.getProperty("username");
 password = props.getProperty("password");
 jndi = props.getProperty("jndi");
 System.out.println(hostname);
 }

 /**
 * Demonstrates obtaining a connection via DriverManager
 *
 * @return
 * @throws SQLException
 */
 public static Connection getConnection() throws SQLException {
 Connection conn = null;
 String jdbcUrl = "jdbc:oracle:thin:@" + hostname + ":"
 + port + ":" + database;
 conn = DriverManager.getConnection(jdbcUrl, username, password);
 System.out.println("Successfully connected");
 return conn;
 }

 /**
 * Demonstrates obtaining a connection via a DataSource object
 *
 * @return
 */
 public static Connection getDSConnection() {
 Connection conn = null;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup(jndi);
 conn = ds.getConnection();
 } catch (NamingException | SQLException ex) {
 ex.printStackTrace();
 }
 return conn;
 }

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

328

 public static void main(String[] args) {
 Connection conn = null;
 try {
 CreateConnection.loadProperties();
 System.out.println("Beginning connection..");
 conn = CreateConnection.getConnection();
 //performDbTask();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

 }
}

Next, the following lines of code are an example of what should be contained in the properties file that is used for
obtaining a connection to the database. For this example, the properties file is named db_props.properties.

host_name=your_db_server_name
db_name=your_db_name
username=db_username
password=db_username_password
port_number=db_port_number
jndi=jndi_connection_string

Finally, use the CreateConnection class to obtain connections for your application. The following code
demonstrates this concept:

Connection conn = null;
try {
 CreateConnection.loadProperties();
 System.out.println("Beginning connection..");
 conn = CreateConnection.getConnection();
 //performDbTask();
} catch (java.sql.SQLException ex) {
 System.out.println(ex);
} finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
}

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

329

Note ■ You could update this code to use the try-with-resources syntax in order to get rid of the finally block
requirement. however, I’m showing this syntax to demonstrate how to ensure that a Connection object is closed,
if you’re not using try-with-resources.

To run the code for testing, execute the class org.javaeerecipes.chapter07.CreateConnection.java because
it contains a main method for testing purposes.

How It Works
Obtaining a connection within a database application can be code intensive. Moreover, the process can be prone to
error if you retype the code each time you need to obtain a connection. By encapsulating database connection logic
within a single class, you can reuse the same connection code each time you require a connection to the database.
This increases your productivity, reduces the chances of typing errors, and also enhances manageability because
if you have to make a change, it can occur in one place rather than in several different locations.

Creating a strategic connection methodology is beneficial to you and others who might need to maintain your
code in the future. Although data sources are the preferred technique for managing database connections when using
an application server or JNDI, the solution to this recipe demonstrates how to use standard JDBC DriverManager
connections. One of the security implications of using the DriverManager is that you will need to store the database
credentials somewhere for use by the application. It is not safe to store those credentials in plain text anywhere,
and it is also not safe to embed them in application code, which might be decompiled at some point in the future.
As seen in the solution, a properties file that resides on disk is used to store the database credentials. Assume that
this properties file will be encrypted at some point before deployment to a server.

As shown in the solution, the code reads the database credentials, host name, database name, and port
number from the properties file. That information is then pieced together to form a JDBC URL that can be used by
DriverManager to obtain a connection to the database. Once obtained, that connection can be used anywhere and
then closed. Similarly, if using a DataSource that has been deployed to an application server, the properties file can
be used to store the JNDI connection. That is the only piece of information that is needed to obtain a connection to
the database using the DataSource. To the developer, the only difference between the two types of connections
would be the method name that is called in order to obtain the Connection object, those being getDsConnection
or getConnection in the example.

You could develop a JDBC application so that the code that is used to obtain a connection needs to be
hard-coded throughout. Instead, this solution enables all the code for obtaining a connection to be encapsulated
by a single class so that the developer does not need to worry about it. Such a technique also allows the code to be
more maintainable. For instance, if the application were originally deployed using the DriverManager but then
later had the ability to use a DataSource, very little code would need to be changed.

7-5. Querying a Database
Problem
You have a table that contains authors within the company database, and you want to query that table to retrieve
the records.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

330

Solution
Obtain a JDBC connection using one of the techniques covered in Recipe 7-2 or Recipe 7-4; then use the
java.sql.Connection object to create a Statement object. A java.sql.Statement object contains the executeQuery
method, which can be used to parse a String of text and use it to query a database. Once you’ve executed the
query, you can retrieve the results of the query into a ResultSet object. The following example, excerpted from
the org.javaeerecipes.chapter07.dao.AuthorDAO class, queries a database table named BOOK_AUTHOR and prints
the results to the server log:

public void queryBookAuthor() {
 String qry = "select id, first, last, bio from book_author";
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 System.out.println(author_id + "\t" + first_name
 + " " + last_name + "\t" + bio);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }

}

Executing this method against the database schema that ships with this book will produce the following results,
considering that the BIO column is null for each author record:

Successfully connected
2 JOSH JUNEAU null
3 CARL DEA null
4 MARK BEATY null
5 FREDDY GUIME null
6 OCONNER JOHN null

How It Works
One of the most commonly performed operations against a database is a query. Performing database queries using
JDBC is quite easy, although there is a bit of boilerplate code that needs to be used each time a query is executed.
First, you need to obtain a Connection object for the database and schema that you want to run the query against. You
can do this by using one of the solutions in Recipe 7-2. Next, you need to form a query and store it in String format.
The CreateConnection properties are then loaded via a call to the loadProperties method, which ensures that the
db_props.properties file is used to populate database connection information. Next, a try-with-resources clause
is used to create the objects that are necessary for querying the database. Since the objects are instantiated within

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

331

the try-with-resources, then they will be closed automatically once they are no longer being used. The Connection
object is then used to create a Statement. Your query String will be passed to the Statement object’s executeQuery
method in order to actually query the database.

String qry = "select id, first, last, bio from book_author";
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
...

As you can see, the Statement object’s executeQuery method accepts a String and returns a ResultSet object.
The ResultSet object makes it easy to work with the query results so that you can obtain the information you need
in any order. If you take a look at the next line of code, a while loop is created on the ResultSet object. This loop will
continue to call the ResultSet object’s next method, obtaining the next row that is returned from the query with each
iteration. In this case, the ResultSet object is named rs, so while rs.next() returns true, the loop will continue to be
processed. Once all the returned rows have been processed, rs.next() will return a false to indicate that there are no
more rows to be processed.

Within the while loop, each returned row is processed. The ResultSet object is parsed to obtain the values of
the given column names with each pass. Notice that if the column is expected to return a String, you must call the
ResultSet getString method, passing the column name in String format. Similarly, if the column is expected to
return an int, you’d call the ResultSet getInt method, passing the column name in String format. The same holds
true for the other data types. These methods will return the corresponding column values. In the example in the
solution to this recipe, those values are stored into local variables.

int author_id = rs.getInt("ID");
String first_name = rs.getString("FIRST");
String last_name = rs.getString("LAST");
String bio = rs.getString("BIO");

Once the column value has been obtained, you can do what you want to do with the values you have stored
within local variables. In this case, they are printed out using the System.out() method. Notice that there is a
try-catch-finally block used in this example. A java.sql.SQLException could be thrown when attempting to
query a database (for instance, if the Connection object has not been properly obtained or if the database tables
that you are trying to query do not exist). You must provide exception handling to handle errors in these situations.
Therefore, all database-processing code should be placed within a try block. The catch block then handles a
SQLException, so if one is thrown, the exception will be handled using the code within the catch block. Sounds
easy enough, right? It is, but you must do it each time you perform a database query. That means lots of boilerplate
code. Inside the finally block, you will see that the Statement and Connection objects are closed if they are not
equal to null.

Note ■ Performing these tasks also incurs the overhead of handling java.sql.SQLException when it is thrown.
They might occur if an attempt is made to close a null object. It is always a good idea to close statements and
connections if they are open. This will help ensure that the system can reallocate resources as needed and act
respectfully on the database. It is important to close connections as soon as possible so that other processes can
reuse them.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

332

7-6. Performing CRUD Operations
Problem
You need to have the ability to perform standard database operations from within your enterprise application.
That is, you need to have the ability to create, retrieve, update, and delete (CRUD) database records.

Solution
Create a Connection object and obtain a database connection using one of the solutions provided in Recipe 7-2; then
perform the CRUD operation using a java.sql.Statement object that is obtained from the java.sql.Connection
object. The following code, taken from org.javaeerecipes.chapter07.recipe07_06.AuthorDAOStandard.java,
demonstrates how to perform each of the CRUD operations against the BOOK_AUTHORS table using JDBC, with the
exception of the query (retrieve) since that is already covered in Recipe 7-5.

Note ■ This recipe demonstrates the use of String concatenation for creating SQL statements without the use of
PreparedStatement objects. This is not a safe practice because the variables could potentially contain malicious values
that may compromise your database. The solution to this recipe demonstrates the practice of creating SQL statements
using String concatenation so that you can see the different options that are available. For information on using
PreparedStatement objects and a safer alternative to String concatenation, please see Recipe 7-7.

/**
 * Do not use this method in production, instead make use of
 * PreparedStatements
 *
 * @param first
 * @param last
 * @param bio
 */
 private void performCreate(String first, String last, String bio) {
 String sql = "INSERT INTO BOOK_AUTHOR VALUES("
 + "BOOK_AUTHOR_S.NEXTVAL, "
 + "'" + last.toUpperCase() + "', "
 + "'" + first.toUpperCase() + "', "
 + "'" + bio.toUpperCase() + "')";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 // Returns row-count or 0 if not successful
 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record created --");
 } else {
 System.out.println("!! Record NOT Created !!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

333

 private void performUpdate(String first, String last, String bio) {
 String sql = "UPDATE BOOK_AUTHOR "
 + "SET bio = '" + bio.toUpperCase() + "' "
 + "WHERE last = '" + last.toUpperCase() + "' "
 + "AND first = '" + first.toUpperCase() + "'";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record Updated --");

 } else {
 System.out.println("!! Record NOT Updated !!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 private void performDelete(String first, String last) {
 String sql = "DELETE FROM BOOK_AUTHOR WHERE LAST = '" + last.toUpperCase() + "' "
 + "AND FIRST = '" + first.toUpperCase() + "'";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record Deleted --");
 } else {
 System.out.println("!! Record NOT Deleted!!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

Note ■ If you follow the code, you will notice that whenever a String of data is passed to the database, it is first
changed to uppercase by calling the toUpperCase method on it. This is to help maintain a standard uppercase format
for all data within the database, since Oracle is case sensitive.

Executing the following main method will produce the results that follow:

public static void main(String[] args) {
 AuthorDAO authorDao = new AuthorDAO();
 authorDao.queryBookAuthor();
 authorDao.performCreate("Joe", "Blow", "N/A");
 authorDao.performUpdate("Joe", "Blow", "Joes Bio");
 authorDao.queryBookAuthor();
 authorDao.performDelete("Joe", "Blow");
}

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

334

The results from running the main method should be similar to the following:

Successfully connected
2 JOSH JUNEAU null
3 CARL DEA null
4 MARK BEATY null
5 FREDDY GUIME null
6 OCONNER JOHN null
Successfully connected
-- Record created --

Successfully connected
-- Record Updated --
Successfully connected
2 JOSH JUNEAU null
3 CARL DEA null
4 MARK BEATY null
5 FREDDY GUIME null
6 OCONNER JOHN null
105 JOE BLOW JOES BIO

Successfully connected
-- Record Deleted --

How It Works
The same basic code format is used for performing just about every database task. The format is as follows:

1. Obtain a connection to the database within the try clause.

2. Create a statement from the connection within the try clause.

3. Perform a database task with the statement.

4. Do something with the results of the database task.

5. Close the statement (and database connection if finished using it). This step is done
automatically for you if using the try-with-resources clause, as demonstrated in the
solution to this recipe.

The main difference between performing a query using JDBC and using Data Manipulation Language (DML)
is that you will call different methods on the Statement object, depending on which operation you want to perform.
To perform a query, you need to call the Statement executeQuery method. To perform DML tasks, such as insert,
update, and delete, call the executeUpdate method.

The performCreate method in the solution to this recipe demonstrates the operation of inserting a record
into a database. To insert a record in the database, you will construct a SQL insert statement in String format. To
perform the insert, pass the SQL string to the Statement object’s executeUpdate method. If the insert is performed,
an int value will be returned that specifies the number or rows that have been inserted. If the insert operation is not
performed successfully, either a zero will be returned or a SQLException will be thrown, indicating a problem with
the statement or database connection.

The performUpdate method in the solution to this recipe demonstrates the operation of updating record(s)
within a database table. First, you will construct a SQL update statement in String format. Next, to perform the
update operation, you will pass the SQL string to the Statement object’s executeUpdate method. If the update is
successfully performed, an int value will be returned, which specifies the number of records that were updated.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

335

If the update operation is not performed successfully, either a zero will be returned or a SQLException will be thrown,
indicating a problem with the statement or database connection.

The last database operation that is covered in the solution is the delete operation. The performDelete method
in the solution to this recipe demonstrates how to delete records from the database. First, you will construct a SQL
delete statement in String format. Next, to execute the deletion, you will pass the SQL string to the Statement
object’s executeUpdate method. If the deletion is successful, an int value specifying the number of rows deleted will
be returned. Otherwise, if the deletion fails, a zero will be returned, or a SQLException will be thrown, indicating a
problem with the statement or database connection.

Almost every database application uses at least one of the CRUD operations at some point. This is foundational
JDBC that you need to know if you are working with databases within Java applications. Even if you will not work
directly with the JDBC API, it is good to know these basics.

7-7. Preventing SQL Injection
Problem
Your application performs database tasks. To reduce the chances of a SQL injection attack, you need to ensure that
no unfiltered Strings of text are being appended to SQL statements and executed against the database.

Tip■ Prepared statements provide more than just protection against SQL injection attacks. They also provide a way
to centralize and better control the SQL used within an application. Instead of creating multiple and possibly different
versions of the same query, you can create the query once as a prepared statement and invoke it from many different
places within your code. Any change to the query logic needs to happen only at the point that you prepare the statement.

Note■ There have been data access objects (DAOs) created for each database table used by the Acme Bookstore
application for this recipe. The DAO classes are used to perform CRUD operations against each of the tables for the
Acme Bookstore application. The CRUD operations utilize PreparedStatements in order to add security and enhance
the performance of the application.

Solution
Utilize PreparedStatements for performing the database tasks. PreparedStatements send a precompiled SQL
statement to the DBMS rather than a clear-text String. The following code demonstrates how to perform a
database query and a database update using a java.sql.PreparedStatement object. The following code excerpts
are taken from a new data access object named org.javaeerecipes.chapter07.dao.AuthorDAO, which utilizes
PreparedStatement objects rather than String concatenation for executing SQL statements:

...
 /**
 * Queries the database for a particular author based upon ID and returns
 * the Author object if found.
 *
 * @param id
 * @return
 */

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

336

 public Author performFind(int id) {
 String qry = "SELECT ID, LAST, FIRST, BIO "
 + "FROM BOOK_AUTHOR "
 + "WHERE ID = ?";

 Author author = null;
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(qry)) {
 stmt.setInt(1, id);
 try (ResultSet rs = stmt.executeQuery();) {

 if (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 author = new Author(author_id,
 first_name,
 last_name,
 bio);
 }
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return author;

 }

 /**
 * Queries the database for a particular author based upon first and last
 * name and returns a list of Author objects if found.
 *
 * @param id
 * @return
 */
 public List<Author> performFind(String first, String last) {
 String qry = "SELECT ID, LAST, FIRST, BIO "
 + "FROM BOOK_AUTHOR "
 + "WHERE LAST = ? "
 + "AND FIRST = ?";

 List authorList = new ArrayList();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(qry)) {
 stmt.setString(1, last.toUpperCase());

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

337

 stmt.setString(2, first.toUpperCase());
 try (ResultSet rs = stmt.executeQuery();) {

 while (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 Author author = new Author(author_id,
 first_name,
 last_name,
 bio);
 authorList.add(author);
 }
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return authorList;

 }

 /**
 * Do not use this method in production, instead make use of
 * PreparedStatements
 *
 * @param first
 * @param last
 * @param bio
 */
 private void performCreate(String first, String last, String bio) {
 String sql = "INSERT INTO BOOK_AUTHOR VALUES("
 + "BOOK_AUTHOR_S.NEXTVAL, ?, ?, ?)";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 stmt.setString(1, last.toUpperCase());
 stmt.setString(2, first.toUpperCase());
 stmt.setString(3, bio.toUpperCase());

 // Returns row-count or 0 if not successful
 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record created --");
 } else {
 System.out.println("!! Record NOT Created !!");
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

338

 private void performUpdate(int id, String first, String last, String bio) {
 String sql = "UPDATE BOOK_AUTHOR "
 + "SET bio = ?,"
 + " last = ?,"
 + " first = ? "
 + "WHERE ID = ?";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 stmt.setString(1, bio.toUpperCase());
 stmt.setString(2, last.toUpperCase());
 stmt.setString(3, first.toUpperCase());
 stmt.setInt(4, id);

 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record Updated --");

 } else {
 System.out.println("!! Record NOT Updated !!");
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 private void performDelete(int id) {
 String sql = "DELETE FROM BOOK_AUTHOR WHERE ID = ?";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 stmt.setInt(1, id);

 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record Deleted --");
 } else {
 System.out.println("!! Record NOT Deleted!!");
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
...

The methods displayed previously exhibit the use of PreparedStatement objects rather than using standard
JDBC Statement objects and String concatenation for appending variables into SQL statements.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

339

How It Works
While standard JDBC statements will get the job done, the harsh reality is that they can sometimes be insecure and
difficult to work with. For instance, bad things can occur if a dynamic SQL statement is used to query a database and
a user-accepted String is assigned to a variable and concatenated with the intended SQL String. In most ordinary
cases, the user-accepted String would be concatenated, and the SQL String would be used to query the database
as expected. However, an attacker could decide to place malicious code inside the String (aka SQL injection), which
would then be inadvertently sent to the database using a standard Statement object. Using PreparedStatements
prevents such malicious Strings from being concatenated into a SQL string and passed to the DBMS because they
use a different approach. PreparedStatements use substitution variables rather than concatenation to make SQL
strings dynamic. They are also precompiled, which means that a valid SQL string is formed prior to the SQL being sent
to the DBMS. Moreover, PreparedStatements can help your application perform better because if the same SQL has
to be run more than one time, it has to be compiled only once per Oracle session. After that, the substitution variables
are interchangeable, but the PreparedStatement can execute the SQL very quickly.

Let’s take a look at how a PreparedStatement works in practice. If you look at the example in the solution to this
recipe, you can see that the database table BOOK_AUTHOR is being queried in the performFind method, sending the
author’s ID as a substitution variable and retrieving the results for the matching record. The SQL string looks like the
following:

String qry = "SELECT ID, LAST, FIRST, BIO "
 + "FROM BOOK_AUTHOR "
 + "WHERE ID = ?";

Everything looks standard with the SQL text except for the question mark (?) at the end of the string. Placing
a question mark within a string of SQL signifies that a substitute variable will be used in place of that question
mark when the SQL is executed. The next step for using a PreparedStatement is to declare a variable of type
PreparedStatement. You can see this with the following line of code:

PreparedStatement stmt = null;

Now that a PreparedStatement has been declared, it can be put to use. However, using a PreparedStatement
might or might not cause an exception to be thrown. Therefore, any use of a PreparedStatement should occur within
a try-catch block so that any exceptions can be handled gracefully. For instance, exceptions can occur if the database
connection is unavailable for some reason or if the SQL string is invalid. Rather than crashing an application because
of such issues, it is best to handle the exceptions wisely within a catch block. The following try-catch block includes
the code that is necessary to send the SQL string to the database and retrieve results:

try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(qry)) {
 stmt.setInt(1, id);
 try (ResultSet rs = stmt.executeQuery();) {
 if (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 author = new Author(author_id,
 first_name,
 last_name,
 bio);

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

340

 }
 }
} catch (SQLException e) {
 e.printStackTrace();
}

First, you can see that the Connection object is used to instantiate a PreparedStatement object. The SQL
string is passed to the PreparedStatement object’s constructor upon creation. Next, the PreparedStatement object
is used to set values for any substitution variables that have been placed into the SQL string. As you can see, the
PreparedStatement setString method is used in the example to set the substitution variable at position 1 equal to
the contents of the id variable. The positioning of the substitution variable is associated with the placement of the
question mark (?) within the SQL string. The first question mark within the string is assigned to the first position, the
second one is assigned to the second position, and so forth. If there were more than one substitution variable to be
assigned, there would be more than one call to the PreparedStatement setter methods, assigning each of the variables
until each one has been accounted for. PreparedStatements can accept substitution variables of many different data
types. For instance, if an Date value were being assigned to a substitution variable, a call to the setDate(position,
variable) method would be in order. Please see the online documentation or your IDE’s code completion for a
complete set of methods that can be used for assigning substitution variables using PreparedStatement objects.

Once all the variables have been assigned, the SQL string can be executed. The PreparedStatement object
contains an executeQuery method that is used to execute a SQL string that represents a query. The executeQuery
method returns a ResultSet object, which contains the results that have been fetched from the database for the
particular SQL query. Next, the ResultSet can be traversed to obtain the values retrieved from the database. There
are two different ways to retrieve the results from the ResultSet. Positional assignments can be used to retrieve the
results by calling the ResultSet object’s corresponding getter methods and passing the position of the column value,
or the String identifier of the column value that you want to obtain can be passed to the getter methods. If passing
the position, it is determined by the order in which the column names appear within the SQL string. In the example,
String-based column identifiers are used to obtain the values. As you can see from the example, passing the column
identifier to the appropriate getter method will retrieve the value. When the record values from the ResultSet are
obtained, they are stored into local variables. Once all the variables have been collected for a particular author, they
are stored into an Author object, which will eventually be returned from the method. Of course, if the substitution
variable is not set correctly or if there is an issue with the SQL string, an exception will be thrown. This would cause
the code that is contained within the catch block to be executed.

If you do not use the try-with-resources clause, as demonstrated in the solution, you should be sure to clean
up after using PreparedStatements by closing the statement when you are finished using it. It is a good practice to put
all the cleanup code within a finally block to be sure that it is executed even if an exception is thrown. For example,
a finally block that is used to clean up unused Statement and Connection objects may look like the following:

finally {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

 }
 if (conn != null) {
 try {
 conn.close();
 conn = null;
 } catch (SQLException ex) {

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

341

 ex.printStackTrace();
 }
 }
 return author;

}

You can see that the PreparedStatement object that was instantiated, stmt, is checked to see whether it is NULL.
If not, it is closed by calling the close method. Working through the code in the solution to this recipe, you can see
that similar code is used to process database insert, update, and delete statements. The only difference in those
cases is that the PreparedStatement executeUpdate method is called rather than the executeQuery method. The
executeUpdate method will return an int value representing the number of rows affected by the SQL statement.

The use of PreparedStatement objects is preferred over JDBC Statement objects. This is because they are more
secure and perform better. They can also make your code easier to follow and easier to maintain.

7-8. Utilizing Java Objects for Database Access
Problem
Your application works with an underlying database for storing and retrieving data. You would prefer to code your
business logic using Java objects, rather than working directly with JDBC and SQL for performing database activities.

Solution
Create a data access object (DAO) for each database table that will be used to perform the mundane JDBC and SQL
work. Within the DAO, create façade methods that accept Java objects to represent a single record of data for the
database table for which the DAO has been created. Use the Java objects to pass record data to and from the DAO,
while the DAO breaks the objects apart and utilizes the data fields within standard SQL statements.

The following class excerpts demonstrate a data access object for the AUTHOR database table, which is used for
storing book author data (a main method has been included merely for testing purposes within this DAO).

 ■ Note For the full source listing, please refer to the org.javaeerecipes.chapter07.dao.AuthorDAO class, located
in the JavaEERecipes NetBeans project. Repetitive portions of the sources (finally blocks) have been removed from
the following listing for brevity.

...
public class AuthorDAO implements java.io.Serializable {

 public AuthorDAO() {
 }

 public void queryBookAuthor() {
 String qry = "select id, first, last, bio from book_author";
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

342

 while (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 System.out.println(author_id + "\t" + first_name
 + " " + last_name + "\t" + bio);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

 public List<Author> obtainCompleteAuthorList() {
 String qry = "select id, first, last, bio from book_author";
 List<Author> authors = new ArrayList();
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
 while (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 Author author = new Author(author_id, first_name,
 last_name, bio);
 authors.add(author);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return authors;
 }

 /**
 * Queries the database for a particular author based upon ID and returns
 * the Author object if found.
 *
 * @param id
 * @return
 */
 public Author performFind(int id) {
 String qry = "SELECT ID, LAST, FIRST, BIO "
 + "FROM BOOK_AUTHOR "
 + "WHERE ID = ?";

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

343

 Author author = null;
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(qry)) {
 stmt.setInt(1, id);
 try (ResultSet rs = stmt.executeQuery();) {

 if (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");
 author = new Author(author_id,
 first_name,
 last_name,
 bio);
 }
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return author;

 }

 /**
 * Queries the database for a particular author based upon first and last
 * name and returns a list of Author objects if found.
 *
 * @param id
 * @return
 */
 public List<Author> performFind(String first, String last) {
 String qry = "SELECT ID, LAST, FIRST, BIO "
 + "FROM BOOK_AUTHOR "
 + "WHERE LAST = ? "
 + "AND FIRST = ?";

 List authorList = new ArrayList();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(qry)) {
 stmt.setString(1, last.toUpperCase());
 stmt.setString(2, first.toUpperCase());
 try (ResultSet rs = stmt.executeQuery();) {

 while (rs.next()) {
 int author_id = rs.getInt("ID");
 String first_name = rs.getString("FIRST");
 String last_name = rs.getString("LAST");
 String bio = rs.getString("BIO");

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

344

 Author author = new Author(author_id,
 first_name,
 last_name,
 bio);
 authorList.add(author);
 }
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return authorList;

 }

 /**
 * Do not use this method in production, instead make use of
 * PreparedStatements
 *
 * @param first
 * @param last
 * @param bio
 */
 private void performCreate(String first, String last, String bio) {
 String sql = "INSERT INTO BOOK_AUTHOR VALUES("
 + "BOOK_AUTHOR_S.NEXTVAL, ?, ?, ?)";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 stmt.setString(1, last.toUpperCase());
 stmt.setString(2, first.toUpperCase());
 stmt.setString(3, bio.toUpperCase());

 // Returns row-count or 0 if not successful
 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record created --");
 } else {
 System.out.println("!! Record NOT Created !!");
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 private void performUpdate(int id, String first, String last, String bio) {
 String sql = "UPDATE BOOK_AUTHOR "
 + "SET bio = ?,"
 + " last = ?,"
 + " first = ? "
 + "WHERE ID = ?";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

345

 stmt.setString(1, bio.toUpperCase());
 stmt.setString(2, last.toUpperCase());
 stmt.setString(3, first.toUpperCase());
 stmt.setInt(4, id);

 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record Updated --");

 } else {
 System.out.println("!! Record NOT Updated !!");
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 private void performDelete(int id) {
 String sql = "DELETE FROM BOOK_AUTHOR WHERE ID = ?";
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {
 stmt.setInt(1, id);

 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record Deleted --");
 } else {
 System.out.println("!! Record NOT Deleted!!");
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 /**
 * Returns the next ID in the BOOK_AUTHOR_S sequence
 *
 * @return
 */
 public int getNextId() {
 String qry = "select book_author_s.currval as ID from dual";

 int returnId = -1;
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

346

 while (rs.next()) {
 int author_id = rs.getInt("ID");
 returnId = author_id + 1;
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return returnId;

 }

 /**
 * Facade method for inserting Author objects into the BOOK_AUTHOR table
 *
 * @param author
 */
 public void insert(Author author) {
 performCreate(author.getFirst(),
 author.getLast(),
 author.getBio());
 }

 /**
 * Facade method for updating Author objects in the BOOK_AUTHOR table
 *
 * @param author
 */
 public void update(Author author) {
 this.performUpdate(author.getId(), author.getFirst(), author.getLast(), author.getBio());
 }

 /**
 * Facade method for deleting Author objects from the BOOK_AUTHOR table
 *
 * @param args
 */
 public void delete(Author author) {
 performDelete(author.getId());
 }

 public static void main(String[] args) {
 AuthorDAO authorDao = new AuthorDAO();
 authorDao.queryBookAuthor();
 authorDao.performCreate("Joe", "Blow", "N/A");

 // Find any author named Joe Blow and store in authList
 List<Author> authList = authorDao.performFind("Joe", "Blow");
 // Update the BIO for any author named Joe Blow

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

347

 for (Author auth : authList) {
 auth.setBio("New Bio");
 authorDao.update(auth);
 }
 authorDao.queryBookAuthor();

 // Delete any author named Joe Blow
 for (Author auth : authList) {
 authorDao.delete(auth);
 }
 }
}

How It Works
It can be advantageous for developers to separate different types of work into different classes within an application
code base. In the same way that you separate web views from Java code within a Java web application, you should also
separate JDBC from classes that are used to perform business logic. Have you ever had to maintain or debug a class
that was riddled with business logic and SQL statements? It can be a nightmare! Simplifying code by breaking it down
into smaller, more manageable pieces can oftentimes make maintenance and debugging much easier on a developer.
The idea of separating JDBC and database-specific code from other business logic within an application falls within
this same concept. Creating data access objects that are used solely for accessing the database can allow developers
to code against Java objects rather than database tables.

A DAO is not a standard Java enterprise object. There is no framework that is used for creating DAOs. A DAO
is simply a class that contains all of the JDBC code that is relevant for working with a single database table for your
application. If there are twenty database tables that are required for use, then there should be that same number of
DAOs. A DAO should contain minimally eight different methods. There should be at least one method for each of
the four possible database transactions that could take place, those being CREATE, READ, UPDATE, and DELETE. These
methods would contain specific JDBC code for connecting to the database, performing JDBC calls, and then closing
the connection. The DAO should also contain four façade methods that will be used directly by classes containing
the business logic. These methods should accept Java objects that correspond to the database table for which the
DAO was written, and they should break down the object into separate fields and pass them to the JDBC methods
to perform the actual database transaction.

In the solution to this recipe, the AuthorDAO class contains more than eight methods. This is because there
is more than one way to search for author records within the database, and therefore, there is more than one find
method within the class. A couple of different performFind methods are available, each with a different method
signature. These methods allow one to find an author based upon ID or by name. Once a matching author record
is found in the database, the values for that record are retrieved using standard JDBC methods, and they are stored
into the corresponding fields within a new Author object. In the end, either a list of Author objects or a single Author
object is returned to the caller. These finder methods contain public modifiers, so a managed bean can call them
directly to retrieve a list of Author objects or a single Author object.

The performCreate, performUpdate, and performDelete methods are private, and therefore they can be
accessed only by other methods within the same class. A managed bean should not work directly with these private
methods, nor will it be allowed to do so. Instead, there are public methods named insert, update, and delete, which
are to be used by the managed beans in order to access the private methods. The insert, update, and delete methods
accept Author objects, and they perform the task of breaking down the Author object by field and passing the
appropriate fields to their corresponding private methods in order to perform database activities. For instance,
a bean can call the AuthorDAO insert method, passing an Author object. The insert method then calls the
performCreate method, passing the fields of the Author object in their respective positions. Each of the CRUD
operations can be performed in the same manner, allowing the business logic to interact directly with Author
objects rather than deal with SQL.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

348

7-9. Displaying Database Results in JSF Views
Problem
You have written the JDBC to query a database and obtain a list of objects. Now you want to display that list of objects
within one of the views of your web application.

Solution
Populate a JSF dataTable component with database record results by storing the database results into a List of
objects and then setting the value of the dataTable to that List. In this example, the Acme Bookstore menu contains
a listing of books that are currently for sale, and when a book is clicked, then the user can see more detail. The book
titles that are displayed in the menu are read from the BOOK database table and then stored into Book objects. The
resulting menu will display the books using a dataTable component that is populated from a List of Book objects.
The corresponding List will be obtained via JDBC from the database using the BookDAO class.

The following view source is taken from the web/chapter07/layout/custom_template_search.xhtml file within
the sources. It is the source for the Acme Bookstore application template, and the menu of book listings that appears
on the left side of the application has been updated from previous recipes to utilize a dataTable component, rather
than static links. Each book record within the BOOK database table is then traversed using the dataTable, and its title
is displayed.

<?xml version='1.0' encoding='UTF-8' ?>
<!--
Book: Java EE7 Recipes
Author: J. Juneau
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:a4j="http://richfaces.org/a4j"
 xmlns:s="http://xmlns.jcp.org/jsf/composite/components/util">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet library="css" name="default.css"/>
 <h:outputStylesheet library="css" name="cssLayout.css"/>
 <h:outputStylesheet library="css" name="styles.css"/>

 <title>#{ch7AuthorController.storeName}</title>
 </h:head>

 <h:body>
 <!-- UNCOMMENT TO APPLY PHASE LISTENER TO ALL APPLICATION PAGES -->
 <!--f:phaseListener type="org.javaeerecipes.chapter06.BookstorePhaseListener" /-->
 <h:form>
 <a4j:poll id="poll" interval="1000" render="dayAndTime"/>
 </h:form>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/facelets
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/core
http://richfaces.org/a4j
http://xmlns.jcp.org/jsf/composite/components/util
http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

349

 <div id="top">
 <h2>#{ch7AuthorController.storeName}</h2>

 <h:panelGrid width="100%" columns="2">
 <s:search_ch7 id="searchAuthor"/>
 <h:outputText id="dayAndTime" value="#{ch7BookstoreController.dayAndTime}"/>
 </h:panelGrid>
 </div>
 <div>
 <div id="left">
 <h:form id="navForm">
 <h:dataTable id="books"
 value="#{ch7BookController.getCompleteBookList()}"
 var="book">
 <h:column>
 <h:commandLink value="#{book.title}"

action="#{ch7BookController.populateBookList(book.id)}" />
 </h:column>

 </h:dataTable>
 </h:form>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 <div id="bottom">
 Written by Josh Juneau, Apress Author
 </div>

 </h:body>

</html>

The dataTable component references a method named getCompleteBookList, located within the
ch7BookController managed bean. This method returns a List of Book objects that has been obtained from the
BookDAO class. The following excerpt is the code for the getCompleteBookList method:

List<Book> completeBookList;
...
public List<Book> getCompleteBookList() {
 System.out.println("Querying books");
 completeBookList = bookDao.queryBooks();
 System.out.println("Querying books");
 return completeBookList;
}

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

350

Following in suit with the concept of the DAO (see Recipe 7-8 for details), the managed bean method does not
perform any JDBC; that is handled by the bookDao.queryBooks method. The following excerpt is taken from the
org.javaeerecipes.chapter07.BookDAO class, and it is the code for the queryBooks method:

public List<Book> queryBooks() {
 String qry = "select id, title, image, description from book";

 List books = new ArrayList();
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
 while (rs.next()) {
 int book_id = rs.getInt("ID");
 String title = rs.getString("TITLE");
 String image = rs.getString("IMAGE");
 String description = rs.getString("DESCRIPTION");
 Book book = new Book(book_id,
 title,
 image,
 description);
 books.add(book);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return books;

}

When the site is rendered, the left menu will display a list of book titles, retrieved from the BOOK database table.
The application will resemble that of Figure 7-6.

Figure 7-6. dataTable component utilizing database records

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

351

How It Works
Perhaps the easiest way to display database table data to a web view is to load it into a JSF dataTable component.
The dataTable component is a great way to display rows of data at a time, and custom dataTable components can
even allow options such as sorting, column resizing, and inline editing. The key to displaying database records within
a dataTable is to obtain the data first; store it into a Collection, List, or DataModel; and then expose it to the view.

In the solution to this recipe, standard JDBC is used to query the database and retrieve the rows of data. Each row
of data is subsequently stored into an object so that the JSF managed beans can work with objects rather than invoke
JDBC calls. The JSF managed bean named BookController contains a method named getCompleteBookList that is
used to access the BookDAO and retrieve a List of Book objects. The List, in turn, is used to populate the dataTable
within the JSF view. There is no magic being performed in this example, although it should be noted that the
dataTable in this solution is displaying a List<Book> of data. This is not the only solution, and in fact it is sometimes
more suitable to utilize a DataModel or Collection of data rather than a List.

7-10. Navigating Data with Scrollable ResultSets
Problem
You have queried the database and obtained some results. You want to store those results in an object that will allow
you to traverse forward and backward through the results, updating values as needed.

Solution
Create a scrollable ResultSet object, and then you will have the ability to read the next, first, last, and previous
records. Using a scrollable ResultSet allows the results of a query to be fetched in any direction so that the data can
be retrieved as needed. The following method, taken from the org.javaeerecipes.chapter07.dao.ChapterDAO class,
demonstrates the creation of a scrollable ResultSet object:

private void queryBookChapters() {
 String sql = "SELECT ID, CHAPTER_NUMBER, TITLE, DESCRIPTION "
 + "FROM CHAPTER";

 int id = 0;
 int chapterNumber = 0;
 String title;

 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 ResultSet rs = stmt.executeQuery();) {

 rs.first();
 id = rs.getInt("ID");
 chapterNumber = rs.getInt("CHAPTER_NUMBER");
 title = rs.getString("TITLE");
 System.out.println(id + " - " + chapterNumber + ": " + title);

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

352

 rs.next();
 id = rs.getInt("ID");
 chapterNumber = rs.getInt("CHAPTER_NUMBER");
 title = rs.getString("TITLE");
 System.out.println(id + " - " + chapterNumber + ": " + title);

 rs.last();
 id = rs.getInt("ID");
 chapterNumber = rs.getInt("CHAPTER_NUMBER");
 title = rs.getString("TITLE");
 System.out.println(id + " - " + chapterNumber + ": " + title);

 rs.previous();
 id = rs.getInt("ID");
 chapterNumber = rs.getInt("CHAPTER_NUMBER");
 title = rs.getString("TITLE");
 System.out.println(id + " - " + chapterNumber + ": " + title);

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
}

Executing this method will result in the following output using the data that resides within the CHAPTER table
(your results will vary depending upon the contents of the table in your database):

1 – 1: Getting Started with Java 7
2 – 2: Strings
18 – 18: JavaFX in the Enterprise
17 – 17: HTML5 APIs

How It Works
Ordinary ResultSet objects allow results to be fetched in a forward direction. That is, an application can process a
default ResultSet object from the first record retrieved forward to the last. Sometimes an application requires more
functionality when it comes to traversing a ResultSet. For instance, let’s say you want to write an application that
allows for someone to display the first or last record that was retrieved or perhaps page forward or backward through
results. You could not do this very easily using a standard ResultSet. However, by creating a scrollable ResultSet,
you can easily move backward and forward through the results.

To create a scrollable ResultSet, you must first create an instance of a Statement or PreparedStatement that
has the ability to create a scrollable ResultSet. That is, when creating the Statement, you must pass the ResultSet
scroll type constant value to the Connection object’s createStatement method. Likewise, you must pass the scroll
type constant value to the Connection object’s prepareStatement method when using a PreparedStatement. Three
different scroll type constants can be used. Table 7-1 displays those three constants.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

353

You must also pass a ResultSet concurrency constant to advise whether the ResultSet is intended to be
updatable. The default is ResultSet.CONCUR_READ_ONLY, which means that the ResultSet is not updatable. The other
concurrency type is ResultSet.CONCUR_UPDATABLE, which signifies an updatable ResultSet object.

In the solution to this recipe, a PreparedStatement object is used, and the code to create a PreparedStatement
object that has the ability to generate a scrollable ResultSet looks like the following line:

pstmt = conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

Once the PreparedStatement has been created as such, a scrollable ResultSet is returned. You can traverse in
several different directions using a scrollable ResultSet by calling the ResultSet methods indicating the direction
you want to move or the placement that you want to be. The following line of code will retrieve the first record within
the ResultSet:

ResultSet rs = pstmt.executeQuery();
rs.first();

The solution to this recipe demonstrates a few different scroll directions. Specifically, you can see that the
ResultSet first, next, last, and previous methods are called in order to move to different positions within
the ResultSet. For a complete reference to the ResultSet object, please see the online documentation at
http://download.oracle.com/javase/7/docs/api/java/sql/ResultSet.html.

Scrollable ResultSet objects have a niche in application development. They are one of those niceties that
are there when you need them, but they are also something you might not need very often.

7-11. Calling PL/SQL Stored Procedures
Problem
Some logic that is required for your application is written as a stored procedure residing in the database. You require
the ability to invoke the stored procedure from within your application.

Solution
The following block of code shows the PL/SQL that is required to create the stored procedure that will be called by
Java. The functionality of this stored procedure is very minor; it simply accepts a value and assigns that value to an
OUT parameter so that the program can display it.

Table 7-1. ResultSet Scroll Type Constants

Constant Description

ResultSet.TYPE_FORWARD_ONLY Default type, allows forward movement only.

ResultSet.TYPE_SCROLL_INSENSITIVE Allows forward and backward movement. Not sensitive to ResultSet
updates.

ResultSet.TYPE_SCROLL_SENSITIVE Allows forward and backward movement. Sensitive to ResultSet updates.

http://download.oracle.com/javase/7/docs/api/java/sql/ResultSet.html
http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

354

create or replace procedure dummy_proc (text IN VARCHAR2,
msg OUT VARCHAR2) as
begin
-- Do something, in this case the IN parameter value is assigned to the OUT parameter
msg :=text;
end;

The CallableStatement in the following code executes this stored procedure that is contained within the
database, passing the necessary parameters. The results of the OUT parameter are then displayed to the user.

CallableStatement cs = null;
try {
cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");
cs.setString(1, "This is a test");
cs.registerOutParameter(2, Types.VARCHAR);
cs.executeQuery();
System.out.println(cs.getString(2));
} catch (SQLException ex){
ex.printStackTrace();
}

Running the example class for this recipe will display the following output, which is the same as the input.
This is because the DUMMY_PROC procedure simply assigns the contents of the IN parameter to the OUT parameter.

This is a test

How It Works
It is not uncommon for an application to use database stored procedures for logic that can be executed directly
within the database. To call a database stored procedure from Java, you must create a CallableStatement object,
rather than using a PreparedStatement. In the solution to this recipe, a CallableStatement is used to invoke a
stored procedure named DUMMY_PROC. The syntax for instantiating the CallableStatement is similar to that of using a
PreparedStatement. Use the Connection object’s prepareCall method, passing the call to the stored procedure. The
solution to this recipe demonstrates one technique for making a stored procedure call, that is, enclosing it in curly
braces: {}.

cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");

Once the CallableStatement has been instantiated, it can be used just like a PreparedStatement for setting the
values of parameters. However, if a parameter is registered within the database stored procedure as an OUT parameter,
you must call a special method, registerOutParameter, passing the parameter position and database type of the OUT
parameter that you want to register. In the solution to this recipe, the OUT parameter is in the second position, and it
has a VARCHAR type.

cs.registerOutParameter(2, Types.VARCHAR);

To execute the stored procedure, call the executeQuery method on the CallableStatement. Once this has been
done, you can see the value of the OUT parameter by making a call to the CallableStatement getXXX method that
corresponds to the data type:

System.out.println(cs.getString(2));

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

355

Calling a stored database function is essentially the same as calling a stored procedure. however, the syntax to
prepareCall() is slightly modified. To call a stored function, change the call within the curly braces to entail
a returned value using a ? character. For instance, suppose that a function named DUMMY_FUNC accepted one
parameter and returned a value. The following code would be used to make the call and return the value:

cs = conn.prepareCall("{? = call DUMMY_FUNC(?)}");
cs.registerOutParameter(1, Types.VARCHAR);
cs.setString(2, "This is a test");
cs.execute();

A call to cs.getString(1) would then retrieve the returned value.

7-12. Querying and Storing Large Objects
Problem
The application you are developing requires the storage of Strings of text that can include an unlimited number of
characters.

Solution
Because the size of the Strings that need to be stored is unlimited, it is best to use a character large object (CLOB) data
type to store the data. The code in the following example demonstrates how to load a CLOB into the database and how
to query it. The following excerpts are two methods from the org.javaeerecipes.chapter7.dao.ChapterDAO class.

Let’s take a look at how to read a CLOB column value from the database. The readClob method queries the
database, reading the CHAPTER_NUMBER, TITLE, and DESCRIPTION columns from the CHAPTER database table. The length
of the DESCRIPTION, which is the CLOB column, is printed to the command line along with the chapter number, title,
and description.

public void readClob() {
 String qry = "select chapter_number, title, description from chapter";
 Clob theClob = null;
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(qry)) {

 try (ResultSet rs = stmt.executeQuery();) {
 while (rs.next()) {
 int chapterNumber = rs.getInt(1);
 String title = rs.getString(2);
 theClob = rs.getClob(3);
 System.out.println("Clob length: " + theClob.length());
 System.out.println(chapterNumber + " - " + title + ": ");

a NOte reGarDING StOreD FUNCtIONS

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

356

 java.io.InputStream in =
 theClob.getAsciiStream();
 int i;
 while ((i = in.read()) > -1) {
 System.out.print((char) i);
 }
 System.out.println();
 }
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
}

The resulting output from running the method would look similar to the following, depending upon which
records are stored in the database:

Clob length: 19
1 - Getting Started with Java 7:
chapter description
Clob length: 19
2 - Strings:
chapter description
Clob length: 19
3 - Numbers and Dates:
chapter description
Clob length: 19
4 - Data Structures, Conditionals, and Iteration:
chapter description
Clob length: 19
5 - Input and Output:
chapter description
Clob length: 19
6 - Exceptions, Logging, and Debugging:
chapter description
Clob length: 19
7 - Object-Oriented Java:
chapter description
Clob length: 19
8 - Concurrency:
chapter description
Clob length: 19
9 - Debugging and Unit Testing:
chapter description
Clob length: 19
10 - Unicode, Internationalization, and Currency Codes:
chapter description

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

357

What about inserting CLOB values into the database? The next method accepts values for each field within a
record of the CHAPTER table, and it constructs the CLOB contents and lastly performs the insert.

private void performCreate(int chapterNumber, int bookId, String title, String description) {
 String sql = "INSERT INTO CHAPTER VALUES("
 + "CHAPTER_S.NEXTVAL, ?, ?, ?, ?)";

 Clob textClob = null;
 CreateConnection.loadProperties();
 try (Connection conn = CreateConnection.getConnection();
 PreparedStatement stmt = conn.prepareStatement(sql)) {

 textClob = conn.createClob();
 textClob.setString(1, description);

 stmt.setInt(1, chapterNumber);
 stmt.setString(2, title.toUpperCase());
 stmt.setClob(3, textClob);
 stmt.setInt(4, bookId);
 // Returns row-count or 0 if not successful
 int result = stmt.executeUpdate();
 if (result > 0) {
 System.out.println("-- Record created --");
 } else {
 System.out.println("!! Record NOT Created !!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

How It Works
If your application requires the storage of String values, you need to know how large those Strings might possibly
become. Most databases have an upper boundary when it comes to the storage size of VARCHAR fields. For instance,
Oracle Database has an upper boundary of 2,000 characters, and anything exceeding that length will be cut off. If you
have large amounts of text that need to be stored, use a CLOB field in the database.

A CLOB is handled a bit differently from a String within Java code. In fact, it is actually a bit odd to work with the
first couple of times you use it because you have to create a CLOB from a Connection.

Note ■ In reality, CLOBs and BLOBs (binary large objects) are not stored in the Oracle table where they are defined.
Instead, a large object (LOB) locator is stored in the table column. Oracle might place the CLOB in a separate file on the
database server. When Java creates the Clob object, it can be used to hold data for update to a specific LOB location in
the database or to retrieve the data from a specific LOB location within the database.

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

358

Let’s take a look at the performCreate method that is contained in the solution to this recipe. As you can see,
a Clob object is created using the Connection object’s createClob method. Once the Clob has been created, you set
its contents using the setString method by passing the position, which indicates where to place the String, and the
String of text itself:

textClob = conn.createClob();
textClob.setString(1, "This will be the recipe text in clob format");

Once you have created and populated the Clob, you simply pass it to the database using the PreparedStatement
setClob method. In the case of this example, the PreparedStatement performs a database insert into the CHAPTER
table by calling the executeUpdate method as usual. Querying a Clob is fairly straightforward as well. As you can see
in the readClob method that is contained within the solution to this recipe, a PreparedStatement query is set up, and
the results are retrieved into a ResultSet. The only difference between using a Clob and a String is that you must
load the Clob into a Clob type. Calling the Clob object’s getString method will pass you a funny-looking String of
text that denotes a Clob object. Therefore, calling the Clob object’s getAsciiStream method will return the actual data
that is stored in the Clob. This technique is used in the solution to this recipe.

Although Clobs are fairly easy to use, they take a couple of extra steps to prepare. It is best to plan your
applications accordingly and try to estimate whether the database fields you are using might need to be CLOBs because
of size restrictions. Proper planning will prevent you from going back and changing standard String-based code to
work with Clobs later.

7-13. Caching Data for Use When Disconnected
Problem
You want to work with data from a DBMS when you are in a disconnected state. That is, you are working on a device
that is not connected to the database, and you still want to have the ability to work with a set of data as though
you are connected. For instance, you are working with data on a small portable device, and you are away from the
office without a connection. You want the ability to query, insert, update, and delete data, even though there is no
connection available. Once a connection becomes available, you want to have your device synchronize any database
changes that have been made while disconnected.

Solution
Use a CachedRowSet object to store the data that you want to work with while offline. This will afford your application
the ability to work with data as though it were connected to a database. Once your connection is restored or you
connect to the database, synchronize the data that has been changed within the CachedRowSet with the database
repository. The following example class demonstrates the usage of a CachedRowSet. In this scenario, the main method
executes the example. Suppose there was no main method, though, and that another application on a portable device
invoked the methods of this class. Follow the code in the example and consider the possibility of working with the
results that are stored within the CachedRowSet while not connected to the database. For instance, suppose you began
some work in the office while connected to the network and are now outside of the office, where the network is spotty
and you cannot maintain a constant connection to the database.

package org.javaeerecipes.chapter07.recipe07_14;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

359

import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
import javax.sql.rowset.spi.SyncProviderException;
import org.javaeerecipes.chapter07.CreateConnection;

public class CachedRowSetExample {

 public static CachedRowSet crs = null;

 public static void main(String[] args) {
 boolean successFlag = false;
 CreateConnection.loadProperties();
 try(Connection conn = CreateConnection.getConnection();) {

 // Perform Scrollable Query
 queryWithRowSet(conn);
 updateData();
 syncWithDatabase(conn);
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 }
 }

 /**
 * Call this method to synchronize the data that has been used in the
 * CachedRowSet with the database
 */
 public static void syncWithDatabase(Connection conn) {
 try {
 crs.acceptChanges(conn);
 } catch (SyncProviderException ex) {
 // If there is a conflict while synchronizing, this exception
 // will be thrown.
 ex.printStackTrace();
 } finally {
 // Clean up resources by closing CachedRowSet
 if (crs != null) {
 try {
 crs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 }

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

360

 public static void queryWithRowSet(Connection conn) {
 RowSetFactory factory;
 try {
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();
 // Create a CachedRowSet object using the factory
 crs = factory.createCachedRowSet();
 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());
 // Populate a query that will obtain the data that will be used
 crs.setCommand("select id, chapter_number, title, description, book_id from chapter");
 // Set key columns
 int[] keys = {1};
 crs.setKeyColumns(keys);
 // Execute query
 crs.execute(conn);
 // You can now work with the object contents in a disconnected state
 while (crs.next()) {
 System.out.println(crs.getString(2) + ": " + crs.getString(3)
 + " - " + crs.getString(4));
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static boolean updateData() {
 boolean returnValue = false;
 try {

 // Move to the position before the first row in the result set
 crs.beforeFirst();
 // traverse result set
 while (crs.next()) {
 // If the chapter_number equals 1 then update
 if (crs.getInt("CHAPTER_NUMBER") == 1) {
 System.out.println("updating Chapter 1");
 crs.updateString("TITLE", "Subject to change");
 crs.updateRow();
 }
 }
 returnValue = true;
 // Move to the position before the first row in the result set
 crs.beforeFirst();
 // traverse result set to see changes
 while (crs.next()) {
 System.out.println(crs.getString(2) + ": " + crs.getString(3));
 }
 } catch (SQLException ex) {

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

361

 returnValue = false;
 ex.printStackTrace();
 }
 return returnValue;
 }
}

Running this example code will display output that looks similar to the following code, although the text might
vary depending upon the values in the database. Notice that the database record for Chapter 1 has a changed
description after the update of the CachedRowSet.

Successfully connected
1: Getting Started with Java 7 - javax.sql.rowset.serial.SerialClob@5e7afcba
2: Strings - javax.sql.rowset.serial.SerialClob@5c6647cb
3: Numbers and Dates - javax.sql.rowset.serial.SerialClob@3ef38fd1
4: Data Structures, Conditionals, and Iteration - javax.sql.rowset.serial.SerialClob@686702a0
5: Input and Output - javax.sql.rowset.serial.SerialClob@42dd8bec
6: Exceptions, Logging, and Debugging - javax.sql.rowset.serial.SerialClob@5f0d553f
7: Object-Oriented Java - javax.sql.rowset.serial.SerialClob@6457cbd9
8: Concurrency - javax.sql.rowset.serial.SerialClob@40084706
9: Debugging and Unit Testing - javax.sql.rowset.serial.SerialClob@5f6efbc1
10: Unicode, Internationalization, and Currency Codes - javax.sql.rowset.serial.SerialClob@6f526cd9
updating Chapter 1
1: Subject to change
2: Strings
3: Numbers and Dates
4: Data Structures, Conditionals, and Iteration
5: Input and Output
6: Exceptions, Logging, and Debugging
7: Object-Oriented Java
8: Concurrency
9: Debugging and Unit Testing
10: Unicode, Internationalization, and Currency Codes11-3: Handling SQL Exceptions - Using

SQLException

How It Works
It is not possible to remain connected to the Internet 100 percent of the time if you are working on a mobile device and
traveling. Nowadays there are devices that allow you to perform substantial work while you are on the go, even when
you are not connected directly to a database. In such cases, solutions like the CachedRowSet object can come into
play. The CachedRowSet is the same as a regular ResultSet object, except it does not have to maintain a connection
to a database in order to remain usable. You can query the database, obtain the results, and place them into a
CachedRowSet object; then you work with them while not connected to the database. If changes are made to the data
at any point, those changes can be synchronized with the database at a later time.

There are a couple of ways to create a CachedRowSet. The solution to this recipe uses a RowSetFactory to
instantiate a CachedRowSet because this is new to Java SE 7. However, you can also use the CachedRowSet default
constructor to create a new instance. Doing so would look like the following line of code:

CachedRowSet crs = new CachedRowSetImpl();

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

362

Once instantiated, you need to set up a connection to the database. There are also a couple of ways to do
this. Properties could be set for the connection that will be used, and the solution to this recipe demonstrates this
technique within comments. The following excerpt from the solution sets the connection properties using the
CachedRowSet object’s setUsername, setPassword, and setUrl methods. Each of them accepts a String value,
and in the example, that String is obtained from the CreateConnection class:

// Alternatively populate the CachedRowSet connection settings
// crs.setUsername(createConn.getUsername());
// crs.setPassword(createConn.getPassword());
// crs.setUrl(createConn.getJdbcUrl());

Another way to set up the connection is to wait until the query is executed and pass a Connection object to the
executeQuery method. This is the technique that is used in the solution to this recipe. But before we can execute the
query, it must be set using the setCommand method, which accepts a String value. In this case, the String is the SQL
query you need to execute:

crs.setCommand("select id, chapter_number, title, description, book_id from chapter");

Next, if a CachedRowSet will be used for updates, the primary key values should be noted using the setKeys
method. This method accepts an int array that includes the positional indices of the key columns. These keys are
used to identify unique columns. In this case, the first column listed in the query, ID, is the primary key.

int[] keys = {1};
crs.setKeyColumns(keys);

Finally, execute the query and populate the CachedRowSet using the execute method. As mentioned previously,
the execute method optionally accepts a Connection object, which allows the CachedRowSet to obtain a database
connection.

crs.execute(conn);

Once the query has been executed and the CachedRowSet has been populated, it can be used just like any other
ResultSet. You can use it to fetch records forward and backward or by specifying the absolute position of the row
you’d like to retrieve. The solution to this recipe demonstrates only a couple of these fetching methods, but the most
often used ones are listed in Table 7-2.

Table 7-2. CachedRowSet Fetching Methods

Method Description

first() Moves to the first row in the set

beforeFirst() Moves to the position before the first row in the set

afterLast Moves to the position after the last row in the set

next() Moves to the next position in the set

last() Moves to the last position in the set

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

363

It is possible to insert and update rows within a CachedRowSet. To insert rows, use the moveToInsertRow method
to move to a new row position. Then populate a row by using the various CachedRowSet methods (updateString,
updateInt, and so on) that correspond to the data type of the column you are populating within the row. Once
you have populated each of the required columns within the row, call the insertRow method, followed by the
moveToCurrentRow method. The following lines of code demonstrate inserting a record for Chapter 11 into the
CHAPTER table:

crs.moveToInsertRow();
crs.updateInt(1, sequenceValue); // obtain current sequence values with a prior query
crs.updateInt(2, 11);
crs.updateString(3, "Chapter 11 Title");
crs.updateSTring(4, "Description");
crs.updateInt(5, bookId);
crs.insertRow();
crs.moveToCurrentRow();

Updating rows is similar to using an updatable ResultSet. Simply update the values using the CachedRowSet
object’s methods (updateString, updateInt, and so on) that correspond to the data type of the column that you are
updating within the row. Once you have updated the column or columns within the row, call the updateRow method.
This technique is demonstrated in the solution to this recipe.

crs.updateString("TITLE", "Subject to change");
crs.updateRow();

To make any updates or inserts propagate to the database, the acceptChanges method must be called. This
method can accept an optional Connection argument in order to connect to the database. Once called, all changes
are flushed to the database. Unfortunately, because time might have elapsed since the data was last retrieved for the
CachedRowSet, there could be conflicts. If such a conflict arises, a SyncProviderException will be thrown. You can
catch these exceptions and handle the conflicts manually using a SyncResolver object. However, resolving conflicts is
out of the scope of this recipe, so for more information, please see the online documentation at

http://download.oracle.com/javase/tutorial/jdbc/basics/cachedrowset.html.
CachedRowSet objects provide great flexibility for working with data, especially when you are using a device that

is not always connected to the database. However, they can also be overkill in situations where you can simply use a
standard ResultSet or even a scrollable ResultSet.

7-14. Joining RowSet Objects When Not Connected
to the Data Source
Problem
You want to join two or more RowSets while not connected to a database. Perhaps your application is loaded on a
mobile device that is not connected to the database 100 percent of the time. In such a case, you are looking for a
solution that will allow you to join the results of two or more queries.

http://download.oracle.com/javase/tutorial/jdbc/basics/cachedrowset.html
http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

364

Solution
Use a JoinRowSet to take data from two relational database tables and join them. The data from each table that will
be joined should be fetched into a RowSet, and then the JoinRowSet can be used to join each of those RowSet objects
based upon related elements that are contained within them. For instance, suppose that there were two related tables
contained within a database. One of the tables stores a list of authors, and the other table contains a list of chapters
that are written by those authors. The two tables can be joined using SQL by the primary and foreign key relationship.

Note ■ A primary key is a unique identifier within each record of a database table, and a foreign key is a referential
constraint between two tables.

However, the application will not be connected to the database to make the JOIN query, so it must be done using
a JoinRowSet. The following class demonstrates one strategy that can be used in this scenario:

package org.javaeerecipes.chapter07.recipe07_15;

import com.sun.rowset.JoinRowSetImpl;
import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.JoinRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
import org.javaeerecipes.chapter07.CreateConnection;

public class JoinRowSetExample {

 public static CreateConnection createConn;
 public static CachedRowSet bookAuthors = null;
 public static CachedRowSet authorWork = null;
 public static JoinRowSet jrs = null;

 public static void main(String[] args) {
 boolean successFlag = false;
 CreateConnection.loadProperties();
 try(Connection conn = CreateConnection.getConnection();) {

 // Perform Scrollable Query
 queryBookAuthor(conn);
 queryAuthorWork(conn);
 joinRowQuery();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {

 if (bookAuthors != null) {
 try {
 bookAuthors.close();
 } catch (SQLException ex) {

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

365

 ex.printStackTrace();
 }
 }
 if (authorWork != null) {
 try {
 authorWork.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (jrs != null) {

 try {
 jrs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 }

 public static void queryBookAuthor(Connection conn) {
 RowSetFactory factory;
 try {
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();
 // Create a CachedRowSet object using the factory
 bookAuthors = factory.createCachedRowSet();
 // Alternatively opulate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());
 // Populate a query that will obtain the data that will be used
 bookAuthors.setCommand("SELECT ID, LAST, FIRST FROM BOOK_AUTHOR");
 bookAuthors.execute(conn);
 // You can now work with the object contents in a disconnected state
 while (bookAuthors.next()) {
 System.out.println(bookAuthors.getString(1) + ": " + bookAuthors.getString(2)
 + ", " + bookAuthors.getString(3));
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static void queryAuthorWork(Connection conn) {
 RowSetFactory factory;
 try {

 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

366

 // Create a CachedRowSet object using the factory
 authorWork = factory.createCachedRowSet();
 // Alternatively opulate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());
 // Populate a query that will obtain the data that will be used
 authorWork.setCommand(
 "SELECT ID, AUTHOR_ID, BOOK_ID FROM AUTHOR_WORK");
 authorWork.execute(conn);
 // You can now work with the object contents in a disconnected state
 while (authorWork.next()) {
 System.out.println(authorWork.getString(1) + ": " + authorWork.getInt(2)
 + " - " + authorWork.getInt(3));
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static void joinRowQuery() {
 try {
 // Create JoinRowSet
 jrs = new JoinRowSetImpl();
 // Add RowSet & Corresponding Keys
 jrs.addRowSet(bookAuthors, 1);
 jrs.addRowSet(authorWork, 2);
 // Traverse Results
 while (jrs.next()) {
 System.out.println(jrs.getString("BOOK_ID") + " - "
 + jrs.getString("FIRST") + " "
 + jrs.getString("LAST"));
 }

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
}

Running this class will result in output that resembles the following:

Successfully connected
21: JUNEAU, JOSH
22: DEA, CARL
23: BEATY, MARK
24: GUIME, FREDDY
25: JOHN, OCONNER
21: 21 - Java 7 Recipes
22: 23 - Java 7 Recipes
23: 22 - Java 7 Recipes

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

367

24: 24 - Java 7 Recipes
25: 21 - Java EE 7 Recipes
26: 22 - Java FX 2.0 - Introduction by Example
Java 7 Recipes - FREDDY GUIME
Java 7 Recipes - MARK BEATY
Java FX 2.0 - Introduction by Example - CARL DEA
Java 7 Recipes - CARL DEA
Java EE 7 Recipes - JOSH JUNEAU
Java 7 Recipes - JOSH JUNEAU

How It Works
A JoinRowSet is a combination of two or more populated RowSet objects. It can be used to join two RowSet objects
based upon key-value relationships, just as if it were a SQL JOIN query. To create a JoinRowSet, you must first
populate two or more RowSet objects with related data, and then they can each be added to the JoinRowSet to
create the combined result.

In the solution to this recipe, the two tables that are queried are named BOOK_AUTHOR and AUTHOR_WORK. The
BOOK_AUTHOR table contains a list of author names, while the AUTHOR_WORK table contains the list of chapters in a book
along with the AUTHOR_ID for the author who wrote the chapter. Following along with the main method, first the
BOOK_AUTHOR table is queried, and its results are fetched into a CachedRowSet using the queryBookAuthor method.
For more details regarding the use of CachedRowSet objects, please see Recipe 7-13.

Next, another CachedRowSet is populated with the results of querying the AUTHOR_WORK table, when the
queryAuthorWork method is called. At this point, there are two populated CacheRowSet objects, and they can now be
combined using a JoinRowSet. To do so, each table must contain one or more columns that relate to the other table.
In this case, the BOOK_AUTHOR.ID column relates to the AUTHOR_WORK.AUTHOR_ID column, so the RowSet objects must
be joined on those column results.

The final method that is invoked within the main method is joinRowQuery. This method is where all the
JoinRowSet work takes place. Note that the connection to the database can be null at this time. A new JoinRowSet
is created by instantiating a JoinRowSetImpl object.

jrs = new JoinRowSetImpl();

Note ■ You will receive a compile-time warning when using JoinRowSetImpl because it is an internal SUN proprietary
API. however, the Oracle version is OracleJoinRowSet, which is not as versatile.

Next, the two CachedRowSet objects are added to the newly created JoinRowSet by calling its addRowSet method.
The addRowSet method accepts a couple of arguments. The first is the name of the RowSet object that you want
to add to the JoinRowSet, and the second is an int value indicating the position within the CachedRowSet, which
contains the key value that will be used to implement the join. In the solution to this recipe, the first call to addRowSet
passes the bookAuthorsCachedRowSet, along with the number 1 because the element in the first position of the
bookAuthorsCachedRowSet corresponds to the BOOK_AUTHOR.ID column. The second call to addRowSet passes the
authorWorkCachedRowSet, along with the number 2 because the element in the second position of the authorWork
CachedRowSet corresponds to the AUTHOR_WORK.AUTHOR_ID column.

// Add RowSet & Corresponding Keys
jrs.addRowSet(bookAuthors, 1);
jrs.addRowSet(authorWork, 2);

http://www.it-ebooks.info/

ChAPTER 7 ■ JDBC

368

The JoinRowSet can now be used to fetch the results of the join, just as if it were a normal RowSet. When calling
the corresponding methods (getString, getInt, and so on) of the JoinRowSet, pass the name of the database column
corresponding to the data you want to store.

while(jrs.next()){
System.out.println(jrs.getInt("CHAPTER_NUMBER") + ": " +
jrs.getString("CHAPTER_TITLE") + " - " +
jrs.getString("FIRST") + " " +
jrs.getString("LAST"));
}

Although a JoinRowSet is not needed every day, it can be handy when performing work against two related sets
of data. This especially holds true if the application is not connected to a database all the time or if you are trying to
use as few Connection objects as possible.

http://www.it-ebooks.info/

369

Chapter 8

Object-Relational Mapping

For years, the Java Database Connectivity API (JDBC) was the standard for working with databases in a web or
desktop Java application. Over the years, techniques for obtaining access to data stores and working with data within
applications evolved, and many organizations began to develop their own strategies for working with data in a more
convenient way. Developers often find it easier to work with Java objects rather than Structured Query Language
(SQL) for relational data. Chapter 7 discusses some techniques that have been used in order to encapsulate SQL into
separate utility classes and abstract it from developers so that they can work with Java objects rather than the SQL.
Such strategies are known as object-relational mapping (ORM) strategies, and there are several well-known ORM
strategies available from a multitude of organizations today.

Among the most well-known ORM strategies are Hibernate (http://hibernate.org), Oracle’s TopLink
(www.oracle.com/technetwork/middleware/toplink/overview/index.html), and EclipseLink (http://wiki.eclipse.
org/EclipseLink/UserGuide/JPA/Basic_JPA_Development). In an effort to standardize the industry, the Java Persistence
API (JPA)has been deemed the strategy to use for moving forward with Java Enterprise 7. The JPA includes many features
that were first introduced in ORM strategies such as Hibernate and TopLink. In fact, some of the top representatives
from many of the different ORM projects have come together to formulate the Java Specification Requests (JSRs) for
Java EE 7 and beyond, providing Java enterprise developers with a standard, efficient, and highly productive way to
work with an underlying RDBMS from within Java applications. The JPA allows developers to choose from a variety
of Java persistence providers to utilize the configuration with which they are most comfortable, without the need to
include multiple third-party libraries or customizations within the application. The possible providers are as follows:

EclipseLink (JPA default)•	

Hibernate•	

TopLink Essentials•	

KODO•	

OpenJPA•	

Object-relational mapping is the process of mapping a Java object to a database table, such that each column of
the database table maps to a single field or property within the Java object. Java objects that are used to map against
database tables are referred to as entity objects, and this chapter will focus on the creation and use of entity objects.
Recipes will cover areas such as creating classes and performing standard database transactions. You will learn how
to configure a connection against a database, how to persist and retrieve objects without using SQL, and how to relate
objects to one another in a meaningful and productive manner.

Not only does ORM programming abstract the implementation details of working directly with a database
from a developer, but it also provides a standard mechanism for deploying applications on databases from multiple
vendors. The JPA takes care of translating code into SQL statements, so once an application is written using JPA, it can
be deployed using almost any underlying database. The Java EE 7 platform introduces JPA 2.1, which includes more
benefits such as support for multitenancy, support for stored procedures and vendor functions (Chapter 9), and more.

http://hibernate.org/
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development
http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

370

Note ■ the recipes within this chapter may change depending upon which jpa provider you choose. For instance,
providers may include a different set of metadata annotations to use. rather than list each annotation that is available for
use in each recipe, i will direct you to very good resources for learning about all of the possible annotations that can be
used along with each of the most widely used providers. While most of the annotations are common among all providers,
there are a handful of custom annotations for each.

eclipselink:
www.eclipse.org/eclipselink/api/2.2/org/eclipse/persistence/annotations/

package-summary.html

hibernate: http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/

toplink jpa (java persistence api):
www.oracle.com/technetwork/middleware/ias/

toplink-jpa-annotations-096251.html

Note ■ the sources for Chapter 8 reside within the org.javaeerecipes.chapter08 package. to run the
examples from Chapter 8, deploy the application to the application server, and then visit the Url
http://localhost:8080/JavaEERecipes/faces/chapter08/home.xhtml. it should be noted that the examples for
Chapter 8 cannot be run within a web application without the use of other technologies such as enterprise javabeans,
which will be covered in Chapter 9. For that reason, many of the examples in this chapter utilize stand-alone java classes
for testing purposes.

8-1. Creating an Entity
Problem
You want to create a Java object that can be mapped to a database table so that the class can be used for persistence
along with the Enterprise JavaBeans (EJB) technology, rather than using JDBC.

Solution
Create an entity class against a particular database table. Declare persistent fields or properties for each of the
columns in the underlying data store table and use annotations to map the fields to a given column. Provide getters
and setters for each of the persistent fields or properties that are declared within the entity so that other classes can
access the contents.

The following code is an entity class named BookAuthor08, which maps the BOOK_AUTHOR database table to a
standard Java object for use within the application:

package org.javaeerecipes.chapter08.entity;

import java.io.Serializable;
import java.math.BigDecimal;
import javax.persistence.*;

http://www.eclipse.org/eclipselink/api/2.2/org/eclipse/persistence/annotations/package-summary.html
http://www.eclipse.org/eclipselink/api/2.2/org/eclipse/persistence/annotations/package-summary.html
http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://localhost:8080/JavaEERecipes/faces/chapter08/home.xhtml
http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

371

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

/**
 * Chapter 8
 * Entity class for the BOOK_AUTHOR database table of the Acme Bookstore application
 * @author juneau
 */
@Entity
public class BookAuthor implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 30)
 @Column(name = "LAST")
 private String last;
 @Size(max = 30)
 @Column(name = "FIRST")
 private String first;
 @Lob
 @Column(name = "BIO")
 private String bio;

 public BookAuthor() {
 }

 public BookAuthor(BigDecimal id) {
 this.id = id;
 }

 public BigDecimal getId() {
 return id;
 }

 public void setId(BigDecimal id) {
 this.id = id;
 }

 public String getLast() {
 return last;
 }

 public void setLast(String last) {
 this.last = last;
 }

 public String getFirst() {
 return first;
 }

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

372

 public void setFirst(String first) {
 this.first = first;
 }

 public String getBio() {
 return bio;
 }

 public void setBio(String bio) {
 this.bio = bio;
 }

 @Override

 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0); return hash;
 }

 @Override
 public boolean equals(Object object) {
 // TODO: Warning - this method won't work in the case the id fields are not set
 if (!(object instanceof BookAuthor)) {
 return false;
 }
 BookAuthor other = (BookAuthor) object;
 if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "org.javaeerecipes.chapter08.entity.BookAuthor[id=" + id + "]";
 }

}

The entity itself cannot be used alone to access the database. Minimally, a persistence unit is required in order to
connect with a database and work with the entity classes. To learn more about creating a persistence unit, please refer
to Recipe 8-3.

How It Works
As an object-oriented developer, it sometimes makes more sense to work with objects that represent data, rather
than working with variables of data and writing SQL to work directly with the underlying data store. The concept of
mapping objects to database tables is better known as object-relational mapping. The Java Persistence API utilizes
ORM for storing and retrieving data from a database via the usage of object classes known as entity classes. An entity
class is a Java object that represents an underlying database table.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

373

Note ■ prior to ejb 3.0, XMl files were used instead of annotations in order to manage metadata for entity
classes. You can still use XMl descriptors to manage metadata today, but i will not cover how to do so in this text.
Most annotations can be used to selectively override default values within a class.

The entity class is usually named the same as the underlying database table, using camel-case lettering
(capitalized first letters for all words except for the first) to separate different words within the table name. For
instance, the BOOK_AUTHOR database table has a Java entity class named BookAuthor. The name of the entity can
differ from the name of the underlying database table. However, it is a standard practice to name the entity class the
same. In such cases where the name of the entity class has to differ from the database table, the @Table annotation
can be used to annotate the entity class, providing the name of the underlying data table. Every entity class must be
annotated as such by specifying the javax.persistence.Entity annotation. In the example, the BookAuthor entity
class specifies only those annotations that are required. If the entity were to be named differently than the database
table, the @Table annotation could be utilized as follows:

...
@Entity
@Table(name = "BOOK_AUTHOR")
...

An entity class must have a public or protected no-argument constructor. It is always a good idea to make an
entity class Serializable by implementing the java.io.Serializable interface because doing so ensures that the
entity class may be passed by value. All entity classes must contain private or protected instance variables for each
of the columns within the underlying database table, as well as variables for each relationship that the entity may
have with other entities. (To read more about entity relationships, please take a look at Recipes 8-6, 8-7, and 8-8.)
All database tables that will be mapped to Java entity classes must contain a primary key field, and the corresponding
instance variable within the entity class that maps to the primary key column must be annotated with @Id. Each of
the instance variables that maps to a database column can be annotated with @Column, specifying the name of the
underlying database column. However, if no @Column annotation is specified, the name of the variable should match
the database column name exactly, using camel-case lettering for any separate words within the column name. To
signify that a particular database column and its mapped instance variable cannot contain a NULL value, the variable
can be annotated with @Basic(optional=false), as shown in the example. You may also specify the @NotNull
annotation on any variable that should not contain a NULL value.

Another annotation of note that is used within the example for this recipe includes @Size, which is used to
specify the maximum size for a String variable. The size value should correspond to the database column size for
the corresponding column. In addition, the @Lob annotation can be used to signify that the underlying database data
type is a large object. There are other annotations that can be used to further customize an entity class; please see the
link within the introduction of this book for the JPA provider that you are using in order to learn more about all of the
annotations that can be used. Table 8-1 summarizes the most commonly used annotations when creating an entity
class. Those annotations are covered within the solution to this recipe.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

374

As mentioned in the solution for this recipe, an entity class cannot be used by itself. It is part of an overall solution
for working with an underlying data source. Entity classes make it easy to map Java objects to database tables. They
should be used in tandem with Enterprise JavaBeans (EJB) classes (Chapter 9) or stand-alone with a persistence unit
(Recipe 8-3) to perform database operations. A full Java EE solution utilizing the JSF framework also uses JSF managed
beans to work directly with EJBs, which, in turn, conduct work via the entity classes.

Note ■ You may be wondering why the hashCode() and equals() methods are overridden in the example. the
equals() method is present in every java object, and it is used to determine object identity. every entity class needs to
contain an implementation of these methods in order to differentiate objects from one another. it is very possible for two
entity objects to point to the same row in a database table. the equals() method can determine whether two entities
both point to the same row. Moreover, all java objects that are equal to one another should contain the same hashCode.
in entity classes, it is important to override these methods to determine whether objects represent the same database
table row.

8-2. Mapping Data Types
Problem
You are interested in mapping database table columns with entity class fields, but you are unsure which data types to
declare for the fields within the class.

Note ■ transient fields or properties cannot contain mapping annotations. a transient field or property is not persisted
to the database.

Solution
Map database table column data types with their equivalent data type in the Java language specification when
declaring instance variables for the columns within an entity class. The Java EE container will convert the database
value accordingly so long as the database column data type matches up to a Java data type that will contain the

Table 8-1. Commonly Used Annotations for Creating Entity Classes

Annotation Description

@Entity Designates a plain old Java object (POJO) class as an entity so that it can be used with JPA services

@Table (optional) Specifies the name of the primary table associated with an entity

@Id Designates one or more persistent fields or properties of the entity’s primary key

@Basic Configures the fetch type to LAZY

@Column Associates a persistent attribute with a different name if the column name is awkward, incompatible
with a preexisting data model, or invalid as a column name in your database

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

375

specified column’s value. To demonstrate data type mapping, an entity class will be written for the Acme Bookstore’s
CONTACT database table. The CONTACT table has the following description:

SQL> desc contact
 Name Type
 ------------------------------- ----------------------------
 ID NOT NULL NUMBER
 FIRST VARCHAR2(50)
 LAST VARCHAR2(50)
 EMAIL VARCHAR2(150)
 PASSWORD VARCHAR2(30)
 DESCRIPTION CLOB
 OCCUPATION VARCHAR2(150)
 RECEIVENOTIFICATIONS VARCHAR2(1)
 GENDER VARCHAR2(1)

The corresponding entity class is named Contact, and its class listing, shown next, demonstrates how to match
each database column type to an appropriate Java data type:

package org.javaeerecipes.chapter08.entity;
...

@Entity
@Table(name = "CONTACT")
public class Contact implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 50)
 @Column(name = "FIRST")
 private String first;
 @Size(max = 50)
 @Column(name = "LAST")
 private String last;
 @Size(max = 150)
 @Column(name = "EMAIL")
 private String email;
 @Size(max = 30)
 @Column(name = "PASSWORD")
 private String password;
 @Lob
 @Column(name = "DESCRIPTION")
 private String description;
 @Size(max = 150)
 @Column(name = "OCCUPATION")
 private String occupation;
 @Size(max = 1)
 @Column(name = "RECEIVENOTIFICATIONS")

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

376

 private String receivenotifications;
 @Size(max = 1)
 @Column(name = "GENDER")
 private String gender;

 public Contact() {
 }

 ...

// getters and setters

 ...

 @Override
 public int hashCode() {
 ...
 }

 @Override
 public boolean equals(Object object) {
 ...
 }

 @Override
 public String toString() {
 return "org.javaeerecipes.chapter08.entity.Contact[id=" + id + "]";
 }

}

It is important to specify the correct mapping data types because errors can occur down the line if not done
correctly. Such is often the case with numerical data types.

How It Works
To create a Java class that will be used to represent a database table, you must map each of the table’s columns to
a class instance variable. In doing so, the variable must be assigned a data type that corresponds to that database
column’s data type. In some cases, more than one Java data type will map to a single database column’s data type.
In other cases, however, a database column’s data type must match up to a specific Java data type. Table 8-2 lists the
different Java data types and their associated Oracle database data type. If you are using another database for your
work, please see the documentation for the database to rectify any discrepancies between the data types from those
used by Oracle.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

377

Mapping data types correctly is a very important step in the creation of an entity class because an incorrect
mapping can result in incorrect precision for numerical values and so forth. Utilizing the correct data types when
mapping entity classes to the database table may vary depending upon database vendor, but Table 8-2 should be
easily translated from Oracle data types to the data types for the RDBMS of your choice.

8-3. Creating a Persistence Unit
Problem
You want to use an entity class to perform database transactions.

Solution
Create a persistence unit based upon a database connection, and then use the persistence unit to perform
transactions with a given entity class. A persistence unit can use a database connection pool configured within
an application server, or it can utilize a local JDBC configuration in order to obtain a database connection. In this
example, I will demonstrate the use of the local JDBC configuration since the example will be run as a stand-alone
application, rather than being deployed to an application server.

The following persistence unit is configured to create local JDBC connections, rather than using JPA for
connections. However, you can learn more about configuring a persistence unit to work with database connection

Table 8-2. Oracle Database and Java Data Type Mapping

Oracle Data Type Java Data Types

BINARY_INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN,
SIGNTYPE, INT, INTEGER

int

CHAR, CHARACTER, VARCHAR2
LONG, STRING, VARCHAR

java.lang.String

RAW, LONG RAW byte[]

DEC, DECIMAL, NUMBER java.math.BigDecimal

DOUBLE PRECISION, FLOAT double

SMALLINT int

REAL float

DATE java.sql.Timestamp
java.sql.Date

TIMESTAMP (or derivative) java.sql.Timestamp

BOOLEAN boolean

CLOB java.sql.Clob

BLOB java.sql.Blob

VARRAY java.sql.Array

REF CURSOR java.sql.ResultSet

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

378

pools that are configured within an application server in the “How it Works” section of this recipe. The following code
is from a file named persistence.xml, which is located in the src\conf directory for Chapter 8:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="JavaEERecipesLOCAL" transaction-type="RESOURCE_LOCAL">
 <class>org.javaeerecipes.chapter08.entity.BookAuthor</class>
 <properties>
 <property name="javax.persistence.jdbc.user" value="username"/>
 <property name="javax.persistence.jdbc.password" value="password"/>
 <property name="javax.persistence.jdbc.url" value="jdbc:oracle:thin:@hostname:1521:dbname"/>
 </properties>
 </persistence-unit>
</persistence>

How It Works
To work with a database, an application needs to have the ability to connect. Usually a database connection pertains
to a single user name/password within a database. The persistence context XML file is where the connection
information for the Java Persistence API resides. A persistence context can contain configuration for more than one
connection to the database. Each connection configuration is referred to as a persistence unit, and each has a unique
name that is used to identify the connection from within the application classes. The persistence.xml file can be
packaged as part of a web archive (WAR) or enterprise archive (EAR) file, or it can be packed into a JAR file, which is,
in turn, packaged with a WAR or EAR. If packaged with an EAR file, it should reside within the META-INF directory.
If using a WAR file, the persistence.xml file should be packaged within the WEB-INF/classes/META-INF directory.
Lastly, if packaging into a JAR file, the JAR should reside within the WEB-INF/lib directory of a WAR or the library
directory of an EAR.

As mentioned previously, each persistence.xml file can contain more than one database configuration, or
persistence unit. Each persistence unit contains the type of JPA provider that will be used for the connection, the
transaction type (JTA or RESOURCE_LOCAL), classes to be used for persistence (entity classes), and database connection
specifics. In this section, I will break down the persistence unit that is configured for the recipe solution and describe
each piece.

At the root of each persistence unit is the persistence-unit element, which contains the name and transaction-type
attributes. Each persistence unit has a name; in the case of the example, it is JavaEERecipesLOCAL, and this name is used
to obtain a reference to the persistence unit from within application code. The transaction-type attribute of a persistence
unit indicates whether Java Transaction API entity managers will be created (for use within an application server) or
Resource-Local entity managers will be created (for use with stand-alone applications).

Next in the example you will see a series of classes listed within separate class elements. Within the
persistence-unit element, zero or more classes can be identified for use with the persistence unit. These classes are
the entity classes that will be mapped to the underlying database table. If using the RESOURCE_LOCAL transaction type,
each entity class must be listed within the persistence unit. If using JTA (deployed to an application server within a
WAR or EAR file), then the container takes care of identifying the entity classes and they do not need to be listed in the
persistence unit. If an entity class is not identified in the persistence unit and the transaction type is RESOURCE_LOCAL,
then that entity class will not be available for use within the application.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

379

Note ■ a persistence unit may also include an <exclude-unlisted-classes> element, which should be set to a bool-
ean value. this element is used to indicate whether classes must be listed using a <class> element within the persis-
tence unit when using jta, and it is FALSE by default. it may make sense to set this element to TRUE if two or more data
sources are being used within an application and only specified entity classes should be used for each.

The properties element should contain subelements that identify the connection to the database. Specifically, the
user, password, and database URL are identified within subproperties of the properties element. For RESOURCE_LOCAL
persistence units, the following points are true:

The property •	 javax.persistence.jdbc.username should be used to identify the database
user name for the connection.

The property •	 javax.persistence.jdbc.password should identify the database user password
for the connection.

The property •	 javax.persistence.jdbc.url should identify the database URL for the
connection.

The properties for a Java Transaction API connection are different. In fact, for JTA, there can be no properties
specified. Instead, an element named jta-data-source can be used to specify a JNDI name of a database connection
that has been configured within the application server for use. For example, let’s say the database connection is
configured as jdbc/OracleConnection within the application server. Furthermore, let’s assume you are deploying a
WAR file to the GlassFish application server, and you will use JTA instead of RESOURCE_LOCAL. If this is the case, the
persistence unit may look like the following:

<persistence-unit name="JavaEERecipesJTA" transaction-type="JTA">
 <jta-data-source>jdbc/OracleConnection</jta-data-source>
 <properties/>
</persistence-unit>

Note ■ there are no classes listed in the jta example because the application server automatically identifies the entity
classes for use with the persistence unit. however, there are circumstances for which it may be useful to list classes, as
mentioned in the preceding note.

To use a persistence unit, an EntityManagerFactory object must first be obtained. An EntityManagerFactory object
can be obtained by calling the Persistence.createEntityManagerFactory method and passing the string-based name
of the persistence unit for which you want to obtain a connection. Once an EntityManagerFactory object has been
obtained, an EntityManager object can be created and used to begin a database transaction. Obtaining a connection via a
persistence unit would look similar to the following:

...
EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesLOCAL");
EntityManager em = emf.createEntityManager();
try {
 EntityTransaction entr = em.getTransaction();
 entr.begin();
 Query query = em.createNamedQuery("BookAuthor.findAll");
...

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

380

Note ■ the preceding example uses createNamedQuery in order to substitute a named query rather than writing the
jpQl inline. For more information, please see recipe 8-9.

The persistence.xml configuration file contains the database connection information that will be utilized by
an application to work with database(s). If you are working with JPA, you will become very familiar with creating a
persistence unit, whether using local JDBC connections or an application server connection pool.

8-4. Using Database Sequences to Create Primary Key Values
Problem
Your database contains sequences that are used to generate primary key values for your database table records. Your
application needs to use the database sequences in order to assign primary key values when creating and persisting objects.

Solution
Annotate an entity class’s primary key field with a SequenceGenerator and then associate it with an entity Generator
in order to utilize a database sequence for populating a database table column value. In the following example, the
BookAuthor entity has been updated to utilize the BOOK_AUTHOR_S database sequence for creating primary key values.
As such, the id field has been annotated accordingly.

package org.javaeerecipes.chapter08.entity;

import java.io.Serializable;
import java.math.BigDecimal;
import javax.persistence.*;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

/**
 * Chapter 8
 * Entity class for the BOOK_AUTHOR database table of the Acme Bookstore application
 * @author juneau
 */
@Entity
@Table(name = "BOOK_AUTHOR")
public class BookAuthor implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="book_author_s_generator",sequenceName="book_author_s",
initialValue=1, allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="book_author_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

381

 @Size(max = 30)
 @Column(name = "LAST")
 private String last;
 @Size(max = 30)
 @Column(name = "FIRST")
 private String first;
 @Lob
 @Column(name = "BIO")
 private String bio;

 public BookAuthor() {
 }

} ...

When a new BookAuthor object is persisted to the database, the next sequence value for BOOK_AUTHOR_S will be
used as the primary key value for the new database record. The class org.javaeerecipes.chapter08.recipe08_04.
SequenceTest.java can be run to test the sequence-generated primary key once the persistence context has been
configured for the local JDBC database connection (see Recipe 8-3 for details). The following excerpt is taken from the
SequenceTest class, and it demonstrates how to add a new BookAuthor object to the database:

...
EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesLOCAL");
EntityManager em = emf.createEntityManager();
try {
 EntityTransaction entr = em.getTransaction();
 entr.begin();
 BookAuthor author = new BookAuthor();
 author.setFirst("JOE");
 author.setLast("TESTER");
 author.setBio("An author test account.");
 boolean successful = false;
 try {
 em.persist(author);
 successful = true;
 } finally {
 if (successful){
 entr.commit();
 } else {
 entr.rollback();
 }
 }
 Query query = em.createNamedQuery("BookAuthor.findAll");
 List authorList = query.getResultList();
 Iterator authorIterator = authorList.iterator();
 while (authorIterator.hasNext()) {
 author = (BookAuthor) authorIterator.next();
 System.out.print("Name:" + author.getFirst() + " " + author.getLast());
 System.out.println();
 }

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

382

} catch (Exception ex){
 System.err.println(ex);
} finally {
 em.close();
}
...

Note ■ this example demonstrates the use of transactions. transactions allow for an entire sequence of processes to
be performed at once. if a failure occurs in one of the processes, then all processes in the transaction fail, and changes to
the database are rolled back. Otherwise, if all processes in the transaction complete successfully, then they are committed
to the database. transactions are very useful in situations where multiple database events depend upon one another.

How It Works
In many cases, it makes sense to generate primary key values for database table records via a database sequence.
Utilizing JPA allows you to do so by incorporating the use of the @SequenceGenerator and @GeneratedValue
annotations into an entity class. Every database table that is mapped to an entity class must have a primary key value,
and using database sequences to obtain those values makes sense for many reasons. For instance, in some cases an
application administrator will need to know what the next number, current number, or last number used for a primary
key value might be. By using a database sequence, gathering information regarding the next, current, or last numbers
is just a query away.

The @SequenceGenerator annotation should be placed directly before the declaration of the primary key field or
property within the entity class, or it can be placed before the entity class declaration. Note that other annotations may
be placed between the @SequenceGenerator annotation and the actual variable declaration. The @SequenceGenerator
annotation accepts values regarding the database sequence that is to be used for primary key generation. More
specifically, the annotation accepts the following attributes:

•	 name (required): The name of the generator (this name can be an arbitrary value)

•	 sequenceName (optional): The name of the database sequence from which to obtain the
primary key value

•	 initialValue (optional): The initial value of the sequence object

•	 allocationSize (optional): The amount of increment when allocating numbers from the
sequence

The @GeneratedValue annotation provides for the specification of the primary key generation strategy for the
entity. Similarly to the @SequenceGenerator attribute, it can be placed before the declaration of the primary key field
or property within the entity class, or it can be placed before the entity class declaration. It is used to specify the means
for which the entity class primary key will be generated. The three options are as follows:

The entity class will generate its own primary key value before inserting a new record.•	

The entity class will use a database sequence for the key generation.•	

The entity class will generate keys via some other means.•	

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

383

The attributes that can be specified for the @GeneratedValue annotation are as follows:

•	 generator (optional): This is the name of the primary key generator to use as specified by the
@SequenceGenerator annotation. This must match the name attribute that was supplied for
the @SequenceGenerator annotation unless using an @TableGenerator. This defaults to the ID
generator supplied by the persistence provider.

•	 strategy (optional): This is the primary key generation strategy that will be used by the
persistence provider to generate the primary key for the annotated field or entity class. This
defaults to AUTO if not supplied.

The strategy attribute of @GeneratedValue can accept four different javax.persistence.GenerationType
Enum values.

•	 AUTO: Indicates that the persistence provider should choose an appropriate strategy for a
particular database

•	 IDENTITY: Indicates that the persistence provider must assign primary keys for the entity using
the database identity column

•	 SEQUENCE: Indicates that the persistence provider must assign primary keys for the entity using
the database sequence column

•	 TABLE: Indicates that the persistence provider must assign primary keys for the entity using an
underlying database table to ensure unique values are provided

In the example for this recipe, the BOOK_AUTHOR_S database sequence is specified for the sequenceName attribute
of the @SequenceGenerator annotation, and the name of the generator is book_author_s_generator. Note that the
@GeneratedValue name attribute matches that of the @SequenceGenerator annotation; this is very important! Once
specified, the entity class will automatically obtain the next value from the database sequence when a new object is
persisted.

Note ■ there are other options for generating key values, such as AUTO, IDENTITY, and TABLE. those strategies
can be valid in different situations. For more information on using other options, please refer to the online java ee 7
documentation at http://docs.oracle.com/javaee/7/tutorial/doc/.

8-5. Generating Primary Keys with More Than One Attribute
Problem
A particular database table does not contain a primary key, and you need to join the values of two or more of the table
columns in order to create a primary key for each record.

Solution #1
Create a composite primary key by developing an embedded composite primary key class and denoting the
composite key field within an entity using the javax.persistence.EmbeddedId and javax.persistence.IdClass
annotations. Consider the AUTHOR_WORK database table that is used for the Acme Bookstore application. Suppose that
the AUTHOR_WORK database table did not contain a primary key column. It would be possible to generate a primary key

http://docs.oracle.com/javaee/7/tutorial/doc/
http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

384

for each record based upon its BOOK_ID and AUTHOR_ID columns. The following entity class is that for the AuthorWork
entity. Instead of using the ID column as a primary key, it uses both the bookId and authorId columns together to
formulate a composite primary key.

package org.javaeerecipes.chapter08.entity;

import java.io.Serializable;
import java.math.BigDecimal;
import java.math.BigInteger;
import javax.persistence.*;
import javax.validation.constraints.NotNull;
import org.javaeerecipes.chapter08.entity.key.AuthorWorkPKEmbedded;
import org.javaeerecipes.chapter08.entity.key.AuthorWorkPKNonEmbedded;

/**
 * Chapter 8 - Example of Embedded Primary Key
 * @author juneau
 */

@Entity
@Table(name = "AUTHOR_WORK")
// (Named queries are covered in Recipe 8-9)
@NamedQueries({
 @NamedQuery(name = "AuthorWork.findAll", query = "SELECT a FROM AuthorWork a")})
public class AuthorWorkEmbedded implements Serializable {
 private static final long serialVersionUID = 1L;

 // You can use an embedded ID in-place of a standard Id if a table
 // contains more than one column to compose a primary key. Comment
 // out along with the getters and setters to use a non-embeddable primary key.
 @EmbeddedId
 private AuthorWorkPKEmbedded embeddedId;

 public AuthorWorkEmbedded() {
 }

 public AuthorWorkEmbedded(BigInteger bookId, BigInteger authorId) {
 this.embeddedId = new AuthorWorkPKEmbedded(bookId, authorId);
 }

 /**
 * @return the embeddedId
 */
 public AuthorWorkPKEmbedded getEmbeddedId() {
 return embeddedId;
 }

 /**
 * @param embeddedId the embeddedId to set
 */

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

385

 public void setEmbeddedId(AuthorWorkPKEmbedded embeddedId) {
 this.embeddedId = embeddedId;
 }

}

To utilize an embedded primary key, you must create a class that contains the logic for mapping the primary key
ID to the columns that are used to compose it. For this example, the AuthorWorkPKEmbedded class serves this purpose,
which is shown here:

package org.javaeerecipes.chapter08.entity.key;

import java.io.Serializable;
import java.math.BigInteger;
import javax.persistence.Embeddable;

/**
 * Embeddable Primary Key class for AuthorWork
 *
 * @author juneau
 */
@Embeddable
public class AuthorWorkPKEmbedded implements Serializable {

 private BigInteger bookId;
 private BigInteger authorId;

 public AuthorWorkPKEmbedded() {
 }

 public AuthorWorkPKEmbedded(BigInteger bookId, BigInteger authorId){
 this.bookId = bookId;
 this.authorId = authorId;
 }

 /**
 * @return the bookId
 */
 public BigInteger getBookId() {
 return bookId;
 }

 /**
 * @param bookId the bookId to set
 */
 public void setBookId(BigInteger bookId) {
 this.bookId = bookId;
 }

 /**
 * @return the authorId
 */

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

386

 public BigInteger getAuthorId() {
 return authorId;
 }

 /**
 * @param authorId the authorId to set
 */
 public void setAuthorId(BigInteger authorId) {
 this.authorId = authorId;
 }

 public int hashCode() {
 return bookId.hashCode() + authorId.hashCode();
 }

 public boolean equals(Object obj) {
 if (obj == this) {
 return true;
 }
 if (!(obj instanceof AuthorWorkPKEmbedded)) {
 return false;
 }
 if (obj == null) {
 return false;
 }
 AuthorWorkPKEmbedded pk = (AuthorWorkPKEmbedded) obj;
 return (((bookId == ((AuthorWorkPKEmbedded) obj).getBookId()))
 && ((authorId == ((AuthorWorkPKEmbedded) obj).getAuthorId())));
 }
}

Note ■ although the preceding example is not an entity class, it is persisted. even if the members are not designated
as @Basic, they are still persisted.

both the hashCode() and equals() methods must be present in composite key classes.

Solution #2
Create a composite primary key by developing a nonembedded composite primary key class, and denote two or
more of the columns within the entity class with the @Id annotation. Also, if using a nonembedded primary key class,
the entity class must be designated as such by utilizing the @IdClass annotation and specifying the nonembedded
primary key class.

Consider the AUTHOR_WORK database table that is used for the Acme Bookstore application. Suppose that the
AUTHOR_WORK database table did not contain a primary key column. It would be possible to generate a primary key
for each record based upon its BOOK_ID and AUTHOR_ID columns. The following entity class is that for the AuthorWork

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

387

entity. Instead of using the ID column as a primary key, it uses both the bookId and authorId columns together to
formulate a composite primary key:

package org.javaeerecipes.chapter08.entity;

import java.io.Serializable;
import java.math.BigDecimal;
import java.math.BigInteger;
import javax.persistence.*;
import javax.validation.constraints.NotNull;
import org.javaeerecipes.chapter08.entity.key.AuthorWorkPKEmbedded;
import org.javaeerecipes.chapter08.entity.key.AuthorWorkPKNonEmbedded;

/**
 * Chapter 8 - Example of Non-Embedded Primary Key
 * @author juneau
 */

@IdClass(AuthorWorkPKNonEmbedded.class)
@Entity
@Table(name = "AUTHOR_WORK_LEGACY")
@NamedQueries({
 @NamedQuery(name = "AuthorWork.findAll", query = "SELECT a FROM AuthorWork a")})
public class AuthorWorkNonEmbedded implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @Column(name = "BOOK_ID")
 private BigInteger bookId;

 @Id
 @Column(name= "AUTHOR_ID")
 private BigInteger authorId;

 public AuthorWorkNonEmbedded() {
 }

 public AuthorWorkNonEmbedded(BigInteger bookId, BigInteger authorId) {
 this.bookId = bookId;
 this.authorId = authorId;
 }

 public BigInteger getBookId() {
 return bookId;
 }

 public void setBookId(BigInteger bookId) {
 this.bookId = bookId;
 }

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

388

 public BigInteger getAuthorId() {
 return authorId;
 }

 public void setAuthorId(BigInteger authorId) {
 this.authorId = authorId;
 }

}

The associated nonembeddable primary key class is named AuthorWorkPKNonEmbedded. The code for this class is
as follows:

package org.javaeerecipes.chapter08.entity.key;
import java.io.Serializable;
import java.math.BigInteger;

/**
 * Non-Embeddable Primary Key class for AuthorWork
 *
 * @author juneau
 */
public class AuthorWorkPKNonEmbedded implements Serializable {

 private BigInteger bookId;
 private BigInteger authorId;

 public AuthorWorkPKNonEmbedded() {
 }

 /**
 * @return the bookId
 */
 public BigInteger getBookId() {
 return bookId;
 }

 /**
 * @param bookId the bookId to set
 */
 public void setBookId(BigInteger bookId) {
 this.bookId = bookId;
 }

 /**
 * @return the authorId
 */
 public BigInteger getAuthorId() {
 return authorId;
 }

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

389

 /**
 * @param authorId the authorId to set
 */
 public void setAuthorId(BigInteger authorId) {
 this.authorId = authorId;
 }

 public int hashCode() {
 return bookId.hashCode() + authorId.hashCode();
 }

 public boolean equals(Object obj) {
 if (obj == this) {
 return true;
 }
 if (!(obj instanceof AuthorWorkPKEmbedded)) {
 return false;
 }
 if (obj == null) {
 return false;
 }
 AuthorWorkPKEmbedded pk = (AuthorWorkPKEmbedded) obj;
 return (((bookId == ((AuthorWorkPKEmbedded) obj).getBookId()))
 && ((authorId == ((AuthorWorkPKEmbedded) obj).getAuthorId())));
 }
}

Note ■ although the AuthorWorkPKNonEmbedded class is not an entity, its members are persisted.

How It Works
There can be situations in which a database table may not contain a single primary key value to uniquely identify
each row. Oftentimes this can be the case when working with legacy databases. In the Java Persistence API, all entity
classes must contain a primary key that can be used to uniquely identify an object. To get around this obstacle when
working with tables that do not contain a single primary key value, a composite primary key can be used to uniquely
identify an object. A composite primary key is composed of two or more fields or properties within an entity class that
can be combined together to create a unique identifier. Think in terms of performing a database query and attempting
to return a record that matches only certain criteria. In such a case, you often need to include multiple relationships
within the SQL WHERE clause. Creating a composite primary key within an entity class is basically the same concept in
that you are telling JPA to use all of the fields or properties designated within the composite key in order to uniquely
identify an object.

There are a couple of different techniques, embeddable and nonembeddable, that can be used to develop a
composite primary key. The two techniques are similar in that they each require the creation of a separate class to
compose the primary key, but they differ by the way in which the primary key is denoted within the entity class. In
fact, the separate primary key class in both techniques can be created almost identically, except that an embeddable
primary key class must be annotated using @Embeddable, as demonstrated in Solution #1 to this recipe. An entity with
an embeddable primary key class should contain only a single primary key, and the data type for the primary key
should be the same as the embeddable primary key class. That is, the primary key class should be declared within the

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

390

entity using a private modifier, along with all of the other persistent properties and fields, and it should be annotated
with @Id to indicate that it is the primary key. The following excerpt from Solution #1 shows how this is done:

@EmbeddedId
private AuthorWorkPKEmbedded embeddedId;

The entity class containing an embedded primary key should contain a constructor that accepts one parameter
for each of the persistent fields or properties used for the primary key. Within the constructor, a new instance of the
embeddable primary key class should then be instantiated using the passed-in arguments. The entity class using an
embeddable primary key should contain accessor methods for the primary key field or property. However, unlike
most entity classes, the hashCode() and equals() methods are not present because they are within the primary key
class instead. Now that I’ve gone over the logistics of an entity class that uses an embeddable primary key, let’s take a
look at the embeddable primary key class itself to see how it works.

A primary key class that is used for creating an embeddable primary key should contain declarations for each
of the persistent fields or properties that will be used to compose the primary key for the associated entity class. Of
course, these fields or properties should be made private, and there should be corresponding getters and setters for
accessing the fields. The embeddable primary key class should be annotated with @Embeddable. It can contain two
constructors: one that accepts no arguments and another optional constructor that accepts an argument for each
of the persistent fields or properties that compose the primary key. Remember how the entity class that uses the
embeddable primary key contains no hashCode() method? That is because it resides within the primary key class,
and it simply adds together the hashCodes for each of the fields used to compose the primary key, and it returns
the sum. The most important piece of the primary key class is the equals() method since it is used to determine
whether an object or database record uniquely matches the associated primary key. The equals() method should
accept an argument of type Object, which will be the object that is being compared against the current primary key
object. The object is then compared to determine whether it is equal to the current primary key object, and if so, a
true is returned. If not equal, then the object is compared to determine whether it is the same type of class as the
embeddable primary key class, and a false is returned if it is not the same type. A false is also returned if the object
is NULL. Finally, if a Boolean has not yet been returned based upon the conditionals that have been tested, then the
object is casted into the same type of object as the primary key class, and each of its fields or properties is compared
against those in the current primary key class. If equal, then a true is returned; if not equal, then a false is returned.
The following lines of code demonstrate the equals() method:

public boolean equals(Object obj) {
 if (obj == this) {
 return true;
 }
 if (!(obj instanceof AuthorWorkPKEmbedded)) {
 return false;
 }
 if (obj == null) {
 return false;
 }
 AuthorWorkPKEmbedded pk = (AuthorWorkPKEmbedded) obj;
 return (((bookId == ((AuthorWorkPKEmbedded) obj).getBookId()))
 && ((authorId == ((AuthorWorkPKEmbedded) obj).getAuthorId())));
}

Solution #2 covers the use of a nonembedded primary key. The generation of a nonembeddable primary key is
sometimes preferred over the use of an embedded primary key because some believe that the resulting entity class is
easier to read. The overall construction of a nonembeddable primary key is basically the same, although there are a
few subtle differences. For instance, when developing the primary key class for the nonembeddable primary key, there

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

391

is no @Embeddable annotation on the class. The second difference that you may notice from the code in Solution #2 is
that there is only one constructor used. Of course, an optional second constructor can still be created, accepting an
argument for each of the persistent fields or properties that are used to compose the primary key.

Most differences take place within the entity class itself. To use a nonembedded composite primary key, the
entity class must be annotated with @IdClass, naming the class that is used to construct the composite primary key.
In the case of Solution #2, the @IdClass is as follows:

@IdClass(AuthorWorkPKNonEmbedded.class)

The second big difference in an entity class that uses a nonembeddable composite primary key is that instead
of declaring one persistent field or property as an ID using the @Id annotation, the two or more fields or properties
that are used to compose the primary key for the entity are declared directly within the entity, and each of them is
annotated accordingly. The rest of the implementation is the same as an entity that uses an embedded composite
primary key.

Which type of composite key you decide to use is completely a personal preference. Many people use a
nonembeddable primary key to make the entity class easier to follow, in that it resembles a standard entity class more
closely than an entity class using an embeddable composite primary key. In the end, both will produce the same
result and allow entity classes to be created for those database tables that do not contain a single primary key field.

8-6. Defining a One-to-One Relationship
Problem
A database table that is used by your application contains data that has a one-to-one reference with data records
from another table. As such, you want to create a one-to-one relationship between two entity objects within your
application.

Solution
Create an association between the two tables that have a one-to-one relationship by declaring each of the entity
classes themselves as persistent fields or properties within each other using an “owned” relationship, and annotate
those fields with @OneToOne. For instance, let’s say that each record within the AUTHOR database table can be associated
to a record in another table named AUTHOR_DETAIL, and vice versa. The AUTHOR_DETAIL table contains contact
information for the author, so, in fact, these tables have a one-to-one relationship. To correlate them to each other
from within the entity classes, specify the @OneToOne annotation on the field or property that is associated with the
corresponding entity class. To have the ability to obtain the full author information from either table, a bidirectional
one-to-one relationship needs to be created.

Note ■ a one-to-one mapping could be unidirectional or bidirectional. a unidirectional mapping contains only
an @OneToOne annotation on the owning entity for the corresponding entity class.

Note ■ a relationship is referred to as owned if one entity contains a reference to another entity object referring to the
entity itself. On the other hand, a relationship where an entity refers to another entity by primary key value is known as an
unowned relationship.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

392

In this solution, the Author entity would contain a @OneToOne reference for the AuthorDetail entity to create a
bidirectional one-to-one mapping. In this code excerpt from the Author entity, the Author entity is the owning entity:

...
@Entity
@Table(name = "AUTHOR")

public class Author implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="author_s_generator",sequenceName="author_s", initialValue=1,
allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="author_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 30)
 @Column(name = "LAST")
 private String last;
 @Size(max = 30)
 @Column(name = "FIRST")
 private String first;
 @Lob
 @Column(name = "BIO")
 private String bio;
 @OneToOne
 private AuthorDetail authorId;

 public Author() {
 }

...

An excerpt for the entity class for the AUTHOR_DETAIL table is shown next. Of course, it has the name of
AuthorDetail, and it contains a reference to the Author entity class.

...
@Entity
@Table(name = "AUTHOR_DETAIL")

public class AuthorDetail implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="author_detail_s_generator",sequenceName="author__detail_s",
initialValue=1, allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="author_detail_s_generator")
 @NotNull

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

393

 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 200)
 @Column(name = "ADDRESS1")
 private String address1;
 @Size(max = 200)
 @Column(name = "ADDRESS2")
 private String address2;
 @Size(max = 250)
 @Column(name = "CITY")
 private String city;
 @Size(max = 2)
 @Column(name = "STATE")
 private String state;
 @Size(max = 10)
 @Column(name = "ZIP")
 private String zip;
 @Column(name = "START_DATE")
 @Temporal(TemporalType.DATE)
 private Date startDate;
 @Lob
 @Column(name = "NOTES")
 private String notes;
 @OneToOne(optional=false, mappedBy="authorDetail")
 private Author authorId;

 public AuthorDetail() {
 }
...

How It Works
It is not uncommon in the world of relational databases to have one table that depends upon another table. In the
case where a record from a table has a one-to-one correspondence to a record from another table, an entity class for
one table should be configured to have a one-to-one correspondence with the entity class for the other table. Working
with objects is a bit different from working with database records, but the concept is basically the same. Within the
database, a unique identifier is used to correlate one table to another. For instance, in the case of this example, the
AUTHOR_DETAIL table contains a field named AUTHOR_ID, and it must contain an ID from the AUTHOR database table in
order to map the two records together. Owned entity relationships work a bit differently in that the entity object itself
is used to map to another entity, rather than an ID number.

When creating a bidirectional one-to-one relationship between entity classes, each entity class must declare
the other entity class as a persistent field or property and then designate the type of relationship using the @OneToOne
annotation. The @OneToOne annotation is used to designate a one-to-one relationship between the entities.
The @OneToOne annotation contains the following optional attributes:

•	 cascade: The operations (e.g., delete) that must be cascaded to the target of the association.
Default: no operations.

•	 fetch: Whether the association should be lazily loaded or must be eagerly fetched. Default:
EAGER.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

394

•	 optional: Whether the association is optional. For instance, can the entity be persisted
without the association? Default: true.

•	 mappedBy: The field that owns the relationship. Default: "".

In the solution to this recipe, the AuthorDetail entity specifies the @OneToOne annotation prior to the declaration
of the Author field specifying the mappedBy and optional attributes. The mappedBy attribute is set to authorDetail,
because this will be the mapping field, and the optional attribute is set to false. On the other hand, the Author entity
specifies the @OneToOne annotation prior to the declaration of the AuthorDetail field, and there are no attributes
specified. In practice, when these entities are used, a bidirectional mapping will be enforced. This means that an
AuthorDetail object cannot exist without a corresponding Author object.

8-7. Defining One-to-Many and Many-to-One Relationships
Problem
You want to associate two entity classes to each other, such that one entity object can contain a reference to many of
the other entity objects.

Solution
Define a relationship between the two entities by specifying the @OneToMany annotation on a field or property
referencing the other entity class within the owning object and by specifying the @ManyToOne annotation on a field or
property referencing the owning object within the nonowning entity. For instance, let’s say you allow an Author object
to contain many different addresses, or AuthorDetail objects. In fact, an Author can contain as many addresses as
needed. That being the case, there would be one Author object for every AuthorDetail object. Likewise, there could
be many AuthorDetail objects for every Author object.

In the following code listings, I will demonstrate the one-to-many relationship between the Author and
AuthorDetail objects. First, let’s take a look at the Author object, which is otherwise referred to as the owning object.
This entity class can contain a reference to many different AuthorDetail objects.

@Entity
@Table(name = "AUTHOR")

public class Author implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="author_s_generator",sequenceName="author_s", initialValue=1,
allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="author_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 30)
 @Column(name = "LAST")
 private String last;
 @Size(max = 30)
 @Column(name = "FIRST")

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

395

 private String first;
 @Lob
 @Column(name = "BIO")
 private String bio;
 @OneToMany(mappedBy="author
 private Set<AuthorDetail> authorDetail;

 public Author() {
 }
...

Next, I’ll show the nonowning object, also known as the AuthorDetail class. There may be many AuthorDetail
objects within a single Author object.

public class AuthorDetail implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="author_detail_s_generator",sequenceName="author__detail_s",
initialValue=1, allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="author_detail_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 200)
 @Column(name = "ADDRESS1")
 private String address1;
 @Size(max = 200)
 @Column(name = "ADDRESS2")
 private String address2;
 @Size(max = 250)
 @Column(name = "CITY")
 private String city;
 @Size(max = 2)
 @Column(name = "STATE")
 private String state;
 @Size(max = 10)
 @Column(name = "ZIP")
 private String zip;
 @Column(name = "START_DATE")
 @Temporal(TemporalType.DATE)
 private Date startDate;
 @Lob
 @Column(name = "NOTES")
 private String notes;
 @ManyToOne
 private Author author;

 public AuthorDetail() {
 }
...

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

396

Note ■ to run the org.javaeerecipes.chapter08.recipe08_07.RecipeTest.java example, please be sure to add both
entity classes for this example to the persistence.xml context file. also, be sure to comment out any other entities within the
persistence context by the same name, because there may not be duplicate entities within a single persistence context.

How It Works
The most common database table relationship is the one-to-many or many-to-one relationship, whereby a record
in one table may relate to one or more records within another table. Consider the scenario from the solution to this
recipe, being that a single AUTHOR table record may have one or more address records within the AUTHOR_DETAIL table.
Defining this relationship within the entity classes is easy, because annotations are used to indicate the relationship.

When creating a one-to-many relationship within an entity, the entity that corresponds to the table where one
record can correlate to many in another table is known as the owning entity. The entity that correlates to the database
table that may contain more than one record relating to the single record in the other table is known as the nonowning
entity. The owning entity class should declare a persistent field or property for the entity to which it relates and may
have more than one related object. Since there may be more than one nonowning entity object, the owning entity
must declare a Set of the nonowning objects and indicate as such using the @OneToMany annotation. The mappedBy
attribute of the @OneToMany annotation should be set to the name, which is used within the nonowning entity for
declaration of the many-to-one relationship. In the example, the Author entity contains a one-to-many relationship
with AuthorDetail. Therefore, the Author entity declares the relationship as follows:

@OneToMany(mappedBy="author")
private Set<AuthorDetail> authorDetail;

On the other end of the spectrum is the many-to-one relationship. In the example, more than one AuthorDetail
object may relate to one Author object. Therefore, a many-to-one relationship should be defined within the
AuthorDetail entity class for the Author entity. This is done by declaring a persistent field or property for the Author
entity and signifying the relationship with the @ManyToOne annotation as follows:

@ManyToOne
private Author author;

When working with the entities, a Set containing one or more AuthorDetail objects should be persisted within a
single Author object. The following code demonstrates how to use a one-to-many relationship within an application:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesLOCAL");
EntityManager em = emf.createEntityManager();
try {
 em.getTransaction().begin();
 Author author = new Author();
 author.setFirst("JOE");
 author.setLast("TESTER");
 author.setBio("An author test account.");
 Set detailSet = new HashSet<AuthorDetail>();
 AuthorDetail detail = new AuthorDetail();
 detail.setAddress1("Address 1");
 detail.setAddress2("Address 2");
 detail.setCity("NoMansLand");
 detail.setState("ZZ");
 detail.setZip("12345");

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

397

 detail.setNotes("This is a test detail");
 detailSet.add(detail);
 AuthorDetail detail2 = new AuthorDetail();
 detail.setAddress1("Address 1");
 detail.setAddress2("Address 2");
 detail.setCity("NoMansLand");
 detail.setState("ZZ");
 detail.setZip("12345");
 detail.setNotes("This is a test detail");
 detailSet.add(detail2);
 em.persist(author);
 em.getTransaction().commit();
} catch (Exception ex){
 System.err.println(ex);
} finally{
 if (em != null){
 em.close();
 }
}

The @OneToMany annotation contains the following optional attributes:

•	 cascade: The operations (e.g., delete) that must be cascaded to the target of the association.
Default: no operations.

•	 fetch: Whether the association should be lazily loaded or must be eagerly fetched. Default:
EAGER.

•	 orphanRemoval: Whether to apply the remove operation to entities that have been removed
from the relationship and to cascade the remove operation to those entities. Default: false.

•	 targetedEntity: The entity class that is the target of the association. Default: "".

The @ManyToMany annotation contains the following optional attributes:

•	 cascade: The operations (e.g., delete) that must be cascaded to the target of the association.
Default: no operations.

•	 fetch: Whether the association should be lazily loaded or must be eagerly fetched. Default:
EAGER.

•	 targetedEntity: The entity class that is the target of the association. Default: "".

8-8. Defining a Many-to-Many Relationship
Problem
There are tables within your database that contain cases where multiple records from one table may correlate to
multiple records from another. You want to define entity relationships for these tables.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

398

Solution
Create a many-to-many association between the two tables by declaring a field or property within each entity class
for a Set objects corresponding to the entity class on the opposite end. Utilize the @ManyToMany annotation to specify
the relationship, and mark the owning side of the relationship by specifying a mappedBy attribute on the nonowning
entity’s @ManyToMany annotation. Therefore, the class org.javaeerecipes.chapter08.recipe08_08.Book is the entity
class corresponding to the BOOK database table, and it will contain the @ManyToMany annotation on a declaration for
a Set of BookAuthor objects. A mapping table in the database will be “automagically” populated with the associated
mappings from the entities. Shown next is the partial code for the Book class, the “owning” entity:

@Entity
@Table(name = "BOOK")
@NamedQueries({
 @NamedQuery(name = "Book.findAll", query = "SELECT b FROM Book b"),
})
public class Book implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="book_s_generator",sequenceName="book_s", initialValue=1,
allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="book_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 150)
 @Column(name = "TITLE")
 private String title;
 @Size(max = 500)
 @Column(name = "IMAGE")
 private String image;
 @Lob
 @Column(name = "DESCRIPTION")
 private String description;
 @ManyToMany
 private Set<BookAuthorMany> bookAuthors;

The BookAuthor class is mapped to the Book class using the same concept. The only difference is that it contains a
mappedBy attribute within the @ManyToOne annotation to signify the owning table relation.

@Entity
@Table(name = "BOOK_AUTHOR")
@NamedQueries({
 @NamedQuery(name = "BookAuthor.findAll", query = "SELECT b FROM BookAuthor b"),
 @NamedQuery(name = "BookAuthor.findById", query = "SELECT b FROM BookAuthor b WHERE b.id = :id"),
 @NamedQuery(name = "BookAuthor.findByLast", query = "SELECT b FROM BookAuthor b WHERE
b.last = :last"),
 @NamedQuery(name = "BookAuthor.findByFirst", query = "SELECT b FROM BookAuthor b WHERE
b.first = :first")})

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

399

public class BookAuthorMany implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="book_author_s_generator",sequenceName="book_author_s",
initialValue=1, allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="book_author_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 30)
 @Column(name = "LAST")
 private String last;
 @Size(max = 30)
 @Column(name = "FIRST")
 private String first;
 @Lob
 @Column(name = "BIO")
 private String bio;
 @ManyToMany(mappedBy="bookAuthors")
 private Set<Book> books;

Note ■ the BookAuthor entity has been named BookAuthorMany so that there are no conflicting entity classes within
the javaeerecipes sources. no entities with duplicate names can exist within the same application.

How It Works
It is possible for databases to contain a many-to-many relationship between two or more different tables. In the case
of the example in this recipe, a book may have many authors, and an author may have written many books. On that
note, both the database table containing books and the database table containing authors are associated to each
other via a many-to-many relationship. It is easy to associate entity classes to one another to form a many-to-many
relationship via the use of the @ManyToMany annotation. The @ManyToMany annotation is used to signify that an entity
contains a many-to-many association with the annotated persistent field or property.

To create the association, each entity within the many-to-many relationship should declare a field or property for
a Set of the associated entity objects. In the case of the example, the Book entity should declare a Set of BookAuthor
objects, and vice versa. That declaration is then annotated using @ManyToMany, using any attributes that are deemed
necessary to the association. The @ManyToMany annotation contains the following optional attributes:

•	 targetEntity: The entity class that is the target of the association. This is necessary only if the
collection-valued relationship property is not defined using Java generics.

•	 cascade: The operations that must be cascaded to the target of the association.

•	 fetch: Whether the association should be lazily loaded or eagerly fetched. The default is
javax.persistence.FetchType.LAZY.

•	 mappedBy: The field that owns the relationship. This is not required if the relationship is
unidirectional.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

400

As such, when creating an object of either type, one may persist a Set of the associated entity objects using the
persistent field or property that has been annotated with @ManyToMany. The following example demonstrates how to create
an entity with a many-to-many relationship (excerpt from the org.javaeerecipes.chapter08.recipe08_08.RecipeTest
class):

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesLOCAL");
EntityManager em = emf.createEntityManager();
try {
 em.getTransaction().begin();
 Book book1 = new Book();
 book1.setTitle("New Book 1");
 Book book2 = new Book();
 book2.setTitle("New Book 2");

 BookAuthorMany author1 = new BookAuthorMany();
 author1.setFirst("JOE");
 author1.setLast("AUTHOR 1");

 BookAuthorMany author2 = new BookAuthorMany();
 author2.setFirst("MARYJJOE");
 author2.setLast("AUTHOR 2");

 Set authors = new HashSet();
 authors.add(author1);
 authors.add(author2);

 Set books = new HashSet();
 books.add(book1);
 books.add(book2);

 book1.setBookAuthor(authors);
 author1.setBooks(books);

 em.persist(author1);
 em.persist(book1);
 em.getTransaction().commit();
} catch (Exception ex){
 System.err.println(ex);
} finally{
 if (em != null){
 em.close();
 }
}

When an entity object that contains a many-to-many association with another is created, a record is populated
into a mapping table that contains the primary key from each associated table record. You can optionally specify
the name of the mapping table by using the annotation @JoinTable and specifying the name of the table. If no
@JoinTable annotation is used, then the mapping table name is derived from a concatenation of the two entity
classes, beginning with the owning entity. Therefore, in the example, the mapping table name is BOOK_BOOK_AUTHOR,
and it contains a field for storing the primary key from the associated records of each table.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

401

8-9. Querying with Named Queries
Problem
Rather than issue SQL or Java Persistence Query Language (JPQL) queries to a persistence unit, you want to define
one or more predefined queries for an entity class that can be called by name.

Solution
Specify a single named query or a group of named queries for an entity class. Provide a name for each of the named
queries so that they can be called by that name. In this example, a group of named queries will be added to the
BookAuthor entity class, and then a separate class may be used to query the entity class using the named queries.
We will create an EntityManagerFactory and database connection based upon a persistence.xml file that obtains a
local JDBC connection to the database. The following excerpt is taken from the BookAuthor entity, and it demonstrates
how to associate named queries with an entity class:

@Entity
@Table(name = "BOOK_AUTHOR")
@NamedQueries({
 @NamedQuery(name = "BookAuthor.findAll", query = "SELECT b FROM BookAuthor b"),
 @NamedQuery(name = "BookAuthor.findById", query = "SELECT b FROM BookAuthor b WHERE b.id = :id"),
 @NamedQuery(name = "BookAuthor.findByLast", query = "SELECT b FROM BookAuthor b WHERE
b.last = :last"),
 @NamedQuery(name = "BookAuthor.findByFirst", query = "SELECT b FROM BookAuthor b WHERE
b.first = :first")})
public class BookAuthor implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="book_author_s_generator",sequenceName="book_author_s", initialValue=1,
allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="book_author_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 30)
 @Column(name = "LAST")
 private String last;
 @Size(max = 30)
 @Column(name = "FIRST")
 private String first;
 @Lob
 @Column(name = "BIO")
 private String bio;

 public BookAuthor() {
 }
...

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

402

In another class, the named queries that have been registered with the BookAuthor entity can be called by name.
The following excerpt from the org.javaeerecipes.chapter8.recipe8_09.RecipeTest class demonstrates how to
invoke a named query:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesLOCAL");
EntityManager em = emf.createEntityManager();
try {
 EntityTransaction entr = em.getTransaction();
 entr.begin();
 Query query = em.createNamedQuery("BookAuthor.findAll");
 List authorList = query.getResultList();
 Iterator authorIterator = authorList.iterator();
 while (authorIterator.hasNext()) {
 BookAuthor author = (BookAuthor) authorIterator.next();
 System.out.print("Name:" + author.getFirst() + " " + author.getLast());
 System.out.println();
 }
} catch (Exception ex){
 System.err.println(ex);
}

How It Works
A named query is contained within an entity class, and it consists of a static JPQL query that is specified via metadata.
A given entity class can include zero or more named queries or a group of named queries. A named query is
expressed via the @NamedQuery annotation, which contains two attributes: name and query. The name attribute of the
@NamedQuery annotation is used to specify a String-based name for the query, and the query attribute is used to
specify the static JPQL query against the entity. If an entity contains a group of named query annotations, they can be
grouped together using the @NamedQueries annotation. One or more @NamedQuery annotation specifications can exist
within a single @NamedQueries annotation, separated by commas.

The JPQL within a named query can contain zero or more bind variables that can have values substituted when
the named query is called. To utilize a named query, you must first obtain an active connection to the database. To learn
more about obtaining an active connection to the database via an EntityManagerFactory, please refer to Recipe 8-3.
Once an active database connection has been obtained, the EntityManager object’s createNamedQuery method can
be called, passing the string-based name of the named query that you would like to issue. A Query object is returned
from the call, and it can be used to obtain the query results.

In the example for this recipe, you can see that the BookAuthor entity is queried, returning a List of BookAuthor
objects. A simple while loop is used to iterate through the List of objects, printing the first and last names from each
BookAuthor object to System.out (the server log).

8-10. Performing Validation on Entity Fields
Problem
You want to specify validation rules for specific fields within an entity class to prevent invalid data from being inserted
into the database.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

403

Solution
Include bean validation constraints within an entity class. Bean validation constraints are annotations that are applied
to persistent fields or properties of an entity class. The bean validation mechanism provides a number of annotations
that can be placed on fields or properties in order to validate data in different ways. In the following example, the
AuthorWork entity has been enhanced to include bean validation for the id, address1, state, and zip fields.

...
@Entity
@Table(name = "AUTHOR_DETAIL")

public class AuthorDetailBeanValidation implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @SequenceGenerator(name="author_detail_s_generator",sequenceName="author__detail_s",
initialValue=1, allocationSize=1)
 @GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="author_detail_s_generator")
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 200)
 @Pattern(regexp="", message="Invalid Address")
 @Column(name = "ADDRESS1")
 private String address1;
 @Size(max = 200)
 @Column(name = "ADDRESS2")
 private String address2;
 @Size(max = 250)
 @Column(name = "CITY")
 private String city;
 @Size(max = 2)
 @Column(name = "STATE")
 @Pattern(regexp="^(?-i:A[LKSZRAEP]|C[AOT]|D[EC]|F[LM]|G[AU]|HI|I[ADLN]|K[SY]|LA|M[ADEHINOPST]|N
[CDEHJMVY]|O[HKR]|P[ARW]|RI|S[CD]|T[NX]|UT|V[AIT]|W[AIVY])$",
 message="Invalid State")
 private String state;
 @Size(max = 10)
 @Column(name = "ZIP")
 @Pattern(regexp="^\\d{5}\\p{Punct}?\\s?(?:\\d{4})?$",
 message="Invalid Zip Code")
 private String zip;
 @Column(name = "START_DATE")
 @Temporal(TemporalType.DATE)
 private Date startDate;
 @Lob
 @Column(name = "NOTES")
 private String notes;
 @ManyToOne
 private AuthorBeanValidation author;
...

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

404

In an attempt to insert a value that does not conform to the validation rules, the object will not be persisted, and
the message correlating to the bean validation annotation will be displayed.

How It Works
It is always a good idea to utilize a data validation strategy when working with user input, especially if the data will
be persisted into a database or other data store for later use. The Java Persistence API allows bean validation to occur
within an entity class, whereby a developer can place validation rules directly on a persistent field or property. By
default, the persistence provider automatically invokes validation processes on entities containing bean validation
annotation constraints after the PrePersist, PreUpdate, and PreRemove life-cycle events occur. At that time, any
value that does not adhere to the given validation constraint will cause the entity to stop persistence and display an
associated message.

The details of bean validation are the same, whether it be on a plain old Java object (POJO) or an entity class. In
the case of an entity class, either the persistent field or property can be annotated with the desired bean validation
constraint. To see a list of possible bean validation constraint annotations, please refer to Table 5-8 in Chapter 5.

In the example for this recipe, the @NotNull and @Pattern annotations are specified on persistent properties of
the AuthorDetail entity. Specifically, the id field is annotated with @NotNull, and validation will fail in an attempt to
enter a NULL value for that field. The state and zip fields contain a @Pattern annotation, along with a corresponding
regular expression and failure message. If the values for those fields do not adhere to the regular expression that
has been specified, then the message that is assigned to the message attribute of the @Pattern annotation will be
displayed via a JSF view by the h:message component corresponding to the validated field. What if you want to apply
a set of regular expression patterns to a given field or property? Such a feat can be done using the @Pattern.List
syntax, whereby the list would contain a comma-separated list of @Pattern annotations. The following lines of code
demonstrate this technique:

@Pattern.List({
 @Pattern(regexp="regex-pattern", message="Error Message"),
 @Pattern(regexp="another regex-pattern", message("Error Message 2")
})

Bean validation is a good way to ensure that invalid data is not submitted to a data store. However, most
advanced desktop or web applications today use a couple tiers of validation to make the user experience more
convenient. Many times, web applications use JavaScript field validation first so that users do not have to submit
a page in order to see their validation errors displayed on the screen. If using JSF or other web frameworks, some
components allow direct access to bean validation, in which cases an Ajax submission of a given field or property will
occur behind the scenes, allowing the bean validation to take place without page submission. Whatever tact you take,
bean validation within entity classes is important and should become a handy tool to add to your arsenal.

8-11. Generating Database Schema Objects Automatically
Problem
You are developing an application and want to automatically have your entity classes generated into tables within the
underlying database.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

405

Solution
Use the automatic schema generation that was introduced in EJB 3.2. Schema generation is determined by the
object-relational metadata of the persistence.xml unit, unless custom scripts are provided for the generation.
The application developer can package scripts as part of the persistence unit or can supply URLs to the location of
the scripts for schema generation. The execution of such scripts can be carried out by the container itself, or the
container may direct the persistence provider to take care of script execution. Table 8-3 in the “How it Works” section
of this recipe lists the different persistence.xml or EntityManagerFactory properties that are used to configure
schema generation. These properties are passed as a Map argument from the container to the PersistenceProvider
generateSchema method or the createContainerEntityManagerFactory method.

To define the different objects that need to be generated, annotate entity classes accordingly. The standard entity
class annotations (@Table, @Id, and so on) determine what objects are created and how they are structured. For more
information regarding the specification of annotations within entity classes in order to generate schema objects,
please refer to the annotations listed in Table 8-4 within the “How It Works” section of this recipe.

How It Works
Schema generation refers to the creation of underlying database tables, views, constraints, and other database
artifacts. Prior to the Java EE 7 release, schema generation has been automated only via the use of an IDE such as
NetBeans or Eclipse. However, the EE 7 release takes a step toward breaking this dependency on an IDE by allowing
schema generation to become automated by configuring an appropriate persistence.xml file for an application.

Schema generation can be applied directly to the database, or it can generate SQL scripts that can be
manually applied to the database (or both), depending upon which options are configured for the application.
Schema generation may occur prior to application deployment or when an EntityManagerFactory is created as
part of the application deployment and initialization. To perform schema generation, the container may call the
PersistenceProvider generateSchema method separately from and/or prior to the entity manager factory for
the persistence unit. The createContainerEntityManagerFactory call can accept additional information to cause
the generation of schema constructs to occur as part of the entity manager factory creation or initialization process.
Furthermore, this information can determine whether the database is manipulated directly or whether SQL scripts
are created, or both.

Note■ Schema generation is also available outside of a managed container (e.g., web application server) in java
Se environments. to perform schema generation in this environment, the application may call the Persistence
generateSchema method separately from and/or prior to the creation of the entity manager factory or may pass
information to the createEntityManagerFactory method to cause schema generation to occur as part of the entity
manager factory creation.

Table 8-3 lists the different schema generation properties that can be specified in the persistence.xml file in
order to automate schema generation.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

406

Programmatically, schema generation is determined by a series of annotations that are placed in entity classes.
The @Table annotation denotes an entity mapping to an underlying database table. By default, a table is generated
for each top-level entity and includes columns based upon the specified attributes for that entity. Therefore, the
@Column and @JoinColumn annotations are used for generating such columns for a table. Column ordering is not
determined based upon the ordering of @Column or @JoinColumn annotations. If column ordering is important, then
a Data Definition Language (DDL) script must be supplied for generating the table. Other annotations and annotation
attributes, such as @Id, also play important roles in schema generation. Table 8-4 lists the different annotations that
are involved in schema generation, along with a brief description and the elements that can be populated for further
control over the generated schema.

Table 8-3. Schema Generation Properties

Property Purpose

schema-generation-action Controls the action to be taken by persistence provider with regards
to object generation and destructiom. Values: none, create, drop-and
-create, drop.

schema-generation-target Controls whether schema is to be created within the database, whether
DDL scripts are to be created, or both. Values: database, scripts,
database-and-scripts.

ddl-create-script-target,
ddl-drop-script-target

Controls target locations for writing scripts if the
schema-generation-target specifies script generation. Writers are
preconfigured for the persistence provider. Values:
java.io.Writer (e.g., MyWriter.class) or URL strings.

ddl-create-script-source,
ddl-drop-script-source

Specifies locations from which DDL scripts are to be read. Readers are
preconfigured for the persistence provider. Values: java.io.Reader (e.g.,
MyReader.class) or URL strings.

sql-load-script-source Specifies the file location of SQL bulk load script. Values: java.
io.Reader (e.g., MyReader.class) or URL string.

schema-generation-connection JDBC connection to be used for performing schema generation.

database-product-name, database-
major-version, database-minor-
version

Needed if scripts are to be generated. Values are those obtained from
JDBC DatabaseMetaData.

create-database-schemas Whether the persistence provider needs to create schema in addition to
creating database objects such as tables, sequences, constraints, and so
on. Values: true, false.

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

407

Table 8-4. Schema Generation Annotations

Annotation Description Elements

@Table Used for generating tables. By default, the table
name is generated from the entity name, and
the entity name is defaulted from the class
name.

@SecondaryTable A secondary table is created to partition the
mapping of entity state across multiple tables.

@CollectionTable A collection table is created for
mapping of an element collection.
The Column, AttributeOverride, and
AssociationOverride annotations may be
used to override CollectionTable mappings.

@JoinTable Used in mapping of associations. By default,
join tables are created for the mapping
of many-to-many relationships and
unidirectional one-to-many relationships.

@TableGenerator Used to store generated primary key values.

@Column Determines the name and configuration for a
column within a table.

unique, nullable, columnDefinition,
table, length, precision, scale,
name

@MapKeyColumn Specifies the mapping name of a key column of
a map when the key is of basic type.

unique, nullable, columnDefinition,
table, length, precision, scale

@Enumerated, @
MapKeyEnumerated

Controls whether string- or integer-valued
columns are generated for basic attributes of
enumerated types and therefore impact the
default column mapping of these types.

@Temporal, @
MapKeyTemporal

Controls whether date-, time-, or timestamp-
value columns are generated for basic
attributes of temporal types and therefore
impact the default column mappings for these
types.

@Lob Specifies that a persistent attribute is to be
mapped to a database large object type.

@OrderColumn Specifies the generation of a column that is
used to maintain the persistent ordering of a
list that is represented in an element collection,
one-to-many, or many-to-many relationship.

name, nullable, columnDefinition

@DiscriminatorColumn Generated for the SINGLE_TABLE mapping
strategy and may optionally be generated
by the provider for use with the JOINED
inheritance strategy.

@Version Specifies the generation of a column to serve as
an entity’s optimistic lock.

(continued)

http://www.it-ebooks.info/

Chapter 8 ■ ObjeCt-relatiOnal Mapping

408

Annotation Description Elements

@Id Specifies a database primary key column
. Use of the @Id annotation results in the
creation of a primary key which consists of the
corresponding column or columns.

@EmbeddedId Specifies an embedded attribute whose
corresponding columns formulate a database
primary key. Use of the @EmbeddedId
annotation results in the creation of a primary
key consisting of the corresponding columns.

@GeneratedValue Indicates a primary key that should have an
automatically generated value. If a strategy
is indicated, the provider must use it if it is
supported by the target database.

@JoinColumn The @JoinColumn annotation is typically used
for specifying a foreign key mapping.

name, referencedColumnName, unique,
nullable, columnDefinition, table,
foreignKey

@MapKeyJoinColumn Specifies foreign key mappings to entities
that are map keys in element collections or
relationships that consist of map values.

name, referencedColumnName, unique,
nullable, columnDefinition, table,
foreignKey

@PrimaryJoinKeyColumn Specifies that a primary key column is to be
used as a foreign key. This annotation is used
in the specification of the JOINED mapping
strategy and for joining a secondary table to
a primary table in a one-to-one relationship
mapping.

@ForeignKey Used within the JoinColumn, JoinColumns,
MapKeyJoinColumn, MapKeyJoinColumns,
PrimaryKeyJoinColumn, and
PrimaryKeyJoinColumns annotations to specify
or override a foreign key constraint.

@SequenceGenerator Creates a database sequence to be used for ID
generation.

@Index Generates an index consisting of the specified
columns.

@UniqueConstraint Generates a unique constraint for the given
table.

Table 8-4. (continued)

As per Table 8-4, there are a couple of new annotations that have been created specifically to facilitate schema
generation. The new annotations are @Index and @ForeignKey, where @Index is responsible for generating an index of
the specified columns. @ForeignKey is used to define a foreign key on a table.

http://www.it-ebooks.info/

409

Chapter 9

Enterprise JavaBeans

Enterprise JavaBeans were created in order to separate the view layers from the database access and business layers.
EJBs are where all of the database (EntityManager) access and business logic should take place within a Java EE
application, and they have become significantly easier to use over the past few releases. EJBs are used to coordinate
database tasks with entities, and JSF managed beans are used to interact directly with the JSF web pages. Managed
beans are used to provide a façade between the view layer and the business layer.

EJBs are deployed to an application server container, which manages the bean life cycle. The container also
provides features such as transaction management and security for EJBs. EJBs are portable, meaning that they
can be deployed to different application servers. This adds benefit for EJB developers because a single EJB can be
utilized across multiple applications. EJBs also alleviate the issue of having to code applications to work with multiple
databases because the EJB Query Language (covered in Chapter 10) rather than routine SQL is used to perform
database operations. Therefore, if an application is developed on one database, it can be ported to another without
the need to rewrite any SQL.

There are three types of EJBs that can be used: stateless, stateful, and message-driven. This chapter will cover the
first two, and message-driven beans will be covered in Chapter 12 where the Java Messaging Service (JMS) is covered.
Stateless session beans are used most often, because they are used for quick transactions and do not maintain any
conversational state. Stateful beans, on the other hand, are to be used in situations where a conversational state across
multiple client requests is required.

This chapter includes recipes to familiarize you with stateful and stateless session beans. You will learn how to
access EJBs from a JSF managed bean client and display content within a JSF view that the EJB has queried from the
database. There are also recipes covering useful tactics such as using bean Timers and creating Singleton session beans.

Note ■ To run the sources for this chapter, please set up the provided NetBeans project entitled JavaEERecipes, or
compile and deploy the sources in your own environment. You can also simply deploy the JavaEERecipes.war file that is
distributed with the book to a GlassFish v4 application server. Once you’ve deployed it, please visit the following URL to run
the example application for Chapter 9: http://localhost:8080/JavaEERecipes/faces/chapter09/home.xhtml.

9-1. Obtaining an Entity Manager
Problem
You have created a persistence unit for your database connection, and you want to use it to obtain a connection for
working with the database.

http://localhost:8080/JavaEERecipesJPA/faces/chapter09/home.xhtml
http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

410

Solution #1
Create an EntityManagerFactory object utilizing a local JDBC connection by calling the javax.persistence.
Persistence createEntityManagerFactory method and passing the name of the RESOURCE_LOCAL persistence unit.
Obtain an EntityManager object from the factory object that has been created, and then utilize the EntityManager
object as needed to work with the database entities. The following lines of code demonstrate how to accomplish the
creation of an EntityManager object using a local JDBC connection:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesLOCAL");
 EntityManager em = emf.createEntityManager();

Note ■ For further reference regarding the creation of a persistence unit, please see Recipe 8-3.

Solution #2
Inject EntityManager into EJB when using a database connection within an environment utilizing Java Naming
and Directory Interface (JNDI), such as an application server. To do so, declare a private field of the EntityManager
type, and annotate it using @PersistenceContext. Pass the name of the relevant persistence unit to the
@PersistenceContext annotation. The following lines of code demonstrate how this technique is performed. In an
application, these lines of code would reside within an EJB for an entity class.

@PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;

Note ■ a persistenceContext unitName can be composed of any valid string. The unitName that is used within the book
sources may differ from that which is shown in the book.

How It Works
Before an entity class can be used to persist an object or obtain query results, an entity manager must be created
from the persistence unit database connection configuration. The way in which you achieve the creation of an
entity manager will differ depending upon the type of database connection you are using. For instance, if you are
creating an entity manager from a local JDBC connection, then there is a little more work to be done because an
EntityManagerFactory must be used to obtain the EntityManager object. On the other hand, if you are creating a
container-managed entity manager from a database connection that is registered with an application server via JNDI,
then much of the work is done for you behind the scenes via metadata annotations.

In the first solution to this recipe, a persistence unit pertaining to a local JDBC connection is used to obtain
an EntityManager object. As mentioned previously, within an EJB, an EntityManagerFactory object must first be
obtained by calling the javax.persistence.Persistence class’s createEntityManagerFactory method and passing
the string-based persistence unit name to the method. From there, an EntityManager object can be instantiated by
invoking the EntityManagerFactory’s createEntityManager method.

In the second solution to this recipe, a container-managed EntityManager object instance is obtained. If an
application is deployed to an enterprise application server container such as Oracle’s GlassFish, this is the preferred
way to obtain an EntityManager. Utilizing container-managed entity managers makes JPA development easier,
because a Java EE container manages the life cycle of container-managed entity managers. Moreover, container-
managed entity managers are automatically propagated to all application components within a single Java
Transaction API (JTA) transaction. To obtain a container-managed entity manger, declare an EntityManager field
within an EJB and simply annotate it with @PersistenceUnit, passing the string-based name of the persistence unit to
the annotation. Doing so injects the entity manager into the application component.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

411

After performing either of these solutions, the newly obtained EntityManager object is ready to be utilized. The
most often used EntityManager methods are createQuery, createNamedQuery, and persist. You will learn more
about utilizing the EntityManager in the following recipes. However, a handful of recipes within Chapter 8 also make
use of EntityManager objects.

9-2. Developing a Stateless Session Bean
Problem
You want to create a class that can be used to perform tasks for a client, but the application does not require the bean
to retain any state between transactions. Additionally, you want to have the ability to interact with a database from
within the class.

Solution #1
Create a stateless session bean for the entity class for which you’d like to perform tasks. Create an EntityManager
object from a persistence unit, and initiate tasks against the database using the entity classes. In the following
solution, a stateless session bean is created for working with the Book entity:

package org.javaeerecipes.chapter09.session;

import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.javaeerecipes.chapter09.entity.Book;

/**
 * Stateless Session Bean for the Book entity
 * @author juneau
 */
@Stateless
public class BookFacade {
 @PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;

 protected EntityManager getEntityManager() {
 return em;
 }

 public BookFacade() {

 }

 /**
 * Create a book object
 * @param book
 */
 public void create(Book book){
 em.persist(book);
 }

 /**
 * Update a book object

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

412

 * @param book
 */
 public void edit(Book book){
 em.merge(book);
 }

 /**
 * Remove a book object
 * @param book
 */
 public void remove(Book book){
 em.remove(book);
 }

 /**
 * Return a Book object based upon a given title. This assumes that there
 * are no duplicate titles in the database.
 * @param title
 * @return
 */
 public Book findByTitle(String title){
 return (Book) em.createQuery("select object(o) from Book o " +
 "where o.title = :title")
 .setParameter("title", title.toUpperCase())
 .getSingleResult();
 }

}

In the example session bean, the create, edit, and remove methods can be called via a client to perform CRUD
operations with the database. The findByTitle method can be called via a client to obtain a Book object from the database.

Solution #2
Create a stateless session bean for the entity class for which you’d like to perform tasks, and extend an abstract class
that encapsulates standard operations from the session bean. Create an EntityManager object from a persistence unit,
and initiate tasks against the database using the entity classes. In the following solution, a stateless session bean is
created for working with the Book entity. It extends a class named AbstractFacade, which contains implementations
for most of the commonly used tasks within EJBs.

First, let’s take a look at the BookFacade class, the stateless session bean.

package org.javaeerecipes.chapter09.session;

import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.javaeerecipes.chapter09.entity.Book;

/**
 * Stateless Session Bean for the Book entity
 * @author juneau
 */

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

413

@Stateless
public class BookFacade extends AbstractFacade<Book> {
 @PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public BookFacade() {
 super(Book.class);
 }

 /**
 * Return a Book object based upon a given title. This assumes that there
 * are no duplicate titles in the database.
 * @param title
 * @return
 */
 public Book findByTitle(String title){
 return (Book) em.createQuery("select object(o) from Book o " +
 "where o.title = :title")
 .setParameter("title", title.toUpperCase())
 .getSingleResult();
 }

}

As you can see, there is only a single method implemented within the EJB, which is the findByTitle method.
However, other CRUD functionality such as create, edit, and remove for the Book entity can also be performed via
the BookFacade session bean because it extends AbstractFacade. The AbstractFacade class is an abstract class
that implements the most commonly used EJB methods. It accepts an entity class type specified as a generic, and its
implementation is as follows.

Note ■ The following code was automatically generated via the 7.x iDE along with the BookFacade session bean after
creating a stateless session bean for the Book entity class.

package org.javaeerecipes.chapter09.session;

import java.util.List;
import javax.persistence.EntityManager;

/**
 * Abstract Facade for Session Beans
 *
 * @author Netbeans 7.x
 */

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

414

public abstract class AbstractFacade<T> {
 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {
 this.entityClass = entityClass;
 }

 protected abstract EntityManager getEntityManager();

 public void create(T entity) {
 getEntityManager().persist(entity);
 }

 public void edit(T entity) {
 getEntityManager().merge(entity);
 }

 public void remove(T entity) {
 getEntityManager().remove(getEntityManager().merge(entity));
 }

 public T find(Object id) {
 return getEntityManager().find(entityClass, id);
 }

 public List<T> findAll() {
 javax.persistence.criteria.CriteriaQuery cq =

getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 return getEntityManager().createQuery(cq).getResultList();
 }

 public List<T> findRange(int[] range) {
 javax.persistence.criteria.CriteriaQuery cq =

getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 javax.persistence.Query q = getEntityManager().createQuery(cq);
 q.setMaxResults(range[1] - range[0]);
 q.setFirstResult(range[0]);
 return q.getResultList();
 }

 public int count() {
 javax.persistence.criteria.CriteriaQuery cq =

getEntityManager().getCriteriaBuilder().createQuery();
 javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
 cq.select(getEntityManager().getCriteriaBuilder().count(rt));
 javax.persistence.Query q = getEntityManager().createQuery(cq);
 return ((Long) q.getSingleResult()).intValue();
 }

}

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

415

How It Works
A Java class that is used to encapsulate the business logic and data access for an application is also known as a session
bean. More specifically, session beans typically correspond to entity classes, whereas there is usually one bean
per entity, although this is not a requirement and there are instances in which such an implementation does not
work well. Any database transactions for an application should be encapsulated within a session bean class that is
responsible for business process implementations, and clients should then make calls to the session beans in order to
invoke business processes. A stateless session bean does not retain any state, meaning that variables within the bean
are not guaranteed to retain their values between invocations. An application server container maintains a pool of
session beans for use by its clients, and when a client invokes a bean, then one is taken from the pool for use. Beans
are returned to the pool immediately after the client is finished with the invoking task. Therefore, stateless session
beans are thread-safe, and they work very well within a concurrent user environment.

Stateless session beans should contain a no-argument constructor, and they are instantiated by an application
server container at application start-up. To signify that a session bean is stateless, the class should be annotated with
@Stateless, optionally passing a name parameter that is a String-based name for the bean. If no name parameter is
specified within the @Stateless annotation, then the name of the bean is used. A stateless session bean should not
be final or abstract; therefore, all methods within the bean should contain an implementation. They can extend other
session beans or POJOs in order to extend functionality. In pre–EJB 3.1 environments, session beans used to be required
to implement business interfaces that contained method signatures for those methods that were to be made public for
client use. However, it is no longer a requirement for a session bean to implement a business interface, and indeed the
solutions to this recipe do not demonstrate the use of business interfaces (see Recipe 9-4 for a concrete example).

Zero or more variables can be declared within a stateless session bean, although the contents of those variables
are not guaranteed for retention between client calls. It is typical for a stateless session bean to contain at least one
EntityManager connection, although it is possible for a bean to contain zero or more connections. For instance, in
some cases session beans do not have a need to persist data, and in such cases no database connection would be
needed. In other instances, there may be a need for a session bean to have the ability to work with multiple databases,
in which case multiple database connections would be necessary. In the example for this recipe, a single database
connection is declared as an EntityManager object, corresponding to the JavaEERecipesJTA persistence unit. It
is possible to make use of standard JDBC persistence units, as well as standard JDBC DataSource objects within a
session bean. The use of a standard JDBC DataSource declaration may look like the following:

@Resource(name="jdbc/MyDataSource")
private DataSource dataSource;

As mentioned previously, stateless session beans can implement business interfaces, although it is not required.
The business interfaces that can be implemented via a stateless session bean can be local, remote, or web service
endpoints. A local business interface is designed for clients of stateless session beans that exist within the same
container instance as the session bean itself. Designating a business interface with the @Local annotation specifies
a local interface. Remote business interfaces are designed for use by clients that reside outside of the session bean’s
container instance. A remote business interface is denoted by the @Remote annotation. Web service endpoint
interfaces can be implemented by stateless session beans, and they can be used to expose SOAP-based web services
that are implemented within the session bean. To designate a web service endpoint interface, annotate it with the
@WebService annotation.

Stateless session beans contain “callback methods” that will be invoked by the container automatically when
certain life-cycle events occur. Specifically, stateless session beans can make use of two callbacks: PostConstruct and
PreDestroy. After the container constructs a stateless session bean and resources have been injected, any method
within the bean that is denoted with a @PostConstruct annotation will be invoked. Similarly, when the container
decides that a bean should be removed from the pool or destroyed, then any method denoted with a @PreDestroy
annotation will be invoked before the bean is destroyed. Callback methods can be very useful for instantiating
database connections and so forth.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

416

LIFe CYCLe OF a StateLeSS SeSSION BeaN

stateless session beans have the following life cycle:

1. a container creates a stateless session bean using the default no-argument constructor.

2. Resources are injected as necessary (i.e., database connections).

3. a managed pool of beans is generated, and multiple instances of the session bean are
placed into the pool.

4. an idle bean is taken from the pool when the invocation request is received from a client.
if all beans in pool are currently in use, more beans are instantiated.

5. The business method invoked by the client is executed.

6. The bean is returned to the pool after the business method process is complete.

7. The bean is destroyed from the pool on an as-needed basis.

In the first solution to this recipe, a stateless session bean is listed that does not implement any interfaces or
extend any other classes. Such a stateless session bean is very typical, and it is not uncommon to see such a stateless
session bean in EJB 3.1+ applications. The bean in the solution declares an EntityManager object, and the application
server container performs the creation of the EntityManager automatically and injects it into the bean since the
@PersistenceUnit annotation is specified. The annotation must designate a persistence unit name to tell the
container the type of EntityManager to inject. In the case where a bean needs access to multiple database
connections, then more EntityManager objects can be declared, specifying different names for each persistence
unit corresponding to the different connections that are required by the bean. A no-argument constructor is specified
as per the guidelines for stateless session beans. The solution also contains one business method implementation,
findByTitle, which accepts a String argument and queries the Book entity for the specified book title. If found,
the matching Book object is returned to the caller. The findByTitle method demonstrates the typical usage of an
EntityManager object for working with a database from within a session bean.

In the second solution to the recipe, the BookFacade stateless session bean extends a class named AbstractFacade.
The AbstractFacade class contains a number of method implementations that are commonly used within session
bean classes. For instance, the create method within AbstractClass can be used to persist an object (insert into the
database), and the edit method can be used to update an object. Solution #2 demonstrates a good technique that
can be used to encapsulate commonly used business logic into a separate class so that it can be extended to multiple
different beans. Consider that the application may contain ten different stateless session beans that corresponded to
ten different entity classes, and each of those beans would need to contain a create, edit, and remove method.
It is much easier to simply extend a single class that contains this functionality, rather than rewriting in each separate
session bean class.

Stateless session beans are highly performant objects that are used to encapsulate the business logic and data
access corresponding to an application entity. While most times a single session bean is written for each entity class,
this is not a mandatory rule. Stateless session beans should be considered first when deciding upon which type of bean
to use for encapsulating the logic for a particular application process. If a conversational state between the client and
the bean are not required (no state needs to be maintained), then stateless session beans are the best choice since they
provide the most concurrency and best performance. If, however, state is required, then consider the use of stateful
session beans.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

417

9-3. Developing a Stateful Session Bean
Problem
You want to develop a session bean that has the capability of maintaining a conversational state with the client.
For instance, you want the client to have the ability to perform a multistep process without the state of the session
bean being lost.

Solution
Create a stateful session bean and implement the business logic pertaining to the entity class of your choice within
it. Consider that a customer is browsing the pages of the Acme Bookstore application and wants to add a book to a
shopping cart. The cart would need to be maintained within a stateful session bean since it would be required to
maintain state until the customer decides to make a purchase, cancel an order, or close the browser.

The following class is that of OrderFacade, the stateful session bean that maintains a visitor’s shopping cart
and purchases:

package org.javaeerecipes.jpa.session;

import java.util.concurrent.TimeUnit;
import javax.ejb.*;
import org.javaeerecipes.jpa.object.Cart;

@Stateful
@StatefulTimeout(unit = TimeUnit.MINUTES, value = 30)
public class OrderFacade {

 private Cart cart;

 @SuppressWarnings("unused")
 @PrePassivate
 private void prePassivate() {
 System.out.println("In PrePassivate method");
 }

 @SuppressWarnings("unused")
 @PostActivate
 private void postActivate() {
 System.out.println("In PostActivate method");
 }

 /**
 * @return the cart
 */
 public Cart getCart() {
 if(cart == null)
 cart = new Cart();
 return cart;
 }

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

418

 /**
 * @param cart the cart to set
 */
 public void setCart(Cart cart) {
 this.cart = cart;
 }

 public void completePurchase() {
 System.out.println("Not yet implemented..");
 }

 @Remove
 public void destroy() {
 System.out.println("Destroying OrderFacade...");
 }
}

A client can make calls to a stateful session bean in the same manner as with a stateless session bean (see Recipe 9-2).
That is, a client can access the methods of the stateful session bean via a business interface or through the no-interface
view, which is new in EJB 3.0. In this example, the CartController JSF managed bean will access the stateful session bean
via the no-interface view. The following code for CartController demonstrates how to access the OrderFacade from a JSF
managed bean. The main point of access to the EJB takes place within the getCart() method.

@ManagedBean(name = "cartController") // Specifies a managed bean
@SessionScoped // Specifies a session scoped bean
public class CartController implements Serializable {

 private Item currentBook = null;

 @EJB // Injects EJB OrderFacade orderFacade;

 @ManagedProperty(value = "#{authorConroller}") // Injects specified managed bean controller
 private AuthorController authorController;

 /**
 * Creates a new instance of CartController
 */
 public CartController() {
 }

 public String addToCart() {
 if (getCart().getBooks() == null) {
 getCart().addBook(getAuthorController().getCurrentBook(), 1);
 } else {
 getCart().addBook(getAuthorController().getCurrentBook(),
 searchCart(getAuthorController().getCurrentBook().getTitle()) + 1);
 }
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Succesfully Updated Cart", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 return null;
 }

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

419

 /**
 * Determines if a book is already in the shopping cart
 *
 * @param title
 * @return
 */
 public int searchCart(String title) {
 int count = 0;

 for (Item item : getCart().getBooks()) {
 if (item.getBook().getTitle().equals(title)) {
 count++;
 }
 }
 return count;
 }

 public String viewCart() {
 if (getCart() == null) {
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "No books in cart...", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 }

 return "/chapter09/cart";
 }

 public String continueShopping() {
 return "/chapter09/book";
 }

 public String editItem(String title) {
 for (Item item : getCart().getBooks()) {
 if (item.getBook().getTitle().equals(title)) {
 currentBook = item;
 }
 }
 return "/chapter09/reviewItem";

 }

 public String updateCart(String title) {
 Item foundItem = null;
 if (currentBook.getQuantity() == 0) {
 for (Item item : getCart().getBooks()) {
 if (item.getBook().getTitle().equals(title)) {
 foundItem = item;
 }
 }
 }

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

420

 getCart().getBooks().remove(foundItem);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Succesfully Updated Cart", null);
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
 return "/chapter09/cart";
 }

 /**
 * @return the cart
 */
 public Cart getCart() {
 return orderFacade.getCart();
 }

 /**
 * @return the currentBook
 */
 public Item getCurrentBook() {
 return currentBook;
 }

 /**
 * @param currentBook the currentBook to set
 */
 public void setCurrentBook(Item currentBook) {
 this.currentBook = currentBook;
 }

 public void isBookInCart(ComponentSystemEvent event) {
 UIOutput output = (UIOutput) event.getComponent();
 if (getCart() != null) {
 if (searchCart(getAuthorController().getCurrentBook().getTitle()) > 0) {
 output.setValue("This book is currently in your cart.");
 } else {
 output.setValue("This book is not in your cart.");
 }
 } else {
 output.setValue("This book is not in your cart.");
 }
 }

 public void updateRowData(RowEditEvent e) {
 System.out.println("Perform editing logic here...");
 currentBook = (Item)e.getObject();
 // Call the updateCart method, passing the title of the current book.
 updateCart(((Item)e.getObject()).getBook().getTitle());
 }

 /**
 * @return the authorController
 */

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

421

 public AuthorController getAuthorController() {
 return authorController;
 }

 /**
 * @param authorController the authorController to set
 */
 public void setAuthorController(AuthorController authorController) {
 this.authorController = authorController;
 }
}

How It Works
A stateful session bean is a Java class that is used to encapsulate business logic for an application. In most cases, a
stateful bean has a one-to-one correspondence with an entity class, in that the bean handles all of the database calls
regarding one particular entity. Programmatically, a stateful session bean is very similar to a stateful session bean in
that regard. However, stateful session beans are guaranteed to maintain a conversational state with a client, whereas a
stateless session bean is not. That said, the application server container handles stateful session beans differently, and
they have a much different life cycle than stateless session beans. The application server container maintains a pool of
the stateful session beans for client use, but there is a one-to-one mapping between a client and a bean in that when
a client invokes a stateful bean, it will not release that bean back to the pool until it is still active. Therefore, stateful
session beans can be less efficient than stateless, and they can take up a larger memory footprint than stateless
session beans because if there are a large number of active sessions using a stateful bean, then there will be a large
number of stateful beans retained in memory remaining active for those sessions.

To make a stateful session bean, the class must be designated as such by annotating it with @Stateful. The
optional name parameter of the @Stateful annotation can be used to specify a string-based name for the bean.
Similarly to stateless session beans, a stateful session bean can implement a business interface, but as of EJB 3.1, it is
not mandatory. In the example to this recipe, no business interface is used; therefore, any method within the bean
that has a public modifier will be available for use by a client. Any variables that are used to store conversational state
must be Java primitive types or Serializable. When an instance variable is used to store data, it will be maintained
throughout the life cycle of the conversation.

Every stateful session bean must also contain a method that will be called when the bean client removes it.
The state of the bean will be maintained until the @Remove method is called. The container will invoke the method
annotated with @Remove when this occurs, and the bean will be removed after the @Remove method completes.

LIFe CYCLe OF StateFUL SeSSION BeaN

stateful session beans have the following life cycle:

1. The container creates new bean instances utilizing the default constructor whenever a
new client session is started.

2. The resources are injected into the bean.

3. The bean instance is stored in memory.

4. The method invoked by the client is executed.

5. The bean waits and executes any subsequent requests.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

422

6. The bean is passivated, or removed from active memory into temporary storage, if the
client remains idle for a period of time.

7. The client invocation of a passivated bean will bring it back into memory from temporary
storage.

8. Failure of client to invoke a passivated bean instance for a period of time will cause the
bean to be destroyed.

9. if a client requests the removal of a bean instance, then it is activated if necessary and
then destroyed.

Stateful session beans are stored in memory for a period of time. If the client does not request a stateful bean for
use again after a period of time, then the container passivates it. Passivation is the process of taking a stateful session
bean out of active memory and storing it into a temporary location on disk. The container does this by serializing the
entire bean instance and moving it into permanent storage on disk. A bean is then activated later if a client invokes it,
and activation is the opposite of passivation.

Another way to passivate a stateful session bean on a timed basis is by annotating the class using
@StatefulTimeout. This annotation allows the developer to choose how long to maintain the state of the bean.
In the case of the example for this recipe, the state is maintained for 30 minutes before the bean is passivated.

@StatefulTimeout(unit = TimeUnit.MINUTES, value = 30)

Stateful session beans have more callback methods than stateless session beans. Callback methods can be
used to perform operations at a certain point in the bean’s life cycle. Specifically, the following annotations can be
placed before method signatures in order to mark then for execution when the given bean life-cycle event occurs:
@PostConstruct, @PrePassivate, @PostActivate, and @PreDestroy. The @PostConstruct annotation denotes that
the annotated method will be executed by the container as an instance is created. @PrePassivate denotes that the
annotated method will be executed by the container before passivation occurs. @PostActivate denotes that the
annotated method should be executed after activation or, in other words, once a bean becomes active again. Lastly,
methods annotated with @PreDestroy will be executed by the container just before the bean is destroyed.

If your session bean needs the ability to retain state throughout a conversation, then you will need to make use
of a stateful session bean. However, it is important to make use of stateful session beans sparingly since they are less
efficient than stateless session beans and they require a larger memory footprint on the application server.

9-4. Utilizing Session Beans with JSF
Problem
You want to develop a web-based client for a session bean that resides within the same container as the session
bean itself.

Solution #1
Implement a business interface for the session bean that you want to work with, and write a client Java class to utilize
the methods exposed via the interface. In this case, we’ll write a JSF managed bean to interact with the publicly
exposed methods that are declared within the business interface. The following code demonstrates a stateless session

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

423

bean named AuthorWorkFacade, which implements a business interface named AuthorWorkType. The business
interface exposes methods for local clients to utilize for interaction with the EJB.

package org.javaeerecipes.jpa.session;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;
import org.javaeerecipes.jpa.entity.AuthorWork;
import org.javaeerecipes.jpa.local.AuthorWorkType;

@Stateless
public class AuthorWorkFacade extends AbstractFacade<AuthorWork> implements AuthorWorkType {
 // The EntityManager is provided by the PersistanceContext
 @PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public AuthorWorkFacade() {
 super(AuthorWork.class);
 }

 /**
 * Return list of AuthorWork objects given a specified book id
 * @param bookId
 * @return
 */
 public List<AuthorWork> performFind(BigDecimal bookId){
 Query qry = em.createQuery("select object(o) from AuthorWork o " +
 "where o.bookId = :bookId")
 .setParameter("bookId", bookId);

 return qry.getResultList();

 }

 /**
 * Return list of AuthorWork objects given a specified author id
 * @param bookId
 * @return
 */

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

424

 public List<AuthorWork> performFindByAuthor(BigDecimal authorId){
 Query qry = em.createQuery("select object(o) from AuthorWork o " +
 "where o.authorId = :authorId")
 .setParameter("authorId", authorId);

 return qry.getResultList();

 }
}

Let’s take a look at the AuthorWorkType business interface that is implemented by the AuthorWorkFacade session
bean. Note that this interface is annotated using the @Local annotation, which signifies that it is a local business interface.

package org.javaeerecipes.jpa.local;

import java.math.BigDecimal;
import java.util.List;
import javax.ejb.Local;
import org.javaeerecipes.jpa.entity.AuthorWork;

/**
 * Local business interface for the AuthorWorkFacade stateless session bean
 * @author juneau
 */
// Comment this annotation to decorate the EJB itself with the annotation
@Local
public interface AuthorWorkType {
 public List<AuthorWork> performFind(BigDecimal bookId);

 public List<AuthorWork> performFindByAuthor(BigDecimal authorId);
}

Finally, the client itself is a JSF managed bean controller named AuthorWorkController. The controller interacts
with the methods within the EJB by making calls against the business interface method’s declarations.

package org.javaeerecipes.jpa.jsf;

import java.io.Serializable;
import java.util.List;
import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import org.javaeerecipes.jpa.entity.AuthorWork;
import org.javaeerecipes.jpa.entity.Book;
import org.javaeerecipes.jpa.local.AuthorWorkType;

/**
 * JSF Managed bean controller for the AuthorWorkFacade EJB
 * @author juneau
 */
@ManagedBean(name = "authorWorkConroller")
@SessionScoped

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

425

public class AuthorWorkController implements Serializable {
 // Inject the EJB
 @EJB
 AuthorWorkType authorWork;
 /**
 * Creates a new instance of AuthorWorkController
 */
 public AuthorWorkController() {
 }

 /**
 * Invokes the AuthorWorkFacade's performFind method utilizing the
 * business interface.
 * @param book
 * @return
 */
 public List<AuthorWork> findByBookId(Book book){
 return authorWork.performFind(book.getId());
 }

}

JSF views can interact directly with public properties and methods within JSF managed bean controllers.
Therefore, a JSF view can display a list of all books written by a given author by making the call to the findBookById
method that resides within the AuthorWorkController.

Solution #2
Write a JSF view client and work directly with the session bean of your choice using the no-interface view that was
introduced with the release of EJB 3.1. The following code demonstrates a JSF managed bean controller that interacts
directly with a stateless session bean. The JSF managed bean, named BookController, is the client class for the
BookFacade EJB session bean. You will see from the code that the bean is able to interact directly with the EJB session
bean public methods via the declaration of a property pertaining to the BookFacade class.

package org.javaeerecipes.jpa.jsf;

import javax.persistence.PersistenceContext;
import java.io.Serializable;
import java.math.BigDecimal;
import java.util.List;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.ManagedProperty;
import javax.faces.bean.SessionScoped;
import javax.persistence.EntityManager;
import org.javaeerecipes.jpa.entity.Book;

@ManagedBean(name="bookController")
@SessionScoped

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

426

public class BookController implements java.io.Serializable {

 @EJB
 BookFacade ejbFacade;

 private List<Book> completeBookList = null;
 @ManagedProperty(value = "#{authorConroller}")
 private AuthorController authorController;

 public BookController(){

 }

 /**
 * @return the completeBookList
 */
 public List<Book> getCompleteBookList() {
 completeBookList = ejbFacade.findAll();
 return completeBookList;
 }

 /**
 * @param completeBookList the completeBookList to set
 */
 public void setCompleteBookList(List<Book> completeBookList) {
 this.completeBookList = completeBookList;
 }

 public String populateBookList(BigDecimal bookId){
 String returnValue = getAuthorController().populateAuthorList(bookId);
 return returnValue;
 }

 /**
 * @return the authorController
 */
 public AuthorController getAuthorController() {
 return authorController;
 }

 /**
 * @param authorController the authorController to set
 */
 public void setAuthorController(AuthorController authorController) {
 this.authorController = authorController;
 }

}

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

427

The no-interface view makes it possible for clients to work directly with the public methods of a session bean. As
you can see from the example, it is also possible for one JSF managed bean client to work with another JSF managed
bean client because the BookController class declares a variable for the AuthorController JSF managed bean.
Making use of the no-interface view provides clients with the most direct access to session beans, and a JSF view can
now interact directly with the methods within the managed bean, making it easy to form the complete cycle for a web
view utilizing information from a database.

How It Works
An EJB is the class within an application that is used to work directly with database objects. JSF web views and desktop
Java clients cannot work directly with EJB methods since they reside on the application server. For this reason, EJBs
must provide a way for clients to work with their methods, whether that client resides within the same container as
the EJB itself or in a remote location. Prior to the release of EJB 3.1, if an EJB was going to be exposed to a client within
the same container, such as a JSF managed bean, the EJB would need to implement a business interface denoted as a
local interface with the @Local annotation. On the other hand, if an EJB were to be made accessible to a client running
within a remote environment under pre–EJB 3.1, then the EJB would need to implement a business interface denoted
as a remote interface with the @Remote annotation. In the majority of Java EE applications that are developed today, a
web framework such as JSF is used to work with the EJB in order to manipulate or read data from an RDBMS or other
data source. Such clients are local to the container in which the EJB pools reside, and therefore they would access the
EJB via a local business interface.

Note ■ at first, the concept of a local client may be difficult to understand, so i will try to explain in a bit more detail.
a typical JsF application utilizes local clients, those being JsF managed beans, to work directly with the EJBs. although
the user of the web application is sitting in a remote location from the EJB server container, they are working with hTML
pages that are generated by JsF views within a browser, and those views interact directly with the JsF managed bean
controllers. it is almost as if the JsF views are bound directly to the JsF managed bean controllers, which usually reside
within the same container as the EJB. Figure 9-1 shows how this relationship works.

•JSF View 1
•JSF View 2

HTML
Client

•JSF
Managed
Bean 1

•JSF
Managed
Bean 2

Application
Server

•Session
Bean 1

•Session
Bean 2

EJBs

Figure 9-1. HTML client (JSF view) to EJB relationship

In EJB 3.1+, it is possible for local clients to utilize “no-interface” business views for access to public EJB methods,
thereby alleviating the need for the EJB to implement an interface. Using the no-interface view technique enables
developers to be more productive because there is one less Java file to maintain (no interface needed), and the
workflow becomes easier to understand since the local client can interact directly with the EJB, rather than via an
interface. Solution #1 to this recipe demonstrates the use of a local business interface, while Solution #2 demonstrates
the use of the no-interface view. Remote clients, such as Java classes running in a remote application server container,
cannot use the no-interface view, and therefore a @Remote business interface is still needed in such situations.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

428

Let’s start by discussing the use of the local business interface to work with the EJB because this may be the
most commonly used technique today since EJB 3.1+ is still new at the time of this writing. EJB 3.0 made it much
easier to develop an enterprise application because XML configuration was almost entirely eliminated via the use of
annotations. Using the business interface technique, a JSF managed bean controller can interact with the methods
that are declared within the interface by declaring a variable for the interface within the managed bean and denoting
it as an EJB interface through dependency injection. Dependency injection works via the use of the javax.ejb.EJB
annotation and specifying the enterprise bean’s local interface name within the JSF managed bean. The following
code excerpt from the managed bean code in Solution #1 demonstrates the use of dependency injection using a local
business interface:

@EJB
AuthorWorkType authorWork;

It is possible to obtain a reference to the local business interface using JNDI, rather than dependency injection.
To do so, use the javax.naming.InitialContext interface’s lookup method as follows:

AuthorWorkType authorWork = (AuthorWorkType)
 InitialContext.lookup("java:module/AuthorWorkType");

Using the business interface makes it easy for developers to work with EJBs in an indirect manner. Since the JSF
managed bean is not working directly with the methods of the EJB, it allows the business logic of the EJB to change,
without affecting the implementation of the managed bean controller. The no-interface view was introduced with the
release of EJB 3.1, and it allows JSF managed beans to work directly with publicly exposed EJB methods without the
need to work through a business interface. This still allows the business logic within the EJB to be changed without
affecting the client unless the public method signatures change.

Solution #2 demonstrates the use of the no-interface view to allow JSF managed bean controllers to work
with publicly declared EJB methods. To obtain a reference to the no-interface view of an EJB through dependency
injection, use the javax.naming.EJB annotation, along with a declaration of the enterprise bean’s implementation
class. The following code excerpt taken from the managed bean in Solution #2 demonstrates the dependency
injection technique with a no-interface view:

@EJB
 BookFacade ejbFacade;

It is possible to use JNDI to perform a lookup on the EJB rather than using dependency injection. Use the javax.
naming.InitialContext interface’s lookup method in order to perform the JNDI lookup as follows:

BookFacade ejbFacade = (BookFacade)
 InitialContext.lookup("java:module/BookFacade");

Note ■ Many people still have a bad taste in their mouth because of the complexity of EJBs prior to the release of
EJB 3.0. Development of EJB 2.x required much XML configuration, which made EJBs difficult to understand and
 maintain, even though they were still robust and very viable for the development of enterprise applications. Moreover,
the container manages the life cycle and resources for EJBs, which allows developers to focus on other application
 features rather than worry about life cycle and resource handling.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

429

9-5. Persisting an Object
Problem
You want to persist an object in your Java enterprise application. In other words, you want to create a new database
record within one of the database tables used by your application.

Solution
Create an EntityManager object using one of the solutions provided in Recipe 9-1, and then call its persist method,
passing the object you want to persist. The following lines of code demonstrate how to persist an object to the
database using an EntityManager. In this case, a Book object is being persisted into the BOOK database table. This
excerpt is taken from the BookFacade session bean.

...
@PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;
...
em.persist(book);
...

How It Works
The persistence of entity objects takes place within EJB classes. To persist an object to the underlying data store and
make it managed, call the EntityManager object’s persist method. You must pass a valid entity object to the persist
method, and the object should not yet exist in the database, meaning that it must have a unique primary key.

A few different exceptions may be thrown when working with the persist method that will help you determine
what issue(s) are occurring. The EntityExistsException is self-explanatory, and it is thrown if the primary key for
the entity that you are persisting already exists. However, in some cases a PersistenceException will be thrown
instead at flush or commit time, so you should catch each of these exceptions when issuing a call to persist. If the
object that you are trying to persist is not an entity, then the IllegalArgumentException will be thrown. Lastly,
the TransactionRequiredException will be thrown if invoked on a container-managed entity manager of type
PersistenceContextType.TRANSACTION, and there is no transaction made.

9-6. Updating an Object
Problem
The contents of an entity object have been changed, and you want to persist the updates to the underlying data source.

Solution
Create an EntityManager object using one of the solutions provided in Recipe 9-1, and then call the EntityManager
object’s merge method, passing a populated entity object that you want to update. The following lines of code
demonstrate how to persist an object to the database using an EntityManager. In this case, a Book object is being
updated in the BOOK database table. This excerpt is taken from the BookFacade session bean.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

430

...
@PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;
...
em.merge(book);
...

Note ■ if the entity object (database record) being persisted does not already exist within the table, it will be stored as
a newly persisted object rather than updated.

How It Works
The code implementation that is responsible for updating entity objects within the underlying data store resides
within EJB classes. A valid EntityManager object must be available for use, and then the EntityManager’s merge
method can be called, passing a valid entity object for update within the underlying data store. When this is done,
the state of the entity object will be merged into the data store, and the underlying data will be updated accordingly.

Two possible exceptions may be thrown when attempting to merge data. An IllegalArgumentException may
be thrown if the instance being merged is not an entity (the database table does not exist) or is a removed entity.
A TransactionRequiredException may be thrown if the merge method is invoked on a container-managed entity
manager of type PersistenceContextType.TRANSACTION and there is no transaction.

9-7. Returning a Table Model
Problem
You want to display the contents of a database table via a JSF dataTable.

Solution #1
Return a List of entity objects for the underlying table containing the contents you want to display. Map a JSF
dataTable component value to a managed bean controller property that contains a List of objects. In this case,
the managed bean property would be the List of the entity objects corresponding to the database table. Within the
managed bean controller, the List of entity objects can be obtained via an EJB call.

The following code excerpt is taken from the JSF managed bean controller named BookController. The
managed bean property named completeBookList will be referenced from a dataTable component within a JSF view,
displaying the data from the underlying table.

@ManagedBean(name="bookController")
@SessionScoped
public class BookController implements java.io.Serializable {

 @EJB
 BookFacade ejbFacade;

 private List<Book> completeBookList = null;

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

431

 @ManagedProperty(value = "#{authorConroller}")
 private AuthorController authorController;

 public BookController(){

 }

 /**
 * @return the completeBookList
 */
 public List<Book> getCompleteBookList() {
 completeBookList = ejbFacade.findAll();
 return completeBookList;
 }

 /**
 * @param completeBookList the completeBookList to set
 */
 public void setCompleteBookList(List<Book> completeBookList) {
 this.completeBookList = completeBookList;
 }

 public String populateBookList(BigDecimal bookId){
 String returnValue = getAuthorController().populateAuthorList(bookId);
 return returnValue;
 }

 /**
 * @return the authorController
 */
 public AuthorController getAuthorController() {
 return authorController;
 }

 /**
 * @param authorController the authorController to set
 */
 public void setAuthorController(AuthorController authorController) {
 this.authorController = authorController;
 }

}

Next, let’s take a look at an excerpt from the EJB named BookFacade. It is a stateless session bean that contains the
method, which is invoked by the BookController in order to obtain the List of entity objects.

Note ■ The findAll() method that is called by BookController is inherited from the AbstractFacade class.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

432

...
@Stateless
public class BookFacade extends AbstractFacade<Book> {
 @PersistenceContext(unitName = "JavaEERecipesJTA")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }
...
 public Book findByTitle(String title){
 return (Book) em.createQuery("select object(o) from Book o " +
 "where o.title = :title")
 .setParameter("title", title.toUpperCase())
 .getSingleResult();
 }
...

Solution #2
Return a List of Map objects containing the results of a native SQL query against the underlying table. The JSF
managed bean controller can contain a property that is a List of Map objects, and it can be referenced from within a
JSF dataTable component. In this case, EJB method that is invoked by the managed bean controller will make a native
SQL query against the database, returning certain columns of data from the table and populating map objects with
those column values.

In the following excerpt, the BookController.getCustomBookList() method populates a managed bean
property named customBookList via a call to the EJB method named obtainCustomList. Excerpts including both of
these methods are shown next.

Here’s the excerpt from org.javaeerecipes.jpa.BookController:

...
public List<Map> getCustomBookList(){
 customBookList = ejbFacade.obtainCustomList();
 return customBookList;
 }
...

Here are the excerpts from org.javaeerecipes.jpa.session.BookFacade:

...
 protected EntityManager getEntityManager() {
 return em;
 }
...
public List<Map> obtainCustomList(){

 List<Object[]> results = em.createNativeQuery(
 "select id, title, description " +
 "FROM BOOK " +
 " ORDER BY id").getResultList();

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

433

 List data = new ArrayList<HashMap>();

 if (!results.isEmpty()) {
 for (Object[] result : results) {
 HashMap resultMap = new HashMap();
 resultMap.put("id", result[0]);
 resultMap.put("title", result[1]);
 resultMap.put("description", result[2]);

 data.add(resultMap);
 }
 }
 return data;
 }

How It Works
One of the most often required tasks of a web application is to display content. What’s more, displaying database
content is key to just about every enterprise application. Displaying content in table format provides the user with
the ability to see the data because it is stored within the underlying table, in columnar format. The JSF dataTable
component provides Java EE applications utilizing the JSF framework with an efficient and powerful way to display
entity data in a table format.

The JSF dataTable component is capable of taking a List, DataModel, or Collection of objects and displaying
them to the user. This recipe covers two different variations of retrieving data and storing it within a List for use in a
dataTable component. The first solution is the most common situation. In both solutions, a managed bean property
is used to store the List of entity objects. However, the first solution stores a List of entity objects themselves,
whereas the second solution stores a List of Map objects. Let’s walk through each a little more closely.

In Solution #1 to this recipe, the completeBookList field within the BookController managed bean class is used
to store the List of Book entities. The getCompleteBookList method populates the List by invoking the BookFacade
session bean’s findAll() method to return all of the rows within the BOOK database table. Each database row is stored
in a separate Book entity object, and in turn, each Book entity object is stored in the List. Finally, that list is returned to
the BookController and assigned to the completeBookList field. In the end, the JSF dataTable component references
the completeBookList to display the content.

Note ■ To learn more about working with JsF dataTable components, please refer to Recipe 3-12.

In Solution #2, the BookController field named customBookList is used to populate a JSF dataTable. The
customBookList field is a List of Map objects. As far as the BookController method of population goes, the
customBookList field is populated in much the same manner as the completeBookList in Solution #1. An EJB method
is called, which returns the populated List of objects. In this case, the EJB named BookFacade returns a List of Map
objects from a native SQL query. The BookFacade session bean class method obtainCustomList is responsible for
creating the native SQL query and then storing the results within Map objects. In this case, the native query returns
only a subset of the columns that are present within the BOOK database table in each row as a resultList and stores
them into a List<Object[]>. A new ArrayList of HashMaps is then created and populated with the contents of the
List from the database query. To populate the ArrayList, the List<Object[]> is traversed using a for loop. A
HashMap object is created for each object that is returned from the database. The HashMap object is populated with
name-value pairs, with the name of the column being the first part, and the value from the entity object being the
second part in each element. Each column that was retrieved via the query is stored into the HashMap, and the HashMap

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

434

itself is then added to a List. In the end, the List of HashMap objects is returned to the managed bean and stored into
the customBookList field. In the JSF view, the names that were associated with each of the database columns in the
HashMap are used to reference the values for display within the dataTable.

Both of the solutions showcased in this recipe offer valid options for displaying database data JPA within a JSF
dataTable component, I recommend using the first solution where possible because there is more chance of error
occurring with Solution #2. There is also native SQL hard-coded into the EJB for Solution #2, which is OK when
necessary but never the best option. It is always much better when you can utilize an EJB method, such as the findAll
method that is available in AbstractFacade (Recipe 9-2), because if the underlying database table changes, then there
is no need to alter the application code.

9-8. Creating a Singleton Bean
Problem
You want to develop a session bean in which all application clients will use the same instance to update a current site
visitor count. Only one instance of the bean should be allowed per application so that there is always a single counter
for the number of visitors.

Note ■ in this recipe, the counter is not cumulative. That is, it is not persisted across application start-ups. To create
a cumulative counter, the current count must be persisted to the database before the application or server is restarted.

Solution
Develop a singleton session bean that allows concurrent access by all application clients. The bean will keep track
of the number of visitors who have been to the bookstore and display the number within the footer of the Acme
Bookstore application. The following bean named BookstoreSessionCounter is a singleton session bean for the
Acme Bookstore that is responsible for keeping track of an active session count:

package org.javaeerecipes.jpa.session;

import javax.ejb.Singleton;
import javax.ejb.ConcurrencyManagement;
import static javax.ejb.ConcurrencyManagementType.CONTAINER;

@Singleton
@ConcurrencyManagement(CONTAINER)
public class BookstoreSessionCounter {

 private int numberOfSessions;
 /**
 * Initialize the Bean
 */
 @PostConstruct
 public void init(){
 // Initialize bean here
 System.out.println("Initalizing bean...");
 }

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

435

 // Resets the counter on application startup
 public BookstoreSessionCounter(){
 numberOfSessions = 0;
 }

 /**
 * @return the numberOfSessions
 */
 public int getNumberOfSessions() {
 numberOfSessions++;
 return numberOfSessions;
 }

 /**
 * @param numberOfSessions the numberOfSessions to set. This could be set
 * from the database if the current counter were persisted before the application
 * was shutdown
 */
 public void setNumberOfSessions(int numberOfSessions) {
 this.numberOfSessions = numberOfSessions;
 }
}

Next, let’s look at the JSF managed bean controller that invokes the singleton session bean method
for updating the site counter. The following excerpt is taken from a session-scoped managed bean named
BookstoreSessionController, and the counter property is used to update the number of visitors within the EJB:

...
@ManagedBean(name="bookstoreSessionController")
@SessionScoped
public class BookstoreSessionController {

 @EJB
 BookstoreSessionCounter bookstoreSessionCounter;

 private int counter;
 private boolean flag = false;

 /**
 * @return the counter
 */
 public int getCounter() {
 if (!flag) {
 counter = bookstoreSessionCounter.getNumberOfSessions();
 flag = true;
 }
 return counter;
 }

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

436

 /**
 * @param counter the counter to set
 */
 public void setCounter(int counter) {
 this.counter = counter;
 }

}

Lastly, the counter is bound to a JSF EL expression within the Acme Bookstore Facelets template. The following
line of code is excerpted from the template named custom_template_search.xhtml, which resides in the
chapter09/layout directory of the book sources:

Number of Vistors: #{bookstoreSessionController.counter}

How It Works
A singleton is a class that is created once per application. There is only one instance of a singleton class at any given
time, and all client sessions interact with that same instance. To generate a singleton session bean, denote a bean as
such by specifying the javax.ejb.Singleton annotation. Programmatically, the annotation specification is one of
the main differences between the coding of a standard stateless session bean and a singleton session bean. However,
functionally, the bean is treated much different by the container than a standard stateless session bean.

Singleton session beans are instantiated by the container at an arbitrary point in time. To force the instantiation
of a singleton instance at application start-up, the javax.ejb.Startup annotation can be specified. In the case of the
example, there is no @Startup annotation specified, so the singleton instance will be instantiated by the container at
any given point. However, a singleton will be started up before any of the application EJBs begin to receive requests. In
the example, you can see that the @PostConstruct callback annotation is being used. This causes the method on which
the annotation is specified to be executed directly after instantiation of the bean. Singletons share the same callback
methodology as standard stateless session beans. To read more about callback methods, please refer to Recipe 9-2.

Note ■ if one or more singleton beans depend upon other singleton beans for initialization, the @DependsOn annotation
can be specified for the bean to denote which bean it depends upon. a chain of dependencies can be set up using this
annotation if needed.

By default, singletons are concurrent, meaning that multiple clients can access them at the same time (also
known as thread-safe). There are two different ways in which to control concurrent access to singleton beans. The
@ConcurrencyManagement annotation can be specified along with a given ConcurrentManagementType in order to tell
the bean which type of concurrency to use. The two types of concurrency are CONTAINER, which is the default type
if nothing is specified, and BEAN. In the example, the bean is annotated to specify container-managed concurrency.
When container-managed concurrency is specified, the EJB container manages the concurrency. The @Lock
annotation can be specified on methods of the singleton to tell the container how client access should be managed on
the method. To use the @Lock annotation, specify a lock type of LockType.READ or LockType.WRITE (default) within the
annotation to tell the container that many clients can access the annotated method concurrently or that the method
should become locked to others when a client is accessing it, respectively. The entire class can also be annotated with
@Lock, in which case the designated lock type will be used for each of the methods within the class unless they contain

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

437

their own lock type designation. For example, the following lines specify a method within a singleton class that should
be locked when accessed by a client so that only one client at a time has access:

@Lock(LockType.WRITE)
public void setCounter(int counter){
this.counter = counter;
}

Bean concurrency is different in that it allows full concurrent, thread-safe locking access to all clients on all
methods within the class. The developer can use Java synchronization techniques such as synchronized and volatile
to help manage the state of concurrency within those singletons designated with bean-managed concurrency.

9-9. Scheduling a Timer Service
Problem
You want to schedule a task that performs database transactions on a recurring interval.

Solution #1
Use the Timer service to schedule a task within a bean using an automatic timer. The timer will specify a required
interval of time, and the method used to perform the task will be invoked each time the interval of time expires.
The following session bean is set up to create an automatic timer, which will begin upon application deployment.
The following code is contained within the Java file named org.javaeerecipes.jpa.timer.TimerBean:

import javax.ejb.Singleton;
import javax.ejb.Schedule;

/**
 * Recipe 9-9 : The EJB Timer Service
 * @author juneau
 */
@Singleton
public class TimerBean {

@Schedule(minute="*/5", hour="*")
 public void automaticTimer(){
 System.out.println("*** Automatic Timeout Occurred ***");
 }
}

The automatic timer will begin when the class is deployed to the application server. Every five minutes, the
automaticTimer() method will be invoked as will any processes that are performed within that method.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

438

Solution #2
Create a programmatic timer and specify it to start when it is deployed to the application server. Configure an
initialization method within the timer bean that will create the timer automatically when the bean is initialized.
The following example class is named org.javaeerecipes.jpa.timer.ProgrammaticTimerExample, and it will be
automatically started when the application is deployed:

package org.javaeerecipes.jpa.timer;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.ejb.Singleton;
import javax.ejb.Timer;
import javax.ejb.Timeout;
import javax.ejb.TimerService;

@Singleton
@Startup
public class ProgrammaticTimerExample {

 @Resource
 TimerService timerService;

 @PostConstruct
 public void createTimer(){
 System.out.println("Creating Timer...");
 Timer timer = timerService.createTimer(100000, "Timer has been created...");
 }

 @Timeout
 public void timeout(Timer timer){
 System.out.println("Timeout of Programmatic Timer Example...");
 }

}

After deployment, you should see the a message in the server log indicating Creating Timer..., and then once
the timer expires, the Timeout of Programmatic Timer Example... message will be displayed in the logs.

How It Works
In days past, enterprise application systems would be set up using various different technologies performing many
different operations. For instance, an enterprise system of old may have a work ticket application that is built on
Java EE, along with a mailing system that sends e-mail using an operating system process. That e-mail may be
generated from a record that the application stored into a database table, and so forth. Enterprise systems such as
these work fine when everything is running smoothly, but they can also go badly when one of the components fail.
And an application outage can become extensive while time is spent determining what needs to be repaired, where
it is located, and what technology was used to build it. Nowadays, it is easy to incorporate all the functionality just
discussed under a single Java EE application…under one roof, so to speak. The EJB Timer service helps make such
solutions possible, because it offers enterprise applications a method for scheduling tasks that will be performed by
the application over a specified interval of time.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

439

There are two different types of timers: programmatic and automatic. In Solution #1 to this recipe, an automatic
timer is demonstrated. Although the solution does not perform any actual work, the method annotated with the
@Schedule annotation is where the work takes place. An automatic timer is created when an EJB contains one or more
methods that are annotated with @Schedule or @Schedules. The @Schedule takes a calendar-based timer expression to
indicate when the annotated method should be executed.

Note ■ One or more @Schedule annotations can be grouped within @Scheduled{ ... }, separating each @Schedule
with a comma.

Calendar-based timer expressions can contain one or more calendar attributes paired with values to indicate a
point in time for invocation of the method. Table 9-1 lists the different calendar-based timer expressions, along with
a description of each.

Table 9-1. Calendar-Based Timer Expressions

Attribute Description

dayOfWeek One or more days in a week: (0 – 7) or (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

dayOfMonth One or more days in a month: (1 – 31) or (Last) or (1st, 2nd, 3rd, 4th, 5th, Last)
along with any of the dayOfWeek values

month One or more months in a year: (1 – 12) or month abbreviation

year Four-digit calendar year

hour One or more hours within a day: (0 – 23)

minute One or more minutes within an hour: (0 – 59)

second One or more seconds within a minute: (0 – 59)

When creating a calendar-based timer expression, the asterisk (*) can be specified as a wildcard. The forward
slash (/) can be used to indicate an interval in time. An interval in time follows this pattern:

beginning time (larger unit) / frequency

Therefore, specifying /5 in the example (minute="*/5" hour="*") indicates that you want the timer to be
executed every five minutes within the hour because the wildcard indicates which hour to begin the timer and the
5 indicates how often. Timer expression attributes can contain more than one value, and a comma should separate
each value. To indicate that you want to execute a timer at 3 a.m. and again at 6 a.m., you could write the following:

@Schedule(hour="3,6")

A range of values can also be specified for timer attributes. To indicate that you want to have the timer executed
every hour between the hours of 4 and 7 a.m., you could specify the following:

@Schedule(hour"4-7")

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

440

Multiple timer expressions can be combined to tune the timer in a more fine-grained fashion. For instance, to
specify a timer schedule that will execute at 1 a.m. every Sunday morning, you could write the following:

@Scheule(dayOfWeek="Sun", hour="1")

Programmatic timers are the second option that can be used when developing a timed-process, as demonstrated
in Solution #2. A programmatic timer is different from an automatic timer because there is no schedule involved.
Rather, a client can invoke a timer, or it can be initialized with the construction of a bean. A programmatic timer
contains one method that is denoted using the @Timeout annotation. The @Timeout method will be executed when
the timer expires. The timeout method must return void, and it can optionally accept a javax.ejb.Timer object.
A timeout method must not throw an application exception.

To create a programmatic timer, invoke one of the create methods of the TimerService interface. Table 9-2
indicates the different create methods that can be used.

Table 9-2. Programmatic Timer Create Methods

Method Description

createTimer Standard timer creation

createSingleActionTimer Creates a timer that expires once

createIntervalTimer Creates a timer that expires based upon a given time interval

createCalenarTimer Creates a timer based upon a calendar

In Solution #2 of this recipe, a standard timer is created, passing an interval of 100,000 milliseconds. This means
that the method annotated with @Timeout will be executed once after 100,000 milliseconds has passed. The following
is another syntax that could be used to create a timer that has the same schedule:

long duration = 100000;
Timer timer = timerService.createSingleActionTimer(duration, new TimerConfig());

Similarly, a date can be passed to the create method in order to specify a given date and time when the timer
should expire. The following timer will expire 30 days from the date in which the application is deployed:

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DATE, 30);
Timer timer = timerService.createSingleActionTimer(cal.getTime(), new TimerConfig());

To create a programmatic calendar-based timer, you must create a new schedule using the ScheduleExpression
helper class. Doing so will allow you to utilize the calendar-based expressions that are listed in Table 9-1 to specify the
timer expiration date. The following example demonstrates a timer that will expire every Sunday at 1 a.m.:

ScheduleExpression schedule = new ScheduleExpression();
schedule.dayOfWeek("Sun");
schedule.hour("1");
Timer timer = timerService.createCalendarTimer(schedule);

Timers do not need to be created in singleton session beans; they can be used in stateless session beans as well.
However, they cannot be specified in stateful session beans. Timers are a topic that cannot be discussed within the
boundaries of a single recipe. However, this brief introduction to timers should give you enough to get started using
this technology within your applications. To learn more about timers, please refer to the online documentation at
http://docs.oracle.com/javaee/6/tutorial/doc/bnboy.html.

http://docs.oracle.com/javaee/6/tutorial/doc/bnboy.html
http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

441

Note ■ all timers are persistent by default, meaning that if the server is shut down for some reason, the timer will become
active again when the server is restarted. in the event that a timer should expire while the server is down, the timer will
expire (or the @Timeout method will be called) once the server is functioning normally again. To indicate that a timer
should not be persistent, call TimerConfig.setPersistent(false), and pass it to a timer-creation method.

9-10. Performing Optional Transaction Life-Cycle Callbacks
Problem
You are interested in beginning a transaction when an enterprise bean is instantiated and ending the transaction
when it is destroyed.

Solution
Choose to utilize the optional transaction life-cycle callbacks built into EJB. To begin a transaction during the
@PostConstruct or @PreDestroy callbacks, annotate the methods accordingly with @TransactionAttribute, passing
the TransactionAttributeType.REQUIRES_NEW attribute. In the following example, a transaction is started when the
bean named AcmeFacade is created. Another transaction is started when the bean is being destroyed.

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.ejb.Stateful;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;

@Stateful
public class AcmeFacade {

 @PersistenceContext(unitName = "JavaEERecipesPU", type = PersistenceContextType.EXTENDED)
 private EntityManager em;

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 @PostConstruct
 public void init() {
 System.out.println("The Acme Bean has been created");
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 @PreDestroy
 public void destroy() {
 System.out.println("The Acme Bean is being destroyed...");
 em.flush();
 }
}

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

442

How It Works
Session beans have callback methods that are invoked when certain stages of a bean’s life cycle occur. For
instance, a method can be registered within a session bean via annotation to invoke after the bean is constructed
(@PostConstruct), before it is destroyed (@PreDestroy), and so on. Sometimes it makes sense to start a new
transaction when one of these events occurs. It is possible to specify the transactional status of an annotated life-cycle
callback method within a session bean when using container-managed transactions.

The annotation accepts a transaction type as per the values listed in Table 9-3.

Table 9-3. Container-Managed Transaction Demarcation

Attribute Description

MANDATORY The container must invoke an enterprise bean method whose transaction is set to this attribute
in the client’s transaction context. The client is required to call with a transaction context.

REQUIRED The container must invoke an enterprise bean method whose transaction is set to this
attribute value with an unspecified transaction context.

REQUIRES_NEW The container must invoke an enterprise bean method whose transaction is set to this
attribute value with a new transaction context.

SUPPORTS If the client calls with a transaction context, then the container treats as REQUIRED. If the client
calls without a transaction context, the container treats it as NOT_SUPPORTED.

NOT_SUPPORTED The container invokes an enterprise bean method whose transaction attribute is set to this value
with an unspecified transaction context.

NEVER The container invokes an enterprise bean method whose transaction is set to this value
without a transaction context defined by the EJB specification.

By default, the life-cycle callback methods are not transactional in order to maintain backward compatibility.
By annotating the callback method with the @TransactionAttribute and the preferred demarcation type, the
callback method has opted in to be transactional.

9-11. Ensuring a Stateful Session Bean Is Not Passivated
Problem
Rather than have your inactive stateful session bean passivated, you want to keep it in memory.

Solution
Specify to the container that the bean is not to be passivated by indicating as such within the @Stateful annotation.
To opt out of passivation, set the passivationCapable attribute of the @Stateful annotation to false, as
demonstrated in the following excerpt:

@Stateful(passivationCapable=false)
public class AcmeFacade {
 ...
}

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

443

How It Works
When a stateful session bean has been inactive for a period of time, the container may choose to passivate the bean in an
effort to conserve memory and resources. Typically, the EJB container will passivate stateful session beans using a least
recently used algorithm. When passivation occurs, the bean is moved to secondary storage and removed from memory.
Prior to the passivation of a stateful session bean, any methods annotated with @PrePassivate will be invoked. When a
stateful session bean that has been passivated needs to be made active again, the EJB container activates the bean, then
calls any methods annotated with @PostActivate, and finally moves the bean to the ready stage.

In EJB 3.2, stateful session beans can opt out of passivation so that they will remain in memory instead of being
transferred to secondary storage if inactive. This may be helpful in situations where a bean needs to remain active for
application processes or if the bean contains a nonserializable field, since these fields cannot be passivated and are
made null upon passivation. To indicate that a bean is not to be passivated, set the passivationCapable attribute
of the @Stateful annotation to false, as per the solution to this recipe.

9-12. Denoting Local and Remote Interfaces
Problem
You want to explicitly designate a local or remote interface for an EJB.

Solution
A business interface cannot be made both the local and remote business interfaces for a bean. Therefore, a new API has
been developed to specify whether a business interface is intended as local or remote. The following rules pertain to
business interfaces implemented by enterprise beans classes:

The •	 java.io.Serializable, java.io.Externalizable, and interfaces defined by the javax.ejb

package are always excluded when determination of local or remote business interfaces are

declared for a bean.

If a bean class contains the •	 @Remote annotation, then all implemented interfaces are assumed
to be remote.

If a bean class contains no annotation or if the •	 @Local annotation is specified, then all
implemented interfaces are assumed to be local.

Any business interface that is explicitly defined for a bean that contains the no-interface view •	
must be designated as @Local.

Any business interface must be explicitly designated as local or remote if the bean class •	
explicitly specifies the @Local or @Remote annotation with a nonempty value.

Any business interface must be explicitly designated as local or remote if the deployment •	
descriptor specifies as such.

How It Works
The release of EJB 3.0 greatly simplified development with EJBs because it introduced the no-interface view for
making local business interfaces optional. The no-interface view automatically exposes all public methods of a
bean to the caller. By default, a no-interface view is automatically exposed by any session bean that does not include
an implements clause and has no local or remote client views defined. The EJB 3.2 release aims to provide further
granularity for those situations where local and remote interfaces need to be explicitly specified.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

444

Let’s break down the rules that were defined within the solution to this recipe. First, if an EJB exposes local
interfaces, then there is no need to explicitly denote a bean as such. For instance, the following bean contains a local
interface, although it is not explicitly denoted:

@Stateless
public class AcmeSession implements interfaceA {
 ...
}
public interfaceA { ... }

If a bean class is annotated with @Remote, then any interfaces that it implements are assumed to be remote. For
instance, the following bean class implements two interfaces, and both are assumed to be remote, although they do
not contain any annotation to indicate as such.

@Remote
@Stateless
public class AcmeSession implements interfaceA, interfaceB {
 ...
}

If a bean class contains the @Local annotation, then any interfaces that it implements are assumed to be local.
For instance, the following bean class implements two interfaces, and both are assumed to be local although they do
not contain any annotation to indicate as such:

@Local
@Stateless
public class AcmeSession implements interfaceA, interfaceB {
 ...
}

If a bean class contains the @Local or @Remote annotation and specifies an interface name within the annotation,
then the specified interface is designated the same designation as the annotated bean. For instance, the following
bean is annotated to include a local business interface, and the name of the interface is specified in the annotation,
thereby making the interface local.

@Local(interfaceA.class)
@Stateless
public class AcmeSession implements interfaceA {
 ...
}

These new designation rules make it easier to designate and determine the type of business interface that is
implemented by a bean.

9-13. Processing Messages Asynchronously
from Enterprise Beans
Problem
You want to have the ability to process messages from session beans in an asynchronous manner.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

445

Solution
Develop a message-driven bean to perform the message processing for your application. To develop a message
bean, create an EJB that is annotated with @MessageDriven, passing the appropriate configuration options. In the
bean, code a method named onMessage that will perform all of the message processing. The following example,
org.javaeerecipes.chapter09.recipe09_13.AcmeMessageBean, demonstrates how to code a message-driven bean
that processes messages from a javax.jms.Queue that has been configured within the application server container.

@MessageDriven(mappedName="jms/Queue", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})
public class AcmeMessageBean implements MessageListener {

 public AcmeMessageBean(){

 }

 @Override
 public void onMessage(Message msg) {
 if(msg != null){
 performExtraProcessing();
 System.out.println("Message has been received: " + msg);
 } else {
 System.out.println("No message received");
 }
 }

 public void performExtraProcessing(){
 System.out.println("This method could perform extra processing");
 }

}

How It Works
Message-driven beans (MDBs) are Enterprise JavaBeans that are utilized for processing messages in an asynchronous
manner. Most often MDBs are JMS message listeners, receiving messages and processing accordingly. A message-driven bean
is created by annotating a bean with the @MessageDriven annotation and optionally implementing the MessageListener
interface. When a message is received in the container queue, the container invokes the bean’s onMessage method, which
contains the business logic that is responsible for processing the message accordingly.

Note■ any session bean can be used for processing messages, but only message-driven beans can do so in an
asynchronous manner.

MDBs must be made public, and not static or final. An MDB must contain a public, no-argument constructor,
and it must contain a method named onMessage that accepts a javax.jms.Message argument. The onMessage method
is responsible for performing all message processing, and it can utilize other methods within the bean to help out,
where needed.

http://www.it-ebooks.info/

ChapTER 9 ■ ENTERpRisE JavaBEaNs

446

Bean providers may provide special configurations for MDBs to the deployers, such as information regarding
message selectors, acknowledgment modes, and so on, by means of the activationConfig element of the
@MessageDriven annotation. The EJB 3.2 release provides a standard list of activationConfig properties for
JMS 2.0 alignment. Table 9-4 lists the new properties along with a description of what they do.

Table 9-4. JMS 2.0 Aligned activationConfig Properties

Property Description

destinationLookup Provides advice to the deployer regarding whether the message-driven bean is
intended to be associated with a Queue or Topic. Values for this property are
javax.jms.Queue and javax.jms.Topic.

connectionFactoryLookup Specifies the lookup name of an administratively defined ConnectionFactory
object that will be used for a connection to the JMS provider from which a
message-driven bean will send JMS messages.

clientId Specifies the client identifier that will be used for a connection to the JMS provider
from which a message-driven bean will send JMS messages.

subscriptionName If the message-driven bean is intended to be used with a Topic, then the bean
provider can specify the name of a durable subscription with this property and set
the subscriptionDurability property to Durable.

shareSubscriptions This property is only to be used when a message-driven bean is deployed to a
clustered application server, and the value for this property can be either true
or false. A value of true means that the same durable subscription name or
nondurable subscription will be used for each instance in the cluster. A value
of false means that a different durable subscription name or nondurable
subscription will be used for each instance in the cluster.

http://www.it-ebooks.info/

447

Chapter 10

The Query API and JPQL

The Java Persistence API (JPA) utilizes a query language for communicating with underlying data stores. Although
Java EE uses entities rather than SQL for database access, it provides a query language so that developers can obtain
the required information via the entities. The Java Persistence Query Language (JPQL) does just that because it
provides a facility for querying and working with Java EE entity objects. Although it is very similar to SQL, it is an
object-relational query language, so there are some minor differences of which developers should be aware. Using
JPQL along with Java EE entities allows developers to create versatile applications because JPQL is not database-
specific and applications can be written once and deployed to run on top of a myriad of databases.

The release of Java EE 7 introduced with it the new JPA 2.1, and that means new features. For instance, some
of the improvements to the JPQL include support for stored procedures and built-in functions, downcasting
support, and outer join support with ON conditions. The recipes in this chapter will not attempt to cover all of
the features that JPQL has to offer because there are many. However, the recipes contain enough information to
introduce beginners to the world of JPQL and to get intermediate developers up-to-date with the latest that JPQL
has to offer. To review the entire set of documentation for using JPQL, please see the online resources available at
http://docs.oracle.com/javaee/7/tutorial/doc/bnbtg.html.

Note ■ To run the sources for this chapter, please set up the provided NetBeans project entitled JavaEERecipes, or
compile and deploy the sources in your own environment. You can also simply deploy the JavaEERecipes.war file that is
distributed with the book to a GlassFish v4 application server. Once you’ve deployed it, please visit the following URL to run
the example application for Chapter 10: http://localhost:8080/JavaEERecipes/faces/chapter10/home.xhtml.

Note ■ The use of the CriteriaQuery is not very prevalent nowadays since JPQL makes the querying of data much
easier. Therefore, this chapter will show you a couple of CriteriaQuery examples, but it will not go into detail on the
topic. For further information regarding the use of the Criteria API, please refer to the online documentation.

Note ■ The Netbeans IDE contains a JPQL editor that can come in handy when developing queries. For more
information, please see Appendix A.

http://docs.oracle.com/javaee/7/tutorial/doc/bnbtg.html
http://localhost:8080/JavaEERecipesJPA/faces/chapter10/home.xhtml
http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

448

10-1. Querying All Instances of an Entity
Problem
You want to retrieve all the instances for a particular entity. That is, you want to query the underlying database table
associated with the entity and retrieve all rows.

Solution #1
Call the EntityManager’s createQuery method, and use JPQL to formulate a query that will return all instances of a
given entity. In the following example, a JPQL query is used to return all objects within the BookAuthor entity:

public List<BookAuthor> findAuthor(){
 return em.createQuery("select object(o) from BookAuthor o ").getResultList();
}

When the findAuthor method is called, a List containing all of the BookAuthor entity instances in the entity
(all records in the underlying database table) will be returned.

Solution #2
Create a CriteriaQuery object by generating a criteria builder from the EntityManager object and calling its
createQuery method. Once a CriteriaQuery object has been created, generate a query by calling a series of the
CriteriaBuilder methods against the entity that you want to query. Finally, call the EntityManager’s createQuery
method, passing the query that you have previously built. Return the ResultList from the query to return all the rows
from the table. In the following lines of code, you can see this technique performed:

javax.persistence.criteria.CriteriaQuery cq = getEntityManager().getCriteriaBuilder().createQuery();
Root<BookAuthor> bookAuthor = cq.from(BookAuthor);
cq.select(bookAuthor);
return getEntityManager().createQuery(cq).getResultList();

How It Works
An entity instance can be referred to as a record in the underlying data store. That is, there is an entity instance for
each record within a given database table. That said, sometimes it is handy to retrieve all of the instances for a given
entity. Some applications may require all objects in order to perform a particular task against each, or perhaps your
application needs to simply display all of the instances of an entity for the user. Whatever the case, there are a couple
of ways to retrieve all of the instances for a given entity. Each of the techniques should occur within an EJB.

In Solution #1, the JPQL can be used to query an entity for all instances. To create a dynamic query, call the
EntityManager’s createQuery method, to which you can pass a string-based query that consists of JPQL syntax, or a
javax.persistence.Query instance. The Query interface has a sizable number of methods that can be used to work
with the query object. Table 10-1 describes what these methods do.

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

449

In the example, a query string is passed to the method, and it reads as follows:

select object(o) from BookAuthor o

To break this down, the query is selecting all objects from the BookAuthor entity. Any letter could have been used
in place of the o character within the query, but o is a bit of a standard since JPQL is referring to objects. All queries
contain a SELECT clause, which is used to define the types of entity instances that you want to obtain. In the example,
the entire instance is selected from the BookAuthor entity, as opposed to single fields that are contained within the
instance. Since the JPA works with objects, queries should always return the entire object; if you want to use only a
subset of fields from the object, then you can call upon those fields from the instance(s) returned from the query. The
object keyword is optional and is purposeful mainly for readability. The same JPQL could be written as follows:

select o from BookAuthor o

The FROM clause can reference one or more identification variables that can refer to the name of an entity, an
element of a single-valued relationship, an element of a collection relationship, or a member of a collection that is the
multiple side of a one-to-many relationship. In the example, the BookAuthor variable refers to the entity itself.

Note ■ For more information regarding the full query language syntax, please refer to the online documentation:
http://docs.oracle.com/javaee/6/tutorial/doc/bnbuf.html.

The example in Solution #2 demonstrates the use of the CriteriaQuery, which is used to construct queries
for entities by creating objects that define query criteria. To obtain a CriteriaQuery object, you can call the
EntityManager’s getCriteriaBuilder method and, in turn, call the createQuery method of the CriteriaBuilder.
The CriteriaQuery object allows you to specify a series of options that will be applied to a query so that an entity can
be queried using native Java, without hard-coding any string queries. In the example, the CriteriaQuery instance

Table 10-1. javax.persistence.Query interface Methods

Method Description

executeUpdate Executes an update or delete statement

getFirstResult Specifies the position of the first result the query object was set to retrieve

getFlushMode Gets the flush mode in effect for the query execution

getHints Gets the properties and hints and associated values that are in effect for the query instance

getLockMode Gets the current lock mode for the query

getMaxResults Specifies the maximum number of results the query object was set to retrieve

getParameter Gets the parameter object corresponding to the declared positional parameter

getParameters Gets the parameter objects corresponding to the declared parameters of the query

getParameterValue(int) Returns the value bound to the named or positional parameter

getResultList Executes a SELECT query and then returns the query results as an untyped List

getSingleResult Executes a SELECT query and then returns a single untyped result

isBound Returns a Boolean indicating whether a value has been bound to the parameter

http://docs.oracle.com/javaee/6/tutorial/doc/bnbuf.html
http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

450

is obtained by the chaining of subsequent method calls against the EntityManager and CriteriaBuilder instances.
Once the CriteraQuery is obtained, it’s from method is called, passing the name of the entity that will be queried. A
javax.persistence.criteria.Root object is returned from the call, which can then be passed to the CriteriaQuery
instance select method to return a TypedQuery object to prepare the query for execution, which can then return the
ResultList of entity instances. In the example, the final line of code chains method calls again, so you do not see the
TypedQuery object referenced at all. However, if the chaining were to be removed, the code would look as follows:

cq.select(bookAuthor);
TypedQuery<BookAuthor> q = em.createQuery(cq);
return q.getResultList();

Both the JPQL and CriteriaQuery techniques can provide similar results. Neither technique is any better than
the other, unless you prefer that the JPQL is easier to code or that CriteriaQuery is written in native Java.

10-2. Setting Parameters to Filter Query Results
Problem
You want to query an entity and retrieve only a subset of its instances that match specified criteria.

Solution
Write a JPQL dynamic query, and specify parameters that can be bound to the query using bind variables. Call the
Query object’s setParameter method to assign a parameter value to each bind variable. In the following example, a
query is written to search the Book entity for all Book instances that were written by a specified author. The BookAuthor
object in this example is a named parameter that will be bound to the query using a bind variable.

public List<Book> findBooksByAuthor(BookAuthor authorId){
 return em.createQuery("select o from Book o " +
 "where :bookAuthor MEMBER OF o.authors")
 .setParameter("bookAuthor", authorId)
 .getResultList();
}

The matching Book instances for the given author will be returned.

How It Works
It is often desirable to return a refined list of results from a query, rather than returning the entire list of records
within a database table. In standard SQL, the WHERE clause allows one or more expressions to be specified, which will
ultimately refine the results of the query. Using JPQL, the WHERE clause works in the same manner, and the process of
refining results of a query is almost identical to doing so with standard JDBC.

In the solution for this recipe, the JPQL technique is used to refine the results of a query against the Book entity
such that only instances pertaining to books written by a specified author will be returned. The findBooksByAuthor
method within the org.javaeerecipes.jpa.session.BookFacade class accepts a BookAuthor object as an argument,
and the argument will then be specified to refine the results of the query. As you’ll see in the code, a single line of
code (using the Effective Java builder pattern) within the findBooksByAuthor method performs the entire task. The
EntityManager’s createQuery method is called, passing a string-based JPQL query that includes a bind variable
named :bookAuthor. The JPQL string is as follows:

Select o from Book o where :bookAuthor MEMBER OF o.authors

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

451

After creating the query object, the Query interface’s setParameter method can be called, passing the name of
the bind variable for which you want to substitute a value, along with the value you want to substitute it with. In this
case, the String bookAuthor is passed along with the Author object you want to match against for obtaining Book
instances. If more than one parameter needs to be specified, then more than one call to setParameter can be strung
together so that each bind variable has a matching substitute. Finally, once all of the parameters have been set, the
getResultList method can be called against the Query, returning the matching objects.

Note ■ Two types of parameters can be used with JPQL: named and positional. The example in this recipe, along
with many of the others in this book, use named parameters. Positional parameters are written a bit differently in that
they are denoted within JPQL using a question mark (?) character, and a positional number is used instead of passing the
variable name to the setParameter() method. The same query that is used in this recipe can be rewritten as follows to
make use of positional parameters:

return em.createQuery("select o from Book o " +
 "where ? MEMBER OF o.authors")
 .setParameter(1, authorId)
 .getResultList();

Both named and positional parameters achieve the same results. However, I recommend against using positional
parameters because it makes code harder to manage, especially if there are more than a handful of parameters in use.
It is also easier to mistype the setParameter() calls, and if the wrong positional number is passed with an incorrect
parameter value, then issues can arise.

10-3. Returning a Single Object
Problem
You have specified JPQL for a given query that will return exactly one matching entity instance, and you want to store
it within a local object so that tasks can be performed against it.

Solution
Create a dynamic query, specifying the JPQL that is necessary for obtaining the entity instance that matches the
given criteria. The JPQL will include a bind variable that will bind the parameter to the query in order to obtain the
desired instance. The method in the following code excerpt can be found in the org.javaeerecipes.jpa.session.
BookFacade class within the sources:

public Book findByTitle(String title){
 return (Book) em.createQuery("select object(o) from Book o " +
 "where o.title = :title")
 .setParameter("title", title.toUpperCase())
 .getSingleResult();
}

To invoke the method and return results, the previous method, which resides within an EJB, can be invoked
from within a JSF managed bean controller. The method that is defined within the controller can subsequently be
referenced from within a JSF view to display the results.

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

452

How It Works
A single entity instance can be retrieved by specifying a query, along with the necessary parameters to refine the
possible matches to a single object. The javax.persistence.Query interface’s getSingleResult method allows just
one instance to be returned, given that there is only one instance that matches the given query specification. In the
example to this recipe, you assume that each Book instance has a unique name to identify it. Therefore, you can be
sure that when a name is bound to the query, it will return a single result.

Problems can arise if more than one instance matches the criteria. An attempt to call getSingleQuery using a
query that returns more than one instance will result in a NonUniqueResultException being thrown. It is a good idea
to catch this exception within your applications to avoid ugly error messages being displayed to the user if more than
one matching instance exists. Another case to watch out for is when a query returns no result at all. If no result is
returned, then a NoResultException will be thrown.

10-4. Creating Native Queries
Problem
The query you want to use against an entity contains some SQL functionality that pertains to the specific database
vendor that your application is using, or you are more comfortable working with standard SQL than using JPQL. That
said, you want to use standard SQL to query one of your entity objects.

Note ■ When using native queries, you will be forced to work against database records, rather than Java objects. For
this reason, many Java experts recommend the use of JPQL unless absolutely necessary.

Solution #1
Create a native query by calling the EntityManager object’s createNativeQuery method, and pass a SQL query as the
first parameter and pass the entity class that you want to return the results of the query into as the second parameter.
Once the query has been created, call one of the corresponding javax.persistence.Query methods (see Table 10-1)
to return the results. The following example taken from the org.javaeerecipes.jpa.session.BookFacade EJB
demonstrates the use of a native query on the Book entity:

public List<Book> obtainNativeList(){
 Query query = em.createNativeQuery(
 "select id, title, description " +
 "FROM BOOK " +
 " ORDER BY id", org.javaeerecipes.jpa.entity.Book.class);
 return query.getResultList();

}

Solution #2
Specify a @NamedNativeQuery within the entity class for the entity class that you want to query. Provide a name, query,
and mapping class for the @NamedNativeQuery via the annotation. Within the EJB method, call the EntityManager
object’s createNativeQuery method, and provide the name that was specified as a named native query rather than a

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

453

SQL string. The following code excerpt demonstrates the creation of a named native query for the org.javaeerecipes.
jpa.entity.Book entity:

. . .
@Entity
@Table(name="BOOK")
@NamedNativeQuery(
 name="allBooks",
 query = "select id, title, description " +
 "FROM BOOK " +
 "ORDER BY id",
 resultClass=Book.class)
. . .

Next, let’s take a look at how the named native query is invoked from within the EJB. The following excerpt of
code is taken from the org.javaeerecipes.jpa.session.BookFacade bean, and it demonstrates the invocation of the
allBooks named native query:

public List<Book> obtainNamedNativeList(){
 Query query = em.createNamedQuery(
 "allBooks", org.javaeerecipes.jpa.entity.Book.class);
 return query.getResultList();

}

How It Works
Native queries provide a way to utilize native SQL code for retrieving data from an underlying data store within an EJB.
Not only do they allow an inexperienced JPQL developer to write in native SQL, but they also allow native SQL syntax,
such as Oracle-specific PL/SQL functions, or procedure calls to be made directly within an EJB. On the downside,
however, native queries do not return results in an entity-oriented fashion, but rather as plain old objects. For this reason,
the named native query provides the option to specify an entity class into which the results should be returned.

There are a handful of ways to work with native queries, and I’ve covered a couple of the most commonly
used tactics in this recipe. A javax.persistence.Query is generated either by calling the EntityManager’s
createNativeQuery method or by calling the EntityManager’s createNamedQuery method and passing a named
native query. In Solution #1, a String-based SQL query is used to retrieve results into an entity class. For starters,
the createNativeQuery method accepts a query in String format, or a named native query, for the first parameter.
In Solution #1, a query is used to obtain all the records from the BOOK database table. The second argument to
the createNativeQuery method is an optional mapping class into which the results of the query will be stored.
Solution #1 specifies Book.class as the second parameter, which will map the columns of the database table to their
corresponding fields within the Book entity. Once the Query instance is created, then its methods can be invoked in
order to execute the query. In this case, the getResultSet method is invoked, which will return a List of the matching
records and bind each of them to a Book entity class instance.

In Solution #2, a named native query is demonstrated. Named native queries allow the SQL string to be specified
once within the corresponding entity class, and then they can be executed by simply passing the String-based name
that has been assigned to the named native query. To utilize a named native query, add the @NamedNativeQuery
annotation to the entity class that you want to query, and then specify values for the three parameters of the
annotation: name, query, and resultClass. For the name parameter of the @NamedNativeQuery annotation, a String-
based name that will be used to reference the query must be specified, the query parameter must be the native SQL
string, and the resultClass must be the entity class that the query results will be stored into. The @NamedNativeQuery
also includes the resultSetMapping parameter that can be used to specify a SqlResultSetMapping for those queries

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

454

involving more than one table. To execute the named native query, use the same technique as demonstrated in
Solution #1, but instead call the EntityManager object’s createNamedQuery method. Instead of specifying a SQL
String, pass the name that was specified within the @NamedNativeQuery annotation.

Note ■ If the named query involves more than one database table, then a SqlResultSetMapping must be defined.
Please see Recipe 10-5 for more details.

In some cases using a native SQL query is the only solution for retrieving the data that your application requires.
In all cases, it is recommended that JPQL be used, rather than native SQL, if possible. However, for those cases where
native SQL is the only solution, then creating a native query using one of the techniques provided in this recipe is
definitely the way to go. Which technique is better? Well, that depends on what you need to do. If you are trying to
create a dynamic query, whereas the actual SQL String for the query may change dynamically, then the standard
native query is the solution for you. However, if the SQL query that you are specifying will not change in a dynamic
manner, then perhaps the named native query is the best choice for two reasons. First, the named native query allows
SQL to be organized and stored within a single location, which is the entity class on which the SQL is querying.
Second, named native queries can achieve better performance because they are cached after the first execution.
Therefore, the next time the named native query is called, the SQL does not have to be recompiled. Such is not the
case with a standard native query. Each time a standard native query is called, the SQL must be recompiled, which
ultimately means that it will not be executed as fast.

10-5. Querying More Than One Entity
Problem
The JPQL or native SQL query being used references more than one entity or underlying database table, and therefore
the results cannot be stored into a single entity object.

Solution #1
Use a SqlResultSetMapping, which allows the specification of more than one entity class for returning query results.
The @SqlResultSetMapping annotation can be specified in order to map a result set to one or more entities, allowing
the joining of database tables to become a nonissue. In the following example, the BOOK and BOOK_AUTHOR database
tables are joined together using a native SQL query, and the results are returned using a SqlResultSetMapping. The
following @SqlResultSetMapping can be found within the org.javaeerecipes.jpa.entity.BookAuthor entity class:

@SqlResultSetMapping(name="authorBooks",
 entities= {
 @EntityResult(entityClass=org.javaeerecipes.jpa.entity.Book.class, fields={
 @FieldResult(name="id", column="BOOK_ID"),
 @FieldResult(name="title", column="TITLE")
 }),
 @EntityResult(entityClass=org.javaeerecipes.jpa.entity.BookAuthor.class, fields={
 @FieldResult(name="id", column="AUTHOR_ID"),
 @FieldResult(name="first", column="FIRST"),
 @FieldResult(name="last", column="LAST")
 })
 })

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

455

Next, let’s look at how the SqlResultSetMapping is used. The following method is taken from the org.
javaeerecipes.jpa.session.BookAuthorFacade session bean:

public List findAuthorBooksMapping(){

 Query qry = em.createNativeQuery(
 "select b.id as BOOK_ID, b.title as TITLE, " +
 "ba.id AS AUTHOR_ID, ba.first as FIRST, ba.last as LAST " +
 "from book_author ba, book b, author_work aw " +
 "where aw.author_id = ba.id " +
 "and b.id = aw.book_id", "authorBooks");

 return qry.getResultList();
}

The resulting List can then be referenced from within a JSF dataTable, or another client data iteration device, in
order to display the results of the query.

Solution #2
Utilize a native query to return the necessary fields from more than one database table, and return the results to a
HashMap, rather than to an entity class. In the following method taken from the org.javaeerecipes.jpa.session.
BookAuthorFacade session bean, this technique is demonstrated:

public List<Map> findAuthorBooks(){

 Query qry = em.createNativeQuery(
 "select ba.id, ba.last, ba.first, ba.bio, b.id, b.title, b.image, b.description " +
 "from book_author ba, book b, author_work aw " +
 "where aw.author_id = ba.id " +
 "and b.id = aw.book_id");

 List<Object[]> results = qry.getResultList();
 List data = new ArrayList<HashMap>();

 if (!results.isEmpty()) {
 for (Object[] result : results) {
 HashMap resultMap = new HashMap();
 resultMap.put("authorId", result[0]);
 resultMap.put("authorLast", result[1]);
 resultMap.put("authorFirst", result[2]);
 resultMap.put("authorBio", result[3]);
 resultMap.put("bookId", result[4]);
 resultMap.put("bookTitle", result[5]);
 resultMap.put("bookImage", result[6]);
 resultMap.put("bookDescription", result[7]);

 data.add(resultMap);
 }

 }
 return data;
}

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

456

Using this solution, no SqlResultSetMapping is required, and the results are manually stored into a Map that can
be referenced from a client, such as a JSF view.

How It Works
The SqlResultSetMapping can come in handy when you need to map your ResultSet to two or more entity classes.
As demonstrated in the first solution to this recipe, configure the mapping by specifying a @SqlResultSetMapping
annotation on the entity class of which you are querying. SqlResultSetMapping is useful when working with native
queries and joining underlying database tables.

In the example, the @SqlResultSetMapping annotation is used to create a mapping between the Book and BookAuthor
entity classes. The @SqlResultSetMapping annotation accepts a few different parameters, as described in Table 10-2.

Table 10-2. SqlResultSetMapping Parameters

Parameter Description

name String-based name for the SqlResultSetMapping

entities One or more @EntityResult annotations, denoting entity classes for the mapping

columns One or more columns against which to map a resultSet, designated by
@FieldResult or @ColumnResult annotations

To use a SqlResultSetMapping, simply specify its name rather than an entity class when creating the native query.
In the following excerpt taken from the solution, the query results are mapped to the authorBooks SqlResultSetMapping:

Query qry = em.createNativeQuery(
 "select b.id as BOOK_ID, b.title as TITLE, " +
 "ba.id AS AUTHOR_ID, ba.first as FIRST, ba.last as LAST " +
 "from book_author ba, book b, author_work aw " +
 "where aw.author_id = ba.id " +
 "and b.id = aw.book_id", "authorBooks");

The List of results that is returned from this query can be utilized within a client, such as a JSF view, in the same
manner as any List containing a single entity’s results. The SqlResultSetMapping allows fields of an entity class to be
mapped to a given name so that the name can then be specified in order to obtain the value for the mapped field. For
instance, the following JSF dataTable source is taken from the chapter10/recipe10_05a.xhtml view, and it displays
the List of results from the query in the solution:

<h:dataTable id="table" value="#{authorController.authorBooks}"
 var="authorBook">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Book ID"/>
 </f:facet>
 <h:outputText value="#{authorBook.id}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Title"/>
 </f:facet>
 <h:outputText value="#{authorBook.title}"/>
 </h:column>

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

457

 <h:column>
 <f:facet name="header">
 <h:outputText value="Author"/>
 </f:facet>
 <h:outputText value="#{authorBook.first} #{authorBook.last}"/>
 </h:column>

 </h:dataTable>

As mentioned previously, entity fields can be mapped to a specified field returned from the database within the
native SQL query. You can do so by specifying either the @FieldResult or @ColumnResult annotation for the columns
parameter of a @SqlResultSetMapping annotation. For instance, in the example, you return only the TITLE and BOOK_ID
columns from the BOOK database table, as well as the AUTHOR_ID, FIRST, and LAST columns from the BOOK_AUTHOR
table. You include the SQL in the native query to join the tables and retrieve the values from these columns and return
a SqlResultSetMapping that corresponds the following:

@SqlResultSetMapping(name="authorBooks",
 entities= {
 @EntityResult(entityClass=org.javaeerecipes.jpa.entity.Book.class, fields={
 @FieldResult(name="id", column="BOOK_ID"),
 @FieldResult(name="title", column="TITLE")
 }),
 @EntityResult(entityClass=org.javaeerecipes.jpa.entity.BookAuthor.class, fields={
 @FieldResult(name="id", column="AUTHOR_ID"),
 @FieldResult(name="first", column="FIRST"),
 @FieldResult(name="last", column="LAST")
 })
 })

In Solution #2, no SqlResultSetMapping is used, and instead the results of the query are returned into a List of
HashMap objects, rather than entity objects. The query returns a list of Object[], which can then be iterated over in
order to make the data accessible to the client. As shown in the example, after the list of Object[] is obtained, a for
loop can be used to iterate over each Object[], obtaining the data for each returned database record field and storing
it into a HashMap. To access the field data, specify a positional index that corresponds to the position of the database
field data that you want to obtain. The positional indices correlate to the ordering of the returned fields within the
SQL query, beginning with an index of 0. Therefore, to obtain the data for the first field returned in the query, specify
an index of 0 on the Object for each row. As the Object[] is traversed, each database record can be parsed, in turn,
obtaining the data for each field in that row. The resulting data is then stored into the HashMap, and a String-based key
that corresponds to the name of the returned field is specified so that the data can be made accessible to the client.

When accessing a HashMap of results from a client, such as a JSF view, the data can be accessed in the same
fashion as if a standard entity list were being used. This is because each HashMap element contains a key field that
corresponds to the name of the data field. The following excerpt, taken from chapter10/recipe10_05b.xhtml,
demonstrates how to use the results of a native query that have been stored into a HashMap using this technique.

<h:dataTable id="table" value="#{authorController.authorBooks}"
 var="authorBook">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Title"/>
 </f:facet>
 <h:outputText value="#{authorBook.bookTitle}"/>
 </h:column>

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

458

 <h:column>
 <f:facet name="header">
 <h:outputText value="Author"/>
 </f:facet>
 <h:outputText value="#{authorBook.authorFirst} #{authorBook.authorLast}"/>
 </h:column>

 </h:dataTable>

The SqlResultSetMapping makes it possible to use customized queries and joins into returning results via entity
class objects. It is one more of the techniques that help complete the object-relational mapping (ORM) experience
when using JPA.

10-6. Calling JPQL Aggregate Functions
Problem
You want to return the total number of records from a database table that match specified filtering criteria. For
example, you want to return the total count of BookAuthor instances for a specified book.

Solution
Use the JPQL aggregate function COUNT to return the total number of objects that match the given query. The following
method, which resides within the org.javaeerecipes.jpa.session.AuthorWorkFacade class, uses the COUNT
aggregate function:

public Long findAuthorCount(Book book){
 Query qry = em.createQuery("select COUNT(o.authorId) from AuthorWork o " +
 "where o.bookId = :book")
 .setParameter("book", book.id);
 return (Long) qry.getSingleResult();
}

The function will return a Long result, which will be the count of matching AuthorWork results.

How It Works
Aggregate functions are those that can group values of multiple rows together on certain criteria to form a single value.
Native SQL contains aggregate functions that can be useful for calculating the sum of all rows in a particular table,
maximum values of a column, first values within a column, and so on. JPQL contains a number of aggregate functions
that can be used within queries. In this recipe, the example demonstrates the use of the COUNT function, which returns
the total number of rows in an underlying data store table. The value is calculated and returned as a Long data type,
which can be cast from a call to the javax.persistence.Query object’s getSingleResult method. However, there are
a number of other functions at your disposal. Table 10-3 lists those functions and their return type.

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

459

If a particular database record contains a NULL value for a column to which an aggregate function is being
applied, then that NULL value is eliminated before the function is applied. The DISTINCT keyword can be used to
specify that any duplicate values should be eliminated before the function is applied. The following line of code
demonstrates the use of DISTINCT:

Query qry = em.createQuery("select DISTINCT(COUNT(o.title)) from Book o");

The important thing to remember when using aggregate functions is that they are applied to the same field within
all objects that satisfy the query. This is analogous to the function being applied to all values returned for a single
column’s results within a query.

10-7. Invoking Database Stored Procedures Natively
Problem
The application you are writing uses JPQL and relies on one or more database stored procedures to perform tasks
on the data. You need to have the ability to call those stored procedures from within the business logic of your Java
application code.

Solution
Create a native query, and write a SQL String that executes the database stored procedure. Suppose you have a
database procedure named CREATE_USER and it accepts two arguments: username and password. You can invoke the
CREATE_USER procedure by calling it via a native SQL query. The following method, named createUser, accepts a user
name and password as arguments and passes them to the underlying database procedure and executes it:

public void createUser(String user, String pass){
 Query qry = (Query) em.createNativeQuery("select CREATE_USER('" + user + "','" + pass + "')
 from dual");
 qry.getSingleResult();
}

Table 10-3. JPQL Aggregate Functions

Function Description Return Type

COUNT Total number of records Long

MAX Record with largest numeric value Same as field to which applied

MIN Record with lowest numeric value Same as field to which applied

AVG Average of all numeric values in column Double

SUM Sum of all values in column Long when applied to integral types

Double when applied to floating-point

BigInteger when applied to BigInteger

BigDecimal when applied to BigDecimal

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

460

How It Works
Historically, the only way to work with database-stored procedures from JPA was to utilize a native query. The solution
to this recipe demonstrates this tactic because a native query is used to invoke a database-stored procedure. In the
example, a method named createUser accepts two parameters, username and password, which are both passed to
the database stored procedure named CREATE_USER via the native query. The EntityManager’s createNativeQuery
method is called, and a SQL String that performs a SELECT on the stored procedure is passed to the method. In SQL,
performing a SELECT on a stored procedure will cause the procedure to be executed. Notice that the DUAL table is being
referenced in the SQL. The DUAL is a dummy table that can be used when you need to apply SELECT statements to
different database constructs, such as a stored procedure.

Execution of native SQL is an acceptable solution for invoking stored procedures that have no return values or
when you have only a limited number of SQL statements to maintain. However, in most enterprise situations that
require an application with multiple stored procedure calls or calls that require a return value, the
@NamedStoredProcedure solution in Recipe 9-10 can be advantageous.

10-8. Joining to Retrieve Instances Matching All Cases
Problem
You want to create joins between entities in order to return fields from more than one underlying database table.

Solution
Use JPQL to create a join between two entities that share a one-to-many and many-to-one relationship with each
other. In this example, a one-to-many relationship is set up against the Book and Chapter entities such that one book
can contain many chapters. The following excerpt from the org.javaeerecipes.jpa.entity.Book class demonstrates
the one-to-many relationship declaration:

@OneToMany(mappedBy="book", cascade=CascadeType.ALL)
 private List<Chapter> chapters = null;

The Chapter entity contains a many-to-one relationship with the Book entity, such that many chapters can be
related to one book. The following excerpt from the org.javaeerecipes.jpa.entity.Chapter class demonstrates the
many-to-one relationship:

@ManyToOne
 @JoinColumn(name = "BOOK_ID")
 private Book book;

Ultimately, the join query is contained within a method named findBookByChapterTitle, which resides in the
org.javaeerecipes.jpa.session.Chapter session bean. The following code excerpt contains the lines of code that
make up that method:

public List<Book> findBookByChapterTitle(String chapterTitle){
 return em.createQuery("select b from Book b INNER JOIN b.chapters c " +
 "where c.title = :title")
 .setParameter("title", chapterTitle)
 .getResultList();
}

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

461

Note ■ To return several different properties within the SELECT clause, rather than an object, the result will be returned
in an Object[]. To find out more about working with such a solution, please refer to Solution #2 of Recipe 10-5.

How It Works
The most common type of database table join operation is known as an inner join. When performing an inner join,
all of the columns from each table will be available to be returned as if it were a single, combined table. To create a
join between two entities, they must be related to each other via a one-to-many relationship. This means that one of
the entities could contain an instance that possibly contains many references to the other entity, whereas the other
entity could have many instances that would reference only one instance of the other entity. In the example for this
recipe, the Book entity has a one-to-many relationship with the Chapter entity. This means that a single book may
contain many chapters.

The example for this recipe demonstrates a join between the Book and Chapters entities. The method
findBookByChapterTitle contains a JPQL query that will return any Book objects that contain a matching chapter
title. To generate an inner join query, invoke the EntityManager object’s createQuery method, passing the String-
based JPQL query that contains the join syntax. A JPQL string for performing an inner join should be written in the
following format, where INNER is an optional (default) keyword:

SELECT a.col1, a.col2 from Entity1 a [INNER] JOIN a.collectionColumn b WHERE expressions

In the example, an entire Book instance will be returned for each Book entity that contains a Chapter instance,
which has a title matching the parameter. Typically the join occurs over a foreign key, and in the case of the one-to-
many relationship, it occurs on the field that is a collection of the related entity’s instances.

10-9. Joining to Retrieve All Rows Regardless of Match
Problem
You want to create joins between entities in order to produce results that will include all objects of the left entity listed
and matching results or NULL values when there is no match from the right entity listed.

Solution
In this example, a one-to-many relationship is set up against the Book and Chapter entities such that one book can
contain many chapters. The following excerpt from the org.javaeerecipes.jpa.entity.Book class demonstrates the
one-to-many relationship declaration:

@OneToMany(mappedBy="book", cascade=CascadeType.ALL)
 private List<Chapter> chapters = null;

The Chapter entity has a many-to-one relationship with the Book entity, such that many chapters can be related
to one book. The following excerpt from the org.javaeerecipes.jpa.entity.Chapter class demonstrates the many-
to-one relationship:

@ManyToOne
 @JoinColumn(name = "BOOK_ID")
 private Book book;

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

462

The code that contains the left outer join query resides within the findAllBooksByChapterNumber method, which
is contained within the org.javaeerecipes.jpa.session.ChapterFacade class. The following excerpt taken from the
class lists the method implementation:

public List<Book> findAllBooksByChapterNumber(BigDecimal chapterNumber){
 return em.createQuery("select b from Book b LEFT OUTER JOIN b.chapters c " +
 "where c.chapterNumber = :num")
 .setParameter("num", chapterNumber)
 .getResultList();
}

How It Works
An outer join, otherwise known as a LEFT OUTER JOIN or LEFT JOIN, is not as common of an occurrence as an inner
join. To explain an outer join in database terminology, all rows of the table listed on the left side of the JOIN keyword
are returned, and only those matching rows from the table listed to the right of the keyword will be returned. In other
words, an outer join enables the retrieval of a set of database records where a matching value within the join may not
be present. In JPA terminology, all instances of the entity class to the left of the JOIN keyword will be returned.

Outer joins on entities usually occur between two related entities in which there is a one-to-many relationship, or
vice versa. To form an outer join JPQL query, use the following format, where the [OUTER] keyword is optional:

SELECT a.col1, a.col2 FROM Entity1 a LEFT [OUTER] JOIN a.collectionColumn b WHERE expression

In the example, all Book objects would be returned, but only those Chapter objects that match the specified
criteria would be included in the ResultSet.

10-10. Applying JPQL Functional Expressions
Problem
You want to apply functions within your JPQL Strings to alter the results of the execution. For example, you are
interested in altering Strings that will be used within the WHERE clause of your JPQL query.

Solution
Utilize any of the built-in JPQL functions to apply functional expressions to your JPQL. To alter Strings that are
utilized within a JPQL query, develop the query containing String functions that will be applied within the WHERE
clause of the query. In the following example, the UPPER function is utilized in order to change the case of the given
text into all uppercase letters. In this case, a search page has been set up for users to enter an author’s last name and
search the database for a match. The String that the user enters is converted to uppercase and used to query the
database.

The following lines of code are taken from the search view, which resides within the JSF view that resides in the
chapter10/recipe10_10.xhtml file.

<ui:composition template="layout/custom_template_search.xhtml">
 <ui:define name="content">
 <h:form>
 <h2>Recipe 10-10: Using JPA String Functions</h2>

 <p>Enter an author's last name below to search the author database.</p>

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

463

 <h:outputLabel value="Last Name:"/>
 <h:inputText id="last" value="#{authorController.authorLast}" size="75"/>

 <h:commandButton value="Search" action="#{authorController.findAuthorByLast}"/>

 </h:form>
 </ui:define>
 </ui:composition>

Next, the code for the managed bean controller method, findAuthorByLast, is listed next. This method resides
within the org.javaeerecipes.jpa.jsf.AuthorController class. This code is responsible for populating the
authorList and then directing navigation to the recipe10_10b.xhtml view.

public String findAuthorByLast(){
 authorList = ejbFacade.findAuthorByLast(authorLast);
 return "/chapter10/recipe10_10b.xhtml";
}

Lastly, the EJB method named findAuthorByLast(String) is contained within the org.javaeerecipes.jpa.
session.BookAuthorFacade class. The method accepts the String value that the user entered into the web search
form and uses it to query the database for a matching author.

public List<BookAuthor> findAuthorByLast(String authorLast){
 return em.createQuery("select o from BookAuthor o " +
 "where o.last = UPPER(:authorLast)")
 .setParameter("authorLast", authorLast).getResultList();
}

The resulting page will display any author names that match the text that was entered by the user.

How It Works
The JPA query language contains a handful of functions that can be used to manipulate Strings, perform arithmetic,
and make dates easier to work with. The functions can be specified within the WHERE or HAVING clause of JPQL query
Strings. JPQL contains a number of String functions. Table 10-4 lists the different String functions that are available,
along with a description of what they do.

Table 10-4. JPQL String Functions

Function Description

CONCAT(string1, string2) Returns a concatenated String composed of the two arguments.

SUBSTRING(string, expr1, expr2) Returns a substring of the specified String. The first position within the
substring is denoted by expr1, and the length of the substring is denoted
by expr2.

TRIM([[spec][char]FROM]str) Trims a specified character (spec) from a string (str).

LOWER(string) Returns the given String in all lowercase letters.

UPPER(string) Returns the given String in all uppercase letters.

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

464

There are also a number of functions within JPQL to help perform arithmetic within queries. Table 10-5 lists the
different arithmetic functions that are available, along with a description of what they do.

Working with dates from any programming language can sometimes be a bit tough. The JPQL contains a handful
of helpful datetime functions to make it a bit easier. Table 10-6 lists the different datetime functions that are available,
along with a description of what they do.

Table 10-5. JPQL Arithmetic Functions

Function Description

ABS(expr) Returns the absolute value. Takes a numeric argument and returns a number of the same type.

SQRT(expr) Returns the square root value. Takes a numeric argument and returns a double.

MOD(expr1, expr2) Returns the modulus value in integer format.

SIZE(collection) Returns the total number of elements in the given collection in integer format. If the
collection contains no elements, it evaluates to zero.

Table 10-6. JPQL Datetime Functions

Function Description

CURRENT_DATE Returns the current date

CURRENT_TIME Returns the current time

CURRENT_TIMESTAMP Returns the current timestamp

10-11. Forcing Query Execution Rather Than Cache Use
Problem
The default EntityManager is using cached results from a database query, and you want to force a query to be
executed each time a table is loaded, rather than allowing the results of the cache to be displayed.

Solution
After the javax.persistence.Query instance is created, set a hint, javax.persistence.cache.retrieveMode, to
bypass the cache and force the query to be executed. In the following lines of code, the Book entity is queried, and the
cache is bypassed by setting the hint:

public List<Book> findAllBooks(){
 Query qry = em.createQuery("select o from Book o");
 qry.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);
 return qry.getResultList();
}

Upon execution, the query will be forced to execute, returning the most current results from the underlying
database table.

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

465

How It Works
There are often occasions when an application requires the most current table data to be displayed or used for
performing a given task. For instance, if you were to write a stock market application, it would not make sense to
cache the current market results since stale data would not be very useful to investors. In such cases, it is imperative
to force queries to be executed and bypass any caching. This is possible via the use of hints that can be registered with
javax.persistence.Query instances.

By setting the javax.persistence.cache.retrieveMode hint to CacheRetrieveMode.BYPASS, the JPA is told to
always force the execution of a query. When the query is executed, it will always return the most current results from
the database.

10-12. Performing Bulk Updates and Deletes
Problem
You want to update or delete a group of entity objects.

Solution
Perform a bulk update or deletion using the Criteria API. The Criteria API allows the use of the Builder pattern
for specifying entity operations. In the following example, a bulk update is performed on the Employee entity. The
following example method resides in a session bean class for the org.javaeerecipes.jpa.entity.Employee entity.
The session bean class name is org.javaeerecipes.jpa.session.EmployeeSession.java, and the following excerpt
from that class shows how to perform a bulk update:

. . .
public String updateEmployeeStatusInactive() {
 String returnMessage = null;
 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.class);
 Root<Employee> e = q.from(Employee.class);
 q.set(e.get("status"), "ACTIVE")
 .where(builder.equal(e.get("status"), "INACTIVE"));
 Query criteriaUpd = em.createQuery(q);
 int result = criteriaUpd.executeUpdate();
 if (result > 0){
 returnMessage = result + " records updated";
 } else {
 returnMessage = "No records updated";
 }
 return returnMessage;
}
. . .

Similarly, the Criteria API can be used to perform a bulk deletion. The following method, also within the
EmployeeSession bean, demonstrates how to do so:

. . .
 public String deleteEmployeeOnStatus(String condition) {
 CriteriaBuilder builder = em.getCriteriaBuilder();

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

466

 CriteriaDelete<Employee> q = builder.createCriteriaDelete(Employee.class);
 Root<Employee> e = q.from(Employee.class);
 q.where(builder.equal(e.get("status"), condition));
 return null;
 }
. . .

How It Works
The Criteria API has been enhanced to support bulk updates and deletions. The Criteria API allows developers to
utilize Java language syntax in order to perform database queries and manipulations, rather than JPQL or SQL.
A javax.persistence.criteria.CriteriaUpdate object can be used to perform bulk update operations, and a
javax.persistence.critera.CriteriaDelete object can be used to perform bulk deletion operations. How do
we obtain such objects? The Criteria API is dependent upon the javax.persistence.criteria.CriteriaBuilder
interface, which is used to return objects that can be used to work with specified Entity classes. In the JPA 2.1 release,
the CriteriaBuilder has been updated to include the methods createCriteriaUpdate and createCriteriaDelete,
which will return the CriteriaUpdate or CriteriaDelete object, respectively.

To use the CriteriaBuilder, you first need to obtain a CriteriaBuilder from the EntityManager. You can then
use the CriteriaBuilder to obtain the CriteriaUpdate or CriteriaDelete object of your choosing. In the following
lines of code, a CriteriaUpdate object is obtained for use with an Employee entity:

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaUpdate<Employee> q = builder.createCriteriaUpdate(Employee.class);

Once obtained, the CriteriaUpdate can be used to build a query and set values, as desired, for making the
necessary updates or deletions. In the following excerpt, the CriteriaUpdate object is used to update all Employee
objects that have a status of INACTIVE, changing that status to ACTIVE:

Root<Employee> e = q.from(Employee.class);
q.set(e.get("status"), "ACTIVE")
 .where(builder.equal(e.get("status"), "INACTIVE"));

Let’s break this down a bit to explain what exactly is going on. First, the query root is set by calling the q.from
method and passing the entity class for which you want to obtain the root, where q is the CriteriaUpdate object. Next,
the q.set method is invoked, passing the Path to the Employee status attribute, along with the ACTIVE String. The
q.set method is performing the bulk update. To further refine the query, a WHERE clause is added by adding a chained
call to the .where method and passing the Employee objects that have a status of INACTIVE. The entire criteria can be
seen in the solution for this recipe.

Finally, to complete the transaction, you must create the Query object and then execute it using the following
lines of code:

Query criteriaUpd = em.createQuery(q);
criteriaUpd.executeUpdate();

The bulk deletion is very similar, except instead of using the CriteriaBuilder to obtain a CriteriaUpdate object,
use it to obtain a CriteriaDelete object instead. To obtain a CriteriaDelete object, call the CriteriaBuilder
createCriteriaDelete method, as follows:

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaDelete<Employee> q = builder.createCriteriaDelete(Employee.class);

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

467

Once a CriteriaDelete object has been obtained, then the conditions for deletion need to be specified by
filtering the results using a call (or chain of calls) to the .where method. When using the bulk delete, all objects that
match the specified condition will be deleted. For example, the following lines of code demonstrate how to delete all
Employee objects that have the status attribute equal to INACTIVE:

Root<Employee> e = q.from(Employee.class);
q.where(builder.equal(e.get("status"), "INACTIVE"));

Note ■ Both the CriteriaUpdate and CriteriaDelete examples demonstrated can be made more type-safe by using
the MetaModel API. For each entity class in a particular persistence unit, a metamodel class is created with a trailing underscore,
along with the attributes that correspond to the persistent fields of the entity class. This metamodel can be used to manage
entity classes and their persistent state and relationships. Therefore, instead of specifying an error-prone String in the Path to
obtain a particular attribute, you could specify the metamodel attribute instead, as follows: e.get(Employee_.status).

For more information on using the MetaModel API to create type-safe queries, please refer to the online documentation.

The Criteria API can be very detailed, and it is also very powerful. To learn more about the Criteria API, please see
the documentation online at http://docs.oracle.com/javaee/7/tutorial/doc/gjitv.html.

10-13. Retrieving Entity Subclasses
Problem
You want to obtain the data for an entity, along with all of the data from that entity’s subclasses.

Solution
Utilize the downcasting feature of the Java EE 7 JPA API. To do so, specify the TREAT keyword within the FROM and/or
WHERE clause of a JPA query in order to filter the specified types and subtypes that you want to retrieve. In the following
example, the query will return all BookStore entities that are from the IT book. The assumption is that the ItCategory
entity is a subtype of the BookCategory entity. The method in the example, named getBookCategories, resides within
the org.javaeerecipes.session.BookCategoryFacade session bean.

public List getBookCategories(){
 TypedQuery<Object[]> qry = em.createQuery("select a.name, a.genre, a.description " +
 "from BookStore s JOIN TREAT(s.categories as ItCategory) a", Object[].class);

 List data = new ArrayList();
 if (!qry.getResultList().isEmpty()) {
 List<Object[]> tdata = qry.getResultList();
 for (Object[] t : tdata) {
 HashMap resultMap = new HashMap();
 resultMap.put("name", t[0]);
 resultMap.put("genre", t[1]);
 resultMap.put("categoryDesc", t[2]);
 data.add(resultMap);
 }
 }
 return data;
}

http://docs.oracle.com/javaee/7/tutorial/doc/gjitv.html
http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

468

When invoked, this query will return data from the ItCategory entity, which is a subclass of the BookCategory
entity, as per the previous description. To better understand how to relate the entities, please refer the code within the
two entities, located within the org.javaeerecipes.entity.BookCategory.java and org.javaeerecipes.entity.
ItCategory.java files in the book sources.

How It Works
The act of downcasting is defined as the casting of a base type or class reference to one of its derived types or classes.
The Java EE 7 platform introduces the concept of downcasting to JPA by providing the ability to obtain a reference to a
subclass of a specified entity within a query. In other words, you can explicitly query one or more entities and retrieve
the attributes from each of the entities as well as any attributes from entities that are subclasses of those that are
explicitly declared. To provide this ability, the new TREAT keyword has been added to JPA.

The use of the TREAT operator is supported for downcasting within path expressions in the FROM and WHERE
clauses. The first argument to the TREAT operator should be a subtype of the target type; otherwise, the path is
considered to have no value, attributing nothing to the end result. The TREAT operator can filter on the specified types
and subtypes, as well as perform a downcast.

The syntax for use of the TREAT operator is as follows:

SELECT b.attr1, b.attr2
FROM EntityA a JOIN TREAT(a.referenceToEntityB as EntityBSubType) b

In the previous JPQL, the TREAT operation contains an attribute from the specified entity (EntityA) that relates to
a joined entity (EntityB). The TREAT operation tells the container to treat the referenced entity (EntityB) as the type of
EntityBSubtype. Therefore, the downcast takes place and allows access to those subtype entities. The following lines
of code demonstrate this technique in action:

SELECT a.name, a.genre, a.description
FROM BookStore s JOIN TREAT(s.categories AS ItCategory) a

As mentioned previously, the TREAT operator can also be used within the WHERE clause in order to filter a query
based upon subtype attribute values. Downcasting support adds yet another feature to the scope of JPA, making it
even more flexible for developers to use. This technique will make it easier to obtain values from related entities or
subtypes, without the need to issue an extra query.

10-14. Joining with ON Conditions
Problem
You want to retrieve all the entities that match the specified criteria for joining two entities, along with each entity that
does not match on the left side of an OUTER join.

Solution
Utilize the ON condition to specify a join of two or more entity classes based upon the specified filtering criteria. The
following method includes the JPQL for retrieving all Jobs entities, along with a count of the number of Employee
entities that belong to those Jobs. This method, named obtainActiveEmployeeCount, utilizes the ON condition to filter
the join based upon the Employee status.

http://www.it-ebooks.info/

ChAPTER 10 ■ ThE QUERY API AND JPQL

469

public List obtainActiveEmployeeCount() {
 TypedQuery<Object[]> qry = em.createQuery("SELECT j.title, count(e) "
 + "FROM Jobs j LEFT JOIN j.employees e "
 + "ON e.status = 'ACTIVE' "
 + "WHERE j.salary >= 50000 "
 + "GROUP BY j.title", Object[].class);

 List data = new ArrayList();
 if (!qry.getResultList().isEmpty()) {
 List<Object[]> tdata = qry.getResultList();
 for (Object[] t : tdata) {
 HashMap resultMap = new HashMap();
 resultMap.put("title", t[0]);
 resultMap.put("count", t[1]);
 data.add(resultMap);
 }
 }
 return data;

}

How It Works
When writing JPQL queries, it is sometimes beneficial to join two or more tables to acquire related information.
Furthermore, it is usually helpful to filter information based upon certain specified criteria so that the number of
records returned can be manageable. JPQL joins typically include INNER, OUTER, and FETCH joins. To review, an INNER
join allows retrieval from two tables such that records being returned contain at least one match in both tables. For
instance, you may want to query an Employee entity and join it to the Jobs entity to return only those employees who
have a specific job title. An OUTER join allows retrieval from two tables such that all of the records from one of the
entities (left entity) are returned, regardless of whether they match with a record in the other entity. Lastly, a FETCH
join enables the fetching of an association as a side effect of the query execution. IN JPA 2.1, JPQL has been updated
to include the ON condition, which allows you to perform an OUTER join and include a specified condition with the
join. This capability has always been available with the WHERE clause of the JPQL query, but what about the cases when
you want to return all matching records along with those that may not match, like with an OUTER join? The JPA 2.1
release provides this functionality in a concise manner with the addition of ON conditions. Simply put, an ON condition
modifies a join query such that it will incorporate better control over the data that is returned in a concise manner.

To demonstrate this new syntax, let’s take a look at a SQL query, and then you will compare it to its JPQL
counterpart. The following SQL will join the EMPLOYEE table with the JOBS table on the JOB_ID field. It will also limit
the returned records to those that include a salary of greater than or equal to 50,000 with the specification in the
WHERE clause.

SELECT J.TITLE, COUNT(E.ID)
FROM JOBS J LEFT JOIN EMPLOYEE E
 ON J.JOB_ID = E.JOB_ID and E.STATUS 'ACTIVE'
WHERE J.SALARY >= 50000
GROUP BY J.TITLE;

This SQL will return all of the JOB records and include a count of each job that contains an Employee whose status
is ACTIVE. The method in the solution of this recipe contains the JPQL equivalent for this SQL, using the ON condition
to perform the join. In the end, the ON condition helps make JPQL outer joins more concise and easy to use. Although
the same capability has been available in previous versions of JPQL, the ON clause helps make record filtering with
joins much easier.

http://www.it-ebooks.info/

471

Chapter 11

Oracle’s GlassFish

The Oracle GlassFish application server is the industry standard for Java EE. GlassFish is the reference implementation
for Java EE, so it contains more up-to-date features than any other Java application server available. Although plenty
of excellent application server choices are available, GlassFish is the best choice for those who want to utilize the most
current implementations in the Java EE space. It is a fully featured and easy-to-manage application server, making it
a powerful choice for deploying modern and robust Java EE applications.

This chapter will cover some basic features of Oracle’s GlassFish, such as installing and deploying applications.
It also contains recipes covering some of the most widely used features, as well as a recipe or two geared toward
security within GlassFish application deployments. After reading these recipes, you should be comfortable working
with the server and utilizing some of its most important features.

11-1. Installing the GlassFish Application Server
Problem
You want to install Oracle’s GlassFish application server for Java EE 7 development on your machine.

Solution #1
Download a GlassFish v4 ZIP archive from the site http://glassfish.java.net, and unzip the contents of the
archive onto your operating system. If you are looking for the most current development releases of GlassFish, visit the
download section of the project page and see the Work In Progress project. For the purposes of this recipe example,
let’s assume you are going to install the Glassfish v4 server into a directory named /JAVA_DEV/Glassfish on *nix
systems or named C:\JAVA_DEV\Glassfish on Windows.

Once you have downloaded and unzipped the archive, you are ready to begin the installation process. The unzipped
archive will be in a root directory named glassfish3. Copy the glassfish4 directory and all of its contents into the
/JAVA_DEV/Glassfish directory. You are now ready to begin configuring your GlassFish application server.

Solution #2
Download a GlassFish v4 executable for the operating system of your choice from the site http://glassfish.java.net.
If you are looking for the most current development releases of GlassFish, visit the download section of the project page
and see the Work In Progress project. For the purposes of this recipe example, let’s assume you are going to install the
GlassFish v4 server into a directory named /JAVA_DEV/Glassfish on *nix systems or named C:\JAVA_DEV\Glassfish
on Windows.

http://glassfish.java.net/
http://glassfish.java.net/
http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

472

Once you have downloaded the executable, you can double-click it to start the installation wizard. When the
wizard launches, you will see a series of splash screens indicating that Java is extracting the installation files, and then
you will be greeted with an Introduction screen. After reading the introduction, click the Next button to proceed.
Upon clicking the button, the Installation Type screen will appear (Figure 11-1), giving you a choice between a typical
or custom installation. At this point and for developmental purposes, it is best to choose Typical Installation.

Figure 11-1. Installation type selection

After choosing the installation type, click the Next button to advance to the Install Directory screen (Figure 11-2),
which will allow you to choose a directory in which to install the application server.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

473

Once you’ve specified the installation directory, click the Next button to proceed to the Update Tool screen
(Figure 11-3). This screen provides you with the option to install the update tool, which periodically checks for
GlassFish server updates on your behalf. You can optionally configure a proxy host and port on this screen.

Figure 11-2. Install Directory screen

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

474

After completing the update tool configuration, click the Next button to proceed to the installation. The Ready
To Install screen will display all the options that will be installed when you click the Install button. If everything looks
as expected, click the Install button to proceed. At this point, the installer screen will display the installation process,
along with messages if any issues are encountered along the way. Once the installation is complete, the Config Results
(Figure 11-4) screen will appear, displaying the domain configurations.

Figure 11-3. Update Tool screen

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

475

After clicking the Next button, a summary of the installation will be displayed. At this point, you will be ready to
begin using your newly installed GlassFish application server.

How It Works
The GlassFish application server can be installed in a couple of ways. The easiest technique is to simply download
the ZIP archive and unzip it into the directory of your choice, as covered in the first solution to this recipe. Once
this is completed, you are ready to begin configuring your server environment. The first step of configuring your
environment should be to change the default administrator password, which is outlined in Recipe 11-3. However,
if you are anxious to test your environment, then you can traverse into the /JAVA_DEV/Glassfish/glassfish4/bin
directory and start the server using the following command:
*nix and OS X:

./asadmin start-domain domain1

Windows:

asadmin start-domain domain1

Figure 11-4. Config Results screen

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

476

Note■ Do not start the application server without first changing the administrator password unless you are on an
operating system with a firewall configuration. For more information on changing the administrator user password, please
see recipe 11-3.

If you prefer to install the software using a graphical user interface, you can download an executable for any of
the major OS platforms (Windows, Linux, Unix, OS X) from the GlassFish web site, as outlined in Solution #2 for this
recipe. The installation wizard will walk you through some preliminary configurations and the installation process.
One benefit of using the installation wizard is that you have an opportunity to configure certain aspects of your
GlassFish application server, such as the update tool, without delving into any XML files before your server domain
is started. If you perform the manual ZIP installation, then you must either work in the XML files to configure your
server before starting it or start the server and log into the administrative console to start configuring.

11-2. Logging into the Administrative Console
Problem
You want to have the ability to configure your GlassFish v4 environment.

Solution
Start your GlassFish server and then point your browser to the administrative console URL. By default, the URL is
http://localhost:4848, but if you changed the settings within the domain.xml configuration file or have more
than one GlassFish server installed on your machine, then that port number may vary. Once you have opened the
administrative console URL, you will be greeted with a login screen, as shown in Figure 11-5. Enter the user name and
password of the GlassFish administrative user in order to log in. By default, the user name is admin, and the password
is adminadmin. However, you should change this as soon as possible! See Recipe 11-3 for more details on how to
change the administrative password.

http://localhost:4848/
http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

477

Once you’ve entered the correct user name and password combination, then you will be brought to the main
GlassFish administrative console screen (Figure 11-6), where you can select the specific area of the application that
you want to configure.

Figure 11-5. GlassFish administrative console login

Figure 11-6. GlassFish administrative console main screen

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

478

How It Works
The first step in setting up an application server environment is to install it. However, that is only the very beginning
of the application server adventure. The very next step after installing the server environment should be to configure
some basic settings, such as changing the administrative user password and setting up database connection
pools for your applications. The GlassFish administration console is the hub of configuration for your GlassFish
application server. Virtually all security, database, messaging, and application-specific configurations occur within
the administration console. This section will provide you with a brief overview of the most commonly used screens
within the GlassFish administrative console.

Once you log into the console, you will be greeted with a tree menu on the left side of the screen, which contains
menu options for each of the console subsections. The right side of the screen will contain a Common Tasks panel,
which displays links for support, registration, and news, along with links to some of the most commonly used
subforms within the console. You’ll also see the option to view installed components and available updates and
add-ons, which is a good panel to visit frequently to learn about possible updates and add-ons for the server. Of
course, the documentation for GlassFish is extremely important, and you will also find links to the various pieces of
documentation within the Common Tasks panel.

The Domain menu option opens a panel that contains tabbed forms for making domain-level changes, as shown
in Figure 11-7. When you install GlassFish, the default domain is known as domain1, but you can create domains by
different names if you’d like. Configurations for how applications are autodeployed, reloaded, and so on, can be found
on the Applications Configuration tab of the Domain panel, and you can change the administrator password within
that panel as well (see Recipe 11-3 for details).

Figure 11-7. Domain panel

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

479

The Applications menu option allows you to view any applications that are currently deployed to the server.
You can also deploy new applications from this panel, as well as undeploy, enable, or disable existing applications.
If there comes a need to redeploy or reload an existing application, the panel also provides easy access to perform
those activities. The Applications panel (as shown in Figure 11-9) will most likely become one of the most commonly
visited menu options as you work with GlassFish.

Figure 11-8. General Information panel

The “server (Admin Server)” menu option is one of the most important options available. Clicking that menu
option will open a tabbed panel containing information regarding your server, the JVM, resources, and properties.
You can stop or restart the application server instance from this panel, and you can also view and manage the server
logs from here. Figure 11-8 displays the General Information panel, which is displayed when clicking the “server”
menu option.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

480

Figure 11-9. The New Administrator Password form

The Resources menu contains several submenu options that are useful for configuring resources that can be
utilized by your applications. From database resources to Java Messaging and JavaMail sessions, the Resources section
provides the ability to make enterprise features available to applications deployed within the server. You will learn
more about configurations for these resources in later recipes.

The Configurations menu provides the ability to tweak the server’s JVM settings, logging, web and EJB containers,
security, network services, and more. This is the area of the administration console that allows customization of the
server itself in order to provide the best settings for your environment. For instance, if you want to implement special
options for the application server’s JVM, this is the place to do that. If you want to set up authentication for your
applications using JDBC or LDAP (Recipe 11-6), then this can be done in the Configurations section as well.
GlassFish provides the ability to fine-tune the application server, making it truly conform to the environment, and
the console makes it easy to apply the customizations.

Although any of the GlassFish features can be changed by manually updating XML configuration files, the
GlassFish administration console provides developers and administrators with an easy way to see the server
configurations and change pieces to suit the needs of the environment. It also provides a central location for viewing
information about the server, its applications, and the resources available for use by the server applications.
The GlassFish administration console is a one-stop shop for all of your GlassFish configuration and tuning.

11-3. Changing the Administrator User Password
Problem
You want to add security to your newly installed GlassFish environment by changing the administrative user password.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

481

Solution #1
Traverse into the /JAVA_DEV/Glassfish/glassfish4/bin directory within your terminal or command prompt, and
enter the following:

./asadmin change-admin-password

After issuing the command, follow the prompts accordingly to change the administrator password.

Solution #2
Log into the GlassFish administrative console, and change the administrative user password. To do so, first click the
Domain menu option within the tree menu on the left. This will bring you to a screen that includes several tabs,
allowing different configurations for your application server domain. One of those tabs is named Administrator
Password, and this is the tab you want to use for changing the password. Once you’ve clicked the tab, you will be
presented with a form that will allow you to change the administrative password accordingly.

Note ■ this should be your first configuration step after installing a new GlassFish application server environment!
this is especially the case if you are running on an operating system that does not have a firewall installed, configured, and
turned on. leaving the default administrator password in place opens your server environment up to a major vulnerability.

to that end, i recommend using solution #1 to this recipe for changing the administrator password the first time.
that way, your server doesn’t need to be started up before the password can be changed, making your server secure
from the first start-up. the GlassFish New administrator password form is great for changing the password after you’ve
already changed it from the default password.

How It Works
The most important configuration you can make to your newly installed GlassFish environment is to set the
administrator password. If a default administrator password is left in place, it opens up a major vulnerability because
a hacker could gain access to your administration console and gain full access. Changing the password is very easy to
do, and there are a couple of ways to do it. First, there is a special command that can be used to change the password
without even starting the server. As a matter of fact, as of GlassFish 3.1, you will be prompted to enter an administrator
password the first time you start the default domain if you did not set a password via the installer.

Note ■ although you will be prompted to enter an administrator password when the domain is started, it is still
possible to leave the password as the default. that said, if the remote administration option is turned on, allowing you to
log into the GlassFish administration console from a remote machine, you will be required to enter a password.

If you elect to not set a password during the installation wizard or if you used the manual installation method
by unzipping the GlassFish archive, then you will need to use the change-admin-password utility to change the
administrator password before domain start-up. Solution #1 demonstrates this technique, and the advantage of using
it is that the domain does not have to be started in order to use it.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

482

If you want to change the administrator password after you have already started the domain, you can do so by
logging into the administration console and going to the Domain panel. Once there, you will see an Administrator
Password tab, which will allow you to change the password. This technique is outlined in Solution #2 to this recipe.
It is a straightforward procedure, and using the administration console for changing the password provides an easy
means of doing so after the server is up and running.

11-4. Deploying a WAR File
Problem
You want to deploy a WAR archive to the application server so that your web application will be made available
for use.

Solution #1
Log into the administrative console, and select the Applications menu option in the left menu, which will open the
Applications panel (Figure 11-10). The list of deployed applications will be displayed within the right panel. Click the
Deploy button above the application list in order to begin the deployment process.

Figure 11-10. GlassFish administrative console Applications panel

Once within the Deploy Applications or Modules (Figure 11-11) panel, find the WAR archive that you want to
deploy by selecting the Browse button and locating the WAR archive of your choice. The application name and context
path will be autopopulated, but you can change them if you want. Leave all of the other default options selected.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

483

Next, click the Deploy button to initiate the application deployment. The application server will complete the
deployment, assuming that there are no configuration issues with the application archive.

Solution #2
Utilize the GlassFish application server’s autodeployment option by logging into the application server host machine
if you haven’t done so already. Browse the file system to find the WAR file that you want to deploy. Copy the desired
WAR file. Locate the GlassFish autodeployment directory (path), and paste the WAR file inside it. The application
server will complete the deployment, assuming that there are no configuration issues with the application archive.

How It Works
To make a web application accessible to users on the Web, it must be deployed to the application server. GlassFish has
a couple of very easy techniques for deploying applications for use. Java web applications can be packaged in a few
different ways before deploying. To further understand the deployment process, it helps to take a look at the variety of
possible deployment scenarios for a Java enterprise application.

In the early days of Java EE, the most common package structure was an enterprise archive (EAR) file. An EAR
file is an archive that consists of one or more modules, usually in Java archive (JAR) file format, along with XML
deployment descriptors. The standard EAR structure contains two JAR files along with XML deployment descriptors.
One of those JAR files contains the web sources, including the HTML, JSP, JSF, JavaScript, the WEB-INF directory, and
other files used for displaying web content. This JAR file is known as the web module, and it corresponds to a web
application as defined within the Java Servlet specification. The second JAR file contains the Java sources that are
packaged and used for the business logic of the application. Together, the two packages can be combined into an
EAR file and deployed to a Java application server, in which case the application server takes on the task of using the

Figure 11-11. GlassFish administrative console: Deploy Applications or Modules

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

484

XML deployment descriptors to place the different modules into their proper locations within the application server.
EAR files are still in use today, and most applications written using Java EE 5 and older are deployed using an EAR file
format. Until recently, EAR files were a common way to distribute and deploy Java EE applications.

Currently, the most common type of archive for Java web application deployment is the web archive (WAR).
WAR files are archives that contain all of the web markup and Java sources together under the same archive module.
Typically, those Java web applications that contained no enterprise application structures, such as EJBs, web services,
or the like, could be deployed using the WAR file format. Since Java EE 6, all enterprise applications can be deployed
in the WAR file format as well, which makes it much easier to package and deploy an application. Although if you’re
using a Java IDE, the work is done for you, so deployment of WAR files is much faster than that of the EAR file, and it is
much easier to work with all of an application’s source files within the same module, rather than using more than one.

Both the EAR and WAR file formats are simply ZIP files that contain either the .ear or .war extension. As a
matter of fact, you can easily view the contents of these archives by renaming them with a .zip extension and
unzipping them to your file system. The GlassFish application server makes it easy to deploy each file type, whether
using the administration console or the autodeploy technique. When the application server is deploying the archives,
it unpackages the contents of the archives into the deployment directory, which is located in the <GlassFish-Home>/
glassfish4/glassfish/domains/domain1/applications directory.

Note ■ it is possible to make edits to web files after an application has been deployed by updating the files that
exist in the deployment directory. any XhtMl, htMl, Js, or other code files that do not need to be compiled, along with
Jsps that are compiled on the fly, can be updated in place while the application is up and running. this can sometimes
prove useful for making minor layout or Javascript changes while in production. however, remember that if the
application is undeployed or another application is deployed in place of an existing application, then all sources within
the deployment directory are deleted.

11-5. Adding a Database Resource
Problem
Your application utilizes an underlying RDBMS, and you want to configure a database resource for this purpose.

Solution
Create a connection pool resource for the database to which you want to connect. After the connection pool has
been created, define a new JDBC resource, which will be used to provide applications with a means to connect to the
database. To perform these tasks, first log into the GlassFish administration console and then expand the JDBC menu
under the Resources option within the tree menu on the left, as shown in Figure 11-12.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

485

Figure 11-13. New JDBC Connection Pool (Step 1 of 2) panel

Figure 11-12. GlassFish administration console: JDBC Resources

Next, click the JDBC Connection Pools menu option, which will open the JDBC Connection Pools panel on the
right side of the screen. Here you will be provided with a list of the current connection pools, as well as buttons to add
new pools or delete existing pools. Click the New… button to initiate the creation of a new connection pool. This will
open the New JDBC Connection Pool (Step 1 of 2) panel, as shown in Figure 11-13. In this panel, specify the name of
the pool you want to create, and then select a resource type and a database vendor from the selection lists.

After clicking the Next button to continue, the second screen for creating a new JDBC connection pool will be
displayed (Figure 11-14), which contains a number of settings to help configure the connection pool. For instance, the data
source class name can be selected, pool settings can be adjusted, and transaction management options can be tweaked.
I recommend retaining all of the default configurations unless it has been determined that something needs to be adjusted
in order for application functionality. You can always revisit the connection pool settings and adjust later if need be.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

486

Figure 11-15. Additional JDBC connection properties

At the bottom of the form you will find the Additional Properties table (Figure 11-15), which is where you will
need to enter the specifics pertaining to the database connection you want to configure. While there are a number of
properties listed in the table by default, you need to enter values only for a user, password, and URL in order to obtain
a connection. Once you’ve entered this detail, you will be able to click the Finish button to create the pool.

Figure 11-14. New JDBC Connection Pool (Step 2 of 2) panel

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

487

Note ■ You must have the database driver (Jar file) for the database you want to use installed within the GlassFish
application server. to do so, simply copy the Jar file into the <GlassFish-Home>/glassfish4/glassfish/domains/
domain1/lib directory. For Oracle database, download the JDBC driver file called ojdbc6.jar, and use that.

Once the pool has been created, you can generate a JDBC resource for use from within your applications.
The JDBC resource is basically a string identifier that references your database connection pool, and it is used from
within a Java web application’s persistence.xml unit to utilize an application server connection pool. To create
the JDBC resource, click the JDBC Resources menu option from within the tree menu, which will open the JDBC
Resources pane (Figure 11-16), listing each of the existing resources. Click New in order to configure a new resource.

Figure 11-16. JDBC Resources pane

How It Works
Just about every enterprise application uses an underlying database to store and retrieve data. To connect to the database,
you need to configure a database account for which to connect and code a connection utility that is responsible for
opening and closing connections. Well, that is one way to do it; another way is to rely on the application server to manage
the database connections. Utilizing an application server’s database connection pool can be very useful because it takes
away the burden of handing connections within the application’s business logic, and it also helps the overall performance
of an application by maintaining a number of open connections in a pool. When a process needs to work with the
database, it grabs one of the open connection objects, uses it, and then places it back into the pool when finished. By
maintaining this pool, the overhead of opening and closing connections for every single task is alleviated, helping your
applications perform much faster. Another benefit to having the application server manage connections is that the user
name and password used to obtain the connection is stored in only one place, the application server. User names and
passwords do not need to be hard-coded into applications that use application server JDBC resources. This can be helpful
not only from a security standpoint but also from a maintenance stance. Isn’t it much easier to change the password in
one location when it expires, rather than fumbling around with each of the applications that use it?

Configuring a data source within the GlassFish application server is straightforward because you can manage
everything from within the administration console. However, there are a number of configurations that can be altered
in order to change the way in which your connection pool manages connections. On the first New JDBC Connection
Pool panel of the connection pool configuration, you will need to determine which type of resource you want to
create. Table 11-1 describes the different resource types.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

488

The Pool Settings section of the second New JDBC Connection Pool panel allows you to configure the number
of connections that will be available for application use. By default, the number of open connections at application
server start-up will be eight. This means applications can grab and use eight connections from the pool without
incurring any extra overhead, because the pool has already opened these connections.

The Maximum Pool Size option is set to 32 by default. When an application needs to use a connection, it goes to
the pool and requests one. If there is a connection available in the pool, then it is given to the application. However,
if no connection is available, then a new connection is made. The Maximum Pool Size value is the upper bound of
connections that can possibly be made. So, by default, if there are 32 connections open and an application requests
a new connection, then a database connection error will be thrown. Remember, when an application is finished using
a connection, it is returned to the pool, so if an application is working properly, the maximum number of connections
should be fairly difficult to reach in most environments.

A number of other configurations can be managed for your connection pool, such as determining when
connections will time out and when to resize the pool. Adjust accordingly, if needed, after your application has
been using the connection pool for a period of time. The transaction configuration for the pool makes it possible to
set up an isolation level. It is recommended by Oracle to try to leave the isolation level alone if possible. If not,
consider setting Isolation Level Guaranteed to false and make sure applications do not alter a connection’s isolation
level. The different isolation levels are listed in the following bullets, from best performing on top to worst-performing
on bottom:

•	 READ_UNCOMMITTED

•	 READ_COMMITTED

•	 REPEATABLE_READ

•	 SERIALIZABLE

11-6. Adding Forms-Based Authentication
Problem
You want to configure authentication for your applications by utilizing a database table to hold user names and
passwords, along with user groups for different access privileges.

Solution
Set up forms-based authentication within your GlassFish application server by creating the necessary database
tables to contain user accounts and groups and then configuring the application server to use those tables for
authentication. The first step to setting up forms-based authentication is to create the necessary database artifacts
to support the authentication. To do so, create two database tables. One of the tables will be used to contain the
user names and passwords, and the second table will be used to contain the groups, along with the users who have

Table 11-1. JDBC Connection Pool Resource Types

Resource Type Description

javax.sql.DataSource Suitable for local transactions

javax.sql.XADataSource Suitable for global transactions

javax.sql.ConnectionPoolDataSource Suitable for local transactions, possible performance improvements

java.sql.Driver Standard driver

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

489

access to those groups. The following lines of SQL can be used to generate these tables (Oracle syntax), along with
the database sequences that will be used to populate the table primary key values:

create table users(
id number,
username varchar(150) not null,
password varchar(50) not null,
primary key (id));

create table groups(
id number,
username varchar2(150) not null,
groupname varchar2(100) not null,
primary key(id));

create sequence users_s
start with 1
increment by 1;

create sequence groups_s
start with 1
increment by 1;

For testing purposes, let’s create a couple of user accounts along with a couple of different access groups.
The following lines of SQL will insert these records:

insert into users values(
users_s.nextval,
'admin',
dbms_obfuscation_toolkit.md5(input=>utl_raw.cast_to_raw('javaeerecipes')));

insert into users values(
users_s.nextval,
'juneau',
dbms_obfuscation_toolkit.md5(input=>utl_raw.cast_to_raw('testpass')));

insert into groups values(
groups_s.nextval,
'admin', 'administrator');

insert into groups values(
groups_s.nextval,
'juneau','reader');

Now that the database has been set up for authentication, it is time to configure the database to use these tables
for authentication purposes. To do so, log into the GlassFish administrative console, navigate to the Configuration ➤
server-config ➤ Security ➤ Realms menu option, and click the New button. Doing so will open the New Realm panel,
which is shown in Figure 11-17.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

490

Table 11-2. Properties Specific to JDBC Security Realm Class

Property Value

JAAS jdbcAuth

JNDI jdbc/OracleConnection

User Table users

User Name Column username

Password Column password

Group Table groups

Group Name Column groupname

Password Encryption Algorithm MD5 (algorithm used in SQL insert statement)

Within the New Realm form, enter a name for the realm, which you will call JDBCAuth for this example. Next, for
the class name, choose com.sun.enterprise.security.auth.realm.jdbc.JDBCRealm from the drop-down menu. Once
you’ve completed this first section of the form, it is time to fill out the properties specific to the class. For this example,
use values shown in Table 11-2 to complete this form.

Figure 11-17. Creating a new security realm

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

491

Once finished, click OK to save the values and create the realm. The newly created realm should now appear
in the Realm listing, as shown in Figure 11-18.

Figure 11-18. Realm listing

That does it for the application server configuration. Now how do you actually use the new security realm?
You need to create a login view and make some configuration changes to your application’s web.xml file in order to
implement the authentication within your application. To begin, let’s look at the changes that will need to be made to
web.xml in order to configure the forms authentication. The following excerpt, taken from the web.xml configuration
file in the JavaEERecipes sources, demonstrates the updates that need to be made:

<security-constraint>
 <display-name>Admin</display-name>
 <web-resource-collection>
 <web-resource-name>Admin Tools</web-resource-name>
 <description/>
 <url-pattern>/faces/admin/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 <http-method>HEAD</http-method>
 <http-method>PUT</http-method>
 <http-method>OPTIONS</http-method>
 <http-method>TRACE</http-method>
 <http-method>DELETE</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <display-name>User</display-name>
 <web-resource-collection>
 <web-resource-name>Protected Users Area</web-resource-name>
 <description/>
 <url-pattern>/faces/users/*</url-pattern>
 <http-method>GET</http-method>

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

492

 <http-method>POST</http-method>
 <http-method>HEAD</http-method>
 <http-method>PUT</http-method>
 <http-method>OPTIONS</http-method>
 <http-method>TRACE</http-method>
 <http-method>DELETE</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

<login-config>
 <realm-name>JDBCRealm</realm-name>
 <form-login-config>
 <form-login-page>/faces/loginForm.xhtml</form-login-page>
 <form-error-page>/faces/loginError.xhtml</form-error-page>
 </form-login-config>
 </login-config>

Next, the GlassFish server security role mapping needs to be added to the sun-web.xml configuration file, which
maps application roles to database groups. The following excerpt demonstrates the mapping configuration:

<security-role-mapping>
<role-name>admin</role-name>
<group-name>administrator</group-name>
</security-role-mapping>
<security-role-mapping>
<role-name>user</role-name>
<group-name>reader</group-name>
</security-role-mapping>

Lastly, the views that the user will see must contain specific names for the user name and password input text
fields, and the form action must be set to j_security_check, which will cause control to be passed to the application
server for handling the authentication. The following login form demonstrates this process. You can see the sources
within the login.xhtml form contained within the JavaEERecipes project.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>TODO supply a title</title>

 </h:head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

493

 <h:body>
 <p>
 <form method="POST" action="j_security_check">
 Username: <input type="text" name="j_username" />
 Password: <input type="password" name="j_password" />

 <input type="submit" value="Login" />
 <input type="reset" value="Reset" />
 </form>
 </p>
 </h:body>
</html>

When a user points the browser to the login.xhtml view, they will be prompted to log into the application.

How It Works
Securing an application is a vital step for any enterprise application. Adding the security of a user name and login is
one of the most basic forms of security that can be put into place. The combination of GlassFish application server, the
underlying database, and some basic Java EE application configurations make securing applications via user name
and password an easy task. The solution to this recipe demonstrates how to configure a security realm within the
GlassFish application server that will utilize a database table for storing user name and password combinations. While
some of the database code in the solution is specific to Oracle Database, the same technique can be applied to most
RDBMSs with only minor modifications made to the code for securing the password within the database.

The first step toward configuring the security realm within GlassFish is to set up the underlying database table
that will be used to contain the security credentials. It is of utmost importance to ensure that password stored within
the table are encrypted; otherwise, they can be seen by anyone who has read-only access to the security table that is
created for this solution. In the solution to this recipe, the Oracle database dbms_obfuscation_toolkit.md5 function
is used in order to hash the passwords. However, if using another database system, there should be similar tools to
use for encryption purposes. When configuring the database, a table should be created to hold the user names and
passwords, and another should be created to hold the groups, or security roles. This will allow applications using the
realm to contain a high level of security configuration in that various levels of access can be granted to different users
based upon role.

Once the database objects have been created, the GlassFish server must be configured to utilize the database
for authentication purposes. This is done by logging into the GlassFish administrative console and setting up a new
security realm. There are several pieces of information to fill out on the New Realm form that are used to map the
realm to the appropriate database tables and columns. The name given to the realm can be any valid String, and the
class name should be com.sun.enterprise.security.auth.realm.jdbc.JDBCRealm, since there are a number of
different types of security realms that can be created, including LDAP realms, and so on. The remaining information
on the form should be filled out according to the directions for each text field. It is important to be sure that the JDBC
resource has been configured already and the name given for the JDBC resource matches the one that is provided for
the JNDI field on the form.

To configure an application for use with a security realm, the security constraints and login configuration must
be specified within the web.xml configuration file for the application. Security constraints are used to map designated
web folders to different user roles for an application. This means that all of the administrative pages for an application
can be placed into a folder, and a security constraint can be set up within the web.xml file to limit access to that folder,
based upon security credentials. If you take a look at the configuration example in the solution, you can see that there
has been a security constraint configured with a display name of Admin. Any valid String identifier can be given
to the display-name, web-resource-name, or description elements of the security constraint. The url-pattern
element designates which folder should be protected by the constraint, and anything placed within that folder will be
protected from unauthorized users. Each of the http-method elements lists the different HTTP methods that pertain

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

494

to the resources within the given folder. The auth-constraint subelement contains the role mapping, which can
be given a description along with the role-name that should be used for limiting access. The specified role-name
should match one of the group values that was placed within the database table that was created to contain groups.
Any user names that correspond to the given group or role will have access to the resources contained within the
protected folder, provided that they are able to log into the application successfully. The sun-web.xml configuration
file must be updated to contain the mapping of roles to groups if you are deploying to GlassFish. This is done by
adding security-role-mapping elements to the sun-web.xml file, and each of the elements must contain
a role-name element along with a corresponding group-name element.

The final piece of the puzzle is to create a login form. The form must contain an action by the name of
j_security_check because this will pass control of the authentication to the application server. The user name
and password elements must contain the names of j_username and j_password, respectively. Doing so will allow
these elements to be passed to the authentication mechanism properly. When the form is submitted, the user name
and password are sent to the authentication mechanism, which is handled by the application server via the security
realm you created. If an appropriate user name and password combination is used, the session is granted access to
whichever resources have been designated for the authenticated user’s role. If the given user’s role does not permit
access to certain areas of the application via the security-constraints that have been set up within the web.xml file,
the user is denied access.

Configuring forms-based authentication is a good means of controlling access to an application. It allows each
application to contain its own security infrastructure, providing the ability to limit certain areas of an application
to designated roles. The only downside to the use of the JDBC realm is that the password must be stored within the
database table. So long as a good encryption algorithm is used to obfuscate the password, this should be a minimal risk.

Note ■ to use lDap authentication instead, set up a security realm using the com.sun.enterprise.security.auth.
realm.ldap.LDAPRealm class. specify a String value for the Jaas context, which will be used to reference the realm.
Directory should be set to the Url for the lDap server that you want to use for authentication. Base DN must be set to the
base DN for the user who will be used for authenticating to the lDap server (use a separate lDap account for authentica-
tion that has read access to the lDap directory). additional properties that may be required for your lDap configuration
include search-bind-password, search-bind-dn, and/or search-filter. to learn more about lDap configuration,
please reference the online documentation.

11-7. Configuring and Using JavaMail
Problem
You want to send e-mail from your applications, and you want to centrally manage your e-mail sessions, rather than
configuring JavaMail separately for each application.

Solution
Log into the GlassFish administrative console, and expand the Resources menu option. Next, click the JavaMail
Sessions menu option to create a new JavaMail session. Specify the following information within the form:

JNDI Name: This is the name used to reference the resource; for this example, you’ll use
mail/EERecipesMail.

Typically the JNDI name uses the mail/email-username format.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

495

Mail Host: This is the SMTP server name.

Default Username: This is the user name for authenticating to SMTP server.

Default Address: This is the address from which the e-mail will be sent.

After entering this information, add an additional property to specify the password for authenticating to the
SMTP server, as well as a property for specifying the SMTP port. The New JavaMail Session form looks like Figure 11-19.

Figure 11-19. New JavaMail session

Note ■ a valid sMtp host must already exist to handle your email. Use the appropriate host name, port number,
and secure protocols, as needed, for configuration.

http://www.it-ebooks.info/

Chapter 11 ■ OraCle’s GlassFish

496

To use the resource within application code, you must inject a session resource, specifying the name that has
been configured for the JavaMail session to the @Resource annotation. You can then set up a Message object using the
session that has been created and send the message using the Transport.send method. The following lines of code
demonstrate this concept:

public class MyMailController {
 @Resource(name="mail/EERecipesMail")
 private Session mailSession;

 public void sendMsg(String to, String subject, String msg){
 Message msg = new MimeMessage(mailSession);
 try {
 msg.setSubject(subject);
 msg.setRecipient(RecipientType.TO, new InternetAddress(to));
 msg.setText(message);
 Transport.send(msg);
 } catch (MessagingException | UnsupportedEncodingException ex){
 System.out.println(ex);
 }
 . . .

How It Works
The ability to configure JavaMail sessions within the application server can provide a huge benefit to an
organization. This is especially the case if there is more than one application deployed to the server and each of
the applications requires the ability to send mail. Rather than recoding the JavaMail configuration within each
application, simply provide an enterprise JavaMail session that any application on the server can tap into in order
to easily set up a session.

A JavaMail session resource can be set up using any e-mail account that has access to send mail via an SMTP
service. Therefore, if you have access to a hosted e-mail account, such as Gmail, a JavaMail session can be configured
on the application server to send e-mail from that account. Once the JavaMail session has been configured as per
the instructions outlined in the solution to this recipe, the process for sending an e-mail is the same as if a JavaMail
session were established via Java code. The only difference is that rather than setting up the session within the Java
code itself, the session is injected into a class by specifying the JavaMail session using the @Resource annotation.

http://www.it-ebooks.info/

497

Chapter 12

Contexts and Dependency Injection

One of the most important features in Java EE is Contexts and Dependency Injection (CDI). CDI helps bind the
web tier and the business logic or transactional tier of the Java EE platform together. CDI makes it easy to expose
business objects for use within JSF web views so that developers can directly bind JSF view widgets to public JavaBean
members and methods. It also provides facilities that make it possible to inject JavaBean classes and resources into
other Java objects in a type-safe and efficient manner.

CDI is architected from two methodologies: contexts and dependency injection. Contexts provide the ability to
bind the life cycle and interactions of stateful components to well-defined but extensive contexts, per Oracle’s Java EE 7
Tutorial. In the same tutorial, dependency injection is defined as the ability to inject components into an application
in a type-safe way, including the ability to choose at deployment time which implementation of a particular interface
to inject. To make use of CDI, a developer should become familiar with a series of annotations that can be used to
decorate objects and injected components. This chapter covers recipes that will demonstrate such annotations and
where they should be used.

Since CDI provides a high level of loose coupling, it is an important piece of any Java enterprise application.
Those applications that make use of CDI in the right way can become very efficient because CDI provides a
decoupling of resources, as well as strong typing, by eliminating the requirement to use String-based names for
managed resources and by using declarative Java annotations to specify just about everything. Although it is possible
to develop Java EE applications without the use of CDI, it is very easy to use and enables enterprise applications to
become more robust and efficient than those that do not use CDI features.

12-1. Injecting a Bean or Other Object
Problem
You want to use a bean or other object from within another class.

Solution
Utilize dependency injection to make the bean or object available from within another class. The following class,
located in the JavaEERecipes project, represents an object that can be injected into another class:

package org.javaeerecipes.chapter12;

public class CalculationBean {

 public int addNumbers(int[] numArray){
 int temp = 0;

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

498

 for(int x : numArray){
 temp = temp + x;
 }
 return temp;
 }

}

As you can see, the CalculationBean class represents a standard Java object. This object can be injected into
another class by using the @Inject annotation. The following class, located in the same package as CalculationBean
within the sources, demonstrates how to inject an object. Note that CalculationBean is never specifically instantiated;
rather, it is injected or obtained via the declaration of an annotation.

package org.javaeerecipes.chapter12;

import javax.inject.Inject;

public class UsingClass {

 @Inject
 CalculationBean calcBean;

 public void performCalculation(){
 int[] intarr = new int[2];
 intarr[0] = 2;
 intarr[1] = 3;
 System.out.println("The sum of 2 + 3:" + calcBean.addNumbers(intarr));
 }

}

In the example, @Default CalculationBean is injected into the bean. Once the bean or resource is injected into
another Java class, it can be referenced as if it were local to the class into which it was injected.

How It Works
The concept of dependency injection greatly reduces the amount of overhead that is necessary for a developer in
order to gain reference to a Java object from within another Java class. The Java EE stack makes it very easy to gain
reference to just about any Java object from within another class. Dependency injection refers to the ability to inject
components into an application in a type-safe manner, including the ability to choose at deployment time which
implementation of a particular interface to inject. CDI allows almost any Java class to be injected into another with
very little configuration. This ability increases the usability of resources since such resources can be referenced from
any number of different classes and maintain the same state wherever they are being used. In reality, just about any
object can be injected anywhere with CDI. The following are some Java objects that can be injected:

Almost any Java class•	

Session beans•	

Java EE resources: data sources, JMS topics, queues, connection factories•	

Persistence contexts•	

Producer fields•	

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

499

Objects returned by producer methods•	

Web service references•	

Remote EJB references•	

To inject a resource into another, the application module or JAR file must contain a META-INF directory
that includes a beans.xml configuration file. The beans.xml file may or may not be empty depending upon the
configuration. However, for the purposes of this example (and for most general CDI use cases), the beans.xml file is
simply an empty configuration file that is used as a placeholder to tell Java EE that the application wants to use CDI.
Next, the javax.inject.Inject annotation (@Inject) must be used to denote the class being injected by annotating
a class variable of the object type. For instance, if you want to inject a Java object of TypeA, you would declare a class
variable of type TypeA and annotate it with @Inject, as follows:

@Inject
TypeA myTypeVar;

Once said injection is performed, the declared variable can be utilized throughout the class because it is a
direct reference to the original class of the specified Java type. By defining a specific scope to the injection bean
(Recipe12-5), you can indicate whether an injected object will cause the instantiation of a new object of that type or
whether it will look up an existing object of that type and reuse it. By far, one of the most convenient and useful cases
for using CDI is the ability to inject a managed bean into another object and make use of its current state, as if its
contents existed everywhere.

CDI provides type-safe injection because there is no need to specify a String-based name in order to instantiate
or refer to another object. By maintaining declared variables that are used as points of injection, the variable name
itself provides for strong typing and thus reduces the number of errors that may arise.

12-2. Binding a Bean to JSF Views
Problem
You want to bind a JavaBean to a JSF view using EL.

Solution #1
Denote a class with the @Named annotation, and specify a name for the class in String format. The String that
is specified within the @Named annotation can be used to gain reference to the bean from within a JSF view. The
following example demonstrates the binding of a bean field and method to a JSF view. The following Java class,
named CalculationBean, is a CDI managed bean that contains the @Named annotation, specifying myBean as the
bean reference name:

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named("myBean")
@RequestScoped
public class CalculationBean implements java.io.Serializable{

 private int num1 = 1;
 private int num2 = 0;
 private int sum;

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

500

 public CalculationBean(){
 }

 public void addNumbers(){
 System.out.println("Called");
 setSum(getNum1() + getNum2());
 }

 /**
 * @return the num1
 */
 public int getNum1() {
 return num1;
 }

 /**
 * @param num1 the num1 to set
 */
 public void setNum1(int num1) {
 System.out.println("setting num1");
 this.num1 = num1;
 }

 /**
 * @return the num2
 */
 public int getNum2() {
 return num2;
 }

 /**
 * @param num2 the num2 to set
 */
 public void setNum2(int num2) {
 this.num2 = num2;
 }

 /**
 * @return the sum
 */
 public int getSum() {
 return sum;
 }

 /**
 * @param sum the sum to set
 */
 public void setSum(int sum) {
 this.sum = sum;
 }

}

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

501

The bean is bound to the JSF view via the String-based name myBean, making a seamless binding between the
web view and the back-end business logic. The following JSF view contains three fields and a commandButton action
that are bound to myBean via the JSF EL:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 12-2: Binding a Bean to JSF Views</title>

 </h:head>
 <h:body>
 <p>
 <h:form>
 <h:inputText value="#{myBean.num1}"/>

 <h:inputText value="#{myBean.num2}"/>

 Sum: <h:outputText id="sum" value="#{myBean.sum}"/>

 <h:commandButton value="Calculate" type="submit" action="#{myBean.addNumbers()}">

 </h:commandButton>
 </h:form>
 </p>
 </h:body>
</html>

Solution #2
Denote the class using the javax.inject.Named (@Named) annotation, without using any String-based designation
for the class. When the @Named annotation is specified without providing a String-based name designation, a binding
name will be derived from the class name, converting the first letter of the class name to lowercase. For the following
example, assume that the class CalculationBean that was referenced in Solution #1 is going to be referenced from
within a JSF view via EL, except there will be no String-based identifier specified within the @Named annotation. Since
the @Named annotation does not specify a name, the EL would refer to the class name as such:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 12-2: Binding a Bean to JSF Views</title>

 </h:head>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

502

 <h:body>
 <p>
 <h:form>
 <h:inputText value="#{calculationBean.num1}"/>

 <h:inputText value="#{ calculationBean.num2}"/>

 Sum: <h:outputText id="sum" value="#{ calculationBean.sum}"/>

 <h:commandButton value="Calculate" type="submit" action="#{ calculationBean.addNumbers()}">

 </h:commandButton>
 </h:form>
 </p>
 </h:body>
</html>

@MaNaGeDBeaN VS. @NaMeD?

If the @Named annotation can be used to specify a binding name for a bean, then what is the point of using the
@ManagedBean annotation at all? the fact is, the @ManagedBean annotation has been carried over from previous
versions of jsF. While it is still a capable mechanism of marking a bean as managed and providing a binding
identifier to jsF, it is suggested for use only when CdI is not available for an application. If an application has full
access to the entire java ee stack, including CdI, then the @ManagedBean annotation is not a requirement.

In reality, the CdI technology is much more powerful than the use of @ManagedBean, and therefore it is the
preferred technique to use. this is the preferred technique because CdI allows for a broader base of classes to be
categorized as managed resources. CdI also carries with it many other bonuses such as transaction management
and type-safe dependency injection, of which @ManagedBean is not capable.

How It Works
One of the high points to using CDI is that it helps provide a seamless integration between the web views and the
back-end business logic for an application. Utilizing CDI, public bean members and methods can be made accessible
to JSF views very easily. The javax.inject.Named annotation provides a facility for referencing a JavaBean class
from within a JSF view, either by accepting a String that will be used to make the reference or by simply utilizing
the JavaBean class name with a lowercase first letter. The solutions provided within this recipe demonstrate both
techniques. From a technical standpoint, Solution #2, not making use of a String to provide the reference, is the most
type-safe solution. However, sometimes it is necessary to provide a String for reference, as demonstrated in Solution #1,
but that solution is recommended only on an as-needed basis.

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

503

Note ■ notice that the bean in solution #1, CalculationBean, contains an @RequestScoped annotation. this annota-
tion specifies the scope for the bean state. For a fun trick, try to remove the @RequestScoped annotation and see what
happens. as it turns out, the bean will still work as prescribed, but it will not return any results. this is because the bean
will be reinitialized after each request. therefore, the view will call the getSum method to read the current contents of the
sum field, and it will have been reinitialized to a value of 0 before the request has been made. to learn more about bean
scope, please see recipe 12-4.

By annotating a class with @Named, it becomes available for use by JSF views within the same application. Any
public class member or method can be called upon from within a JSF view by specifying the name of the class with
a lowercase first letter, along with the public member or method that is needed. For instance, the following JSF EL
expression calls upon a method named myMethod that is contained within a class named MyClass. Note that this EL
expression works if the class is named MyClass and includes an empty @Named annotation and if the class is named
something different and includes the @Named("myClass") annotation.

#{myClass.myMethod}

As mentioned in the sidebar for this recipe, the @ManagedBean and @Named annotations play similar roles in that
they both make Java classes available for use within a web view. However, it is safe to acknowledge that the @Named
annotation is preferred if using CDI; please read the note above for more information.

12-3. Allocating a Specific Bean for Injection
Problem
You have more than one JavaBean that implements a particular API, and you want to specify which of them you want
to inject.

Solution
Utilize a qualifier for the injection. To alleviate the issues of referencing a duplicate class, add a qualifier to
each of the classes to differentiate them from one another. In the following code example, two classes, named
PaperbackController and EbookController, each implement the Book interface. To allow client bean developers the
ability to specify which of the bean classes should be injected, qualifiers are used. In the first listing, let’s take a look at
the Book interface, which is being implemented by at least two JavaBeans in the example.

public interface Book {
 public String title = null;
 public String description = null;
}

The class PaperbackController uses a qualifier @Paperback in order to differentiate it from other beans that
implement the Book interface. The following listing is that of the PaperbackController class. Note that the Paperback
interface (source shown next) must already exist in order to utilize the @Paperback annotation in this example.

package org.javaeerecipes.chapter12.recipe12_03;

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

504

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

@Named(value = "paperbackController")
@SessionScoped
@Paperback
public class PaperbackController implements Serializable, Book {

 /**
 * Creates a new instance of PaperbackController
 */
 public PaperbackController() {
 }
...
}

Another JavaBean, named EbookController, also implements the Book interface. It contains a different qualifier,
@Ebook, in order to differentiate it from other classes implementing the Book interface. The EbookController class
looks like the following:

package org.javaeerecipes.chapter12.recipe12_03;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

@Named(value = "ebookController")
@SessionScoped
@Ebook
public class EbookController implements Serializable, Book {

 /**
 * Creates a new instance of EbookController
 */
 public EbookController() {

 }
...
}

Lastly, let’s see what the @Paperback and @Ebook binding annotations actually look like. The following two code
listings show the contents of the org.javaeerecipes.chapter12.recipe12_03.Paperback and org.javaeerecipes.
chapter12.recipe12_03.Ebook interfaces, which are used to create the two annotations:

import java.lang.annotation.*;
import javax.inject.Qualifier;

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER})
public @interface Paperback {}

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

505

import java.lang.annotation.*;
import javax.inject.Qualifier;

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER})
public @interface Ebook {}

When a client wants to make use of one or the other, it simply needs to call upon the qualifier as follows:

@Paperback PaperbackController paperback;
@Ebook EbookController ebook;

How It Works
When there are two or more classes that implement the same Java interface, CDI needs some help to determine which
of them is going to be used at an injection point. If an attempt is made to deploy an application that uses CDI and an
attempt is made to perform injection on a class that implements the same interface as another class, then Weld will
throw an ambiguous dependency error. This means that it cannot determine what bean to use for the given injection
point. When CDI attempts to determine which bean should be used at an injection point, it takes all class types into
account, and it also uses qualifiers. A qualifier is an annotation that can be applied at the class level to indicate the
type of a bean. Qualifiers can also be used to annotate methods, or other areas of code, to help CDI determine what
kind of bean needs to be injected.

Note ■ Weld is the reference implementation for CdI. therefore, you will see references to Weld within the server
logs when utilizing CdI within a java ee application. For more information regarding Weld, please see the online
documentation at http://seamframework.org/Weld.

Every bean without an explicit qualifier automatically becomes annotated with the @Default qualifier. This
qualifier is not needed when another qualifier type is used. In the solution to this recipe, two qualifiers are created
in order to mark two different beans of the Book type: the @Paperback and @Ebook qualifiers. To create a qualifier,
generate a Java interface, and annotate that interface with @Qualifier, Retention(RetentionPolicy.RUNTIME), and
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER}). All qualifiers
are created in the same manner, and once created, they can be used to annotate beans for differentiation. As you can
see from the example, both the PaperbackController and EbookController classes have been annotated with their
respective qualifiers. This makes for an easy way to allow CDI to determine which bean to inject since each of the two
beans are different implementations of the Book type.

The CDI API provides a handful of qualifiers out of the box that can be used within your bean classes. I have
already discussed the @Default qualifier, which is added to any bean that does not explicitly contain a qualifier.
Other qualifiers that are provided by CDI include @Named and @Any. The @Named qualifier is used to mark a bean as
EL-injectable. If a bean contains an @Named qualifier, then it can be referenced within a JSF view. The @Any qualifier
is also included on all beans, and it allows an injection point to refer to all beans or events of a certain bean type. For
instance, to refer to all of the beans of type Book, you could declare a member as follows:

@Inject @Any Instance<Book> anyBook;

Qualifiers are not used in everyday code, but they are a feature of Java EE that come in handy on occasions where
ambiguous bean injection is possible.

http://seamframework.org/Weld
http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

506

12-4. Determining Scope of a Bean
Problem
You want to ensure that the scope of a particular bean within your application will be available for a user’s
entire session.

Solution
Define the scope of the bean that you want to make available by annotating the bean accordingly. The
org.javaeerecipes.chapter12.bean.PaperbackController and org.javaeerecipes.chapter12.EbookController
that are listed in Recipe 12-3 are examples of request-scoped beans since they are annotated accordingly. To make a
bean available within a different scope, annotate using one of the other scope-based annotations. For example, let’s
create a bean that has a session scope, meaning that it will retain its state for multiple HTTP requests. To create
a session-scoped bean, annotate the class using @SessionScoped. The following class, named CartBean, is a CDI
session-scoped JavaBean that contains an integer field, which will be adjusted when a user invokes either the addItem
or removeItem method:

package org.javaeerecipes.chapter12.recipe12_04;

// Import and change to @RequestScoped to see a functional difference
//import javax.enterprise.context.RequestScoped;
import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named
@SessionScoped
public class CartBean implements java.io.Serializable {

 private int orderList = 0;

 public CartBean(){}

 public void addItem(){
 setOrderList(getOrderList() + 1);
 }

 public void removeItem(){
 setOrderList(getOrderList() - 1);
 }

 /**
 * @return the orderList
 */
 public int getOrderList() {
 return orderList;
 }

 /**
 * @param orderList the orderList to set
 */

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

507

 public void setOrderList(int orderList) {
 this.orderList = orderList;
 }

}

Note ■ the comment within the CartBean class indicates that if you change the scope to @RequestScoped, you will
see a functional difference. the difference is that the orderList field will retain its state for only one http request.
therefore, the number will never increase more than 1, and it will never decrease below -1.

What fun would this bean be if you did not use it within a JSF view? Well, let’s take a look at a JSF view, named
recipe12_04.xhtml, which utilizes the CartBean class to display the orderList field. The view contains two buttons,
each of which is bound to different methods that reside within the CartBean class. One button will increase the size of
the orderList int, and the other button will decrease it.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 12-4: Determining Scope of a Bean</title>

 </h:head>
 <h:body>
 <p>
 <h:form>
 <h:outputText value="#{cartBean.orderList}"/>

 <h:commandButton value="Add Order" type="submit" action="#{cartBean.addItem()}"/>

 <h:commandButton value="Remove Order" type="submit" action="#{cartBean.removeItem()}"/>
 </h:form>
 </p>
 </h:body>
</html>

How It Works
Depending upon an application’s requirement, some beans may need to retain state longer than others. Sometimes it
makes sense for each user of an application to have its own version of a particular bean, whereas the state of the bean
lives and dies with the user’s session. Other times it makes more sense for a bean to share its state among all users of
an application, and still other times it makes sense for a bean’s state to live and die with each user request. To specify
the amount of time that a bean will retain its state, annotate the bean class with one of the CDI scope annotations.
Table 12-1 describes the different scope annotations.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

508

While it is easy to define a particular scope for a bean, sometimes it takes some practice and testing to determine
the correct scope for a particular application requirement. Moreover, as an application evolves, it makes sense to
review the different scopes that have been applied to various beans to ensure that the assigned scope is still desirable.

Note ■ one of the most common mistakes when working with the scope annotations is importing the wrong
annotation for use within the bean. remember that javaserver Faces has its own set of scope-based annotations for use
within managed beans. always be sure to import from the javax.enterprise.context.* package when working with
CdI scope or you will achieve erroneous results.

12-5. Injecting Non-bean Objects
Problem
You want to inject an object that is not a bean into another Java class.

Solution #1
Use producer fields to inject objects that are not beans, objects that require custom initialization, or objects that may
have varying values at runtime. To create a Producer field, annotate a public class field with the javax.injection.
Produces annotation, and return the field you want to inject. In most cases, you will also need to annotate a producer
method with a CDI qualifier so that CDI will know what to inject when called upon.

In this example, a JavaBean named InitalValueController contains a producer field that will be called upon
to assign an initial value to CDI bean fields. The following source listing is that of the IntialValueController class,
which contains the producer field implementation:

package org.javaeerecipes.chapter12.recipe12_05;

import javax.enterprise.inject.Produces;

Table 12-1. CDI Bean State Annotations

Annotation Description

@RequestScoped Per user and retains state for a single HTTP request.

@SessionScoped Per user and retains state across multiple HTTP requests.

@ApplicationScoped Shared state across all user interactions within an application.

@Dependent Object exists to serve one client bean and contains the same life cycle as the bean.
(This is the default scope if none specified.)

@ConversationScoped Per user scope and is utilized within a JSF application. Boundaries of the scope
are controlled via a developer and extend the scope across multiple invocations of
the JSF life cycle. All long-running conversations are scoped to a particular servlet
session and may not cross session boundaries.

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

509

public class InitialValueController implements java.io.Serializable {

 @Produces @InitValue public int initialValue = 1000;

}

The producer field in the class listing contains a qualifier annotation of @InitValue. The qualifier
implementation is as follows:

package org.javaeerecipes.chapter12.recipe12_05;

import java.lang.annotation.*;
import javax.inject.Qualifier;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER})
@Qualifier
public @interface InitValue {}

The producer field can be called upon from anywhere. In this case, it is injected into a CDI bean in order to
initialize a bean field value. In the following listing, the CDI bean field named ProducerExample demonstrates how
to inject the producer field and make use of it:

package org.javaeerecipes.chapter12.recipe12_05;

import javax.enterprise.context.SessionScoped;
import javax.inject.Inject;
import javax.inject.Named;

@Named
@SessionScoped
public class ProducerExample implements java.io.Serializable {

 @Inject
 @InitValue
 private int initial;

 private int orderList = -1;

 public ProducerExample(){

 }

 public void addItem(){
 setOrderList(getOrderList() + 1);
 }

 public void removeItem(){
 setOrderList(getOrderList() - 1);
 }

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

510

 /**
 * @return the orderList
 */
 public int getOrderList() {
 if (orderList == -1)
 orderList = initial;
 return orderList;
 }

 /**
 * @param orderList the orderList to set
 */
 public void setOrderList(int orderList) {
 this.orderList = orderList;
 }

}

When the orderList field is added to a JSF view, the getOrderList method will be invoked upon the loading of
the view because the orderList property is called upon from the view. This will, in turn, cause the orderList field
value to become initialized the first time the JSF view is loaded. The following code demonstrates the use of the field
within a JSF view. To see the sources, please look at the chapter12/recipe12_05.xhtml file.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>Recipe 12-5: Injecting Non-Bean Objects</title>

 </h:head>
 <h:body>
 <p>
 <h:form>
 <h:outputText value="#{producerExample.orderList}"/>

 <h:commandButton value="Add Order" type="submit" action="#{producerExample.addItem()}"/>

 <h:commandButton value="Remove Order" type="submit" action="#{producerExample.

removeItem()}"/>
 </h:form>
 </p>
 </h:body>
</html>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

511

How It Works
Situations may arise when it makes sense to inject an object other than a CDI managed bean or resource. Objects
such as fields, methods, and the like, can become injection targets if they are declared as producers. In some cases,
it may make sense to declare a class field as an injectable object. To do so, annotate the field with javax.enterprise.
inject.Produces (@Produces), and the EE container will then treat the field as a getter method for the field. In
most cases, a CDI qualifier annotation should also be created and used to annotate the field so that the field can be
referenced via the qualifier at the injection point.

In the solution to this recipe, a field that will be used to initialize values is declared within a Java class named
IntitialValueController. The field name is initialValue, and it will return an int type, being the number that will
be used for initialization. Looking at the code, you can see that a qualifier named @InitValue is also placed at the field
declaration. This will allow the injection point to simply refer to the qualifier to gain a handle on the injection target.
To use the initialValue field, it is injected into a CDI managed bean as follows:

@Inject
@InitValue
private int initial;

One injected, the field can be utilized as if it were part of the class into which it was injected. In the case of
this example, it is used to initialize the value of the orderList field, which is then displayed via a JSF view named
chapter12/recipe12_05.xhtml.

It is also possible to create producer methods, which can return values that are injectable to a bean or non-Java
(JSF) context. In doing so, the @Produces annotation is used to annotate the method in the same manner that a field
producer is declared. For example, the following method demonstrates the declaration of a producer method that
would be used to inject an object of the Book type. The method can be called upon in order to return the desired Book
object type, depending upon the type that is passed to it.

@Produces @BookQualifier public Book getBook(Book book){

 if(book.equals(EbookController.class))
 return new EbookController();
 else
 return new PaperbackController();
}

In this case, the method also uses a qualifier named @BookQualifier. The producer method result can then be
injected into a bean or non-Java context. The injection point references the qualifier in order to make the injection
possible, and the producer method is called by the container to obtain the desired instance object as follows:

@Inject
@BookQualifier
Book getBook(ebookController);

Producers can be a great way to develop injectable objects. With a bit of practice, they can also become valuable
for creating sophisticated object factories via the use of a producer method.

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

512

12-6. Ignoring Classes
Problem
You want to mark a class as ignored by CDI.

Solution #1
Denote the class with the @Veto annotation. Any class containing the @Veto annotation will be ignored by CDI. The
following example demonstrates the use of @Veto:

@Veto
public class OrderBean implements java.io.Serializable {

 public OrderBean(){

 }

 // Some Class Implementation
}

Solution #2
Denote the class with the @Requires annotation to mark the class as ignored by CDI if it does not meet the specified
requirements. The following example demonstrates how to utilize the @Requires annotation:

@Requires("javax.persistence.EntityManager")
public class EmployeeFacade {
 ...
 @Produces
 public EntityManager getEntityManager(){
 ...
 }
 ...

}

In this example, the @Requires annotation has a String containing javax.persistence.EntityManager passed
to it. As such, if the specified class is not available and/or the class is unable to fulfill the specified dependency, then it
will be ignored by CDI.

How It Works
To veto a bean means to mark it as ignored by CDI. Therefore, if a bean contains the @Veto annotation, it cannot be
processed by CDI. A vetoed class will not contain the life cycle of a contextual instance, and it cannot be injected into
other classes. In fact, if a managed bean or session bean contains the @Veto annotation, it cannot be considered
a managed bean or session bean at all. In some cases, it makes sense to mark a bean as such to ensure that it cannot
become managed by CDI. The following code demonstrates how to apply the @Veto annotation to a class.

The @Veto annotation can also be placed on a package declaration, which will prevent all of the beans that are
contained within that package from being processed via CDI.

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

513

@Veto
package org.javaee7recipes.chapter12.*;
...

Any of the following definitions on a vetoed type will not be processed:

Managed beans, session beans, interceptors, decorators•	

Observer methods, producer methods, producer fields•	

The @Requires annotation can be used to mark a class to be ignored by CDI if it does not meet the specified
required criteria. The @Requires annotation accepts a String-based fully qualified class name of the dependency or
dependencies. If the object is able to fulfill its dependencies, then it will be managed by CDI. Similarly to @Veto, the
@Requires annotation can be placed on a package as well. If that package is unable to fulfill the dependency that is
denoted by @Requires, then all classes contained within that package will be unmanaged by CDI.

12-7. Disposing of Producer Fields
Problem
Your application uses a producer field, and you want that field to be destroyed once it is no longer required for use.

Solution
Mark the producer field with the @Disposes annotation to indicate that it should be removed once it is no longer
in use. The following code excerpt demonstrates a producer field that will be removed once it is no longer required
for use:

...
 @Produces @Disposer
 List<Book> books;
...

How It Works
A producer method can be used to generate an object that needs to be removed once it is no longer needed. Much
like a finalizer for a class, an object that has been injected via a producer method can contain a method that is invoked
when the injected instance is being destroyed. Such a method is known as a disposer method. To declare a method as
a disposer method, create a method defined by the same class as the producer method. The disposer method must
have at least one parameter, with the same type and qualifiers as the producer method. That parameter should be
annotated with @Disposes. In CDI 1.1, this technique can now be applied to producer fields.

12-8. Specifying an Alternative Implementation at Deployment Time
Problem
You want to have the ability to code different implementations of an interface and then choose which implementation
to utilize when an application is deployed.

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

514

Solution
Create a default implementation for an interface, and then create any alternative implementations for that interface
and denote them with the @Alternative annotation. Specifying the javax.enterprise.inject.Alternative
annotation flags a class as an alternative, and if that class is noted in the beans.xml file, then it will be loaded at
deployment time, rather than the default interface implementation.

The following code excerpt demonstrates the use of an alternative class implementation. For the purposes of
this demonstration, let’s assume that there is already a default implementation for the OrderType interface named
BookstoreOrderBean.

@Alternative
public class WarehouseOrderBean implements OrderType {
...
}

To specify the use of the alternative implementation rather than the default, modify the beans.xml
file accordingly. The following is an example excerpt from the beans.xml file that designates the use of the
WarehouseOrderBean:

<beans ... >
 <alternatives>
 <class>org.javaeerecipes.chapter12.WarehouseOrderBean</class>
 </alternatives>
</beans>

How It Works
Sometimes it makes sense to create two or more implementations of a class for use in different environments.
However, it can become a cumbersome nightmare to rename classes, and so on, in order to build and distribute the
correct implementation for each environment. The use of the javax.enterprise.inject.Alternative annotation
allows more than one implementation of an interface to be used, and the appropriate implementation can be
specified by altering the file before deployment.

12-9. Injecting Bean Metadata
Problem
You want to acquire metadata information about a bean from within your application classes.

Solution
Inject the interface of a bean into the classes that need to utilize the metadata. Once it’s injected, call upon the
bean methods to retrieve the required metadata. In the following example, a bean named OrderBean has its
metadata injected:

@Named("OrderBean")
public class Otherbean {
 @Inject Bean<Order> bean;

http://www.it-ebooks.info/

Chapter 12 ■ Contexts and dependenCy InjeCtIon

515

 public String getBeanName(){
 return bean.getName();
 }

 public Class<? extends Annotation> getBeanScope(){
 return bean.getScope();
 }
}

How It Works
If you need to use bean metadata, you can easily obtain it by injecting the target bean’s metadata. To do so, specify
the @Inject annotation, followed by the Bean class of the target bean type. Once the bean interface has been injected,
methods can be called upon it to obtain the desired information. Table 12-2 describes the different methods that can
be called upon the Bean class to obtain metadata.

Table 12-2. Bean Metadata

Method Description

getName Returns the name of the bean

getBeanClass Returns the bean class

getInjectionPoints Returns a Set of InjectionPoint objects for the bean

getQualifiers Returns a Set of qualifier annotations for the bean

getScope Returns the scope of the bean

getStereotypes Returns a Set of stereotype data (common metadata) for a bean

getTypes Returns a Set of the bean types

isAlternative Returns a Boolean to specify whether the bean is an alternative

isNullable Returns a Boolean to specify whether a bean can be nullable

http://www.it-ebooks.info/

517

Chapter 13

Java Message Service

The Java Message Service is an API that allows software to create, edit, read, and send messages between other software
applications or components. The API allows resources to be created within an application server that facilitates
messaging capability in various contexts. The application server houses connection factory and destination resources,
and these resources are created and maintained by the application server. That said, different application server
implementations might have minor differences in their JMS implementations.

In addition to the basic messaging facilities, JMS also provides the ability to send messages to destinations and
publish messages to subscriptions. This chapter contains recipes that focus on basic concepts of JMS, as well as
some advanced techniques and new additions to Java EE 7. When following along with the examples in this recipe,
it should be noted that JMS could be used in various situations for creating many different types of messages. For
brevity, this chapter will cover essential concepts and make use of TextMessage objects only. The examples will be
invoked using JSF view actions, although in real-life applications, there are many different ways to implement the
sending and receiving of messages. From internal message invocation, to scheduled tasks via an EJB timer, and even
implementation of JMS messaging with EJB message driven beans, JMS can be utilized in many different contexts.
After reading through the recipes, you should be able to apply the strategies utilized within the recipes in order to
create the messaging system of your needs.

New to JMS 2.0 is a simplified API for sending and receiving messages. In this chapter, you will see both the
standard API and the simplified API so that the differences can be compared. The updated API also includes
enhancements to message subscriptions, delivery delay, and more. The breadth of JMS 2.0 is far too large for complete
coverage in this single chapter. To learn about all of the new features, please refer to the JMS 2.0 specification.

Note■ The examples in this chapter focus on working with JMS resources within a GlassFish application server
environment. Some of the recipes demonstrate the use of NetBeans IDE for producing and working with JMS resources.
However, although the focus is on GlassFish, the main concepts and techniques can be carried forth for just about every
application server environment. For more specific details on working with another application server or IDE, please see
the documentation that is specific to your environment.

13-1. Creating JMS Resources
Problem
You would like to provide the ability to create a JMS resource to deploy within a GlassFish application server
environment.

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

518

Solution #1
The easiest technique for creating JMS resources is to utilize an IDE, such as NetBeans. In this example, a standard
JMS connection factory will be created for an application project utilizing the NetBeans IDE.

 1. Right-click the project within the NetBeans Projects navigator menu, choose New and
then Other. The New File wizard will open, from which you will select the GlassFish
menu option from the Categories select list, followed by the JMS Resource file type
(see Figure 13-1).

Figure 13-1. Create JMS Resource file from within NetBeans

 2. Within the New JMS Resource wizard, enter a JNDI Name (using jms/ prefix), and a
description. If you would like to enable the resource, be sure to do so within this wizard
screen as well. Next, select the resource type that you wish to create. In this example,
we will demonstrate the creation of a connection factory, as seen in Figure 13-2.

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

519

 3. Click Finish, and a file named glassfish-resources.xml will be created within your
project if it does not already exist. When you deploy the application project to the server,
the resource will be automatically created for you, as shown in Figure 13-3.

Figure 13-2. New JMS Resource wizard

Figure 13-3. glassfish-resources.xml file within a NetBeans project

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

520

Note ■ You can utilize the same steps to create javax.jms.TopicConnectionFactory and
javax.jms.QueueConnectionFactory resources.

Solution #2
Create a new JMS resource from within the GlassFish application server administrative console. In this recipe example,
we will create a JMS destination resource. Specifically, we will walk through the creation of a javax.jms.Queue
resource. Follow these steps to create the resource:

 1. Log into the GlassFish administrative console. Expand the Resources ➤ JMS Resources
menu in the navigation tree to expose the Destination Resources menu option
(see Figure 13-4).

Figure 13-4. GlassFish administration console Destination Resource menu

 2. Click the New button within the JMS Destination Resource window to open the New JMS
Destination Resource window (see Figure 13-5). Enter a JNDI name (beginning with jms/),
followed by a unique name for the Physical Destination Name field. Finally, choose the
Resource Type that you wish to create.

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

521

 3. Click OK to create the destination.

Note ■ The GlassFish asadmin create-jms-resource command can also be used to create JMS-administered objects
from the command line. The asadmin tool can also be used to perform other tasks. For more information, please refer to
the documentation at http://docs.oracle.com/cd/E26576_01/doc.312/e24928/asadmin-subcommands.htm.

How It Works
The JMS API utilizes administrative resources in order to create and consume messages. We refer to these resources as
JMS resources. There are a couple of different types of JMS resources that can be created—connection resources and
destination resources. The connection resources are used to create connections to a provider. There are three types of
connection resources that can be created:

•	 ConnectionFactory: Instance of javax.jms.ConnectionFactory interface. Can be used to
create JMS Topics and JMS Queue types

•	 TopicConnectionFactory: Instance of javax.jms.TopicConnectionFactory interface

•	 QueueConnectionFactory: Instance of javax.jms.QueueConnectionFactory interface

JMS connection factory resources are very similar to JDBC connection factories in that they provide a pool of
connections that an application can use in order to connect and produce a session. There are many attributes that can
be provided when creating connection factory resources:

•	 Initial and Minimum Pool Size: The initial and minimum number of connections that will be
created and maintained by the connection pool.

•	 Maximum Pool Size: The maximum number of connections that can be created within the pool.

Figure 13-5. GlassFish administration console for new JMS destination resource

http://docs.oracle.com/cd/E26576_01/doc.312/e24928/asadmin-subcommands.htm
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

522

•	 Pool Resize Quantity: The number of connections that will be removed when the pool idle
timeout expires.

•	 Idle Timeout: The maximum amount of time that connections can remain in the pool if they
are idle. (Seconds)

•	 Max Wait Time: The maximum amount of time that a caller will wait before a connection
timeout is sent. (Milliseconds)

•	 On Any Failure: If set to true (checked), all connections would be closed and reconnected
on failure.

•	 Transaction Support: The level of transaction support (XATransaction, LocalTransaction,
NoTransaction). The default is empty.

•	 Connection Validation: If set to true, then connections will need to be validated.

Solution #1 to this recipe demonstrates how to create a connection factory resource using the NetBeans IDE.
This step-by-step procedure makes it easy to create such objects and deploy them to your GlassFish application server
for use. You can also create connection factory objects using the GlassFish administrative console by following the
steps that are provided in Solution #2 to this recipe and choosing the Connection Factories submenu rather than
the Destination Resources submenu in step 1. ConnectionFactory objects are registered automatically with JNDI
once created, and they can then be injected into Java classes and used. The following lines of code demonstrate how
to inject a ConnectionFactory resource into a class:

@Resource(name = "jms/MyConnectionFactory")
private static ConnectionFactory connectionFactory;

Destination resources can also be created in a similar fashion to connection resources. Destination resources
act as targets that receive or consume messages that are produced. Destination resources can be one of two types:
javax.jms.Queue (Queue) or javax.jms.Topic (Topic). A Queue is a destination resource that consumes messages in
a point-to-point (PTP) manner, much like a one-way line of traffic. When a producer sends a message to a queue, the
message will stay in the queue until it is consumed. A topic is a destination that is used in a pub/sub scenario, whereas
messages sent to a Topic may be consumed by multiple receivers. One or more receivers can subscribe to a Topic.

Solution #2 demonstrates how to create a destination resource within a GlassFish application server, using
the GlassFish administrative console. The console provides a wizard that can be used to easily create a destination
resource. The most important piece of information to provide when creating a destination is the name. As with any
JMS resource, the JNDI name should begin with the jms/ prefix. When creating a destination resource, a unique name
must also be provided for the Destination Resource Name, although other Java EE application servers may or may not
make this a mandatory specification. Destination resources can be injected into Java classes in the same manner as
ConnectionFactory resources. The following lines of code demonstrate the injection of a Topic resource.

@Resource(name="jms/myTopic")
private Topic myTopic;

13-2. Creating a Session
Problem
You would like to create a JMS session so that you can send or consume messages.

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

523

Solution
Create a connection so that you can subsequently create one or more sessions, which in turn, can send messages to
destinations or consume messages. In order to create a connection, obtain a ConnectionFactory object by injection
via the @Resource annotation, and call its createConnection method as demonstrated in the following line of code:

Connection connection = connectionFactory.createConnection();

After you have created a connection, you need to start a session. In order to do so, call the connection objects
createSession method as follows:

Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Note ■ if you are using the simplified JMS apI, which is covered in more detail in recipe 13-3, you do not need to
manually create a JMS session. The creation of a JMS session is only required when utilizing the standard apI.

Running the Example
If you take a look at the sources that can be found in the JavaEERecipes project within the org.javaeerecipes.chapter13
package, you can see a full demonstration for creating a JMS session. To see the example in action, deploy the
JavaEERecipes project to your GlassFish application server after setting up a JMS connection factory (see Recipe 13-1),
and visit the following URL:

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_02.xhtml

How It Works
Before you can begin to send or consume messages, you must obtain a JMS connection so that you can start a session.
A session can be used to create JMS resources such as Message Consumers, Message Producers, Messages, Queue
Browsers, and Temporary Queues and Topics. A session can be created using a Connection object. To create
a session, call a Connection object’s createSession method, and pass the appropriate arguments depending upon
your application’s needs. The createSession syntax is as follows:

createSession(boolean isTransacted, int acknowledgementType)

The first argument to the createSession method is a Boolean value to indicate if transactions should take
place within the session. If a session is created as transacted (set to true for the first argument to createSession),
acknowledgment occurs once the entire transaction is successfully committed. If for some reason the transaction
is not committed, the entire transaction is rolled back, and all messages are redelivered. However, if a session is not
transacted, one must indicate which type of acknowledgment must be received to consider a message successfully
sent. The second argument to the createSession method indicates the acknowledgment type. Table 13-1 lists the
different acknowledgment types along with a description of each.

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_02.xhtml
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

524

In the solution to this recipe, the session that is created is nontransactional, and the receipt type is
Session.AUTO_ACKNOWLEDGE. This is the most common type of JMS session that is created. Once the session has been
created, then it can be used to create JMS resources.

13-3. Creating and Sending a Message
Problem
You wish to create and send a JMS message.

Solution #1
Make use of the standard API to create and send a message. To do so, create a Message object with respect to the type
of message you wish to send, and then create and use a message producer in order to send messages to a destination.
To create a message, first decide upon the type of message that you wish to send. Once decided, create the appropriate
message object from the JMS session. In this example, we’ll demonstrate the creation of a text message. The following
lines of code demonstrate how to create a text message including a String.

TextMessage message = session.createTextMessage();
message.setText("Java EE 7 Is the Best!");

Next, to create a MessageProducer and send the message, call a JMS session’s createProducer method, and
pass the object type of the destination to which you wish to send a message. The following lines of code demonstrate
how to create a message producer and send the text message that was created in the previous lines. The first lines of
code demonstrate how to inject the destination resource, and then the actual creation of the message producer and
sending of the message follows.

@Resource(name="jms/javaEERecipesQueue")
private Queue myQueue;
...
 public void sendMessage() {
 if (connection != null) {
 System.out.println("Creating Session");
 try(Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
) {
 myQueue = (Queue) getContext().lookup("jms/javaEERecipesQueue");
 MessageProducer producer = session.createProducer(myQueue);

Table 13-1. JMS Session Message Acknowledgment

Acknowledgment Type Description

Session.AUTO_ACKNOWLEDGE The session automatically acknowledges a client’s receipt of a message,
either when the client has successfully returned from a call to receive
or when the MessageListener it has called to process the message has
successfully returned.

Session.CLIENT_ACKNOWLEDGE The client acknowledges the receipt of a message by calling the message’s
acknowledge method.

Session.DUPS_OK_ACKNOWLEDGE Lazy acknowledgment of messages, allowing duplicates to be received.

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

525

 TextMessage message = session.createTextMessage();
 message.setText("Java EE 7 Is the Best!");

 producer.send(message);
 producer.close();
 setConnectionString("Message Successfully Sent to Queue");

 } catch (NamingException | JMSException ex) {
 System.out.println(ex);
 setConnectionString("Session not created and message not sent");
 }
 } else {
 setConnectionString("No connection available");
 }
 }

Solution #2
Make use of the simplified API to create and send a message. To utilize the simplified API, create a JMSContext object,
and then utilize it to create a MessageProducer and send the message to the appropriate destination. In the following
example, a simple String-based message is sent to a Queue using the simplified API. This technique provides the
same result as Solution #1.

@Resource(name = "jms/javaEERecipesConnectionFactory")
 private ConnectionFactory connectionFactory;
 @Resource(lookup = "jms/javaEERecipesQueue")
 Queue inboundQueue;
...
 public void sendMessageNew() {
 try (JMSContext context = connectionFactory.createContext();) {
 StringBuilder message = new StringBuilder();
 message.append("Java EE 7 Is the Best!");
 context.createProducer().send(inboundQueue, message.toString());
 }
 }

Running the Examples
An example that can be run from within a JSF view has been created for this recipe. The code found at
org.javaeerecipes.chapter13.Example13_03.java contains a managed bean that includes a sendMessage method
that utilizes the standard API implementation, and a sendMessageNew method that utilizes the simplified API. Both
methods are responsible for creating a message and sending it to a destination Queue. By running the example, you
can look at the server log to see the output from the method. Deploy the JavaEERecipes project and visit the following
URL to run the example: http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_03.xhtml.

How It Works
The reason that any application makes use of JMS is to incorporate the ability to send or receive messages. Therefore, it
is no surprise that the JMS API has been developed to make these tasks very easy for the developer. In Java EE 7, things
get even easier using the simplified JMS API. Let’s begin by discussing the steps that are needed to utilize

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_03.xhtml
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

526

the standard API for sending a JMS message. To send a JMS message using the standard API, you need to create
a resource destination for your message, and obtain a connection and a JMS session, as seen in Recipes 13-1
and 13-2. Once you have obtained a JMS session, the next step is to create a MessageProducer using the Session
createProducer method, passing the destination as an argument. After this legwork has been completed, the message
can be constructed. You can create a message by calling the javax.jms.Session method that corresponds to the type
of message that you wish to create. To see all of the available methods, please refer to the online documentation at
http://docs.oracle.com/javaee/6/api/javax/jms/Session.html. In the example for this recipe, a text message is
created by calling the session.createTextMessage() method. The text is then set by calling the TextMessage object’s
setText method.

Once a message has been created, a MessageProducer must be created in order to facilitate the sending of the
message. Again, javax.jms.Session comes to the rescue here as we can call its createProducer method, passing the
destination resource for which we’d like to create the MessageProducer. Once created, the producer’s sendMessage
method can be invoked, passing the message that you wish to send.

As mentioned previously, the javax.jms.Session can be used to generate different message types. Table 13-2
lists the different message types that can be created, along with a description.

Table 13-2. JMS Message Types

Message Type Creation Method

StreamMessage The message body contains a stream of primitive values in the Java programming
language. Filled and read sequentially.

MapMessage Message body contains a set of name/value pairs that are formed from String objects
and Java primitives. May be accessed sequentially or randomly by name, and the order
of entries is undefined.

TextMessage Message body contains a String object. Able to be used for plain-text as well as XML
messages.

ObjectMessage Message body contains a Serializable Java object.

BytesMessage Message body contains a stream of uninterpreted bytes.

When utilizing the simplified API that was introduced with Java EE 7, there are a few shortcuts that can be made.
To compare Solution #1 with Solution #2, you can see that there are fewer lines of code in the second solution. The
simplified API enables developers to produce the same results as the standard API with much less code. A JMSContext
object is obtained via a call to the ConnectionFactory’s createContext method, and it can be used to begin a chain of
method invocations that will result in the sending of a message in just one line of code. To break it down a bit, after the
JMSContext has been obtained, its createProducer method can be called, chaining a call to the send method, passing
the Queue and the message to be sent.

JMS message implementations may vary between the different application server products. However, all JMS
messages types share some common characteristics. For instance, all JMS messages implement the javax.jms.Message
interface. Messages are composed of a header, properties, and a body. The header of a message contains values that are
utilized by clients and providers for routing and identification purposes, properties provide message filtering, and the
body portion of the message carries the actual message content. The message header is used for linking messages to one
another, and a field named the JMSCorrelationID contains this content. Message objects contain the ability to support
application-defined property values. The properties can be set via a construct known as message selectors, and they are
responsible for filtering messages. For more-detailed information regarding message properties, please see the online
documentation at http://docs.oracle.com/javaee/6/api/javax/jms/Message.html. The body varies across the
different message types, as listed in Table 13-2.

It can be useful to add properties and headers to a particular message in order to allow message consumers to have
filtering capabilities via JMS message selectors. To learn more about using JMS message selectors, please refer to Recipe 13-5.

http://docs.oracle.com/javaee/6/api/javax/jms/Session.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

527

13-4. Receiving Messages
Problem
You would like to receive messages that have just been sent by a JMS producer.

Solution #1
Make use of the standard JMS API to create a message consumer. Using the JMS session, create the message consumer
by calling the createConsumer method, passing the type of message consumer that you would like to create. Once the
message consumer object has been created, invoke the start method on the JMS connection object, and then call
the consumer objects receive method to receive a message. In the following example managed bean controller,
a message consumer will be created and set up to receive the message that was sent by the producer in Recipe 13-3.

The following code excerpt is taken from the org.javaeerecipes.chapter13.recipe13_04.Example13_04.java
source file. The method named receiveMessage is responsible for consuming messages from a specified destination
point Queue.

public void receiveMessage() {
 boolean stopReceivingMessages = false;
 if(connection == null){
 createConnection();
 }
 try(Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);) {
 createConnection();
 myQueue = (Queue) getContext().lookup("jms/javaEERecipesQueue");
 try (MessageConsumer consumer = session.createConsumer(myQueue)) {
 connection.start();

 while (!stopReceivingMessages) {
 Message inMessage = consumer.receive();
 if (inMessage != null) {
 if (inMessage instanceof TextMessage) {
 String messageStr = ((TextMessage) inMessage).getText();
 setDisplayMessage(messageStr);
 } else {
 setDisplayMessage("Message was of another type");
 }
 } else {
 stopReceivingMessages = true;
 }
 }
 connection.stop();
 }
 } catch (NamingException | JMSException ex) {
 Logger.getLogger(Example13_04.class.getName()).log(Level.SEVERE, null, ex);
 } finally {
 if (connection != null){
 closeConnection();
 }
 }
 }

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

528

Solution #2
Utilize the simplified API to create a message consumer. Utilize a JMSContext object to create the JMSConsumer in an
efficient and simplified manner. The following example method resides within a managed bean controller. The message
consumer in this example will be created and set up to receive the message that was sent by the producer in Recipe 13-3.

public String receiveMessageNew() {
 try (JMSContext context = connectionFactory.createContext()) {
 JMSConsumer consumer = context.createConsumer(myQueue);
 return consumer.receiveBody(String.class);
 }
}

Running the Example
The JavaEERecipes project contains a working example for this recipe that demonstrates the sending and receiving
of JMS messages. To view the example, you will need to deploy the project to your GlassFish application server and
then visit the following URL:

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_04.xhtml

How It Works
The receiving client of a message is also known as the message consumer. Message consumers can be created
using the standard or the simplified JMS API. We will compare these two approaches in this section to give you an idea
of the differences between the two.

Using the standard API, a consumer is created from JMS Session objects in the same manner that producers are
created (see Recipe 13-3), calling the createConsumer method of JMS Session and passing the destination object from
which the consumer will listen for and accept messages. Message consumers have the ability to consume messages
that are waiting within a queue, and they listen indefinitely for new incoming messages.

To set up a consumer, call the JMS Session object’s createConsumer method, and pass the destination object
that you wish to consume from. The next step is to call the JMS Connection start method. This will tell JMS that the
consumer is ready to begin receiving messages. After invoking the connection.start() method, a consumer can
receive a message by calling the Consumer object’s receive method, optionally passing time in milliseconds for the
consumer to listen for messages. If no time limit is specified, the consumer will listen indefinitely.

As you can see from the example in this recipe, once the receive method is called, a Message object is retrieved.
Once the message is received, the application can glean whatever it needs by calling the Message object’s getter
methods accordingly.

Now let’s take a look at using the simplified API. As you can see from Solution #2, there are fewer lines of code
required to produce the same result achieved from Solution #1. The JMSContext object aids in producing less code by
calling its createConsumer method and passing the resource from which the application will need to consume messages.
This method call will return a JMSConsumer, which has a similar API to MessageConsumer, with the ability to receive
messages both synchronously and asynchronously. In the example, a String message is consumed synchronously.

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_04.xhtml
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

529

Note ■ It is possible to create an asynchronous consumer by registering a MessageListener with the MessageConsumer.
after a listener has been registered for the consumer, the listener’s onMessage() method will be called each time a
message has been delivered. For instance, the following code could be used to register a listener to the consumer that
was created within the example for this recipe.

javax.jms.MessageListener javaEERecipesListener = new MyMessageListener();

consumer.setMessageListener(javaEERecipesListener);

13-5. Filtering Messages
Problem
You would like to provide properties for your messages that will make it easier for consumers to filter through and find
messages of their choice.

Solution
Utilize message selectors in order to filter the messages that are being consumed. Message selectors are String-based
expressions that can be assigned to consumers upon creation, and they are generally used to filter the types of
messages that a consumer will receive. In the following example, both the sendMessage1 and sendMessage2 methods
create JMS messages. The sendMessage1 method sets a property named TYPE with a value of JAVAEE on the message.
After setting this property, a MessageProducer is created and the message is sent. The sendMessage2 method sets a
property named TYPE with a value of JAVASE on the message. Just like sendMessage1, the sendMessage2 method then
creates a MessageProducer and sends the message. The receiveMessage method sets up a MessageConsumer with
a selector specified to only consume messages with a property of TYPE that include a value of JAVAEE.

The following excerpt has been taken from the class named
org.javaeerecipes.chapter13.recipe13_05.Example13_05.java.

public void sendMessage1() {
 if (connection != null) {
 try (Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(myQueue);) {
 TextMessage message = session.createTextMessage();
 message.setText("Java EE 7 Is the Best!");
 message.setStringProperty("TYPE", "JAVAEE");
 producer.send(message);

 } catch (JMSException ex) {
 System.out.println(ex);

 }
 }

 }

 public void sendMessage2() {
 if (connection != null) {
 try (Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(myQueue);) {

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

530

 System.out.println("Creating message");
 TextMessage message2 = session.createTextMessage();
 message2.setText("Java SE 7 Is Great!");
 message2.setStringProperty("TYPE", "JAVASE");
 producer.send(message2);

 } catch (JMSException ex) {
 System.out.println(ex);

 }
 }

 }

 public void receiveMessage() {
 boolean stopReceivingMessages = false;
 String selector = "TYPE = 'JAVAEE'";
 try(Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(myQueue, selector);) {

 connection.start();

 while (!stopReceivingMessages) {
 Message inMessage = consumer.receive();
 if (inMessage != null) {
 if (inMessage instanceof TextMessage) {
 String messageStr = ((TextMessage) inMessage).getText();
 setDisplayMessage(messageStr);
 } else {
 setDisplayMessage("Message was of another type");
 }
 } else {
 stopReceivingMessages = true;
 }

 }
 connection.stop();

 } catch (JMSException ex) {
 System.out.println(ex);
 }
 }

Running the Example
If you deploy the JavaEERecipes project, you can run the example by pointing your browser to the following URL:
http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_05.xhtml. You can click the Receive Messages
button to start the consumer. Then click on the “Send EE Message” and “Send SE Message” buttons to send messages,
which contain different property values. Watch the server log to see output pertaining to the browsed messages.

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_05.xhtml
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

531

How It Works
Message selectors are String-based expressions that can be assigned to consumers upon creation. To create a selector,
form a String that contains an expression with syntax based on a subset of the SQL 92 conditional expression syntax.
The expression String should formulate the filter that you wish to use when consuming messages. An expression
will look very much like the WHERE clause of a database query. In the example for this recipe, the selector is set to the
following String:

TYPE = 'JAVAEE'

This selector causes the consumer to filter all messages that are received and only consume those messages
containing a property named TYPE that is assigned a value of JAVAEE. Standard SQL 92 can be used to combine filters
and build an expression that will provide the filtering capability that is required by the consumer.

To assign the selector to a consumer, pass it to the JMS session createConsumer method. After doing so, any
messages received by the created consumer will be filtered based upon the selector expression.

13-6. Inspecting Message Queues
Problem
Your application makes use of a JMS queue and you would like to browse through each of the messages within the
queue without removing them.

Solution
Create a QueueBrowser object and use it to browse through each of the messages that are contained within the queue.

In the following excerpt from Java class org.javaeerecipes.chapter13.Example13_06.java, the browseMessages()
method connects to a JMS session, creates a browser queue, and traverses the messages within the queue.

public void browseMessages() {

 try(Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 QueueBrowser browser = session.createBrowser(myQueue);) {

 Enumeration msgs = browser.getEnumeration();

 if(!msgs.hasMoreElements()){
 System.out.println("No more messages within the queue...");
 } else {
 while(msgs.hasMoreElements()){
 Message currMsg = (Message)msgs.nextElement();
 System.out.println("Message ID: " + currMsg.getJMSMessageID());
 }
 }

 } catch (JMSException ex) {
 System.out.println(ex);
 }
 }

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

532

Running the Example
If you deploy the JavaEERecipes project, you can run the example by pointing your browser to the following URL:
http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_06.xhtml. You can click the Send Message
button within the view several times, and then click on the Browse Through Messages button, and watch the server
log to see output pertaining to the browsed messages.

How It Works
There are times when it is important to have the ability to search through messages in order to find the one that you
would like to read. In circumstances such as these, message queue browsers come to the rescue. A QueueBrowser
object provides the ability for an application to search through each message within a queue and display the header
values for each of them. This capability can be important if the message header contains important information that
helps to differentiate each type of message that is sent by a particular application. The JMS QueueBrowser object
makes it easy to sift through messages in order to find the one you would like, using similar semantics as those that are
used to create other JMS objects.

To create a QueueBrowser, you must first have an open JMS session object. You can then call the Session object’s
createBrowser method, passing the JMS destination type as an argument. Therefore, if you wish to browse messages
in a queue that is named jms/myQueue, you would pass the injected resource for jms/myQueue to the createBrowser
method. Once you have created a browser object, simply iterate over the messages and browse through them using
the Enumeration that is returned from the call to the browser.getEnumeration() method.

13-7. Creating Durable Message Subscribers
Problem
You would like to ensure that an application receives all published messages, even when the subscriber is not active.

Solution
Create a durable subscriber for the Topic destination that will be used to send and receive messages. Once created,
messages can be published to the topic using the standard message publishing techniques, as demonstrated within
Recipe 13-3, sending to the Topic destination that contains the subscription. The messages can then be consumed via
a message consumer that has been created using said Topic and subscription.

In this example, a durable message subscriber is created, the message is created and published to the Topic
destination, and finally, the message is consumed.

The Topic Connection
Topic connections are a bit different than Queue connections in that they utilize an object named TopicConnection,
rather than a standard Connection object. Moreover, a TopicConnectionFactory must be injected into an object in
order to create a TopicConnection. The following lines of code demonstrate how to create a connection factory to
generate TopicConnections for working with subscriptions.

@Resource(name = "jms/javaEERecipesConnectionFactory")
 private TopicConnectionFactory connectionFactory;
TopicConnection connection = (TopicConnection) connectionFactory.createConnection();
connection.setClientID("durable");

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_06.xhtml
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

533

Creating the Initial Durable Subscriber
When creating a durable subscriber, an initial durable subscriber must be created prior to sending any messages to
the Topic. This initial subscriber will initialize the subscription and make it available for publishing and receiving
purposes. The following code excerpt, taken from org.javaeerecipes.chapter13.recipe13_07.Example13_07.java,
demonstrates the creation of a durable subscriber.

public void createTopicSubscriber(){
 try {
 createConnection();
 TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 myTopic = (Topic) getContext().lookup("jms/javaEERecipesTopic");
 TopicSubscriber subscriber = session.createDurableSubscriber(myTopic,
"javaEERecipesSub");
 connection.close();
 } catch (javax.naming.NamingException | JMSException ex) {
 Logger.getLogger(Example13_07.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

For the demonstration application, a JSF h:commandButton component invokes this method so that you can
watch the output occurring within the server log.

Creating and Publishing a Message
Creating and publishing a message to a Topic is much like publishing messages to a Queue. However, instead
of creating a Producer, a Publisher is generated. The following code excerpt, taken from
org.javaeerecipes.chapter13.recipe13_07.Example13_07.java, demonstrates the creation of a Message and then
it is published to the durable subscriber.

public void sendMessage() {
 try {
 createConnection();
 System.out.println("Creating session");
 TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 System.out.println("Creating message");
 TextMessage message = session.createTextMessage();
 message.setText("Java EE 7 Is the Best!");
 message.setStringProperty("TYPE", "JAVAEE");

 System.out.println("Creating producer");
 myTopic = (Topic) getContext().lookup("jms/javaEERecipesTopic");
 TopicPublisher publisher = session.createPublisher(myTopic);
 System.out.println("Sending message");
 publisher.publish(message);

 System.out.println("Message sent, closing session");
 publisher.close();
 session.close();
 connection.close();

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

534

 } catch (NamingException | JMSException ex) {
 Logger.getLogger(Example13_07.class.getName()).log(Level.SEVERE, null, ex);

 }

This method is also bound to an h:commandButton component for our example view, and you can see more
output generated from the actions that take place within the method.

Receiving the Message
Each message created and published to the Topic is later consumed by subscriber(s) to the Topic. The method
demonstrates how to create a durable subscriber and receive messages from it.

public void receiveMessage() {
 boolean stopReceivingMessages = false;
 try {
 createConnection();
 System.out.println("Creating session to receive message");
 TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 myTopic = (Topic) getContext().lookup("jms/javaEERecipesTopic");
 System.out.println("Setting up consumer");

 String selector = "TYPE = 'JAVAEE'";
 TopicSubscriber subscriber = session.createDurableSubscriber(myTopic,
"javaEERecipesSub");
 connection.start();

 while (!stopReceivingMessages) {
 System.out.println("Receiving message");
 Message inMessage = subscriber.receive();
 if (inMessage != null) {
 System.out.println(inMessage);
 if (inMessage instanceof TextMessage) {
 String messageStr = ((TextMessage) inMessage).getText();
 System.out.println(messageStr);
 setDisplayMessage(messageStr);
 } else {
 System.out.println("Message was of another type");
 setDisplayMessage("Message was of another type");
 }
 } else {
 stopReceivingMessages = true;
 }

 }
 connection.stop();
 subscriber.close();

 session.close();
 closeConnection();
 } catch (NamingException | JMSException ex) {

http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

535

 Logger.getLogger(Example13_07.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

The receiveMessage method is bound to an h:commandButton component within the JSF view in the example
program, and you can follow along with the output that can be seen in the server log.

Unsubscribing from the Subscription
It is important to unsubscribe from a subscriber when finished using it because subscribers use up additional
resources, as discussed in the How it Works section. The following method demonstrates how to unsubscribe.

public void unsubscribe(){
 try {
 createConnection();
 TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 // close subscriber if open, then unsubscribe
 session.unsubscribe("javaEERecipesSub");
 connection.close();
 } catch (JMSException ex) {
 Logger.getLogger(Example13_07.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

Running the Example
An example that binds all the methods shown in this recipe to JSF views can be executed by deploying the
JavaEERecipes project to your GlassFish server, and visiting the following URL:

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_7.xhtml

How It Works
A message subscription is a JMS consumer that retains a durable connection to a specified topic destination. Message
subscriptions cannot be made for Queue destinations, only for Topics because they utilize publish/subscribe
messaging. By default, a durable subscriber remains persistent, because the delivery mode is PERSISTENT by default.
Subscriptions are stored in a server cache so that they can be retrieved in the event of a server failure. Because durable
message subscribers retain messages in a cache, they take up a larger memory footprint. Therefore, it is important
that subscribers remain subscribed only as long as necessary, and then unsubscribe to release the memory.

Note ■ Durable subscriptions can only have one subscriber at a time.

To work with message subscribers, a special set of connection and session objects must be used. To start, you must
inject a TopicConnectionFactory into any object that will make use of Topics. A TopicConnection can be created by
calling the createTopicConnection method. A TopicSession must be created, in turn, form the TopicConnection.
The TopicSession object can be used to create durable message subscribers and message publishers.

http://localhost:8080/JavaEERecipes/faces/chapter13/recipe13_7.xhtml
http://www.it-ebooks.info/

CHapTEr 13 ■ Java MESSaGE SErvICE

536

When creating a subscriber, one must invoke the JMS session method, createDurableSubscriber, and pass
the Topic destination, along with a String that is used to identify the subscriber. The String identifier is important
because this is the identifier that will be used by consumers to subscribe to the messages being published to the
Topic. A TopicSubscriber object is generated from the createDurableSubscriber method, and it is important to
create the initial durable subscriber in order to create the Topic subscription. Once the initial durable subscriber has
been created, messages can be sent to the subscription, and consumers can subscribe to it.

To create a message and send it to a subscription, the JMS session createPublisher method must be invoked,
passing the Topic destination object as an argument. The call to createPublisher will generate a TopicPublisher
object, which can be utilized for publishing messages to a Topic subscription. Any type of message can be sent
to a Topic. To learn more about the different types of messages that can be sent, please refer to Recipe 13-3. Any
number of messages can be sent to a topic, and if a consumer has subscribed to the subscriber, it will receive the
messages. New subscribers will begin receiving messages that are sent to the subscription after the time when they’ve
subscribed.

In order to subscribe to a Topic, a TopicSubscriber object should be created by calling the JMS session
createDurableSubscriber method, passing the Topic destination object and the String-based identifier that was
originally used to establish the subscriber. Once the TopicSubscriber has been created, messages can be consumed
as usual, invoking the TopicSubscriber receive method for each message that will be consumed. Typically, an
application will set a boundary limit to the number of messages that will be consumed, and perform a loop to receive
that number of messages from a subscribed Topic.

Since a durable subscription creates a memory footprint, it is essential for consumers to unsubscribe when finished
with the Topic. If a consumer does not unsubscribe, the application server will starve other subscriber resources, and
will eventually run out of usable memory. To unsubscribe a consumer, invoke the JMS session unsubscribe method,
passing the String-based name of the subscriber. I told you that the String you use for identifying the subscriber
was important!

It is sometimes useful to create message subscriptions for certain circumstances. Pertinent situations for using
a subscriber may include a subscription for client consumers to receive messages regarding application errors,
or for an alert system so that administrators can subscribe to alerts that they wish to receive. In any case, durable
subscriptions can be useful, so long as they are used sparingly and maintained in an appropriate manner.

13-8. Delaying Message Delivery
Problem
You would like to delay a message that is being sent.

Solution
Set the time of delay in milliseconds by calling the producer’s setDeliveryDelay(long) method. In the following
example, the message sending will be delayed by 1000 milliseconds.

TopicPublisher publisher = session.createPublisher(myTopic);
publisher.setDeliveryDelay(1000);

How it Works
In JMS 2.0, it is possible to delay the delivery of a message. The JMS API provides a method, setDeliveryDelay, for
producers. This method can be called, passing the delay time in milliseconds, prior to sending the message. Once the
delay has been set, this will cause all subsequent message deliveries by that producer to be delayed.

http://www.it-ebooks.info/

537

Chapter 14

Authentication and Security

One of the most important components to an enterprise-level application is security. It is a fact that enterprise
applications must be rock solid and secure so that data and application functionality cannot fall into the wrong hands.
Utilizing a combination of application server security and application-level security can help secure applications from
thugs who are targeting enterprise data.

Three different types of security can be applied to enterprise-level applications: declarative, programmatic, and
transport security. Declarative security occurs within an application’s deployment descriptor or via annotations that
are added to classes and methods within the application. Declarative security is used to provide the application server
container with the ability to guard access to certain application features via the use of user authentication and roles.
Programmatic security occurs when the developer manually codes the authentication methods, customizing the
requirements for authentication into an application. Transport security occurs between the client and the server, and
it is responsible for securing information as it is passed between the two.

This chapter will touch upon each of these three levels of security. It contains recipes that cover application
server configurations for setting up database and cover LDAP authentication for applications that are deployed within
the container. You will also learn how to utilize XML configuration, annotations, and JSF EL to secure portions of your
applications. Lastly, it’ll touch upon how to secure transport via SSL and certificates.

14-1. Setting Up Application Users and Groups in GlassFish
Problem
You want to create users, groups, and roles within your application server container for use with applications that are
deployed to the container.

Solution
Log into the GlassFish administrative console to add users to the File security realm. You can then add the users to
groups by specifying the group names when creating the users. This example will walk you through the configuration
of a new user within the GlassFish application server (v4).

1. Log into the administrative console by navigating to http://localhost:4848 and then
logging in as a GlassFish administrative user.

2. Use the tree menu on the left side of the screen to navigate to the Configurations ➤
server-config ➤ Security ➤ Realms menu. Once you click the Realms menu option, the
Realms form will appear (Figure 14-1).

http://localhost:4848/
http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

538

3. Click the “file” realm link to enter the Edit Realm form, as shown in Figure 14-2.

Figure 14-1. GlassFish Realms form

Figure 14-2. GlassFish Edit Realm form

4. Click the Manage Users button within the Edit Realm form to open the File Users form,
and then click the New button within the File Users form (Figure 14-3) to enter the New
File Realm User form (Figure 14-4).

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

539

Figure 14-3. GlassFish File Users form

Figure 14-4. GlassFish New File Realm User form

5. Fill in a user ID and the password information to complete the New File Realm User form,
and optionally add a group name to the Group List field. Click the Save button to add the
user to the File Users list (Figure 14-5).

Figure 14-5. File Users list

Once they’re created, users within GlassFish realms can be used for application authentication purposes. To
learn more about configuring your applications to utilize GlassFish user authentication, please refer to Recipe 14-2.

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

540

How It Works
Adding an authentication prompt to allow user access to secured areas can be one of the best forms of protection
for any application. Fortunately, the Java platform makes authentication easy for you to add to your applications.
Most application servers have some mechanism for adding user accounts that can be used to access applications that
are deployed in the one of the server domains. GlassFish is no exception because it provides the ability to add users
and groups to different security realms, which can then be applied to applications for authentication purposes.

When adding users to GlassFish, they must be incorporated with a security realm. The File security realm is
available for use with the default installation, although more security realms can be created if desired. Adding users
to realms is a fairly simple process, and individual users can be added by following the steps noted in the solution
to this recipe. When creating a user, one of the options that can be specified is a group. You can think of a GlassFish
user group as a role, in that more than one user can belong to a group. GlassFish does not contain a mechanism for
managing the groups themselves; in fact, a group is merely a String value to GlassFish. However, if you follow through
the steps in Recipe 14-2, you will see that groups can be mapped to roles at the application level. Therefore, if UserA
belongs to a group named standard, then UserA can also belong to a group named admin. The application can then
grant access to UserA for different portions of the application, depending upon which groups or roles the user
belongs to.

Users in GlassFish are simplistic in that they are used for authentication and access purposes within the deployed
applications only. Users can be managed only on a per-server installation basis, so they are a bit cumbersome since
they cannot be shared across servers to provide a single sign-on solution. For that reason, it is recommended
that GlassFish users be used for smaller applications or test purposes only. For a more substantial and enterprise
authentication solution, either database or LDAP user accounts would be a better choice.

Note ■ to learn about configuring form-based authentication within the GlassFish application server and utilizing a
database to store user credentials, see recipe 11-6.

14-2. Performing Basic Web Application Authentication
Problem
You have established users and associated them with groups within the application server container. Now you want
to assign users to particular roles based upon the access levels that they require for the application and apply a basic
authentication mechanism for access to specified application views.

Solution
Configure forms-based security using basic authentication within the web application deployment descriptor. Map
roles to groups within the glassfish-web.xml deployment descriptor, if needed. The following excerpt was taken
from the web.xml deployment descriptor of the JavaEERecipes sources. It demonstrates how to secure all of the
views that reside within the chapter14 folder (determined by the url-pattern element within web.xml) such that a
user name and password combination is required for access. The auth-method tag within web.xml specifies the type
of authentication that will be used for the application. In the example, you’ll use BASIC authentication. Only those
user names and passwords that have been configured in the GlassFish file realm with the appropriate group will be
granted access; in this case, it is the users role.

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

541

<security-constraint>
 <web-resource-collection>
 <web-resource-name>secured</web-resource-name>
 <url-pattern>/faces/chapter14/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>users</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
</login-config>

<security-role>
 <role-name>users</role-name>
</security-role>

If role names specified in the web.xml deployment descriptor are the same as the group names that have
been associated with users in GlassFish, then you are done. Users will be granted access to those areas of the
application that have been secured, based upon the group association. However, if a role name differs from those
groups that have been associated to users, you can manually map role names to group names by specifying a
security-role-mapping in the glassfish-web.xml file for the application. The following excerpt, taken from the
glassfish-web.xml configuration file for the JavaEERecipes application, demonstrates how to do map
roles to GlassFish users. In this case, the role standard that was specified for the account in Recipe 14-1 is mapped to
the users role. The users role has access to the /faces/chapter14/* url-pattern.

<security-role-mapping>
 <role-name>users</role-name>
 <group-name>standard</group-name>
</security-role-mapping>

Once everything has been configured, then access will be granted according to the configurations that have been
placed within the web.xml deployment descriptor. To test the authentication mechanism, deploy the JavaEERecipes
WAR file to your GlassFish v4 application server, and visit the following URL:

http://localhost:8080/JavaEERecipes/faces/chapter14/index.xhtml.

Solution #2
Use annotations to declare roles within an application for access to secured pages as deemed necessary.
To implement access control on a particular class or method, annotate using @DeclareRoles and/or @RolesAllowed,
specifying the roles that can be used to access them. Those users who are authenticated belonging to one of the
specified roles will be granted access to the content.

http://localhost:8080/JavaEERecipes/faces/chapter14/index.xhtml
http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

542

In the example corresponding to this recipe, the chapter14_recipe14_02.xhtml JSF view contains two command
buttons that invoke actions within a managed bean. Each of the buttons invokes a different action in the bean. One of
the buttons invokes a method that is secured via the @RolesAllowed annotation, and the other does not. The following
excerpt is taken from the class org.javaeerecipes.chapter14.recipe14_02.Recipe14_02b, which is the managed
bean controller that contains the two methods being called from the command buttons:

public class Recipe14_02b implements Serializable {

 public Recipe14_02b() {
 }

 public String unsecuredProcess(){
 return "chapter14_recipe14_02_1.xhtml";
 }

 @RolesAllowed("users")
 public String securedProcess(){
 return "chapter14_recipe14_02_2.xhtml";
 }
}

When the commandButton that invokes the securedProcess method is clicked, the user will be prompted to
authenticate if they have not already done so.

How It Works
There are a couple of ways to secure an application using basic application server authentication. Commonly,
applications provide basic authentication security via the use of XML configuration within the web.xml deployment
descriptor along with optional configuration within the glassfish-web.xml deployment descriptor. It is also possible
to add basic authentication security into an application using code only, via declarative security. Declarative security
is based on the use of annotations for declaring roles for access to application classes and methods. While both of
these techniques are very similar in concept, each of them has its own set of bonuses in certain situations.

In Solution #1 to this recipe, XML configuration is used to secure access to all web views that reside within a
specific folder in the application. To add security via XML configuration files, the web.xml deployment descriptor
needs to have the security-constraint, login-config, and security-role elements added to it for mapping
application roles to GlassFish users and groups. The security-constraint element encompasses a handful of
subelements that are used to tell the application server container which areas of the application to secure and
which accounts are able to access those secured areas. First, a web-resource-collection element is used to
declare the locations of the application to secure and which HTTP methods to secure. The following elements
should be embedded within a web-resource-collection element:

•	 web-resource-name: This is an optional name that can be specified for the secured location. In
the recipe solution, the name secured is specified.

•	 url-pattern: This is the URL pattern that will be used to determine which areas of the
application are to be secured. An asterisk (*) is to be used as a wildcard. In the recipe solution,
chapter14/* specifies that all views contained within the chapter14 folder should be secured.
If you want to secure a specific page, then utilize the URL pattern to that page, including the
page name.

•	 http-method: This is used to specify which HTTP methods should be secured for access to the
locations specified by the url-pattern element.

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

543

Another subelement that can be declared within the security-constraint element is the auth-constraint
element. This element lists the different security roles that are used to secure the locations specified by the
url-pattern via adding role-name subelements. In the recipe solution, the users role is declared for the application.
A user-data-constraint element can also be included as a subelement to the security-constraint element in
order to specify the type of protection that will be applied when data is transported between the client and the server.
In the example, this has been set to CONFIDENTIAL. The values that can be specified for the transport guarantee
are as follows:

•	 NONE: Data requires no transport security.

•	 INTEGRAL: Data cannot be changed in transit between the client and the server.

•	 CONFIDENTIAL: Outside entities are unable to observe the contents of the transmission. Secure
Sockets Layer (SSL) will be used in this case, and it must be configured within the web server.

The security-role XML element lists the different roles that can be used for securing access to the application
pages. Add the role-name subelement to the security-role for each role specification. The login-config XML
element is used to specify the method of authentication that is to be used for securing the application. The auth-method
should be set to BASIC for most cases, but all possible values are BASIC, DIGEST, FORM, and CLIENT-CERT.

Adding the designated elements to the web.xml deployment descriptor, as described in this section,
provides sufficient ability for applications to be secured via a user name/login to specified secure locations. In some
cases, it makes sense to use annotations to declare roles from within the application code itself. For such cases, the
@DeclareRoles and @RolesAllowed annotations can be specified on a class or method. The following annotations
can be used to specify security within a class. For each of the annotations, either a single role or a list of roles can
be specified.

•	 @DeclareRoles: This is specified at the class level, and each role that is allowed to access
the class should be indicated within the annotation. For instance, one or more roles can be
specified for access to the class using the following syntax:

Class level:

@DeclareRoles("users")
public class MyClass {
 . . .
}

Method level:

public class MyClass {
 . . .
 @DeclareRoles({"role1", "role2"})
 public void calculatePay(){
 . . .
 }
. . .
}

•	 @RolesAllowed: This is specified at either the class or method level. A list of roles that are

allowed to access the class or method should be indicated within the annotation. The syntax is
the same as with that of @DeclareRoles.

•	 @PermitAll: This is specified at the class or method level. It indicates that all roles are allowed access.

•	 @DenyAll: This is specified at the class or method level. It indicates that no roles are allowed access.

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

544

When both the @DeclareRoles and @RolesAllowed annotations are used within the same class, the combination
of the roles listed within each are allowed to access that class. The roles specified for access on a particular method
using @RolesAllowed override the roles that are listed to access the entire class.

It is possible to programmatically check to see which roles an authenticated user belongs to by calling the
SessionContext isUserInRole method. This allows you to permit access to particular features of an application
using conditional logic, as demonstrated by the following lines of code:

@DeclareRoles({"role1", "role2, "role3"}
public class MyClass {

 . . .
 @RolesAllowed("role2")
 public void calculatePay(){
 . . .
 }

 @PermitAll
 public void calculatePay(){
 if (ctx.isUserInRole("role1")) {
 . . .
 } else if (ctx.isUserInRole("role3")){
 . . .
 }
 }
 . . .
}

14-3. Developing a Programmatic Login Form
Problem
You want to secure your JSF application to a specified group of users. Furthermore, you want to create a custom login
view, which will be used to pass user credentials to the appropriate business objects for authentication.

Solution
Develop a login form that consists of user name and password inputText fields, along with a commandButton to invoke
a programmatic login action that resides within a managed bean controller. Develop logic within the managed bean
controller to authenticate users. In the following example, a login form is generated using JSF and Facelets, utilizing a
managed bean for authentication control.

Creating the Login Form
A login form is basically the same as any other form, except it accepts a user name and a password as arguments and
passes them to a JavaBean that utilizes the information to accept or deny the authentication request. The login form
also utilizes a standard HTML form element that passes the user name (j_username) and password (j_password) field

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

545

values to an action named j_security_check. The following code is used to comprise the login.xhtml form for a JSF
authentication mechanism:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:p="http://primefaces.org/ui">

 <ui:composition template="/layout/custom_template.xhtml">
 <ui:define name="title">
 <h:outputText value="Welcome to the Acme Bookstore"></h:outputText>
 </ui:define>
 <ui:define name="content">

 <form method="post" action="j_security_check" name="loginForm">
 <center>
 <p align="center" class="sub_head_sub">

 Acme Bookstore
 </p>

 You must authenticate to gain access to this application. If you require
 an account, please contact an administrator.

 <h:messages errorStyle="color: red" infoStyle="color: green"

globalOnly="true"/>

 <h:panelGrid columns="2">
 <h:outputLabel id="userNameLabel" for="j_username" value="Username:"/>
 <h:inputText id="j_username" autocomplete="off" />
 <h:outputLabel id="passwordLabel" for="j_password" value="Password:"/>
 <h:inputSecret id="j_password" autocomplete="off"/>
 <div/>
 <h:panelGroup>
 <h:commandButton type="submit" value="Login"/>
 <h:commandButton type="reset" value="Clear"/>
 </h:panelGroup>
 </h:panelGrid>

 </center>
 </form>

 </ui:define>

 </ui:composition>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://primefaces.org/ui
http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

546

Note ■ the inputSecret component used in this example will display a series of asterisks, rather than plain text,
when input is typed into the text box.

Once loaded, the login form will resemble Figure 14-6 when using the Acme Bookstore template.

Figure 14-6. Login Form Example

Coding the Authentication Backend
The authentication backend is responsible for performing the authentication and maintaining state for a user session.
The backend logic consists of an EJB for maintaining the authentication logic and a JSF managed bean that is used
for binding view methods and fields to backend logic. The managed bean controller should be session scoped so
that the user state can be managed for an entire session. Lastly, if you’re using a database table to contain all of the
user names that have access to the application, then an entity class will be required for that database table.

EJB

The Enterprise JavaBean that is required for the authentication backend is a stateless session bean that contains a
login method, which makes calls to the application server container authentication mechanism. The following code
is from the class org.javaeerecipes.chapter14.recipe14_03.AutheticationBean.java file in the JavaEERecipes
sources:

import java.io.Serializable;
import javax.ejb.Remove;
import javax.ejb.Stateless;
import javax.faces.application.FacesMessage;

import javax.persistence.CacheRetrieveMode;

import javax.faces.context.FacesContext;
import javax.persistence.EntityManager;
import javax.persistence.NoResultException;

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

547

import javax.persistence.PersistenceContext;
import javax.persistence.Query;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

@Stateless
public class AuthenticationBean implements Serializable {
 // We will be storing/retrieving users, passwords, and roles from a JPA object datastore
 @PersistenceContext(unitName = "EnvironmentalReviewPU")
 private EntityManager em;
 private boolean authenticated = false;
 private String username = null;
 private String password = null;
 HttpSession session = null;
 User user;

 public AuthenticationBean() {
 }

 public void findUser() {
 try {
 em.flush();

 getUser();
 // The following is a JPA query to look for the existence of one or more users by a
 specific name
 Query userQry = em.createQuery(
 "select object(u) from User u "
 + "where u.username = :username").setParameter("username", getUser().
 getUsername().toUpperCase());

 // Enable forced database query
 userQry.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);
 setUser((User) userQry.getSingleResult());

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage(FacesMessage.SEVERITY_INFO, "Successfully Authenticated", ""));
 } catch (Exception e) {

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage(FacesMessage.SEVERITY_ERROR, "Invalid username/password", ""));
 setUser(null);

 }

 }

 public HttpSession getSession() {
 FacesContext context = FacesContext.getCurrentInstance();
 HttpServletRequest request = (HttpServletRequest) context.getExternalContext().getRequest();

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

548

 session = request.getSession(false);
 return session;
 }

 public boolean login() {

 HttpSession session = getSession();
 HttpServletRequest request = null;
 Query userQry = null;
 System.out.println("In the login method. . ." + getUser().getUsername());
 try {
 FacesContext context = FacesContext.getCurrentInstance();
 request = (HttpServletRequest) context.getExternalContext().getRequest();
 request.login(getUser().getUsername(), this.password);

 session.setMaxInactiveInterval(1800);

 em.flush();

 userQry = em.createQuery(
 "select count(u) from User u "
 + "where u.username = :username").setParameter("username",
 getUser().getUsername().toUpperCase());
 userQry.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);
 Long count = (Long)userQry.getSingleResult();
 if (count > 0){

 userQry = em.createQuery(
 "select object(u) from User u "
 + "where u.username = :username").setParameter("username",
 getUser().getUsername().toUpperCase());

 // Enable forced database query
 userQry.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);
 setUser((User) userQry.getSingleResult());
 System.out.println("Setting User, user exists in database with role ->" +
 user.getSecurityRole());
 setAuthenticated(true);
 session.setAttribute("authenticated", new Boolean(true));
 } else {
 // User cannot authenticate successfully
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage(FacesMessage.SEVERITY_ERROR, "Invalid username/password", ""));
 }

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage(FacesMessage.SEVERITY_INFO, "Successfully Authenticated", ""));

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

549

 return authenticated;
 } catch (NoResultException| ServletException ex) {
 setUser(null);
 setAuthenticated(false);
 session = getSession();
 session.setAttribute("authenticated", new Boolean(false));
 if(request != null){
 try {
 request.logout();
 } catch (ServletException ex1) {
 System.out.println("AuthBean#login Error: " + ex);
 }
 }
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage(FacesMessage.SEVERITY_ERROR, "Invalid username/password", ""));
 return false;

 } finally {
 setPassword(null);
 }
 }

 /**
 * @return the isAuthenticated
 */
 public boolean isAuthenticated() {

 if (getSession().getAttribute("authenticated") != null) {
 boolean auth = (Boolean) getSession().getAttribute("authenticated");
 if (auth) {
 authenticated = true;
 }
 } else {
 authenticated = false;
 }
 // System.out.println("Are we authenticated? " + auth);
 return authenticated;
 }

 /**
 * @param isAuthenticated the isAuthenticated to set
 */
 public void setAuthenticated(boolean isAuthenticated) {
 this.authenticated = isAuthenticated;
 }

 @Remove
 public void remove() {
 System.out.println("Being removed from session. . .");
 setUser(null);
 }

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

550

 /**
 * @return the username
 */
 public String getUsername() {
 try {
 System.out.println("The current username is: " + user.getUsername());
 username = getUser().getUsername();
 } catch (NullPointerException ex) {
 }
 return username;
 }

 /**
 * @param username the username to set
 */
 public void setUsername(String username) {
 getUser().setUsername(username);
 System.out.println("Just set the username to : " + getUser().getUsername());
 this.username = null;
 }

 /**
 * @return the password
 */
 public String getPassword() {
 return this.password;
 }

 /**
 * @param password the password to set
 */
 public void setPassword(String password) {
 this.password = password;
 }

 /**
 * @return the user
 */
 public User getUser(){
 if (this.user == null) {
 user = new User();
 }
 return user;
 }

 /**
 * @param user the user to set
 */
 public void setUser(User user) {
 this.user = user;
 }
}

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

551

JSF Managed Bean

The managed bean controller is responsible for coordinating authentication efforts between the JSF view and the EJB.
It also has a session scope so that the user’s state can be maintained throughout the life of the application session.
The following code is taken from the org.javaeerecipes.chapter14.recipe14_03.AuthenticationController.java
file that is contained within the JavaEERecipes sources:

import javax.faces.bean.SessionScoped;
import java.io.Serializable;
import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

@ManagedBean(name = "JavaEERecipesPU")
@SessionScoped
public class AuthenticationController implements Serializable {

 @EJB
 private AuthenticationBean authenticationFacade;
 private String username;
 private User user;
 private boolean authenticated;
 private HttpSession session = null;
 private String userAgent;

 /**
 * Creates a new instance of AuthenticationController
 */
 public AuthenticationController() {
 getUser();
 }

 public HttpSession getSession() {
 // if(session == null){
 FacesContext context = FacesContext.getCurrentInstance();
 HttpServletRequest request = (HttpServletRequest) context.getExternalContext().getRequest();
 session = request.getSession();

 return session;
 }

 /**
 * @return the username
 */
 public String getUsername() {
 this.username = getUser().getUsername();
 return this.username;
 }

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

552

 /**
 * @param username the username to set
 */
 public void setUsername(String username) {
 this.username = username;
 getUser().setUsername(username);
 }

 /**
 * @return the password
 */
 public String getPassword() {
 return authenticationFacade.getPassword();
 }

 /**
 * @param password the password to set
 */
 public void setPassword(String password) {
 authenticationFacade.setPassword(password);
 }

 public User getUser() {
 if (this.user == null) {
 user = new User();
 setUser(authenticationFacade.getUser());
 }

 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 public String login() {
 authenticationFacade.setUser(getUser());
 boolean authResult = authenticationFacade.login();

 if (authResult) {
 this.authenticated = true;

 setUser(authenticationFacade.getUser());

 return "SUCCESS_LOGIN";
 } else {
 this.authenticated = false;
 setUser(null);
 return "BAD_LOGIN";
 }

 }

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

553

 public String logout() {
 user = null;
 this.authenticated = false;
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ExternalContext externalContext = facesContext.getExternalContext();
 externalContext.invalidateSession();
 return "SUCCESS_LOGOUT";
 }

 /**
 * @return the authenticated
 */
 public boolean isAuthenticated() {
 try {
 // Allows subsequent requests to obtain authentication status from the session state
 boolean auth = (Boolean) getSession().getAttribute("authenticated");
 if (auth) {
 this.authenticated = true;

 } else {
 authenticated = false;
 }
 } catch (Exception e) {
 this.authenticated = false;
 }

 return authenticated;
 }

 public void setAuthenticated(boolean authenticated) {
 this.authenticated = authenticated;
 }
}

User Entity

For any application, it is a good idea to maintain a list of users who have the ability to access the application pages.
Furthermore, if an application requires fine-grained access control, it is important to assign roles to each user to
indicate which privilege level each user should have for the application. A database table can be used for this purpose,
and the table should contain a field for the user name of each person who has access to the application, as well as a
field for the user role. The following SQL is used for creating the USER database table in an Oracle database:

create table users(
id number,
username varchar(150) not null,
password varchar(50) not null,
primary key (id));

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

554

The following class listing is that for the org.javaeerecipes.chapter14.recipe14_03.User.java file, which is
an entity class within the JavaEERecipes sources:

import java.io.Serializable;
import java.math.BigDecimal;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

/**
 * Entity class User
 */
@Entity

@Table(name = "USER")

public class User implements Serializable {

 @Id
 @Column(name = "USER_ID", nullable = false)
 private BigDecimal userId;

 @Column(name = "USERNAME")
 private String username;

 @Column(name = "SECURITY_ROLE")
 private String securityRole;

 /** Creates a new instance of User */
 public User() {
 }

 /**
 * Creates a new instance of User with the specified values.
 * @param userId the userId of the User
 */
 public User(BigDecimal userId) {
 this.userId = userId;
 }

 /**
 * Gets the userId of this User.
 * @return the userId
 */
 public BigDecimal getUserId() {
 return this.userId;
 }

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

555

 /**
 * Sets the userId of this User to the specified value.
 * @param userId the new userId
 */
 public void setUserId(BigDecimal userId) {
 this.userId = userId;
 }

 /**
 * Gets the username of this User.
 * @return the username
 */
 public String getUsername() {
 return this.username;
 }

 /**
 * Sets the username of this User to the specified value.
 * @param username the new username
 */
 public void setUsername(String username) {
 this.username = username;
 }

 /**
 * Gets the securityRole of this User.
 * @return the securityRole
 */
 public String getSecurityRole() {
 return this.securityRole;
 }

 /**
 * Sets the securityRole of this User to the specified value.
 * @param securityRole the new securityRole
 */
 public void setSecurityRole(String securityRole) {
 this.securityRole = securityRole;
 }

 /**
 * Returns a hash code value for the object. This implementation computes
 * a hash code value based on the id fields in this object.
 * @return a hash code value for this object.
 */
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (this.userId != null ? this.userId.hashCode() : 0);
 return hash;
 }

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

556

 /**
 * Determines whether another object is equal to this User. The result is
 * <code>true</code> if and only if the argument is not null and is a User object that
 * has the same id field values as this object.
 * @param object the reference object with which to compare
 * @return <code>true</code> if this object is the same as the argument;
 * <code>false</code> otherwise.
 */
 @Override
 public boolean equals(Object object) {
 return false;
 }
 User other = (User)object;
 if (this.userId != other.userId && (this.userId == null ||
 !this.userId.equals(other.userId))) return false;
 return true;
 }
}

How It Works
The HTTP request login method can be used to programmatically authenticate users for an application when the
application server form-based authentication has been configured. A JSF form can pass parameters to a managed
bean controller, which can pass them to the HTTP request login method to perform programmatic authentication
using the credentials.

As demonstrated in the login form that is listed in the solution to this recipe, a standard JSF view can be coded
that passes values from the inputText components to a corresponding managed bean controller. The corresponding
fields, username and password, are bound to properties within the managed bean controller. The user name is then set
into the username property of a new User entity object, and the password value is passed directly into the EJB for later
use. The password is not stored in the managed bean controller at all, and therefore, it is not stored into the session.

Let’s take a moment to discuss the methods within the managed bean controller. In the example, a
commandButton is contained within the view, which is bound to the managed bean controller’s login method.
Once invoked, the login method invokes a method within the EJB, which is responsible for performing the actual
authentication against the application server container and JPA data store user table. In this case, the EJB method
is also named login, and when it is invoked, then the User entity object is passed to the EJB so that the username
property that is stored in the object can be used for authentication purposes. The login method within the
managed bean controller invokes the EJB login method, which passes back a Boolean value to indicate whether the
credentials have successfully authenticated the user. Depending upon the outcome, the user is then granted or denied
access to the application. Also within the managed bean controller is a logout method. This method invalidates the
current session by obtaining the external context, which is the application server context, and then by invoking its
invalidate method.

The login method within the EJB is where the real activity occurs because it is where the application server HTTP
request login method is invoked to verify the credentials. First, the HttpServletRequest object is obtained from
the external context, and then its login method is called. This method accepts the user name and password values,
initiates the application server authentication mechanism, and raises an exception if the credentials are invalid.
Otherwise, if the credentials are valid, then a time limit is set on the HttpSession object. The value passed to the
session.setMaxInactiveInterval method indicates how long a user session can be inactive before the application
server automatically invalidates the session. The remainder of this method is used for performing application-specific
authentication using the User entity object. In the example, the entity manager is flushed, and then a query is issued

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

557

that counts the number of User entity objects matching the user name that has been entered via the login form. When
querying the entity, a hint is set that forces the database to be queried each time the request is initiated. The following
line of code is an excerpt from the EJB login method that demonstrates how to set this hint:

user.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);

If there are zero matching entity objects for a given username, then the user is not authenticated to the
application, and a false value is returned to the managed bean controller to indicate invalid credentials. Otherwise,
if there is a matching entity object for the given user name, then the matching entity object is obtained, and a session
attribute is set to indicate that the user was successfully authenticated.

Note■ applications can contain their own set of users, one that is separate from those users who are managed by the
GlassFish application server or database. one way of doing so is to create a separate database table for each application,
which will be used to store user names and roles for those users who may access the application. the login logic that is
contained within the managed bean controller can then perform a query on the application-specific table to see whether
the user name specified within the login view is contained within the table. if the user name is in the table, then the user
can be granted access to the application; otherwise, no access will be granted. this approach adds two steps into the
authentication process: application server forms-based authentication and authentication at the database table level.

14-4. Managing Page Access Within a JSF Application
Problem
You have set up authentication for your JSF application, specifying access to a limited user base via a user name and
password combination. You want to limit certain views within your application such that only members of a particular
role will be granted permission access.

Solution
Authenticate a user to an application and store a Boolean indicating that the user has been successfully authenticated.
Utilize that Boolean to perform conditional logic within JSF views to render forms that should be accessed only
via authenticated users. If a user is successfully authenticated, then the form is rendered, and if the user is not
successfully authenticated, then the form will provide an error message indicating that authentication is required
for access.

The following JSF view demonstrates the use of conditional logic for displaying portions of the page that require
controlled access:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:p="http://primefaces.org/ui">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://primefaces.org/ui
http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

558

 <ui:composition template="/layout/custom_template.xhtml">
 <ui:define name="title">
 <h:outputText value="Java EE 7 Recipes Controlled Access"></h:outputText>
 </ui:define>
 <ui:define name="body">
 <h:panelGroup id="messagePanel" layout="block">
 <h:messages errorStyle="color: red" infoStyle="color: green" layout="table"/>
 </h:panelGroup>
 <p:panel rendered="#{authenticationController.authenticated}">
 <h:form>

 This portion of the view contains secret content!

 </h:form>
 </p:panel>
 <p:panel rendered="#{!authenticationController.authenticated}">
 Please
 authenticate to use this form.

 </p:panel>
 </ui:define>
 </ui:composition>

</html>

How It Works
The rendered attribute of JSF components can be used to perform conditional rendering. If you bind the rendered
attribute to a managed bean property that returns a Boolean indicating whether a user is authenticated, then this
technique can be used to control access to certain components. In this example, this technique is demonstrated using
a PrimeFaces panel component. The panel contains information that should be secured, and it is rendered only if
the authenticated property returns a true value. If the authenticated property contains a false value, then a different
panel component is rendered, which displays a message to the user indicating that authentication is required.

The managed bean controller that is used for programmatic authentication within a JSF application should
contain a Boolean value that can be bound to the conditional logic within the JSF view to indicate whether the current
user has successfully authenticated. For this example, the managed bean controller, org.javaeerecipes.chapter14.
recipe14_03.AuthenticationController, contains a Boolean field named authenticated. The following excerpt
from the class shows the isAuthenticated method, which is called when the authenticated property is accessed
from a JSF view:

public boolean isAuthenticated() {
 try {
 boolean auth = (Boolean) getSession().getAttribute("authenticated");
 if (auth) {
 this.authenticated = true;

 } else {
 authenticated = false;
 }

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

559

 } catch (Exception e) {
 this.authenticated = false;
 }

 return authenticated;
}

This same technique can be used to hide or show individual components based upon a user’s authentication.
Furthermore, fine-grained access control can be used to provide Boolean values to the rendered attribute by utilizing
JSF EL conditional expressions. For instance, if some components should be accessed only by users who belong
in certain security roles, then a conditional expression can be used to render a component if the user belongs to a
specified role. The following line of code demonstrates how to render an outputText component if a user belongs to
the ADMIN security role:

<h:outputLink rendered="${authenticationController.user.securityRole eq 'ADMIN'}" value="#"
onclick="dialog.show()">Delete Property</h:outputLink>

Although the rendered attribute may not allow you to secure every part of an application, when used along with
other security measures such as annotating methods (Recipe 14-2), it can help provide a very secure environment.

14-5. Configuring LDAP Authentication Within GlassFish
Problem
You want to authenticate users to your application based upon a centrally located LDAP server for your organization’s
enterprise.

Solution
Create a security realm for GlassFish from within the administrative console utility, and set it up as a
com.sun.enterprise.security.auth.realm.ldap.LDAPRealm. To create an LDAP security realm within GlassFish,
use the following procedure:

1. Log into the GlassFish administrative console.

2. Traverse to the Realms form by expanding the left tree menu Configurations ➤ Security ➤
server-config ➤ Realms.

3. Click the New… button within the Realms form to create a new security realm.

4. Within the New Realm form, provide a name for the security realm. Next, select com.sun.
enterprise.security.auth.realm.ldap.LDAPRealm from the Class Name pull-down menu.
This will open the configurations for setting up an LDAP realm (Figure 14-7).

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

560

5. Complete the properties specific to the class in order to connect to an LDAP server of your choice.

6. Add the following additional properties by clicking the Add Property button and providing
the name-value information for each:

•	 search-bind-dn: Enter the fully qualified DN for your LDAP host, directory, and the
LDAP account to which you will authenticate. For example:

CN=account-name,OU=AccountGroup,DC=dc1,DC=dc2,DC=dc3

•	 search-bind-password: Enter the password for the account name you specified previously.

•	 search-filter: Type the following as the value for this property: (sAMAccountName=%s).

7. Restart the application server.

How It Works
Perhaps the most efficient way to authenticate to applications is to utilize an LDAP account. Using an LDAP account
for authentication can provide a single sign-on solution across all of an organization’s servers and applications.
LDAP authentication also provides a single point of maintenance for account information and still allows individual
applications to maintain their own fine-grained security via roles. The solution to this recipe enumerates the steps
that are involved in setting up an LDAP security realm within the GlassFish application server. However, you can
follow similar procedures for setting up an LDAP security realm in other application server containers.

Figure 14-7. New LDAP security realm

http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

561

Once you have LDAP authentication set up within the application server, you can configure your applications
to use it. To configure an application to use LDAP authentication, add the following configurations to the
web.xml deployment descriptor:

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>REALM-NAME</realm-name>
 <form-login-config>
 <form-login-page>/faces/login.xhtml</form-login-page>
 <form-error-page>/faces/loginError.xhtml</form-error-page>
 </form-login-config>
</login-config>

In the previous excerpt from web.xml, the realm-name element should be the same as the name given to the
LDAP security realm you created within GlassFish. The form-login-page and form-error-page values should
reference the views that are to be used for logging into an application and the view that is displayed when there is
a login error, respectively. Authenticating into an LDAP security realm is the same as that covered in Recipe 14-3.
Simply call the HttpRequest object’s login method to authenticate using the credentials provided by the user via
the login view.

14-6. Configuring Custom Security Certificates Within GlassFish
Problem
You want to utilize custom certificates for securing access via SSL within your GlassFish environment.

Solution
Obtain a certificate from a certified certificate authority, and then install it into the GlassFish application server
container. Once installed, route requests via a secured port that utilizes SSL and force users to accept the security
certificate to proceed. To install a certificate that has been obtained from a valid certificate authority, follow these steps:

1. Copy the trusted root certificate from your certified authority to your server. Issue the
following command from the command line or terminal:

keytool –import –alias root –keystore keystore_name.keystore –trustcacerts –file
trustedcarootcertificate.crt

2. Next, import the trusted certificate:

keytool –import –alias cert_alias –keystore keystore_name.keystore –trustcacerts –file
certificate.crt

3. Adjust SSL settings from within the GlassFish administrative console. To adjust the settings,

go to Configuration ➤ Network Config- ➤ Network Listeners ➤ http-listener-2 in order
to open the secured HTTP listener page. Once it’s open, select the SSL tab, and enter the
certificate nickname and keystore that match the ones you used in step 2.

4. Restart your server, and then access your applications securely using this URL:

https://localhost:8181/your_application_context

https://localhost:8181/your_application_context
http://www.it-ebooks.info/

Chapter 14 ■ authentiCation and SeCurity

562

Note ■ in the previous numbered list, keystore_name.keystore represents the name of a keystore, and
trustedcarootcertificate.crt and certificate.crt represent the name of certificates.

How It Works
GlassFish comes with a self-signed security certificate that is suitable for test environments. However, when utilizing
GlassFish as a production application server solution, it is imperative that a certificate from a verified authority be put
in place in order to secure application transport. This recipe demonstrates how to install a security certificate for use
with SSL in order to achieve secure transport.

Before you can install a verified certificate, you need to obtain it. You will need to choose from one of the many
certificate authorities and then send a certificate request, which includes the key from your application server.
A keystore will need to be created in order to generate a certificate request. Issue the following command from the
command line or terminal to create the keystore:

keytool –keysize 2048 –genkey –alias –keyalg RSA –dname
"CN=yourdomain.org,O=company_name,L=city,S=state,C=country" – keypass
glassfish_master_password –storepass glassfish_master_password –keystore
choose_keystore_name.keystore

Once the keystore has been created, a certificate signing request that will be sent to the certificate authority can
be generated. To generate the certificate signing request (CSR), issue the following command from your server:

keytool –certreq –alias –keystore chosen_keystore_name.keystore –storepass
glassfish_master_password –keypass glassfish_master_password –file csrname.csr

Note ■ to change the GlassFish master password, issue the following command when your GlassFish domain is
stopped: asadmin change-master-password –savemasterpassword=true.

Once you submit your CSR to the certificate authority, the certificate authority will send back a valid security
certificate that can be installed into your server. Follow the steps in the solution to this recipe to install the certificate
into GlassFish. Once the certificate is installed, your server will be verified secure via the certificate authority, and
users should see a message indicating as such (usually a green lock) in their browsers when visiting your secured sites.

http://www.it-ebooks.info/

563

Chapter 15

Java Web Services

Java Web Services can play a vital role in enterprise application development. A web service can be described as a
client and server application that communicates over HTTP, which provides a standard means for communication
and interoperability between different applications. There are many different web service implementations
available across each of the different programming platforms. A web service is made accessible via an endpoint
implementation. Clients and servers transmit messages to exchange information between various web services. Entire
applications can be implemented using web services that transmit messages and data to and from each other. The two
main web service implementations that are part of Java EE 7 are the Java API for XML Web Services (JAX-WS) and the
Java API for RESTful Web Services (JAX-RS).

JAX-WSutilizes XML messages following the Simple Object Access Protocol (SOAP) standard. SOAP is an XML
language that defines messages. JAX-WS utilizes a Web Services Description Language (WSDL) file to describe each
of the various operations of a particular web service, and clients can use the WSDL file to obtain a proxy to the service.
Recipes in this chapter will demonstrate how to make use of JAX-WS to serve content via web services.

JAX-RS is the Java API for Representational State Transfer (REST) web services. REST services are useful for
performing operations via HTTP without the need for a WSDL or XML messages. REST services do not follow the
SOAP standard. REST service implementations are stateless, and they provide a smaller footprint for bandwidth than
SOAP services, making them ideal for HTTP on mobile devices.

Services written in JAX-WS are helpful in enterprises where security is a necessity. Although both SOAP and
REST support SSL, JAX-WS provides WS-Security, which provides enterprise-related security. JAX-WS provides a very
formal transaction process over a service, whereas REST is limited by HTTP. In most cases, it is recommended to use
REST services over JAX-WS when possible. However, the use of JAX-WS has its merits, especially in secure enterprises
and for use with applications requiring transaction security, such as banking services.

Over the next several recipes, you will be shown how to develop both JAX-WS and JAX-RS web services. You’ll
learn how to configure your environment to work with each type of service, and how to code a client to make use of
the services.

SettING Up a reSt eNVIrONMeNt

There are a couple of options that can be utilized for creating and utilizing REST services. In this chapter,
we focus on making use of the JAX-RS reference implementation for REST services, based upon Jersey. If you are
using GlassFish v3 or greater (Java EE 6 and up), the JAX-RS jars are provided with the distribution, so you do not
need to download any additional libraries in order to add REST functionality to your applications. However, if you
are utilizing another application server, such as Tomcat, you will need to download Jersey from the homepage at
https://jersey.dev.java.net/ and add the JAR files to your application server installation or application
WEB-INF/lib directory.

https://jersey.dev.java.net/
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

564

In order for JAX-RS to handle REST requests, you will have to configure a REST servlet dispatcher within the
application’s web.xml configuration file. The following excerpt from the JavaEERecipes web.xml configuration
file demonstrates how to set up JAX-RS for an application:

<servlet>
 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>

Additionally, if you would rather utilize Jersey so that you can make use of the newest features in REST, you can
bundle Jersey JARs in your application and configure for Jersey utilization instead. The following configuration
demonstrates a Jersey servlet dispatcher that will look for REST service classes in the
org.javaeerecipes.chapter15.rest package.

<!-- REST Configuration -->
 <servlet>
 <servlet-name>Jersey REST Service</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>org.javaeerecipes.chapter15.rest</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey REST Service</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
 <!-- End of REST -->

The tact you decide to take depends on the application you are developing. If you need to make use of the Java
standard for RESTful web services, then choose JAX-RS, but if you wish to work with the latest and greatest features in
REST, choose Jersey. The material covered in the REST recipes for this chapter will work with either JAX-RS or Jersey.

15-1. Creating a JAX-WS Web Service Endpoint
Problem
You would like to develop a JAX-WS web service that can be called upon from a desktop or web-based client application.

Solution #1
To develop a web service endpoint solution, create an endpoint interface that exposes any public methods of the
service that will be implemented. In the interface, annotate method definitions that will be exposed as web service
endpoints with the javax.jws.WebMethod annotation. Create a class that implements the interface, and annotate

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

565

it with the javax.jws.WebService annotation. In the following example, we develop a web service endpoint solution
that exposes a single method to a client application.

The following interface is a web service endpoint interface, which declares one method, named
obtainContactList, that will be implemented by the web service implementation class.

package org.javaeerecipes.chapter15.recipe15_01.endpointinterface;

import java.util.List;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

/**
 * Bookstore Web Service Endpoint Interface
 * @author juneau
 */
@WebService
@SOAPBinding(style=Style.DOCUMENT)
public interface BookstoreEndpoint {
 @WebMethod String obtainCompleteContactList();
}

Next, let’s take a look at the web service implementation class, which implements the web service endpoint interface.
The following class, org.javaeerecipes.chapter15.recipe15_01.endpoint.BookstoreService, defines a web service
method that calls an EJB that will return the list of Contacts that are stored in the Acme Bookstore database.

/*
 * JAX-WS web service endpoint class
 */
package org.javaeerecipes.chapter15.recipe15_01.endpoint;

import java.util.List;
import javax.ejb.EJB;
import javax.jws.WebMethod;
import javax.jws.WebService;
import org.javaeerecipes.chapter15.recipe15_01.endpointinterface.BookstoreEndpoint;
import org.javaeerecipes.jpa.entity.Contact;
import org.javaeerecipes.jpa.session.ContactFacade;

@WebService(serviceName="BookstoreService",

endpointInterface="org.javaeerecipes.chapter15.recipe15_01.endpointinterface.BookstoreEndpoint")
public class BookstoreService implements BookstoreEndpoint {

 @EJB
 ContactFacade contactFacade;

 public void BookstoreService(){

 }

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

566

 @Override
 public String obtainCompleteContactList(){
 StringBuilder sb = new StringBuilder();
 sb.append("Here is the new JAX-WS Web Service\n");
 List<Contact> contacts = contactFacade.findAll();
 for(Contact contact: contacts){
 sb.append(contact.getEmail() + "\n");
 }
 return sb.toString();
 }
}

Now that the web service endpoint interface and service implementation has been created, it is time to deploy so
that clients can consume the service. Please refer to Recipe 15-2 for more details on deployment.

Note ■ When annotating a class with @WebService, the endpoint interface is optional. However, it has been shown in
this solution to demonstrate its use. In Solution #2, you will see that the interface is optional.

Solution #2
Use an IDE, such as NetBeans, to develop a web service endpoint class. The following steps walk you through the
process of developing a web service endpoint using NetBeans 7.x IDE.

 1. Create a new Java EE Application that will be used to host the web service, or add a web
service to an existing application. Once the new Java EE application has been created,
or you’ve chosen which of your existing Java EE applications to add the web service into,
create the web service by right-clicking the NetBeans project and choosing New ➤ Web
Services ➤ Web Service (see Figure 15-1). Click Next after completing the form.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

567

2. Complete the New Web Service form by entering a service name, location, and package in
which to create the service class. For this example, leave the location as Source Packages
and leave the Create Web Service from Scratch option selected (see Figure 15-2). Click
Finish to create the service.

Figure 15-1. Creating a new web service within NetBeans

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

568

The resulting web service class will look similar to the following:

package org.javaeerecipes.chapter15.recipe15_01.endpoint;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;

/**
 * JAX-WS service implementation class, generated by NetBeans
 * @author juneau
 */
@WebService(serviceName = "Author")
public class Author {

 /**
 * This is a sample web service operation
 */

Figure 15-2. NetBeans New Web Service form

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

569

 @WebMethod(operationName = "hello")
 public String hello(@WebParam(name = "name") String txt) {
 return "Hello " + txt + " !";
 }
}

Note ■ Notice that Netbeans does not generate a service endpoint interface. This is because when annotating a class
with @WebService, an interface is optional.

How It Works
There are a few different ways to produce a JAX-WS web service, either by coding directly or by using an IDE. Perhaps
the easiest way to develop a web service is using an IDE, such as NetBeans. However, it is important to understand the
web service that you are developing before making use of automated tools to produce a solution. Therefore, Solution #1
shows how to develop a complete web service, which makes use of a web service endpoint interface. In many situations,
an interface is no longer required for the development of a web service implementation class. However, some clients
still necessitate coding against an interface (see Recipe 15-3 for details). Solution #2 covers the easier technique for
generating web services, that is, utilizing an IDE.

When writing a service endpoint interface, which is optional with newer releases of Java EE, create a standard
Java interface that contains signatures for any public methods that will be exposed. A service interface differs from a
standard interface because it is annotated with @WebService. It may also contain an optional @SOAPBinding interface
to specify the style of the service that is to be created. By default, the @SOAPBinding style attribute is set to Style.
DOCUMENT, but Style.RPC can also be specified to create an RPC-style service. Any methods that are declared within
the interface should be annotated with @WebMethod.

The service implementation class should implement the service endpoint interface if there is one. In the
example for Solution #1, the class does implement the service endpoint interface, and therefore, it is annotated
with @WebService, and the endpointInterface attribute of the annotation contains the fully qualified name of the
endpoint interface in String format. Being that the service implementation class in this example implements the
interface, it needs to implement the method(s) contained within the interface. Since the endpoint interface designates
the obtainCompleteContactList method with a @WebMethod annotation, it will be exposed via the service. After the
service implementation class and its endpoint interface are deployed, the service will be identified by the specified
serviceName attribute of the @WebService annotation. If this attribute is not specified, the application server will
append the word Service to the end of every web service class name to create a default identifier for the service.

It is possible to construct the same web service without the need for a service endpoint interface. However,
some clients require the use of an interface to work properly. If developing a web service implementation class
without the service endpoint interface, omit the endpointInterface attribute of the @WebService annotation and
mark any methods that will be exposed with the @WebMethod annotation. The following source listing is the same
BookstoreService class shown in Solution #2, but it does not make use of a service endpoint interface.

@WebService
public class BookstoreService implements BookstoreEndpoint {

 @EJB
 ContactFacade contactFacade;

 public void BookstoreService(){
 }

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

570

 @WebMethod
 public String obtainCompleteContactList(){
 StringBuilder sb = new StringBuilder();
 sb.append("Here is the new JAX-WS Web Service\n");
 List<Contact> contacts = contactFacade.findAll();
 for(Contact contact: contacts){
 sb.append(contact.getEmail() + "\n");
 }
 return sb.toString();
 }
}

Table 15-1 lists the different optional elements of the @WebService annotation.

Table 15-2 lists the different optional elements of the @WebMethod annotation.

When using an IDE to develop a web service, there is usually very little coding involved. Most IDEs, such as
NetBeans, include a wizard to help developers create web services. Solution #2 walks you through the process of
creating a JAX-WS web service using the NetBeans IDE. By default, the wizard does not create a service endpoint
interface, so the entire web service solution is contained within a single class.

Table 15-2. @WebMethod Elements

Element Description
action The action for this operation.

exclude Marks a method to NOT be exposed as a web method.

operationName Name of the wsdl:operation matching this method.

Table 15-1. @WebService Elements

Element Description

endpointInterface The complete name of the service endpoint interface.

name The name of the web service.

portName The port name of the web service.

serviceName The service name of the web service.

targetNamespace Used for the namespace for the wsdl:portType

wsdlLocation The location of a pre-defined WSDL describing the service.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

571

What IS a WSDL DOCUMeNt?

When a web service is deployed, it produces what is known as a WSDL document. A WSDL document is
constructed of XML elements that describe the web service so that it can be consumed. A WSDL file uses the
following elements to describe web services:

•	 <binding>: Specifies data protocol and binding for each particular port type.

•	 <message>: Contains <part> subelements that define the data elements for the service.

•	 <portType>: Defines a web service, the operations it can perform, and the messages it contains.

•	 <types>: Defines the data-types that are used by the web service.

The following XML is an excerpt of the WSDL that is generated by the BookstoreService web service created in
this recipe:

<!--
Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is Metro/2.1
(branches/2.1-6728; 2011-02-03T14:14:58+0000) JAXWS-RI/2.2.3 JAXWS/2.2.
-->
<!--
Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is Metro/2.1
(branches/2.1-6728; 2011-02-03T14:14:58+0000) JAXWS-RI/2.2.3 JAXWS/2.2.
-->
<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-policy" xmlns:wsp1_2="http://schemas.
xmlsoap.org/ws/2004/09/policy" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://endpoint.recipe15_01.
chapter15.javaeerecipes.org/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://endpoint.recipe15_01.
chapter15.javaeerecipes.org/" name="BookstoreServiceService">
<import namespace="http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/"
location="http://localhost:8080/JavaEERecipes/BookstoreServiceService?wsdl=1"/>
<binding xmlns:ns1="http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/"
name="BookstoreServicePortBinding" type="ns1:BookstoreEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
<operation name="obtainCompleteContactList">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal" namespace="http://endpointinterface.recipe15_01.chapter15.
javaeerecipes.org/"/>
</input>
<output>
<soap:body use="literal" namespace="http://endpointinterface.recipe15_01.chapter15.
javaeerecipes.org/"/>
</output>
</operation>
</binding>
<service name="BookstoreServiceService">
<port name="BookstoreServicePort" binding="tns:BookstoreServicePortBinding">

http://jax-ws.dev.java.net/
http://jax-ws.dev.java.net/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.w3.org/ns/ws-policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://www.w3.org/2007/05/addressing/metadata
http://schemas.xmlsoap.org/wsdl/soap/
http://endpoint.recipe15_01.chapter15.javaeerecipes.org/
http://endpoint.recipe15_01.chapter15.javaeerecipes.org/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://endpoint.recipe15_01.chapter15.javaeerecipes.org/
http://endpoint.recipe15_01.chapter15.javaeerecipes.org/
http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/
http://localhost:8080/JavaEERecipes/BookstoreServiceService?wsdl=1
http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/
http://schemas.xmlsoap.org/soap/http
http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/
http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/
http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/
http://endpointinterface.recipe15_01.chapter15.javaeerecipes.org/
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

572

<soap:address location="http://localhost:8080/JavaEERecipes/BookstoreServiceService"/>
</port>
</service>
</definitions>

15-2. Deploying a JAX-WS Web Service
Problem
You have implemented a JAX-WS web service endpoint and you wish to deploy it to a Java EE application server so
that clients can begin to consume it.

Solution #1
A JAX-WS web service can be deployed in a number of ways. First, be sure that the Java EE Application to which the
web service belongs has been fully developed, including all necessary configuration, and is ready for deployment.
Once an application is ready to be deployed, it can be compiled into a WAR file, and then deployed to the application
server container. The WAR file can be deployed to an application server container, such as GlassFish, via the standard
means of deploying any type of Java web application. To that end, deploy the project via the GlassFish administrative
console, or manually copy the WAR into the GlassFish autodeploy directory. Please refer to Recipe 11-4 for more
details on deploying an application to GlassFish application server.

Solution #2
If using an IDE to develop your web service, it is easy to deploy the service from directly within the development
environment. In this case, we will assume that NetBeans is the IDE of choice. To deploy a fully developed Java EE
project that contains a web service, perform the following steps:

 1. Ensure that your NetBeans project appears in the left-hand Projects menu.

 2. Right-click your NetBeans project, and choose Deploy from the contextual menu.

Note ■ In order to deploy an application from within Netbeans, your project must be associated with an application
server. To learn more about setting up an application server for use via Netbeans, please refer to Appendix A.

Solution #3
Create an endpoint publisher, which is a stand-alone application that will publish the service to a specified URL.
To create a publisher, develop a stand-alone application that contains a main method and invoke the
javax.xml.ws.Endpoint object’s publish method from within the main method. Pass the URL to which you would
like to publish the web service, along with an instance of the web service implementation class to the publish
method. The following stand-alone application demonstrates the use of an Endpoint publisher. The sources for this
publisher can be found at org.javaeerecipes.chapter15.recipe15_02.endpoint.publisher.BookstorePublisher.

package org.javaeerecipes.chapter15.recipe15_02.endpoint.publisher;

import javax.xml.ws.Endpoint;
import org.javaeerecipes.chapter15.recipe15_01.endpoint.BookstoreService;

http://localhost:8080/JavaEERecipes/BookstoreServiceService
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

573

//Endpoint publisher
public class BookstorePublisher{

 public static void main(String[] args) {
 Endpoint.publish("http://localhost:8085/JavaEERecipes/BookstoreServicePub",
new BookstoreService());
 }
}

When the publisher class is started, the web service will become available at the specified URL.

How It Works
To deploy an application that contains a web service, use the same procedures that would be used to deploy any
Java EE Application or NetBeans project. Both Solution #1 and Solution #2 to this recipe show how to deploy an
application or NetBeans project to the GlassFish application server.

Once the service is deployed using one of the techniques mentioned, the WSDL for the service can be
viewed by using the following URL within your browser: http://your-hostname.local:8080/JavaEERecipes/
BookstoreService?wsdl.

The third solution to this recipe demonstrates the use of a publisher class to deploy a web service. The publisher
class is a stand-alone application that can be executed in order to make the web service available for use.

15-3. Consuming a JAX-WS Web Service via WSDL
Problem
You would like to consume a published JAX-WS web service using its WSDL file.

Solution
In order for a client to gain reference to a web service implementation class, the artifacts must be generated via the
Java compiler by using the wsimport utility. To generate the artifacts for clients to use, run the wsimport utility, passing
the URL to the web service WSDL file. The following lines from the terminal or command line demonstrate how to
make use of the wsimport tool to produce the artifacts for the JAX-WS web service that was created in Recipe 15-1.

wsimport -keep -verbose http://localhost:8080/JavaEERecipes/BookstoreService?wsdl
parsing WSDL...

Generating code...

org/javaeerecipes/chapter15/recipe15_01/endpoint/BookstoreEndpoint.java
org/javaeerecipes/chapter15/recipe15_01/endpoint/BookstoreServiceService.java

Once the artifacts have been generated, they can be copied into the correct Java packages (if the wsimport tool
was not run within the correct package already), and a client application can be coded to make use of the web service
implementation classes.

http://localhost:8085/JavaEERecipes/BookstoreServicePub
http://your-hostname.local:8080/JavaEERecipes/BookstoreService?wsdl
http://your-hostname.local:8080/JavaEERecipes/BookstoreService?wsdl
http://localhost:8080/JavaEERecipes/BookstoreService?wsdl
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

574

How It Works
When a Java web service is created and deployed, the Java environment creates service implementation artifacts on
the fly, which enable service discovery by the client applications. A client application can use wsimport to generate the
client-side artifacts/classes that can be used to access the web service. The wsimport tool ships with the JDK, and
therefore, resides within the <JDK_Home>/bin directory. To utilize the tool, open a command prompt or terminal window,
and then traverse into the directory in which the resulting classes should be written. Optionally, you can specify the
directory into which the files should be generated by passing the –d flag. The wsimport tool accepts the URL to the
WSDL file of the web service for which you wish to create the artifacts. In the example to this solution, there are a couple
of optional flags specified as well. Table 15-3 lists the different flags that can be used along with the wsimport tool.

15-4. Consuming a JAX-WS Web Service via a Stand-Alone
Application Client
Problem
You have written a JAX-WS web service and you would like to consume it using a stand-alone Java client application.

Solution
Develop a stand-alone application that will reference the WSDL of the web service that it will consume, then generate
a service based upon the WSDL and qualified name of the web service implementation. The following Java source is a
stand-alone client application that consumes the JAX-WS web service that was developed in Recipe 15-1.

Table 15-3. wsimport Command Flags

Flag Description

-d <directory> Specifies where to place the generated output files.

-b <path> Specifies an external JAX-WS or JAXB binding file.

-B <jaxbOption> Pass this option to the JAXB schema compiler.

-catalog Specifies a catalog file to use for resolving external entity references.

-extension Allow vendor extensions to be utilized.

-help Display the help for wsimport.

-httpproxy:<host>:<port> Specifies an HTTP proxy server.

-keep Tells the tool to keep the generated files.

-p Specifying a target package via this command-line option overrides any wsdl and
schema binding.

-s <directory> Specifies where to place the generated source files.

-verbose Causes output messages explaining the steps taken by the compiler.

-version Prints information regarding the tool version.

-wsdllocation <location> Specifies the location to the WSDL file.

-target Generates code as per the given JAX-WS specification version.

-quiet Suppresses any output.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

575

package org.javaeerecipes.chapter15.recipe15_01.endpoint.appclient;

import java.net.URL;
import java.util.List;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import org.javaeerecipes.chapter15.recipe15_01.endpoint.BookstoreService;
import org.javaeerecipes.chapter15.recipe15_01.endpointinterface.BookstoreEndpoint;
import org.javaeerecipes.jpa.entity.Contact;

/**
 *
 * @author juneau
 */
public class BookstoreClient {

 public static void main(String[] args) {
 List<Contact> contacts = obtainList();
 }

 public static List<Contact> obtainList() {
 try {
 URL url = new URL("http://localhost:8080/JavaEERecipes/BookstoreService?wsdl");

 QName qname = new QName("http://endpoint.recipe15_01.chapter15.javaeerecipes.org/",
"BookstoreServiceService");
 Service service = Service.create(url, qname);
 BookstoreEndpoint bookstore = service.getPort(BookstoreEndpoint.class);
 System.out.println(bookstore.obtainCompleteContactList());
 } catch (Exception e) {
 System.out.println("Exception: "+ e);
 }
 return null;
 }
}

Running this application will invoke the BookstoreService and display the entire list of contacts that are stored
within the Acme Bookstore’s CONTACT database table.

How It Works
A client that is going to consume a JAX-WS web service must have the ability to obtain information regarding the web
service. This information can be obtained from the web service WSDL document. There are a couple of different ways
that a client can obtain a reference to and parse a WSDL in order to obtain a proxy to a web service. In the solution to
this example, we assume that a web service endpoint interface has been coded, and therefore, the code makes use of
the interface to call upon the exposed methods.

In the solution to this example, the client application creates a URL object that points to the web service WSDL
file and uses it to invoke the service methods that have been exposed to clients. The next step the client application
needs to take is to construct the qualified name of the web service in the form of a QName object. Once the client has
both the URL to the WSDL and the QName, those can be passed to the javax.xml.ws.Service class create method to
create a Service instance, which is the client view of the service. The service proxy can then be used to obtain a proxy

http://fess-116326.local:8080/JavaEERecipes/BookstoreService?wsdl
http://endpoint.recipe15_01.chapter15.javaeerecipes.org/
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

576

to the service by calling the getPort method of the Service instance. The proxy returns the service endpoint interface,
which can then be used to call upon the methods of the service.

As mentioned previously, it is possible to obtain a reference to the WSDL document and obtain a service proxy
in different ways as well. If a web service does not contain a service endpoint interface (@WebService and @WebMethod
annotations exist within service implementation class), then the need to create URL and QName objects are not needed.
In fact, a client application can simply call upon the Service getPort method to obtain a proxy to the service, and
return the service endpoint interface that is automatically generated by the container. The WSDL reference can also
be injected into a client class to alleviate the need for URL and QName objects via the @WebServiceRef annotation.
The following example client demonstrates these techniques to call the BookstoreService method.

import javax.xml.ws.WebServiceRef;

public class BookstoreClient {
 @WebServiceRef(wsdlLocation =
 "META-INF/wsdl/localhost_8080/JavaEERecipes/BookstoreServiceService.wsdl")
 private static BookstoreService service;

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 System.out.println(sayHello("world"));
 }

 private static String obtainContacts() {
 org.javaeerecipes.chapter15.recipe15_1.BookstoreService port = service.
getBookstoreServicePort();
 return port.obtainCompleteContactList();
 }
}

The @WebServiceRef annotation is used to define a reference to a web service and optionally an injection target
for it. Table 15-4 lists the different (optional) elements of the @WebServiceRef annotation.

Table 15-4. @WebServiceRef Elements

Attribute Description

lookup A portable JNDI lookup name that resolves to the target web service reference.

mappedName A product-specific name that this resource should be mapped to.

name A JNDI name of the resource.

type The Java type of the resource.

value The service class, always a type extending javax.xml.ws.Service.

wsdlLocation A URL pointing to the WSDL document for the web service.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

577

15-5. Integrating Web Services into a Java EE Project
Problem
You wish to expose methods within an Enterprise JavaBean as web services to be consumed via JSF views on an
enterprise application.

Solution
Designate an EJB as a web service using the @WebService annotation and specify methods of the EJB to be exposed via
the web service using the @WebMethod annotation. Once the EJB has been made into a web service, deploy it, and use
the wsimport tool to create artifacts from the resulting WSDL. Finally, reference the web service from a managed bean
controller to make use of it.

EJB as a Web Service
The following excerpt, taken from org.javaeerecipes.jpa.session.ChapterFacade, demonstrates how to expose an
EJB as a web service using only a couple of annotations.

package org.javaeerecipes.jpa.session;

import java.math.BigDecimal;
import java.util.List;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.javaeerecipes.jpa.entity.Book;
import org.javaeerecipes.jpa.entity.Chapter;

@WebService
@Stateless
public class ChapterFacade extends AbstractFacade<Chapter> {
 @PersistenceContext(unitName = "JavaEERecipesPU")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public ChapterFacade() {
 super(Chapter.class);
 }

 @WebMethod
 public List<Book> findBookByChapterTitle(Chapter chapter){
 return em.createQuery("select b from Book b INNER JOIN b.chapters c " +
 "where c.title = :title")

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

578

 .setParameter("title", chapter.getTitle())
 .getResultList();
 }

 public List<Book> findAllBooksByChapterNumber(BigDecimal chapterNumber){
 return em.createQuery("select b from Book b LEFT OUTER JOIN b.chapters c " +
 "where c.chapterNumber = :num")
 .setParameter("num", chapterNumber)
 .getResultList();
 }

}

When the application that contains the annotated EJB (JavaEERecipes) is deployed, the ChapterFacadeService/
ChapterFacade web service will be deployed and made available for use to client applications, including JSF-managed
bean controllers.

Coding the Managed Bean Client
A JSF-managed bean can be a web service client, just as a servlet or stand-alone Java application can be. Before
writing the managed bean client, the wsimport tool (covered in Recipe 15-3) must be used to create the artifacts from
the resulting WSDL file that was generated when the web service was deployed. Once the wsimport tool has been run,
the web service can be referenced via utilization of the @WebServiceRef annotation, and its methods can be invoked.

The ChapterController JSF-managed bean class of the Acme Bookstore application, found within the
JavaEERecipes project at org.javaeerecipes.jpa.jsf.ChapterController, has been modified to make use of the
ChapterFacadeService. The following excerpt, taken from the class, demonstrates how to reference a web service
implementation class and call the service methods from within a managed bean controller.

...
@ManagedBean(name = "chapterController")
@SessionScoped
public class ChapterController implements Serializable {

 @EJB
 ChapterFacade ejbFacade;

 // Uncomment after running wsimport utility and placing the compiled ChapterFacadeService class
 // into the CLASSPATH

@WebServiceRef(wsdlLocation="http://localhost:8080/ChapterFacadeService/ChapterFacade?wsdl")
 ChapterFacadeService chapterService;

 private List<Book> booksByChapterTitle;
 private List<Chapter> completeChapterList;
 private List<Book> booksByChapterNumber;

 /**
 * Creates a new instance of ChapterController
 */
 public ChapterController() {
 }

http://localhost:8080/ChapterFacadeService/ChapterFacade?wsdl
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

579

 /* Uncomment after running wsimport utiltity and placing the compiled ChapterFacadeService class
 * into the CLASSPATH
 */
 public List<Book> loadAllChapters(){
 return chapterService.findAll();
 }
 ...

How It Works
Many enterprise applications utilize EJBs to retrieve data from an underlying database. In most cases, the data
provided by these same queries residing within the EJB are necessary for use via remote clients. In such cases, it
makes sense to make the entire EJB into a fully functional web service. Doing so is easy by decorating an EJB class and
methods with the @WebService and @WebMethod annotations. By creating web services from EJB classes, enterprise
applications can reduce the amount of redundant code that is required by coding separate web services, and also
increase performance since fewer resources are required when fewer classes are querying the underlying data store.

The @WebService annotation can be used to decorate an EJB class to denote it as a web service. The @WebService
annotation accepts the (optional) elements that are listed in Table 15-1. If a class is designated as a web service, then
all public methods will be made available to clients. The @WebMethod annotation can be placed before any public
method within an EJB to expose it via the web service. In the solution to this example, the @WebMethod annotation is
placed before the first method as a demonstration only. Since the class has been designated as a web service using
the @WebService annotation, all public methods will be exposed, even if they are not decorated with @WebMethod.
To deploy the web service, simply deploy the Java EE application that contains the annotated EJB to a compliant
Java EE application server container, such as GlassFish.

In the end, JAX-WS web services can be easy to generate from existing entity classes. Once generated, JSF-managed
bean controllers can make use of the web service to provide data and or content from the web service to JSF views
within the application.

15-6. Developing a RESTful Web Service
Problem
You would like to create a JAX-RS web service that will be exposed over the Internet to handle operations on data.

Note ■ prior to performing the solutions to this recipe, you must be sure that your environment is configured for using
REST services. For more information, please see the introduction to this chapter.

Solution #1
Create a RESTful (Representational State Transfer) web service by creating a root resource class (POJO) and adding
resource methods to the class. To designate a class as a root resource class, annotate it with @Path or create at least one
method within the class that is annotated with @Path or a request method designator (@GET, @PUT, @POST, or @DELETE).
The following example demonstrates how to create a RESTful web service that simply displays a String or HTML
to a client. The sources for this code can be found in the JavaEERecipes project within the org.javaeerecipes.
chapter15.recipe15_06.SimpleRest.java file.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

580

package org.javaeerecipes.chapter15.rest;

import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;

// Set the PATH to http://host:port/application/rest/simplerest/
@Path("/simplerest")
public class SimpleRest {

 @GET
 // Produces plain text message
 @Produces("text/plain")
 public String getPlainMessage() {
 return "Hello from a simple rest service";
 }

 @GET
 // Produces plain text message
 @Produces("text/html")
 public String getHTMLMessage() {
 return "<P>Hello from a simple rest service</P>";
 }
}

Assuming that you have configured your environment to work with Jersey, you can deploy the JavaEERecipes
application and then visit the following URL to see the results produced from the REST service:
http://localhost:8080/JavaEERecipes/rest/simplerest.

Solution #2
Utilize an IDE, such as NetBeans, to create a RESTful web service. The NetBeans IDE includes wizards for developing
web services of different types. By right-clicking a project and choosing New ➤ Other ... option from the contextual
menu, the New File dialog will open, and Web Services can be chosen from the selection list, as seen in Figure 15-1.
Proceed with the following directions to generate a REST web service from an entity class.

 1. Choose the RESTful Web Service from Entity Classes option from the New File menu.

 2. Select one or more classes from the Available Entity Classes list and click the Add button.
In this example, we’ll choose the org.javaeerecipes.jpa.entity.Book entity, as shown
in Figure 15-3. Choose Next.

http://host:port/application/rest/simplerest/
http://localhost:8080/JavaEERecipes/rest/simplerest
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

581

 3. List the package into which the REST service class will be generated, along with a package
location and name for the REST application configuration class (see Figure 15-4). Click Finish.

Figure 15-3. Select entity classes for RESTful web services within NetBeans

Figure 15-4. Choose a resource package for REST service class within NetBeans

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

582

A REST service class that is similar to the following class would be generated after performing these steps.

@Stateless
@Path("org.javaeerecipes.jpa.entity.book")
public class BookFacadeREST extends AbstractFacade<Book> {
 @PersistenceContext(unitName = "JavaEERecipesPU")
 private EntityManager em;

 public BookFacadeREST() {
 super(Book.class);
 }

 @POST
 @Override
 @Consumes({"application/xml", "application/json"})
 public void create(Book entity) {
 super.create(entity);
 }

 @PUT
 @Override
 @Consumes({"application/xml", "application/json"})
 public void edit(Book entity) {
 super.edit(entity);
 }

 @DELETE
 @Path("{id}")
 public void remove(@PathParam("id") BigDecimal id) {
 super.remove(super.find(id));
 }

 @GET
 @Path("{id}")
 @Produces({"application/xml", "application/json"})
 public Book find(@PathParam("id") BigDecimal id) {
 return super.find(id);
 }

 @GET
 @Override
 @Produces({"application/xml", "application/json"})
 public List<Book> findAll() {
 return super.findAll();
 }

 @GET
 @Path("{from}/{to}")
 @Produces({"application/xml", "application/json"})
 public List<Book> findRange(@PathParam("from") Integer from, @PathParam("to") Integer to) {
 return super.findRange(new int[]{from, to});
 }

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

583

 @GET
 @Path("count")
 @Produces("text/plain")
 public String countREST() {
 return String.valueOf(super.count());
 }

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

}

How It Works
RESTful web services are easy to develop, and they have the ability to produce and consume many different types of
media. In most cases, REST web services are encouraged for services that will be sending and receiving information
over the Internet. Before an application can support REST services, it must be properly configured to do so. In this
book, the JAX-RS REST implementation is utilized, which is based upon Jersey, the standard REST implementation
for the industry. Please see the introduction to this chapter for more information on configuring Jersey within your
application.

A Java class that is a REST service implementation contains a myriad of annotations. Table 15-5 lists the possible
annotations that may be used to create a REST service.

Table 15-5. REST Service Annotations

Annotation Description
@POST Request method designator that processes HTTP POST requests.

@GET Request method designator that processes HTTP GET requests.

@PUT Request method designator that processes HTTP PUT requests.

@DELETE Request method designator that processes HTTP DELETE requests.

@HEAD Request method designator that corresponds to the HTTP HEAD method. Processes HTTP
HEAD requests.

@Path The value of this annotation should correlate to the relative URI path that indicates where the
Java class will be hosted. Variables can be embedded in the URIs to make a URI path template.

@PathParam A type of parameter that can be extracted for use in the resource class. URI path parameters
are extracted from the request URI, and the parameter names correspond to the URI path
template variable names specified in the @Path class-level annotation.

@QueryParam A type of parameter that can be extracted for use in the resource class. Query parameters are
extracted from the request.

@Consumes Used to specify the MIME media types of representations that a resource can consume.

@Produces Used to specify the MIME media types of representations that a resource can produce.

@Provider Used for anything that is of interest to the JAX-RS runtime, such as a MessageBodyHeader and
MessageBodyWriter.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

584

To designate a class as a REST service, the @Path annotation must be placed prior to the class, or before at least
one of the class method signatures. The @Path annotation is used to indicate the URI that should correspond to the
service. The full URI includes the host name, port number, application name, and REST servlet name, followed by
the path designated with the @Path annotation. In the example, the @Path annotation specifies "/simplerest" as the
service path, so the URL http://localhost:8080/JavaEERecipes/rest/simplerest will invoke the web service. It is
possible to include variables within a URL by enclosing them within brackets using the syntax: {var}. For example,
if each user had his or her own profile for a particular site, the @Path designation could be as follows:

...
@Path("/simplerest/{user}")
...

In such a case, the URL could look like the following: http://localhost:8080/JavaEERecipes/rest/
simplerest/Juneau.

The @Path annotation can also be specified before any methods that are marked with @GET, @POST, @PUT, or
@DELETE in order to specify a URI for invoking the denoted method. Moreover, variables can be placed within the path
in order to accept a more dynamic URL. For instance, suppose a method was added to the class in Solution #1 that
would return a greeting for the user that is specified as a parameter within the URL. You may do something like the
following in order to make the URL unique:

@Path("{user}")
@GET
@Produces("text/html")
public String getUserMessage(@PathParam("user") String user){
 return "Greetings " + "" + user + "";
}

In this case, the getUserMessage method would be invoked if a URL like the following were placed into the
browser: http://localhost:8080/JavaEERecipes/rest/simplerest/josh. If this URL were specified, then the
method would be invoked, passing “josh” as the user variable value, and the message would be displayed as:

Hello josh

Note ■ It is very important to create URIs that are readable and also provide intuitive information about your web
 service. URIs that are based upon these standards help to reduce errors within client applications and make the
web service more functional.

Designate methods with the @GET, @POST, @PUT, or @DELETE designator to process the type of web service request
that is desired. Doing so will generate web service functionality. If more than one method exists within a REST web
service implementation and @Path is only specified at the class level and not at the method level, then the method
that returns the mime type the client requires will be invoked. If you wish your method to display content, designate
a method with @GET. If you wish to create a method for adding or inserting an object, designate the method as @POST.
If you are creating a method for inserting new objects only, then designate it with @PUT. Finally, if you are creating a
method for removing objects, then designate it with @DELETE.

http://localhost:8080/JavaEERecipes/rest/simplerest
http://localhost:8080/JavaEERecipes/rest/simplerest/Juneau
http://localhost:8080/JavaEERecipes/rest/simplerest/Juneau
http://localhost:8080/JavaEERecipes/rest/simplerest/josh
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

585

REST services can become fairly complex if they constitute many different methods and paths. Entire
applications exist based upon REST services, where all CRUD (Create, Retrieve, Update, Delete) manipulations are
invoked via web service calls. This recipe provides only the foundation for developing with JAX-RS, as the topic is far
too involved for a handful of recipes or a chapter in itself.

15-7. Consuming and Producing with REST
Problem
You would like to produce different types of content with a RESTful web service. Moreover, you would like the web
service to consume content as well.

Solution
Create methods within the web service implementation class that are annotated with @GET for generating output, and
optionally along with @Produces for specifying the type of output. Annotate methods with @POST or @PUT for updating
or inserting data. The following sections provide examples utilizing these solutions.

Producing Output
Make use of the @Produces annotation to specify the type of content you wish to produce from a decorated method.
The following excerpt, taken from the JavaEERecipes project source at org.javaeerecipes.chapter15.recipe15_07.
RestExample, demonstrates the use of @Produces.

@GET
// Produces an XML message
@Produces("application/xml")
public MessageWrapper getXMLMessage() {
 // Pass string to MessageWrapper class, which marshals the String as XML
 return new MessageWrapper("Hello from a simple rest service");
}

Accepting Input
Annotate methods within a web service class with @PUT to indicate that some content is being passed to the
method. To specify the type of content being passed, annotate the same method with @Consumes(content-type).
The following excerpt, taken from the JavaEERecipes project source at org.javaeerecipes.chapter15.rest.
SimpleRest.java, demonstrates the use of @Consumes.

@PUT
@Path("add")
@Consumes("text/plain")
public String add(@QueryParam("text") String text){
 this.message = text;
 return message;
}

To input a new message stating JavaEERecipes, you would visit the following URL in your browser, which
passes the new message to the text variable: http://localhost:8080/JavaEERecipes/rest/simplerest/
add?text=JavaEERecipes.

http://localhost:8080/JavaEERecipes/rest/simplerest/add?text=JavaEERecipes
http://localhost:8080/JavaEERecipes/rest/simplerest/add?text=JavaEERecipes
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

586

How It Works
Create a web service class by following the procedures outlined in Recipe 15-7, and then designate methods within
the web service as producers or consumers by annotating them appropriately. Methods that will be generating some
type of output should be annotated with @Produces, which should subsequently specify the type of output generated.
Moreover, the methods that are generating output should also be annotated with @GET, which indicates that the
method is a reading resource. Methods that will be accepting input should be annotated with @PUT or @POST. The
@PUT annotation indicates that a new resource will be created, and the @POST annotation indicates that an existing
resource will be updated or a new resource will be created. Incidentally, the methods that accept input should also be
annotated with @Consumes, which should subsequently specify the type of content that is being consumed. Overall,
@Produces annotations should coincide with the @GET annotated methods. That is, a method that is decorated
with @GET will return some content to the client. @Consumes annotations should coincide with either @PUT or @POST
annotated methods.

In the solution to this recipe, two types of methods are demonstrated. The first example demonstrates a REST
method that produces XML content, and the @Produces("application/xml" annotation indicates it as such.
Within the method, a String is passed to a class named MessageWrapper. The MessageWrapper class is responsible
for marshaling the String as XML using JAXB. For more information, please refer to the sources located at
org.javaeerecipes.chapter15.recipe15_07.MessageWrapper.java, and see the JAXB documentation online at
http://docs.oracle.com/javaee/6/tutorial/doc/gkknj.html. The beauty of JAX-RS is that just about any content
type can be produced. A client application can visit the URL that corresponds to a web service’s @GET method, and
content will be returned in a format that will work for that client. For instance, if a client is a web browser, it will look
for a method that produces "text/html" content within the web service, and then invoke that method.

The second example in the solution to this recipe demonstrates a REST method that consumes String content.
The @PUT annotation indicates that either a new object will be generated, or an existing object will be updated with the
request. In this case, the String-based message field is updated to the content that is passed into the web service via
the text variable. The @Path annotation has been placed above the method signature to indicate a path following the
format /add should be used to access this method. Lastly, the @Consumes annotation indicates that the method will
consume plain text.

The REST service in this example is very brief, and in real-world scenarios, many methods producing and
consuming different types of content are utilized within REST service implementations.

15-8. Writing a JAX-RS Client
Problem
You wish to create a JAX-RS client application to consume a RESTful web service.

Solution
Make use of the new JAX-RS Client API to build a client application. The following example demonstrates how to
create a very basic client using the JAX-RS Client API.

import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.xml.ws.Response;

http://docs.oracle.com/javaee/6/tutorial/doc/gkknj.html
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

587

/**
 *
 * @author Juneau
 */
public class RestClient {

 public static void main(String[] args){
 // Obtain an instance of the client
 Client client = ClientBuilder.newClient();

 Response res = (Response) client.target("http://localhost:8080/JavaEERecipes/
rest/simplerest")
 .request("text/plain").get();
 try {
 System.out.println((String) res.get());
 } catch (InterruptedException ex) {
 Logger.getLogger(RestClient.class.getName()).log(Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(RestClient.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
}

To test the client, first deploy and run the JavaEERecipes application so that the simplerest REST web service is
available. Once deployed, run the RestClient class to see the result in the server log.

How It Works
Historically, it has always been a small task to test web services. That is because in order to test a web service, a
separate web application either had to make a call to the web service, or custom client tests would have to be built to
accommodate the testing. In the JAX-RS 2.0 release, a client API has been included, allowing developers to follow a
standard API for developing test clients and so forth.

To make use of the client API, obtain an instance of the javax.ws.rs.client.Client by either injecting
the resource, or calling the javax.ws.rs.client.ClientBuilder newClient method. Once a Client instance is
obtained, it can be configured by setting properties, or registering Provider and/or Feature classes. Properties are
simply name/value pairs that can be passed to the client via the setProperty method. Features are Providers that
implement the Feature interface. A Feature can be used for grouping-related properties and Providers into a single
unit, making configuration even easier.

In the solution to this recipe, the client has been built to access the simplerest web service. After a client
instance is obtained, properties can be set against it by calling the Client setProperty method, passing the
property/value pair.

client.setProperty("property", "value");

Web Resource Targets
The first step toward invoking a web resource is to make a call to a target. This can be done in a couple of different
ways. The previous example demonstrated the use of the Client target method, which accepts a URI and returns a
WebTarget.

WebTarget myTarget = client.target("http://somehost.com/service");

http://localhost:8080/JavaEERecipes/rest/simplerest
http://localhost:8080/JavaEERecipes/rest/simplerest
http://somehost.com/service
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

588

Once the target has been obtained, a number of things can be done with it. A request can be made against it, as in
the RestClientOne example, by invoking the target’s request method. A target can also be further qualified by calling
its path method and passing the next sequence in a URI path.

WebTarget myTarget =
 client.target("http://somehost.com/service").path("one");

A path can also contain dynamic content in the form of URI template parameters. To include a template
parameter, wrap the dynamic portion of the path in curly brackets { }, and then chain a call to the pathParam method,
passing the name/value pair of the parameter.

WebTarget myTarget =
 client.target("http://somehost.com/service").path("one").path("{code}")
 .pathParam("code","100375");

WebTarget objects are immutable, in that methods for altering WebTargets, such as path, return new instances of
WebTarget. WebTargets can also be configured by registering features or providers via a call to the target’s register
method, passing either type of class.

client.register(Feature.class)
client.register(Provider.class)

Obtaining a Response
The example at the beginning of this section demonstrated a simple client that returns a plain-text response. However,
it is possible to return different response types by passing different Strings or MediaType fields to the Client target
request method. Table 15-6 lists the different MediaType fields that can be used. All fields listed within the table that
contain a _TYPE suffix are of type MediaType, whereas the others are static String types.

Table 15-6. MediaType Fields

Field String

APPLICATION_ATOM_XML

APPLICATION_ATOM_XML_TYPE

"application/atom+xml"

APPLICATION_FORM_URLENCODED

APPLICATION_FORM_URLENCODED_TYPE

"application/x-www-form-urlencoded"

APPLICATION_JSON

APPLICATION_JSON_TYPE

"application/json"

APPLICATION_OCTET_STREAM

APPLICATION_OCTET_STREAM_TYPE

"application/octet-stream"

APPLICATION_SVG_XML

APPLICATION_SVG_XML_TYPE

"application/svg+xml"

APPLICATION_XHTML_XML

APPLICATION_XHTML_XML_TYPE

"application/xhtml+xml"

(continued)

http://somehost.com/service%22).path(%22one
http://somehost.com/service%22).path(%22one%22).path(%22%7Bcode
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

589

To obtain a requested resource, call the get method, which will return a javax.ws.rs.core.Response
object. The returned Response can be used to process the results accordingly, depending upon what you are
trying to do within the client. In the example, the Response object’s readEntity method is called, which simply
returns the results in the requested format. In the example, a String.class is passed to the readEntity method,
implying that a response should be returned in String format. To see a complete list of methods that can be
called against a Response object, please refer to the online documentation
(http://jax-rs-spec.java.net/nonav/2.0-SNAPSHOT/apidocs/javax/ws/rs/core/Response.html), as the
list is quite lengthy.

It is possible to filter a response by chaining methods, as needed, to specify headers, cookies, and so forth, off of
the request method. Each of these chained method calls returns a Builder object, which can be further built upon.
The following methods can be chained to further build the request:

•	 cookie(Cookie)

•	 cookie(String, String)

•	 header(String, Object)

•	 headers(MultivaluedMap<String, Object>)

•	 register

Returning Entities
Sometimes there is a requirement to return a type other than Response from a web resource. In these cases, it is
possible to obtain an entity type by passing the entity class to the get call. The following lines of code demonstrate
how to return an Employee entity, rather than a standard Response object.

Response res = client.target("http://localhost:8080/JavaEERecipes/rest/employeeSearch")
 .request("application/xml").get(Employee.class);

Field String

APPLICATION_XML

APPLICATION_XML_TYPE

"application/xml"

MEDIA_TYPE_WILDCARD "*"

MULTIPART_FORM_DATA

MULTIPART_FORM_DATA_TYPE

"multipart/form-data"

TEXT_HTML

TEXT_HTML_TYPE

"text/html"

TEXT_PLAIN

TEXT_PLAIN_TYPE

"text/plain"

TEXT_XML

TEXT_XML_TYPE

"text/xml"

WILDCARD

WILDCARD_TYPE

"*/*"

Table 15-6. (continued)

http://jax-rs-spec.java.net/nonav/2.0-SNAPSHOT/apidocs/javax/ws/rs/core/Response.html
http://localhost:8080/JavaEERecipes/rest/employeeSearch
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

590

In cases where entities are being returned, the request type is required to be "application/xml" or
APPLICATION_XML_TYPE.

Invoking at a Later Time
There are cases when it makes sense to obtain a request and prepare it for execution, but not invoke that request until
a later time. In such cases, one can prepare an Invocation that can be executed at a later time. In the following lines of
code, an Invocation is created by making a request to a WebTarget, and then calling the buildGet method.

Invocation inv1 = client.target("http://localhost:8080/JavaEERecipes/rest/simplerest")
 .request("text/plain").buildGet();
// Sometime later...
Response res = inv1.invoke();

If we were posting a response, the buildPost method could be called against the WebTarget instead, as follows:

Invocation inv1 = client.target("http://localhost:8080/JavaEERecipes/rest/makeithappen")
 .request("text/plain").buildPost(order);
 Response res = inv1.invoke();

Note ■ To asynchronously execute an Invocation, call the invocation submit method, rather than the invoke
method.

Invocation objects can be configured similarly to WebTarget and Client objects. Filters, interceptors, properties,
features, and providers can be configured on an Invocation by calling the register method and passing the
appropriate configuration instance, as demonstrated in the following.

// Assume that inv1 is an Invocation instance
String result = inv1.register(MyInterceptor.class).invoke(String.class);

Note ■ To learn more about filters and interceptors, read Recipe 15-9, which follows in this chapter.

WebTarget Injection
A WebTarget can be injected into any JAX-RS managed resource by specifying the @Uri annotation, and passing the
WebTarget URI. In following example, a WebTarget resource is injected into a JAX-RS resource to demonstrate this
concept.

@Path("/orderservice")
public class OrderService {
 @Uri("order/{id}")
 WebTarget orderId;

 //...
}

http://localhost:8080/JavaEERecipes/rest/simplerest
http://localhost:8080/JavaEERecipes/rest/makeithappen
http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

591

15-9. Filtering Requests and Responses
Problem
You wish to perform some activity against a web service request before it has been delivered to the network, or to
a web service response before it has been sent back to the client.

Solution
Apply a filter or interceptor to the web service request or response to perform the desired activity. The following
example filter is used to write alerts to the system log before an incoming request has been processed and before
a response is sent back to the client.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import javax.annotation.Priority;
import javax.ws.rs.Priorities;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.ext.Provider;
import org.javaeerecipes.chapter15.rest.interfaces.Alerter;

@Provider
@Alerter
public class AlertFilter implements ContainerRequestFilter,
 ContainerResponseFilter {

 @Override
 public void filter(ContainerRequestContext requestContext)
 throws IOException {
 alert(requestContext);
 }

 @Override
 public void filter(ContainerRequestContext crc, ContainerResponseContext crc1) throws
IOException {
 alert(crc);
 }

 public void alert(ContainerRequestContext context) {

 try(InputStream in = context.getEntityStream();) {
 if (in != null) {
 InputStreamReader inreader = new InputStreamReader(in);
 BufferedReader reader = new BufferedReader(inreader);
 String text = "";

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

592

 while ((text = reader.readLine()) != null) {
 System.out.println(text);

 }

 }
 } catch (IOException ex) {
 // Error handling
 }
 }
}

How It Works
The concept of filters and interceptors is analogous to the post office processing your mail before it comes to your
address. Rather than a message being delivered directly from point A to point B, it is first routed to one or more postal
offices, where it is further processed before reaching point B. Web resource filters and interceptors apply that same
concept to requests or responses that are being processed via a web service. If a filter or interceptor is bound to a web
resource, then it will be invoked at some point in the life cycle of a request or response to that web resource. The type
of filter or interceptor determines at what point in the life cycle it is applied. Interceptors (otherwise known as entity
interceptors) wrap around a method invocation at a specified extension point. Filters, on the other hand, execute
code at a specified extension point, but they are not wrapped around methods. In the next few sections, you will take
a closer look at each and how they are used.

Filters
An extension point is an interface that includes a method, which is responsible for filtering or intercepting
the request or response. Filters have four such extension point interfaces, those being: ClientRequestFilter,
ClientResponseFilter, ContainerRequestFilter, and ContainerResponseFilter. The name of the extension point
helps to describe to what a filter is applied and at what point. ClientRequestFilter and ClientResponseFilter
are for use with the JAX-RS Client API. ClientRequestFilter is applied before an HTTP request is delivered to the
network. A ClientResponseFilter is applied when a server response is received and before control is returned to the
application. ContainerRequestFilter and ContainerResponseFilter classes are for use with the JAX-RS Server API.
Similar to the client-side filters, a ContainerRequestFilter is applied upon receiving a request from a client, and a
ContainerResponseFilter is applied before the HTTP response is delivered.

Entity Interceptors
As mentioned in the previous section, an extension point is an interface that includes a method, which is
responsible for filtering or intercepting the request or response. Entity interceptors have two such extension
points, those being ReaderInterceptor and WriterInterceptor. An entity interceptor class must implement one
or both of these extension points. Also mentioned previously, entity interceptors wrap calls to methods. More
specifically, MessageBodyWriter implementations wrap calls to the writeTo method, whereas MessageBodyReader
implementations wrap calls to the readFrom method.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

593

Binding Filters and Interceptors
Filters and interceptors must be associated to application classes or methods, and this process is also known as
binding. The default type of binding is global binding, and any filter or interceptor that does not include annotations
is bound globally. Global binding associates the filter or interceptor with all resource methods in an application. That
said, any time a resource method is invoked, all globally bound filters and interceptors are processed as well.

Filters and interceptors can be registered manually via Application or Configuration, or they can be registered
dynamically. To indicate that a filter or interceptor should be registered dynamically, it can be annotated with
@Provider. If a filter or interceptor is not annotated as such, it must be registered manually.

To manually bind a filter or interceptor to a resource method, the filter or interceptor class must be denoted with
a @NameBinding annotation. A @NameBinding annotation can be coded just as a standard annotation would, but it
should also include the @NameBinding annotation in its interface. The following annotation code could be used to
create an @NameBinding annotation that might be placed on a filter that is responsible for firing alerts.

@NameBinding
@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
public @interface Alerter { }

To associate the @NameBinding with a filter or interceptor, simply annotate the filter or interceptor class with it.
The following AlertFilter class is a filter implementation that is denoted with the @Alerter annotation.

@Provider
@Alerter
class AlertFilter implements ContainerRequestFilter,
 ContainerResponseFilter {

...

}

That filter can now be bound to a resource method by annotating the resource method with the same
@NameBinding as the filter class, as demonstrated in the following.

@GET
@Produces("text/html")
@Alerter
public String getJobs(){
 ...
}

Note ■ This same concept can be applied to Application subclasses in order to globally bind the filter or interceptor.

Setting Priorities
As mentioned in previous sections, filters and interceptors can be chained. Chains of filters or interceptors invoke
individual filters or interceptors based upon a given priority. To assign priority to a filter or interceptor, denote the
implementation class with the @BindingPriority annotation. Integer numbers are used to associate priorities.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

594

15-10. Processing Long-Running Operations Asynchronously
Problem
Your server-side JAX-RS method contains a long-running operation, and you would like to avoid blocking while
waiting for the event to complete.

Solution
Perform asynchronous processing so that the resource method containing the long-running operation can
inform JAX-RS that a response is not yet readily available, but will be produced at some point in the future. In the
following example, a JAX-RS service named AsyncResource contains a resource method named asyncOperation.
The asyncOperation method contains a long-running task, which is handed off to a ManagedExecutorService for
processing.

import javax.annotation.Resource;
import javax.enterprise.concurrent.ManagedExecutorService;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;

/**
 * Recipe 15-10: Asynchronous Processing
 * @author Juneau
 */
@Path("/asynchronous/asyncResource")
public class AsyncResource {

 @Resource(name = "concurrent/__defaultManagedExecutorService")
 ManagedExecutorService mes;

 @GET
 public void asyncOperation(@Suspended final AsyncResponse ar){
 mes.submit(
 new Runnable() {
 public void run(){
 // Perform long running operation
 longRunningOperation();
 ar.resume("Performing asynchronous operation");
 }
 });
 }

 public void longRunningOperation(){
 // This is a method that contains a long-running operation
 System.out.println("Performing long running task...");
 }

}

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

595

Note ■ To learn more about ManagedExecutorService, please see Chapter 19.

How It Works
The JAX-RS 2.0 API provides the ability to hand off long-running tasks to a ManagedExecutorService for processing.
This allows a server-side resource to return control to a client and avoid problematic blocks. To begin, the server-side
asynchronous implementation will be described..

To perform asynchronous processing within a JAX-RS resource, the resource method that contains
long-running operations must accept an instance of AsyncResponse via the utilization of the @Suspended
annotation. The AsyncResponse class provides the means for resuming operations and returning control to the
client. A ManagedExecutorService (see Chapter 19 for more information) must be made available within the class.
The ManagedExecutorService must be called upon to submit a new Runnable containing the long-running operation.
along with a call to AsyncResponse.resume() to return control back to the client once the long-running process is
completed. When the ManagedExecutorService submit method is called, the Runnable is passed to the server for
further processing, forking a thread to execute the task, and returning immediately. When the long-running task has
completed, control will be passed back to the application, invoking the AsyncResponse resume method.

In order to avoid long-running operations that never return and cause a suspended connection to wait
indefinitely, it is possible to specify a timeout value. The timeout value can be specified by setting a timeout handler
via the AsyncResponse.setTimeoutHandler() method, passing a new instance of the TimeoutHandler. After the
setTimeoutHandler has been invoked, the timeout can be set by calling the AsyncResponse.setTimeout() method,
passing any unit of type java.util.concurrent.TimeUnit. For instance, the following lines demonstrate how to set a
timeout of 30 seconds for the long-running operation contained in the resource shown in the solution to this recipe:

...
@GET
 public void asyncOperation(@Suspended final AsyncResponse ar){
 ar.setTimeoutHandler(new TimeoutHandler() {
 public void handleTimeout(AsyncResponse ar){
 ar.resume("Timed out");
 }
 });
 ar.setTimeout(30, SECONDS);
 mes.submit(
 new Runnable() {
 public void run(){
 // Perform long running operation
 longRunningOperation();
 ar.resume("Performing asynchronous operation");
 }
 });
 }
...

Note ■ JAX-RS implementations will generate a ServiceUnavailableException with a status of 503 when a timeout
value is reached and no timeout handler is present.

http://www.it-ebooks.info/

CHApTER 15 ■ JAvA WEb SERvICES

596

JAX-RS 2.0 also introduces asynchronous processing support to the client-side.. By default, invocations from
a client to a target are executed in a synchronous fashion, but they can be changed to asynchronous by calling the
async method and optionally registering an instance of InvocationCallback. For example, the following lines of code
demonstrate an asynchronous client call to the web service resource that was presented in the solution to this recipe:

Client client = ClientBuilder.newClient();
Target target = client.target("http://localhost:8080/JavaEERecipes/rest/asynchronous/
asyncResource");
Target.request().async().get();

For more information regarding the client API and asynchronous operations, please refer to the JAX-RS 2.0
documentation online.

http://localhost:8080/JavaEERecipes/rest/asynchronous/asyncResource
http://localhost:8080/JavaEERecipes/rest/asynchronous/asyncResource
http://www.it-ebooks.info/

597

Chapter 16

Enterprise Solutions Using Alternative
Programming Languages

Dozens of programming languages are available for use on the Java platform; the Java language is no longer the only
available language for developing applications on the JVM. Nowadays, developers have their choice of a wide variety
of languages when developing for the JVM, from small scripting languages to statically typed languages that have their
own sets of libraries. Although developers of Java EE 7 applications are interested in utilizing the technology stack that
encompasses the Java enterprise, in some cases alternative languages can provide a more dynamic and sometimes
easier development life cycle than using Java.

In this chapter, I will cover how to develop enterprise applications on the JVM using alternative languages. The
recipes in this chapter will cover solutions utilizing two of the most popular alternative languages for the JVM: Groovy
and Jython. Although this chapter will delve into some specific enterprise solutions that can be provided via the use
of these three languages, you should not read this chapter as a means of learning these two alternative solutions.
Rather, this chapter should serve as a starting point for creating entire or partial enterprise solutions for the JVM using
alternative languages.

The Groovy language has a very similar syntax to that of Java. It has been embraced by a large number of
loyal Groovy coders for its ease of use, its productive syntax, and its easy integration into Java-based application
solutions. Groovy maintains a tight integration with the Java language in that Groovy source can include Java
source, import and use Java libraries, and so forth. Groovy is compiled on the fly, so it is an easy way to develop
applications very quickly. This chapter includes a couple of examples that demonstrate how to integrate Groovy
servlets into a Java EE application. It is possible to set up advanced configurations, allowing Groovy code to be
used for the development of EJB classes and other Java EE technology via the utilization of build systems such as
Maven, but those topics are out of scope for this book. That said, Groovy is an easy way to supplement an existing
Java EE application, although it takes some advanced configuration to develop an entire Java EE application using
only Groovy.

The Jython language is a port of the Python language that runs on the JVM. Much of the Jython community
uses it for its elegant syntax and its dynamic tendencies. Jython, just like Groovy, is very helpful to use for adding
servlet content to existing Java EE applications. Therefore, it is also a very useful supplement to any Java EE
application.

This chapter will cover a handful of recipes that show how to integrate Groovy and Jython into your Java EE
projects in order to use their productive syntax and dynamic compilation tendencies. Adding each of these alternative
languages, as well as others (JRuby, Clojure, Scala, and so on), to existing Java EE applications can enhance the
functionality and productivity all around.

http://www.it-ebooks.info/

Chapter 16 ■ enterprise solutions using alternative programming languages

598

16-1. Developing Servlets with Groovy
Problem
You want to utilize a robust alternative language to create servlets for your enterprise application.

Solution
Develop Groovy servlets (groovlets) and integrate them into your enterprise application. The following example
Groovy servlet demonstrates how to retrieve values from a database using Groovy and display them within a servlet.
In this example, the Acme Bookstore database is queried for the book titles within the BOOK table. The titles are then
displayed within the servlet. You can find the code for the following example within the JavaEERecipes project within
the web/chapter16/BookstoreServlet.groovy file.

Note ■ this example utilizes the oracle database driver for connectivity, not Jpa.

import groovy.sql.Sql

def sql = Sql.newInstance("jdbc:oracle:thin:@host:1521:database", "user",
 "password", "oracle.jdbc.driver.OracleDriver")

html.html()
{
 head()
 {
 title 'Acme Bookstore Book List'
 }
 body()
 {
 print '<p>The list of books:

'
 sql.eachRow("select * from Book"){
 println "$it.title </br></br>"
 }
 print '</p>'
 }
}

In the previous example, take note of the $it keyword. In Groovy syntax, this keyword provides a handle to the
currently available object within a closure body. The sql.eachRow method performs the given SQL query, allowing
traversal of the results. The servlet will display the list of books, as follows:

The list of books:
Java 7 Recipes
Java EE 7 Recipes
The Definitive Guide to Jython
Oracle PL/SQL Recipes

http://www.it-ebooks.info/

Chapter 16 ■ enterprise solutions using alternative programming languages

599

How It Works
Developing servlets in an alternative language can increase developer productivity, and it can also allow for dynamic
code updates since many alternative languages can compile on the fly. One such language that provides a productive
syntax and can be compiled dynamically is Groovy. It is very easy to develop servlets using the Groovy language
because any Java web application can simply route Groovy files to a special servlet that compiles and displays the
content at will. Any file that is passed to groovy.servlet.GroovyServlet is treated as a Groovy servlet, compiled, and
translated, and then the output is displayed within the browser. To route requests to the GroovyServlet, you must
configure a url-pattern that will be used to pass certain files to the GroovyServlet. This configuration can be done
within the web-xml deployment descriptor as follows:

<servlet>
 <servlet-name>GroovyServlet</servlet-name>
 <servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>GroovyServlet</servlet-name>
 <url-pattern>*.groovy</url-pattern>
</servlet-mapping>

The GroovyServlet can be added to an application by including the groovy-all-x.x.x.jar file in your
CLASSPATH, where x.x.x is the Groovy version number. This JAR file will allow you to utilize all of the Groovy
essentials, and it is nicely bundled into a single JAR for convenience.

There are a couple of tactics that can be taken when writing a Groovy servlet. In the solution to this recipe, a
Groovy MarkupBuilder is used to create the servlet. Groovy builders are great for building a tree of objects. In this
case, they are great for dealing with HTML. Rather than coding HTML tags, the markup builder allows you to code
elements using the Groovy syntax, rather than working directly with XML. Groovy servlets implicitly define the
following lines of code at the top of each servlet being invoked:

import groovy.xml.*
def writer = new StringWriter()
def html = new MarkupBuilder(writer)

The fact that these lines of Groovy are always invoked when a servlet is initiated means you can get right into
coding the servlet using Groovy’s MarkupBuilder with no setup at all. As you can see from the example servlet, the
html object is never created because it all occurs behind the scenes. Utilizing the markup builder syntax, you can
create a parent element and then define subelements within the parent by naming an element accordingly; using an
open/close bracket syntax, as in { ... }; and encompassing all of an element’s subelements between its opening
and closing bracket. Since the HTML markup builder contains specific elements for the different portions of an HTML
page, each of those elements carries attributes specific to the type of element it is. For instance, the head() element
contains a title attribute, so placing the title My Title within the head element will assign “My Title” to the HTML
page. Running down the example, the body() element consists of a couple of print statements, along with a SQL loop.
Simply invoking the print statement within an element will cause the string contained within the print statement to
be printed to the markup. Therefore, the following lines of markup:

body() {
 print '<p>The list of books:</p>'
}

http://www.it-ebooks.info/

Chapter 16 ■ enterprise solutions using alternative programming languages

600

will generate the following HTML:

<body>
 <p>The list of books.</p>
 </body>

Furthermore, any HTML element can be specified as an entity using the MarkupBuilder. That is, if you
would rather not use print statements, then the following syntax could achieve the same effect as the previous
MarkupBuilder code:

body(){
 p 'The list of books.'
}

Remember when I mentioned that the print statement will produce HTML output for whatever is contained
within the String that is passed to it? Well, if you prefer to use HTML markup, then you can simply use a print
statement and then enclose the HTML markup that you want to use within the String as follows:

print '
 <html>
 <body>
 <p>The list of books:</p>
 </body>
 </html>'

Solutions such as those shown can be produced with standard JSF and XHTML quite easily, but if you want to
perform all of the processing and view code in the same file, then using a Groovy servlet can be the way to go. Even if
you prefer to include only JSF XHTML views within an application, it makes sense to prototype with Groovy servlets
in some circumstances. Groovy servlets provide a quick way to produce a dynamic servlet that can be used for testing
purposes while producing web applications. Groovy servlets have a number of purposes, and they can be included in
any Java EE application by simply adding the groovy-all-xxx.jar file to the CLASSPATH.

16-2. Working with Groovy Servlet Parameters
Problem
You want to create a form that accepts input and passes the input to another form using the Groovy language.

Solution
Create an input form using a Groovy servlet, and invoke another Groovy servlet when the form is submitted, passing
the input as parameters to the second form. The following example demonstrates the use of two Groovy servlets that
pass data from one to the other. The following source, taken from ParameterExample.groovy, constructs an input
form using MarkupBuilder, and upon submission, the form will activate the BookstoreServletAction.groovy servlet:

html.html()
{
 head()
 {
 title 'Acme Bookstore Groovy Parameters'
 }

http://www.it-ebooks.info/

Chapter 16 ■ enterprise solutions using alternative programming languages

601

 body()
 {

 form(method: 'GET', action: 'BookstoreServletAction.groovy') {
 b'First Name: '
 input(type: 'text', name:'firstName')
 br{}
 b'Last Name: '
 input(type: 'text' ,name:'lastName')
 br{}
 input(type: 'submit', value:'Submit Values')
 }
 }
}

Next is the source for the receiving servlet, BookstoreServletAction.groovy:

html.html()
{
 head()
 {
 title 'Processing Values'
 }
 body()
 {
 String first = request.getParameter('firstName');
 String last = request.getParameter('lastName');

 h1 "Hello ${first} ${last}"
 }
}

The values that are entered into the text fields within the first Groovy servlet are passed to the second Groovy
servlet as request parameters and then displayed as messages.

How It Works
Two or more Groovy servlets can pass information among each other via the utilization of forms and request
parameters. This solution demonstrates simply that an entire web application can be constructed from Groovy
servlets. One Groovy servlet can invoke another via a GET or POST form action. Calls to Java libraries, database queries,
and so on, can all occur directly within the servlet code, although this type of coding is not recommended since it
does not adhere to the Model-View-Controller (MVC) pattern.

In the solution to this recipe, two input text areas are displayed via the initial servlet, ParameterAction.groovy.
The content from both of those forms is then submitted via an HTML form, which has an action attribute set
to BookstoreServletAction.groovy, which is the name of another Groovy servlet. When the form is submitted,
the request is then sent to the servlet that is set within the action attribute, which is then displayed. The
BookstoreServletAction.groovy servlet processes the request by obtaining each parameter that was sent to it
via a String-based name and storing the values of each property to local variables. The servlet then simply prints
out the contents of those variables. However, this example demonstrates an important feature of Groovy: variable
substitution. It is easy to substitute a variable within a String by prefixing the name of the variable with a $ character.

http://www.it-ebooks.info/

Chapter 16 ■ enterprise solutions using alternative programming languages

602

16-3. Developing Servlets with Jython
Problem
You want to utilize a mature and robust alternative language to create servlets for your enterprise application.

Solution
Develop a servlet with the Python syntax using the Jython language. To add support for Jython to a Java EE
application, you must add the jython.jar file to your CLASSPATH and configure the web.xml deployment descriptor
to use org.python.util.PyServlet whenever a file that includes a .py suffix is invoked from a browser.

First, let’s configure the web.xml deployment descriptor accordingly. The following excerpt, taken from the
web.xml deployment descriptor of the JavaEERecipes sources, demonstrates how to add Jython servlet support to an
application:

<servlet>
 <servlet-name>PyServlet</servlet-name>
 <servlet-class>org.python.util.PyServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>PyServlet</servlet-name>
 <url-pattern>*.py</url-pattern>
 </servlet-mapping>

Once the web.xml file has been set up correctly, you can add Jython servlet files (including a .py suffix)
anywhere that web files (.xhtml, .js, and so on) are located within your application. The following code is that
of the BookstoreJython.py servlet, which resides within the JavaEERecipes web/chapter15 folder:

from org.python.core.FutureFeature import with_statement
from com.ziclix.python.sql import zxJDBC
from javax.servlet.http import HttpServlet

jdbc_url = "jdbc:oracle:thin:@host:1521:database"
username = "user"
password = "password"
driver = "oracle.jdbc.driver.OracleDriver"

class BookstoreJython (HttpServlet):

 def doGet(self, request, response):
 self.doPost(request, response)

 def doPost(self, request, response):
 response.setContentType("text/html")
 out = response.getWriter()

 htmlbody = """<h1>Acme Bookstore</h1>

 <p>List of books: """ + """</p>"""
 with zxJDBC.connect(jdbc_url, username, password, driver) as conn:

http://www.it-ebooks.info/

Chapter 16 ■ enterprise solutions using alternative programming languages

603

 with conn:
 with conn.cursor() as c:
 c.execute("select title from book")
 books = c.fetchall()
 for book in books:
 htmlbody = htmlbody + """%s
""" % (book,)
 out.println(self.convertHtml('Acme Bookstore', htmlbody))

 def convertHtml(self, title, info):
 return """<html>
 <head><title> """ + title + """ </title></head>
 <body> """ + info + """</body>
 </html>"""

 def getServletInfo(self):
 return "This servlet returns a list of books in the Acme Bookstore"

The servlet can be invoked by deploying the JavaEERecipes project to your application server and then entering
the following URL into your browser: http://localhost:8080/JavaEERecipes/chapter16/BookstoreServlet.py.

How It Works
Utilizing Jython for servlet development can be quite handy, especially if you envision a need for dynamically updating
the servlet or changing it without recompiling. Setting up a project for using Jython is relatively simple and involves
only the requirement for the jython.jar file to be included in the application CLASSPATH and a servlet configuration
within the web.xml deployment descriptor. In the solution to this recipe, an excerpt from the web.xml deployment
descriptor shows how to map org.util.python.PyServlet to a url-pattern in order to invoke the Python/Jython
interpreter. Once the web.xml file has been configured to use this servlet mapping, then you can begin to include
files containing Jython code with the suffix of .py within the web source directories of your application. When a URL
containing a Jython servlet file is invoked, the servlet code is passed to the PyServlet, interpreted into Java, and
compiled on the fly, and then the results are posted.

The Jython servlet in the solution to this recipe demonstrates how to make a database call in order to obtain
a list of records. The zxJDBC API, a Jython-proprietary library, is used to obtain a database connection, query, and
return the results to the servlet. Other than the database invocation, the Jython servlet is simply a translation of Java
to Python. That is, the Java code that is used to implement a servlet is simply translated into Python syntax. Breaking
it down, there are doGet(HttpRequest, HttpResponse) and doPost(HttpRequest, HttpResponse) functions that
perform the exact tasks as their Java counterparts would. A variable named out is set to response.getWriter(),
which then causes the output to be printed to the page. The bulk of the processing occurs within the doPost function,
where a String named htmlbody is assigned a string of HTML markup and then passed to the convertHTML function,
which has the responsibility of wrapping the strings passed into it with the appropriate tags to produce an HTML
page. Within the doPost function, a with_statement is utilized to connect to the underlying database, query the BOOK
table, and iterate through each record that is returned. While iterating through the records, the htmlbody variable is
continuously updated, adding the title of the next book record that is obtained from the database.

http://localhost:8080/JavaEERecipes/chapter16/BookstoreServlet.py
http://www.it-ebooks.info/

605

Chapter 17

WebSockets and JSON-P

The Java EE 7 platform aims to provide a common ground for developing Java Enterprise solutions that incorporate
HTML5 technology. As such, there are a few core features that have been added to Java EE 7, allowing for better
bidirectional support of HTML5. The Java EE 7 platform eases communication between the client and the server
via a technology named WebSockets, enabling more parity with the HTML5 standard. WebSockets is a full-duplex
communication mechanism that allows both textual and binary messages to be sent between clients and servers,
without the HTTP request/response life cycle. WebSockets allow either the client or the server to send a message
at any time, providing an asynchronous solution for working with data while the user is performing a task.

HTML5 has become the mainstream markup language for developing content that can be presented via the
World Wide Web. It defines a standard, which can be used to produce both HTML and XHTML documents. Along
with standardization, HTML5 also brings forth semantic features that were previously only possible on desktop
application platforms. For example, elements such as <video> and <audio> allow media content to be embedded
directly in web pages, without the need to embed a media player solution. There is no doubt that HTML5, the fifth
revision of the HTML standard, is opening the doors to new possibilities in web application development.

The universally supported JSON (JavaScript Object Notation) object has become a widely adopted solution for
sending data between points. HTML5-based web applications can utilize JSON to transport data, using WebSockets,
Ajax, or other transport technologies. The Java EE 7 platform provides the JSON-P API, which introduces utilities that
make it easier to build and work with JSON objects within the Java language.

This chapter will focus on recipes that demonstrate these HTML5 APIs. You will learn how to make use of
WebSockets and JSON-P so that your application’s client-server communication can become seamless, whether the
user interface is written with HTML5, JSF, or another markup language.

17-1. Creating a WebSocket Endpoint
Problem
You wish to create a WebSocket endpoint that can be used to receive messages asynchronously.

Solution
Create a WebSocket endpoint by annotating a server-side POJO class and a method within that class, accordingly. In the
following example, a simple POJO class, named org.javaeerecipes.chapter17.recipe17_01.BookChatEndpoint,
is annotated to indicate that it should be accessible via the web as a WebSocket endpoint. The class contains a method
named messageReceiver, which is annotated to make it accessible to a client as a callable message consumer.

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

606

import javax.websocket.OnMessage;
import javax.websocket.server.ServerEndpoint;
...
@ServerEndpoint(path="/bookChatEndpoint")
public class BookChatEndpoint {

 @OnMessage
 public String messageReceiver(String message) {
 return "Message Received: " + message;
 }
}

The WebSocket endpoint will be accessible to clients at the URL ws://localhost:8080/JavaEERecipes/
bookChatEndpoint. When a message is sent from a client to the endpoint, it is sent to the messageReceiver method,
where it is processed accordingly. In this case, a simple String message is returned to the client.

How It Works
A server-side class can accept messages from clients by configuring it as a WebSocket endpoint. To develop a
WebSocket endpoint, create a Java POJO, and annotate it with @ServerEndpoint. The @ServerEndpoint annotation
accepts a String-based path attribute, which is used to indicate the URI at which the server is available to accept client
messages. Therefore, when the server is started, the value of the path attribute would be appended to the end of the
context path and application name in which the WebSocket resides. By initiating a call to that URL, one method,
annotated with @OnMessage, will be invoked to process the message that is sent.

In the example, a class named BookChatEndpoint is annotated as a WebSocket, so it is accessible to clients as
an endpoint for receiving messages, and returning a response. When initiating communication with the WebSocket
endpoint, the client must utilize a URL that contains a URI scheme of “ws,” rather than “http.” The “ws” URI scheme
was introduced by the WebSocket protocol, and as such, indicates that the URL is used for communication with
a WebSocket. In this example, a client can send a message to the server via the bookChatEndpoint WebSocket, and
the server can send a message back at the same time, because WebSockets allow for full-duplex communication.
Full-duplex communication is an HTML5 standard, rather than standard HTTP, which utilizes a request-response
communication.

17-2. Sending Messages to a WebSocket Endpoint
Problem
You would like to send a message from a client to a WebSocket endpoint that is available on a server.

Solution
Engineer a JavaScript solution that can be used to send messages from a client browser to a WebSocket endpoint.
Invoke the JavaScript function via an action event that is bound to an HTML input tag within the view. In the following
example, a button contains an onclick attribute that will invoke a JavaScript function named bookChatRelay. The
bookChatRelay function is responsible for opening a session with a WebSocket endpoint so that messages can be sent.
The following listing is an excerpt from the recipe17_02.xhtml JSF view, which is located within the web/chapter17
directory of the JavaEERecipes source bundle.

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

607

...
<html>
 <head>
 <script type="text/javascript">
 var ws;
 function bookChatRelay()
 {
 if ("WebSocket" in window)
 {
 alert("WebSocket is supported by your Browser!");

 if (ws == null){
 alert("Creating new websocket connection");
 ws = new WebSocket("ws://localhost:8080/JavaEERecipes/bookChatEndpoint");
 } else {
 ws.send("Another message");
 }
 ws.onopen = function()
 {
 // Web Socket is connected, send data using send()
 ws.send("Message to send");
 alert("Message is sent...");
 };
 ws.onmessage = function (evt)
 {
 var received_msg = evt.data;
 alert("Message from server: " + received_msg);
 };
 ws.onclose = function()
 {
 // websocket is closed.
 alert("Connection is closed...");
 };
 }
 else
 {
 // The browser doesn't support WebSocket
 alert("WebSocket NOT supported by your Browser!");
 }
 }
 function closeConnection(){
 if (ws !== null){
 ws.close();
 ws = null;
 }
 }

 </script>
 </head>
 <body>

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

608

 <input id="wsRelay" type="button" value="WebSocket Test Message"
 onclick="bookChatRelay();"/>
 <input id="closeConn" type="button" value="Close Connection"
 onclick="closeConnection();"/>
 </body>

</html>

When the button is pressed, the message will be sent from the browser client to the WebSocket endpoint, and
a message will be returned from the endpoint to the client.

Note■ the JavaScript code in this test creates a new WebSocket connection each time the button on the page is pressed.
this is okay for testing purposes, but in a real-life scenario, you will want to retain and reuse the connection, if possible.

How It Works
The ability to asynchronously send messages (text or binary) from a client to a server defines the foundation of Ajax
and HTML5 capability. The WebSockets API allows developers to send messages to the server via JavaScript calls to a
WebSocket endpoint. Conversely, the API allows clients to receive messages and process them accordingly via a series
of JavaScript functions. The example for this recipe demonstrates how to send a message to a WebSocket endpoint
by clicking on a button in a web page. When the button is clicked, a JavaScript function named bookChatRelay is
invoked, which embodies the processing implementation.

To send a message to a WebSocket endpoint via a JavaScript function, the first task is to confirm whether the user’s
browser is capable of working with WebSockets (HTML5 compliant). This confirmation can be done by using a conditional
statement to verify if the “WebSocket” object is available within the client by using the following if-statement:

if("WebSocket" in window){
...
} else {
...
}

If the client browser is capable of working with WebSockets, then the implementation inside the if block is
invoked; otherwise, the implementation within the else block is invoked. To process the WebSocket message, a new
WebSocket object must be instantiated to establish the server connection, which is done by passing the URL to the
WebSocket endpoint to a new WebSocket object.

var ws = new WebSocket("ws://localhost:8080/JavaEERecipes/bookChatEndpoint");

The constructor for creating a WebSocket takes either one or two parameters. The first parameter is the URL
of the server to which the WebSocket will connect, and the optional second parameter is a String of protocols that
can be used for message transmission. The WebSocket object contains a handful of events that are utilized to help
implement message processing. Table 17-1 lists the different events that can occur in the life cycle a WebSocket object,
along with a description of what they do.

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

609

After the WebSocket object has been instantiated successfully, a connection to the server will be established,
which will cause the open event to occur. To process this event, assign a function to the onOpen handler, and process
events accordingly within that function. Messages are usually sent to the server when the open event occurs, and this
is demonstrated within the example.

ws.onopen = function()
{
 // Web Socket is connected, send data using send()
 ws.send("Message to send");
 alert("Message is sent...");
};

Similarly, you can listen for any other events to occur, and then process tasks accordingly when they do. In the
example, when a message is received from the server, it is printed within an alert dialog. Also in the example, when
the WebSocket is closed, an alert dialog is presented to the user.

The example does not demonstrate all the possible ways that the WebSocket object in JavaScript can be utilized.
For instance, you could send messages to the server by invoking the send() method, and passing the data that you
wish to send as a parameter. The close() method can be called on a WebSocket to manually terminate the existing
connection. WebSocket objects also contain the helpful attributes, readyState and bufferedAmount, which can be
used for obtaining information about a connection. The readyState attribute will advise the current state of the
WebSocket connection via a returned number, and bufferedAmount attribute value represents the number of bytes of
UTF-8 text that have been queued using the send() method. Table 17-2 displays the different possible values for the
readyState attribute, along with a description of each.

Table 17-1. JavaScript WebSocket Object Events

Event Handler Method Description

open onOpen Occurs when the WebSocket connection is established.

close onClose Occurs when the WebSocket connection is closed.

error onError Occurs when there is a communication error.

message onMessage Occurs when data is received from the server.

Table 17-2. JavaScript WebSocket readyState Values

Value Description

0 Connection not yet established.

WebSocket.CONNECTING

1 Connection established, and communication is possible.

WebSocket.OPEN

2 Connection going through closing handshake.

WebSocket.CLOSING

3 Connection closed and cannot be opened.

WebSocket.CLOSED

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

610

17-3. Building a JSON Object
Problem
You would like to build a JSON object that can be passed from a client to a server, or vice versa.

Solution
Make use of the JsonObjectBuilder to build a JSON object using Java code. The following example demonstrates how
to utilize a JsonObjectBuilder() instance to create a new JsonObject. In this example class, multiple JsonObjects
are created from reading the contents of a database table. Once the object is built, the sections of the object assigned
to a String that will eventually be displayed or persisted.

import java.io.IOException;
import java.io.StringWriter;
import java.util.List;
import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;
import javax.json.Json;
import javax.json.JsonObject;
import javax.json.JsonObjectBuilder;
import javax.json.JsonWriter;
import org.javaeerecipes.jpa.entity.BookAuthor;
import org.javaeerecipes.jpa.session.BookAuthorFacade;

@ManagedBean(name = "jsonController")
public class JsonController {

 @EJB
 BookAuthorFacade bookAuthorFacade;
 private String authorJson;

 public void buildAuthors() {
 List<BookAuthor> authors = bookAuthorFacade.findAll();
 JsonObjectBuilder builder = Json.createObjectBuilder();
 StringBuilder json = new StringBuilder();
 try (StringWriter sw = new StringWriter();) {
 for (BookAuthor author : authors) {
 System.out.println("author" + author.getLast());
 builder.add("author", Json.createObjectBuilder()
 .add("authorId", author.getId())
 .add("first", author.getFirst())
 .add("last", author.getLast())
 .add("bio", author.getBio()));

 }
 JsonObject result = builder.build();

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

611

 try (JsonWriter writer = Json.createWriter(sw)) {
 writer.writeObject(result);
 }
 json.append(sw.toString());
 authorJson = json.toString();
 } catch (IOException ex) {
 System.out.println(ex);
 }
 }
...

Once created, the JsonObject can be passed to a client for processing, or in this case, it can be persisted to disk.

How It Works
The JavaScript Object Notation (JSON-P) API was added to the Java Enterprise platform with the release of
Java EE 7. JSON-P, also referred to as “JSON with padding,” has become the standard way to build JSON objects using
Java. The JSON-P API includes a helper class that can be used to create JSON objects using the builder pattern. Using
the JsonObjectBuilder class, JSON objects can be built using a series of method calls, each building upon each
other—hence, the builder pattern. Once the JSON object has been built, the JsonObjectBuilder build method can
be called to return a JsonObject.

In the example to this recipe, you construct a JSON object that provides details regarding book authors. The
JsonObjectBuilder.beginObject() method is used to denote that a new object is being created. The add method
is used to add more a name/value properties, much like that of a Map. Therefore, the following line adds a property
named authorId with a value of author.getId():

.add("authorId", author.getId())

Objects can be embedded inside of each other, creating a hierarchy of different sections within one JsonObject.
In the example, after the first call to add(), another object named author is embedded inside the initial JsonObject by
calling beginObject(), and passing the name of the embedded object. Embedded objects can also contain properties;
so to add properties to the embedded object, call the add() method within the embedded object. JsonObjects can
embody as many embedded objects as needed. The following lines of code demonstrate the beginning and end of an
embedded object definition:

.beginObject("author")
.add("first", "Josh")
.add("last", "Juneau")
.endObject()

It is also possible that a JsonObject may have an array of related subobjects. To add an array of subobjects,
call the beginArray() method, passing the name of the array as an argument. Arrays can consist of objects, and
even hierarchies of objects, arrays, and so forth. Once a JsonObject has been created, it can be passed to a client.
WebSockets work well for passing JsonObjects back to a client, but there are a bevy of different technologies available
for communicating with JSON.

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

612

17-4. Writing a JSON Object to Disk
Problem
You would like to write a JSON object to the file system.

Solution
Utilize the JSON-P API to build a JSON object, and then store it to the file system. The JsonWriter class makes it
possible to create a file on disk, and then write the JSON to that file. In the following example, the JsonObject that was
generated in Recipe 17-3 is written to disk using this technique.

public void writeJson() {
 try {
 JsonObject jsonObject = jsonController.buildAuthorsJson();

 javax.json.JsonWriter jsonWriter = Json.createWriter(new FileWriter("Authors.json"));

 jsonWriter.writeObject(jsonObject);
 jsonWriter.close();

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(
 FacesMessage.SEVERITY_INFO, "JSON Built",
 "JSON Built"));
 } catch (IOException ex) {
 System.out.println(ex);
 }
 }

How It Works
The JsonWriter class can be utilized to write a JsonObject to a Java writer object. A JsonWriter is instantiated by
passing a Writer object as an argument. Instantiating a JsonWriter will write to the Writer object that had been
passed as an argument, using JSON format. After that Writer has been created, the JsonWriter writeObject()
method can be invoked, passing the JsonObject that is to be written. Once the JsonObject has been written, the
JsonWriter can be closed by calling its close() method. These are the only steps that are necessary for writing
a JSON object to a Java Writer class type.

17-5. Reading JSON from an Input Source
Problem
You would like read a JSON object that has been built, or persisted to a file.

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

613

Solution
Obtain a JSON object that you would like to read, and then read it using the javax.json.Json createReader utility.
In the following example, a JSON file is read from disk, and then parsed to determine the hierarchy of events within.
Each of the events is printed to the server log as the JSON is being parsed.

public String readObject() {
 InputStream in = new ByteArrayInputStream(controller.buildAndReturnAuthors().getBytes());
 // or
 //Reader fileReader = new InputStreamReader(getClass().getResourceAsStream("AuthorObject.json"));
 //JsonReader reader = Json.createReader(fileReader);
 JsonReader reader = Json.createReader(in);
 JsonObject obj = reader.readObject();
 return obj.toString();

 }

How It Works
Once a JSON object has been persisted to disk, it will later need to be read back in for utilization. The JsonReader
object takes care of this task. To create a JsonReader object, call the Json.createReader() method, passing either an
InputStream or Reader object. Once a JsonReader object has been created, it can produce a JsonObject by calling its
readObject method.

Parsing Content
In order to perform some tasks, a JSON object must be searched to find only the content that is desired and
useful for the current task. Utilizing a JSON parser can make jobs such as these easier, as a parser is able to
break the object down into pieces so that each different piece can be examined as needed, to produce the
desired result.

The javax.json.Json class contains a static factory method, createParser(), that accepts a bevy of input
and returns an iterable JsonParser. Table 17-3 lists the different possible input types that are accepted via the
createParser() method.

Table 17-3. createParser Method Input Types

Input Type Method Call

InputStream createParser(InputStream in)

JsonArray createParser(JsonArray arr)

JsonObject createParser(JsonObject obj)

Reader createParser(Reader reader)

http://www.it-ebooks.info/

Chapter 17 ■ WebSoCketS and JSon-p

614

Once a JsonParser has been created, it can be made into an Iterator of Event objects. Each Event correlates
to a different structure within the JSON object. For instance, when the JSON object is created, a START_OBJECT
event occurs, adding a name\value pair will trigger both a KEY_NAME and VALUE_STRING event. These events can be
utilized to obtain the desired information from a JSON object. In the example, the event names are merely printed
to a server log. However, in a real-life application, a conditional would most likely test each iteration to find
a particular event and then perform some processing. Table 17-4 lists the different JSON events, along a description
of when each occurs.

Table 17-4. JSON Object Events

Event Occurrence

START_OBJECT Start of an object.

END_OBJECT End of an object.

START_ARRAY Start of an array.

END_ARRAY End of an array.

KEY_NAME Name of a key.

VALUE_STRING Value of a name\value pair in String format.

VALUE_NUMBER Value of a name\value pair in numeric format.

VALUE_TRUE Value of a name\value pair in Boolean format.

VALUE_FALSE Value of a name\value pair in Boolean format.

VALUE_NULL Value of a name\value pair as NULL.

http://www.it-ebooks.info/

615

Chapter 18

JavaFX in the Enterprise

JavaFX has recently become one of the most popular technologies for developing graphical user interfaces for Java
applications. JavaFX applications run on the client machine using a local Java Runtime Environment, much like Java
Swing applications or Java applets. Users can either fire up a JavaFX application that resides locally on their machine
or visit a page that includes an applet, which in turn triggers a JavaFX application to be downloaded to their machine.

There is quite a history for JavaFX, although it is a relatively new member to the Java arsenal of technology.
Earlier versions of JavaFX (1.3) utilized a language named JavaFX Script for constructing JavaFX applications. This
language was developed by Sun Microsystems, and it compiled into Java bytecode. Although JavaFX Script filled a
niche, it was not widely adopted throughout the Java community. Therefore, a couple of years later Oracle created
the JavaFX 2.0 release to allow developers to use native Java for JavaFX development, rather than JavaFX Script.
What about those applications that were written in JavaFX Script? No need to worry; some projects, such as Visage
(http://code.google.com/p/visage/), have been started to continue the use of JavaFX Script. JavaFX 2.x developers
can utilize native Java (or any other JVM language) to develop JavaFX user interfaces and interact with Java APIs.

Entire books have been written that discuss how to develop JavaFX applications. This book is not intended to
be a beginner book for JavaFX development. Rather, it is meant to build upon knowledge that developers already
have regarding JavaFX, or even to introduce the technology to new developers, and demonstrate how to apply Java
EE 7 technologies to JavaFX applications. For additional information regarding JavaFX, try an excellent book such as
JavaFX 2.0: Introduction by Example, published by Apress.

This chapter focuses on recipes that deal with enterprise applications, rather than JavaFX stand-alone
applications. Enterprise applications typically incorporate data from one or more locations, via the use of a back-end
database or a web service. Therefore, the recipes will not cover user interface programming in detail. The recipes will
cover how to integrate enterprise-related concepts into JavaFX applications.

Note ■ You can run the examples in this chapter in a couple of ways. The easiest way to run the examples is to open
the JavaEERecipesFX project within the NetBeans IDE, right-click the project, and select the Run option. In this case, to
run each of the examples, you will need to change the target example within the project properties. To do so, right-click
the project and choose Properties. After doing so, select the Run option within the properties window, and then change
the Application Class value according to the example you want to run (Figure 18-1).

http://code.google.com/p/visage/
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

616

Note ■ To run the examples via the command line, be sure that all of the necessary JAR files for executing your
application, including database drivers and JavaFX libraries, have been added to your CLASSPATH.

18-1. Developing a Basic JavaFX Application
Problem
You want to learn how to develop a standard JavaFX application.

Solution
Create a basic application using an IDE such as NetBeans or your favorite text editor. In this recipe, you will develop
a basic “Hello World” application, which contains one frame, a button, and a label, using the NetBeans IDE. Since it
is demonstrating the development of a “Hello World” application via NetBeans, this recipe will be very simple; in fact,
NetBeans provides you with such an application using only a wizard. The NetBeans wizard creates an application that
prints “Hello World” to the command line whenever a button in the GUI is clicked. You will modify the application
to add a label, which displays a message, rather than using the command line for printing messages when the GUI
button is clicked.

To get started, open the NetBeans IDE (release 7.3 at the time of this writing), start a new JavaFX project by clicking
the File ➤ New Project menu item, and then select JavaFX Application from the New Project dialog (Figure 18-2).

Figure 18-1. Running the JavaFX examples using the JavaEERecipesFX project

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

617

Next, designate a project name, location, and folder within the New JavaFX Application dialog (Figure 18-3).
This dialog also allows you to specify a JavaFX platform to utilize for the application, as well as a custom preloader, a
dedicated folder for storing libraries, and an application main class name. For this example, leave everything at the
defaults, but change the application main class name to org.javaeerecipes.javafx.recipe18_01.HelloWorld.

Figure 18-2. NetBeans New Project dialog

Figure 18-3. The NetBeans New JavaFX Application dialog

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

618

Once you click Finish within the wizard, the editor will open with the HelloWorld JavaFX main class. By default,
NetBeans will provide you with a simple “Hello World” implementation. Change the implementation to match the
following code:

/*
 * Recipe 18-1: Simple JavaFX Application
 */
package org.javaeerecipes.javafx.recipe18_01;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class HelloWorld extends Application {

 @Override
 public void start(Stage primaryStage) {
 Button btn = new Button();
 final Label lbl = new Label("This will change");

 btn.setText("Say 'Hello World'");
 btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 lbl.setText("Hello World");
 }
 });

 VBox root = new VBox();
 root.getChildren().addAll(lbl, btn);

 Scene scene = new Scene(root, 300, 250);

 primaryStage.setTitle("Hello World!");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 /**
 * The main() method is ignored in correctly deployed JavaFX application.
 * main() serves only as fallback in case the application can not be
 * launched through deployment artifacts, e.g., in IDEs with limited FX
 * support. NetBeans ignores main().
 *
 * @param args the command line arguments
 */

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

619

 public static void main(String[] args) {
 launch(args);
 }
}

After you’ve added the code in the listing, save the file, and then run the application. To run the application,
right-click the project within the NetBeans project navigator, and choose Run. The final application is not pretty, but it
demonstrates how to quickly construct a JavaFX application. The final product should resemble Figure 18-4.

Figure 18-4. “Hello World” application

Note ■ The JavaFX libraries exist in the javafx.* package. You may need to add a default JavaFX platform to
NetBeans using the NetBeans Platform Manager.

How It Works
JavaFX is a technology that you can use to develop robust user interfaces that have the ability to interact with other
Java APIs. This recipe demonstrates how to build a simple JavaFX application, focusing on the overall task of JavaFX
application development, rather than on any particular features of JavaFX. With that said, the demo application is
fairly simplistic in that it contains only two nodes: a label and a button. When the user clicks the button, the message
“Hello World” is displayed on the label. That is fairly simplistic, right?

Rather than simply demonstrate how to write this application, the recipe demonstrates how to create a JavaFX
project within the NetBeans IDE. NetBeans 7.x includes support for the JavaFX platform, allowing developers to utilize
the IDE for streamlined JavaFX application development and testing. The solution to this recipe steps through the
NetBeans JavaFX project wizard, showing how to create the initial project and then open the main application sources
in the IDE. This section of the recipe will focus on the actual code for constructing the application, rather than how to
work with the application in NetBeans.

Every JavaFX application contains a main class. The main class can be named anything, but it must include a
start method that contains the functionality to construct the UI, perform any necessary initialization, and finally
launch the application. A JavaFX application can contain any number of classes, and those classes can be placed in
different package locations, just like a standard Java application. From a packaging standpoint, a JavaFX application
looks very similar to a stand-alone Java application, except for a few minor differences. The biggest of those
differences is that a JavaFX application may contain one or more XML files (including a .fxml suffix) used for GUI
construction, but FXML development will be covered in Recipe 18-3.

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

620

The main application class must extend javafx.application.Application and override the start method
with its own implementation. The start method accepts a javafx.stage.Stage object, which is the top-level JavaFX
container. This javafx.stage.Stage object is the primary application base, and it is constructed by the platform.
A stage can house other stage objects or javafx.scene.Scene objects. The JavaFX Scene class contains all content
within a scene graph. A scene graph is a treelike data structure, where each item in the tree can have zero or one
parent object and zero or more child objects. All children in a scene graph must be made up of Node objects. The
javafx.scene.Node class is an abstract base class that must be extended by all nodes in a scene graph. You can think
of a scene graph as a GUI layout, and each element or widget contained within the layout is a node.

In the solution to this recipe, the start method first creates a Button node, followed by a Label node using the
following two lines of code:

Button btn = new Button();
final Label lbl = new Label("This will change");

Next, properties of the button are set, including the text that appears on the button and an action that will occur
when the button is clicked. There are many properties that can be set on a button (or any other user interface control
node that can be added to a scene graph). For a full listing of control nodes and their properties, please refer to the
documentation at http://docs.oracle.com/javafx/2/api/javafx/scene/control/package-summary.html. In this
particular example, the setText and setOnAction properties are set:

btn.setText("Say 'Hello World'");
btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 lbl.setText("Hello World");
 }
});

As shown in the code, the setText() method merely allows a String to be specified for display on the button
itself. The setOnAction() method accepts an EventHandler anonymous class. The EventHandler must override the
handle method, implementing an action that will be invoked when the button is clicked. If you are familiar with Java
Swing, working with JavaFX UI nodes is very similar.

After the button and label have been constructed, they need to be added to the Scene. To do that in this example,
a container is created to lay out the nodes in a uniform manner. Specifically, a VBox node is created for the layout.
JavaFX contains a number of different classes to support the layout of a user interface. The VBox displays its contents
in a single vertical line, one on top of the other. If a border or padding is specified, the contents of the container will
be laid out within those insets. For a complete listing of all the details regarding the VBox or other JavaFX layout
classes, please refer to the online documentation at http://docs.oracle.com/javafx/2/api/javafx/scene/layout/
package-summary.html. In the solution, the VBox is created without any spacing or padding, and the nodes are added
to it.

VBox root = new VBox();
root.getChildren().addAll(lbl, btn);

Next, a Scene object is created, and the VBox is added to it. The Scene constructor accepts a layout class, followed
by two numbers indicating the width and height of the Scene.

Scene scene = new Scene(root, 300, 250);

Finally, the Stage itself is configured, and the Scene is added to it. The final line of the start method makes the
Stage visible to the application user via the show method.

http://docs.oracle.com/javafx/2/api/javafx/scene/control/package-summary.html
http://docs.oracle.com/javafx/2/api/javafx/scene/layout/package-summary.html
http://docs.oracle.com/javafx/2/api/javafx/scene/layout/package-summary.html
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

621

primaryStage.setTitle("Hello World!");
primaryStage.setScene(scene);
primaryStage.show();

Most JavaFX user interfaces that are developed using the Java language look similar to this example. Although
this demonstration is simplified and contains only a small set of nodes, it provides a foundation to use for building
more sophisticated user interfaces. The overall construction of the scene graph is similar, no matter if the resulting
user interface contains 2 or 50 different nodes. It should be noted that the class also contains a main method, which is
ignored and used only as a fallback for those situations with limited JavaFX support.

18-2. Incorporating Databases into a JavaFX Application
Problem
You want to add the ability to create, read, update, and delete database records from within a JavaFX application.

Solution
Engineer a solution that enables you to incorporate Enterprise JavaBeans in your JavaFX application. In this particular
example, you will develop a JavaFX TableView that will display data from the Acme Bookstore database. Particularly,
you will query the BOOK database table using a JPA entity and display content within the TableView.

To begin, develop entity classes for each of the underlying database tables that you want to incorporate into
the application. In this case, create a single entity class for the BOOK database table. For each entity class, develop an
EJB that will use an EntityManager object to query the associated entity. Lastly, develop the JavaFX front end, and
build an ObservableList object from a method call to an EJB, populating the list with data from the database. The
ObservableList object will be used to populate the TableView with the data from the BOOK database table.

The following class, org.javaeerecipes.javafx.entity.Book within the JavaEERecipesFX project, is an entity
class that will be used to work with the data from the underlying BOOK table:

package org.javaeerecipes.javafx.entity;

import java.io.Serializable;
import java.math.BigDecimal;
import java.util.List;
import java.util.Set;
import javax.persistence.*;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "BOOK")
@NamedNativeQuery(
 name="allBooks",
 query = "select id, title, description " +
 "FROM BOOK " +
 "ORDER BY id",
 resultClass=Book.class)
@NamedQueries({
 @NamedQuery(name = "Book.findAll", query = "SELECT b FROM Book b")})

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

622

public class Book implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ID")
 private BigDecimal id;
 @Size(max = 150)
 @Column(name = "TITLE")
 protected String title;
 @Size(max = 500)
 @Column(name = "IMAGE")
 private String image;
 @Lob
 @Column(name = "DESCRIPTION")
 private String description;
 @ManyToMany(mappedBy="books")
 private Set<BookAuthor> authors;
 @OneToMany(mappedBy="book", cascade=CascadeType.ALL)
 private List<Chapter> chapters = null;

 public Book() {
 }

 public Book(BigDecimal id) {
 this.id = id;
 }
 public BigDecimal getId() {
 return id;
 }

 public void setId(BigDecimal id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getImage() {
 return image;
 }

 public void setImage(String image) {
 this.image = image;
 }

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

623

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);
 return hash;
 }
 @Override
 public boolean equals(Object object) {
 // TODO: Warning - this method won't work in the case the id fields are not set
 if (!(object instanceof Book)) {
 return false;
 }
 Book other = (Book) object;
 if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "org.javaeerecipes.chapter09.entity.Book[id=" + id + "]";
 }

 /**
 * @return the authors
 */
 public Set<BookAuthor> getAuthors() {
 return authors;
 }

 /**
 * @param authors the authors to set
 */
 public void setAuthors(Set<BookAuthor> authors) {
 this.authors = authors;
 }

 /**
 * @return the chapters
 */

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

624

 public List<Chapter> getChapters() {
 return chapters;
 }

 /**
 * @param chapters the chapters to set
 */
 public void setChapters(List<Chapter> chapters) {
 this.chapters = chapters;
 }

}

Next, let’s take a look at the EJB that is used to manipulate the Book entity. The class is named
org.javaeerecipes.javafx.session.BookFacade, and it implements a class named
org.javaeerecipes.javafx.session.AbstractFacade, which is used to encapsulate common methods.

package org.javaeerecipes.javafx.session;

import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.CacheRetrieveMode;
import javax.persistence.Query;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import org.javaeerecipes.javafx.entity.Book;

/**
 * Stateless Session Bean for the Book entity
 * @author juneau
 */

@Stateless
public class BookFacade extends AbstractFacade<Book> {

 EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesFXPU");
 EntityManager em = emf.createEntityManager();

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public BookFacade() {
 super(Book.class);
 }

 /**
 * Create a book object
 * @param book
 */

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

625

 public void create(Book book){
 em.persist(book);
 }

 /**
 * Update a book object
 * @param book
 */
 public void edit(Book book){
 em.merge(book);
 }

 /**
 * Remove a book object
 * @param book
 */
 public void remove(Book book){
 em.remove(book);
 }

 /**
 * Return a Book object based upon a given title. This assumes that there
 * are no duplicate titles in the database.
 * @param title
 * @return
 */
 public Book findByTitle(String title){
 return (Book) em.createQuery("select object(o) from Book o " +
 "where o.title = :title")
 .setParameter("title", title.toUpperCase())
 .getSingleResult();
 }

 /**
 * Recipe 10-9: Forcing a query to be executed
 * @return
 */

 public List<Book> findAllBooks(){
 Query qry = em.createQuery("select o from Book o");
 qry.setHint("javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);
 return qry.getResultList();
 }
}

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

626

Finally, a class named org.javaeerecipes.javafx.recipe18_02.BookView is used to construct the JavaFX GUI.
This class contains the TableView implementation and accesses the BookFacade EJB directly to obtain and display the
data. The following listing is that of the BookView class:

package org.javaeerecipes.javafx.recipe18_02;

import org.javaeerecipes.javafx.entity.Book;
import org.javaeerecipes.javafx.session.BookFacade;
import javafx.scene.control.cell.PropertyValueFactory;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Insets;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class BookView extends Application {
 private BookFacade ejbFacade = new BookFacade();
 // JavaFX classes accept Java generics to specify the type of objects that
 // will be contained in the class instance
 private TableView<Book> table = new TableView<Book>();

 private final ObservableList<Book> data =
 FXCollections.observableArrayList(ejbFacade.findAllBooks());

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) {
 Scene scene = new Scene(new Group());
 stage.setTitle("Acme Bookstore Book Selection");
 stage.setWidth(1400);
 stage.setHeight(500);

 final Label label = new Label("Acme Bookstore Book Selection");
 label.setFont(new Font("Arial", 20));

 TableColumn titleCol = new TableColumn("Title");
 titleCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("title")
);

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

627

 TableColumn descCol = new TableColumn("Description");
 descCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("description")
);

 table.setItems(data);

 table.getColumns().addAll(titleCol, descCol);

 final VBox vbox = new VBox();
 vbox.setSpacing(5);
 vbox.getChildren().addAll(label, table);
 vbox.setPadding(new Insets(10, 0, 0, 10));

 ((Group) scene.getRoot()).getChildren().addAll(vbox);

 stage.setScene(scene);
 stage.show();
 }
}

In the end, the final application will look something like Figure 18-5.

Figure 18-5. Completed JavaFX application with TableView

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

628

How It Works
It is easy to incorporate the logic of a Java EE application into a JavaFX application. This recipe demonstrates using
EJB technology to retrieve data into a JavaFX TableView. The EJB API can be used to perform database transactions
in the same manner within a JavaFX application as is used within a JavaEE web application. In the solution to this
recipe, an entity class named Book is used for relational mapping to the underlying BOOK database table. The EJB
class, named BookFacade, is then used to work with the Book entity class in the same manner that it would be used in
a web application. The main difference occurs in the way that the EntityManager object is created. I will cover these
differences, as well as how to integrate the data into a JavaFX node, within this section.

To obtain a connection to the database via an EntityManager, the JavaFX application must include a
persistence.xml module. As such, the JavaEERecipesFX project that is included with the book sources has a
persistence.xml file located within the src/META-INF directory. The persistence module must be configured to
make a local JDBC connection, rather than a connection from an application server JDBC resource. Therefore, the
transaction_type attribute of the persistence module should be set to RESOURCE_LOCAL. If you look at the sources
within the solution to this recipe, you will see that each entity class that will use the resource is also listed within
the persistence module. Provide the properties for making a database connection along with a valid driver for your
database to complete the configuration of the module.

The EJB must create an EntityManagerFactory from the persistence module before it can begin to
accommodate database requests. To do so, pass the name of the persistence module to the
Persistence.createEntityManagerFactory method. After an EntityManagerFactory has been created, an
EntityManager object can be obtained by calling the factory’s createEntityManger() method, as demonstrated in
the following lines of code:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("JavaEERecipesFXPU");
EntityManager em = emf.createEntityManager();

After the EntityManager object has been created, it can be used to perform operations against the relational
database via the entity classes. Since a JavaFX class is written in Java or an alternative JVM language, it can interact
directly with an EJB, rather than using a controller class like a managed bean. The idea of a managed bean does not
make complete sense when working with a JavaFX application because managed beans are meant for working with
the web browser and client sessions. A JavaFX application runs locally on a user’s machine, so there are no browser
sessions to be handled. Hence, in the solution to this example, the BookFacade EJB contains methods that allow you
to create, update, select, and remove Book entities. That is, these methods will be used to work with database records
that reside within the BOOK table via the Book entity class. The findAllBooks() method specifically will be invoked by
the JavaFX application in order to retrieve all the records that exist within the BOOK table and display them in a JavaFX
TableView node.

How do you populate the TableView? Well, let’s take a look at the code that constructs the GUI, namely,
the BookView class. Looking at the class within the solution to this recipe, you can see that it extends the
javafx.application.Application abstract class, just as any JavaFX main application class should. Next, an
instance of the BookFacade EJB is created, followed by a TableView of Book entities. When the TableView is initially
created, it is empty, but it is ready to accept Book entities for each of its rows. To obtain the data from the EJB, an
ObservableList<Book> is generated by invoking the FXCollections class observableArrayList method and passing
the data that is returned by the BookFacade’s findAllBooks method. The resulting ObservableList<Book> can be
used to populate the TableView.

The start method is where the GUI is constructed, and the standard Scene is created first, followed by the
configuration of the stage. A Label is constructed, which will be added to the top of the completed JavaFX form.
Next, a couple of TableColumn objects are created, one for each column that will be added to the table. When the
TableColumn objects are created, a String-based column name is passed into the constructor. After each TableColumn
object is created, its cellValueFactory property is set. The cellValueFactory specifies how to populate all cells
within a single TableColumn. A cell value factory is a Callback that expects an Observable instance to be returned.
Once returned, the instance is observed internally, which will allow the GUI to perform immediate updates on the
data. In most cases, a single property from a JavaBean object will be used to populate the cells of a TableColumn.

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

629

Such is the case when working with entity classes and EJBs, where a single property from an entity will be used. The
PropertyValueFactory class can be used to map the JavaBean property with its type and String-based name, as the
example demonstrates.

TableColumn titleCol = new TableColumn("Title");
 titleCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("title")
);

The previous code creates a TableColumn instance that will use the word Title as the column header. The
cellValueFactory is then set to a new PropertyValueFactory, mapping to the title property within the Book
entity. Where is the ObservableList<Book> used? After the TableColumn objects have been defined, the TableView
setItems method can be invoked, passing the ObservableList<> object to populate the table with data. The
TableColumns can then be added to the TableView instance by calling the getColumns().addAll() method and
passing each of the TableColumn instances, separated by a comma. The data is now in place.

The final lines of the start method in the solution to this recipe complete the setup of the GUI. A VBox is used
to lay out the GUI nicely, and the Label and TableView are added to it. Finally, the VBox layout is added to the scene,
which is then added to the stage.

In summary, a JavaFX application can manipulate data using entities and EJBs. The JavaFX classes can make
direct calls against the EJB, and in the case of a TableView, the data can be returned into an ObservableList for
display purposes.

18-3. Constructing a Sophisticated UI Containing EJB Data
Problem
You have integrated data into your application using JPA; now you want to utilize that data within a sophisticated,
multiple-view user interface in your enterprise application.

Solution
A number of different user interface nodes can be used to construct sophisticated user interfaces. One such node is
the TabBuilder, which generates a tabbed user interface. In this scenario, a different tab can be generated to contain
content to provide various application user interfaces in a single window. In this example, I’ll demonstrate how to
incorporate a TableView that contains data in a tabbed user interface.

package org.javaeerecipes.javafx.recipe18_03;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.SceneBuilder;
import javafx.scene.control.Label;
import javafx.scene.control.LabelBuilder;
import javafx.scene.control.TabBuilder;
import javafx.scene.control.TabPaneBuilder;
import javafx.scene.layout.BorderPaneBuilder;
import javafx.scene.layout.HBoxBuilder;
import javafx.stage.Stage;

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

630

public class Main extends Application {

 BookViewNode bookView = null;

 @Override
 public void start(Stage stage) {

 Scene scene = SceneBuilder.create()

 .width(800)
 .height(500)
 .root(
 BorderPaneBuilder.create()
 .top(
 HBoxBuilder.create()
 .children(
 LabelBuilder.create()
 .id("title")
 .text("Acme Bookstore")
 .minHeight(2)
 .build()
)
 .build()
)
 .center(
 TabPaneBuilder.create()
 .tabs(
 TabBuilder.create()
 .content(new BookViewNode())
 .text("Book Listing")
 .closable(false)
 .build(),
 TabBuilder.create()
 .text("Other Things")
 .closable(false)
 .build()
)
 .build()
)
 .bottom(
 HBoxBuilder.create()
 .id("footer")
 .children(
 new Label("Acme Bookstore - Java EE 7 Recipes")")
)
 .build()
)
 .build()
)
 .build();

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

631

 stage.setTitle("Acme Bookstore");
 stage.setWidth(1400);
 stage.setHeight(500);
 stage.setScene(scene);
 stage.show();

 }

 public static void main(String[] args) {
 launch(args);
 }
}

Note ■ JavaFX classes use the Builder pattern so that method calls can be chained together. Utilizing this technique,
the build method is called at the end in order to construct the class instance.

To construct the table, a JavaFX Node object is developed, which contains the TableView implementation. In this
implementation, the Node will extend the VBox class, and it will contain references to the EJB named BookFacade, which
was introduced in Recipe 18-2. The EJB will be used to obtain the data that will populate the TableView with Book entity
titles and descriptions. The following code is that of the Node implementation, a class named BookViewNode:

package org.javaeerecipes.javafx.recipe18_03;

import org.javaeerecipes.javafx.entity.Book;
import org.javaeerecipes.javafx.session.BookFacade;
import javafx.scene.control.cell.PropertyValueFactory;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Insets;
import javafx.scene.control.Label;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;

public final class BookViewNode extends VBox {
 private BookFacade ejbFacade = new BookFacade();

 private TableView<Book> table = new TableView<>();

 private final ObservableList<Book> data =
 FXCollections.observableArrayList(ejbFacade.findAllBooks());

 public BookViewNode(){
 build();
 }

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

632

 public void build() {

 final Label label = new Label("Acme Bookstore Book Selection");
 label.setFont(new Font("Arial", 20));

 TableColumn titleCol = new TableColumn("Title");
 titleCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("title")
);

 TableColumn descCol = new TableColumn("Description");
 descCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("description")
);

 table.setItems(data);

 table.getColumns().addAll(titleCol, descCol);

 }}
 this.setSpacing(5);
 this.getChildren().addAll(label, table);
 this.setPadding(new Insets(10, 0, 0, 10));

 }}

}

When the application is launched, it will render a window containing tabs. The first tab will contain the
TableView, whereas the second tab will be empty. The resulting application will look like the one shown in Figure 18-6.

Figure 18-6. TabPane populated with data from EJB

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

633

How It Works
One of the most important concepts when developing an application is the user interface. If an application contains
a cumbersome interface, its users will not be productive. It has been said that an application’s UI can make or break
it. That is why it is imperative that you develop intuitive, easy-to-use applications in which navigating around features
is a snap. This recipe demonstrates the use of the TabPane for application layout. The TabPane in the application
contains an embedded TableView, which retrieves its data from an enterprise JavaBean.

To get started, let’s take a look at the Main class, which is responsible for the initiation of the application and the
overall construction of the GUI. As with any JavaFX main class, this class extends Application. As such, the class also
overrides the start() method. The overall GUI, including the TabPane, is assembled inside the start() method,
which is automatically invoked when the class is executed. The start() method in this class utilizes the SceneBuilder
to create the Scene that will include a tabbed interface with table content. The SceneBuilder, a builder class for Scene
objects, assists developers in coding elegant user interfaces. The class in the solution to this example demonstrates
the use of the SceneBuilder by creating an entire Scene object using one statement. A series of builders are actually
strung together to construct the entire layout. In fact, this example uses the following builders: BorderPaneBuilder,
HBoxBuilder, VBoxBuilder, LabelBuilder, TabPaneBuilder, and TabBuilder. Each of the builders is constructed
in the same way, by calling the builder class create() method, followed by setting a series of properties for each. To
construct each builder, the build() method is called for each. To help you understand the steps that are used to create
the GUI, let’s break down the SceneBuilder statement.

1. Create a new instance of the SceneBuilder, and set the width and height of the scene.

Scene scene = SceneBuilder.create()

 .width(800)
 .height(500)
 .root(

2. Set the root of the Scene so that it will contain a BorderPane that itself has a top, center,
and bottom section. The BorderPane is built using a BorderPaneBuilder.

3. Set the BorderPane top property as an HBox using the HBoxBuilder.create() method and
then nest a Label inside the HBox that reads Acme Bookstore. In summary, the following
code is used to create the top portion of the BorderPane:

BorderPaneBuilder.create()
 .top(
 HBoxBuilder.create()
 .children(
 LabelBuilder.create()
 .id("title")
 .text("Acme Bookstore")
 .minHeight(2)
 .build()
)
 .build()
)

4. Set the BorderPane center property as a TabPane using a TabPaneBuilder. Create two tabs
within the TabPaneBuilder tab property, and use the TabBuilder to create the tabs.

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

634

5. Set the first tab to contain a BookViewNode, which is a custom node that contains the
TableView and data for the application. Set the second tab to contain nothing at this point.
In summary, the following code is used to create the center portion of the BorderPane:

.center(
 TabPaneBuilder.create()
 .tabs(
 TabBuilder.create()
 .content(new BookViewNode())
 .text("Book Listing")
 .closable(false)
 .build(),
 TabBuilder.create()
 .text("Other Things")
 .closable(false)
 .build()
)
 .build()
)

6. Set the BorderPane bottom property to include an HBox using an HBoxBuilder. The HBox
will include a label for the footer of the application window. The following code is used to
create the bottom portion of the BorderPane:

.bottom(
 HBoxBuilder.create()
 .id("footer")
 .children(
 new Label("Acme Bookstore - Java EE 7 Recipes")
)
 .build()
)
 .build()
)
 .build();();

That line of code constructs the UI for the application. The final lines of code within the Main class complete the
stage construction by setting the title, proportions, and scene. Finally, the stage is made visible.

Now that I’ve covered the construction of the user interface, I’ll talk about the meat of the application, the
BookViewNode class, which is used to construct the TableView that contains the data for one of the tabs. The
BookViewNode class extends another Node class, the VBox class. When developing a Node class, the class constructor
must call a method that is used to construct the Node. In the solution to this recipe, a method named build()
contains the code that builds the VBox content. When a new instance of the BookViewNode class is created, as
demonstrated in the TabBuilder, the build() method is called to construct the contents. The contents of this
particular VBox are a Label and a TableView. The TableView contains data from an ObservableList<Book> object.
The ObservableList<Book> object is generated from a call to the FXCollections.observableArrayList() method,
passing the EJB findAllBooks() method. To learn more details regarding the use of the ObservableList and
TableView construction, please refer to Recipe 18-2.

JavaFX enterprise applications do not have to contain boring or cumbersome user interfaces. It is quite the
contrary really; they should contain intuitive user interfaces that can benefit the user’s productivity. This recipe
demonstrated how to take the concept of utilizing EJB data within an enterprise JavaFX application and include it
in a sophisticated JavaFX layout. You can apply these concepts to any of the JavaFX layouts to develop customized
data-centric applications of your own.

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

635

18-4. Developing an Enterprise Application Using MVC
Problem
You want to work with an XML-based UI, rather than coding a user interface with a compiled language (e.g., Java)
because you want to separate the business logic of an application user interface from the view code.

Solution
Utilize FXML to develop the user interfaces for your JavaFX application, rather than coding them with a
compiled language. The solution to this recipe demonstrates how to construct the user interface using FXML,
rather than plain Java code, while using Java to control the actions of the user interface and obtain any data that
is used by the application.

The following code demonstrates how to construct the main class of a JavaFX application that utilizes FXML,
rather than Java, for constructing a user interface. The org.javaeerecipes.javafx.recipe18_04.Main class loads an
FXML file into a Stage object to construct the UI.

package org.javaeerecipes.javafx.recipe18_04;
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class Main extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getResource("acme_bookstore_main.fxml"));

 stage.setTitle("Acme Bookstore");
 stage.setScene(new Scene(root, 300, 275));
 stage.show();
 }

 /**
 * The main() method is ignored in correctly deployed JavaFX application.
 * main() serves only as fallback in case the application can not be
 * launched through deployment artifacts, e.g., in IDEs with limited FX
 * support. NetBeans ignores main().
 *
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
}

The user interface code is constructed from XML and resides within a file containing the .fxml suffix. In this
example, the acme_bookstore_main.fxml file contains the XML that is required for building the user interface. The
following XML is contained within the acme_bookstore_main.fxml file and, therefore, is used for the construction of

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

636

the example. Note that this file utilizes a controller class to separate Java code from the XML. The controller class is set
as a controller for the XML <AnchorPane> element, and I will show the code for that class next:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.paint.*?>

<AnchorPane id="AnchorPane" maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"
 minWidth="-Infinity" prefHeight="400.0" prefWidth="800.0"
 fx:controller="org.javaeerecipes.javafx.recipe18_04.AcmeBookstoreMainController"
 xmlns:fx="http://javafx.com/fxml">
 <children>
 <BorderPane prefHeight="399.9999000000025" prefWidth="800.0">
 <center>
 <VBox prefHeight="300.0" prefWidth="600.0">
 <children>
 <Label text="Acme Bookstore" />
 <TabPane prefHeight="200.0" prefWidth="700.0" tabClosingPolicy="UNAVAILABLE">
 <tabs>
 <Tab text="Book Listing">
 <content>
 <AnchorPane id="Content" minHeight="0.0" minWidth="0.0" prefHeight="200.0"
 prefWidth="700.0">
 <children>
 <TableView fx:id="tableView"/>
 </children>
 </AnchorPane>
 </content>
 </Tab>
 <Tab text="Other Stuff">
 <content>
 <AnchorPane id="Content" minHeight="0.0" minWidth="0.0" prefHeight="180.0"
 prefWidth="200.0" />
 </content>
 </Tab>
 </tabs>
 </TabPane>
 </children>
 </VBox>
 </center>
 </BorderPane>
 </children>
</AnchorPane>

http://javafx.com/fxml
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

637

Certain characteristics of the user interface require Java code for pulling in data, and so on. To separate Java
from XML, a controller class named org.javaeerecipes.javafx.recipe18_04.AcmeBookstoreMainController is
used to contain backing logic for the acme_bookstore_main.fxml user interface. The following code is that of the
AcmeBookstoreMainController class:

package org.javaeerecipes.javafx.recipe18_04;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.PropertyValueFactory;
import org.javaeerecipes.javafx.entity.Book;
import org.javaeerecipes.javafx.session.BookFacade;

/**
 * FXML Controller class
 *
 * @author juneau
 */
public class AcmeBookstoreMainController implements Initializable {

 private BookFacade ejbFacade = new BookFacade();

 private ObservableList<Book> data;
 @FXML private TableView<Book> tableView;

 /**
 * Initializes the controller class.
 */
 @Override
 public void initialize(URL url, ResourceBundle rb) {
 setData(FXCollections.observableArrayList(ejbFacade.findAllBooks()));

 TableColumn titleCol = new TableColumn("Title");
 titleCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("title")
);

 TableColumn descCol = new TableColumn("Description");
 descCol.setCellValueFactory(
 new PropertyValueFactory<Book,String>("description")
);

 tableView.setItems(data);

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

638

 tableView.getColumns().addAll(titleCol, descCol);
 }

 /**
 * @return the data
 */
 public ObservableList<Book> getData() {
 return data;
 }
 /**
 * @param data the data to set
 */
 public void setData(ObservableList<Book> data) {
 this.data = data;
 }

}

In the end, the demo application contains a TableView, which displays data that is obtained via an EJB. The end
result should look like Figure 18-7.

Figure 18-7. JavaFX application utilizing FXML for UI

How It Works
It is a good practice to separate business logic code from the code that is used to make up a user interface. Oftentimes,
when business logic is intermixed with view code, it can create a burden for those who have to maintain code at a later
time. Clean separation in code makes for easier maintenance and more organized code. The Model-View-Controller
(MVC) pattern focuses on the separation of business logic, data models, and view code. JavaFX applications can
follow the MVC pattern in a couple of ways. View code can be coded in a compiled language, and it can reside within
separate classes than any other classes that contain business logic. Yet an even more organized and cleanly separated
solution is to code the user interface or view code in an XML language and then place the business logic into classes
that are coded in a compiled language.

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

639

JavaFX applications can utilize an XML-based markup language that is referred to as FXML for constructing Java
object graphs or user interfaces. FXML looks very similar to JSF code, and it resides within a file that utilizes an .fxml
suffix. The FXML file identifies the underlying controller class using the fx:controller attribute, and it contains
XML elements that are used to construct the Java object graphs. Objects in the FXML can be controlled by code that
is contained within classes that are coded in a JVM language via the controller. The relationship between an FXML
file and its controller class is very much the same as the relationship of a JSF view to its managed bean controller.
The FXML markup language is extensive, so this recipe will only briefly introduce it, and then it will describe the
FXML that is utilized in the solution to this recipe. For more details regarding FXML, please refer to the online
documentation, at http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html,
or one of the many great JavaFX 2 books such as JavaFX 2.0: Introduction by Example and Pro JavaFX 2 Platform, both
published by Apress.

All FXML documents have the same structure in that they contain two main sections: an import section and
the UI section. FXML elements are actually based upon Java classes, and the name of the element corresponds to an
underlying Java class name. Therefore, an FXML file can have one or more import declarations, importing those Java
classes that are used within the UI. In the solution to this recipe, the FXML contains a handful of import elements
that each imports all classes within a specified package. For instance, the import element shown next will import all
classes that reside within the java.lang package for use within the context of the FXML document:

 <?import java.lang.*?>

That said, to utilize a class within an element, if it’s already imported, then simply specify the class name within
the XML element; otherwise, specify the fully qualified class name. The following is an example for utilizing the
javafx.scene.control.Label node within the FXML using both of the different syntaxes. Each of them works in the
same manner.

<Label text="Acme Bookstore" />
<javafx.scene.control.Label text="Acme Bookstore" />

A single FXML document makes up a single JavaFX view, and each document can be made up of one or more
elements. Each of the elements in a document represents one of the following: a class instance, a property of a class
instance, a static property, a define block, or a block of script code. The <Label> element demonstrated earlier is an
example of a class instance. However, it is possible to define static properties, as well as entire blocks of code, within
the FXML language. Doing so is out of the scope of this book, but for more information, please see the documentation;
it is highly recommended because FXML can be complex in detail but easy to use.

Going through the FXML document that is utilized in the solution to this recipe, you will see that the code ultimately
generates a user interface containing a tab pane, in which one of the tabs contains a TableView control. At the root
of the document, an <AnchorPane> is defined; therefore, the <AnchorPane> will embody each of the other nested
elements. Each of the attributes of the <AnchorPane> maps to a property of the javafx.scene.layout.AnchorPane
class. It is also possible to nest each of the properties within the <AnchorPane> element using separate <property>
elements for each. Therefore, rather than utilizing the <AnchorPane> element and then listing each attribute and its
associated value within that tag, you could do something like the following:

<AnchorPane>
 <id>Content</id>
 <maxHeight>-Infinity</maxHeight>
...
 </AnchorPane>

One very important attribute of <AnchorPane> is fx:controller. This attribute allows you to specify a controller
class that is to be utilized within the context of the given element. Therefore, any element contained inside the
element specifying fx:controller may use the given controller class. In the solution to this recipe, the <AnchorPane>
specifies org.javaeerecipes.javafx.recipe18_04.AcmeBookstoreMainController; therefore, any elements that

http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

640

are embodied within <AnchorPane> can call upon the AcmeBookstoreMainController. I will get to an example of one
such use in a moment when discussing the TableView.

A list of <AnchorPane> children is contained between opening and closing <children> elements. A <BorderPane>
instance is instantiated, and inside of that a <VBox> container is created, which embodies the <Label> and <TabPane>
nodes. Again, each of the XML element attributes corresponds to a property within the represented Java class. To
learn more about each of these nodes and their properties, please see the documentation for each online:
http://docs.oracle.com/javafx/2/api/overview-summary.html.

The TableView element within the FXML is different from the others, in that it specifies only one attribute,
fx:id. The specification of an attribute that includes a prefix of fx: indicates that this attribute will be obtained
from the Java controller class. The controller class source for AcmeBookstoreMainController is listed in the
example to this solution. The TableView element specifies fx:id="tableView", which indicates that the tableView
property within the controller class will be assigned to the TableView element in the FXML. Looking within the
AcmeBookstoreMainController source, a new BookFacade instance is instantiated in the first line; this is the EJB that
is responsible for database access. After that, the ObservableList is declared, followed by the TableView. Within the
initialize() method, the data is obtained and placed into the ObservableList, as described previously. Following
the data retrieval, the TableView and its columns are set up, just like in the previous recipes in this chapter.

Note ■ For this solution, it is also possible to utilize a visual tool to construct the FXML UI. The scene Builder from
Oracle is a great way to utilize a “what you see is what you get” (WYsIWYG) environment for creating your JavaFX FXML
user interfaces. The scene Builder application is beyond the scope of this recipe, but if you are interested in hassle-free
visual FXML generation, visit www.oracle.com/technetwork/java/javafx/tools/index.html to learn more.

18-5. Incorporating REST Services into JavaFX Applications
Problem
You want to use some Representational State Transfer (REST) web services from a JavaFX application.

Solution
Develop a JAX-RS client solution within a JavaFX application, and utilize a JavaFX control to display the results. In this
example, a simple REST web service that was created in Chapter 15 will be called upon from the JavaFX client, and its
message will be displayed via a JavaFX <Label> node.

The following class source is that of the main class for the JavaFX application. It sets the stage and loads the
necessary FXML for creating the user interface.

package org.javaeerecipes.javafx.recipe18_05;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class Main extends Application {

http://docs.oracle.com/javafx/2/api/overview-summary.html
http://www.oracle.com/technetwork/java/javafx/tools/index.html
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

641

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getResource("acme_bookstore_rest.fxml"));

 stage.setTitle("Acme Bookstore");
 stage.setScene(new Scene(root, 300, 275));
 stage.show();
 }

 /**
 * The main() method is ignored in correctly deployed JavaFX application.
 * main() serves only as fallback in case the application can not be
 * launched through deployment artifacts, e.g., in IDEs with limited FX
 * support. NetBeans ignores main().
 *
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
}

Next, let’s take a look at the source for the class that generates the web service client, which is responsible for
retrieving the REST service content.

package org.javaeerecipes.javafx.recipe18_05;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import java.io.IOException;
import java.net.MalformedURLException;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.concurrent.Service;
import javafx.concurrent.Task;
import javax.ws.rs.core.MediaType;

/**
 * Service class that is used to retrieve web service data and return
 * @author juneau
 */
public class RestClientService extends Service<String> {

 private StringProperty url = new SimpleStringProperty();

 public final void setUrl(String value) {
 url.set(value);
 }

 public final String getUrl() {
 return url.get();
 }

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

642

 public final StringProperty urlProp() {
 return url;
 }

 protected Task<String> createTask() {

 return new Task<String>() {
 protected String call()
 throws IOException, MalformedURLException {
 String result = obtainData();
 return result;
 }

 };
 }

 private String obtainData() {
 String restString = null;
 try {

 Client client = Client.create();

 WebResource webResource = client
 .resource("http://localhost:8080/JavaEERecipes/rest/simplerest/");

 ClientResponse response = webResource.accept(MediaType.TEXT_PLAIN)
 .get(ClientResponse.class);

 if (response.getStatus() != 200) {
 throw new RuntimeException("Failed : HTTP error code : "
 + response.getStatus());
 }
 restString = response.getEntity(String.class);

 } catch (Exception e) {

 e.printStackTrace();

 }
 return restString;
 }
}

The FXML that constructs the user interface is the next source you will look at. The following code is taken from
the acme_bookstore_rest.fxml document, and it is responsible for adding various JavaFX nodes to construct the UI
for the application.

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.control.*?>

http://localhost:8080/JavaEERecipes/rest/simplerest/
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

643

<?import javafx.scene.layout.*?>
<?import javafx.scene.paint.*?>

<AnchorPane id="AnchorPane" maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"
minWidth="-Infinity" prefHeight="69.0" prefWidth="800.0" xmlns:fx="http://javafx.com/fxml"
fx:controller="org.javaeerecipes.javafx.recipe18_05.RESTfulClientController">
 <children>
 <BorderPane prefHeight="69.0" prefWidth="661.0">
 <bottom>
 <Label text="JavaFX Rest Sample" />
 </bottom>
 <center>
 <VBox prefHeight="190.0" prefWidth="800.0">
 <children>
 <Label fx:id="clientLabel" text="Acme Bookstore" />
 <Button mnemonicParsing="false" onAction="#obtainRestText" text="Get REST Text" />
 </children>
 </VBox>
 </center>
 </BorderPane>
 </children>
</AnchorPane>

Finally, you have the controller class that is responsible for all the business logic that is contained within the
FXML document. The following sources for the RESTFulCientController are those that back the nodes contained
within the FXML sources for this application:

package org.javaeerecipes.javafx.recipe18_05;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.concurrent.WorkerStateEvent;
import javafx.event.EventHandler;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;

/**
 * Controller class for acme_bookstore_rest.fxml
 * @author juneau
 */
public class RESTfulClientController implements Initializable {

 @FXML private Label clientLabel;

 private String restString;

 /**
 * Initializes the controller class.
 */

http://javafx.com/fxml
http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

644

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 // Instantiate the service class
 RestClientService serv = new RestClientService();

 serv.setOnSucceeded(new EventHandler<WorkerStateEvent>() {
 @Override
 public void handle(WorkerStateEvent workerEv) {
 restString = workerEv.getSource().getValue().toString();

 }
 });
 serv.start();
 }

 @FXML
 private void obtainRestText(){
 clientLabel.setText(restString);
 }

}

In the end, the application displays a simple message from the web service. However, this solution can be
exploited to take advantage of powerful solutions offered via JAX-RS and REST services.

How It Works
Building a JavaFX web service client is quite easy, given that you can utilize Java code (or any compiled language for
that matter) right alongside the code that is used to develop the user interface. Mixing together the ability to construct
complex REST clients with the ease of constructing a user interface provides a powerful combination. The solution to
this recipe demonstrates how to utilize a basic REST web service within a very simple JavaFX application. However,
these concepts could be built upon to develop advanced interfaces for displaying real-time information that is
obtained from web services.

The first source that is contained within the solution demonstrates how to code the main application class.
The Main class is not unlike any other JavaFX application’s main, because it extends the javafx.application.
Application class and then builds the Stage. The Main class overrides the start() method, which is the invocation
point for any JavaFX application. Within the start method, the class loads the FXML file that is used for constructing
the user interface via the FXMLLoader utility to obtain the user interface. The stage is then prepared and displayed.
The real meat of this example takes place when the FXML file, named acme_bookstore_rest.fxml, is invoked.
Invoking the user interface causes the FXML controller class to be instantiated, which in turn starts the web service
client. Investigating the FXML, you find that it is bound to a controller class named org.javaeerecipes.javafx.
recipe18_05.RESTfulClientController. The UI is very simplistic in that it contains only a couple of labels and a
button. Looking closely at the Label and Button nodes that are embodied within the VBox layout, you can see that
the Label is bound to a controller property named clientLabel and that the button action is bound to a controller
method named obtainRestText. Note that in order to invoke a controller method from FXML, the pound character
(#) must be placed before the name of the method that needs to be invoked. Now that you’ve investigated the FXML,
let’s dig into the controller class.

When the controller class initialize method is invoked, a RestClientService instance is created. The purpose
of the RestClientService class is to initiate the web service client, obtaining data from a remote REST service. The
RestClientService class is not a typical class; rather, it is specifically designed to run a service because it implements
the Service<String> class. The purpose of the Service class is to help developers implement background thread

http://www.it-ebooks.info/

ChAPTER 18 ■ JAvAFX IN ThE ENTERPRIsE

645

interaction with the JavaFX application thread. Much like in Swing, where all tasks are completed on the event
dispatch thread, the JavaFX application thread must handle all tasks for a JavaFX application. However, performing
time-consuming tasks such as querying a database and working with a web service can sometimes cause a JavaFX
application to stall, making for a bad user experience. You want to get these time-consuming tasks off the main
JavaFX application thread so that they can run asynchronously, without slowing down the UI. Therefore, to add
multithreaded concurrency to the application, you can complete such time-consuming work using a background
Task object. A Service class can handle the interaction of one or more background Task objects with the JavaFX
application thread. To utilize this technique, abstract the time-consuming process into its own class, such as how
the RestClientService tasks have been. The class should extend the Service<String> class, and it should contain a
method named createTask, which returns a Task<String> object. The time-consuming task should be placed within
the body of the createTask method. Since this is where the real work occurs, let’s break the createTask method down
a bit. Line by line, the method does the following:

1. The method instantiates a new Task<String> object, which it will return to the caller.

2. Within the new Task<String> object, a call() method is created, which returns a String
and throws an IOException and a MalformedURLException.

3. Inside the call() method, a method named obtainData is invoked, which performs the
real web-service interaction.

The obtainData method is responsible for calling upon the REST service and obtaining data. The Jersey open
source JAX-RS implementation is used to retrieve the data from the REST service. The client work is performed by
creating a com.sun.jersey.api.client.Client object, calling its resource method, and then passing the URL to
the REST service that is being utilized by the client. The resource method returns a com.sun.jersey.api.client.
WebResource object. This object can then be used to obtain a com.sun.jersey.api.client.ClientResource object
by calling its accept method, followed by a chained call to the get method. When invoking the accept method,
the type of response you want to receive needs to be passed. In the case of this solution, you are expecting to
receive a MediaType.TEXT_PLAIN response. In this example, the call to the accept method is followed by a call to
the WebResource.Builder get method, passing the ClientResponse.class. Next, the response is checked to see
whether it was successful, and if not, then a RuntimeException is thrown. Lastly, if a response was received, then the
resource.getEntity() method is called, passing the class for the type of response that is expected. Since a String
response is expected in the example, the call to resource.getEntity(String.class) is made.

Since this implementation resides within the RestClientService class, it can be run as a background
task. The calling class has great control over the background task because it can start, cancel, and pause a
background task by simply invoking the requisite methods. The RestClientService call takes place within
the controller class for the FXML document, that is, within the RESTfulClientController class. Since this is
a controller class, it implements Initializable and contains a method named initialize, which is where
the work takes place. Inside the initialize method, the RestClientService instance is created, and its
setOnSucceeded property is set to a new EventHandler<WorkerStateEvent> object. This basically allows you to
call the long-running task, perform it in the background, and, finally, return the response into a local variable.
The EventHandler<WorkerStateEvent> is an inner class that contains a method named handle. The handle
method is automatically called once the service has successfully completed, and its implementation assigns the
local restString field to the results returned from the REST service client. The last line of the initialize method
starts the service by calling the service class start method.

Looking at the FXML for the UI, the Button element is bound to a method in the controller named
obtainRestText. When the button is clicked, this method is invoked because it is accessible to the FXML since it
is annotated with @FXML. All the method does is set the clientLabel field equal to the result from calling the web
service, which is the restString. The clientLabel field is a javafx.scene.control.Label, and it is bound to the
Label element in the FXML document. When the button is clicked, the value of the label is set to the String returned
by the web service, which in turn updates the user interface to display that result.

http://www.it-ebooks.info/

647

Chapter 19

Concurrency and Batch Applications

The Java Enterprise platform has been missing a few key features since its inception. Those features include standard
techniques for processing tasks concurrently, and standardization for batch application processing. In the release
of Java EE 7, these two missing features have been addressed with the addition of the Java Concurrency Utilities and
Batch Processing APIs.

Each of the two APIs is quite large, and they include proven solutions that have been used by various enterprise
projects for years. Using Java SE concurrency utilities such as java.util.concurrent and java.lang.Thread in
Java EE applications has been problematic in the past, since the application server container has no knowledge of
such resources. Extensions of the java.util.concurrent API allows application servers and other EE containers to
become aware of these concurrency resources. The extensions allow enterprise applications to appropriately utilize
asynchronous operations via the use of java.util.concurrent.ExecutorService resources that are made available
within the EE environment.

The new API for batch processing provides a fine-grained experience for developers, which enables them to
produce and process batch applications in a variety of different ways. Enterprise applications no longer need to
utilize customized classes for performing batch processing, allowing enterprise applications to adhere to an
adopted standard.

The scope of these additional APIs is very large, and this chapter will not attempt to cover each feature.
However, the recipes contained within should provide enough information to get a developer up-and-running using
some of the most frequently required pieces of each API. For more in-depth information regarding the details of the
Concurrency Utilities for Java EE, please refer to the JavaDoc located at http://concurrency-ee-spec.java.net/javadoc/.

19-1. Creating Resources for Processing Tasks
Asynchronously in an Application Server
Problem
You would like to register a ManagedExecutorService resource within your application server environment.

Solution #1
Create a new ManagedExecutorService using the asadmin create-managed-executor-service utility.
To utilize concurrent utilities such as reporter tasks, the application server must be configured to utilize a
ManagedExecutorService. To create a ManagedExecutor Service in GlassFish, run the following command at the
command prompt:

<path-to-glassfish>/bin/asadmin create-managed-executor-service concurrent/BatchExecutor

http://concurrency-ee-spec.java.net/javadoc/
http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

648

In the preceding command-line action, the name of the ManagedExecutorService that is being created is
concurrent/BatchExecutor. However, this could be changed to better suit the application. To see all of the options
available for the create-managed-executor-service command, issue the --help flag. The following shows the results
of doing so:

bin/asadmin create-managed-executor-service --help
NAME
 create-managed-executor-service

SYNOPSIS
 Usage: create-managed-executor-service [--enabled=true] [--c
 ontextinfo=contextinfo] [--threadpriority=5] [--longrunningt
 asks=false] [--hungafterseconds=hungafterseconds] [--corepoo
 lsize=0] [--maximumpoolsize=2147483647] [--keepaliveseconds=
 60] [--threadlifetimeseconds=0] [--taskqueuecapacity=2147483
 647] [--description=description] [--property=property] [--ta
 rget=target] jndi_name

OPTIONS
 --enabled

 --contextinfo

 --threadpriority

 --longrunningtasks

 --hungafterseconds

 --corepoolsize

 --maximumpoolsize

 --keepaliveseconds

 --threadlifetimeseconds

 --taskqueuecapacity

 --description

 --property

 --target

OPERANDS
 jndi_name

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

649

Solution #2
Create a ManagedExecutorService using the GlassFish Server Administration Console. To do so, authenticate
successfully into the administrative console, and navigate to the Concurrent Resources ➤ Managed Executor Services
administration panel using the left-hand tree menu (see Figure 19-1).

Figure 19-1. GlassFish Managed Executor Services panel

Once you’ve opened the panel, click the New button to create a new service. This will open the New Managed
Executor Service panel, in which you will be required to populate a JNDI Name for your new service (see Figure 19-2).

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

650

This panel offers quite a few options for creation of the service. However, the only option that is required is the
JNDI Name, as all others are populated with default values. The JNDI name that is specified should follow the format
of concurrent/YourExecutorServiceName, where YourExecutorServiceName is a custom name of your choice.

How It Works
In Java EE 7, the ManagedExecutorService was introduced, adding the ability to produce asynchronous tasks that are
managed by an application server. Application server administrators can create ManagedExecutorService resources
within an application server that can be utilized by one or more applications, much like a Java Message Service
(JMS) Topic or Queue. To create a service, issue the asadmin create-managed-executor-service command at the
command prompt, passing the name that you would like to use to identify the service. There are a bevy of options that
can be used to customize the service in different ways. For instance, the service can be configured to let tasks run for
a specified amount of time, pools can be configured, and so forth, allowing you to generate a ManagedExecutorService
that will best suit the application requirements.

For those who would prefer to work within the GlassFish administration console, there have been a few new
administration panels added to make creation and management of concurrent resources easier. The new Managed
Executor Service panel can be used to create new application server ManagedExecutorService resources, as well as
manage those that already exist.

Figure 19-2. New Managed Executor Service panel

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

651

Note ■ GlassFish and other Java ee 7–compliant application servers come preconfigured with a default
ManagedExecutorService resource that is named java:comp/DefaultManagedExecutorService.

19-2. Configuring and Creating a Reporter Task
Problem
You would like to create a long-running task that will communicate with a database and generate a report in the end.

Solution
Once the application server has been configured and the ManagedExecutorService has been created, an application
can be written to utilize the newly created service. Within an application, you can choose to configure the application
to make use of the ManagedExecutorService via XML, or a @Resource annotation can be used to inject the resource.
To configure via XML, add a <resource-env-ref> element to the web.xml deployment descriptor. In this case, you
need to configure a resource of type javax.enterprise.concurrent.ManagedExecutorService, as shown in the
following excerpt from the web.xml:

<resource-env-ref>
 <description>
This executor is used for the application's reporter task. This executor has the following
requirements:
Run Location: NA
Context Info: Local Namespace
 </description>
 <resource-env-ref-name>
 concurrent/BatchExecutor
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.enterprise.concurrent.ManagedExecutorService
 </resource-env-ref-type>
</resource-env-ref>

In the XML configuration, the resource has been assigned to a reference name of concurrent/BatchExecutor,
but you could name the reference to best suit your application. If you would rather utilize an annotation, then the
following @Resource annotation can be specified to inject a ManagedExecutorService into a class for use. You will
see an example of this in use later on.

@Resource(name = "concurrent/BatchExecutor")
ManagedExecutorService mes;

Once the configuration is complete, you can create a report task class, which is a class that implements
Runnable and is responsible for running the actual reports. The following class, org.javaeerecipes.chapter19.
recipe19_02.ReporterTask, is an example of such as class.

import java.util.List;
import javax.ejb.EJB;
import org.javaeerecipes.jpa.entity.Book;
import org.javaeerecipes.jpa.entity.BookAuthor;

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

652

import org.javaeerecipes.jpa.session.BookAuthorFacade;
import org.javaeerecipes.jpa.session.BookFacade;

/**
 * Example of a Reporter Task
 * @author Juneau
 */
public class ReporterTask implements Runnable {

 String reportName;
 @EJB
 private BookAuthorFacade bookAuthorFacade;
 @EJB
 private BookFacade bookFacade;

 public ReporterTask(String reportName) {
 this.reportName = reportName;
 }

 public void run() {
 // Run the named report
 if ("AuthorReport".equals(reportName)) {
 runAuthorReport();

 } else if ("BookReport".equals(reportName)) {
 runBookReport();
 }
 }

 /**
 * Prints a list of authors to the system log.
 */
 public void runAuthorReport() {
 List<BookAuthor> authors = bookAuthorFacade.findAuthor();
 System.out.println("Author Listing Report");
 System.out.println("=====================");

 for (BookAuthor author : authors) {
 System.out.println(author.getFirst() + " " + author.getLast());
 }
 }

 /**
 * Prints a list of books to a file
 */
 void runBookReport() {
 System.out.println("Querying the database");
 Path reportFile = Paths.get("BookReport.txt");

 try (BufferedWriter writer = Files.newBufferedWriter(
 reportFile, Charset.defaultCharset())) {
 Files.deleteIfExists(reportFile);

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

653

 reportFile = Files.createFile(reportFile);
 writer.append("Book Listing Report");
 writer.newLine();
 writer.append("===================");
 writer.newLine();
 List<Book> books = bookFacade.findAllBooks();
 for (Book book : books) {
 writer.append(book.getTitle());
 writer.newLine();
 }
 writer.flush();
 } catch (IOException exception) {
 System.out.println("Error writing to file");
 }

 }
}

Lastly, the report needs to be invoked by the ManagedExecutorService that was configured within the web.xml.
In this example, the ManagedExecutorService is injected into a servlet, which is then used to invoke the report, as
seen in the following code:

@WebServlet(name = "BookReportServlet", urlPatterns = {"/BookReportServlet"})
public class ReportServlet extends HttpServlet implements Servlet {

 @Resource(name = "concurrent/BatchExecutor")
 ManagedExecutorService mes;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Book Report Invoker</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>This servlet initiates the book report task. Please look " +
 "in the server log to see the results.</h2>
" +
 " Updating the web page is not run asynchronously, however, " +
 " the report generation will process independently.");
 out.println("

");
 ReporterTask reporterTask = new ReporterTask("BookReport");
 Future reportFuture = mes.submit(reporterTask);
 while(!reportFuture.isDone())
 out.println("Running...
");
 if (reportFuture.isDone()){
 out.println("Report Complete");
 }

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

654

 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
...
}

When the servlet is visited, the reporter task will be initiated and it will begin to produce results.

How It Works
After the ManagedExecutorService has been created, it can be utilized by one or more applications to perform
concurrent operations. An application must be either configured via XML to allow access to the ManagedExecutorService
resource in the application server container, or the resource can be injected via the use of the @Resource annotation.
In the example for this recipe, each of these options is demonstrated. For the purposes of the example, it is assumed
that the @Resource annotation is utilized to inject the service into the servlet.

To run a task concurrently using the service, you must create the task in a separate class that implements
java.util.Runnable so that it can be invoked as a separate process, much like a standard Java Thread. In the example,
a class named ReporterTask implements Runnable, and within the run method, the reporter task performs the tasks
that we wish to run in an asynchronous manner. In this example, a couple of methods are invoked from within the run
method. The Runnable class that has been generated can then be passed to the ManagedExecutorService to be run
concurrently while other tasks are being performed by the application. To make use of the ManagedExecutorService,
register it with the application via XML or by resource injection. In the example for this recipe, resource injection is
utilized, making the ManagedExecutorService available from within the Java servlet. To inject the resource, specify
the name of it to the @Resource annotation.

@Resource(name = "concurrent/BatchExecutor")
ManagedExecutorService mes;

The ManagedExecutorService can then be invoked by calling the submit method, and passing an instance of
the Runnable task that we’d like to submit for processing. In this case, the ReporterTask class is instantiated, and an
instance of it is then passed to the service, returning a java.util.concurrent.Future object.

ReporterTask reporterTask = new ReporterTask("BookReport");
Future reportFuture = mes.submit(reporterTask);

Once submitted, the Future object that was returned can be periodically checked to see if it is still running or if
it has been completed by calling its isDone method. It can be cancelled by calling the cancel method, and a canceled
task can be checked by calling its isCanceled method.

The reporter task is a long-running task that queries the database to obtain data for generation of a report.
Having the ability to run such a task asynchronously fills a gap in the Java enterprise ecosystem that developers have
been dealing with in enterprise solutions since the inception of Java EE.

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

655

19-3. Running More Than One Task Concurrently
Problem
You require the ability to run two or more tasks concurrently within your application. For instance, the application
you are writing needs the ability to connect a database and retrieve data from two or more tables to obtain results at
the same time. You wish to have the results aggregated before returning them to the user.

Solution
Create a builder task that can be used to run two different tasks in parallel. Each of the tasks can retrieve the data
from the different sources, and in the end, the data will be merged together and aggregated to formulate the result.
To utilize a builder task, the application server environment must first be configured with a ManagedExecutorService, as
per Recipe 19-1. Once the resource has been configured, an application can be configured to make use of the resource via
XML or annotation. To utilize XML configuration, add a <resource-env-ref> element to the web.xml deployment
descriptor. In this case, you need to configure a resource of type javax.enterprise.concurrent.ManagedExecutorService,
as shown in the excerpt from the web.xml in Recipe 19-2, and repeated as follows:

<resource-env-ref>
 <description>
This executor is used for the application's builder tasks. This executor has the following
requirements:
Run Location: Local
Context Info: Local Namespace, Security
 </description>
 <resource-env-ref-name>
 concurrent/BuilderExecutor
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.enterprise.concurrent.ManagedExecutorService
 </resource-env-ref-type>
</resource-env>

In this example, the ManagedExecutorService resource in the application is configured to work with a
resource that has been registered with the application server container and identified by the JNDI name of
concurrent/BuilderExecutor. If you would rather utilize an annotation, then the following @Resource annotation
can be specified to inject a ManagedExecutorService into a class for use within the Runnable.

@Resource(name = "concurrent/BuilderExecutor")
ManagedExecutorService mes;

Once the application has been configured to work with the ManagedExecutorService resource, you can
create task classes for each of the different tasks that you wish to run. Each task class must implement the
javax.enterprise.concurrent.ManagedTask interfaces. The following code is from the file org.javaeerecipes.
chapter19.recipe19_03.AuthorTask.java, and it shows what a task class should look like.

public class AuthorTask implements Callable<AuthorInfo>, ManagedTask {
 // The ID of the request to report on demand.
 BigDecimal authorId;
 AuthorInfo authorInfo;
 Map<String, String> execProps;

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

656

 public AuthorTask(BigDecimal id) {
 this.authorId = id;
 execProps = new HashMap<>();

 execProps.put(ManagedTask.IDENTITY_NAME, getIdentityName());
 }

 public AuthorInfo call() {
 // Find the entity bean and return it to the client.
 return authorInfo;
 }

 public String getIdentityName() {
 return "AuthorTask: AuthorID=" + authorId;
 }

 public Map<String, String> getExecutionProperties() {
 return execProps;
 }

 public String getIdentityDescription(Locale locale) {
 // Use a resource bundle...
 return "AuthorTask asynchronous EJB invoker";
 }

 @Override
 public ManagedTaskListener getManagedTaskListener() {
 return new CustomManagedTaskListener();
 }

}

One or more of such task classes can be implemented, and then they can be processed via the builder task using
the ManagedExecutorService resource that has been registered with the application server container. The following
servlet makes use of a ManagedExecutorService to coordinate the invocation of two task classes. In this case, the task
class names are AuthorTask and AuthorTaskTwo.

@WebServlet(name = "BuilderServlet", urlPatterns = {"/builderServlet"})
public class BuilderServlet extends HttpServlet implements Servlet {
 // Retrieve our executor instance.

 @Resource(name = "concurrent/BuilderExecutor")
 ManagedExecutorService mes;
 AuthorInfo authorInfoHome;
 BookInfo bookInfoHome;

 protected void processRequest(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
 try {
 PrintWriter out = resp.getWriter();

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

657

 // Create the task instances
 ArrayList<Callable<AuthorInfo>> builderTasks = new ArrayList<Callable<AuthorInfo>>();
 builderTasks.add(new AuthorTask(BigDecimal.ONE));
 builderTasks.add(new AuthorTaskTwo(BigDecimal.ONE));

 // Submit the tasks and wait.
 List<Future<AuthorInfo>> taskResults = mes.invokeAll(builderTasks);
 ArrayList<AuthorInfo> results = new ArrayList<AuthorInfo>();
 for(Future<AuthorInfo> result: taskResults){
 results.add(result.get());
 out.write("Processing Results...");
 }
 } catch (InterruptedException|ExecutionException ex) {
 Logger.getLogger(BuilderServlet.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
...
}

How It Works
After the ManagedExecutorService has been created, it can be utilized by one or more applications to
perform concurrent operations. An application must be either configured via XML to allow access to the
ManagedExecutorService resource in the application server container, or the resource can be injected via the use of
the @Resource annotation. In the example for this recipe, each of these options is demonstrated. For the purposes
of the example using the servlet, it is assumed that the @Resource annotation is utilized to inject the service into the
servlet and no XML configuration has been made.

To coordinate the processing of tasks in an asynchronous manner via a ManagedExecutorService, the tasks
that need to be processed should be contained in separate classes or multiple instances of the same task class. Each
of the task classes should implement the java.util.concurrent.Callable and javax.enterprise.concurrent.
ManagedTask interfaces. A task class should include a constructor that enables a caller to pass arguments that
are required to instantiate the object, and should implement a call method, which returns the information
that is needed to construct the report to the client. Two or more such task classes can then be invoked via the
ManagedExecutorService in order to process all results into the required format.

To assemble the tasks for processing, create an ArrayList<Callable>, and add instances of each task to
the array. In the example, the array is named builderTasks, and instances of two different task types are added to
that array.

ArrayList<Callable<AuthorInfo>> builderTasks = new ArrayList<Callable<AuthorInfo>>();
builderTasks.add(new AuthorTask(BigDecimal.ONE));
builderTasks.add(new AuthorTaskTwo(BigDecimal.ONE));

Next, pass the array that has been constructed to the ManagedExecutorService, returning
a List<Future<object>>, which can then be used to process the results.

List<Future<AuthorInfo>> results = mes.invokeAll(builderTasks);
AuthorInfo authorInfo = (AuthorInfo) results.get(0).get();
// Process the results

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

658

Utilizing this technique, a series of tasks can be concurrently processed, returning results that can be later used
to formulate a response. In this example, a report is constructed by calling two task classes and returning the results
of queried information. This same technique can be applied to an array of different tasks, allowing an application to
process the results of multiple task invocations in one central location.

19-4. Utilizing Transactions Within a Task
Problem
You would like to manage a transaction within an application task that will be processed using
a ManagedExecutorService resource.

Solution
Make use of the javax.transaction.UserTransaction to create and manage a transaction. The following example
demonstrates how to make use of the UserTransaction interface to demarcate transactions within a task class that
will be processed by a ManagedExecutorService.

public class UserTransactionTask implements Runnable {

 @Resource
 SessionContext ctx;

 @EJB
 private BookAuthorFacade bookAuthorFacade;
 UserTransaction ut = ctx.getUserTransaction();

 public void run() {
 try {
 // Start a transaction ut.begin();
 ut.begin();
 List<BookAuthor> authors = bookAuthorFacade.findAuthor();
 for (BookAuthor author : authors) {
 // do something
 }
 ut.commit();
 } catch (NotSupportedException | SystemException | RollbackException
 | HeuristicMixedException | HeuristicRollbackException ex) {
 Logger.getLogger(UserTransactionTask.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
}

The previous class can then be processed by the ManagedExecutorService by implementing a solution similar to
the following.

@WebServlet(name = "UserTransactionServlet", urlPatterns = {"/userTransactionServlet"})
public class UserTransactionServlet extends HttpServlet implements Servlet {

 @Resource(name = "concurrent/BatchExecutor")
 ManagedExecutorService mes;

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

659

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {

 // servlet output...
 UserTransactionTask utTask = new UserTransactionTask();
 Future utFuture = mes.submit(utTask);
 while(!utFuture.isDone())
 out.println("Running...
");
 if (utFuture.isDone()){
 out.println("Report Complete");
 }
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
...

How It Works
In some cases, an application may require transaction coordination within a task that will be processed via
a ManagedExecutorService. Transactions can be carried out within these tasks via utilization of the
javax.transaction.UserTransaction interface. The UserTransaction can be obtained by calling the
SessionContext.getUserTransaction() method. The SessionContext resource can be injected into a bean using
the @Resource annotation.

Once the UserTransaction has been obtained, the transaction can begin by calling the UserTransaction
begin method. The transaction can be ended by calling the UserTransaction commit method. The transaction
encompasses any tasks that are performed after the call to begin, and before the call to commit. If one of the tasks
within the transaction fails, then all work performed within the transaction is halted and values go back to what they
were prior to the beginning of the transaction.

19-5. Running Concurrent Tasks at Scheduled Times
Problem
The application that you are utilizing needs to have the ability to periodically perform a task on a timed interval.

Solution
Use the ManagedScheduleExecutorService to create a scheduled task within your application. Before
an application can use the service, it must be created within the application server container. To create a
ManagedScheduleExecutorService instance within GlassFish, issue the following command from the command line:

bin/asadmin create-managed-scheduled-executor-service concurrent/name-of-service

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

660

In this command, name-of-service can be whatever name you choose. The create-managed-scheduled-
executor-service command has many options that can be specified. To see and learn more about each option,
invoke the command help by issuing the --help flag after the command, rather than providing the name of the
service to create. Optionally, you could create the service using an application server resource, such as the GlassFish
administration console.

Once the service has been created within the container, it can be utilized by an application. To utilize this
type of service, the environment must be configured via XML or annotation. To utilize XML configuration, add a
<resource-env-ref> element to the web.xml deployment descriptor. In this case, you need to configure a resource of type
javax.enterprise.concurrent.ManagedScheduledExecutorService, as shown in the excerpt from the following web.xml:

<resource-env-ref>
 <description>Prints alerts to server log, if warranted, on a periodic basis</description>
<resource-env-ref-name>
concurrent/__defaultManagedScheduledExecutorService
</resource-env-ref-name>
 <resource-env-ref-type>
javax.enterprise.concurrent.ManagedScheduledExecutorService
 </resource-env-ref-type>
</resource-env-ref>

If you wish to use annotations rather than XML, the @Resource annotation can be used in client code to
inject the ManagedScheduledExecutorService, as shown in the following lines. In this case, the injected
resource references a ManagedScheduledExecutorService that is identified by the name
concurrent/__defaultManagedScheduledExecutorService.

@Resource(name="concurrent/__defaultManagedScheduledExecutorService")
ManagedScheduledExecutorService mes;

To write the task that you wish to have scheduled, create a Java class that implements Runnable. As such, the class
will contain a run method, which will be invoked each time the scheduled task is initiated. The following example
demonstrates how to construct a task that can be used for logging. In this example, the BookAuthor entity is queried
on a periodic basis to determine if new authors have been added to the database.

public class ScheduledLoggerExample implements Runnable {

 CreateConnection createConn = null;

 @Override
 public void run() {
 queryAuthors();
 }

 public void queryAuthors(){
 createConn = new CreateConnection();
 String qry = "select object(o) from BookAuthor o";
 createConn.loadProperties();
 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
 while (rs.next()) {
 // if new author, then alert
 }

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

661

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

To periodically invoke the task, utilize the ManagedScheduledExecutorService resource. The following JSF
managed bean class demonstrates how to invoke this type of service.

@ManagedBean
public class ScheduledTaskClient {
 Future alertHandle = null;

 @Resource(name="concurrent/__defaultManagedScheduledExecutorService")
 ManagedScheduledExecutorService mes;

 public void alertScheduler() {

 ScheduledAuthorAlert ae = new ScheduledAuthorAlert();
 alertHandle = mes.scheduleAtFixedRate(
 ae, 5L, 5L, TimeUnit.MINUTES);
 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Task Scheduled", "Task Scheduled");
 FacesContext.getCurrentInstance().addMessage(null, facesMsg);

 }

}

How It Works
To schedule a task to run at specific times, utilize the javax.concurrent.ManagedScheduledExecutorService
interface. This interface extends the java.util.concurrent.ScheduledExecutorService and
javax.enterprise.concurrent.ManagedExecutorService interfaces. The ManagedScheduledExecutorService
can be used to execute a Runnable task according to a specified schedule.

As mentioned previously, a ManagedScheduledExecutorService can be used to schedule Runnable tasks. That
is, any class that implements java.lang.Runnable can be invoked via the service. The code that is contained within
the task class’s run method is invoked each time the task is initiated. In the example for this recipe, the run method
executes another method within the class that is used to query an entity and perform some work against the results.

To make use of a ManagedScheduledExecutorService, one can be created within the application server
container. This can be done by issuing the asadmin create-managed-scheduled-executor-service command, as
demonstrated in the example for this recipe. However, any Java EE 7–compliant application server should contain
a default ManagedScheduledExecutorService for use. Once the resource has been created in the application server,
an application can make use of it. To enable an application to access the service, XML configuration within the
web.xml deployment descriptor can be used, or a @Resource annotation can be used to inject the resource. In the
example for this recipe, both techniques are demonstrated. However, in the class that is used to initiate the example
task, the @Resource annotation is used to inject the application server’s default ManagedScheduledExecutorService
that can be identified by the name of concurrent/__defaultManagedScheduledExecutorService.

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

662

@Resource(name=" concurrent/__defaultManagedScheduledExecutorService ")
 ManagedScheduledExecutorService mes;

To schedule the task, create an instance of the task class, and then pass the instance to one of the
ManagedScheduledExecutorService scheduler methods that are made available via the ScheduleExecutorService
interface. The methods that can be used to schedule tasks are shown in Table 19-1.

Table 19-1. ScheduleExecutorService Methods

Method Description

schedule(Callable<V> callable,
long delay, TimeUnit unit)

Creates and executes a ScheduledFeature object. The object
becomes available after the specified delay period.

schedule(Runnable command,
long delay, TimeUnit unit)

Creates and executes a one-time task that becomes available after
the specified delay.

scheduleAtFixedRate(Runnable command,
long initialDelay, long period,
TimeUnit unit)

Creates and executes a periodic task that becomes available
after the initial specified delay period. Subsequent executions are
then scheduled in increments of the specified period after
the initial delay.

scheduleWithFixedDelay(Runnable
command, long initialDelay,
long delay, TimeUnit unit)

Creates and executes a periodic task that becomes available after
the initial delay period. Subsequent executions are then scheduled
with the specified delay period in between each execution.

In the example for this recipe, the scheduleAtFixedRate method is called, passing the task class, along with the
initial delay period of 5 minutes, and then the task is executed every 5 minutes thereafter.

19-6. Creating Thread Instances
Problem
Your application requires the ability to perform tasks in the background while other tasks are executing.

Solution
Create thread instances to run tasks in the background by making use of a ManagedThreadFactory resource.
Before an application can use the service, it must be created within the application server container. To create
a ManagedThreadFactory instance within GlassFish, issue the following command from the command line:

asadmin create-managed-thread-factory concurrent/myThreadFactory

In this command, name-of-service can be whatever name you choose. The create-managed-thread-factory
command has many options that can be specified. To see and learn more about each option, invoke the command
help by issuing the --help flag after the command, rather than providing the name of the service to create.

To utilize a ManagedThreadFactory, the environment must be configured via XML or annotation. To utilize XML
configuration, add a <resource-env-ref> element to the web.xml deployment descriptor. In this case, you need to

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

663

configure a resource of type javax.enterprise.concurrent.ManagedThreadFactory, as shown in the excerpt from
the following web.xml:

<resource-env-ref>
 <description>
</description>
<resource-env-ref-name>
concurrent/AcmeThreadFactory
</resource-env-ref-name>
 <resource-env-ref-type>
javax.enterprise.concurrent.ManagedThreadFactory
 </resource-env-ref-type>
</resource-env-ref>

To utilize annotations rather than XML configuration, the ManagedThreadFactory can be injected using an
annotation such as the following:

@Resource(name="concurrent/AcmeThreadFactory");
ManagedThreadFactory threadFactory;

In this example, a ManagedThreadFactory will be injected into an EJB, so that a logging task can be used to print
output to the server log when the EJB is created or destroyed. The following code demonstrates how to create a task
that can be utilized by the ManagedThreadFactory:

public class MessagePrinter implements Runnable {

 @Override
 public void run() {
 printMessage();
 }

 public void printMessage(){
 System.out.println("Here we are performing some work...");
 }
}

To initiate the threading, call the ManagedThreadFactory, which can be injected into a using class via the
@Resource annotation. The ManageThreadFactory newThread method can then be invoked to spawn a new thread,
passing the Runnable class instance for which the thread should process. In the following servlet context listener
example, when a thread context is initialized, then a Runnable class that was listed in the previous code listing,
MessagePrinter, is instantiated and passed to the ManagedThreadFactory to spawn a new thread.

public class ServletCtxListener implements ServletContextListener {
 Thread printerThread = null;

 @Resource(name ="concurrent/AcmeThreadFactory")
 ManagedThreadFactory threadFactory;

 public void contextInitialized(ServletContextEvent scEvent) {

 MessagePrinter printer = new MessagePrinter();

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

664

 printerThread = threadFactory.newThread(printer);
 printerThread.start();
 }

 public void contextDestroyed(ServletContextEvent scEvent) {
 synchronized (printerThread) {
 printerThread.interrupt();
 }
 }
}

How It Works
Until the release of Java EE 7, multithreaded enterprise applications were very customized. In fact, until the EE 7
release, there was no formal framework to utilize for spawning threads within an enterprise application. In this latest
release that includes the Concurrency utilities, thread processing has been formalized. To utilize threading within an
enterprise application, you should create ManagedThreadFactory resource(s) within the application server container,
and utilize those resources within application(s), as needed.

To create a ManagedThreadFactory resource within the GlassFish application server, invoke the
asadmin create-managed-thread-factory command from the command prompt. At a minimum, the desired name
for the resource should be included with the invocation of the command. However, there are a number of different
options that can be specified to customize the resource. To learn more about those options, please see the online
documentation at https://concurrency-ee-spec.java.net/javadoc/.

As mentioned in the example, an application can make use of a ManagedThreadFactory resource by configuring
XML within the web.xml deployment descriptor, or by injecting via the @Resource annotation within the classes that
need to make use of the resource. Once that resource has been injected, calls can be made against it to spawn new
threads using the newThread method. The newThread method returns a Thread instance, which can then be utilized
as needed, by calling the Thread instance methods, as needed. In the solution to this recipe, the thread is started by
calling the thread’s start method, and when the context is destroyed, then the thread’s interrupt method is invoked.

The addition of a formal threading framework into Java EE is much welcomed. By adhering to the use of
ManagedThreadFactory API, your enterprise applications can be made multithreaded using an accepted
standard solution.

19-7. Creating an Item-Oriented Batch Process
Problem
You would like to create a job that runs in the background and executes a task.

Solution
Make use of the Batch Applications for the Java Platform API, introduced to Java EE 7 via JSR 352, to create a job
that handles item-oriented processing. Batch processing that is item-oriented is also known as “chunk” processing.
In this example, a batch process is created to read text from a file, process that text accordingly, and then write out
the processed text. To begin, construct an XML file to define the job. The XML file for this example will be called
acmeFileProcessor.xml. We will break down the lines of this file, as well as discuss the different options for writing
job XML, in the “How it Works” section. For now, let’s take a look at what a job process looks like. The following lines
are from the acmeFileProcessor.xml file.

https://concurrency-ee-spec.java.net/javadoc/
http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

665

<?xml version="1.0" encoding="UTF-8"?>

<job id="myJob" xmlns="http://batch.jsr352/jsl">
 <step id="readingStep" >
 <chunk item-count="2">
 <reader ref="acmeReader"></reader>
 <processor ref="acmeProcessor"></processor>
 </chunk>
 </step>
 <step id="writingStep" >
 <chunk item-count="1">
 <writer ref="acmeWriter"></writer>
 </chunk>
 </step>
</job>

There are three tasks being performed in this particular job: acmeReader, acmeProcessor, and acmeWriter. These
three tasks can be associated with Java class implementations within the batch.xml file, which is located within the
META-INF directory. The following code shows what the batch.xml looks like.

<?xml version="1.0" encoding="UTF-8"?>
<batch-artifacts xmlns="http://jcp.org.batch/jsl">
 <ref id="acmeReader" class="org.javaeerecipes.chapter19.recipe19_07.AcmeReader"/>
 <ref id="acmeProcessor" class="org.javaeerecipes.chapter19.recipe19_07.AcmeProcessor"/>
 <ref id="acmeWriter" class="org.javaeerecipes.chapter19.recipe19_07.AcmeWriter"/>
</batch-artifacts>

Next, let’s take a look at each of these class implementations. We will begin by looking at the following
AcmeReader class implementation. This class is responsible for reading a file and creating a new WidgetReportItem
object for each line of text.

package org.javaeerecipes.chapter19.recipe19_07;

import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import javax.batch.api.AbstractItemReader;

/**
 * Example of a file reading task
 *
 * @author Juneau
 */
public class AcmeReader extends AbstractItemReader<WidgetReportItem> {

 public AcmeReader() {
 }

http://batch.jsr352/jsl
http://jcp.org.batch/jsl
http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

666

 /**
 * Read lines of report and store each into a WidgetReportItem object. Once
 * all lines have been read then return null to trigger the end of file.
 * @return
 * @throws Exception
 */
 @Override
 public WidgetReportItem readItem() throws Exception {
 Path file = Paths.get("widgetFile.txt");
 List<String> fileLines;
 Charset charset = Charset.forName("US-ASCII");
 fileLines = Files.readAllLines(file, charset);
 for(String line:fileLines){
 return new WidgetReportItem(line);
 }
 return null;

 }
}

Next, let’s take a look at the AcmeProcessor class. This class is responsible for processing each WidgetReportItem
accordingly. In this case, if the line of text that is contained in the object has the text “Two” in it, then it will be added
to a WidgetOutputItem object (see the following code for WidgetReportItem and WidgetOutputItem).

package org.javaeerecipes.chapter19.recipe19_07;

import javax.batch.api.ItemProcessor;

/**
 *
 * @author Juneau
 */
public class AcmeProcessor implements ItemProcessor<WidgetReportItem, WidgetOutputItem> {

 public AcmeProcessor(){}

 /**
 * Write out all lines that contain the text "Two"
 * @param item
 * @return
 * @throws Exception
 */
 @Override
 public WidgetOutputItem processItem(WidgetReportItem item) throws Exception {
 if(item.getLineText().contains("Two")){
 return new WidgetOutputItem(item.getLineText());
 } else {
 return null;
 }
 }

}

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

667

Lastly, let’s see what the AcmeWriter class looks like. This class is responsible for writing the WidgetOutputItem
objects that have been processed by AcmeProcessor.

package org.javaeerecipes.chapter19.recipe19_07;

import java.util.List;
import javax.batch.api.AbstractItemWriter;

/**
 *
 * @author Juneau
 */
public class AcmeWriter extends AbstractItemWriter<WidgetOutputItem> {

 @Override
 public void writeItems(List<WidgetOutputItem> list) throws Exception {
 for(WidgetOutputItem item:list){
 System.out.println("Write to file:" + item.getLineText());
 }
 }

}

The WidgetReportItem and WidgetOutputItem objects are merely containers that hold a String of text.
The following is the implementation for WidgetReportItem; other than the name, the WidgetOutputItem object
is identical.

package org.javaeerecipes.chapter19.recipe19_07;

public class WidgetReportItem {
 private String lineText;

 public WidgetReportItem(String line){
 this.lineText = line;
 }

 /**
 * @return the lineText
 */
 public String getLineText() {
 return lineText;
 }

 /**
 * @param lineText the lineText to set
 */
 public void setLineText(String lineText) {
 this.lineText = lineText;
 }
}

http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

668

When this batch job is executed, the text file is read, processed, and then specific lines of text are written to the
system log. The read and process tasks are performed as part of the first step, and then the write is processed as
the second step.

How It Works
Prior to the inclusion of Batch Applications for Java EE, organizations and individuals had to write their own custom
procedure for processing batch jobs. Utilizing the newly added API, developers can create batch jobs using a
combination of XML for defining a job, and Java for programming the implementation. In the solution for this recipe,
a simple batch job reads text from a file, processes it using a comparison, and then writes out the processed text.
The example batch program is simplistic, but the API makes it easy to write very complex jobs.

Let’s begin the explanation by first taking a brief look at the API from a high level. A job consists of one or more
steps, and each step has exactly one ItemReader, ItemWriter, and ItemProcessor. A JobOperator is responsible for
launching a job, and a JobRepository is used to maintain metadata regarding the currently running job. Jobs are
defined via XML, and the <Job> element is at the root of the job definition. Thus, a <Job> is the foundational element,
which consists of one or more <step> elements, and also defines other specifics of the job, such as the job name
and if it is restartable or not. Each <step> of a job consists of one or more chunks or batchlets. In this recipe, which
covers item-oriented processes, each step has just one chunk, although in general steps could encompass one or
more chunks. To learn more about batchlets, please see the specification or online documentation at
http://javaee-spec.java.net/nonav/javadocs/javax/batch/api/Batchlet.html.

As expected, each chunk of a step is defined within the XML using a <chunk> element. A <chunk> element defines
the reader, writer, and processor pattern of a batch job. A chunk runs within the scope of a transaction, and it is
restartable at a checkpoint if it does not complete. The <reader> element is a child element of <chunk>, and it is used
to specify the reader for that chunk. The <reader> element can accept zero or more name/value pair properties using
a <properties> element. The <processor> element is also a child element of <chunk>, which specifies the processor
element for that chunk. Like a <reader> element, a <processor> element can accept zero or more name/value pair
properties using a <properties> element. The <writer> element is a child element of <chunk> as well, which specifies
the writer for the chunk step. Again, like the reader and processor, the <writer> element can accept zero or more
name/value pair properties using a <properties> element.

The XML configuration for a job resides in an XML file that should be named the same as the batch job to
which it belongs. This file should reside within a folder named batch-jobs, which in turn resides in the META-INF
folder. An XML file named batch.xml should also reside within the META-INF folder. This file contains the mapping
for the item reader, writer, and processor elements using <ref> elements and mapping the item names to a Java
implementation class.

<batch-artifacts xmlns="http://jcp.org.batch/jsl">
 <ref id="acmeReader" class="org.javaeerecipes.chapter19.recipe19_07.AcmeReader"/>
 <ref id="acmeProcessor" class="org.javaeerecipes.chapter19.recipe19_07.AcmeProcessor"/>
 <ref id="acmeWriter" class="org.javaeerecipes.chapter19.recipe19_07.AcmeWriter"/>
</batch-artifacts>

The implementation classes should either extend abstract classes (reader and writer), or implement an interface
(processor). The ItemReader implementation class, in this case AcmeReader, extends the AbstractItemReader , and
accepts an object into which the read items will be stored. In the example for this recipe, that object class is named
WidgetReportItem. As such, the class should implement the readItem method, which is responsible for performing
the reading. The method should return the object to which the items are read, or return a null when there are no
more items to read.

http://javaee-spec.java.net/nonav/javadocs/javax/batch/api/Batchlet.html
http://javaee-spec.java.net/nonav/javadocs/javax/batch/api/Batchlet.html
http://jcp.org.batch/jsl
http://www.it-ebooks.info/

Chapter 19 ■ ConCurrenCy and BatCh appliCations

669

public class AcmeReader extends AbstractItemReader<WidgetReportItem> {
...
@Override
 public WidgetReportItem readItem() throws Exception {
 Path file = Paths.get("widgetFile.txt");
 List<String> fileLines;
 Charset charset = Charset.forName("US-ASCII");
 fileLines = Files.readAllLines(file, charset);
 for(String line:fileLines){
 return new WidgetReportItem(line);
 }
 return null;

 }
...

The ItemProcessor class implementation, in this case AcmeProcessor, is responsible for performing processing
for the chunk, and it should implement the ItemProcessor interface, accepting both the object containing the read
items, and an object to which the processed items will be stored. The ItemProcessor implementation class should
implement a processItem method, which is responsible for performing the processing.

The ItemWriter class implementation, in this case AcmeWriter, is responsible for performing the writing for the
chunk. The class implementation should extend the AbstractItemWriter class and accept the object to which the
processed items will be written. This implementation must contain the writeItems method, which is responsible for
performing the writing.

As mentioned in the introduction to this chapter, the Batch Applications for Java EE API is very detailed, and this
recipe barely scratches the surface of how to write batch jobs. You are encouraged to learn more about the API by
reading through the specification for JSR-352.

http://www.it-ebooks.info/

671

APPENDIX A

Java EE Development with
NetBeans IDE

Developing applications on the JVM can be a fun job, however, it can also become cumbersome if you constantly
need to be concerned with Java environment details. When developing an application using only a text editor and the
command line, you need to constantly keep the CLASSPATH in mind to ensure that all required libraries are available to
your application. Moreover, organization can be difficult if you are working on multiple applications at one time, and
you need to maintain some method of application separation. These are only a couple of reasons why development
can become cumbersome if you are not working within a development environment. The NetBeans Integrated
Development Environment (IDE) aims to ease the load on developers by abstracting the requirement to maintain
CLASSPATH, organizing code effectively, and providing a plethora of features to make enterprise development
much easier.

Note ■ This appendix covers NetBeans release 7.3, which was the most recent release at the time.

A-1. Configuring Application Servers Within NetBeans
Before you can associate application projects with a server for deployment and testing, you need to configure one
or more application servers for use within NetBeans. Please note that it is a good practice to only configure those
application servers that are used for development purposes within NetBeans.

To add a local or remote server to NetBeans, perform the following tasks.

 1. Navigate to the Services window, and right-click the Servers menu selection. Click Add
Server, as shown in Figure A-1.

Figure A-1. Add Server to NetBeans IDE

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

672

 2. When the Add Server Instance dialog appears, choose the server type that you wish to add
(see Figure A-2).

Figure A-2. Add Server Instance

Figure A-3. Set Server Location

 3. On the next screen, enter the path to the application server installation that you would like
to configure within NetBeans (see Figure A-3). Once you have chosen the location, click
the Finish button.

 4. You can now deploy applications to the server by registering it with a given project from
within the project properties. Note: you can also perform some basic application server
tasks by selecting the application server from within the Services window in NetBeans, as
demonstrated in Figure A-4.

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

673

Developing Java Enterprise Applications
The NetBeans IDE really makes it easy to develop Java Enterprise Applications. To begin, you first create a Java EE
project within the IDE, and subsequently use the IDE to configure the project accordingly. NetBeans not only
makes it easy to configure your application projects, but it also eases development with the aid of such features as
autocompletion, syntax highlighting, autoformatting, and so forth. This section will cover how NetBeans can help
Java EE developers with some of the most commonly performed Java EE development tasks.

A-2. Creating a NetBeans Java Web Project
There are a few different configurations to choose from for the creation of a Java Enterprise project within NetBeans.
This book covers the creation Java Web application projects within NetBeans, which is the standard project selection
for development of Java EE 6 and EE 7 applications.

To begin the creation of a new project, open the New Project dialog by choosing File ➤ New Project. In the New
Project dialog, you will see all of the different Java project categories listed within the left-hand list box. Selecting one of
the categories will display the project types for the selected category within the right-hand list box. To create a Java EE 6
or Java EE 7 project, select the Java Web category, and then Web Application as the project type (see Figure A-5).

Figure A-4. Expand and administer server in NetBeans

Figure A-5. Creating a new Java EE project in NetBeans

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

674

Note ■ The Java EE category allows the development of projects using the old-style Java EE configuration. That is,
project types within the Java EE category adhere to standards for developing with Java EE 5 or earlier. In such projects,
separate web (wAR) and EJB (JAR) projects are created, rather than a single project that deploys to a single distributable
wAR file.

After selecting the project type, the New Web Application dialog will open. Enter a project name and location,
as shown in Figure A-6. Once finished, choose Next.

Figure A-6. New Web Application – Name and Location

In the Server and Settings screen, choose the application server that you wish to use for deployment
(see Configuring Application Servers in NetBeans), along with the Java EE version that you wish to use. If you plan
to make use of Contexts and Dependency Injection, then select the designated check box (see Figure A-7).

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

675

A-3. Creating JSF Application Files
The NetBeans IDE makes it easy to generate files for JSF application projects. To open the JSF menu, right-click an
application Source Packages directory to open the context menu. From within the context menu, choose New and
then Other… to open the New File dialog. Within the dialog, choose JavaServer Faces from the Categories list box to
open the JSF file types within the left-hand list box (see Figure A-8).

Figure A-7. New Web Application – Server and Settings

Figure A-8. New File menu – JSF file types

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

676

The JSF file types include the following options:

JSF Page•	

JSF Managed Bean•	

JSF Faces Configuration•	

JSF Composite Component•	

JSF Pages from Entity Classes•	

Faces Template•	

Faces Template Client•	

The JSF Page file selection opens a dialog that can be used to generate a new JSF page (see Figure A-9). The dialog
allows you to choose a file location and name, and it also contains the ability to apply different options for the page
type. The option choices for page type are Facelets (default), JSP File, or JSP Segment. The examples throughout this
book feature the Facelets page type.

Figure A-9. New JSF Page dialog

The JSF Managed Bean file selection opens a dialog that allows you to generate a JSF Managed Bean controller
class (see Figure A-10). The dialog provides the ability to choose to add the bean data to the faces-config file, as well
as choose the scope of the bean.

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

677

The JSF Faces Configuration File selection is used to create a faces-config.xml file for a project. However, this
option is not required if you choose to create a JSF project within the NetBeans Project Creation wizard.

The JSF Composite Component file selection opens a dialog that can be used to create a composite component
file. The dialog does not provide many options other than the ability to choose a file location and name. The generated
file contains the skeleton of a composite component, as listed in the following lines:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://java.sun.com/jsf/composite">

 <!-- INTERFACE -->
 <cc:interface>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 </cc:implementation>
</html>

Figure A-10. New JSF Managed Bean dialog

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/composite
http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

678

The JSF Pages from Entity Classes file selection can be quite powerful in that it allows you to choose an Entity
Class from which to generate a JSF page, and then the resulting JSF page will be bound to the entity class upon
generation. In order to use this option, the project must contain at least one entity class.

A-4. Developing EJB Entity Classes
The NetBeans IDE provides facilities to help develop Entity Bean classes, either manually or based upon a selected
database table. To access the entity class wizards, right-click a project’s Source Packages folder to open the context-
menu, and then choose New ➤ Other to open the New File dialog. Once open, choose the Persistence category from
the left-hand list box to display the file types in the right-hand list box (see Figure A-11).

Figure A-11. New File - Persistence

The option reading Entity Class allows you to generate a blank entity class, and Entity Classes from Database
allows you to generate an entity class from a selected database table. In doing so, all of the requisite code for mapping
the entity class to the selected database table is automatically generated for you.

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

679

A-5. JPQL
NetBeans 7.3 and beyond include a new feature that allows you to query a database using JPQL syntax. This can be
quite helpful for those who are using JPQL in their EJB session beans. To access the JPQL query tool, perform the
following steps:

 1. Expand a NetBeans Web Project that contains a persistence.xml configuration file in the
project Configuration Files directory.

 2. Right-click the persistence.xml configuration file to open the context menu.

 3. Click Run JPQL Query to open the tool (see Figure A-12), type in your query, and click the
Run button on the upper-right of the query editor.

Figure A-12. JPQL tool

A-6. HTML5
Many new-age applications make use of HTML5. The Java community has taken note of that and has made it easy to
begin working with HTML5 within NetBeans itself. NetBeans has an HTML5 project option, which enables developers
to debug HTML5 pages using a Chrome web browser plug-in. To create an HTML5 project from within the IDE,
select the New Project option and then choose HTML/JavaScript in the Categories selection list, followed by HTML5
Application from the Projects selection list (see Figure A-13).

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

680

Next, you are given the option to choose No Site Template, or you can select a template that you provide, or use
one that you can download, as seen in Figure A-14.

Figure A-14. Choose site template

Figure A-13. Create new HTML5 application

http://www.it-ebooks.info/

APPENDIX A ■ JAvA EE DEvEloPmENT wITh NETBEANs IDE

681

Lastly, choose any libraries that you wish to add to your HTML5 Project (see Figure A-15), then click Finish.

Once the project has been created, you can choose Run to have it opened within Chrome, assuming that you
have installed the Chrome plug-in. If you have not yet installed the Chrome plug-in, you will be prompted to do so.

Figure A-15. Add libraries to project

http://www.it-ebooks.info/

A���������
AbstractFacade class, 412–413, 416, 431
AbstractItemWriter class, 669
acceptChanges method, 363
Accessor methods, 62
acmeFileProcessor.xml file, 664
AcmeProcessor class, 666
actionListener method, 214
activationConfig element, 446
addCookie method, 44
addListener methods, 20
Add Server Instance, 672
afterPhase method, 295, 297
Ajax

asynchronous updates, 289, 292
custom conversion, 274
custom processing, 269–271
functionality, 265–269
partial-page updates, 263–265
submitting pages, 262–263
validation

Acme Bookstore application, 256
client-side validation, 260
jsf.ajax.request() method, 261
third-party component library, 260

AjaxBean managed bean, 254
AjaxBehaviorEvent object, 261
Ajaxified, 259
@Alerter annotation, 593
Apache Tomcat, 7
Application server administrators, 650
ArrayList<Callable>, 657
asadmin create-managed-executor-service

command, 647, 650
asadmin create-managed-thread-factory command, 664
AsyncContext.complete method, 51
Asynchronous consumer, 529
asyncOperation method, 594

AsyncResponse resume method, 595
AsyncResponse.setTimeout() method, 595
AsyncResponse.setTimeoutHandler() method, 595
attributeAdded method, 26
attributeRemoved method, 26
attributeReplaced method, 26–27
AuthorController class, 298
AuthorController managed bean, 247
AuthorTask, 656
AuthorTaskTwo, 656
AuthorWorkController, 424
AuthorWorkType business interface, 423–424
automaticTimer() method, 437
Available Entity Classes, 580

B���������
Batch applications

acmeFileProcessor.xml file, 664
AcmeProcessor class, 666–667
acmeReader, 665
acmeWriter, 665
<chunk> element, 668
fine-grained experience, 647
ItemProcessor, 669
ItemWriter class, 669
Java EE, 668
Java Platform API, 664
JobOperator, 668
META-INF directory, 665
processItem method, 669
<processor> element, 668
<properties> element, 668
readItem method, 668
WidgetOutputItem object, 666–667
WidgetReportItem object, 665–667
writeItems method, 669

beforePhase method, 295–296
BOOK database table, 350

Index

683

http://www.it-ebooks.info/

BookChatEndpoint class, 606
bookChatRelay function, 606
BookController class, 425, 427
BookController JSF managed bean, 351
BookController method, 433
bookDao.queryBooks method, 350
BookFacade, 431
BookFacade class, 425
BookFacade session bean, 429
BookstoreAppListener, 283
BookstoreSessionController bean, 435
BookstoreSessionCounter bean, 434
book.xhtml view, 230
bufferedAmount attribute, 609
builderTasks, 657
buildPost method, 590
BytesMessage, 526

C���������
CachedRowSet object, 358, 361–362
CallableStatement, 354
cancel method, 654
CartController class, 275
Cascading Style Sheets (CSS), 159
Certificate signing request (CSR), 562
Character large object (CLOB) data, 355
CheckPasswordValidator class, 301
<chunk> element, 668
CLASSPATH, 318, 671
ClientRequestFilter, 592
ClientResponseFilter, 592
Client setProperty method, 587
commandButton, 254
commandLink component, 262
completeBookList property, 430
completeMethod, 299
ComponentSystemEvent object, 286
Concurrency

builder task, 655–656
concurrent/BatchExecutor, 651
java.lang.Thread, 647
java.util.concurrent, 647
java.util.concurrent.ExecutorService, 647
javax.concurrent.

ManagedScheduledExecutorService
interface, 661

ManagedExecutorService (see ManagedExecutor
Service)

ManagedScheduledExecutorService, 661
ManagedScheduleExecutorService, 659
run method, 660
scheduleAtFixedRate method, 662
ScheduleExecutorService interface, 662
standard techniques, 647
web.xml deployment descriptor, 651

@ConcurrencyManagement annotation, 436
concurrent/BatchExecutor, 651
concurrent/BuilderExecutor, 655
concurrent/YourExecutorServiceName, 650
Connection resources, 521
ContactController class, 205, 216
ContainerRequestFilter, 592
ContainerResponseFilter, 592
Contexts and dependency injection (CDI)

alternative implementations, 513
bean metadata, 514
bean scope determination, 506
beans.xml file, 499
CalculationBean class, 498
ignoring classes, 512
JavaEERecipesJPA project, 497
JSF views

JavaBean, 499
javax.inject.Named (@Named)

annotation, 501
@Named annotation, 499

@ManagedBean vs. @Named annotation, 502
non-bean objects, 508
producer fields, disposing of, 513
specific bean allocation, 503

Cookie property methods, 44
COUNT aggregate function, 458
CreateConnection class, 328
createContainerEntityManagerFactory

method, 405
createEntityManagerFactory method, 405
create-managed-executor-service

command, 648
create-managed-thread-factory command, 662
createParser() method, 613
createQuery method, 449
Create, retrieve, update, and delete (CRUD) database

code format, 334
DML, 334
java.sql.Statement object, 332
performCreate method, 334
performDelete method, 335
performUpdate method, 334
toUpperCase method, 333

CriteriaBuilder methods, 448–449
CriteriaQuery, 447
currDateAndTime field, 14
Custom annotation class

CheckPasswordValidator class, 301
@Constraint, 302
ConstraintValidator, 303
@Documentation, 303
@Documented, 302
@Inherited, 302
inputSecret component value, 300
@interface, 302–303

■ index

684

http://www.it-ebooks.info/

isValid method, 304
PasswordLength, 300, 304
@Retention, 302–303
syntactic metadata, 302
@Target, 302
validator class, 300

D���������
Data access object (DAO)

application code base, 347
AUTHOR database table, 341
AuthorDAO class, 347
Author object, 347
classes, 335
Java enterprise object, 347
performCreate method, 347
performDelete method, 347
performUpdate method, 347

Data definition language (DDL), 406
Data Manipulation Language (DML), 334
DataSource object, 319
dataTable component, 203, 245, 249, 350
Date() object, 292
dayAndTime property, 292
db_props.properties file, 328, 330
@DELETE, 584
DisplayCookieServlet, 44
@Documentation annotation, 303
doDownload method, 34
doFilter method, 24
doGet method, 6, 14
doPost method, 6, 17
DriverManager, 323
DriverManager.getConnection() method, 323
DUMMY_PROC procedure, 354
Durable message subscribers

create and publish message, 533
delay message, 536
initial durable subscriber, 533
receive message, 534
run application, 535
string-based identifier, 536
Topic connection, 532, 535
unsubscribing, 535–536

E���������
EJB 3.0, 373
Employee entity, 589
Enterprise archive (EAR), 378, 483
Enterprise JavaBeans (EJBs)

application server container, 409
asynchronous message process, 444
data

BookViewNode, 631–632
build() method, 633
create() method, 633
FXCollections.observableArrayList()

method, 634
SceneBuilder statement, 633–634
start() method, 633
TableView, 629–630
TabPane, 632

dataTable model
AbstractFacade class, 431
ArrayList of HashMaps, 433
BookController, 430–431
BookController.getCustomBookList()

method, 432
completeBookList field, 433
customBookList field, 433
customBookList property, 432
findAll() method, 433
List of entity objects, 430, 433
List of Map objects, 432–433
obtainCustomList method, 432

Entity Manager, 409
local and remote interfaces, 443
object persistence, 429
object updation, 429
optional transaction (see Optional

transaction life-cycle callbacks)
query language, 409
scheduling timer service

automatic timer, 437
calendar-based timer expressions, 439
e-mail, 438
org.javaeerecipes.jpa.timer.

ProgrammaticTimerExample class, 438
org.javaeerecipes.jpa.timer.TimerBean

file, 437
programmatic timer, 438, 440
@Schedule annotation, 439
ScheduleExpression helper class, 440
types, 439

session beans with JSF
AuthorWorkController, 424
AuthorWorkFacade session bean, 423–424
BookFacade class, 425
EJB 3.1+, 427–428
findBookById method, 425
HTML client, 427
javax.ejb.EJB annotation, 428
javax.naming.EJB annotation, 428
javax.naming.InitialContext interface’s

lookup method, 428
@Local annotation, 424, 427
@Remote annotation, 427
web-based client development, 422

■ index

685

http://www.it-ebooks.info/

singleton bean (see Singleton bean)
stateful session bean (see Stateful session beans)
stateless session bean (see Stateless session beans)
technology, 370
types, 409

Enterprise solution
Groovy servlet

BookstoreServletAction.groovy, 601
BookstoreServlet.groovy file, 598
groovy-all-xxx.jar file, 600
groovy.servlet.GroovyServlet, 599
MarkupBuilder, 599
ParameterExample.groovy, 600
print statement, 600
sql.eachRow method, 598

Jython servlet
BookstoreJython.py servlet, 602
convertHTML function, 603
doGet and doPost, 603
org.python.util.PyServlet, 602
response.getWriter(), 603

Entity Bean classes, 678
EntityBSubtype, 468
EntityExistsException, 429
Entity Manager, 409
equals() method, 374
executeQuery method, 330–331, 340
executeUpdate method, 341

F���������
Facelets, 103

CSS, 159
custom resolver, 197–198
debugging view content, 195–197
definition language, 159
handling variable-length data

Acme Bookstore application, 188
AuthorController, 191–192, 194–195
data collection, 187–188
displayAuthor method, 191
markup and JSF tag, 190
object collection, 190
recipe04_05c.xhtml, bio view, 188–189
ui:repeat tag, 188–190

JSF 2.0+ application, 159
page template creation

composition, 162
CSS style sheet, 161
custom_template.xhtml, 160
JSF managed bean, 161
mitigates issues, 161
NetBeans, 162–163
similar and function, 161

tag library, 162
template window, 163–164
ui:insert element, 160
ui:insert tag, 162
view definition language, 159, 161
visual representation, 161

resources
Author table, 176
css, 175
directory structure, 174
h:dataTable component, 176
JSF component, 177
libraries, 177
URL creation, 174

reusable template component
Acme bookstore layout, 185
AuthorController.java, 180–183
composite component, 186
custom_template_search.xhtml, 184
default implementation method, 186–187
@ManagedProperty annotation, 187
opening and closing tag, 186
SearchController.java, 178–180
searchText and errorText property, 187
search.xhtml component, 178
search.xhtml document, 186
ui:component tag, 185
XHTML document, 177
XML namespace, 187

template view
application, 171
AuthorController, 168, 170
page control and template tags, 172
recipe04_01a.xhtml, 165–166
recipe04_01b.xhtml, 166–167
recipe04_01c.xhtml, 167–168
template clients, 171
ui:composition tag, 164
ui:define tag, 173–174

Tiles, 159
faces-config.xml file, 284, 308
facesFlowScope, 314
f:ajax tag

action component, 263
action listener, 261
Ajaxified, 259, 261
Ajax validation, 259
attributes, 260
execute keywords, 264
execute and render attributes, 261
functionality, 269
JSF arsenal, 260
partial-page updates, 264

FETCH join, 469
f:event tag, 285

■ index

686

Enterprise JavaBeans (EJBs) (cont.)

http://www.it-ebooks.info/

f:facet tag, 251
findBookByChapterTitle method, 460–461
findBookById method, 425
findBooksByAuthor method, 450
findByTitle method, 413
<flow-definition> section, 308
@FlowScoped, 312
flush method, 35
forward method, 40
f:phaseListener tag, 296
fterPhase method, 296
f:validateBean tag, 225
f:validateDoubleRange validator, 224
f:validateLength, 221
f:validateLongRange, 224
f:validateRegex validator, 224
f:validateRequired validator, 224

G���������
GenericServlet, 5, 7
@GET, 584
getAsciiStream method, 358
getAsObject method, 272, 274
getAsString method, 272, 274
getAttribute() method, 29
getBookCategories method, 467
getCart() method, 418
getCompleteBookList method, 349, 433
getConnection method, 319, 323
getParameter method, 17
getPhaseId method, 295–296
getPort method, 576
getRequestDispatcher method, 39
getResourceAsStream method, 34
getResultList method, 451
getServletConfig().getInitializationParameter(), 22
getSession method, 29
getSingleResult method, 452, 458
getUserMessage method, 584
Glassfish deployment directory, 7
Glassfish JDBC connection pools, 320
Glassfish lib directory, 318
GlassFish Server Administration, 649
Glassfish v4 application server, 447
graphicImage component, 219, 230
Groovy servlet

BookstoreServletAction.groovy, 601
BookstoreServlet.groovy file, 598
groovy-all-xxx.jar file, 600
groovy.servlet.GroovyServlet, 599
MarkupBuilder, 599
ParameterExample.groovy, 600
print statement, 600
sql.eachRow method, 598

H���������
hashCode() and equals() methods, 386
HashMap object, 433
h:dataTable component, 307
h:graphicImage tag, 230
h:outputLink tags, 218
HTML5 project, 679–681
HTML5 technology, 605
HttpServlet methods, 6
HttpServletRequest object, 6
HttpServletResponse sendRedirect method, 40
HttpSessionAttributeListener, 25–26
HttpSessionBindingEvent, 26
HttpSessionListener, 20
HttpSession object, 31

I���������
IllegalArgumentException, 429–430
init method, 6
Inner join, 461, 469
inputFile component, 253
inputHidden component, 207
inputSecret component, 207
inputTextarea component, 207
inputText component, 207
Integrated development environment (IDE), 97, 671
@interface declaration, 303
Invocation, 590
InvocationCallback, 596
isBookInCart, 285
isCanceled method, 654
isDone method, 654
isListenerForSource, 285
isListenerForSource(Object source) method, 283–284
ItCategory entity, 467–468
ItemProcessor class implementation, 669
ItemWriter class implementation, 669

J, K���������
JavaBeans, 97
javac command, 7
javac command-line utility, 5
java:comp/DefaultManagedExecutorService, 651
Java Database Connectivity (JDBC), 369

acceptChanges method, 363
API, 369
CachedRowSet object, 358–362
calling PL/SQL stored procedures, 354
CLASSPATH, 318
connection management

code intensive, 329
CreateConnection class, 328

■ index

687
r

http://www.it-ebooks.info/

CreateConnection.java, 325
db_props.properties, 328
DriverManager, 329
getDsConnection, 329
org.javaeerecipes.chapter07, 326

CRUD database (see Create, retrieve, update, and
delete (CRUD) database)

database connection
DataSource Classname, 320
DataSource object, 319, 322–323
DriverManager, 323
DriverManager.getConnection() method, 323
getConnection() method, 319
Glassfish, connection pool, 320
InitialContext, 324
Oracle, 319
properties, 321
resource creation, 322
String, 323

database driver, 317–318
JSF views

bookDao.queryBooks method, 350
BOOK database table, 348, 350
dataTable component, 348–351
getCompleteBookList method, 349
queryBooks method, 350

moveToInsertRow method, 363
PL/SQL stored procedures, 353
query, 329–330
querying and storing

CLOB data, 355, 357
createClob method, 358
getAsciiStream method, 358
performCreate method, 358
readClob method, 355
string values, 357
VARCHAR fields, 357

RowSet objects (see RowSet objects)
scrollable ResultSets (see Scrollable ResultSets)
SQL injection (see SQL injection)
SyncProviderException, 363
try-catch block, 324–325

JavaEERecipes application, 17, 580
JavaEERecipes project, 578
JavaEERecipesJPA.war file, 447
JavaEERecipesJTA persistence unit, 415
JavaEERecipes.war file, 1
JavaEERecipes web.xml configuration file, 564
Java Enterprise Applications, 673
Java Enterprise platform, 647
JavaFX

Button node, 620
database

BookView class, 626
cellValueFactory, 628

EntityManagerFactory, 628
findAllBooks() method, 628
getColumns().addAll() method, 629
observableArrayList method, 628
org.javaeerecipes.javafx.entity.

Book, 621–624
org.javaeerecipes.javafx.session.

AbstractFacade, 624–625
org.javaeerecipes.javafx.session.

BookFacade, 624
persistence.xml, 628
PropertyValueFactory class, 629
TableColumn, 629
TableView, 621

EJB data
BookViewNode, 631–632
build() method, 633
create() method, 633
FXCollections.observableArrayList()

method, 634
SceneBuilder statement, 633–634
start() method, 633
TableView, 629–630
TabPane, 632

EventHandler, 620
“Hello World” application, 619
HelloWorld JavaFX main class, 618–619
JavaEERecipesFX, 615–616
javafx.application.Application, 620
javafx.scene.Node class, 620
javafx.scene.Scene object, 620
javafx.stage.Stage object, 620
Label node, 620
MVC

AcmeBookstoreMainController
class, 637–638

acme_bookstore_main.fxml, 636
<AnchorPane> element, 636–637
fx:controller, 640
FXML, 638–639
initialize() method, 640
javafx.scene.control.Label node, 639
javafx.scene.layout.AnchorPane

class, 639
java.lang package, 639

NetBeans New Project dialog, 616–617
NetBeans Platform Manager, 619
NetBeans 7.x, 619
New JavaFX Application dialog, 617
REST services

acme_bookstore_rest.fxml, 643
clientLabel, 645
createTask method, 645
EventHandler<WorksrStateEvent>, 645
javafx.application.Application

class, 644

■ index

688

Java Database Connectivity (JDBC) (cont.)

http://www.it-ebooks.info/

obtainData method, 645
RESTFulCientController, 643–644
service client, 641–642
user interface, 640–641

setOnAction() method, 620
setText() method, 620
start method, 619
VBox node, 620

java.lang.Thread, 647
Java Message Service (JMS), 409

create and send message
run application, 525
using simplified API, 525–526
using standard API, 524

durable subscribers (see Durable message
subscribers)

message filtering
run application, 530
sendMessage1 method, 529
sendMessage2 method, 529
string-based expressions, 531

queues
browseMessages() method, 531
QueueBrowser object, 532
run application, 532

receive message
run application, 528
using simplified API, 528
using standard API, 528
using standard JMS API, 527

resources
connection factory resources, 521
destination resources, 522
using NetBeans IDE, 518
within GlassFish application server

environment, 520
session

connection, 523
createSession method, 523
message acknowledgment, 524
nontransactional, 524
run application, 523

java.naming.NamingException, 324
Java Persistence API (JPA), 369, 447

EclipseLink, 369–370
Hibernate, 369–370
KODO, 369
OpenJPA, 369
TopLink, 369, 370
translating code, 369

Java Persistence Query Language (JPQL), 401
aggregate functions, 458
bulk updates and deletes

Criteria API, 465–466
CriteriaBuilder, 466
Employee entity, 465

EmployeeSession bean, 465
javax.persistence.criteria.CriteriaDelete

object, 466
javax.persistence.criteria.CriteriaUpdate

object, 466
MetaModel API, 467
org.javaeerecipes.jpa.session.EmployeeSession.

java class, 465
CriteriaQuery, 447
database stored procedures, 459
entity subclasses, 467
filtering query results, 450
functional expressions

arithmetic functions, 464
authorList, 463
datetime functions, 464
findAuthorByLast method, 463
HAVING clause, 463
org.javaeerecipes.jpa.session.

BookAuthorFacade class, 463
string functions, 463
strings, 462
WHERE clause, 462–463

joining entities
instances retrieval, 460
rows retrieval, 461

more than one entity
authorBooks SqlResultSetMapping, 456
@ColumnResult annotation, 457
@FieldResult annotation, 457
HashMap, 455, 457
JSF dataTable source, 456
Object[] list, 457
org.javaeerecipes.jpa.entity.BookAuthor

entity class, 454
org.javaeerecipes.jpa.session.

BookAuthorFacade session
bean, 455

@SqlResultSetMapping
annotation, 454, 456–457

string-based key, 457
native queries

createNativeQuery method, 452–453
database records, 452
dynamic query, 454
getResultSet method, 453
javax.persistence.Query methods, 452
@NamedNativeQuery annotation, 452–453
org.javaeerecipes.jpa.entity.Book

entity, 453
org.javaeerecipes.jpa.session.BookFacade

bean, 453
SqlResultSetMapping, 453–454

ON conditions, 468
query execution, 464
querying all entity instances

■ index

689

http://www.it-ebooks.info/

BookAuthor entity, 448–449
createQuery method, 448
CriteriaQuery object, 448–449
findAuthor method, 448
FROM clause, 449
javax.persistence.Query interface

methods, 449
record, 448
ResultList, 448
SELECT clause, 449
TypedQuery object, 450

returning single object, 451
JavaScript Object Notation (JSON), 605
JavaServer Faces (JSF)

Ajax(see Ajax)arithmetic and reserved words
EvaluationController, 147
JSF EL expressions, 146
working principle, 148

bean actions invoking, 157
f:viewAction facet, 157
JSF Life-Cycle Phases, 158
onPostback attribute, 158
preRenderView, 157
process validation phase, 158
String validateUser, 158

bookmarkable URLs
authorList property, 151
f:viewParam tag, 150
org.javaeerecipes, 151
working principle, 152

check box
attributes, 234
false value, 231
managed bean controllers, 232
populateNotificationTypes method, 235
recipe05_07.xhtml, 232
selectBooleanCheckbox component, 234–235
selectManyCheckbox component, 234–235
true value, 234

component and tag primer
attributes, 201–202
binding components, 203
core tags, 201
HTML, 199

data collection
attributes, 249
dataTable component, 245, 249, 251
f:facet tag, 251
h:column Attributes, 250
managed bean, 247–248
recipe05_10.xhtml, 245
styles.css sheet, 247

evolution, 97
FacesServlet, 97

file upload component, 253
graphics, 230–231
information message display

h:message component, 119
Java EE 7 Recipes, 119
MessageController, 119
working principle, 121

input form creation
h:form tags, 207
input component tag attributes, 208
inputHidden component, 208
inputSecret component, 208
inputText component, 208
inputTextarea component, 208
managed bean, 205–207
recipe05_01.xhtml, 204

invoke action methods
action attribute, 214
actionListener method, 214
commandButton component, 209, 212
commandLink component, 209, 212–213
managed bean, 210
recipe05_02.xhtml, 209

JavaBeans, 97
library, 252
managed bean writing, 103

CalculationController, 104
JSF view, 107
Plain Old Java Object, 104
scopes, 109
string list creation, 104
working principle, 108

message updation
FacesContext, 130
manage bean, 129
resource bundle creation, 129
working principle, 131

navigation, 122
action attribute, h:commandButton

components, 124
conditional navigation, 124
faces-config.xml file, 127
h:commandButton components, 123
implicit navigation, 125
NavigationController, 123, 125
techniques, 123
working principle, 128

NetBeans
downloading and installing, 100
HelloWorldController, 101
index.xhtml file, 101

object list display
h:dataTable components, 153
style sheet source, 154
working principle, 156

■ index

690

Java Persistence Query Language (JPQL) (cont.)

http://www.it-ebooks.info/

output components
attributes, 217
graphicImage component, 219
link Component Additional Attributes, 220
managed bean, 215, 217
outputFormat component, 218
outputLabel additional attributes, 219
outputLabel component, 217
outputLink additional attributes, 218
outputLink componenet, 217
outputLink and outputLabel

components, 218
outputText, 217
outputText component, 218
recipe05_03.xhtml, 214

page expression evaluation, 139
immediate attribute, 139
recipe03_08.xhtml, 139
working principle, 141

page layout
Cascading Style Sheets, 242
panelGrid components, 238, 245
panelGroup component, 238, 244
recipe05_09.xhtml, 238
ValueExpressions, 243

page pass parameters
ArrayList, 143
Author class, 144
displayAuthor method, 142
JSF EL expression, 141
working principle, 145

radio button, 236, 238
request-driven, 97
selection

component attributes, 229
f:selectItem or f:selectItems tags, 229
itemValue and itemLabel attributes, 229
LinkedHashMap, 229
managed bean, 227
recipe05_05.xhtml, 226
SelectItem objects, 230
selectManyListbox component, 226, 230
selectManyMenu component, 226, 230
selectOneListbox component, 226, 230
selectOneMenu component, 226

simple JSF application
creation, 97
Java IDE, 98
JSF managed bean examination, 99
JSF managed bean field value display, 98
pre-JSF 2.0 environment, 100

sophisticated user interface, 110
AuthorController, 112
form id, 117
h:commandButton component, 118

h:dataTable, 118
h:graphicImage tag, 117
h:inputText component, 118
h:outputLabel tag, 117
working principle, 117
XHTML, 110

user input validation
custom validator, 133
Employee class, 136
JSF managed bean, 134
JSF validator, 132
tags, 132
working principle, 138

validation
constraint annotations, 224
email property, 222
FacesContext, 226
f:validateBean tag, 225
f:validateDoubleRange validator, 224
f:validateLength, 221, 224
f:validateLongRange, 224
f:validateRegex validator, 224
f:validateRequired validator, 224
javax.faces.validator.ValidatorException, 226
recipe05_04.xhtml, 221
UIComponent, 226
validatePassword method, 222–223
validator attribute, 222

working principle, 102
Apply Request Values phase, 103
Facelets, 102–103
Invoke Applications phase, 103
JSF managed bean, 103
JSF parts, 102
Process Validations phase, 103
Render Response phase, 103
restore view, 102
Update Model Values phase, 103
web.xml file, 103

JavaServer pages (JSP), 1
business logic separation

field’s getter method, 58
<jsp:useBean> element, 60
jsp:useBean element scopes, 60
RandomBean, 58–59

conditional expression
code, 64
and expression, 67
functions.tld file, 65–66
isPrimitive function, 65–67
<jsp:useBean>, 63
JSTL, 67
static modifier, 66
String value, 63
taglib directive, 66

■ index

691

http://www.it-ebooks.info/

TLD, 63
typename field, 65

custom tag creation
authorName attribute, 77
custom.tld TLD, 80
cust:signature element, 79
default signature, 77
doEndTag() method, 80
doStartTag() method, 80
doTag method, 79–80
getJspContext method, 80
<html> element, 80
javax.servlet.jsp, 77–78
JSP code, 79
JSP 2.0 simple tag support, 77
mapping, 78
MVC architecture, 81
PageContext’s getOut method, 80
short-name element, 80
Signature class, 77–78
SimpleTagSupport class, 77, 79
tag-class element, 80

document creation, 67–69
EL expressions

arithmetic expressions, 71
arithmetic operators, 74
${ and } character sequences, 72
<c:if> tags, 73
conditional and/or arithmetic expressions, 69
conditional logic, 69
conditional page rendering, 71
implicit objects, 72–73
JavaBean property, 72
JSTL <c:if> tag, 71
JSTL tag library, 69–70
language, 71
reserved words, 73–74
${ } syntax, 72
turn off, 95–96

embedding Java code, 56–58
error handling, 91–94
input form creation, database record, 83–87
life cycle, 55–56
parameter accessing, multiple pages, 74–77
records display, database table

AuthorBean class, 89–91
Author class, 88–89
code, 87–88
getAuthorList method, 91
Java classes, 87
jsp:useBean element, 91
JSTL c:forEach element, 87, 91
queryAuthors method, 91
var attribute, 91

scriptlets
disabling, 94–95
embedded Java code, 53, 57–58

static/dynamic pages embedding, 81–82
values setting/yielding

accessor methods, 62
EasyBean, 60, 62
EL expressions, 60
getFieldValue, 62
input form, 61
JavaBean class, 61–62
jsp:getProperty element, 63
jsp:setProperty element, 62
jsp:useBean element, 62
POST method, 62
setFieldValue, 62

web page development
dynamic code, 54
getCurrentDate method, 55
JavaBean, 54–55
.jsp extension, 55
<jsp:useBean> tag, 55

Java servlets. See Servlets
Java specification requests (JSRs), 369
java.sql.PreparedStatement object, 335
java.sql.SQLException, 324–325
Java standard tag library (JSTL), 67
java.util.concurrent, 647
java.util.concurrent.Callable, 657
java.util.concurrent.ExecutorService, 647
java.util.concurrent.TimeUnit, 595
java.util.Runnable, 654
Java Web Project, 673–674
Java Web Services

binding filters and interceptors, 593
consuming and producing, REST, 585–586
enterprise application development, 563
filtering request and responses, 591–592

binding filters and interceptors, 593
@BindingPriority annotation, 593
filters, 592
entity interceptors, 592

Java EE Project, 577–578
JAX-RS, 563
JAX-RS Client (see JAX-RS Client)
JAX-WS, 563
JAX-WS Web Service (see JAX-WS web service)
Jersey JARs, 564
RESTful, 564

@DELETE, 584
entity class, 580–582
@GET, 584
getUserMessage method, 584
Java class, 583
JavaEERecipes project, 579

■ index

692

JavaServer pages (JSP) (cont.)

http://www.it-ebooks.info/

NetBeans, 580
@Path annotation, 584
REST Service Annotations, 583
root resource class, 579

web service implementations, 563
javax.concurrent.ManagedScheduledExecutorService

interface, 661
javax.ejb.Singleton annotation, 436
javax.enterprise.concurrent.Managed

ExecutorService, 655
javax.enterprise.concurrent.Managed

Task interfaces, 655, 657
javax.enterprise.concurrent.Managed

ThreadFactory, 663
javax.faces.validator.ValidatorException, 226
javax.jms.Queue, 445
javax.json.Json class, 613
javax.jws.WebMethod annotation, 564
javax.persistence.cache.retrieveMode

hint, 464–465
javax.persistence.criteria.CriteriaBuilder

interface, 466
javax.persistence.Persistence

createEntityManagerFactory method, 410
javax.servlet.Filter interface, 24
javax.servlet.http.Cookie object, 44
javax.servlet.http.HttpSessionListener, 28
javax.transaction.UserTransaction interface, 658–659
javax.ws.rs.client.Client, 587
javax.ws.rs.client.ClientBuilder newClient method, 587
javax.xml.ws.Endpoint object’s, 572
JAX-RS Client

Client setProperty method, 587
Employee entity, 589
get method, 589
Invocation, 590
JavaEERecipes application, 587
javax.ws.rs.client.Client, 587
MediaType fields, 588
readEntity method, 589
request method, 589
RESTful web service, 586
Web Resource Targets, 587
WebTarget injection, 590

JAX-RS method Long-Running Operations
Asynchronously, 594–596

JAX-WS web service
Acme Bookstore database, 565
coding directly/IDE, 569
deploy, 572–573
endpointInterface attribute, 569
javax.jws.WebMethod annotation, 564
NetBeans 7.x IDE, 566–569
obtainContactList, 565
service implementation class, 569
@SOAPBinding interface, 569

stand-alone Java client application, 574–576
web-based client application, 564
@WebMethod annotation, 569–570
@WebService annotation, 566, 570
WSDL document, 571
WSDL file, 573–574

JMS 2.0 aligned activationConfig properties, 446
JobOperator, 668
JoinRowSet, 367

addRowSet method, 367
CachedRowSet objects, 367
JOIN query, 364

JPQL tool, 679
JSF

autocompletion, 297–299
custom annotation class (see Custom

annotation class)
custom conversion, 271–273
customized data table

CartController class, 305
h:dataTable component, 307
p:dataTable component, 304, 307
p:rowEditor component, 307
PrimeFaces, 306–307
recipe06_16.xhtml, 304
RichFaces library, 306
RowEditEvent, 305, 307
third-party component library, 304
updateRowData method, 305, 307

HTML5 component
cc:implementation tags, 295
cc:interface tags, 294
composite component, 292
Recipe 4, 294
recipe06_12.xhtml, 293
recipe06_18.xhtml, 314
taglib URI, 314–315
video component, 292
web components, 294

listener method, 285–286
managed bean scopes

CartController, 275, 283
cart.xhtml, 279
dataTable component, 279
review cart item, 282
@SessionScoped annotation, 282
shopping cart, 274, 276, 278

page flow development (see Page flow development)
phase event, 295–296
system-level events, 283–284
viewAction component, 286–288

jsf.ajax.request() function, 269
jsf.ajax.request() method, 261, 270–271
JSF application projects, 675–678
JSF dataTable component, 348
Json.createReader() method, 613

■ index

693

http://www.it-ebooks.info/

JSON object
building

beginArray() method, 611
beginObject(), 611
JsonObjects, 610
JsonObjectBuilder, 610
JsonObjectBuilder.beginObject()

method, 611
technicalReviewer objects, 611

reading from input source, 612
writing, 612

JsonObjectBuilder class, 610–611
JsonParser, 614
JsonWriter class, 612
JsonWriter writeObject() method, 612
Jython servlet

BookstoreJython.py servlet, 602
convertHTML function, 603
doGet and doPost, 603
org.python.util.PyServlet, 602
response.getWriter(), 603

L���������
LinkedHashMap, 229
@Local annotation, 415, 443–444
@Lock annotation, 436
LowerConverter, 272

M���������
@ManagedBean annotation, 168
ManagedExecutorService, 594–595

application server administrators, 650
asadmin create-managed-executor-service, 647
AuthorTask, 656
AuthorTaskTwo, 656
concurrent/BatchExecutor, 648
concurrent/BuilderExecutor, 655
GlassFish, 647
GlassFish Managed Executor Services

panel, 649
GlassFish Server Administration Console, 649
JNDI name, 650
List<Future<object>>, 657
New Managed Executor Service panel, 649–650
@Resource annotation, 651, 654, 657
Runnable, 655
submit method, 595, 654
UserTransaction interface, 658
web.xml, 653

@ManagedProperty annotation, 187
ManagedScheduledExecutorService, 661
ManagedThreadFactory, 663–664
ManagedThreadFactory resource, 662

ManageThreadFactory newThread method, 663
MapMessage, 526
matheval field, 36
MathServlet, 15
MessageBodyWriter implementations, 592
message component, 268
Message consumer, 528
@MessageDriven annotation, 445–446
Message-driven EJBs, 409
MessageListener interface, 445
messageReceiver method, 605
META-INF directory, 665
Model view controller (MVC)

AcmeBookstoreMainController class, 637–638
acme_bookstore_main.fxml, 635–636
<AnchorPane> element, 636–637
fx:controller, 640
FXML, 638–639
initialize() method, 640
javafx.scene.control.Label node, 639
javafx.scene.layout.AnchorPane class, 639
java.lang package, 639

moveToInsertRow method, 363

N���������
@NameBinding annotation, 593
@NamedNativeQuery annotation, 453
@NamedQuery annotation, 402
@NamedStoredProcedure solution, 460
NavigationHandler, 288
NetBeans IDE, 161

Add Server, 671
EJB entity classes, 678
expand and administer server, 673
HTML5, 679–681
Java Enterprise Applications, 673
Java Web Project, 673–675
JPQL, 679
JSF application files, 675–678
remote server, 671
Set Server Location, 672

newsletterSubscriptionMsgs, 264
newThread method, 664
NonUniqueResultException, 452

O���������
ObjectMessage, 526
Object-relational mapping (ORM), 369, 458

automatic schema generation
annotations, 407–408
DDL script, 406
EJB 3.2, 405
NetBeans/Eclipse, 405

■ index

694

http://www.it-ebooks.info/

object-relational metadata, 405
PersistenceProvider generateSchema

method, 405
properties, 406
SQL scripts, 405

creation and performing standard database
transaction, 369

data type mapping
CONTACT database table, 375–376
database column’s data type, 376
entity class creation, 377
Oracle and Java, 377

definition, 369
entity class creation

annotations, 374
BOOK_AUTHOR database table, 370, 372
camel-case lettering, 373
definition, 372
EJB technology, 370
java.io.Serializable interface, 373
javax.persistence.Entity annotation, 373
@Lob annotation, 373
@NotNull annotation, 373
String variable, 373
@Table annotation, 373

entity field
bean validation mechanism, 403
data validation, 404
JavaScript field validation, 404
@Pattern annotation, 404
persistent field/property, 403
POJO, 404

entity objects, 369
@ManyToMany annotation, 397
ManyToMany relation

cascade, 399
entity creation, 400
fetch, 399
@JoinTable annotation, 400
mappedBy, 399
owning entity, 398
persistent field/property, 399
targetEntity, 399

ManyToOne relation
AuthorDetail object, 396
field/property, 394
persistent field or property, 396

named query
BookAuthor entity class, 401–402
JPQL query, 402
@NamedQuery annotation, 402
persistence.xml file, 401
while loop, 402

@OneToMany annotation, 397
OneToMany relation

AuthorDetail class, 395
AuthorDetail objects, 396
cascade, 397
fetch, 397
field/property, 394
nonowning entity, 396
orphanRemoval, 397
owning entity, 396
owning object, 394
targetedEntity, 397

One-to-One relation
AUTHOR_DETAIL table, 392–393
Author entity, 392
cascade operation, 393
fetch, 393
mappedBy attribute, 394
@OneToOne annotation, 391
optional attribute, 394
owned relation, 391
unique identifier, 393

persistence unit creation
database connection pool, 377
database transaction, 377
EntityManagerFactory object, 379
Java Transaction API/Resource-Local

entity manager, 378
local JDBC connection, 377
persistence.xml code, 378
persistence.xml configuration file, 380
properties of element, 379
WAR/EAR file, 378

primary key value creation
AuthorWorkPKEmbedded class, 385–386
AUTO value, 383
BookAuthor entity, 380
BOOK_AUTHOR_S sequence, 381
bookId and authorId columns, 384, 387–389
embeddable techniques, 389
equals() method, 390
@GeneratedValue annotation, 382–383
@Id annotation, 386, 390
ID column, 384–385
IDENTITY value, 383
javax.persistence.EmbeddedId annotation, 383
javax.persistence.IdClass annotation, 383
local JDBC database, 381
nonembedded technique, 390–391
persistent fields/property, 390
@SequenceGenerator annotation, 382
SEQUENCE value, 383
TABLE value, 383
unique identifier, 389

obtainCustomList method, 432
onDataAvailable method, 51
@OneToOne annotation, 391

■ index

695

http://www.it-ebooks.info/

onMessage method, 445
onWritePossible method, 51
Opening/closing template clients, 171–172
Optional transaction life-cycle callbacks

AcmeFacade bean, 441
container-managed transaction demarcation, 442
TransactionAttributeType.REQUIRES_NEW

attribute, 441
Oracle Glassfish application server

administrative console
administrator password, 478
Common Tasks panel, 478
domain panel, 478
General Information panel, 479
login, 477
main screen, 477
Resources menu, 480
“server” menu option, 479

administrative user password
default administrator password, 481
domain menu, 481
New Administrator Password form, 480

database resource
additional JDBC connection properties, 486
connection pool, 484
JDBC Resources, 485
new JDBC connection pool, 485
opening and closing connections, 487
RDBMS, 484
types, 487

forms-based authentication
database table, 488
JDBC Security Realm Class, 490
login form, 494
new security realm, 490
realm listing, 491
security configuration, 493
sun-web.xml configuration file, 492

installation
Config Results screen, 475
directory screen, 473
Glassfish v4 ZIP archive, 471
graphical user interface, 476
Java EE 7 development, 471
typical Installation, 472
update tool screen, 474
ZIP archive, 475

JavaMail, 494
WAR archive

Applications panel, 482
autodeployment option, 483
deploy applications/modules, 483
deployed applications, 482
EAR files, 484
Java web application deployment, 484

oracle.jdbc.pool.OracleDataSource, 320
OrderFacade class, 417
org.javaeerecipes.chapter07, 326
org.javaeerecipes.jpa.session.AuthorWork

Facade class, 458
org.javaeerecipes.jpa.session.BookFacade class, 451
ourExecutorServiceName, 650
OUTER join, 469
out.println method, 14
outputFormat component, 218
outputLabel components, 218
outputLink componenet, 217–218
outputText component, 218

P���������
Page flow development

definition, 312
EL variable, 314
exampleFlow, 309
faces-config.xml file, 308
FlowBean, 309
<flow-definition> section, 308
flowname, 308
flow technology, 308
managed bean, 312
navigational rules, 313
web flow, 311

panelGrid and panelGroup components, 238
passivationCapable attribute, 442–443
PasswordLength, 300
@Path annotation, 584
p:dataTable component, 307
performCreate method, 334
performDelete method, 335
performFind method, 339
performUpdate method, 334
Persistence.createEntityManagerFactory

method, 379
PersistenceException, 429
Persistence generateSchema method, 405
PersistenceProvider generateSchema

method, 405
@PersistenceUnit annotation, 416
persistence.xml configuration file, 679
persist method, 429
PhaseListener, 296
Plain old Java object (POJO), 104, 404
poll component, 291
populateNotificationTypes method, 235
@POST, 584
@PostActivate annotation, 422, 443
@PostConstruct annotation, 415, 422
PostConstructApplicationEvent, 285
@PreDestroy annotation, 415, 422

■ index

696

http://www.it-ebooks.info/

PreDestroyApplicationEvent, 285
PreparedStatement object, 335, 338–341, 353
@PrePassivate annotation, 422, 443
PrimeFaces autoComplete component, 299
PrimeFaces component library, 252
PrimeFaces dataTables, 306
PrintWriter object, 7
PrintWriter println method, 12
processEvent method, 284
processEvent(SystemEvent event) method, 283–284
processItem method, 669
<processor> element, 668
processRequest method, 7, 14, 44
<properties> element, 668
p:rowEditor component, 307
publish method, 572
@PUT, 584

Q���������
QName object, 575
queryBooks method, 350

R���������
readEntity method, 589
ReaderInterceptor, 592
readFrom method, 592
readItem method, 668
ReadListener, 51–52
readyState attribute, 609
RecipeServlet, 84
@Remote annotation, 415, 443–444
@Remove method, 421
Representational state transfer (REST) web services

acme_bookstore_rest.fxml, 643
clientLabel, 645
createTask method, 645
EventHandler<WorksrStateEvent>, 645
javafx.application.Application class, 644
obtainData method, 645
RESTFulCientController, 643–644
service client, 641–642
user interface, 640

request method, 589
RequestScoped, 205
response.getCookies(), 44
response.getWriter method, 14
ResultSet.CONCUR_READ_ONLY, 353
ResultSet.CONCUR_UPDATABLE, 353
ResultSet getInt method, 331
ResultSet getString method, 331
ResultSet objects, 331, 352
@Retention annotation, 303
reviewItem.xhtml, 280

RichFaces component library, 252
RichFaces library, 306
RowEditEvent, 307
RowSet objects

AUTHOR_WORK.AUTHOR_ID column, 367
CachedRowSet, 367
key-value relationships, 367

run method, 660

S���������
scheduleAtFixedRate method, 662
ScheduleExecutorService interface, 662
Scriptlets, 53, 57–58, 94–95
Scrollable ResultSets

constants, 353
org.javaeerecipes.chapter07.dao.ChapterDAO

class, 351
PreparedStatement, 352–353
ResultSet.CONCUR_READ_ONLY, 353
ResultSet.CONCUR_UPDATABLE, 353

Secure Sockets Layer (SSL), 543
Security

authentication backend
Enterprise JavaBean, 546
HTTP request login, 556
JSF Managed Bean, 551
User entity, 553–556

basic web application authentication
@DeclareRoles and @RolesAllowed

annotation, 541
forms-based security, 540
web-resource-collection element, 542
web.xml deployment descriptor, 541
XML configuration, 542

custom security certificates
CSR, 562
Glassfish application server, 561

Glassfish
authentication and access purposes, 540
edit realm form, 538
file users form, 539
file users list, 539
New File Realm User form, 539
realms form, 538

JSF application
Boolean, 557
conditional logic, 557
managed bean controller, 558
PrimeFaces panel component, 558

LDAP server
form-login-page and form-error-page value, 561
New LDAP security realm, 560
security realm, Glassfish, 559

programmatic login form

■ index

697

http://www.it-ebooks.info/

Acme Bookstore template, 546
creation, 544
JSF and Facelets, 544

selectBooleanCheckbox component, 234–235, 237
selectManyCheckbox component, 234–235
selectManyMenu component, 226
selectOneListbox component, 226
selectOneMenu component, 226
selectOneRadio component, 236–237
sendRedirect method, 40
@ServerEndpoint annotation, 606
Server-side POJO class, 605
service method, 6
ServiceUnavailableException, 595
Servlet

attribute changes, 25–27
beingDestroyed value, 45
browser, 41–42, 44
compiling, 7–8
container events, 18–20
deploying, 7
destroy method, 45
develop

configuration and mapping, 4
doGet and doPost methods, 7
GenericServlet, 7
HttpServlet class, 6
HttpServletRequest object, 6
IDE, 5
init method, 6
javac command-line utility, 5
javax.servlet, 6
processRequest method, 6–7
request-response programming model, 5
service method, 6
ServletConfig interfaces, 7
simple servlet creation, 3
SimpleServlet.java file, 5

dispatching requests, 35–40
dynamic content, 12–14
file download, 31–33
filtering web requests, 23–24
handling requests and responses, 15–17
initialization parameters, 21–22
Java enterprise environment, 2
Java web applications, 1
JSF, 1
JSP, 1
non-blocking I/O

AcmeReaderServlet, 48
AcmeReadListenerImpl class, 47
AsyncContext.complete method, 51
onDataAvailable method, 51
ReadListener, 46, 51–52

ServletInputStream, 46–47, 51
ServletOutputStream.canWrite method, 51
WebSockets protocol, 50
WriteListener, 51–52

package, 7, 9
redirect, 40–41
session attributes, 29–31
session listener, 27–29
Sun Microsystems, 1
@WebServlet annotation, 9, 11–12

ServletConfig interfaces, 7
ServletContextEvent, 20
ServletContextListener, 20
ServletOutputStream.canWrite method, 51
ServletRequest and ServletResponse objects, 24
Session bean, 415
SessionContext.getUserTransaction() method, 659
sessionCreated method, 27, 29
sessionDestroyed method, 27, 29
@SessionScoped annotation, 282
SessionScoped managed beans, 274
SessionServlet, 30
setAttribute() method, 29
SET command, 8
setMaxAge and setHttpOnly methods, 44
setName and setValue methods, 44
setParameter method, 450–451
setProperty method, 587
setTimeoutHandler, 595
SimpleServlet.class file, 9
SimpleServlet.java file, 5, 8
Singleton bean

Acme Bookstore Facelets template, 436
BookstoreSessionController bean, 435
BookstoreSessionCounter bean, 434
@DependsOn annotation, 436
Java synchronization techniques, 437
javax.ejb.Singleton annotation, 436
@Lock annotation, 436
@PostConstruct callback annotation, 436
@Startup annotation, 436
thread-safe, 436
tracking number of visitors, 434

@SOAPBinding interface, 569
SQL injection

DAO (see Data access object (DAO))
executeQuery method, 340
executeUpdate method, 341
java.sql.PreparedStatement object, 335
performFind method, 339
PreparedStatement, 335, 338–341
String, 339
try-catch block, 339
try-with-resources clause, 340

SqlResultSetMapping, 453–454

■ index

698

Security (cont.)

http://www.it-ebooks.info/

@SqlResultSetMapping annotation, 454, 457
SqlResultSetMapping parameters, 456
@Stateful annotation, 421, 442
Stateful session beans, 409

CartController code, 418
client and bean one-to-one mapping, 421
conversational state, 417
life cycle, 421
OrderFacade class, 417
passivation, 422, 442
@PostConstruct, @PrePassivate, @PostActivate, and

@PreDestroy annotations, 422
@Remove method, 421
Serializable variables, 421
@Stateful annotation, 421
@StatefulTimeout annotation, 422

Stateless session beans, 409
abstract class, 413
AbstractFacade class, 413, 416
BOOK entity, 411
BookFacade class, 412
business interfaces, 415
callback methods, 415
class creation, 411
EntityManager object, 415–416
findByTitle method, 413, 416
JavaEERecipesJTA persistence unit, 415
JDBC DataSource declaration, 415
life cycle, 416
no-argument constructor, 415
@Stateless annotation, 415
thread-safe, 415

Statement executeQuery method, 334
StreamMessage, 526
Structured Query Language (SQL), 369
Sun Microsystems, 1
@Suspended annotation, 595
SyncProviderException, 363
Syntactic metadata, 302
SystemEventListener class, 285
SystemEventListener interface, 283–284
System.out() method, 331

T���������
Tag library descriptor (TLD), 63
@Target annotation, 302
testAttr, 28
TextMessage, 526
@Timeout annotation, 440
TimeoutHandler, 595
@Timeout method, 441
toUpperCase method, 272, 333
@TransactionAttribute, 442
TransactionRequiredException, 429–430

TREAT keyword, 467–468
TREAT operator, 468
try-catch block, 324, 339
try-with-resources, 329, 340
ttributeRemoved method, 27

U���������
updateRowData method, 307
uploadFile method, 253
UserTransaction begin method, 659
UserTransaction commit method, 659

V���������
validatePassword method, 222–223
validator attribute, 222
valueChangeListener attribute, 235

W, X, Y, Z���������
Web archive (WAR), 378, 484
@WebFilter annotation, 24
WEB-INF directory, 8–9
WEB-INF/lib directory, 252
@WebInitParam annotation, 21–22
@WebMethod annotation, 569–570, 577, 579
@WebService annotation, 415, 577
@WebServiceRef annotation, 576
@WebServlet annotation, 9, 11–12
WebSockets

creation, 605
full-duplex communication mechanism, 605
sending messages

alert dialog, 609
bookChatRelay function, 606, 608
close() method, 609
if-statement, 608
JavaScript code, 608
JavaScript WebSocket object events, 609
onclick attribute, 606
onOpen handler, 609
readyState values, 609
send() method, 609
source listing, 606

WebTarget injection, 590
web.xml deployment descriptor file, 22
WHERE clause, 450
WidgetOutputItem object, 666–667
WidgetReportItem object, 665–667
writeItems method, 669
WriteListener implementation class, 51–52
WriterInterceptor, 592
writeTo method, 592
wsimport tool, 573

■ index

699

http://www.it-ebooks.info/

Java EE 7 Recipes
A Problem-Solution Approach

Josh Juneau

http://www.it-ebooks.info/

Java EE 7 Recipes: A Problem-Solution Approach

Copyright © 2013 by Josh Juneau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4425-7

ISBN-13 (electronic): 978-1-4302-4426-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewers: David Coffin and Mark Beaty
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editors: Kim Wimpsett and Kimberly Burton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code
http://www.it-ebooks.info/

This book is dedicated to my wife, Angela, and my four children—Kaitlyn, Jacob, Matthew, and Zachary.
You are my joy and inspiration. This book is also dedicated to the many Java developers worldwide.

I hope that these recipes can lead you to developing the sophisticated solutions of tomorrow.

— Josh Juneau

http://www.it-ebooks.info/

vii

Contents

About the Author �� xxxvii

About the Technical Reviewers ��� xxxix

Acknowledgments ��xli

Introduction ��xliii

Chapter 1: Introduction to Servlets ■ ���1

1-1. Setting Up a Java Enterprise Environment ..2

Problem ... 2

Solution.. 2

How It Works .. 2

1-2. Developing a Servlet ..3

Problem ... 3

Solution.. 3

How It Works .. 5

1-3. Packaging, Compiling, and Deploying a Servlet ...7

Problem ... 7

Solution.. 7

How It Works .. 8

1-4. Registering Servlets Without WEB-XML ...9

Problem ... 9

Solution.. 9

How It Works .. 11

http://www.it-ebooks.info/

■ Contents

viii

1-5. Displaying Dynamic Content with a Servlet ...12

Problem ... 12

Solution.. 12

How It Works .. 14

1-6. Handling Requests and Responses ..15

Problem ... 15

Solution.. 15

How It Works .. 17

1-7. Listening for Servlet Container Events...18

Problem ... 18

Solution.. 18

How It Works .. 20

1-8. Setting Initialization Parameters ..21

Problem ... 21

Solution #1... 21

Solution #2... 22

How It Works .. 22

1-9. Filtering Web Requests ..23

Problem ... 23

Solution.. 23

How It Works .. 24

1-10. Listening for Attribute Changes ...25

Problem ... 25

Solution.. 25

How It Works .. 26

1-11. Applying a Listener to a Session ..27

Problem ... 27

Solution.. 27

How It Works .. 28

http://www.it-ebooks.info/

■ Contents

ix

1-12. Managing Session Attributes ...29

Problem ... 29

Solution.. 29

How It Works .. 31

1-13. Downloading a File ..31

Problem ... 31

Solution.. 31

How It Works .. 34

1-14. Dispatching Requests ..35

Problem ... 35

Solution.. 35

How It Works .. 39

1-15. Redirecting to a Different Site ...40

Problem ... 40

Solution.. 40

How It Works .. 40

1-16. Securely Maintaining State Within the Browser ..41

Problem ... 41

Solution.. 41

How It Works .. 43

1-17. Finalizing Servlet Tasks ...45

Problem ... 45

Solution.. 45

How It Works .. 45

1-18. Reading and Writing with Nonblocking I/O ..46

Problem ... 46

Solution.. 46

How It Works .. 50

http://www.it-ebooks.info/

■ Contents

x

Chapter 2: JavaServer Pages ■ ��53

2-1. Creating a Simple JSP Page ..53

Problem ... 53

Solution.. 54

How It Works .. 55

2-2. Embedding Java into a JSP Page ..56

Problem ... 56

Solution.. 56

How It Works .. 57

2-3. Separating Business Logic from View Code ..58

Problem ... 58

Solution.. 58

How It Works .. 59

2-4. Yielding or Setting Values ..60

Problem ... 60

Solution.. 60

How It Works .. 62

2-5. Invoking a Function in a Conditional Expression ...63

Problem ... 63

Solution.. 63

How It Works .. 66

2-6. Creating a JSP Document ..67

Problem ... 67

Solution.. 67

How It Works .. 68

2-7. Embedding Expressions in EL ..69

Problem ... 69

Solution.. 69

How It Works .. 71

http://www.it-ebooks.info/

■ Contents

xi

2-8. Accessing Parameters in Multiple Pages ...74

Problem ... 74

Solution.. 75

How It Works .. 76

2-9. Creating a Custom JSP Tag ..77

Problem ... 77

Solution.. 77

How It Works .. 79

2-10. Including Other JSPs into a Page ...81

Problem ... 81

Solution.. 81

How It Works .. 82

2-11. Creating an Input Form for a Database Record..83

Problem ... 83

Solution.. 83

How It Works .. 86

2-12. Looping Through Database Records Within a Page ...87

Problem ... 87

Solution.. 87

How It Works .. 91

2-13. Handling JSP Errors ...91

Problem ... 91

Solution.. 91

How It Works .. 93

2-14. Disabling Scriptlets in Pages ...94

Problem ... 94

Solution.. 94

How It Works .. 94

http://www.it-ebooks.info/

■ Contents

xii

2-15. Ignoring EL in Pages ..95

Problem ... 95

Solution #1... 95

Solution #2... 95

Solution #3... 95

How It Works .. 96

Chapter 3: The Basics of JavaServer Faces ■ ��97

3-1. Writing a Simple JSF Application ...97

Problem ... 97

Solution #1... 98

Solution #2... 100

How It Works .. 102

3-2. Writing a Managed Bean ..103

Problem ... 103

Solution.. 104

How It Works .. 108

3-3. Building Sophisticated JSF Views with Components ...110

Problem ... 110

Solution.. 110

How It Works .. 116

3-4. Displaying Messages in JSF Pages ...118

Problem ... 118

Solution.. 118

How It Works .. 121

3-5. Navigation Based Upon Conditions ..122

Problem ... 122

Solution.. 123

How It Works .. 128

http://www.it-ebooks.info/

■ Contents

xiii

3-6. Updating Messages Without Recompiling ...129

Problem ... 129

Solution ... 129

How It Works .. 131

3-7. Validating User Input ..132

Problem ... 132

Solution.. 132

How It Works .. 138

3-8. Evaluation of Page Expressions Immediately ..139

Problem ... 139

Solution.. 139

How It Works .. 141

3-9. Passing Page Parameters to Methods ...141

Problem ... 141

Solution.. 141

How It Works .. 145

3-10. Arithmetic and Reserved Words in Expressions ...146

Problem ... 146

Solution ... 146

How It Works .. 148

3-11. Creating Bookmarkable URLs ..150

Problem ... 150

Solution.. 150

How It Works .. 152

3-12. Displaying Lists of Objects ...153

Problem ... 153

Solution ... 153

How It Works .. 155

http://www.it-ebooks.info/

■ Contents

xiv

3-13. Invoking Managed Bean Actions on Life-Cycle Phase Events ...157

Problem ... 157

Solution.. 157

How It Works .. 157

Chapter 4: Facelets ■ ��159

4-1. Creating a Page Template ..159

Problem ... 159

Solution.. 159

How It Works .. 161

4-2. Applying a Template to Your Views ..164

Problem ... 164

Solution.. 164

How It Works .. 171

4-3. Ensuring Resource Availability from All Views ...174

Problem ... 174

Solution.. 174

How It Works .. 177

4-4. Creating Reusable Templates That Act As Components ...177

Problem ... 177

Solution.. 177

How It Works .. 185

4-5. Handling Variable-Length Data on a Page ...187

Problem ... 187

Solution.. 188

How It Works .. 190

4-6. Debugging View Content ..195

Problem ... 195

Solution.. 195

How It Works .. 197

http://www.it-ebooks.info/

■ Contents

xv

4-7. Writing a Custom Resolver for Locating Facelets Templates and Resources197

Problem ... 197

Solution.. 197

How It Works .. 198

Chapter 5: JavaServer Faces Standard Components ■ ��199

Component and Tag Primer ...199

Common Component Tag Attributes .. 201

Common JavaScript Component Tags ... 202

Binding Components to Properties .. 203

5-1. Creating an Input Form ..203

Problem ... 203

Solution.. 203

How It Works .. 207

5-2. Invoking Actions from Within a Page ...209

Problem ... 209

Solution.. 209

How It Works .. 212

5-3. Displaying Output ...214

Problem ... 214

Solution.. 214

How It Works .. 217

5-4. Adding Form Validation ..220

Problem ... 220

Solution #1... 220

Solution #2... 221

Solution #3... 222

How It Works .. 224

5-5. Adding Select Lists to Pages ..226

Problem ... 226

Solution.. 226

How It Works .. 229

http://www.it-ebooks.info/

■ Contents

xvi

5-6. Adding Graphics to Your Pages ..230

Problem ... 230

Solution.. 230

How It Works .. 231

5-7. Adding Check Boxes to a View ...231

Problem ... 231

Solution.. 231

How It Works .. 234

5-8. Adding Radio Buttons to a View ...236

Problem ... 236

Solution.. 236

How It Works .. 237

5-9. Structuring View Layout ...238

Problem ... 238

Solution.. 238

How It Works .. 242

5-10. Displaying a Collection of Data ..245

Problem ... 245

Solution.. 245

How It Works .. 249

5-11. Utilizing Custom JSF Component Libraries ..252

Problem ... 252

Solution.. 252

How It Works .. 252

5-12. Implementing File Uploading ...253

Problem ... 253

Solution.. 253

How It Works .. 253

http://www.it-ebooks.info/

■ Contents

xvii

Chapter 6: Advanced JavaServer Faces and Ajax ■ ��� 255

6-1. Validating Input with Ajax...255

Problem ..255

Solution...256

How It Works ...260

6-2. Submitting Pages Without Page Reloads ...262

Problem ..262

Solution...262

How It Works ...263

6-3. Making Partial-Page Updates ..263

Problem ..263

Solution...264

How It Works ...264

6-4. Applying Ajax Functionality to a Group of Components ...265

Problem ..265

Solution...265

How It Works ...269

6-5. Custom Processing of Ajax Functionality ...269

Problem ..269

Solution...269

How It Works ...271

6-6. Custom Conversion of Input Values ...271

Problem ..271

Solution...272

How It Works ...273

6-7. Maintaining Managed Bean Scopes for a Session ...274

Problem ..274

Solution...274

How It Works ...282

http://www.it-ebooks.info/

■ Contents

xviii

6-8. Listening for System-Level Events ..283

Problem ... 283

Solution.. 283

How It Works .. 284

6-9. Listening for Component Events ..285

Problem ... 285

Solution.. 285

How It Works .. 286

6-10. Invoking a Managed Bean Action on Render ...286

Problem ... 286

Solution.. 286

How It Works .. 288

6-11. Asynchronously Updating Components ...289

Problem ... 289

Solution.. 289

How It Works .. 291

6-12. Developing JSF Components Containing HTML5 ...292

Problem ... 292

Solution.. 292

How It Works .. 294

6-13. Listening to JSF Phases ...295

Problem ... 295

Solution.. 295

How It Works .. 296

6-14. Adding Autocompletion to Text Fields ..297

Problem ... 297

Solution.. 297

How It Works .. 299

http://www.it-ebooks.info/

■ Contents

xix

6-15. Developing Custom Constraint Annotations ...300

Problem ... 300

Solution.. 300

How It Works .. 302

6-16. Customizing Data Tables ..304

Problem ... 304

Solution.. 304

How It Works .. 306

6-17. Developing a Page Flow ...308

Problem ... 308

Solution.. 308

How It Works .. 311

6-18. Constructing a JSF View in Pure HTML5 ..314

Problem ... 314

Solution.. 314

How It Works .. 315

Chapter 7: JDBC ■ ���317

7-1. Obtaining Database Drivers and Adding Them to the CLASSPATH317

Problem ... 317

Solution.. 318

How It Works .. 318

7-2. Connecting to a Database ..319

Problem ... 319

Solution #1... 319

Solution #2... 319

How It Works .. 322

7-3. Handling Database Connection Exceptions ...324

Problem ... 324

Solution.. 324

How It Works .. 325

http://www.it-ebooks.info/

■ Contents

xx

7-4. Simplifying Connection Management ..325

Problem ... 325

Solution.. 325

How It Works .. 329

7-5. Querying a Database..329

Problem ... 329

Solution.. 330

How It Works .. 330

7-6. Performing CRUD Operations ...332

Problem ... 332

Solution.. 332

How It Works .. 334

7-7. Preventing SQL Injection ..335

Problem ... 335

Solution.. 335

How It Works .. 339

7-8. Utilizing Java Objects for Database Access ...341

Problem ... 341

Solution.. 341

How It Works .. 347

7-9. Displaying Database Results in JSF Views ..348

Problem ... 348

Solution.. 348

How It Works .. 351

7-10. Navigating Data with Scrollable ResultSets ..351

Problem ... 351

Solution.. 351

How It Works .. 352

http://www.it-ebooks.info/

■ Contents

xxi

7-11. Calling PL/SQL Stored Procedures ...353

Problem ... 353

Solution.. 353

How It Works .. 354

7-12. Querying and Storing Large Objects ..355

Problem ... 355

Solution.. 355

How It Works .. 357

7-13. Caching Data for Use When Disconnected ...358

Problem ... 358

Solution.. 358

How It Works .. 361

7-14. Joining RowSet Objects When Not Connected to the Data Source363

Problem ... 363

Solution.. 364

How It Works .. 367

Chapter 8: Object-Relational Mapping ■ ���369

8-1. Creating an Entity ..370

Problem ... 370

Solution.. 370

How It Works .. 372

8-2. Mapping Data Types ...374

Problem ... 374

Solution.. 374

How It Works .. 376

8-3. Creating a Persistence Unit ...377

Problem ... 377

Solution.. 377

How It Works .. 378

http://www.it-ebooks.info/

■ Contents

xxii

8-4. Using Database Sequences to Create Primary Key Values ..380

Problem ... 380

Solution.. 380

How It Works .. 382

8-5. Generating Primary Keys with More Than One Attribute..383

Problem ... 383

Solution #1... 383

Solution #2... 386

How It Works .. 389

8-6. Defining a One-to-One Relationship ..391

Problem ... 391

Solution.. 391

How It Works .. 393

8-7. Defining One-to-Many and Many-to-One Relationships ..394

Problem ... 394

Solution.. 394

How It Works .. 396

8-8. Defining a Many-to-Many Relationship ...397

Problem ... 397

Solution.. 398

How It Works .. 399

8-9. Querying with Named Queries ...401

Problem ... 401

Solution.. 401

How It Works .. 402

8-10. Performing Validation on Entity Fields ...402

Problem ... 402

Solution.. 403

How It Works .. 404

http://www.it-ebooks.info/

■ Contents

xxiii

8-11. Generating Database Schema Objects Automatically ..404

Problem ... 404

Solution.. 405

How It Works .. 405

Chapter 9: Enterprise JavaBeans ■ ��409

9-1. Obtaining an Entity Manager ...409

Problem ... 409

Solution #1... 410

Solution #2... 410

How It Works .. 410

9-2. Developing a Stateless Session Bean ..411

Problem ... 411

Solution #1... 411

Solution #2... 412

How It Works .. 415

9-3. Developing a Stateful Session Bean ..417

Problem ... 417

Solution.. 417

How It Works .. 421

9-4. Utilizing Session Beans with JSF ...422

Problem ... 422

Solution #1... 422

Solution #2... 425

How It Works .. 427

9-5. Persisting an Object ...429

Problem ... 429

Solution.. 429

How It Works .. 429

-

http://www.it-ebooks.info/

■ Contents

xxiv

9-6. Updating an Object ..429

Problem ... 429

Solution.. 429

How It Works .. 430

9-7. Returning a Table Model ..430

Problem ... 430

Solution #1... 430

Solution #2... 432

How It Works .. 433

9-8. Creating a Singleton Bean ...434

Problem ... 434

Solution.. 434

How It Works .. 436

9-9. Scheduling a Timer Service ...437

Problem ... 437

Solution #1... 437

Solution #2... 438

How It Works .. 438

9-10. Performing Optional Transaction Life-Cycle Callbacks ..441

Problem ... 441

Solution.. 441

How It Works .. 442

9-11. Ensuring a Stateful Session Bean Is Not Passivated ...442

Problem ... 442

Solution.. 442

How It Works .. 443

9-12. Denoting Local and Remote Interfaces ..443

Problem ... 443

Solution.. 443

How It Works .. 443

http://www.it-ebooks.info/

■ Contents

xxv

9-13. Processing Messages Asynchronously from Enterprise Beans444

Problem ... 444

Solution.. 445

How It Works .. 445

Chapter 10: The Query API and JPQL ■ ���447

10-1. Querying All Instances of an Entity ..448

Problem ... 448

Solution #1... 448

Solution #2... 448

How It Works .. 448

10-2. Setting Parameters to Filter Query Results..450

Problem ... 450

Solution.. 450

How It Works .. 450

10-3. Returning a Single Object ..451

Problem ... 451

Solution.. 451

How It Works .. 452

10-4. Creating Native Queries ...452

Problem ... 452

Solution #1... 452

Solution #2... 452

How It Works .. 453

10-5. Querying More Than One Entity ...454

Problem ... 454

Solution #1... 454

Solution #2... 455

How It Works .. 456

http://www.it-ebooks.info/

■ Contents

xxvi

10-6. Calling JPQL Aggregate Functions ...458

Problem ... 458

Solution.. 458

How It Works .. 458

10-7. Invoking Database Stored Procedures Natively ...459

Problem ... 459

Solution.. 459

How It Works .. 460

10-8. Joining to Retrieve Instances Matching All Cases ...460

Problem ... 460

Solution.. 460

How It Works .. 461

10-9. Joining to Retrieve All Rows Regardless of Match ..461

Problem ... 461

Solution.. 461

How It Works .. 462

10-10. Applying JPQL Functional Expressions ..462

Problem ... 462

Solution.. 462

How It Works .. 463

10-11. Forcing Query Execution Rather Than Cache Use ..464

Problem ... 464

Solution.. 464

How It Works .. 465

10-12. Performing Bulk Updates and Deletes ...465

Problem ... 465

Solution.. 465

How It Works .. 466

http://www.it-ebooks.info/

■ Contents

xxvii

10-13. Retrieving Entity Subclasses ...467

Problem ... 467

Solution.. 467

How It Works .. 468

10-14. Joining with ON Conditions ..468

Problem ... 468

Solution.. 468

How It Works .. 469

Chapter 11: Oracle’s GlassFish ■ ��471

11-1. Installing the GlassFish Application Server ..471

Problem ... 471

Solution #1... 471

Solution #2... 471

How It Works .. 475

11-2. Logging into the Administrative Console ...476

Problem ... 476

Solution.. 476

How It Works .. 478

11-3. Changing the Administrator User Password ..480

Problem ... 480

Solution #1... 481

Solution #2... 481

How It Works .. 481

11-4. Deploying a WAR File ...482

Problem ... 482

Solution #1... 482

Solution #2... 483

How It Works .. 483

http://www.it-ebooks.info/

■ Contents

xxviii

11-5. Adding a Database Resource ...484

Problem ... 484

Solution.. 484

How It Works .. 487

11-6. Adding Forms-Based Authentication ...488

Problem ... 488

Solution.. 488

How It Works .. 493

11-7. Configuring and Using JavaMail ..494

Problem ... 494

Solution.. 494

How It Works .. 496

Chapter 12: Contexts and Dependency Injection ■ ���497

12-1. Injecting a Bean or Other Object ..497

Problem ... 497

Solution.. 497

How It Works .. 498

12-2. Binding a Bean to JSF Views ...499

Problem ... 499

Solution #1... 499

Solution #2... 501

How It Works .. 502

12-3. Allocating a Specific Bean for Injection ...503

Problem ... 503

Solution.. 503

How It Works .. 505

12-4. Determining Scope of a Bean ..506

Problem ... 506

Solution.. 506

How It Works .. 507

http://www.it-ebooks.info/

■ Contents

xxix

12-5. Injecting Non-bean Objects ...508

Problem ... 508

Solution #1... 508

How It Works .. 511

12-6. Ignoring Classes ..512

Problem ... 512

Solution #1... 512

Solution #2... 512

How It Works .. 512

12-7. Disposing of Producer Fields ...513

Problem ... 513

Solution.. 513

How It Works .. 513

12-8. Specifying an Alternative Implementation at Deployment Time513

Problem ... 513

Solution.. 514

How It Works .. 514

12-9. Injecting Bean Metadata ..514

Problem ... 514

Solution.. 514

How It Works .. 515

Chapter 13: Java Message Service ■ ���517

13-1. Creating JMS Resources ..517

Problem ... 517

Solution #1... 518

Solution #2... 520

How It Works .. 521

13-2. Creating a Session ...522

Problem ... 522

Solution.. 523

How It Works .. 523

http://www.it-ebooks.info/

■ Contents

xxx

13-3. Creating and Sending a Message ..524

Problem ... 524

Solution #1... 524

Solution #2... 525

How It Works .. 525

13-4. Receiving Messages ..527

Problem ... 527

Solution #1... 527

Solution #2... 528

How It Works .. 528

13-5. Filtering Messages...529

Problem ... 529

Solution.. 529

How It Works .. 531

13-6. Inspecting Message Queues ..531

Problem ... 531

Solution.. 531

How It Works .. 532

13-7. Creating Durable Message Subscribers ...532

Problem ... 532

Solution.. 532

How It Works .. 535

13-8. Delaying Message Delivery ..536

Problem ... 536

Solution.. 536

How it Works .. 536

Chapter 14: Authentication and Security ■ ��537

14-1. Setting Up Application Users and Groups in GlassFish ..537

Problem ... 537

Solution.. 537

How It Works .. 540

http://www.it-ebooks.info/

■ Contents

xxxi

14-2. Performing Basic Web Application Authentication ...540

Problem ... 540

Solution.. 540

Solution #2... 541

How It Works .. 542

14-3. Developing a Programmatic Login Form ...544

Problem ... 544

Solution.. 544

How It Works .. 556

14-4. Managing Page Access Within a JSF Application ..557

Problem ... 557

Solution.. 557

How It Works .. 558

14-5. Configuring LDAP Authentication Within GlassFish ..559

Problem ... 559

Solution.. 559

How It Works .. 560

14-6. Configuring Custom Security Certificates Within GlassFish ...561

Problem ... 561

Solution.. 561

How It Works .. 562

Chapter 15: Java Web Services ■ ���563

15-1. Creating a JAX-WS Web Service Endpoint ...564

Problem ... 564

Solution #1... 564

Solution #2... 566

How It Works .. 569

http://www.it-ebooks.info/

■ Contents

xxxii

15-2. Deploying a JAX-WS Web Service ...572

Problem ... 572

Solution #1... 572

Solution #2... 572

Solution #3... 572

How It Works .. 573

15-3. Consuming a JAX-WS Web Service via WSDL ...573

Problem ... 573

Solution.. 573

How It Works .. 574

15-4. Consuming a JAX-WS Web Service via a Stand-Alone Application Client574

Problem ... 574

Solution.. 574

How It Works .. 575

15-5. Integrating Web Services into a Java EE Project ...577

Problem ... 577

Solution.. 577

How It Works .. 579

15-6. Developing a RESTful Web Service ..579

Problem ... 579

Solution #1... 579

Solution #2... 580

How It Works .. 583

15-7. Consuming and Producing with REST ..585

Problem ... 585

Solution.. 585

How It Works .. 586

15-8. Writing a JAX-RS Client..586

Problem ... 586

Solution.. 586

How It Works .. 587

http://www.it-ebooks.info/

■ Contents

xxxiii

15-9. Filtering Requests and Responses ...591

Problem ... 591

Solution.. 591

How It Works .. 592

15-10. Processing Long-Running Operations Asynchronously ...594

Problem ... 594

Solution.. 594

How It Works .. 595

Chapter 16: Enterprise Solutions Using Alternative Programming Languages ■ ���������������597

16-1. Developing Servlets with Groovy ...598

Problem ... 598

Solution.. 598

How It Works .. 599

16-2. Working with Groovy Servlet Parameters ..600

Problem ... 600

Solution.. 600

How It Works .. 601

16-3. Developing Servlets with Jython ...602

Problem ... 602

Solution.. 602

How It Works .. 603

Chapter 17: WebSockets and JSON-P ■ ��605

17-1. Creating a WebSocket Endpoint ...605

Problem ... 605

Solution.. 605

How It Works .. 606

17-2. Sending Messages to a WebSocket Endpoint ..606

Problem ... 606

Solution.. 606

How It Works .. 608

http://www.it-ebooks.info/

■ Contents

xxxiv

17-3. Building a JSON Object ..610

Problem ... 610

Solution.. 610

How It Works .. 611

17-4. Writing a JSON Object to Disk ..612

Problem ... 612

Solution.. 612

How It Works .. 612

17-5. Reading JSON from an Input Source ...612

Problem ... 612

Solution.. 613

How It Works .. 613

Chapter 18: JavaFX in the Enterprise ■ ��615

18-1. Developing a Basic JavaFX Application ...616

Problem ... 616

Solution.. 616

How It Works .. 619

18-2. Incorporating Databases into a JavaFX Application ...621

Problem ... 621

Solution.. 621

How It Works .. 628

18-3. Constructing a Sophisticated UI Containing EJB Data ...629

Problem ... 629

Solution.. 629

How It Works .. 633

18-4. Developing an Enterprise Application Using MVC ..635

Problem ... 635

Solution.. 635

How It Works .. 638

http://www.it-ebooks.info/

■ Contents

xxxv

18-5. Incorporating REST Services into JavaFX Applications ..640

Problem ... 640

Solution.. 640

How It Works .. 644

Chapter 19: Concurrency and Batch Applications ■ ���647

19-1. Creating Resources for Processing Tasks Asynchronously in an Application Server647

Problem ... 647

Solution #1... 647

Solution #2... 649

How It Works .. 650

19-2. Configuring and Creating a Reporter Task ...651

Problem ... 651

Solution.. 651

How It Works .. 654

19-3. Running More Than One Task Concurrently ...655

Problem ... 655

Solution.. 655

How It Works .. 657

19-4. Utilizing Transactions Within a Task ...658

Problem ... 658

Solution.. 658

How It Works .. 659

19-5. Running Concurrent Tasks at Scheduled Times ...659

Problem ... 659

Solution.. 659

How It Works .. 661

19-6. Creating Thread Instances ...662

Problem ... 662

Solution.. 662

How It Works .. 664

http://www.it-ebooks.info/

■ Contents

xxxvi

19-7. Creating an Item-Oriented Batch Process ...664

Problem ... 664

Solution.. 664

How It Works .. 668

Appendix A: Java EE Development with NetBeans IDE ■ ��671

A-1. Configuring Application Servers Within NetBeans ...671

Developing Java Enterprise Applications ... 673

A-2. Creating a NetBeans Java Web Project..673

A-3. Creating JSF Application Files ...675

A-4. Developing EJB Entity Classes ..678

A-5. JPQL...679

A-6. HTML5..679

Index ���683

http://www.it-ebooks.info/

xxxvii

About the Author

Josh Juneau has been developing software and database systems for several
years. Enterprise application programming and database development has
been the focus of his career since the beginning. He became an Oracle Database
administrator and adopted the PL/SQL language for performing administrative
tasks and developing applications for Oracle Database. In an effort to build more
complex solutions, he began to incorporate Java into his PL/SQL applications
and later developed stand-alone and web applications with Java. Josh wrote his
early Java web applications utilizing JDBC to work with back-end databases. Later,

he incorporated frameworks into his enterprise solutions, including Java EE and JBoss Seam. Today, he primarily
develops enterprise web solutions utilizing Java EE and other enterprise technologies.

He has extended his knowledge of the JVM by developing applications with other JVM languages such as Jython
and Groovy. Since 2006, Josh has been the editor and publisher for the Jython Monthly newsletter. In late 2008, he
began a podcast dedicated to the Jython programming language. Josh was the lead author for The Definitive Guide
to Jython (Apress, 2010), Oracle PL/SQL Recipes (Apress, 2010), and Java 7 Recipes (Apress, 2012). He works as an
application developer and systems analyst at Fermi National Accelerator Laboratory, and he is the lead for the
Django-Jython project (http://code.google.com/p/django-jython/). Josh has a wonderful wife and four children,
with whom he loves to spend time and teach technology. To hear more from Josh, follow his blog, which can be
found at http://jj- blogger.blogspot.com. You can also follow him on Twitter via @javajuneau.

http://code.google.com/p/django-jython/
http://jj-%20blogger.blogspot.com
http://www.it-ebooks.info/

xxxix

About the Technical Reviewers

David Coffin is the author of Expert Oracle and Java Security (Apress, 2011). Find
his recent blogs at http://oraclejavasecure.blogspot.com. He is an IT analyst
working at the Savannah River Site, a large US Department of Energy facility. For
more than 30 years, his expertise has been in multiplatform network integration
and systems programming. Before coming to the Savannah River Site, he worked for
several defense contractors and served as the technical lead for office and network
computing at the National Aerospace Plane Joint Program Office at Wright-Patterson
Air Force Base in Ohio. As a perpetual student, he has completed one master’s degree
program and has begun several others. As a family man, he has raised eight children.
Coffin is an athlete and distance swimmer who competes in the middle of the pack.
He is also a classical guitar player, but he’s not quitting his day job.

Mark Beaty has been developing in Java since 1998 when he went to work for Sun Microsystems. During his years at
Sun, Mark helped to develop and evolve Sun’s web presence, in various roles ranging from architect to developer. As
a web application developer, Mark has spent a lot of time developing large-scale, multitiered web applications on the
server side, but he also enjoys developing rich client applications in the browser. Prior to becoming a Java developer,
Mark worked as a software engineer in the defense industry, using a little-known programming language called Ada.
During his 10+ years in the defense industry, Mark had a huge amount of fun developing real-time embedded software
for military training systems and flight simulators. Mark is currently an independent software consultant focusing on
developing mobile web and native applications on Android and iOS. Mark lives in Colorado, where he enjoys cycling,
hiking, skiing, and pretty much anything that involves being outdoors.

http://oraclejavasecure.blogspot.com
http://www.it-ebooks.info/

xli

Acknowledgments

To my wife Angela: I am still amazed by you and always will be. Thanks for being such a great wife and mother to our
children. You’ve helped me make it through this book, as your inspiration always keeps me moving forward.

To my children Kaitlyn, Jacob, Matthew, and Zachary: I love you all so much and I cherish every moment we have
together. We will read through this book together one day, and you, too, can learn the joy of developing successful
software. For now, I will enjoy all the time we have together as you continue to grow and learn more each day.

I want to thank my family for their continued support in my career. I also want to thank my co-workers at
Fermilab for allowing me to guide the organization’s application development efforts and build successful solutions to
keep us moving forward.

To the folks at Apress, I thank you for providing me with the chance to share my knowledge with others. I especially
thank Jonathan Gennick for the continued support of my work and for providing the continued guidance to produce
useful content for our readers. You’ve become a good friend over the last couple of years and I really enjoy working
with you. I also thank James Markham for his hand in editing this book. I thank Kathleen Sullivan and Kevin Shea
for doing a great job coordinating this project. The technical reviewers, David Coffin and Mark Beaty, have done an
excellent job of solidifying the book content. Thanks again for your hard work and technical expertise. Lastly, I’d like to
thank everyone else at Apress who had a hand in this book.

To the Java community: thanks for helping to make the Java platform such an innovative and effective realm for
application development. We all have the privilege of working with a mature and robust platform, and it would not be
successful today if it weren’t for everyone’s continued contributions to the technology. I also thank all the Oracle Java
experts: the roadmap for the future is still looking great. I am looking forward to using Java technology for many years
to come.

http://www.it-ebooks.info/

	Java EE 7 Recipes
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Introduction to Servlets
	1-1. Setting Up a Java Enterprise Environment
	Problem
	Solution
	How It Works

	1-2. Developing a Servlet
	Problem
	Solution
	How It Works

	1-3. Packaging, Compiling, and Deploying a Servlet
	Problem
	Solution
	How It Works

	1-4. Registering Servlets Without WEB-XML
	Problem
	Solution
	How It Works

	1-5. Displaying Dynamic Content with a Servlet
	Problem
	Solution
	How It Works

	1-6. Handling Requests and Responses
	Problem
	Solution
	How It Works

	1-7. Listening for Servlet Container Events
	Problem
	Solution
	How It Works

	1-8. Setting Initialization Parameters
	Problem
	Solution #1
	Solution #2
	How It Works

	1-9. Filtering Web Requests
	Problem
	Solution
	How It Works

	1-10. Listening for Attribute Changes
	Problem
	Solution
	How It Works

	1-11. Applying a Listener to a Session
	Problem
	Solution
	How It Works

	1-12. Managing Session Attributes
	Problem
	Solution
	How It Works

	1-13. Downloading a File
	Problem
	Solution
	How It Works

	1-14. Dispatching Requests
	Problem
	Solution
	How It Works

	1-15. Redirecting to a Different Site
	Problem
	Solution
	How It Works

	1-16. Securely Maintaining State Within the Browser
	Problem
	Solution
	How It Works

	1-17. Finalizing Servlet Tasks
	Problem
	Solution
	How It Works

	1-18. Reading and Writing with Nonblocking I/O
	Problem
	Solution
	How It Works

	Chapter 2: JavaServer Pages
	2-1. Creating a Simple JSP Page
	Problem
	Solution
	How It Works

	2-2. Embedding Java into a JSP Page
	Problem
	Solution
	How It Works

	2-3. Separating Business Logic from View Code
	Problem
	Solution
	How It Works

	2-4. Yielding or Setting Values
	Problem
	Solution
	How It Works

	2-5. Invoking a Function in a Conditional Expression
	Problem
	Solution
	How It Works

	2-6. Creating a JSP Document
	Problem
	Solution
	How It Works

	2-7. Embedding Expressions in EL
	Problem
	Solution
	How It Works

	2-8. Accessing Parameters in Multiple Pages
	Problem
	Solution
	How It Works

	2-9. Creating a Custom JSP Tag
	Problem
	Solution
	How It Works

	2-10. Including Other JSPs into a Page
	Problem
	Solution
	How It Works

	2-11. Creating an Input Form for a Database Record
	Problem
	Solution
	How It Works

	2-12. Looping Through Database Records Within a Page
	Problem
	Solution
	How It Works

	2-13. Handling JSP Errors
	Problem
	Solution
	How It Works

	2-14. Disabling Scriptlets in Pages
	Problem
	Solution
	How It Works

	2-15. Ignoring EL in Pages
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	Chapter 3: The Basics of JavaServer Faces
	3-1. Writing a Simple JSF Application
	Problem
	Solution #1
	Displaying a JSF Managed Bean Field Value
	Examining the JSF Managed Bean
	Ensuring the JSF Application Functions Properly in a Pre-JSF 2.0 Environment

	Solution #2
	How It Works
	Breaking Down a JSF Application

	3-2. Writing a Managed Bean
	Problem
	Solution
	Managed Bean
	JSF View

	How It Works
	Scopes

	3-3. Building Sophisticated JSF Views with Components
	Problem
	Solution
	How It Works

	3-4. Displaying Messages in JSF Pages
	Problem
	Solution
	How It Works

	3-5. Navigation Based Upon Conditions
	Problem
	Solution
	How It Works

	3-6. Updating Messages Without Recompiling
	Problem
	Solution
	How It Works

	3-7. Validating User Input
	Problem
	Solution
	How It Works

	3-8. Evaluation of Page Expressions Immediately
	Problem
	Solution
	How It Works

	3-9. Passing Page Parameters to Methods
	Problem
	Solution
	How It Works

	3-10. Arithmetic and Reserved Words in Expressions
	Problem
	Solution
	How It Works

	3-11. Creating Bookmarkable URLs
	Problem
	Solution
	How It Works

	3-12. Displaying Lists of Objects
	Problem
	Solution
	How It Works

	3-13. Invoking Managed Bean Actions on Life-Cycle Phase Events
	Problem
	Solution
	How It Works

	Chapter 4: Facelets
	4-1. Creating a Page Template
	Problem
	Solution
	How It Works

	4-2. Applying a Template to Your Views
	Problem
	Solution
	View #1: recipe04_01a.xhtml
	View #2: recipe04_01b.xhtml
	View #3: recipe04_01c.xhtml
	Managed Bean Controller: AuthorController

	How It Works
	Applying Templates

	4-3. Ensuring Resource Availability from All Views
	Problem
	Solution
	How It Works

	4-4. Creating Reusable Templates That Act As Components
	Problem
	Solution
	Creating the Composite Component: search.xhtml
	Managed Bean Controller for Composite Component: SearchController.java
	Managed Bean Controller: AuthorController.java
	Utilizing the Composite Component: custom_template_search.xhtml

	How It Works

	4-5. Handling Variable-Length Data on a Page
	Problem
	Solution
	How It Works

	4-6. Debugging View Content
	Problem
	Solution
	How It Works

	4-7. Writing a Custom Resolver for Locating Facelets Templates and Resources
	Problem
	Solution
	How It Works

	Chapter 5: JavaServer Faces Standard Components
	Component and Tag Primer
	Common Component Tag Attributes
	Common JavaScript Component Tags
	Binding Components to Properties

	5-1. Creating an Input Form
	Problem
	Solution
	The View: recipe05_01.xhtml
	Managed Bean: ContactController.java
	How It Works

	5-2. Invoking Actions from Within a Page
	Problem
	Solution
	The View: recipe05_02.xhtml
	Managed Bean: ContactController.java

	How It Works

	5-3. Displaying Output
	Problem
	Solution
	The View: recipe05_03.xhtml
	Managed Bean: ContactController.java

	How It Works

	5-4. Adding Form Validation
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	5-5. Adding Select Lists to Pages
	Problem
	Solution
	The View: recipe05_05.xhtml
	Managed Bean: ContactController.java

	How It Works
	Populating the Select Lists
	Regarding Each Component Type

	5-6. Adding Graphics to Your Pages
	Problem
	Solution
	How It Works

	5-7. Adding Check Boxes to a View
	Problem
	Solution
	The View: recipe05_07.xhtml
	Managed Bean Controllers

	How It Works

	5-8. Adding Radio Buttons to a View
	Problem
	Solution
	The View: recipe05_08.xhtml
	Managed Bean

	How It Works

	5-9. Structuring View Layout
	Problem
	Solution
	How It Works

	5-10. Displaying a Collection of Data
	Problem
	Solution
	The View: recipe05_10.xhtml
	CSS
	Managed Bean

	How It Works

	5-11. Utilizing Custom JSF Component Libraries
	Problem
	Solution
	How It Works

	5-12. Implementing File Uploading
	Problem
	Solution
	How It Works

	Chapter 6: Advanced JavaServer Faces and Ajax
	6-1. Validating Input with Ajax
	Problem
	Solution
	How It Works

	6-2. Submitting Pages Without Page Reloads
	Problem
	Solution
	How It Works

	6-3. Making Partial-Page Updates
	Problem
	Solution
	How It Works

	6-4. Applying Ajax Functionality to a Group of Components
	Problem
	Solution
	How It Works

	6-5. Custom Processing of Ajax Functionality
	Problem
	Solution
	How It Works

	6-6. Custom Conversion of Input Values
	Problem
	Solution
	How It Works

	6-7. Maintaining Managed Bean Scopes for a Session
	Problem
	Solution
	How It Works

	6-8. Listening for System-Level Events
	Problem
	Solution
	How It Works

	6-9. Listening for Component Events
	Problem
	Solution
	How It Works

	6-10. Invoking a Managed Bean Action on Render
	Problem
	Solution
	How It Works

	6-11. Asynchronously Updating Components
	Problem
	Solution
	How It Works

	6-12. Developing JSF Components Containing HTML5
	Problem
	Solution
	How It Works

	6-13. Listening to JSF Phases
	Problem
	Solution
	How It Works

	6-14. Adding Autocompletion to Text Fields
	Problem
	Solution
	How It Works

	6-15. Developing Custom Constraint Annotations
	Problem
	Solution
	How It Works

	6-16. Customizing Data Tables
	Problem
	Solution
	How It Works

	6-17. Developing a Page Flow
	Problem
	Solution
	How It Works
	Defining a Flow
	The Flow Managed Bean
	Navigating Flow View Nodes
	Flow EL

	6-18. Constructing a JSF View in Pure HTML5
	Problem
	Solution
	How It Works

	Chapter 7: JDBC
	7-1. Obtaining Database Drivers and Adding Them to the CLASSPATH
	Problem
	Solution
	How It Works

	7-2. Connecting to a Database
	Problem
	Solution #1
	Solution #2
	How It Works

	7-3. Handling Database Connection Exceptions
	Problem
	Solution
	How It Works

	7-4. Simplifying Connection Management
	Problem
	Solution
	How It Works

	7-5. Querying a Database
	Problem
	Solution
	How It Works

	7-6. Performing CRUD Operations
	Problem
	Solution
	How It Works

	7-7. Preventing SQL Injection
	Problem
	Solution
	How It Works

	7-8. Utilizing Java Objects for Database Access
	Problem
	Solution
	Note
	How It Works

	7-9. Displaying Database Results in JSF Views
	Problem
	Solution
	How It Works

	7-10. Navigating Data with Scrollable ResultSets
	Problem
	Solution
	How It Works

	7-11. Calling PL/SQL Stored Procedures
	Problem
	Solution
	How It Works

	7-12. Querying and Storing Large Objects
	Problem
	Solution
	How It Works

	7-13. Caching Data for Use When Disconnected
	Problem
	Solution
	How It Works

	7-14. Joining RowSet Objects When Not Connected to the Data Source
	Problem
	Solution
	How It Works

	Chapter 8: Object-Relational Mapping
	8-1. Creating an Entity
	Problem
	Solution
	How It Works

	8-2. Mapping Data Types
	Problem
	Solution
	How It Works

	8-3. Creating a Persistence Unit
	Problem
	Solution
	How It Works

	8-4. Using Database Sequences to Create Primary Key Values
	Problem
	Solution
	How It Works

	8-5. Generating Primary Keys with More Than One Attribute
	Problem
	Solution #1
	Solution #2
	How It Works

	8-6. Defining a One-to-One Relationship
	Problem
	Solution
	How It Works

	8-7. Defining One-to-Many and Many-to-One Relationships
	Problem
	Solution
	How It Works

	8-8. Defining a Many-to-Many Relationship
	Problem
	Solution
	How It Works

	8-9. Querying with Named Queries
	Problem
	Solution
	How It Works

	8-10. Performing Validation on Entity Fields
	Problem
	Solution
	How It Works

	8-11. Generating Database Schema Objects Automatically
	Problem
	Solution
	How It Works

	Chapter 9: Enterprise JavaBeans
	9-1. Obtaining an Entity Manager
	Problem
	Solution #1
	Solution #2
	How It Works

	9-2. Developing a Stateless Session Bean
	Problem
	Solution #1
	Solution #2
	How It Works

	9-3. Developing a Stateful Session Bean
	Problem
	Solution
	How It Works

	9-4. Utilizing Session Beans with JSF
	Problem
	Solution #1
	Solution #2
	How It Works

	9-5. Persisting an Object
	Problem
	Solution
	How It Works

	9-6. Updating an Object
	Problem
	Solution
	How It Works

	9-7. Returning a Table Model
	Problem
	Solution #1
	Solution #2
	How It Works

	9-8. Creating a Singleton Bean
	Problem
	Solution
	How It Works

	9-9. Scheduling a Timer Service
	Problem
	Solution #1
	Solution #2
	How It Works

	9-10. Performing Optional Transaction Life-Cycle Callbacks
	Problem
	Solution
	How It Works

	9-11. Ensuring a Stateful Session Bean Is Not Passivated
	Problem
	Solution
	How It Works

	9-12. Denoting Local and Remote Interfaces
	Problem
	Solution
	How It Works

	9-13. Processing Messages Asynchronously from Enterprise Beans
	Problem
	Solution
	How It Works

	Chapter 10: The Query API and JPQL
	10-1. Querying All Instances of an Entity
	Problem
	Solution #1
	Solution #2
	How It Works

	10-2. Setting Parameters to Filter Query Results
	Problem
	Solution
	How It Works

	10-3. Returning a Single Object
	Problem
	Solution
	How It Works

	10-4. Creating Native Queries
	Problem
	Solution #1
	Solution #2
	How It Works

	10-5. Querying More Than One Entity
	Problem
	Solution #1
	Solution #2
	How It Works

	10-6. Calling JPQL Aggregate Functions
	Problem
	Solution
	How It Works

	10-7. Invoking Database Stored Procedures Natively
	Problem
	Solution
	How It Works

	10-8. Joining to Retrieve Instances Matching All Cases
	Problem
	Solution
	How It Works

	10-9. Joining to Retrieve All Rows Regardless of Match
	Problem
	Solution
	How It Works

	10-10. Applying JPQL Functional Expressions
	Problem
	Solution
	How It Works

	10-11. Forcing Query Execution Rather Than Cache Use
	Problem
	Solution
	How It Works

	10-12. Performing Bulk Updates and Deletes
	Problem
	Solution
	How It Works

	10-13. Retrieving Entity Subclasses
	Problem
	Solution
	How It Works

	10-14. Joining with ON Conditions
	Problem
	Solution
	How It Works

	Chapter 11: Oracle’s GlassFish
	11-1. Installing the GlassFish Application Server
	Problem
	Solution #1
	Solution #2
	How It Works

	11-2. Logging into the Administrative Console
	Problem
	Solution
	How It Works

	11-3. Changing the Administrator User Password
	Problem
	Solution #1
	Solution #2
	How It Works

	11-4. Deploying a WAR File
	Problem
	Solution #1
	Solution #2
	How It Works

	11-5. Adding a Database Resource
	Problem
	Solution
	How It Works

	11-6. Adding Forms-Based Authentication
	Problem
	Solution
	How It Works

	11-7. Configuring and Using JavaMail
	Problem
	Solution
	How It Works

	Chapter 12: Contexts and Dependency Injection
	12-1. Injecting a Bean or Other Object
	Problem
	Solution
	How It Works

	12-2. Binding a Bean to JSF Views
	Problem
	Solution #1
	Solution #2
	How It Works

	12-3. Allocating a Specific Bean for Injection
	Problem
	Solution
	How It Works

	12-4. Determining Scope of a Bean
	Problem
	Solution
	How It Works

	12-5. Injecting Non-bean Objects
	Problem
	Solution #1
	How It Works

	12-6. Ignoring Classes
	Problem
	Solution #1
	Solution #2
	How It Works

	12-7. Disposing of Producer Fields
	Problem
	Solution
	How It Works

	12-8. Specifying an Alternative Implementation at Deployment Time
	Problem
	Solution
	How It Works

	12-9. Injecting Bean Metadata
	Problem
	Solution
	How It Works

	Chapter 13: Java Message Service
	13-1. Creating JMS Resources
	Problem
	Solution #1
	Solution #2
	How It Works

	13-2. Creating a Session
	Problem
	Solution
	Running the Example

	How It Works

	13-3. Creating and Sending a Message
	Problem
	Solution #1
	Solution #2
	Running the Examples

	How It Works

	13-4. Receiving Messages
	Problem
	Solution #1
	Solution #2
	Running the Example

	How It Works

	13-5. Filtering Messages
	Problem
	Solution
	Running the Example

	How It Works

	13-6. Inspecting Message Queues
	Problem
	Solution
	Running the Example

	How It Works

	13-7. Creating Durable Message Subscribers
	Problem
	Solution
	The Topic Connection
	Creating the Initial Durable Subscriber
	Creating and Publishing a Message
	Receiving the Message
	Unsubscribing from the Subscription
	Running the Example

	How It Works

	13-8. Delaying Message Delivery
	Problem
	Solution
	How it Works

	Chapter 14: Authentication and Security
	14-1. Setting Up Application Users and Groups in GlassFish
	Problem
	Solution
	How It Works

	14-2. Performing Basic Web Application Authentication
	Problem
	Solution
	Solution #2
	How It Works

	14-3. Developing a Programmatic Login Form
	Problem
	Solution
	Creating the Login Form
	Coding the Authentication Backend
	EJB
	JSF Managed Bean
	User Entity

	How It Works

	14-4. Managing Page Access Within a JSF Application
	Problem
	Solution
	How It Works

	14-5. Configuring LDAP Authentication Within GlassFish
	Problem
	Solution
	How It Works

	14-6. Configuring Custom Security Certificates Within GlassFish
	Problem
	Solution
	How It Works

	Chapter 15: Java Web Services
	15-1. Creating a JAX-WS Web Service Endpoint
	Problem
	Solution #1
	Solution #2
	How It Works

	15-2. Deploying a JAX-WS Web Service
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	15-3. Consuming a JAX-WS Web Service via WSDL
	Problem
	Solution
	How It Works

	15-4. Consuming a JAX-WS Web Service via a Stand-Alone Application Client
	Problem
	Solution
	How It Works

	15-5. Integrating Web Services into a Java EE Project
	Problem
	Solution
	EJB as a Web Service
	Coding the Managed Bean Client

	How It Works

	15-6. Developing a RESTful Web Service
	Problem
	Solution #1
	Solution #2
	How It Works

	15-7. Consuming and Producing with REST
	Problem
	Solution
	Producing Output
	Accepting Input

	How It Works

	15-8. Writing a JAX-RS Client
	Problem
	Solution
	How It Works
	Web Resource Targets
	Obtaining a Response
	Returning Entities
	Invoking at a Later Time
	WebTarget Injection

	15-9. Filtering Requests and Responses
	Problem
	Solution
	How It Works
	Filters
	Entity Interceptors
	Binding Filters and Interceptors
	Setting Priorities

	15-10. Processing Long-Running Operations Asynchronously
	Problem
	Solution
	How It Works

	Chapter 16: Enterprise Solutions Using Alternative Programming Languages
	16-1. Developing Servlets with Groovy
	Problem
	Solution
	How It Works

	16-2. Working with Groovy Servlet Parameters
	Problem
	Solution
	How It Works

	16-3. Developing Servlets with Jython
	Problem
	Solution
	How It Works

	Chapter 17: WebSockets and JSON-P
	17-1. Creating a WebSocket Endpoint
	Problem
	Solution
	How It Works

	17-2. Sending Messages to a WebSocket Endpoint
	Problem
	Solution
	How It Works

	17-3. Building a JSON Object
	Problem
	Solution
	How It Works

	17-4. Writing a JSON Object to Disk
	Problem
	Solution
	How It Works

	17-5. Reading JSON from an Input Source
	Problem
	Solution
	How It Works
	Parsing Content

	Chapter 18: JavaFX in the Enterprise
	18-1. Developing a Basic JavaFX Application
	Problem
	Solution
	How It Works

	18-2. Incorporating Databases into a JavaFX Application
	Problem
	Solution
	How It Works

	18-3. Constructing a Sophisticated UI Containing EJB Data
	Problem
	Solution
	How It Works

	18-4. Developing an Enterprise Application Using MVC
	Problem
	Solution
	How It Works

	18-5. Incorporating REST Services into JavaFX Applications
	Problem
	Solution
	How It Works

	Chapter 19: Concurrency and Batch Applications
	19-1. Creating Resources for Processing Tasks Asynchronously in an Application Server
	Problem
	Solution #1
	Solution #2
	How It Works

	19-2. Configuring and Creating a Reporter Task
	Problem
	Solution
	How It Works

	19-3. Running More Than One Task Concurrently
	Problem
	Solution
	How It Works

	19-4. Utilizing Transactions Within a Task
	Problem
	Solution
	How It Works

	19-5. Running Concurrent Tasks at Scheduled Times
	Problem
	Solution
	How It Works

	19-6. Creating Thread Instances
	Problem
	Solution
	How It Works

	19-7. Creating an Item-Oriented Batch Process
	Problem
	Solution
	How It Works

	Appendix A: Java EE Development with NetBeans IDE
	A-1. Configuring Application Servers Within NetBeans
	Developing Java Enterprise Applications

	A-2. Creating a NetBeans Java Web Project
	A-3. Creating JSF Application Files
	A-4. Developing EJB Entity Classes
	A-5. JPQL
	A-6. HTML5

	Index

