
http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://www.it-ebooks.info/

v

Contents at a Glance

About the Authors ��� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: The OCPJP 7 Exam: FAQ ■ ���1

Chapter 2: Pretest ■ ��11

Chapter 3: Java Class Design ■ ��45

Chapter 4: Advanced Class Design ■ ��87

Chapter 5: Object-Oriented Design Principles ■ ���113

Chapter 6: Generics and Collections ■ ��147

Chapter 7: String Processing ■ ���205

Chapter 8: Java I/O Fundamentals ■ ��225

Chapter 9: Java File I/O (NIO�2) ■ ���251

Chapter 10: Building Database Applications with JDBC ■ ��281

Chapter 11: Exceptions and Assertions ■ ���317

Chapter 12: Localization ■ ��361

Chapter 13: Threads ■ ��393

Chapter 14: Concurrency ■ ���435

Chapter 15: OCPJP 7 Quick Refresher ■ ���485

http://www.it-ebooks.info/

■ Contents at a GlanCe

vi

Appendix A: Exam Topics ■ ��507

Appendix B: Mock Test – 1 ■ ��513

Appendix C: Mock Test – 2 ■ ��569

Index ���619

http://www.it-ebooks.info/

xxiii

Introduction

This book is a comprehensive guide to preparing for the OCPJP 7 exam. This book covers the exam objectives of both
OCPJP exams, Java SE 7 Programmer II (1Z0-804 exam) and Upgrade to Java SE 7 Programmer (1Z0-805 exam). The
main objective of this book is to prepare the reader to take the OCPJP 7 exam and pass it with ease.

The book covers all of the exam topics for Java SE 7 Programmer II (1Z0-804 exam). The chapters and sections in
this book map one-to-one to the exam objectives and subtopics. This one-to-one mapping between chapters and the
exam objectives ensures that we cover only the topics to the required breadth and depth—no more, no less. If you’re
taking Upgrade to Java SE 7 Programmer (1Z0-805 exam), see Appendix A for the key to how the exam topics map to
the chapters of this book.

A reader will find lots and lots of sample questions in the form of a pretest, numerous sample questions within
each chapter, and two full-length mock tests. These sample questions not only help the reader prepare for taking the
exam but also set realistic expectations for what the reader will find on the exam.

There are many features in this book designed to present the content in a smooth, example-driven flow to
improve your reading and study experience. For instance, the chapters provide numerous programming and
real-world examples to help you internalize each of the presented concepts. Additionally, in each chapter we use
visual cues (such as caution signs and exam tips) to direct your attention to important and interesting aspects of the
concepts that are of particular relevance to the OCPJP 7 exam.

Prerequisites
Since the OCAJP 7 (a.k.a. Java SE 7 Programmer I/1Z0-803) exam is a prerequisite for the more comprehensive
OCPJP 7 exam (1Z0-804), we assume that the reader is already familiar with the fundamentals of the language. We
focus only on the OCPJP 7 exam objectives, on the presumption that the reader has a working knowledge in Java.

Target Audience
This book is for you if any of the following is true:

If you are a student or a Java programmer aspiring to crack the OCPJP 7 exam. •	

If you have already passed any of the older versions of the OCPJP 7 exam (such as the SCJP 5 •	
exam). This book will prepare you for the Upgrade to OCPJP 7 exam (1Z0-805).

If you’re a trainer for OCPJP 7 exam. You can use this book as training material for OCPJP 7 •	
exam preparation.

If you just want to refresh your knowledge of Java programming or gain a better understanding •	
of various Java APIs.

Please note, however, that this book is neither a tutorial for learning Java nor a comprehensive reference book
for Java.

http://www.it-ebooks.info/

■ IntroduCtIon

xxiv

Roadmap for Reading This Book
To get the most out of reading this book, we recommend you follow these steps:

Step 0: Make sure you have JDK 7 installed on your machine and you’re able to compile and run Java programs.
Step 1: First read the FAQ in Chapter 1 and get familiar with the exam (you may want to skip irrelevant questions

or questions for which you already know the answers).
Step 2: Check the exam topics (Appendix A) and mark the topics you’re not familiar with or comfortable with.

Read the chapters or sections corresponding to the topics you’ve marked for preparation.
Step 3: Take the pretest in Chapter 2. If you’ve answered all the questions correctly for an exam chapter, you may

want to skip reading the corresponding chapter. For those exam topics in which you did not scored well, mark those
chapters and read them first. Try out as many sample programs as possible while you read the chapters.

Step 4: Once you feel you are ready to take the exam, take the first mock test (Appendix B). If you don’t pass it,
go back to the chapters in which you are weak, read them, and try out more code relating to those topics. Once you’re
confident, attempt the second mock test (Appendix C). If you’ve prepared well, you should be able to pass it.

Step 5: Register for the exam and take the exam based on your performance in the mock tests. The day before
taking the exam, read Chapter 15, “OCPJP 7 Quick Refresher.”

On Coding Examples in This Book
All the programs in this book are self-contained programs (with necessary import statements). You can download the
source code of the programs from www.apress.com/9781430247647.

We’ve tested the coding examples in this book in two compilers, Oracle’s Java compiler JDK 7 (javac) and the
Eclipse Compiler for Java (ecj). For the error messages, we’ve provided javac’s error messages. It is important that you
use a Java compiler and a JVM that supports Java 7.

Java is a platform-independent language, but there are certain features that are better explained with a specific
platform. Since Windows is the most widely used OS today, some of the programming examples (specifically some of
the programs in the NIO.2 chapter) are written with the Windows OS in mind. You may require minor modifications to
the programs to get them working under other OSs (Linux, MAC OS, etc).

Contact Us
In case of any queries, suggestions or corrections, please feel free to contact us at sgganesh@gmail.com or
tusharsharma@ieee.org.

www.apress.com/9781430247647
sgganesh@gmail.com
tusharsharma@ieee.org
http://www.it-ebooks.info/

1

Chapter 1

The OCPJP 7 Exam: FAQ

The singular acronym of the OCPJP 7 exam is shorthand for two separate but congruent exams:

The Java SE 7 Programmer II exam (exam number 1Z0-804)•	

The Upgrade to Java SE 7 Programmer exam (exam number 1Z0-805)•	

These two exams are alternative paths to the same certification. The 1Z0-804 and 1Z0-805 exams both qualify the
candidates who pass them for the same credential: Oracle Certified Professional, Java SE 7 Programmer (OCPJP 7).
This book prepares you to take the OCPJP 7 exams.

The 1Z0-804 exam syllabus (given in full in Appendix A) consists of twelve topics, mapping to the titles and
subjects of Chapters 3–14 of this book. This book serves equally as preparation for the 1Z0-805 exam, whose six topics
map to Chapters 5–6 and 9–14 of this book (see Appendix A).

In this preliminary chapter, we address the frequently asked questions (FAQs) that are apt to come to mind
when you are preparing for the OCPJP 7 exam. Again, the term “OCPJP 7 exam” should be taken in the sense of
encompassing both variants of the exam, the 1Z0-804 and 1Z0-805. The course of study, model questions, and
practice tests presented in this book will prepare you equally well to take either one. Which variant of the OCPJP 7
exam you take will depend on your existing credentials, as explained below.

The FAQs we present in this chapter answer concerns such as the placement of OCPJP 7 certification in the suite
of Oracle Java certifications, the difficulty level and prerequisites of the OCPJP 7 exam, the scope of the topics on
the OCPJP 7 exam syllabus, the depth of the preparation for it, and the details of registering for and taking the exam.
Broadly, this chapter consists of three sections:

•	 Oracle Java Certifications: Overview: FAQs 1–6 survey Oracle’s various Java exams as they
map onto Java certifications. It focuses in particular on the OCAJP 7 exam, because the Oracle
Certified Associate, Java SE 7 Programmer (OCAJP 7) credential is a prerequisite for OCPJP 7
certification via the 1Z0-804 exam.

•	 The OCPJP 7 Exam: FAQs 7–15 concern the objectives of the OCPJP 7 exam, the kinds of
questions on it, and the details about the preparation for it.

•	 Taking the OCPJP 7 Exam: FAQs 16, 17, and 18 cover the nuts and bolts of registering for exam,
the various things you need to do on the day of the exam, and actually taking the exam.

Oracle Java Certifications: Overview
FAQ 1. What are the different levels of Oracle Java certification exams?
Table 1-1 shows four ascending expertise levels of Oracle exams (Associate, Professional, Expert, and Master)
matched with examples of Java certifications at those levels, together with the qualifying exams by name and number.

http://www.it-ebooks.info/

Chapter 1 ■ the OCpJp 7 exam: FaQ

2

Pictorially, Java exams offered by Oracle and their path can be observed in Figure 1-1.

Table 1-1. Oracle Certification Levels with Examples of Corresponding Java Exams (OPCJP 7 exam, in bold)

Certification Level Java Certification (Example) Exam Name Exam Number

Oracle Certified Associate
(OCA)

Oracle Certified Associate, Java SE 7
Programmer

Java SE 7 Programmer I 1Z0-803

Oracle Certified
Professional (OCP)

Oracle Certified Professional, Java SE
7 Programmer

Java SE 7 Programmer II 1Z0-804

Oracle Certified Professional, Java SE
7 Programmer

Upgrade to Java SE 7
Programmer

1Z0-805

Oracle Certified
Expert (OCE)

Oracle Certified Expert, NetBeans
Integrated Development
Environment 6.1 Programmer

NetBeans Integrated
Development
Environment 6.1
Programmer Certified
Expert Exam

1Z0-889

Oracle Certified
Master (OCM)

Oracle Certified Master, Java SE6
Developer

Java Standard Edition 6
 Developer Certified
Master Essay Exam

1Z0-856

Figure 1-1. Java certification path offered by Oracle

FAQ 2. Can you compare the specifications of the 1Z0-803, 1Z0-804,
and 1Z0-805 exams in relation to OCAJP 7 and OCPJP 7 certification?
Yes, see Table 1-2.

http://www.it-ebooks.info/

Chapter 1 ■ the OCpJp 7 exam: FaQ

3

Table 1-2. Comparison of the Oracle Exams Leading to OCAJP 7 and OCPJP 7 Certification

Exam Number 1Z0-803 1Z0-804 1Z0-805

Expertise Level Beginner Intermediate Intermediate

Exam Name Java SE 7 Programmer I Java SE 7 Programmer II Upgrade to Java SE 7
Programmer

Associated
Certification
(abbreviation)

Oracle Certified Associate,
Java SE 7 Programmer
(OCAJP 7)

Oracle Certified
Professional, Java SE 7
Programmer (OCPJP 7)

Oracle Certified
Professional, Java SE 7
Programmer (OCPJP 7)

Prerequisite
Certification

None OCAJP 7 Any older OCPJP version or
any version of SCJP

Exam Duration 2 hrs 30 minutes
(150 mins)

2 hrs 30 minutes
(150 mins)

3 hrs (180 mins)

Number of
Questions

90 Questions 90 Questions 90 Questions

Pass Percentage 75% 65% 60%

Cost ~ USD 300 ~ USD 300 ~ USD 300

Exam Topics Java Basics Java Class Design Language Enhancements

Working With Java Data Types Advanced Class Design Design Patterns

Creating and Manipulate
Strings

Object-Oriented Design
Principles

Java File I/O (NIO.2)

Creating and Using Arrays Generics and Collections Describe the JDBC API

Using Loop Constructs String Processing Concurrency

Working with Methods
and Encapsulation

Exceptions and Assertions Localization

Working with Inheritance Java I/O Fundamentals

Handling Exceptions Java File I/O (NIO.2)

Building Database
Applications with JDBC

Threads

Concurrency

Localization

Note 1: In the Cost row, the given USD cost of the exams is approximate as actual cost varies with currency of the country
in which you take the exam: $300 in US, £202 in UK, Rs. 8,500 in India, etc.
Note 2: The Exam Topics row lists only the top-level topics. Note that the 1Z0-804 and 1Z0-805 exams share certain
high-level topic names—such as “Java File I/O (NIO.2),” “Concurrency,” and “Localization”—but that the subtopics are
not identical between the two exams. The subtopics of the 1Z0-804 and 1Z0-805 exams are listed in Appendix A.

http://www.it-ebooks.info/

Chapter 1 ■ the OCpJp 7 exam: FaQ

4

FAQ 3. OCAJP 7 certification is a prerequisite for OCPJP 7 certification
via the 1Z0-804 exam. Does that mean that I have to take the OCAJP 7
exam before I can take the OCPJP 7 exam?
No, requirements for certification may be met in any order. You may take the OCPJP 7 exam before you take the
OCAJP 7 exam, but you will not be granted OCPJP 7 certification until you have passed both the 1Z0-803 exam and
the 1Z0-804 exam—unless you are eligible to take and pass the 1Z0-805 exam, for which OCAJP 7 certification is not a
prerequisite.

FAQ 4. Is OCPJP 7 prerequisite for other Oracle certification exams?
Yes, OCPJP 7 is prerequisite for many other exams, such as

Java Enterprise Edition 5 Web Component Developer Certified Professional Exam (1Z0-858)•	

Oracle Certified Master, Java SE 6 Developer exam (1Z0-855 and 1Z0-856)•	

FAQ 5. Should I take the OCPJP 7 or OCPJP 6 exam?
Although you can still take exams for older certifications such as OCPJP 6, OCPJP 7 is the best professional
credential to have.

FAQ 6. How does the Oracle OCPJP 7 exam differ from the OCPJP 6
and OCPJP 5 exams (and the previous Sun versions SCJP 6 and SCJP 5)?
Short answer: The OCPJP 7 exam is tougher and covers more topics.

Long answer: Here is a short list of differences between the OCPJP 7 exam (1Z0-804) versus the OCPJP 6 and OCPJP 5
exams (1Z0-851 and 1Z0-853, respectively) and the SCJP 5 and SCJP 6 exams (the former Sun Microsystems versions
of the OCPJP 6 and OCPJP 5 exams, leading to Sun Certified Java Programmer 6 and 5 certifications):

Like the former SCJP 6/SCJP 5 exams, the OCPJP 6 and 5 exams cover language fundamentals •	
and some of the common APIs involving strings, arrays, and so on. At the Java SE 7 level, most
of these topics have been moved to the OCAJP 7 exam, which is the prerequisite for OCPJP 7
certification through the 1Z0-804 exam path. Note that some questions in OCAJP 7 have the
same difficulty level as OCPJP 7 questions.

The OCPJP 7 exam covers more topics than the OCPJP 6 and 5 exams and their Sun •	
predecessors, including JDBC, localization, NIO.2, and concurrency APIs.

OCPJP 7 also covers new features of Java SE 7, including try-with-resources statements, new •	
APIs in JDBC, string-based switches, and binary literals.

The questions in the OCPJP 7 exam are tougher than those asked in the OCPJP 6 and 5 exams •	
and their Sun predecessors.

The OCPJP 7 exam has only multiple-choice questions, whereas the retired SCJP exams also •	
had interactive questions (drag-and-drop, match-the-options, etc.).

The differences between the OCPJP 6 and OCPJP 7 exams are summarized in Table 1-3.

http://www.it-ebooks.info/

Chapter 1 ■ the OCpJp 7 exam: FaQ

5

Table 1-3. Comparison of the Oracle Exams Leading to OCPJP 6 and OCPJP 7 Certification

Exam Number 1Z0-851 1Z0-804

Expertise Level Beginner to intermediate Intermediate

Pre-requisite
Certification

None OCAJP7

Exam Name Java SE 6 Programmer Java SE 7 Programmer II

Associated
Certification

Oracle Certified Professional, Java SE 6
Programmer (OCPJP 6)

Oracle Certified Professional, Java SE 7
Programmer (OCPJP 7)

Exam Duration 2 hrs 30 minutes (150 mins) 2 hrs 30 minutes (150 mins)

Number of
Questions

60 Questions 90 Questions

Pass Percentage 61% 65%

Cost ~ USD 300 ~ USD 300

Exam Release Status Released Released

Exam Topics Declarations, Initialization, and Scoping Java Class Design

Flow Control Advanced Class Design

API Contents Object-Oriented Design Principles

Concurrency Generics and Collections

OO Concepts String Processing

Collections/Generics Exceptions and Assertions

Fundamentals Java I/O Fundamentals

Java File I/O (NIO.2)

Building Database Applications with JDBC

Threads

Concurrency

Localization

The OCPJP 7 Exam
FAQ 7. How many questions are there in the OCPJP 7 exam?
In both the 1Z0-804 and 1Z0-805 versions of the OCPJP 7 exam, there are 90 questions.

FAQ 8. What is the duration of the OCPJP 7 exam?
The 1Z0-804 and 1Z0-805 versions of the OCPJP 7 exam last 150 and 180 minutes respectively (2 hours 30 minutes,
and 3 hours).

Chapter 1 ■ the OCpJp 7 exam: FaQ

6

FAQ 9. What is the cost of the OCPJP 7 exam?
The cost of the 1Z0-804 and 1Z0-805 versions of the OCPJP 7 exam is the same, but that cost varies according to the
currency of the country in which you take the exam: currently $300 in US, £202 in UK, Rs. 8,500 in India, €238 in
Eurozone countries, and so on. (The cost of the exam is shown on the Oracle web site in the viewer’s local currency.)

FAQ 10. What are the passing scores for the OCPJP 7 exam?
The passing scores for the 1Z0-804 and 1Z0-805 versions of the OCPJP 7 exam are 65% and 60%, respectively. (There
are no negative marks for wrong answers.)

FAQ 11. What kinds of questions are asked in the OCPJP 7 exam?
Some questions on the OCPJP 7 exam test your conceptual knowledge without reference to a specific program or code
segment. But most of the questions are programming questions of the following types:

Given a program or code segment, what is the output or expected behavior?•	

Which option(s) would compile without errors or give the desired output?•	

Which option(s) constitute the correct usage of a given API (in particular, newly introduced •	
APIs such as those associated with new classes of JDBC)?

All questions are multiple-choice. Most of them present four or five options, but some have six or seven options.
Many questions are designed to have a set of multiple correct answers. Such questions are clearly flagged (usually at
the left top corner in the exam test screen) with the number of options you need to select.

Exam questions are not constrained to be exclusively from the topics on the exam syllabus. You might, for
example, get questions on Java fundamentals (a topic in OCAJP syllabus) concerning the basics of exception handling
and using wrapper types. You might also get questions on topics related to those on the exam syllabus but not
specified in it. For example, serialization and use of the transient keyword are not explicitly mentioned in the OCPJP
exam syllabus, but they can come up in the actual exam because they are related to reading and writing streams—and
one of these is ObjectStreams, which relates to serialization!

A given question is not constrained to test only one topic. Some questions are designed to test multiple topics
with a single question. For instance, you may find a question testing the concepts of threads and inner classes as they
relate to each other.

FAQ 12. What does the OCPJP 7 exam test for?
The OCPJP 7 exam tests your understanding of the Java language features and APIs that are essential for developing
real-world programs. The exam focuses on the following areas:

•	 Language concepts that are useful for problem solving: The exam tests not only your knowledge
of how language features work, but also covers your grasp of the nitty-gritty and corner cases
of language features. For example, you need to understand not only the generics feature in
Java but also problems associated with type-erasure, mixing legacy containers with generic
containers, and so on.

•	 Java APIs: The exam tests your familiarity with using the Java class library, as well as such
unusual aspects or corner cases, such as the following:

What does the •	 remove() method of Deque do? (Answer: It removes the first element from
the underlying deque instance).

Chapter 1 ■ the OCpJp 7 exam: FaQ

7

What will happen if •	 sleep() method is interrupted? (Answer: You’ll get an
InterrputedException).

•	 Underlying concepts: For example, the exam might test your understanding of how
serialization works, the differences between overloading and overriding, how autoboxing
and unboxing work in relation to generics, the different kinds of drivers in JDBC, how
multithreaded programming is platform-dependent, the different kinds of liveness problems
with threads, etc.

Although the exam does not test memory skills, some questions presume rote knowledge of key elements, such
as the following:

Letters used for creating custom date and time formats (“string patterns”) for use with •	
SimpleDateFormat class.

Characters used for forming pattern strings in regular expressions.•	

Format specifiers and their meaning for use in •	 format() method in String and in printf().

FAQ 13. I’ve been a Java programmer for last five years. Do I have
to prepare for the OCPJP 7 exam?
Short answer: It’s good that you have work experience, but you still need to prepare for the OCPJP 7 exam.

Long answer: No matter how much real-world programming experience you might have, there are two reasons why
you should prepare for this exam to improve your chances of passing it:

•	 You may not have been exposed to certain topics on the exam. Java is vast, and you might not
have had occasion to work on every topic covered in the exam. For example, you may not be
familiar with localization if you have never dealt the locale aspects of the applications you were
engaged with. Or your work might not have required you to use JDBC. Or you’ve always worked
on single-threaded programs, so multithreaded programming might be new to you. Moreover,
OCPJP 7 emphasizes Java 7, and you might not have been exposed yet to such Java 7 topics as
NIO.2, new concurrency APIs, and enhancements such as try-with-resource statements.

•	 You may not remember the unusual aspects or corner cases. No matter how experienced
you are, there is always an element of surprise involved when you program. The OCPJP 7
exam tests not just your knowledge and skills in respect of regular features, but also your
understanding of unusual aspects or corner cases, such as the behavior of multithreaded code
and the use of generics when both overloading and overriding are involved. So you have to
bone up on pathological cases that you rarely encounter in your work.

A good way to gauge how much preparation you’ll need in the various topics before you can feel confident
that you’ll pass the OCPJP 7 exam is to take the pre-test in Chapter 2 and the two full-length sample exams in
Appendix B and C.

FAQ 14. How do I prepare for the OCPJP 7 exam?
Study this book. In addition,

•	 Code, code, code! Write lots and lots of small programs, experiment with them, and learn from
your mistakes.

•	 Read, read, read! Read this book and the tutorial and reference resources on Oracle’s site,
especially.

Chapter 1 ■ the OCpJp 7 exam: FaQ

8

•	 Oracle’s free online Java tutorials: Access the Java tutorial at
http://docs.oracle.com/javase/tutorial/ and the OCPJP 7 tutorial at http://docs.
oracle.com/javase/tutorial/extra/certification/javase-7-programmer2.html.

•	 Java documentation: The Java API documentation is a mine of information. This
documentation is available online (see http://docs.oracle.com/javase/7/docs/api/)
and is shipped as part of the Java SDK. If you don’t have immediate Internet access, you
may find javac’s -Xprint option handy. To print the textual representation of String
class, type the fully qualified name, as in

javac -Xprint java.lang.String

This will print the list of members in String class in console.

•	 Read, code, read, code! Cycle back and forth between your reading and coding so that your
book knowledge and its practical application are mutually reinforcing. This way, you’ll not just
know a concept, but you’ll also understand it.

•	 Focus most on the topics you’re least comfortable with. Grade yourself on each of the topics in
OCPJP 7 exam on an ascending scale from 1 to 10. Do remedial preparation in all topics for
which you rate yourself 8 or less.

FAQ 15. How do I know when I’m ready to take the OCPJP 7 exam?
Take the two full-length OCPJP 7 sample exams given in Appendix B under actual exam conditions: stick to the
2.5-hour time limit; don’t take any breaks; and don’t refer any books or web sites. If you score 75% or above (the actual
exam pass scores for 1Z0-804 and 1Z0-805 are 65% and 60%, respectively), you’ll probably pass the actual exam.

Taking the OCPJP 7 Exam
FAQ 16. What are my options to register for the exam?
You have three registration options for the OCPJP 7 exam:

Register and pay at the Pearson VUE web site.•	

Buy an exam voucher from Oracle and then register yourself in Pearson VUE web site.•	

Register and pay at the Oracle Testing Center (OTC), if you have one in your region.•	

FAQ 17. How do I register for the exam, schedule a day and time for
taking the exam, and appear for the exam?
Option 1: Register and pay on the Pearson VUE web site by the following steps:

Step 1. Go to www.pearsonvue.com/oracle/ (you will be directed here if you click the first
option from Oracle Certification page). Click on “Schedule online” in “Schedule an
exam” section.

Step 2. Select “Sign In.” Click on “proctored” in the “what type of exam you are planning to
take” section. Select this exam as "Information Technology (IT)" ➤ "Oracle" ➤
"Proctored." Then you’ll be asked to sign in.

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer2.html
http://docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer2.html
http://docs.oracle.com/javase/7/docs/api/
http://www.pearsonvue.com/oracle/

Chapter 1 ■ the OCpJp 7 exam: FaQ

9

Step 3. Log in to your web account on the Pearson site. If you don’t have one, create one;
you will get the user name and password by the e-mail you provide. When you log
in first time, you need to change your password and set security questions and their
answers. When you are done with this, you’re ready to schedule your exam.

Step 4. Once logged in, you’ll get the list of Oracle exams to select from. Select one of the
following:

1Z0-803, Java SE 7 Programmer I (aka OCAJP 7 exam)•	

1Z0-804, Java SE 7 Programmer II (aka OCPJP 7 exam)•	

1Z0-805, Upgrade to Java SE 7 Programmer (aka OCPJP 7 exam)•	

These exams are in English. (You can choose another language if you wish and if
it is available in the list). This page will also show you the cost of the exam. Select
relevant exam from the list, say, “1Z0-804 (Java SE 7 Programmer II),” and click Next.

Step 5. Now you need to select your test location. Choose Country ➤ City ➤ State/
Province, and you’ll be shown test locations close to your place. Each center will
have an icon for information: click it for address and directions. Select up to four
centers near to your location and click Next.

Step 6. Select a test center and select date and time for appointments. The page will
indicate the available dates and time slots; choose the one most convenient for
you. If you have an exam voucher or Oracle University coupon or Oracle promotion
code, enter it here.

Step 7. Select from the available payment options (the usual way is to pay using your credit
card) and pay your exam fees. Make sure that you have selected the right exam,
appropriate test center, and date/time before paying the fees.

Step 8. Done! You will get an appointment confirmation payment receipt by e-mail.

Option 2: Buy an exam voucher from Oracle and register on the Pearson VUE web site.
You can buy a generic exam voucher from Oracle and use it at Pearson site. It costs US$300 if you are living in US

and is denominated in an appropriate currency if you live elsewhere. To buy the voucher from Oracle, select “OU Java,
Solaris, and other Sun Technology Exam eVoucher.” You will be asked to create an Oracle account if you do not have
one. Once the account is created, confirm customer type, customer contact information, and pay. Once you pay the
fees, you can use the eVoucher at the Pearson VUE site.

Option 3: Register and pay online to take the exam in person at an Oracle Testing Center (OTC).
You can choose this option if a physical exam session is scheduled in your vicinity. It costs US$300 or the local

equivalent.

FAQ 18. What are the key things I need to remember before taking the
exam and on the day of exam?
Before the exam day:

You’ll get an e-mail from Pearson confirming your appointment and payment. Check the •	
details on what you should bring when you go to the exam center. Note that you’ll need at least
two photo IDs.

Before the exam, you’ll get a call from the Pearson exam center where you’ve booked your •	
appointment (albeit, it depends on the exam center).

Chapter 1 ■ the OCpJp 7 exam: FaQ

10

On the exam day:

Go to the exam center at least 30 minutes before the exam starts. Your exam center will have •	
lockers for storing your belongings.

Show your exam schedule information and IDs and then complete the exam formalities, such •	
as signing the documents.

You’ll be taken to a computer in the exam room and will log in to the exam-taking software.•	

Taking the exam:

You will see the following on the exam-taking software screen:•	

A timer ticking in one corner showing the time left•	

The current question number you are attempting•	

A check box to select if you want to review the question later•	

The button (labeled “Review”) for going to a review screen where you can revisit the •	
questions before completing the exam.

Once you start, you’ll get questions displayed one by one. You can choose the answers by •	
selecting them in the check box. If you are unsure of an answer, select the Review button so
that you can revisit it at any point during the exam.

You may not consult any person or print or electronic materials or programs during the exam.•	

After the exam:

Once you’re done with the exam, you will get an email after half-an-hour or so containing the •	
details for accessing your score.

Irrespective of passing or failing the exam, topics from questions you’ve answered incorrectly •	
will be supplied with your score. You will not, however, be shown the correct answers to the
questions you missed.

If you’ve passed the OCPJP 7 exam •	 and you’ve also satisfied the applicable prerequisites for
certification (e.g., OCAJP certification as the prerequisite of OCPJP 7 certification via the
1Z0-804 exam), a printable certificate can be downloaded from Oracle’s CertView web site
(https://education.oracle.com/certview.html).

If you failed the exam, you may register and pay again to retake it after a 14-day waiting period. •	

https://education.oracle.com/certview.html

11

Chapter 2

Pretest

The prospect of taking the OCPJP 7 exam raises many questions in the candidate’s mind.

“What types of questions are asked in the exam?”•	

“What topics do the exams cover?”•	

“How hard are the questions?”•	

“How do I know if I’m ready to take the exam?”•	

“Which topics will I need to focus my preparations on in order to pass the exam?”•	

This chapter presents a pretest designed to answer all of your preliminary questions concretely and measurably. Use
this pretest as a mental dip-stick to gauge how likely you would be to pass the OCPJP 7 exam if you were to take it
today. The questions in this pretest closely mimic the actual questions you will encounter on the OCPJP 7 exam. And
they are distributed among the 12 topics in the 1Z0-804 exam syllabus. The post-pretest answer key and evaluation
tool at the end of this chapter will enable you to identify precisely those topics on which you will need to focus your
preparations to ensure success when you take the actual exam.

The only significant difference between the following pretest and the OCPJP 7 exam is the number of questions
and duration. This pretest is configured exactly like an OCPJP 7 exam, only half as long: you will answer 45 questions
in 1 hour 15 minutes (rather than 90 questions in 2 hrs 30 minutes).

So let’s get started. Simulate real test conditions. Find a quiet place where you can take this pretest without
interruption or distraction. Mark your start and finish times. Observe closed-book rules: do not consult the answer
key or any other any print, human, or web resources before or during this pretest.

Chapter 2 ■ pretest

12

The OCPJP 7 Exam: Pretest
Time: 1 hour 15 minutes No. of questions: 45

1. Consider the following program:

class StrEqual {
 public static void main(String []args) {
 String s1 = "hi";
 String s2 = new String("hi");
 String s3 = "hi";

 if(s1 == s2) {
 System.out.println("s1 and s2 equal");
 } else {
 System.out.println("s1 and s2 not equal");
 }

 if(s1 == s3) {
 System.out.println("s1 and s3 equal");
 } else {
 System.out.println("s1 and s3 not equal");
 }
 }
}

Which one of the following options provides the output of this program when executed?

a)
s1 and s2 equal
s1 and s3 equal
b)
s1 and s2 equal
s1 and s3 not equal
c)
s1 and s2 not equal
s1 and s3 equal
d)
s1 and s2 not equal
s1 and s3 not equal

2. Consider the following program:

class Point2D {
 private int x, y;
 public Point2D(int x, int y) {
 x = x;
 }

 public String toString() {
 return "[" + x + ", " + y + "]";
 }

Chapter 2 ■ pretest

13

 public static void main(String []args) {
 Point2D point = new Point2D(10, 20);
 System.out.println(point);
 }
}

Which one of the following options provides the output of this program when executed?

a) point
b) Point
c) [0, 0]
d) [10, 0]
e) [10, 20]

3. Consider the following program:

class Increment {
 public static void main(String []args) {
 Integer i = 10;
 Integer j = 11;
 Integer k = ++i; // INCR
 System.out.println("k == j is " + (k == j));
 System.out.println("k.equals(j) is " + k.equals(j));
 }
}

Which one of the following options correctly describes the behavior of this program?

a) When executed, this program prints
 k == j is false
 k.equals(j) is false
b) When executed, this program prints
 k == j is true
 k.equals(j) is false
c) When executed, this program prints
 k == j is false
 k.equals(j) is true
d) When executed, this program prints
 k == j is true
 k.equals(j) is true
e) When compiled, the program will result in a compiler error in the line marked with the comment INCR.

4. Consider the following program:

class ArrayCompare {
 public static void main(String []args) {
 int []arr1 = {1, 2, 3, 4, 5};
 int []arr2 = {1, 2, 3, 4, 5};
 System.out.println("arr1 == arr2 is " + (arr1 == arr2));
 System.out.println("arr1.equals(arr2) is " + arr1.equals(arr2));

Chapter 2 ■ pretest

14

 System.out.println("Arrays.equals(arr1, arr2) is " +
 java.util.Arrays.equals(arr1, arr2));
 }
}

Which one of the following options provides the output of this program when executed?

a) arr1 == arr2 is false
 arr1.equals(arr2) is false
 Arrays.equals(arr1, arr2) is true
b) arr1 == arr2 is true
 arr1.equals(arr2) is false
 Arrays.equals(arr1, arr2) is true
c) arr1 == arr2 is false
 arr1.equals(arr2) is true
 Arrays.equals(arr1, arr2) is true
d) arr1 == arr2 is true
 arr1.equals(arr2) is true
 Arrays.equals(arr1, arr2) is false
e) arr1 == arr2 is true
 arr1.equals(arr2) is true
 Arrays.equals(arr1, arr2) is true

5. Consider the following program:

class NullInstanceof {
 public static void main(String []args) {
 String str = null;
 if(str instanceof Object) // NULLCHK
 System.out.println("str is Object");
 else
 System.out.println("str is not Object");
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program will result in a compiler error in line marked with comment NULLCHK.
b) This program will result in a NullPointerException in line marked with comment NULLCHK.
c) When executed, this program will print the following: str is Object.
d) When executed, this program will print the following: str is not Object.

6. Consider the following program:

interface Side { String getSide(); }

class Head implements Side {
 public String getSide() { return "Head "; }
}

class Tail implements Side {

Chapter 2 ■ pretest

15

 public String getSide() { return "Tail "; }
}

class Coin {
 public static void overload(Head side) { System.out.print(side.getSide()); }
 public static void overload(Tail side) { System.out.print(side.getSide()); }
 public static void overload(Side side) { System.out.print("Side "); }
 public static void overload(Object side) { System.out.print("Object "); }

 public static void main(String []args) {
 Side firstAttempt = new Head();
 Tail secondAttempt = new Tail();
 overload(firstAttempt);
 overload((Object)firstAttempt);
 overload(secondAttempt);
 overload((Side)secondAttempt);
 }
}

What is the output of this program when executed?

a) Head Head Tail Tail
b) Side Object Tail Side
c) Head Object Tail Side
d) Side Head Tail Side

7. Consider the following program:

class Overloaded {
 public static void foo(Integer i) { System.out.println("foo(Integer)"); }
 public static void foo(short i) { System.out.println("foo(short)"); }
 public static void foo(long i) { System.out.println("foo(long)"); }
 public static void foo(int ... i) { System.out.println("foo(int ...)"); }
 public static void main(String []args) {
 foo(10);
 }
}

Which one of the following options correctly describes the output of this program?

a) foo(Integer)
b) foo(short)
c) foo(long)
d) foo(int ...)

8. Consider the following program:

class Base {
 public static void foo(Base bObj) {
 System.out.println("In Base.foo()");
 bObj.bar();
 }

Chapter 2 ■ pretest

16

 public void bar() {
 System.out.println("In Base.bar()");
 }
}

class Derived extends Base {
 public static void foo(Base bObj) {
 System.out.println("In Derived.foo()");
 bObj.bar();
 }
 public void bar() {
 System.out.println("In Derived.bar()");
 }
}

class OverrideTest {
 public static void main(String []args) {
 Base bObj = new Derived();
 bObj.foo(bObj);
 }
}

What is the output of this program when executed?

a)
In Base.foo()
In Base.bar()
b)
In Base.foo()
In Derived.bar()
c)
In Derived.foo()
In Base.bar()
d)
In Derived.foo()
In Derived.bar()

9. Consider the following program:

class CannotFlyException extends Exception {}

interface Birdie {
 public abstract void fly() throws CannotFlyException;
}

interface Biped {
 public void walk();
}

abstract class NonFlyer {
 public void fly() { System.out.print("cannot fly "); } // LINE A
}

Chapter 2 ■ pretest

17

class Penguin extends NonFlyer implements Birdie, Biped { // LINE B
 public void walk() { System.out.print("walk "); }
}

class PenguinTest {
 public static void main(String []args) {
 Penguin pingu = new Penguin();
 pingu.walk();
 pingu.fly();
 }
}

Which one of the following options correctly describes the behavior of this program?

a) Compiler error in line with comment LINE A because fly() does not declare to throw CannotFlyException.
b) Compiler error in line with comment LINE B because fly() is not defined and hence need to declare it abstract.
c) It crashes after throwing the exception CannotFlyException.
d) When executed, the program prints “walk cannot fly”.

10. Consider the following program:

class TestSwitch {
 public static void main(String []args) {
 String [] cards = { "Club", "spade", " diamond ", "hearts" };
 for(String card : cards) {
 switch(card) {
 case "Club" : System.out.print(" club "); break;
 case "Spade" : System.out.print(" spade "); break;
 case "diamond" : System.out.print(" diamond "); break;
 case "heart" : System.out.print(" heart "); break;
 default: System.out.print(" none ");
 }
 }
 }
}

Which one of the following options shows the output of this program?

a) none none none none
b) club none none none
c) club spade none none
d) club spade diamond none
e) club spade diamond heart

11. Consider the following program:

class Outer {
 static class Inner {
 public final String text = "Inner";
 }
}

Chapter 2 ■ pretest

18

class InnerClassAccess {
 public static void main(String []args) {
 System.out.println(/*CODE HERE*/);
 }
}

Which one of the following expressions when replaced for the text in place of the comment /*CODE HERE*/ will
print the output “Inner” in console?

a) new Outer.Inner().text
b) Outer.new Inner().text
c) Outer.Inner.text
d) new Outer().Inner.text

12. Consider the following enumeration definition:

enum Cards { CLUB, SPADE, DIAMOND, HEARTS };

class CardsEnumTest {
 public static void main(String []args) {
 /* TRAVERSE */
 }
}

Which one of the following will you replace in place of the comment /* TRAVERSE */ to traverse the Cards
enumeration and print the output “CLUB SPADE DIAMOND HEARTS”?

a) for(Cards card : Cards.values())
 System.out.print(card + " ");
b) for(Cards card : Cards.iterator())
 System.out.print(card + " ");
c) for(Cards card : Cards.enums())
 System.out.print(card + " ");
d) for(Cards card : Cards.items())
 System.out.print(card + " ");
e) There is no way to print the string names of this enumeration. The toString() method of enumeration returns the
 ordinal value of the enumeration, which is equivalent to calling card.ordinal().toString();.

13. Given these three definitions

interface I1 {}
interface I2 {}
abstract class C {}

which one of the following will compile without errors?

a) class CI12 extends C, I1, I2 {}
b) class CI12 implements C extends I1, I2 {}
c) class CI12 implements C, I1, I2 {}
d) class CI12 extends C implements I1, I2 {}
e) class CI12 extends C implements I1 implements I2 {}
f) class CI12 implements C extends I1 extends I2 {}

Chapter 2 ■ pretest

19

14. Given these two definitions

interface I1 {}
interface I2 {}

which one of the following will compile without errors?

a) interface II implements I1, I2 {}
b) interface II implements I1 implements I2 {}
c) interface II implements I1 extends I2 {}
d) interface II extends I1, I2 {}

15. Consider the following program:

abstract class AbstractBook {
 public String name;
}

interface Sleepy {
 public String name = "undefined";
}

class Book extends AbstractBook implements Sleepy {
 public Book(String name) {
 this.name = name; // LINE A
 }
 public static void main(String []args) {
 AbstractBook philosophyBook = new Book("Principia Mathematica");
 System.out.println("The name of the book is " + philosophyBook.name); // LINE B
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program will print the output “The name of the book is Principia Mathematica”.
b) The program will print the output “The name of the book is undefined”.
c) The program will not compile and result in a compiler error “ambiguous reference to name” in line marked with
 comment LINE A.
d) The program will not compile and result in a compiler error “ambiguous reference to name” in line marked with
 comment LINE B.

16. Which one of the following relationships describes the OO design concept of “composition”?

a) is-a
b) is-a-kind-of
c) has-a
d) is-implemented-in-terms-of
e) composed-as
f) DAO

Chapter 2 ■ pretest

20

17. Consider the following program:

import java.util.Arrays;

class DefaultSorter {
 public static void main(String[] args) {
 String[] brics = {"Brazil", "Russia", "India", "China"};
 Arrays.sort(brics, null); // LINE A
 for(String country : brics) {
 System.out.print(country + " ");
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program will result in a compiler error in line marked with comment LINE A.
b) When executed, the program prints the following: Brazil Russia India China.
c) When executed, the program prints the following: Brazil China India Russia.
d) When executed, the program prints the following: Russia India China Brazil.
e) When executed, the program throws a runtime exception of NullPointerException when executing the line
 marked with comment LINE A.
f) When executed, the program throws a runtime exception of InvalidComparatorException when executing the line
 marked with comment LINE A.

18. Consider the following program:

import java.util.*;

class DequeTest {
 public static void main(String []args) {
 Deque<Integer> deque = new ArrayDeque<>();
 deque.addAll(Arrays.asList(1, 2, 3, 4, 5));
 System.out.println("The removed element is: " + deque.remove()); // ERROR?
 }
}

Which one of the following correctly describes the behavior of this program?

a) When executed, this program prints the following: “The removed element is: 5”.
b) When executed, this program prints the following: “The removed element is: 1”.
c) When compiled, the program results in a compiler error of “remove() returns void” for the line marked with the
 comment ERROR.
d) When executed, this program throws InvalidOperationException.

19. Consider the following program:

import java.util.*;

class Diamond {
 public static void main(String[] args) {
 List list1 = new ArrayList<>(Arrays.asList(1, "two", 3.0)); // ONE

Chapter 2 ■ pretest

21

 List list2 = new LinkedList<>
 (Arrays.asList(new Integer(1), new Float(2.0F), new Double(3.0))); // TWO
 list1 = list2; // THREE
 for(Object element : list1) {
 System.out.print(element + " ");
 }
 }
}

Which one of the following describes the expected behavior of this program?

a) The program results in compiler error in line marked with comment ONE.
b) The program results in compiler error in line marked with comment TWO.
c) The program results in compiler error in line marked with comment THREE.
d) When executed, the program prints 1 2.0 3.0.
e) When executed, this program throws a ClassCastException.

20. Consider the following program:

class SimpleCounter<T> {
 private static int count = 0;
 public SimpleCounter() {
 count++;
 }
 static int getCount() {
 return count;
 }
}

class CounterTest {
 public static void main(String []args) {
 SimpleCounter<Double> doubleCounter = new SimpleCounter<Double>();
 SimpleCounter<Integer> intCounter = null;
 SimpleCounter rawCounter = new SimpleCounter(); // RAW
 System.out.println("SimpleCounter<Double> counter is "
 + doubleCounter.getCount());
 System.out.println("SimpleCounter<Integer> counter is " + intCounter.getCount());
 System.out.println("SimpleCounter counter is " + rawCounter.getCount());
 }
}

Which one of the following describes the expected behavior of this program?

a) This program will result in a compiler error in the line marked with comment RAW.
b) When executed, this program will print
 SimpleCounter<Double> counter is 1
 SimpleCounter<Integer> counter is 0
 SimpleCounter counter is 1
c) When executed, this program will print
 SimpleCounter<Double> counter is 1
 SimpleCounter<Integer> counter is 1
 SimpleCounter counter is 1

Chapter 2 ■ pretest

22

d) When executed, this program will print
 SimpleCounter<Double> counter is 2
 SimpleCounter<Integer> counter is 0
 SimpleCounter counter is 2
e) When executed, this program will print
 SimpleCounter<Double> counter is 2
 SimpleCounter<Integer> counter is 2
 SimpleCounter counter is 2

21. Consider the following program:

class UsePrintf{
 public static void main(String []args) {
 int c = 'a';
 float f = 10;
 long ell = 100L;
 System.out.printf("char val is %c, float val is %f, long int val is %ld \n", c, f, ell);
 }
}

Which one of the following options best describes the behavior of this program when executed?

a) The program prints the following: char val is a, float val is 10.000000, long int val is 100.
b) The program prints the following: char val is 65, float val is 10.000000, long int val is 100.
c) The program prints the following: char val is a, float val is 10, long int val is 100L.
d) The program prints the following: char val is 65, float val is 10.000000, long int val is 100L.
e) The program prints the following: char val is 65, float val is 10, long int val is 100L.
f) The program throws an exception of java.util.UnknownFormatConversionException: Conversion = 'l'.

22. Consider the following program:

import java.util.regex.Pattern;

class Split {
 public static void main(String []args) {
 String date = "10-01-2012"; // 10th January 2012 in dd-mm-yyyy format
 String [] dateParts = date.split("-");
 System.out.print("Using String.split method: ");
 for(String part : dateParts) {
 System.out.print(part + " ");
 }
 System.out.print("\nUsing regex pattern: ");
 Pattern datePattern = Pattern.compile("-");
 dateParts = datePattern.split(date);
 for(String part : dateParts) {
 System.out.print(part + " ");
 }
 }
}

Chapter 2 ■ pretest

23

Which one of the following options correctly provides the output of this program?

a)
Using String.split method: 10-01-2012
Using regex pattern: 10 01 2012
b)
Using String.split method: 10 01 2012
Using regex pattern: 10 01 2012
c)
Using String.split method: 10-01-2012
Using regex pattern: 10-01-2012
d)
Using String.split method:
Using regex pattern: 10 01 2012
e)
Using String.split method: 10 01 2012
Using regex pattern:
f)
Using String.split method:
Using regex pattern:

23. Consider the following program:

import java.util.regex.Pattern;

class Regex {
 public static void main(String []args) {
 String pattern = "a*b+c{3}";
 String []strings = { "abc", "abbccc", "aabbcc", "aaabbbccc" };
 for(String str : strings) {
 System.out.print(Pattern.matches(pattern, str) + " ");
 }
 }
}

Which one of the following options correctly shows the output of this program?

a) true true true true
b) true false false false
c) true false true false
d) false true false true
e) false false false true
f) false false false false

24. Consider the following program:

class MatchCheck {
 public static void main(String []args) {
 String[]strings = {"Severity 1", "severity 2", "severity3",
"severity five"};
 for(String str : strings) {
 if(!str.matches("^severity[\\s+][1–5]")) {

Chapter 2 ■ pretest

24

 System.out.println(str + " does not match");
 }
 }
 }
}

Which one of the following options correctly shows the output of this program?

a)
Severity 1 does not match
severity 2 does not match
severity five does not match
b)
severity3 does not match
severity five does not match
c)
Severity 1 does not match
severity 2 does not match
d)
Severity 1 does not match
severity3 does not match
severity five does not match

25. Consider the following program:

import java.lang.*;

class InvalidValueException extends IllegalArgumentException {}
class InvalidKeyException extends IllegalArgumentException {}

class BaseClass {
 void foo() throws IllegalArgumentException {
 throw new IllegalArgumentException();
 }
}

class DeriClass extends BaseClass {
 public void foo() throws IllegalArgumentException {
 throw new InvalidValueException();
 }
}

class DeriDeriClass extends DeriClass {
 public void foo() { // LINE A
 throw new InvalidKeyException();
 }
}

Chapter 2 ■ pretest

25

class EHTest {
 public static void main(String []args) {
 try {
 BaseClass base = new DeriDeriClass();
 base.foo();
 } catch(RuntimeException e) {
 System.out.println(e);
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program prints the following: InvalidKeyException.
b) The program prints the following: RuntimeException.
c) The program prints the following: IllegalArgumentException.
d) The program prints the following: InvalidValueException.
e) When compiled, the program will result in a compiler error in line marked with comment Line A due to missing
 throws clause.

26. Consider the following program:

class EHBehavior {
 public static void main(String []args) {
 try {
 int i = 10/0; // LINE A
 System.out.print("after throw -> ");
 } catch(ArithmeticException ae) {
 System.out.print("in catch -> ");
 return;
 } finally {
 System.out.print("in finally -> ");
 }
 System.out.print("after everything");
 }
}

Which one of the following options best describes the behavior of this program?

a) The program prints the following: in catch -> in finally -> after everything.
b) The program prints the following: after throw -> in catch -> in finally -> after everything.
c) The program prints the following: in catch -> in finally -> after everything.
d) The program prints the following: in catch -> after everything.
e) The program prints the following: in catch -> in finally ->.
f) When compiled, the program results in a compiler error in line marked with comment in LINE A for divide-by-zero.

Chapter 2 ■ pretest

26

27. Consider the following program:

class AssertionFailure {
 public static void main(String []args) {
 try {
 assert false;
 } catch(RuntimeException re) {
 System.out.println("RuntimeException");
 } catch(Exception e) {
 System.out.println("Exception");
 } catch(Error e) { // LINE A
 System.out.println("Error" + e);
 } catch(Throwable t) {
 System.out.println("Throwable");
 }
 }
}

This program is invoked in command line as follows:

java AssertionFailure

Choose one of the following options describes the behavior of this program:

a) Compiler error at line marked with comment LINE A
b) Prints “RuntimeException” in console
c) Prints “Exception”
d) Prints “Error”
e) Prints “Throwable”
f) Does not print any output on console

28. Consider the following program:

import java.io.*;

class CreateFilesInFolder {
 public static void main(String []args) {
 String[] fileList = { "/file1.txt", "/subdir/file2.txt", "/file3.txt" };
 for (String file : fileList) {
 try {
 new File(file).mkdirs();
 }
 catch (Exception e) {
 System.out.println("file creation failed");
 System.exit(−1);
 }
 }
 }
}

Chapter 2 ■ pretest

27

Assume that underlying file system has necessary permissions to create files, and that the program executed
successfully without printing the message “file creation failed.” (In the answers, note that the term “current
directory” means the directory from which you execute this program, and the term “root directory” in Windows
OS means the root path of the current drive from which you execute this program.) What is the most likely
behavior when you execute this program?

a) This program will create file1.txt and file3.txt files in the current directory, and file2.txt file in the subdir directory of
 the current directory.
b) This program will create file1.txt and file3.txt directories in the current directory and the file2.txt directory in the
 “subdir” directory in the current directory.
c) This program will create file1.txt and file3.txt files in the root directory, and a file2.txt file in the “subdir” directory in
 the root directory.
d) This program will create file1.txt and file3.txt directories in the root directory, and a file2.txt directory in the
 “subdir” directory in the root directory.

29. Which of the following two statements is true regarding object serialization in Java?

a) A serializable interface declares two methods, readObject() and writeObject(). To support serialization in
 your class, you need to implement the Serializable interface and define these two methods.
b) When serializing an object that has references to other objects, the serialization mechanism also includes the
 referenced objects as part of the serialized bytes.
c) When an object is serialized, the class members that are declared as transient will not be serialized (and hence
 their values are lost after deserialization).
d) The Externalizable interface is a marker interface; in other words, it’s an empty interface that does not declare
 any methods.
e) If you attempt to serialize or persist an object that does not implement the Externalizable interface, you’ll get a
 NotExternalizableException.

30. Consider the following program:

import java.util.*;

class Separate {
 public static void main(String []args) {
 String text = "<head>first program </head> <body>hello world</body>";
 Set<String> words = new TreeSet<>();
 try (Scanner tokenizingScanner = new Scanner(text)) {
 tokenizingScanner.useDelimiter("\\W");
 while(tokenizingScanner.hasNext()) {
 String word = tokenizingScanner.next();
 if(!word.trim().equals("")) {
 words.add(word);
 }
 }
 }
 for(String word : words) {
 System.out.print(word + " ");
 }
 }
}

Chapter 2 ■ pretest

28

Which one of the following options correctly provides the output of this program?

a) hello body program head first world
b) body first head hello program world
c) head first program head body hello world body
d) head first program body hello world
e) < </ >

31. Consider the following code snippet:

 Path wordpadPath = Paths.get("C:\\Program Files\\Windows NT\\Accessories\\wordpad.exe");
System.out.println(wordpadPath.subpath(beginIndex, endIndex));

What are the values of the integer values beginIndex and endIndex in this program that will result in this code
segment printing the string “Program Files” as output?

a) beginIndex = 1 and endIndex = 2
b) beginIndex = 0 and endIndex = 1
c) beginIndex = 1 and endIndex = 1
d) beginIndex = 4 and endIndex = 16

32. Consider the following program:

import java.io.IOException;
import java.nio.file.*;

class Matcher {
 public static void main(String []args) {
 Path currPath = Paths.get(".");
 try (DirectoryStream<Path> stream =
 Files.newDirectoryStream(currPath, "*o*?{java,class}")) {
 for(Path file : stream) {
 System.out.print(file.getFileName() + " ");
 }
 } catch (IOException ioe) {
 System.err.println("An I/O error occurred... exiting ");
 }
 }
}

Assume that the current path in which the program is run has the following files: Copy.class, Copy.java, Dir.
class, Dir.java, Hello.class, hello.html, Matcher.class, Matcher.java, OddEven.class, and PhotoCopy.
java. Assuming that the program ran without throwing IOException. Which one of the following options
correctly describes the behavior of this program when it is executed?

a) Prints the following: Copy.class Copy.java Hello.class hello.html OddEven.class PhotoCopy.java
b) Prints the following: Copy.class Copy.java PhotoCopy.java
c) Prints the following: Hello.class hello.html OddEven.class PhotoCopy.java
d) Prints the following: Copy.class Copy.java Hello.class OddEven.class PhotoCopy.java
e) Prints the following: PhotoCopy.java
f) Does not print any output in console
g) Throws the exception java.util.regex.PatternSyntaxException because the pattern is invalid.

Chapter 2 ■ pretest

29

33. Which one of the following options is a correct way to create a watch service for watching a directory for
changes?

a) Watchable watch = FileSystems.getDefault().newWatchable();
b) WatchService watcher = FileSystems.getDefault().newWatchService();
c) DirectoryWatchService dirWatcher = FileSystems.getDefault().newDirectoryWatchService();
d) FileWatchService fileWatcher = FileSystems.getNewFileWatchService();
e) FileDirectoryWatchService fileDirWatcher = WatchService.getNewFileDirectoryWatchService();

34. Which of the following two statements are true regarding Statement and its derived types?

a) Objects of type Statement can handle IN, OUT, and INOUT parameters.
b) PreparedStatement is used for executing stored procedures.
c) You can get an instance of PreparedStatement by calling preparedStatement() method in the Connection
 interface.
d) CallableStatement extends the PreparedStatement class; PreparedStatement in turn extends the Statement
 class.
e) The interface Statement and its derived interfaces implement the AutoCloseable interface, hence it can be used
 with try-with-resources statement.

35. Consider the following sequence of statements when using JDBC API. Assume that you’ve a TempSensor table
with the column name temp.

// assume that connection is successfully established to the database
connection.setAutoCommit(true);
Statement statement = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
resultSet = statement.executeQuery("SELECT * FROM TempSensor");

// assume that the initial value of temp is "0" in the table

resultSet.moveToInsertRow();
resultSet.updateString("temp", "100");
resultSet.insertRow();
Savepoint firstSavepoint = connection.setSavepoint();

resultSet.moveToInsertRow();
resultSet.updateString("temp", "200");
resultSet.insertRow();
Savepoint secondSavepoint = connection.setSavepoint();

resultSet.moveToInsertRow();
resultSet.updateString("temp", "300");
resultSet.insertRow();
Savepoint thirdSavepoint = connection.setSavepoint();

connection.rollback(secondSavepoint);
connection.commit();

Chapter 2 ■ pretest

30

Which one of the following options correctly describes the behavior of this program?

a) temp value will be set to “100” in the table TempSensor.
b) temp value will be set to “200” in the table TempSensor.
c) temp value will be set to “300” in the table TempSensor.
d) temp value will be set to “0” in the table TempSensor.
e) The program will result in throwing a SQLException because auto-commit is true.

36. Which one of the following options correctly creates a JdbcRowSet object?

a) RowSetProvider rowSetProvider = RowSetFactory.newProvider();
 JdbcRowSet rowSet = rowSetProvider.createJdbcRowSet();
 b) RowSetFactory rowSetFactory = RowSetProvider.newFactory();
 JdbcRowSet rowSet = rowSetFactory.createJdbcRowSet();
 c) JdbcRowSet rowSet = RowSetProvider.newFactory().getJdbcRowSetInstance();
 d) JdbcRowSet rowSet = RowSetFactory.newProvider().getInstance(connection, "JdbcRowSet");

37. Consider the following program:

class Worker extends Thread {
 public void run() {
 System.out.println(Thread.currentThread().getName());
 }
}

class Master {
 public static void main(String []args) throws InterruptedException {
 Thread.currentThread().setName("Master ");
 Thread worker = new Worker();
 worker.setName("Worker ");
 worker.start();
 Thread.currentThread().join();
 System.out.println(Thread.currentThread().getName());
 }
}

Which one of the following options correctly describes the behavior of this program?

a) When executed, the program prints the following: “Worker Master ”.
b) When executed, the program prints “Worker ”, and after that the program hangs (i.e., does not terminate).
c) When executed, the program prints “Worker ” and then terminates.
d) When executed, the program throws IllegalMonitorStateException.
e) The program does not compile and fails with multiple compiler errors.

38. Which of the following two statements are true regarding the sleep() method defined in Thread class?

a) The sleep() method takes milliseconds as an argument for the time to sleep.
b) The sleep() method takes microseconds as an argument for the time to sleep.
c) The sleep() method relinquishes the lock when the thread goes to sleep and reacquires the lock when the thread
 wakes up.
d) The sleep() method can throw InterruptedException if it is interrupted by another thread when it sleeps.

Chapter 2 ■ pretest

31

39. Consider the following program:

class Waiter extends Thread {
 public static void main(String[] args) {
 new Waiter().start();
 }
 public void run() {
 try {
 System.out.println("Starting to wait");
 wait(1000);
 System.out.println("Done waiting, returning back");
 }
 catch(InterruptedException e) {
 System.out.println("Caught InterruptedException ");
 }
 catch(Exception e) {
 System.out.println("Caught Exception ");
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program prints
 Starting to wait
 Done waiting, returning back
b) The program prints
 Starting to wait
 Caught InterruptedException
c) The program prints
 Starting to wait
 Caught Exception
d) The program prints
 Starting to wait
 After that, the program gets into an infinite wait and deadlocks

40. Consider the following program:

import java.util.*;
import java.util.concurrent.*;

class SetTest {
 public static void main(String []args) {
 List list = Arrays.asList(10, 5, 10, 20); // LINE A
 System.out.println(list);
 System.out.println(new HashSet(list));
 System.out.println(new TreeSet(list));
 System.out.println(new ConcurrentSkipListSet(list));
 }
}

Chapter 2 ■ pretest

32

Which one of the following options correctly describes the behavior of this program?

a) The program prints
 [10, 5, 10, 20]
 [20, 5, 10]
 [5, 10, 20]
 [5, 10, 20]
b) The program prints
 [10, 5, 10, 20]
 [5, 10, 20]
 [5, 10, 20]
 [20, 5, 10]
c) The program prints
 [5, 10, 20]
 [5, 10, 20]
 [5, 10, 20]
 [5, 10, 20]
d) The program prints
 [10, 5, 10, 20]
 [20, 5, 10]
 [5, 10, 20]
 [20, 5, 10]
e) The program prints
 [10, 5, 10, 20]
 [5, 10, 10, 20]
 [5, 10, 20]
 [10, 5, 10, 20]
f) Compiler error in line marked by the comment LINE A since List is not parameterized with the type <Integer>.

41. Consider the following program:

import java.util.concurrent.*;
import java.util.*;

class COWArrayListTest {
 public static void main(String []args) {
 ArrayList<Integer> aList = new CopyOnWriteArrayList<Integer>(); // LINE A
 aList.addAll(Arrays.asList(10, 20, 30, 40));
 System.out.println(aList);
 }
}

Which one of the following options correctly describes the behavior of this program?

a) When executed the program prints the following: [10, 20, 30, 40].
b) When executed the program prints the following: CopyOnWriteArrayList.class.
c) The program does not compile and results in a compiler error in line marked with comment LINE A.
d) When executed the program throws a runtime exception ConcurrentModificationException.
e) When executed the program throws a runtime exception InvalidOperationException.

Chapter 2 ■ pretest

33

42. Consider the following program:

import java.util.concurrent.*;
import java.util.*;

class Blocking {
 Deque<String> gangOfFour = new LinkedBlockingDeque<String>();
 class Producer extends Thread {
 String []authors = { "E Gamma", "R Johnson", "R Helm", "J Vlissides" };
 public void run() {
 for(String author : authors) {
 gangOfFour.add(author);
 try {
 // take time to add
 Thread.sleep(1000);
 }
 catch(InterruptedException ie) {
 // ignore it
 }
 }
 }
 }

 class Consumer extends Thread {
 int numOfAuthors = 4;
 int processedAuthors = 0;
 public void run() {
 while(processedAuthors < 4) {
 while (gangOfFour.isEmpty()) { /*wait till an entry is inserted*/ }

 System.out.println(gangOfFour.remove());
 processedAuthors++;
 }
 }
 }

 public static void main(String []args) {
 Blocking blocking = new Blocking();
 blocking.new Producer().start();
 blocking.new Consumer().start();
 }
}

Which one of the following options correctly describes the behavior of this program?

a) Prints
 E Gamma
 and then the program terminates.
b) Prints
 E Gamma
 R Johnson
 R Helm
 J Vlissides
 and then the program enters a deadlock and never terminates.

Chapter 2 ■ pretest

34

c) Prints
 E Gamma
 R Johnson
 R Helm
 J Vlissides
 and then the program terminates.
d) Prints
 J Vlissides
 R Helm
 R Johnson
 E Gamma
 and then the program terminates.
e) The program does not print any output, enters a deadlock, and never terminates.

43. For localization, resource bundle property files are created that consist of key-value pairs. Which one of the
following is a valid key value pair as provided in a resource bundle property file for some strings mapped to
German language?

a)
<pair> <key>from</key> <value>von</value> </pair>
<pair> <key>subject</key> <value> betreff </value> </pair>
b)
from=von
subject=betreff
c)
key=from; value=von
key=subject; value=betreff
d)
pair<from,von>
pair<subject,betreff>

44. Assume that you’ve the following resource bundles in your classpath:

ResourceBundle.properties
ResourceBundle_ar.properties
ResourceBundle_en.properties
ResourceBundle_it.properties
ResourceBundle_it_IT_Rome.properties

Also assume that the default locale is English (US), where the language code is en and country code is US. Which
one of these five bundles will be loaded for the call
loadResourceBundle("ResourceBundle", new Locale("fr", "CA", ""));?

a) ResourceBundle.properties
b) ResourceBundle_ar.properties
c) ResourceBundle_en.properties
d) ResourceBundle_it.properties
e) ResourceBundle_it_IT_Rome.properties

Chapter 2 ■ pretest

35

45. Which one of the following is the correct implementation of a custom time formatter implementation that
prints the current time in the format 10:42:30 where 10 is hours (value in range 1–12), 42 is
minutes, and 30 is seconds?

a) System.out.println(new SimpleDateFormat("hh:mm:ss").format(new Date()));
b) System.out.println(new CustomDateFormat("hh:mm:ss").format(new Date()));
c) System.out.println(new SimpleTimeFormat("hh:mm:ss").format(new Date()));
d) System.out.println(new CustomDateTimeFormat("HH:MM:SS").format(new Date()));

Answer sheet

Q.No Answer Q.No Answer

1 24

2 25

3 26

4 27

5 28

6 29

7 30

8 31

9 32

10 33

11 34

12 35

13 36

14 37

15 38

16 39

17 40

18 41

19 42

20 43

21 44

22 45

23

Chapter 2 ■ pretest

36

Answers with Explanations
1. c)

s1 and s2 not equal
s1 and s3 equal

JVM sets a constant pool in which it stores all the string constants used in the type. If two references are
declared with a constant, then both refer to the same constant object. The == operator checks the similarity of
objects itself (and not the values in it). Here, the first comparison is between two distinct objects, so we get s1
and s2 not equal. On the other hand, since references of s1 and s3 refer to the same object, we get s1 and
s3 equal.

2. c) [0, 0]

The assignment x = x; inside the construct reassigns the passed parameter; it does not assign the member
x in Point2D. The correct way to perform the assignment is this.x = x;. Field y is not assigned, so its value
remains 0.

3. d) When executed, this program prints

k == j is true
k.equals(j) is true

The Integer objects are immutable objects. If there is an Integer object for a value that already exists, then
it does not create a new object again. In other words, Java uses sharing of immutable Integer objects, so two
Integer objects are equal if their values are equal (no matter if you use == operators to compare the references or
use equals() method to compare the contents).

4. a) arr1 == arr2 is false

arr1.equals(arr2) is false
Arrays.equals(arr1, arr2) is true

The first comparison between two array objects is carried out using the == operator, which compares object
similarity so it returns false here. The equals() method, which compares this array object with the passed array
object, does not compare values of the array since it is inherited from the Object class. Thus we get another false.
On the other hand, the Arrays class implements various equals() methods to compare two array objects of
different types; hence we get true from the last invocation.

5. d) When executed, this program will print the following: str is not Object.

The variable str was declared but not instantiated; hence the instanceof operator returns false.

6. b) Side Object Tail Side

Overloading is based on the static type of the objects (while overriding and runtime resolution resolves to the
dynamic type of the objects). Here is how the calls to the overload() method are resolved:

•	 overload(firstAttempt); --> firstAttempt is of type Side, hence it resolves to
overload(Side).

•	 overload((Object)firstAttempt); -> firstAttempt is casted to Object, hence it resolves to
overload(Object).

Chapter 2 ■ pretest

37

•	 overload(secondAttempt); -> secondAttempt is of type Tail, hence it resolves to
overload(Tail).

•	 overload((Side)secondAttempt); -> secondAttempt is casted to Side, hence it resolves to
overload(Side).

7. c) foo(long)

For an integer literal, the JVM matches in the following order: int, long, Integer, int.... In other words, it
first looks for an int type parameter; if it is not provided, then it looks for long type; and so on. Here, since the int
type parameter is not specified with any overloaded method, it matches with foo(long).

8. b)

In Base.foo()
In Derived.bar()

A static method is resolved statically. Inside the static method, a virtual method is invoked, which is resolved
dynamically.

9. d) When executed, the program prints “walk cannot fly”.

In order to override a method, it is not necessary for the overridden method to specify an exception. However, if
the exception is specified, then the specified exception must be the same or a subclass of the specified exception
in the method defined in the super class (or interface).

10. b) club none none none

Here is the description of matches for the four enumeration values:

“club” matches with the case “Club”.•	

For “Spade”, the case “spade” does not match because of the case difference (switch case •	
match is case sensitive).

does not match with “diamond” because case statements should exactly match and there are •	
extra whitespaces in the original string.

“hearts” does not match the string “heart”.•	

11. a) new Outer.Inner().text

The correct way to access fields of the static inner class is to use the inner class instance along with the outer
class, so new Outer.Inner().text will do the job.

12. a) for(Cards card : Cards.values())
 System.out.print(card + " ");

The values() method of an enumeration returns the array of enumeration members.

13. d) class CI12 extends C implements I1, I2 {}

A class inherits another class using the extends keyword and inherits interfaces using the implements keyword.

14. d) interface II extends I1, I2 {}

It is possible for an interface to extend one or more interfaces. In that case, we need to use the extends keyword
and separate the list of super-interfaces using commas.

Chapter 2 ■ pretest

38

15. c) The program will not compile and will result in a compiler error “ambiguous reference to name” in LINE A.

Since name is defined in both the base interface and the abstract class, any reference to the member name is
ambiguous. The first reference to name is in the line marked with comment LINE A, so the error is flagged in this
line by the compiler.

16. c) has-a

Composition is a design concept that refers to the has-a relationship.

17. c) When executed, the program prints the following: Brazil China India Russia.

When null is passed as a second argument to the Arrays.sort() method, it means that the default Comparable
(i.e., natural ordering for the elements) should be used. The default Comparator results in sorting the elements
in ascending order. The program does not result in a NullPointerException or any other exceptions or a
compiler error.

18. b) When executed, this program prints the following: “The removed element is: 1”.

The remove() method is equivalent to the removeFirst() method, which removes the first element (head of the
queue) of the Deque object.

19. d) When executed, the program prints the following: 1 2.0 3.0.

The List is a generic type that is used here in raw form; hence it allows us to put different types of values in list2.
Therefore, it prints the following: 1 2.0 3.0.

20. e) When executed, this program will print

SimpleCounter<Double> counter is 2
SimpleCounter<Integer> counter is 2
SimpleCounter counter is 2

Count is a static variable, so it belongs to the class and not to an instance. Each time constructor is invoked,
count is incremented. Since two instances are created, the count value is two.

21. f) The program throws an exception for java.util.UnknownFormatConversionException: Conversion = 'l'

There is no format specifier for long int, and the same %d format specifier for int is used for long as well. So, the
format specifier %ld results in a runtime exception UnknownFormatConversionException.

22. b)

Using String.split method: 10 01 2012
Using regex pattern: 10 01 2012

Using str.split(regex) is equivalent to using Pattern.compile(regex).split(str).

23. d) false true false true

Here are the following regular expression matches for the character x:

•	 x* means matches with x for zero or more times.

•	 x+ means matches with x for one or more times.

•	 x{n} means match x exactly n times.

Chapter 2 ■ pretest

39

The pattern a*b+c{3} means match a zero or more times, followed by b one or more times, and c exactly
three times.

So, here is the match for elements in the strings array:

For •	 "abc", the match fails, resulting in false.

For •	 "abbccc", the match succeeds, resulting in true.

For •	 "aabbcc", the match fails, resulting in false.

For •	 "aaabbbccc", the match succeeds, resulting in true.

24. d) Severity 1 does not match.
severity3 does not match.
severity five does not match.

Here is the meaning of the patterns used:

[^xyz] Any character except x, y, or z (i.e., negation)
\s A whitespace character
[a-z] from a to z

So the pattern "^severity[\\s+][1–5]" matches the string “severity” followed by whitespace followed by one
of the letters 1 to 5.

For this pattern,

“Severity 1” does not match because of the capital S in “Severity”.•	

“severity 2” matches.•	

“severity3” does not match since there is no whitespace between severity and 3.•	

“severity five” does not match since “five” does not match a numeral from 1 to 5.•	

25. a) The program prints the following: InvalidKeyException.

It is not necessary to provide an Exception thrown by a method when the method is overriding a method defined
with an exception (using the throws clause). Hence, the given program will compile successfully and it will print
InvalidKeyException.

26. e) The program prints the following: in catch -> in finally ->.

The statement println("after throw -> "); will never be executed since the line marked with the comment
LINE A throws an exception. The catch handles ArithmeticException, so println("in catch -> "); will be
executed. Following that, there is a return statement, so the function returns. But before the function returns, the
finally statement should be called, hence the statement println("in finally -> "); will get executed. So,
the statement println("after everything"); will never get executed.

27. f) Does not print any output on the console

By default, assertions are disabled. If -ea (or the -enableassertions option to enable assertions), then
the program would have printed “Error” since the exception thrown in the case of assertion failure is
java.lang.AssertionError, which is derived from the Error class.

Chapter 2 ■ pretest

40

28. d) This program will create file1.txt and file3.txt directories in the root directory, and a file2.txt directory in the
 “subdir” directory in the root directory.

The mkdirs() method creates a directory for the given name. Since the file names have / in them, the method
creates directories in the root directory (or root path for the Windows drive based on the path in which you
execute this program).

29. b) When serializing an object that has references to other objects, the serialization mechanism also includes the
 referenced objects as part of the serialized bytes.
 and
c) When an object is serialized, the class members that are declared as transient will not be serialized (and hence
 their values are lost after deserialization).

Option b) and c) are true regarding object serialization.

Option a) is wrong because the Serializable interface is a marker interface; in other words, the Serializable
 interface is an empty interface and it does not declare any methods in it.
Option d) is wrong because the Externalizable interface declares two methods, writeExternal() and
 readExternal().
Option e) is wrong because there is no such exception as NotExternalizableException.

30. b) Body first head hello program world

TreeSet<String> orders the strings in default alphabetical ascending order and removes duplicates. The
delimiter \W is non-word, so the characters such as < act as separators.

31. b) beginIndex = 0 and endIndex = 1

In the Path class’s method subpath(int beginIndex, int endIndex), beginIndex is the index of the first
element (inclusive of that element) and endIndex is the index of the last element (exclusive of that element). Note
that the name that is closest to the root in the directory hierarchy has index 0. Here, the string element "Program
Files" is the closest to the root C:\, so the value of beginIndex is 0 and endIndex is 1.

32. d) Prints the following: Copy.class Copy.java Hello.class OddEven.class PhotoCopy.java.

In the Glob pattern “*o*?{java,class,html}”, the character * matches any number of characters, so *o* matches
any string that has “o” in it. The ? matches exactly one character. The pattern {java,class} matches files with the
suffixes of “java” or “class”. Hence, from the given files, the matching file names are Copy.class, Copy.java,
Hello.class, OddEven.class, PhotoCopy.java.

33. b) WatchService watcher = FileSystems.getDefault().newWatchService();

The getDefault() method in FileSystems returns the reference to the underlying FileSystem object. The
method newWatchService() returns a new watch service that may be used to watch registered objects for
changes and events in files or directories.

34. The correct options are

c) You can get an instance of PreparedStatement by calling the preparedStatement() method in the Connection
 interface.
e) The interface Statement and its derived interfaces implement the AutoCloseable interface, hence they can be
 used with a try-with-resources statement.

Chapter 2 ■ pretest

41

Option c) and e) are correct statements. The other three are incorrect for the following reasons:

Option a) Objects of type Statement can handle IN, OUT, and INOUT parameters; you need to •	
use objects of CallableStatement type for that.

Option b) •	 PreparedStatement is used for pre-compiled SQL statements; the
CallableStatement type is used for stored procedures.

Option d) •	 CallableStatement implements the PreparedStatement interface; PreparedStatement
in turn implements the Statement interface. These three types are not classes.

35. e) The program will result in throwing a SQLException because auto-commit is true.

If you call methods such as commit() or rollback() when the auto-commit mode is set to true, the program will
a SQLException.

36. b) RowSetFactory rowSetFactory = RowSetProvider.newFactory();
 JdbcRowSet rowSet = rowSetFactory.createJdbcRowSet();

37. b) When executed, the program prints "Worker" and then the program hangs (i.e., does not terminate).

The statement Thread.currentThread() in the main() method refers to the “Master” thread. Calling the join()
method on itself means that the thread waits itself to complete, which would never happen, so this program
hangs (and does not terminate).

38. Options a) and d) are true:

a) Takes milliseconds as the argument for time to sleep.
d) Can throw the InterruptedException if it is interrupted by another thread when it sleeps.

In option b), the sleep() method takes milliseconds as an argument, not microseconds.
In option), the sleep() method does not relinquish the lock when it goes to sleep; it holds the lock.

39. c) The program prints
 Starting to wait
 Caught Exception

In this program, the wait() method is called without acquiring a lock; hence it will result in throwing an
IllegalMonitorStateException, which will be caught in the catch block for the Exception.

40. a) The program prints
 [10, 5, 10, 20]
 [20, 5, 10]
 [5, 10, 20]
 [5, 10, 20]

Here is the description of the containers that explain the output:

•	 List is unsorted.

•	 HashSet is unsorted and retains unique elements.

•	 TreeSet is sorted and retains unique elements.

•	 ConcurrentSkipListSet is sorted and retains unique elements.

Chapter 2 ■ pretest

42

41. c) The program does not compile and results in a compiler error in the line marked with comment LINE A.

The class CopyOnWriteArrayList does not inherit from ArrayList, so an attempt to assign a
CopyOnWriteArrayList to an ArrayList reference will result in a compiler error (the ArrayList suffix in the class
named CopyOnWriteArrayList could be misleading as these two classes do not share an is-a relationship).

42. c) Prints
 E Gamma
 R Johnson
 R Helm
 J Vlissides
 and then the program terminates.

The producer class puts an author on the list and then sleeps for some time. In the meantime, the other thread
(consumer) keeps checking whether the list is non-empty or not. If it is non-empty, the consumer thread removes
the item and prints it. Hence, all four author names get printed.

43. b)
from=von
subject=betreff

In the resource bundle property files, the key values are separated using the = symbol, with each line in the
resource file separated by a newline character.

44. c) ResourceBundle_en.properties

Java looks for candidate locales for a base bundle named ResourceBundle and locale French (Canada), and
checks for the presence of the following property files:

ResourceBundle_fr_CA.properties
ResourceBundle_fr.properties

Since both of them are not there, Java searches for candidate locales for the base bundle named
ResourceBundle and a default locale (English - United States):

ResourceBundle_en_US.properties
ResourceBundle_en.properties

Java finds that there is a matching resource bundle, ResourceBundle_en.properties. Hence it loads this
resource bundle.

45. a) System.out.println(new SimpleDateFormat("hh:mm:ss").format(new Date()));

In the format hh:mm:ss, h is for the hour in am/pm (with values in 1–12 range), m is for minutes, and s is
for seconds. The class for creating and using custom date or time pattern strings is SimpleDateFormat. The
expression new Date() creates a Date object with the current date and time value.

Post-Pretest Evaluation
The 45 questions in this pretest are selected and grouped to represent the 12 topics in the syllabus of the Oracle
1Z0-804 exam. The order of the topics in this pretest replicates the order of the topics in the 1Z0-804 syllabus.

Table 2-1 is your post-pretest evaluation tool. In the rightmost column, fill in the number of your correct pretest
answers in each topic from your answer sheet. Wherever your number of correct answers is less than or equal to the
expected number of correct answers shown in the adjacent column, you will need to focus your preparations for the
OPCJP 7 exam on that exam topic and its corresponding chapter in this book.

Chapter 2 ■ pretest

43

Table 2-1. Post-Pretest Evaluation Tool

Pretest Question
Numbers

1Z0-804 Exam Topic Pertinent Chapter in
This Book

Expected No. of
Correct Answers

My No. of Correct
Answers

1 – 5 OCAJP Basics – 4

6 – 9 Java Class Design 3 3

10 – 12 Advanced Class Design 4 2

13 – 16 Object-Oriented Design
Principles

5 3

17 – 20 Generics and Collections 6 3

21 – 24 String Processing 7 3

25 – 27 Exceptions and Assertions 11 2

28 – 30 Java I/O Fundamentals 8 2

31 – 33 Java File I/O (NIO.2) 9 2

34 – 36 Building Database
Applications with JDBC

10 2

37 – 39 Threads 13 2

40 – 42 Concurrency 14 2

42 – 45 Localization 12 2

45

Chapter 3

Java Class Design

Use access modifiers: private, protected, and public

Override methods

Override methods from the Object class to
improve the functionality of your class

Use package and import statements

Overload constructors and other methods appropriately

Use the instanceof operator and casting

Use virtual method invocation

Exam Topics

Java is an object-oriented programming (OOP) language. Object orientation helps a developer to achieve a modular,
extensible, maintainable, and reusable system. To write good-quality programs, a programmer must have a firm
command of OOP concepts.

Object-oriented programming revolves around the concept of an object, which encapsulates data and behavior
acting on the data together. An object provides its services through a well-defined interface. This interface specifies
“what” the object offers, abstracting “how” (actual implementation). Object orientation provides support for modeling
solutions at a higher level of abstraction in terms of classes, a hierarchy of related classes (inheritance), association
among classes, and dynamic binding (dynamic polymorphism).

For any OCPJP exam, you are expected to know essential OOP concepts. The first section of this chapter covers
foundations of OOP: abstraction, encapsulation, inheritance, and polymorphism. The second section covers concepts
related to classes, in which we cover constructors and access modifiers in detail. The third section reviews method
overloading and constructor overloading. The fourth section is on inheritance and covers the is-a relationship, method
overriding, and type casting. The final section of this chapter deals with Java packages and import statements.

Chapter 3 ■ Java Class Design

46

Essentials of OOP
To get a sense of the world of object-oriented programming, take a mental stroll around the television department
of your local consumer electronics retailer. A television is an abstraction that offers certain functionality through the
proper interface (a TV remote). As a viewer, you need not understand how the TV works; the TV abstracts all the finer-
grain details of its operation from the viewer (abstraction). A television object encapsulates properties of the television
(such as brightness, channel number, and volume) and associated behavior to control these properties in a single
entity (encapsulation). In other words, the access to these properties is restricted to the associated operations. There
are different types of televisions, such as CRT television, LED television, and LCD television; they belong to a single
family forming an inheritance hierarchy. Although all types of televisions support “display” functionality, the internal
technology enabling the display of content may differ (polymorphism).

With this television analogy in mind and with the help of the programming example introduced in the next
section, let’s review the essential OOP concepts.

FunPaint Application: An Example
Let’s assume that you are implementing a simple drawing program for children called FunPaint (Figure 3-1). Users
can drag and drop basic shapes like circles and squares, color them, and create drawings using those shapes.

Figure 3-1. A children’s drawing application implemented using OOP concepts

We’ll use this example throughout this chapter to illustrate how OOP concepts can be used effectively for real-world
programming and problem solving. For now, assume that the shapes such as Circle and Square are implemented as
classes. A user can click on the circle icon and draw a circle in the drawing pane. With a circle, you need to remember
associated information like center of the circle, radius of the circle, etc. To enable the user to color a circle, you need to
calculate its area. Next you’ll look at how OOP concepts can be used to implement FunPaint functionality.

Foundations of OOP
Object orientation is built on the foundations of encapsulation, abstraction, inheritance, and polymorphism. The
following sections refresh your understanding of each of these four concepts.

Chapter 3 ■ Java Class Design

47

Abstraction
The Latin root of abstraction means “taking away”—you take away everything except the specific aspect you wish to
focus on. In other words, abstraction means hiding lower-level details and exposing only the essential and relevant
details to the users.

For example, in order to drive a car, it is sufficient for a driver to have an essential repertoire of skills enabling
her to interface with the car’s steering, gear shifting, dashboard, braking, and accelerator systems. For the driver, it is
superfluous to know the internal implementation details, such as how fuel is injected into the combustion chamber or
how batteries are charged indirectly by the engine. The driver as such is concerned only about using the car and not
about how the car works and provides functionality to the driver. In other words, a car abstracts the internal details
and exposes to the driver only those details that are relevant to the interaction of the driver with the car.

In the FunPaint example, you define operations such as draw() and fillColor(). The user of the class Circle
does not need to know how the class is drawing a circle or filling the circle with a specific color. In other words, you are
abstracting the details of the class by hiding the implementation details.

Encapsulation
Structured programming decomposes the program’s functionality into various procedures (functions), without much
concern about the data each procedure can work with. Functions are free to operate and modify the (usually global
and unprotected) data.

In OOP, data and functions operating on that data are combined together to form a single unit, which is referred
to as a class. The term encapsulation refers to combining data and associated functions as a single unit. For example,
in the Circle class, radius and center are defined as private fields. Now you can adduce methods draw() and
fillColor() along with fields radius and center, since the fields and methods are closely related to each other. All
the data (fields) required for the methods in the class are available inside the class itself. In other words, the class
encapsulates its fields and methods together.

encapsulation combines data (fields) and logically-related operations (methods). abstraction hides internal
implementation level details and exposes only the relevant details of the class to the users. abstraction is
achieved through encapsulation.

Inheritance
Inheritance is a reusability mechanism in object-oriented programming in which the common properties of various
objects are exploited to form relationships with each other. The abstract and common properties are provided in the
superclass, which is available to the more specialized subclasses. For example, a color printer and a black-and-white
printer are kinds of a printer (single inheritance); an all-in-one printer is a printer, scanner, and photocopier (multiple
inheritance). It should be noted that Java does not support multiple inheritance but does support multiple-interface
inheritance (discussed in detail in Chapters 4 and 5).

When we say that a class B is inherited from another class A, then class B is referred to as a derived class
(or subclass) and class A is called as a base class (or superclass). By inheritance, the derived class receives the behavior
of the base class, such that all the visible member methods and variables of the base class are available in the derived
class. Apart from the inherited behavior, the derived class specializes its behavior by adding to or overriding base
class behavior.

In FunPaint, the user can draw different shapes. Though the shapes are different, all shapes support similar
functionality—for instance, color-filling and finding the area of the shape. Since these methods are common to all the
shape classes, you can have a base class called Shape and declare these methods in this class. Other classes such as
Circle and Triangle inherit from Shape and implement their specialized behavior.

Chapter 3 ■ Java Class Design

48

Polymorphism
The Greek roots of the term polymorphism refer to the “several forms” of an entity. In the real world, every message
you communicate has a context. Depending on the context, the meaning of the message may change and so may
the response to the message. Similarly in OOP, a message can be interpreted in multiple ways (polymorphism),
depending on the object.

For example, in function overloading (one of the polymorphic constructs in Java), you can provide methods with
the same name but with different numbers of arguments or types of arguments. The concept is simple, yet it provides
a lot of power and flexibility to the programmer. In FunPaint, you can fill the shapes with different colors. Methods
like fillColor() can either take the color argument as RGB (Red, Green, Blue) values or as HSB (Hue, Saturation,
Brightness) values. The call for the same method, fillColor(), behaves differently based on the provided arguments;
this is an example of compile-time polymorphism.

Let’s assume that you have a method named area() in the Shape base class. The area() method returns the area
of the drawn shape. Hence, area() is implemented (overridden) in all the derived classes of Shape. A Shape reference
can point to any derived class object. When you call the area() method from the Shape reference, it results in calling
the area() method of the actual object type (i.e. the dynamic type of the object). This dynamic behavior is known as
runtime polymorphism.

We packed a lot of concepts and terminology into one simple example. Don’t worry if you don’t quite digest them
all at once. You’ll be learning more about them throughout this book.

Class Fundamentals
A class is a fundamental abstraction entity and building block in OOP. A class encapsulates state (data) and behavior
(operations) of an entity. For example, a Circle class defines a blueprint for individual circle objects. This Circle
class might have state information such as radius and operations such as area() and fillColor(). The Circle class
encapsulates state and operations of the circle in a single entity and provides a new abstraction. From an object-oriented
programming point of view, it is important to understand that a class defines a new type that could be used by other
classes in a program.

Let’s look at an example of a class and analyze its various parts (Figure 3-2). This example declares the class
Circle, which has the member-variables x, y, and radius of type Integer and the two member-methods, area()
and fillColor().

Figure 3-2. A sample class Circle and its various parts

a class is a template (or blueprint), and an object is an instance of a class.

Chapter 3 ■ Java Class Design

49

Object Creation
You create classes to use them in your programs. You can create an instance (an object using the services of a class). At
a high level, there are three steps to using an object in a program.

•	 Declaration: You need to provide a variable declaration that consists of the type-name (the
class you want to use) and the object-name. For example, following statement declares a
variable circleObj of type Circle:

Circle circleObj;

•	 Instantiation: You use the keyword new to create an instance; the keyword allocates required
memory for the object. In this example, you instantiate the circle object by using the following
statement:

Circle circleObj = new Circle ();

•	 Initialization: A special method, which you call as a constructor, is invoked automatically. The
constructor initializes the newly created object.

Constructors
Each time you create an object, a constructor of that class gets called. You can make use of the constructor to initialize
the newly created object by setting the initial state of the object, and you can acquire some resources (such as file
handles). The main rule of constructors is that they should have the same name as the class. A class can have more
than one constructor.

every class has a constructor. if you do not explicitly write a constructor for a class, the Java compiler
provides a default constructor (without any parameter) for that class.

Assume that you are implementing the Circle class in the FunPaint application. A Circle should remember its
center and its radius, so you have three fields: xPos, yPos, and radius.

class Circle {
 int xPos, yPos, radius;
}

What happens when you create a new Circle object? The values of xPos, yPos, and radius will be initialized to
the value 0 by default since they are of type Integer. However, this is not desirable for creating proper Circle objects.
Let’s define default values for the variables xPos, yPos, and radius, in a default constructor:

public Circle() {
 xPos = 20; // assume some default values for xPos and yPos
 yPos = 20;
 radius = 10; // default radius
}

Chapter 3 ■ Java Class Design

50

As you can see here, a constructor has the same name as the class and doesn’t have any return type. A default
constructor does not have any arguments. A default constructor gets invoked when you create a new object without
passing any arguments.

Let’s check whether this default constructor gets invoked or not when you try to instantiate an object of Circle.
For that you’ll implement toString() method for printing the values of the Circle members (Listing 3-1). (Note: You
don’t have to call toString() method explicitly as in this code—it will get called automatically. You’ll learn more
about it in the “Runtime Polymorphism” section of this chapter).

Listing 3-1. Circle.java

// A 2D Circle class with xPos and yPos fields to store the coordinates for center point
// and radius field to store the radius value of the circle
class Circle {
 private int xPos, yPos, radius;
 // default constructor initializing all the three fields
 public Circle() {
 xPos = 20; // assume some default values for xPos and yPos
 yPos = 20;
 radius = 10; // default radius
 }
 // overridden toString method to print info on Circle object in string form
 public String toString() {
 return "center = (" + xPos + "," + yPos + ") and radius = " + radius;
 }
 public static void main(String[]s) {
 // Passing a object to println automatically invokes the toString method
 System.out.println(new Circle());
 }
}

It prints

center = (20,20) and radius = 10

Yes, your default constructor is working. Got it?
Now, can you see what’s wrong with this constructor?

public void Circle() {
 xPos = 20; // assume some default values for xPos and yPos
 yPos = 20;
 radius = 10; // default radius
}

A constructor does not have a return type, and here you’ve given a void return type. This is not a constructor, but it
is a method named Circle in this class! Beware: Java allows you to declare methods with same name as the class name,
but it is not a good practice to make use of this feature (since it will confuse the programmers reading your code).

a constructor does not have a return type. if you define a return type, it is not a constructor, but a method!
Beware and avoid making this common mistake.

Chapter 3 ■ Java Class Design

51

Access Modifiers
The OCPJP exam includes both direct questions on access modifiers and indirect questions that require an underlying
knowledge of access modifiers. Hence it is important to understand the various access modifiers supported in Java.

Access modifiers determine the level of visibility (and therefore access) for a Java entity (a class, method, or field).
Access modifiers enable you to enforce effective encapsulation. If all member variables of a class can be accessed
from anywhere, then there is no point putting these variables in a class and no purpose in encapsulating data and
methods together in a class.

Java supports four types of access modifiers:

Public•	

Private•	

Protected•	

Default (no access modifier specified)•	

To illustrate the four types of access modifiers, let’s assume that you have one more class in the FunPaint
application: Canvas. The Shape, Circle, and Circles classes are in one package (graphicshape) and the Canvas class
is in another package (appcanvas).

// Shape.java
package graphicshape;

class Shape {
 // class definition
}

// Circle.java
package graphicshape;

public class Circle extends Shape {
 // class definition
}

//Circles.java
package graphicshape;

class Circles {
 //class definition
}

// Canvas.java
package appcanvas;
import graphicshape.Circle;

class Canvas {
 //class definition
}

For the time being, let’s pass over the statements package graphicshape, ...extends Shape, and import
graphicshape.Circle and consider them in detail in later sections.

Chapter 3 ■ Java Class Design

52

Public Access Modifier
The public access modifier is the most liberal one. If a class or its members are declared as public, they can be
accessed from any other class regardless of the package boundary. It is comparable to a public place in the real world,
such as a company cafeteria that all employees can use irrespective of their department.

In the FunPaint example, let’s assume that the class Circle has a public method area(). This method can be
accessed from anywhere, even from another package, as shown in the Listing 3-2 snippet.

Listing 3-2. Circle.java

// Shape.java
package graphicshape;

class Shape {
 // class definition elided
}

// Circle.java
package graphicshape;

public class Circle extends Shape {
 public void area() { //public method
 // code for area method elided
 }
}

// Circles.java
package graphicshape;

class Circles {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); //call to public method area(), within package
 }
}

// Canvas.java
package appcanvas;
import graphicshape.Circle;

class Canvas {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); //call to public method area(), outside package
 }
}

As shown in Listing 3-2, the public method area() is accessible within the same package (in the Circles class),
as well as outside of the package (in the Canvas class).

Chapter 3 ■ Java Class Design

53

a public method in a class is accessible to the outside world only if the class is declared as public. if the
class does not specify any access modifier, then the public method is accessible only within the
containing package.

Private Access Modifier
The private access modifier is the most stringent access modifier. A private class member cannot be accessed from
outside the class; only members of the same class can access these private members. It’s comparable to a safe deposit
box room in a bank, which can only be accessed by a set of authorized personnel and safe deposit box owners.

Let’s add the attribute radius to the class Circle as a private member. In this case, the attribute can be assessed
by—and only by—the members of the Circle class, as shown in Listing 3-3.

Listing 3-3. Circle.java

// Shape.java
package graphicshape;

class Shape {
 //class definition
}

//Circle.java
package graphicshape;

public class Circle extends Shape {
 private int radius; //private field
 public void area() { //public method
 // access to private field radius inside the class
 System.out.println("area:"+3.14*radius*radius);
 }
}

// Circles.java
package graphicshape;

class Circles {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); //call to public method area(), within package
 }
}

// Canvas.java
package appcanvas;
import graphicshape.Circle;

Chapter 3 ■ Java Class Design

54

class Canvas {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); // call to public method area(), outside package
 }
}

In this example, radius is accessible only inside the Circle class and not in any other class, regardless of the
enclosing package.

Protected and Default Access Modifier
Protected and default access modifiers are quite similar to each other. If a member method or field is declared as
protected or default, then the method or field can be accessed within the package. Note that there is no explicit
keyword to provide default access—in fact, when no access modifier is specified, the member has default access. Also,
note that default access is also known as package-protected access. Protected and default accesses are comparable to
the situation in an office where a conference room is accessible only to one department.

What is the difference between protected and default access? One significant difference between these two
access modifiers arises when we talk about a subclass belonging to another package than its superclass. In this case,
protected members are accessible in the subclass, whereas default members are not.

Let’s say the class Shape has the protected member variable color and the class Circle has another method
fillColor() declared with default access modifier, as in the snippet in Listing 3-4.

Listing 3-4. Circle.java

// Shape.java
package graphicshape;

class Shape {
 protected int color;
}

// Circle.java
package graphicshape;

public class Circle extends Shape {
 private int radius; // private field
 public void area() { // public method
 // access to private field radius inside the class
 System.out.println("area:"+3.14*radius*radius);
 }
 void fillColor() {
 System.out.println("color:" + color); //access to protected field, in subclass
 }
}

// Circles.java
package graphicshape;

Chapter 3 ■ Java Class Design

55

class Circles {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); // call to public method area() within package
 circle.fillColor(); // call to a method with default access modifier
within package
 }
}

// Canvas.java
package appcanvas;
import graphicshape.Circle;

class Canvas {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); // call to public method area(), outside package
 }
}

As the example shows, the protected field color is accessed in the class Circle and the default method
fillColor() is called from the class Circles.

The visibility offered by various access modifiers is summarized in Table 3-1.

Table 3-1. Access Modifiers and Their Visibility

Access modifiers/
accessibility

Within the
same class

Subclass inside
the package

Subclass outside
the package

Other class inside
the package

Other class outside
the package

Public Yes Yes Yes Yes Yes

Private Yes No No No No

Protected Yes Yes Yes Yes No

Default Yes Yes No Yes No

it is important to note that a class (or interface) cannot be declared as private or protected. Furthermore,
member methods or fields of an interface cannot be declared as private or protected.

Overloading
Now let’s enlarge on the concept of polymorphism introduced in the “Polymorphism” section above.

Polymorphism can be of two forms: static and dynamic. When different forms of a single entity are resolved at
compile time (early binding), such polymorphism is called static polymorphism. When different forms of a single
entity are resolved during runtime (late binding), such polymorphism is called dynamic polymorphism. Overloading is
an example of static polymorphism.

Chapter 3 ■ Java Class Design

56

Method Overloading
In a class, how many methods can you define with the same name? Many! In Java, you can define multiple methods
with the same name, provided the argument lists differ from each other. In other words, if you provide different types
of arguments, different numbers of arguments, or both, then you can define multiple methods with the same name.
This feature is called method overloading. The compiler will resolve the call to a correct method depending on the
actual number and/or types of the passed parameters.

In the FunPaint application, you can draw and color a shape. Say you want to color a circle. How would you
define a method that can implement this functionality? (Please note that any color can be specified using one of these
two approaches.)

1. By combining the basic colors of red, green, and blue. This approach is known as RGB
scheme. By convention, each of the color values is typically given in the range 0 to 255.

2. By giving hue, saturation, and brightness values. This approach is known as HSB scheme.
By convention, each of the values is typically given in the range 0.0 to 1.0.

Let’s implement a method in the Circle class called fillColor() that takes RGB or HSB values. Since RGB
values are integer values and HSB values are floating point values, how about supporting both these schemes for
calling fillColor() method? See Listing 3-5.

Listing 3-5. Circle.java

class Circle {
 // other members
 public void fillColor (int red, int green, int blue) {
 /* color the circle using RGB color values – actual code elided */
 }

 public void fillColor (float hue, float saturation, float brightness) {
 /* color the circle using HSB values – actual code elided */
 }
}

As you can see, both fillColor() methods have exactly the same name and both take three arguments; however,
the argument types are different. Based on the type of arguments used while calling fillColor() method on Circle,
the compiler will decide exactly which method to call. For instance, consider following method calls:

Circle c1 = new Circle(10, 20, 10);
c1.fillColor(0, 255, 255);

Circle c2 = new Circle(50, 100, 5);
c2.fillColor(0.5f, 0.5f, 1.0f);

In this code, for the c1 object, the call to fillColor() has integer arguments 0, 255, and 255. Hence, the
compiler resolves this call to the method fillColor (int red, int green, int blue). For the c2 object, the
call to fillColor() has arguments 0.5f, 0.5f, and 1.0f; hence it resolves the call to fillColor (float hue, float
saturation, float brightness).

In the above example, method fillColor() is an overloaded method. The method has same name and the same
number of arguments, but the types of the arguments differ. It is also possible to overload methods with different
numbers of arguments.

Such overloaded methods are useful for avoiding repeating the same code in different functions. Let’s look at a
simple example in Listing 3-6.

Chapter 3 ■ Java Class Design

57

Listing 3-6. HappyBirthday.java

class HappyBirthday {
 // overloaded wish method with String as an argument
 public static void wish(String name) {
 System.out.println("Happy birthday " + name + "!");
 }

 // overloaded wish method with no arguments; this method in turn invokes wish(String) method
 public static void wish() {
 wish("to you");
 }

 public static void main(String []args) {
 wish();
 wish("dear James Gosling");
 }
}

It prints:

Happy birthday to you!
Happy birthday dear James Gosling!

Here, the method wish(String name) is meant for wishing “Happy Birthday” when the name of the person is
known. The default method wish() is for wishing “Happy Birthday” to anyone. As you can see, you don’t have to write
System.out.println again in the wish() method; you can just reuse the wish(String) method definition by passing
the default value “to you” as argument to wish(). Such reuse is effective for large and related method definitions since
it saves time writing and testing the same code.

Constructor Overloading
A default constructor is useful for creating objects with a default initialization value. When you want to initialize the
objects with different values in different instantiations, you can pass them as the arguments to constructors. And yes,
you can have multiple constructors in a class—which is constructor overloading. In a class, the default constructor can
initialize the object with default initial values, while another constructor can accept arguments that need to be used
for object instantiation.

In the FunPaint application, the user can just drag and drop the Circle template in the screen to create a Circle
object. In that case, you must set the xPos and yPos values for that dropped position and assume a default value for
radius (Listing 3-7).

Listing 3-7. Circle.java

// a Circle object can be created by dragging and dropping a circle template
// the x, and y positions need to be set in that case, but a default radius value can be assumed
public Circle(int x, int y) {
 xPos = x;
 yPos = y;
 radius = 10; // default radius
}

Chapter 3 ■ Java Class Design

58

Let’s retain the toString() method that was defined in the previous section on default constructors:

public String toString() {
 return "center = (" + xPos + "," + yPos + ") and radius = " + radius;
}

While creating the object, you can pass the arguments, as in the following statement:

System.out.println(new Circle(50, 100).toString());

The above statement prints

center = (50,100) and radius = 10

Now, can you see what is wrong with the following constructor implementation?

public Circle(int xPos, int yPos) {
 xPos = xPos;
 yPos = yPos;
 radius = 10; // default radius
}

System.out.println(new Circle(50, 100));

It prints

center = (0, 0) and radius = 10

What happened? You just changed the name of arguments in the constructor given in the previous example, and
it doesn’t work!

The statement xPos = xPos; is the culprit. What you wanted was to assign the member xPos to the passed
argument value xPos. However, this statement reassigns the passed argument value xPos! A passed argument is
treated just like a local variable (a variable confined to local scope). If there is a local variable with same name as the
field, the local variable hides the field.

in order to avoid subtle bugs, refrain from reusing the same variable names across scopes.

How can you solve this issue? You can rename the argument instead of using xPos, say x. Or you can use this to
qualify the use of xPos, as in

public Circle(int xPos, int yPos) {
 this.xPos = xPos;
 this.yPos = yPos;
 radius = 10; // default radius
}

Chapter 3 ■ Java Class Design

59

In the statement this.xPos = xPos;, you explicitly qualify the variable xPos with this, so the LHS (left-hand
side) of the statement refers to the field and the RHS (right-hand side) of the statement refers to the parameter name.

Use the explicit this qualifier when accessing fields inside instance methods or constructors to avoid
ambiguity in referring to variable names.

Create another constructor of Circle by passing more parameters. You’ll also pass the radius value.

public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
}

Now you’ll write the main() method, and you’ll create some Circle objects in it. You’ll implement the
toString() method to print the center position and the radius (see Listing 3-8).

Listing 3-8. Circle.java

public class Circle {
 private int xPos;
 private int yPos;
 private int radius;

 // three overloaded constructors for Circle
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }

 public Circle(int x, int y) {
 xPos = x;
 yPos = y;
 radius = 10; // default radius
 }

 public Circle() {
 xPos = 20; // assume some default values for xPos and yPos
 yPos = 20;
 radius = 10; // default radius
 }

 public String toString() {
 return "center = (" + xPos + "," + yPos + ") and radius = " + radius;
 }

Chapter 3 ■ Java Class Design

60

 public static void main(String[]s) {
 System.out.println(new Circle());
 System.out.println(new Circle(50, 100));
 System.out.println(new Circle(25, 50, 5));
 }
}

This program prints

center = (20,20) and radius = 10
center = (50,100) and radius = 10
center = (25,50) and radius = 5

As you can see, the compiler has resolved the constructor calls depending on the number of arguments. Did
you notice that you are duplicating the code inside the three constructors? To avoid that code duplication—and
reduce your typing effort—you can invoke one constructor from another constructor. Of the three constructors, the
constructor taking x-position, y-position, and radius is the most general constructor. The other two constructors can
be rewritten in terms of calling the three argument constructors, like so:

public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
}

public Circle(int x, int y) {
 this(x, y, 10); // passing default radius 10
}

public Circle() {
 this(20, 20, 10);
 // assume some default values for xPos, yPos and radius
}

The output is exactly the same as for the previous program, but this program is shorter; you used the this
keyword to call one constructor from another constructor of the same class.

Overload resolution
When you define overloaded methods, how does the compiler know which method to call? Can you guess the output
of the code in Listing 3-9?

Listing 3-9. Overloaded.java

class Overloaded {
 public static void aMethod (int val) { System.out.println ("int"); }
 public static void aMethod (short val) { System.out.println ("short"); }
 public static void aMethod (Object val) { System.out.println ("object"); }
 public static void aMethod (String val) { System.out.println ("String"); }

Chapter 3 ■ Java Class Design

61

 public static void main(String[] args) {
 byte b = 9;
 aMethod(b); // first call
 aMethod(9); // second call
 Integer i = 9;
 aMethod(i); // third call
 aMethod("9"); // fourth call
 }
}

It prints

short
int
object
String

Here is how the compiler resolved these calls:

In the first method call, the statement is •	 aMethod(b) where the variable b is of type byte. There
is no aMethod definition that takes byte as an argument. The closest type (in size) is short type
and not int, so the compiler resolves the call aMethod(b) to aMethod(short val) definition.

In the second method call, the statement is •	 aMethod(9). The constant value 9 is of type
int. The closest match is aMethod(int), so the compiler resolves the call aMethod(9) to
aMethod(int val) definition.

The third method call is •	 aMethod(i), where the variable i is of type Integer. There is no
aMethod definition that takes Integer as an argument. The closest match is aMethod(Object
val), so it is called. Why not aMethod(int val)? For finding the closest match, the compiler
allows implicit upcasts, not downcasts, so aMethod(int val) is not considered.

The last method call is •	 aMethod("9"). The argument is a String type. Since there is an exact
match, aMethod(String val) is called.

This process of the compiler trying to resolve the method call from given overloaded method definitions is called
overload resolution. For resolving a method call, it first looks for the exact match—the method definition with exactly
same number of parameters and types of parameters. If it can’t find an exact match, it looks for the closest match by
using upcasts. If the compiler can’t find any match, then you’ll get a compiler error, as in Listing 3-10.

Listing 3-10. More Overloaded.java

class Overloaded {
 public static void aMethod (byte val) { System.out.println ("byte"); }
 public static void aMethod (short val) { System.out.println ("short"); }

 public static void main(String[] args) {
 aMethod(9);
 }
}

Chapter 3 ■ Java Class Design

62

Here is the compiler error:

Overloaded.java:6: cannot find symbol
symbol : method aMethod(int)
location: class Overloaded
 aMethod(9);
 ^
1 error

The type of constant 9 is int, so there is no matching definition for aMethod for the call aMethod(9). As you saw
earlier with respect to the overload resolution, the compiler can do upcasts (e.g., byte to int) for the closest match,
but it does not consider downcasts (e.g., int to byte or int to short, as in this case). Hence, the compiler does not
find any matches and throws you an error.

What if the compiler finds two matches? It will also become an error! Listing 3-11 shows an example.

Listing 3-11. Two Matches in Overloaded.java

class Overloaded {
 public static void aMethod (long val1, int val2) {
 System.out.println ("long, int");
 }

 public static void aMethod (int val1, long val2) {
 System.out.println ("int, long");
 }

 public static void main(String[] args) {
 aMethod(9, 10);
 }
}

Here is the compiler error:

Overloaded.java:6: reference to aMethod is ambiguous, both method aMethod(long,java.lang.Integer) in
Overloaded and method aMethod(java.lang.Integer,long) in Overloaded match
 aMethod(9, 10);
 ^
1 error

Why did this call become an “ambiguous” call? The constants 9 and 10 are ints. There are two aMethod
definitions: one is aMethod(long, int) and another is aMethod(int, long). So there is no exact match for the
call aMethod(int, int). An integer can be implicitly upcasted to both long as well as Integer. Which one will the
compiler choose? Since there are two matches, the compiler complains with an error that the call is ambiguous.

Overload resolution fails (with a compiler error) if there are no matches or ambiguous matches.

Chapter 3 ■ Java Class Design

63

Points to Remember
Here are some interesting rules regarding method overloading that will help you when taking the OCPJP exam:

Overload resolution takes place entirely at compile time. In the next section, you’ll learn about •	
runtime polymorphism where the method call is resolved at runtime.

You cannot overload methods with the methods differing in return types alone.•	

You cannot overload methods with the methods differing in exception specifications alone.•	

For overload resolution to succeed, you need to define methods such that the compiler •	
finds one exact match. If the compiler finds no matches for your call or if the matching is
ambiguous, the overload resolution fails and the compiler issues an error.

the signature of a method is made up of the method name, number of arguments, and types of arguments.
You can overload methods with same name but with different signatures. since return type and exception
specification are not part of the signature, you cannot overload methods based on return type or exception
specification alone.

Inheritance
An important feature supported by object-oriented programming is the hierarchical classification of knowledge
using inheritance. Hierarchical models are easy to understand. For example, you can logically categorize vehicles as
two-wheelers, three-wheelers, four-wheelers, etc. In the four-wheelers category, there are cars, vans, buses, trucks,
etc. In the cars category, there are hatch-backs, sedans, SUVs, etc. When you categorize hierarchically, it becomes easy
to understand, model, and write programs. In OOP, you can create such hierarchies easily using inheritance.

Consider a simple example used in earlier sections: class Shape is a base class while Circle and Square
are derived classes. In other words, a Circle is a Shape; similarly, a Square is a Shape. Therefore, an inheritance
relationship can be referred to as an is-a relationship.

In the Java library, you can see extensive use of inheritance. Figure 3-3 shows a partial inheritance hierarchy
from java.lang library. The Number class abstracts various numerical (reference) types such as Byte, Integer, Float,
Double, Short, and BigDecimal.

Object

Number

Byte Integer Float Double

Figure 3-3. A partial inheritance hierarchy in java.lang package

Chapter 3 ■ Java Class Design

64

The class Number has many common methods that are inherited by the derived classes. The derived classes
do not have to implement the common methods implemented by the Number class. Also, you can supply a derived
type where the base type is expected. For instance, a Byte is a Number, which means you can provide an object of
Byte where an object of Number is expected. You can write general purpose methods (or algorithms) when you write
methods for the base type. Listing 3-12 shows a simple example.

Listing 3-12. TestNumber.java

public class TestNumber {
 // take an array of numbers and sum them up
 public static double sum(Number []nums) {
 double sum = 0.0;
 for(Number num : nums) {
 sum += num.doubleValue();
 }
 return sum;
 }

 public static void main(String []s) {
 // Create a Number array
 Number []nums = new Number[4];
 // assign derived class objects
 nums[0] = new Byte((byte)10);
 nums[1] = new Integer(10);
 nums[2] = new Float(10.0f);
 nums[3] = new Double(10.0f);
 // pass the Number array to sum and print the result
 System.out.println("The sum of numbers is: " + sum(nums));
 }
}

This program prints

The sum of numbers is: 40.0

In the main() method, you declare nums as a Number[]. A Number reference can hold any of its derived type
objects. You are creating objects of type Byte, Integer, Float, and Double with initial value 10; the nums array holds
these elements. (Note that you needed an explicit cast in new Byte((byte) 10) instead of plain Byte(10) because
Byte takes a byte argument and 10 is an int.)

The sum method takes a Number[] and returns the sum of the Number elements. The double type can hold the
largest range of values, so you use double as the return type of the sum method. Number has a doubleValue method and
this method returns the value held by the Number as a double value. The for loop traverses the array, adds the double
values, and then returns the sum once you’re done.

As you can see, the sum() method is a general method that can handle any Number[]. A similar example can be
given from the Java standard library where java.lang.Arrays class has a static method binarySearch():

static int binarySearch(Object[] a, Object key, Comparator c)

This method searches a given key (an Object type) in the given array of Objects. Comparator is an interface
declaring the equals and compare methods. You can use binarySearch for objects of any class type that implements this
Comparator interface. As you can see, inheritance is a powerful and useful feature for writing general-purpose methods.

In the FunPaint example, there is an inheritance relationship between base type Shape and its derived types such
as Circle and Square. What is the advantage of associating these classes by inheritance?

Chapter 3 ■ Java Class Design

65

Assume that a FunPaint user can choose the refresh (i.e., redraw) option from the menu for refreshing the shapes.
If the Shape base class declares a refresh() method, all the derived classes can implement the refresh() method.
Once all derived classes implement the refresh() method, refreshing all the shapes becomes easy.

void refreshAll(Shapes[]shapes) {
 for(Shape shape: shapes) // for all shapes
 shape.refresh(); // call refresh
}

Now if you call the refreshAll() method and pass the array containing all Shapes drawn in the screen, the whole
drawing will be refreshed. Writing such a generic method is possible only because of the is-a relationship.

Runtime Polymorphism
You just learned that a base class reference can refer to a derived class object. You can invoke methods from the base
class reference; however, the actual method invocation depends on the dynamic type of the object pointed to by the
base class reference. The type of the base class reference is known as the static type of the object and the actual object
pointed by the reference at runtime is known as the dynamic type of the object.

When the compiler sees the invocation of a method from a base class reference and if the method is an
overridable method (a non-static and non-final method), the compiler defers determining the exact method to be
called to runtime (late binding). At runtime, based on the actual dynamic type of the object, an appropriate method is
invoked. This mechanism is known as dynamic method resolution or dynamic method invocation.

An Example
Consider that you have the area() method in Shape class. Depending on the derived class—Circle or Square, for
example—the area() method will be implemented differently, as shown in Listing 3-13.

Listing 3-13. TestShape.java

// Shape.java
class Shape {
 public double area() { return 0; } // default implementation
 // other members
}

// Circle.java
class Circle extends Shape {
 private int radius;
 public Circle(int r) { radius = r; }
 // other constructors
 public double area() { return Math.PI * radius * radius; }
 // other declarations
}

// Square.java
class Square extends Shape {
 private int side;
 public Square(int a) { side = a; }
 public double area() { return side * side; }
 // other declarations
}

Chapter 3 ■ Java Class Design

66

// TestShape.java
class TestShape {
 public static void main(String []args) {
 Shape shape1 = new Circle(10);
 System.out.println(shape1.area());
 Shape shape2 = new Square(10);
 System.out.println(shape2.area());
 }
}

This program prints

314.1592653589793
100.0

This program illustrates how the area() method is called based on the dynamic type of the Shape. In this
code, the statement shape1.area(); calls the Circle's area() method while the statement shape2.area(); calls
Square's area() method and hence the result.

Now, let’s ask a more fundamental question: Why do you need to override methods? In OOP, the fundamental
idea in inheritance is to provide a default or common functionality in the base class; the derived classes are expected
to provide more specific functionality. In this Shape base class and the Circle and Square derived classes, the Shape
provided the default implementation of the area() method. The derived classes of Circle and Square defined their
version of the area() method that overrides the base class area() method. So, depending on the type of the derived
object you create, from base class reference, calls to area() method will be resolved to the correct method. Overriding
(i.e., runtime polymorphism) is a simple yet powerful idea for extending functionality.

Let’s look at another example of overriding the Object’s toString() method in the Point class. But before doing
so, let’s explore what happens if you don’t override the toString() method, as in Listing 3-14.

Listing 3-14. Point.java

class Point {
 private int xPos, yPos;

 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }

 public static void main(String []args) {
 // Passing a Point object to println automatically invokes the toString method
 System.out.println(new Point(10, 20));
 }
}

It prints

Point@19821f

The toString() method is defined in the Object class, which is inherited by all the classes in Java. Here is the
overview of the toString() method as defined in the Object class:

public String toString()

Chapter 3 ■ Java Class Design

67

The toString() method takes no arguments and returns the String representation of the object. The default
implementation of this method returns ClassName@hex version of the object’s hashcode. That is why you get this
unreadable output. Note that this hexadecimal value will be different for each instance, so if you try this program,
you’ll get a different hexadecimal value as output. For example, when we ran this program again, we got this
output: Point@affc70.

When you create new classes, you are expected to override this method to return the desired textual
representation of your class. Listing 3-15 shows an improved version of the Point class with the overridden version of
the toString() method.

Listing 3-15. Improved Point.java

// improved version of the Point class with overridden toString method
class Point {
 private int xPos, yPos;

 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }

 // this toString method overrides the default toString method implementation
 // provided in the Object base class
 public String toString() {
 return "x = " + xPos + ", y = " + yPos;
 }

 public static void main(String []args) {
 System.out.println(new Point(10, 20));
 }
}

This program now prints

x = 10, y = 20

This is much cleaner, as you would expect. To make it clear, here is a slightly different version of the main()
method in this Point class implementation:

public static void main(String []args) {
 Object obj = new Point(10, 20);
 System.out.println(obj);
}

It prints

x = 10, y = 20

Here, the static type of the obj variable is Object class, and the dynamic type of the object is Point. The println
statement invokes the toString() method of the obj variable. Here, the method toString() of the derived class—the
Point’s toString() method—is invoked due to runtime polymorphism.

Chapter 3 ■ Java Class Design

68

Overriding Issues
While overriding, you need to be careful about the access levels, the name of the method, and its signature. Here is the
toString() method in the Point class just discussed:

public String toString() {
 return "x = " + xPos + ", y = " + yPos;
}

How about using the protected access specifier instead of public in this method definition? Will it work?

protected String toString() {
 return "x = " + xPos + ", y = " + yPos;
}

No, it doesn’t. For this change, the compiler complains

Point.java:8: toString() in Point cannot override toString() in java.lang.Object; attempting to
assign weaker access privileges; was public

While overriding, you can provide stronger access privilege, not weaker access; otherwise it will become a
compiler error.

Here is another slightly modified version of toString() method. Will it work?

public Object toString() {
 return "x = " + xPos + ", y = " + yPos;
}

You get the following compiler error:

Point.java:8: toString() in Point cannot override toString() in java.lang.Object; attempting to use
incompatible return type. Found: java.lang.Object. Required: java.lang.String.

In this case, you got a compiler error for mismatch because the return type in the overriding method should be
exactly the same as the base class method.

Here is another example:

public String ToString() {
 return "x = " + xPos + ", y = " + yPos;
}

Now the compiler doesn’t complain. But this is a new method named ToString and it has nothing to do with the
toString method in Object. Hence, this ToString method does not override the toString method.

Keep the following points in mind for correct overriding. The overriding method

Should have the •	 same argument list types (or compatible types) as the base version.

Should have •	 the same return type.

But from Java 5 onwards, the return type can be a subclass–covariant return types (which •	
you’ll learn shortly).

Chapter 3 ■ Java Class Design

69

Should •	 not have a more restrictive access modifier than the base version.

But it may have a less restrictive access modifier.•	

Should •	 not throw new or broader checked exceptions.

But it may throw fewer or narrower checked exceptions, or any unchecked exception. •	

And, oh yes, the names should exactly match!•	

Remember that you cannot override a method if you do not inherit it. Private methods cannot be overridden
because they are not inherited.

the signatures of the base method and overriding method should be compatible for overriding to
take place.

incorrect overriding is a common source of bugs in Java programs. in questions related to overriding, look for
mistakes or problems in overriding when answering the questions.

Covariant return types

You know that the return types of the methods should exactly match when overriding methods. however, with
the covariant return types feature introduced in Java 5, you can provide the derived class of the return type in the
overriding method. Well, that’s great, but why do you need this feature? Check out these overridden methods with
the same return type:

abstract class Shape {
 // other methods...
 public abstract Shape copy();
}

class Circle extends Shape {
 // other methods...
 public Circle(int x, int y, int radius) { /* initialize fields here */ }
 public Shape copy() { /* return a copy of this object */ }
}

class Test {
 public static void main(String []args) {
 Circle c1 = new Circle(10, 20, 30);
 Circle c2 = c1.copy();
 }
}

Chapter 3 ■ Java Class Design

70

this code will give a compiler error of "Type mismatch: cannot convert from Shape to Circle".
this is because of the lack of an explicit downcast from Shape to Circle in the assignment "Circle c2 =
c1.copy();".

since you know clearly that you are going to assign a Circle object returned from Circle’s copy method, you
can give an explicit cast to fix the compiler error:

Circle c2 = (Circle) c1.copy();

since it is tedious to provide such downcasts (which are more or less meaningless), Java provides covariant
return types where you can give the derived class of the return type in the overriding method. in other words, you
can change the definition of copy method as follows:

public Circle copy() { /* return a copy of this object */ }

now the assignment in the main method Circle c2 = c1.copy(); is valid and no explicit downcast is needed
(which is good).

Overriding: Deeper Dive
It is important to understand method overriding in depth, so let’s explore it in more detail. Let’s use the override
equals method in the Point class. Before that, here is the signature of the equals() method in the Object class:

public boolean equals(Object obj)

The equals() method in the Object class is an overridable method that takes the Object type as an argument.
It checks if the contents of the current object and the passed obj argument are equal. If so, the equals() returns true;
otherwise it returns false.

Now, let’s see whether the Point class is overriding the equals() method correctly in Listing 3-16.

Listing 3-16. Point.java

public class Point {
 private int xPos, yPos;

 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }

 // override the equals method to perform
 // "deep" comparison of two Point objects
 public boolean equals(Point other){
 if(other == null)
 return false;
 // two points are equal only if their x and y positions are equal
 if((xPos == other.xPos) && (yPos == other.yPos))
 return true;
 else
 return false;
 }

Chapter 3 ■ Java Class Design

71

 public static void main(String []args) {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(50, 100);
 Point p3 = new Point(10, 20);
 System.out.println("p1 equals p2 is " + p1.equals(p2));
 System.out.println("p1 equals p3 is " + p1.equals(p3));
 }
}

This prints

p1 equals p2 is false
p1 equals p3 is true

The output is as expected, so is this equals() implementation correct? No! Let’s make the following slight
modification in the main() method:

public static void main(String []args) {
 Object p1 = new Point(10, 20);
 Object p2 = new Point(50, 100);
 Object p3 = new Point(10, 20);
 System.out.println("p1 equals p2 is " + p1.equals(p2));
 System.out.println("p1 equals p3 is " + p1.equals(p3));
}

Now it prints

p1 equals p2 is false
p1 equals p3 is false

Why? Both main() methods are equivalent. However, this newer main() method uses the Object type for
declaring p1, p2, and p3. The dynamic type of these three variables is Point, so it should call the overridden equals()
method. However, the overriding is wrong, so the main() method calls the base version, which is the default
implementation of Point in Object class!

if the name or signature of the base class method and the overriding method don’t match, you will cause
subtle bugs. so ensure that they are exactly the same.

The equals() method should have Object as the argument instead of the Point argument! The current
implementation of the equals() method in the Point class hides (not overrides) the equals() method of the
Object class.

In order to overcome the subtle problems of overloading, you can use @Override annotation, which was
introduced in Java 5. This annotation explicitly expresses to the Java compiler the intention of the programmer to
use method overriding. In case the compiler is not satisfied with your overridden method, it will issue a complaint,
which is a useful alarm for you. Also, the annotation makes the program more understandable, since the @Override
annotation just before a method definition helps you understand that you are overriding a method.

Chapter 3 ■ Java Class Design

72

Here is the code with @Override annotation for the equals method:

@Override
public boolean equals(Point other) {
 if(other == null)
 return false;
 // two points are equal only if their x and y positions are equal
 if((xPos == other.xPos) && (yPos == other.yPos))
 return true;
 else
 return false;
}

You’ll get a compiler error now for this code: “The method equals(Point) of type Point must override or
implement a supertype method”. How can you fix it? You need to pass the Object type to the argument of the equals
method. Listing 3-17 shows the program with the fixed equals method.

Listing 3-17. Fixed Point.java

public class Point {
 private int xPos, yPos;

 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }

 // override the equals method to perform "deep" comparison of two Point objects
 @Override
 public boolean equals(Object other) {
 if(other == null)
 return false;

 // check if the dynamic type of 'other' is Point
 // if 'other' is of any other type than 'Point', the two objects cannot be
 // equal if 'other' is of type Point (or one of its derived classes), then
 // downcast the object to Point type and then compare members for equality
 if(other instanceof Point) {
 Point anotherPoint = (Point) other;
 // two points are equal only if their x and y positions are equal
 if((xPos == anotherPoint.xPos) && (yPos == anotherPoint.yPos))
 return true;
 }
 return false;
 }

 public static void main(String []args) {
 Object p1 = new Point(10, 20);
 Object p2 = new Point(50, 100);
 Object p3 = new Point(10, 20);
 System.out.println("p1 equals p2 is " + p1.equals(p2));
 System.out.println("p1 equals p3 is " + p1.equals(p3));
 }
}

Chapter 3 ■ Java Class Design

73

Now this program prints

p1 equals p2 is false
p1 equals p3 is true

This is the expected output and with the correct implementation of the equals method implementation.

Invoking Superclass Methods

It is often useful to call the base class method inside the overridden method. To do that, you can use the super
keyword. In derived class constructors, you can call the base class constructor using the super keyword. Such a call
should be the first statement in a constructor if it is used. You can use the super keyword for referring to the base class
members also. In those cases, it need not be the first statement in the method body. Let’s look at an example.

You implemented a Point class that is a 2D-point: it had x and y positions. You can also implement a 3D-point
class with x, y, and z positions. For that you do not need to start implementing it from scratch: you can extend the
2D-point and add the z position in the 3D-point class. First, you’ll rename the simple implementation of Point class to
Point2D. Then you’ll create the Point3D class by extending this Point2D (see Listing 3-18).

Listing 3-18. Point3D.java

// Point2D.java
class Point2D {
 private int xPos, yPos;
 public Point2D(int x, int y) {
 xPos = x;
 yPos = y;
 }

 public String toString() {
 return "x = " + xPos + ", y = " + yPos;
 }

 public static void main(String []args) {
 System.out.println(new Point2D(10, 20));
 }
}

//Point3D.java

// Here is how we can create Point3D class by extending Point2D class
public class Point3D extends Point2D {
 private int zPos;

 // provide a public constructors that takes three arguments (x, y, and z values)
 public Point3D(int x, int y, int z) {
 // call the superclass constructor with two arguments
 // i.e., call Point2D(int, int) from Point2D(int, int, int) constructor)
 super(10, 20); // note that super is the first statement in the method
 zPos = z;
 }

Chapter 3 ■ Java Class Design

74

 // override toString method as well
 public String toString() {
 return super.toString() + ", z = " + zPos;
 }

 // to test if we extended correctly, call the toString method of a Point3D object
 public static void main(String []args) {
 System.out.println(new Point3D(10, 20, 30));
 }
}

In the class Point2D, the class members xPos and yPos are private, so you cannot access them directly to initialize
them in the Point3D constructor. However, you can call the superclass constructor using super keyword and pass the
arguments. Here, super(10, 20); calls the base class constructor Point2D(int, int). This call to the superclass
constructor should be the first statement; if you call it after zPos = z;, you’ll get a compiler error:

public Point3D(int x, int y, int z) {
 zPos = z;
 super(10, 20);
}

Point3D.java:19: call to super must be first statement in constructor
 super(10, 20);

Similarly, you can invoke the toString() method of the base class Point2D in the toString() implementation of
the derived class Point3D using the super keyword.

Type Conversions
Java is a strongly-typed language: it performs strict type checking to ensure that you are doing only valid conversions.
If you perform some obvious invalid casts, the compiler will give a compiler error. If the compiler doesn’t catch an
invalid cast, it will result in a runtime problem or exception. As a result, you need to be careful when performing type
conversions.

Upcasts and Downcasts
You can assign derived objects to base type references without performing any explicit casts: this is upcasting.
Conversely, if you need to put it back to the derived ones, you will need an explicit cast: this is downcasting. Let’s
examine these two types of casts in detail using simple examples.

In Java, every class derives from the Object base class. Therefore, you can put any object into an Object reference
and it will never fail.

String str1 = "Hello world";
Object obj = str1; // no explicit cast needed – such conversions will never fail

But if you convert from the Object reference to some derived type—say String—it can fail. Why? Because, in
general, an Object reference can hold an object of any type and it might not be the type you are downcasting to.

String str2 = obj;

Chapter 3 ■ Java Class Design

75

For this statement, you’ll get this error:

compiler error - incompatible types
found : java.lang.Object
required: java.lang.String

To fix this, you need to use an explicit downcast to String, like so:

String str2 = (String) obj;

When you are performing such explicit type casts (downcasts), it is your responsibility to ensure that the
downcast is valid. Otherwise, you’ll get a runtime exception. Consider the program in Listing 3-19. Can you
tell its output?

Listing 3-19. Downcast.java

// Code to understand how downcast can fail
class Downcast {
 public static void main(String []args) {
 Integer i = new Integer(10);
 // upcast - its fine and will always succeed
 Object obj = i;
 // downcast - will it succeed? What will happen when it fails?
 String str = (String) obj;
 }
}

This program crashes with a runtime exception of

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to
java.lang.String
 at Downcast.main(Downcast.java:6)

In this program, you first made the Integer variable i to point to a variable obj of type Object. Such a type
conversion is an upcast, so it is fine because such a conversion will always succeed. Now, when you try to convert
the Object type variable to String type, it is a downcast. The compiler does not know about the dynamic type of
the object pointed to by the obj variable (you know that the dynamic type of the variable pointed to by obj is of type
Integer). With an explicit typecast, you force the compiler to make the conversion from Object type to String type.
Because an Integer type cannot be converted to String type, the downcast fails by throwing a ClassCastException.

Upcasts will always succeed, so you don’t have to worry about them. however, downcasts may fail with
runtime exception, so you need to be careful when downcasting.

Unlike downcasts, invalid casts can be detected by the compiler itself. We’ll discuss this topic next.

Chapter 3 ■ Java Class Design

76

Casting Between Inconvertible Types
Both String and StringBuffer inherit from Object class. But you cannot directly cast from String to StringBuffer
and vice versa. For example, someone can write a code like the following by mistake:

Object obj = new StringBuffer("Hello");
String str2 = (String) obj;

The compilation succeeds, but this cast fails at runtime:

'Exception in thread "main" java.lang.ClassCastException: java.lang.StringBuffer cannot be cast to
java.lang.String'.

In this case, you first put a StringBuffer object into an Object type and then tried casting back to String.
How about a direct conversion from StringBuffer to String? Will it lead to a compiler error/warning or a runtime
exception?

String str = (String) new StringBuffer("Hello");

You get a compiler error because it is not possible to cast from StringBuffer to String:

Cast.java:4: inconvertible types found : java.lang.StringBuffer required: java.lang.String

Now how about this statement where the target type is StringBuffer but the intermediate cast is String?

StringBuffer str = (String) new StringBuffer("Hello");

You still get the same compiler error because it is not possible to cast from StringBuffer to String. This brings
us to an important question. How do you know if an invalid cast results in a compiler error or a runtime exception?

If the compiler can use only the static type information of the source and target types and thus infer it as an
invalid cast, it becomes a compiler error. If the success/failure of the cast depends on the dynamic type of the object,
the compiler cannot predict the result of the cast. In those cases, it becomes a runtime exception.

Using “instanceof” for Safe Downcasts
If a ClassCastException is thrown while executing a program, and if there are no exception handlers for that, the
program will terminate. So, how about providing an exception handler like this?

try {
 StringBuffer str = new StringBuffer("Hello");
 Object obj = str;
 String strBuf = (String) obj;
}
catch(ClassCastException e) {
 // ignore exception – we don't want program to crash because of this!!!
}

Yes, this will work and the program will not crash. But this is a really bad idea! There are two main problems in
this code.

Chapter 3 ■ Java Class Design

77

1. Providing exception handlers for RuntimeExceptions like this create an illusion that the
program is working perfectly fine, when it is not!

2. Runtime exceptions like ClassCastException indicate programming errors and should
not be caught using exception handlers.

Okay, so what do you do now? Before downcasting, check for the dynamic type of the object and then downcast.

StringBuffer str = new StringBuffer("Hello");
Object obj = str;
if(obj instanceof String) {
 String strBuf = (String) obj;
}

This is an effective and proper way to achieve downcasting. Using the instanceof operator checks the dynamic
type of obj, which helps you to decide whether to downcast it to a String object.

Coming back to the example of FunPaint, you have the abstract base class Shape and many derived objects like
Square, Circle, etc. You might need to perform typecasting in order to execute conversions between the base type
and the derived types. Here is an example:

Shape shape = canvas.getHighlightedShape();
Circle circle = (Circle) shape;
circle.redraw();

Here, assume that there is a method called getHighlightedShape() that returns the current highlighted Shape
on the canvas. In the statement Circle circle = (Circle) shape;, you are downcasting from the Shape type to the
Circle type. However, this is dangerous because if Shape holds a Square object, then this downcast will fail. To avoid
that, you need to use operator instanceof before downcasting, like so:

Shape shape = drawingWindow.getHighlightedShape();
if(shape instanceof Circle) {
 Circle circle = (Circle) shape;
 circle.redraw();
}

it is a bad practice to handle runtime exceptions like ClassCastExceptions. instead, it is better to
introduce defensive programming checks to avoid such exceptions at runtime.

Java Packages
When the size of your application grows, you need an effective mechanism to manage all your source files. Java
supports the concept of package, which is a scoping construct to organize your classes and to provide namespace
management. All closely related classes can be put together in a single entity: a package. A package not only reduces
the complexity of a big application but also provides access protection.

Chapter 3 ■ Java Class Design

78

In essence, here are the advantages of using packages:

Packages reduce complexity by facilitating categorization of similar classes.•	

Packages provide namespace management. For example, two developers can define the same •	
type name without ending up in a name clash by putting the name in different packages.

Packages offer access protection (recall the discussion of the default access modifier).•	

The Java SDK is categorized in various packages. For example, java.lang provides basic language functionality
and fundamental types, and java.io can be used to carry out file-related operations.

How can you create your own packages and use (or import) classes from them in other packages? We’ll discuss
that next.

Working with Packages
When you want to include a class in a package, you just need to declare it in the class using the package statement. In
the FunPaint application, you have the class Circle. If you want to include this class in package graphicshape, then
the following declaration would work:

// Circle.java
package graphicshape;

public class Circle {
 //class definition
}

Now, let's say that you want to use this Circle class in your Canvas class (which is in a different package);
see Listing 3-20.

Listing 3-20. Canvas.java

// Canvas.java
package appcanvas;

public class Canvas {
 public static void main(String[] args) {
 Circle circle = new Circle();
 circle.area();
 }
}

This code results in the following error message from the compiler: "Circle cannot be resolved to a type". Well,
you can remove this error by providing the fully qualified class name, as shown:

// Canvas.java
package appcanvas;

public class Canvas {
 public static void main(String[] args) {
 graphicshape.Circle circle = new graphicshape.Circle();
 circle.area();
 }
}

Chapter 3 ■ Java Class Design

79

Another and more convenient way to resolve the error is to use the import statement. The import statement
directs the compiler where to search for the definition of the used type. In this example, you will import from the
graphicshape package:

// Canvas.java
package appcanvas;
import graphicshape.Circle;

public class Canvas {
 public static void main(String[] args) {
 Circle circle = new Circle();
 circle.area();
 }
}

You need to remember that package statement should appear first, followed by import statement(s). Obviously,
you can have only one package statement in a java source file.

Let’s assume that you wanted to use various shapes like Circle, Square, Triangle, etc. (belonging to
graphicshape package) in the Canvas implementation. You can use one import statement for each graphicshape
class (such as import graphicshape.Circle; and import graphicshape.Square;). In such cases, a more
convenient way to use the import statement is to use import with a wildcard symbol “*”, which means “include all
classes in that package,” as shown:

import graphicshape.*;

Note that physical hierarchy (the direct structure in your file system) should reflect the package hierarchy.

You do not need to import java.lang to use the basic functionality of the language. this is the only
 package that is implicitly imported, and the classes in this package are available for use in all programs.

Static Import
Recollect the implementation of the area() method in Listing 3-13, which is reproduced here:

public double area() {
 return Math.PI * radius * radius;
}

The implementation uses a static member PI of the Math package; that’s why we used PI with package reference.
Java 5 introduced a new feature—static import—that can be used to import the static members of the imported
package or class. You can use the static members of the imported package or class as if you have defined the static
member in the current class. To avail yourself of the feature, you must use “static” in the import declaration. Let’s
reimplement the area() method with a static import:

import static java.lang.Math.PI;

// class declaration and other members
public double area() {
 return PI * radius * radius;
}

Chapter 3 ■ Java Class Design

80

You can also use wildcard character “*” to import all static members of a specified package of class.

always remember that static import only imports static members of the specified package or class.

A word of caution: Although it is quite convenient to use static imports, it may introduce confusion for any
developer who is reading later, especially if the current class also defines similar members. It might become difficult to
distinguish between a statically imported definition and a locally specified definition.

naming Conventions for Java paCkages

Oracle recommends the following naming conventions for Java packages:

a hierarchical structure is used normally to define packages and subpackages.•	

all Java packages usually use lowercase letters.•	

a product may use an organization structure to define a package hierarchy. For instance, •	
a company (say COMp) has many products, one of which is prOD; one of the features in
this product is FtUr; and one of the packages in this feature is pCKg. in this case, the
package hierarchy would be comp.prod.ftur.pckg.

a reversed internet domain name may also serve the purpose of a package hierarchy, •	
such as com.company.feature.

if the product name or company name has a hyphen or any other special character, •	
employ the underscore symbol in place of the hyphen and other special character.

Question time!

in the Funpaint application, you can color objects. You need the class Color to implement this functionality. this
class should use rgB (red, green, blue) color scheme. these three color component values should be stored as
int values in three fields. the class should implement a default constructor setting the color values to zero and
another constructor that takes these three component values as arguments.

1. What will be the output of this program?

class Color {
 int red, green, blue;

 void Color() {
 red = 10;
 green = 10;
 blue = 10;
 }

Chapter 3 ■ Java Class Design

81

 void printColor() {
 System.out.println("red: " + red + " green: " + green + " blue: " + blue);
 }

 public static void main(String [] args) {
 Color color = new Color();
 color.printColor();
 }
}

a. Compiler error: no constructor provided for the class.

B. Compiles without errors, and when run, it prints the following: red: 0 green: 0 blue: 0.

C. Compiles without errors, and when run, it prints the following: red: 10 green: 10 blue: 10.

D. Compiles without errors, and when run, crashes by throwing NullPointerException.

Answer: B. Compiles without errors, and when run, it prints the following: red: 0 green: 0 blue: 0.

(remember that a constructor does not have a return type; if a return type is provided, it is treated as a method in
that class. in this case, since Color had void return type, it became a method named Color() in the Color class,
with the default Color constructor provided by the compiler. By default, data values are initialized to zero, hence
the output.)

2. look at the following code and predict the output:

class Color {
 int red, green, blue;

 Color() {
 Color(10, 10, 10);
 }

 Color(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 }

 void printColor() {
 System.out.println("red: " + red + " green: " + green + " blue: " +
blue);
 }

 public static void main(String [] args) {
 Color color = new Color();
 color.printColor();
 }
}

Chapter 3 ■ Java Class Design

82

a. Compiler error: cannot find symbol.

B. Compiles without errors, and when run, it prints the following: red: 0 green: 0 blue: 0.

C. Compiles without errors, and when run, it prints the following: red: 10 green: 10 blue: 10.

D. Compiles without errors, and when run, crashes by throwing NullPointerException.

Answer: a. Compiler error: cannot find symbol.

(the compiler looks for the method Color() when it reaches this statement: Color(10, 10, 10);. the right way
to call another constructor is to use the this keyword as follows: this(10, 10, 10);).

3. in the Funpaint application, you need to code classes to draw rectangles. a rectangle can
have plain or rounded edges. You also need to color a (plain or rounded) rectangle. how
will you define classes for creating these plain, colored, and rounded rectangles? You can
use is-a relationships as needed.

look at the following option to implement the required functionality:

class Rectangle { /* */ }
class ColoredRectangle extends Rectangle { /* */ }
class RoundedRectangle extends Rectangle { /* */ }
class ColoredRoundedRectangle extends ColoredRectangle, RoundedRectangle { /* */ }

Choose an appropriate option:

a. Compiler error: ‘{‘ expected cannot extend two classes.

B. Compiles without errors, and when run, crashes with the exception
MultipleClassInheritanceException.

C. Compiles without errors, and when run, crashes with the exception
NullPointerException.

D. Compiles without errors, and when run, crashes with the exception
MultipleInheritanceError.

Answer: a. Compiler error: ‘{‘ expected – cannot extend two classes.

(this program will result in a compilation error since Java does not support multiple inheritance.)

4. in the Funpaint application, you can fill colors to various shape objects. to implement
it, you need to implement a Color class. the Color class has three members, m_red,
m_green, and m_blue. Focus on the toString() method and check if it works fine.

Choose the best option based on the following program:

class Color {
 int red, green, blue;

 Color() {
 this(10, 10, 10);
 }

Chapter 3 ■ Java Class Design

83

 Color(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 }
 public String toString() {
 return "The color is: " + red + green + blue;
 }

 public static void main(String [] args) {
 // implicitly invoke toString method
 System.out.println(new Color());
 }
}

a. Compiler error: incompatible types.

B. Compiles without errors, and when run, it prints the following: the color is: 30.

C. Compiles without errors, and when run, it prints the following: the color is: 101010.

D. Compiles without errors, and when run, it prints the following: the color is: red green blue.

Answer: C. Compiles without errors, and when run, it prints the following: the color is: 101010.

(the toString() implementation has the expression “the color is: “ + red + blue + green. since the first entry
is string, the + operation becomes the string concatenation operator with resulting string “the color is: 10”.
Following that, again there is a concatenation operator + and so on until finally it prints “the color is: 101010”).

5. Choose the best option based on the following program:

class Color {
 int red, green, blue;

 Color() {
 this(10, 10, 10);
 }

 Color(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 }

 String toString() {
 return "The color is: " + " red = " + red + " green = " + green +
" blue = " + blue;
 }

 public static void main(String [] args) {
 // implicitly invoke toString method
 System.out.println(new Color());
 }
}

Chapter 3 ■ Java Class Design

84

a. Compiler error: attempting to assign weaker access privileges; toString was public
in Object.

B. Compiles without errors, and when run, it prints the following: the color is: red = 10
green = 10 blue = 10.

C. Compiles without errors, and when run, it prints the following: the color is: red = 0
green = 0 blue = 0.

D. Compiles without errors, and when run, it throws ClassCastException.

Answer: a. Compiler error: attempting to assign weaker access privileges; toString was public in Object.
(no access modifier is specified for the toString() method. Object's toString() method has a public access
modifier; you cannot reduce the visibility of the method. hence, it will result in a compiler error).

Summary
Foundations of OOP

•	 Encapsulation: Combining data and the functions operating on it as a single unit.

•	 Abstraction: Hiding lower-level details and exposing only the essential and relevant details to
the users.

•	 Inheritance: Creating hierarchical relationships between related classes.

•	 Polymorphism: Interpreting the same message (i.e., method call) with different meanings
depending on the context.

Class Foundations

A •	 “class” is a template (or blueprint) and an “object” is an instance of a class.

A •	 constructor does not have a return type.

You cannot access the •	 private methods of the base class in the derived class.

You can access the •	 protected method either from a class in the same package (just like package
private or default) as well as from a derived class.

You can also access a method with a •	 default access modifier if it is in the same package.

You can access •	 public methods of a class from any other class.

Overloading

•	 Method overloading: Creating methods with same name but different types and/or numbers of
parameters.

You can have •	 overloaded constructors. You can call a constructor of the same class in another
constructor using the this keyword.

•	 Overload resolution is the process by which the compiler looks to resolve a call when
overloaded definitions of a method are available.

Chapter 3 ■ Java Class Design

85

Inheritance

•	 Inheritance is also called an “is-a” relationship.

Resolving a method call based on the dynamic type of the object is referred to as •	 runtime
polymorphism.

In •	 overriding, the name of the method, number of arguments, types of arguments, and return
type should match exactly.

In •	 covariant return types, you can provide the derived class of the return type in the overriding
method.

You use the •	 super keyword to call base class methods.

Overloading is an example of •	 static polymorphism (early binding) while overriding is an
example of dynamic polymorphism (late binding).

You don’t need to do an explicit cast for doing an •	 upcast. An upcast will always succeed.

You need to do an explicit cast for doing a •	 downcast. A downcast may fail. So you can use the
instanceof operator to see if a downcast is valid.

Java Packages

A •	 package is a scoping construct to categorize your classes and to provide namespace
management.

87

Chapter 4

Advanced Class Design

Identify when and how to apply abstract classes

Construct abstract Java classes and subclasses

Use the static and final keywords

Create top-level and nested classes

Use enumerated types

Exam Topics

You learned the basic concepts of OOP and used them to build Java programs in the preceding chapter. In this
chapter, you will learn advanced concepts in OOP, support from the Java language, and the nitty-gritty of these
concepts.

In the opening section, you will learn about abstract classes and their uses in practical situations. The second
and third sections cover two useful and frequently used keywords, final and static. The fourth section explores the
variant flavors of nested classes: static nested classes, inner classes, local inner classes, and anonymous inner classes.
The final section discusses enum data types, which were introduced in Java 5.

Some of the concepts in this chapter, especially nested classes and their variants, are not easy to understand on
first reading. Although we endeavor to present the more difficult concepts such as anonymous classes and nested
interfaces in an easy-to-understand manner, the best way for you to get the hang of them is to write programs using
them.

For the OCPJP 7 exam, you need to know all these concepts inside out. This chapter serves to deepen your
knowledge of the Java language and directly prepare you for the OCPJP 7 exam.

Abstract Classes
In many programming situations, you want to specify an abstraction without specifying implementation-level
details. In such cases, you can use either abstract classes or interfaces supported by the Java platform. Abstract
classes are used in cases when you want to define an abstraction with some common functionality. We will discuss
interfaces in detail in the next chapter and will focus only on abstract classes in this section.

Chapter 4 ■ advanCed Class design

88

You cannot create instances of an abstract class. Then, you may ask, why should I use an abstract class? Abstract
classes are quite useful in OOP and are recommended strongly for the following reasons:

Abstract classes define an abstraction and leave concrete implementation details to •	
subclasses. An abstract type may have various flavors and hence different implementations;
abstract classes provide the right platform for subclasses to achieve it. If an abstract type and
its subclasses (concrete implementations) are well defined, then the users of such classes can
employ runtime polymorphism. Runtime polymorphism is desirable since it introduces loose
coupling among objects.

Another reason to favor abstract classes is their ability to offer default implementation. •	
Subclasses of the abstract class may specialize the default implementation if required.

Abstract classes are the perfect placeholder for common functionality required in almost all of •	
the subclasses of the abstract class.

Recall the FunPaint application you developed in the last chapter. The Shape class provides an abstraction of
the different shapes you can draw in the FunPaint application. You can create objects of Shapes such as Square and
Circle, but does it make sense to create an object of Shape class itself directly? No, there is no real-world object
named Shape. In fact, Shape is a general-purpose abstraction that can be replaced by any proper shape like Circle.

The Shape class can be rewritten as an abstract class:

abstract class Shape {
 public double area() { return 0; } // default implementation
 // other members
}

You prefix the abstract keyword before the class definition to declare the class as an abstract class. Let’s try
creating an object of Shape:

Shape shape = new Shape();

For this statement, the compiler gives an error of "Shape is abstract; cannot be instantiated". In the Shape
class definition, there is a method called area() that returns the area of a particular shape. This method is applicable
for all shapes, and that’s why it’s in this base class Shape. However, what should the implementation of the area()
method in the Shape class be? You cannot provide a default implementation; implementing this method as return 0;
is a bad solution, although the compiler would happily accept it. A better solution is to declare it as an abstract
method, like so:

public abstract double area(); // note: no implementation (i.e., no method body definition)

Similarly to declaring a class abstract, you declare the method area() as abstract by prefixing the method with
the abstract keyword. The main difference between a normal method and an abstract method is that you don’t
provide a body for an abstract method. If you provide a body, it will become an error, like so:

public abstract double area() { return 0; } // compiler error!

You get a compiler error for this definition: "abstract methods cannot have a body". Okay, fine! You cannot
provide a body of the abstract method, but then what is the significance of an abstract method? An abstract class
promises certain functionality through abstract methods to all its clients (users of this abstraction). An abstract
method declaration forces all the subclasses to provide an implementation of that abstract method. If a derived class

Chapter 4 ■ advanCed Class design

89

does not implement all the abstract methods defined in the base class, then that derived class should be declared
as an abstract class, as in the following example:

abstract class Shape {
 public abstract double area(); // no implementation
 // other members
}

class Rectangle extends Shape { }

This snippet results in a compiler error of "Rectangle is not abstract and does not override abstract
method area() in Shape". To fix this, you need to declare the derived class abstract or provide a definition of the
area() method in the derived class. It does not make sense to declare Rectangle as abstract; so you can define the
area() method like so:

class Rectangle extends Shape {
 private int length, height;
 public double area() { return length * height; }
 // other members ...
}

Now let’s discuss another scenario where a common functionality needs to be supported by all the shape objects.
For instance, each object could be drawn inside another shape object, which means each shape object has a parent
(i.e., containing) object. As pointed out earlier, abstract classes are the best place to put a common functionality.

public abstract class Shape {
 abstract double area();
 private Shape parentShape;
 public void setParentShape(Shape shape){
 parentShape = shape;
 }
 public Shape getParentShape(){
 return parentShape;
 }
}

This abstract class defines an attribute and two methods that will be available for all its subclasses. Useful, isn’t it?

Points to Remember
Master the following points about abstract classes and abstract methods, as they might well come up in the OCPJP 7
exam:

The •	 abstract keyword can be applied to a class or a method but not to a field.

An abstract class cannot be instantiated. You can, however, create reference variables of an •	
abstract class type. In fact, you can create objects of the classes derived from an abstract class
and make the abstract class references refer to the created derived class objects.

An abstract class can extend another abstract class or can implement an interface.•	

An abstract class can be derived from a concrete class! Although the language allows it, •	
it is not a good idea to do so.

Chapter 4 ■ advanCed Class design

90

An abstract class need not declare an abstract method, which means it is not necessary for •	
an abstract class to have methods declared as abstract. However, if a class has an abstract
method, it should be declared as an abstract class.

A subclass of an abstract class needs to provide implementation of all the abstract methods; •	
otherwise you need to declare that subclass as an abstract class.

An abstract class may have methods or fields declared static.•	

Using the “final” Keyword
For the OCPJP 7 exam, you need to know the uses of the final keyword. In this section, you’ll learn how to use the
final keyword with classes, methods, and variables.

Final Classes
A final class is a non-inheritable class—that is to say, if you declare a class as final, you cannot subclass it. In general,
OOP suggests that a class should be open for extension but closed for modification (Open/Closed Principle).
However, in some cases you don’t want to allow a class to be subclassed. Two important reasons are

1. To prevent a behavior change by subclassing. In some cases, you may think that the
implementation of the class is complete and should not change. If overriding is allowed,
then the behavior of methods might be changed. You know that a derived object can be
used where a base class object is required, and you may not prefer it in some cases.
By making a class final, the users of the class are assured the unchanged behavior.

2. Improved performance. All method calls of a final class can be resolved at compile time
itself. As there is no possibility of overriding the methods, it is not necessary to resolve the
actual call at runtime for final classes, which translates to improved performance. For the
same reason, final classes encourage the inlining of methods. If the calls are to be resolved
at runtime, they cannot be inlined.

In the Java library, many classes are declared as final; for example, the String (java.lang.String) and System
(java.lang.System) classes. These classes are used extensively in almost all Java programs. For example, if you use
a System.out.println() statement, you are using both the System class (in which the output stream and println
methods are present) as well as the String class since println takes String as an argument. If these two classes are
not declared final, it is possible for someone to change the behavior of these classes by subclassing and then the
whole program can start behaving differently. To avoid such a problem, widely used classes like these and wrapper
classes such as Integer are made final in the Java library.

the performance gain from making a class final is modest; the focus should be on using final where it is
appropriate. the OCpJp 7 exam will mainly check whether you know the correct uses of the final keyword.

In the FunPaint example, you have a canvas for dragging and dropping shapes to create pictures. Assume that
you have a Canvas class for implementing that functionality. Further, you want to ensure that the behavior does not
change by inheriting from Canvas. In other words, you want to make Canvas a final class.

Chapter 4 ■ advanCed Class design

91

final class Canvas { /* members */ }

class ExtendedCanvas extends Canvas { /* members */ }

If you try to extend a final class, as you just tried to do, you’ll get the compiler error "cannot inherit from final
Canvas".

Final Methods and Variables
In a class, you may declare a method final. The final method cannot be overridden. Therefore, if you have declared
a method as final in a non-final class, then you can extend the class but you cannot override the final method.
However, other non-final methods in the base class can be overridden in the derived class implementation.

In the FunPaint application, for instance, one method is final (setParentShape()) and another method is
non-final (getParentShape()), as shown in Listing 4-1.

Listing 4-1. Shape.java

public abstract class Shape {
 //class members...
 final public void setParentShape(Shape shape){
 //method body
 }
 public Shape getParentShape(){
 //method body
 }
}

In this case, the Circle class (subclass of Shape) can override only getParentShape(); if you try to override the
final method, you will get following error: "Cannot override the final method from Shape".

Finally, we mention final variables. Final variables are like CD-ROMs: once you write something on them, you
cannot write again. In programming, universal constants such as PI can be declared as final since you don’t want
anyone to modify the value of such constants. Final variables can be assigned only once. If you try to change a final
variable after initialization, you will get a complaint from your Java compiler.

Points to Remember
Master the following points, as they might well come up in the OCPJP 7 exam:

The final modifier can be applied to a class, method, or variable. All methods of a final class •	
are implicitly final (hence non-overridable).

A final variable can be assigned only once. If a variable declaration defines a variable as final •	
but did not initialize it, then it is referred to as blank final. You need to initialize a blank final
all the constructors you have defined in the class; otherwise the compiler will complain.

The keyword •	 final can even be applied to parameters. The value of a final parameter
cannot be changed once assigned. Here, it is important to note that the “value” is implicitly
understood for primitive types. However, the “value” for an object refers to the object
reference, not its state. Therefore, you can change the internal state of the passed final object,
but you cannot change the reference itself.

Chapter 4 ■ advanCed Class design

92

Using the “static” Keyword
Suppose that you wanted a write a simple class that counts the number of objects of its class type created so far.
Will the program in Listing 4-2 work?

Listing 4-2. Counter.java

// Counter class should count the number of instances created from that class
public class Counter {
 private int count; // variable to store the number of objects created
 // for every Counter object created, the default constructor will be called;
 // so, update the counter value inside the default constructor
 public Counter() {
 count++;
 }
 public void printCount() { // method to print the counter value so far
 System.out.println("Number of instances created so far is: " + count);
 }
 public static void main(String []args) {
 Counter anInstance = new Counter();
 anInstance.printCount();
 Counter anotherInstance = new Counter();
 anotherInstance.printCount();
 }
}

The output of the program is

Number of instances created so far is: 1
Number of instances created so far is: 1

Oops! From the output, it is clear that the class does not keep track of the number of objects created. What
happened?

You’ve used an instance variable count to keep track of the number of objects created from that class. Since every
instance of the class has the value count, it always prints 1! What you need is a variable that can be shared across all
its instances. This can be achieved by declaring a variable static. A static variable is associated with its class rather
than its object; hence they are known as class variables. A static variable is initialized only once when execution of the
program starts. A static variable shares its state with all instances of the class. You access a static variable using its class
name (instead of an instance). Listing 4-3 shows the correct implementation of the Counter class with both the count
variable and the printCount method declared static.

Listing 4-3. Counter.java

// Counter class should count the number of instances created from that class
public class Counter {
 private static int count; // variable to store the number of objects created
 // for every Counter object created, the default constructor will be called;
 // so, update the counter value inside the default constructor
 public Counter() {
 count++;
 }

Chapter 4 ■ advanCed Class design

93

 public static void printCount() { // method to print the counter value so far
 System.out.println("Number of instances created so far is: " + count);
 }
 public static void main(String []args) {
 Counter anInstance = new Counter();
 // note how we call printCount using the class name instead of instance variable name
 Counter.printCount();
 Counter anotherInstance = new Counter();
 Counter.printCount();
 }
}

This program prints

Number of instances created so far is: 1
Number of instances created so far is: 2

Here, the static variable count is initialized when the execution started. At the time of first object creation,
the count is incremented to one. Similarly, when second object got created, the value of the count became 2.
As the output of the program shows, both objects updated the same copy of the count variable.

Note how we changed the call to printCount() to use class name Counter, as in Counter.printCount().
The compiler will accept the previous two calls of anInstance.printCount() and anotherInstance.printCount()
as there is no semantic difference between calling a static method using a class name or instance variable name.
However, to use instance variables to call static methods is not recommended. It is conventional practice to call
instance methods using instance variables and to call static methods using class names.

A static method can only access static variables and can call only static methods. In contrast, an instance method
(non-static) may call a static method or access a static variable.

Static Block
Apart from static variables and methods, you can also define a static block in your class definition. This static block
will be executed by JVM when it loads the class into memory. For instance, in the previous example, you can define a
static block to initialize the count variable to default 1 instead of the default value 0, as shown in Listing 4-4.

Listing 4-4. Counter.java

public class Counter {
 private static int count;
 static {
 // code in this static block will be executed when JVM loads the class into memory
 count = 1;
 }
 public Counter() {
 count++;
 }
 public static void printCount() {
 System.out.println("Number of instances created so far is: " + count);
 }
 public static void main(String []args) {
 Counter anInstance = new Counter();
 Counter.printCount();

Chapter 4 ■ advanCed Class design

94

 Counter anotherInstance = new Counter();
 Counter.printCount();
 }
}

This program prints

Number of instances created so far is: 2
Number of instances created so far is: 3

Do not confuse a static block with a constructor. A constructor will be invoked when an instance of the class is
created, while the static block will be invoked when the program initializes.

Points to Remember
The •	 main() method, where the main execution of the program starts, is always declared static.
Why? If it were an instance method, it would be impossible to invoke it. You’d have to start the
program to be able to create an instance and then call the method, right?

You cannot override a static method provided in a base class. Why? Based on the instance •	
type, the method call is resolved with runtime polymorphism. Since static methods are
associated with a class (and not with an instance), you cannot override static methods, and
runtime polymorphism is not possible with static methods.

A static method cannot use the •	 this keyword in its body. Why? Remember that static methods
are associated with a class and not an instance. Only instance methods have an implicit
reference associated with them; hence class methods do not have a this reference associated
with them.

A static method cannot use the •	 super keyword in its body. Why? You use the super keyword
for invoking the base class method from the overriding method in the derived class. Since you
cannot override static methods, you cannot use the super keyword in its body.

Since static methods cannot access instance variables (non-static variables), they are most •	
suited for utility functions. For example, all methods in the java.util.math library are static.

Calling a static method is considered to be slightly more efficient compared to calling •	
an instance method. This is because the complier need not pass the implicit this object
reference while calling a static method, unlike an instance method.

Flavors of Nested Classes
Classes defined within the body of another class (or interface) are known as nested classes. Normally you define a
class, which is a top-level class directly belonging to a package. In contrast, nested classes are classes contained within
another class or interface.

What is the benefit of creating classes inside another class or interface? There are several benefits. First, you
can put related classes together as a single logical group. Second, nested classes can access all class members of
the enclosing class, which might be useful in certain cases. Third, nested classes are sometimes useful for specific
purposes. For example, anonymous inner classes are useful for writing simpler event-handling code with AWT/Swing
(which is not relevant to the OCPJP 7 exam, and hence not covered in this book). For now, you can take our word for it
that nested classes are useful in some situations, so it is worth learning about them.

Chapter 4 ■ advanCed Class design

95

There are four types or flavors of nested classes in Java:

Static nested class•	

Inner class•	

Local inner class•	

Anonymous inner class•	

The distinctions among these four flavors are not evident at first sight, and it doesn’t help matters that alternative
terms are often substituted for them. To help clarify the confusion, we represent the four flavors of nested classes
schematically in Figure 4-1.

Study this figure. A local class is defined within a code block (whether a method, constructor, or initialization
block), whereas a non-local class is defined inside a class. A static class is qualified using the static keyword, whereas
a non-static class does not use this static keyword with the class definition. In an anonymous class, you don’t provide
the name of the class; you just define its body!

As you can see in Figure 4-1, static nested classes are static and non-local, whereas inner classes are non-static
and non-local. A non-static and local nested class is a local inner class, and a local and anonymous nested class is
an anonymous inner class. A glance back at this figure will serve to refresh your memory of the essential distinctions
among the four flavors of nested classes.

Now, let’s discuss each of these four flavors in more detail.

class Outer{

Non-local

Static

Static nested
class

(Not possible)

(Not possible)Inner class

Local inner
class

Anonymous
inner class

Non-static Anonymous

Local

class Outer{
class Inner{
//class definition
}

class Outer{
class Outer{

//class definition
class LocalInner{

void foo(){
void foo(){

return new Object(){
public String toString(){

return “anonymous”;
} }

}
}

}

}
}

static class StaticNested{
//class definition
}

}

}

Figure 4-1. Types of nested classes with examples

Chapter 4 ■ advanCed Class design

96

Static Nested Classes (or Interfaces)
You can define a class (or interface) as a static member inside another class (or interface). Since the outer type can be
a class or an interface and the inner ones can also be a class or interface, there are four combinations. The following
are examples of these four types so that you can see their syntax:

class Outer { // an outer class has a static nested class
 static class Inner {}
}

interface Outer { // an outer interface has a static nested class
 static class Inner {}
}

class Outer { // an outer class has a static nested interface
 static interface Inner {}
}

interface Outer { // an outer interface has a static nested interface
 static interface Inner {}
}

You don’t have to explicitly use the static keyword with a nested interface, since it is implicitly static. Now, let’s
look at an example that creates as well as uses static nested classes.

Recall the FunPaint example in Chapter 3 that implements a Color class with fields of m_red, m_green, and
m_blue. Since all shapes can be colored, you can define the Color class within the Shape class, as shown in Listing 4-5.

Listing 4-5. TestColor.java

abstract class Shape {
 public static class Color {
 int m_red, m_green, m_blue;
 public Color() {
 // call the other overloaded Color constructor by passing default values
 this(0, 0, 0);
 }
 public Color(int red, int green, int blue) {
 m_red = red; m_green = green; m_blue = blue;
 }
 public String toString() {
 return " red = " + m_red + " green = " + m_green + " blue = " + m_blue;
 }
 // other color members elided
 }
 // other Shape members elided
}

public class TestColor {
 public static void main(String []args) {
 // since Color is a static nested class,
 // we access it using the name of the outer class, as in Shape.Color
 // note that we do not (and cannot) instantiate Shape class for using Color class

Chapter 4 ■ advanCed Class design

97

 Shape.Color white = new Shape.Color(255, 255, 255);
 System.out.println("White color has values:" + white);
 }
}

It prints

White color has: red = 255 green = 255 blue = 255

What do you observe in this code? The Shape class is declared abstract. You can see the Color class defined as a
public static class defined within the Shape class. The TestColor class uses the syntax Shape.Color to refer to this
class. Other than this minor difference, the Color class looks no different from defining the Color class outside the
Shape class. Yes, that is a good observation. So, let’s repeat it to make it clear: a static nested class is as good as a class
defined as an outer class with one difference—it is physically defined inside another class!

Points to Remember
Here are some notable aspects of static nested classes (and interfaces) that will help you on the OCPJP 7 exam:

The accessibility (•	 public, protected, etc.) of the static nested class is defined by the outer
class.

The name of the static nested class is expressed with •	 OuterClassName.NestedClassName
syntax.

When you define an inner nested class (or interface) inside an interface, the nested class •	
is declared implicitly public and static. This point is easy to remember: any field in an
interface is implicitly declared public and static, and static nested classes have this same
behavior.

Static nested classes can be declared •	 abstract or final.

Static nested classes can extend another class or it can be used as a base class.•	

Static nested classes can have static members. (As you’ll see shortly, this statement does not •	
apply to other kinds of nested classes.)

Static nested classes can access the members of the outer class (only static members, •	
obviously).

The outer class can also access the members (even private members) of the nested class •	
through an object of nested class. If you don’t declare an instance of the nested class, the outer
class cannot access nested class elements directly.

Inner Classes
You can define a class (or an interface) as a non-static member inside another class. How about declaring a class or
an interface inside an interface? As you just saw in the third bullet above about static inner classes, when you define
a class or an interface inside an interface, it is implicitly static. So, it is not possible to declare a non-static inner
interface! That leaves two possibilities:

class Outer { // an outer class has an inner class
 class Inner {}
}

Chapter 4 ■ advanCed Class design

98

class Outer { // an outer class has an inner interface
 interface Inner {}
}

Let’s create a Point class to implement the center of a Circle. Since you want to associate each Circle with a
center Point, it is a good idea to make Point an inner class of Circle, as shown in Listing 4-6.

Listing 4-6. Circle.java

public class Circle {
 // define Point as an inner class within Circle class
 class Point {
 private int xPos;
 private int yPos;
 // you can provide constructor for an inner class like this
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 // the inner class is like any other class - you can override methods here
 public String toString() {
 return "(" + xPos + "," + yPos + ")";
 }
 }

 // make use of the inner class for declaring a field
 private Point center;
 private int radius;
 public Circle(int x, int y, int r) {
 // note how to make use of the inner class to instantiate it
 center = this.new Point(x, y);
 radius = r;
 }

 public String toString() {
 return "mid point = " + center + " and radius = " + radius;
 }

 public static void main(String []s) {
 System.out.println(new Circle(10, 10, 20));
 }
 // other methods such as area are elided
}

This implementation of Circle and Point is very similar to what you saw earlier, with the only major difference
being that you have defined Point as a private member of Circle here. You are instantiating the inner class like so:

center = this.new Point(x, y);

You might be wondering why you cannot use the usual new statement:

center = new Point(x, y);

Chapter 4 ■ advanCed Class design

99

You need to prefix the object reference of the outer class to create an instance of the inner class. In this case,
it is a this reference, so you are prefixing it with this before the new operator.

every inner class is associated with an instance of the outer class. in other words, an inner class is always
associated with an enclosing object.

The outer and inner classes share a special relationship, like friends or members of same family. Member
accesses are valid irrespective of the access specifiers such as private. However, there is subtle difference. You can
access members of an outer class within an inner class without creating an instance; but this is not the case with an
outer class. You need to create an instance of inner class in order to access the members (any members, including
private members) of the inner class.

One limitation of inner classes is that you cannot declare static members in an inner class, like this:

class Outer {
 class Inner {
 static int i = 10;
 }
}

If you try to do so, you’ll get the following compiler error:

Outer.java:3: inner classes cannot have static declarations
 static int i = 10;

Points to Remember
Here are some important rules about inner classes and interfaces that might prove useful in the OCPJP 7 exam:

The accessibility (•	 public, protected, etc.) of the inner class is defined by the outer class.

Just like top-level classes, an inner class can extend a class or can implement interfaces. •	
Similarly, an inner class can be extended by other classes, and an inner interface can be
implemented or extended by other classes or interfaces.

An inner class can be declared •	 final or abstract.

Inner classes can have inner classes, but you’ll have a hard time reading or understanding •	
such complex nesting of classes. (Meaning: Avoid them!)

Local Inner Classes
A local inner class is defined in a code block (say, in a method, constructor, or initialization block). Unlike static nested
classes and inner classes, local inner classes are not members of an outer class; they are just local to the method or
code in which they are defined.

Chapter 4 ■ advanCed Class design

100

Here is an example of the general syntax of a local class:

class SomeClass {
 void someFunction() {
 class Local { }
 }
}

As you can see in this code, Local is a class defined within someFunction. It is not available outside of
someFunction, not even to the members of the SomeClass. Since you cannot declare a local variable static, you also
cannot declare a local class static.

Since you cannot define methods in interfaces, you cannot have local classes or interfaces inside an interface.
Nor can you create local interfaces. In other words, you cannot define interfaces inside methods, constructors, and
initialization blocks.

Now that you understand the syntax, let’s jump into a practical example. In the FunPaint application, you
implemented the Color class as a static nested class. Here is the code you saw in that discussion:

abstract class Shape {
 public static class Color {
 int m_red, m_green, m_blue;
 public Color() {
 this(0, 0, 0);
 }
 public Color(int red, int green, int blue) {
 m_red = red; m_green = green; m_blue = blue;
 }
 public String toString() {
 return " red = " + m_red + " green = " + m_green + " blue = " + m_blue;
 }
 // other color members elided
 }
 // other Shape members elided
}

Now, this toString() method displays a string representation of Color. Assume that you need to display help
messages at the bottom of the screen in the FunPaint application. For that you need descriptive messages. Displaying
messages in this cryptic format is not very helpful to the reader. So, you want to display the Color string in the
following format: "You selected a color with RGB values red = 0 green = 0 blue = 0". For that, you must
define a method named getDescriptiveColor() in the class StatusReporter. In getDescriptiveColor(), you must
create a derived class of Shape.Color in which the toString method returns this descriptive message. Listing 4-7 is an
implementation using local classes.

Listing 4-7. StatusReporter.java

class StatusReporter {
 // important to note that the argument "color" is declared final
 // otherwise, the local inner class DescriptiveColor will not be able to use it!!
 static Shape.Color getDesciptiveColor(final Shape.Color color) {
 // local class DescriptiveColor that extends Shape.Color class
 class DescriptiveColor extends Shape.Color {

Chapter 4 ■ advanCed Class design

101

 public String toString() {
 return "You selected a color with RGB values " + color;
 }
 }
 return new DescriptiveColor();
 }

 public static void main(String []args) {
 Shape.Color descriptiveColor =
 StatusReporter.getDesciptiveColor(new Shape.Color(0, 0, 0));
 System.out.println(descriptiveColor);
 }
}

The main method checks if the StatusReporter works fine. This program prints

You selected a color with RGB values red = 0 green = 0 blue = 0

Let’s see how the local class was defined. The getDescriptiveColor() method takes the plain Shape.Color class
object and returns a Shape.Color object. Inside the getDescriptiveColor() method, you have defined the class
DescriptiveColor, which is local to this method. This DescriptiveColor is a derived class of Shape.Color. Inside
the DescriptiveColor class, the only method defined is the toString() method, which overrides the base class
Shape.Color toString() method. After the definition of the DescriptiveColor class, the getDescriptiveColor class
creates an object of the DescriptiveColor class and returns it.

In the Test class, you can see a main() method that just calls the StatusReporter.getDescriptiveColor()
method and stores the result in a Shape.Color reference. You will notice that the getDescritiveColor() method
returns a DescriptiveColor object, which derives from Shape.Color, so the descriptiveColor variable initialization
works fine. In the println, the dynamic type of descriptiveColor is a DescriptiveColor object, and hence the
detailed description of the color object is printed.

Did you notice another feature in the getDescriptiveColor() method? Its argument is declared final. What if
you remove the final qualifier, as in the following code?

static Shape.Color getDesciptiveColor(Shape.Color color)

Well, you’ll get the following compiler error:

StatusReporter.java:24: local variable color is accessed from within inner class; needs to be
declared final
 return "You selected a color with RGB values " + color;
 ^
1 error

Why? One thing you need to remember about local classes is that you can pass only final variables to a
local class.

 You can pass only final variables to a local inner class.

Chapter 4 ■ advanCed Class design

102

Points to Remember
The following points about local classes are apt to come up in the OCPJP 7 exam:

You can create a non-static local class inside a body of code. Interfaces cannot have local •	
classes, and you cannot create local interfaces.

Local classes are accessible only from the body of the code in which the class is defined. The •	
local classes are completely inaccessible outside the body of the code in which the class is
defined.

You can extend a class or implement interfaces while defining a local class.•	

A local class can access all the variables available in the body of the code in which it is defined. •	
You can pass only final variables to a local inner class.

Anonymous Inner Classes
As the name implies, an anonymous inner class does not have a name. The declaration of the class automatically
derives from the instance-creation expression. They are also referred to simply as anonymous classes.

An anonymous class is useful in almost all situations where you can use local inner classes. A local inner class has
a name, whereas an anonymous inner class does not—and that’s the main difference! An additional difference is that
an anonymous inner class cannot have any explicit constructors. A constructor is named after the name of the class,
and since an anonymous class has no name, it follows that you cannot define a constructor!

(Before we proceed, just a note: there are no such things as “anonymous interfaces.”)
Here is an example just to address the syntax of a local class:

class SomeClass {
 void someFunction() {
 new Object() { };
 }
}

This code looks cryptic, doesn’t it? What is going on here? In the statement new Object() { };, you are
declaring a derived class of Object directly using the new keyword. It doesn’t define any code and returns an instance
of that derived object. The created object is not used anywhere, so it is ignored. The new expression invokes the default
constructor here; you could choose to invoke a multiple argument constructor of the base class by passing arguments
in the new expression. When defining an anonymous class, it implicitly extends the base class (which is Object base
class here).

Don’t worry if you didn’t understand this example. You’ll look now at a more practical example, and the usage of
anonymous classes will become clearer.

Previously you saw the DescriptiveColor class (Listing 4-7) inside the getDescriptiveColor method in the
StatusReporter class. You can simplify the code by converting the local class into an anonymous class, as shown
in Listing 4-8.

Listing 4-8. StatusReporter.java

class StatusReporter {
 static Shape.Color getDesciptiveColor(final Shape.Color color) {
 // note the use of anonymous inner classes here -- specifically, there is no name
 // for the class and we construct and use the class "on the fly" in the return

// statement!
 return new Shape.Color() {

Chapter 4 ■ advanCed Class design

103

 public String toString() {
 return "You selected a color with RGB values " + color;
 }
 };
 }
 public static void main(String []args) {
 Shape.Color descriptiveColor =
 StatusReporter.getDesciptiveColor(new Shape.Color(0, 0, 0));
 System.out.println(descriptiveColor);
 }
}

It prints

You selected a color with RGB values red = 0 green = 0 blue = 0

That’s nice. The rest of the program, including the main() method, remains the same and the
getDescriptiveColor() method became simpler! You did not explicitly create a class with a name (which was
DescriptiveColor); instead you just created a derived class of Shape.Color “on the fly” in the return statement.
Note that the keyword class is also not needed.

Points to Remember
These points about anonymous classes concern questions that might be asked on the OPCJP 7 exam:

Anonymous classes are defined in the •	 new expression itself, so you cannot create multiple
objects of an anonymous class.

You cannot explicitly extend a class or explicitly implement interfaces when defining an •	
anonymous class.

Enum Data Types
There are many situations where you want to restrict the user to providing input from a predefined list. For instance,
you might want the user to choose from a set of constants defining several printer types:

public static final int DOTMATRIX = 1;
public static final int INKJET = 2;
public static final int LASER = 3;

The solution works. In this case, however, you could pass any other integer (say 10), and compiler would happily
take it. Therefore, this solution is not a typesafe solution.

To avoid this condition, you may define you own class (say PrinterType) and allow only legitimate values.
However, you need to define the class and its attributes manually. That’s where formerly you could have employed
Joshua Bloch’s typesafe enumeration patterns. But don’t worry—you don’t need to learn those patterns anymore.
Java 5 introduced the data type enum to help you in such situations.

Listing 4-9 defines an enum class (yes, enums are special classes) for the above example.

Chapter 4 ■ advanCed Class design

104

Listing 4-9. EnumTest.java

// define an enum for classifying printer types
enum PrinterType {
 DOTMATRIX, INKJET, LASER
}

// test the enum now
public class EnumTest {
 PrinterType printerType;

 public EnumTest(PrinterType pType) {
 printerType = pType;
 }

 public void feature() {
 // switch based on the printer type passed in the constructor
 switch(printerType){
 case DOTMATRIX:
 System.out.println("Dot-matrix printers are economical and almost obsolete");
 break;
 case INKJET:
 System.out.println("Inkjet printers provide decent quality prints");
 break;
 case LASER:
 System.out.println("Laser printers provide best quality prints");
 break;
 }
 }

 public static void main(String[] args) {
 EnumTest enumTest = new EnumTest(PrinterType.LASER);
 enumTest.feature();
 }
}

It prints

Laser printers provide best quality prints

Let’s probe the Listing 4-9 example in more detail.

In a switch-case statement, you do not need to provide the fully qualified name for enum •	
elements. This is because switch takes an instance of the enum type, and hence switch-case
understands the context (type) in which you are specifying enum elements.

You cannot provide any input while creating an instance of •	 enumTest other than that specified
in the enum definition. That makes enum typesafe.

Note that you can declare an enum (PrinterType in this case) in a separate file, just like you can declare any
other normal Java class.

Chapter 4 ■ advanCed Class design

105

Now that you understand the basic concept of enum data type, let’s look at a more detailed example in which
you define member attributes and methods in an enum data type. Yes, you can define methods or fields in an enum
definition, as shown in Listing 4-10.

Listing 4-10. PrinterType.java

public enum PrinterType {
 DOTMATRIX(5), INKJET(10), LASER(50);

 private int pagePrintCapacity;

 private PrinterType(int pagePrintCapacity) {
 this.pagePrintCapacity = pagePrintCapacity;
 }

 public int getPrintPageCapacity() {
 return pagePrintCapacity;
 }
}
// EnumTest.java
public class EnumTest {
 PrinterType printerType;

 public EnumTest(PrinterType pType) {
 printerType = pType;
 }

 public void feature() {
 switch (printerType) {
 case DOTMATRIX:
 System.out.println("Dot-matrix printers are economical");
 break;
 case INKJET:
 System.out.println("Inkjet printers provide decent quality prints");
 break;
 case LASER:
 System.out.println("Laser printers provide the best quality prints");
 break;
 }
 System.out.println("Print page capacity per minute: " +
 printerType.getPrintPageCapacity());
 }

 public static void main(String[] args) {
 EnumTest enumTest1 = new EnumTest(PrinterType.LASER);
 enumTest1.feature();
 EnumTest enumTest2 = new EnumTest(PrinterType.INKJET);
 enumTest2.feature();
 }
}

Chapter 4 ■ advanCed Class design

106

The output of the above program is given below:

Laser printers provide the best quality prints
Print page capacity per minute: 50
Inkjet printers provide decent quality prints
Print page capacity per minute: 10

Well, what do you observe in this new version of enum example program? You defined a new attribute, a new
constructor, and a new method for the enum class. The attribute pagePrintCapacity is set by the initial values
specified with enum elements (such as LASER(50)), which calls the constructor of the enum class. However, the enum
class cannot have a public constructor, or the compiler will complain with following message: "Illegal modifier
for the enum constructor; only private is permitted."

a constructor in an enum class can only be specified as private.

Points to Remember
Enums are implicitly declared public, static, and final, which means you cannot extend them.•	

When you define an enumeration, it implicitly inherits from •	 java.lang.Enum. Internally,
enumerations are converted to classes. Further, enumeration constants are instances of the
enumeration class for which the constant is declared as a member.

You can apply the •	 valueOf() and name() methods to the enum element to return the name of
the enum element.

If you declare an enum within a class, then it is by default static.•	

You cannot use the new operator on enum data types, even inside the enum class.•	

You can compare two enumerations for equality using == operator. •	

When an enumeration constant’s •	 toString() method is invoked, it prints the name of the
enumeration constant.

The static •	 values() method in the Enum class returns an array of the enumeration constants
when called on an enumeration type.

Enumeration constants cannot be cloned. An attempt to do so will result in a •	
CloneNotSupportedException.

If enumeration constants are from two different enumerations, the •	 equals() method does not
return true.

enum avoids magic numbers, which improves readability and understandability of the source code.
also, enums are typesafe constructs. therefore, you should use enums wherever applicable.

Chapter 4 ■ advanCed Class design

107

Question time!

1. Which of the following statements is true?

a. You cannot extend a concrete class and declare that derived class abstract.

B. You cannot extend an abstract class from another abstract class.

C. an abstract class must declare at least one abstract method in it.

d. You can create instantiate of a concrete subclass of an abstract class but cannot create
instance of an abstract class itself.

Answer: d. You can create instantiate of a concrete subclass of an abstract class but cannot
create instance of an abstract class itself.

2. Choose the best answer based on the following class definition:

public abstract final class Shape { }

a. Compiler error: a class must not be empty.

B. Compiler error: illegal combination of modifiers abstract and final.

C. Compiler error: an abstract class must declare at least one abstract method.

d. no compiler error: this class definition is fine and will compile successfully.

Answer: B. Compiler error: illegal combination of modifiers abstract and final.

(You cannot declare an abstract class final since an abstract class must to be extended. Class
can be empty in Java, including abstract classes. an abstract class can declare zero or more
abstract methods.)

3. look at the following code and choose the right option for the word <access-modifier>:

// Shape.java
public class Shape {
 protected void display() {
 System.out.println("Display-base");
 }
}

// Circle.java
public class Circle extends Shape {
 <access-modifier> void display(){
 System.out.println("Display-derived");
 }
}

Chapter 4 ■ advanCed Class design

108

a. Only protected can be used.

B. public and protected both can be used.

C. public, protected, and private can be used.

d. Only public can be used.

Answer: B. public and protected both can be used.

(You can provide only a less restrictive or same-access modifier when overriding a method.)

4. Consider this program to answer the following question:

class Shape {
 public Shape() {
 System.out.println("Shape constructor");
 }
 public class Color {
 public Color() {
 System.out.println("Color constructor");
 }
 }
}

class TestColor {
 public static void main(String []args) {
 Shape.Color black = new Shape().Color(); // #1
 }
}

What will be the output of the program?

a. Compile error: the method Color() is undefined for the type shape.

B. Compile error: invalid inner class.

C. Works fine: shape constructor, Color constructor.

d. Works fine: Color constructor, shape constructor.

Answer: a. Compile error: the method Color() is undefined for the type shape.

(You need to create an instance of outer class shape in order to create an inner class instance).

5. if you replace the Color class instantiation statement (tagged as #1 inside a comment in the program given
in the previous questions) with the following statement, what would be the output of the program?

Shape.Color black = new Shape().new Color();

a. Works fine and will print this output:

shape constructor
Color constructor

Chapter 4 ■ advanCed Class design

109

B. Works fine and will print this output:

Color constructor
shape constructor

C. Compiler error: the method Color() is undefined for the type shape.

d. Compile without error but results in a runtime exception.

Answer: a. Works fine and will print this output:

shape constructor
Color constructor

6. What will be the output of the given program?

class Shape {
 private boolean isDisplayed;
 protected int canvasID;
 public Shape() {
 isDisplayed = false;
 canvasID = 0;
 }
 public class Color {
 public void display() {
 System.out.println("isDisplayed: "+isDisplayed);
 System.out.println("canvasID: "+canvasID);
 }
 }
}

class TestColor {
 public static void main(String []args) {
 Shape.Color black = new Shape().new Color();
 black.display();
 }
}

a. Compiler error: an inner class can only access public members of the outer class.

B. Compiler error: an inner class cannot access private members of the outer class.

C. runs and prints this output:

isdisplayed: false
canvasid: 0

d. Compiles fine but crashes with a runtime exception.

Answer: C. runs and prints this output:

isdisplayed: false
canvasid: 0

(an inner class can access all members of an outer class, including the private members of the
outer class).

Chapter 4 ■ advanCed Class design

110

7. look at this program and predict the output:

public class EnumTest {
 PrinterType printerType;

 enum PrinterType {INKJET, DOTMATRIX, LASER};
 public EnumTest(PrinterType pType) {
 printerType = pType;
 }

 public static void main(String[] args) {
 PrinterType pType = new PrinterType();
 EnumTest enumTest = new EnumTest(PrinterType.LASER);
 }
}

a. prints the output printertype:laser.

B. Compiler error: enums must be declared static.

C. Compiler error: cannot instantiate the type enumtest.printertype.

d. this program will compile fine, and when run, will crash and throw a runtime exception.

Answer: C. Compiler error: cannot instantiate the type enumtest.printertype.

(You cannot instantiate an enum type using new.)

8. is the enum definition given below correct?

public enum PrinterType {
 private int pagePrintCapacity; // #1
 DOTMATRIX(5), INKJET(10), LASER(50); // #2

 private PrinterType(int pagePrintCapacity) {
 this.pagePrintCapacity = pagePrintCapacity;
 }

 public int getPrintPageCapacity() {
 return pagePrintCapacity;
 }
}

a. Yes, this enum definition is correct and will compile cleanly without any warnings

or errors.

B. no, this enum definition is incorrect and will result in compile error(s).

C. no, this enum definition will result in runtime exception(s).

d. Yes, this enum definition is correct but will compile with warnings.

Chapter 4 ■ advanCed Class design

111

Answer: B. no, this enum definition is incorrect and will result in compile error(s).

(You need to define enum elements first before any other attribute in an enum class. in other
words, this enum definition will compile cleanly if you interchange the statements marked with
“#1” and “#2” within comments in this code.)

9. Consider the following code snippet:

public class EnumTest {
 public EnumTest() {
 System.out.println("In EnumTest constructor ");
 }
 public void printType() {
 enum PrinterType { DOTMATRIX, INKJET, LASER }
 }
}

a. this code will compile cleanly without any compiler warnings or errors, and when used, will

run without any problems.

B. this code will compile cleanly without any compiler warnings or errors, and when used, will
generate a runtime exception.

C. it will produce a compiler error: enum types must not be local.

d. it will give compile-time warnings but not any compiler errors.

Answer: C. it will produce a compiler error: enum types must not be local.

(an enum can only be defined inside of a top-level class or interface and not within a method).

Summary
Abstract Classes

An abstraction specifying functionality supported without disclosing finer level details.•	

You cannot create instances of an abstract class.•	

Abstract classes enable runtime polymorphism, and runtime polymorphism in turn enables •	
loose coupling.

Using the “final” Keyword

A final class is a non-inheritable class (i.e., you cannot inherit from a final class).•	

A final method is a non-overridable method (i.e., subclasses cannot override a final method).•	

All methods of a final class are implicitly final (i.e., non-overridable).•	

A final variable can be assigned only once.•	

Chapter 4 ■ advanCed Class design

112

Using the “static” Keyword

There are two types of member variables: class variables and instance variables. All variables •	
that require an instance (object) of the class to access them are known as instance variables.
All variables that are shared among all instances and are associated with a class rather than an
object are referred to as class variables (declared using the static keyword).

All static members do not require an instance to call/access them. You can directly call/access •	
them using the class name.

A static member can call/access only a static member.•	

Flavors of Nested Classes

Java supports four types of nested classes: static nested classes, inner classes, local inner •	
classes, and anonymous inner classes.

Static nested classes may have static members, whereas the other flavors of nested classes •	
can’t.

Static nested classes and inner classes can access members of an outer class (even private •	
members). However, static nested classes can access only static members of outer class.

Local classes (both local inner classes and anonymous inner classes) can access all variables •	
declared in the outer scope (whether a method, constructor, or a statement block).

Enums

Enums are a typesafe way to achieve restricted input from users.•	

You cannot use new with enums, even inside the enum definition.•	

Enum classes are by default final classes.•	

All enum classes are implicitly derived from •	 java.lang.Enum.

113

Chapter 5

Object-Oriented Design Principles

Write code that declares, implements and/or extends interfaces

Choose between interface inheritance and class inheritance

Develop code that implements "is-a" and/or "has-a" relationships.

Apply object composition principles

Design a class using the Singleton design pattern

Write code to implement the DAO pattern

Design and create objects using a factory, and use factories from the API

Exam Topics

We covered object-oriented programming basics in Chapter 3 and more advanced OOP topics in Chapter 4. In this
chapter, we delve still more deeply into OOP concepts.

The chapter begins with an in-depth investigation of interfaces. We will discuss how interfaces are different from
abstract classes and which construct to use in a given situation. In the second section, we introduce you to the object
composition principle that says “favor composition over inheritance.” The third and fourth sections cover one of most
popular topics in OOP: design patterns. You will learn the basic concepts behind design patterns and how they relate
to OOP. We’ll focus on the singleton, factory, abstract factory, and data access object (DAO) design patterns.

Interfaces
In general, an interface refers to a common boundary or interconnection between two entities (which could be
human beings, systems, concepts, machines, etc.). For instance, a keyboard in a computer system provides an
interface between a human being and the computer. A natural language such as English is an interface between
two humans that allows them to exchange their views.

In Java, an interface is a set of abstract methods that defines a protocol (i.e., a contract for conduct). Classes that
implement an interface must implement the methods specified in the interface. An interface defines a protocol, and
a class implementing the interface honors the protocol. In other words, an interface promises a certain functionality

Chapter 5 ■ ObjeCt-Oriented design prinCiples

114

to its clients by defining an abstraction. All the classes implementing the interface provide their own implementations
for the promised functionality.

Let’s elucidate Java interfaces with an example. Consider the java.lang.Comparable interface that specifies the
following protocol:

public interface Comparable{
 public int compareTo(Object o);
 // Intent is to compare this object with the specified object
 // The return type is integer. Returns negative,
 // zero or a positive value when this object is less than,
 // equal to, or greater than the specified object
}

Unrelated classes can provide their own implementations when they implement Comparable. These unrelated
classes have one aspect in common: they all follow the specification given by Comparable, and it is left to the
implementation of these individual classes to implement compareTo() accordingly. Data structures supported
in the java.util package implement this interface. If you want to use the general algorithms provided in the library,
you have to implement this interface. For example, consider the sample implementation of max() method in
java.util.Collections. It is meant for finding the maximum element in a collection. It uses the Comparable
interface, and the elements in the collection must provide the implementation for the compareTo() method.

The algorithms (i.e., clients of the interface) are completely ignorant about how the compareTo() method is
implemented. But the clients know the contract that insures the availability of the compareTo() method, hence clients
can use it. This confers a very important advantage: when a method takes an interface as an argument, you can pass
any object that implements that interface (due to runtime polymorphism).

Conceptually, a class and an interface are two different constructs used for two different purposes. A class
combines the state and the behavior of a real object, whereas an interface specifies the behavior of an abstract entity.

Declaring and Using Interfaces
Now it’s time to implement your own interface for shape objects. Some circular shaped objects (such as Circle and
Ellipse) can be rolled to a given degree. You can create a Rollable interface and declare a method named roll() where

interface Rollable {
 void roll(float degree);
}

As you can see, you define an interface using the interface keyword. You can declare methods in that interface;
here it is the roll() method. The method takes one argument: the degree for rolling. Now let’s implement the
interface for Circle, which is Rollable.

class Circle implements Rollable {
 public void roll(float degree) {
 /* implement rolling functionality here */
 }
}

You use the implements keyword for implementing an interface. Note that the method name, its argument, and
the return type in the class definition should exactly match the one given in the interface; if they don’t match, the class
is not considered to implement that interface.

If you are implementing an interface in an abstract class, the abstract class does not need to define the method.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

115

interface Rollable {
 void roll(float degree);
}

abstract class CircularShape implements Rollable extends Shape { }

In this case, CircularShape implements a Rollable interface and extends the Shape abstract class (as you saw
in Chapters 3 and 4). Now the concrete classes like Circle and Ellipse can extend this abstract class and define the
roll() method.

The Rollable example you saw has only one method—roll(). However, it is common for interfaces to have
multiple methods. For example, java.util defines the Iterable interface as follows:

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

This interface is meant for traversing a collection. (Don’t worry about the “<E>” in Iterator<E>. It refers to
the element type and falls under generics, which we cover in detail in the next chapter). It declares three methods:
hasNext(), next(), and remove().

In fact, a class can implement multiple interfaces at the same time—both directly and indirectly through its base
classes. For example, the Circle class can also implement the standard Cloneable interface (for creating copies of the
Circle object) and the Serializable interface (for storing the object in files to recreate the object later, etc.), like so:

class Circle extends CircularShape implements Cloneable, Serializable {
 /* definition of methods such as clone here */
}

Points to Remember
Here are some key rules about interfaces that will help you in the OCPJP 7 exam:

An interface cannot be instantiated.•	

An interface can extend another interface. Use the •	 extends (and not the implements) keyword
for this.

Interfaces cannot contain instance variables. If you declare a data member in an interface, •	
it should be initialized, and all such data members are implicitly treated as “public static
final” members.

An interface cannot declare static methods. It can only declare instance methods.•	

You cannot declare members as •	 protected or private. Only public access is allowed for
members of an interface.

All methods declared in an interface are implicitly considered to be abstract. If you want, you •	
can explicitly use the abstract qualifier for the method.

You can only declare (and not define) methods in an interface.•	

Chapter 5 ■ ObjeCt-Oriented design prinCiples

116

An interface can be declared with empty body (i.e., an interface without any members. Such •	
interfaces are known as tagging interfaces (or marker interfaces). Such interfaces are useful for
defining a common parent, so that runtime polymorphism can be used. For example,
java.util defines the interface EventListner without a body.

An interface can be declared within another interface or class; such interfaces are known as •	
nested interfaces.

Unlike top-level interfaces that can have only public or default access, a nested interface can •	
be declared as public, protected, or private.

Abstract Classes vs. Interfaces
Abstract classes and interfaces have a lot in common. For example, both can declare methods that all the deriving
classes should define. They are also similar in the respect that you can create instances neither of an abstract class nor
of an interface.

So, what are the differences between abstract classes and interfaces? Table 5-1 lists some syntactical differences,
and Table 5-2 lists some semantic and usage differences.

Table 5-1. Abstract Classes and Interfaces: Syntactical Differences

Abstract Classes Interfaces

Keyword(s) used Use the abstract and class
keywords to define a class.

Use the interface keyword to define an
interface.

Keyword used by the
implementing class

Use the extends keyword to
inherit from an abstract class.

Use the implements keyword to implement an
interface.

Default implementation An abstract class can provide default
implementation of methods.

You cannot define methods in an interface; you
can only declare them.

Fields An abstract class can have static
and non-static fields.

You cannot have any fields (instance variables)
in an interface.

Constants An abstract class can have both
static and non-static constants.

Interfaces can have only static constants. If you
declare a field, it must be initialized. All fields are
implicitly considered to be declared as public
static and final.

Constructors You can define a constructor in an
abstract class (which is useful for
initializing fields, for example).

You cannot declare/define a constructor in an
interface.

Access specifiers You can have private and protected
members in an abstract class.

You cannot have any private or protected members
in an interface; all members are public by default.

Single vs. multiple
inheritance

A class can inherit only one class
(which can be either an abstract
or a concrete class).

A class can implement any number of interfaces.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

117

Choosing Between an Abstract Class and an Interface
Now let’s compare abstract classes and interfaces. Hmm, interesting…they look quite similar, don’t they? How do you
choose between them? When should you choose abstract classes, and when should you choose interfaces?

If you are identifying a base class that abstracts common functionality from a set of related •	
classes, you should use an abstract class. If you are providing common method(s) or protocol(s)
that can be implemented even by unrelated classes, this is best done with an interface.

If you want to capture the similarities among the classes (even unrelated) without forcing a class •	
relationship, you should use interfaces. On the other hand, if there exists an is-a relationship
between the classes and the new entity, you should declare the new entity as an abstract class.

Let’s look at an example of choosing between abstract classes and interfaces in the FunPaint application. You can
have Shape as an abstract base class for all shapes (like Circle, Square, etc.); this is an example of an is-a relationship.
Also, common implementations, such as parent shape (as discussed in Chapter 4), can be placed in Shape. Hence,
Shape as an abstract class is the best choice in this case.

In FunPaint, the user can perform various actions on shape objects. For example, a few shapes can be rotated,
and a few can be rolled. A shape like Square can be rotated and a shape like Circle can be rolled. So, it does not make
sense to have rotate() or roll() in the Shape abstract class. The implementation of rotate() or roll() differs with
the specific shape, so default implementation could not be provided. In this case, it is best to use interfaces rather
than an abstract class. You can create Rotatable and Rollable interfaces that specify the protocol for rotate() and
roll() individually, as shown in Listing 5-1.

Listing 5-1. Shape.java

// Shape.java
// Shape is the base class for all shape objects; shape objects that are associated with
// a parent shape object is remembered in the parentShape field
public abstract class Shape {
 abstract double area();
 private Shape parentShape;
 public void setParentShape(Shape shape) {
 parentShape = shape;
 }

Table 5-2. Abstract Classes and Interfaces: Semantic and Usage Differences

Abstract Classes Interfaces

is-a relationship vs.
following a protocol

An abstract base class provides a
protocol; in addition, it serves as a base
class in an is-a relationship.

An interface provides only a protocol.
It specifies functionality that must be
implemented by the classes implementing it.

Default implementation
of a method

An abstract class can provide a default
implementation of a method. So, derived
class(es) can just use that definition and
need not define that method.

An interface can only declare a method. All
classes implementing the interface must
define that method.

Difficulty in making
changes

It is possible to make changes to the
implementation of an abstract class. For
example, you can add a method with
default implementation and the existing
derived classes will not break.

If there are already many classes implementing
an interface, you cannot easily change that
interface. For example, if you declare a new
method, all the classes implementing that
interface will stop compiling since they do not
define that method.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

118

 public Shape getParentShape() {
 return parentShape;
 }
}

// Rollable.java
// Rollable interface can be implemented by circular shapes such as Circle and Ellipse
public interface Rollable {
 void roll(float degree);
}

// Rotatable.java
// Rotable interface can be implemented by shapes such as Square, Rectangle, and Rhombus
public interface Rotatable {
 void rotate(float degree);
}

// Circle.java
// Circle is a concrete class that is-a subtype of Shape; you can roll it and hence implements
Rollable
public class Circle extends Shape implements Rollable {
 private int xPos, yPos, radius;
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }
 public double area() { return Math.PI * radius * radius; }
 @Override
 public void roll(float degree) {
 // implement rolling functionality here
 }
 public static void main(String[] s) {
 Circle circle = new Circle(10,10,20);
 circle.roll(45);
 }
}

// Rectangle.java
// Rectangle is a concrete class and is-a Shape; it can be rotated and hence implements Rotatable
public class Rectangle extends Shape implements Rotatable {
 private int length, height;
 public Rectangle(int l, int h) {
 length = l;
 height = h;
 }
 public double area() { return length * height; }
 @Override
 public void rotate(float degree) {
 // implement rotating functionality here
 }
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

119

Object Composition
You have learned how to define abstractions in the form of concrete classes, abstract classes, and interfaces.
Individual abstractions offer certain functionalities that need to be combined with other objects to represent a bigger
abstraction: a composite object that is made up of other smaller objects. You need to make such composite objects
to solve real-life programming problems. In such cases, the composite object shares has-a relationships with the
containing objects, and the underlying concept is referred to as object composition.

By way of analogy, a computer is a composite object containing other objects such as CPU, memory, and a hard
disk. In other words, the computer object shares a has-a relationship with other objects.

Let’s recollect the FunPaint application in which you defined the Circle class. The class definition is given as follows:

public class Circle {
 private int xPos;
 private int yPos;
 private int radius;

 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }
 // other constructors elided ...

 public String toString() {
 return "mid point = (" + xPos + "," + yPos + ") and radius = " + radius;
 }
 // other members (suchas area method) are elided
}

In this simple implementation, you use xPos and yPos to define the center of a Circle. Instead of defining these
variables as members of class Circle, let’s define a class Point, which can be used to define Circle’s center. Check
the definition of Point class in Listing 5-2.

Listing 5-2. Circle.java

// Point is an independent class and here we are using it with Circle class
class Point {
 private int xPos;
 private int yPos;
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 public String toString() {
 return "(" + xPos + "," + yPos + ")";
 }
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

120

// Circle.java
public class Circle {
 private Point center; // Circle "contains" a Point object
 private int radius;
 public Circle(int x, int y, int r) {
 center = new Point(x, y);
 radius = r;
 }
 public String toString() {
 return "center = " + center + " and radius = " + radius;
 }

 public static void main(String []s) {
 System.out.println(new Circle(10, 10, 20));
 }
 // other members (constructors, area method, etc) are elided ...
}

This is a better solution than having independent integer members xPos and yPos. Why? You can reuse the
functionality provided by the Point class. Note the rewriting of the toString() method in the Circle class by
simplifying it:

public String toString() {
 return "center = " + center + " and radius = " + radius;
}

Here, the use of the variable center expands to center.toString(). In this example, Circle has a Point object.
In other words, Circle and Point share a has-a relationship; in other words, Circle is a composite object containing
a Point object.

Composition vs. Inheritance
You are now equipped with a knowledge of composition as well as inheritance (which we covered in detail in Chapter 4).
In some situations, it’s difficult to choose between the two. It’s important to remember that nothing is a silver
bullet—you cannot solve all problems with one construct. You need to analyze each situation carefully and decide
which construct is best suited for it.

A rule of thumb is to use has-a and is-a phrases for composition and inheritance, respectively. For instance,

A computer has-a CPU.•	

A circle is-a shape.•	

A circle has-a point.•	

A laptop is-a computer.•	

A vector is-a list.•	

This rule can be useful for identifying wrong relationships. For instance, the relationship of car is-a tire is
completely wrong, which means you cannot have an inheritance relationship between the classes Car and Tire.
However, the car has-a tire (meaning car has one or more tires) relationship is correct—you can compose a Car object
containing Tire objects.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

121

Class inheritance implies an is-a relationship, interface inheritance implies an is-like-a relationship,
and composition implies a has-a relationship.

In real scenarios, the relationship distinctions can be non-trivial. You learned that you can make a base class and
put the common functionality of many classes in it. However, many people ignore a big caution sign suspended over
this practice—always check whether the is-a relationship exists between the derived classes and the base class. If the
is-a relationship does not hold, it’s better to use composition instead of inheritance.

For example, take a set of classes—say, DynamicDataSet and SnapShotDataSet—which require a common
functionality—say, sorting. Now, one could derive these data set classes from a sorting implementation, as given
in Listing 5-3.

Listing 5-3. Sorting.java

import java.awt.List;

public class Sorting {
 public List sort(List list) {
 // sort implementation
 return list;
 }
}

class DynamicDataSet extends Sorting {
 // DynamicDataSet implementation
}

class SnapshotDataSet extends Sorting {
 // SnapshotDataSet implementation
}

Do you think this is a good solution? No, it’s not a good solution for the following reasons:

The rule of thumb does not hold here. •	 DynamicDataSet is not a Sorting type. If you make such
mistakes in class design, it can be very costly—and you might not be able to fix them later if a lot
of code has accumulated that makes the wrong use of inheritance relationships. For example,
Stack extends Vector in the Java library. Yet a stack clearly is not a vector, so it could not only
create comprehension problems but also lead to bugs. When you create an object of Stack
class provided by the Java library, you can add or delete items from anywhere in the container
because the base class is Vector, which allows you to delete from anywhere in the vector.

What if these two types of data set classes have a genuine base class, •	 DataSet? In that case,
either Sorting will be the base class of DataSet or one could put the class Sorting in between
DataSet and two types of data sets. Both solutions would be wrong.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

122

There is another challenging issue: what if one •	 DataSet class wants to use one sorting
algorithm (say, MergeSort) and another data set class wants to use a different sorting
algorithm (say, QuickSort)? Will you inherit from two classes implementing two different
sorting algorithms? First, you cannot directly inherit from multiple classes, since Java does not
support multiple class inheritance. Second, even if you were able to somehow inherit from
two different sorting classes (MergeSort extends QuickSort, QuickSort extends DataSet), that
would be an even worse design.

In this case it is best to use composition—in other words, use a has-a relationship instead of an is-a relationship.
The resultant code is given in Listing 5-4.

Listing 5-4. Sorting.java

import java.awt.List;

interface Sorting {
 List sort(List list);
}

class MergeSort implements Sorting {
 public List sort(List list) {
 // sort implementation
 return list;
 }
}

class QuickSort implements Sorting {
 public List sort(List list) {
 // sort implementation
 return list;
 }
}

class DynamicDataSet {
 Sorting sorting;
 public DynamicDataSet() {
 sorting = new MergeSort();
 }
 // DynamicDataSet implementation
}

class SnapshotDataSet {
 Sorting sorting;
 public SnapshotDataSet() {
 sorting = new QuickSort();
 }
 // SnapshotDataSet implementation
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

123

Use inheritance when a subclass specifies a base class, so that you can exploit dynamic polymorphism.
in other cases, use composition to get code that is easy to change and loosely coupled. in summary,
favor composition over inheritance.

Points to Remember
Here are some design principles and terminological nuances you should have under your belt when you take the
OCPJP 7 exam:

Adhere to the OO design principle of “favor composition over inheritance.” Composition •	
encourages you to follow another useful OO design principle: “program to an interface, not
to an implementation.” This second injunction means that the functionality of a class should
depend only on the interface of another abstraction and not on the specific implementation
details of that abstraction. In other words, implementation of a class should not depend on
the internal implementation aspects of the other class. Wherever suitable, composition is the
technique of choice.

In OOP, there are many terms related to composition, such as association and aggregation. •	
Association is the most general form of a relationship between two objects, whereas
composition and aggregation are special forms of association. In general, the terms
aggregation and composition are used interchangeably. Although these two terms are very
similar, they do have a subtle difference. In composition, the lifetime of the contained object
and the container object is the same, whereas that is not the case with aggregation. For
example, a computer object and a CPU object share a composition relationship, while a library
object and a book object share an aggregation relationship.

Design Patterns
In the object-oriented world, the concepts behind design patterns are well established. As an object-oriented
programming language developer and as a candidate for OCPJP 7 exam certification, you must know about design
patterns and related concepts.

The literal meaning of design pattern in programming is a repeatable solution applicable to solve a generic design
problem. Experienced programmers and designers learn from their experience and formulate solutions to frequently
recurring design problems. Design patterns capture and replicate the experience of experienced software designers.

“design patterns are descriptions of communicating objects and classes that are customized to solve a
general design problem in a particular context.” —Design Patterns: Elements of Reusable Object-Oriented
Software [aside: this classic 1994 book popularized design patterns. Four authors (erich gamma, richard
helm, ralph johnson, and john Vlissides) wrote this book and for this reason it became known as the
“gang of Four” (goF) book. the patterns covered in this chapter are mostly goF patterns.]

A clarification before we delve into various design patterns: design patterns are design solutions. They are not
ready-made solutions like code in a library, which you can take off the shelf and use as needed when you program.
Design patterns instead provide template solutions that need to be fine-tuned based on the given context.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

124

Let’s consider an example of a design pattern to get an initial sense of the importance and usability of design
patterns. In the FunPaint application, let’s assume that a class (say ShapeArchiver) is responsible for archiving
information about all the drawn shapes. Similarly, another class (say Canvas) is responsible for displaying all
drawn shapes. Whenever any change in shapes takes place, you need to inform these two classes as to the changed
information. So, how you would like to implement this notification? Listing 5-5 shows a possible implementation.

Listing 5-5. Test.java

// Circle.java
// Circle class "informs" (i.e., "notifies") Canvas and ShapeArchiver whenever it gets "changed"
// by calling the update method of these two classes
public class Circle {
 private Point center;
 public void setCenter(Point center) {
 this.center = center;
 canvas.update(this);
 shapeArchiver.update(this);
 }
 public void setRadius(int radius) {
 this.radius = radius;
 canvas.update(this);
 shapeArchiver.update(this);
 }
 private ShapeArchiver shapeArchiver;
 public void setShapeArchiver(ShapeArchiver shapeArchiver) {
 this.ShapeArchiver = shapeArchiver;
 }
 protected Canvas canvas;
 public void setCanvas(Canvas canvas) {
 this.canvas = canvas;
 }
 private int radius;
 public Circle(int x, int y, int r) {
 center = new Point(x, y);
 radius = r;
 }
 public String toString() {
 return "center = " + center + " and radius = " + radius;
 }
}

// Point.java
class Point {
 private int xPos;
 private int yPos;
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 public String toString() {
 return "(" + xPos + "," + yPos + ")";
 }
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

125

// ShapeArchiver.java
public class ShapeArchiver {
 public void update(Circle circle) {
 System.out.println("ShapeArchiver::update");
 // update implementation
 }
}

// Canvas.java
public class Canvas {
 public void update(Circle circle) {
 System.out.println("Canvas::update");
 //update implementation
 }
}

// Test.java
public class Test {
 public static void main(String []s) {
 Circle circle = new Circle(10, 10, 20);
 System.out.println(circle);
 circle.setCanvas(new Canvas());
 circle.setShapeArchiver(new ShapeArchiver());
 circle.setRadius(50);
 System.out.println(circle);
 }
}

This program prints the following:

center = (10,10) and radius = 20
Canvas::update
ShapeArchiver::update
center = (10,10) and radius = 50

Well, this implementation works as intended—but there is a problem. There is a tight coupling between the
subject (Circle class) and both of the observers (ShapeArchiver and Canvas). Here are the consequences of a tightly
coupled design:

The subject class (•	 Circle) knows about the specific observer classes. As a result, if you change
observer classes, you need to change subject class, too. (Hmm, not so good.)

If you want to add or remove an observer, you cannot do it without changing the subject.•	

You cannot reuse either the subject or the observer classes independently.•	

Okay, there are some problems in the previous implementation. Is there a way to eliminate these problems?
Check out the new implementation in Listing 5-6.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

126

Listing 5-6. Test.java

// Circle.java
import java.util.Observable;

public class Circle extends Observable {
 private Point center;
 public void setCenter(Point center) {
 this.center = center;
 setChanged();
 notifyObservers();
 }
 public void setRadius(int radius) {
 this.radius = radius;
 setChanged();
 notifyObservers();
 }
 private int radius;
 public Circle(int x, int y, int r) {
 center = new Point(x, y);
 radius = r;
 }
 public String toString() {
 return "center = " + center + " and radius = " + radius;
 }
}

// Point.java
class Point {
 private int xPos;
 private int yPos;
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 public String toString() {
 return "(" + xPos + "," + yPos + ")";
 }
}

// Canvas.java
import java.util.Observable;
import java.util.Observer;

public class Canvas implements Observer {
 @Override
 public void update(Observable arg0, Object arg1) {
 System.out.println("Canvas::update");
 // actual update code elided ...
 }
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

127

// ShapeArchiver.java
import java.util.Observable;
import java.util.Observer;

public class ShapeArchiver implements Observer{
 @Override
 public void update(Observable arg0, Object arg1) {
 System.out.println("ShapeArchiver::update");
 // actual update code elided ...
 }
}

// Test.java
public class Test {
 public static void main(String []s) {
 Circle circle = new Circle(10, 10, 20);
 System.out.println(circle);
 circle.addObserver(new Canvas());
 circle.addObserver(new ShapeArchiver());
 circle.setRadius(50);
 System.out.println(circle);
 }
}

This program prints the following:

center = (10,10) and radius = 20
ShapeArchiver::update
Canvas::update
center = (10,10) and radius = 50

Well, the output is the same as for the previous version. Did you achieve anything better? Yes, you did. This
new implementation is a loosely coupled implementation. The subject—Circle class—does not know about the
concrete observer classes, and the observers do not know about the concrete subject. Consequently, both the
subject and observers can now be used independently and changed independently. Furthermore, you can add
and remove observers from the subject without changing the subject class.

This example is an implementation of the Observer design pattern. This design pattern is useful in cases in which
you have a subject to be monitored by a couple of observers. These observers need to be informed whenever the
subject gets changed. The Observer design pattern creates loose coupling between the subject and the observers.

Java supports an abstract class with the name Observable and an interface named Observer (both provided in
the java.util package) to implement the Observer design pattern. The Circle class is extended from Observable,
which tags the Circle class as a subject. The Canvas and ShapeArchiver classes implement the Observer interface,
and hence implement the update() method. Whenever the state of subject is changed, you call the setChanged()
method followed by notifyObservers(), which is implemented in the Observable class. The notifyObservers()
method calls all observers registered earlier for that subject.

We hope that this example gives you a good handle on design patterns. In the rest of this chapter, we will explore
in detail several more important design patterns.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

128

types of Design patterns

Singleton

-mySingleton : Singleton

- Singleton()
+ getSingleton() : Singleton

Figure 5-1. UML class diagram of singleton design pattern

broadly, goF design patterns can be classified into the following three categories:

Creational patterns•	 offer the flexibility to decide who is responsible for object creation, how the object
will be created, which object will be created, and when the creation will take place. in essence, creational
patterns provide an abstraction for object instantiation.

examples: singleton, Factory, abstract Factory, and prototype.

•	 Structural patterns are focused on how related classes (and objects) are composed together to form a
larger structure.

examples: Composite, decorator, proxy, and Façade.

•	 Behavioral patterns define the communication among the objects and control the flow within the
participating objects.

examples: Mediator, Chain of responsibility, Observer, state, and strategy.

The Singleton Design Pattern
There are many situations in which you want to make sure that only one instance is present for a particular class.
For example, assume that you defined a class that modifies registry, or you implemented a class that manages printer
spooling, or you implemented a thread-pool manager class. In all these situations, you might want to avoid
hard-to-find bugs by instantiating no more than one object of such classes. In these situations, you could employ the
singleton design pattern.

The singleton design pattern is meant to ensure that only one instance of the class is created. The pattern
implementation provides a single point of access to the class. This pattern is a creational design pattern, which means
it controls instantiation of the object. In Java SDK, the pattern is used in many places, such as java.lang.Runtime.

Figure 5-1 shows the class diagram of the singleton pattern. It comprises a single class, the class that you want to
make as a singleton. It has a private constructor and a static method to get the singleton object.

the singleton design pattern offers two things: one and only one instance of the class, and a global single
point of access to that object.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

129

Assume that the FunPaint application requires a logger that you want to implement as a singleton. Listing 5-7 shows
a possible implementation.

Listing 5-7. Logger.java

// Logger class must be intantiated only once in the application; it is to ensure that the
// whole of the application makes use of that same logger instance
public class Logger {
 // declare the constructor private to prevent clients
 // from instantiating an object of this class directly
 private Logger() { }
 public static Logger myInstance; // by default, this field is initialized to null
 // the static method to be used by clients to get the instance of the Logger class
 public static Logger getInstance() {
 if(myInstance == null) {
 // this is the first time this method is called, and that's why myInstance
 is null
 myInstance = new Logger();
 }
 // return the same object reference any time and every time getInstance is called
 return myInstance;
 }
 public void log(String s) {
 // a trivial implementation of log where we pass the string to be logged to console
 System.err.println(s);
 }
}

Look at the singleton implementation of the Logger class. The constructor of the class is declared as private, so
you cannot simply create a new instance of the Logger class using the new operator. The only way to get an instance of
this class is to call the static member method of the class via the getInstance() method. This method checks whether
a Logger object already exists or not. If not, it creates a Logger instance and assigns it to the static member variable. In
this way, whenever you call the getInstance() method, it will always return the same object of the Logger class.

listing 5-7 used lazy initialization. You could employ early initialization if your singleton constructor is not
computationally expensive.

Ensuring That Your Singleton Is Indeed a Singleton
You might be wondering what we are talking about, but it is really important (as well as really difficult) to ensure that
your singleton pattern implementation allows only instance of the class.

For instance, the implementation provided in Listing 5-7 works only if your application is single-threaded. In the
case of multiple threads, trying to get a singleton object may result in creation of multiple objects, which of course
defeats the purpose of implementing a singleton.

Listing 5-8 shows a version of the Logger class that implements the singleton design pattern in a multi-threaded
environment.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

130

Listing 5-8. Logger.java

public class Logger {
 private Logger() {
 // private constructor to prevent direct instantiation
 }
 public static Logger myInstance;
 public static synchronized Logger getInstance() {
 if(myInstance == null)
 myInstance = new Logger();
 return myInstance;
 }
 public void log(String s){
 // log implementation
 System.err.println(s);
 }
}

Note the use of the keyword synchronized in this implementation. This keyword is a Java concurrency
mechanism to allow only one thread at a time into the synchronized scope. You will learn more about this keyword
in Chapter 13.

So, you made the whole method synchronized in order to make it accessible by only a thread at a time. This
makes it a correct solution, but there is a problem: poor performance. You wanted to make this method synchronized
only at the first time the method is called, but since you declared the whole method as synchronized, all subsequent
calls to this method make it a performance bottleneck.

Okay, fine. What if you synchronize only the new statement? See Listing 5-9.

Listing 5-9. Logger.java

public class Logger {
 private Logger() {
 // private constructor
 }
 public static Logger myInstance;
 public static Logger getInstance() {
 if(myInstance == null) {
 synchronized (Logger.class) {
 myInstance = new Logger();
 }
 }
 return myInstance;
 }
 public void log(String s) {
 // log implementation
 System.err.println(s);
 }
}

It’s a nice try, but this solution does not work either. The synchronization does not prevent the accidental creation
of two singleton objects. Now, implement the famous double-checked locking (see Listing 5-10).

Chapter 5 ■ ObjeCt-Oriented design prinCiples

131

Listing 5-10. Logger.java

public class Logger {
 private Logger() {
 // private constructor
 }
 public static Logger myInstance;
 public static Logger getInstance() {
 if(myInstance == null) {
 synchronized (Logger.class) {
 if(myInstance == null) {
 myInstance = new Logger();
 }
 }
 }
 return myInstance;
 }
 public void log(String s) {
 // log implementation
 System.err.println(s);
 }
}

Well, this implementation is also not a foolproof solution for a multi-threaded application. It creates a problem
due to erroneous out-of-order writes allowed by the Java memory model. Although the memory model problem was
reportedly fixed in Java 5, we do not encourage you to use this solution.

Listing 5-11 shows another implementation of the Logger class that is based on the “initialization on demand
holder” idiom. This idiom uses inner classes and does not use any synchronization construct (recall the discussion of
inner classes in Chapter 4). It exploits the fact that inner classes are not loaded until they are referenced.

Listing 5-11. Logger.java

public class Logger {
 private Logger() {
 // private constructor
 }
 public static Logger myInstance;
 public static class LoggerHolder {
 public static Logger logger = new Logger();
 }
 public static Logger getInstance() {
 return LoggerHolder.logger;
 }
 public void log(String s) {
 // log implementation
 System.err.println(s);
 }
}

Hmm…at last you’ve found an efficient working solution. However, before we close this discussion of the
singleton design pattern, two parting words of caution. First, use the singleton pattern wherever it is appropriate, but
do not overuse it. Second, make sure that your singleton implementation ensures the creation of only one instance
even if your code is multi-threaded.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

132

The Factory Design Pattern
In real life, factories are manufacturing units that produce multiple instances of a product (or flavors of a product).
For instance, a car factory produces cars of specific types and models. The main responsibility of the factory is to keep
producing cars of the required type and model. Here, one important thing to observe is that a car may have different
variants and the car factory should be able to manufacture on demand the required variants of the same car.

Similarly, you can implement a factory that returns the required type of object(s) on demand in OOP. In this case,
the factory decides which class(es) to instantiate to create the required object(s) and exactly how to create them.

Figure 5-2 shows the UML class diagram of the factory pattern. Client invokes ProductFactory to get an
appropriate object from the product hierarchy. ProductFactory creates one of the Products from the Product
hierarchy based on the provided information. Client uses the product object without knowing which actual product
it is using or how ProductFactory created this product object.

Client
Uses

ProductFactory

<<interface>>
Product

Uses

creates
ConcreteProduct

Figure 5-2. UML class diagram of factory design pattern

Let’s consider an example. In the FunPaint application, there are different types of shapes, such as Circle and
Rectangle. Now, the Canvas object might not want to know about the concrete shape that gets created. Assume that
the Canvas object receives a shape identifier from the front end based on which corresponding shape object needs to
be created. Here, you can have a ShapeFactory that can create the required shape object and return it to the Canvas
object. Listing 5-12 shows the implementation of this pattern.

Listing 5-12. Test.java

// Shape.java
public interface Shape {
 public void draw();
 public void fillColor();
}

// Circle.java
public class Circle implements Shape {
 private int xPos, yPos;
 private int radius;
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 System.out.println("Circle constructor");
 }

Chapter 5 ■ ObjeCt-Oriented design prinCiples

133

 @Override
 public void draw() {
 System.out.println("Circle draw()");
 // draw() implementation
 }
 @Override
 public void fillColor() {
 // fillColor() implementation
 }
}

// Rectangle.java
public class Rectangle implements Shape {
 public Rectangle(int length, int height) {
 this.length = length;
 this.height = height;
 System.out.println("Rectangle constructor");
 }
 private int length, height;
 @Override
 public void draw() {
 System.out.println("Rectangle draw()");
 // draw() implementation
 }
 @Override
 public void fillColor() {
 // fillColor() implementation
 }
}

// ShapeFactory.java
public class ShapeFactory {
 public static Shape getShape(String sourceType) {
 switch(sourceType) {
 case "Circle":
 return new Circle(10, 10, 20);
 case "Rectangle":
 return new Rectangle(10, 20);
 }
 return null;
 }
}

// Canvas.java
import java.util.ArrayList;
import java.util.Iterator;

Chapter 5 ■ ObjeCt-Oriented design prinCiples

134

public class Canvas {
 private ArrayList<Shape> shapeList = new ArrayList<Shape>();
 public void addNewShape(String shapeType) {
 Shape shape = ShapeFactory.getShape(shapeType);
 shapeList.add(shape);
 }
 public void redraw() {
 Iterator<Shape> itr = shapeList.iterator();
 while(itr.hasNext()) {
 Shape shape = itr.next();
 shape.draw();
 }
 }
}

// Test.java
public class Test {
 public static void main(String[] args) {
 Canvas canvas = new Canvas();
 canvas.addNewShape("Circle");
 canvas.addNewShape("Rectangle");
 canvas.redraw();
 }
}

It prints the following:

Circle constructor
Rectangle constructor
Circle draw()
Rectangle draw()

Let‘s analyze this implementation. You define a Shape interface, which defines two public methods, draw() and
fillColor(). Classes Circle and Rectangle implement this interface and provide implementation of interface methods.
Class Canvas maintains a list of shapes drawn on canvas, and it offers a method addNewShape() to allow the front-end of
the application to create a new instance of requested shape. From the main() method, you invoke the addnewShape()
method of Canvas class. In turn, this method calls the getShape() method of ShapeFactory class. The getShape() method
examines the requested type of shape, creates a new instance based on the requested type, and returns it to Canvas.

The following insights may be drawn from the above example:

The •	 Canvas class does not need to know how to create concrete shape objects.
This transparency becomes very useful in case concrete object creation is expensive
and complicated.

The •	 Canvas class does not need to know the exact concrete shape types. You can observe
from the Canvas implementation that Canvas is only aware of the Shape interface. Therefore,
if you add another concrete shape (say Square), you do not need to change the Canvas
implementation.

Java SDK defines many such factories. For example, java.util.Calendar is an implementation of the factory
design pattern. Listing 5-13 uses the Calendar class.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

135

Listing 5-13. mainClass.java

import java.util.Calendar;

public class MainClass {
 public static void main(String[] args) {
 Calendar calendar = Calendar.getInstance();
 System.out.println(calendar);
 }
}

This program prints the following:

java.util.GregorianCalendar [...]

The output of Listing 5-13 contains all the fields of the calendar object (shown here as […] to save the space).
There are many other examples in Java SDK where the factory pattern is used, including the following:

•	 createStatement() of java.sql.Connection interface, which creates a new Statement to
communicate to database.

•	 createSocket() of java.rmi.server.RmiClientSocketFactory interface, which returns a
new client Socket.

Differences Between Factory and Abstract Factory Design Patterns
Both factory design patterns and abstract factory design patterns belong to the creational design pattern category. As
explained in preceding section, a factory design pattern creates (or manufactures) the requested type of object on demand.
By contrast, the abstract factory is basically a factory of factories. In other words, the abstract factory design pattern
introduces one more indirection to create a specified object. A client of the abstract factory design pattern first requests a
proper factory from the abstract factory object, and then it requests an appropriate object from the factory object.

Another very important difference between these two patterns is their applicability: when you have only one type
of object to be created, you can use a factory design pattern; when you have a family of objects to be created, you can
use an abstract factory design pattern.

Let’s explore the abstract factory pattern by reference to its class diagram (Figure 5-3). Assume that there are
two product hierarchies, ProductA and ProductB, along with their concrete product classes. You want to create
either ConcreteProductA1 and ConcreteProductB1 (as a group) or ConcreteProductA2 and ConcreteProductB2. In
this situation, you define an abstract ProductFactory with two subclasses, ProductFactory1 and ProductFactory2.
ProductFactory1 creates ConcreteProductA1 and ConcreteProductB1 and ProductFactory2 creates
ConcreteProductA2 and ConcreteProductB2. Hence, based on the requirement, you create a required factory object;
the selected factory object gives you the required concrete product objects.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

136

Let’s work out an example now. In Listing 5-12, you implemented the factory design pattern. Now, let’s
assume that shapes can be of two types: DisplayFriendly and PrinterFriendly. Hence, now there are two flavors
available for your Circle class (as well as for your Rectangle class, mutatis mutandis): DisplayFriendlyCircle
and PrinterFriendlyCircle. Now, obviously you want to create only one type of objects: either display-friendly or
printer-friendly. Well, you’ve established that when you want to create a family of objects you should use the abstract
factory design pattern. Listing 5-14 shows the implementation.

Listing 5-14. Test.java

// Shape.java
public interface Shape {
 public void draw();
}

// PrinterFriendlyShape.java
public interface PrinterFriendlyShape extends Shape {
}

// DisplayFriendlyShape.java
public interface DisplayFriendlyShape extends Shape {
}

// DisplayFriendlyCircle.java
public class DisplayFriendlyCircle implements DisplayFriendlyShape {
private int xPos, yPos;
 private int radius;
 public DisplayFriendlyCircle(int x, int y, int r) {
 xPos = x;
 yPos = y;

Client

ProductFactory

ProductA ProductB

ConcreteProductA1 ConcreteProductA2 ConcreteProductB1 ConcreteProductB2

ConcreteFactory1 ConcreteFactory2

+createProductA()
+createProductB()

uses

creates creates

uses
uses

Figure 5-3. UML class diagram for abstract factory design pattern

Chapter 5 ■ ObjeCt-Oriented design prinCiples

137

 radius = r;
 System.out.println("DisplayFriendlyCircle constructor");
 }
 @Override
 public void draw() {
 System.out.println("DisplayFriendlyCircle draw()");
 // draw() implementation
 }
}

// DisplayFriendlyRectangle.java
public class DisplayFriendlyRectangle implements DisplayFriendlyShape {
 public DisplayFriendlyRectangle(int length, int height) {
 this.length = length;
 this.height = height;
 System.out.println("DisplayFriendlyRectangle constructor");
 }
 private int length, height;
 @Override
 public void draw() {
 System.out.println("DisplayFriendlyRectangle draw()");
 // draw() implementation
 }
}

// PrinterFriendlyCircle.java
public class PrinterFriendlyCircle implements PrinterFriendlyShape{
 private int xPos, yPos;
 private int radius;
 public PrinterFriendlyCircle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 System.out.println("PrinterFriendlyCircle constructor");
 }
 @Override
 public void draw() {
 System.out.println("PrinterFriendlyCircle draw()");
 // draw() implementation
 }
}

// PrinterFriendlyRectangle.java
public class PrinterFriendlyRectangle implements PrinterFriendlyShape {
 public PrinterFriendlyRectangle(int length, int height) {
 this.length = length;
 this.height = height;
 System.out.println("PrinterFriendlyRectangle constructor");
 }
 private int length, height;
 @Override

Chapter 5 ■ ObjeCt-Oriented design prinCiples

138

 public void draw() {
 System.out.println("PrinterFriendlyRectangle draw()");
 // draw() implementation
 }
}

// ShapeFactory.java
public interface ShapeFactory {
 public Shape getShape(String sourceType);
}

// DisplayFriendlyFactory.java
public class DisplayFriendlyFactory implements ShapeFactory {
 @Override
 public Shape getShape(String sourceType) {
 switch(sourceType){
 case "Circle":
 return new DisplayFriendlyCircle(10, 10, 20);
 case "Rectangle":
 return new DisplayFriendlyRectangle(10, 20);
 }
 return null;
 }
}

// PrinterFriendlyFactory.java
public class PrinterFriendlyFactory implements ShapeFactory {
 @Override
 public Shape getShape(String sourceType) {
 switch(sourceType) {
 case "Circle":
 return new PrinterFriendlyCircle(10, 10, 20);
 case "Rectangle":
 return new PrinterFriendlyRectangle(10, 20);
 }
 return null;
 }
}

// Test.java
public class Test {
 public static void main(String[] args) {
 Canvas canvas = new Canvas();
 canvas.addNewShape("Circle", "DisplayFriendly");
 canvas.addNewShape("Rectangle", "DisplayFriendly");
 canvas.redraw();
 }
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

139

Don’t be scared by the lengthy code—you can understand it. In this code, there are two major features to grasp:

•	 Product hierarchy: Shape is the base interface extended by DisplayFriendlyShape and
PrinterFriendlyShape. Two flavors of the Circle and Rectangle classes are defined for each:
display-friendly and printer-friendly shape.

•	 Abstract factory implementation: Made up of ShapeFactory as the base
interface, and PrinterFriendlyFactory and DisplayFriendlyFactory as the
concrete factories. PrinterFriendlyFactory creates only PrinterFriendlyCircle
and PrinterFriendlyRectangle; similarly, DisplayFriendlyFactory creates
DisplayFriendlyCircle and DisplayFriendlyRectangle.

The rest of the code is quite similar to the factory version of the program in Listing 5-12.
Java SDK employs the abstract factory pattern at numerous places. You would do well, for example, to check out

and understand the following:

•	 javax.xml.transform.TransformerFactory

•	 javax.xml.xpath.XPathFactory

Parenthetical Note: For the OCpjp 7 exam, you need to understand the factory design pattern, by which
the factory creates new instances of a product hierarchy based on the provided input. Outside the scope
of the OCpjp 7 exam but nevertheless noteworthy is another way to implement the factory: reflection.
the main advantage of using reflection to implement the factory is that you can extend your product
hierarchy without changing the implementation of factory or compromising the factory’s ability to create
newly added classes.

The Data Access Object (DAO) Design Pattern
Suppose that you are at a multicultural fair with your family and you decide to take a ride on the carousel. You
see a big panel with many buttons for operating the carousel. You ask the operator to start the carousel, adjust its
speed, and stop it. The operator, who knows how to use the panel, follows your instructions. He is providing you an
abstraction from the complicated control panel. In fact, if you go to different carousel at the other end of the fair, you
can instruct its operator in the same way and that operator will follow your instructions in the same way even though
his panel is different from that of the first carousel. In essence, your family can take a ride on any carousel without
understanding its operating panel because the knowledge to operate the machine is abstracted by the operator. The
Data Access Object (DAO) design pattern provides you abstractions in an analogous way.

In real-life projects, you will encounter situations in which you want to make your data persist. You might use
flat files (i.e., data files on your native OS), XML files, OODBMS, RDBMS, etc. In such situations, you can use the
DAO design pattern. This design pattern abstracts the details of the underlying persistence mechanism and offers
you an easy-to-use interface for implementing the persistence feature in your application. The DAO pattern hides
the implementation details of the data source from its clients, thereby introducing loose coupling between your
core business logic and your persistence mechanism. This loose coupling enables you to migrate from one type of
persistence mechanism to another without any big-bang change.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

140

a daO design pattern essentially separates your core business logic from your persistence logic.

Let’s examine the structure of the pattern, which is shown in Figure 5-4. DataSource represents a concrete
persistence implementation such as a RDBMS, XML database, or even another system/repository. DAO provides
an abstraction for the DataSource, hides the specific implementation level details, and provides a single interface
for all different types of data sources. A Client is a user of DAO pattern that uses DataSource through DAO, and
TransferObject is a data transfer object used as a medium to transfer the core objects.

Client
creates

creates

DAO

uses

uses
DataSource

TransferObject

Figure 5-4. UML class diagram of DAO design pattern

Apart from the above-mentioned participants (Client, DAO, TransferObject, and DataSource), there could be
one more participant for this pattern—DAOFactory. You may have multiple DAO objects, corresponding to all the
different types of objects you want to store. You may define a factory (using the factory design pattern, as you did in
the preceding section), which can have one method for each DAO object. Don’t worry…you’re going to implement a
factory in your next example.

Assume that you want to implement the DAO design pattern in the FunPaint application. Here, you have a Circle
class that you want to store in a persistent data store. Listing 5-15 shows the implementation of the pattern.

Listing 5-15. Test.java

// Circle.java
public class Circle {
 private int xPos, yPos;
 private int radius;
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }
 public String toString() {
 return "center = (" + xPos + "," + yPos + ") and radius = " + radius;
 }

Chapter 5 ■ ObjeCt-Oriented design prinCiples

141

 public CircleTransfer getCircleTransferObject() {
 CircleTransfer circleTransfer = new CircleTransfer();
 circleTransfer.setRadius(radius);
 circleTransfer.setxPos(xPos);
 circleTransfer.setyPos(yPos);
 return circleTransfer;
 }
 // other members
}

// CircleDAO.java
public interface CircleDAO {
 public void insertCircle(CircleTransfer circle);
 public CircleTransfer findCircle(int id);
 public void deleteCircle(int id);
}

// RDBMSDAO.java
public class RDBMSDAO implements CircleDAO {
 @Override
 public void insertCircle(CircleTransfer circle) {
 // insertCircle implementation
 System.out.println("insertCircle implementation");
 }
 @Override
 public CircleTransfer findCircle(int id) {
 // findCircle implementation
 return null;
 }
 @Override
 public void deleteCircle(int id) {
 // deleteCircle implementation
 }
}

// DAOFactory.java
public class DAOFactory {
 public static CircleDAO getCircleDAO(String sourceType) {
 // This is a simple example, so we have listed only "RDBMS" as the only source type
 // In a real-world application, you can provide more source types
 switch(sourceType){
 case "RDBMS":
 return new RDBMSDAO();
 }
 return null;
 }
}

// CircleTransfer.java
import java.io.Serializable;

Chapter 5 ■ ObjeCt-Oriented design prinCiples

142

public class CircleTransfer implements Serializable {
 private int xPos;
 private int yPos;
 private int radius;
 public int getxPos() {
 return xPos;
 }
 public void setxPos(int xPos) {
 this.xPos = xPos;
 }
 public int getyPos() {
 return yPos;
 }
 public void setyPos(int yPos) {
 this.yPos = yPos;
 }
 public int getRadius() {
 return radius;
 }
 public void setRadius(int radius) {
 this.radius = radius;
 }
}

// Test.java
public class Test {
 public static void main(String[] args) {
 Circle circle = new Circle(10, 10, 20);
 System.out.println(circle);
 CircleTransfer circleTransfer = circle.getCircleTransferObject();
 CircleDAO circleDAO = DAOFactory.getCircleDAO("RDBMS");
 circleDAO.insertCircle(circleTransfer);
 }
}

Well, that’s quite a big program. Let’s go through it step by step. The Circle class belongs to your core business
logic; apart from the other usual members, the Circle class contains a method—getCircleTransferObject()—that
returns the CircleTransfer object with the required data. You define the CircleDAO interface with three methods
commonly used with data sources. The RDBMSDAO implements CircleDAO with a concrete implementation to access
the RDBMS data source. The CircleTransfer object plays a data carrier role between the main() method (which is
acting as a Client) and DAO implementation (i.e., the RDBMSDAO class).

One more feature to be noted in the Listing 5-15 implementation is the use of the factory design pattern. In an
application, there might be many DAO objects. For instance, in the FunPaint application you might have CircleDAO,
RectangleDAO, SquareDAO, etc. You may define getter methods to get corresponding DAO object in a single DAO
factory. In each method, you may return an appropriate DAO object based on the provided type, as you do in this
example with the RDBMS type.

Here are the benefits of the DAO design pattern:

The pattern introduces an abstraction: the DAO hides the implementation details of the actual •	
data source from the core business logic. The business logic need not know about the nitty-
gritty of the data source, which results in easy-to-understand, less complicated code.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

143

The pattern separates the persistence mechanism from rest of the application code and •	
puts it together in one class specific to one data source. This centralization enables easier
maintenance and easier bug-tracing.

It is quite easy to extend support for other data sources using this pattern. For instance, if you •	
want to provide support for the XML-based repository in the FunPaint application, this can be
achieved by defining a new class (say XMLDAO). This new class will implement your CircleDAO
interface, such that you do not need to change the way you access the data source. The only thing
that needs to be changed is the parameter you pass to DAOFactory to create a DAO. Easy, isn’t it?

Points to Remember
Here are points to remember for the OCPJP 7 exam:

You saw the factory design pattern implementation in the DAO design pattern. You may •	
also employ abstract factory design pattern if you have multiple DAO objects and you have
multiple persistence mechanisms.

Note that you declared •	 TransferObject (e.g., CircleTransfer) as serializable. Any idea why
you did that? Well, if you are using the transfer object between two JVMs, then the transfer
object has to be serializable.

In OOP, a useful and important design principle is “separation of concerns.” This principle •	
states that concerns (or features) should be separated (to attain minimum overlap) in order
to overcome the inherent complexity involved with software design. The DAO design pattern
helps you comply with this design principle. If you are not using DAO, then your business logic
will be exposed to the concrete implementation details of the persistence mechanisms—an
undesirable state of affairs. Use of the DAO design pattern ensures that you separate your core
logic from your persistence mechanism.

Question time!

1. Which of the following statements is true?

a. a class can extend multiple base classes.

b. You can implement only one interface since java does not support multiple inheritance.

C. You can implement multiple interfaces.

d. You can either extend a class or implement an interface (but not both) at a time.

Answer: C

2. Consider the following interface declaration:

public interface Rotatable {
 void rotate(float degree);
 // insert code
}

Chapter 5 ■ ObjeCt-Oriented design prinCiples

144

now, consider following options which could be replaced with “// insert code”:

 I. public final float degree = 0;

 II. public static final float degree = 0;

III. public final static float degree = 0;

 IV. public final float degree;

 V. public float degree;

 VI. float degree = 0;

Choose the correct option:

a. Options i, ii, iii, and Vi will compile without errors.

b. Options i, ii, and iii will compile without errors.

C. Options i will compile without errors.

d. Options iV, and V will compile without errors.

e. all options will compile without errors.

Answer: a

3. Consider following example:

public interface xyz {
 void abc() throws IOException;
}
public interface pqr {
 void abc() throws FileNotFoundException;
}
public class Implementation implements xyz, pqr {
 // insert code
 { /*implementation*/ }
}

Which of the following statement(s) can you insert in place of “// insert code” comment?

a. public void abc() throws iOexception

b. public void abc() throws FilenotFoundexception

C. public void abc() throws FilenotFoundexception, iOexception

d. public void abc() throws iOexception, FilenotFoundexception

Answer: b

(since FileNotFoundException is a subtype of IOException, it satisfies both methods).

Chapter 5 ■ ObjeCt-Oriented design prinCiples

145

4. Consider the following three classes: University, Department, and CSE_Department (CSE
stands for Computer Science and Engineering). the University and Department
classes are related with relation r1, and the Department and CSE_Department classes are
related with relation r2. Which combination of these relations is appropriate?

a. r1: inheritance, r2: inheritance

b. r1: composition, r2: inheritance

C. r1: inheritance, r2: composition

d. r1: composition, r2: composition

Answer: b

(a university has many departments, so they share a has-a relationship between them, a composition relationship.
Cse_department is a department, so these two share a is-a relationship between them, an inheritance
relationship.)

5. You need to model a file system where there could be subfolders and files in a folder.
What is the most appropriate design choice in this case to represent the relationship
between Folder and File classes?

a. Use composition to model the relationship of “a Folder object consists of File
objects.”

b. Use composition to model the relationship of “a Folder object consists of File
objects or Folder objects.”

C. Use inheritance to define a superclass (say FolderItem) and make Folder and File
classes subclasses to this class. Use composition to model the relationship “a Folder
object consists of FolderItem objects.”

d. Use inheritance between Folder and File classes to model the relationship “a
Folder is of type File.”

Answer: C

(in fact, this arrangement is referred to as a composite design pattern)

Summary
Interfaces

An interface is a set of abstract methods that defines a protocol.•	

An interface cannot be instantiated; however, an interface can extend another interface.•	

All methods declared in an interface are implicitly considered to be abstract.•	

Abstract class and interface are quite similar concepts. However, you should be careful to use •	
the appropriate construct based on the context.

Chapter 5 ■ ObjeCt-Oriented design prinCiples

146

Object Composition

Inheritance implies is-a, interface implies is-like-a, and composition implies has-a •	
relationships.

Favor composition over inheritance whenever feasible.•	

Program to an interface, not to an implementation.•	

Design Patterns

Design patterns are reusable solutions of frequently recurring design problems.•	

The observer design pattern improves loose coupling between subject and observers.•	

The singleton design pattern ensures that only one instance of the class is created.•	

Making sure that an intended singleton implementation is indeed singleton is a non-trivial •	
task, especially in a multi-threaded environment.

The factory design pattern “manufactures” the required type of product on demand.•	

You should consider using the abstract factory design pattern when you have a family of •	
objects to be created.

A DAO design pattern essentially separates your core business logic from your •	
persistence logic.

147

Chapter 6

Generics and Collections

Exam Topics

Create a generic class

Use the diamond syntax to create a collection

Use wrapper classes and autoboxing

Create and use a List, a Set and a Deque

Create and use a Map

Use java.util.Comparator and java.lang.Comparable

Sort and search arrays and lists

Analyze the interoperability of collections
that use raw type and generic types

Every non-trivial Java application makes use of data structures and algorithms. The Java collections framework
provides a large set of readily usable general-purpose data structures and algorithms. These data structures and
algorithms can be used with any suitable data type in a type-safe manner; this is achieved through the use of a
language feature known as generics.

Since data structures and algorithms are implemented using generics, these two complementary topics are
combined together as a single topic in the 1Z0-804 exam syllabus. In this chapter, we first introduce generics, which
are useful for defining reusable data structures and algorithms. We discuss how generics offer more type safety
than Object type containers. We also explore other aspects of generics such as wildcard parameters in generics and
subtyping in generics.

Chapter 6 ■ GeneriCs and ColleCtions

148

In the collections part of this chapter, you’ll learn how to use the readily available data structures (implemented
using generics) provided as part of the Java library. We’ll discuss some interfaces and concrete classes in the
collections framework that are important from the OPCJP 7 exam perspective.

Generics
Generics are a language feature introduced to Java in Version 1.5. Generics help you write code for one type (say T) that
is applicable for all types, instead of writing separate classes for each type. Before generics were introduced in Java,
the Object base class was used as an alternative to generics. However, using the Object class for storing elements in
a container results in type safety issues—that is, using such a container allows type errors that cannot be identified by
the Java compiler and result in runtime exceptions. If you don’t understand this description of type safety, don’t worry
because we’re going to explain the type safety problem in detail with a few examples. Understanding type safety is
important. In fact, the main motivation for adding generics to the language was because legacy container classes were
not type-safe.

Using Object Type and Type Safety
Before the introduction of generics in Java, data structures were implemented by storing and processing elements
using the Object base class. We’ll discuss an example to understand why those containers are not type-safe. Consider
the program in Listing 6-1, which uses the Vector class (you can think of Vector as a “dynamically growing array”
where you can add or remove elements similar to an array). Can you predict the output of this program?

Listing 6-1. OldContainerTest.java

import java.util.Vector;

// This program demonstrate the lack of type-safety in containers (based on Object type).
class OldContainerTest {
 public static void main(String []args) {
 Vector floatValues = new Vector();
 floatValues.add(10.0f);
 floatValues.add(100.0);
 for(int i = 0; i < floatValues.size(); i++) {
 System.out.println(floatValues.get(i));
 }
 }
}

It prints the following:

10.0
100.0

Now let’s make only one change to this program: instead of directly printing the values returned from
Vector's get method, you first store it in a temporary variable of Float type and then print that temporary value
using println:

Float temp = (Float) floatValues.get(i);
System.out.println(temp);

Chapter 6 ■ GeneriCs and ColleCtions

149

Now this is the output:

10.0
Exception in thread "main" java.lang.ClassCastException: java.lang.Double cannot be cast to
java.lang.Float at OldContainerTest.main(OldContainerTest.java:9)

Why? What happened? The Vector container is capable of holding any object (i.e., it holds values of the
Object type). When you try to put a primitive type, however, it is “boxed” automatically and the wrapper object is
put into the container (using the autoboxing feature in Java). For 10.0, the corresponding primitive type is float
(note the suffix “f”!), and so a wrapper object of type Float is created and that object is put into the Vector. For 100.0,
the primitive type is Double (real numbers, if not given with explicit suffix, are assumed of type Double by default).
So, the wrapper object of type Double is created and that object is put into the Vector.

So far, so good. In the original program, there were no casts, so the floating point values were directly printed
using the toString() method in println. However, when you try to cast it using the Float type, you get into trouble.
You cannot convert the Double value 100.0 into Float type. (Float type can be casted to Double type—but Float type
cannot be casted to Double type!) So you get a ClassCastException at runtime.

In other words, a Vector is implemented in terms of Object type. So, you can put an object of any type into a
Vector object. You cannot enforce that only elements of certain type can be inserted to the container at compile time.
In fact, while compiling the program, the compiler does warn you about using raw type Vector (see Figure 6-1). We’ll
discuss more about these raw types (i.e., non-generic types) in the “Interoperability of Raw Types and Generic Types”
section of this chapter.

Figure 6-1. Compiler warning about the use of raw type Vector

The Vector container that uses the Object base class for storing elements allows you to add elements of any
type, while your application logic requires that only strings should be added. With generics, you can specify to the
compiler that only elements of a certain type can be added to a container. Generics will ensure that any attempts to
add elements of types other than the specified type(s) will be caught at compile time itself. In other words, the use of
data structures implemented using generics is checked for type safety at compile time, so those data structures are
type-safe.

Chapter 6 ■ GeneriCs and ColleCtions

150

Using the Object Class vs. Generics
In the previous section, we focused our discussion on type safety issues in using existing data structures that were
implemented using the Object base class. In this section, we’ll turn our focus to defining your own data structures.
With an example of a container class definition using the Object base class, you’ll understand why such containers
are not type-safe. After that, we’ll introduce the concept of generics and show you how using generics can help define
type-safe containers.

Container Implementation Using the Object Class
Assume that you want to print the object’s value within square brackets. For example, to print an Integer object with
value 10, instead of printing “10” to the console, you want to print the value inside a “box” like this: “[10]”. The default
toString() method just gives the String representation of the object’s value; you want an enhanced toString()
method that will print “[” and “]” before and after the value. How can you do that? You can write a BoxPrinter class
that overrides the toString() method. You’ll use Object for storing the value since it is the common base class for all
types (see Listing 6-2).

Listing 6-2. BoxPrinterTest1.java

// The program demonstrates "Object" based implementation and associated lack of type safety
class BoxPrinter {
 private Object val;
 public BoxPrinter(Object arg) {
 val = arg;
 }
 public String toString() {
 return "[" + val + "]";
 }
}

class BoxPrinterTest1 {
 public static void main(String []args) {
 BoxPrinter value1 = new BoxPrinter(new Integer(10));
 System.out.println(value1);
 BoxPrinter value2 = new BoxPrinter("Hello world");
 System.out.println(value2);
 }
}

It works fine and prints the following:

[10]
[Hello world]

You can pass object of any type, and this code will print its contents within “[” and “]” correctly. This is the same
mechanism in which the legacy containers (like Vector) are implemented. So, what is the problem? Well, here is a
scenario: assume that you want to add a method named getValue() that gets the value stored in BoxPrinter. How
do you get back the original type you put in while creating the BoxPrinter object? This is where the problem starts.
Listing 6-3 contains an example.

Chapter 6 ■ GeneriCs and ColleCtions

151

Listing 6-3. BoxPrinterTest2.java

// The program demonstrates "Object" based implementation and associated lack of type safety
class BoxPrinter {
 private Object val;
 public BoxPrinter(Object arg) {
 val = arg;
 }
 public String toString() {
 return "[" + val + "]";
 }
 public Object getValue() {
 return val;
 }
}

class BoxPrinterTest2 {
 public static void main(String []args) {
 BoxPrinter value1 = new BoxPrinter(new Integer(10));
 System.out.println(value1);
 Integer intValue1 = (Integer) value1.getValue();

 BoxPrinter value2 = new BoxPrinter("Hello world");
 System.out.println(value2);
 // OOPs! by mistake, we did (Integer) cast instead of (String)
 Integer intValue2 = (Integer) value2.getValue();
 }
}

Here is the output:

[10]
[Hello world]
Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be cast to
java.lang.Integer at BoxPrinterTest2.main(Main.java:22)

In the line

Integer intValue2 = (Integer) value2.getValue();

by mistake you performed a downcast from Object to Integer instead of Object to String. There is no way for the
compiler to detect the mistake that you are trying to convert the value from String to Integer. What you remember as
value is of Object type, and the only way to check the correct type before doing the downcast is to check for the type
using the instanceof operator. In this case, you can do an instanceof check for String and make sure that the cast
is done correctly. In general, however, when you don’t know the type of object stored in BoxPrinter, you can never
perform an instanceof check in the code to do a downcast! This is the reason why the old Java container classes
(which used the Object class for storing elements) are not type-safe.

Chapter 6 ■ GeneriCs and ColleCtions

152

Container Implementation Using Generics
Listing 6-4 contains a generic version of the BoxPrinter class you saw in the preceding section.

Listing 6-4. BoxPrinterTest3.java

// This program shows container implementation using generics
class BoxPrinter<T> {
 private T val;
 public BoxPrinter(T arg) {
 val = arg;
 }
 public String toString() {
 return "[" + val + "]";
 }
}

class BoxPrinterTest3 {
 public static void main(String []args) {
 BoxPrinter<Integer> value1 = new BoxPrinter<Integer>(new Integer(10));
 System.out.println(value1);

 BoxPrinter<String> value2 = new BoxPrinter<String>("Hello world");
 System.out.println(value2);
 }
}

It prints the following:

[10]
[Hello world]

There are many things you need to note here.

1. See the declaration of BoxPrinter:

class BoxPrinter<T>

You gave the BoxPrinter class a type placeholder <T>—the type name T within angle brackets “<” and “>”
following the class name. You can use this type name inside the class to indicate that it is a placeholder for the actual
type to be provided later. (Note that you’ve given an unusually short identifier name of T to indicate the type name:
this is intentional, and you’ll see the naming conventions for generic types a bit later in this chapter.)

2. Inside the class you first use T in field declaration:

private T val;

You are declaring val of the generic type—the actual type will be specified later when you use BoxPrinter.
In main(), you declare a variable an Integer like this:

BoxPrinter<Integer> value1

Chapter 6 ■ GeneriCs and ColleCtions

153

Here, you are specifying that T is of type Integer—identifier T (a placeholder) is replaced with the type Integer. So,
the val inside BoxPrinter becomes Integer because T gets replaced with Integer.

3. Now, here is another place where you use T:

public BoxPrinter(T arg) {
 val = arg;
}

Similar to the declaration of val with type T, you are saying that the argument for BoxPrinter constructor is of
type T. Later in the main() method, when the constructor is called in new, you specify that T is of type Integer:

new BoxPrinter<Integer>(new Integer(10));

Now, inside the BoxPrinter constructor, arg and val should be of same type since both are of type T. For example,
if you change the constructor as follows:

new BoxPrinter<String>(new Integer(10));

the BoxPrinter is of type String, and the argument passed is of type Integer, so you’ll get a compiler error for type
mismatch in using the generics (which is good because you’ll find the problem earlier).

Now, let’s add the getValue() method to return the value contained in the BoxPrinter class. Listing 6-5 contains
the enhanced version.

Listing 6-5. BoxPrinterTest4.java

// This program demonstrates the type-safety feature of generics
class BoxPrinter<T> {
 private T val;
 public BoxPrinter(T arg) {
 val = arg;
 }
 public String toString() {
 return "[" + val + "]";
 }
 public T getValue() {
 return val;
 }
}

class BoxPrinterTest4 {
 public static void main(String []args) {
 BoxPrinter<Integer> value1 = new BoxPrinter<Integer>(new Integer(10));
 System.out.println(value1);
 Integer intValue1 = value1.getValue();

 BoxPrinter<String> value2 = new BoxPrinter<String>("Hello world");
 System.out.println(value2);
 // OOPs! by mistake, we did put String in an Integer
 Integer intValue2 = value2.getValue();
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

154

This is the line where you made a mistake and tried to put a String in an Integer:

Integer intValue2 = value2.getValue();

And you get the following compiler error:

BoxPrinterTest.java:23: incompatible types
found : java.lang.String
required: java.lang.Integer
 Integer intValue2 = value2.getValue();

That’s good, isn’t it? Instead of a ClassCastException in the case of using an Object class in BoxPrinter, you got
a compiler error (incompatible types). Now, you can fix this error and the program will work correctly.

 Generics offer generic implementation with type safety.

On the basis of this simple introduction, let’s learn more about generics using a few examples.

Creating Generic Classes
Let’s create a Pair generic class that can hold objects of two different types, T1 and T2 (see Listing 6-6). Don’t worry
too much about how useful this is for real-world problem solving; just try to understand how to write generics
of your own.

Listing 6-6. PairTest.java

// It demonstrates the usage of generics in defining classes
class Pair<T1, T2> {
 T1 object1;
 T2 object2;
 Pair(T1 one, T2 two) {
 object1 = one;
 object2 = two;
 }
 public T1 getFirst() {
 return object1;
 }
 public T2 getSecond() {
 return object2;
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

155

class PairTest {
 public static void main(String []args) {
 Pair<Integer, String> worldCup = new Pair<Integer, String>(2010, "South Africa");
 System.out.println("World cup " + worldCup.getFirst() +
 " in " + worldCup.getSecond());
 }
}

This program prints the following:

World cup 2010 in South Africa

Here T1 and T2 are type holders. You give these type placeholders inside angle brackets: <T1, T2>. When using
the Pair class, you must specify which specific types you are going to use in place of T1 and T2. For example, you use
Integer and String for Pair, as in Pair<Integer, String> in the main() method. Now, think of the Pair class as if it
has this body:

// how Pair<Integer, String> can be treated internally
class Pair {
 Integer object1;
 String object2;
 Pair(Integer one, String two) {
 object1 = one;
 object2 = two;
 }
 public Integer getFirst() {
 return object1;
 }
 public String getSecond() {
 return object2;
 }
}

In other words, try manually doing a find-and-replace for the type placeholders and replace them with actual
types in the code. This will help you understand how generics actually work. With this, you can understand how the
getFirst() and getSecond() methods return Integer and String values in the main() method.

In the statement

Pair<Integer, String> worldCup = new Pair<Integer, String>(2010, "South Africa");

note that the types match exactly. If you try

Pair<Integer, String> worldCup = new Pair<String, String>(2010, "South Africa");

you’ll get the following compiler error:

TestPair.java:20: cannot find symbol
symbol : constructor Pair(int,java.lang.String)
location: class Pair<java.lang.String,java.lang.String>

Chapter 6 ■ GeneriCs and ColleCtions

156

Now, how about trying this statement?

Pair<Integer, String> worldCup = new Pair<Number, String>(2010, "South Africa");

You’ll get another compiler error because of the type mismatch in the declared type of worldCup and the type
given in the initialization expression:

TestPair.java:20: incompatible types
found : Pair<java.lang.Number,java.lang.String>
required: Pair<java.lang.Integer,java.lang.String>

Now modify the generic Pair class. Pair<T1, T2> stores objects of type T1 and T2. How about a generic pair class
that takes a type T and stores two objects of that type T? Obviously, one way to do that is to instantiate Pair<T1, T2>
with same type, say Pair<String, String>, but it is not a good solution. Why? There is no way to ensure that you are
instantiating the Pair with same types! Listing 6-7 is a modified version of Pair—let’s call it PairOfT—that takes ones
type placeholder T.

Listing 6-7. PairOfT.java

// This program shows how to use generics in your programs

class PairOfT<T> {
 T object1;
 T object2;
 PairOfT(T one, T two) {
 object1 = one;
 object2 = two;
 }
 public T getFirst() {
 return object1;
 }
 public T getSecond() {
 return object2;
 }
}

Now, will this statement work?

PairOfT<Integer, String> worldCup = new PairOfT<Integer, String>(2010, "South Africa");

No, because PairOfT takes one type parameter and you have given two type parameters here. So, you’ll get a
compiler error. So, how about this statement?

PairOfT<String> worldCup = new PairOfT<String>(2010, "South Africa");

No, you still get a compiler error:

TestPair.java:20: cannot find symbol
symbol : constructor PairOfT(int,java.lang.String)
location: class PairOfT<java.lang.String>
 PairOfT<String> worldCup = new PairOfT<String>(2010, "South Africa");

Chapter 6 ■ GeneriCs and ColleCtions

157

The reason is that 2010—when boxed—is an Integer and you should give a String as argument. How about this
statement?

PairOfT<String> worldCup = new PairOfT<String>("2010", "South Africa");

Yes, it compiles and will work fine.

Diamond Syntax
In the previous section, we discussed how to create generic type instances, as in the following statement:

Pair<Integer, String> worldCup = new Pair<Integer, String>(2010, "South Africa");

We also discussed how a compiler error will result if these types don’t match, as in the following statement, which
will not compile:

Pair<Integer, String> worldCup = new Pair<String, String>(2010, "South Africa");

See how tedious it is to ensure that you provide same type parameters in both the declaration type
(Pair<Integer, String> in this case) and the new object creation expression (new Pair<String, String>()
in this case)?

To simplify your life, Java 7 has introduced the diamond syntax, in which the type parameters may be omitted:
you can just leave it to the compiler to infer the types from the type declaration. So, the declaration can be
simplified as

Pair<Integer, String> worldCup = new Pair<>(2010, "South Africa");

To make it clear, Listing 6-8 contains the full program making use of this diamond syntax.

Listing 6-8. Pair.java

// This program shows the usage of the diamond syntax while using generics
class Pair<T1, T2> {
 T1 object1;
 T2 object2;
 Pair(T1 one, T2 two) {
 object1 = one;
 object2 = two;
 }
 public T1 getFirst() {
 return object1;
 }
 public T2 getSecond() {
 return object2;
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

158

class TestPair {
 public static void main(String []args) {
 Pair<Integer, String> worldCup = new Pair<>(2010, "South Africa");
 System.out.println("World cup " + worldCup.getFirst() +
 " in " + worldCup.getSecond());
 }
}

This program will compile cleanly and print the following statement:

World cup 2010 in South Africa

Note that it is a common mistake to forget the diamond operator < > in the initialization expression, as in

Pair<Integer, String> worldCup = new Pair (2010, "South Africa");

Figure 6-2 shows the compiler warning when you forget to use the diamond syntax. Since Pair is a generic type
and you forgot to use the < > or provide the type parameters explicitly, the compiler treats it as a raw type with Pair
taking two Object type parameters. Though this behavior did not cause any problem in this particular code segment,
it is dangerous and can cause bugs, as the next section shows.

Interoperability of Raw Types and Generic Types
A generic type can be used without specifying its associated type; in that case, the type is referred to as raw type. For
instance, List<T> should be used along with an associated type (i.e., List<String>); however, it can be used without
specifying the accompanied type (i.e., List). In the latter case, the List is referred to as raw type.

When you use a raw type, you lose the advantage of type safety afforded by generics. For instance, the type Vector
in Listing 6-1 is a raw type. At the time of compilation, the compiler generates a warning, as shown in Figure 6-1.
Raw types bypass the type checking at compile time; however, they might throw runtime exceptions (for instance,
ClassCastException). Therefore, it is not recommended to use raw types in new code.

Figure 6-2. Compiler warning when you forget to use diamond syntax

Chapter 6 ■ GeneriCs and ColleCtions

159

Okay, now you understand that you should not use raw types. But, you may ask, why does the compiler itself
deny such type declarations? The answer is backward compatibility. Java generics were introduced in Java SDK 5.
Java supports raw types in order to make the generics-based code compatible with legacy code. However, it is strongly
recommended that you should not use raw types going forward.

Why? What will happen if you use raw types along with generics? Let’s use both types in Listing 6-9 and examine
the effect.

Listing 6-9. RawTest.java

//This program demonstrates usage of raw types along with generics
class RawTest{
 public static void main(String []args) {
 List list = new LinkedList();
 list.add("First");
 list.add("Second");
 List<String> strList = list; //#1
 for(Iterator<String> itemItr = strList.iterator(); itemItr.hasNext();)
 System.out.println("Item : " + itemItr.next());

 List<String> strList2 = new LinkedList<>();
 strList2.add("First");
 strList2.add("Second");
 List list2 = strList2; //#2
 for(Iterator<String> itemItr = list2.iterator(); itemItr.hasNext();)
 System.out.println("Item : " + itemItr.next());
 }
}

What you expect from the above program? Do you think it will compile/execute properly? Well, yes—it will
compile (with warnings) and execute without any problem. It prints the following:

Item : First
Item : Second
Item : First
Item : Second

Listing 6-10 introduces a couple of changes; observe the output.

Listing 6-10. RawTest2.java

// This program demonstrates usage of raw types along with generics
class RawTest{
 public static void main(String []args) {
 List list = new LinkedList();
 list.add("First");
 list.add("Second");
 List<String> strList = list;
 strList.add(10); //#1: generates compiler error
 for(Iterator<String> itemItr = strList.iterator(); itemItr.hasNext();)
 System.out.println("Item : " + itemItr.next());

Chapter 6 ■ GeneriCs and ColleCtions

160

 List<String> strList2 = new LinkedList<>();
 strList2.add("First");
 strList2.add("Second");
 List list2 = strList2;
 list2.add(10); //#2: compiles fine, results in runtime exception
 for(Iterator<String> itemItr = list2.iterator(); itemItr.hasNext();)
 System.out.println("Item : " + itemItr.next());
 }
}

In the above example, you added two statements. The first statement is as follows:

strList.add(10); //#1: generates compiler error

You are trying to add an integer item in a List<String> type list, so you get a compile-time error. As discussed
earlier, this type checking at the compiler level is good, as without it in a runtime exception might have resulted later
on. Here is the second statement you added:

list2.add(10); //#2: compiles fine, results in runtime exception

Here, the list2 linked-list (raw type) is initialized with a generic type List<String>. After the initialization,
you added an integer in the list raw type. This is allowed since list2 is a raw type. However, it will result in a
ClassCastException.

What can you learn from these two examples? The lesson is to avoid mixing raw types and generic types in your
programs, since it might result in erroneous behavior at runtime. If you need to use both in a program, make sure you
add a single type of items in the containers and retrieve using the same type.

 avoid mixing raw types with generic types.

Generic Methods
Similarly to generic classes, you can create generic methods—that is, methods that take generic parameter types.
Generic methods are useful for writing methods that are applicable to a wide range of types while the functionality
remains the same. For example, there are numerous generic methods in the java.util.Collections class.

Let’s implement a simple method named fill(). Given a container, the fill() method fills all the container
elements with value val. Listing 6-11 contains the implementation of the fill() method in the Utilities class.

Listing 6-11. Utilities.java

// This program demonstrates generic methods
class Utilities {
 public static <T> void fill(List<T> list, T val) {
 for(int i = 0; i < list.size(); i++)
 list.set(i, val);
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

161

class UtilitiesTest {
 public static void main(String []args) {
 List<Integer> intList = new ArrayList<Integer>();
 intList.add(10);
 intList.add(20);
 System.out.println("The original list is: " + intList);
 Utilities.fill(intList, 100);
 System.out.println("The list after calling Utilities.fill() is: " + intList);
 }
}

It prints the following:

The original list is: [10, 20]
The list after calling Utilities.fill() is: [100, 100]

Let’s look step-by-step at this code:

1. You create a method named fill() in the Utilities class with this declaration:

public static <T> void fill(List<T> list, T val)

You declare the generic type parameter T in this method. After the qualifiers public and static, you put <T> and
then followed it by return type, method name, and its parameters. This declaration is different from generic
classes—you give the generic type parameters after the class name in generic classes.

2. In the body, you write the code as if it’s a normal method.

for(int i = 0; i < list.size(); i++)
 list.set(i, val);

You loop over the list from 0 until it’s sized and set each of the elements to value val in each iteration. You use

the set() method in List, which takes the index position in the container as the first argument and the actual value
to be set as the second argument.

3. In the main() method in the UtilitiesTest class, this is how you call the fill() method:

Utilities.fill(intList, 100);

Note that you didn’t give the generic type parameter value explicitly. Since intList is of type Integer and 100 is
boxed to type Integer, the compiler inferred that the type T in the fill() method is of type Integer.

 it is a common mistake to import List from java.awt instead of java.util. Your program may not
compile (or it may produce warnings) if you are not using the correct import. remember, List from
java.util is a generic type while List from java.awt is not.

Chapter 6 ■ GeneriCs and ColleCtions

162

We’ve discussed the static generic methods. How about non-static generic methods? Hmm, well, there is almost
no difference when it comes to non-static methods. Obviously, you need to create an instance of the class in which the
non-static method is defined in order to use the non-static method.

Generics and Subtyping
Here is a pop quiz.

Question: Only one of the following assignments is correct and compiles without errors. Which one is it?
 (Note: List is an abstract class, ArrayList extends List; similarly, Number is an abstract class and Integer
extends Number).

1. List<Integer> intList = new List<Integer>();

2. List<Integer> intList = new ArrayList<Integer>();

3. List<Number> intList = new ArrayList<Integer>();

4. List<Integer> intList = new ArrayList<Number>();

Answer: Only the second assignment will compile without errors.
Why? Let's discuss each of the options.

1. You are trying to assign intList of List<Integer> type to an object of type
List<Integer>. But List is an abstract class. You cannot instantiate an abstract class, so
you get a compiler error.

2. You are trying to assign intList of List<Integer> type with an object of type
ArrayList<Integer>. Since ArrayList extends List, this is valid assignment and you
don't get a compiler error.

3. You are trying to assign intList of List<Number> type with an object of type
ArrayList<Integer>. ArrayList extends List—that is okay—but the generic parameter
should be of the same type in the declaration as well as the initialization. So, you'll get a
compiler error (type mismatch).

4. Same reason as in option 3.

You can assign a derived type object to its base type reference; this is what you mean by subtyping. However, for
generics, the type parameters should match exactly—otherwise you’ll get a compiler error. In other words, subtyping
does not work for generic parameters. Yes, this is a difficult rule to remember, so let’s discuss in more detail why
subtyping doesn’t work for generic type parameters.

 For class types, subtyping works. You can assign a derived type object to its base type reference.
For generic type parameters, however, subtyping does not work. You cannot assign a derived generic
type parameter to a base type parameter.

Chapter 6 ■ GeneriCs and ColleCtions

163

Why doesn’t subtyping work for generic type parameters? Let’s look at what can go wrong if you assume that you
can use subtyping for generic type parameters.

// illegal code – assume that the following intialization is allowed
List<Number> intList = new ArrayList<Integer>();
intList.add(new Integer(10)); // okay
intList.add(new Float(10.0f)); // oops!

The intList of List<Number> type is supposed to hold an ArrayList<Number> object. However, you are
storing an ArrayList<Integer>. This looks reasonable since List extends ArrayList and Integer extends Number.
However, you can end up inserting a Float value in the intList! Recall that the dynamic type of intList is the
ArrayList<Integer> type—so you are violating type safety here (and thus will get the compiler error of incompatible
types). Since generics are designed to avoid type-safety mistakes like this, you cannot assign a derived generic type
parameter to a base type parameter.

As you can see, subtyping for generic parameter types is not allowed because it is unsafe—but still it is an
inconvenient limitation. Fortunately, Java supports wildcard parameter types in which you can use subtyping.
We’ll explore that capability now.

 type parameters for generics have a limitation: generic type parameters should match exactly for
 assignments. to overcome this subtyping problem, you can use wildcard types.

Wildcard Parameters
You saw in the preceding section that subtyping doesn’t work for generic type parameters. So,

List<Number> intList = new ArrayList<Integer>();

gives the compiler error of

WildCardUse.java:6: incompatible types
found : java.util.ArrayList<java.lang.Integer>
required: java.util.List<java.lang.Number>
 List<Number> numList = new ArrayList<Integer>();

If you slightly change the statement to use wildcard parameter, it will compile

List<?> wildCardList = new ArrayList<Integer>();

What does a wildcard mean? Just like the wildcard you use for substituting for any card in a card game (ah, it’s so
fun to play card games!), you can use a wildcard to indicate that it can match for any type. With List<?>, you mean
that it is a List of any type—in other words, you can say it is a “list of unknowns!”

But wait a minute . . . when you want a type indicating “any type,” you use the Object class, don’t you? How about
the same statement, but using the Object type parameter?

List<Object> numList = new ArrayList<Integer>();

Chapter 6 ■ GeneriCs and ColleCtions

164

No luck—you get the same error you got above using List<Number>!

WildCardUse.java:6: incompatible types
found : java.util.ArrayList<java.lang.Integer>
required: java.util.List<java.lang.Object>
 List<Object> numList = new ArrayList<Integer>();

In other words, you are still trying to use subtyping for generic parameters—and it still doesn’t work. As you can
see, List<Object> is not same as List<?>. In fact, List<?> is a supertype of any List type, which means you can pass
List<Integer>, or List<String>, or even List<Object> where List<?> is expected.

Let’s use the wildcard in an example and see whether it’ll work (see Listing 6-12).

Listing 6-12. WildCardUse.java

// This program demonstrates the usage of wild card parameters
class WildCardUse {
 static void printList(List<?> list){
 for(Object l:list)
 System.out.println("[" + l + "]");
 }

 public static void main(String []args) {
 List<Integer> list = new ArrayList<>();
 list.add(10);
 list.add(100);
 printList(list);
 List<String> strList = new ArrayList<>();
 strList.add("10");
 strList.add("100");
 printList(strList);
 }
}

This program prints the following:

[10]
[100]
[10]
[100]

Well, it works, and the list using wildcard can be passed list of integers as well as list of strings. This happens
because of the parameter type of printList() method—List<?>. That’s great!

Limitations of Wildcards
Let’s consider the following snippet, which tries to add an element and print the list:

List<?> wildCardList = new ArrayList<Integer>();
wildCardList.add(new Integer(10));
System.out.println(wildCardList);

Chapter 6 ■ GeneriCs and ColleCtions

165

You get the following compiler error:

WildCardUse.java:7: cannot find symbol
symbol : method add(java.lang.Integer)
location: interface java.util.List<capture#145 of ? extends java.lang.Number>
 wildCardList.add(new Integer(10));

Why? You are absolutely sure that the add() method exists in the List interface. Then why doesn’t the compiler
find the method?

The problem requires some detailed explanation. When you use wildcard type <?>, you say to the compiler that
you are ignoring the type information, so <?> stands for unknown type. Every time you try to pass arguments to a
generic type, the java compiler tries to infer the type of the passed argument as well as the type of the generics and
to justify the type safety. Now, you are trying to use the add() method to insert an element in the list. Since
wildCardList doesn’t know which type of objects it holds, it is risky to add elements to it. You might end up
adding a string—“hello”, for example—instead of an integer value. To avoid this problem (remember, generics was
introduced in the language to ensure type safety!), the compiler doesn’t allow you to call methods that modify the
object. Since the add method modifies the object, you get an error! The error message also looks confusing, as in
<capture#145 of ? extends java.lang.Number>.

 in general, when you use wildcard parameters, you cannot call methods that modify the object. if you try
to modify, the compiler will give you confusing error messages. however, you can call methods that
access the object.

Bounded Wildcards
Here is a quick recap on wildcards to understand why you need bounded wildcards. You get a compiler error when
you try generic types differing in their parameter types, as in

// compiler error:
List<Number> numList = new ArrayList<Integer>();

You use wildcard types to avoid this compiler error:

// now works:
List<?> numList = new ArrayList<Integer>();

Assume you want to be able to store only the list of numbers in the numList. However, you might end up storing a
list of any type with wildcards, as in

List<?> numList = new ArrayList<Integer>();
numList = new ArrayList<String>();

Yes, it compiles without any errors. How do you restrict numList to refer to only to Number and its derived classes
like Integer, Double, etc.? You do it by using bounded wildcards, like so:

List<? extends Number> numList = new ArrayList<Integer>();
numList = new ArrayList<String>();

Chapter 6 ■ GeneriCs and ColleCtions

166

You get the following compiler error:

BoundedWildCardUse.java:7: incompatible types
found : java.util.ArrayList<java.lang.String>
required: java.util.List<? extends java.lang.Number>
 numList = new ArrayList<String>();

How about this code?

List<? extends Number> numList = new ArrayList<Integer>();
numList = new ArrayList<Double>();

Yes, it compiles fine! What is going on here? In List<? extends Number>, the wildcard (?) is bounded
with extends Number. This means that any type you substitute for wildcard (?) should satisfy the condition
extends Number. For example, in ? extends Number, if you substitute ? with type Integer, you get
Integer extends Number—which is logically true. So the compilation will succeed for such substitution. But, in
? extends Number, if you substitute ? with type String, you get String extends Number, which is logically false
(remember that String is not a Number). So, you get a compiler error. In other words, you limit or bound the wildcard
so that the substituted type must be of the extend Number class.

You can use bounded wildcards in method arguments, return types, etc. Here’s a simple method that uses
bounded wildcards:

public static Double sum(List<? extends Number> numList) {
 Double result = 0.0;
 for(Number num : numList) {
 result += num.doubleValue();
 }
 return result;
}

Here is a step-by-step description of this method:

1. The method sum() is meant for taking a list of Numbers and returning the sum of the
elements in that list.

2. Since the List is to be limited (bounded) by Number, you declare List as List<? Extends
Number>.

3. Since you don’t know the exact type of the list elements (Integer, Double, etc.), you want
to use double as the return type for sum. Since primitive types like int and double are
implicitly boxed/unboxed when used with collections, you declare the return type as
Double, which is more convenient than using the primitive type double.

4. Coming to the body of the method, since the sum of elements is going to be a Double
value, you declare the result variable Double and initialize it with zero.

5. In the for-each loop, you use Number as the loop type. Since the wildcard is bounded by
Number, you know that (no matter which List object is actually passed as argument) the
element type is going to be a Number.

6. You get the double value from the Number type using the doubleValue method.

7. You return the sum of the elements once you are done.

Chapter 6 ■ GeneriCs and ColleCtions

167

Listing 6-13 contains the main() method to test the sum() method.

Listing 6-13. BoundedWildCardUse.java

// This program demonstrates the usage of bounded wild cards

import java.util.*;

class BoundedWildCardUse {
 public static Double sum(List<? extends Number> numList) {
 Double result = 0.0;
 for(Number num : numList) {
 result += num.doubleValue();
 }
 return result;
 }

 public static void main(String []args) {
 List<Integer> intList = new ArrayList<Integer>();
 List<Double> doubleList = new ArrayList<Double>();

 for(int i = 0; i < 5; i++) {
 intList.add(i);
 doubleList.add((double) (i * i));
 }
 System.out.println("The intList is: " + intList);
 System.out.println("The sum of elements in intList is: " + sum(intList));

 System.out.println("The doubleList is: " + doubleList);
 System.out.println("The sum of elements in doubleList is: " + sum(doubleList));
 }
}

It prints the following:

The intList is: [0, 1, 2, 3, 4]
The sum of elements in intList is: 10.0
The doubleList is: [0.0, 1.0, 4.0, 9.0, 16.0]
The sum of elements in doubleList is: 30.0

Let’s go over the code step-by-step:

1. You create two ArrayLists, one of type Integer and another of type Double.

2. In a for loop, you insert five elements each into the lists. For intList, you insert the
values 0 to 4. For doubleList, you insert the square of the values 0 to 4 (0 to 16). Since the
doubleList expects the value to be double values, to make it explicit, you use an explicit
cast—((double) (i * i)); if you want, you can remove that explicit cast.

3. You print the contents of the intList and doubleList and also print the sum of elements
by calling the sum() method you wrote; from the output you can see that the sum() method
worked correctly for both types Integer and Double.

Chapter 6 ■ GeneriCs and ColleCtions

168

Similarly to using the extends keyword with wildcards, as in <? extends Number>, you can use the super
keyword, as in <? super Integer>. The expression <? super X> means that you can use any super type (class or
interface) including the type X. For instance, the following code snippet compiles well. You may observe that
<? super Integer> does not only mean super types of Integer; this expression allows Integer, too.

List<? super Integer> intList = new ArrayList<Integer>();
System.out.println("The intList is: " + intList);

in the bounded wildcard, <? extends X>, X may be a class or an interface (note that even for interfaces
you use the extends keyword). the valid substitution for ? is not just any of its derived classes and
interfaces; you can substitute ? for X itself! this is also applicable with <? super X> expressions.

Wildcards in the Collections Class
The collections framework uses wildcards extensively. To understand some more features of bounded wildcards and
how wildcards are used in practice, here are some examples from the Collections class.

The first example is the nCopies method:

static <T> List<T> nCopies(int num, T obj)

The nCopies method returns a read-only List of num elements with value obj. Here is an example:

System.out.println("List of 5 elements filled with values 10: " + Collections.nCopies(5, 10));

It prints the following:

List of 5 elements filled with values 10: [10, 10, 10, 10, 10]

The next example is the reverse method:

static void reverse(List<?> list);

The reverse() method reverses the order of elements in the passed list. You can pass elements of any type; the
Collections class just uses the wildcard <?> for the List type.

Here’s another example:

static <T> void fill(List<? super T> list, T obj)

This method fills the whole of the list with values obj. Here you use <? super T>. Why? Here is an example:

List<Object> objList = new ArrayList<Object>();
objList.add(new Object());
objList.add(new Object());

Collections.fill(objList, "hello");
System.out.println("The objList is: " + objList);

Chapter 6 ■ GeneriCs and ColleCtions

169

It prints the following:

The objList is: [hello, hello]

Here, you create a List<Object> that points to an ArrayList<Object>. You create two dummy Objects and insert
objList. Then you fill the objList with the String “hello” and it works. As you can see, for the fill() method you
can pass a base type List as the first argument.

And for now the final (and rather tough) example: the copy() method. Its declaration:

static <T> void copy(List<? super T> dest, List<? extends T> src);

The copy() method copies all the elements from src List to dest List. Here is an example to understand why
dest is <? super T> and src is <? extends T>:

List<? extends Number> intList = Collections.nCopies(5, new Integer(10));
List<Object> objList = new ArrayList<Object>();
for(int i = 0; i < 5; i++) {
 objList.add(new Object());
}

Collections.copy(objList, intList);
System.out.println("The objList is: " + objList);

It prints the following:

The objList is: [10, 10, 10, 10, 10]

Here is a step-by-step description of what’s happening in this code:

1. You first create a list intList of type List<? extends Number>. You initialize it with a List
filled with five instances of Integer object with value 10 (i.e. new Integer(10);). This is
the source List type you are going to use for the Collections.copy method.

2. You create another list objList of type List<Object> and initialize it with an
ArrayList<Object>. You initialize objList with five dummy Object instances. You are
going to use this List as the target for Collections.copy. Why didn’t you use the nCopies
method just like what you did for intList? Because the List returned by nCopies is a
read-only list and if you use that List as a target for the copy() method, you’ll get an
UnsupportedOperationException.

3. You use objList as the destination (target) and intList as the source for the
Collections.copy method. Now, the type T inferred is Number. As you can see, the src is
of type <? extends T> (i.e., for intList); when you substitute Integer as in <Integer
extends Number>, the compilation succeeds. Similarly, the dest is of type <? extends T>
(i.e., for objList); when you substitute Object as in <Object super Number>, the
compilation succeeds.

4. You print the copied integer values in objList.

Chapter 6 ■ GeneriCs and ColleCtions

170

 When you use (or want to use) <T>, <?>, <? extends T>, or <? super T> with a specific type,
substitute the T with the actual type and visualize how the replaced type would look. this is the
easiest way to understand the correct usage of generics with wildcards in collection classes.

Points to Remember
Here are some pointers that might prove valuable in your OCPJP 7 exam:

It’s possible to define or declare generic methods in an interface or a class even if the class or •	
the interface itself is not generic.

A generic class used without type arguments is known as a •	 raw type. Of course, raw
types are not type safe. Java supports raw types so that it is possible to use the generic
type in code that is older than Java 5 (note that generics were introduced in Java 5).
The compiler generates a warning when you use raw types in your code. You may use
@SuppressWarnings({ "unchecked" }) to suppress the warning associated with raw types.

•	 List<?> is a supertype of any List type, which means you can pass List<Integer>, or
List<String>, or even List<Object> where List<?> is expected.

Implementation of generics is static in nature, which means that the Java compiler interprets •	
the generics specified in the source code and replaces the generic code with concrete types.
This is referred to as type erasure. After compilation, the code looks similar to what a developer
would have written with concrete types. Essentially, the use of generics offers two advantages:
first, it introduces an abstraction, which enables you to write generic implementation; second,
it allows you to write generic implementation with type safety.

There are many limitations of generic types due to type erasure. A few important ones are as •	
follows:

You cannot instantiate a generic type using new operator. For example, assuming mem is •	
a field, the following statement will result in a compiler error:

T mem = new T(); // wrong usage - compiler error

You cannot instantiate an array of a generic type. For example, assuming mem is a field, •	
the following statement will result in a compiler error:

T[] amem = new T[100]; // wrong usage - compiler error

You can declare non-static fields of type T, but not of static fields of type T. For example,•	

class X<T> {
 T instanceMem; // okay
 static T statMem; // wrong usage - compiler error
}

Chapter 6 ■ GeneriCs and ColleCtions

171

It is not possible to have generic exception classes; as a result, the following will not •	
compile:

class GenericException<T> extends Throwable { } // wrong usage - compiler error

You cannot instantiate a generic type with primitive types—in other words, •	 List<int>
cannot be instantiated. However, you can use boxed primitive types.

The meaning of "extends" and "super" changes in the context of generics. For instance, •	
when you say <? extends X>, you refer to all types that extend X and the type X itself.

The Collections Framework
In the first part of the chapter, we discussed generics in detail. The main use of generics is to be able to write reusable
(and type-safe) data structures and algorithms. The Java library has a collections framework that makes extensive use
of generics and provides a set of containers and algorithms.

In this section, we will focus on how to use the collections framework. To use collections correctly, you must
understand certain related topics. To use collections like HashSet, you must override the hashCode() and equals()
methods correctly. To compare objects and store them in collections, you must learn how to use Comparator,
Comparable, etc. Since the collections framework uses generics extensively, you’ll revisit some of the topics related to
generics in the context of the collections framework to gain a better understanding of generics.

Why Reusable Classes?
Assume that you want to write a simple program to get the extension number of a colleague in your company. For
that, you have to keep a list of your colleague’s names and their extension numbers. In this simple directory you will
rarely add or delete entries, but you will frequently look up entries—so the lookup should be very fast.

To implement this simple directory, you must implement a class that maps the name (a string) and an extension
number (an integer or a string). You must implement methods like adding and deleting entries, looking up extension
numbers given the name, etc. Additionally, you can implement methods like getting all the colleagues names, all
extension numbers, etc. Implementing a class with all these features—and implementing them correctly and testing
these features—takes a lot of time.

Fortunately, Java has data structures like this already implemented in the java.util package. You can just (re)
use java.util.HashMap to implement your simple directory. You’ll see examples of implementations like this later,
but it’s important to know that you can just use the data structures readily available in the Java library rather than
implementing them yourself.

Basic Components of the Collections Framework
The Java collections framework has three main components:

•	 Abstract classes and interfaces: The collections framework has many abstract classes
and interfaces providing general functionality. By learning them, you’ll know the offered
functionality in terms of public methods.

•	 Concrete classes: These are the actual instances of containers that you’ll be using in the
programs.

•	 Algorithms: The java.util.Collections implements commonly require functionality like
sorting, searching, etc. These methods are generic: you can use these methods on different
containers.

Chapter 6 ■ GeneriCs and ColleCtions

172

 plese note that collection(s) is a generic term, while Collection and Collections are the specific apis
of the java.util package. Collections—as in java.util.Collections—is a utility class that contains
only static methods. the general term collection(s) refers to a container like map, stack, queue, etc. We’ll
use the term container(s) when referring to these collection(s) in this chapter to avoid confusion.

Abstract Classes and Interfaces
The type hierarchy in the java.util library consists of numerous abstract classes and interfaces that provide generic
functionality. Table 6-1 and Figure 6-3 list and display a few important types in this hierarchy. We’ll cover some of
these types in more detail in later sections of this chapter.

Table 6-1. Important Abstract Classes and Interfaces in the Collections Framework

Abstract Class/Interface Short Description

Iterable A class implementing this interface can be used for iterating with a for each
statement.

Collection Common base interface for classes in the collection hierarchy. When you want
to write methods that are very general, you can pass the Collection interface.
For example, max() method in java.util.Collections takes a Collection and
returns an object.

List Base interface for containers that store a sequence of elements. You can access the
elements using an index, and retrieve the same element later (so that it maintains
the insertion order). You can store duplicate elements in a List.

Set, SortedSet,
NavigableSet
Queue, Deque

Interfaces for containers that don’t allow duplicate elements. SortedSet maintains
the set elements in a sorted order. NavigableSet allows searching the set for the
closest matches.

Queue is a base interface for containers that holds a sequence of elements for
processing. For example, the classes implementing Queue can be LIFO (last in,
first out— as in stack data structure) or FIFO (first in, first out—as in queue data
structure). In a Deque you can insert or remove elements from both the ends.

Map, SortedMap, NavigableMap Base class for containers that map keys to values. In SortedMap, the keys are in a
sorted order. A NavigableMap allows you to search and return the closest match
for given search criteria. Note that Map hierarchy does not extend the Collection
interface.

Iterator, ListIterator You can traverse over the container in the forward direction if a class implements
the Iterator interface. You can traverse in both forward and reverse directions if a
class implements the ListIterator interface.

Chapter 6 ■ GeneriCs and ColleCtions

173

Those are quite a few base types, but don’t get overwhelmed by them. You’ll see specific concrete classes and use
some of these base types. We’ll only cover the Collection interface and then move on to cover concrete classes by
covering each part in this collection hierarchy.

The Collection Interface

The Collection interface provides methods such as add() and remove() that are common to all containers. Table 6-2
lists the most important methods in this interface. Take a look at them before you use them.

Iterable Iterator

SortedMap

NavigableMap

NavigableSet

DequeSortedSet

ListlteratorCollection

List Set Queue

Map

Figure 6-3. Important high-level java.util interfaces and their inheritance relationships

Table 6-2. Important Methods in the Collection Interface

Method Short description

boolean add(Element elem) Adds elem into the underlying container.

void clear() Removes all elements from the container.

boolean isEmpty() Checks whether the container has any elements or not.

Iterator<Element> iterator() Returns an Iterator<Element> object for iterating over the container.

boolean remove(Object obj) Removes the element if obj is present in the container.

int size() Returns the number of elements in the container.

Object[] toArray() Returns an array that has all elements in the container.

Methods such as add() and remove() can fail depending on the underlying container. For example, if the
container is read-only, you will not be able to add or remove elements. Apart from these methods, there are many
methods in the Collection interface that apply to multiple elements in the container (Table 6-3).

Chapter 6 ■ GeneriCs and ColleCtions

174

Concrete Classes
Numerous interfaces and abstract classes in the Collection hierarchy provide the common methods that specific
concrete classes implement/extend. The concrete classes provide the actual functionality, and you’ll have to learn
only a handful of them to be properly prepared for the OCPJP 7 exam. Table 6-4 summarizes the features of the classes
you should know.

Table 6-3. Methods in the Collection Interface That Apply to Multiple Elements

Method Short Description

boolean addAll(Collection<? extends
Element> coll)

Adds all the elements in coll into the underlying container.

boolean containsAll(Collection<?> coll) Checks if all elements given in coll are present in the underlying
container.

boolean removeAll(Collection<?> coll) Removes all elements from the underlying container that are
also present in coll.

boolean retainAll(Collection<?> coll) Retains elements in the underlying container only if they are also
present in coll; it removes all other elements.

Table 6-4. Important Concrete Classes in Collection Framework

Concrete Class Short Description

ArrayList Internally implemented as a resizable array. This is one of the most widely used concrete
classes. Fast to search, but slow to insert or delete. Allows duplicates.

LinkedList Internally implements a doubly-linked list data structure. Fast to insert or delete elements,
but slow for searching elements. Additionally, LinkedList can be used when you need a stack
(LIFO) or queue (FIFO) data structure. Allows duplicates.

HashSet Internally implemented as a hash-table data structure. Used for storing a set of elements—it
does not allow storing duplicate elements. Fast for searching and retrieving elements. It does
not maintain any order for stored elements.

TreeSet Internally implements a red-black tree data structure. Like HashSet, TreeSet does not allow
storing duplicates. However, unlike HashSet, it stores the elements in a sorted order. It uses a
tree data structure to decide where to store or search the elements, and the position is decided
by the sorting order.

HashMap Internally implemented as a hash-table data structure. Stores key and value pairs. Uses
hashing for finding a place to search or store a pair. Searching or inserting is very fast. It does
not store the elements in any order.

TreeMap Internally implemented using a red-black tree data structure. Unlike HashMap, TreeMap stores
the elements in a sorted order. It uses a tree data structure to decide where to store or search
for keys, and the position is decided by the sorting order.

PriorityQueue Internally implemented using heap data structure. A PriorityQueue is for retrieving elements
based on priority. Irrespective of the order in which you insert, when you remove the
elements, the highest priority element will be retrieved first.

Chapter 6 ■ GeneriCs and ColleCtions

175

 there are many old java.util classes (now known as legacy collection types) that were superceded by
new collection classes. some of them are (with newer types in parentheses): Enumeration (Iterator),
Vector (ArrayList), Dictionary (Map), and Hashtable (HashMap). in addition, Stack and Properties are
legacy classes that do not have direct replacements.

The Iterator Interface

Let’s discuss Iterator first since we will be using Iterator to illustrate other concrete classes. The Iterator interface
is a simple interface with only three methods: hasNext(), next(), and remove() (see Table 6-5).

Table 6-5. Methods in the Iterator Interface

Method Short Description

boolean hasNext() Checks if the iterator has more elements to traverse.

E next() Moves the iterator to the next element and returns that (next) element.

void remove() Removes the last visited element from the underlying container. next() should have been
called before calling remove(); otherwise it will throw an IllegalStateException.

List Classes

Lists are used for storing a sequence of elements. You can insert an element of the container in a specific position
using an index, and retrieve the same element later (i.e., it maintains the insertion order). You can store duplicate
elements in a list. There are two concrete classes that you need to know: ArrayList and LinkedList.

ArrayList Class
ArrayList implements a resizable array. When you create a native array (say, new String[10];), the size of the
array is known (fixed) at the time of creation. However, ArrayList is a dynamic array: it can grow in size as required.
Internally, an ArrayList allocates a block of memory and grows it as required. So, accessing array elements is very
fast in an ArrayList. However, when you add or remove elements, internally the rest of the elements are copied; so
addition/deletion of elements is a costly operation.

Here’s a simple example to visit elements in an ArrayList. You take an ArrayList and use the for-each
construct for traversing a collection:

ArrayList<String> languageList = new ArrayList<>();
languageList.add("C");
languageList.add("C++");
languageList.add("Java");
for(String language : languageList) {
 System.out.println(language);
}

It prints the following:

C
C++
Java

Chapter 6 ■ GeneriCs and ColleCtions

176

This for-each is equivalent to the following code, which explicitly uses an Iterator:

for(Iterator<String> languageIter = languageList.iterator(); languageIter.hasNext();) {
 String language = languageIter.next();
 System.out.println(language);
}

This code segment will also print the same output as the previous for-each loop code. Here is a step-by-step
description of how this for loop works:

1. You use the iterator() method to get the iterator for that container. Since languageList
is an ArrayList of type <String>, you should create Iterator with String. Name it
languageIter.

2. Before entering the loop, you check if there are any elements to visit. You call the
hasNext() method for checking that. If it returns true, there are more elements to visit; if it
returns false, the iteration is over and you exit the loop.

3. Once you enter the body of the loop, the first thing you have to do is call next() and move
the iterator. The next() method returns the iterated value. You capture that return value in
the language variable.

4. You print the language value, and then the loop continues.

This iteration idiom—the way you call iterator(), hasNext(), and next() methods—is important to learn; we’ll
be using either the for-each loop or this idiom extensively in our examples.

Note that you create ArrayList<String> and Iterator<String> instead of just using ArrayList or Iterator
(i.e., you provide type information along with these classes). The Collection classes are generic classes; therefore you
need to specify the type parameters to use them. Here you are storing/iterating a list of strings, so you use <String>.

You can remove elements while traversing a container using iterators. Let’s create an object of
ArrayList<Integer> type with ten elements. You’ll iterate over the elements and remove all of them (instead of using
the removeAll() method in ArrayList). Listing 6-14 shows the code. Will it work?

Listing 6-14. TestIterator.java

// This program shows the usage of Iterator

import java.util.*;

class TestIterator {
 public static void main(String []args) {
 ArrayList<Integer> nums = new ArrayList<Integer>();
 for(int i = 1; i < 10; i++)
 nums.add(i);
 System.out.println("Original list " + nums);
 Iterator<Integer> numsIter = nums.iterator();
 while(numsIter.hasNext()) {
 numsIter.remove();
 }
 System.out.println("List after removing all elements" + nums);
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

177

It prints the following:

Original list [1, 2, 3, 4, 5, 6, 7, 8, 9]
Exception in thread "main" java.lang.IllegalStateException
 at java.util.AbstractList$Itr.remove(AbstractList.java:356)
 at TestIterator.main(Main.java:12)

Oops! What happened? The problem is that you haven’t called next() before calling remove(). Checking
hasNext() in the while loop condition, moving to the element using next(), and calling remove() is the
correct idiom for removing an element. If you don’t follow it correctly, you can get into trouble (i.e., you’ll get
IllegalStateException). Similarly, if you call remove() twice without sandwiching a next() between the statements,
you’ll get this exception.

Let’s fix this program by calling next() before calling remove(). Here is the relevant part of the code:

Iterator<Integer> numsIter = nums.iterator();
while(numsIter.hasNext()) {
 numsIter.next();
 numsIter.remove();
}
System.out.println("List after removing all elements " + nums);

It prints the list with no elements, as expected:

List after removing all elements []

 remember that next() needs to be called before calling remove() in an Iterator; otherwise, you’ll get
an IllegalStateException. similarly, calling remove() in subsequent statements without calling next()
between these statements will also result in this exception. Basically, any modifications to the underlying
container while an iterator is traversing through the container will result in this exception.

The ListIterator Interface
You should understand ListIterator first before you look at LinkedList. The ListIterator interface extends the
Iterator interface, so it inherits the methods hasNext(), next(), and remove(). Additionally, ListIterator has
many other methods (see Table 6-6). Using these methods, you can traverse in the reverse direction, get the previous
or next index position, and set or add new elements to the underlying container.

Table 6-6. Methods in the ListIterator Interface (in Addition to Iterator Methods)

Method Short Description

boolean hasPrevious() Checks if the iterator has more elements to traverse in reverse direction.

Element previous() Moves the iterator to the next element and returns that (next) element in reverse direction.

int nextIndex() Returns the index of the next element in the iteration in forward direction.

int previousIndex() Returns the index of the next element in the iteration in reverse direction.

void set(Element) Sets the last element visited (using next or previous); it replaces the existing element.

void add(Element) Adds the element into the list at the current iteration position.

Chapter 6 ■ GeneriCs and ColleCtions

178

The LinkedList Class
The LinkedList class internally uses a doubly-linked list. So, insertion and deletion is very fast in LinkedList.
However, accessing an element entails traversing the nodes one-by-one, so it is slow. When you want to add or
remove elements frequently in a list of elements, it is better to use a LinkedList. You’ll see an example of LinkedList
together with the ListIterator interface.

A palindrome is a word or phrase that reads the same forward and backward. A palindrome string “abcba” reads
the same in both directions. Given a string, how can you determine whether the string is a palindrome or not?

Well, you can determine whether an input string is a palindrome or not by storing the input string in a String
and using the charAt() method in a for loop to compare characters (one from the start and another from the end).
To show you how to use ListIterator and LinkedList, see Listing 6-15 for a contrived solution that does the
same thing.

Listing 6-15. ListIterator.java

// This program demonstrates the usage of ListIterator

import java.util.*;

class ListIteratorTest {
 public static void main(String []args) {
 String palStr = "abcba";
 List<Character> palindrome = new LinkedList<Character>();

 for(char ch : palStr.toCharArray())
 palindrome.add(ch);

 System.out.println("Input string is: " + palStr);
 ListIterator<Character> iterator = palindrome.listIterator();
 ListIterator<Character> revIterator = palindrome.listIterator (palindrome.size());

 boolean result = true;
 while(revIterator.hasPrevious() && iterator.hasNext()) {
 if(iterator.next() != revIterator.previous()){
 result = false;
 break;
 }
 }
 if (result)
 System.out.print("Input string is a palindrome");
 else
 System.out.print("Input string is not a palindrome");
 }
 }

It prints the following:

Input string is: abcba
Input string is a palindrome

Chapter 6 ■ GeneriCs and ColleCtions

179

In this program, you use a LinkedList of Characters to store each character in the input string. Why
LinkedList<Character> instead of LinkedList<char>? The container classes store references to objects, so you
cannot use primitive types with any of the collection classes. Since you have wrapper classes and auto-boxing, it is not
a big problem—that is why you use Character instead of char here.

Also note how you assign LinkedList<Character> to List<Character>. Since the LinkedList class implements
the List interface, you can do this assignment. Using Collection interfaces instead of concrete class types for holding
references is a good programming practice, since—if you want to change LinkedList to an ArrayList in future—the
change is very easy if you use the List interface for reference. Now back to the program.

The method toCharArray() in String returns a char[], and you use a for each loop to traverse each character
in that array. As the loop executes, you put the characters into the linked list. Now how do you traverse the linked list
in both directions?

You can use the methods hasNext() and next() to traverse the forward and methods of hasPrevious() and
previous() in ListIterator for moving in the reverse direction. How do you get the ListIterator from the
LinkedList? You have a method listIterator() and listIterator(index) in the List interface. Since you want
to traverse the LinkedList in both directions, you use both listIterator() and listIterator(index) methods.
In the first case, you get the iterator referring to beginning of the container; in another case, you pass the length of
the string as an argument to the listIterator method to get the reverse iterator. Once you get both the iterators, it is
straightforward to use hasNext() and next() on the first iterator and the hasPrevious() and previous() methods
on the second iterator.

The Set Interface

Set, as we studied in our math classes in high school, contains no duplicates. Unlike List, a Set doesn’t remember
where you inserted the element (i.e., it doesn’t remember the insertion order).

There are two important concrete classes for Set: HashSet and TreeSet. A HashSet is for quickly inserting and
retrieving elements; it does not maintain any sorting order for the elements it holds. A TreeSet stores the elements in
a sorted order (and it implements the SortedSet interface).

The HashSet Class
Given a sentence, how can you remove repeated words in that sentence? Set does not allow duplicates, and HashSet
can be used for quick insertion and search. So you can use a HashSet for solving this problem (see Listing 6-16).

Listing 6-16. RemoveDuplicates.java

// This program demonstrates the usage of HashSet class

import java.util.*;

class RemoveDuplicates {
 public static void main(String []args) {
 String tongueTwister = "I feel, a feel, a funny feel, a funny feel I feel,
 if you feel the feel I feel, I feel the feel you feel";
 Set<String> words = new HashSet<>();

 // split the sentence into words and try putting them in the set
 for(String word : tongueTwister.split("\\W+"))
 words.add(word);

Chapter 6 ■ GeneriCs and ColleCtions

180

 System.out.println("The tongue twister is: " + tongueTwister);
 System.out.print("The words used were: ");
 System.out.println(words);
 }
}

It prints the following:

The tongue twister is: I feel, a feel, a funny feel, a funny feel I feel, if you
feel the feel I feel, I feel the feel you feel
The words used were: [feel, if, a, funny, you, the, I]

In this example, the tongue twister sentence has only two word separators—comma and white space. You split
the string using these separators by using the split() method. The split() method takes a regular expression as an
argument (regular expressions are covered in Chapter 7). The regular expression \\W+ means it is for splitting on word
boundaries. So, the string is separated into words, ignoring the punctuation marks like commas.

You try to insert each word into the set. If the word already exists, the add() method fails and returns false (you
are not storing this return value). Once you insert all elements in the HashSet, you print them one by one and find that
the tongue twister with 25 words used only 7 words!

The TreeSet Class
Given a sentence, how can you sort the letters used in that sentence into alphabetical order? A TreeSet puts the values
in a sorted order, so you can use a TreeSet container for solving this problem (see Listing 6-17).

Listing 6-17. TreeSetTest.java

// This program demonstrates the usage of TreeSet class

import java.util.*;

class TreeSetTest {
 public static void main(String []args) {
 String pangram = "the quick brown fox jumps over the lazy dog";
 Set<Character> aToZee = new TreeSet<Character>();
 for(char gram : pangram.toCharArray())
 aToZee.add(gram);
 System.out.println("The pangram is: " + pangram);
 System.out.print("Sorted pangram characters are: " + aToZee);
 }
}

It prints the following:

The pangram is: the quick brown fox jumps over the lazy dog
Sorted pangram characters are: [, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v,
w, x, y, z]

A pangram is a sentence that uses all letters in the alphabet at least once. You want to store characters of a
pangram in the set. Since you need to use reference types for containers, you’ve created a TreeSet of Characters.

Chapter 6 ■ GeneriCs and ColleCtions

181

Now, how to get the characters from a String? Remember that array indexing doesn’t work for Strings. For
example, to get the first character "t", if you use pangram[0] in the program, you’ll get a compiler error. Fortunately,
String has a method called toCharArray() that returns a char[]. So, you use this method for traversing over the
string and get all the characters. As you add the characters into the TreeSet, the characters are stored in a sorted
order. So, you get all the lowercase letters when you print the set.

Note in the output that there is one leading comma. Why? The pangram string has many whitespace characters.
One whitespace also gets stored in the set, so it also gets printed!

The Map Interface

A Map stores key and value pairs. The Map interface does not extend the Collection interface. However, there are
methods in the Map interface that you can use to get classes in the Collection to work around this problem. Also, the
method names in Map are very similar to the methods in Collection, so it is easy to understand and use Map. There are
two important concrete classes of Map that we’ll cover: HashMap and TreeMap.

A HashMap uses a hash table data structure internally. In HashMap, searching (or looking up elements) is a fast
operation. However, HashMap neither remembers the order in which you inserted elements nor keeps elements in any
sorted order.

A TreeMap uses a red-black tree data structure internally. Unlike HashMap, TreeMap keeps the elements in sorted
order (i.e., sorted by its keys). So, searching or inserting is somewhat slower than the HashMap.

The HashMap Class
Assume that you are implementing a simple spell checker. Given an input string, the spell checker looks for words that
are usually misspelled; if there is a match, it prints the correct spelling. So, the spell checker should maintain a list of
frequently misspelled words and their correct spellings. How can you implement this?

Given a key, you can look out for a value using a Map. Now, which map to use, HashMap or a TreeMap? There is no
need (though you are able) to keep the misspelled words in sorted order, and the lookup for misspelled words should
be very fast. So, HashMap is suitable for solving this problem.

Listing 6-18 is a simple program showing how to implement a spell checker.

Listing 6-18. SpellChecker.java

// This program shows the usage of HashMap class
public class SpellChecker {
 public static void main(String []args) {
 Map<String, String> misspeltWords = new HashMap<String, String>();
 misspeltWords.put("calender", "calendar");
 misspeltWords.put("tomatos", "tomatoes");
 misspeltWords.put("existance", "existence");
 misspeltWords.put("aquaintance", "acquaintance");
 String sentence = "Buy a calender for the year 2013";
 System.out.println("The given sentence is: " + sentence);
 for(String word : sentence.split("\\W+")) {
 if(misspeltWords.containsKey(word)) {
 System.out.println("The correct spelling for " + word
 + " is: " + misspeltWords.get(word));
 }
 }
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

182

It prints the following:

The given sentence is: Buy a calender for the year 2013
The correct spelling for calender is: calendar

First, you need to create a table of misspelled words and their correct spellings. Since both key and value are
Strings, you create a HashMap<String, String> object. You insert four misspelled words and their correct spellings
in the HashMap. The misspelled word is the key and the correct spelling is the value. You use the put() method
(instead of the add() method you use in Container) for inserting a pair (a key and its value) into the Map.

You use the simple approach of separating the words in a sentence—you use String’s split() method. For each
word, you check if the word is an exact match for the misspelled word; if so, you print the value matching that key.
You use the containsKey() method for checking if the key exists in the map; it returns a Boolean value. You use the
get() method to return the value from the map given the key as argument. Since the given sentence has one word
misspelled (“calender”), you print the correct spelling for that word.

Now, let’s look at the keys in the misspeltWords HashMap. You can get all the keys in the HashMap using the
keySet() method. Since you have HashMap<String, String>, the returned set is of type Set<String>.

Set<String> keys = misspeltWords.keySet();
System.out.print("Misspelt words in spellchecker are: ");
System.out.println(keys);

It prints the following:

Mispelled words in spellcheker are: [calender, existance, aquaintance, tomatos]

Similarly, you can use valueSet() method to get the values available in the map.

Overriding the hashCode() Method
Overriding the equals and hashCode methods correctly is important for using the classes with containers
(particularly, HashMap and HashSet). Listing 6-19 is a simple Circle class example so you can understand what
can go wrong.

Listing 6-19. TestCircle.java

// This program shows the importance of equals() and hashCode() methods

import java.util.*;

class Circle {
 private int xPos, yPos, radius;
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }

 public boolean equals(Object arg) {
 if(arg == null) return false;
 if(this == arg) return true;
 if(arg instanceof Circle) {
 Circle that = (Circle) arg;

Chapter 6 ■ GeneriCs and ColleCtions

183

 if((this.xPos == that.xPos) && (this.yPos == that.yPos)
 && (this.radius == that.radius)) {
 return true;
 }
 }
 return false;
 }
}

class TestCircle {
 public static void main(String []args) {
 Set<Circle> circleList = new HashSet<Circle>();
 circleList.add(new Circle(10, 20, 5));
 System.out.println(circleList.contains(new Circle(10, 20, 5)));
 }
}

It prints false (not true)! Why? The Circle class overrides the equals() method, but it doesn’t override the
hashCode() method. When you use objects of Circle in standard containers, it becomes a problem. For fast lookup,
the containers compare hashcode of the objects. If the hashCode() method is not overridden, then—even if an
object with same contents is passed—the container will not find that object! So you need to override the
hashCode() method.

Okay, how do you override the hashCode() method? In the ideal case, the hashCode() method should return
unique hash codes for different objects.

The hashCode() method should return the same hash value if the equals() method returns true. What if
the objects are different (so that the equals() method returns false)? It is better (although not required) for the
hashCode() to return different values if the objects are different. The reason is that it is difficult to write a hashCode()
method that gives unique value for every different object.

 the methods hashCode() and equals() need to be consistent for a class. For practical purposes, ensure
that you follow this one rule: the hashCode() method should return the same hash value for two objects
if the equals() method returns true for them.

When implementing the hashCode() method, you can use the values of the instance members of the class to
create a hash value. Here is a simple implementation of the hashCode() method of the Circle class:

public int hashCode() {
 // use bit-manipuation operators such as ^ to generate close to unique hash codes
 // here we are using the magic numbers 7, 11 and 53, but you can use any numbers,
preferably primes return (7 * xPos) ^ (11 * yPos) ^ (53 * yPos);
}

Now if you run the main() method, it prints “true”. In this implementation of the hashCode() method, you
multiply the values by a prime number as well as bit-wise operation. You can write complex code for hashCode()
if you want a better hashing function, but this implementation is sufficient for practical purposes.

Chapter 6 ■ GeneriCs and ColleCtions

184

You can use bitwise operators for int values. What about other types, like floating-point values or reference
types? To give you an example, here is hashCode() implementation of java.awt.Point2D, which has floating point
values x and y. The methods getX() and getY() return the x and y values respectively:

public int hashCode() {
 long bits = java.lang.Double.doubleToLongBits(getX());
 bits ^= java.lang.Double.doubleToLongBits(getY()) * 31;
 return (((int) bits) ^ ((int) (bits >> 32)));
}

This method uses the doubleToLongBits() method, which takes a double value and returns a long value.
For floating-point values x and y (returned by the getX and getY methods), you get long values in bits and you use
bit-manipulation to get hashCode().

Now, how do you implement the hashCode method if the class has reference type members? For example,
consider using an instance of Point class as a member instead of xPos and yPos, which are primitive type fields:

class Circle {
 private int radius;
 private Point center;
 // other members...
}

In this case, you can use call the hashCode() method of Point to implement Circle’s hashCode method:

public int hashCode() {
 return center.hashCode() ^ radius;
}

 if you’re using an object in containers like HashSet or HashMap, make sure you override the hashCode()
and equals() methods correctly. if you don’t, you’ll get nasty surprises (bugs) while using these
 containers!

The NavigableMap Interface
The NavigableMap interface extends the SortedMap interface. In the Collection hierarchy, the TreeMap class is the
widely used class that implements NavigableMap. As the name indicates, with NavigableMap, you can navigate the Map
easily. It has many methods that make Map navigation easy. You can get the nearest value matching the given key, all
values less than the given key, all values greater than the given key, etc. Let’s look at an example: Lennon, McCartney,
Harrison, and Starr have taken an online exam. In that exam, the maximum they can score is 100, with a passing score
of 40. If you want to find details such as who passed the exam, and sort the exam scores in ascending or descending
order, NavigableMap is very convenient (see Listing 6-20).

Chapter 6 ■ GeneriCs and ColleCtions

185

Listing 6-20. NavigableMapTest.java

// This program demonstrates the usage of navigable tree interface and TreeMap class

import java.util.*;

public class NavigableMapTest {
 public static void main(String []args) {
 NavigableMap<Integer, String> examScores = new TreeMap<Integer, String>();

 examScores.put(90, "Sophia");
 examScores.put(20, "Isabella");
 examScores.put(10, "Emma");
 examScores.put(50, "Olivea");

 System.out.println("The data in the map is: " + examScores);
 System.out.println("The data descending order is: " + examScores.descendingMap());
 System.out.println("Details of those who passed the exam: " +
 examScores.tailMap(40));
 System.out.println("The lowest mark is: " + examScores.firstEntry());
 }
}

It prints the following:

The data in the map is: {10=Emma, 20=Isabella, 50=Olivea, 90=Sophia}
The data descending order is: {90=Sophia, 50=Olivea, 20=Isabella, 10=Emma}
Details of those who passed the exam: {50=Olivea, 90=Sophia}
The lowest mark is: 10=Emma

In this program, you have a NavigableMap<Integer, String> that maps the exam score and the name of the
person. You create a TreeMap<String, String> to actually store the exam scores. By default, a TreeMap stores data in
ascending order. If you want the data in descending order, it’s easy: you just have to use the descendingMap() method
(or descendingKeySet() if you are only interested in the keys).

Given the passing score is 40, you might want to get the map with data of those who failed in the exam. For that,
you can use the headMap() method with the key value 40 (since the data is in ascending order, you want to get the
“head” part of the map from the given position). Similarly, to get the data of those who passed the exam, you can use
the tailMap() method.

If you want the immediate ones above and below the passing score, you can use the higherEntry() and
lowerEntry() methods, respectively. The firstEntry() and lastEntry() methods give the entries with lowest and
highest key values. So, when you use the firstEntry() method on examScores, you get Emma with 10 marks. If you
use lastEntry(), you get Sophia, who has score 90.

The Queue Interface

A Queue follows FIFO mechanism: the first inserted element will be removed first. For getting a queue behavior,
you can create a LinkedList object and refer it through a Queue reference. When you call the methods from
Queue reference, the object behaves like a Queue. Listing 6-21 shows an example and it will become clear. Lennon,
McCartney, Harrison, and Starr are taking an online exam. Let’s see how you can remember the sequence in which
they logged in to take the exam (see Listing 6-21).

Chapter 6 ■ GeneriCs and ColleCtions

186

Listing 6-21. QueueTest.java

// This program shows the key characteristics of Queue interface

import java.util.*;

class QueueTest {
 public static void main(String []args) {
 Queue<String> loginSequence = new LinkedList<String>();

 loginSequence.add("Harrison");
 loginSequence.add("McCartney");
 loginSequence.add("Starr");
 loginSequence.add("Lennon");
 System.out.println("The login sequence is: " + loginSequence);
 while(!loginSequence.isEmpty())
 System.out.println("Removing " + loginSequence.remove());
 }
}

This prints the following:

The login sequence is: [Harrison, McCartney, Starr, Lennon]
Removing Harrison
Removing McCartney
Removing Starr
Removing Lennon

In this example, you create a Queue<String> to point it to a LinkedList<String> object. Then you add four
elements (names in the sequence in which they logged in) to the queue. After the elements are inserted, you print the
queue by (implicitly) calling the toString() method on loginSequence. You call the remove() method to remove
one element of the queue. The remove() method removes an element from the head of the queue and returns the
extracted element. You got the same sequence as output as you inserted in the queue.

The Deque Interface

Deque (Doubly ended queue) is a data structure that allows you to insert and remove elements from both the ends.
The Deque interface was introduced in Java 6 in java.util.collection package. The Deque interface extends the
Queue interface just discussed. Hence, all methods provided by Queue are also available in the Deque interface. Let’s
examine the commonly used methods of the Deque interface, summarized in Table 6-7.

Chapter 6 ■ GeneriCs and ColleCtions

187

Table 6-7. Commonly Used Methods in the Deque Interface

Method Short Description

void addFirst(Element) Adds the Element to the front of the Deque.

void addLast(Element) Adds the Element to the last of the Deque.

Element removeFirst() Removes an element from the front of the Deque and returns it.

Element removeLast() Removes an element from the last of the Deque and returns it.

Element getFirst() Returns the first element from the Deque, does not remove.

Element getLast() Returns the last element from the Deque, does not remove.

Table 6-8. Commonly Used Methods in the Deque Interface (Returns Special Value)

Method Short Description

boolean offerFirst(Element) Adds the Element to the front of the Deque if it is not violating capacity constraint.

boolean offerLast(Element) Adds the Element to the end of the Deque if it is not violating capacity constraint.

Element pollFirst() Removes an element from the front of the Deque and returns it; if the Deque is
empty, it returns null.

Element pollLast() Removes an element from the end of the Deque and returns it; if the Deque is
empty, it returns null.

Element peekFirst() Returns the first element from the Deque but does not remove it; returns null
if Deque is empty.

Element peekLast() Returns the last element from the Deque but does not remove it; returns null
if Deque is empty.

All methods listed in Table 6-7 raise appropriate exceptions if they fail. There is another set of methods, listed in
Table 6-8, that achieves the same functionality. However, they do not raise exception on failure; instead they return a
special value. For instance, the method getFirst() returns the first element from the Deque but does not remove it.
If the Deque is empty, it raises the exception, NoSuchElementException. At the same time, the peekFirst() method
also carry out the same functionality. However, it returns null if the Deque is empty. When the Deque is created with
predefined capacity, the methods listed in Table 6-8 are preferred over the methods listed in Table 6-7.

 You just observed that the methods in table 6-8 return null if they fail. What if you are storing null as an
element? Well, it is not recommended that you store null as an argument, since there are methods in the
Deque interface that return null, and it would be difficult for you to distinguish between the success or
failure of the method call.

There are three concrete implementations of the Deque interface: LinkedList, ArrayDeque, and
LinkedBlockingDeque. Let’s use ArrayDeque to understand the features of the Deque interface.

Chapter 6 ■ GeneriCs and ColleCtions

188

It is evident from the list of methods supported by Deque that it is possible to realize the standard behavior of a
queue, stack, and deque. Let’s implement a special queue (say, to pay utility bill) where a customer can be added only
at the end of the queue and can be removed either at the front of the queue (when the customer paid the bill) or from
the end of the queue (when the customer gets frustrated from the long line and leaves the queue himself). Listing 6-22
shows how to do this.

Listing 6-22. SplQueueTest.java

// This program shows the usage of Deque interface

import java.util.*;

class SplQueue {
 private Deque<String> splQ = new ArrayDeque<>();
 void addInQueue(String customer){
 splQ.addLast(customer);
 }
 void removeFront(){
 splQ.removeFirst();
 }
 void removeBack(){
 splQ.removeLast();
 }
 void printQueue(){
 System.out.println("Special queue contains: " + splQ);
 }
}

class SplQueueTest {
 public static void main(String []args) {
 SplQueue splQ = new SplQueue();
 splQ.addInQueue("Harrison");
 splQ.addInQueue("McCartney");
 splQ.addInQueue("Starr");
 splQ.addInQueue("Lennon");

 splQ.printQueue();
 splQ.removeFront();
 splQ.removeBack();
 splQ.printQueue();
 }
}

It prints the following:

Special queue contains: [Harrison, McCartney, Starr, Lennon]
Special queue contains: [McCartney, Starr]

You first define a class—SplQueue—that defines a container splQ of type ArrayDeque with basic four operations.
The method addInQueue() adds a customer at the end of the queue, the method removeBack() removes a customer
from the end of the queue, the method removeFront() removes a customer from the front of the queue, and the
method printQueue() simply prints all elements of the queue. You simply use the addLast(), removeFront(),

Chapter 6 ■ GeneriCs and ColleCtions

189

and removeLast() methods from the Deque interface to realize the methods of the SplQueue class. In your main()
method, you instantiate the SplQueue and called the addInQueue() method of the SplQueue class. After it, you remove
one customer from the front and one from the end, and print the contents of the queue before and after this removal.
Well, it is working as you expected.

Comparable and Comparator Interfaces
As their names suggest, Comparable and Comparator interfaces are used to compare similar objects (for example,
while performing searching or sorting). Assume that you have a container containing a list of Person object.
Now, how you compare two Person objects? There are any number of comparable attributes, such as SSN, name,
driving-license number, and so on. Two objects can be compared on SSN as well as person’s name; this depends
on the context. Hence, the criterion to compare the Person objects cannot be predefined; a developer has to define
this criterion. Java defines Comparable and Comparator interfaces to achieve the same.

The Comparable class has only one method compareTo(), which is declared as follows:

int compareTo(Element that)

Since you are implementing the compareTo() method in a class, you have this reference available. You can
compare the current element with the passed Element and return an int value. What should the int value be?
Well, here are the rules for returning the integer value:

return 1 if current object > passed object
return 0 if current object == passed object
return -1 if current object < passed object

Now, an important question: what does >, < or == mean for an Element? Hmm, it is left to you to decide how to
compare two objects! But the meaning of comparison should be a natural one; in other words, the comparison should
mean natural ordering. For example, you saw how Integers are compared with each other, based on a numeric order,
which is the natural order for Integer types. Similarly, you compare Strings using lexicographic comparison, which is
the natural order for Strings. For user-defined classes, you need to find the natural order in which you can compare
the objects. For example, for a Student class, StudentId might be the natural order for comparing Student objects.
Listing 6-23 implements a simple Student class now.

Listing 6-23. ComparatorTest.java

// This program shows the usage of Comparable interface

import java.util.*;

class Student implements Comparable<Student> {
 String id;
 String name;
 Double cgpa;
 public Student(String studentId, String studentName, double studentCGPA) {
 id = studentId;
 name = studentName;
 cgpa = studentCGPA;
 }
 public String toString() {
 return " \n " + id + " \t " + name + " \t " + cgpa;
 }

Chapter 6 ■ GeneriCs and ColleCtions

190

 public int compareTo(Student that) {
 return this.id.compareTo(that.id);
 }
}

class ComparatorTest {
 public static void main(String []args) {
 Student []students = { new Student("cs011", "Lennon ", 3.1),
 new Student("cs021", "McCartney", 3.4),
 new Student("cs012", "Harrison ", 2.7),
 new Student("cs022", "Starr ", 3.7) };

 System.out.println("Before sorting by student ID");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));

 Arrays.sort(students);

 System.out.println("After sorting by student ID");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));
 }
}

It prints the following:

Before sorting by student ID
Student-ID Name CGPA (for 4.0)
[
 cs011 Lennon 3.1,
 cs021 McCartney 3.4,
 cs012 Harrison 2.7,
 cs022 Starr 3.7]
After sorting by student ID
Student-ID Name CGPA (for 4.0)
[
 cs011 Lennon 3.1,
 cs012 Harrison 2.7,
 cs021 McCartney 3.4,
 cs022 Starr 3.7]

You have implemented the Comparable<Student> interface. When you call the sort() method, it calls the
compareTo() method to compare Student objects by their IDs. Since Student IDs are unique, it is a natural
comparison order that works well.

Now, you may need to arrange students based on the cumulative grade point average (CGPA) they got. You
may even need to compare Students based on their names. If you need to implement two or more alternative ways to
compare two similar objects, then you may implement the Comparator class. Listing 6-24 is an implementation (there
is no change in the Student class, so we are not producing it here again).

Chapter 6 ■ GeneriCs and ColleCtions

191

Listing 6-24. ComparatorTest2.java

// This program shows the implementation of Comparator interface

import java.util.*;

class CGPAComparator implements Comparator<Student> {
 public int compare(Student s1, Student s2) {
 return (s1.cgpa.compareTo(s2.cgpa));
 }
}

class ComparatorTest {
 public static void main(String []args) {
 Student []students = { new Student("cs011", "Lennon ", 3.1),
 new Student("cs021", "McCartney", 3.4),
 new Student("cs012", "Harrison ", 2.7),
 new Student("cs022", "Starr ", 3.7) };

 System.out.println("Before sorting by CGPA ");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));

 Arrays.sort(students, new CGPAComparator());

 System.out.println("After sorting by CGPA");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));
 }
}

It prints the following:

Before sorting by CGPA
Student-ID Name CGPA (for 4.0)
[
 cs011 Lennon 3.1,
 cs021 McCartney 3.4,
 cs012 Harrison 2.7,
 cs022 Starr 3.7]
After sorting by CGPA
Student-ID Name CGPA (for 4.0)
[
 cs012 Harrison 2.7,
 cs011 Lennon 3.1,
 cs021 McCartney 3.4,
 cs022 Starr 3.7]

Yes, the program prints the Student data sorted by their CGPA. You didn’t change the Student class; the class
still implements the Comparable<String> interface and defines the compareTo() method, but you don’t use the
compareTo() method in your program. You create a separate class named CGPAComparator and implement the
Comparator<Student> interface. You define the compare() method, which takes two Student objects as arguments.

Chapter 6 ■ GeneriCs and ColleCtions

192

You compare the CGPA of the arguments s1 and s2 by (re)using the compareTo() method from the Double class.
You didn’t change anything in the main() method except for the way you call the sort() method. You create a
new CGPAComparator() object and pass as the second argument to the sort() method. By default sort() uses the
compareTo() method; since you are passing a Comparator object explicitly, it now uses the compare() method defined
in the CGPAComparator. So, the Student objects are now compared and sorted based on their CGPA.

You’ve learned quite a lot about the differences between the Comparable and Comparator interfaces, summarized
in Table 6-9.

Table 6-9. Differences between Implementing Comparable and Comparator Interfaces

Comparable Interface Comparator Interface

Used when the objects need to be compared in their
natural order.

Used when the objects need to be compared in custom
user-defined order (other than the natural order).

You do not create a separate class just to implement
the Comparable interface.

You create a separate class just to implement the Comparator
interface.

For a given class type, you have only that class (and
that class alone) implementing the Comparable
interface.

You can have many separate (i.e., independent) classes
implementing the Comparator interface, with each class
defining different ways to compare objects.

The method in the Comparable interface is declared
as int compareTo(ClassType type);.

The method in the Comparator interface is declared as
int compare(ClassType type1, ClassType type2);.

 Most classes have a natural order for comparing objects, so implement the Comparable interface for your
classes in those cases. if you want to compare the objects other than the natural order or if there is no
natural ordering present for your class type, then create separate classes implementing the Comparator
interface.

Algorithms (Collections Class)
You’ve seen two important components of the collections framework: abstract classes/interfaces and the concrete
class implementations. The collections framework also has a utility class named Collections (note the suffix “s” in
the class name). It provides algorithms that are useful for manipulating data structures provided in the collections
framework. You’ll see important methods like sort(), binarySearch(), reverse(), shuffle(), etc., in this short
section (check Table 6-10).

Chapter 6 ■ GeneriCs and ColleCtions

193

Assume that you are creating a playlist of your favorite Michael Jackson songs. There are many things that you
can do with a playlist: you can sort, shuffle, search, reverse, or replay songs. Let’s do all these in a PlayList program
(see Listing 6-25).

Listing 6-25. PlayList.java

// This program demonstrates some of the useful methods in Collections class

import java.util.*;

class PlayList {
 public static void main(String []args) {
 // let's create a list of some Michael Jackson's songs
 List<String> playList = new LinkedList<String>();
 playList.add("Rock With You - 1979");
 playList.add("Billie Jean - 1983");
 playList.add("Man In the Mirror - 1988");
 playList.add("Black Or White - 1991");

 System.out.println("The original playlist of MJ's songs");
 System.out.println(playList);

Table 6-10. Important Algorithms (Static Methods in the Collections Class)

Method Short Description

int binarySearch(List<? extends
Comparable<? super
T>> list, T key)

Looks for the key in List. If found, it returns a value >= 0;
otherwise it returns a negative value. It has an overloaded version
that also takes a Comparator object for comparing elements.

void copy(List<? super T> dest, List<?
extends T> src)

Copies all the elements from src List to dest List.

void fill(List<? super T> list, T obj) Fills the whole list with the value obj.

T max(Collection<? extends T> coll) Returns the max element in the list. It has an overloaded version
that also takes a Comparator object for comparing elements.

T min(Collection<? extends T> coll) Returns the min element in the list. It has an overloaded version
that also takes a Comparator object for comparing elements.

boolean replaceAll(List<T> list,
T oldVal, T newVal)

Replaces all occurrences of oldVal with newVal in list.

void reverse(List<?> list) Reverses all the elements in the given list.

void rotate(List<?> list, int distance) Rotates the list given by the value distance.

void shuffle(List<?> list) Shuffles elements in the list randomly.

void sort(List<T> list) Sorts the list in its natural order (i.e., by using the compareTo()
method). It has an overloaded version that also takes a
Comparator object for comparing elements.

void swap(List<?> list, int i, int j) Swaps the elements in the positions i and j in the list.

Chapter 6 ■ GeneriCs and ColleCtions

194

 System.out.println("\nThe reversed playlist");
 Collections.reverse(playList);
 System.out.println(playList);

 System.out.println("\nNow after shuffling the playlist");
 Collections.shuffle(playList);
 System.out.println(playList);

 System.out.println("\nSort the songs by their names ");
 Collections.sort(playList);
 System.out.println(playList);

 System.out.println("\nIs my most favourite song Black Or White - 1991
present in the list?");
 String backOrWhiteSong = "Black Or White - 1991";
 int index = Collections.binarySearch(playList, backOrWhiteSong);
 if(index >= 0)
 System.out.printf("Yes, its the %d song \n", (index + 1));
 else
 System.out.printf("No, its not there in the playlist \n");

 System.out.println("\nLet me forward by two songs (rotate the list) ");
 Collections.rotate(playList, 2);
 System.out.println(playList);
 }
}

It prints the following:

The original playlist of MJ's songs
[Rock With You - 1979, Billie Jean - 1983, Man In the Mirror - 1988, Black Or
White - 1991]

The reversed playlist
[Black Or White - 1991, Man In the Mirror - 1988, Billie Jean - 1983, Rock With
You - 1979]

Now after shuffling the playlist
[Black Or White - 1991, Man In the Mirror - 1988, Rock With You - 1979, Billie J
ean - 1983]

Sort the songs by their names
[Billie Jean - 1983, Black Or White - 1991, Man In the Mirror - 1988, Rock With
You - 1979]

Is my most favourite song Black Or White - 1991 present in the list?
Yes, its the 2 song

Let me forward by two songs (rotate the list)
[Man In the Mirror - 1988, Rock With You - 1979, Billie Jean - 1983, Black Or
White - 1991]

Chapter 6 ■ GeneriCs and ColleCtions

195

Just spend a couple of minutes looking at the output against the program and make sure you understand it.
Okay, let’s see what’s happening.

1. You create a LinkedList<String> with four MJ songs.

2. You print the contents of the list; it prints the songs in the order in which you inserted
them.

3. The Collections.reverse() method reverses the contents of the given List. So, you have
the songs in the reverse order.

4. Next, you shuffle the List using Collections.shuffle()—the songs are in different
positions now. You sort the songs by their names. Since the songs are Strings, the songs
are now sorted in alphabetical order.

5. You search for your favorite song in the playlist using the Collections.binarySearch()
method. This method takes two arguments, the List and the key you are searching for. If
the key is found, the int value will be >= 0 and that value is the index of the key in the List.
If it is negative, it means the value is not found. You found the song you searched for.

6. You rotate the sorted play list by two positions using the Collections.rotate() method.
It takes two arguments, the List and an int value, to tell how many positions you need to
move the values.

The Arrays Class
Similar to Collections, Arrays is also a utility class (i.e., the class has only static methods). Methods in Collections
are also very similar to methods in Arrays. The Collections class is for container classes; the Arrays class is for
native arrays (i.e., arrays with [] syntax).

Methods in the Arrays Class
Listing 6-26 is a trivial example to show why the Arrays class is very useful for working with native arrays. Can you tell
what this program prints?

Listing 6-26. PrintArray.java

// This code implements a simple integer array

class PrintArray {
 public static void main(String []args) {
 int [] intArray = {1, 2, 3, 4, 5};
 System.out.println("The array contents are: " + intArray);
 }
}

It prints the following:

The array contents are: [I@3e25a5

Chapter 6 ■ GeneriCs and ColleCtions

196

What went wrong? The println() implicitly calls the toString() method of the native int[] array. Native
arrays are not classes, though they inherit the Object class, so it is not possible to override methods like toString().
(Remember that overriding can be done only in classes.) In other words, intArray.toString() is called where the
toString() method is inherited from Object. So, how do you print the contents of a native array?

Fortunately, you have the Arrays utility class that has methods like toString(). Listing 6-27 is the correct
program for printing the contents of a native array.

Listing 6-27. PrintArray2.java

// This program demonstrates the usage of Arrays class

import java.util.*;

class PrintArray {
 public static void main(String []args) {
 int [] intArray = {1, 2, 3, 4, 5};
 System.out.println("The array contents are: " + Arrays.toString(intArray));
 }
}

Now the output is as expected:

The array contents are: [1, 2, 3, 4, 5]

Use the Arrays.toString() method to print the contents of the array instead of using Object’s toString()
method! As you can see, the methods in the Arrays class can be handy. Now, you’ll look at methods like sort(),
binarySearch(), etc. Table 6-11 lists important methods in the Arrays class.

Table 6-11. Important (Static) Methods in the Arrays Class

Method Description

List<T> asList(T . . . a) Creates a fixed-size List out of the given array.

int binarySearch(Object[] objArray,
Object key)

Search for key in objArray. Returns an int value >= (index of the key)
if found; otherwise it returns a negative value. Overloads available for
primitive types like int[], byte[], etc. Also, overload available for taking
a Comparator object.

boolean equals(Object[] objArray1,
Object[] objArray2)

Checks if the contents of objArray1 and objArray2 are equal. Overloads
available for primitive type arrays like int[], byte[], etc.

void fill(Object[] objArray, Object val) Fills the objArray with value val. Overloads available for primitive type
arrays like int[], byte[], etc.

void sort(Object[] objArray) Sorts the objArray based on the natural order (i.e., using the
compareTo() method). Overloads available for primitive type arrays like
int[], byte[], etc. Also an overload is available for taking a Comparator
object.

String toString(Object[] a) Returns the String representation of the given objArray. Overloads
available for primitive type arrays like int[], byte[], etc.

Chapter 6 ■ GeneriCs and ColleCtions

197

The Arrays.sort(Object []) calls the compareTo() method to compare the elements. So, the array elements
passed to sort must implement the Comparable interface. The sort method is overloaded for primitive types (like
byte[], int[] etc). For the elements, the sorting is done in ascending numeric order. Listing 6-28 calls the sort()
method on a String array and an int array.

Listing 6-28. CollectionsTest.java

// It demonstrates sorting on Arrays
class CollectionsTest {
 public static void main(String []args) {
 String [] strArr = { "21", "1", "111", "12", "123" };
 Arrays.sort(strArr);
 System.out.println(Arrays.toString(strArr));

 int [] intArr = { 21, 1, 111, 12, 123 };
 Arrays.sort(intArr);
 System.out.println(Arrays.toString(intArr));
 }
}

It prints the following:

[1, 111, 12, 123, 21]
[1, 12, 21, 111, 123]

The contents of the arrays look similar, but the output looks different. Why? This shows the difference in the
sort done for strings and primitive types. The String's compareTo() method does lexicographic comparison—the
string contents are compared character-by-character. This makes sense, for example, if you have strings like “john”,
“johannes”, “johann”, “johnny”, etc. However, for numbers, you need to compare values. For this reason, after “1”
comes “111” and then “12” and so on with Strings, but 1, 12, 21, and so on with integers.

 Be aware how the values are compared when using the sort() method. For example, numeric
 comparison is done for integers whereas lexicographic comparison is done for strings.

You’ve tried sorting. Now you’ll attempt searching values in an array. What does the program in
Listing 6-29 print?

Listing 6-29. BinarySearchTest.java

// This program shows the usage of binary search

import java.util.*;

class BinarySearchTest {
 public static void main(String []args) {
 String [] strArr = { "21", "22", "11", "12", "13" };
 System.out.println("The given strArr is: " + Arrays.toString(strArr));

Chapter 6 ■ GeneriCs and ColleCtions

198

 int index = Arrays.binarySearch(strArr, "22");
 System.out.println("The index value is: " + index);
 }
}

It prints the following:

The index value is: -6

What went wrong? The binarySearch method takes two arguments: the first is the array to be searched and the
second is the key value to be searched. If it succeeds, it returns the index of the key element in the array. If the key
value is not found, it returns a negative value. Now, the binarySearch() method expects that it is called on an already
sorted array. Here, you forgot to call sort() before doing binary search, so the method failed. Listing 6-30 shows the
improved code.

Listing 6-30. BinarySearchTest2.java

// This program shows the usage of binary search

import java.util.*;

class BinarySearchTest {
 public static void main(String []args) {
 String [] strArr = { "21", "22", "11", "12", "13" };
 System.out.println("The given strArr is: " + Arrays.toString(strArr));
 Arrays.sort(strArr);
 System.out.println("strArr after sorting is: " + Arrays.toString(strArr));
 int index = Arrays.binarySearch(strArr, "22");
 System.out.println("The index value is: " + index);
 }
}

It prints the following:

The given strArr is: [21, 22, 11, 12, 13]
strArr after sorting is: [11, 12, 13, 21, 22]
The index value is: 4

Note that array index starts from zero, so the index position of 22 is 4 (i.e., strArr[4] == “22”).

Make sure you always call binarySearch() on a sorted array/container. otherwise, you’ll get
unpredictable results.

Array as a List
Assume that you have temperatures recorded in your place for a week’s time. How can you write a simple program
that prints the maximum and minimum temperatures recorded?

Chapter 6 ■ GeneriCs and ColleCtions

199

For storing temperatures, you can use an array. However, the Arrays class does not have the max() or min()
methods. One way to avoid writing your own method is to convert the array into List using the asList method, and
use the max() and min() methods in the Collections class (see Listing 6-31). Remember that the array should be a
reference type (you cannot use the asList method for primitive type arrays).

Listing 6-31. ArrayAsList.java

// This program demonstrates the usage of arrays as list

import java.util.*;

public class ArrayAsList {
 public static void main(String []args) {
 Double [] weeklyTemperature = {31.1, 30.0, 32.5, 34.9, 33.7, 27.8};
 List<Double> temperatures = Arrays.asList(weeklyTemperature);
 System.out.println("Maximum temperature recorded was: " +
Collections.max(temperatures));
 System.out.println("Minimum recorded was: " + Collections.min(temperatures));
 }
}

This prints the following:

Maximum temperature recorded was: 34.9
Minimum recorded was: 27.8

Yes, it works. But you made a simple logical mistake. In this program, you have given temperatures of only six and
not seven days. You can add one more value in the array, but shall you try adding it directly to the List<Double> that
you got? Here is the code segment that tries to add an element in the List:

List<Double> temperatures = Arrays.asList(weeklyTemperature);
temperatures.add(32.3);

Now you get the following:

Exception in thread "main" java.lang.UnsupportedOperationException
 at java.util.AbstractList.add(AbstractList.java:131)
 at java.util.AbstractList.add(AbstractList.java:91)
 at ArrayAsList.main(ArrayAsList.java:13)

You cannot add elements to the list returned by the asList() method. A solution is to create a new List type
object (say, an ArrayList object) yourself and add elements to that List, as in Listing 6-32.

Listing 6-32. ArrayAsList2.java

// This program demonstrates the usage of arrays as list

import java.util.*;

class ArrayAsList{
 public static void main(String []args) {
 Double [] temperatureArray = {31.1, 30.0, 32.5, 34.9, 33.7, 27.8};
 System.out.println("The original array is: " + Arrays.toString(temperatureArray));

Chapter 6 ■ GeneriCs and ColleCtions

200

 List<Double> temperatureList = new ArrayList<Double>(Arrays.asList(temperatureArray));
 temperatureList.add(32.3);
 System.out.println("The new List with an added element is: " + temperatureList);
 }
}

It prints the following:

The original array is: [31.1, 30.0, 32.5, 34.9, 33.7, 27.8]
The new List with an added element is: [31.1, 30.0, 32.5, 34.9, 33.7, 27.8, 32.3]

Yes, it works now.

Points to Remember
Here are some interesting facts that might prove useful on your OCPJP exam:

The difference between an •	 ArrayList and ArrayDeque is that you can add an element
anywhere in an array list using an index; however, you can add an element only either at the
front or end of the array deque. That makes insertion in array deque much efficient than array
list; however, navigation in an array deque becomes more expensive than in an array list.

There is one more thing you need to remember about using the •	 List returned from the
Arrays.asList() method. Though you cannot add elements to the List returned by
the asList() method, you can modify the List! Also, the modifications you make through the
List are reflected in the original array. For example, if you modify the temperature of the first
day from 31.1 to 35.2 in the List, the original array gets modified, as shown in Listing 6-33.

Listing 6-33. ArrayAsList3.java

import java.util.*;

class ArrayAsList3 {
 public static void main(String []args) {
 Double [] temperatureArray = {31.1, 30.0, 32.5, 34.9, 33.7, 27.8};
 System.out.println("The original array is: " + Arrays.toString(temperatureArray));
 List<Double> temperatureList = Arrays.asList(temperatureArray);
 temperatureList.set(0, 35.2);
 System.out.println("The modified array is: " + Arrays.toString(temperatureArray));
 }
}

It prints the following:

The original array is: [31.1, 30.0, 32.5, 34.9, 33.7, 27.8]
The modified array is: [35.2, 30.0, 32.5, 34.9, 33.7, 27.8]

The Arrays class provides only limited functionality and you will often want to use methods in the Collections
class. To achieve that, calling the Arrays.asList() method is a useful technique.

Chapter 6 ■ GeneriCs and ColleCtions

201

 remember that you cannot add elements to the List returned by the Arrays.asList() method. But, you
can make changes to the elements in the returned List, and the changes made to that List are reflected
back in the array.

Question time!

1. predict the output of this program:

import java.util.*;

class UtilitiesTest {
 public static void main(String []args) {
 List<int> intList = new ArrayList<>();
 intList.add(10);
 intList.add(20);
 System.out.println("The list is: " + intList);
 }
}

a. it prints the following: the list is: [10, 20].

B. it prints the following: the list is: [20, 10].

C. it results in a compiler error.

d. it results in a runtime exception.

Answer: C. it results in a compiler error.

(You cannot specify primitive types along with generics, so List<int> needs to be changed to
List<Integer>).

2. predict the output of this program:

import java.util.*;

class UtilitiesTest {
 public static void main(String []args) {
 List<Integer> intList = new LinkedList<>();
 List<Double> dblList = new LinkedList<>();
 System.out.println("First type: " + intList.getClass());
 System.out.println("Second type:" + dblList.getClass());
 }
}

a. it prints the following:

First type: class java.util.linkedlist

second type:class java.util.linkedlist

Chapter 6 ■ GeneriCs and ColleCtions

202

B. it prints the following:

First type: class java.util.linkedlist<integer>

second type:class java.util.linkedlist<double>

C. it results in a compiler error.

d. it results in a runtime exception.

Answer: a. it prints the following:

 First type: class java.util.linkedlist

 second type:class java.util.linkedlist

 (due to type erasure, after compilation both types are treated as same LinkedList type).

3. Which statement is true with respect to List<?> and List<Object>?

a. Both are same, just two different ways to express a same thing.

B. List<?> is a homogenous list of elements of a same unknown type and
List<Object> is a heterogeneous list of elements of different types.

C. List<?> is a heterogeneous list of elements of different types and List<Object> is
a homogenous list of elements of a same unknown type.

Answer: B. List<?> is a homogenous list of elements of a same unknown type and
List<Object> is a heterogeneous list of elements of a same unknown type.

4. predict the output of this program:

import java.io.*;

class LastError<T> {
 private T lastError;
 void setError(T t){
 lastError = t;
 System.out.println("LastError: setError");
 }
}

class StrLastError<S extends CharSequence> extends LastError<String>{
 public StrLastError(S s) {
 }
 void setError(S s){
 System.out.println("StrLastError: setError");
 }
}

class Test {
 public static void main(String []args) {
 StrLastError<String> err = new StrLastError<String>("Error");
 err.setError("Last error");
 }
}

Chapter 6 ■ GeneriCs and ColleCtions

203

a. it prints the following: strlasterror: seterror.

B. it prints the following: lasterror: seterror.

C. it results in a compilation error.

d. it results in a runtime exception.

Answer: C. it results in a compilation error.

(it looks like the setError() method in StrLastError is overriding setError() in the LastError class.
however, it is not the case. at the time of compilation, the knowledge of type S is not available. therefore,
the compiler records the signatures of these two methods as setError(String) in superclass and
setError(S_extends_CharSequence) in subclass—treating them as overloaded methods (not overridden).
in this case, when the call to setError() is found, the compiler finds both the overloaded methods matching,
resulting in the ambiguous method call error. here is the error message

Test.java:22: error: reference to setError is ambiguous, both method setError(T) in LastError
and method setError(S) in StrLastError match
 err.setError("Last error");
 ^

where t and s are type-variables:

t extends Object declared in class LastError.

s extends CharSequence declared in class StrLastError).

Summary
Generics

Generics will ensure that any attempts to add elements of types other than the specified •	
type(s) will be caught at compile time itself. Hence, generics offer generic implementation
with type safety.

Java 7 introduced •	 diamond syntax where the type parameters (after new operator and class
name) can be omitted. The compiler will infer the types from the type declaration.

Generics are not covariant. That is, subtyping doesn’t work with generics; you cannot assign a •	
derived generic type parameter to a base type parameter.

The •	 <?> specifies an unknown type in generics and is known as a wildcard. For example,
List<?> refers to list of unknowns.

Wildcards can be bounded. For example, •	 <? extends Runnable> specifies that ? can match
any type as long as it is Runnable or any of its derived types. Note that extends is inclusive, so
you can replace X in ? extends X. However, in <? super Runnable> , ? would match only the
super types of Runnable, and Runnable itself will not match (i.e., it is an exclusive clause).

You use the •	 extends keyword for both class type as well as an interface when specifying
bounded types in generics. For specifying multiple base types, you use the & symbol. For
example, in List<? extends X & Y>, ? will match types, extending both the types X and Y.

Chapter 6 ■ GeneriCs and ColleCtions

204

Collections Framework

Avoid mixing raw types with generic types. In other cases, make sure of the type safety •	
manually.

The terms Collection, Collections, and collection are different. •	
Collection— java.util.Collection<E>—is the root interface in the collection hierarchy.
Collections—java.util.Collections—is a utility class that contains only static methods.
The general term collection(s) refers to containers like map, stack, queue, etc.

The container classes store references to objects, so you cannot use primitive types with any •	
of the collection classes.

The methods •	 hashCode() and equals() need to be consistent for a class. For practical
purposes, ensure that you follow this one rule: the hashCode() method should return the same
hash value for two objects if the equals() method returns true for them.

If you’re using an object in containers like •	 HashSet or HashMap, make sure you override
the hashCode() and equals() methods correctly.

The •	 Map interface does not extend the Collection interface.

It is not recommended that you store null as an argument, since there are methods in the •	
Deque interface that return null, and it would be difficult for you to distinguish between
the success or failure of the method call.

Implement the •	 Comparable interface for your classes where a natural order is possible. If you
want to compare the objects other than the natural order or if there is no natural ordering
present for your class type, then create separate classes implementing the Comparator
interface. Also, if you have multiple alternative ways to decide the order, then go for the
Comparator interface.

205

Chapter 7

String Processing

Search, parse, and build strings

Search, parse, and replace strings by using regular exprsssions,
using expression patterns for matching limited to . (dot), *
(star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b. \B, [], ().

Format strings using the formatting parameters
of %b, %c, %d, %f, and %s in format strings.

Exam Topics

String objects are extensively used in writing Java applications. Java programs use strings not only in business
logic but also to implement utility functionality such as logging. Therefore, it is useful and important to understand
strings and related concepts.

Apart from the common operations, searching and parsing are two useful operations that are performed on
strings. Java provides extensive support to achieve these operations efficiently and easily. Starting from Version 4,
Java supports regular expressions and offers two useful classes to exploit the power of regular expressions. From
Version 5 on, Java also supports C-like printf() style for formatting strings.

The OCAJP7 exam has three topics related to strings: “Create and manipulate strings;” “Manipulate data using
the StringBuilder class and its methods;” and “Test equality between strings and other objects using == and equals()”.
On the assumption that you have the prerequisites for OCPJP 7 certification and are already comfortable with using
strings, we proceed directly to the topics covered in the OCPJP7 exam.

As an OCPJP7 exam candidate, you are expected to be familiar with searching, parsing, and building strings;
regular expressions and their usage; and string formatting and format specifiers. In this chapter, we will cover all these
topics in detail.

Processing Strings
In this section, you will learn how to process character data stored within a String object.

String Searching
When working with strings, you often need to search within a given string. There are several overloaded versions
of the method indexOf() available in the String class for searching a string forward, the lastIndexOf() method for

Chapter 7 ■ String proCeSSing

206

searching a string backward, and the regionMatches() method for comparing a “region” of text within a string.
We’ll discuss each of these methods in turn.

The IndexOf() Method
How do you search for a particular character within a string and, if it occurs, at what position? For example, which
index position does the character J occupy in the string “OCPJP”? Listing 7-1 contains the code that uses the
indexOf() method to answer this question.

Listing 7-1. SearchString1.java

// Demonstrates searching a character in a string
public class SearchString1 {
 public static void main(String[] s) {
 String str = "OCPJP";
 System.out.println("Character J occurs at index: " + str.indexOf('J'));
 }
}

It prints the following:

Character J occurs at index 3

Quite easy, right? The indexOf() method searches the specified character— here it is, the character J— and
returns the first occurrence of the character (note that the index starts from 0, not 1!). Now, let’s search a substring
within in a given string. The indexOf() method is overloaded, and one definition of the method takes a string as a
search argument. Listing 7-2 shows an example.

Listing 7-2. SearchString2.java

// Demonstrates searching a substring within a string using indexOf() method
public class SearchString2 {
 public static void main(String[] s){
 String str = "I am preparing for OCPJP";
 System.out.println("Substring \"for\" occurs at index: " + str.indexOf("for"));
 }
}

This program prints the following:

Substring "for" occurs at index: 15

(Please note that we used the escape character, \, to print “for” within double quotes.)
What will happen if the search string does not exist in the string? For instance, if you search “fort” instead of “for”

in above example, you’ll get this result:

Substring "for" occurs at index: -1

Well, a failed indexOf search results in the value −1, indicating “not found.”
These two were simple problems; now let’s try a slightly harder one. Given a big string, how can you find how

many times a given string (say “am”) occurs within that string? Not to worry—in this case there is another version of
the indexOf() method. In this method you can specify an index from which the search should commence. Listing 7-3
shows the implementation.

Chapter 7 ■ String proCeSSing

207

Listing 7-3. SearchString3.java

// This example demonstrates how to search multiple occurences of a search string
public class SearchString3 {
 public static void main(String[] s) {
 String str = "I am a student. I am preparing for OCPJP";
 int fromIndex = 0;
 while(str.indexOf("am", fromIndex) > −1) {
 fromIndex = str.indexOf("am", fromIndex);
 System.out.println("Substring \"am\" occurs at index: " + fromIndex);
 fromIndex++;
 }
 }
}

The example prints the following:

Substring "am" occurs at index: 2
Substring "am" occurs at index: 18

It uses a while loop to check whether more occurrences of the search string exist in the input string. It also
maintains an index (fromIndex) from which you search ahead. It increments the fromIndex variable after each
occurrence of the search string so that the next occurrence of the search string can be found.

If you want to search the last occurrence of the search string, you can use the overloaded versions of the
lastIndexOf() method defined in the String class. The String class also has simple methods to check for beginnings
or ending of strings, and these methods are given in Table 7-1.

Table 7-1. Methods to Check for Matching Prefix or Suffix in a String

Method Description

boolean startsWith(String prefixString,
int offset)

Starting from offset, check if this string has prefixString.

boolean startsWith(String prefixString) Check if this string has prefixString; equivalent to
startsWith(prefixString, 0);

boolean endsWith(String suffixString) Check if this string has the suffixString.

The regionMatches() Method
Consider the string “Tarzan: Hi Jane, wanna ride an elephant? \n Jane: No thanks! I’m preparing for OCPJP now!”
How can you check if the string “ Jane: No thanks!” is present as the first part in Jane’s response? (Note: Jane’s response
is the region of text that comes after the newline character “\n”.)

There are many ways to solve this problem, and you’ll use the regionMatches() method here in order to learn
how to use it. Table 7-2 lists the two overloaded methods of the regionMatches() method. To solve the problem in the
given string, you can first look for the character “\n” and then from that index position, you can search for the string “
Jane: No thanks! ”, as shown in Listing 7-4.

Chapter 7 ■ String proCeSSing

208

Listing 7-4. MatchRegionInString.java

// This example demonstrates how to search a "region" of text within a string
public class MatchRegionInString {
 public static void main(String[] s) {
 String chat = "Tarzan: Hi Jane, wanna ride an Elephant? \n Jane: No thanks! I'm
preparing for OCPJP now!";
 String matchString = " Jane: No thanks!";
 // first get the index of the position from which the search region starts
 int startIndex = chat.indexOf('\n');
 System.out.println("Jane's response starts at the index: " + startIndex);
 // if '\n' found, then try matching for the string " Jane: No thanks!" from there
 if(startIndex > −1) {
 // remember that the index starts from 0 and not 1, so add 1 to startIndex
 boolean doesMatch = chat.regionMatches(startIndex + 1, matchString, 0,
matchString.length());
 if(doesMatch)
 System.out.println("Jane's response matches with the string" +
matchString);
 }
 }
}

This program prints the following output, as you expected:

Jane's response starts at the index: 41
Jane's response matches the string Jane: No thanks!

String Parsing
Parsing is an interesting and useful operation on strings. (The word parse means “to analyze to break down into
constituent parts based on an assumed structure.”) We will introduce you to the basic parsing operation in this
section; we will discuss advanced parsing topics later in this chapter when discussing regular expressions.

String Conversions
In your programs, you’ll find it is often necessary to convert strings to and from primitive types such as floats, ints, and
booleans. To convert from a primitive type value to String type, you can use the overloaded valueOf() method from
the String class.

Table 7-2. The regionMatches() Methods and Descriptions

Method Description

boolean regionMatches(int start,
String matchingStr, int matchStartOffset,
int matchLen)

Starting from start in this String object, check if the region
of text given by matchingStr matches. In matchStr, check for
matchLen characters starting from matchStartOffset.

boolean regionMatches(boolean ignoreCase,
int start, String matchingStr,
int matchStartOffset, int matchLen)

Same as the previous method, but with the additional first
argument, which ignores the case differences.

Chapter 7 ■ String proCeSSing

209

Let’s start with converting an integer value 10 to String. Here’s how to do it:

String str1 = String.valueOf(10); // right way to convert from an integer to String

Note that direct assignments or casts will result in compiler error, such as these two statements:

String str1 = 10; // compiler error—cannot convert from int to String
String str1 = (String) 10; // compiler error—cannot convert from int to String

How about the conversion the other way around: if a string has value of some primitive type (say an integral
value), how can you perform the conversion? Obviously, the following two statements, which attempt to directly
assign or change type through an explicit cast, will result in compiler errors:

int i = "10"; // compiler error—cannot convert from String to int
int i = (int) "10"; // compiler error—cannot convert from String to int

To make this type conversion, you need to use the parseInt() static method available in the Integer class,
like so:

int i = Integer.parseInt("10"); // right way to convert from a String to an int

This parseInt() method is an overloaded method. There is another parseInt() method that takes an additional
argument: the base (or radix) of the integral value such as octal and hexadecimal. The wrapper classes Byte, Short,
Long, Float, and Double have the equivalent parse methods to convert a string to the corresponding primitive type
value. What if you pass an invalid argument to one of these parse methods? For example,

float f = Float.parseFloat("no such value");

For this code, you’ll get a runtime exception of java.lang.NumberFormatException since the string “no such
value” cannot be converted to float type value.

The Split() Method
Listing 7-5 shows an example of how to split a sentence and print all words in the string using the split() method of
the String class.

Listing 7-5. ParseString1.java

// this example demonstrates the usage of split() method
public class ParseString1 {
 public static void main(String[] s) {
 String quote = "Never lend books-nobody ever returns them!";
 String [] words = quote.split(" "); // split strings based on the delimiter " "
(space)
 for (String word : words) {
 System.out.println(word);
 }
 }
}

Chapter 7 ■ String proCeSSing

210

It prints the following:

Never
lend
books-nobody
ever
returns
them!

The split() method takes a delimiter as a regular expression (you will explore regular expression later in this
chapter). In this example, you provide a whitespace as a delimiter, so you are able to extract all the words in the
sentence. Note how the characters “-” and “!” are part of the strings “books-nobody” and “them!” since you did not
specify any punctuation characters as delimiters. You’ll revisit this problem shortly when you learn about regular
expressions.

the argument of the split() method is a delimiter string, which is a regular expression. if the regular
expression you pass has invalid syntax, you’ll get a PatternSyntaxException exception.

Now, let’s assume that you have a string containing the path of a folder, and you want to parse this string and
print individual folder names. Listing 7-6 shows the implementation.

Listing 7-6. ParseString2.java

public class ParseString2 {
 public static void main(String[] args) {
 String str = "c:\\work\\programs\\parser";
 String [] dirList = str.split("\\\\");
 for (int i=0; i<dirList.length; i++) {
 System.out.println(dirList[i]);
 }
 }
}

It prints the following:

c:
work
programs
parser

In this example, two things may surprise you.

First, the use of “\\” instead of “\” is interesting. In order to show special characters in a string, •	
you need to use the escape sequence for such special characters. For instance, if you want to
put a new line character, you have to use “\n”; similarly you have to use “\t” for a tab symbol.
Here, you want to use a backslash, which can be shown in a string as “\\”.

The second thing is the delimiter used with the •	 split() method. Well, a regular expression
was used here to parse the path using “\” as a delimiter. We will soon discuss the usage of four
consecutive backslashes instead of one when we discuss regular expressions.

Chapter 7 ■ String proCeSSing

211

Regular Expressions
A regular expression defines a search pattern that can be used to execute operations such as string search and string
manipulation. A regular expression is nothing but a sequence of predefined symbols specified in a predefined syntax
that helps you search or manipulate strings. A regular expression is specified as a string and applied on another string
from left to right.

You may wonder why you need a regex (short for REGular EXpression) when you can directly perform a search
using the string function, as you did in last section using indexOf(), for example. Well, the answer is quite simple.
You can use the indexOf() method (or any other similar method) when you know the exact string to be searched.
However, in cases where you know only the pattern of a string but not a specific string, you need to use regex. Regex
is a much more powerful tool than simple search methods for searching and manipulating strings. For example, say
you want to search all e-mail addresses in a given string. You cannot achieve this using the indexOf() method since
you don’t know the exact e-mail address; however, you can use a regex to specify a pattern that will find all the e-mail
addresses in the string.

Understanding regex Symbols
We will now focus on understanding the syntax and semantics of symbols used to specify regular expressions.
Table 7-3 shows commonly used symbols to specify regex.

Table 7-3. Commonly Used Symbols to Specify regex

Symbol Description

^expr Matches expr at beginning of line.

expr$ Matches expr at end of line.

. Matches any single character (except the newline character).

[xyz] Matches either x, y, or z.

[p-z] Specifies a range. Matches any character from p to z.

[p-z1-9] Matches either any character from p to z or any digit from 1 to 9 (remember, it won’t match p1).

[^p-z] ‘^’ as first character inside a bracket negates the pattern; it matches any character except
characters p to z.

Xy Matches x followed by y.

x | y Matches either x or y.

Table 7-4. Commonly Used Metasymbols to Specify regex

Symbol Description

\d Matches digits (equivalent to [0–9]).

\D Matches non-digits.

\w Matches word characters.

(continued)

You can use the symbols given in Table 7-3 and specify regex. For example, you can write "[0–9]" to match all
digit characters or "[\t\r\f\n]" to match all whitespaces. Also, you can also use certain predefined metasymbols to
ease the regex specification. For instance, you can specify "\d" instead of "[0–9]" to match digits, or "\s" instead of
"[\t\r\f\n]" to match all whitespaces. Table 7-4 summarizes a list of commonly used metasymbols.

Chapter 7 ■ String proCeSSing

212

Regex Support in Java
Java 1.4 SDK introduced regex support in Java. The package java.util.regex supports regex. It consists of two
important classes, Pattern and Matcher. Pattern represents a regex in a compiled representation, and Matcher
interprets a regex and matches the corresponding substring in a given string.

At this point, you may ask why is regex supported by dedicated classes such as Matcher and Pattern when other
methods such as split() in the String class already support regex? The single word answer for this question is:
performance. The Pattern and Matcher classes are optimized for performance while methods like split() in String
are not.

Use the Pattern and Matcher classes whenever you are performing search or replace on strings heavily;
they are more efficient than split() in String or other methods.

Now, let’s see how you can use the Pattern and Matcher classes. You first need to call a static method compile()
in the Pattern class to get an instance of a pattern. The first argument of this method is a regex. Then, you need to call
another static method called matcher() from the Pattern class to get an instance of the Matcher class. The matcher()
method returns a Matcher object. This object is then used to execute the required operation on the input string.

Okay, so far so good. But what if you want to specify a regex when the match involves an occurrence count of
characters? Well, for such situations you can use quantifier symbols, provided in Table 7-5.

Symbol Description

\W Matches non-word characters.

\s Matches whitespaces (equivalent to [\t\r\f\n]).

\S Matches non-whitespaces.

\b Matches word boundary when outside bracket. Matches backslash when inside bracket.

\B Matches non-word boundary.

\A Matches beginning of string.

\Z Matches end of string.

Table 7-4. (continued)

Table 7-5. Commonly Used Quantifier Symbols

Symbol Description

expr? Matches 0 or 1 occurrence of expr (equivalent to expr{0,1}).

expr* Matches 0 or more occurrences of expr (equivalent to expr{0,}).

expr+ Matches 1 or more occurrences of expr (equivalent to expr{1,}).

expr{x} Matches x occurrences of expr.

expr{x, y} Matches between x and y occurrences of expr.

expr{x,} Matches x or more occurrences of expr.

Chapter 7 ■ String proCeSSing

213

Let’s look at how to use the Pattern and Matcher classes. Let’s assume that you have a string consisting of
personal details (such as name, address, phone number) of a set of people. You will use the following string for the
examples covered in rest of this section:

String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone, Hugo-city
56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post office,
Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";

You need to specify regex using the backslash (\); do not use the forward slash (/) instead. the compiler
will not give any error if you use the forward slash; however, you won’t get the desired output.

Searching and Parsing with regex
Let’s start with a simple example. You need to write code to print all words of the string str. How can you do this?
Well, do you remember metacharacter "\w", which matches with all symbols forming a word? You are going to use
"\w" along with the quantifier "+" to make "\w+", which means you want to search all words of length one or more;
see Listing 7-7.

Listing 7-7. Regex1.java

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Regex1 {
 public static void main(String[] args) {
 String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone,
Hugo-city 56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post
office, Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";
 Pattern pattern = Pattern.compile("\\w+");
 Matcher matcher = pattern.matcher(str);
 while(matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

It prints the following:

Danny
Doo
Flat
no
502
...
maggi07
myuniverse
com

Chapter 7 ■ String proCeSSing

214

(Note that we have truncated the results with . . . to save space.) However, you can see that the regular expression
searched all words consisting at least one character. What happened here was that you invoked the compile() method
along with a regex of the Pattern class to get an instance of Pattern. After that, you got an instance of the Matcher
class by calling the matcher() method on pattern instance. And finally you got the result using the group() and
find() methods of the Matcher class. The method find() returns true if there exists any search result. The group()
method returns a search result occurrence as a string.

note that we used two backslashes in the regex (“\\w+”) specified in Listing 7-7 because backslash
is a escape character in regex. however, backslash is also a escape character in Java strings, which
means literal “\\” is interpreted as a single backslash. this translates to an interesting outcome:
we write “\\” as a single backslash in a regex, which will be written as “\\\\” in a Java program if we
want to specify a single backslash.

In the same way, you can search all the numbers using the "\d+" regex. Now, let’s say you want to search and
print all ZIP codes (postal code) appeared in the string. Assume that the ZIP code length is always 5. Can you achieve
this using regex? Will the program in Listing 7-8 work?

Listing 7-8. Regex2.java

import java.util.regex.Matcher;
import java.util.regex.Pattern;

// This program demonstrates how we can search numbers of a specified length
public class Regex2 {
 public static void main(String[] args) {
 String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone,
Hugo-city 56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post
office, Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";
 Pattern pattern = Pattern.compile("\\d{5}");
 Matcher matcher = pattern.matcher(str);
 while(matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

You used "\d{5}" as the regex string. Let’s see what this program prints:

56010
98765
43210
56000
98765
01234

Oops! It has printed two ZIP codes but also printed three partial phone numbers, which was unexpected. Hmm,
to get only the ZIP codes, you must specify the regex more properly. Try again with Listing 7-9.

Chapter 7 ■ String proCeSSing

215

Listing 7-9. Regex3.java

import java.util.regex.Matcher;
import java.util.regex.Pattern;

// This program demonstrates how we can search numbers of a specified length
public class Regex3 {
 public static void main(String[] args) {
 String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone,
Hugo-city 56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post
office, Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";
 Pattern pattern = Pattern.compile("\\D\\d{5}\\D");
 Matcher matcher = pattern.matcher(str);
 while(matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

It prints the following:

 56010,
 56000,

This time you used "\D\d{5}\D" and it worked well. What you essentially did was specify that a non-digit
character is preceded and followed by a six-digit number. Easy, right! Well, there is a problem in this solution.
The program is printing one whitespace just before the six-digit number and a comma just after the six-digit number
(both matched by "\D"). Can you get rid of these unwanted characters? Yes, there is an elegant solution to this: you
can use "\b" (used to detect word boundaries) here. See if this works by trying the code in Listing 7-10.

Listing 7-10. RegexDemo.java

import java.util.regex.Matcher;
import java.util.regex.Pattern;

// This program demonstrates how we can search numbers of a specified length
public class Regex4 {
 public static void main(String[] args) {
 String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone,
Hugo-city 56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post
office, Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";
 Pattern pattern = Pattern.compile("\\b\\d{5}\\b");
 Matcher matcher = pattern.matcher(str);
 while(matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

It prints the following:

56010
56000

Chapter 7 ■ String proCeSSing

216

That’s perfect. Similarly, you can also search all phone numbers, since the length of the phone numbers in the
example string length is 10.

Now, let’s try to do something little more difficult: searching e-mail addresses. In an e-mail address, the first part
is a word (which can be specified by "\w+"), followed by a "@", followed by another word, and suffixed by ".com"
(for the sake of simplicity, let’s ignore other suffixes such as “.edu”). Hence, the regex for searching e-mail address
in the example-string is "\w+@\w+\.com". Will this regex string work? Try the code in Listing 7-11.

Listing 7-11. Regex5.java

import java.util.regex.Matcher;
import java.util.regex.Pattern;

// This program demonstrates how we can search email addresses
public class Regex5 {
 public static void main(String[] args) {
 String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone,
Hugo-city 56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post
office, Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";
 Pattern pattern = Pattern.compile("\\w+@\\w+\\.com");
 Matcher matcher = pattern.matcher(str);
 while(matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

It prints the following:

danny@myworld.com
maggi07@myuniverse.com

That worked!

Replacing Strings with regex
In the previous section, you tried searching and parsing strings with regex. You can also manipulate (modify) strings
with regex. Let’s try replacing strings now.

In the string in your example, currently all phone numbers are represented as a string of consecutive 10 digits.
Now you want to change this phone number format to XXX-XXXXXXX format—in other words, you want to insert a
dash (−) after the third digit of the phone number. Listing 7-12 shows how to achieve this.

Listing 7-12. Regex6.java

import java.util.regex.Matcher;
import java.util.regex.Pattern;

// This program demonstrates how we can manipulate text
public class Regex6 {
 public static void main(String[] args) {
 String str = "Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone,
Hugo-city 56010, Ph: 9876543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post
office, Big bank city 56000, ph: 9876501234, Email: maggi07@myuniverse.com.";

Chapter 7 ■ String proCeSSing

217

 Pattern pattern = Pattern.compile("(\\D)(\\d{3})(\\d{7})(\\D)");
 Matcher matcher = pattern.matcher(str);
 String newStr = matcher.replaceAll("$1$2-$3$4");
 System.out.println(newStr);
 }
}

The output of this program is the following:

Danny Doo, Flat no 502, Big Apartment, Wide Road, Near Huge Milestone, Hugo-city 56010, Ph: 987–
6543210, Email: danny@myworld.com. Maggi Myer, Post bag no 52, Big bank post office, Big bank city
56000, ph: 987–6501234, Email: maggi07@myuniverse.com.

Good, it worked as expected. But how did you achieve this? One very evident observation is that you used
replaceAll() of the Matcher class. However, there is one more important concept that you need to understand to
grasp the above example.

You can form groups within a regex. These groups can be used to specify quantifiers on a desired subset of the
whole regex. These groups can also be used to specify back-reference. Each group can be referred to as $n where n is
an integer—so, for example, the first group can be referred to as $1, the second group can be referred to as $2,
and so on.

Here, you formed four groups, and while replacing, you inserted a dash between second and third group. That’s
how your replacement works.

Now, let’s do something different. Let’s implement a method to validate an IP address. Can you suggest a regex to
match an IP address?

Did you say "\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b", where "\b" is used to match word boundaries and
"\d{1,3}" is used to specify that you expect three digit number here. Well, it’s a nice try but it’s wrong!

A valid IP address consists of 4 numbers separated by dots, where each number can be between 0 and 255
(both inclusive). That means any number greater than 255 will result in an invalid IP address. However, in the above
regex you can write any three-digit number (even greater than 255) and the regex will match. Hence, it is wrong.

Listing 7-13 shows the correct implementation of the regex for an IP address.

Listing 7-13. Regex7.java

import java.util.regex.Pattern;

// This program demonstrates how we can validate an IP address
public class Regex7 {
 void validateIP(String ipStr) {
 String regex = "\\b((25[0–5]|2[0–4]\\d|[01]?\\d\\d?)(\\.)){3}(25[0–5]|2[0–4]\\
d|[01]?\\d\\d?)\\b";
 System.out.println(ipStr + " is valid? " + Pattern.matches(regex, ipStr));
 }
 public static void main(String[] args) {
 String ipStr1 = "255.245.188.123"; // valid IP address
 String ipStr2 = "255.245.188.273"; // invalid IP address - 273 is greater than 255
 Regex7 validator = new Regex7();
 validator.validateIP(ipStr1);
 validator.validateIP(ipStr2);
 }
}

Chapter 7 ■ String proCeSSing

218

This snippet prints the following:

255.245.188.123 is valid? True
255.245.188.273 is valid? False

The first string (ipStr1) is a valid IP address and the second string (ipStr2) is not a valid IP address. The regex
specified by you successfully identified the valid IP address. Don’t be alarmed at the lengthy regex; it will be easy once
you understand it.

Let’s begin with the start and end symbols—"\b" is a boundary marker, as you saw earlier. Now, let’s look at
the first group, "((25[0–5]|2[0–4]\d|[01]?\d\d?)(\.))", which has two parts: the first part specifies the regex
for a number less than 256 and second part specifies a dot. The first part of the first group has 3 subexpressions.
The first subexpression specifies that the number could be in the range between 250 and 255. The second subexpression
specifies that the number could be 200 to 249, and the third subexpression specifies that the number could be 0 to 199.
You want to repeat this first group three times, so you place "{3}" immediately after the first group. The second group
is nothing but the first group without a dot.

String Formatting
So far we have discussed how to search or parse a String object. What if you would like to format a string in a
predefined template? For example, let’s assume that you are computing the area of a circle and you want to print the
computed area with only two fractional digits. If you try the usual System.out.println method, it will print a quite
big float number. As another example, say you want to separate the digits of a big number with separator such as a
comma to print it to the end user. In such cases, you can use the C-style printf() (print formatted) method that was
introduced in Java 5.

The method printf() uses string-formatting flags to format strings. It is quite similar to the printf() function
provided in the library of the C programming language. The printf() method is provided as part of the PrintStream
class. Here is its signature:

PrintStream printf(String format, Object... args)

The first parameter of the printf() method is a format string. A format string may contain string literals and
format specifiers. The actual arguments are passed as the second arguments (args parameter here). This method can
throw IllegalFormatException if the passed format is not correct.

Format specifiers are the crux of the string formatting concepts. They define the placeholder for a specific
data type and its format (such as alignment and width). The remaining parameters of the printf() method are the
variables (or literals) that provide the actual data to fill in the placeholders in sequence of the format specifiers.

Format Specifiers
Let’s investigate the template of format specifiers in the printf() method:

%[flags][width][.precision]datatype_specifier

As you can see, each format specifier starts with % sign followed by flags, width, and precision information and
ends with data type specifier. In this string, the flags, width, and precision information is optional while the % sign and
data type specifiers are mandatory.

Flags are single-character symbols that specify characteristics such as alignment and filling character. For instance,
flag “-” specifies left alignment, “^” specifies center alignment, and “0” pads the number with leading zeroes.

The width specifier indicates the minimum number of characters that will span in the final formatted string.
If the input data is shorter than the specified width, then it is padded with spaces by default. In case the input data is
bigger than the specified width, the full data appears in the output string without trimming.

Chapter 7 ■ String proCeSSing

219

The precision field specifies the number of precision digits in output string. This optional field is particularly
useful with floating point numbers.

Finally, the data type specifier indicates the type of expected input data. The field is a placeholder for the specified
input data. Table 7-6 provides a list of commonly used data type specifiers.

Table 7-6. Commonly Used Data Type Specifiers

Symbol Description

%b Boolean

%c Character

%d Decimal integer (signed)

%e Floating point number in scientific format

%f Floating point numer in decimal format

%g Floating point numer in decimal or scientific format (depending on the
value passed as argument)

%h Hashcode of the passed argument

%n Line separator (new line character)

%o Integer formatted as an octal value

%s String

%t Date/time

%x Integer formatted as an hexadecimal value

Let’s use the printf() method to format the output of the area() method of a Circle class. By default, the
area() method calculates the area of the circle and prints using the System.out.println() method. However, you
want to control the format of the output. More specifically, you want to print the area with only two precision points.
Listing 7-14 shows how to achieve this.

Listing 7-14. Circle.java

// This program shows the usage of formatting string in printf() method
class Circle {
 private int x, y, radius;
 public Circle(int x, int y, int radius) {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }
 void area() {
 double tempArea = Math.PI * radius * radius;
 System.out.println("Cirle area using default formatting with println: " + tempArea);
 System.out.printf("Circle area using format specifier with printf: %.2f", tempArea);
 }
 public static void main(String[] str) {
 Circle circle = new Circle(10,10,5);
 circle.area();
 }
}

Chapter 7 ■ String proCeSSing

220

This program produces following output:

Cirle area using default formatting with println: 78.53981633974483
Circle area using format specifier with printf: 78.54

Well, you can see that the first line contains the unformatted long output while the second line contains
formatted output using formatting string in printf() method.

Let’s use more formatting options in an example. Suppose that you want to print a table of soccer players along
with their names, played matches, scored goals, and goals per match information. However, there are a
few constraints:

You want to print the name of players to the left (left aligned).•	

You want to specify at least 15 characters for the name of the players.•	

You want to print each column at a distance of a tab-stop.•	

You want to specify only one precision point in goals per match info.•	

Listing 7-15 shows how to implement this.

Listing 7-15. FormattedTable.java

// This program demonstrates the use of format specifiers in printf
class FormattedTable {
 static void line() {
 System.out.
println("---");
 }
 static void printHeader() {
 System.out.printf("%-15s \t %s \t %s \t %s \n",
 "Player", "Matches", "Goals", "Goals per match");

 }
 static void printRow(String player, int matches, int goals) {
 System.out.printf("%-15s \t %5d \t\t %d \t\t %.1f \n",
 player, matches, goals, ((float)goals/(float)matches));
 }
 public static void main(String[] str) {
 FormattedTable.line();
 FormattedTable.printHeader();
 FormattedTable.line();
 FormattedTable.printRow("Demando", 100, 122);
 FormattedTable.printRow("Mushi", 80, 100);
 FormattedTable.printRow("Peale", 150, 180);
 FormattedTable.line();
 }
}

Chapter 7 ■ String proCeSSing

221

This program produces following output:

Player Matches Goals Goals per match

Demando 100 122 1.2
Mushi 80 100 1.3
Peale 150 180 1.2

Let’s analyze the format string specified in the printRow() method. The first part of the format string is "%-15s".
Here, the expression starts with %, which indicates the start of a format-specifier string. The next symbol is '-', which
is used to make the string left aligned. The number "15" specifies the width of the string and finally data type specifier
of "s" indicates the input data type as String. The next format specifier string is "%5d", which signifies it expects
an integer that will be displayed in the minimum 5 digits. The last format specifier string is "%.1f", which expects a
floating point number that will be displayed with one precision digit. All format specifier strings are separated with
one or more "\t"s (tab stops) to make space between the columns.

Points to Remember
Here are some points that might prove useful on your OCPJP exam:

If you do not specify any string formatting specifier, the •	 printf() method will not print
anything from the given arguments!

Flags such as •	 "-", "^", or "0" make sense only when you specify width with the format
specifier string.

You can also print the •	 % character in a format string; however, you need to use an escape
sequence for it. In format specifier strings, % is an escape character—which means you need to
use %% to print a single %.

If you do not provide the intended input data type as expected by the format string, then you •	
can get an IllegalFormatConversionException. For instance, if you provide a string instead
of an expected integer in your printRow() method implementation, you will get following
exception:

Exception in thread "main" java.util.IllegalFormatConversionException:
d != java.lang.String at java.util.Formatter$FormatSpecifier.failConversion
(Unknown Source)

If you want to form a string and use it later rather than just printing it using the •	 printf()
method, you can use a static method in the String class—format(). We have reimplemented
the printRow() method used in the last example using the format() method, as shown:

void printRow(String player, int matches, int goals){
 String str = String.format("%-15s \t %5d \t\t %d \t\t %.1f \n",
 player, matches, goals, ((float)goals/(float)matches));
 System.out.print(str);
}

Chapter 7 ■ String proCeSSing

222

1. Consider this program, which intends to print the word delimited by the characters ‘*’ in
its both ends:

public class SearchString {
 public static void main(String[] args) {
 String quote = "An *onion* a day keeps everyone away!";
 // match the word delimited by *'s
 int startDelimit = quote.indexOf('*');
 int endDelimit = quote.lastIndexOf("*");
 System.out.println(quote.substring(startDelimit, endDelimit));
 }
}

this program will print one of the following options:

a. *onion

B. *onion*

C. onion

D. *onio

e. nion*

Answer: a. *onion

(the substring (beginIndex, endIndex) consists of characters beginning from the character at
beginIndex till the character at the endIndex – 1.)

2. predict the outcome of the following program:

public class ParseString1 {
 public static void main(String[] s) {
 String quote = "Never lend books-nobody ever returns them!";
 String [] words = quote.split(" ", 2);
 // split strings based on the delimiter " " (space)
 for (String word : words) {
 System.out.println(word);
 }
 }
}

a. it will result in a compile-time error.

B. it will result in a runtime exception.

C. it will print the following output when executed

never

lend

Question time!

Chapter 7 ■ String proCeSSing

223

D. it will print the following output when executed

never

lend books-nobody ever returns them!

Answer: D. it will print the following output when executed

never

Lend books-nobody ever returns them!

(the second parameter of the split() method specifies the total number of strings that the split()
method needs to generate. in the last string (here, in the second string), the split() method puts the
remaining part of the string.)

3. Listing 7-11 used the regex "\w+@\w+\.com" to match e-mail addresses in a string
where the e-mail addresses end with a “.com” domain. Can you replace the regex with
the following: "\w+@\w+.com"?

a. Yes, it will work perfectly and will only match valid e-mail addresses.

B. no, it will result in a compile-time error.

C. no, it will result in a runtime exception.

D. no, it will produce wrong matches and will match invalid e-mail addresses.

Answer: D. no, it will produce wrong matches and will match invalid e-mail addresses.

(it will produce wrong matches. For instance, it will match to "abc@xyz!com" also, since "." works
here as a single character wildcard, which could match any character.)

4. Which of the following regular expressions is the correct expression for matching a
mobile number stored in following format: +YY-XXXXXXXXXX (YY is the country code, the
rest of the number is a mobile number)?

a. “\+\d{2}-\d{10}”

B. “\b\+\d{2}-\d{10}\b”

C. “+\d{2}-\d{10}”

D. “\b+\d{2}-\d{10}\b”

Answer: a. “\+\d{2}-\d{10}”

(You need to provide a backslash as an escape character for “+”. another important point is that you
cannot use “\b” in starting and ending if the first or last character of the string is not a word character.)

5. You want to write a regex to match an e-mail address. the e-mail address should not
start with a digit and should end with “.com”. Which one of the following regex will
satisfy this requirement?

a. “\b\w+@\w+\.com\b”

B. “\b\D\w*@\w+\.com\b”

C. “\b\D\w+@\w+\.com\b”

D. none of the above

Chapter 7 ■ String proCeSSing

224

Answer: B. “b\D\w*@\w+\.com\b”

(“\b” is used to mark word boundaries, “\D” is used to match any non-digit number, and
“\w*” is used to match any word of length zero or more. the remaining part is similar to that
used earlier.)

6. What kind of strings will the regex "\d*[02468]" match?

a. any number containing at least one of the 0, 2, 4, 6, or 8 digits.

B. any number starting from one of the 0, 2, 4, 6, or 8 digits.

C. any number containing all the specified (0, 2, 4, 6, 8) digits at the end of the number.

D. any number ending with one of the specified (0, 2, 4, 6, 8) digits.

Answer: D. any number ending with one of the specified (0, 2, 4, 6, 8) digits.

(all even numbers.)

Summary
Searching, Parsing, and Building Strings

You can use the overloaded versions of the method •	 indexOf() in the String class for forward
searching in a string, lastIndexOf() for backward searching a string, and regionMatches()
for comparing a “region” of text within a string.

To convert from a primitive type value to •	 String type object, you can make use of the
overloaded valueOf() method, which takes a primitive type value as an argument and returns
the String object. To convert from the String type object to a primitive type value, you can
make use of the parse methods available for primitive types in the corresponding wrapper
types of the primitive types.

For parsing a string, you can use the •	 split() method available in the String class. It takes a
delimiter as an argument, and this argument is a regular expression.

Regular Expressions

A regular expression defines a search pattern that can be used to execute operations such as •	
string search and string manipulation.

Use the •	 Pattern and Matcher classes whenever you are performing search or replace
on strings heavily; they are more efficient and faster than any other way to perform
search/replace in Java.

You can form groups within a regex. These groups can be used to specify quantifiers on a •	
desired subset of the whole regex. These groups can also be used to specify back reference.

String Formatting

The method •	 printf() (and the method format() in the String class) uses string formatting
flags to format strings.

Each format specifier starts with the % sign; followed by flags, width, and precision •	
information; and ending with a data type specifier. In this string, the flags, width, and precision
information are optional but the % sign and data type specifier are mandatory.

225

Chapter 8

Java I/O Fundamentals

Read and write data from the console

Use streams to read and write files

Exam Topics

In this chapter, we’ll introduce you to the fundamentals of Java I/O programming. We’ll cover two topics: how to read
and write data from console, and then how to use (file) streams to read and write data.

Programming with I/O involves writing some exception-handling code as well. If you’re not familiar with
the basics of exception handling, such as how to use try-catch-finally blocks or try-with-resources statements, we
recommend that you to read the first three sections in the chapter on exception handling and assertions (Chapter 11)
and then return to this chapter.

The support for file manipulation is provided in the java.io and java.nio packages. In the initial part of this
chapter, we’ll focus only on the java.io package; later, we’ll focus on reading and writing data using streams (but
none of the other features provided in the java.io package. The java.nio package provides comprehensive support
for file I/O, and we cover it in Chapter 9). You can use printf-style formatting with the Console class, and this
formatting API is covered in detail in Chapter 7.

Reading and Writing from Console
In this section, we’ll discuss reading and writing from the console.

Understanding the Console Class
Using the Console class (which was introduced in Java 1.6) will considerably simplify reading the data from the console
and writing the data on the console. Note that the word “console” here refers to the character input device (typically
a keyboard), and the character display device (typically the screen display). You can obtain a reference to the console
using the System.console() method; if the JVM is not associated with any console, this method will return null.

Chapter 8 ■ Java I/O Fundamentals

226

Your first exercise is to implement a simple Echo command that prints back the line of text typed as input when
you run this program (Listing 8-1).

Listing 8-1. Echo.java

import java.io.Console;

// simple implementation of Echo command
class Echo {
 public static void main(String []args) {
 // get the System console object
 Console console = System.console();
 if(console == null) {
 System.err.println("Cannot retrive console object - are you running your
application from an IDE? Exiting the application ... ");
 System.exit(−1); // terminate the application
 }
 // read a line and print it through printf
 console.printf(console.readLine());
 }
}

Here is how the program behaves for different output:

D:\>java Echo
hello world
hello world

D:\>java Echo
^Z
Exception in thread "main" java.lang.NullPointerException
 at java.util.regex.Matcher.getTextLength(Matcher.java:1234)
 ... [this part of the stack trace elided to save space]
 at Echo.main(Echo.java:14)

For normal text input, this program works fine. If you type no input and try terminating the program with ^z or
^d (Ctrl+Z or Ctrl+D key combinations), then the program receives no input, so the readLine() method returns null;
when printf takes a null argument, it throws a NullReferenceException.

Note that you ran this program from the command line. The method System.console() will succeed if the JVM
is invoked from a command line without redirecting input or output streams since the JVM will be associated with a
console (typically a keyboard and display screen). If the JVM is invoked indirectly by IDE, or if the JVM is invoked from
a background process, then the method call System.console() will fail and return null. For example, Figure 8-1 shows
what happened when we ran this program from the Eclipse IDE.

Chapter 8 ■ Java I/O Fundamentals

227

In this case, the JVM is not associated with a console (like a command line) since it is invoked from an IDE, so the
program failed.

If the Jvm is invoked indirectly by Ide, or if the Jvm is invoked from a background process, then the
method call System.console() will fail and return null.

Some of the important methods available in the Console class are listed in Table 8-1.

Figure 8-1. System.console() returns null when invoked from Eclipse IDE

Table 8-1. Important Methods in the Console Class

Method Short description

Reader reader() Returns the Reader object associated with this Console object;
can perform read operations through this returned reference.

PrintWriter writer() Returns the PrintReader object associated with this Console
object; can perform write operations through this returned
reference.

String readLine() Reads a line of text String (and this returned string object does
not include any line termination characters); returns null if it
fails (e.g., the user pressed Ctrl+Z or Ctrl+D in the console)

String readLine(String fmt, Object... args) Same as the readLine() method, but it first prints the string fmt.

char[] readPassword() Reads a password text and returns as a char array; echoing is
disabled with this method, so nothing will be displayed in the
console when the password is typed by the user.

char[] readPassword(String fmt,
Object... args)

Same as the readPassword() method, but it first prints the
string given as the format string argument before reading the
password string.

Console format(String fmt, Object... args) Writes the formatted string (created based on values of fmt
string and the args passed) to the console.

Console printf(String fmt, Object... args) Writes the formatted string (created based on values of fmt
string and the args passed) to the console. This printf method
is the same as the format method: This is a “convenience
method”—the method printf and the format specifiers
are familiar to most C/C++ programmers, so this method is
provided in addition to the format method.

void flush() Flushes any of the data still remaining to be printed in the
console object’s buffer.

Chapter 8 ■ Java I/O Fundamentals

228

Formatted I/O with the Console Class
The Console class supports formatted I/O in the methods printf() and format() plus the overloaded methods of
readPassword() and readLine(). We will not cover the printf() and format() methods in this chapter; they are
covered in detail in the “String Formatting” section of Chapter 7.

In the methods readPassword() and readLine(), the first argument is the format specifier string, and the
following arguments are the values that will be passed to the format specifier string. These two methods return the
character data read from the console. What’s the difference between the readLine() and readPassword() methods?
The main difference is that the readPassword() does not display the typed string in the console (for the obvious
reason of not displaying the secret password), whereas readLine() displays the input you type in the console. Another
minor difference is that the readLine() method returns a String whereas readPassword() returns a char array. See
Listing 8-2.

Listing 8-2. Login.java

import java.io.Console;
import java.util.Arrays;

// code to illustrate the use of readPassword method
class Login {
 public static void main(String []args) {
 Console console = System.console();
 if(console != null) {
 String userName = null;
 char[] password = null;
 userName = console.readLine("Enter your username: ");
 // typed characters for password will not be displayed in the screen
 password = console.readPassword("Enter password: ");
 // password is a char[]: convert it to a String first before comparing contents
 if(userName.equals("scrat") && new String(password).equals("nuts")) {
 // we're hardcoding username and password here for
 // illustration, don't do such hardcoding in pratice!
 console.printf("login successful!");
 }
 else {
 console.printf("restart application and try again");
 }
 // "empty" the password since its use is over
 Arrays.fill(password, ' ');
 }
 }
}

Here is an instance of running this program typing the correct username and password:

D:\>java Login
Enter your username: scrat
Enter password:
login successful!

Chapter 8 ■ Java I/O Fundamentals

229

Note that nothing was displayed in the console when typing the password. Why is Arrays.fill(password, ' ');
in this program? It is a recommended practice to “empty” the read password string once its use is over; here you use
Array’s fill() method for this purpose. This is a secure programming practice to avoid malicious reads of program
data to discover password strings. In fact, unlike the readLine() method, which returns a String, the readPassword()
method returns a char array. With a char array, as soon as the password is validated, it is possible to empty it and
remove the trace of the password text from memory; with a String object, which is garbage collected, it is not as easy as
with a char array.

Special Character Handling in the Console Class
Writing text through Console’s printf() or format() methods has the advantage that these methods handle special
characters better than printing text through PrintStream. (We’ll discuss streams in more detail in the next section.)
Listing 8-3 shows an example.

Listing 8-3. SpecialCharHandling.java

import java.io.Console;

// better to print thro' Console object - it handles "special characters" better
class SpecialCharHandling {
 public static void main(String []args) {
 // string has three Scandinavian characters
 String scandString = "å, ä, and ö";
 // try printing scandinavian characters directly with println
 System.out.println("Printing scands directly with println: " + scandString);
 // now, get the Console object and print scand characters thro' that
 Console console = System.console();
 console.printf("Printing scands thro' console's printf method: " + scandString);
 }
}

Here is what this program prints:

Printing scands directly with println: •, •, and ÷
Printing scands thro' console's printf method: å, ä, and ö

As you can see from this output, Console’s printf() method (and other methods) have better support for special
characters.

Using Streams to Read and Write Files
What are streams? Streams are ordered sequences of data. Java deals with input and output in terms of streams. For
example, when you read a sequence of bytes from a binary file, you’re reading from an input stream; similarly, when
you write a sequence of bytes to a binary file, you’re writing to an output stream. Note how we referred to reading or
writing bytes from binary files, but what about reading or writing characters from text files? Java differentiates between
processing text and binary data. Before delving deeper into streams and reading or writing data from files, you must
first understand the difference between the character streams and byte streams, which is essential for understanding
the rest of the chapter.

Chapter 8 ■ Java I/O Fundamentals

230

Character Streams and Byte Streams
Consider the difference between Java source files and class files generated by the compiler. The Java source files have
extension of .java and are meant to be read by humans as well as programming tools such as compilers. However,
the Java class files have extension of .class and are not meant to be read by humans; they are meant to be processed
by low-level tools such as a JVM (executable java.exe in Windows) and Java disassember (executable javap.exe
in Windows). We refer to human-readable files containing text (or characters) as text files; we refer to the machine
readable or low-level data storage files as binary files. Naturally, how you interpret what is inside text files vs. binary
files is different. For example, in text files, you can interpret the data read from the file and differentiate between a tab
character, whitespace character, newline character, etc. However, you don’t deal with data from binary files like that;
they are low-level values. To give another example, consider a .txt file you create with a text editor such as Notepad
in Windows; it contains human-readable text. Now, consider storing your photo in a .bmp or .jpeg file; these files are
certainly not human readable. They are meant for processing by photo editing or image manipulation software, and
the files contain data in some pre-determined low-level format.

The java.io package has classes that support both character streams and byte streams. You can use character
streams for text-based I/O. Byte streams are used for data-based I/O. Character streams for reading and writing are
called readers and writers, respectively (represented by the abstract classes of Reader and Writer). Byte streams for
reading and writing are called input streams and output streams, respectively (represented by the abstract classes of
InputStream and OutputStream). Table 8-2 summarizes the differences between character streams and byte streams
for your quick reference.

Table 8-2. Differences Between Character Streams and Byte Streams

Character streams Byte streams

Meant for reading or writing to character- or
text-based I/O such as text files, text documents,
XML, and HTML files.

Meant for reading or writing to binary data I/O such as
executable files, image files, and files in low-level file formats
such as .zip, .class, .obj, and .exe.

Data dealt with is 16-bit Unicode characters. Data dealt with is bytes (i.e., units of 8-bit data).

Input and output character streams are called
readers and writers, respectively.

Input and output byte streams are simply called input streams
and output streams, respectively.

The abstract classes of Reader and Writer and
their derived classes in the java.io package
provide support for character streams.

The abstract classes of InputStream and OutputStream and
their derived classes in the java.io package provide support
for byte streams.

If you try using a byte stream when a character stream is needed and vice versa, you’ll get a nasty
surprise in your programs. For example, a bitmap (.bmp) image file must be processed using a byte
stream; if you try using character stream, your program won’t work. so don’t mix up the streams!

Character Streams
In this section, you’ll explore I/O with character streams. You’ll learn how to read from and write to text files plus
some optional features such as buffering to speed up the I/O. For reading and writing text files, you can use the classes
derived from the Reader and Writer abstract classes, respectively. For character streams, Figure 8-2 shows important
Reader classes, and Table 8-3 provides a short description of these classes. Figure 8-3 shows important Writer classes,
and Table 8-4 provides a short description of these classes. Note that we’ll cover only a few important classes in this
class hierarchy in this chapter.

Chapter 8 ■ Java I/O Fundamentals

231

Reader

BufferedReader FilterReader PipedReader InputStreamReader StringReader

FileReaderPushbackReaderLineNumberReader

Figure 8-2. Important classes deriving from the Reader class

Writer

BufferedWriter PipedWriter OutputStreamWriter StringWriter

FileWriterFilterWriterPrintWriter

Figure 8-3. Important classes deriving from the Writer class

Table 8-3. Important Classes Deriving from the Reader Class

Class name Short description

StringReader A character stream that operates on strings.

InputStreamReader This class is a bridge between character streams and byte streams.

FileReader Derived class of InputStreamReader that provides support for reading character files.

PipedReader The PipedReader and PipedWriter classes form a pair for “piped” reading/writing
of characters.

FilterReader Abstract base class for streams that support a filtering operation applied on data as
characters are read from the stream.

PushbackReader Derived class of FilterReader that allows read characters to be pushed back into
the stream.

BufferedReader Adds buffering to the underlying character stream so that there is no need to access
the underlying file system for each read and write operation.

LineNumberReader Derived class of BufferedReader that keeps track of line numbers as the characters
are read from the underlying character stream.

Chapter 8 ■ Java I/O Fundamentals

232

Reading Text Files
Reader classes read the contents in the stream and try interpreting them as characters, such as a tab, end-of-file,
newline, etc. Listing 8-4 implements a simplified version of the type command in Windows. The type command
displays the contents of the file(s) passed as command-line arguments.

Listing 8-4. Type.java

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

// implements a simplified version of "type" command provided in Windows given
// a text file name(s) as argument, it prints the content of the text file(s) on console
class Type {
 public static void main(String []files) {
 if(files.length == 0) {
 System.err.println("pass the name of the file(s) as argument");
 System.exit(−1);
 }
 // process each file passed as argument
 for(String file : files) {
 // try opening the file with FileReader
 try (FileReader inputFile = new FileReader(file)) {
 int ch = 0;
 // while there are characters to fetch, read, and print the
 // characters when EOF is reached, read() will return −1,
 // terminating the loop
 while((ch = inputFile.read()) != −1) {
 // ch is of type int - convert it back to char
 // before printing
 System.out.print((char)ch);
 }

Table 8-4. Important Classes Deriving from the Writer Class

Class name Short description

StringWriter A character stream that collects the output in a string buffer, which can be used for
creating a string.

OutputStreamWriter This class is a bridge between character streams and byte streams.

FileWriter Derived class of InputStreamWriter that provides support for writing character files.

PipedWriter The PipedReader and PipedWriter classes form a pair for “piped” reading/writing of
characters in character stream.

FilterWriter Abstract base class for streams that supports a filtering operation applied on data as
characters when writing them to a character stream.

PrintWriter Supports formatted printing of characters to the output character stream.

BufferedWriter Adds buffering to the underlying character stream so that there is no need to access
the underlying file system for each read and write operation.

Chapter 8 ■ Java I/O Fundamentals

233

 } catch (FileNotFoundException fnfe) {
 // the passed file is not found ...
 System.err.printf("Cannot open the given file %s ", file);
 }
 catch(IOException ioe) {
 // some IO error occurred when reading the file ...
 System.err.printf("Error when processing file %s... skipping it", file);
 }
 // try-with-resources will automatically release FileReader object
 }
 }
}

For a sample text file, here is the output for the type command in Windows and our Type program:

D:\> type SaturnMoons.txt
Saturn has numerous icy moons in its rings. Few large moons of Saturn are - Mimas, Enceladus,
Tethys, Dione, Rhea, Titan, Iapetus, and Hyperion.

D:\> java Type SaturnMoons.txt
Saturn has numerous icy moons in its rings. Few large moons of Saturn are - Mimas, Enceladus,
Tethys, Dione, Rhea, Titan, Iapetus, and Hyperion.

It works as expected. In this program, you are instantiating the FileReader class and pass the name of the file to
be opened. If the file is not found, the FileReader constructor will throw a FileNotFoundException.

Once the file is open, you use the read() method to fetch characters in the underlying file. You are reading
character by character. Alternatively, you can use methods such as readLine() to read line by line.

Note that the read() method returns an int instead of a char—it’s because when read() reaches End-Of-File
(EOF), it returns −1, which is outside the range of char. So, the read() method returns an int to indicate that the end
of file has been reached and that you should stop attempting to read any more characters from the underlying stream.

In this program, you only read a text file; you’ll now try to read from as well as write to a text file.

Reading and Writing Text Files
In the previous example (Listing 8-4) of reading a text file, you created the character stream as follows:

FileReader inputFile = new FileReader(file);

This uses unbuffered I/O, which is less efficient when compared to buffered I/O. In other words, the read characters
are directly passed instead of using a temporary (internal) buffer, which would speed up the I/O. To programmatically
use buffered I/O, you can pass the FileReader reference to a BufferedReader object, as in the following:

BufferedReader inputFile = new BufferedReader(new FileReader(file);

In the same way, you can also use BufferedWriter for buffered output. (In case of byte streams, you can use
BufferedInputStream and BufferedOutputStream, which we’ll discuss later in this chapter).

You’ll now use buffered I/O to read from and write to a text file. Listing 8-5 contains a simplified version of the
copy command in Windows.

Chapter 8 ■ Java I/O Fundamentals

234

Listing 8-5. Copy.java

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

// implements a simplified version of "copy" command provided in Windows
// syntax: java Copy SrcFile DstFile
// copies ScrFile to DstFile; over-writes the DstFile if it already exits
class Copy {
 public static void main(String []files) {
 if(files.length != 2) {
 System.err.println("Incorrect syntax. Correct syntax: Copy SrcFile DstFile");
 System.exit(−1);
 }
 String srcFile = files[0];
 String dstFile = files[1];
 // try opening the source and destination file
 // with FileReader and FileWriter
 try (BufferedReader inputFile = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile = new BufferedWriter(new FileWriter(dstFile))) {
 int ch = 0;
 // while there are characters to fetch, read the characters from
 // source stream and write them to the destination stream
 while((ch = inputFile.read()) != −1) {
 // ch is of type int - convert it back to char before
 // writing it
 outputFile.write((char)ch);
 }
 // no need to call flush explicitly for outputFile - the close()
 // method will first call flush before closing the outputFile stream
 } catch (FileNotFoundException fnfe) {
 // the passed file is not found ...
 System.err.println("Cannot open the file " + fnfe.getMessage());
 }
 catch(IOException ioe) {
 // some IO error occurred when reading the file ...
 System.err.printf("Error when processing file; exiting ... ");
 }
 // try-with-resources will automatically release FileReader object
 }
}

Let’s first check if this program works. Copy this Java source program itself (Copy.java) into another file
(DuplicateCopy.java). You can use the fc (file compare) command provided in Windows to make sure that the
contents of the original file and the copied file are same, to ensure that the program worked correctly.

Chapter 8 ■ Java I/O Fundamentals

235

D:\> java Copy Copy.java DuplicateCopy.java
D:\> fc Copy.java DuplicateCopyjava
Comparing files Copy.java and DuplicateCopy.java
FC: no differences encountered

Yes, it worked correctly. What if you give it a source file name that does not exist?

D:\> java Copy Cpy.java DuplicateCopyjava
Cannot open the file Cpy.java (The system cannot find the file specified)

You typed Cpy.java instead of Copy.java and the program terminates with a readable error message, as expected.
Here’s how this program works. In the try-with-resources statement, you opened srcFile for reading and

dstFile for writing. You wanted to use buffered I/O, so you passed FileReader and FileWriter references to
BufferedReader and BufferedWriter, respectively.

try (BufferedReader inputFile = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile = new BufferedWriter(new FileWriter(dstFile)))

You’re using the try-with-resources statement, and the close() method for BufferedWriter will first call the
flush() method before closing the stream.

When you’re using buffered I/O in your programs, it’s a good idea to call the flush() method explicitly in places
where you want to ensure that all pending characters or data is flushed (i.e., written to the underlying file).

“Tokenizing” Text
In the last two examples (Listings 8-4 and 8-5), you just read or wrote to text files. However, in real-world programs,
you may want to perform some processing when reading or writing files. For example, you may want to look out
for certain patterns, search for some specific strings, replace one sequence of characters with another sequence of
characters, filter out specific words, format the output in a certain way, etc. You can use existing APIs such as regular
expressions (covered in Chapter 7), Scanner, etc. for such purposes.

For illustration, consider that you want to list all the words in a given text file and eliminate all unnecessary
whitespaces, punctuation characters, etc. Also, you need to print the resulting words in alphabetical order. To solve this
problem, you can use a Scanner and pass the regular expression that you want to match or delimit (see Listing 8-6).

Listing 8-6. Tokenize.java

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;

// read the input file and convert it into "tokens" of words;
// convert the words to same case (lower case), remove duplicates, and print the words

Chapter 8 ■ Java I/O Fundamentals

236

class Tokenize {
 public static void main(String []args) {
 // read the input file
 if(args.length != 1) {
 System.err.println("pass the name of the file to be read as an argument");
 System.exit(−1);
 }
 String fileName = args[0];
 // use a TreeSet<String> which will automatically sort the words
 // in alphabetical order
 Set<String> words = new TreeSet<>();
 try (Scanner tokenizingScanner = new Scanner(new FileReader(fileName))) {
 // set the delimiter for text as non-words (special characters,
 // white-spaces, etc), meaning that all words other than punctuation
 // characters, and white-spaces will be returned
 tokenizingScanner.useDelimiter("\\W");
 while(tokenizingScanner.hasNext()) {
 String word = tokenizingScanner.next();
 if(!word.equals("")) { // process only non-empty strings
 // convert to lowercase and then add to the set
 words.add(word.toLowerCase());
 }
 }
 // now words are in alphabetical order without duplicates,
 // print the words separating them with tabs
 for(String word : words) {
 System.out.print(word + '\t');
 }
 } catch (FileNotFoundException fnfe) {
 System.err.println("Cannot read the input file - pass a valid file name");
 }
 }
}

Let’s see if it works:

D:\> type limerick.txt
There was a young lady of Niger
Who smiled as she rode on a tiger.
They returned from the ride
With the lady inside
And a smile on the face of the tiger.

D:\> java Tokenize limerick.txt
a and as face from inside lady niger of on returned ride
rode she smile smiled the there they tiger was who with young

Yes, it does work correctly. Now let’s see what this program does. The program first opens the file
using a FileReader and passes it to the Scanner object. The program sets the delimiter for Scanner with
useDelimiter("\\W"); the “\W” matches for non-words, so any non-word characters will become delimiters.

Chapter 8 ■ Java I/O Fundamentals

237

(Note that you’re setting the delimiter and not the pattern that you want to match). The program makes use of a
TreeSet<String> to store the read strings. The program reads words from the underlying stream, checks if it is a
non-empty string, and adds the lower-case versions of the string to the TreeSet. Since the data structure is a TreeSet,
it removes duplicates; remember that it’s a Set, which does not allow duplicates. Further, it is also an ordered data
structure, meaning that it maintains an “ordering” of values inserted, which in this case is an alphabetical ordering of
Strings. Hence the program correctly prints the words from given text file that contained a limerick.

Byte Streams
In this section, you’ll explore I/O with byte streams. You’ll first learn how to read and write data files, and also how
to stream objects, store them in files and then read them back. The class of OutputStream and its derived classes are
shown in Figure 8-4; InputStream and its derived classes are shown in Figure 8-5.

OutputStream
DataOutput
(interface)

ObjectOutput(interface)

ObjectOutputStream
DataOutputStream BufferedOutputStream

FileOutputStreamFilterOutputStreamPipedOutputStream

Figure 8-4. Important classes deriving from the OutputStream abstract class

DataInput
(interface)

ObjectInput (interface)

ObjectInputStream
DataInputStream BufferedInputStream PushbackInputStream

FileInputStreamFilterInputStream

InputStream

PipedInputStream

Figure 8-5. Important classes deriving from the InputStream abstract class

Table 8-5 summarizes the important classes of InputStream and OutputStream.

Chapter 8 ■ Java I/O Fundamentals

238

Reading a Byte Stream
Byte streams are used for processing files that do not contain human-readable text. For example, a Java source file has
human readable content, but a .class file does not. A .class file is meant for processing by the JVM, hence you must
use byte streams to process the .class file.

The contents of a .class file are written in a specific file format, described in the specification of the Java Virtual
Machine. Don’t worry; you’re not going to understand this complex file format, but you’ll just check its “magic
number.” Each file format has a magic number used to quickly check the file format. For example “.MZ” is the magic
number (or more properly, magic string) for .exe files in Windows. Similarly, the .class files have the magic number
“0xCAFEBABE”, written as a hexadecimal value. These magic numbers are typically written as first few bytes of a
variable length file format.

To understand how byte streams work, you’ll just check if the given file starts with the magic number
“0xCAFEBABE” (Listing 8-7). If so, it could be a valid .class file; if not, it’s certainly not a .class file.

Listing 8-7. ClassFileMagicNumberChecker.java

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Arrays;

// check if the passed file is a valid .class file or not.
// note that this is an elementary version of a checker that checks if the given file
// is a valid file that is written according to the JVM specification
// it checks only the magic number
class ClassFileMagicNumberChecker {
 public static void main(String []args) {
 if(args.length != 1) {
 System.err.println("Pass a valid file name as argument");
 System.exit(−1);
 }

Table 8-5. Important Classes Deriving from the InputStream and OutputStream Classes

Class name Short description

PipedInputStream,
PipedOutputStream

PipedInputStream and PipedOutputStream create a communication channel
on which data can be sent and received. PipedOutputStream sends the data and
PipedInputStream receives the data sent on the channel.

FileInputStream,
FileOutputStream

FileInputStream receives a byte stream from a file, FileOutputStream writes a
byte stream into a file.

FilterInputStream,
FilterOutputStream

These filtered streams are used to add functionalities to plain streams. The output
of an InputStream can be filtered using FilterInputStream. The output of an
OutputStream can be filtered using FilterOutputStream.

BufferedInputStream,
BufferedOutputStream

BufferedInputStream adds buffering capabilities to an input stream.
BufferedOutputStream adds buffering capabilities to an output stream.

PushbackInputStream A subclass of FilterInputStream, it adds “pushback” functionality to an input stream.

DataInputStream,
DataOutputStream

DataInputStream can be used to read java primitive data types from an input stream.
DataOutputStream can be used to write Java primitive data types to an output stream.

Chapter 8 ■ Java I/O Fundamentals

239

 String fileName = args[0];
 // create a magicNumber byte array with values for four bytes in 0xCAFEBABE
 // you need to have an explicit down cast to byte since
 // the hex values like 0xCA are of type int
 byte []magicNumber = {(byte) 0xCA, (byte)0xFE, (byte)0xBA, (byte)0xBE};
 try (FileInputStream fis = new FileInputStream(fileName)) {
 // magic number is of 4 bytes –
 // use a temporary buffer to read first four bytes
 byte[] u4buffer = new byte[4];
 // read a buffer full (4 bytes here) of data from the file
 if(fis.read(u4buffer) != −1) { // if read was successful
 // the overloaded method equals for two byte arrays
 // checks for equality of contents
 if(Arrays.equals(magicNumber, u4buffer)) {
 System.out.printf("The magic number for passed file %s
matches that of a .class file", fileName);
 }
 else {
 System.out.printf("The magic number for passed file %s does
not match that of a .class file", fileName);
 }
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("file does not exist with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 }
 }
}

Let’s first see if it works by passing the source (.java) file and the .class file for the same program.

D:> java ClassFileMagicNumberChecker ClassFileMagicNumberChecker.java
The magic number for passed file ClassFileMagicNumberChecker.java does not match that of a .class file
D:\> java ClassFileMagicNumberChecker ClassFileMagicNumberChecker.class
The magic number for passed file ClassFileMagicNumberChecker.class matches that of a .class file

Yes, it works. The classes InputStream and OutputStream form the base of the hierarchies for byte streams. You
perform file I/O, so open the given file as a FileInputStream. You need to check the first four bytes, so you read four
bytes in a temporary buffer. You need to compare the contents of this buffer against the sequence of bytes 0xCA, 0xFE,
0xBA, and 0xBE. If the contents of these two arrays are not equal, then the passed file is not a .class file.

In this program, you directly manipulate the underlying byte stream using a FileInputStream. In case you need
to speed up the program when you read large number of bytes, you can use a buffered output stream, as in

BufferedInputStream bis = new BufferedInputStream(new FileInputStream(fileName));

Similar to these input streams, you can use output streams to write sequence of bytes to a data file. You can use
FileOutputStream and BufferedOutputStream for that.

Chapter 8 ■ Java I/O Fundamentals

240

After reading this program, didn’t you think that reading an array of four bytes and comparing the contents of the
byte arrays was awkward (instead of directly comparing the contents of an integer)? In other words, 0xCAFEBABE is an
integer value, and you could read this value directly as an integer value and compare it against the read integer value.
For this, you need to use data streams, which provide methods like readInt(), which we’ll discuss now.

Data Streams
To understand how to write or read with byte streams, let’s write a simple program that writes and then reads constant
values to a data file (see Listing 8-8). To keep the problem simple, you will write only the values 0 to 9 in the form of
the following primitive type values: byte, short, int, long, float, and double.

Listing 8-8. DataStreamExample.java

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

// A simple class to illustrate data streams; write constants 0 and 1 in different data type values
// into a file and read the results back and print them
class DataStreamExample {
 public static void main(String []args) {
 // write some data into a data file with hard-coded name "temp.data"
 try (DataOutputStream dos =
 new DataOutputStream(new FileOutputStream("temp.data"))) {
 // write values 1 to 10 as byte, short, int, long, float and double
 // omitting boolean type because an int value cannot
 // be converted to boolean
 for(int i = 0; i < 10; i++) {
 dos.writeByte(i);
 dos.writeShort(i);
 dos.writeInt(i);
 dos.writeLong(i);
 dos.writeFloat(i);
 dos.writeDouble(i);
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 System.exit(−1); // don't proceed – exit the program
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 System.exit(−1); // don't proceed – exit the program
 }
 // the DataOutputStream will auto-close, so don't have to worry about it
 // now, read the written data and print it to console
 try (DataInputStream dis = new DataInputStream(new FileInputStream("temp.data"))) {
 // the order of values to read is byte, short, int, long, float and
 // double
 // since we've written from 0 to 0, the for loop has to run 10 times

Chapter 8 ■ Java I/O Fundamentals

241

 for(int i = 0; i < 10; i++) {
 // %d is for printing byte, short, int or long
 // %f, %g, or %e is for printing float or double
 // %n is for printing newline
 System.out.printf("%d %d %d %d %g %g %n",
 dis.readByte(),
 dis.readShort(),
 dis.readInt(),
 dis.readLong(),
 dis.readFloat(),
 dis.readDouble());
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } // the DataOutputStream will auto-close, so don't have to worry about it
 }
}

First, let’s see if it works by executing the program.

D:> java DataStreamExample
0 0 0 0 0.000000 0.000000
1 1 1 1 1.000000 1.000000
2 2 2 2 2.000000 2.000000
3 3 3 3 3.000000 3.000000
4 4 4 4 4.000000 4.000000
5 5 5 5 5.000000 5.000000
6 6 6 6 6.000000 6.000000
7 7 7 7 7.000000 7.000000
8 8 8 8 8.000000 8.000000
9 9 9 9 9.000000 9.000000

Yes, it works. Now, as mentioned earlier, the contents of data files are not human-readable. In this case, you’re
writing values 0 to 9 as various primitive type values into the temporary file write named temp.data. If you try to open
this data file and see the contents, you won’t be able to recognize or understand what it contains. Here’s an example
of its contents:

D:>type temp.data
 • • • •?Ç ?• • • • •@ @
 • • • •@@ • • • •@Ç @• • • • •@á @¶
• • • •@• @• @• @• A @
 A• @"

The typed contents of the file temp.data look like garbage values because the primitive type values like the
integer values 0 or 9 are stored in terms of bytes. However, the type command in Windows tries to convert these bytes
into human-readable characters, hence the output does not make any sense. The data will make sense only if we
know the format of the data stored in the file and read it according to that format.

Chapter 8 ■ Java I/O Fundamentals

242

Now let’s get back to the program and see how it works. The program writes to the data file with a hard-coded
file named temp.data in the current directory from which the program is run. This program first writes the data, so it
opens the file as an output stream. What does the following statement within the first try block mean?

DataOutputStream dos = new DataOutputStream(new FileOutputStream("temp.data"))

You can directly perform binary I/O with OutputStream and its derived class of FileOutputStream, but to process
data formats such as primitive type values, you need to use DataOutputStream, which acts as a wrapper over the
underlying FileOutputStream. So, you use the DataOutputStream here, which provides methods such as writeByte
and writeShort. You use these methods to write the primitive type values 0 to 9 into the data file. Note that you don’t
have to close the streams explicitly since you opened the DataOutputStream in a try-with-resources statement, hence
the close() method on dos reference will automatically be invoked. The close() method also flushes the underlying
stream; this close() method will also close the underlying reference to the FileOutputStream.

Once the file is written, you read the data file in a similar way. You open a FileInputStream and wrap it with a
DataInputStream. You read the data from the stream and print it in console. You used format specifiers such as %d
(which is a common format specifier for printing integral values like byte, short, int, or long) as well as %f, %g, or %e
specifiers for printing floating point values of type float or double; %n is for printing a newline character.

In this program, you wrote and read primitive type values. What about reference type objects, such as Objects,
Maps, etc.? Reading and writing objects is achieved through object streams, which we’ll discuss now.

Writing to and Reading from Object Streams: Serialization
The classes ObjectInputStream and ObjectOutputStream support reading and writing Java objects that you use in the
program. For example, if you are creating an online e-commerce web site for making purchases, you can choose to write
objects such as customers, purchase requests made, etc., to an RDBMS (we’ll cover JDBC in Chapter 10), or alternatively,
store the objects directly in flat files. In such cases, you must know how to read or write objects into streams.

Let’s introduce some terms related to this topic before we go ahead. The process of converting objects in memory
into sequence of bytes is known as serialization. The mechanism of storing objects in memory into files is known as
persistence. Often these concepts are clubbed together and referred as serialization only.

Listing 8-9 contains a simple example of writing the contents of a Map data structure to a file and reading it back
to illustrate the use of the classes ObjectInputStream and ObjectOutputStream to read or write objects. You store the
details of the last three US presidents in this map.

Listing 8-9. ObjectStreamExample.java

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.HashMap;
import java.util.Map;

// A simple class to illustrate object streams: fill a data structure, write it to a
// temporary file and read it back and print the read data structure
class ObjectStreamExample {
 public static void main(String []args) {
 Map<String, String> presidentsOfUS = new HashMap<>();
 presidentsOfUS.put("Barack Obama", "2009 to --, Democratic Party, 56th term");
 presidentsOfUS.put("George W. Bush", "2001 to 2009, Republican Party, 54th and 55th terms");

Chapter 8 ■ Java I/O Fundamentals

243

 presidentsOfUS.put("Bill Clinton", "1993 to 2001, Democratic Party, 52nd
and 53rd terms");
 try (ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("object.data"))) {
 oos.writeObject(presidentsOfUS);
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } // the ObjectOutputStream will auto-close, so don't have to worry about it

 try (ObjectInputStream ois = new ObjectInputStream(new
FileInputStream("object.data"))) {
 Object obj = ois.readObject();
 // first check if obj is of type Map
 if(obj != null && obj instanceof Map) {
 Map<String, String> presidents = (Map<String, String>) obj;
 System.out.println("President name \t Description \n");
 for(Map.Entry<String, String> president : presidents.entrySet()) {
 System.out.printf("%s \t %s %n", president.getKey(),
president.getValue());
 }
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } catch(ClassNotFoundException cnfe) {
 System.err.println("cannot recognize the class of the object - is the file
corrupted?");
 }
 }
}

Before discussing how the program works, let’s check if it works.

D:\> java ObjectStreamExample
President name Description

Barack Obama 2009 to --, Democratic Party, 56th term
Bill Clinton 1993 to 2001, Democratic Party, 52nd and 53rd terms
George W. Bush 2001 to 2009, Republican Party, 54th and 55th terms

The serialization process converts contents of the objects in memory with the description of the contents (known
as metadata). When the object has references to other objects, the serialization mechanism also includes them as part
of the serialized bytes. If you try to open the file in which the object is persisted, you cannot read these serialized and
then persisted objects. For example, if you try to read the object.data file, you’ll see numerous unreadable characters.

Now, let’s get back to the program and see how it works. In this program, you fill the HashMap container with
details of last three US presidents. Then, you open an output stream as follows:

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("object.data"))

Chapter 8 ■ Java I/O Fundamentals

244

The FileOutputStream opens a temporary file named object.data in the current directory. The
ObjectOutputStream is a wrapper over this underlying FileOutputStream. Inside this try-with-resources block,
you’ve only one statement, oos.writeObject(presidentsOfUS), which writes the object to the object.data file.

Reading the object requires a bit more work than writing the object. The readObject() method in
ObjectInputStream returns an Object type. You need to convert it back to Map<String, String>. Before downcasting
it to this specific type, you check if the obj is of type Map. Note that you don’t have to check if it’s Map<String, String>
because these generic types are lost in the process known as type erasure (see Chapter 6 for a discussion on this
topic). Once the downcast succeeds, you can read the values of the contents in this object.

Serialization: Some More Details

It is relevant for us to elaborate more on the topic of serialization. As illustrated in the last section, serialization is
a process of converting an object to a sequence of bytes. You can write a serialized object to a file as you did in last
example or you can put it on a socket to send it over the network.

The last example illustrated how to write objects to streams; that is nothing but serialization with persistence.
In the last example, you created an instance of HashMap and then serialized and deserialized it. What if you want to
serialize an object of a class you created (instead of serializing HashMap). Well, you can serialize objects of all classes
provided the classes implement the Serializable interface. In other words, a class is not serializable by default; you
need to implement the Serializable interface to make it serializable. In the last example, the HashMap class also
implements the Serializable interface.

You need to implement the Serializable interface in a class if you want to make the objects of the
class serializable.

Now, let’s assume that you want to serialize an object that contains an unserializable class member (say Thread
or Socket). Or, think of a situation where you do not want to serialize a member variable. For such situations, Java
offers a keyword known as transient. You can declare a member variable as transient and that variable will not be
serialized by the JVM. Let’s look at an example to understand it better. Assume that you have an USPresident class
that stores name of a US president, his period, and term of office. You want to serialize the objects of this class, so this
class implements the Serializable interface. However, you do not want to serialize one field, say term. Listing 8-10
shows how to achieve this.

Listing 8-10. TransientSerialization.java

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

class USPresident implements Serializable{
 private static final long serialVersionUID = 1L;
 @Override
 public String toString() {
 return "US President [name=" + name + ", period=" + period + ", term=" + term + "]";
 }

Chapter 8 ■ Java I/O Fundamentals

245

 public USPresident(String name, String period, String term) {
 this.name = name;
 this.period = period;
 this.term = term;
 }
 private String name;
 private String period;
 private transient String term;
}
class TransientSerialization {
 public static void main(String []args) {
 USPresident usPresident = new USPresident("Barack Obama", "2009 to --", "56th term");
 System.out.println(usPresident);

 //Serialize the object
 try (ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("USPresident.data"))){
 oos.writeObject(usPresident);
 }
 catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } // the ObjectOutputStream will auto-close, so don't have to worry about it

 //De-serialize the object
 try(ObjectInputStream ois = new ObjectInputStream(new
FileInputStream("USPresident.data"))){
 Object obj = ois.readObject();
 if(obj != null && obj instanceof USPresident){
 USPresident presidentOfUS = (USPresident)obj;
 System.out.println(presidentOfUS);
 }
 }catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } catch(ClassNotFoundException cnfe) {
 System.err.println("cannot recognize the class of the object - is the
file corrupted?");
 }
 }
}

It prints the following:

US President [name=Barack Obama, period=2009 to --, term=56th term]
US President [name=Barack Obama, period=2009 to --, term=null]

This program is very simple. First, you create an instance of a USPresident class with all required fields. Then,
you print the contents of the object. After that, you serialize the object and then deserialize it. You print the contents of

Chapter 8 ■ Java I/O Fundamentals

246

the object again. What you can observe from the output is that the value of the field term is not stored by the program.
Why? Because you declared term as a transient field. All class members declared as transient are not serialized, so
their values are lost after deserialization.

One more thing requires attention here—serialVersionUID. In this example, it’s set it to 1. If you are
implementing Serializable and not defining serialVersionUID, you will get a warning message. In fact, if you don’t
define it, JVM will define it for you; JVM will compute it based on the class behavior. But why it is required? Well, it is
there to prevent mistakenly loading a wrong version of a class while deserializing. Also, defining serialVersionUID
enables the serialized program to work across different JVM implementations seamlessly (which might not be a case
when you are not defining it explicitly). The bottom line: whenever you make a change in a serialized class, do not
forget to change the serialVersionUID also.

Points to Remember
Here are the noteworthy points to help you grasp Java I/O concepts:

When you use buffered streams, you should call •	 flush() once you are done with data
transmission. The internal buffer might be holding some data that will be cleared and sent
to the destination once you call flush(). However, the method close() on the stream will
automatically call flush().

You might have observed that you can combine stream objects. You can create an object of •	
BufferedInputStream that takes a FileInputStream object. In this way, the output of one
stream is chained to the filtered stream. This is the important, useful, and beautiful way to
customize the stream in a desired way.

•	 The Serializable interface is a marker interface. That means the Serializable interface
does not declare any method inside it.

If you want to customize the process of serialization, you can implement •	 readObject() and
writeObject(). Note that both of these methods are private methods, which means you
are not overriding or overloading these methods. JVM checks the implementation of these
methods and calls them instead of the usual methods. It sounds weird but it is the way the
customization of serialization process is implemented in the JVM.

As discussed in earlier sections, a serialized object can be communicated over the network •	
and deserialized on another machine. However, the class file of the object must be in the path
of the destination machine, otherwise only the state of the object will be restored—not the
whole object (i.e., you cannot invoke a method on the restored object).

You can create your own protocol for serialization. For that, you just need to implement the •	
Externalizable interface instead of the Serializable interface.

When you are not specifying •	 serialVersionUID in a serialized class, JVM computes it for
you. However, each JVM implementation has different mechanism to compute it; hence, it is
not guaranteed that your serialized class will work on two different JVMs when you have not
specified the serialVersionUID explicitly. Therefore, it is strongly recommended that you
provide serialVersionUID in a class implementing the Serializable interface.

Chapter 8 ■ Java I/O Fundamentals

247

Question time!

1. Consider the following code snippet:

USPresident usPresident = new USPresident("Barack Obama", "2009 to --", 56);
try (ObjectOutputStream oos = new ObjectOutputStream(new
FileOutputStream("USPresident.data"))){
 oos.writeObject(usPresident);
 usPresident.setTerm(57);
 oos.writeObject(usPresident);
 }

If you deserialize the object and print the field term (term is declared as int and is not a
transient), what it will print?

a. 56

B. 57

C. null

d. Compiler error

e. runtime exception

Answer: a. 56

(Yes, it will print 56 even though you changed the term using its setter to 57 and
serialized again. this happens due to serialVersionUID, which is checked by the Jvm at
the time of serialization. If a class is already serialized and you try to serialize it again, the
Jvm will not serialize it.)

2. Consider the following code segment:

OutputStream os = new FileOutputStream("log.txt");
System.setErr(new PrintStream(os)); // SET SYSTEM.ERR
System.err.println("Error");

Which one of the following statements is true regarding this code segment?

a. the line with comment set sYstem.err will not compile and will result in a
compiler error.

B. the line with comment set sYstem.err will result in throwing a runtime exception
since System.err cannot be programmatically redirected.

C. the program will print the text “error” in console since System.err by default sends
the output to console.

d. this code segment redirects the System.err to the log.txt file and will write the
text “error” to that file.

Chapter 8 ■ Java I/O Fundamentals

248

Answer: d. this code segment redirects the System.err to the log.txt file and will
write the text “error” to that file.

(note that you can redirect the System.err programmatically using the setErr()
method. System.err is of type PrintStream, and the System.setErr() method takes a
PrintStream as an argument. Once the error stream is set, all writes to System.err will
be redirected to it. hence, this program will create log.txt with the text “error” in it.)

3. Which one of the following definitions of the AResource class implementation is correct
so that it can be used with try-with-resources statement?

a. class AResource implements Closeable {
 protected void close() /* throws IOException */ {
 // body of close to release the resource
 }
}

B. class AResource implements Closeable {
 public void autoClose() /* throws IOException */ {
 // body of close to release the resource
 }
 }

C. class AResource implements AutoCloseable {
 void close() /* throws IOException */ {
 // body of close to release the resource
 }
 }

d. class AResource implements AutoCloseable {
 public void close() throws IOException {
 // body of close to release the resource
 }
}

Answer:

d. class AResource implements AutoCloseable {
 public void close() throws IOException {
 // body of close to release the resource
 }
 }

(AutoCloseable is the base interface of the Closeable interface; AutoCloseable
declares close as void close() throws Exception; In Closeable, it is declared as
public void close() throws IOException;. For a class to be used with try-with-
resources, it should both implement Closeable or AutoCloseable and correctly override
the close() method. Option a declares open() protected; since the close() method is
declared public in the base interface, you cannot reduce its visibility to protected, so this
will result in a compiler error. Option B declares autoClose(); a correct implementation

Chapter 8 ■ Java I/O Fundamentals

249

would define the close() method. Option C declares close() with default access;
since the close method is declared public in the base interface, you cannot reduce its
visibility to default accesses, so it will result in a compiler error. Option d is a correct
implementation of the AResource class that overrides the close() method.)

4. Consider the following code segment:

FileInputStream findings = new FileInputStream("log.txt");
DataInputStream dataStream = new DataInputStream(findings);
BufferedReader br = new BufferedReader(new InputStreamReader(dataStream));
String line;
while ((line = br.readLine()) != null) {
 System.out.println(line);
}
br.close();

Which two options are true regarding this code segment?

a. br.close() statement will close only the BufferedReader object, and findings
and dataStream will remain unclosed.

B. the br.close() statement will close the BufferedReader object and the underlying
stream objects referred by findings and dataStream.

C. the readLine() method invoked in the statement br.readLine() can throw an
IOException; if this exception is thrown, br.close() will not be called, resulting in
a resource leak.

d. the readLine() method invoked in the statement br.readLine() can throw an
IOException; however, there will not be any resource leaks since Garbage Collector
collects all resources.

e. In this code segment, no exceptions can be thrown calling br.close(), so there is
no possibility of resource leaks.

Answer: B and C. the br.close() statement will close the BufferedReader object and
the underlying stream objects referred to by findings and dataStream. the readLine()
method invoked in the statement br.readLine() can throw an IOException;if this
exception is thrown, br.close() will not be called, resulting in a resource leak. note that
Garbage Collector will only collect unreferenced memory resources; it is the programmer’s
responsibility to ensure that all other resources such as stream objects are released.

Summary
Reading and Writing Data to Console

You can obtain a reference to the console using the •	 System.console() method; if the JVM is
not associated with any console, this method will fail and return null.

Many methods are provided in •	 Console-support formatted I/O. You can use the printf()
and format() methods available in the Console class to print formatted text; the overloaded
readLine() and readPassword() methods take format strings as arguments.

Chapter 8 ■ Java I/O Fundamentals

250

Use the •	 readPassword() method for reading secure strings such as passwords. It is
recommended to use Array’s fill() method to “empty” the password read into the character
array (to avoid malicious access to the typed passwords).

The methods in the •	 Console class have better support for special characters compared to
printing text through PrintStreams.

Read and Write to Files with Streams

The •	 java.io package has classes supporting both character streams and byte streams.

You can use character streams for text-based I/O. Byte streams are used for data-based I/O.•	

Character streams for reading and writing are called •	 readers and writers respectively
(represented by the abstract classes of Reader and Writer).

Byte streams for reading and writing are called •	 input streams and output streams respectively
(represented by the abstract classes of InputStream and OutputStream).

You should only use character streams for processing text files (or human-readable files), and •	
byte streams for data files. If you try using one type of stream instead of another, your program
won’t work as you would expect; even if it works by chance, you’ll get nasty bugs. So don’t mix
up streams, and use the right stream for a given task at hand.

For both byte and character streams, you can use buffering. The buffer classes are provided •	
as wrapper classes for the underlying streams. Using buffering will speed up the I/O when
performing bulk I/O operations.

For processing data with primitive data types and strings, you can use data streams.•	

•	 Serialization: The process of converting the objects in memory into a series of bytes.

•	 Persistence: The mechanism of storing objects in memory into files.

You can use object streams for object persistence (i.e., reading and writing objects in memory •	
to files and vice versa).

251

Chapter 9

Java File I/O (NIO.2)

Use the Path class to operate on file and directory paths

Use the Files class to check, delete, copy, or move a file or directory

Read and change file and directory attributes

Recursively access a directory tree

Find a file by using the PathMatcher class

Watch a directory for changes by using WatchService

Exam Topics

We covered I/O fundamentals in the last chapter, where you learned how to read and write from console and how to
use streams to read and write to files. In this chapter, you will learn how to work with file systems—for example, how
to save a file/directory; create a file/directory; navigate directories; copy, move, or delete a file/directory; and so on.
As a Java programmer, you should be aware how to programmatically achieve these file/directory operations.

Java offers a rich set of APIs to manipulate files and directories. In fact, Java 7 introduces a new set of I/O APIs
called NIO.2 that offer convenient ways to perform operations related to a file system. In this chapter, you will explore
how to perform various file operations such as create, move, copy, and delete. You will also learn how to search files in
a directory structure and how to get/set properties of files/directories.

A Quick History of I/O APIs
Initially, Java offered the File class (in the java.io package) to access file systems. This class represents a file/
directory in the file system and allows you to perform operations such as checking the existence of a file/directory,
getting the properties, and deleting a file/directory. However, the first version of the API was not sufficient to meet the
needs of developers, and a need for improved I/O APIs was felt. In brief, the following shortcomings were noticed in
the first version of the Java I/O APIs:

The •	 File class lacked the significant functionality required to implement even commonly
used functionality. For instance, it lacked a copy method to copy a file/directory.

chapter 9 ■ Java File i/O (NiO.2)

252

The •	 File class defined many methods that returned a Boolean value. Thus, in case of an
error, false was returned, rather than throwing an exception, so the developer had no way of
knowing why that call failed.

The •	 File class did not provide good support for handling symbolic links.

The •	 File class handled directories and paths in an inefficient way (it did not scale well).

The •	 File class provided access to a very limited set of file attributes, which was insufficient in
many situations.

To overcome these problems, Java introduced NIO (New IO) in Java 4. The key features of NIO were:

•	 Channels and Selectors: NIO offered support for various types of channels. A channel is
an abstraction over lower-level file system features (such as memory-mapped files and file
locking) that lets you transfer data at a faster speed. Channels are non-blocking, so Java
provides another feature—a selector—to select a ready channel for data transfer. A socket is a
blocking feature whereas a channel is a non-blocking feature.

•	 Buffers: Java 4 introduced buffering for all primitive classes (except for Boolean). It provided
the Buffer class that offers operations such as clear, flip, mark, reset, and rewind. Concrete
classes (subclasses of the Buffer base class) offers getters and setters for setting and getting
data to and from a buffer.

•	 Charset: Java 4 also introduced charset (java.nio.charset), encoders, and decoders to map
bytes and Unicode symbols.

With SE 7 version, Java has introduced comprehensive support for I/O operations. Java 7 introduces the
java.nio.file package for better support for handling symbolic links, to provide comprehensive attribute access,
and to support the extended file system through interfaces or classes such as Path, Paths, and Files. You will explore
these topics in more detail in the rest of this chapter.

Using the Path Interface
File systems usually form a tree. The file system starts with a root directory that contains files and directories
(directories are also called folders in Windows). Each directory, in turn, may have subdirectories or hold files.
To locate a file, you just need to put together the directories from the root directory to the immediate directory
containing the file, along with a file separator, trailing with the file name. For instance, if the myfile.txt file resides in
a mydocs directory, which resides in root directory C:\, then the path of the file is C:\mydocs\myfile.txt. Every file
has a unique path to locate it (apart from symbolic links).

A path could be an absolute path (such as C:\mydocs\myfile.txt), which starts from a root element. On the
other hand, a path could be specified as a relative path. When you try to compile a Java program, you just write
something like javac programFileName.java; here, you have specified the Java source file path relative to the
currently selected directory, so this path is a relative path. You need a reference path (such as current directory path in
this case) to interpret a relative path.

Before we proceed further, it is relevant to talk about symbolic links. A symbolic link is like a pointer or reference
for the actual file. In general, symbolic links are transparent to the applications, which means the operations
are performed directly on the actual files rather than these links (except, of course, for the symbolic link-specific
operations).

chapter 9 ■ Java File i/O (NiO.2)

253

Java 7 introduces a new programming abstraction for path, namely the Path interface. This Path abstraction is
used in new features and APIs throughout NIO.2, so it is an important interface to understand. A path object contains
the names of directories and files that make the full path of the file/directory represented by the Path object; the Path
abstraction provides methods to extract path elements, manipulate them, and append them. In fact, you will see later
that almost all of the methods that access files/directories to get information about them or manipulate them use
Path objects. Before you see a few examples illustrating how to use the Path interface, Table 9-1 quickly summarizes
important methods in this interface.

Table 9-1. Important Methods in the Path Interface

Method Description

Path getRoot() Returns a Path object representing the root of the given path,
or null if the path does not have a root.

Path getFileName() Returns the file name or directory name of the given path. Note
that the file/directory name is the last element or name in the
given path.

Path getParent() Returns the Path object representing the parent of the given
path, or null if no parent component exists for the path.

int getNameCount() Returns the number of file/directory names in the given path;
returns 0 if the given path represents the root.

Path getName(int index) Returns the ith file/directory name; the index 0 starts from
closest name to the root.

Path subpath(int beginIndex, int endIndex) Returns a Path object that is part of this Path object; the
returned Path object has a name that begins at beginIndex
till the element at index endIndex - 1. In other words,
beginIndex is inclusive of the name in that index and
exclusive of the name in endIndex. This method may throw
IllegalArgumentException if beginIndex is >= number of
elements, or endIndex <= beginIndex, or endIndex is > number
of elements.

Path normalize() Removes redundant elements in path such as . (dot symbol
that indicates current directory) and .. (double dot symbol that
indicates parent directory).

Path resolve(Path other)
Path resolve(String other)

Resolves a path against the given path. For example, this
method could combine the given path with the other path and
return the resulting path.

Boolean isAbsolute() Returns true if the given path is an absolute path; returns false
if not (when the given path is a relative path, for example).

Path startsWith(String path)
Path startsWith(Path path)

Returns true if this Path object starts with the given path, or
else returns false.

Path toAbsolutePath() Returns the absolute path.

chapter 9 ■ Java File i/O (NiO.2)

254

Getting Path Information
Let’s create a Path object and retrieve the basic information associated with the object. Listing 9-1 shows how to
create a Path object and get information about it.

Listing 9-1. PathInfo1.java

import java.nio.file.*;

// Class to illustrate how to use Path interface and its methods
public class PathInfo1 {
 public static void main(String[] args) {
 // create a Path object by calling static method get() in Paths class
 Path testFilePath = Paths.get("D:\\test\\testfile.txt");

 // retrieve basic information about path
 System.out.println("Printing file information: ");
 System.out.println("\t file name: " + testFilePath.getFileName());
 System.out.println("\t root of the path: " + testFilePath.getRoot());
 System.out.println("\t parent of the target: " + testFilePath.getParent());

 // print path elements
 System.out.println("Printing elements of the path: ");
 for(Path element : testFilePath) {
 System.out.println("\t path element: " + element);
 }
 }
}

The program prints the following:

Printing file information:
 file name: testfile.txt
 root of the path: D:\
 parent of the target: D:\test
Printing elements of the path:
 path element: test
 path element: testfile.txt

The output is self explanatory. Let’s understand the program.

First, you create a •	 Path instance using the get() method of the Paths class. The get() method
expects a string representing a path as an input. This is the easiest way to create a Path
object.

Note that you use an escape character, •	 \, in Paths.get("D:\\test\\testfile.txt").
Without that, \t would mean a tab character, and if you run the program, you’ll get a
java.nio.file.InvalidPathException since you cannot have tab characters in path names.

Then, you extract the file name represented by this •	 Path object using the getFilename()
method of the Path object.

You also use •	 getRoot() to get the root element of the Path object and parent directory of the
target file using the getParent() method.

chapter 9 ■ Java File i/O (NiO.2)

255

You iterate the elements in the path using a •	 foreach loop. Alternatively, you can use
getNameCount() to get the number of elements or names in the path and use getName(index)
to iterate and access elements/names one by one.

Now, let’s try another example. In this example, you will explore some interesting aspects of a Path object such as
how to get an absolute path from a relative path and how you can normalize a path.

Before looking at the example, you need to first understand the methods used in the example:

•	 The toUri() method returns the URI (a path that can be opened from a browser)
from the path.

•	 The toAbsolutePath() method returns the absolute path from a given relative path. In case
the input path is already an absolute path, the method returns the same object.

The •	 normalize() method performs normalization on the input path. In other words, it
removes unnecessary symbols (such as “ . ” and “ .. ”) from the Path object.

•	 toRealPath() is an interesting method. It returns an absolute path from the input path object
(as toAbsolutePath()). Also, it normalizes the path (as in normalize()). Further, if linking
options are chosen properly, it resolves symbolic links also. However, to succeed with this
method, it is necessary that the target file/directory exists in the file system, which is not a
prerequisite for other Path methods.

Now, let’s take a look at the example in Listing 9-2. Assume that the file name Test does not exist in your file system.

Listing 9-2. PathInfo2.java

import java.io.IOException;
import java.nio.file.*;

// To illustrate important methods such as normalize(), toAbsolutePath(), and toReativePath()
class PathInfo2 {
 public static void main(String[] args) throws IOException {
 //get a path object with relative path
 Path testFilePath = Paths.get(".\\Test");
 System.out.println("The file name is: " + testFilePath.getFileName());
 System.out.println("It's URI is: " + testFilePath.toUri());
 System.out.println("It's absolute path is: " + testFilePath.toAbsolutePath());
 System.out.println("It's normalized path is: " + testFilePath.normalize());

 // get another path object with normalized relative path
 Path testPathNormalized = Paths.get(testFilePath.normalize().toString());
 System.out.println("It's normalized absolute path is: " +
testPathNormalized.toAbsolutePath());
 System.out.println("It's normalized real path is: " +
 testFilePath.toRealPath (LinkOption.NOFOLLOW_LINKS));
 }
}

In our machine it printed the following:

The file name is: Test
It's URI is: file:///D:/OCPJP7/programs/NIO2/./Test
It's absolute path is: D:\OCPJP7\programs\NIO2\.\Test
It's normalized path is: Test

chapter 9 ■ Java File i/O (NiO.2)

256

It's normalized absolute path is: D:\OCPJP7\programs\NIO2\Test
Exception in thread "main" java.nio.file.NoSuchFileException: D:\OCPJP7\programs\NIO2\Test
 at sun.nio.fs.WindowsException.translateToIOException(WindowsException.java:79)
 [. . . stack trace elided . . .]
 at PathInfo2.main(PathInfo2.java:16)

Depending on the directory in which you run this program, the directory path will be different for you. In this
program you instantiated a Path object using a relative path. The method getFileName() returns the target file name,
as you just saw in the last example. The getUri() method returns the URI, which can be used with browsers, and
the toAbsolutePath() method returns the absolute path of the given relative path. (Note that we are executing the
program from the "D:/OCPJP7/programs/NIO2/" folder, hence it becomes the current working directory and therefore
it appears in the absolute path and URI.)

You call the normalize() method to remove redundant symbols from the path, so the normalize() method
removes the leading dot (In many operating systems, the “.” (single dot) symbol represents the current directory and “..”
(double dot) represents parent directory). You then instantiate another Path object using normalized output and print
the absolute path again. Finally, you try to call toRealpath(); however, you get an exception (NoSuchFileException).
Why? Because, you have not created the Test directory in the current working directory.

Now, let’s create a Test directory in the D:/OCPJP7/programs/NIO2/ directory and run this example again. We
got the following output:

The file name is: Test
It's URI is: file:///D:/OCPJP7/programs/NIO2/./Test/
It's absolute path is: D:\OCPJP7\programs\NIO2\.\Test
It's normalized path is: Test
It's normalized absolute path is: D:\OCPJP7\programs\NIO2\Test
It's normalized real path is: D:\OCPJP7\programs\NIO2\Test

Now, the last call toRealPath() works fine and returns the absolute normalized path.
Path provides many other useful methods, and some of them are listed in Table 9-1. To give an example, here’s

how to use the resolve() method:

Path dirName = Paths.get("D:\\OCPJP7\\programs\\NIO2\\");
Path resolvedPath = dirName.resolve("Test");
System.out.println(resolvedPath);

This code segment prints the following:

D:\OCPJP7\programs\NIO2\Test

This resolve() method considers the given path to be a directory and joins (i.e., resolves) the passed path with
it, as shown in this example.

 the toPath() method in the java.io.File class returns the Path object; this method was added in
Java 7. Similarly, you can use the toFile() method in the Path interface to get a File object.

chapter 9 ■ Java File i/O (NiO.2)

257

Comparing Two Paths
The Path interface provides two methods to compare two Path objects: equals() and compareTo(). The equals()
method checks the equality of two Path objects and returns a Boolean value when compareTo() compares two Path
objects character by character and returns an integer: 0 if both Path objects are equal; a negative integer if this path is
lexicographically less than the parameter path; and a positive integer if this path is lexicographically greater than the
parameter path.

Listing 9-3 contains a small program to understand these methods.

Listing 9-3. PathCompare1.java

import java.nio.file.*;

// illustrates how to use compareTo and equals and also shows the difference between the two methods
class PathCompare1 {
 public static void main(String[] args) {
 Path path1 = Paths.get("Test");
 Path path2 = Paths.get("D:\\OCPJP7\\programs\\NIO2\\Test");
 // comparing two paths using compareTo() method
 System.out.println("(path1.compareTo(path2) == 0) is: " + (path1.compareTo(path2) == 0));

 //comparing two paths using equals() method
 System.out.println("path1.equals(path2) is: " + path1.equals(path2));

 // comparing two paths using equals() method with absolute path
 System.out.println("path2.equals(path1.toAbsolutePath()) is "
 + path2.equals(path1.toAbsolutePath()));
 }
}

Intentionally, we have taken one path as relative path and another one as absolute path. Can you guess the
output of the program? It printed the following:

(path1.compareTo(path2) == 0) is: false
path1.equals(path2) is: false
path2.equals(path1.toAbsolutePath()) is true

Let’s understand the program step by step.

You first compare two paths using the •	 compareTo() method, which compares paths character
by character and returns an integer. In this case, since one path is a relative path and another
one is an absolute path, it is expected to get first a message that says both paths are not equal.

Then you compare both paths using •	 equals(). The result is the same, which means even if
two Path objects are pointing to the same file/directory, it is possible that equals() returns
false. You need to make sure that both paths are absolute paths.

In the next step, you convert the relative path to an absolute path and then compare them •	
using equals(). This time both paths match.

chapter 9 ■ Java File i/O (NiO.2)

258

even if two Path objects point to the same file/directory, it is not guaranteed that you will get true from
the equals() method. You need to make sure that both are absolute and normalized paths for an equality
comparison to succeed for paths.

Using the Files Class
The previous section discussed how to create a Path instance and extract useful information from it. Now you will use
Path objects to manipulate files/directories. Java 7 offers a new Files class (in the java.nio.file package) that you
can use to perform various file-related operations on files or directories. Note that Files is a utility class, meaning that
it is a final class with a private constructor and consists only of static methods. So you can make use of the Files class
by calling the static methods it provides, such as copy() to copy files. This class provides a wide range of functionality.
With this class you can create directories, files, or symbolic links; create streams such as directory streams, byte
channels, or input/output streams; examine the attributes of the files; walk the file tree; or perform file operations
such as read, write, copy, or delete. Table 9-2 provides a sample of the important methods in the Files class.

Table 9-2. Some Methods Related to File Attributes in the Files Class

Method Description

Path createDirectory(Path dirPath,
FileAttribute<?>. . . dirAttrs)

Path createDirectories(Path dir,
FileAttribute<?>. . . attrs)

Creates a file given by the dirPath, and sets the
attributes given by dirAttributes. May throw
exceptions such as FileAlreadyExistsException
or UnsupportedOperationException (e.g., when the
file attributes cannot be set as given by dirAttrs).
The difference between createDirectory and
createDirectories is that createDirectories creates
intermediate directories given by dirPath if they are not
already present.

Path createTempFile(Path dir, String prefix,
String suffix, FileAttribute<?>. . . attrs)

Creates a temporary file with given prefix, suffix, and
attributes in the directory given by dir.

Path createTempDirectory(Path dir,
String prefix, FileAttribute<?>. . . attrs)

Creates a temporary directory with the given prefix,
directory attributes in the path specified by dir.

Path copy(Path source, Path target,
CopyOption. . . options)

Copy the file from source to target. CopyOption could
be REPLACE_EXISTING, COPY_ATTRIBUTES, or
NOFOLLOW_LINKS. Can throw exceptions such as
FileAlreadyExistsException.

Path move(Path source, Path target,
CopyOption. . . options)

Similar to the copy operation except that the source
file is removed; if the source and target are in the same
directory, it is a file rename operation.

boolean isSameFile(Path path, Path path2) Checks if the two Path objects are located the same
file or not.

boolean exists(Path path,
LinkOption. . . options)

Checks if a file/directory exists in the given path; can
specify LinkOption.NOFOLLOW_LINKS to not to follow
symbolic links.

(continued)

chapter 9 ■ Java File i/O (NiO.2)

259

Checking File Properties and Metadata
In the last section on the Path interface, you tried to figure out whether two paths are pointing to the same file or not
(see Listing 9-3). There is another way to find out the same thing. You can use the isSameFile() method from the
Files class. Listing 9-4 shows how to do it.

Listing 9-4. PathCompare2.java

import java.io.IOException;
import java.nio.file.*;

// illustrates how to use File class to compare two paths
class PathCompare2 {
 public static void main(String[] args) throws IOException {
 Path path1 = Paths.get("Test");
 Path path2 = Paths.get("D:\\OCPJP7\\programs\\NIO2\\Test");

 System.out.println("Files.isSameFile(path1, path2) is: "
 + Files.isSameFile(path1, path2));
 }
}

The program prints the following:

Files.isSameFile(path1, path2) is: true

In this case, you create the Test directory in the path D:\OCPJP7\programs\NIO2\ and it worked fine.
However, if the Test file/directory does not exist in the given path, you’ll get a NoSuchFileException. But how

can you figure out if a file/directory exists in the given path? The Files class offers the exists() method to do that.

Method Description

Boolean isRegularFile(Path path,
LinkOption. . .)

Returns true if the file represented by path is a
regular file.

Boolean isSymbolicLink(Path path) Returns true if the file presented by path is a
symbolic link.

Boolean isHidden(Path path) Return true if the file represented by path is a
hidden file.

long size(Path path) Returns the size of the file in bytes represented by path.

UserPrincipal getOwner(Path path, LinkOption. . .),
Path setOwner(Path path, UserPrincipal owner)

Gets/sets the owner of the file.

FileTime getLastModifiedTime(Path path,
LinkOption. . .), Path setLastModifiedTime(Path
path, FileTime time)

Gets/sets the last modified time for the specified time.

Object getAttribute(Path path, String attribute,
LinkOption. . .), Path setAttribute(Path path,
String attribute, Object value, LinkOption. . .)

Gets/sets the specified attribute of the specified file.

Table 9-2. (continued)

chapter 9 ■ Java File i/O (NiO.2)

260

In fact, you can distinguish between a file and a directory using another method called isDirectory() from the Files
class. Listing 9-5 uses these methods.

Listing 9-5. PathExists.java

import java.nio.file.*;

class PathExists {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);

 if(Files.exists(path, LinkOption.NOFOLLOW_LINKS)) {
 System.out.println("The file/directory " + path.getFileName() + " exists");
 // check whether it is a file or a directory
 if(Files.isDirectory(path, LinkOption.NOFOLLOW_LINKS)) {
 System.out.println(path.getFileName() + " is a directory");
 }
 else {
 System.out.println(path.getFileName() + " is a file");
 }
 }
 else {
 System.out.println("The file/directory " + path.getFileName() + " does not exist");
 }
 }
}

In this program, you are accepting a file/directory name from the command line and creating a Path object.
Then, you are using the exists() method from the Files class to find out whether the file/directory exists or not.
The second parameter of the exists() method is link-option, which is used to specify whether you want to follow
symbolic links or not; in this case, you are not following symbolic links. If the file/directory associated with the input
path exists, then you are checking whether the input path is indicating a file or a directory using the isDirectory()
method of the Files class.

We ran this program with two different command line arguments and we got the following output:

D:\OCPJP7\programs\NIO2\src>java PathExists PathExists.java
The file/directory PathExists.java exists
PathExists.java is a file

D:\OCPJP7\programs\NIO2\src>java PathExists D:\OCPJP7\
The file/directory OCPJP7 exists
OCPJP7 is a directory

D:\OCPJP7\programs\NIO2\src>java PathExists D:\
The file/directory null exists
null is a directory

In these outputs, you may have noticed the behavior when the root name (drive name in Windows in this case)
is given as an argument. A root name is a directory, but path.getFileName() returns null if the path is a root name,
hence the output.

chapter 9 ■ Java File i/O (NiO.2)

261

Existing files might not allow you to read, write, or execute based on your credentials. You can check the ability
of a program to read, write, or execute programmatically. The Files class provides the methods isReadable(),
isWriteable(), and isExecutable() to do that. Listing 9-6 uses these methods in a small example.

Listing 9-6. FilePermissions.java

import java.nio.file.*;

class FilePermissions {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
 System.out.printf("Readable: %b, Writable: %b, Executable: %b ",
 Files.isReadable(path), Files.isWritable(path), Files.isExecutable(path));
 }
}

Let’s execute this program with two different inputs; here is the output:

D:\OCPJP7\programs\NIO2\src>java FilePermissions readonly.txt
Readable: true, Writable: false, Executable: true
D:\OCPJP7\programs\NIO2\src>java FilePermissions FilePermissions.java
Readable: true, Writable: true, Executable: true

For the readonly.txt file, the permissions are readable, and executable, but not writable. The file
FilePermissions.java itself has all the three permissions: readable, writable, and executable.

There are many other methods that can be used to fetch file properties. Let’s use the getAttribute() method to
get some attributes of a file. The method takes variable number of parameters: first, a Path object; second, an attribute
name; and subsequently, the link options (see Listing 9-7).

Listing 9-7. FileAttributes.java

import java.io.IOException;
import java.nio.file.*;

class FileAttributes {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
 try {
 Object object = Files.getAttribute(path, "creationTime",
LinkOption.NOFOLLOW_LINKS);
 System.out.println("Creation time: " + object);

 object = Files.getAttribute(path, "lastModifiedTime",
LinkOption.NOFOLLOW_LINKS);
 System.out.println("Last modified time: " + object);

 object = Files.getAttribute(path, "size", LinkOption.NOFOLLOW_LINKS);
 System.out.println("Size: " + object);

 object = Files.getAttribute(path, "dos:hidden", LinkOption.NOFOLLOW_LINKS);
 System.out.println("isHidden: " + object);

chapter 9 ■ Java File i/O (NiO.2)

262

 object = Files.getAttribute(path, "isDirectory", LinkOption.NOFOLLOW_LINKS);
 System.out.println("isDirectory: " + object);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Let’s first execute this program by giving the name of this program itself and then look at what happens:

D:\> java FileAttributes FileAttributes.java
Creation time: 2012-10-06T10:20:10.34375Z
Last modified time: 2012-10-06T10:21:54.859375Z
Size: 914
isHidden: false
isDirectory: false

The tricky part of the example is the second parameter of the getAttribute() method. You need to
provide a correct attribute name to extract the associated value. The expected string should be specified in
view:attribute format, where view is the type of FileAttributeView and attribute is the name of the attribute
supported by view. If no view is specified, the view is assumed as basic. In this case, you specified all attributes
belonging to a basic view except one attribute from dos view. If you do not specify the correct view name,
you will get an UnsupportedOperationException, and if you mess up with the attribute name, you will get an
IllegalArgumentException.

For example, if you type sized instead of size, you’ll get this exception:

Exception in thread “main” java.lang.IllegalArgumentException: ‘sized’ not recognized
[. . . stack trace elided . . .]

Well, you now know how to read metadata associated with files using the getAttribute() method. However, if
you want to read many attributes in one shot, then calling the getAttribute() method for each attribute might not
be a good idea (from a performance standpoint). In this case, Java 7 offers a solution: an API— readAttributes()—to
read the attributes in one shot. The API comes in two flavors:

Map<String,Object> readAttributes(Path path, String attributes, LinkOption. . . options)

<A extends BasicFileAttributes> A readAttributes(Path path, Class<A> type, LinkOption. . . options)

The first method returns a Map of attribute value pairs and takes variable length parameters. The attributes
parameter is the key parameter where you need to specify what you want to retrieve. This parameter is similar to what
you used in the getAttribute() method; however, here you can specify a list of attributes you want, and you can also
use '*' to specify all attributes. For instance, using "*" means all attributes of the default FileAttributeView, such as
BasicFileAttributes (specified as basic-file-attributes). Another example is: dos:*, which refers to all attributes of
dos file attributes.

The second method uses generics syntax (Chapter 6). The second parameter here takes a class from the
BasicFileAttributes hierarchy. We’ll talk about the hierarchy shortly. The method returns an instance from the
BasicFileAttributes hierarchy.

The file attributes hierarchy is shown in Figure 9-1. The BasicFileAttributes is the base interface from which
DosFileAttributes and PosixFileAttributes are derived. Note that these attribute interfaces are provided in the
java.nio.file.attribute package.

chapter 9 ■ Java File i/O (NiO.2)

263

As you can observe, the BasicFileAttributes interface defines the basic attributes supported by all common
platforms. However, specific platforms define their own file attributes, which are captured by DosFileAttributes and
PosixFileAttributes. You can specify any one of these interfaces to retrieve associated file attributes. Listing 9-8
contains a program to retrieve all attributes of a file using BasicFileAttributes.

Listing 9-8. FileAttributes2.java

import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.*;

class FileAttributes2 {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
 try {
 BasicFileAttributes fileAttributes = Files.readAttributes(path,
BasicFileAttributes.class);
 System.out.println("File size: " + fileAttributes.size());
 System.out.println("isDirectory: " + fileAttributes.isDirectory());
 System.out.println("isRegularFile: " + fileAttributes.isRegularFile());
 System.out.println("isSymbolicLink: " + fileAttributes.isSymbolicLink());
 System.out.println("File last accessed time: " +
fileAttributes.lastAccessTime());
 System.out.println("File last modified time: " +
fileAttributes.lastModifiedTime());
 System.out.println("File creation time: " + fileAttributes.creationTime());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The following is a sample output of the program:

D:\>java FileAttributes2 FileAttributes2.java
File size: 904
isDirectory: false
isRegularFile: true
isSymbolicLink: false
File last accessed time: 2012-10-06T10:28:29.0625Z
File last modified time: 2012-10-06T10:28:22.4375Z
File creation time: 2012-10-06T10:26:39.1875Z

BasicFileAttributes

DosFileAttributes PosixFileAttributes

Figure 9-1. The hierarchy of BasicFileAttributes

chapter 9 ■ Java File i/O (NiO.2)

264

You use the readAttribute() method along with BasicFileAttributes to retrieve basic file properties.
Similarly, you can retrieve attributes associated with a file in a DOS or UNIX environment using DosFileAttributes
and PosixFileAttributes, respectively.

Copying a File
Now let’s try copying a file/directory from one location to another location. This task is easy to accomplish: just call
Files.copy() to copy the file from source to target. Here is the signature of this method:

Path copy(Path source, Path target, CopyOption. . . options)

Listing 9-9 uses this method to write a simple file copy program.

Listing 9-9. FileCopy.java

import java.io.IOException;
import java.nio.file.*;

public class FileCopy {
 public static void main(String[] args) {
 if(args.length != 2){
 System.out.println("usage: FileCopy <source-path> <destination-path>");
 System.exit(1);
 }
 Path pathSource = Paths.get(args[0]);
 Path pathDestination = Paths.get(args[1]);
 try {
 Files.copy(pathSource, pathDestination);
 System.out.println("Source file copied successfully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Let’s execute it and see whether it works.

D:\> java FileCopy FileCopy.java Backup.java
Source file copied successfully

Yes, it’s working. Let’s try running it again with same arguments.

D:\OCPJP7\programs\NIO2\src>java FileCopy FileCopy.java Backup.java
java.nio.file.FileAlreadyExistsException: Backup.java
 at sun.nio.fs.WindowsFileCopy.copy(Unknown Source)
 [. . .stack trace elided. . .]

Oops! What happened? When you tried copying the file for the second time, you got a
FileAlreadyExistsException since the destination file already exists. So, what if you want to overwrite the existing

chapter 9 ■ Java File i/O (NiO.2)

265

file? The solution: you need to tell the copy() method that you would like to overwrite an existing file. In Listing 9-9,
change the copy() method as follows:

Files.copy(pathSource, pathDestination, StandardCopyOption.REPLACE_EXISTING);

In this change, you are specifying an additional argument (since the copy() method supports variable arguments) to
tell the method that you want to overwrite a file if it already exists. So, let’s run this program and see whether it works.

D:\>java FileCopy FileCopy.java Backup.java
Source file copied successfully

D:\>java FileCopy FileCopy.java Backup.java
Source file copied successfully

Yes, it works. Now, try to copy a file to a new directory.

D:\OCPJP7\programs\NIO2\src>java FileCopy FileCopy.java bak\Backup.java
java.nio.file.NoSuchFileException: FileCopy.java -> bak\Backup.java
 [. . .stack trace elided . . .]

Well, here you tried to copy a file to back directory that does not exist. For this, you got the NoSuchFileException.
Note that not just the given directory but all intermediate directories in a path must exist for the copy() method to
succeed.

 all the directories (except the last one if you are copying a directory) in the specified path must exist to
avoid NoSuchFileException.

What if you try copying a directory? It will work, but remember that it will only copy the top-level directory, not
the not the files/directories contained within that directory.

 if you copy a directory using the copy() method, it will not copy the files/directories contained in the
source directory; you need to explicitly copy them to the destination folder.

You will revisit this topic later in this chapter when you implement a copy program that can copy a directory into
another directory along with the contained files/directories.

Moving a File
Moving a file is quite similar to copying a file; for this purpose, you can use the Files.move() method. The signature
of this method is

Path move(Path source, Path target, CopyOption. . . options)

chapter 9 ■ Java File i/O (NiO.2)

266

Listing 9-10 contains a small program that uses this method.

Listing 9-10. FileMove.java

import java.io.IOException;
import java.nio.file.*;

public class FileMove {
 public static void main(String[] args) {
 if(args.length != 2){
 System.out.println("usage: FileMove <source-path> <destination-path>");
 System.exit(−1);
 }
 Path pathSource = Paths.get(args[0]);
 Path pathDestination = Paths.get(args[1]);
 try {
 Files.move(pathSource, pathDestination, StandardCopyOption.REPLACE_EXISTING);
 System.out.println("Source file moved successfully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

This basic implementation works fine. However, here are some observations peculiar to the move() method:

As is the case with the •	 copy() method, the move() method also does not overwrite the existing
destination file unless you specify it to do so using REPLACE_EXISTING.

If you move a symbolic link, the link itself will be moved, not the target file of the link. It is •	
important to note that in the case of the copy() method, if you specify a symbolic link, the
target of the link is copied, not the link itself.

A non-empty directory can be moved if moving the directory does not require moving •	
the containing files/directories. For instance, moving a directory from one physical drive
to another might be unsuccessful (an IOException will be thrown). If moving a directory
operation is successful, then all the contained files/directories will also be moved.

You can specify a •	 move() operation as an atomic operation using the ATOMIC_MOVE copy
option. If move() is performed as a non-atomic operation and it fails in between, the state of
both files is unknown and undefined.

Deleting a File
The Files class provides a delete() method to delete a file/directory/symbolic link. Listing 9-11 contains a simple
program to delete a specified file.

Listing 9-11. FileDelete.java

import java.io.IOException;
import java.nio.file.*;

public class FileDelete {
 public static void main(String[] args) {

chapter 9 ■ Java File i/O (NiO.2)

267

 if(args.length != 1){
 System.out.println("usage: FileDelete <source-path>");
 System.exit(1);
 }
 Path pathSource = Paths.get(args[0]);
 try {
 Files.delete(pathSource);
 System.out.println("File deleted successfully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

It prints the following when executed:

D:\> java FileDelete log.txt
File deleted successfully

There are a few points to remember when using the Files.delete() method. In the case of a directory, the
delete() method should be invoked on an empty directory; otherwise the method will fail. In the case of a symbolic
link, the link will be deleted, not the target file of the link. The file you intend to delete must exist; otherwise you will get
a NoSuchFileException. If you silently delete a file and do not want to be bothered about this exception, then you may
use the deleteIfExists() method, which will not complain if the file does not exist and deletes it if the file exists.

Walking a File Tree
In various situations, you need to walk through the file tree. For instance, when you want to search a specific file/
directory, you need to walk the file tree. Another example of when you need to walk a file tree is when you want to
copy the whole directory containing files/subdirectories.

The Files class provides two methods that let you walk a file tree; the signatures of these methods are given here:

Path walkFileTree(Path start, FileVisitor<? super Path> visitor)

Path walkFileTree(Path start, Set<FileVisitOption> options, int maxDepth, FileVisitor<?
super Path> visitor)

Both methods take a path from which the file tree walk will start and an instance of FileVisitor that will govern
what you to do while walking a file tree. (We will talk about FileVisitor in detail shortly.) In addition, the second
method takes two more parameters: file visit options and maximum depth. The maximum depth parameter specifies
the depth of the file tree you wish to visit; a 0 value indicates only the specified file and a MAX_VALUE indicates that all
levels of directories must be visited.

Note that you need to supply a FileVisitor instance to the walkFileTree() methods. The FileVisitor
interface allows you to perform certain operations at certain key junctures. For instance, the interface provides
a visitFile()method that you can implement to specify exactly what needs to be done when the FileVisitor
instance visits a file. Similarly, it also provides three more useful methods, which can be customized based on your
needs: preVisitDirectory(), postVisitDirectory(), and visitFileFailed(). Table 9-3 provides a short summary
of these methods.

chapter 9 ■ Java File i/O (NiO.2)

268

You need to implement the FileVisitor interface so that you can create an instance of your implementation
and pass it to the walkFileTree() methods. However, if you do not want to implement all four methods in the
FileVisitor interface, you can simply extend your implementation from the SimpleFileVisitor class. In this way,
you can simply override those methods that you want to customize.

Listing 9-12 contains an example so you can understand this more clearly. Assume that you want to print the file
tree from a specific point.

Listing 9-12. FileTreeWalk.java

import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.BasicFileAttributes;

class MyFileVisitor extends SimpleFileVisitor<Path> {
 public FileVisitResult visitFile(Path path, BasicFileAttributes fileAttributes){
 System.out.println("file name:" + path.getFileName());
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult preVisitDirectory(Path path, BasicFileAttributes fileAttributes){
 System.out.println("----------Directory name:" + path + "----------");
 return FileVisitResult.CONTINUE;
 }
}

public class FileTreeWalk {
 public static void main(String[] args) {
 if(args.length != 1) {
 System.out.println("usage: FileWalkTree <source-path>");
 System.exit(−1);
 }
 Path pathSource = Paths.get(args[0]);
 try {
 Files.walkFileTree(pathSource, new MyFileVisitor());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Table 9-3. Methods Supported by the FileVisitor Interface

Method Description

FileVisitResult preVisitDirectory(T dir, BasicFileAttributes
attrs)

Invoked just before the elements of the
directory are accessed.

FileVisitResult visitFile(T file, BasicFileAttributes attrs) Invoked when a file is visited.

FileVisitResult postVisitDirectory(T dir, IOException exc) Invoked when all the elements of the
directory are accessed.

FileVisitResult visitFileFailed(T file, IOException exc) Invoked when the file cannot be
accessed.

chapter 9 ■ Java File i/O (NiO.2)

269

Let’s first execute this program and then understand how it works.

D:\> java FileTreeWalk ch9-13
----------Directory name: ch9-13----------
file name:.classpath
file name:.project
----------Directory name: ch9-13\.settings----------
file name:org.eclipse.jdt.core.prefs
----------Directory name: ch9-13\bin----------
file name:FileTreeWalk.class
file name:MyFileVisitor.class
----------Directory name: ch9-13\bin\Test----------
file name:log.txt
----------Directory name: ch9-13\src----------
file name:FileTreeWalk.class
file name:FileTreeWalk.java
file name:MyFileVisitor.class
----------Directory name: ch9-13\src\Test----------
file name:log.txt

We have executed this program with one directory. It printed all the files and directories contained in the given
input directory. Now, here’s how it works:

You define a •	 FileVisitor, MyFileVisitor, in which you overrode two methods,
visitFile() and preVisitDirectory(), of the SimpleFileVisitor class. In these methods
you just printed the name (along with path in case of directory) of the file/directory.

You then invoked •	 walkFileTree() with an instance of MyFileVisitor.

The •	 walkFileTree() method starts from the specified input path. It invokes the visitFile()
method when it visits a file, preVisitDirectory() just before it starts visiting the elements of
a directory, postVisitDirectory() immediately after it finishes visiting all the elements of the
directory, and visitFileFailed() in case any file/directory is not accessible.

Here, since you have overridden two methods, you are able to print the file names and the •	
path of the directories visited.

One more thing that requires attention here is the •	 FileVisitReturn value. You can control the
flow of the walk using FileVisitReturn values. There are four types of different return values:

•	 CONTINUE: It indicates that the walk through the file tree should continue.

•	 TERMINATE: It indicates that the walk through the file tree should be terminated
immediately.

•	 SKIP_SUBTREE: It indicates that the rest of the subtree should be skipped for the
walking file tree.

•	 SKIP_SIBLINGS: It indicates that walking file tree should be stopped for the current
directory and its sibling directories. If it is returned from the preVisitDirectory(), then
the containing files/directories are not visited and the postVisitDirectory() is also not
visited. If it is returned from visitFile(), then no further file in the directory is visited.
If it is returned from the postVisitDirectory(), then siblings of the directory are
not visited.

chapter 9 ■ Java File i/O (NiO.2)

270

Revisiting File Copy
You saw how to copy a file from one location to another. However, you couldn’t perform a copy on an entire directory
(and its files/subdirectories). Now you can walk through the file tree, making it easier to implement a copy program
that can copy the entire directory along with containing elements. Listing 9-13 shows the program to do so.

Listing 9-13. FileTreeWalkCopy.java

import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.*;

// Our File visitor implementation that performs copy
class MyFileCopyVisitor extends SimpleFileVisitor<Path> {
 private Path source, destination;

 public MyFileCopyVisitor(Path s, Path d) {
 source = s;
 destination = d;
 }
 public FileVisitResult visitFile(Path path, BasicFileAttributes fileAttributes) {
 Path newd = destination.resolve(source.relativize(path));
 try {
 Files.copy(path, newd, StandardCopyOption.REPLACE_EXISTING);
 } catch (IOException e) {
 e.printStackTrace();
 }
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult preVisitDirectory(Path path, BasicFileAttributes fileAttributes) {
 Path newd = destination.resolve(source.relativize(path));
 try {
 Files.copy(path, newd, StandardCopyOption.REPLACE_EXISTING);
 }catch (IOException e) {
 e.printStackTrace();
 }
 return FileVisitResult.CONTINUE;
 }
}

public class FileTreeWalkCopy {
 public static void main(String[] args) {
 if(args.length != 2) {
 System.out.println("usage: FileTreeWalkCopy <source-path> <destination-path>");
 System.exit(1);
 }
 Path pathSource = Paths.get(args[0]);
 Path pathDestination = Paths.get(args[1]);
 try {
 Files.walkFileTree(pathSource, new MyFileCopyVisitor(pathSource, pathDestination));
 System.out.println("Files copied successfully!");

chapter 9 ■ Java File i/O (NiO.2)

271

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Let’s execute this program and see whether it works:

D:\> java FileTreeWalkCopy Test Test2
Files copied successfully!

Well, the program copied the Test directory along with the files contained in the Test directory to the Test2
directory. Essentially, what you are doing is quite simple: in the preVisitDirectory() method, you are copying the
directory (which is being visited). To retrieve the new destination path, you are using the relativize() method from
the Path class. Similarly, you get a new destination path each time you visit a file, which is used to copy the file to the
destination directory. That’s it. You’re done.

Finding a File
Once you understand how to walk through the file tree, it is very straightforward and easy to find a desired file. For
instance, if you are looking for a particular file/directory, then you may try to match the file/directory name you are
looking for with the visitFile() or preVisitDirectory() method. However, if you are looking for all files matching
a particular pattern (for instance, all Java source files or xml files) in a file tree, you can use glob or regex to match the
names of files. The PathMatcher interface is useful in this context as it will match a path for you once you specified the
desired pattern. The PathMatcher interface is implemented for each file system, and you can get an instance of it from
the FileSystem class using the getPathMatcher() method.

Before looking at a detailed example, let’s first understand Glob patterns. Glob is a pattern-specifying mechanism
where you can specify file matching patterns as strings. Table 9-4 summarizes the supported patterns by the glob syntax.

Table 9-4. Patterns Supported by Glob Syntax

Pattern Description

* Matches any string of any length, even zero length.

** Similar to “*”, but it crosses directory boundaries.

? Matches to any single character,

[xyz] Matches to either x , y, or z.

[0–5] Matches to any character in the range 0 to 5.

[a–z] Matches to any lowercase letter.

{xyz, abc} Matches to either xyz or abc.

chapter 9 ■ Java File i/O (NiO.2)

272

Hence, you can specify syntax such as File*.java to match all Java source files that start with the letters
"File" or you can have syntax such as program[0–9].class, which will match files such as program0.class,
program1.class, and so on.

Let’s try an example that takes a path (a starting path) and a pattern (to find matching files) and then prints the
list of files that match the specified pattern. The program is given in Listing 9-14.

Listing 9-14. FileTreeWalkFind.java

import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.*;

class MyFileFindVisitor extends SimpleFileVisitor<Path> {
 private PathMatcher matcher;

 public MyFileFindVisitor(String pattern){
 try {
 matcher = FileSystems.getDefault().getPathMatcher(pattern);
 } catch(IllegalArgumentException iae) {
 System.err.println("Invalid pattern; did you forget to prefix \"glob:\"?
(as in glob:*.java)");
 System.exit(−1);
 }

 }
 public FileVisitResult visitFile(Path path, BasicFileAttributes fileAttributes){
 find(path);
 return FileVisitResult.CONTINUE;
 }
 private void find(Path path) {
 Path name = path.getFileName();
 if(matcher.matches(name))
 System.out.println("Matching file:" + path.getFileName());
 }
public FileVisitResult preVisitDirectory(Path path, BasicFileAttributes fileAttributes){
 find(path);
 return FileVisitResult.CONTINUE;
 }
}

public class FileTreeWalkFind {
 public static void main(String[] args) {
 if(args.length != 2){
System.out.println("usage: FileTreeWalkFind <start-path> <pattern to search>");
 System.exit(−1);
 }
 Path startPath = Paths.get(args[0]);
 String pattern = args[1];

chapter 9 ■ Java File i/O (NiO.2)

273

 try {
 Files.walkFileTree(startPath, new MyFileFindVisitor(pattern));
 System.out.println("File search completed!");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Let’s execute it first and then understand how it works.

d:\> java FileTreeWalkFind ch9-15 glob:File*.java
Matching file:FileTreeWalkFind.java
File search completed!

d:\> java FileTreeWalkFind ch9-15 glob:File*
Matching file:FileTreeWalkFind.class
Matching file:FileTreeWalkFind.class
Matching file:FileTreeWalkFind.java
File search completed!

Here’s how it works:

You define your •	 FileVisitor, MyFileFindVisitor, which overrides two methods,
visitFile() and preVisitDirectory().

In the constructor of your visitor class, you retrieve a •	 PathMatcher instance using a
FileSystem instance.

The overridden methods call a method of •	 find(); this method creates a Path object from the
file name of the passed Path object. This is necessary since you want matcher to match only
the file name, not the whole path.

You start walking through the file tree using the method •	 walkFileTree(); you specify an
instance of MyFileFindVisitor as the FileVisitor.

If the current visiting file/directory matches the pattern, you print the file name. The process •	
of matching the specified pattern is carried out by a PathMatcher instance.

Watching a Directory for Changes
Let’s assume that you have implemented a simple IDE to work on Java programs. You have loaded a Java source file
in it and you are working on it. What happens if some other program changes the source file you are working on? You
might want to ask the user whether he wants to reload the source file. In fact, many IDEs and other programs shows
a message to the user and ask permission from the user to reload the files (see Figure 9-2). However, the key point is:
how do you get notified that the file you are working on was modified by some other program?

chapter 9 ■ Java File i/O (NiO.2)

274

Java 7 offers a directory watch service that can achieve exactly the same result. You can register a directory
using this service to change event notification, and whenever any change happens in the directory (such as new file
creation, file deletion, and file modification) you will get an event notification about the change. The watch service is a
convenient, scalable, and an easy way to keep track of the changes in a directory.

Let’s look at a program in Listing 9-15 first and then see how the watch service API works. Assume that you want
to monitor the src directory of your current project. You are interested in file modification events, such that any
change in any file of the directory results in an event notification to your program.

Listing 9-15. KeepAnEye.java

import java.io.IOException;
import java.nio.file.*;

public class KeepAnEye {
 public static void main(String[] args) {
 Path path = Paths.get("..\\src");
 WatchService watchService = null;
 try {
 watchService = path.getFileSystem().newWatchService();
 path.register(watchService, StandardWatchEventKinds.ENTRY_MODIFY);
 } catch (IOException e1) {
 e1.printStackTrace();
 }

 //infinite loop
 for(;;){
 WatchKey key = null;
 try {
 key = watchService.take();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 // iterate for each event
 for(WatchEvent<?> event:key.pollEvents()){
 switch(event.kind().name()){
 case "OVERFLOW":
 System.out.println("We lost some events");
 break;
 case "ENTRY_MODIFY":

Figure 9-2. File change notification shown in Eclipse IDE

chapter 9 ■ Java File i/O (NiO.2)

275

 System.out.println("File " + event.context() + " is changed!");
 break;
 }
 }
 //resetting the key is important to receive subsequent notifications
 key.reset();
 }
 }
}

Execute this program and meanwhile try to change the source file as well as the class file in the src directory. You
may get results like this:

d:\workspace\ch9-16\src>java KeepAnEye
File KeepAnEye.java is changed!
File KeepAnEye.java is changed!
File KeepAnEye.java is changed!
File KeepAnEye.class is changed!
File KeepAnEye.class is changed!

Well, that’s great—it’s working as intended. Now, let’s understand the program step by step:

The first thing you need to do is to get an instance of •	 WatchService. You can get a watch
service instance using the FileSystem class. Here, you are getting a FileSystem instance
using a path instance, and then you are requesting an instance of watch service from the
FileSystem. You may also get an instance of the FileSystem from FileSystems
(FileSystems.getDefault()).

Once you have an instance of the watch service, the next step is to register the directory to the •	
watch service. The Path object provides two methods for registration: the first register()
method takes variable arguments (first an instance of watch service and subsequently the
kind of watch event in which you are interested). The second register() method takes one
additional parameter—the watch event modifier. Here, you are using the first register()
method.

You want to receive an event notification only when a file is modified; thus you specify •	
ENTRY_MODIFY (belonging to StandardWatchEventKinds). Other kinds watch events include
ENTRY_CREATE, ENTRY_DELETE, and OVERFLOW. The first three kinds are self-explanatory;
OVERFLOW specifies that a few event notifications are discarded or missed. These event kinds
can be specified based on the requirements.

Once the registration is done, you are ready to receive event notifications. You can implement •	
an infinite loop in which you wait for the suitable event to happen.

In the loop, you need to wait for the event to happen. Here, you can ask the watch service to •	
notify this program when an event occurs. You can do this using three methods:

The •	 poll() method returns a queued key if available; otherwise it returns immediately.

The •	 poll(long, TimeUnit) method returns a queued key if available; otherwise it waits
for the specified time (the long value) and for the specified time unit. The method returns
after the specified time limit is elapsed.

chapter 9 ■ Java File i/O (NiO.2)

276

The •	 take() method returns a queued key if available; otherwise it waits until a key
is available.

The key difference between the •	 poll() and take() methods is that poll() is a
non-blocking call and take() is a blocking call.

When a key is returned, one or more events might be queued; that’s why you put in another •	
for loop to iterate through all the available events.

You can get the kind of event using the •	 kind() method and the name of the file for which the
event has occurred using the context() method.

Once you are done with event processing, you need to reset the key using the •	 reset() method
on the key.

Points to Remember
Here are the concepts you need to understand in order to pass this section of the OCPJP exam.

Do not confuse •	 File with Files, Path with Paths, and FileSystem with FileSystems: they
are different. File is an old class (Java 4) that represents file/directory path names, while
Files was introduced in Java 7 as a utility class with comprehensive support for I/O APIs. The
Path interface represents a file/directory path and defines a useful list of methods. However,
the Paths class is a utility class that offers only two methods (both to get the Path object).
FileSystems offer a list of factory methods for the class FileSystem, whereas FileSystem
provides a useful set of methods to get information about a file system.

The file or directory represented by a •	 Path object might not exist.

You learned how to perform a copy for files/directories. However, it is not necessary that •	
you perform copy on two files/directories only. You can take input from an InputStream
and write to a file, or you can take input from a file and copy to an OutputStream.
Methods copy(InputStream, Path, CopyOptions. . .) and copy(Path, OutputStream,
CopyOptions. . .) could be used here.

You must be careful about performing an operation when walking a file tree. For instance, if •	
you are performing a recursive delete, you should first delete all the containing files before
deleting the directory that is holding these containing files.

The •	 Visitor design pattern is used to enable walking through a file tree.

In the context of a watch service, a state is associated with a watch key. A watch key might be •	
in ready state (ready to accept events), in signed state (when one or more events are queued),
or in invalid state (when the watch key is not valid). If the key is in the signed state, it is
required to call the reset() method; otherwise the state of the key will not change to ready
state and you will not receive any further event notification.

Your program may receive an •	 OVERFLOW event even if the program is not registered for
this event.

If you are watching a directory using the watch service offered by Java 7, then only files •	
contained in that directory will be watched—and not the files contained in the subdirectories
of that directory. If you intend to watch the whole subtree of the file system, you need to
recursively register each directory in the subtree.

chapter 9 ■ Java File i/O (NiO.2)

277

consider the following program: 1.

import java.nio.file.*;

public class PathInfo {
 public static void main(String[] args) {
 Path aFilePath = Paths.get("D:\\dir\\file.txt"); // FILEPATH

 while(aFilePath.iterator().hasNext()) {
 System.out.println("path element: " + aFilePath.iterator().next());
 }
 }
}

assume that the file D:\dir\file.txt exists in the underlying file system. Which one of the
following options correctly describes the behavior of this program?

a) the program gives a compiler error in the line marked with the comment FILEPATH because the
checked exception FileNotFoundException is not handled.

B) the program gives a compiler error in the line marked with the comment FILEPATH because the
checked exception InvalidPathException is not handled.

c) the program gets into an infinite loop printing “path element: dir” forever.

D) the program prints the following:

path element: dir

path element: file.txt

Answer: c) the program gets into an infinite loop printing “path element: dir” forever.

(in the while loop, you use iterator() to get a temporary iterator object. So, the call to next()
on the temporary variable is lost, so the while loop gets into an infinite loop. in other words, the
following loop will terminate after printing the “dir” and “file.txt” parts of the path:

Iterator<Path> paths = aFilePath.iterator();
while(paths.hasNext()) {
 System.out.println("path element: " + paths.next());
}

Option a) is wrong because the Paths.get method does not throw FileNotFoundException.

Option B) is wrong because InvalidPathException is a RuntimeException. also, since the file path exists
in the underlying file system, this exception will not be thrown when the program is executed.

Option D) is wrong because the program will get into an infinite loop).

Which 2. two of the following statements are correct regarding the SimpleFileVisitor interface?

a) the postVisitDirectory method, declared in SimpleFileVisitor, will be invoked after all the
entries (i.e., files and subdirectories) of the directory have been visited.

Question time!

chapter 9 ■ Java File i/O (NiO.2)

278

B) the visitFile method, declared in SimpleFileVisitor, will be invoked when a file is visited.

c) the visitFileOrDirectory method, declared in SimpleFileVisitor, will be invoked when a file
or subdirectory is visited.

D) the walkFileTree method, declared in SimpleFileVisitor, will walk the file tree.

Answer: a) and B) are correct statements.

(regarding option c), there is no such method as visitFileOrDirectory in SimpleFileVisitor
interface. regarding option D), the walkFileTree method is a static method defined in the Files
class that will walk the file tree. the walkFileTree method is not declared in SimpleFileVisitor.
in fact, FileVisitor is one of the arguments this method takes for which you can pass a
SimpleFileVisitor object as an argument.)

consider the following program:3.

import java.nio.file.*;

class Relativize {
 public static void main(String []args) {
 Path javaPath =
Paths.get("D:\\OCPJP7\\programs\\NIO2\\src\\Relativize.java").normalize();
 Path classPath =
Paths.get("D:\\OCPJP7\\programs\\NIO2\\src\\Relativize.class").normalize();
 Path result = javaPath.relativize(classPath);
 if(result == null) {
 System.out.println("relativize failed");
 } else if(result.equals(Paths.get(""))) {
 System.out.println("relative paths are same, so relativize
returned empty path");
 } else {
 System.out.println(result);
 }
 }
}

Which of the following options correctly shows the output of this program?

a) the program prints the following: relativize failed.

B) the program prints the following: relative paths are same, so relativize returned empty path.

c) the program prints the following: ..\relativize.class.

D) the program prints the following: ..\relativize.java.

Answer: c) the program prints the following: ..\relativize.class.

(the relativize() method constructs a relative path between this path and a given path. in this
case, the paths for both the files are the same and they differ only in the file names (Relativize.
java and Relativize.class). the relative comparison of paths is performed from the given path to
the passed path to the relativize method, so it prints ..\relativize.class.

Note: the normalize() method removes any redundant name elements in a path. in this program,
there are no redundant name elements, so it has no impact on the output of this program.)

chapter 9 ■ Java File i/O (NiO.2)

279

consider the following program:4.

import java.nio.file.*;

class SubPath {
 public static void main(String []args) {
Path aPath = Paths.get("D:\\OCPJP7\\programs\\..\\NIO2\\src\\.\\SubPath.java");
 aPath = aPath.normalize();
 System.out.println(aPath.subpath(2, 3));
 }
}

this program prints the following:

a) ..

B) src

c) NiO2

D) NiO2\src

e) ..\NiO2

Answer: B) src

(the normalize() method removes redundant name elements in the given path, so after the call to
the normalize() method, the aPath value is D:\OCPJP7\NIO2\src\SubPath.java.

the subpath(int beginIndex, int endIndex) method returns a path based on the values of
beginIndex and endIndex. the name that is closest to the root has index 0; note that the root itself
(in this case D:\) is not considered as an element in the path. hence, the name elements “OcpJp7”,
“NiO2”, “src”, “Subpath.java” are in index positions 0, 1, 2, and 3, respectively.

Note that beginIndex is the index of the first element, inclusive of that element; endIndex is the
index of the last element, exclusive of that element. hence, the subpath is “sub”, which is at index
position 2 in this path.)

assuming that the variable 5. path points to a valid Path object, which one of the following
statements is the correct way to create a WatchService?

a) WatchService watchService = WatchService.getInstance(path);

B) WatchService watchService = FileSystem.newWatchService();

c) WatchService watchService = path.getFileSystem().newWatchService();

D) WatchService watchService = FileSystem("default").getWatchService(path);

Answer: c) WatchService watchService = path.getFileSystem().newWatchService();

(the newWatchService() method is an abstract method defined in the FileSystem class. to get a
WatchService instance associated with a given path object, you need to first get the associated
FileSystem object and call the newWatchService() method on that FileSystem object. hence,
option c) is the right answer.)

chapter 9 ■ Java File i/O (NiO.2)

280

Summary
Working with the Path Class

A •	 Path object is a programming abstraction to represent a path of a file/directory.

You can get an instance of •	 Path using the get() method of the Paths class.

•	 Path provides two methods to use to compare Path objects: equals() and compareTo(). Even
if two Path objects point to the same file/directory, it is not guaranteed that you will get true
from the equals() method.

Performing Operations on Files/Directories

You can check the existence of a file using the •	 exists() method of the Files class.

The •	 Files class provides the methods isReadable(), isWriteable(), and isExecutable()
to check the ability of the program to read, write, or execute programmatically.

You can retrieve attributes of a file using the •	 getAttributes() method.

You can use the •	 readAttributes() method of the Files class to read attributes of a file
in bulk.

The method •	 copy() can be used to copy a file from one location to another. Similarly, the
method move() can be used to move a file from one location to another.

While copying, all the directories (except the last one if you are copying a directory) in the •	
specified path must exist to avoid NoSuchFileException.

Use the •	 delete() method to delete a file; use the deleteIfExists() method to delete a file
only if it exists.

Walking a File Tree

The •	 Files class provides two flavors of walkFileTree() to enable you to walk through a
file system.

The •	 FileVisitor interface allows you to perform certain operations at certain key junctures.

If you do not want to implement all four methods in the •	 FileVisitor interface, you can simply
extend your implementation from the SimpleFileVisitor class.

Finding a File

The •	 PathMatcher interface is useful when you want to find a file satisfying a certain pattern.
You can specify the pattern using glob or regex.

Watching a Directory for Changes

Java 7 offers a directory watch service that can notify you when the file you are working on is •	
changed by some other program.

You can register a •	 Path object using a watch service along with certain event types. Whenever
any file in the specified directory changes, an event is sent to the registered program.

281

Chapter 10

Building Database Applications
with JDBC

Exam Topics

Define the layout of the JDBC API

Update and query a database

Customize the transaction behavior of JDBC
and commit transactions

Use the JDBC 4.1 RowSetProvider,
RowSetFactory, and RowSet interfaces

Connect to a database by using a JDBC driver

JDBC (Java DataBase Connectivity) is an important Java API that defines how a client accesses a database. As such,
it is critical in building large-scale enterprise Java solutions. As an Oracle certified programmer, it is expected that
you understand JDBC and its related features. You can use JDBC to perform database operations such as inserting,
updating, and creating database entities as well as executing SQL queries. Using JDBC support, you can also perform
transactions on the database.

This chapter discusses JDBC features in terms of ResultSet, Connection, and Statement implementations.
JDBC 4.1 introduces RowSet and its related utility classes such as RowSetFactory and RowSetProvider, which are also
discussed in this chapter.

The JDBC classes are part of the packages java.sql.* and javax.sql.*. In this chapter, we assume that you’re
already familiar with SQL queries and have some basic understanding of database concepts.

Introduction to JDBC
When you write applications for solving real-world problems, you routinely come upon requirements where you
need to store, navigate, and modify data. In an enterprise environment, you need to work with DBMSs (Database
Management Systems) to handle the large amounts of data you have. However, interacting with DBMSs (henceforth,

Chapter 10 ■ Building dataBase appliCations with JdBC

282

we simply refer to DBMSs as databases) is not really trivial or straightforward. Numerous enterprise and open source
database systems are available today and they differ from each other: DB2, SQL Server, MySQL, Oracle, and many
more. This heterogeneity of popular databases makes it difficult write code that can be used with any database.
To solve these problems and to make your life easy, Java offers JDBC. JDBC is a set of APIs provided by Java to
programmatically interact with various databases.

At a high level, interacting with a database involves the following steps:

Establishing a connection to a database.•	

Executing SQL queries to retrieve, create, or modify a database.•	

Closing the connection to the database.•	

Java provides a set of APIs (i.e., JDBC) to carry out these activities with databases. In other words, you can use
JDBC to establish a connection to a database, execute your SQL query, and close the connection with the database.
The beauty of JDBC is that you are not writing a program for a specific database. JDBC creates loose coupling
between your Java program and the type of database used. For instance, databases may differ in how they establish
a connection (for instance, the API name may differ with databases). JDBC hides all the heterogeneity of these
databases and offers a single set of APIs to interact with all types of databases.

The Architecture of JDBC
Let’s examine the vital components of JDBC and how these components work together to achieve seamless
integration with databases. A simplified architecture of JDBC is graphically represented in Figure 10-1. A Java
application uses JDBC APIs to interact with databases. JDBC APIs interact with the JDBC driver manager to
transparently connect and perform various database activities with different types of databases. The JDBC driver
manager uses various JDBC drivers to connect to their specific DBMSs.

Java Applications

JDBC APIs

JDBC Driver Manager

JDBC Driver
(ODBC)

ODBC Oracle MySQL

JDBC Driver
(Oracle)

JDBC Driver
(MySQL)

Figure 10-1. JDBC architecture

In this context, JDBC drivers and the driver manager play a key role in realizing the objective of JDBC. JDBC
drivers are specifically designed to interact with their respective DBMSs. The driver manager works as a directory
of JDBC drivers—in other words, it maintains a list of available data sources and their drivers. The driver manager

Chapter 10 ■ Building dataBase appliCations with JdBC

283

chooses an appropriate driver to communicate to the respective DBMS. It can manage multiple concurrent drivers
connected to their respective data sources.

You can observe here that the complexity of heterogeneous interactions is delegated to the JDBC driver manager
and JDBC drivers; hence all the details and complications are hidden by the JDBC API from the application developer.

Two-Tier and Three-Tier JDBC Architecture
Broadly, JDBC architectures can be seen in two major configurations: two-tier and three-tier. In a two-tier
configuration, a Java application along with a JDBC driver constitutes the first tier as a client. On the other hand, the
database works as a server that fulfills the requirements sent from the clients. Typically, the database resides on a
different machine connected through the network.

The first tier in a three-tier configuration is a lightweight Java application (an applet, for instance) that
communicates to the application server (the second tier). The application server in turn forwards the request to the
database (the third tier). In this configuration, the middle tier plays a vital role since the behavior of the configuration
can be fine-tuned based on the requirements (for instance, enforcing access control).

Types of JDBC Drivers
There are a number of types of JDBC drivers that have emerged, and they are being used by the industry based on
preference and needs. They can be categorized based on the technology used to communicate to the actual respective
DBMS. The type of these drivers can play a critical role when selecting an appropriate DBMS for a Java application.
There are four types of JDBC drivers:

•	 JDBC-ODBC bridge drivers (type 1): You may already know about ODBC (Open Database
Connectivity), which is a portable middleware API written in C for accessing databases. The first
category belongs to the drivers that are designed to work with ODBC drivers; they play the role
of a bridge from a Java application to an ODBC driver. Such drivers are useful especially in cases
when the ODBC driver for the DBMS is available. The JDBC driver calls the ODBC native calls
using Java Native Interface (JNI). The drivers from this category might not be suitable for applets
since often client-side software and an ODBC driver are required for this bridge to work properly.

•	 Native-API driver (type 2): The database drivers belonging to this category use client-side
libraries of a specific database and convert JDBC calls to native database calls. Mostly, these
drivers are not written entirely in Java, and hence are not portable. These drivers are not
suitable for Java applets since they require proprietary client software installed on client
machines. However, these drivers are typically faster than type 1 drivers.

•	 The network-protocol driver (type 3): This type of database driver implements a three-tier
architecture where JDBC calls are converted to native database calls via a middleware
implementation. In other words, the driver calls database middleware and the middleware
actually converts JDBC calls to database specific native calls. Typically, the driver is
implemented in Java, which does not require any other client implementation at client side;
hence they could be employed in Internet-based applications. However, these drivers are
typically slower than type 2 drivers.

•	 Native-protocol driver (type 4): Such drivers are implemented in Java completely, so they are
platform independent. Drivers belonging to this category directly make database specific calls
over the network without any support of additional client side libraries. These drivers are the
most flexible database drivers among all other database types. These drivers perform better
than other driver types. However, these drivers may be lacking in covering the security aspects
of database access.

For an enterprise application, you need to select an appropriate driver based on the requirements.

Chapter 10 ■ Building dataBase appliCations with JdBC

284

Setting Up the Database
Before you start exploring JDBC APIs and their usage with the help of examples, first you must configure a database
with which you will work. The database needs to be configured properly before you start writing JDBC programs. You
can use any widely available database. In this chapter, we will use MySQL to explain various aspects of JDBC APIs
since this database is free and widely available. Hence, we are showing steps to set up a MySQL database on your
machine assuming that you use Windows (if you are using another operating system, these steps will slightly differ):

The first step is to download the appropriate installer for your platform. For MySQL database, •	
you may download the latest installer from the MySQL download page (www.mysql.com/
downloads/mysql/).

Once the installer gets downloaded, the next step is to install it. You must have admin privileges in •	
your machine to install the software. You need to invoke the installer and follow all the steps shown
by the installation wizard. Keep the default values and complete the installation. The installer will
ask you to provide a root password; remember it because it will be used in these examples.

The next step is to download the database connector. The database connector only will •	
allow you to connect to the database. You can download the connector for MySQL from its
connector download page (http://dev.mysql.com/downloads/connector/j/).

Do not forget to add the path of the connector to the classpath. If the connector name is •	
mysql-connector-java-5.1.21-bin.jar stored in C:\mysql-connector-java-5.1.21, then
add c:\ mysql-connector-java-5.1.21\mysql-connector-java-5.1.21-bin.jar to the
classpath.

Invoke the command-line client of MySQL (in our case, it is “MySQL 5.5 Command Line •	
Client” shown in start menu). You will get a MySQL prompt once you provide the root
password, as shown here:

Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.5.27 MySQL Community Server (GPL)

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> /* Let's create a database for our use.*/

mysql> create database addressBook;
Query OK, 1 row affected (0.01 sec)

mysql> /* Now, let's create a table in this database and insert two records for our use later. */

mysql> use addressBook;
Database changed

mysql> create table contact (id int not null auto_increment, firstName varchar(30) Not null,
lastName varchar(30), email varchar(30), phoneNo varchar(13), primary key (id));
Query OK, 0 rows affected (0.20 sec)

http://www.mysql.com/downloads/mysql/
http://www.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/connector/j/

Chapter 10 ■ Building dataBase appliCations with JdBC

285

mysql> insert into contact values (default, 'Michael', 'Taylor', 'michael@abc.com',
'+919876543210');
Query OK, 1 row affected (0.10 sec)

mysql> insert into contact values (default, 'William', 'Becker', 'william@abc.com',
'+449876543210');
Query OK, 1 row affected (0.03 sec)

mysql> /* That's it. Our database is ready to use now.*/

Connecting to a Database Using a JDBC Driver
In this section, we will discuss how to programmatically connect to a database using a JDBC driver. Before that we’ll
briefly cover the Connection interface.

The Connection Interface
The Connection interface of the java.sql package represents a connection from application to the database. It is a
channel through which your application and the database communicate. Table 10-1 lists important methods in the
Connection interface. All these methods will throw SQLExceptions so we won’t mention it again in the table. We list
transaction-related methods of the Connection interface in Table 10-3.

Table 10-1. Important Methods in the Connection Interface

Method Description

Statement createStatement() Creates a Statement object that can be used to send SQL statements to the
database.

PreparedStatement
prepareStatement(String sql)

Creates a PreparedStatement object that can contain SQL statements. The
SQL statement can have IN parameters; they may contain ‘?’ symbol(s),
which are used as placeholders for passing actual values later.

CallableStatement
prepareCall(String sql)

Creates a CallableStatement object for calling stored procedures in the
database. The SQL statement can have IN or OUT parameters; they may
contain ‘?’ symbol(s), which are used as placeholders for passing actual
values later.

DatabaseMetaData
getMetaData()

Gets the DataBaseMetaData object. This metadata contains useful
information, such as database schema information, table information, etc.,
which is especially useful when you don’t know the underlying database.

Clob createClob() Returns a Clob object (Clob is the name of the interface). CLOB (Character
Large Object) is a built-in type in SQL; it can be used to store a column
value in a row of a database table.

Blob createBlob() Returns a Blob object (Blob is the name of the interface). BLOB (Binary
Large Object) is a built-in type in SQL; it can be used to store a column
value in a row of a database table.

void setSchema(String schema) When passed the schema name, it sets this Connection object to the
database schema to access.

String getSchema() Returns the schema name of the database associated with this Connection
object; returns null if no schema is associated with it.

Chapter 10 ■ Building dataBase appliCations with JdBC

286

Connecting to the Database
The first step to communicate with your database is to set up a connection between your application and the database
server. Listing 10-1 shows a simple application to acquire a connection.

Listing 10-1. DbConnect.java

import java.sql.*;

// The class attempts to acquire a connection with the database
class DbConnect {
 public static void main(String[] args) {
 // url points to jdbc protocol : mysql subprotocol; localhost is the address
 // of the server where we installed our DBMS (i.e. on local machine) and
 // 3306 is the port on which we need to contact our DBMS
 String url = "jdbc:mysql://localhost:3306/";
 // we are connecting to the addressBook database we created earlier
 String database = "addressBook";
 // we login as "root" user with password "mysql123"
 String userName = "root";
 String password = "mysql123";
 try (Connection connection = DriverManager.getConnection
 (url + database, userName, password)){
 System.out.println("Database connection: Successful");
 } catch (Exception e) {
 System.out.println("Database connection: Failed");
 e.printStackTrace();
 }
 }
}

Let’s analyze the program step by step:

1. The URL of jdbc:mysql://localhost:3306/ indicates that jdbc is the protocol and mysql
is a subprotocol; localhost is the address of the server where we installed our DBMS
(i.e., on local machine), and 3306 is the port on which we need to contact our DBMS.
(Note that this port number will be different when you use some other database. In fact,
we used the default port number provided by the MySQL database, which can be changed
if required. Additionally, if you are using some other database, the subprotocol will also
change.) You need to use the addressBook database with root credentials.

2. You can get a connection object by invoking the DriverManager.getConnection()
method; the method expects the URL of the database along with a database name, user
name, and password.

3. You need to close it before coming out of the program. This example uses a try-with-resources
statement; hence the close() method for connection will be automatically called.

4. If anything goes wrong, you will get an exception. In that case, it will print the stack trace of
the exception.

Chapter 10 ■ Building dataBase appliCations with JdBC

287

Okay, now run this program. Here is the output:

Database connection: Failed
java.sql.SQLException: No suitable driver found for jdbc:mysql://localhost:3306/addressBook
 at java.sql.DriverManager.getConnection(DriverManager.java:604)
 at java.sql.DriverManager.getConnection(DriverManager.java:221)
 at DbConnect.main(DbConnect.java:16)

Oops! What happened? Why did you get this SQLException? Well, it is a common mistake to forget to add the
path of the jar in the classpath environment variable. In this case, the JDBC API will not be able to locate the JDBC
driver and so will throw this exception. Remember, entering only the path of the jar is not enough; you need to add the
jar name along with the full path also of the classpath variable.

 You need to put the full path of the jar file of your JdBC driver to avoid getting an exception for
“no suitable driver found.” in fact, entering only the path of the jar is not enough; you need to add the
jar name along with the full path to the classpath variable.

Okay, let’s update the classpath variable and then try again. If you attempt the same program; you might get
another exception:

Database connection: Failed
java.sql.SQLException: Access denied for user 'root'@'localhost' (using password: YES)
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1074)
 [. . . rest of the stack trace elided . . .]

In this program, we’ve given the username “root” and password “mysql123”. If you’ve set the root user password to
something else, you’ll get this exception with the message “access denied for user.” There are two ways to fix this problem.
The first way is to change the program to give your password instead of the “mysql123” we’ve used in this program. The
second way is to reset the password in your database. For MySQL, you can reset your password as follows for the user “root”:

UPDATE mysql.user SET Password=PASSWORD('mysql123') WHERE User='root';
FLUSH PRIVILEGES;

Here is the output if this program runs successfully:

Database connection: Successful

When you see this output, it means that you are able to establish a connection with the database. If you want
to try out the programs in the rest of this chapter, you should get this program working in your system; you need to
establish a connection to query or update the database.

 You’ve already seen two examples of SQLException thrown from the JdBC api. when you get a
SQLException, you can rarely do anything in the program to recover from it. what you can do in a real-
world application is to wrap it as a higher-level exception and rethrow it to the calling component. to save
 space in code segments, we’ll just print the stack trace of the exception and ignore it in the programs in
this chapter.

Chapter 10 ■ Building dataBase appliCations with JdBC

288

Listing 10-1 contains the following code to get the connection (given within a try-with-resources statement)
where you don’t explicitly load the JDBC driver:

Connection connection = DriverManager.getConnection(url + database, userName, password);

Prior to JDBC 4.0, you would have to explicitly load the JDBC driver using the Class.forName() statement, as in
the following:

Class.forName("com.mysql.jdbc.Driver").newInstance();
Connection connection = DriverManager.getConnection(url + database, userName, password);

In other words, in JDBC 4.0 and later, there is no need to explicitly load the driver as the JDBC API will
automatically load the driver when you call getConnection(). This code is backward-compatible—meaning that, even
if you provide the explicit Class.forName() call in your code in JDBC 4.0 or later, the statement will be ignored and
your code will work as before.

Querying and Updating the Database
Once you establish a connection to the desired database, you intend to perform the actual task—you query or update
of the database. You can perform a query using a SELECT SQL statement and an update using one of the INSERT,
UPDATE, or DELETE SQL statements. JDBC provides two important interfaces to support queries: Statement and
Resultset. We will discuss these interfaces briefly in the next two subsections.

Statement
As the name suggests, Statement is a SQL statement that can be used to communicate a SQL statement to the
connected database and receive results from the database. You can form SQL queries using Statement and execute
it using APIs provided in Statement (or one of its derived) interfaces. Statement comes in three flavors: Statement,
PreparedStatement, and CallableStatement, which are shown in the inheritance hierarchy in Figure 10-2.

Statement

PreparedStatement

CallableStatement

Figure 10-2. The Statement interface and its subinterfaces

How do you choose from these three Statement interfaces for a given situation? What are the differences among
these different flavors of Statements? Here’s more information about these Statements:

•	 Statement: You need to use Statement when you need to send a SQL statement to the database
without any parameter. In normal cases, you need to use this interface only. You can create an
instance of Statement using the createStatement() method in the Connection interface.

Chapter 10 ■ Building dataBase appliCations with JdBC

289

•	 PreparedStatement: PreparedStatement represents a precompiled SQL statement that can be
customized using IN parameters. Usually, it is more efficient than a Statement object; hence,
it is used to improve the performance, especially if a SQL statement is executed multiple times.
You can get an instance of PreparedStatement by calling the preparedStatement() method in
the Connection interface.

•	 CallableStatement: CallableStatement is used to execute stored procedures.
CallableStatement instances can handle IN as well as OUT and INOUT parameters. You need
to call the prepareCall() method in the Connection interface to get an instance of this class.

Once you have created an appropriate Statement object, you are ready to execute a SQL statement using the
Statement object. The Statement interface provides three execute methods: executeQuery(), executeUpdate(),
and execute(). You can use one of these execute methods to execute your SQL statement. If your SQL statement is
a SELECT query, you can use the executeQuery() method, which returns a ResultSet (defined in the next section).
When you want to update a database using one of the INSERT, UPDATE, or DELETE statements, you should use the
executeUpdate() method, which returns an integer reflecting the updated number of rows. If you don’t know the type
of SQL statement, you can use the execute() method, which may return multiple resultsets or multiple update counts
or a combination of both.

 Choose the proper execute method based on the type of the sQl statement. remember that
each execute method returns different output. the method executeQuery() returns a resultset,
executeUpdate() returns an update count, and the execute() method may return multiple resultsets,
or multiple update counts, or a combination of both.

ResultSet
Relational databases contain tables. Each table has a set of attributes (properties of an object modeled by the table)
that are represented by columns; rows are records containing values for those properties. When you query a database,
it results in tabular data: a certain number of rows containing the columns requested by the query. This tabular data is
referred to as ResultSet. In summary, a ResultSet is a table with column headings and associated values requested
by the query.

A ResultSet maintains a cursor pointing to the current row. At one time you can read only one row, so you must
change the position of the cursor to read/navigate through the whole ResultSet. Initially, the cursor is set to just
before the first row. You need to call the next() method on the ResultSet to advance the cursor position by one row.
This method returns a boolean value; hence you can use it in a while loop to iterate the whole ResultSet. Table 10-2
shows other methods supported by ResultSet for moving the cursor.

Table 10-2. Useful Methods of ResultSet to Move the Cursor

Method Description

void beforeFirst() Sets the cursor just before the first row in the ResultSet.

void afterLast() Sets the cursor just after the last row of the ResultSet.

boolean absolute(int rowNumber) Sets the cursor to the requested row number absolutely.

boolean relative(int rowNumber) Sets the cursor to the requested row number relatively.

boolean next() Sets the cursor to the next row of the ResultSet.

boolean previous() Sets the cursor to the previous row of the ResultSet.

Chapter 10 ■ Building dataBase appliCations with JdBC

290

ResultSet also provides a set of methods to read the value at the desired column in the current row. In
general, these methods come in two flavors: the first flavor takes column number as the input and the second flavor
accepts column name as the input. For instance, the methods to read a double value are double getDouble(int
columnNumber) and double getDouble(String columnName). In a similar way, ResultSet provides get() methods
for all basic types.

Similarly, ResultSet provides a set of methods to update values at the desired column in the selected row. These
methods also come in two variants: void updateXXX(int columnNumber, XXX x) and void updateXXX(String
columnName, XXX x), where the update methods are defined for various data types represented as XXX.

Querying the Database
Now you know all the necessary interfaces that will be used to execute a simple SQL query on a database: Connection,
Statement, and ResultSet. Let’s query a database and print the output. Recollect that you have created a database
named addressBook and a table named contact within this database, and inserted two rows within the table. Assume
that you want to print the table contents; Listings 10-2 and 10-3 contain the program to do so.

Listing 10-2. DbConnector.java

import java.sql.*;

// Utility class with method connectToDb() that will be used by other programs in this chapter
public class DbConnector {
 public static Connection connectToDb() throws SQLException {
 String url = "jdbc:mysql://localhost:3306/";
 String database = "addressBook";
 String userName = "root";
 String password = "mysql123";
 return DriverManager.getConnection(url + database, userName, password);
 }
}

Listing 10-3. DbQuery.java

import java.sql.*;

// Program to illustrate how to query a database
class DbQuery {
 public static void main(String[] args) {
 // Get connection, execute query, get the result set
 // and print the entries from the result rest
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")){
 System.out.println("ID \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 }

Chapter 10 ■ Building dataBase appliCations with JdBC

291

 catch (SQLException sqle) {
 sqle.printStackTrace();
 System.exit(−1);
 }
 }
}

The output of the program is

ID fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
2 William Becker william@abc.com +449876543210

Let’s have a look at what is happening in this code snippet step by step.

In the •	 main() method, there is a try-with-resources statement. The first statement is a call to
the connectToDb() method, which is defined in the program. The connectToDb() method
simply connects to the database (which you saw in the last example) and returns a Connection
object if it succeeds.

In the next statement, you create a •	 Statement object from the connection.

The •	 Statement object is now used to execute a query. You want to fetch all the columns in
the contact table; hence you write SELECT * FROM contact as a SQL query. You execute the
query using the executeQuery() method of the statement object. The outcome of the query is
stored in a ResultSet object.

Now this •	 ResultSet object is used to print the fetched data. You read all column values in the
current row and you do the same for each row in the ResultSet object.

Since you’ve created the •	 Connection, Statement, and ResultSet objects within a try-with-
resources statement, there is no need to explicitly call close() on these resources. However, if
you are not using try-with-resources, you need to release them explicitly in a finally block.

Here, you are using column names to read the associated values. You can use column numbers instead to do the
same job. Here is the modified code inside the while loop to use column numbers instead:

while (resultSet.next()) {
 System.out.println(resultSet.getInt(1)
 + "\t" + resultSet.getString(2)
 + "\t" + resultSet.getString(3)
 + "\t" + resultSet.getString(4)
 + "\t" + resultSet.getString(5));
}

This code produces exactly the same result as the last example. However, one important thing to observe here is
that column index starts from 1, not from 0.

 the column index in the ResultSet object starts from 1, not from 0.

Chapter 10 ■ Building dataBase appliCations with JdBC

292

Here, while referring to columns by column index, if you refer to a column by an index that is more than the total
number of columns, you will get an exception. For instance, if you change one of the column indices used in the last
example to 6, you will get the following exception:

java.sql.SQLException: Column Index out of range, 6 > 5.
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1074)
 [. . . this part of the stack trace elided . . .]
 at DbQuery.main(DbQuery.java:18)

Hence, you should be careful and always provide the correct column indices.
In this example, you know the number of columns as well as the data types in columns. What if you neither know

the number of columns in each row nor the data types in the columns? You can use the getMetaData() method and
use the getColumnCount() method to get the column count. When you don’t know the data type of a column entry,
you can just use the getObject() method on the ResultSet object. Here is the modified code that makes use of these
methods:

// from resultSet metadata, find out how many columns are there and then read the column entries
int numOfColumns = resultSet.getMetaData().getColumnCount();
while (resultSet.next()) {
 // remember that the column index starts from 1 not 0
 for(int i = 1; i <= numOfColumns; i++) {
 // since we do not know the data type of the column, we use getObject()
 System.out.print(resultSet.getObject(i) + "\t");
 }
 System.out.println("");
}

The output of the program remains the same, so we haven’t shown the resulting output here.
Okay, let’s carry out another exercise. This time you just want to print the name and e-mail address where the

first name matches to “Michael.” See Listing 10-4.

Listing 10-4. DbQuery4.java

import java.sql.*;

class DbQuery4 {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement();
 ResultSet resultset = statement.executeQuery("SELECT firstName,
email FROM contact WHERE firstName=\"Michael\"")) {
 System.out.println("fName \temail");
 while (resultset.next()){
 System.out.println(resultset.getString("firstName") + "\t"
 + resultset.getString("email"));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(−1);
 }
 }
}

4

Chapter 10 ■ Building dataBase appliCations with JdBC

293

It prints:

fName email
Michael michael@abc.com

Updating the Database
Now let’s update the database. You can update a database in two ways: you can use SQL queries to update the
database directly, or you can fetch a ResultSet using a SQL query and then you can change the ResultSet and the
database. JDBC supports both of these methods. Let’s focus on retrieving the ResultSet and modifying the ResultSet
and the database.

In order to modify the ResultSet and the database, the ResultSet class provides a set of update methods for
each data type. Also, there are other supporting methods such as updateRow() and deleteRow() to make the task
simpler. It’s time to get your hands dirty: assume that one of your contacts in your addressBook database has changed
his phone number, so you are now going to update his phone number in your database using a JDBC program.

Listing 10-5. DbUpdate.java

import java.sql.*;

// To illustrate how we can update a database
class DbUpdate {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("SELECT * FROM contact
WHERE firstName=\"Michael\"")) {
 // first fetch the data and display it before the update operation
 System.out.println("Before the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 // now update the resultSet and display the modified data
 resultSet.absolute(1);
 resultSet.updateString("phoneNo", "+919976543210");
 System.out.println("After the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 resultSet.beforeFirst();
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }

Chapter 10 ■ Building dataBase appliCations with JdBC

294

 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(−1);
 }
 }
}

Let’s pick out the nitty-gritty of the program step by step:

You establish the connection using the •	 DbConnector.connectToDb() method.

After creating a •	 Statement object, you execute a query on the database to find out the record
associated with Michael. (For the sake of simplicity we are assuming that the ResultSet will
contain exactly one record.)

You print the retrieved record.•	

You use the •	 absolute() method to move the cursor to the first row in the ResultSet object;
then you update the phone number using the updateString() method.

And finally you print the modified resultset.•	

Well, that looks straightforward. Now, execute it and see what this program prints:

Before the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
com.mysql.jdbc.NotUpdatable: Result Set not updatable.(. . .rest of the text elided)
 at com.mysql.jdbc.ResultSetImpl.updateString(ResultSetImpl.java:8618)
 at com.mysql.jdbc.ResultSetImpl.updateString(ResultSetImpl.java:8636)
 at DbUpdate.main(DbUpdate.java:34)

Oops, the program crashed after throwing an exception! What happened?
You are trying to update a ResultSet object that is not updatable. In other words, in order to make the update in

the ResultSet and the database, you need to make this ResultSet updatable. You can do that by creating a proper
Statement object; while calling the createStatement() method you can pass inputs such as whether you want a
scrollable ResultSet that is sensitive to changes or you want an updatable ResultSet.

So, make this one single change to the call to the createStatement() method in Listing 10-5:

Statement statement = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_
UPDATABLE);

Now run this changed program to see if it works.

Before the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
After the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210

Good, the program did not result in any exception. But wait, the phone number of Michael is not updated! What
happened? You forgot a vital statement after the update: the updateRow() method. Every time you make change in
ResultSet using the appropriate updateXXX() method, you need to call updateRow() to make sure that all the values
are actually updated in the database. Make this change and try again (see Listing 10-6).

Chapter 10 ■ Building dataBase appliCations with JdBC

295

Listing 10-6. DbUpdate2.java

import java.sql.*;

// To illustrate how we can update a database
class DbUpdate2 {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 // create a statement from which the created ResultSets
 // are "scroll sensitive" as well as "updatable"
 Statement statement =
 connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet resultSet = statement.executeQuery("SELECT * FROM
 contact WHERE firstName=\"Michael\"")) {
 // first fetch the data and display it before the update operation
 System.out.println("Before the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 // now update the resultSet and display the modified data
 resultSet.absolute(1);
 resultSet.updateString("phoneNo", "+919976543210");
 // reflect those changes back to the database by calling updateRow() method
 resultSet.updateRow();
 System.out.println("After the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 resultSet.beforeFirst();
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(−1);
 }
 }
}

Now this program prints the following:

Before the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210

Chapter 10 ■ Building dataBase appliCations with JdBC

296

After the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210

Yes, it is working fine now. Now you know the requirements and steps required to update a row in a database.

 always call updateRow() after modifying the row contents; otherwise you will lose the changes.

Next, how about inserting a record in the RecordSet and the database? Try the next example, shown in Listing 10-7.

Listing 10-7. DbInsert.java

import java.sql.*;

// To illustrate how to insert a row in a ResultSet and in the database
class DbInsert {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")) {
 System.out.println("Before the insert");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()){
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 resultSet.moveToInsertRow();
 resultSet.updateString("firstName", "John");
 resultSet.updateString("lastName", "K.");
 resultSet.updateString("email", "john@abc.com");
 resultSet.updateString("phoneNo", "+19753186420");
 resultSet.insertRow();
 System.out.println("After the insert");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 resultSet.beforeFirst();
 while (resultSet.next()){
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }

Chapter 10 ■ Building dataBase appliCations with JdBC

297

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

What happened in this example? After printing the current records, you call the moveToInsertRow() method.
This method sets the cursor to a new record and prepares the ResultSet for the insertion of a row (creates a buffer
to hold the column values). After it, you use the updateString() method to modify each column value in the newly
added row. And finally, you call insertRow() to finally insert the new row into the ResultSet and the database.
One important thing to note here is that you need to provide correct types of values for each column. Also, you
cannot leave a column blank (i.e., not provide any value) if the column value can not be left unfilled. In both of these
violations, you may get a SQLException.

Let’s see what this program prints.

Before the insert
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210
After the insert
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210
3 John K. john@abc.com +19753186420

Looks good! Now let’s try another operation: delete a record from the database. Take a look at the program in
Listing 10-8.

Listing 10-8. DbDelete.java

import java.sql.*;

// To illustrate how to delete a row in a ResultSet and in the database
class DbDelete {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement =
 connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet resultSet1 =
 statement.executeQuery
 ("SELECT * FROM contact WHERE firstName=\"John\"")) {
 if(resultSet1.next()){
 // delete the first row
 resultSet1.deleteRow();
 }
 resultSet1.close();

 // now fetch again from the database
 try (ResultSet resultSet2 =
 statement.executeQuery("SELECT * FROM contact")) {

Chapter 10 ■ Building dataBase appliCations with JdBC

298

 System.out.println("After the deletion");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet2.next()){
 System.out.println(resultSet2.getInt("id") + "\t"
 + resultSet2.getString("firstName") + "\t"
 + resultSet2.getString("lastName") + "\t"
 + resultSet2.getString("email") + "\t"
 + resultSet2.getString("phoneNo"));
 }
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(−1);
 }
 }
}

This program simply selects a proper row to delete and calls the deleteRow() method on the current selected
row. Here’s the output of the program:

After the deletion
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210

Well, the program works fine and correctly removes the row where the first name of the person is “John.”
You might have remembered that you have created a table named contact in your database to work with.

At that time, you created that table from the MySQL command prompt. The same task could have been done through
a JDBC program. At this juncture, let’s create a new table named familyGroup in the database programmatically
(see Listing 10-9). You will use this table later in this chapter.

Listing 10-9. DbCreateTable.java

import java.sql.*;
class DbCreateTable {
 public static void main(String[] args) {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement()){
 // use CREATE TABLE SQL statement to create table familyGroup
 int result = statement.executeUpdate("CREATE TABLE familyGroup (id int not
 null auto_increment, nickName varchar(30) not null, primary key(id));");
 System.out.println("Table created successfully");

 }
 catch (SQLException sqle) {
 sqle.printStackTrace();
 System.exit(−1);
 }
 }
}

Chapter 10 ■ Building dataBase appliCations with JdBC

299

The program prints the following:

Table created successfully

The program is working as expected. Here, you connect to the database and get the statement object as you did
earlier. Then, you issue a SQL statement using the Update() method. Using the SQL statement, you declare that a
table called familyGroup needs to be created along with two columns: id and nickName. Also, you declare that id
should be treated as the primary key. That’s it; the SQL statement creates a new table in your database.

Note that the syntax of the SQL statement is your responsibility. If you pass a wrong SQL statement, you will get a
MySQLSyntaxErrorException belonging to the com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException.

Getting the Database Metadata
You can get the metadata from a Connection object to examine the capabilities of the underlying database. You
can do this by calling the getMetaData() method in the Connection interface; its return type is DatabaseMetaData.
This DatabaseMetaData is a rich class that provides a large number of methods to examine the database details. For
example, you can check the kind of transactions the database supports, the maximum number of columns you can
have in a table, etc. Listing 10-10 will make it clearer to you.

Listing 10-10. DbConnectionMetaData.java

import java.sql.*;
// To illustrate how to obtain metadata from Collection object
// and examine the metadata for using it in a program
class DbConnectionMetaData {
 public static void main(String []args) throws SQLException {
 Connection connection = DbConnector.connectToDb();
 DatabaseMetaData metaData = connection.getMetaData();
 System.out.println("Displaying some of the database metadata from the
 Connection object");
 System.out.println("Database is: " + metaData.getDatabaseProductName() + " " +
 metaData.getDatabaseProductVersion());
 System.out.println("Driver is: " + metaData.getDriverName() + metaData.
 getDriverVersion());
 System.out.println("The URL for this connection is: " + metaData.getURL());
 System.out.println("User name is: " + metaData.getUserName());
 System.out.println("Maximum no. of rows you can insert is: " + metaData.
 getMaxRowSize());
 }
}

It prints the following:

Displaying some of the database metadata from the Connection object
Database is: MySQL 5.5.27
Driver is: MySQL-AB JDBC Drivermysql-connector-java-5.1.21 (Revision: ${bzr.rev
ision-id})
The URL for this connection is: jdbc:mysql://localhost:3306/addressBook
User name is: root@localhost
Maximum no. of rows you can insert is: 2147483639

Chapter 10 ■ Building dataBase appliCations with JdBC

300

Points to Remember
Here are a couple of points that could be helpful on your OCPJP exam:

The •	 boolean absolute(int) method in ResultSet moves the cursor to the passed row
number in that ResultSet object. If the row number is positive, it moves to that position from
the beginning of the ResultSet object; if the row number is negative, it moves to that position
from the end of the ResultSet object. Assume that there are 10 entries in the ResultSet
object. Calling absolute(3) will move the cursor to the third row. Calling absolute(−3) will
move the cursor to the 10–3, seventh row. If you give out of range values, the cursor will move
to either beginning or end.

In a •	 ResultSet object, calling absolute(1) is equivalent to calling first(), and calling
absolute(−1) is equivalent to calling last().

Performing Transactions
A transaction is a set of SQL operations that needs to be either executed all successfully or not at all. Failure to perform
even one operation leads to an inconsistent and erroneous database.

A database must satisfy the ACID properties (Atomicity, Consistency, Isolation, and Durability) to guarantee the
success of a database transaction.

•	 Atomicity: Each transaction should be carried out in its entirety; if one part of the transaction
fails, then the whole transaction fails.

•	 Consistency: The database should be in a valid state before and after the performed
transaction.

•	 Isolation: Each transaction should execute in complete isolation without knowing the
existence of other transactions.

•	 Durability: Once the transaction is complete, the changes made by the transaction are
permanent (even in the occurrence of unusual events such as power loss).

A classic example of a transaction is fund transfer through a bank account. If one wants to transfer some money x
to another account, the money x should be deducted from the first account and should be added to the other account.
In essence, there are two operations to complete the fund transfer (which you can call a transaction). Failing either
operation is not acceptable: if money is deducted from the first account and not added to the other account, the
first account holder unnecessarily loses x amount of money; if the second account gets x amount of money without
deducting from the first account, the bank will definitely have a problem. Hence, either both the operations should be
successful or both operations should fail.

 all operations of a transaction must be either successful or not happen at all.

In general, each statement is a transaction in a JDBC environment. What does this mean? When you call
methods such as updateRow(), the JDBC immediately updates the underlying database. This behavior of JDBC can
be controlled by the setAutoCommit() method; by default it is true, so each update statement changes the database

Chapter 10 ■ Building dataBase appliCations with JdBC

301

immediately. However, if you set this property to false, it is your responsibility to call the commit() method on the
Connection object. The commit() method actually commits all the changes to the database.

Before seeing an example program for a transaction using the Connection interface, you’ll first see transaction
related methods supported in this class (Table 10-3). (Note that all the methods given in this table may throw
SQLException, so we don’t mention that explicitly in this table for each method.)

Table 10-3. Transaction-Related Methods in the Connection Interface

Method Description

void setAutoCommit(boolean autoCommit) Sets the auto-commit mode to true or false. By default,
Connection objects have auto-commit set to true, and you
can set it to false by calling this method with false as the
argument value.

boolean getAutoCommit() Returns the auto-commit mode value (a true value means
auto-commit mode, and a false value means manual
commit mode).

Savepoint setSavepoint() Creates a Savepoint object in the current transaction and
returns that object.

Savepoint setSavepoint(String name) Same as the previous method, except that the Savepoint
object has a name associated with it.

void releaseSavepoint(Savepoint savepoint) Removes the given Savepoint object and the subsequent
Savepoint objects from the current transaction.

void rollback(Savepoint savepoint) Rolls back to the given Savepoint state. In other words, all
the changes done after the Savepoint was created will be
lost or removed (an undo operation till that Savepoint).
Will throw a SQLException if rollback cannot be done
(for example, an invalid Savepoint object is passed).

void rollback() Rolls back (undoes) all the changes made in the current
transaction. Will throw a SQLException if rollback fails
(e.g., rollback() was called when auto-commit mode is set).

void commit() Makes (commits) all the changes done so far in the
transaction to the database.

Let’s understand transactions with the help of an example. As you recall, you have a MySQL database named
addressBook in which you have a table named contact. Now, you want to have different groups of contacts; for
instance, one such group is familyGroup; you are maintaining another table called familyGroup for family members.
Let’s imagine now that you want to add a new record in the familyGroup table (you are storing only nicknames of the
family members) along with full contact details in the table contact. Imagine a situation where you add the nickname
of a family member in familyGroup but could not add the full contact details of your contact! The situation would lead
to an inconsistent database. This is an example of a transaction since you want to execute both operations successfully
(or don’t want to make changes at all, so that you can make an attempt again). Listing 10-11 contains a small program
to achieve it.

Chapter 10 ■ Building dataBase appliCations with JdBC

302

Listing 10-11. DbTransaction.java

import java.sql.*;

// To illustrate how to do commit or rollback
class DbTransaction {
 public static void main(String[] args) throws SQLException {
 Connection connection = DbConnector.connectToDb();
 ResultSet resultSet1 = null, resultSet2 = null;
 // we're using explicit finally blocks
 // instead of try-with-resources statement in this code
 try {
 // for commit/rollback we first need to set auto-commit to false
 connection.setAutoCommit(false);
 Statement statement = connection.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 resultSet1 = statement.executeQuery("SELECT * FROM familyGroup");
 resultSet1.moveToInsertRow();
 resultSet1.updateString("nickName", "Sam Uncle");
 // updating here. . . but this change will be lost if a rollback happens
 resultSet1.insertRow();
 System.out.println("First table updated. . .");

 resultSet2 = statement.executeQuery("SELECT * FROM contact");
 resultSet2.moveToInsertRow();
 resultSet2.updateString("firstName", "Samuel");
 // resultSet2.updateString("firstName",
 "The great Samuel the billionaire from Washington DC");
 resultSet2.updateString("lastName", "Uncle");
 resultSet2.updateString("email", "sam@abc.com");
 resultSet2.updateString("phoneNo", "+119955331100");
 // updating here. . . but this change will be lost of a rollback happens
 resultSet2.insertRow();
 System.out.println("Both tables updated, committing now.");
 // we're committing the changes for both the tables only now
 connection.commit();
 } catch (SQLException e) {
 System.out.println(
 "Something gone wrong, couldn't add a contact in family group");
 // roll back all the changes in the transaction since something has gone wrong
 connection.rollback();
 e.printStackTrace();
 }
 finally {
 if(connection != null) connection.close();
 if(resultSet1 != null) resultSet1.close();
 if(resultSet2 != null) resultSet2.close();
 }
 }
}

Chapter 10 ■ Building dataBase appliCations with JdBC

303

Let’s understand the program first. There are basically two operations in the transaction. The first is to add a
new row in the table called familyGroup for the contact “Sam Uncle.” The second is to add the full contact details of
“Sam Uncle” in the table called contact. Now, look at the key differences: you call the setAutoCommit() method with
argument false; hence, auto commit will not happen. Another difference is that you are calling the method commit()
with a connection object. Hence, when both the operations are successful, you will update the database (with
scheduled updates) by calling the commit() method.

Now, let’s execute this program and see what it prints.

Something gone wrong, couldn't add a contact in family group
com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Table 'addressbook.familygroup'
doesn't exist
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
 [. . . this part of the stack trace elided to save space . . .]
 at DbTransaction.main(DbTransaction.java:18)

What happened? You haven’t created a familyGroup table yet. Do it in the MySQL command line.

mysql> create table familyGroup (id int not null auto_increment, nickName varchar(30) Not null,
primary key (id));
Query OK, 0 rows affected (0.11 sec)

Now try running the program again.

First table updated. . .
Something gone wrong, couldn't add a contact in family group
com.mysql.jdbc.MysqlDataTruncation: Data truncation: Data too long for column 'firstName' at row 1
 at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:4072)
 [. . . this part of stack trace elided to save space . . .]
 at DbTransaction.main(DbTransaction.java:43)

Well, you got a SQLException since the string provided for Uncle Sam’s name is too long. You can observe that
the first table got updated and the exception occurred while executing the second operation. However, you have set
the auto commit mode to false; hence, the first table is not changed in the database. Both the tables will actually be
changed when you execute the commit() method. In other words, if the commit() method does not execute in manual
commit mode, then there will be no change in the database. In the above example, neither table got changed since the
exception occurred before the commit() method could execute.

Let’s change the name of the Sam uncle in the updateString() method (in the above program) and rerun the
example. Replace the earlier statement with this new statement:

resultSet2.updateString("firstName", "Samuel");

Let’s see the output of the program this time.

First table updated. . .
Both tables updated, committing now.

Perfect! Both operations worked this time, so the transaction is complete.

Chapter 10 ■ Building dataBase appliCations with JdBC

304

Rolling Back Database Operations
In the last example (Listing 10-11), you used a method called rollback() using a Connection object. This method is
used to roll back all the uncommitted operations in a transaction.

What happens if you remove the rollback statement from the last example? If your answer is that it will work
given a successful condition, but the program will not work in case of an exception (since the rollback() method call
is missing), you are wrong. The program will work in both conditions. Yes, in both the conditions! Okay, then why are
you using the rollback() at all? The answer is given in the following three points:

The above example illustrates a two-operation transaction that is quite simple. In this case, •	
explicit rollback() will not change anything. However, in case of a multi-stage transaction
where you can define various milestones (in the form of savepoints, which we will discuss
shortly), rollback plays a vital role. Unfinished or incomplete subtransaction states may cause
inconsistencies.

If your connection object is a pooled connection object, then it makes sense to call •	
rollback(). In case of a pooled connection object, the connection object will be reused later,
and at that time unfinished operations may cause inconsistencies.

In general, using the •	 rollback() method in failed cases is always recommended.

In case of a large transaction, you can divide the transaction into multiple subtransactions. In other words, you
can define multiple milestones to complete the transaction. These milestones are referred to as savepoints, and
Java abstraction for this concept is java.sql.Savepoint interface. Once a transaction completes a certain milestone,
that point can be saved as a Savepoint and operations performed till that point can be committed. In case a failure
occurred later, while executing other database operations, you can rollback the database till your last defined and
saved savepoint. This way, you need not carry the whole lengthy transaction all over again; you can start from the last
saved savepoint. Listing 10-12 demonstrates how to use savepoints.

Listing 10-12. DbSavepoint.java

import java.sql.*;

// To illustrate how to use savepoints with commits and rollbacks
class DbSavepoint {
 public static void main(String[] args) throws SQLException {
 Connection connection = DbConnector.connectToDb();
 ResultSet resultSet = null;
 // we're using explicit finally blocks
 // instead of try-with-resources statement in this code
 try {
 // for commit/rollback we first need to set auto-commit to false
 connection.setAutoCommit(false);
 Statement statement =
 connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 resultSet = statement.executeQuery("SELECT * FROM familyGroup");

 System.out.println("Printing the contents of the table before inserting");
 while(resultSet.next()) {
 System.out.println(resultSet.getInt("id") + " "
 + resultSet.getString("nickName"));
 }

Chapter 10 ■ Building dataBase appliCations with JdBC

305

 System.out.println("Starting to insert rows");
 // first insert
 resultSet.moveToInsertRow();
 resultSet.updateString("nickName", "Tom");
 resultSet.insertRow();
 System.out.println("Inserted row for Tom");
 // our first savepoint is here. . .
 Savepoint firstSavepoint = connection.setSavepoint();

 // second insert
 resultSet.moveToInsertRow();
 resultSet.updateString("nickName", "Dick");
 resultSet.insertRow();
 System.out.println("Inserted row for Dick");
 // our second savepoint is here. . . after we inserted Dick
 // we can give a string name for savepoint
 Savepoint secondSavepoint = connection.setSavepoint("SavepointForDick");

 // third insert
 resultSet.moveToInsertRow();
 resultSet.updateString("nickName", "Harry");
 resultSet.insertRow();
 System.out.println("Inserted row for Harry");
 // our thrid savepoint is here. . . for "Harry"
 Savepoint thirdSavepoint = connection.setSavepoint("ForHarry");
 System.out.println("Table updation complete. . .");

 // rollback to the state when Dick was inserted;
 // so the insert for Harry will be lost
 System.out.println(
 "Rolling back to the state where Tom and Dick were inserted");
 connection.rollback(secondSavepoint);
 // commit the changes now and see what happens to the contents of the table
 connection.commit();
 System.out.println("Printing the contents of the table after commit");
 resultSet = statement.executeQuery("SELECT * FROM familyGroup");
 while(resultSet.next()) {
 System.out.println(resultSet.getInt("id") + " "
 + resultSet.getString("nickName"));
 }
 } catch (SQLException e) {
 System.out.println("Something gone wrong, couldn't add a contact in family group");
 // roll back all the changes in the transaction since something has gone wrong
 connection.rollback();
 e.printStackTrace();
 }

Chapter 10 ■ Building dataBase appliCations with JdBC

306

 finally {
 if(connection != null) connection.close();
 if(resultSet != null) resultSet.close();
 }
 }
}

Run this program first.

Printing the contents of the table before inserting
Starting to insert rows
Inserted row for Tom
Inserted row for Dick
Inserted row for Harry
Table updation complete. . .
Rolling back to the state where Tom and Dick were inserted
Printing the contents of the table after commit
1 Tom
2 Dick

Now let’s understand the program.

1. First you get the connection, create a statement, get a ResultSet, and print the contents
of the table (which is empty).

2. You insert three rows, one after another. After inserting each row, you create a Savepoint
object in that transaction. The first savepoint is an unnamed Savepoint after inserting
“Tom” and the second and third are named savepoints occur after inserting “Dick” and
“Harry.”

3. In the statement connection.rollback(secondSavepoint);, you instruct JDBC to roll
back the transaction to the second savepoint. Remember that you’ve created the second
savepoint to remember the state after inserting “Tom” and “Dick” but before inserting
“Harry.” So the rollback is to the state where rows containing “Tom” and “Dick” are
inserted.

4. The commit() method commits the current state of the transaction. Since the rollback
is already called, the current state of the transaction is that there are two rows inserted
containing the nicknames “Tom” and “Dick.” Printing the contents of the table confirms
that it is indeed the case.

The RowSet Interface
The interface javax.sql.RowSet extends the ResultSet interface to provide support for the JavaBean component
model. The RowSet interface defines getters and setters for different data types.

RowSet also supports methods to add and remove event listeners (since it is a JavaBean component). Other
Java objects may use the event notification mechanism supported by RowSet. The RowSet interface implements
the Observer design pattern (as a Subject). A Java object that wants to receive event notification from RowSet must
implement the RowSetListner interface and must be registered with the RowSet object. RowSet notifies all the
registered objects on the occurrence of one of the following events: change in cursor location, change in a row, and
change in the entire RowSet object.

Chapter 10 ■ Building dataBase appliCations with JdBC

307

Java provides five different flavors of the RowSet interface (see Figure 10-3). The interfaces of these flavors can be
found in the javax.sql.rowset package. The five interfaces are JdbcRowSet, JoinRowSet, CachedRowSet, WebRowSet,
and FilteredRowSet. Java also offers a default reference implementation of these interfaces that can be found in
the com.sun.rowset package. These implementations are JdbcRowSetImpl, JoinRowSetImpl, CachedRowSetImpl,
WebRowSetImpl, and FilteredRowSetImpl.

ResultSet

RowSet

JdbcRowSet CachedRowSet

ResultSet capabilities +
Java Bean capabilities +
disconnected ResultSet

capabilities

Capabilities supported
by CachedRowSet + XML

capabilities

Capabilities supported
by WebRowSet +

filtering capabilities

WebRowSet

JoinRowSet FilterRowSet

Capabilities supported
by WebRowSet + SOL

join capabilities

ResultSet capabilities +
Java Bean capabilities

Figure 10-3. The RowSet hierarchy

JdbcRowSet is a connected RowSet, which means a JdbcRowSet implementation is always connected to the
corresponding database. The other four interfaces are disconnected RowSets, which means an object of any one of
these four RowSet implementations (except JdbcRowSet) connects to the database only when they want to read or
write; all the other times they are disconnected from the database. This property of implementation of these four
interfaces along with the capability of being serializable make them suitable for sending over the network.

Figure 10-3 shows the hierarchical relationship among various RowSet interfaces. As you already know, RowSet
is a subinterface of the ResultSet interface. JdbcRowSet is a subinterface of RowSet; JdbcRowSet has all the features
ResultSet supports plus Java Bean capabilities. CachedRowSet is also a subinterface of the RowSet interface; it
has all the features JdbcRowSet supports plus it has the capabilities of a disconnected ResultSet. WebRowSet adds
XML capabilities to the CachedRowSet features. Similarly, JoinRowSet adds SQL join capabilities to WebRowSet, and
FilteredRowSet adds result filtering capabilities to WebRowSet.

Let’s now discuss the RowSetProvider class and the RowSetFactory interface, which were introduced in
Java 7. RowSetProvider provides APIs to get a RowSetFactory implementation that can be used to instantiate
a proper RowSet implementation. It provides the following two methods:

•	 RowSetFactory newFactory(): This API creates a new instance of a RowSetFactory
implementation. So which factory implementation will this method instantiate? It is a
good question; the answer is that this API infers the type of factory implementation to
instantiate from the environment settings. It first looks in the system property javax.sql.
rowset.RowSetFactory. If the API could not infer the factory implementation, then it uses
ServiceLoader API to determine the type of the factory implementation to instantiate, and
finally it looks for the platform default implementation of the RowSetFactory instance. If the
API could not infer the factory implementation type, it raises a SQLException.

Chapter 10 ■ Building dataBase appliCations with JdBC

308

•	 RowSetFactory newFactory(String factoryClassName, ClassLoader classloader): If it is
unclear which driver will be loaded when you call the plain newFactory() method due to
multiple drivers in the scope, you can use the overloaded method newFactory(), which takes
the class name of the factory and the class loader and instantiates the appropriate factory.

RowSetFactory defines five methods; each method creates a type of RowSet implementation. So why are
RowSetFactory and RowSetProvider required to create a RowSet implementation when you can create them using the
traditional plain way? The answer is flexibility; you can create the RowSet object without specifying the details that you
need to provide during a traditional RowSet object; you can then set other details once the object gets created. How
about writing a program to see how to use RowSetFactory and RowSetProvider? See Listing 10-13.

Listing 10-13. DbQuery5.java

import javax.sql.rowset.*;
import java.sql.*;

// To illustrate how to use RowSet, RowSetProvider, and RowSetFactory
class DbQuery5 {
 public static void main(String[] args) {
 String url = "jdbc:mysql://localhost:3306/addressBook";
 String userName = "root";
 String password = "mysql123";
 try {
 // first, create a factory object for rowset
 RowSetFactory rowSetFactory = RowSetProvider.newFactory();
 // create a JDBC rowset from the factory
 JdbcRowSet rowSet = rowSetFactory.createJdbcRowSet();
 rowSet.setUrl(url);
 rowSet.setUsername(userName);
 rowSet.setPassword(password);
 rowSet.setCommand("SELECT * FROM contact");
 rowSet.execute();
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (rowSet.next()){
 System.out.println(rowSet.getInt("id") + "\t"
 + rowSet.getString("firstName") + "\t"
 + rowSet.getString("lastName") + "\t"
 + rowSet.getString("email") + "\t"
 + rowSet.getString("phoneNo"));
 }
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }
}

It prints the following:

Id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210
3 Samuel Uncle sam@abc.com +119955331100

Chapter 10 ■ Building dataBase appliCations with JdBC

309

The output of the program is as expected. However, you made use of RowSetProvider and RowSetFactory. You
first get the appropriate RowSetFactory and then create JdbcRowSet using the factory. The rest of the program is as
you saw in Listing 10-3.

Points to Remember
Here are a few useful points that could be helpful in your OCPJP exam:

You can use column name or column index with •	 ResultSet methods. The index you use is the
index of the ResultSet object, not the column number in the database table.

•	 A Statement object closes the current ResultSet object if a) the Statement object is closed, b)
is re-executed, or c) is made to retrieve the next set of result. That means it is not necessary to
call close() explicitly with ResultSet object; however, it is good practice to call close() once
you are done with the object.

You may use the column name of a •	 ResultSet object without worrying about the case:
getXXX() methods accept case insensitive column names to retrieve the associated value.

Think of a case when you have two columns in a •	 ResultSet object with the same name. How
you can retrieve the associated values using the column name? If you use a column name to
retrieve the value, it will always point to the first column that matches with the given name.
Hence, you have to use column index in this case to retrieve values associated with both
columns.

You might remember that •	 the PreparedStatement interface inherits from Statement.
However, PreparedStatement overrides all flavors of execute() methods. For instance, the
behavior of executeUpdate() might be different from its base method.

It is your responsibility to issue a correct SQL command; a JDBC •	 Statement will not check for
its correctness. For example, if there is a syntax error in the SQL command string, then you will
not get a compiler error. Rather, you’ll get a MySQLSyntaxErrorException at runtime.

You may call the appropriate •	 get() method immediately after inserting a row using the
insertRow() method. However, the values of the row are undefined.

You may cancel any update you made using the method •	 cancelRowUpdates(). However, you
must call this method before calling the method updateRow(). In all other cases, it has no
impact on the row.

While connecting to the database, you need to specify the correct username and password. If •	
the provided username or password is not correct, you will get a SQLException.

JDBC 4.1 introduces the capability to use try-with-resources statement to close resources •	
(Connection, ResultSet, and Statement) automatically.

Chapter 10 ■ Building dataBase appliCations with JdBC

310

Question time!

Consider the following code segment. assume that the connection object is valid and 1.
statement.executeQuery() method successfully returns a ResultSet object with a few
rows in it.

Statement statement = connection.createStatement();
ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")){
System.out.println("ID \tfName \tlName \temail \t\tphoneNo");
// from resultSet metadata, find out how many columns are there and then read the
column entries
int numOfColumns = resultSet.getMetaData().getColumnCount();
while (resultSet.next()) {
// traverse the columns by index values
 for(int i = 0; i < numOfColumns; i++) {
 // since we do not know the data type of the column, we use getObject()
 System.out.print(resultSet.getObject(i) + "\t");
 }
 System.out.println("");
}

which of the following statements is true regarding this code segment?

a. the code segment will successfully print the contents of the rows in the ResultSet
object.

B. the looping header is wrong. to traverse all the columns, it should be

 for(int i = 0; i <= numOfColumns; i++) {

C. the looping header is wrong. to traverse all the columns, it should be

 for(int i = 1; i <= numOfColumns; i++) {

d. the looping header is wrong. to traverse all the columns, it should be

 for(int i = 1; i < numOfColumns; i++) {

Answer: C. the looping header is wrong. to traverse all the columns, it should be

 for(int i = 1; i <= numOfColumns; i++) {

(given n columns in a table, the valid column indexes are from 1 to n and not 0 to n - 1.)

assume that you’ve freshly created this table with the following command in MysQl:2.

create table familyGroup (id int not null auto_increment, nickName varchar(30) Not
null, primary key (id));

You’ve written this program that makes use of this table:

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

Chapter 10 ■ Building dataBase appliCations with JdBC

311

class DbTransactionTest {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement =
 connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 ResultSet resultSet =
 statement.executeQuery("SELECT * FROM familyGroup")) {
 resultSet.moveToInsertRow();
 resultSet.updateString("nickName", "Sam");
 resultSet.insertRow(); // INSERT ROW
 System.out.println("Table updated with a row. . .");
 connection.commit(); // COMMIT STMT
 }
 }
}

what will be the result of executing this program assuming that establishing the connection succeeds?

a. the program will successfully insert a row with id = 1 and nickname = “sam”.

B. a SQLException will be thrown in the line where the insert row comment is
provided because you cannot insert a row on a read-only ResultSet object.

C. a SQLException will be thrown in the line where the CoMMit stMt statement is
provided because auto-commit is enabled; hence the commit will fail.

d. the program will not insert anything into the familyGroup table.

Answer: C. a SQLException will be thrown in the line where the CoMMit stMt statement is provided because
auto-commit is enabled; hence the commit will fail.

(any attempt to use methods such as commit, rollback, setSavepoint, etc. will result in throwing a
SQLException if auto-commit is not disabled.)

Consider the following sequence of operations in a transaction:3.

// assume that all operations execute in this program successfully without
// throwing any exceptions; also assume that the connection is established
// successfully
connection.setAutoCommit(false);

// insert a row into the table here
// create a savepoint in this transaction here

//insert another row into the table here
//create a named savepoint in this transaction here

//insert the third row into the table here

connection.rollback();
connection.commit();

Chapter 10 ■ Building dataBase appliCations with JdBC

312

what will be the effect of this sequence of actions after executing the statement connection.commit()?

a. three rows will be inserted into the table.

B. no rows will be inserted into the table.

C. one row will be inserted into the table.

d. two rows will be inserted into the table.

e. all three rows will be inserted into the table.

Answer: B. no rows will be inserted into the table.

(since connection.rollback(); is called before connection.commit(), all operations will be undone and no
rows will be inserted into the table.)

which one of the following statements would be needed in JdBC 3.0?4.

a. Connection connection = DriverManager.getConnection("jdbc:mysql://
localhost:3306/addressBook", "root", "password"))

B. Connection connection = DriverManager.createConnection("jdbc:mysql://
localhost:3306/addressBook", "root", "password"))

C. Class.forName("com.mysql.jdbc.Driver").newInstance();

d. Class.forName("com.mysql.jdbc.Driver").getInstance();

Answer: C. Class.forName("com.mysql.jdbc.Driver").newInstance();

(You need to explicitly load the JdBC driver using the Class.forName() statement in JdBC 3.0. From 4.0
onwards, this statement is not needed and you can directly get the connection. note that option a) shows how to
get the connection for MysQl, and this url will depend on the specific database used.)

Consider this program and choose the best option describing its behavior (assume that 5.
the connection is valid):

try (Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")){
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
}
catch (SQLException sqle) {
 System.out.println("SQLException");
}

a. this program will print the following: SQLException.

B. this program will print the first row from contact.

C. this program will print all the rows from contact.

d. this program will report compiler errors.

Answer: a. this program will print the following: SQLException.

Chapter 10 ■ Building dataBase appliCations with JdBC

313

(the statement while (resultSet.next()) is missing.)

which of the following two statements are correct regarding rowsets in JdBC?6.

a. it is possible to use JdbcRowSet as a JavaBeans component.

B. WebRowSet provides result set in the Json format.

C. the filter in a FilteredRowSet object is set at the time of its creation; a filter cannot be set once
the FilteredRowSet object is created.

d. a CachedRowSet object caches data in its memory, which makes it possible to use the
CachedRowSet object without always being connected to its data source.

Answer:

a. it is possible to use JdbcRowSet as a JavaBeans component.

d. a Cachedrowset object caches data in its memory, which makes it possible to use the Cachedrowset
object without always being connected to its data source.

(note that B) WebRowSet provides a result set in XMl format (not Json format which is one of the alternatives to
XMl) and C) the filter in a FilteredRowSet object can be set using the setFilter() method any time).

which of the following interfaces does not extend the 7. RowSet interface?

a. JdbcRowSet

B. CachedRowSet

C. WebRowSet

d. TraversalRowSet

e. JoinRowSet

Answer: d) TraversalRowSet

(the interfaces deriving from JdbcRowSet are CachedRowSet, WebRowSet, JoinRowSet, and FilteredRowSet.)

Summary
Define the Layout of the JDBC API

JDBC (Java Database Connectivity) APIs provided by Java are meant for programmatic access •	
to DataBase Management Systems (DBMSs).

JDBC hides all the heterogeneity of all the DBMSs and offers a single set of APIs to interact •	
with all types of databases.

The complexity of heterogeneous interactions is delegated to JDBC driver manager and •	
JDBC drivers; hence all the details and complications are hidden by the JDBC API from the
application developer.

Chapter 10 ■ Building dataBase appliCations with JdBC

314

There are four types of drivers:•	

•	 Type 1 (JDBC-ODBC bridge drivers): JDBC driver calls ODBC (Open Database
Connectivity) native calls using the Java Native Interface (JNI).

•	 Type 2 (Native-API drivers): These drivers use client-side libraries of a specific database
and convert JDBC calls to native database calls.

•	 Type 3 (Network-protocol drivers): These drivers call database middleware and the
middleware actually converts JDBC calls to database-specific native calls.

•	 Type 4 (Native-protocol drivers): The driver directly makes database-specific calls over
the network without any support of additional client-side libraries.

Connect to a Database by Using a JDBC driver
The •	 java.sql.Connection interface provides a channel through which the application and
the database communicate.

The •	 getConnection() method in the DriverManager class takes three arguments: the URL
string, username string, and password string.

The syntax of the URL (which needs to be specified to get the •	 Connection object) is
<protocol>:<subprotocol>://<server>:<port>/. An example of a URL string is
jdbc:mysql://localhost:3306/. The <protocol> jdbc is the same for all DBMSs;
<subprotocol> will differ for each DBMS, <server> depends on the location in which you host
the database, and each DBMS uses a specific <port> number.

If the JDBC API is not able to locate the JDBC driver, it will throw a •	 SQLException. If there are
jars for the drivers available, they need to be included in the classpath to enable the JDBC API
to locate the driver.

Prior to JDBC 4.0, you would have to explicitly load the JDBC driver using the •	
Class.forName() statement; with JDBC 4.0 and above, this statement is not needed and the
JDBC API will load the driver from the details given in the URL string.

Update and Query a Database
JDBC supports two interfaces for querying and updating: •	 Statement and Resultset.

A •	 Statement is a SQL statement that can be used to communicate a SQL statement to the
connected database and receive results from the database. There are three types of Statements:

•	 Statement: You need to use Statement when you need to send a SQL statement to the
database without any parameter.

•	 PreparedStatement: Represents a precompiled SQL statement that can be customized
using IN parameters.

•	 CallableStatement: Used to execute stored procedures; can handle IN as well as OUT
and INOUT parameters.

A •	 ResultSet is a table with column heading and associated values requested by the query.

A •	 ResultSet object maintains a cursor pointing to the current row. Initially, the cursor is set
to just before the first row; calling the next() method advances the cursor position by one row.

Chapter 10 ■ Building dataBase appliCations with JdBC

315

The column index in the •	 ResultSet object starts from 1 (not from 0).

You need to call •	 updateRow() after modifying the row contents in a ResultSet; otherwise
changes made to the ResultSet object will be lost.

By calling the •	 getMetaData() method in the Connection interface, you can examine the
capabilities of the underlying database.

Customize the Transaction Behavior of JDBC and Commit Transactions
A transaction is a set of SQL operations that needs to be either executed all successfully •	
or not at all.

Transaction-related methods are supported in the •	 Connection interface.

By default auto-commit mode is set to true, so all changes you make through the connection •	
are committed automatically to the database.

You can use •	 setAutoCommit(false); to enable manual commits. With auto-commit not
enabled, you need to explicitly commit or rollback transactions.

If the •	 commit() method does not execute in manual commit mode, there will be no change
in the database.

You can divide a big transaction into multiple milestones. These milestones are referred to •	
as savepoints. This way you may save the changes to a database up to a milestone once the
milestone is achieved.

Use the JDBC 4.1 RowSetProvider, RowSetFactory, and RowSet Interfaces
•	 RowSet is a special ResultSet that supports the JavaBean component model.

•	 JdbcRowSet is a connected RowSet while other subinterfaces of RowSet (i.e., JoinRowSet,
CachedRowSet, WebRowSet, and FilteredRowSet) are disconnected RowSets.

•	 RowSetProvider provides APIs to get a RowSetFactory implementation, which can in turn be
used to instantiate a relevant RowSet implementation.

317

Chapter 11

Exceptions and Assertions

Use throw and throws statements

Use the try statement with multi-catch, and fanally clauses

Autoclose resources with a try-with-resources statement

Create custom exceptions

Test invariants by using assertions

Exam Topics

In this chapter, you’ll learn about Java’s support for exception handling in detail. You’ll first learn the basic concepts
behind exception handling and then you’ll learn how to throw, catch, and rethrow exceptions. You’ll also learn
about the recently added language features such as try-with-resources and multi-catch statements. Following that,
you’ll learn how to define your own exception classes (custom exceptions). Finally, we’ll discuss the related topic of
assertions and teach you how to use them in your programs. Most of the programming examples in this chapter make
use of I/O functions (Chapters 8 and 9) to illustrate the concepts of exception handling.

Introduction to Exception Handling
As programmers, we are optimistic—we just write code to solve the problem at hand and expect it to work without
any problems. However, things do go wrong (more often than we’d like!), so we should always anticipate errors and
exceptions, and write code to handle the exceptional conditions.

Java has built-in support for exceptions. The Java language supports exception handling in the form of the throw,
throws, try, catch, and finally keywords. See Figure 11-1 to understand the basic syntax of these keywords.

Chapter 11 ■ exCeptions and assertions

318

Throwing Exceptions
Listing 11-1 is a very simple programming example in which you want to echo the text typed as command-line
arguments back to the user. Assume that the user must type some text as command-line arguments to echo, or else
you need to inform the user about the “error condition.”

Listing 11-1. Echo.java

// A simple program without exception handling code
class Echo {
 public static void main(String []args) {
 if(args.length == 0) {
 // no arguments passed – display an error to the user
 System.out.println("Error: No input passed to echo command... ");
 System.exit(-1);
 }
 else {
 for(String str : args) {
 // command-line arguments are separated and passed as an array
 // print them by adding a space between the array elements
 System.out.print(str + " ");
 }
 }
 }
}

The code inside try block can
throw exceptions.

The checked exception ACheckedException can be thrown
from the body of the method foo().

This throw statement throws AnUncheckedException (since this is
an unchecked exception it is not declared in the throws clause).

throw new ACheckedException();

throws ACheckedException {

throw new AnUnCheckedException();
}

}

}

}

}

{

{

{

{

else

// release resources acquired in the try block

// handle the exception

// some code that can throw an exception ...
(Exception e){

public static void foo()

if(someCondition)

finally

catch

try

}

If the code in try block throws an exception
of type Exception or its derived classes, this

catch block code will handle it.

The code in finally block will always be
executed (doesn’t matter if the try block

throw an exception or not).

This throw statements throws the custom
checked exception (and since there is no

catch hander for this exception, it must be
declared in throws clause of the metnod).

Figure 11-1. The basic syntax of exception handling-related keywords

q

Chapter 11 ■ exCeptions and assertions

319

In this case, you print the error in the console using a println() statement. This is a trivial program and the
error occurred in the main() method, so the error handling is easy. In this case, you can terminate the program after
printing the error message to the console. However, if you are deep within the function calls in a complex application,
you need a better way to indicate that an “exceptional condition” has occurred and then inform the caller about that
condition. Further, you often need to recover from an error condition instead of terminating the program. So you
need to be able to “handle” an exception or “rethrow” that exception further up in the call stack so that a caller can
handle that exception. (We’ll revisit this topic of rethrowing exceptions later in this chapter.) At present, you’ll change
the program in Listing 11-1 to throw an exception instead of printing an error message (in a separate program,
Echo1.java), like so:

if(args.length == 0) {
 // no arguments passed - throw an exception
 throw new IllegalArgumentException("No input passed to echo command");
}

This block inside the if condition for args.length == 0 is the only part that needs to be changed within this
program. Note the syntax for throwing an exception: the throw keyword followed by the exception object. Here you
make use of IllegalArgumentException, which is already defined in the Java library. Later in this chapter, you’ll see
how to define your own exceptions.

Now, if you run this program without passing any arguments in the command line, the program will throw an
IllegalArgumentException.

D:\> java Echo1
Exception in thread "main" java.lang.IllegalArgumentException: No input passed to echo command
 at Echo1.main(Echo1.java:5)

Since there was no handler for this exception, this uncaught exception terminated the program. In this case, you
explicitly threw an exception. Exceptions can also get thrown when you write some code or call Java APIs. You’ll look
at an example now.

Unhandled Exceptions
Consider the program in Listing 11-2, which attempts to read an integer value that the user types in the console and
prints the read integer back to the console. For reading an integer from the console, you make use of the readInt()
method provided in the java.util.Scanner class. To instantiate the Scanner class, you pass in System.in, which is a
reference to the system input stream.

Listing 11-2. ScanInt1.java

// A simple progam to accept an integer from user

import java.util.*;

class ScanInt {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
}

Chapter 11 ■ exCeptions and assertions

320

When you run this program and type an integer, say 10, in the console, the program works correctly and prints
the integer back to you successfully.

D:\> java ScanInt1
Type an integer in the console:
10
You typed the integer value: 10

However, what if you (or the user of the program) mistakenly type the string “ten” instead of the integer value
“10”? The program will terminate after throwing an exception like this:

D:\> java ScanInt1
Type an integer in the console:
ten
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:909)
 at java.util.Scanner.next(Scanner.java:1530)
 at java.util.Scanner.nextInt(Scanner.java:2160)
 at java.util.Scanner.nextInt(Scanner.java:2119)
 at ScanInt.main(ScanInt1.java:7)

If you read the documentation of nextInt(), you’ll see that this method can throw InputMismatchException “
if the next token does not match the Integer regular expression, or is out of range.” In this simple program, you
assume that you (or the user) will always type an integer value as expected, and when that assumption fails, an
exception gets thrown. If there is an exception thrown from a program, and it is left unhandled, the program will
terminate abnormally after throwing a stack trace like the ones shown here.

A stack trace shows the list of the method (with the line numbers) that was called before the control reached
the statement where the exception was thrown. As a programmer, you’ll find it useful to trace the control flow for
debugging the program and fix the problem that led to this exception.

So, how do you handle this situation? You need to put this code within try and catch blocks and then handle
the exception.

Try and Catch Statements
Java provides the try and catch keywords to handle any exceptions that can get thrown in the code you write.
Listing 11-3 is the improved version of the program from Listing 11-2.

Listing 11-3. ScanInt2.java

// A simple progam to accept an integer from user in normal case,
// otherwise prints an error message

import java.util.*;

class ScanInt2 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 } catch(InputMismatchException ime) {

Chapter 11 ■ exCeptions and assertions

321

 // nextInt() throws InputMismatchException in case anything other
than an integer

 // is typed in the console; so handle it
 System.out.println("Error: You typed some text that is not

an integer value...");
 }
 }
}

If anything other than a valid integer is typed in the input, this program prints a readable error message to the user.

D:\> java ScanInt2
Type an integer in the console:
ten
Error: You typed some text that is not an integer value...

Now let’s analyze this code. The block followed by the try keyword limits the code segment for which you
expect that some exceptions could be thrown. If any exception gets thrown from the try block, the Java runtime will
search for a matching handler (which we’ll discuss in more detail a bit later). In this case, an exception handler for
InputMismatchException is present, which is of exactly the same type as the exception that got thrown. This exactly
matching catch handler is available just outside the try block in the form of a block preceded by the keyword catch,
and this catch block gets executed. In the catch block you caught the exception, so you’re handling the exception
here. You are providing a human readable error string rather than throwing a raw stack trace (as you did in the earlier
program in Listing 11-2), so you’re providing a graceful exit for the program.

Programmatically Accessing the Stack Trace

You saw that the stack trace is useful for debugging, so how to get it in the catch block? You can use the
printStackTrace() method, which will print the stack trace to the console. Let’s add the following statement to the
catch block:

ime.printStackTrace();

Now this statement will print the stack trace:

java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:909)
 at java.util.Scanner.next(Scanner.java:1530)
 at java.util.Scanner.nextInt(Scanner.java:2160)
 at java.util.Scanner.nextInt(Scanner.java:2119)
 at ScanInt2.main(ScanInt2.java:9)

You can also access each of the entries in the stack trace. All exceptions have a method named getStackTrace()
that returns an array of StackTraceElements. So, consider that you write these statements in the catch block:

System.out.println("The calls in the stack trace are: ");
// access each element in the "call stack" and print them individually
for(StackTraceElement methodCall : ime.getStackTrace())
 System.out.println(methodCall);

Chapter 11 ■ exCeptions and assertions

322

When you execute this code segment, it will print the following:

The calls in the stack trace are:
java.util.Scanner.throwFor(Scanner.java:909)
java.util.Scanner.next(Scanner.java:1530)
java.util.Scanner.nextInt(Scanner.java:2160)
java.util.Scanner.nextInt(Scanner.java:2119)
ScanInt2.main(ScanInt2.java:9)

Multiple Catch Blocks

In Listing 11-2, you used a Scanner object to read an integer from the console. Note that you can use a Scanner object
to read from a String as well (see Listing 11-4).

Listing 11-4. ScanInt3.java

// A program that scans an integer from a given string

import java.util.*;

class ScanInt3 {
 public static void main(String [] args) {
 String integerStr = "100";
 System.out.println("The string to scan integer from it is: " + integerStr);
 Scanner consoleScanner = new Scanner(integerStr);
 try {
 System.out.println("The integer value scanned from string is: " +
 consoleScanner.nextInt());
 } catch(InputMismatchException ime) {
 // nextInt() throws InputMismatchException in case anything other

than an integer
 // is provided in the string
 System.out.println("Error: Cannot scan an integer from the given string");
 }
 }
}

This program prints the following:

The string to scan integer from it is: 100
The integer value scanned from string is: 100

What happens if you modify the program in Listing 11-4 so that the string contains a non-integer value, as in

String integerStr = "hundred";

The try block will throw an InputMismatchException, which will be handled in the catch block, and you’ll get this
output:

The string to scan integer from it is: hundred
Error: Cannot scan an integer from the given string

Chapter 11 ■ exCeptions and assertions

323

Now, what if you modify the program in Listing 11-4 so that the string contains an empty string, as in

String integerStr = "";

For this, nextInt() will throw a NoSuchElementException, which is not handled in this program, so this program
would crash.

The string to scan integer from it is:
Exception in thread "main" java.util.NoSuchElementException
 at java.util.Scanner.throwFor(Scanner.java:907)
 at java.util.Scanner.next(Scanner.java:1530)
 at java.util.Scanner.nextInt(Scanner.java:2160)
 at java.util.Scanner.nextInt(Scanner.java:2119)
 at ScanInt3.main(ScanInt.java:11)

Further, if you look at the JavaDoc for Scanner.nextInt() method, you’ll find that it can also throw an
IllegalStateException (this exception is thrown if the nextInt() method is called on a Scanner object that is
already closed). So, let’s provide catch handlers for InputMismatchException, NoSuchElementException, and
IllegalStateException (see Listing 11-5).

Listing 11-5. ScanInt4.java

// A program that scans an integer from a given string

import java.util.*;

class ScanInt4 {
 public static void main(String [] args) {
 String integerStr = "";
 System.out.println("The string to scan integer from it is: " + integerStr);
 Scanner consoleScanner = new Scanner(integerStr);
 try {
 System.out.println("The integer value scanned from string is: " +
 consoleScanner.nextInt());
 } catch(InputMismatchException ime) {
 System.out.println("Error: Cannot scan an integer from the given string");
 } catch(NoSuchElementException nsee) {
 System.out.println("Error: Cannot scan an integer from the given string");
 } catch(IllegalStateException ise) {
 System.out.println("Error: nextInt() called on a closed Scanner object");
 }
 }
}

Here is the output when you run this program:

The string to scan integer from it is:
Error: Cannot scan an integer from the given string

As you can see from the output, since the string is empty, NoSuchElementException gets thrown. It is caught
in the catch handler for this exception, and the code provided inside the catch block gets executed to result in a
graceful exit.

Chapter 11 ■ exCeptions and assertions

324

Note how you provided more than one catch handler by stacking them up: you provided specific (i.e.,
derived type) exception handlers followed by more general (i.e., base type) exception handlers. If you provide
a derived exception type after a base exception type, you get a compiler error. You might not already know, but
NoSuchElementException is the base class of InputMismatchException! See what happens when you try to reverse the
order of catch handlers for InputMismatchException and NoSuchElementException.

try {
 System.out.println("The integer value scanned from string is: "
 + consoleScanner.nextInt());
} catch(NoSuchElementException nsee) {
 System.out.println("Error: Cannot scan an integer from the given string");
} catch(InputMismatchException ime) {
 System.out.println("Error: Cannot scan an integer from the given string");
}

This code segment will result in this compiler error:

ScanInt4.java:14: error: exception InputMismatchException has already been caught

 } catch(InputMismatchException ime) {
 ^
1 error

When providing multiple catch handlers, handle specific exceptions before handling general exceptions.
if you provide a derived class exception catch handler after a base class exception handler, your code will
not compile.

Multi-Catch Blocks

You just saw that you cannot reverse the order of the catch handlers for InputMismatchException and
NoSuchElementException. However, is it possible to combine these two catch handlers together? Java 7 provides a
feature named multi-catch blocks in which you can combine multiple catch handlers (see Listing 11-6).

Listing 11-6. ScanInt5.java

// A program that illustrates multi-catch blocks

import java.util.*;

class ScanInt5 {
 public static void main(String [] args) {
 String integerStr = "";
 System.out.println("The string to scan integer from it is: " + integerStr);
 Scanner consoleScanner = new Scanner(integerStr);
 try {
 System.out.println("The integer value scanned from string is: " +
 consoleScanner.nextInt());

Chapter 11 ■ exCeptions and assertions

325

 } catch(NoSuchElementException | IllegalStateException multie) {
 System.out.println("Error: An error occured while attempting to scan

the integer");
 }
 }
}

Note how you combine the catch handlers together using the | (OR) operator here (the same operator you use
for performing bit-wise OR operation on integral values) for combining the catch clauses of NoSuchElementException
and IllegalStateException.

Unlike the combined catch clauses for NoSuchElementException and IllegalStateException, you cannot
combine the catch clauses of NoSuchElementException and InputMismatchException. As we've already discussed,
NoSuchElementException is the base class of InputMismatchException, and you cannot catch both of them in the
multi-catch block. If you try compiling such a multi-catch clause, you’ll get this compiler error:

ScanInt5.java:11: error: Alternatives in a multi-catch statement cannot be related by subclassing
 } catch(InputMismatchException | NoSuchElementException exception) {
 ^

So what is the alternative? When you need such a catch handler for the exceptions where one exception is the
base class of another exception class, providing the catch handler for the base class alone is sufficient (since that base
class catch handler will handle the derived class exception if it occurs).

in a multi-catch block, you cannot combine catch handlers for two exceptions that share a base- and
derived-class relationship. You can only combine catch handlers for exceptions that do not share the
parent-child relationship between them.

How do you know if it is better to combine exception handling blocks or stack them? It is a design choice where
you must consider the following aspects: a) Do the exceptions get thrown for similar reason or for different reasons?
(b) Is the handling code similar or different? If you answer “similar” for both the questions, it is better to combine
them; if you say “different” for either one of these two questions, then it is better to separate them.

How about the specific situation in Listing 11-6? Is it better to combine or separate the handlers for
the InputMismatchException and IllegalStateException exceptions? You can see that the exception
handling is the same for both of the catch blocks. But the reasons for these two exceptions are considerably
different. The InputMismatchException gets thrown if you (or the user) type invalid input in the console. The
IllegalStateException gets thrown because of a programming mistake when you call the nextInt() method after
calling the close() method on Scanner. So, in this case, it is a better design choice to separate the handlers for these
two exceptions.

General Catch Handlers

Did you notice that many exceptions can get thrown when you use APIs related to I/O operations? We just discussed
that in order to call just one method, nextInt() of the Scanner class, you need to handle three exceptions: the
InputMismatchException, the NoSuchElementException, and the IllegalStateException. If you keep handling
specific exceptions such as this that may not actually result in an exceptional condition when you run the program,
most of your code will consist of try-catch code blocks! Is there a better way to say “handle all other exceptions”? Yes,
you can provide a general exception handler.

Chapter 11 ■ exCeptions and assertions

326

Here is the code snippet that shows only the try-catch blocks for the class ScanInt3 from Listing 11-4, enhanced
with a general exception handler:

try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
} catch(InputMismatchException ime) {
 // if something other than integer is typed, we'll get this exception, so handle it
 System.out.println("Error: You typed some text that is not an integer value...");
} catch(Exception e) {
 // catch IllegalStateException here which is unlikely to occur...
 System.out.println("Error: Encountered an exception and could not read an integer from the

console... ");
}

This code provides a catch handler for the base exception of the type Exception. So, if the try block throws any
other exception than the InputMismatchException, and if that exception is a derived class of the Exception class,
this general catch handler will handle it. It is recommended practice to catch specific exceptions, and then provide a
general exception handler to ensure that all other exceptions are handled as well.

Chained exCeptions

When you want to catch an exception and throw another exception, you can “chain” the first exception to the
thrown exception. in other words, when throwing an exception, you can associate another exception that caused it.

When creating an exception object you can use a constructor that takes another exception as an argument; this
passed argument is the exception chained to the exception object being created. there is also an overloaded
constructor that takes a description message as an additional argument. For example, the following are two
overloaded constructors of the Exception class:

 Exception(Throwable cause)
Exception(string detailMsg, throwable cause)

 similar constructors are available for other classes such as Throwable, Error, and RuntimeException. the following
program illustrates chained exceptions:

class ChainedException {
 public static void foo() {
 try {
 String [] str = { "foo" };
 System.out.println("About to throw ArrayIndexOutOfBoundsException");
 // following statement has out-of-bounds access
 String functionName = str[10];
 } catch(ArrayIndexOutOfBoundsException oob) {
 System.out.println("Wrapping ArrayIndexOutOfBoundsException into
 a RuntimeException");
 throw new RuntimeException(oob);
 }
}

Chapter 11 ■ exCeptions and assertions

327

 public static void main(String []args) {
 try {

 foo();
 } catch(Exception re) {
 System.out.println("The caught exception in main is: " + re.getClass());
 System.out.println("The cause of the exception is: " + re.getCause());
 }
 }

}

When executed, this program prints the following:

About to throw ArrayIndexOutOfBoundsException
Wrapping ArrayIndexOutOfBoundsException into a RuntimeException
The caught exception in main is: class java.lang.RuntimeException
The cause of the exception is: java.lang.ArrayIndexOutOfBoundsException: 10

Methods related to chained exceptions are the getCause() and initCause() methods defined in the
Throwable class.

the getCause() method returns a Throwable object. it returns an exception chained to the exception object on
which this method is invoked. this chained exception is the original exception that caused this exception. if no
exception is chained to this exception, this method returns null.

the initCause(Throwable causeException) method sets the chained exception for the exception object on
which this method is called. if the chained exception has already been set when creating the exception object,
calling this method will result in throwing an IllegalStateException. this method can be called only once; any
attempt to call it more than once will result in throwing an IllegalStateException.

note that exceptions can be chained to any level of depth.

Finally Blocks

There is a close() method provided in the Scanner class, and you need to close it. In the classes ScanInt1, ScanInt2,
and ScanInt3 (Listings 11-2, 11-3, and 11-4, respectively), note that you opened a Scanner object but did not close
it. So, these programs have a resource leak! The word “resource” refers to any of the classes that acquire some
system sources from the underlying operating system, such as network, file, database, and other handles. But how
do you know which classes need to be closed? Well, nice question. The answer is that if a class implements
java.io.Closeable, then you must call the close() method of that class; otherwise, it will result in a resource leak.

the garbage collector (GC) is responsible for releasing only memory resources. if you are using any class
that acquires system resources, it is your responsibility to release them by calling the close() method
on that object.

ScanInt6 (Listing 11-7) calls the close() method of the Scanner object in its main() method; you want to shorten
the code, so you’ll use a general exception handler for handling all exceptions that can be thrown within the try block.

Chapter 11 ■ exCeptions and assertions

328

Listing 11-7. ScanInt6.java

import java.util.*;

class ScanInt6 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 try {
 System.out.println("You typed the integer value: " +
 consoleScanner.nextInt());
 System.out.println("Done reading the text... closing the Scanner");
 consoleScanner.close();
 } catch(Exception e) {
 // call all other exceptions here ...
 System.out.println("Error: Encountered an exception and could not read

an integer from the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
 }
 }
}

Let’s see if this program works.

D:\> java ScanInt6
Type an integer in the console:
10
You typed the integer value: 10
Done reading the text... closing the Scanner

Because the program printed "Done reading the text... closing the Scanner", and completed the
execution normally, you can assume that the statement consoleScanner.close(); has executed successfully. What
happens if an exception gets thrown?

D:\> java ScanInt6
Type an integer in the console:
ten
Error: Encountered an exception and could not read an integer from the console...
Exiting the program - restart and try the program again!

As you can see from the output, the program did not print "Done reading the text... closing the Scanner",
so the statement consoleScanner.close(); has not executed. How can you fix it? One way is to call consoleScanner.
close() in the catch block as well, like this:

try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 System.out.println("Done reading the text... closing the Scanner");
 consoleScanner.close();
} catch(Exception e) {
 // call all other exceptions here ...
 consoleScanner.close();

Chapter 11 ■ exCeptions and assertions

329

 System.out.println("Error: Encountered an exception and could not read an integer
from the console... ");

 System.out.println("Exiting the program - restart and try the program again!");
}

This solution will work but is not elegant. You know you can have multiple catch blocks and you have to provide
calls to consoleScanner.close(); in all the catch blocks! Is there a better way to release the resources? Yes, you can
use release resources in a finally block (see Listing 11-8).

Listing 11-8. ScanInt7.java

import java.util.*;

class ScanInt7 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 try {
 System.out.println("You typed the integer value: " +
 consoleScanner.nextInt());
 } catch(Exception e) {
 // call all other exceptions here ...
 System.out.println("Error: Encountered an exception and could not read

an integer from the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
 } finally {
 System.out.println("Done reading the integer... closing the Scanner");
 consoleScanner.close();
 }
 }
}

In this case, a finally block is provided after the catch block. This finally block will be executed whether an
exception has occurred or not. So, the finally block is a good place to call the close() method on the Scanner object
to ensure that this resource is always released.

if you call System.exit() inside a method, it will abnormally terminate the program. so, if the calling
method has a finally block, it will not be called and resources may leak. For this reason, it is a bad
programming practice to call System.exit() to terminate a program.

Now, let’s see if the scanner is closed both in the case when the program completes normally (i.e., without
throwing an exception) and when the program terminates after throwing an exception.

D:\> java ScanInt7
Type an integer in the console:
10
You typed the integer value: 10
Done reading the integer... closing the Scanner

Chapter 11 ■ exCeptions and assertions

330

D:\> java ScanInt7
Type an integer in the console:
ten
Error: Encountered an exception and could not read an integer from the console...
Exiting the program - restart and try the program again!
Done reading the integer... closing the Scanner

Yes, the statement “Done reading the integer... closing the Scanner” is called whether an exception is
thrown or not. Note that you can have a finally block directly after a try block without a catch block as well; this
feature is used rarely, but is nevertheless a useful feature.

Points to Remember
Here are some interesting points related to throwing /handling exceptions and releasing resources in a finally block:

You can catch exceptions and wrap them into more generic exceptions and throw them higher •	
up in the call stack. When you catch an exception and create a more general exception, you
can retain reference to the original exception; this is called exception chaining.

catch(LowLevelException lle) {
 // wrap the low-level exception to a higher-level exception;
 // also, chain the original exception to the newly thrown exception
 throw new HighLevelException(lle);
}

Chaining exceptions is useful for debugging purposes. When you get a general exception,
you can check if there is a chained lower-level exception and try to understand why that lower-
level exception occurred.

The •	 finally statement is always executed irrespective of whether the code in the try block
throws an exception or not. Consider the following method. Will it return true or false to the
caller?

static boolean returnTest() {
 try {
 return true;
 }
 finally {
 return false;
 }
}

This method will always return false because finally is always invoked. In fact, if you use the
–Xlint option, you’ll get this compiler warning: “finally clause cannot complete normally.”
(Note that you can have a try block followed by either catch block or finally block or both
blocks.)

Chapter 11 ■ exCeptions and assertions

331

preCise rethrow

Consider the following program:

class PreciseRethrow {
 public static void main(String []str) {
 try {
 foo();
 }
 catch(NumberFormatException ife) {
 System.out.println(ife);
 }
 }

 static private void foo() throws NumberFormatException {
 try {
 int i = Integer.parseInt("ten");
 }
 catch(Exception e) {
 throw e;
 }
 }
}

if you try this program in Java versions earlier to Java 1.7, you’ll get this error:

C:\> javac -source 1.6 PreciseRethrow.java
PreciseRethrow.java:16: error: unreported exception Exception; must be caught or
 declared to be thrown
 throw e;
 ^
1 error

in this program, the Integer.parseInt() method can throw a NumberFormatException. however, the catch
block declares catching the general exception type Exception. inside the catch block, the exception is rethrown.
now, the method foo()’s throws clause indicates it can throw the NumberFormatException, which is correct
because it is the only exception that the Integer.parseInt() method can throw. however, since the static type
of the rethrown exception is Exception, the compiler will complain that the throws clause of the foo() method
should declare Exception.

Java 7 allows you to be more precise when you rethrow an exception. if you rethrow an exception from a catch
block, you can throw a type that the try block can throw but no previous catch handles has handled it. also,
the rethrown exception type need not be same as the catch type parameter; it can be a subtype of the catch
parameter. hence the class PreciseRethrow given above will compile without warnings or errors. (of course the
program will crash after throwing NumberFormatException because the string “ten” is not an integer!)

Chapter 11 ■ exCeptions and assertions

332

Try-with-Resources
It is a fairly common mistake by Java programmers to forget releasing resources, even in the finally block. Also, if
you’re dealing with multiple resources, it is tedious to remember to call the close() method in the finally block. Java 7
introduced a feature named try-with-resources to help make your life easier. Listing 11-9 makes use of this feature; it is
an improved version of Listing 11-8.

Listing 11-9. TryWithResources1.java

import java.util.*;

class TryWithResources1 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 try(Scanner consoleScanner = new Scanner(System.in)) {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 } catch(Exception e) {
 // catch all other exceptions here ...
 System.out.println("Error: Encountered an exception and could not read

an integer from the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
 }
 }
}

The behavior will be similar to that of the program in Listing 11-7, so we’re not running the program and showing
the sample output again.

Make sure you take a closer look at the syntax for try-with-resources block.

try(Scanner consoleScanner = new Scanner(System.in)) {

In this statement, you have acquired the resources inside the parenthesis after the try keyword, but before the
try block. Also, in the example, you don’t provide the finally block. The Java compiler will internally translate this
try-with-resources block into a try-finally block (of course, the compiler will retain the catch blocks you provide).
You can acquire multiple resources in the try-with-resources block; such resource acquisition statements should be
separated by semicolons.

Can you provide try-with-resources statements without any explicit catch or finally blocks? Yes! Remember that
a try block can be associated with a catch block, finally block, or both. A try-with-resources statement block gets
expanded internally into a try-finally block. So, you can provide a try-with-resources statement without explicit catch
or finally blocks. Listing 11-10 uses a try-with-resources statement without any explicit catch or finally blocks.

Listing 11-10. TryWithResources2.java

import java.util.*;

class TryWithResources2 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 try(Scanner consoleScanner = new Scanner(System.in)) {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
 }
}

Chapter 11 ■ exCeptions and assertions

333

Although it is possible to create a try-with-resources statement without any explicit catch or finally, it doesn’t
mean you should do so! For example, since this code does not have a catch block, if you type some invalid input, the
program will crash.

D:\> java TryWithResources1
Type an integer in the console:
ten
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:909)
 at java.util.Scanner.next(Scanner.java:1530)
 at java.util.Scanner.nextInt(Scanner.java:2160)
 at java.util.Scanner.nextInt(Scanner.java:2119)
 at TryWithResources1.main(TryWithResources1.java:7)

So, the benefit of a try-with-resources statement is that it simplifies your life by not having to provide finally
blocks explicitly. However, you still need to provide necessary catch blocks.

Note that for a resource to be usable with a try-with-resources statement, the class of that resource must
implement the java.lang.AutoCloseable interface. This interface declares one single method named close().
You already know that the try-with-resources feature was added in Java 7. This AutoCloseable interface was also
introduced in Java 7, and the interface is made of the base interface of the Closeable interface. This is to make sure
that the existing resource classes work seamlessly with a try-with-resources statement. In other words, you can use all
old stream classes with try-with-resources because they implement the AutoCloseable interface.

Closing Multiple Resources
You can use more than one resource in a try-with-resources statement. Here is a code snippet for creating a zip file
from a given text file that makes use of a try-with-resources statement:

// buffer is the temporary byte buffer used for copying data from one stream to another stream
byte [] buffer = new byte[1024];

// these stream constructors can throw FileNotFoundException
try (ZipOutputStream zipFile = new ZipOutputStream(new FileOutputStream(zipFileName));
 FileInputStream fileIn = new FileInputStream(fileName)) {
 zipFile.putNextEntry(new ZipEntry(fileName)); // putNextEntry can throw
 // IOException
 int lenRead = 0; // the variable to keep track of number of bytes sucessfully read
 // copy the contents of the input file into the zip file
 while((lenRead = fileIn.read(buffer)) > 0) { // read can throw IOException
 zipFile.write(buffer, 0, lenRead); // write can throw IOException
 }
 // the streams will be closed automatically because they are within try-with-
 // resources statement
}

In this code, the buffer is a byte array. This array is temporary storage useful for copying raw data from one
stream to another stream. In the try-with-resources statement, you open two streams: ZipOutputStream for writing
to the zip file and FileInputStream for reading in the text file. (Note: API support for zip (and jar) files is available in
java.util.zip library.) You want to read the input text file, zip it, and put that entry in the zip file. For putting a

Chapter 11 ■ exCeptions and assertions

334

file/directory entry into the zip file, the ZipOutputStream class provides a method named putNextEntry(), which
takes a ZipEntry object as an argument. The statement zipFile.putNextEntry(new ZipEntry(fileName)); puts a
file entry named fileName into the zipFile.

For reading the contents of the text file, you use the read() method in the FileInputStream class. The read()
method takes the buffer array as the argument. The amount of data to read per iteration (i.e., “data chunk size” to
read) is given by the size of the passed array; it is 1024 bytes in this code. The read() method returns the number of
bytes it read, and if there is no more data to read, it returns –1. The while loop checks if read succeeded (using the > 0
condition) before writing it to the zip file.

For writing data to the zip file, you use the write() method in the ZipOutputStream class. The write() method
takes three arguments: the first argument is the data buffer; the second argument is start offset in the data buffer
(which is 0 because you always read from the start of the buffer); and the third is the number of bytes to be written.

Now we come to the main discussion. Note how you open two resources in the try block and these two resource
acquisition statements are separated by semicolons. You do not have an explicit finally block to release the resources
because the compiler will automatically insert calls to the close methods for these two streams in the finally block(s).

Listing 11-11 is the complete program that makes use of this code segment to illustrate the use of try-with-
resources statement for auto-closing multiple streams.

Listing 11-11. ZipTextFile.java

import java.util.*;
import java.util.zip.*;
import java.io.*;

// class ZipTextFile takes the name of a text file as input and creates a zip file
// after compressing that text file.

class ZipTextFile {
 public static final int CHUNK = 1024; // to help copy chunks of 1KB
 public static void main(String []args) {
 if(args.length == 0) {
 System.out.println("Pass the name of the file in the current directory to be

zipped as an argument");
 System.exit(-1);
 }

 String fileName = args[0];
 // name of the zip file is the input file name with the suffix ".zip"
 String zipFileName = fileName + ".zip";

 byte [] buffer = new byte[CHUNK];
 // these constructors can throw FileNotFoundException
 try (ZipOutputStream zipFile = new ZipOutputStream(new FileOutputStream(zipFileName));

FileInputStream fileIn = new FileInputStream(fileName)) {
 // putNextEntry can throw IOException
 zipFile.putNextEntry(new ZipEntry(fileName));
 int lenRead = 0; // variable to keep track of number of bytes
 // successfully read
 // copy the contents of the input file into the zip file
 while((lenRead = fileIn.read(buffer)) > 0) {
 // both read and write methods can throw IOException
 zipFile.write (buffer, 0, lenRead);
 }

Chapter 11 ■ exCeptions and assertions

335

 // the streams will be closed automatically because they are
 // within try-with-resources statement
 }
 // this can result in multiple exceptions thrown from the try block;
 // use "suppressed exceptions" to get the exceptions that were suppressed!
 catch(Exception e) {
 System.out.println("The caught exception is: " + e);
 System.out.print("The suppressed exceptions are: ");
 for(Throwable suppressed : e.getSuppressed()) {
 System.out.println(suppressed);
 }
 }
 }
}

We’ve already discussed the try-with-resources block part. What we have not discussed is suppressed exceptions.
In a try-with-resources statement, there might be more than one exception that could get thrown; for example,
one within the try block, one within the catch block, and another one within the finally block. However, only one
exception can be caught, so the other exception(s) will be listed as suppressed exceptions. From a given exception
object, you can use the method getSuppressed() to get the list of suppressed exceptions.

Points to Remember
Here are some interesting points about try-with-resources statement that will help you in the OCPJP 7 exam:

You cannot assign to the resource variables declared in the try-with-resources within the body •	
of the try-with-resources statement. This is to make sure that the same resources acquired in
the try-with-resources header are released in the finally block.

It is a common mistake to close a resource explicitly inside the try-with-resources statement. •	
Remember that try-with-resources expands to calling the close() method in the finally block, so
the expanded code will have a double call to the close() method. Consider the following code:

try(Scanner consoleScanner = new Scanner(System.in)) {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 consoleScanner.close();
 // explicit call to close() method - remember that try-with-resources
 // statement will also expand to calling close() in finally method;
 // hence this will result in call to close() method in Scanner twice!
}

The documentation of the close() method in the Scanner class says that if the scanner object
is already closed, then invoking the method again will have no effect. So, you are safe in this
case. However, in general, you cannot expect all the resources to have implemented a close()
method that is safe to call twice. So, it is a bad practice to explicitly call the close() method
inside a try-with-resource statement.

Chapter 11 ■ exCeptions and assertions

336

Exception Types
Until now, we have focused on explaining the language constructs related to exceptions: the try, catch, multi-catch,
finally, and try-with-resources blocks. Some concepts won’t be clear to you yet. For example, you learned the throws
clause where you declare that a method can throw certain exceptions. You saw that for some types of exceptions, you
don’t need to declare them in the throws clause, but for certain other kinds of exceptions, you can declare them in
the throws clause. Why? What are these different kinds of exceptions? To answer these questions and get a better idea
about the exception handling support in the Java library, we’ll discuss types of exceptions in this section.

In Java, you cannot throw any primitive types as exception objects. This does not mean that you can throw any
reference type objects as exceptions. The thrown object should be an instance of the class Throwable or one of its
subclasses: Throwable is the apex class of the exception hierarchy in Java. Exception handling constructs such as
the throw statement, throws clause, and catch clause deal only with Throwable and its subclasses. There are three
important subclasses of Throwable that you need to learn in detail: the Error, Exception, and RuntimeException
classes. Figure 11-2 provides a high-level overview of these classes.

The Exception Class
Exceptions of type Exception are known as checked exceptions. If code can throw an Exception, you must handle it
using a catch block or declare that the method throws that exception, forcing the caller of that method to handle that
exception. Consider Listing 11-12.

Listing 11-12. CheckedExceptionExample1.java

import java.io.*;

class CheckedExceptionExample1 {
 public static void main(String []args) {
 FileInputStream fis = new FileInputStream(args[0]);
 }
}

java.lang.Object

java.lang.Throwable

java.lang.Exception java.lang.Error

Base of exception
hierarchy;all

exceptions must
extent this class.

JVM errors such as
stackOverflowError;

don’t
handle them!

Base class for representing
programming errors such as
IndexOutOFBoundsException.

Base class of checked
exceptions such as
ParseException and

IOException;you must
handle them!

java.lang.RuntimeException

Figure 11-2. Java’s exception hierarchy

Chapter 11 ■ exCeptions and assertions

337

This program results in a compiler error.

CheckedExceptionExample1.java:5: error: unreported exception FileNotFoundException; must be caught
or declared to be thrown
 FileInputStream fis = new FileInputStream(args[0]);
 ^
1 error

The constructor of FileInputStream declares that it throws the exception FileNotFoundException. This
FileNotFoundException is derived from the Exception class, hence is a checked exception. With checked exceptions,
Java forces you to think about failure conditions and how to handle them. Now, think about the code in Listing 11-13:
you are trying to open the file given by the string args[0], which may not be present. If you don’t want to catch and
handle the FileNotFoundException, you can declare the main() method to throw this exception.

Listing 11-13. CheckedExceptionExample2.java

import java.io.*;

class CheckedExceptionExample2 {
 public static void main(String []args) throws FileNotFoundException {
 FileInputStream fis = new FileInputStream(args[0]);
 }
}

This program will compile fine without any errors. However, this code is still not satisfactory: if you pass the
name of a file in the command line that does not exist in the search path, the program will crash after throwing this
exception:

D:\ > java CheckedExceptionExample2 somefile.txt
Exception in thread "main" java.io.FileNotFoundException: somefile.txt (The system cannot find the
file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:138)
 at java.io.FileInputStream.<init>(FileInputStream.java:97)
 at CheckedExceptionExample2.main(CheckedExceptionExample2.java:5)

A better way to handle the situation is to throw an error message to the user and inform her that she has to pass
the file name as the first argument to the program, as in Listing 11-14.

Listing 11-14. CheckedExceptionExample3.java

import java.io.*;

class CheckedExceptionExample3 {
 public static void main(String []args) {
 try {
 FileInputStream fis = new FileInputStream(args[0]);
 } catch(FileNotFoundException fnfe) {
 System.out.println("Error: There is no file that exists with name "

+ args[0]);
 System.out.println("Pass a valid file name as commandline argument!");
 }
 }
}

Chapter 11 ■ exCeptions and assertions

338

Now, when passed with a name of the file that does not exist, the program will terminate and show this useful
error message to the user:

D:\ > java CheckedExceptionExample3 somefile.txt
Error: There is no file that exists with name somefile.txt
Pass a valid file name as commandline argument!

if you have some code that can throw a checked exception from a method, you can choose between the
two alternatives. You can either handle that exception by providing a catch block or declare that method
to throw that exception. if you don’t catch or declare the method to throw that exception, your code
won’t compile.

Table 11-1 summarizes the important subclasses of the Exception class.

Table 11-1. Important Subclasses of the Exception Class

Class Short Description

CloneNotSupportedException Thrown when the clone() method is invoked on an object whose class
does not implement a Cloneable interface.

IOException Thrown when an Input/Output operation fails (say because of an
interrupted call).

EOFException Thrown when end-of-file (EOF) is reached unexpectedly; subclass of
IOException.

FileNotFoundException Thrown when the runtime is not able to locate or open the given file;
derived class of IOException.

ReflectiveOperationException Thrown when a reflection operation fails; superclass of reflection
related exceptions such as NoSuchMethodException and
InvocationTargetException.

RuntimeException Superclass of unchecked exceptions (discussed in the next section in this
chapter).

SQLException Thrown when a database access or related operations fail; superclass of
database-related exceptions such as SerialException.

ParseException Thrown when the parsing fails (for example, while processing locale-
sensitive information such as dates and times in the Format class).

The RuntimeException Class
RuntimeException is a derived class of the Exception class. The exceptions deriving from this class are known as
unchecked exceptions. Let’s first discuss an example of a RuntimeException. Recollect Listing 11-14 in the context of
FileNotFoundException (we’ve renamed the class in Listing 11-15).

Chapter 11 ■ exCeptions and assertions

339

Listing 11-15. UnCheckedExceptionExample1.java

import java.io.*;

class UnCheckedExceptionExample1 {
 public static void main(String []args) throws FileNotFoundException {
 FileInputStream fis = new FileInputStream(args[0]);
 }
}

What happens if you run the program without passing any arguments to this program? It will crash after throwing
an ArrayIndexOutOfBoundsException.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
 at UnCheckedExceptionExample1.main(UnCheckedExceptionExample1.java:5)

In this program, without checking the length of args (to see if it contains any values), you attempt indexing args
in the expression args[0]. In other words, you assume that the user will always provide the name of the file to open
as a command-line argument, and when no argument is provided, it becomes an exceptional condition. Hence, it
is a programming mistake. Note that though the expression args[0] can throw ArrayIndexOutOfBoundsException,
you did not catch this exception or declare it in the throws clause of the main() method. This is because
ArrayIndexOutOfBoundsException is a RuntimeException, so it is an unchecked exception.

it is optional to handle unchecked exceptions. if a code segment you write in a method can throw an
unchecked exception, it is not mandatory to catch that exception or declare that exception in the throws
clause of that method.

How can you fix the problem in Listing 11-15? How about the following change in the program to handle the
ArrayIndexOutOfBoundsException (shown in Listing 11-16)?

Listing 11-16. UnCheckedExceptionExample2.java

import java.io.*;

class UnCheckedExceptionExample2 {
 public static void main(String []args) throws FileNotFoundException {
 try {
 FileInputStream fis = new FileInputStream(args[0]);
 } catch (ArrayIndexOutOfBoundsException aioobe) {
 System.out.println("Error: No arguments passed in the commandline!");
 System.out.println("Pass the name of the file to open as commandline argument");
 }
 }
}

Chapter 11 ■ exCeptions and assertions

340

When run, this program prints the following:

D:\> java UnCheckedExceptionExample2
Error: No arguments passed in the commandline!
Pass the name of the file to open as commandline argument

Yes, showing the error message and telling the user the right thing to do is good. However, this approach of
catching a runtime exception such as ArrayIndexOutOfBoundsException is a bad practice! Why? Runtime exceptions
such as ArrayIndexOutOfBoundsException indicate likely programming errors, and you should fix the code instead of
catching and handling the exceptions. So, how do you fix the program here? You can check the length of args before
attempting to access the array member (see Listing 11-17).

Listing 11-17. UnCheckedExceptionExample3.java

import java.io.*;

class UnCheckedExceptionExample3 {
 public static void main(String []args) throws FileNotFoundException {
 // if any argument is passed, it would be greater than or equal to one
 if(args.length >= 1) {
 FileInputStream fis = new FileInputStream(args[0]);
 } else {
 System.out.println("Error: No arguments passed in the commandline!");
 System.out.println("Pass the name of the file to open as commandline

argument");
 }
 }
}

The output is the same if no argument is passed to the program, but the code is better: it checks if it is possible to
perform array indexing before actually indexing the array and thus is programmed defensively.

it is a good practice to perform defensive checks and avoid raising unnecessary runtime exceptions.

Table 11-2 summarizes the important subclasses of the RuntimeException class.

Chapter 11 ■ exCeptions and assertions

341

The Error Class
When the JVM detects a serious abnormal condition in the program, it raises an exception of type Error. When you
get an exception of Error or its subtypes, the exception is not meant for you to handle. The best course of action is to
let the program crash! Why? Let’s discuss a trivial example to understand this.

Assume that you try to run a program that does not exist! For example, consider the
UnCheckedExceptionExample3 class that you saw in Listing 11-16; if you make a mistake in the capitalization of the
class name and try to invoke it, you’ll get NoClassDefFoundError.

D:\ > java UncheckedExceptionExample3
Exception in thread "main" java.lang.NoClassDefFoundError: UncheckedExceptionExample3 (wrong name:
UnCheckedExceptionExample3)
 at java.lang.ClassLoader.defineClass1(Native Method)
 at java.lang.ClassLoader.defineClass(ClassLoader.java:791)
 at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
 at java.net.URLClassLoader.defineClass(URLClassLoader.java:449)
 at java.net.URLClassLoader.access$100(URLClassLoader.java:71)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:423)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:356)
 at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:480)

Table 11-2. Important Subclasses of the RuntimeException Class

Class Short Description

ArithmeticException Thrown when arithmetic errors occur, such as attempting to divide by zero.

BufferOverflowException,
BufferUnderflowException

Thrown for an attempt to write beyond a buffer’s limits.

ClassCastException Thrown when an attempt is made to cast between incompatible types (such
as String to Integer type or vice versa).

NegativeArraySizeException Thrown when an attempt is made to create an array of negative size.

NoSuchElementException Thrown when an attempt is made to use the nextElement() method on an
Enumeration when no more values exist to access.

NullPointerException When an attempt is made to de-reference through a null reference.

UnsupportedOperationException Thrown when an attempt is made to apply an operation that is not supported
or that does not exist (for example, attempting to write to a read-only file
system will result in throwing a ReadOnlyFileSystemException, which is a
derived class of this exception).

IllegalArgumentException Thrown when an incorrect or inappropriate argument is passed to a method.

IndexOutOfBoundsException Thrown when an attempt is made to access the data structure using
an index value that is not within the permissible range; base class of
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.

Chapter 11 ■ exCeptions and assertions

342

As the helpful part of the stack trace indicates (“wrong name: UnCheckedExceptionExample3”), you have given a
class to load that does not exist by the given name (note that names in Java are case-sensitive). So, the JVM responded
with a NoClassDefFoundError.

Let’s consider a programming example to understand how an error could occur. Assume that you’re writing
a recursive method to calculate the factorial of a number and forget to put in the right termination condition (see
Listing 11-18).

Listing 11-18. NonTerminatingRecursion.java

class NonTerminatingRecursion {
 // factorial is a recursive call
 static int factorial(int n) {
 int result = 0;
 // Assume that the following termination condition statement is missing ...
 // if(n == 0) return 1;
 result = factorial(n - 1) * n;
 return result;
 }
 public static void main(String ... args) {
 System.out.println("factorial of 4 is: " + factorial(4));
 }
}

When run, this program crashes after throwing this exception:

Exception in thread "main" java.lang.StackOverflowError
 at NonTerminatingRecursion.factorial(NonTerminatingResursion.java:7)
 at NonTerminatingRecursion.factorial(NonTerminatingResursion.java:7)
 [... this at "NonTerminatingRecursion.factorial(NonTerminatingResursion.java:7)" is repeated

a large number of times...]

For each method call, the JVM creates a runtime structure called a stack frame in its stack area. Since the
recursive call, the JVM keeps creating such stack frames, and after some time, it exhausts the stack area. At this point,
the JVM cannot continue its execution, so it throws the StackOverflowError. When you get a StackOverflowError,
you can almost be sure that it is a programming error that caused this exception. You need to fix the program to avoid
raising this exception.

exceptions of type Error indicate an abnormal condition in the program. there is no point in catching this
exception and trying to continue execution and pretending nothing has happened. it is a really bad
practice to do so!

Table 11-3 provides a list of important subclasses of the Error class.

Chapter 11 ■ exCeptions and assertions

343

The Throws Clause
A method can throw checked exceptions; the clause throws specifies these checked exceptions in the method
signature. You had a brief look at the throws keyword in the beginning of this chapter. In the throws clause, you list
checked exceptions that a method can throw, so understanding checked exceptions is prerequisite for understanding
the throws clause. Since we’ve covered checked exceptions in the previous section on exception types, we’ll cover the
throws clause now.

Let’s try reading an integer stored in a file named integer.txt in the current directory. There is an overloaded
constructor of the Scanner class that takes a File object as input, so let’s try using it. Listing 11-19 shows the program.
Will it work?

Listing 11-19. ThrowsClause1.java

import java.io.*;
import java.util.*;

class ThrowsClause1 {
 public static void main(String []args) {
 System.out.println("Reading an integer from the file 'integer.txt': ");
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
}

This code will result in a compiler error of “unreported exception FileNotFoundException; must be caught
or declared to be thrown.” If you look at the declaration of this Scanner method, you’ll see a throws clause:

public Scanner(File source) throws FileNotFoundException {

So, any method that invokes this constructor should either handle this exception or add a throws clause to
declare that the method can throw this exception. Add a throws clause to the main() method; see Listing 11-20.

Table 11-3. Important Subclasses of the Error Class

Class Short Description

AssertionError Thrown when an assertion fails (discussed later in this chapter).

IOError Thrown when a serious I/O error occurs.

VirtualMachineError Thrown when the JVM itself enters an erroneous state (due to a bug) or when the JVM
runs out of resources (such as memory).

OutOfMemoryError Thrown when the JVM cannot allocate memory anymore; a derived class of
VirtualMachineError.

LinkageError Thrown when the linking performed by the JVM fails (for example, due to a circular
class hierarchy in which case the ClassCircularityError will be thrown, which is a
derived class of LinkageError).

NoClassDefFoundError Thrown when attempting to load the definition of a class when the class loader cannot
find that class.

StackOverflowError Thrown when the application has a non-terminating recursive call, or when the
application makes too many function calls that the JVM cannot handle; a derived class
of VirtualMachineError.

Chapter 11 ■ exCeptions and assertions

344

Listing 11-20. ThrowsClause2.java

import java.io.*;
import java.util.*;

class ThrowsClause2 {
 public static void main(String []args) throws FileNotFoundException {
 System.out.println("Reading an integer from the file 'integer.txt': ");
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
}

If you run this program and there is no file named integer.txt, the program will crash after throwing this exception:

Reading an integer from the file 'integer.txt':
Exception in thread "main" java.io.FileNotFoundException: integer.txt (The system cannot find the
file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:138)
 at java.util.Scanner.<init>(Scanner.java:656)
 at ThrowsClause2.main(ThrowsClause2.java:7)

Let’s now extract the code inside the main() method to a new method named readIntFromFile(). You have
defined it as an instance method, so you also create an object of the ThrowsClause3 class to invoke this method from
the main() method. Since the code inside readIntFromFile() can throw a FileNotFoundException, it has to either
introduce a catch handler to handle this exception or declare this exception in its throws clause (see Listing 11-21).

Listing 11-21. ThrowsClause3.java

import java.io.*;
import java.util.*;

class ThrowsClause3 {
 // since this method does not handle FileNotFoundException,
 // the method must declare this exception in the throws clause
 public int readIntFromFile() throws FileNotFoundException {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
 }

 // since readIntFromFile() throws FileNotFoundException and main() does not handle
 // it, the main() method declares this exception in its throws cause
 public static void main(String []args) throws FileNotFoundException {
 System.out.println("Reading an integer from the file 'integer.txt': ");
 System.out.println("You typed the integer value: " +
 new ThrowsClause3().readIntFromFile());
 }
}

The behavior of the program remains the same in both Listings 11-20 and 11-21. However, Listing 11-21 shows
how the main() method also must still declare to throw the FileNotFoundException in its throws clause (otherwise,
the program will not compile).

Chapter 11 ■ exCeptions and assertions

345

Method Overriding and the Throws Clause
When an overridable method has a throws clause, there are many things to consider while overriding that method.
Consider the program in Listing 11-22, which implements an interface named IntReader. This interface declares a
single method named readIntFromFile() with the throws clause listing a FileNotFoundException.

Listing 11-22. ThrowsClause4.java

import java.io.*;
import java.util.*;

// This interface is meant for implemented by classes that would read an integer from a file
interface IntReader {
 int readIntFromFile() throws IOException;
}

class ThrowsClause4 implements IntReader {
 // implement readIntFromFile with the same throws clause
 // or a more general throws clause
 public int readIntFromFile() throws FileNotFoundException {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
 }
 // main method elided in this code since the focus here is to understand
 // issues related to overriding when throws clause is present
}

In this code, you can observe few important facts. First, you can declare the throws clause for methods declared
in interfaces; in fact, you can provide the throws clause for abstract methods declared in abstract classes as well.
Second, the method declared in the IntReader interface declares to throw IOException, which is a more general
exception than a FileNotFoundException (Figure 11-3). While implementing a method, it is acceptable to either
provide the throws clause listing the same exception type as the base method or a more specific type than the base
method. In this case, the readIntFromFile() method lists a more specific exception (FileNotFoundException) in
its throws clause against the more general exception of IOException listed in the throws clause of the base method
declared in the IntReader interface.

Object

Throwable

Exception

IOException

FileNotFoundException

Figure 11-3. Class hierarchy of FileNotFoundException

Chapter 11 ■ exCeptions and assertions

346

What if you try changing the throws clause? There are many ways to change the throws clause in the overriding
method, including the following:

a. Not providing any throws clause.

b. Listing more general checked exceptions to throw.

c. Listing more checked exceptions in addition to the given checked exception(s) in the base
method.

If you attempt any of these three cases, you’ll get a compiler error. For example, try not providing the throws
clause in the readIntFromFile() method in the class that implements the IntReader interface.

public int readIntFromFile() {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
}

You’ll get this compiler error: “unreported exception FileNotFoundException; must be caught or
declared to be thrown.”

To summarize, the base class method’s throws clause is a contract that it provides to the caller of that method:
it says that the caller should handle the listed exceptions or declare those exceptions in its throws clause. When
overriding the base method, the derived method should also adhere to that contract. The caller of the base method
is prepared to handle only the exceptions listed in the base method, so the overriding method cannot throw more
general or other than the listed checked exceptions.

However, note that this discussion that the derived class method’s throws clause should follow the contract
for the base method’s throws clause is limited to checked exceptions. Unchecked exceptions can still be added or
removed from the contract when compared to the base class method’s throws clause. For example, consider the
following:

public int readIntFromFile() throws IOException, NoSuchElementException {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
}

This is an acceptable throws clause since NoSuchElementException can get thrown from the readIntFromFile()
method. This exception is an unchecked exception, and it gets thrown when the nextInt() method could not read
an integer from the file. This is a common situation, for example, if you have an empty file named integer.txt; an
attempt to read an integer from this file will result in this exception.

Points to Remember
Here are some noteworthy points about the throws statement that could help you in the OCPJP 7 exam:

If a method does not have a throws clause, it does •	 not mean it cannot throw any exceptions; it
just means it cannot throw any checked exceptions.

It is a good practice to use the •	 @throws JavaDoc tag to document the specific situations or cases
in which an exception (both checked and unchecked) might be thrown from the method.

It is a bad practice to use a throws clause to list unchecked exceptions that a method may •	
throw. Why? Since the compiler cannot force the callers to handle unchecked exceptions,
it does not make sense to list them in the throws clause. Rather, if a method can throw an
unchecked exception, it is better to use the @throws clause to document that possibility.

Chapter 11 ■ exCeptions and assertions

347

Static initialization blocks cannot throw any checked exceptions. Why? Remember that static •	
initialization blocks are invoked when the class is loaded, so there is no way to handle the
thrown exceptions in the caller. Further, there is no way to declare the checked exceptions in a
throws clause.

Non-static initialization blocks can throw checked exceptions; however, all the constructors •	
should declare those exceptions in their throws clause. Why? The compiler merges the code
for non-static initialization blocks and constructors during its code generation phase, hence
the throws clause of the constructor can be used for declaring the checked exceptions that
a non-static initialization block can throw.

An overriding method cannot declare more exceptions in the throws clause than the list of •	
exceptions declared in the throws clause of the base method. Why? The callers of the base
method see only the list of the exceptions given in the throws clause of that method and will
declare or handle these checked exceptions in their code (and not more than that).

An overriding method can declare more specific exceptions than the exception(s) listed in the •	
throws clause of the base method; in other words, you can declare derived exceptions in the
throws clause of the overriding method.

If a method is declared in two or more interfaces, and if that method declares to throw •	
different exceptions in the throws clause, the implementation should list all of these
exceptions.

Custom Exceptions
In most situations, it will be sufficient to throw exceptions that are already provided in the Java library. For example,
if you’re checking for the validity of the arguments passed to a public function, and you find them to be null or out of
expected range, you can throw an IllegalArgumentException. However, for most non-trivial applications, it will be
necessary for you to develop your own exception classes (custom exceptions) to indicate exceptional conditions.

How do you define a custom exception? There are two options: you can extend either the Exception or
RuntimeException class depending on your need. If you want to force the users of your custom exception to handle
the exception, then you can extend your exception class from the Exception class, which will make your custom
exception a checked exception. If you want to give flexibility to the users of your custom exception, and leave it to the
users of your exception to decide if they want to handle the exception or not, you can derive your exception from the
RuntimeException class. So it is a design choice that you make to choose the base class of your custom exception.
How about extending the Throwable or Error class for custom exceptions? The Throwable class is too generic to make
it the base class of your exception, so it is not recommended. The Error class is reserved for fatal exceptions that the
JVM can throw (such as StackOverflowError), so it is not advisable to make this the base class of your exception.

Custom exceptions should extend either the Exception or RuntimeException class. it is a bad practice
to create custom exceptions by extending the Throwable or Error classes.

For extending from a base class, you need to see what methods the base class provides. In this case, you want to
create a custom exception by extending the Exception or RuntimeException classes. Since the Exception class is
the base class of the RuntimeException class, it is sufficient to know the members of the Exception class. Table 11-4
lists the important methods (including constructors) of the Exception class.

Chapter 11 ■ exCeptions and assertions

348

For illustrating how to create your own exception classes, assume that you want to create a custom exception
named InvalidInputException. When you try to read input (read an integer, in this case), and if it fails, you want to
throw this InvalidInputException. Listing 11-23 defines this exception class by extending the RuntimeException class.

Listing 11-23. InvalidInputException.java

// a custom "unchecked exception" that is meant to be thrown
// when the input provided by the user is invalid
class InvalidInputException extends RuntimeException {
 // default constructor
 public InvalidInputException() {
 super();
 }

 // constructor that takes the String detailed information we pass while
 // raising an exception
 public InvalidInputException(String str) {
 super(str);
 }

 // constructor that remembers the cause of the exception and
 // throws the new exception
 public InvalidInputException(Throwable originalException) {
 super(originalException);
 }

Table 11-4. Important Methods and Constructors of the Exception Class

Member Short description

Exception() Default constructor of the Exception class with no additional (or detailed)
information on the exception.

Exception(String) Constructor that takes a detailed information string about the constructor as
an argument.

Exception(String, Throwable) In addition to a detailed information string as an argument, this exception
constructor takes the cause of the exception (which is another exception) as
an argument.

Exception(Throwable) Constructor that takes the cause of the exception as an argument.

String getMessage() Returns the detailed message (passed as a string when the exception
was created).

Throwable getCause() Returns the cause of the exception (if any, or else returns null).

Throwable[] getSuppressed() Returns the list of suppressed exceptions (typically caused when using a
try-with-resources statement) as an array.

void printStackTrace() Prints the stack trace (i.e., the list of method calls with relevant line
numbers) to the console (standard error stream). If the cause of an
exception (which is another exception object) is available in the exception,
then that information will also be printed. Further, if there are any
suppressed exceptions, they are also printed.

Chapter 11 ■ exCeptions and assertions

349

 // first argument takes detailed information string created while
 // raising an exception
 // and the second argument is to remember the cause of the exception
 public InvalidInputException(String str, Throwable originalException) {
 super(str, originalException);
 }
}

In this InvalidInputException class, you did not introduce any new fields but you can add any fields if
necessary. This is also a simple custom exception where the constructors simply call the base class versions of the
same constructor type. The class CustomExceptionTest (see Listing 11-24) shows how to make use of this custom
exception.

Listing 11-24. InvalidInputException.java

import java.util.*;

// class for testing the custom exception InvalidInputException
class CustomExceptionTest {
 public static int readIntFromConsole() {
 Scanner consoleScanner = new Scanner(System.in);
 int typedInt = 0;
 try {
 typedInt = consoleScanner.nextInt();
 } catch(NoSuchElementException nsee) {
 System.out.println("Wrapping up the exception and throwing it...");
 throw new InvalidInputException("Invalid integer input typed in console", nsee);
 } catch(Exception e) {
 // call all other exceptions here ...
 System.out.println("Error: Encountered an exception and could not read

an integer from the console... ");
 }
 return typedInt;
 }
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 try {
 System.out.println("You typed the integer value: " + readIntFromConsole());
 } catch(InvalidInputException iie) {
 System.out.println("Error: Invalid input in console... ");
 System.out.println("The current caught exception is of type: " + iie);
 System.out.println("The originally caught exception is of type: " +

iie.getCause());
 }
 }
}

Chapter 11 ■ exCeptions and assertions

350

First compile and run this program before reading the discussion of the code.

D:\> java CustomExceptionTest
Type an integer in the console:
one
Wrapping up the exception and throwing it...
Error: Invalid input in console...
The current caught exception is of type: InvalidInputException: Invalid integer input typed in
console
The originally caught exception is of type: java.util.InputMismatchException

In this code, you use InvalidInputException just like any other exception already defined in the Java library.
You are catching the InvalidInputException thrown from the readIntFromConsole() method in the main() method.
The following statement invokes the toString() method of the InvalidInputException:

System.out.println("The current caught exception is of type: " + iie);

You did not override the toString() method, so the InvalidInputException class inherits the default
implementation of the toString() method from the RuntimeException base class. This default toString() method
prints the name of the exception thrown (InvalidInputException) and it also includes the detailed information
string (“Invalid integer input typed in console”) that you passed while creating the exception object. The last
statement in the main() method is to get the cause of the exception.

System.out.println("The originally caught exception is of type: " + iie.getCause());

Since the cause of InvalidInputException is InputMismatchException, this exception name is printed in the
console as a fully qualified name, java.util.InputMismatchException. You can think of InputMismatchException
causing InvalidInputException; these two exceptions are known as chained exceptions.

Assertions
When creating application programs, you assume many things. However, often it happens that the assumptions don’t hold,
resulting in an erroneous condition. The assert statement is used to check or test your assumptions about the program.

The keyword assert provides support for assertions in Java. Each assertion statement contains a Boolean
expression. If the result of the Boolean expression is true, it means the assumption is true, nothing happens.
However, if the Boolean result is false, then the assumption you had about the program holds no more, and an
AssertionError is thrown. Remember that the Error class and its derived classes indicate serious runtime errors and
are not meant to be handled. In the same way, if an AssertionError is thrown, the best course of action is not to catch
the exception and to allow the program to terminate. After that, you need to examine why the assumption did not hold
true and then fix the program.

There are many reasons why you should add assertions to the program. One reason is that it helps find the
problems early; when you check your assumptions in the program, and when any of them fail, you immediately know
where to look out for the problem and what to fix. Also, when other programmers read your code with assertions, they
will be in a better position to understand the code because you are making your assumptions explicit using assertions.

Assert Statement
Assert statements in Java are of two forms:

assert booleanExpression;

assert booleanExpression : "Detailed error message string";

Chapter 11 ■ exCeptions and assertions

351

It is a compiler error if a non-Boolean expression is used within the assert statement. Listing 11-25 contains the
first example for assertions.

Listing 11-25. AssertionExample1.java

class AssertionExample1 {
 public static void main(String []args) {
 int i = -10;
 if(i < 0) {
 // if negative value, convert into positive value
 i = -i;
 }
 System.out.println("the value of i is: " + i);
 // at this point the assumption is that i cannot be negative;
 // assert this condition since its an assumption that will always hold
 assert (i >= 0) : "impossible: i is negative!";
 }
}

In this program, you are checking if the value of i is < 0; you are using the expression –i to convert it to a positive
value. Once the condition check if (i < 0) is completed, the value of i cannot be negative, or that is your assumption.
Such assumptions can be asserted with an assert statement. Here is the assert statement:

assert (i >= 0) : "impossible: i is negative!";

The program will run fine if the Boolean expression (i >= 0) evaluates to true. However, if it evaluates to false, the
program will crash by throwing an AssertionError. Let’s check this behavior (you need to use the –ea flag to enable
assertions at runtime; we will discuss more about this flag in a moment).

D:\>java -ea AssertionExample1
the value of i is: 10

Yes, this program executed successfully without throwing any exceptions.
Is there any value of i for which the condition will fail? Yes, there is! If the value of i is a minimum possible value

of integer, then it cannot be converted into a positive value. Why? Remember that the range of integers is -231 to 231 – 1,
so the integer values the value of i as –2147483648 to 2147483647. In other words, the positive value 2147483648 is not
in the range of integers. So, if the value of i is –2147483648, then the expression -i will overflow and again result in the
value –2147483648. Thus, your assumption is not true.

In Listing 11-25, change the value of i to the minimum value of an integer, as in the following:

int i = Integer.MIN_VALUE;

Now, try running this program.

D:\> java -ea AssertionExample1
the value of i is: -2147483648
Exception in thread "main" java.lang.AssertionError: impossible: i is negative!
 at AssertionExample1.main(AssertionExample1.java:12)

In this output, note how the assertion failed. The application crashes because the program threw the
AssertionError, and there is no handler, so the program terminates.

Chapter 11 ■ exCeptions and assertions

352

You saw that assertions are disabled at runtime; to enable assertions at runtime, use an -ea switch (or its longer
form of -enableasserts). To disable assertions at runtime, use a -da switch. If assertions are disabled by default at
runtime, then what is the use of -da switch? There are many uses. For example, if you want to enable assertions for
all classes within a given package and want to disable asserts in a specific class in that package, then a -da switch is
useful. Table 11-5 lists the important command-line arguments and their meaning. Note that you need not recompile
your programs to enable or disable assertions; just use the command-line arguments when invoking the JVM to
enable or disable them.

Table 11-5. Important Command-Line Arguments for Enabling/Disabling Assertions

Command-Line Argument Short Description

-ea Enables assertions by default (except system classes).

-ea:<class name> Enables assertions for the given class name.

-ea:<package name>... Enables assertions in all the members of the given package <package name>.

-ea:... Enable assertions in the given unnamed package.

-esa Short for -enablesystemsassertions; enables assertions in system classes. This
option is rarely used.

-da Disable assertions by default (except system classes).

-da:<class name> Disable assertions for the given class name.

-ea:<package name>... Disables assertions in all the members of the given package <package name>.

-da:... Disable assertions in the given unnamed package.

-dsa Short for -disablesystemsassertions; disables assertions in system classes.
This option is rarely used.

How Not to Use Asserts
The key to understanding assertions is that they are useful for debugging and testing applications, and assertions are
meant to be disabled when the application is deployed to end users.

Don’t use assertions for validating input values or for validating arguments to public methods. •	
For signaling such runtime failures, use exceptions instead.

Don’t use assertions to check conditions that are required for the correct functioning of •	
the application. Since assertions are disabled by default at runtime, the application will not
function correctly when the asserted conditions are not present in the code.

The Boolean expressions given inside assert statements should not have side effects—•	
modifying variable values, printing values to console, etc. In other words, the functioning of
the application should remain the same no matter if assertions are enabled or disabled.

Chapter 11 ■ exCeptions and assertions

353

Question time!

1. Consider the following class hierarchy from the package java.nio.file and answer the question.

Exception

IOException

FileSystemException

AccessDeniedException DirectoryNotSupportedException

FileAlreadyExistsExceptionAtomicMoveNotSupportedException

in the following class definitions, the base class Base has the method foo() that throws a
FileSystemException; the derived class Deri extending the class Base overrides the foo() definition.

class Base {
 public void foo() throws FileSystemException {
 throw new FileSystemException("");
 }
}

class Deri extends Base {
 /* provide foo definition here */
}

Which of the following overriding definitions of the foo() method in the Deri class are compatible with the
base class foo() method definition? Choose all the foo() method definitions that could compile without
errors when put in the place of the comment: /* provide foo definition here */

a.

 public void foo() throws IOException {
 super.foo();
 }

B.
 public void foo() throws AccessDeniedException {
 throw new AccessDeniedException("");
 }

Chapter 11 ■ exCeptions and assertions

354

C.
 public void foo() throws FileSystemException, RuntimeException {
 throw new NullPointerException();
 }

d.
 public void foo() throws Exception {
 throw new NullPointerException();
 }

Answer: B and C.

(in option a and d, the throws clause declares to throw exceptions IOException and Exception
respectively, which are more general than the FileSystemException, so they are not compatible with the
base method definition. in option B, the foo() method declares to throw AccessDeniedException, which
is more specific than FileSystemException, so it is compatible with the base definition of the foo()
method. in option C, the throws clause declares to throw FileSystemException, which is the same as in
the base definition of the foo() method. additionally it declares to throw RuntimeException, which is not
a checked exception, so the definition of the foo() method is compatible with the base definition of the
foo() method).

2. Consider the following program:

class ChainedException {
 public static void foo() {
 try {
 throw new ArrayIndexOutOfBoundsException();
 } catch(ArrayIndexOutOfBoundsException oob) {
 RuntimeException re = new RuntimeException(oob);
 re.initCause(oob);
 throw re;
 }
 }
 public static void main(String []args) {
 try {
 foo();
 } catch(Exception re) {
 System.out.println(re.getClass());
 }
 }
}

When executed, this program prints which of the following?

a. class java.lang.runtimeexception

B. class java.lang.illegalstateexception

Chapter 11 ■ exCeptions and assertions

355

C. class java.lang.exception

d. class java.lang.arrayindexoutofBoundsexception

Answer: B. class java.lang.illegalstateexception

(in the expression new RuntimeException(oob);, the exception object oob is already chained
to the RuntimeException object. the method initCause() cannot be called on an exception
object that already has an exception object chained during the constructor call. hence, the call
re.initCause(oob); results in initCause() throwing an IllegalStateException.)

3. Consider the following program:

class ExceptionTest {
 public static void foo() {
 try {
 throw new ArrayIndexOutOfBoundsException();
 } catch(ArrayIndexOutOfBoundsException oob) {
 throw new Exception(oob);
 }
 }
 public static void main(String []args) {
 try {
 foo();
 } catch(Exception re) {
 System.out.println(re.getCause());
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a. java.lang.exception

B. java.lang.arrayindexoutofBoundsexception

C. class java.lang.illegalstateexception

d. this program fails with compiler error(s)

Answer: d. this program fails with compiler error(s)

(the foo() method catches ArrayIndexOutOfBoundsException and chains it to an Exception
object. however, since Exception is a checked exception, it must be declared in the throws
clause of foo(). hence this program results in this compiler error:

ExceptionTest.java:6: error: unreported exception Exception; must be caught or declared to
be thrown
 throw new Exception(oob);
 ^
1 error)

Chapter 11 ■ exCeptions and assertions

356

4. Consider the following program:

import java.io.*;
import java.sql.*;

class MultiCatch {
 public static void fooThrower() throws FileNotFoundException {
 throw new FileNotFoundException();
 }
 public static void barThrower() throws SQLException {
 throw new SQLException();
 }
 public static void main(String []args) {
 try {
 fooThrower();
 barThrower();
 } catch(FileNotFoundException || SQLException multie) {
 System.out.println(multie);
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a. this program prints the following: java.io.FilenotFoundexception.

B. this program prints the following: java.sql.sQLexception.

C. this program prints the following: java.io.FilenotFoundexception || java.sql.sQLexception.

d. this program fails with compiler error(s).

Answer: d. this program fails with compiler error(s).

(For multi-catch blocks, the single pipe (|) symbol needs to be used and not double pipe (||), as
provided in this program. hence this program will fail with compiler error(s).)

5. Consider the following class hierarchy from the package javax.security.auth.login and answer the
questions.

LoginException

AccountException

AccountExpiredException AccountLockedException AccountNotFoundException

Chapter 11 ■ exCeptions and assertions

357

5.1. Which of the following handlers that makes use of multi-catch exception handler feature will compile
without errors?

a. catch (AccountException | LoginException exception)

B. catch (AccountException | AccountExpiredException exception)

C. catch (AccountExpiredException | AccountNotFoundException exception)

d. catch (AccountExpiredException exception1 | AccountNotFoundException exception2)

Answer: C. catch (AccountExpiredException | AccountNotFoundException exception)

(For a and B, the base type handler is provided with the derived type handler, hence the multi-
catch is incorrect. For d, the exception name exception1 is redundant and will result in a syntax
error. C is the correct option and this will compile fine without errors).

5.2. Consider the following code segment, which makes use of this exception hierarchy:

try {
 LoginException le = new AccountNotFoundException();
 throw (Exception) le;
}
catch (AccountNotFoundException anfe) {
 System.out.println("In the handler of AccountNotFoundException");
}
catch (AccountException ae) {
 System.out.println("In the handler of AccountException");
}
catch (LoginException le) {
 System.out.println("In the handler of LoginException");
}
catch (Exception e) {
 System.out.println("In the handler of Exception");
}

When executed, which of the following statements will this code segment print?

a. in the handler of accountnotFoundexception

B. in the handler of accountexception

C. in the handler of Loginexception

d. in the handler of exception

Answer: a. in the handler of accountnotFoundexception

(in this code, the created type of the exception is AccountNotFoundException. though
the exception object is stored in the variable of type LoginException and then type-
casted to Exception, the dynamic type of the exception remains the same, which is
AccountNotFoundException. When looking for a catch handler, the Java runtime looks for the
exact handler based on the dynamic type of the object. since it is available immediately as the
first handler, this exactly matching catch handler got executed.)

Chapter 11 ■ exCeptions and assertions

358

Summary
Introduction to Exception Handling

When an exception is thrown from a try block, the JVM looks for a matching catch handler •	
from the list of catch handlers in the method call-chain. If no matching handler is found, that
unhandled exception will result in crashing the application.

While providing multiple exception handlers (stacked catch handlers), specific exception •	
handlers should be provided before general exception handlers. Providing base exception
handlers before the derived handlers will result in a compiler error.

You can programmatically access the stack trace using the methods such as •	
printStackTrace() and getStackTrace(), which can be called on any exception object.

A try block can have multiple catch handlers. If the cause of two or more exceptions is similar, •	
and the handling code is also similar, you can consider combining the handlers and make it
into a multi-catch block.

The code inside a finally block will be executed irrespective of whether a try block has •	
successfully executed or resulted in an exception. This makes a finally block the most suitable
place to release resources, such as file handles, data base handles, network streams, etc.

Try-with-Resources

Forgetting to release resources by explicitly calling the •	 close() method is a common mistake.
You can use a try-with-resources statement to simplify your code and auto-close resources.
For a resource to be usable in a try-with-resources statement, the class of that resource must
implement the java.lang.AutoCloseable interface and define the close() method.

You can auto-close multiple resources within a try-with-resources statement. These resources •	
need to be separated by semicolons in the try-with-resources statement header.

Because you can use multiple resources within a try-with-resources statement, the possibility •	
of more than one exception getting thrown from the try block and the finally block is high.
If a try block throws an exception, and a finally block also throws exception(s), then the
exceptions thrown in the finally block will be added as suppressed exceptions to the exception
that gets thrown out of the try block to the caller.

Exception Types

The class •	 Throwable is the root class of the exception hierarchy. Only Throwable and its
derived classes can be used with Java exception handling keywords such as try, catch,
and throws.

The •	 Exception class (except its sub-hierarchy of the RuntimeException class) and its derived
classes are known as checked exceptions. These exceptions represent exceptional conditions
that can be reasonably expected to occur when the program executes, hence they must be
handled. A method that contains some code segment that can throw a checked exception
must either provide a catch handler to handle it or declare that exception in its throws clause.

Chapter 11 ■ exCeptions and assertions

359

The •	 RuntimeException and Error classes and derived classes are known as unchecked
exceptions. They can be thrown anywhere in the program (without being declared that the
segment of code can throw these exceptions).

The •	 RuntimeException classes and derived classes represent programming mistakes (logical
mistakes) and are not generally expected to be caught and handled in the program. However,
in some cases, it is meaningful to handle these exceptions in catch blocks.

The •	 Error classes and derived classes represent exceptions that arise because of JVM errors;
either the JVM has detected a serious abnormal condition or has run out of resources. When
an Error occurs, the typical best course of action is to terminate the program.

A catch block should either handle the exception or rethrow it. To •	 hide or swallow an
exception by catching an exception and doing nothing is really a bad practice.

Throws Clause

The throws clause for a method is meant for listing the •	 checked exceptions that the method
body can throw.

Static initialization blocks cannot throw any checked exceptions. Non-static initialization •	
blocks can throw checked exceptions; however, all the constructors should declare that
exception in their throws clause.

A method’s throws clause is part of the contract that its overriding methods in derived classes •	
should obey. An overriding method can provide the same throw clause as the base method’s
throws clause or a more specific throws clause than the base method’s throws clause. The
overriding method cannot provide a more general throws clause or declare to throw additional
checked exceptions when compared to the base method’s throws clause.

Custom Exceptions

You can define your own exception classes (known as custom exceptions) in your programs.•	

It is recommended that you derive custom exceptions from either the •	 Exception or
RuntimeException class. Creation of custom exceptions by extending the Throwable class (too
generic) or the Error class (exceptions of this type are reserved for JVM and the Java APIs to
throw) is not recommended.

You can wrap one exception and throw it as another exception. These two exceptions become •	
chained exceptions. From the thrown exception, you can get the cause of the exception.

Assertions

Assertions are condition checks in the program and are meant to be used for explicitly •	
checking the assumptions you make while writing programs.

The •	 assert statement is of two forms: one that takes a Boolean argument and one that takes
an additional string argument.

If the Boolean condition given in the assert argument fails (i.e., evaluates to false), the •	
program will terminate after throwing an AssertionError. It is not advisable to catch and
recover from when an AssertionError is thrown by the program.

By default, assertions are disabled at runtime. You can use the command-line arguments of •	
–ea (for enabling asserts) and –da (for disabling asserts) and their variants when you invoke
the JVM.

361

Chapter 12

Localization

Read and set the locale by using the Locale object

Build a resource bundle for each locale

Load a resource bundle in an application

Format text for localization by using
NumberFormat and DateFormat

Exam Topics

Computers and software have become so prevalent today that they are used everywhere in the world for human
activities. For any software to be relevant and useful to these users, it needs to be localized. The process in which
we adapt the software to the local language and customs is known as localization. A locale represents a country’s
distinctive assemblage of language, culture, numbers, currency, etc.

Java provides good support for localizing software applications; we’ll cover the related topics in detail in this
chapter. Although Java supports Unicode, and most computers have the necessary fonts for displaying text in multiple
languages, it’s our job to consciously adapt the software to different locales. For example, localization does not just
mean displaying text for a locale—it can also mean using audio or video clips for a locale. Furthermore, aspects
related to displaying date or time or using local currencies also need to be considered.

In this chapter, you’ll learn how to localize your software. Localization mainly involves creating resource bundles
for different locales, as well as making the software culture-aware by adapting it for use in different locales. We’ll show
you how to create and use these resource bundles in first three sections. In the final section we’ll teach you how to
handle time and date, numbers, and currencies for different locales.

Chapter 12 ■ LoCaLization

362

Introduction
Localization is all about making the software relevant and usable for the users from different cultures—in other words,
customizing software for people from different countries or languages. How do you localize a software application?
Two important guidelines should be heeded when you localize a software application:

Do not hardcode text (such as messages to the users, textual elements in GUIs, etc.) and •	
separate them into external files or dedicated classes. With this accomplished there is usually
minimal effort to add support for a new locale in your software.

Handle cultural-specific aspects such as date, time, currency, and formatting numbers with •	
localization in mind. Instead of assuming a default locale, design in such a way that the
current locale is fetched and customized.

 text may not be the only thing that needs to be localized in an application. For example, if your
 application uses audio sounds to give instructions, they will need to be changed for localization. Similarly,
if the software displays some glyphs or pictures for a specific locale, they also need to be transformed.

Locales
A locale is “a place representing a country, language, or culture.” Consider the Canada-French locale. French is spoken
in many parts of Canada, and this could be a locale. In other words, if you want to sell software that is customized
for Canadians who speak French, then you need to facilitate your software for this locale. In Java, this locale is
represented by the code fr_CA where fr is short for French and CA is short for Canada; we’ll discuss the naming
scheme for locales in more detail later in this section.

The Locale Class
In Java, the Locale class provides programming support for locales. Table 12-1 lists important methods in this class.

Table 12-1. Important Methods in the Locale Class

Method Short Description

static Locale[] getAvailableLocales() Returns a list of available locales (i.e., installed locales)
supported by the JVM.

static Locale getDefault() Returns the default locale of the JVM.

static void setDefault(Locale newLocale) Sets the default locale of the JVM.

String getCountry() Returns the country code for the locale object.

String getDisplayCountry() Returns the country name for the locale object.

String getLanguage() Returns the language code for the locale object.

String getDisplayLanguage() Returns the language name for the locale object.

(continued)

Chapter 12 ■ LoCaLization

363

The code in Listing 12-1 detects the default locale and checks the available locales in the JVM.

Listing 12-1. AvailableLocales.java

import java.util.Locale;

class AvailableLocales {
 public static void main(String []args) {
 System.out.println("The default locale is: " + Locale.getDefault());
 Locale [] locales = Locale.getAvailableLocales();
 System.out.printf("No. of other available locales is: %d, and they are: %n",
 locales.length);
 for(Locale locale : locales) {
 System.out.printf("Locale code: %s and it stands for %s %n",
 locale, locale.getDisplayName());
 }
 }
}

It prints the following:

The default locale is: en_US
No. of other available locales is: 156, and they are:
Locale code: ms_MY and it stands for Malay (Malaysia)
Locale code: ar_QA and it stands for Arabic (Qatar)
Locale code: is_IS and it stands for Icelandic (Iceland)
Locale code: sr_RS_#Latn and it stands for Serbian (Latin,Serbia)
Locale code: no_NO_NY and it stands for Norwegian (Norway,Nynorsk)
Locale code: th_TH_TH_#u-nu-thai and it stands for Thai (Thailand,TH)
Locale code: fr_FR and it stands for French (France)
Locale code: tr and it stands for Turkish
Locale code: es_CO and it stands for Spanish (Colombia)
Locale code: en_PH and it stands for English (Philippines)
Locale code: et_EE and it stands for Estonian (Estonia)
Locale code: el_CY and it stands for Greek (Cyprus)
Locale code: hu and it stands for Hungarian
 [...rest of the output elided...]

Let’s look at the methods in the program before analyzing the output. You use the method getDefault() in
Locale to get the code of the default locale. After that you use getAvailableLocales() in the Locale class to get the
list of available locales in your JVM. Now, for each locale you print the code for the locale by implicitly calling the
toString() method of locale and also print the descriptive name using the getDisplayName() method of Locale.

Method Short Description

String getVariant() Returns the variant code for the locale object.

String getDisplayVariant() Returns the name of the variant code for the locale object.

String toString() Returns a String composed of the codes for the locale’s
language, country, variant, etc.

Table 12-1. (continued)

Chapter 12 ■ LoCaLization

364

The program prints the default locale as en_US for this JVM, which means the default is the English language
spoken in US. Then it prints a very long list of available locales; to save space, we’ve shown only small part of the
output. From this program, you know that there are many locales available and supported, and there is a default
locale associated with every JVM.

There are four different kinds of locale codes in this output:

Just one code, as in the last entry shown above: hu for Hungarian.•	

Two codes separated by underscore, as in the first locale shown, ms_MY, where ms stands for •	
Malaysia and MY stands for Malay.

Three codes separated by underscores, as in no_NO_NY where no stands for Norway, NO for •	
Norwegian, and NY for Nynorsk.

Two or three initial codes separated by underscores and the final one by # or _#, as in •	
th_TH_TH_#u-nu-thai, which we’ll discuss now. Here is how these locale names are encoded:

language + "_" + country + "_" + (variant + "_#" | "#") + script + "-" + extensions

For the locale code of th_TH_TH_#u-nu-thai,

The language code is th (Thai) and it is always written in lowercase.•	

The country code is TH (Thailand) and it is always written in uppercase.•	

The variant name is TH; here it repeats the country code, but it could be any string.•	

The script name is an empty string here; if given, it will be a four-letter string with the first •	
letter in uppercase and the rest in lowercase (e.g., Latn).

The extension follows the # or _# character; it is u-nu-thai in this example.•	

This coding scheme is to allow programming variations even within the same language. For example, English is
spoken in many countries, and there are variations in the language based on the country in which English is spoken.
We all know that American English is different from British English, but there are many such versions. Let’s change the
loop in Listing 12-1 to list only the locales that are related to English, like so:

for(Locale locale : locales) {
 // filter and display only English locales
 if(locale.getLanguage().equals("en")) {
 System.out.printf("Locale code: %s and it stands for %s %n",
 locale, locale.getDisplayName());
 }
}

It prints the following:

Locale code: en_MT and it stands for English (Malta)
Locale code: en_GB and it stands for English (United Kingdom)
Locale code: en_CA and it stands for English (Canada)
Locale code: en_US and it stands for English (United States)
Locale code: en_ZA and it stands for English (South Africa)
Locale code: en and it stands for English
Locale code: en_SG and it stands for English (Singapore)
Locale code: en_IE and it stands for English (Ireland)

Chapter 12 ■ LoCaLization

365

Locale code: en_IN and it stands for English (India)
Locale code: en_AU and it stands for English (Australia)
Locale code: en_NZ and it stands for English (New Zealand)
Locale code: en_PH and it stands for English (Philippines)

The output refers to different locales in English. You use the getLanguage() method in Locale, which returns the
locale code. What are other such methods? You’ll explore the methods available in the Locale class now.

Getting Locale Details
The getter methods in the Locale class such as getLanguage(), getCountry(), and getVariant() return codes,
whereas the similar methods getDisplayCountry(), getDisplayLanguage(), and getDisplayVariant() return
names. Listing 12-2 illustrates how to use these methods for the locale Locale.CANADA_FRENCH.

Listing 12-2. LocaleDetails.java

import java.util.Locale;

public class LocaleDetails {
 public static void main(String args[]) {
 Locale.setDefault(Locale.CANADA_FRENCH);
 Locale defaultLocale = Locale.getDefault();
 System.out.printf("The default locale is %s %n", defaultLocale);
 System.out.printf("The default language code is %s and the name is %s %n",
 defaultLocale.getLanguage(), defaultLocale.getDisplayLanguage());
 System.out.printf("The default country code is %s and the name is %s %n",
 defaultLocale.getCountry(), defaultLocale.getDisplayCountry());
 System.out.printf("The default variant code is %s and the name is %s %n",
 defaultLocale.getVariant(), defaultLocale.getDisplayVariant());
 }
}

It prints the following:

The default locale is fr_CA
The default language code is fr and the name is français
The default country code is CA and the name is Canada
The default variant code is and the name is Canada

Let’s understand the program. The setDefault() method takes a Locale object as argument. In this program,
you set the default locale as Locale.CANADA_FRENCH with this statement:

Locale.setDefault(Locale.CANADA_FRENCH);

The Locale class has many static Locale objects representing common locales so that you don’t have to
instantiate them and use them directly in your programs. In this case, Locale.CANADA_FRENCH is a static Locale object.
Instead of using this static Locale object, you can choose to instantiate a Locale object. Here is an alternative way to
set the default locale by creating a new Canada (French) locale object:

Locale newLocale = new Locale("fr", "CA", "");
Locale.setDefault(newLocale);

Chapter 12 ■ LoCaLization

366

The getDefault() method in Locale returns the default locale object set in the JVM. The next statement
uses methods to get information related to the country. The difference between the getCountry() and
getDisplayCountry() methods is that the former method returns the country code (which is not very readable for us),
and the latter returns the country name, which is human readable. The country code is a two or three letter code (this
code comes from an international standard: ISO 3166).

The behavior of getLanguage() and getDisplayLanguage() is similar to getting country details. The language
code consists of two or three letters, and this code comes from another international standard (ISO 639).

There was no variant in this locale, so nothing got printed when you used the getVariant() and
getDisplayVariant() methods. However, for some other locale, there could be variant values, and those values
would get printed for that locale. The variant could be any extra details such as operating environments (like MAC for
Macintosh machine) or name of the company (such as Sun or Oracle).

Other than these, you also have less widely used methods such as getScript(), which returns the script code for
the locale.

Resource Bundles
In the last section, we discussed the Locale class and the way to get details of the default locale and the list of available
locales. How do you use this locale information to customize the behavior of your programs? Let’s take a simple
example of greeting someone: in English, you say “Hello,” but if the locale is different, how do you change this greeting
to say, for example, “Ciao” if the locale is Italy (and Italian)?

One obvious solution is to get the default locale, check if the locale is Italy and print “Ciao.” It will work, but this
approach is neither flexible nor extensible. How about customizing to other locales like Saudi Arabia (Arabic) or India
(Hindi)? You have to find and replace all the locale specific strings for customizing for each locale; this task will be a
nightmare if your application consists of thousands of such strings spread over a million lines of code.

In Java, resource bundles provide a solution to this problem of how to customize the application to locale-specific
needs. So, what is a resource bundle? A resource bundle is a set of classes or property files that help define a set of keys
and map those keys to locale specific values.

The abstract class ResourceBundle provides an abstraction of resource bundles in Java. It has two derived classes:
PropertyResourceBundle and ListResourceBundle (see Figure 12-1). The two derived classes provide support for
resource bundles using two different mechanisms:

ResourceBundle
(abstract class)

ListResourceBundle
(abstract class)

PropertyResourceBundle

Resource bundles
provide support for

multiple locales; this
class abstracts

localization functionality

Manages resources for a
locale as a list. for each
locale, extend this class

and override the
getContents()method

Manages resources for a locale
as a property file. use

ResourceBundle.getBundle()
method to automatically load

relevant property file for a
locale.

Figure 12-1. ResourceBundle and its two derived classes

Chapter 12 ■ LoCaLization

367

•	 The PropertyResourceBundle Class: This concrete class provides support for multiple locales
in the form of property files. For each locale, you specify the keys and values in a property file
for that locale. For a given locale, if you use the ResourceBundle.getBundle() method, the
relevant property file will be automatically loaded. Of course, there is no magic in it; you have
to follow certain naming conventions for creating the property files, which we’ll discuss in the
section dedicated to discussing property files. You can use only Strings as keys and values
when you use property files.

•	 The ListResourceBundle Class: For adding support to a locale, you can extend this abstract
class. In your derived class, you have to override the getContents() method, which returns
an Object [][]. This array must have the list of keys and values. The keys must be Strings.
Typically the values are also Strings, but values can be anything: sound clips, video clips,
URLs, or pictures.

Let’s take a quick look at the methods supported by the ResourceBundle abstract class. Table 12-2 summarizes
the important methods of this class. We’ll now discuss localization support using these two derived classes of
ResourceBundle.

Table 12-2. Important Methods in the ResourceBundle Abstract Class

Method Short Description

Object getObject(String key) Returns the value mapped to the given key. Throws a
MissingResourceException if no object for a given key
is found.

static ResourceBundle getBundle(String baseName),

static final ResourceBundle
getBundle(String baseName, Locale locale)

final ResourceBundle getBundle(String baseName,
Locale targetLocale, Control control)

Returns the ResourceBundle for the given
baseName, locale, and control; throws a
MissingResourceException if no matching resource
bundle is found. The Control instance is meant for
controlling or obtaining info about the resource bundle
loading process.

string getString(String key) Returns the value mapped to the given key; equivalent
to casting the return value from getObject() to String.
Throws a MissingResourceException if no object for a
given key is found. Throws ClassCastException if the
object returned is not a String.

Using PropertyResourceBundle
If you design your application with localization in mind using property files, you can add support for new locales to
the application without changing anything in the code!

We’ll now look at an example using resource files and it will become clear to you. Let’s start with a very simple
program that prints “Hello” to the user. This program has three property file resource bundles:

1. The default resource bundle that assumes the English (US) locale.

2. A resource bundle for the Arabic locale.

3. A resource bundle for the Italian locale.

Chapter 12 ■ LoCaLization

368

As discussed above, property files define strings as key value pairs in a file. Here is an example of a classpath that
can be mapped to an actual path in your machine: classpath = C:\Program Files\Java\jre7. Property files will
usually contain numerous such key value pairs, with each such pair in separate lines, as in the following:

classpath = C:\Program Files\Java\jre7
temp = C:\Windows\Temp
windir = C:\Windows

In the case of localization, you use property files to map the same key strings to different value strings. In the
program, you’ll refer the key strings, and by loading the matching property file for the locale, the corresponding values
for the keys will be fetched from the property files for use in the program.

The naming of these property files is important (you’ll see why soon) and below is the content of these bundles.
To keep this example simple, there is only one key-value pair in these property files; in real-world programs, there
could be a few hundred or even thousands of pairs present in each property file.

D:\ > type ResourceBundle.properties
Greeting = Hello

D:\ > type ResourceBundle_ar.properties
Greeting = As-Salamu Alaykum

D:\ > type ResourceBundle_it.properties
Greeting = Ciao

As you can see, the default bundle is named ResourceBundle.properties. The resource bundle for Arabic is
named ResourceBundle_ar.properties. Note the suffix _ar, indicating Arabic as a local language. Similarly, the resource
bundle for Italian is named ResourceBundle_it.properties, which makes use of the _it suffix to indicate the Italian as
the associated language with this property file. Listing 12-3 makes use of these resource bundles.

Listing 12-3. LocalizedHello.java

import java.util.*;

public class LocalizedHello {
 public static void main(String args[]) {
 Locale currentLocale = Locale.getDefault();
 ResourceBundle resBundle =
 ResourceBundle.getBundle("ResourceBundle", currentLocale);
 System.out.printf(resBundle.getString("Greeting"));
 }
}

There are two options to run this program in the desired way:

•	 Option I: Change the default locale in the program by calling the setDefault() method:

Locale.setDefault(Locale.ITALY);

Chapter 12 ■ LoCaLization

369

This option is not recommended since it will require changing the program to set the locale.

•	 Option II: Change the default locale when invoking the JVM from the command line
(if you’re invoking the JVM from an IDE, provide the command line arguments to the JVM in
the IDE settings):

D:\ > java -Duser.language = it -Duser.region = IT LocalizedHello

Let’s try the program by setting the locale with Option II (passing arguments to the command line when invoking
the JVM).

D:\ > java LocalizedHello
Hello
D:\ > java -Duser.language=it LocalizedHello
Ciao
D:\ > java -Duser.language=ar LocalizedHello
As-Salamu Alaykum

As you can see, depending on the locale that you explicitly set (Italian or Arabic in this example), or the default
locale (US English in this example), the corresponding property file is loaded and the message string is resolved.

 if you forget to create property files or they are not in the path, you will get a
MissingResourceException.

In the program, first you get the current locale in the statement.

Locale currentLocale = Locale.getDefault();

After that, you load the resource bundle that starts with the name ResourceBundle and pass the locale for loading
the resource bundle.

ResourceBundle resBundle = ResourceBundle.getBundle("ResourceBundle", currentLocale);

Finally, from the resource bundle, you look for the key “Greeting” and use the value of that key based on the
loaded resource bundle.

System.out.printf(resBundle.getString("Greeting"));

Using ListResourceBundle
Support for a new locale can be added using ListResourceBundle by extending it. While extending the
ListResourceBundle, you need to override the abstract method getContents(); the signature of this method is

protected Object[][] getContents();

Chapter 12 ■ LoCaLization

370

Note that the keys are Strings, but values can be of any type, hence the array type is Object; further,
the method returns a list of key and value pairs. As a result, the getContents() method returns a two-dimensional
array of Objects.

Listing 12-4 shows an example of extending the ListResourceBundle, which is supposed to return the largest
box-office movie hit for that particular locale. It defines a resource bundle named ResBundle. Since the name of the
class does not have any suffix (such as _it or _en_US), it is the default implementation of the resource bundle. When
looking for a matching ResBundle for any locale, this default implementation will be used in case no match is found.

Listing 12-4. ResBundle.java

import java.util.*;

// default US English version
public class ResBundle extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 { "MovieName", "Avatar" },
 { "GrossRevenue", (Long) 2782275172L }, // in US dollars
 { "Year", (Integer)2009 }
 };
}

Now, let’s define a ResBundle for the Italian locale. You give the class the suffix _it_IT. The language code it stands
for Italian and the country code IT stands for Italy. See Listing 12-5.

Listing 12-5. ResBundle_it_IT.java

import java.util.*;

// Italian version
public class ResBundle_it_IT extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 { "MovieName", "Che Bella Giornata" },
 { "GrossRevenue", (Long) 43000000L }, // in euros
 { "Year", (Integer)2011 }
 };
}

As you can see, the implementations for ResBundle and ResBundle_it_IT are similar except for the values
mapped to the keys. Now how do you know if your resource bundles are working or not? Listing 12-6 loads ResBundle
for both default and Italian locales.

Chapter 12 ■ LoCaLization

371

Listing 12-6. LocalizedHello2.java

import java.util.*;

public class LocalizedHello2 {
 public static void printMovieDetails(ResourceBundle resBundle) {
 String movieName = resBundle.getString("MovieName");
 Long revenue = (Long)(resBundle.getObject("GrossRevenue"));
 Integer year = (Integer) resBundle.getObject("Year");

 System.out.println("Movie " + movieName + "(" + year ")" + " grossed "
 + revenue);
 }
 public static void main(String args[]) {
 // print the largest box-office hit movie for default (US) locale
 Locale locale = Locale.getDefault();
 printMovieDetails(ResourceBundle.getBundle("ResBundle", locale));

 // print the largest box-office hit movie for Italian locale
 locale = new Locale("it", "IT", "");
 printMovieDetails(ResourceBundle.getBundle("ResBundle", locale));
 }
}

It prints the following:

Movie Avatar (2009) grossed 2782275172
Movie Che Bella Giornata (2011) grossed 43000000

It loaded the default and Italian resource bundles successfully. However, there are problems with this output.
The value 2782275172 is a US dollar value and the value 43000000 is in Euros. Moreover, the numbers are printed
without commas, so it is difficult to make sense of these figures. These values need to be localized as well, and we’ll
revisit this topic in the last section of this chapter.

Now, consider the following statement from this program:

Long revenue = (Long)(resBundle.getObject("GrossRevenue"));

This statement returns the value mapping to the key named GrossRevenue in the resource bundle. You have
defined it as an integer object in the classes ResBundle and ResBundle_it_IT—so it worked. If you cast the types
incorrectly, you’ll get a ClassCastException.

Furthermore, note that the keyname is case sensitive and the key name should exactly match—or else you’ll get a
MissingResourceException. For example, in this statement, if you mistype GrossRevenu instead of GrossRevenue as
the key name, the program will crash with this exception:

The Exception in the thread "main" java.util.MissingResourceException: Can't find resources for
bundle ResBundle, key GrossRevenu

Chapter 12 ■ LoCaLization

372

 You create resource bundles by extending the ListResourceBundle class, whereas with
PropertyResourceBundle, you create the resource bundle as property files. Furthermore, when
 extending ListResourceBundle, you can have any type of objects as values, whereas values in a
properties file can only be Strings.

Loading a Resource Bundle
You’ve already loaded resource bundles in the programs you’ve written using ResourceBundle or its two derived
classes. You need to understand this loading process thoroughly, and we’ll cover it in more detail in this section.

The process of finding a matching resource bundle is same for classes extended from ListResourceBundles as
for property files defined for PropertyResourceBundles.

 For the resource bundles implemented as classes extended from ListResourceBundles, Java uses the
reflection mechanism to find and load the class. You need to make sure that the class is public so that
the reflection mechanism will find the class.

Naming Convention for Resource Bundles
Java enforces a predefined naming convention to be followed for creating resource bundles. Only through the names
of the property bundles does the Java library load the relevant locales. Hence, it is important to understand and follow
this naming convention when creating the property bundles for localizing Java applications.

You already saw how a locale name is encoded. Understanding this locale name encoding is important for
naming the resource bundles because it makes use of the same encoding scheme. A fully qualified resource bundle
has the following form:

packagequalifier.bundlename + "_" + language + "_" + country + "_" + (variant + "_#" | "#") + script
+ "-" + extensions

Here is the description of the elements in this fully qualified name:

•	 packagequalifier: The name of the package (or the subpackages) in which the resource
bundle is provided.

•	 bundlename: The name of the resource bundle that you’ll use in the program to refer and
load it.

•	 language: A two-letter abbreviation typically given in lowercase for the locale’s language
(in rare cases, it could be three letters as well).

•	 country: A two letter abbreviation typically given in uppercase for the locale’s country (in rare
cases, it could be three letters as well).

•	 variant: An arbitrary list of variants (in lowercase or uppercase) to differentiate locales when
you need more than one locale for a language and country combination.

We’ve omitted describing script and extension since they are rarely used.

Chapter 12 ■ LoCaLization

373

For example, consider this fully qualified name:

localization.examples.AppBundle_en_US_Oracle_exam

In this case, localization.examples is the package, AppBundle is the name of the resource bundle, en is
language (which stands for English), US is the country, and Oracle_exam is the variant.

The two (or sometimes three) letter abbreviations for the locale’s language and country are predefined since
they are based on international standards. We don’t provide the detailed list and there is also no need to know or
remember all of them. You can look at the documentation of the Locale class to understand that.

 on the oCpJp 7 exam, you’re not expected to memorize language codes or country codes that are used for
naming resource bundles. however, you are expected to remember the naming convention and recognize the
constituents of a fully qualified resource bundle name.

Given that there could be many resource bundles for a bundle name, what is the search sequence to determine
the resource bundle to be loaded? To clarify, we present the sequence as a series of steps. The search starts from
Step 1. If at any step the search finds a match, the resource bundle is loaded. Otherwise, the search proceeds to the
next step.

•	 Step 1: The search starts by looking for an exact match for the resource bundle with the full
name.

•	 Step 2: The last component (the part separated by _) is dropped and the search is repeated
with the resulting shorter name. This process is repeated till the last locale modifier is left.

•	 Step 3: The search is restarted using the full name of the bundle for the default locale.

•	 Step 4: Search for the resource bundle with just the name of the bundle.

•	 Step 5: The search fails, throwing a MissingBundleException.

The search starts with the given locale details and if not found, proceeds with checking for default locale, as in:

BundleName + "_" + language + "_" + country + "_" + variant
BundleName + "_" + language + "_" + country
BundleName + "_" + language
BundleName + "_" + defaultLanguage + "_" + defaultCountry
BundleName + "_" + defaultLanguage

Consider an example to find out how the matching resource bundle is found, and it will become clear to you.
Assume that you have the following five entries in the search path, and your default locale is US English.

ResourceBundle.properties -- Global bundle
ResourceBundle_ar.properties -- Arabic language bundle
ResourceBundle_en.properties -- English bundle (assuming en_US is the default locale)
ResourceBundle_it.properties -- Italian language bundle
ResourceBundle_it_IT_Rome.properties -- Italian (Italy, Rome, Vatican) bundle

Chapter 12 ■ LoCaLization

374

 the getBundle() method takes a ResourceBundle.Control object as an additional parameter.
By extending this ResourceBundle.Control class and passing the instance of that extended class to
the getBundle() method, you can change the default resource bundle search process or read from
non-standard resource bundle formats (such as XML files).

So, you’ll extend this ResourceBundle.Control class and override the getCandidateLocales() method.
This is to programmatically list the candidate locales and finally display the matching locale. The program is given
in Listing 12-7.

Listing 12-7. CandidateLocales.java

import java.util.*;

// Extend ResourceBundle.Control and override getCandidateLocales method
// to get the list of candidate locales that Java searches for
class TalkativeResourceBundleControl extends ResourceBundle.Control {
 // override the default getCandidateLocales method to print
 // the candidate locales first
 public List < Locale > getCandidateLocales(String baseName, Locale locale) {
 List < Locale > candidateLocales = super.getCandidateLocales(baseName, locale);
 System.out.printf("Candidate locales for base bundle name %s and locale %s %n",
 baseName, locale.getDisplayName());
 for(Locale candidateLocale : candidateLocales) {
 System.out.println(candidateLocale);
 }
 return candidateLocales;
 }
}

// Use a helper method loadResourceBundle to load a bundle given the bundle name and locale
class CandidateLocales {
 public static void loadResourceBundle(String resourceBundleName, Locale locale) {
 // Pass an instance of TalkativeResourceBundleControl
 // to print candidate locales
 ResourceBundle resourceBundle = ResourceBundle.getBundle(resourceBundleName, locale,
 new TalkativeResourceBundleControl());
 String rbLocaleName = resourceBundle.getLocale().toString();
 // if the resource bundle locale name is empty,
 // it means default property file
 if(rbLocaleName.equals("")) {
 System.out.println("Loaded the default property file with name: " +
 resourceBundleName);
 } else {
 System.out.println("Loaded the resource bundle for the locale: " +
 resourceBundleName + "." + rbLocaleName);
 }
 }

Chapter 12 ■ LoCaLization

375

 public static void main(String[] args) {
 // trace how ResourceBundle_it_IT_Rome.properties is resolved
 loadResourceBundle("ResourceBundle", new Locale("it", "IT", "Rome"));
 }
}

It prints the following:

Candidate locales for base bundle name ResourceBundle and locale Italian (Italy, Rome)
it_IT_Rome
it_IT
it

Loaded the resource bundle for the locale: ResourceBundle.it_IT_Rome

Now, before trying with other locales, consider how the program works. To trace how Java resolves the resource
bundle to be finally loaded, you need to get the list of candidate locales. With the ResourceBundle.getBundle()
method, you can pass an additional argument that is an instance of the ResourceBundle.Control class. For this
reason, you define the TalkativeResourceBundleControl class.

The TalkativeResourceBundleControl class extends the ResourceBundle.Control class and overrides
the getCandidateLocales() method. This getCandidateLocales() method returns a List < Locale > instance
that contains the list of candidate locales for the given locale. You invoke super.getCandidateLocales() and
traverse the resulting List < Locale > object to print the candidate locales so that you can examine the output
later. From this overridden getCandidateLocales() method, you simply return this List < Locale > object. So, the
behavior of TalkativeResourceBundleControl is identical to ResourceBundle.Control except that the overridden
getCandidateLocales() in TalkativeResourceBundleControl prints the candidate locales.

The CandidateLocales class makes use of the TalkativeResourceBundleControl. It has a helper method called
loadResourceBundle() that takes the resource bundle name and the name of the locale as arguments. This method
simply passes these argument values to the ResourceBundle.getBundle() method; additionally it instantiates
TalkativeResourceBundleControl and passes that object as the third argument to this method. The getBundle()
method returns a ResourceBundle object. If the locale of the ResourceBundle.getLocale() name is empty, it means
Java has loaded the global resource bundle. (Remember that the global resource bundle for that bundle name does
not have any associated locale details.) If the name of the locale is not empty, it means Java has resolved to that
particular locale.

Now, consider the code in the main() method. It calls loadResourceBundle() for the locale it_IT_Rome. There
are three candidate locales and of that it correctly loaded the matching property file for the locale it_IT_Rome. So you
know that it loaded the property file ResourceBundle_it_IT_Rome.properties correctly.

To continue this experiment, let’s change the code inside the main() method of Listing 12-7 to this code:

loadResourceBundle("ResourceBundle", new Locale("fr", "CA", ""));

Now the program prints the following:

Candidate locales for base bundle name ResourceBundle and locale French (Canada)
fr_CA
fr
Candidate locales for base bundle name ResourceBundle and locale English (United States)
en_US
en
Loaded the resource bundle for the locale: ResourceBundle.en

Chapter 12 ■ LoCaLization

376

Why does the program print the above output? Note that there is no corresponding property file for the fr_CA
locale in the list of property files. So, the search continues to check the property files for the default locale. In this case,
the default locale is en_US, and there is a property file for the en (English) locale. So, from the candidate locales, Java
resolves to load the property file ResourceBundle_en.properties correctly.

Here is the final example. Replace the code in the main() method with this statement:

loadResourceBundle("ResBundl", Locale.getDefault());

The program prints the following:

Candidate locales for base bundle name ResBundl and locale English (United States)
en_US
en

The exception in thread "main" java.util.MissingResourceException: Can't find bundle for base name
ResBundl, locale en_US
 [... thrown stack trace elided ...]

You don’t have any resource bundle named ResBundl and you’ve given the default locale (en_US in this case).
Java searches for the bundle for this locale, and you know that you have not provided any bundle with name ResBundl.
So, the program crashes after throwing a MissingResourceException.

Formatting for Local Culture
Text is obviously the main aspect to be localized. However, there are many aspects that are handled differently based
on the locale: date and time, numbers, and currencies. We’ll discuss each of these topics in detail now.

For localize text, the main approach you need to follow is not to hardcode the strings. The key idea to remember
for date, time, currency, and numbers is to use culture-aware formatting to localize them. Figure 12-2 shows how
the two important classes we’ll discuss in this section—NumberFormat and DateFormat—are both inherited from the
Format base class; these classes are part of the java.text package and are useful for making locale-aware software.

Format
(abstract class)

NumberFormat DateFormat

SimpleDateFormat

Abstract base class
supporting formatting of

locale-sensitive
information such as date,
time, and currency values

Base class for processing date
and time based on the locale

Allows you to define a custom
pattern for processing date-type

Base class for processing
numbers for percentage,

currency, etc.

Figure 12-2. The Format class and its important derived classes

Chapter 12 ■ LoCaLization

377

The NumberFormat Class
The NumberFormat class provides support for processing numbers in a locale-sensitive manner. For example,
depending on the locale, how thousands are separated, the punctuation characters used for separating them, printing
an amount as a currency value, etc. are different, and the NumberFormat class provides this functionality.

The NumberFormat class provides methods to format or parse numbers. Here “formatting” means converting
a numeric value to a string value in a culture-sensitive way; similarly, “parsing” means converting a number back
to numeric form. For example, if you want to print the long constant value 10_000_000L into ten million in German
locale, you format this value by passing it to the format() method in the NumberFormat class, and this method will
return the String “10.000.000” (note the use of dot as a separation character for thousands). Now, if you read the
input value 10 million in German locale to convert that value to a long value to use it in the program, you can pass the
string to the parse() method. Listing 12-8 shows the steps to perform these conversions.

Listing 12-8. FormatNumber.java

import java.util.*;
import java.text.*;

// class to demonstrate how to format or parse numbers for a particular locale
class FormatNumber {
 public static void main(String []args) {
 long tenMillion = 10_000_000L;
 // first print ten million in German locale
 NumberFormat germanFormat = NumberFormat.getInstance(Locale.GERMANY);
 String localizedTenMillion = germanFormat.format(tenMillion);
 System.out.println("Ten million in German locale is " + localizedTenMillion);

 // now, scan the value ten million given in German locale
 try {
 Number parsedAmount = germanFormat.parse(localizedTenMillion);
 if(tenMillion == parsedAmount.longValue()) {
 System.out.println("Successfully parsed the number for the locale");
 }
 }
 catch (ParseException pe) {
 System.err.println("Error: Cannot parse the number for the locale");
 }
 }
}

It prints the following:

Ten million in German locale is 10.000.000
Successfully parsed the number value back to Number value based on the locale

As you can see, the value 10 million is printed in this format in German locale: 10.000.000. To parse such a
number in a given locale, you can use the NumberFormat’s parse() method, which returns a Number if the parsing is
successful—or else the method throws a checked exception, ParseException.

Note that the parse() method is different from the format() method. The parse() method is meant for reading
numbers provided as String and trying to convert it to Number. The format() method is used for printing the values
according to the values set in the NumberFormat object. Listing 12-9 illustrates the difference between the two.

Chapter 12 ■ LoCaLization

378

Listing 12-9. FractionDigits.java

import java.util.*;
import java.text.*;

public class FractionDigits {
 public static void main(String[] args) throws ParseException {
 String[] numbers = {"1.222", "0.12345F"};
 double[] doubles = {1.222, 0.12345F};
 NumberFormat numberFormat = NumberFormat.getInstance();
 numberFormat.setMaximumFractionDigits(2);
 System.out.println("Using format method: ");
 for(double val : doubles) {
 System.out.println(numberFormat.format(val));
 }
 System.out.println("Using parse method: ");
 for(String number : numbers) {
 System.out.println(numberFormat.parse(number));
 }
 }
}

It prints the following:

Using format method:
1.22
0.12
Using parse method:
1.222
0.12345

The parse() method reads the values and converts it to Number if it succeeds. So, it does not use the maximum
fraction digits set using setMaximumFractionDigits(); however, if it were to use the format() method, which is
meant for printing numbers, it would use this maximum fraction digits limit set, which explains the difference
between the outputs.

Important methods in the NumberFormat class are listed in Table 12-3. The static methods that start with the
“get” prefix and end with the “Instance” suffix—such as getCurrencyInstance()—are factory methods supported by
this class.

Table 12-3. Important Methods in the NumberFormat Class

Method Short Description

String format(double number)

String format(long number)

Formats the number according to the NumberFormat’s
locale. The first two overloaded methods use an implicit
StringBuffer, whereas the last two use an explicit
StringBuffer to build the String.

Number parse(String source) Parses the number from the given String. It returns a Long or
Double instance depending on the value of the number given
in source. Throws a ParseException if the parse fails.

(continued)

Chapter 12 ■ LoCaLization

379

The NumberFormat class supports printing currency values. You can use its getCurrencyInstance() method,
which returns a Currency object. Listing 12-10 illustrates how to make use of this method for printing the value
10 million in four different locales (without performing exchange rate conversions).

Listing 12-10. LocalizedCurrency.java

import java.util.*;
import java.text.*;

// Ilustrates how to use NumberFormat class to get Currency instance
class LocalizedCurrency {
 public static void main(String []args) {
 long tenMillion = 10000000L; // this is ten million
 Locale [] locales =
 { Locale.CANADA, Locale.FRANCE, Locale.GERMANY, Locale.TAIWAN };
 // for each of the four locales,
 // print the currency amount as it looks in that locale
 for(Locale locale : locales) {
 System.out.println("Ten million in " + locale.getDisplayName() + "

is " + NumberFormat.getCurrencyInstance(locale).format(tenMillion));
 }
 }
}

It prints:

Ten million in English (Canada) is $10,000,000.00
Ten million in French (France) is 10 000 000,00 €
Ten million in German (Germany) is 10.000.000,00 €
Ten million in Chinese (Taiwan) is NT$10,000,000.00

Method Short Description

static Locale[] getAvailableLocales() Returns the list of the locales supported by the Java runtime for
number formatting.

static NumberFormat getInstance() Factory method that returns a NumberFormat object for the
default locale.

Currency getCurrency() Returns the currency instance used by this NumberFormat object.

static NumberFormat getCurrencyInstance() Returns the instance of NumberFormat suitable for currency
formatting purposes; an overloaded version of this method
takes a Locale as an argument.

static NumberFormat getIntegerInstance() Returns the instance of NumberFormat suitable for use for
formatting integer numbers; an overloaded version of this
method takes a Locale as an argument.

static NumberFormat getPercentInstance() Returns the instance of NumberFormat suitable for use for
formatting for percentages; an overloaded version of this
method takes a Locale as an argument.

Table 12-3. (continued)

Chapter 12 ■ LoCaLization

380

As you can see, by using the NumberFormat object returned from getCurrencyInstance(Locale), you can format
numbers to print them as currency values for a locale. You can also use the Currency class independently of the
NumberFormat class, as we’ll discuss now.

The Currency Class
Table 12-4 lists important methods the Currency class.

Table 12-4. Important Methods in the Currency Class

Method Short Description

int getNumericCode() Returns ISO 4217 numeric code for the currency.

int getDefaultFractionDigits() Returns the default number of digits used with the
currency, such as zero for the Japanese Yen and two
for the US Dollar.

String getDisplayName() Returns the readable description of the Currency for
the underlying locale, for example, US Dollar.

String getDisplayName(Locale) Returns the readable description of the Currency for
the given locale.

static Currency getInstance(String currencyCode) Returns the Currency object corresponding to the
given currency code.

static Currency getInstance(Locale locale) Returns the Currency object corresponding to the
given Locale object.

static Set < Currency > getAvailableCurrencies() Get the list of Currency instances available in the JDK.

String getSymbol() Returns the currency symbol, if any; otherwise,
returns the currency code.

String getSymbol(Locale) Returns the currency symbol for the given Locale
object.

String getCurrencyCode() Returns the currency code (ISO 4217) for locale of the
Currency instance.

Listing 12-11 shows how to make use of few of these methods listed in Table 12-4.

Listing 12-11. CurrencyDetails.java

import java.util.*;

// Get the currency details of the default locale (en_US locale)
class CurrencyDetails {
 public static void main(String []args) {
 Locale locale = Locale.getDefault();
 Currency currencyInstance = Currency.getInstance(locale);
 System.out.println(" The currency code for locale " + locale
 + " is: " + currencyInstance.getCurrencyCode()

Chapter 12 ■ LoCaLization

381

 + " \n The currency symbol is " + currencyInstance.getSymbol()
 + " \n The currency name is " + currencyInstance.getDisplayName());
 }
}

It prints the following:

The currency code for locale en_US is: USD
The currency symbol is $
The currency name is US Dollar

The output is self-explanatory. Note that for many locales where there is no symbol involved, getSymbol() will
just return the currency code.

The DateFormat Class
The DateFormat class provides support for processing date and time in a locale-sensitive manner (the name
simply says DateFormat, but it supports both date and time). Table 12-5 lists some of the important methods in the
DateFormat class.

Table 12-5. Important Methods in the DateFormat Class

Method Short Description

String format(Date date) Formats the given date for the default locale and returns a textual
representation. Its overloaded version takes a StringBuffer and
position as arguments and returns a StringBuffer object; useful
if an existing StringBuffer needs to be formatted for date.

Date parse(String source) Reads the given String according to the default locale conventions
to return a Date object; throws ParseException if it fails. It has an
overloaded version that takes ParsePosition (the position from
which to parse the String) as an additional argument.

String format(Date date) Formats the given date for the default locale and returns a textual
representation.

static Locale[] getAvailableLocales() Returns an array of Locales that are supported by the Java
runtime for date/time formatting.

static DateFormat getInstance() Returns the default DateFormat instance that supports both date
and time; it uses DateFormat.SHORT style for both date and time.

static DateFormat getDateInstance() Returns the DateFormat instance suitable for processing dates for
default locale; its two overloaded versions take style and Locale
as additional arguments.

static DateFormat getTimeInstance() Returns the DateFormat instance suitable for processing time
for a default locale; its two overloaded versions take style and
Locale as additional arguments.

static DateFormat getDateTimeInstance() Returns the DateFormat instance suitable for processing both
date and time for a default locale; its two overloaded versions take
style and Locale as additional arguments.

Chapter 12 ■ LoCaLization

382

Depending on the locale, the displayed date or time can be considerably different, as shown from the output of
the program in Listing 12-12 for four locales.

Listing 12-12. DatePrint.java

import java.util.*;
import java.text.*;

// Class to demonstrate the use of DateFormat class to format the date and print it
class DatePrint {
 public static void main(String[] args) {
 // the default constructor for the Date
 // sets the date/time for current date/time
 Date today = new Date();
 Locale [] locales = { Locale.CANADA, Locale.FRANCE, Locale.GERMANY, Locale.ITALY };
 for(Locale locale : locales) {
 // DateFormat.FULL refers to the full details of the date
 DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.FULL, locale);
 System.out.println("Date in locale " + locale + " is: " + dateFormat.
 format(today));
 }
 }
}

When this program was run on Sept 4, 2012, it printed the following:

Date in locale en_CA is: Tuesday, September 4, 2012
Date in locale fr_FR is: mardi 4 septembre 2012
Date in locale de_DE is: Dienstag, 4. September 2012
Date in locale it_IT is: martedì 4 settembre 2012

This program gets an instance of the DateFormat class using one of the overloaded versions of the
getDateInstance() method. This method takes the display format style as the first argument, and the locale to be
used for formatting the date as the second argument. What are those display format styles? Listing 12-13 shows the
four styles and how the dates look different for these styles.

Listing 12-13. DateStyleFormats.java

import java.util.*;
import java.text.*;

// Demonstrates the use of constants in DateFormat that determines the display style
class DateStyleFormats {
 public static void main(String []args) {
 Date now = new Date();
 int [] dateStyleFormats = { DateFormat.SHORT, DateFormat.MEDIUM, DateFormat.LONG,
 DateFormat.FULL, DateFormat.DEFAULT};
 System.out.println("Today's date in different styles are: ");

 // print today's date in all four formats plus
 // the default format in the default Locale
 for(int dateStyleFormat : dateStyleFormats) {

Chapter 12 ■ LoCaLization

383

 DateFormat dateFormat = DateFormat.getDateInstance(dateStyleFormat);
 System.out.println(dateFormat.format(now));
 }
 }
}

When run on Sept 5, 2012, it printed the following:

Today's date in different styles are:
9/5/12
Sep 5, 2012
September 5, 2012
Wednesday, September 5, 2012
Sep 5, 2012

As you can see, you can get an instance of DateFormat for a preferred style based on the need. The default style is
DateFormat.MEDIUM.

The DateFormat has three overloaded factory methods—getDateInstance(), getTimeInstance(), and
getDateTimeInstance()—that return DateFormat instances for processing date, time, and both date and time,
respectively. Listing 12-14 shows how to use them.

Listing 12-14. DateTimePrint.java

import java.util.*;
import java.text.*;

// Class to demonstrate the use of DateFormat class to get date, time, or date with time
class DateTimePrint {
 public static void main(String []args) {
 // the default constructor for the Date gets the current time and date
 Date today = new Date();
 Locale [] locales =
 { Locale.CANADA, Locale.FRANCE, Locale.GERMANY, Locale.ITALY };

 // print the header first
 System.out.printf("%5s \t %10s \t %10s \t %10s %n",
 "Locale", "Date", "Time", "Date with Time");

 // print the date, time, and date & time for each locale
 for(Locale locale : locales) {
 // DateFormat.SHORT is for giving the date or
 // time details in compact format
 DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.SHORT, locale);
 DateFormat timeFormat = DateFormat.getTimeInstance(DateFormat.SHORT, locale);

 // now, for Date & Time, change the styles to MEDIUM and FULL
 DateFormat dateTimeFormat = DateFormat.getDateTimeInstance(DateFormat.

MEDIUM, DateFormat.FULL, locale);
 System.out.printf("%5s \t %10s \t %10s \t %20s %n", locale,

dateFormat.format(today), timeFormat.format(today),
dateTimeFormat.format(today));

 }
 }
}

Chapter 12 ■ LoCaLization

384

When run on Sept 5, 2012 in the afternoon, it printed the following:

Locale Date Time Date with Time
en_CA 05/09/12 2:32 PM 5-Sep-2012 2:32:56 o'clock PM GMT + 05:30
fr_FR 05/09/12 14:32 5 sept. 2012 14 h 32 GMT + 05:30
de_DE 05.09.12 14:32 05.09.2012 14:32 Uhr GMT + 05:30
it_IT 05/09/12 14.32 5-set-2012 14.32.56 GMT + 05:30

This program shows how to get instances of DateFormat for processing date, time, or both date and time. You can
also see the effect of using different styles for different locales.

Until now you have only used DateFormat to process predefined date and time for different locales. If you want to
create your own format or pattern for processing the date or time, can you do that? Yes, the SimpleDateFormat class
provides this facility.

The SimpleDateFormat Class
SimpleDateFormat extends the DateFormat class. SimpleDateFormat uses the concept of a pattern string to format
the date and time. Before you delve deeper into creating pattern strings, first look at a simple example to learn how to
create a custom format for printing date and time (Listing 12-15).

Listing 12-15. PatternStringExample.java

import java.util.*;
import java.text.*;

// Use SimpleDateFormat for creating custom date and time formats as a pattern string
class PatternStringExample {
 public static void main(String []args) {
 String pattern = "dd-MM-yy"; /* d for day, M for month, y for year */
 SimpleDateFormat formatter = new SimpleDateFormat(pattern);
 // the default Date constructor initializes to current date/time
 System.out.println(formatter.format(new Date()));
 }
}

It prints the date in following format:

05-09-12

You encode the format of the date or time using letters to form a date or time pattern string. Usually these letters
are repeated in the pattern. Note that the uppercase and lowercase letters can have similar or different meanings, so
read the documentation carefully when trying to use these letters. For example, in dd-MM-yy, MM refers to month;
however, in dd-mm-yy, mm refers to minutes!

In this program, you’ve given a simple example for creating a custom format for date. Similar letters are available
for creating custom date and time pattern strings. Here is the list of important letters and their meanings for creating
patterns for dates:

G Era (BC/AD)
y Year
Y Week year
M Month (in year)
w Week (in year)

Chapter 12 ■ LoCaLization

385

W Week (in month)
D Day (in year)
d Day (in month)
F Day of week in month
E Day name in week
u Day number of week (value range 1-7)

Listing 12-16 is a program that uses simple to difficult pattern strings for creating custom date formats.

Listing 12-16. CustomDatePatterns.java

import java.util.*;
import java.text.*;

// Using an example, illustrates the use of "pattern strings" for printing dates
class CustomDatePatterns {
 public static void main(String []args) {
 // patterns from simple to complex ones
 String [] dateFormats = {
 "dd-MM-yyyy", /* d is day (in month), M is month, y is year */
 "d '('E')' MMM, YYYY", /*E is name of the day (in week), Y is year*/
 "w'th week of' YYYY", /* w is the week of the year */
 "EEEE, dd'th' MMMM, YYYY" /*E is day name in the week */
 };
 Date today = new Date();
 System.out.println("Default format for the date is " +

DateFormat.getDateInstance().format(today));
 for(String dateFormat : dateFormats) {
 System.out.printf("Date in pattern \"%s\" is %s %n", dateFormat,

new SimpleDateFormat(dateFormat).format(today));
 }
 }
}

In a sample run, it printed the following:

Default format for the date is Sep 5, 2012
Date in pattern "dd-MM-yyyy" is 05-09-2012
Date in pattern "d '('E')' MMM, YYYY" is 5 (Wed) Sep, 2012
Date in pattern "w'th week of' YYYY" is 36th week of 2012
Date in pattern "EEEE, dd'th' MMMM, YYYY" is Wednesday, 05th September, 2012

As you can see, repeating letters result in a longer form for an entry. For example, when you use E (which is the
name of the day in the week), it prints Wed, whereas when you use EEEE, it prints the full form of the day name, which
is Wednesday.

Another important thing to notice is how to print text within the given pattern string. For that you use text
separated by single quotes, as in ‘within single quotes’ which will be printed as it is by the SimpleDateFormat. For
example, ‘(‘E’)’ prints (Wed). If you give an incorrect pattern or forget to use single quotes for separating your text
from pattern letters inside the pattern string, you’ll get an IllegalArgumentException exception for passing an
“Illegal pattern.”

Chapter 12 ■ LoCaLization

386

Now, look at a similar example for creating custom time pattern strings. Here is the list of important letters useful
for defining a custom time pattern:

a Marker for the text am/pm marker
H Hour (value range 0-23)
k Hour (value range 1-24)
K Hour in am/pm (value range 0-11)
h Hour in am/pm (value range 1-12)
m Minute
s Second
S Millisecond
z Time zone (general time zone format)

For more letters and their descriptions, see the JavaDoc for the SimpleDateFormat class. Listing 12-17 is a
program that uses simple to difficult pattern strings for creating custom time formats.

Listing 12-17. CustomTimePatterns.java

import java.util.*;
import java.text.*;

// Using an example, illustrates the use of "pattern strings" for constructing custom time formats
class TimePattern {
 public static void main(String []args) {
 // patterns from simple to complex ones
 String [] timeFormats = {
 "h:mm", /* h is hour in am/pm (1-12), m is minute */
 "hh 'o''clock'", /* '' is the escape sequence to print a single quote */
 "H:mm a", /* H is hour in day (0-23), a is am/pm*/
 "hh:mm:ss:SS", /* s is seconds, S is milliseconds */
 "K:mm:ss a, zzzz" /*K is hour in am/pm(0-11), z is time zone */
 };
 Date today = new Date();
 System.out.println("Default format for the time is " +

DateFormat.getTimeInstance().format(today));
 for(String timeFormat : timeFormats) {
 System.out.printf("Time in pattern \"%s\" is %s %n", timeFormat,

new SimpleDateFormat(timeFormat).format(today));
 }
 }
}

It printed the following:

Default format for the time is 3:10:05 PM
Time in pattern "hh 'o''clock'" is 03 o'clock
Time in pattern "h:mm" is 3:10
Time in pattern "H:mm a" is 15:10 PM
Time in pattern "hh:mm:ss:SS" is 03:10:05:355
Time in pattern "K:mm:ss a, zzzz" is 3:10:05 PM, GMT + 05:30

Note that the output differs based on the pattern string you use in this program.

Chapter 12 ■ LoCaLization

387

Points to Remember
Here are some pointers that might prove useful on your exam:

There are many ways to get or create a •	 Locale object. We list four options here for creating an
instance of Italian locale that corresponds to the language code of it.

Option 1: Use the constructor of the Locale class: Locale(String language, String
country, String variant):

Locale locale1 = new Locale("it", "", "");

Option 2: Use the forLanguageTag(String languageTag) method in the Locale class:

Locale locale2 = Locale.forLanguageTag("it");

Option 3: Build a Locale object by instantiating Locale.Builder and then call
setLanguageTag() from that object:

Locale locale3 = new Locale.Builder().setLanguageTag("it").build();

Option 4: Use the predefined static final constants for locales in the Locale class:

Locale locale4 = Locale.ITALIAN;

You can choose the way to create a Locale object based on your need. For example, the Locale class has
only a few predefined constants for locales. If you want a Locale object from one of the predefined ones, you can
straightaway use it, or you’ll have to check which other option to use.

Instead of calling •	 Locale’s getDisplayCountry() method, which takes no arguments, you can
choose the overloaded version of getDisplayCountry(Locale), which takes a Locale object
as an argument. This will print the name of the country as in the passed locale. For example,
for the call Locale.GERMANY.getDisplayCountry(), you’ll get the output “Deutschland”
(that’s how Germans refer to their country); however, for the call Locale.GERMANY.
getDisplayCountry(Locale.ENGLISH), you’ll get the output “Germany” (that’s how British
refer to the country name Germany).

Question time!

1. Consider this program:

import java.text.NumberFormat;
import java.text.ParseException;

public class FractionDigits {
 public static void main(String[] args) {
 String[] numbers = {"1.222", "0.456789F"};
 NumberFormat numberFormat = NumberFormat.getInstance();
 numberFormat.setMaximumFractionDigits(2);

Chapter 12 ■ LoCaLization

388

 for(String number : numbers) {
 try {
 System.out.println(numberFormat.parse(number));
 }
 catch(ParseException pe) {
 System.out.println("Failed parsing " + number);
 }
 }
 }
}

this program prints which of the following?

a) 1.22

0.45

B) 1.22

0.46

C) 1.222

0.456789

D) 1.222

Failed parsing 0.456789

e) Failed parsing 1.222

0.456789

F) Failed parsing 1.222

Failed parsing 0.456789

Answer:

C) 1.222

0.456789

(the parse() method reads the values and converts it to Number if it succeeds. So, it does not use the maximum
fraction digits set using setMaximumFractionDigits; however, if it were to use the format() method, which is
meant for printing numbers, it will use this maximum fraction digits limit set.)

2. Consider this program:

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

// Use SimpleDateFormat for creating custom date and time formats as a "pattern string"
class PatternStringExample {
 public static void main(String []args) {
 String pattern = "EEEE";
 SimpleDateFormat formatter = new SimpleDateFormat(pattern, Locale.US);

Chapter 12 ■ LoCaLization

389

 Date today = new Date();
 System.out.println(formatter.format(today));
 }
}

Which of the following is the most likely output (i.e., the output that would match with the string pattern
eeee given in this code segment)?

a) F

B) Friday

C) Sept

D) September

Answer: B) Friday

(e is the day name in the week; the pattern eeee prints the name of the day in its full format. Fri is a short form
which would be printed by the pattern e, but eeee will print the day of the week in full form, i.e., Friday. Since the
locale is us Locale.US, it will print in english. Sept or September is impossible since e refers to the name in the
week, not in a month.)

3. Which one of the following statements makes use of a factory method?

a) Locale locale1 = new Locale("it", "", "");

B) NumberFormat.getInstance(Locale.GERMANY);

C) Locale locale3 = new Locale.Builder().setLanguageTag("it").build();

D) Date today = new Date();

e) Locale locale4 = Locale.ITALIAN;

Answer: B) NumberFormat.getInstance(Locale.GERMANY);

(a factory method creates an instance and returns back. Using a constructor directly to create an object is not
related to a factory method, so a) and D) are not correct. C) builds a locale and is perhaps an example for the
Builder pattern. e) merely accesses the predefined Locale object; so it’s not a method.)

4. Which of the following is a correct override for extending the ListResourceBundle class?

a) public HashMap < String, String > getContents() {
 Map < String, String > contents = new HashMap<>();
 contents.add("MovieName", "Avatar");
 return contents;
 }
B) public Object[] getContents() {
 return new Object[] { { "MovieName" } , { "Avatar" } };
 }

C) public Object[][] getContents() {
 return new Object[][] { { "MovieName", "Avatar" } };
 }

Chapter 12 ■ LoCaLization

390

D) public String[] getKeysAndValues() {
 return new String[] { { "MovieName" } , { "Avatar" } };
 }

e) public String[] getProperties() {
 return new String[] { { "MovieName" }, { "Avatar" } };
 }

Answer: C)

public Object[][] getContents() {
 return new Object[][] { { "MovieName", "Avatar" } };
}

(the return type of the getContents() method is Object[][]. Further, the method should return a new object of
type Object [][]. So C) is the correct answer.)

Summary
Read and Set the Locale Using the Locale Object

A •	 locale represents a language, culture, or country; the Locale class in Java provides an
abstraction for this concept.

Each locale can have three entries: the language, country, and variant. You can use standard •	
codes available for language and country to form locale tags. There are no standard tags for
variants; you can provide variant strings based on your need.

The getter methods in the •	 Locale class—such as getLanguage(), getCountry(), and
getVariant()—return codes; whereas the similar methods of getDisplayCountry(),
getDisplayLanguage(), and getDisplayVariant() return names.

The •	 getDefault() method in Locale returns the default locale set in the JVM. You can change
this default locale to another locale by using the setDefault() method.

There are many ways to create or get a •	 Locale object corresponding to a locale:

Use the constructor of the •	 Locale class.

Use the •	 forLanguageTag(String languageTag) method in the Locale class.

Build a •	 Locale object by instantiating Locale.Builder and then call setLanguageTag()
from that object.

Use the predefined static final constants for locales in the •	 Locale class.

Build a Resource Bundle for Each Locale

A resource bundle is a set of classes or property files that help define a set of keys and map •	
those keys to locale-specific values.

The class •	 ResourceBundle has two derived classes: PropertyResourceBundle and
ListResourceBundle. You can use ResourceBundle.getBundle() to automatically load a
bundle for a given locale.

Chapter 12 ■ LoCaLization

391

•	 The PropertyResourceBundle class provides support for multiple locales in the form of
property files. For each locale, you specify the keys and values in a property file for that locale.
You can use only Strings as keys and values.

To add support for a new locale, you can extend the •	 ListResourceBundle class. In this derived
class, you have to override the Object [][] getContents() method. The returned array
must have the list of keys and values. The keys must be Strings, and values can be any objects.

When passing the key string to the •	 getObject() method to fetch the matching value
in the resource bundle, make sure that the passed keys and the key in the resource
bundle exactly match (the keyname is case sensitive). If they don’t match, you’ll get a
MissingResourceException.

The naming convention for a fully qualified resource bundle name is •	
packagequalifier.bundlename + "_" + language + "_" + country + "_" +
(variant + "_#" | "#") + script + "-" + extensions.

Load a Resource Bundle in an Application

The process of finding a matching resource bundle is same for classes extended from •	
ListResourceBundles as for property files defined for PropertyResourceBundles.

Here is the search sequence to look for a matching resource bundle. Search starts from Step •	
1. If at any step the search finds a match, the resource bundle is loaded. Otherwise, the search
proceeds to the next step.

•	 Step 1: The search starts by looking for an exact match for the resource bundle with the
full name.

•	 Step 2: The last component (the part separated by _) is dropped and the search is
repeated with the resulting shorter name. This process is repeated till the last locale
modifier is left.

•	 Step 3: The search is restarted using the full name of the bundle for the default locale.

•	 Step 4: Search for the resource bundle with just the name of the bundle.

•	 Step 5: The search fails, throwing a MissingBundleException.

The •	 getBundle() method takes a ResourceBundle.Control object as an additional parameter.
By extending this ResourceBundle.Control class and passing that object, you can control or
customize the resource bundle searching and loading process.

Format Text for Localization Using NumberFormat and DateFormat

To handle date and time, numbers, and currencies in a culture-sensitive way, you can use the •	
java.text.Format class and its two main derived classes NumberFormat and DateFormat for that.

The •	 NumberFormat class provides support locale-sensitive handling of numbers relating to
how thousands are separated, treating a number as a currency value, etc.

•	 The NumberFormat class provides methods to format or parse numbers. “Formatting” means
converting a numeric value to a textual form suitable for displaying to users; “parsing” means
converting a number back to numeric form for use in the program. The parse() method
returns a Number if successful—otherwise it throws ParseException (a checked exception).

•	 NumberFormat has many factory methods: getInstance(), getCurrencyInstance(),
getIntegerInstance(), and getPercentInstance().

Chapter 12 ■ LoCaLization

392

The •	 Currency class provides support for handling currency values in a locale-sensitive way.

The •	 DateFormat class provides support for processing date and time in a locale-sensitive
manner.

The •	 DateFormat has three overloaded factory methods—getDateInstance(),
getTimeInstance(), and getDateTimeInstance()—that return DateFormat instances for
processing date, time, and both date and time, respectively.

•	 SimpleDateFormat (derived from DateFormat) uses the concept of a pattern string to support
custom formats for date and time.

You encode the format of the date or time using case-sensitive letters to form a date or time •	
pattern string.

393

Chapter 13

Threads

Create and use the Thread class and the Runnable interface

Manage and control thread lifecycle

Synchronize thread access to shared data

Identify potential threading problems

Exam Topics

These days, when you buy a computer—be it a laptop or a desktop—you can see labels like dual core, quad core, etc.
to describe the type of processor inside the system. Processors these days have multiple cores, which are multiple
execution units in the same processor. To make the best use of these multi-cores, we need to run tasks or threads in
parallel. In other words, we need to make our programs multi-threaded (or concurrent). In essence, concurrency is
gaining importance with more widespread use these days. Fortunately, Java has built-in support for concurrency.
In this chapter, you’ll learn the basics of multi-threaded programming and how to write concurrent programs and
applications. More advanced topics about concurrency are covered in the next chapter.

The Latin root of the word concurrency means “running together.” In programming, you can have multiple
threads running in parallel in a program executing different tasks at the same time. Therefore, it is a powerful and
useful feature.

Multiple threads can run in the context of the same process and thus share the same resources. You can use
multi-threading for various reasons. In GUI applications or applets, multi-threading improves the responsiveness
of the application to the users. For large computation-intensive applications, parallelizing the jobs can improve the
performance of the application if it is running on multi-processor or multi-core machine.

Introduction to Concurrent Programming
In a typical application like a word processor, many tasks need to be executed at the same time—say, responding
to the user, checking spellings, carrying out formatting and certain associated background tasks, etc. Executing
multiple tasks at a time is expected from an interactive application like a word processor. It is possible to do such
tasks sequentially; however, the user experience might not remain same. For example, many word processors have an
auto-save feature. If the auto-save is invoked every 60 seconds, and if during that time the application will not respond
to the user’s actions, the user will feel as if the application is hanging. Instead of executing such tasks sequentially, if
the auto-save task is automatically executed in the background without disrupting the main activity of responding
to the user, the user experience will be much better. A similar scenario is running spell check in a dictionary in the

Chapter 13 ■ threads

394

background as the user types some words and then suggesting alternative spelling for misspelled words. Performing
such activities in parallel enhances the responsiveness of the application, and thus the user experience. Such
parallel activities can be implemented as threads: running multiple threads in parallel at the same time is called
multi-threading or concurrency.

Multi-threading is very useful for Internet applications as well. For example, an applet displaying stock
market updates might want to retrieve the latest information and display graphs and text updates. You can write
a straightforward infinite loop that will keep waiting for the updates and then refresh the graphics and text. This
approach wastes processor cycles; also, the user will feel that the applet hangs when an update occurs. A better
approach is to make a thread wait for the updates to occur and inform the main thread when any update happens.
Then separate threads can refresh the applet graphics and text.

The Object and Thread classes and the Runnable interface provide the necessary support for concurrency in Java.
The Object class has methods like wait(), notify()/notifyAll(), etc., which are useful for multi-threading. Since
every class in Java derives from the Object class, all the objects have some basic multi-threading capabilities. For example,
you can acquire a lock on any object in Java (don’t worry if you don’t understand yet what we mean by “acquiring a
lock”—we’ll discuss it later in this chapter). However, to create a thread, this basic support from Object is not useful. For
that, a class should extend the Thread class or implement the Runnable interface. Both Thread and Runnable are in the
java.lang library, so you don’t have to import these classes explicitly for writing multi-threaded programs.

Important Threading-Related Methods
Table 13-1 lists some important methods in the Thread class, which you’ll be using in this chapter.

Table 13-1. Important Methods in the Thread Class

Method Method Type Short Description

Thread currentThread() Static method Returns reference to the current thread.

String getName() Instance method Returns the name of the current thread.

int getPriority() Instance method Returns the priority value of the current thread.

void join(),
void join(long),
void join(long, int)

Overloaded
instance methods

The current thread invoking join on another thread waits
until the other thread dies. You can optionally give the
timeout in milliseconds (given in long) or timeout in
milliseconds as well as nanoseconds (given in long and int).

void run() Instance method Once you start a thread (using the start() method), the
run() method will be called when the thread is ready to
execute.

void setName(String) Instance method Changes the name of the thread to the given name in the
argument.

void setPriority(int) Instance method Sets the priority of the thread to the given argument value.

void sleep(long)
void sleep(long, int)

Overloaded static
methods

Makes the current thread sleep for given milliseconds
(given in long) or for given milliseconds and nanoseconds
(given in long and int).

void start() Instance method Starts the thread; JVM calls the run() method of the
thread.

String toString() Instance method Returns the string representation of the thread; the string
has the thread’s name, priority, and its group.

Chapter 13 ■ threads

395

In this chapter, you’ll also be using some threading related methods in the Object class shown in Table 13-2.

Table 13-2. Important Threading-Related Methods in the Object Class

Method Method Type Short Description

void wait(),
void wait(long),
void wait(long, int)

Overloaded instance
methods

The current thread should have acquired a lock on this
object before calling any of the wait methods.

If wait() is called, the thread waits infinitely until some
other thread notifies (by calling the notify()/notifyAll()
method) for this lock.

The method wait(long) takes milliseconds as an argument.
The thread waits till it is notified or the timeout happens.

The wait(long, int) method is similar to wait(long) and
additionally takes nanoseconds as an argument.

void notify() Instance method The current thread should have acquired a lock on this
object before calling notify(). The JVM chooses a single
thread that is waiting on the lock and wakes it up.

void notifyAll() Instance method The current thread should have acquired a lock before
calling notifyAll(). The JVM wakes up all the threads
waiting on a lock.

Creating Threads
A Java thread can be created in two ways: by extending the Thread class or by implementing the Runnable interface.
Both of them have a method named run(). The JVM will call this method when a thread starts executing. You can
think of the run() method as a starting point for the execution of a thread, just like the main() method, which is the
starting point for the execution of a program. You’ll first see two examples for creating threads—extend Thread and
implement Runnable—before learning the differences between them.

Extending the Thread Class
You’ll first consider how to extend the Thread class. You need to override the run() method when you want to extend
the Thread class. If you don’t override the run() method, the default run() method from the Thread class will be
called, which does nothing.

To override the run() method, you need to declare it as public; it takes no arguments and has a void return
type—in other words, it should be declared as public void run().

A thread can be created by invoking the start() method on the object of the Thread class (or its derived class).
When the JVM schedules the thread, it will move the thread to a runnable state and then execute the run() method.
(We’ll discuss thread states later in this chapter). When the run() method completes its execution and returns, the
thread will terminate. Listing 13-1 is the first example of multi-threading.

Chapter 13 ■ threads

396

Listing 13-1. MyThread1.java

 class MyThread1 extends Thread {
 public void run() {
 try {
 sleep(1000);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 // ignore the InterruptedException - this is perhaps the one of the
 // very few of the exceptions in Java which is acceptable to ignore
 }
 System.out.println("In run method; thread name is: " + getName());
 }
 public static void main(String args[]) {
 Thread myThread = new MyThread1();
 myThread.start();
 System.out.println("In main method; thread name is: " +
 Thread.currentThread().getName());
 }
}

This program prints the following:

In main method; thread name is: main
In run method; thread name is: Thread-0

In this example, the MyThread1 class extends the Thread class. You have overridden the run() method in this
class. This run() method will be called when the thread runs. In the main() function, you create a new thread and
start it using the start() method. An important note: you do not invoke the run() method directly. Instead you start
the thread using the start() method; the run() method is invoked automatically by the JVM. We’ll revisit this
topic later.

For printing the name of the thread, you can use the instance method getName(), which returns a String. Since
main() is a static method, you don’t have access to this reference. So you get the current thread name using the static
method currentThread() in the Thread class (which returns a Thread object). Now you can call getName on that
returned object. As you’ll see later, the main() method is also executed as a thread! However, inside the run() method,
you can directly call the getName() method: MyThread1 extends Thread, so all base class members are available in
MyThread1 also.

The program prints messages from both the main thread and myThread (that you created in main). The name of
the thread printed is Thread-0. You’ll see the default naming conventions for threads a little later.

Figure 13-1 shows how this program executes and prints the output. Note that the main thread and the
myThread1 thread execute at the same time (i.e., concurrently), as shown in the diagram. If you try this program a
couple of times, you’ll either get the output shown above, or the order of these two statements might be reversed
(depending on which thread is scheduled first for executing this statement). You’ll study this non-deterministic
behavior a little later in this chapter.

Chapter 13 ■ threads

397

Implementing the Runnable Interface
The Thread class itself implements the Runnable interface. Instead of extending the Thread class, you can implement
the Runnable interface. The Runnable interface declares a sole method, run().

// in java.lang package
public interface Runnable {
 public void run();
}

When you implement the Runnable interface, you need to define the run() method. Remember Runnable does
not declare the start() method. So, how do you create a thread if you implement the Runnable interface? Thread has
an overloaded constructor, which takes a Runnable object as an argument.

Thread(Runnable target)

You can use this overloaded constructor to create a thread from a class that implements the Runnable interface.
First, let’s change the previous program by implementing the Runnable interface. If you change “class

MyThread1 extends Thread” to “class MyThread1 implements Runnable” and compile the code, you get two
compiler errors:

MyThread1.java:3: cannot find symbol
symbol : method getName()
location: class MyThread1
 System.out.println("In run method; thread name is: " + this.getName());

MyThread1.java:7: incompatible types
found : MyThread1
required: java.lang.Thread
 Thread myThread = new MyThread1();

Main thread starts.

Main thread continues
execution System.out.printIn("In run method;

thread name is: " + getName());

JVM spawns a new thread and invokes the
run() method.

System.out.printIn("In main method;thread name is: " +
Thread.currentThread().getName());

Thread myThread = new MyThread1();

myThread.start();

Figure 13-1. Spawning a new thread from the main method

i

Chapter 13 ■ threads

398

The getName() method is available in the Thread class, but the MyThread1 class does not extend Thread any more,
so it results in a compiler error. Similarly, the start() method is available in the Thread class, and you don’t have that
method any more since you directly implement Runnable.

Listing 13-2 contains the improved version of the program implementing the Runnable interface after fixing these
two compiler errors.

Listing 13-2. MyThread2.java

 class MyThread2 implements Runnable {
 public void run() {
 System.out.println("In run method; thread name is: " +

Thread.currentThread().getName());
 }

 public static void main(String args[]) throws Exception {
 Thread myThread = new Thread(new MyThread2());
 myThread.start();
 System.out.println("In main method; thread name is: " +

Thread.currentThread().getName());
 }
}

It prints the same output as the previous program:

In main method; thread name is: main
In run method; thread name is: Thread-0

You are implementing the run() method like the previous program. However, to get the name of the string, you
must follow a round-about route and get the thread name with Thread.currentThread().getName(), as you did in
the case of getting the thread name in the main() method. Similarly, in the main() method, to create a thread you
must pass the object of the class to the Thread constructor. It was easy and convenient to just create the MyThread1
object and call the start() method on that while extending the Thread class.

Should you extend the thread or implement the runnable?

You can either extend the Thread class or implement the Runnable interface to create a thread. so, which one do
you choose?

the Thread class has the default implementation of the run() method, so if you don’t provide a definition
of the run() method while extending the Thread class, the compiler will not complain. however, the default
implementation in the Thread class does nothing, so if you want your thread to do some meaningful work, you
need to still define it. the Runnable interface declares the run() method, so you must define the run() method
in your class if you implement the Runnable interface. so it doesn’t matter if you implement Runnable or extend
Thread. You have to define the run() method for all practical reasons. In summary, that is not a major difference
between extending a Thread and implementing Runnable. how about an inheritance relationship?

since Java supports only single inheritance, if you extend from Thread, you cannot extend from any other
class. since inheritance is an is-a relationship, you will rarely need the class to have an is-a relationship with
the Thread class. so OOp purists argue that you should not extend the Thread class. On the other hand, if you

Chapter 13 ■ threads

399

implement the Runnable interface, you can still extend some other class. so, many Java experts suggest that it is
better to implement the Runnable interface unless there are some strong reasons to extend the Thread class.

however, extending the Thread class is more convenient in many cases. In the example you saw for getting the
name of the thread, you had to use Thread.currentThread().getName() when implementing the Runnable
interface whereas you just used the getName() method directly while extending Thread since MyThread1
extends Thread. so, extending Thread is a little more convenient in this case.

Both the techniques are useful and mostly equivalent for problem solving. so take a practical perspective here:
use either of them as needed for the specific problem you are trying to solve. For the OCpJp 7 exam, you’ll have
to know how to create classes for threading either by extending the Thread class or implementing the Runnable
interface, as well as the difference between the two approaches.

The Start() and Run() Methods
You override the run() method but invoke the start() method. Why can’t you directly call the run() method? If you
change the previous program by only changing myThread.start() to myThread.run(), what will happen? Listing 13-3
shows the program with this modification (plus changing the name of this class to MyThread3).

Listing 13-3. MyThread3.java

 class MyThread3 implements Runnable {
 public void run() {
 System.out.println("In run method; thread name is: " +

Thread.currentThread().getName());
 }

 public static void main(String args[]) throws Exception {
 Thread myThread = new Thread(new MyThread3());
 myThread.run(); // note run() instead of start() here
 System.out.println("In main method; thread name is : " +

Thread.currentThread().getName());
 }
}

This prints the following:

In run method; thread name is: main
In main method; thread name is: main

Now the output is different! If you call the run() method directly, it simply executes as part of the calling thread.
It does not execute as a thread: it doesn’t get scheduled and get called by the JVM. That is why the getName() method
in the run() method returns “main” instead of “Thread-0.” When you call the start() method, the thread gets
scheduled and the run() method is invoked by the JVM when it is time to execute that thread.

 Never call the run() method directly for invoking a thread. Use the start() method and leave it to the
JVM to implicitly invoke the run() method. Calling the run() method directly instead of calling start()
is a mistake and is fairly common bug.

Chapter 13 ■ threads

400

Thread Name, Priority, and Group
You need to understand three main aspects associated with each Java thread: its name, priority, and the thread group
to which it belongs.

Every thread has a name, which you can used to identify the thread. If you do not give a name explicitly, a thread
will get a default name. The priority can vary from 1, the lowest, to 10, the highest. The priority of the normal thread is
by default 5, and you can change this default priority value by explicitly providing a priority value. Every thread is part
of a thread group. It’s a rarely used feature, so we won’t cover it in this book. The toString() method of Thread prints
these three details, so see Listing 13-4 for a simple program to get these details.

Listing 13-4. SimpleThread.java

class SimpleThread {
 public static void main(String []s) {
 Thread t = new Thread();
 System.out.println(t);
 }
}

This program prints the following:

Thread[Thread-0,5,main]

Thread is the name of the class. Within “[“ and ”]” is the name of the thread, its priority, and the thread group.
You did not give any name to the thread, so the default name Thread-0 was given (as you create more threads, threads
will be given names like Thread-1, Thread-2, etc). The default priority is 5. You created the thread in main(), so the
default thread group is “main.”

Now let’s try changing the name and priority of the thread using the setName() and setPriority() methods:

Thread t = new Thread();
t.setName("SimpleThread");
t.setPriority(9);
System.out.println(t);

This code segment prints the following:

Thread[SimpleThread,9,main]

The thread has the name and priority that you gave it. You can change the name of the threads as you wish and it
does not change the behavior of the program. However, you need to be careful in changing thread priority since it can
affect scheduling of threads. You can programmatically access the minimum, normal, and maximum priority of the
threads using the static members MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY , as shown in Listing 13-5.

Listing 13-5. ThreadPriorities.java

class ThreadPriorities {
 public static void main(String []s) {
 System.out.println("Minimum priority of a thread: " + Thread.MIN_PRIORITY);
 System.out.println("Normal priority of a thread: " + Thread.NORM_PRIORITY);
 System.out.println("Maximum priority of a thread: " + Thread.MAX_PRIORITY);
 }
}

Chapter 13 ■ threads

401

This program prints the following:

Minimum priority of a thread: 1
Normal priority of a thread: 5
Maximum priority of a thread: 10

Using the Thread.sleep() Method
Let’s say you want to implement a countdown timer for a time bomb that counts from nine to zero pausing 1 second for
each count. After reaching zero, it should print “Boom!!!” You can implement this functionality by creating a thread to
execute the countdown. In order to pause it for each second, you can call the Thread.sleep method. See Listing 13-6.

Listing 13-6. TimeBomb.java

 class TimeBomb extends Thread {
 String [] timeStr = { "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight",

"Nine" };

 public void run() {
 for(int i = 9; i > = 0; i--) {
 try {
 System.out.println(timeStr[i]);
 Thread.sleep(1000);
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 }

 public static void main(String []s) {
 TimeBomb timer = new TimeBomb();
 System.out.println("Starting 10 second count down. . . ");
 timer.start();
 System.out.println("Boom!!!");
 }
}

It prints the following with 1 second pause for printing from Nine to Zero:

Starting 10 second count down. . .
Boom!!!
Nine
Eight
Seven
Six
Five
Four
Three
Two
One
Zero

Chapter 13 ■ threads

402

The program didn’t quite work. The message “Boom!!!” got printed even before the countdown started! Before
discussing the cause of this strange behavior, let’s go over the basics of the sleep() method.

You use the static method sleep() available in the Thread class for putting the current thread to sleep (or pause)
for a certain time period. There are two overloaded static sleep() methods in the Thread class:

void sleep(long)
void sleep(long, int)

The first version of the sleep() method takes milliseconds as an argument. The second version, in addition to
the milliseconds, takes nanoseconds as the second argument.

The sleep() method throws InterruptedException. Since InterruptedException is a checked exception
(it extends from the Exception class), you need to provide a try-catch block around sleep() or declare the
run() method that throws the exception InterruptedException. However, if you declare void run() throws
InterruptedException, you won’t be overriding the run() method since the exception specification is different
(the run() method does not throw any checked exceptions). So, you must provide a try-catch block to handle this
exception within run(). What should you do to handle InterruptedException?

First, you need to understand what InterruptedException means and when it gets thrown. A thread can
“interrupt” another thread, say, to request it to stop working. In that case, the thread receiving the interrupt—if it is
in sleep() or wait() (which we’ll revisit later)—results in throwing an InterruptedException. The thread receiving
the interrupt can ignore the interrupt and continue execution (which is not a good idea, but it is possible to do
so), or it can stop the execution. You will not interrupt other threads in the multi-threaded programs we cover in
this book. So let’s assume that your threads will not get any interrupts, and you’ll ignore the exception and ask the
thread to continue working. In other words, you’ll be consciously ignoring the InterruptedException (after calling
the printStackTrace() method of the exception); however, in real-world programs, you may need to handle this
exception if you use a thread interrupt feature.

Coming back to the program’s output, the message “Boom!!!” gets printed just after printing “Starting 10 second
count down. . . ” and not after counting down to zero. Why did this happen?

The main thread starts the execution of the timer thread by calling timer.start(). The main thread execution is
independent of the execution of the timer thread, so it executes the next statement, which is printing “Boom!!!” to the
console.

But remember that you want the main() method to wait until the timer thread completes. How do you do that?
For that you’ll have to learn how to use the join() method provided in the Thread class.

Using Thread’s Join Method
The Thread class has the instance method join() for waiting for a thread to “die.” In the TimeBomb program, you want
the main() thread to wait for the timer thread to complete its execution. You can use the instance method join()
in the Thread class to achieve that. Here is the improved version of the TimeBomb program, with changes only in the
main() method:

public static void main(String []s) {
 TimeBomb timer = new TimeBomb();
 System.out.println("Starting 10 second count down. . . ");
 timer.start();
 try {
 timer.join();
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 System.out.println("Boom!!!");
}

Chapter 13 ■ threads

403

Now the program prints the output as expected:

Starting 10 second count down. . .
Nine
Eight
Seven
Six
Five
Four
Three
Two
One
Zero
Boom!!!

The Thread class has three overloaded versions of the join() method:

void join();
void join(long);
void join(long, int);

If the current thread invokes join() (the first overloaded version listed here) on an instance of another thread,
then the current thread waits indefinitely for that other thread to die. The next two overloaded methods take a
“timeout” period as an argument; the current thread will wait for the other thread to die only until the timeout period
expires. The current thread will continue execution in case the other thread doesn’t complete before that timeout
period. The second method takes the timeout period in milliseconds (long type value) and the third overloaded
version takes both milliseconds as well as nanoseconds (long and int type values).

The join() method also throws InterruptedException; you’ll ignore this exception for the same reasons
discussed for the sleep() method earlier in this chapter.

Asynchronous Execution
In the previous program, you saw that the main thread and the thread that you created execute independently.
In other words, threads run asynchronously. Threads do not run sequentially (like function calls), so the order of
execution of threads is not predictable—in other words, thread behavior is non-deterministic in nature. To understand
this, consider Listing 13-7.

Listing 13-7. AsyncThread.java

 class AsyncThread extends Thread {
 public void run() {
 System.out.println("Starting the thread " + getName());
 for(int i = 0; i < 3; i++) {
 System.out.println("In thread " + getName() + "; iteration " + i);
 try {
 // sleep for sometime before the next iteration
 Thread.sleep(10);
 }
 catch(InterruptedException ie) {
 // we're not interrupting any threads

Chapter 13 ■ threads

404

 // – so safe to ignore this exeception
 ie.printStackTrace();
 }
 }
 }

 public static void main(String args[]) {
 AsyncThread asyncThread1 = new AsyncThread();
 AsyncThread asyncThread2 = new AsyncThread();
 // start both the threads around the same time
 asyncThread1.start();
 asyncThread2.start();
 }
}

In Listing 13-7, the run() method has a for loop that iterates three times. In the for loop, you print the name of
the thread and the iteration number. After printing this info, you force the current thread to sleep for 10 milliseconds.

In one sample run, the output was the following:

Starting the thread Thread-0
Starting the thread Thread-1
In thread Thread-1; iteration 0
In thread Thread-0; iteration 0
In thread Thread-1; iteration 1
In thread Thread-0; iteration 1
In thread Thread-0; iteration 2
In thread Thread-1; iteration 2

In another sample run, the output was the following:

Starting the thread Thread-0
Starting the thread Thread-1
In thread Thread-1; iteration 0
In thread Thread-0; iteration 0
In thread Thread-1; iteration 1
In thread Thread-0; iteration 1
In thread Thread-1; iteration 2
In thread Thread-0; iteration 2

As you can see, the output for these two runs is slightly different (see the italicized part in the outputs)! Why?
The threads Thread-0 and Thread-1 are executed independently. The output is not fixed and the execution order

of the iterations in the threads is not predictable. A programmer cannot determine the execution order of the threads.
The underlying platform may use any one of the multiple processors or time-slice a single processor to allot CPU
time for a thread. This cannot be controlled by the JVM or the programmer. This is one of the fundamental and most
important concepts to understand in multi-threading.

 You can neither predict nor control the order of execution of threads!

Chapter 13 ■ threads

405

 since behavior of multi-threaded programs is non-deterministic, you must be careful in writing
multi-threaded programs. You cannot expect pre-determined output based on the execution order of
threads.

The States of a Thread
A thread has various states during its lifetime. It is important to understand the different states of a thread and
learn to write robust code based on that understanding. You’ll see three thread states—new, runnable and
terminated—which are applicable to almost all threads you will create in this section. We will discuss more
thread states later.

A program can access the state of the thread using Thread.State enumeration. The Thread class has the
getState() instance method, which returns the current state of the thread; see Listing 13-8 for an example.

Listing 13-8. BasicThreadStates.java

 class BasicThreadStates extends Thread {
 public static void main(String []s) throws Exception {
 Thread t = new Thread(new BasicThreadStates());
 System.out.println("Just after creating thread; \n" +
 " The thread state is: " + t.getState());
 t.start();
 System.out.println("Just after calling t.start(); \n" +
 " The thread state is: " + t.getState());
 t.join();
 System.out.println("Just after main calling t.join(); \n" +
 " The thread state is: " + t.getState());
 }
}

This program prints the following:

Just after creating thread;
 The thread state is: NEW
Just after calling t.start();
 The thread state is: RUNNABLE
Just after main calling t.join();
 The thread state is: TERMINATED

Just after the creation of the thread and just before calling the start() method on that thread, the thread is in the
new state. After calling the start() method, the thread is ready to run or is in the running state (which you cannot
determine), so it is in runnable state. From the main() method, you are calling t.join(). The main() method waits for
the thread t to die. So, once the statement t.join() successfully gets executed by the main() thread, it means that the
thread t has died or terminated. So, the thread is in the terminated state now.

A word of advice: be careful about accessing the thread states using the getState() method. Why? By the time
you acquire information on a thread state and print it, the state could have changed! We know the last statement is

Chapter 13 ■ threads

406

confusing. To understand the problem with getting thread state information using the getState() method, consider
the previous example. In one sample run of the same program, it printed the following:

Just after creating thread;
 The thread state is: NEW
Just after calling t.start();
 The thread state is: TERMINATED
Just after main calling t.join();
 The thread state is: TERMINATED

Note the italicized part of the output, the statement after printing “Just after calling t.start();”. In the
initial output, you got the thread state (as expected) as RUNNABLE state. However, in another execution of the same
program without any change, it printed the state as TERMINATED. Why? In this case, the thread is dead before you
could get a chance to check it and print its status! (Note that you have not implemented the run() method in the
BasicThreadStates class, so the default implementation of the run() method does nothing and terminates quickly.)

Every Java thread goes through these three states, as shown in Figure 13-2. Among these, the runnable state
actually consists of two separate states at the operating system level, which we will discuss now.

ready running

timeout

OS dispatches thread

Figure 13-3. Runnable state implemented as two states in the OS level

Two States in “Runnable” State
Once a thread makes the state transition from the new state to the runnable state, you can think of the thread having
two states at the OS level: the ready state and running state. A thread is in the ready state when it is waiting for the OS
to run it in the processor. When the OS actually runs it in the processor, it is in the running state. There might be many
threads waiting for processor time. The current thread may end up taking lots of time and finally may give up the CPU
voluntarily. In that case, the thread again goes back to the ready state. These two states are shown in Figure 13-3.

Thread got started

new

runnable

terminated

Thread completed its task

Figure 13-2. Basic states in the life of a thread

Chapter 13 ■ threads

407

Concurrent Access Problems
Concurrent programming in threads is fraught with pitfalls and problems. We will discuss two main concurrent access
problems—data races and deadlocks—in this section.

Data Races
Threads share memory, and they can concurrently modify data. Since the modification can be done at the same time
without safeguards, this can lead to unintuitive results.

When two or more threads are trying to access a variable and one of them wants to modify it, you get a problem
known as a data race (also called as race condition or race hazard). Listing 13-9 shows an example of a data race.

Listing 13-9. DataRace.java

 // This class exposes a publicly accessible counter
// to help demonstrate data race problem
class Counter {
 public static long count = 0;
}

// This class implements Runnable interface
// Its run method increments the counter three times
class UseCounter implements Runnable {
 public void increment() {
 // increments the counter and prints the value
 // of the counter shared between threads
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
 public void run() {
 increment();
 increment();
 increment();
 }
}

// This class creates three threads
public class DataRace {
 public static void main(String args[]) {
 UseCounter c = new UseCounter();
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 Thread t3 = new Thread(c);
 t1.start();
 t2.start();
 t3.start();
 }
}

In this program, there is a Counter class that has a static variable count. In the run() method of the UseCounter
class, you increment the count three times by calling the increment() method. You create three threads in the main()
function in the DataRace class and start it. You expect the program to print 1 to 9 sequentially as the threads run and

Chapter 13 ■ threads

408

increment the counters. However, when you run this program, it does print nine integer values, but the output looks
like garbage! In a sample run, we got these values:

3 3 5 6 3 7 8 4 9

Note that the values will usually be different every time you run this program; when we ran it two more times, we
got these outputs:

3 3 5 6 3 4 7 8 9

3 3 3 6 7 5 8 4 9

So, what is the problem?
The expression Counter.count++ is a write operation, and the next System.out.print statement has a read

operation for Counter.count. When the three threads execute, each of them has a local copy of the value Counter.count
 and when they update the counter with Counter.count++, they need not immediately reflect that value in the main
memory (see Figure 13-4). In the next read operation of Counter.count, the local value of Counter.count is printed.

Counter.count

thread t1 tries
Counter.count++

thread t3 tries
Counter.count++

thread t2 tries
Counter.count++

Figure 13-4. Threads t1, t2, and t3 trying to change Counter.count, causing a data race

Therefore, this program has a data race problem. To avoid this problem, you need to ensure that a single thread
does the write and read operations together (atomically). The section of code that is commonly accessed and
modified by more than one thread is known as critical section. To avoid the data race problem, you need to ensure that
the critical section is executed by only one thread at a time.

How do you do that? By acquiring a lock on the object. Only a single thread can acquire a lock on an object at a
time, and only that thread can execute the block of code (i.e., the critical section) protected by the lock. Until then,
the other threads have to wait. Internally, this is implemented with monitors and the process is called locking and
unlocking (i.e., thread synchronization). Let’s discuss this in more detail.

Thread Synchronization
Java has a keyword, synchronized, that helps in thread synchronization. You can use it in two forms—synchronized
blocks and synchronized methods.

Chapter 13 ■ threads

409

Synchronized Blocks
In synchronized blocks, you use the synchronized keyword for a reference variable and follow it by a block of code.
A thread has to acquire a lock on the synchronized variable to enter the block; when the execution of the block
completes, the thread releases the lock. For example, you can acquire a lock on this reference if the block of code is
within a non-static method:

synchronized(this) {
 // code segment guarded by the mutex lock
}

What if an exception gets thrown inside the synchronized block? Will the lock get released? Yes, no matter
whether the block is executed fully or an exception is thrown, the lock will be automatically released by the JVM.

With synchronized blocks, you can acquire a lock on a reference variable only. If you use a primitive type, you will
get a compiler error.

int i = 10;
synchronized(i) { /* block of code here*/}

For this code, you will get the following compiler error:

Lock.java:5: int is not a valid type's argument for the synchronized statement
found : int
required: reference
 synchronized(i) { /* block of code here*/}

Here is an improved version of the program discussed in the previous section that performs synchronized access
to Counter.count and does both read and write operations on that in a critical section. For that, you need to change
only the increment method, as in

public void increment() {
 // These two statements perform read and write operations
 // on a variable that is commonly accessed by multiple threads.
 // So, acquire a lock before processing this "critical section"
 synchronized(this) {
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
}

Now the program prints the expected output correctly:

1 2 3 4 5 6 7 8 9

In the increment() method, you acquire a lock on the this reference before reading and writing to Counter.count.
So, it is not possible for more than one thread to execute these statements at the same time. Since only one thread can
acquire a lock and execute the “critical section” code block, the counter is incremented by only one thread at a given
time; as a result, the program prints the values 1 to 9 correctly (without the data race problem).

Chapter 13 ■ threads

410

Synchronized Methods
An entire method can be declared synchronized. In that case, when the method declared as synchronized is called, a
lock is obtained on the object on which the method is called, and it is released when the method returns to the caller.
Here is an example:

public synchronized void assign(int i) {
 val = i;
}

Now the assign() method is a synchronized method. If you call the assign() method, it will acquire the lock on
the this reference implicitly and then execute the statement val = i;. What happens if some other thread acquired
the lock already? Just like synchronized blocks, if the thread cannot get the lock, it will be blocked and the thread will
wait until the lock becomes available.

A synchronized method is equivalent to a synchronized block if you enclose the whole method body in a
synchronized(this) block. So, the equivalent assign() method using synchronized blocks is

public void assign() {
 synchronized(this) {
 val = i;
 }
}

You can declare static methods synchronized. However, what is the reference variable on which the lock is
obtained? Remember that static methods do not have the implicit this reference. Static synchronized methods
acquire locks on the class object. Every class is associated with an object of Class type, and you can access it using
ClassName.class syntax. For example,

class SomeClass {
 private static int val;
 public static synchronized void assign(int i) {
 val = i;
 }
 // more members . . .
}

In this case, the assign method acquires a lock on the SomeClass.class object when it is called. Now the
equivalent assign() method using synchronized blocks can be written as

class SomeClass {
 private static int val;
 public static void assign(int i) {
 synchronized(SomeClass.class) {
 val = i;
 }
 }
 // more members . . .
}

Chapter 13 ■ threads

411

You cannot declare constructors synchronized; it will result in a compiler error. For example, for

class Synchronize {
 public synchronized Synchronize() { /* constructor body */}
 // more methods
}

you get this error:

Synchronize.java:2: modifier synchronized not allowed here
 public synchronized Synchronize() { /* constructor body */}

Why can’t you declare constructors synchronized? The JVM ensures that only one thread can invoke a
constructor call (for a specific constructor) at a given point in time. So, there is no need to declare a constructor
synchronized. However, if you want, you can use synchronized blocks inside constructors.

Let’s get back to the Counter example. The increment() method can be rewritten as a synchronized method also:

// declaring the increment synchronized instead of using
// a synchronized statement for a block of code inside the method
public synchronized void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
}

Now the program prints the expected output correctly:

1 2 3 4 5 6 7 8 9

In this case, increment() is an instance method. What about static methods? First, let’s look at the data race
problem when the increment() method is a static method; see Listing 13-10.

Listing 13-10. DataRace.java

 class Counter {
 public static long count = 0;
}

class UseCounter implements Runnable {
 public static void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
 public void run() {
 increment();
 increment();
 increment();
 }
}

Chapter 13 ■ threads

412

public class DataRace {
 public static void main(String args[]) {
 UseCounter c = new UseCounter();
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 Thread t3 = new Thread(c);
 t1.start();
 t2.start();
 t3.start();
 }
}

Yes, this program has the data race problem. To fix it, you can declare the static increment method as
synchronized, as in

public static synchronized void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
}

With this change, the program does not have the data race problem.

Beginners commonly misunderstand that a synchronized block obtains a lock for a block of code.
actually, the lock is obtained for an object and not for a piece of code. the obtained lock is held until all
the statements in that block complete execution.

Synchronized Blocks vs. Synchronized Methods

As you can see from the previous discussion on synchronized blocks and synchronized methods, you can use either
of them to solve the data race problem. So which one should you choose? As in other language features, you need to
choose between synchronized methods and blocks depending on the needs of a particular situation. Here are some
factors for consideration.

If you want to acquire a lock on an object for only a small block of code and not the whole method, then
synchronized blocks are sufficient; using synchronized methods is overkill in that case. In general, it is better to
acquire locks for small segments of code instead of locking methods unnecessarily, so synchronized blocks are useful
there. In synchronized blocks, you can explicitly provide the reference object on which you want to acquire a lock.
However, in the case of a synchronized method, you do not provide any explicit reference to acquire a lock on.
A synchronized method acquires an implicit lock on the this reference (for instance methods) and class object
(for static methods).

On the other hand, if you want to acquire a lock on the entire body of a small method, then using synchronized as a
method attribute is more elegant and convenient than synchronized blocks. In synchronized methods, while reading the
declaration of the method itself, it becomes clear that a method is synchronized; with synchronized blocks, you need to
read the documentation or look inside the code to understand that some synchronization is performed.

Chapter 13 ■ threads

413

Deadlocks
Obtaining and using locks is tricky, and it can lead to lots of problems. One of the difficult (and common) problems is
known as a deadlock. There are other problems such as livelocks and lock starvation, which we’ll briefly discuss in the
next section.

A deadlock arises when locking threads result in a situation where they cannot proceed and thus wait indefinitely
for others to terminate. Say, one thread acquires a lock on resource r1 and waits to acquire another on resource r2. At
the same time, say there is another thread that has already acquired r2 and is waiting to obtain a lock on r1. Neither of
the threads can proceed until the other one releases the lock, which never happens—so they are stuck in a deadlock.

Listing 13-11 shows how this situation can arise (using the example from the Cricket game).

Listing 13-11. DeadLock.java

 // Balls class has a globally accessible data member to hold the number of balls thrown so far
class Balls {
 public static long balls = 0;
}

// Runs class has a globally accessible data member to hold the number of runs scored so far
class Runs {
 public static long runs = 0;
}

// Counter is a thread class that has two methods – IncrementBallAfterRun and
// IncrementRunAfterBall.
// For demonstrating deadlock, we call these two methods in the run method,
// so that locking can be requested in opposite order in these two methods
class Counter implements Runnable {
 // this method increments runs variable first and then increments the balls variable
 // since these variables are accessible from other threads,
 // we need to acquire a lock before processing them
 public void IncrementBallAfterRun() {
 // since we're updating runs variable first, lock the Runs.class reference first
 synchronized(Runs.class) {
 // now acquire lock on Balls.class variable before updating balls variable
 synchronized(Balls.class) {
 Runs.runs++;
 Balls.balls++;
 }
 }
 }

 public void IncrementRunAfterBall() {
 // since we're updating balls variable first, lock the Balls.class reference first
 synchronized(Balls.class) {
 // now acquire lock on Runs.class variable before updating runs variable
 synchronized(Runs.class) {
 Balls.balls++;
 Runs.runs++;
 }
 }
 }

Chapter 13 ■ threads

414

 public void run() {
 // call these two methods which acquire locks in different order
 // depending on thread scheduling and the order of lock acquision,
 // a deadlock may or may not arise
 IncrementBallAfterRun();
 IncrementRunAfterBall();
 }
}

public class DeadLock {
 public static void main(String args[]) throws InterruptedException {
 Counter c = new Counter();
 // create two threads and start them at the same time
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 t1.start();
 t2.start();
 System.out.println("Waiting for threads to complete execution. . .");
 t2.join();
 t2.join();
 System.out.println("Done.");
 }
}

If you execute this program, the program might run fine, or it might deadlock and never terminate (the
occurrence of deadlock in this program depends on how threads are scheduled).

D:\ > java DeadLock
Waiting for threads to complete execution. . .
Done.

D:\ > java DeadLock
Waiting for threads to complete execution. . .
Done.

D:\ > java DeadLock
Waiting for threads to complete execution. . .
[deadlock – user pressed ctrl + c to terminate the program]

D:\ > java DeadLock
Waiting for threads to complete execution. . .
Done.

In this example, there are two classes, Balls and Runs, with static members called balls and runs. The Counter
class has two methods, IncrementBallAfterRun() and IncrementRunAfterBall(). They acquire locks on the
Balls.class and Runs.class in the opposite order. The run() method calls these two methods consecutively.
The main() method in the Dead class creates two threads and starts them.

When the threads t1 and t2 execute, they invoke the methods IncrementBallAfterRun and
IncrementRunAfterBall. In these methods, locks are obtained in opposite order. It might happen that t1 acquires a
lock on Runs.class and then waits to acquire a lock on Balls.class. Meanwhile, t2 might have acquired the
Balls.class and now will be waiting to acquire a lock on the Runs.class. Therefore, this program can lead to a
deadlock (Figure 13-5).

Chapter 13 ■ threads

415

It cannot be assured that this program will lead to a deadlock every time you execute this program. Why? You
never know the sequence in which threads execute and the order in which locks are acquired and released. For this
reason, such problems are said to be non-deterministic, and such problems cannot be reproduced consistently.

There are different strategies to deal with deadlocks, such as deadlock prevention, avoidance, or detection. For
exam purposes, this is what you need to know about deadlocks:

Deadlocks can arise in the context of multiple locks.•	

If multiple locks are acquired in the same order, then a deadlock will not occur; however, if •	
you acquire them in a different order, then deadlocks may occur.

Deadlocks (just like other multi-threading problems) are non-deterministic; you cannot •	
consistently reproduce deadlocks.

 avoid acquiring multiple locks. If you want to acquire multiple locks, make sure that they are acquired in
the same order everywhere to avoid deadlocks.

Other Threading Problems
So far we discussed data races and deadlocks with examples. We’ll now briefly discuss two more threading problems:
livelocks and lock starvation.

Livelocks
To help understand livelocks, let’s consider an analogy. Assume that there are two robotic cars that are programmed
to automatically drive in the road. There is a situation where two robotic cars reach the two opposite ends of a narrow
bridge. The bridge is so narrow that only one car can pass through at a time. The robotic cars are programmed such
that they wait for the other car to pass through first. When both the cars attempt to enter the bridge at the same time,
the following situation could happen: each car starts to enter the bridge, notices that the other car is attempting to do
the same, and reverses! Note that the cars keep moving forward and backward and thus appear as if they’re doing lots
of work, but there is no progress made by either of the cars. This situation is called a livelock.

Consider two threads t1 and t2. Assume that thread t1 makes a change and thread t2 undoes that change. When
both the threads t1 and t2 work, it will appear as though lots of work is getting done, but no progress is made. This
situation is called a livelock in threads.

t1 acquires lock on Balls.class.

t2 waiting to lock
on Balls.class.

t2 acquired lock
on Runs.class.

t1 waiting to lock
on Runs.class. Runs.class

Balls.class

Figure 13-5. Deadlock between threads t1 and t2

Chapter 13 ■ threads

416

The similarity between livelocks and deadlocks is that the process “hangs” and the program never terminates.
However, in a deadlock, the threads are stuck in the same state waiting for other thread(s) to release a shared
resource; in a livelock, the threads keep executing a task, and there is continuous change in the process states, but the
application as a whole does not make progress.

Lock Starvation
Consider the situation in which numerous threads have different priorities assigned to them (in the range of lowest
priority, 1, to highest priority, 10, which is the range allowed for priority of threads in Java). When a mutex lock is
available, the thread scheduler will give priority to the threads with high priority over low priority. If there are many
high-priority threads that want to obtain the lock and also hold the lock for long time periods, when will the low-priority
threads get a chance to obtain the lock? In other words, in a situation where low-priority threads “starve” for a long
time trying to obtain the lock is known as lock starvation.

There are many techniques available for detecting or avoiding threading problems like livelocks and starvation,
but they are not within the scope of OCPJP7 exam. From the exam perspective, you are expected to know the different
kinds of threading problems that we’ve already covered in this chapter.

The Wait/Notify Mechanism
In multi-threaded programs, often there is a need for one thread to communicate to another thread. The wait/notify
mechanism is useful when threads must communicate in order to provide a functionality.

Let’s take the example of a coffee shop. A waiter is using a coffee machine in a coffee shop and delivering coffee
to customers. The coffee machine in this coffee shop is an antique machine: it makes one cup of coffee at a time,
and it takes five to ten minutes time to make a cup. The waiter does not have to be idle while waiting for the coffee
machine to complete making coffee; he can go to customers in the meantime to deliver the coffee prepared earlier.
This example is a little contrived, though: assume that coffee machine keeps making the coffee and waiter keeps
delivering it.

The method wait() allows the calling thread to wait for the wait object (on which wait() is called). In other
words, if you want to make a thread wait for another thread, you can ask it to wait for the wait object using the wait()
method. A thread remains in the wait state until some another thread calls the notify() or notifyAll() method
on the wait object. To understand the wait/notify mechanism, you are going to simulate this coffee shop situation in
a program. You can implement the coffee machine as one thread and the waiter as another thread in two different
classes. The coffee machine can notify the waiter to take the coffee, and it can wait until the waiter has taken the
coffee from the tray. Similarly, the waiter can take the coffee if it is available and notify the coffee machine to make
another cup.

Explaining the wait/notify mechanism with an example involves quite a bit of code. But this is an interesting
example to illustrate this concept, so read on. Listing 13-12 contains the CoffeeMachine class.

Listing 13-12. CoffeeMachine.java

 // The CoffeeMachine class runs as an independent thread.
// Once the machine makes a coffee, it notifies the waiter to pick it up.
// When the waiter asks the coffee machine to make a coffee again,
// it starts all over again, and this process keeps goes on . . .
class CoffeeMachine extends Thread {
 static String coffeeMade = null;
 static final Object lock = new Object();
 private static int coffeeNumber = 1;
 void makeCoffee() {
 synchronized(CoffeeMachine.lock) {
 if(coffeeMade ! = null) {

Chapter 13 ■ threads

417

 try {
 System.out.println("Coffee machine: Waiting for waiter

notification to deliver the coffee");
 CoffeeMachine.lock.wait();
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 coffeeMade = "Coffee No. " + coffeeNumber ++;
 System.out.println("Coffee machine says: Made " + coffeeMade);
 // once coffee is ready, notify the waiter to pick it up
 CoffeeMachine.lock.notifyAll();
 System.out.println("Coffee machine: Notifying waiter to pick the coffee ");
 }
 }

 public void run() {
 while(true) {
 makeCoffee();
 try {
 System.out.println("Coffee machine: Making another coffee now");
 // simulate the time taken to make a coffee by calling sleep method
 Thread.sleep(10000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception
 // since we're not using thread interrupt mechanism
 ie.printStackTrace();
 }
 }
 }
}

The CoffeeMachine object is going to run as a thread, so it extends the Thread class and implements the run()
method. The run() method goes on forever and keeps calling the makeCoffee() method. For each iteration, it calls
sleep() for ten seconds to simulate the time taken for the coffee machine to make the coffee.

The CoffeeMachine has three static members. The coffeeMade member has the string description for the coffee
that it has made. The lock member is for the synchronization between the CoffeeMachine and Waiter threads. The
numOfCoffees is used internally by the makeCoffee() method to get the description of the coffee made.

The makeCoffee() method does most of the work. The first thing it does is acquire the lock CoffeeMachine.lock
using the synchronized keyword. Inside the block, it checks if the coffeeMade is null or not. The first time the
CoffeeMachine thread calls the makeCoffee() method, coffeeMade will be null. In other cases, it is the Waiter thread
that makes coffeeMade null and notifies (using the notifyAll() method) the CoffeeMachine thread. If the Waiter
thread hasn’t cleared it yet, it goes to the wait() state and prints the message, “Waiting for waiter notification to
deliver the coffee”.

Once the Waiter notifies the CoffeeMachine thread, the machine delivers the next coffee to the waiter; it prints
the message notifying the waiter to pick up the coffee. Now let’s look at the Waiter class (see Listing 13-13).

Chapter 13 ■ threads

418

Listing 13-13. Waiter.java

 // The Waiter runs as an independent thread
// It interacts with the CoffeeMachine to wait for a coffee
// and deliver the coffee once ready and request the coffee machine
// for the next one, and this activity keeps going on forever . . .
class Waiter extends Thread {
 public void getCoffee() {
 synchronized(CoffeeMachine.lock) {
 if(CoffeeMachine.coffeeMade == null) {
 try {
 // wait till the CoffeeMachine says (notifies) that
 // coffee is ready
 System.out.println("Waiter: Will get orders till
 coffee machine notifies me ");
 CoffeeMachine.lock.wait();
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception
 // since we're not using thread interrupt mechanism
 ie.printStackTrace();
 }
 }
 System.out.println("Waiter: Delivering " + CoffeeMachine.coffeeMade);
 CoffeeMachine.coffeeMade = null;
 // ask (notify) the coffee machine to prepare the next coffee
 CoffeeMachine.lock.notifyAll();
 System.out.println("Waiter: Notifying coffee machine to make another one");
 }
 }

 public void run() {
 // keep going till the user presses ctrl-C and terminates the program
 while(true) {
 getCoffee();
 }
 }
}

The Waiter class also extends the Thread since a Waiter object is going to run as a thread as well. It has a run()
method and it does something very simple: it keeps calling the getCoffee() method forever.

The Waiter class has the getCoffee() method where most of the work is done. The first thing the method does is
try to acquire a lock on CoffeeMachine.lock. Once it gets the lock, it checks if the coffeeMade is null. If the variable
is null, it means the CoffeeMachine thread is still preparing the coffee. In that case, the Waiter thread calls wait()
and then prints the message, “Will get orders till coffee machine notifies me”. When the CoffeeMachine thread has
made the coffee, it will set the variable coffeeMade, and it will be non-null then; that thread will also notify the Waiter
thread using notifyAll().

Once the Waiter thread gets notified, it can deliver the coffee to the customer; it prints the message “Delivering
coffee”. After that, it clears the coffeeMade variable to null and notifies the CoffeeMachine to make another coffee
(“Notifying coffee machine to make another one”). Listing 13-14 shows the CoffeeShop class.

Chapter 13 ■ threads

419

Listing 13-14. CoffeeShop.java

 // This class instantiates two threads - CoffeeMachine and Waiter threads
// and these two threads interact with each other through wait/notify
// till you terminate the application explicitly by pressing Ctrl-C
class CoffeeShop {
 public static void main(String []s) {
 CoffeeMachine coffeeMachine = new CoffeeMachine();
 Waiter waiter = new Waiter();
 coffeeMachine.start();
 waiter.start();
 }
}

What the main() method in the CoffeeShop class does is trivial: it creates CoffeeMachine and Waiter threads
and starts them. Now, these two threads communicate with each other and go on forever. The program output looks
like this:

Coffee machine says: Made Coffee No. 1
Coffee machine: Notifying waiter to pick the coffee
Coffee machine: Making another coffee now
Waiter: Delivering Coffee No. 1
Waiter: Notifying coffee machine to make another one
Coffee machine says: Made Coffee No. 2
Coffee machine: Notifying waiter to pick the coffee
Coffee machine: Making another coffee now
Waiter: Will get orders till coffee machine notifies me
Waiter: Delivering Coffee No. 2
Waiter: Notifying coffee machine to make another one
Coffee machine says: Made Coffee No. 3
Coffee machine: Notifying waiter to pick the coffee
Coffee machine: Making another coffee now
Waiter: Will get orders till coffee machine notifies me
Waiter: Delivering Coffee No. 3
Waiter: Notifying coffee machine to make another one

// goes on forever until you press Ctrl-C to terminate the application. . .

Should you uSe notify() or notifyall()?

You have two methods—notify() and notifyAll()—for notifying (i.e., for waking up a waiting thread in the
Thread class). But which one should you use?

Let‘s examine the subtle difference between these two calls. the notify() method wakes up one thread waiting
for the lock (the first thread that called wait() on that lock). the notifyAll() method wakes up all the threads
waiting for the lock; the JVM selects one of the threads from the list of threads waiting for the lock and wakes
that thread up.

Chapter 13 ■ threads

420

In the case of a single thread waiting for a lock, there is no significant difference between notify() and
notifyAll(). however, when there is more than one thread waiting for the lock, in both notify() and
notifyAll(), the exact thread woken up is under the control of the JVM and you cannot programmatically
control waking up a specific thread.

at first glance, it appears that it is a good idea to just call notify() to wake up one thread; it might seem
unnecessary to wake up all the threads. however, the problem with notify() is that the thread woken up might
not be the suitable one to be woken up (the thread might be waiting for some other condition, or the condition
is still not satisfied for that thread etc). In that case, the notify() might be lost and no other thread will wake
up potentially leading to a type of deadlock (the notification is lost and all other threads are waiting for
notification—forever!).

to avoid this problem, it is always better to call notifyAll() when there is more than one thread waiting for a
lock (or more than one condition on which waiting is done). the notifyAll() method wakes up all threads, so it
is not very efficient. however, this performance loss is negligible in real world applications.

 prefer notifyAll() to notify().

Using notify()/notifyAll() will wake up only threads waiting on the lock on which it is called; it will
not wake up any other threads. If by mistake you use wait() on one lock and notify()/notifyAll() on
another lock, the waiting thread will never get notified and the program will hang (leading to one kind of
deadlock situation)!

Let’s Solve a Problem
Since the wait/notify mechanism is important to understand, let’s take another example and try to understand it more
rigorously.

Problem Statement: Assume that you need to implement a dice player game. This is a two player
game (say the players are “Joe” and “Jane”) where the players throw the dice on their turns. When
one player throws the dice, another player waits. Once the player completes throwing, he/she
informs the other player to play; after that, he/she starts waiting for the other player to throw the
dice. You need to implement these two players as two threads working together. The game ends after
each player throws 6 times (so there will be a total of 12 throws in the game).

Since the problem statement says “implement these two players as two threads working together,” your solution
is a multi-threaded program with each player implemented as a thread. The problem also states that when one player
throws the dice, another waits. So, you should perhaps use a wait/notify mechanism. The dice rolling should result in
a random value, so you can use the Random class for creating random numbers from 1 to 6.

Chapter 13 ■ threads

421

Here is a solution. First go through the whole program (Listing 13-15), and then you’ll see the explanation of how
it works.

Listing 13-15. DiceGame.java

 import java.util.Random;

// the Gamers class just holds the name of players who roll the dice
class Gamers {
 // prevent instantiating this utility class by making constructor private
 private Gamers() {}
 public static final String JOE = "Joe";
 public static final String JANE = "Jane";
}

// the Dice class abstracts how the dice rolls and who plays it
class Dice {
 // to remember whose turn it is to roll the dice
 private static String turn = null;
 synchronized public static String getTurn() { return turn; }
 synchronized public static void setTurn(String player) { turn = player; }

 // which player starts the game
 public static void setWhoStarts(String name) { turn = name; }

 // prevent instantiating the class by making it private (we've only static members)
 private Dice() { }

 // when we roll the dice, it should give a random result
 private static Random random = new Random();
 // random.nextInt(6) gives values from 0 to 5, so add 1 to result in roll()
 public static int roll() { return random.nextInt(6) + 1; }
}

// the class Player abstracts a player playing the Dice game
// each player runs as a separate thread, so Player extends Thread class
class Player extends Thread {
 private String currentPlayer = null;
 private String otherPlayer = null;

 public Player(String thisPlayer) {
 currentPlayer = thisPlayer;
 // we've only two players; we remember them in currentPlayer and otherPlayer
 otherPlayer = thisPlayer.equals(Gamers.JOE) ? Gamers.JANE: Gamers.JOE;
 }

 public void run() {
 // each player rolls the dice 6 times in the game
 for(int i = 0; i < 6; i++) {
 // acquire the lock before proceeding
 synchronized(Dice.class) {

Chapter 13 ■ threads

422

 // if its not currentPlayer's turn, then
 // wait for otherPlayers's notification
 while(!Dice.getTurn().equals(currentPlayer)) {
 try {
 Dice.class.wait(1000);
 System.out.println(currentPlayer +
 " was waiting for " + otherPlayer);
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 // its currentPlayer's turn now; throw the dice
 System.out.println(Dice.getTurn() + " throws " + Dice.roll());
 // set the turn to otherPlayer, and notify the otherPlayer
 Dice.setTurn(otherPlayer);
 Dice.class.notifyAll();
 }
 }
 }
}

// class DiceGame just starts the game by starting player threads
class DiceGame {
 public static void main(String []s) {
 Player player1 = new Player(Gamers.JANE);
 Player player2 = new Player(Gamers.JOE);
 // don't forget to set who starts the game
 Dice.setWhoStarts(Gamers.JOE);
 player1.start();
 player2.start();
 }
}

When you run the program, the sample output will be like this:

Joe throws 2
Jane was waiting for Joe
Jane throws 5
Joe throws 6
Jane was waiting for Joe
Jane throws 1
Joe throws 2
Jane was waiting for Joe
Jane throws 6
Joe throws 6
Jane was waiting for Joe
Jane throws 5
Joe was waiting for Jane
Joe throws 5
Jane was waiting for Joe

Chapter 13 ■ threads

423

Jane throws 4
Joe was waiting for Jane
Joe throws 4
Jane was waiting for Joe
Jane throws 5

Now, let’s look at the code in more detail to understand how it works.

// the Gamers class just holds the name of players who roll the dice
class Gamers {
 // prevent instantiating this utility class by making constructor private
 private Gamers() {}
 public static final String JOE = "Joe";
 public static final String JANE = "Jane";
}

The class Gamers is just a utility class that holds the name of the players (Joe and Jane). Since there is no need to
instantiate the class, you declare the constructor private.

The class Dice abstracts how the dice are rolled; it also remembers the turns that the players take.

class Dice {
 // to remember whose turn it is to roll the dice
 private static String turn = null;
 synchronized public static String getTurn() { return turn; }
 synchronized public static void setTurn(String player) { turn = player; }

 // which player starts the game
 public static void setWhoStarts(String name) { turn = name; }

 // prevent instantiating the class by making it private (we've only static members)
 private Dice() { }

 // when we roll the dice, it should give a random result
 private static Random random = new Random();
 // random.nextInt(6) gives values from 0 to 5, so add 1 to result in roll()
 public static int roll() { return random.nextInt(6) + 1; }
}

You have a member named turn of type String. This variable holds the name of the current player whose turn
has come to roll the dice. The method getTurn() and setTurn() are getter and setter methods for this member. When
the game starts, you should say who should start the game (you need to set turn to a proper initial value); you do it by
calling setWhoStarts. All the members in the class are static, so there is no need to instantiate the class; you enforce
this by making the constructor private.

The dice rolling should result in a random value in the range 1 to 6. You can use the Random class in the java.util package
to get the random number. The Random class has an instance method of nextInt() that you can use to get the range of values
you want. If you pass int value 6 to nextInt, it returns the values from 0 to 5, so you add 1 to get the value ranging from 1 to 6.

The Player class is where you do most of the work. The class Player abstracts a player playing the Dice game.
Each player runs as a separate thread, so Player extends the Thread class. Alternatively, you could implement
Player by implementing the Runnable interface. Both are equivalent and acceptable solutions.

class Player extends Thread {
 private String currentPlayer = null;
 private String otherPlayer = null;

Chapter 13 ■ threads

424

 public Player(String thisPlayer) {
 currentPlayer = thisPlayer;
 // we've only two players; we remember them in currentPlayer and otherPlayer
 otherPlayer = thisPlayer.equals(Gamers.JOE) ? Gamers.JANE: Gamers.JOE;
 }
 // other members
}

You create two Player threads for each of the players. So, you remember the values in currentPlayer and
otherPlayer; you set these values in the Player constructor.

Here is the Player's run() method:

public void run() {
 // each player rolls the dice 6 times in the game
 for(int i = 0; i < 6; i++) {
 // acquire the lock before proceeding
 synchronized(Dice.class) {
 // if its not currentPlayer's turn, then
 // wait for otherPlayers's notification
 while(!Dice.getTurn().equals(currentPlayer)) {
 try {
 System.out.println(currentPlayer +
 " waiting for " + otherPlayer);
 Dice.class.wait(1000);
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 // its currentPlayer's turn now; throw the dice
 System.out.println(Dice.getTurn() +
 " throws " + Dice.roll());
 // set the turn to otherPlayer, and notify the otherPlayer
 Dice.setTurn(otherPlayer);
 Dice.class.notifyAll();
 }
 }
}

The run() method will be called for each Player thread. Each player rolls the dice six times, so you have a for
loop with six iterations. In every loop iteration, you check if it’s the currentPlayer's turn to roll the dice. If not, you
make the player thread wait till the otherPlayer informs the currentPlayer that his/her turn has come. Before going
to check the turn, you need to acquire a lock. Any common lock is good, and you use the Dice.class as the lock here.
Once the currentPlayer gets the notification, he/she calls the Dice.roll() method. His/her turn is over now, so he/
she sets the turn to the other player and calls notifyAll() to wake up the otherPlayer thread. You could have used
the notify() method, but it is equally acceptable to use the notifyAll() method, which is better to use.

The DiceGame class does something very simple. It has the main() method and you create the Jane and Joe
player objects. You set one of them to start the game. You call the start() methods for these two player threads to
start playing.

Chapter 13 ■ threads

425

 If you want a mechanism to wait for a particular event to occur, a wait/notify mechanism is the best
choice. sometimes programmers solve this problem by using a sleep call, and they repeatedly check
the condition to see if the event has occurred. this is an ineffective solution. Further, calling sleep does
not release the lock (unlike wait), so a solution using sleep is prone to deadlocks. do not use the sleep
method when a wait/notify mechanism is the appropriate solution.

More Thread States
Earlier in this chapter we discussed three basic thread states: new, runnable and terminated states. In addition to
these states, a thread can also be in blocked, waiting, timed_waiting states, which we’ll discuss now. Figure 13-6 shows
how and when the state transitions typically happen for these six states.

new runnable

terminated

thread dies

blocked

waiting for
acquiring lock

lock acquired

join() or wait()called

notify()/notifyAll()
called

sleep() or join() or
wait() with timeout

timeout completed

waiting

timed_waiting

start()
called

Figure 13-6. Possible states in the lifetime of a thread

timed_waiting and blocked States
Listing 13-16 contains a simple example to understand timed_waiting and blocked states.

Listing 13-16. MoreThreadStates.java

 // This Thread class just invokes sleep method after acquiring lock on its class object
class SleepyThread extends Thread {
 public void run() {
 synchronized(SleepyThread.class) {
 try {
 Thread.sleep(1000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not

Chapter 13 ■ threads

426

 // interrupting exceptions in this code
 ie.printStackTrace();
 }
 }
 }
}

// The class creates two threads to show how to these threads will enter into
// TIMED_WAITING and BLOCKED states
class MoreThreadStates {
 public static void main(String []s) {
 Thread t1 = new SleepyThread();
 Thread t2 = new SleepyThread();
 t1.start();
 t2.start();
 System.out.println(t1.getName() + ": I'm in state " + t1.getState());
 System.out.println(t2.getName() + ": I'm in state " + t2.getState());
 }
}

It prints the following:

Thread-0: I'm in state TIMED_WAITING
Thread-1: I'm in state BLOCKED

You have the SleepyThread class with a run() method that just acquires a lock and goes to sleep. You’re creating
two threads, t1 and t2, in the main() method.

When t1 runs, it acquires the lock (SleepyThread.class) and goes to sleep. Remember, when a thread sleeps, it
doesn’t relinquish the lock: it just holds the lock. So sleep() is called for 1 second (1000 milliseconds; the argument
to sleep() is in milliseconds), so the thread t1 is in state TIMED_WAITING.

Meanwhile, the main thread starts t2 thread. When its run() method is called, it finds that it has to acquire the lock
(SleepyThread.class). However, you know that the lock is already acquired by thread t1 and the thread is still sleeping
(and it is in the timed_waiting state). So, thread t2 waits to acquire the lock, hence it is in the blocking state. The main()
method just prints the state of these two threads by calling the getState() method after spawning the threads.

waiting State
The waiting state typically happens when a thread waits for a specific condition to happen by calling the wait()
method. Listing 13-17 is a simple example to illustrate the waiting state.

Listing 13-17. WaitingThreadState.java

 // This class has run method which waits forever since there is no other thread to notify it
class InfiniteWaitThread extends Thread {
 static boolean okayToRun = false;
 synchronized public void run() {
 while(!okayToRun) {
 try {
 // note the call to wait without any timeout value
 // so it waits forever for some thread to notify it
 wait();
 }

Chapter 13 ■ threads

427

 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not
 // interrupting exceptions in this code
 ie.printStackTrace();
 }
 }
 }
}

class WaitingThreadState {
 public static void main(String []s) {
 Thread t = new InfiniteWaitThread();
 t.start();
 System.out.println(t.getName() + ": I'm in state " + t.getState());
 }
}

This program prints the following:

Thread-0: I'm in state WAITING

You must press Ctrl + C to terminate the thread since the thread waits infinitely for the condition to happen
(i.e., okayToRun to become true). In real world programs, you’ll also write code to have the condition happen; in
other words, you’ll write code to set okayToRun to true and then call notify()/notifyAll(). However, since this is a
dummy program just to illustrate the waiting state, we’re leaving out that part.

What if you change the wait statement inside the run statement to, say, wait(1000)? Now the program will print
TIMED_WAITING. The state timed_waiting happens not just for sleep with timeout that you saw earlier; it also works for
the wait() method call with a timeout value.

Using Thread.State enum
The Thread class defines Thread.State enumeration, which has a list of possible thread states. Listing 13-18 is a
simple program that prints the value of the states in this enumeration.

Listing 13-18. ThreadStatesEnumeration.java

 class ThreadStatesEnumeration {
 public static void main(String []s) {
 for(Thread.State state : Thread.State.values()){
 System.out.println(state);
 }
 }
}

It prints the following:

NEW
RUNNABLE
BLOCKED
WAITING
TIMED_WAITING
TERMINATED

Chapter 13 ■ threads

428

Understanding IllegalThreadStateException
You should be cautious whenever writing code for threads, always keeping in mind the states of the threads.
If you don’t exercise care about the underlying states, what will happen? Let’s look at the simple example in
Listing 13-19 first.

Listing 13-19. ThreadStateProblem.java

 class ThreadStateProblem {
 public static void main(String []s) {
 Thread thread = new Thread();
 thread.start();
 thread.start();
 }
}

The program fails with this stack trace:

Exception in thread "main" java.lang.IllegalThreadStateException
 at java.lang.Thread.start(Unknown Source)
 at ThreadStateProblem.main(ThreadStateProblem.java:6)

Here, you are trying to start a thread that has already started. When you call start(), the thread moves to the
new state. There is no proper state transition from the new state if you call start() again, so the JVM throws an
IllegalThreadStateException.

 Never call the start() method twice on the same thread.

Can you fix the problem by adding a try-catch block around the second call to start()? That is a bad solution!
IllegalThreadStateException is a RuntimeException, meaning that it indicates a programming error. So, you need
to fix the problem in the program instead of handling it. Even if you provide a try-catch block, what can you do within
the catch block? Nothing; you can leave it empty or just log the exception. Such empty catch blocks are indications of
bad code. So, the correct solution in this case is to make sure that start() is not called again for the same thread.

 Never write a catch block for handling IllegalThreadStateException. If you get this exception, there is
certainly a bug in the code. Fix that bug.

Chapter 13 ■ threads

429

Listing 13-20 contains another example.

Listing 13-20. ThreadStateProblem.java

 class ThreadStateProblem extends Thread {
 public void run() {
 try {
 wait(1000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not
 // interrupting exceptions in this code
 ie.printStackTrace();
 }
 }

 public static void main(String []s) {
 new ThreadStateProblem().start();
 }
}

This program also crashes with IllegalMonitorStateException, like this:

Exception in thread "Thread-0" java.lang.IllegalMonitorStateException
 at java.lang.Object.wait(Native Method)
 at ThreadStateProblem.run(ThreadStateProblem.java:4)

The wait(int) method (with or without timeout value) should be called only after acquiring a lock: a wait() call
adds the thread to the waiting queue of the acquired lock. If you don’t do that, there is no proper transition from the
running state to timed_waiting (or waiting state, if a timeout value is not given) to happen. So, the program crashes by
throwing an IllegalMonitorStateException exception.

The correct fix is to acquire the lock before calling wait(). In this case, you can declare the run() method
synchronized:

synchronized public void run() {
 try {
 wait(1000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not
 // interrupting exceptions in this code
 ie.printStackTrace();
 }
}

Since the run() method is synchronized, wait() will add itself to the this object reference lock. Since there is no
one calling the notify()/notifyAll() method, after a timeout of 1 second (1000 milliseconds) is over, it will return from
the run() method. So, the wait(1000); statement behaves almost like a sleep(1000) statement; the difference is that
calling wait() releases the lock on this object when it waits while sleep() call will not release the lock when it sleeps.

Chapter 13 ■ threads

430

Call wait and notify/notifyAll only after acquiring the relevant lock.

QueStion time!

1. here is a class named PingPong that extends the Thread class. Which of the following PingPong class
implementations correctly prints “ping” from the worker thread and then prints “pong” from the main thread?

a. class PingPong extends Thread {
 public void run() {
 System.out.println("ping ");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 System.out.print("pong");
 }
 }

B. class PingPong extends Thread {
 public void run() {
 System.out.println("ping ");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 pingPong.run();
 System.out.print("pong");
 }
 }

C. class PingPong extends Thread {
 public void run() {
 System.out.println("ping");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 pingPong.start();
 System.out.println("pong");
 }
 }

Chapter 13 ■ threads

431

d. class PingPong extends Thread {
 public void run() {
 System.out.println("ping");
 }
 public static void main(String []args) throws InterruptedException{
 Thread pingPong = new PingPong();
 pingPong.start();
 pingPong.join();
 System.out.println("pong");
 }
 }

Answer: d.

(the main thread creates the worker thread and waits for it to complete (which prints “ping”). after that it
prints “pong”. so, this implementation correctly prints “ping pong”. Why are the other options wrong?

the main() method creates the worker thread, but doesn’t start it. so, this program only prints “pong”.
the program always prints “ping pong”, but it is misleading. this program directly calls the run() method
instead of calling the start() method. so, this is a single threaded program. the main thread and the
worker thread execute independently without any coordination. so, depending on which thread is scheduled
first, you can get “ping pong” or “pong ping” printed.)

2. Consider the following program and choose the correct option describing its behavior.

class ThreadTest {
 public static void main(String []args) throws InterruptedException {
 Thread t1 = new Thread() {
 public void run() { System.out.print("t1 "); }
 };
 Thread t2 = new Thread() {
 public void run() { System.out.print("t2 "); }
 };
 t1.start();
 t1.sleep(5000);
 t2.start();
 t2.sleep(5000);
 System.out.println("main ");
 }
}

a. t1 t2 main

B. t1 main t2

C. main t2 t1

d. this program results in a compiler error.

e. this program throws a runtime error.

Answer: a. t1 t2 main

Chapter 13 ■ threads

432

(When a new thread is created, it is in the new state. then, it moves to the runnable state. Only from the
runnable state can the thread go to the timed_waiting state after calling sleep(). hence, before executing
sleep(), the run() method for that thread is called. so, the program prints “t1 t2 main”.)

3. You’ve written an application for processing tasks. In this application, you’ve separated the critical or urgent
tasks from the ones that are not critical or urgent. You’ve assigned high priority to critical or urgent tasks.

In this application, you find that the tasks that are not critical or urgent are the ones that keep waiting for an
unusually long time. since critical or urgent tasks are high priority, they run most of the time. Which one of
the following multi-threading problems correctly describes this situation?

a. deadlock

B. starvation

C. Livelock

d. race condition

Answer: B. starvation

(the situation in which low-priority threads keep waiting for a long time to acquire the lock and execute the
code in critical sections is known as starvation.)

4. Consider the following program:

class ExtendThread extends Thread {
 public void run() { System.out.print(Thread.currentThread().getName()); }
}

class ThreadTest{
 public static void main(String []args) throws InterruptedException {
 Thread thread1 = new Thread(new ExtendThread(), "thread1 ");
 Thread thread2 = new Thread(thread1, "thread2 ");
 thread1.start();
 thread2.start();
 thread1.start(); // START
 }
}

Which one of the following correctly describes the behavior of this program?

a. the program prints the following: thread1 thread2 thread1.

B. the program prints the following: thread1 thread1 thread1.

C. the program prints the following: thread1 thread2.

d. the program results in a compiler error for the statement marked with the comment START.

e. the program throws an IllegalMonitorStateException when executing the statement marked with
the comment START.

Answer: e. the program throws an IllegalMonitorStateException when executing the statement
marked with the comment START.

Chapter 13 ■ threads

433

(It is illegal to call the start() method more than once on a thread; in that case, the thread will throw an
IllegalMonitorStateException.]

5. Which of the following two definitions of sync (when compiled in separate files) will compile without errors?

a. class Sync {
 public synchronized void foo() {}
 }

B. abstract class Sync {
 public synchronized void foo() {}
 }

C. abstract class Sync {
 public abstract synchronized void foo();
 }

d. interface Sync {
 public synchronized void foo();
 }

Answer: a. and B.

(abstract methods (in abstract classes or interfaces) cannot be declared synchronized, hence the options C
and d are incorrect.)

Summary
Introduction to Concurrent Programming

You can create classes that are capable of multi-threading by implementing the •	 Runnable
interface or by extending the Thread class.

Always implement the •	 run() method. The default run() method in Thread does nothing.

Call the •	 start() method and not the run() method directly in code. (Leave it to the JVM to
call the run() method.)

Every thread has a thread name, priority, and thread-group associated with it; the default •	
toString() method implementation in Thread prints them.

If you call the •	 sleep() method of a thread, the thread does not release the lock and it holds on
to the lock.

You can use the •	 join() method to wait for another thread to terminate.

In general, if you are not using the “interrupt” feature in threads, it is safe to ignore •	
InterruptedException; however it’s better still to log or print the stack trace if that exception occurs.

Threads execute asynchronously; you cannot predict the order in which the threads run.•	

Threads are also non-deterministic: in many cases, you cannot reproduce problems like •	
deadlocks or data races every time.

Chapter 13 ■ threads

434

Thread States

There are three basic thread states: •	 new, runnable, and terminated. When a thread is just
created, it is in a new state; when it is ready to run or running, it is in a runnable state. When
the thread dies, it’s in terminated state.

The •	 runnable state has two states internally (at the OS level): ready and running states.

A thread will be in the •	 blocked state when waiting to acquire a lock. The thread will be in the
timed_waiting state when a timeout is given for calls like wait. The thread will be in the waiting
state when, for example, wait() is called (without a time out value).

You will get an •	 IllegalThreadStateException if your operations result in invalid thread state
transitions.

Concurrent Access Problems

Concurrent reads and writes to resources may lead to the •	 data race problem.

You must use thread synchronization (i.e., locks) to access shared values and avoid data •	
races. Java provides thread synchronization features to provide protected access to shared
resources—namely, synchronized blocks and synchronized methods.

Using locks can introduce problems such as deadlocks. When a deadlock happens, the process •	
will hang and will never terminate.

A deadlock typically happens when two threads acquire locks in opposite order. When one •	
thread has acquired one lock and waits for another lock, another thread has acquired that
other lock and waits for the first lock to be released. So, no progress is made and the program
deadlocks.

To avoid deadlocks, it is better to avoid acquiring multiple locks. When you have to acquire •	
such multiple locks, ensure that they are acquired in the same order in all places in the
program.

The Wait/Notify Mechanism

When a thread has to wait for a particular condition or event to be satisfied by another thread, •	
you can use a wait/notify mechanism as a communication mechanism between threads.

When a thread needs to wait for a particular condition/event, you can either call •	 wait() with
or without a timeout value specified.

To avoid notifications getting lost, it is better to always use •	 notifyAll() instead of notify().

435

Chapter 14

Concurrency

Use java.util.concurrent collections

Apply atomic variables and locks

Use Executors and ThreadPools

Use the parallel Fork/Join Framework

Exam Topics

From the beginning, Java supported concurrency in the form of low-level threads management, locks, synchronization,
and APIs for concurrency. We covered them in the preceding chapter in our discussion of the Thread class,
Runnable interface, and synchronized keyword.

Since 5.0, Java also supports high-level concurrency APIs in its java.util.concurrent package. In this chapter,
we’ll focus on these APIs for concurrent programming. These high-level APIs exploit today’s multi-core hardware, in
which a single processor has multiple cores. These APIs are also useful for exploiting concurrency in machines that
support multiple processors.

Most of the Java concurrency utilities are provided in the java.util.concurrent package. Classes to efficiently
update shared variables without using locks are provided in the java.util.concurrent.atomic subpackage. The
Lock interface and the classes deriving from it are provided in the java.util.concurrent.locks subpackage.

Using java.util.concurrent Collections
There are many classes in the java.util.concurrent package that provide high-level APIs for concurrent
programming. In this section, we will mainly discuss synchronizer classes provided in this package. Following that, we
will briefly cover the important concurrent collection classes provided in the java.util.concurrent package.

You already understand the low-level concurrency constructs (such as the use of the synchronized keyword,
Runnable interface, and Thread class for creating threads) from the preceding chapter. In the case of a shared resource
that needs to be accessed by multiple threads, access and modifications to the shared resource need to be protected.
When you use the synchronized keyword, you employ mutexes to synchronize between threads for safe shared
access. Threads also often needed to coordinate their executions to complete a bigger higher-level task. The wait/
notify pattern discussed in the last chapter is one way to coordinate the execution of multiple threads.

Using APIs for acquiring and releasing locks (using mutexes) or invoking the wait/notify methods on locks
are low-level tasks. It is possible to build higher-level abstractions for thread synchronization. These high-level
abstractions for synchronizing activities of two or more threads are known as synchronizers. Synchronizers internally
make use of the existing low-level APIs for thread coordination.

Chapter 14 ■ ConCurrenCy

436

The synchronizers provided in the java.util.concurrent library and their uses are listed here:

•	 Semaphore controls access to one or more shared resources.

•	 Phaser is used to support a synchronization barrier.

•	 CountDownLatch allows threads to wait for a countdown to complete.

•	 Exchanger supports exchanging data between two threads.

•	 CyclicBarrier enables threads to wait at a predefined execution point.

Now, we’ll discuss each of these synchronizers in turn with the help of examples.

Semaphore
A semaphore controls access to shared resources. A semaphore maintains a counter to specify the number of
resources that the semaphore controls. Access to the resource is allowed if the counter is greater than zero,while a zero
value of the counter indicates that no resource is available at the moment and so the access is denied.

The methods acquire() and release() are for acquiring and releasing resources from a semaphore. If a thread
calls acquire() and the counter is zero (i.e., resources are unavailable), the thread waits until the counter is non-zero
and then gets the resource for use. Once the thread is done using the resource, it calls release() to increment the
resource availability counter.

Note if the number of resources is 1, then at a given time only one thread can access the resource; in this case,
using the semaphore is similar to using a lock. Table 14-1 lists the important methods in the Semaphore class.

Table 14-1. Important Methods in the Semaphore Class

Method Description

Semaphore(int permits) Constructor to create Semaphore objects with a given number of permits
(the number of threads that can access the resource at a time). If the
permit’s value is negative, the given number of release() calls must
happen before acquire() calls can succeed.

Semaphore(int permits,
 boolean fair)

Same as the previous constructor, but this extra fair option indicates that
the permits should be allotted on a first-come-first-served basis.

void acquire()
void acquire(int permits)

Acquires a permit if available; otherwise, it blocks until a permit becomes
available. Can throw an InterruptedException if some other thread
interrupts it while waiting to acquire a permit. The overloaded version
takes a number of permits as an argument.

void
acquireUninterruptibly()

Same as the acquire() method, but this thread cannot be interrupted
while waiting to acquire a permit.

boolean tryAcquire()
boolean tryAcquire(long timeout,
 TimeUnit unit)

Acquires a permit from the semaphore if available at the time of the call
and returns true; if unavailable, it returns false immediately (without
blocking). The overloaded tryAcquire() method additionally takes a
time-out argument—the thread blocks to acquire a permit from the
semaphore until a given time-out period.

void release()
void release(int permits)

Releases a permit from the semaphore. The overloaded version specifies
the number of permits to release.

Chapter 14 ■ ConCurrenCy

437

Let’s assume that there are two ATM machines available in a ATM machine room. Therefore, only two people are
allowed at a time in the room. There are five people waiting outside to use the ATM machines. The situation can be
simulated by the code in Listing 14-1, in which each ATM machine is treated as a resource controlled by semaphore.

Listing 14-1. ATMRoom.java

import java.util.concurrent.Semaphore;

// This class simulates a situation where an ATM room has only two ATM machines
// and five people are waiting to access the machine. Since only one person can access
// an ATM machine at a given time, others wait for their turn
class ATMRoom {
 public static void main(String []args) {
 // assume that only two ATM machines are available in the ATM room
 Semaphore machines = new Semaphore(2);

 // list of people waiting to access the machine
 new Person(machines, "Mickey");
 new Person(machines, "Donald");
 new Person(machines, "Tom");
 new Person(machines, "Jerry");
 new Person(machines, "Casper");
 }
}

// Each Person is an independent thread; but their access to the common resource
// (two ATM machines in the ATM machine room in this case) needs to be synchronized.
class Person extends Thread {
 private Semaphore machines;
 public Person(Semaphore machines, String name) {
 this.machines = machines;
 this.setName(name);
 this.start();
 }
 public void run() {
 try {
 System.out.println(getName() + " waiting to access an ATM machine");
 machines.acquire();
 System.out.println(getName() + " is accessing an ATM machine");
 Thread.sleep(1000); // simulate the time required for withdrawing amount
 System.out.println(getName() + " is done using the ATM machine");
 machines.release();
 } catch(InterruptedException ie) {
 System.err.println(ie);
 }
 }
}

Here is the output of the program in one sample run:

Mickey waiting to access an ATM machine
Tom waiting to access an ATM machine

Chapter 14 ■ ConCurrenCy

438

Jerry waiting to access an ATM machine
Donald waiting to access an ATM machine
Casper waiting to access an ATM machine
Tom is accessing an ATM machine
Mickey is accessing an ATM machine
Tom is done using the ATM machine
Mickey is done using the ATM machine
Jerry is accessing an ATM machine
Donald is accessing an ATM machine
Donald is done using the ATM machine
Jerry is done using the ATM machine
Casper is accessing an ATM machine
Casper is done using the ATM machine

Now let’s analyze how this program works. People waiting to access an ATM machine are simulated by creating a
Person class that extends Thread. The run() method in the Thread class acquires a semaphore, simulates withdrawing
money from the ATM machine, and releases the semaphore.

The main() method simulates an ATM room with two ATM machines by creating a Semaphore object with
two permits. People waiting in the queue to access the ATM machine are implemented by just adding them to the
Semaphore object.

As you can see from the program output, the semaphore allows only two threads at a time and the other threads
keep waiting. When a thread releases the semaphore, another thread acquires it. Cool, isn’t it?

CountDownLatch
This synchronizer allows one or more threads to wait for a countdown to complete. This countdown could be for a set
of events to happen or until a set of operations being performed in other threads completes. Table 14-2 lists important
methods in this class.

Table 14-2. Important Methods in the CountDownLatch Class

Method Description

CountDownLatch(int count) Creates an instance of CountDownLatch with the number of times the
countDown() method must be called before the threads waiting with await()
can continue execution.

void await() If the current count in CountDownLatch object is zero, it immediately returns;
otherwise, the thread blocks until the countdown reaches zero. Can throw an
InterruptedException.

boolean await(long timeout,
 TimeUnit unit)

Same as the previous method, await(), but takes an additional time-out
argument. If the thread returns successfully after the count reaches zero, this
method returns true; if the thread returns because of time-out, it returns false.

void countDown() Reduces the number of counts by one in this CountDownLatch object. If the
count reaches zero, all the (a)waiting threads are released. If the current count
is already zero, nothing happens.

long getCount() Returns the pending counts in this CountDownLatch object.

Chapter 14 ■ ConCurrenCy

439

When you create a CountDownLatch, you initialize it with an integer, which represents a count value. Threads
would wait (by calling the await() method) for this count to reach zero. Once zero is reached, all threads are
released; any other calls to await() would return immediately since the count is already zero. The counter value can
be decremented by one by calling the countDown() method. You can get the current value of the counter using the
getCount() method. See Listing 14-2.

Listing 14-2. RunningRaceStarter.java

import java.util.concurrent.*;

// this class simulates the start of a running race by counting down from 5. It holds
// three runner threads to be ready to start in the start line of the race and once the count down
// reaches zero, all the three runners start running...

class RunningRaceStarter {
 public static void main(String []args) throws InterruptedException {
 CountDownLatch counter = new CountDownLatch(5);
 // count from 5 to 0 and then start the race

 // instantiate three runner threads
 new Runner(counter, "Carl");
 new Runner(counter, "Joe");
 new Runner(counter, "Jack");

 System.out.println("Starting the countdown ");
 long countVal = counter.getCount();
 while(countVal > 0) {
 Thread.sleep(1000); // 1000 milliseconds = 1 second
 System.out.println(countVal);
 if(countVal == 1) {
 // once counter.countDown(); in the next statement is called,
 // Count down will reach zero; so shout "Start"
 System.out.println("Start");
 }
 counter.countDown(); // count down by 1 for each second
 countVal = counter.getCount();
 }
 }
}

// this Runner class simulates a track runner in a 100-meter dash race. The runner waits until the
// count down timer gets to zero and then starts running
class Runner extends Thread {
 private CountDownLatch timer;
 public Runner(CountDownLatch cdl, String name) {
 timer = cdl;
 this.setName(name);
 System.out.println(this.getName() + " ready and waiting for the count down to start");
 start();
 }

Chapter 14 ■ ConCurrenCy

440

 public void run() {
 try {
 // wait for the timer count down to reach 0
 timer.await();
 } catch (InterruptedException ie) {
 System.err.println("interrupted -- can't start running the race");
 }
 System.out.println(this.getName() + " started running");
 }
}

This program prints the following:

Carl ready and waiting for the count down to start
Joe ready and waiting for the count down to start
Jack ready and waiting for the count down to start
Starting the countdown
5
4
3
2
1
Start
Joe started running
Carl started running
Jack started running

Let’s consider how the program works. The class Runner simulates a runner in a running race waiting to start running.
It waits for the race to start by calling the await() method on the CountDownLatch object passed through the constructor.

The RunningRaceStarter class creates a CountDownLatch object. This counter object is initialized with the count
value 5, which means the countdown is from 5 to 0. In the main() method, you create Runner objects; these three
threads wait on the counter object. For each second, you call the countDown() method, which decrements count by 1.
Once the count reaches zero, all three waiting threads are released and they automatically continue execution.

Note: In this program, the sequence in which Joe, Carl, or Jack is printed cannot be predicted since it depends on
thread scheduling. So, if you run this program, you may get these three names printed in some other order.

Exchanger
The Exchanger class is meant for exchanging data between two threads. What Exchanger does is something very
simple: it waits until both the threads have called the exchange() method. When both threads have called the
exchange() method, the Exchanger object actually exchanges the data shared by the threads with each other. This
class is useful when two threads need to synchronize between them and continuously exchange data.

This class is a tiny class with only one method: exchange(). Note that this exchange() method has an overloaded
form where it takes a time-out period as an argument.

Listing 14-3 shows an example simulating silly talk between the Java Duke mascot and the coffee shop. The two
threads DukeThread and CoffeeShop threads run independently. However, for a chat to happen, they need to listen
when the other is talking. An Exchange object provides a means for them to talk to each other.

Chapter 14 ■ ConCurrenCy

441

Listing 14-3. KnockKnock.java

import java.util.concurrent.Exchanger;

// The DukeThread class runs as an independent thread. It talks to the CoffeeShopThread that
// also runs independently. The chat is achieved by exchanging messages through a common
// Exchanger<String> object that synchronizes the chat between them.
// Note that the message printed are the "responses" received from CoffeeShopThread
class DukeThread extends Thread {
 private Exchanger<String> sillyTalk;

 public DukeThread(Exchanger<String> args) {
 sillyTalk = args;
 }
 public void run() {
 String reply = null;
 try {
 // start the conversation with CoffeeShopThread
 reply = sillyTalk.exchange("Knock knock!");
 // Now, print the response received from CoffeeShopThread
 System.out.println("CoffeeShop: " + reply);

 // exchange another set of messages
 reply = sillyTalk.exchange("Duke");
 // Now, print the response received from CoffeeShopThread
 System.out.println("CoffeeShop: " + reply);

 // an exchange could happen only when both send and receive happens
 // since this is the last sentence to speak, we close the chat by
 // ignoring the "dummy" reply
 reply = sillyTalk.exchange("The one who was born in this coffee shop!");
 // talk over, so ignore the reply!
 } catch(InterruptedException ie) {
 System.err.println("Got interrupted during my silly talk");
 }
 }
}

class CoffeeShopThread extends Thread {
 private Exchanger<String> sillyTalk;

 public CoffeeShopThread(Exchanger<String> args) {
 sillyTalk = args;
 }
 public void run() {
 String reply = null;
 try {
 // exchange the first messages
 reply = sillyTalk.exchange("Who's there?");
 // print what Duke said
 System.out.println("Duke: " + reply);

Chapter 14 ■ ConCurrenCy

442

 // exchange second message
 reply = sillyTalk.exchange("Duke who?");
 // print what Duke said
 System.out.println("Duke: " + reply);

 // there is no message to send, but to get a message from Duke thread,
 // both ends should send a message; so send a "dummy" string
 reply = sillyTalk.exchange("");
 System.out.println("Duke: " + reply);
 } catch(InterruptedException ie) {
 System.err.println("Got interrupted during my silly talk");
 }
 }
}

// Coordinate the silly talk between Duke and CoffeeShop by instantitaing the Exchanger object
// and the CoffeeShop and Duke threads
class KnockKnock {
 public static void main(String []args) {
 Exchanger<String> sillyTalk = new Exchanger<String>();
 new CoffeeShopThread(sillyTalk).start();
 new DukeThread(sillyTalk).start();
 }
}

The program prints the following:

Duke: Knock knock!
CoffeeShop: Who's there?
Duke: Duke
CoffeeShop: Duke who?
Duke: The one who was born in this coffee shop!

The comments inside the program explain how the program works. The main concept to understand with this
example is that Exchanger helps coordinate (i.e., synchronize) exchanging messages between two threads. Both the
threads wait for each other and use the exchange() method to exchange messages.

CyclicBarrier
There are many situations in concurrent programming where threads may need to wait at a predefined execution
point until all other threads reach that point. CyclicBarrier helps provide such a synchronization point; see
Table 14-3 for the important methods in this class.

Chapter 14 ■ ConCurrenCy

443

Listing 14-4 is an example that makes use of CyclicBarrier class.

Listing 14-4. CyclicBarrierTest.java

import java.util.concurrent.*;

// The run() method in this thread should be called only when four players are ready to start the game
class MixedDoubleTennisGame extends Thread {
 public void run() {
 System.out.println("All four players ready, game starts \n Love all...");
 }
}

// This thread simulates arrival of a player.
// Once a player arrives, he/she should wait for other players to arrive
class Player extends Thread {
 CyclicBarrier waitPoint;
 public Player(CyclicBarrier barrier, String name) {
 this.setName(name);
 waitPoint = barrier;
 this.start();
 }
 public void run() {
 System.out.println("Player " + getName() + " is ready ");

Table 14-3. Important Methods in the CyclicBarrier Class

Method Description

CyclicBarrier(int numThreads) Creates a CyclicBarrier object with the number of threads waiting
on it specified. Throws IllegalArgumentException if numThreads is
negative or zero.

CyclicBarrier(int parties,
 Runnable barrierAction)

Same as the previous constructor; this constructor additionally takes
the thread to call when the barrier is reached.

int await()
int await(long timeout,
 TimeUnit unit)

Blocks until the specified number of threads have called await()
on this barrier. The method returns the arrival index of this
thread. This method can throw an InterruptedException if
the thread is interrupted while waiting for other threads or a
BrokenBarrierException if the barrier was broken for some reason
(for example, another thread was timed-out or interrupted). The
overloaded method takes a time-out period as an additional option;
this overloaded version throws a TimeoutException if all other
threads aren’t reached within the time-out period.

boolean isBroken() Returns true if the barrier is broken. A barrier is broken if at least one
thread in that barrier was interrupted or timed-out, or if a barrier
action failed throwing an exception.

void reset() Resets the barrier to the initial state. If there are any threads waiting
on that barrier, they will throw the BrokenBarrier exception.

Chapter 14 ■ ConCurrenCy

444

 try {
 waitPoint.await(); // await for all four players to arrive
 } catch(BrokenBarrierException | InterruptedException exception) {
 System.out.println("An exception occurred while waiting... " + exception);
 }
 }
}

// Creates a CyclicBarrier object by passing the number of threads and the thread to run
// when all the threads reach the barrier
class CyclicBarrierTest {
 public static void main(String []args) {
 // a mixed-double tennis game requires four players; so wait for four players
 // (i.e., four threads) to join to start the game
 System.out.println("Reserving tennis court \n As soon as four players arrive,
game will start");
 CyclicBarrier barrier = new CyclicBarrier(4, new MixedDoubleTennisGame());
 new Player(barrier, "G I Joe");
 new Player(barrier, "Dora");
 new Player(barrier, "Tintin");
 new Player(barrier, "Barbie");
 }
}

The program prints the following:

Reserving tennis court
As soon as four players arrive, game will start
Player G I Joe is ready
Player Dora is ready
Player Tintin is ready
Player Barbie is ready
All four players ready, game starts
 Love all...

Now let’s see how this program works. In the main() method you create a CyclicBarrier object. The constructor
takes two arguments: the number of threads to wait for, and the thread to invoke when all the threads reach the
barrier. In this case, you have four players to wait for, so you create four threads, with each thread representing a
player. The second argument for the CyclicBarrier constructor is the MixedDoubleTennisGame object since this
thread represents the game, which will start once all four players are ready.

Inside the run() method for each Player thread, you call the await() method on the CyclicBarrier
object. Once the number of awaiting threads for the CyclicBarrier object reaches four, the run() method in
MixedDoubleTennisGame is called.

Phaser
Phaser is a useful feature when few independent threads have to work in phases to complete a task. So, a
synchronization point is needed for the threads to work on a part of a task, wait for others to complete other part of
the task, and do a sync-up before advancing to complete the next part of the task. Table 14-4 lists important methods
in this class.

Chapter 14 ■ ConCurrenCy

445

Consider the example of processing a delivery order in a small coffee shop. Assume that there are only three
workers: a cook, a helper, and an attendant. To simplify the program logic, assume that each delivery order consists
of three food items. Completing a delivery order consists of preparing the three orders one after another. To complete
preparing a food item, all three workers—the cook, the helper, and the attendant—should do their part of the work.
Listing 14-5 shows how this situation can be implemented using the Phaser class.

Listing 14-5. ProcessOrder.java

import java.util.concurrent.*;

// ProcessOrder thread is the master thread overlooking to make sure that the Cook, Helper,
// and Attendant are doing their part of the work to complete preparing the food items
// and complete order delivery
// To simplify the logic, we assume that each delivery order consists of exactly three food items
class ProcessOrder {
 public static void main(String []args) throws InterruptedException {
 // the Phaser is the synchronizer to make food items one-by-one,
 // and deliver it before moving to the next item
 Phaser deliveryOrder = new Phaser(1);

Table 14-4. Important Methods in the Phaser class

Method Description

Phaser() Creates a Phaser object with no registered parties and no parents. The
initial phase is set to 0.

Phaser(int numThreads) Creates a Phaser object with a given number of threads (parties) to arrive
to advance to the next stage; the initial phase is set to 0.

int register() Adds a new thread (party) to this Phaser object. Returns the phase
current number. Throws an IllegalStateException if the maximum
supported parties are already registered.

int bulkRegister(int numThreads) Adds numThreads of unarrived parties to this Phaser object. Returns the
phase current number. Throws an IllegalStateException if maximum
supported parties are already registered.

int arrive() Arrives at this phase without waiting for other threads to arrive. Returns
the arrival phase number. Can throw an IllegalStateException.

int arriveAndDeregister() Same as the previous method, but also deregisters from the Phaser object.

int arriveAndAwaitAdvance() Arrive at this phase and waits (i.e., blocks) until other threads arrive.

int awaitAdvance(int phase) Waits (i.e., blocks) until this Phaser object advances to the given
phase value.

int getRegisteredParties() Returns the number of threads (parties) registered with this Phaser object.

int getArrivedParties() Returns the number of threads (parties) arrived at the current phase of
the Phaser object.

int getUnarrivedParties() Returns the number of threads (parties) that have not arrived when
compared to the registered parties at the current phase of the Phaser object.

Chapter 14 ■ ConCurrenCy

446

 System.out.println("Starting to process the delivery order ");

 new Worker(deliveryOrder, "Cook");
 new Worker(deliveryOrder, "Helper");
 new Worker(deliveryOrder, "Attendant");

 for(int i = 1; i <= 3; i++) {
 // Prepare, mix and deliver this food item
 deliveryOrder.arriveAndAwaitAdvance();
 System.out.println("Deliver food item no. " + i);
 }
 // work completed for this delivery order, so deregister
 deliveryOrder.arriveAndDeregister();
 System.out.println("Delivery order completed... give it to the customer");
 }
}

// The work could be a Cook, Helper, or Attendant. Though the three work independently, the
// should all synchronize their work together to do their part and complete preparing a food item
class Worker extends Thread {
 Phaser deliveryOrder;
 Worker(Phaser order, String name) {
 deliveryOrder = order;
 this.setName(name);
 deliveryOrder.register();
 start();
 }
 public void run() {
 for(int i = 1; i <= 3; i++) {
 System.out.println("\t" + getName() + " doing his work for order no. " + i);
 if(i == 3) {
 // work completed for this delivery order, so deregister
 deliveryOrder.arriveAndDeregister();
 } else {
 deliveryOrder.arriveAndAwaitAdvance();
 }
 try {
 Thread.sleep(3000); // simulate time for preparing the food item
 } catch(InterruptedException ie) {
 /* ignore exception */
 ie.printStackTrace();
 }
 }
 }
}

Chapter 14 ■ ConCurrenCy

447

The program prints the following:

Starting to process the delivery order
 Cook doing his work for order no. 1
 Attendant doing his work for order no. 1
 Helper doing his work for order no. 1
Deliver food item no. 1
 Helper doing his work for order no. 2
 Attendant doing his work for order no. 2
 Cook doing his work for order no. 2
Deliver food item no. 2
 Helper doing his work for order no. 3
 Cook doing his work for order no. 3
 Attendant doing his work for order no. 3
Deliver food item no. 3
Delivery order completed . . . give it to the customer

In this program, you create a Phaser object to support the synchronizing of three Worker thread objects. You
create a Phaser object by calling the default constructor of the Phaser object. When the Worker thread objects are
created, they register themselves to the Phaser object. Alternatively, you could have called

Phaser deliveryOrder = new Phaser(3); // for three parties (i.e., threads)

In this case, you would not need to call the register() method on the Phaser object in the Worker thread
constructor.

In this case, you’ve assumed that a delivery order consists of processing three food items, so the for loop runs
three times. For each iteration, you call deliveryOrder.arriveAndAwaitAdvance(). For this statement to proceed,
all the three parties (the Cook, Helper, and Attendant) have to complete their part of the work to prepare the food
item. You simulate “preparing food” by calling the sleep() method in the run method for these Worker threads. These
worker threads call deliveryOrder.arriveAndAwaitAdvance() for preparing each food item. As each food item is
prepared (i.e., each phase is completed), the work progresses to the next phase. Once three phases are complete, the
delivery order processing is complete and the program returns.

Concurrent Collections
The java.util.concurrent package provides a number of classes that are thread-safe equivalents of the ones
provided in the collections framework classes in the java.util package (see Table 14-5). For example,
java.util.concurrent.ConcurrentHashMap is a concurrent equivalent to java.util.HashMap. The main difference
between these two containers is that you need to explicitly synchronize insertions and deletions with HashMap,
whereas such synchronization is built into the ConcurrentHashMap. If you know how to use HashMap, you know
how to use ConcurrentHashMap implicitly. From the OCPJP 7 exam perspective, you only need to have an overall
understanding of the classes in Table 14-5, so we won’t delve into details on how to make use of these classes.

Chapter 14 ■ ConCurrenCy

448

Listings 14-6 and 14-7 show how a concurrent version differs from its non-concurrent version. Assume that you
have a PriorityQueue object shared by two threads. Assume that one thread inserts an element into the priority
queue, and the other thread removes an element. If the threads are scheduled such that the inserting an element
occurs before removing the element, there is no problem. However, if the first thread attempts to remove an element
before the second thread inserts an element, you get into trouble.

Listing 14-6. PriorityQueueExample.java

import java.util.*;

// Simple PriorityQueue example. Here, we create two threads in which one thread inserts an element,
// and another thread removes an element from the priority queue.
class PriorityQueueExample {
 public static void main(String []args) {
 final PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();
 // spawn a thread that removes an element from the priority queue

Table 14-5. Some Concurrent Collection Classes in the java.util.concurrent Package

Class/Interface Short Description

BlockingQueue This interface extends the Queue interface. In BlockingQueue, if the queue is empty,
it waits (i.e., blocks) for an element to be inserted, and if the queue is full, it waits
for an element to be removed from the queue.

ArrayBlockingQueue This class provides a fixed-sized array based implementation of the
BlockingQueue interface.

LinkedBlockingQueue This class provides a linked-list-based implementation of the BlockingQueue
interface.

DelayQueue This class implements BlockingQueue and consists of elements that are of type
Delayed. An element can be retrieved from this queue only after its delay period.

PriorityBlockingQueue Equivalent to java.util.PriorityQueue, but implements the BlockingQueue
interface.

SynchronousQueue This class implements BlockingQueue. In this container, each insert() by a thread
waits (blocks) for a corresponding remove() by another thread and vice versa.

LinkedBlockingDeque This class implements BlockingDeque where insert and remove operations could
block; uses a linked-list for implementation.

ConcurrentHashMap Analogous to Hashtable, but with safe concurrent access and updates.

ConcurrentSkipListMap Analogous to TreeMap, but provides safe concurrent access and updates.

ConcurrentSkipListSet Analogous to TreeSet, but provides safe concurrent access and updates.

CopyOnWriteArrayList Similar to ArrayList, but provides safe concurrent access. When the ArrayList is
updated, it creates a fresh copy of the underlying array.

CopyOnWriteArraySet A Set implementation, but provides safe concurrent access and is implemented
using CopyOnWriteArrayList. When the container is updated, it creates a fresh
copy of the underlying array.

Chapter 14 ■ ConCurrenCy

449

 new Thread() {
 public void run() {
 // Use remove() method in PriorityQueue to remove the element if available
 System.out.println("The removed element is: " + priorityQueue.remove());
 }
 }.start();
 // spawn a thread that inserts an element into the priority queue
 new Thread() {
 public void run() {
 // insert Integer value 10 as an entry into the priority queue
 priorityQueue.add(10);
 System.out.println("Successfully added an element to the queue ");
 }
 }.start();
 }
}

If you run this program, it throws an exception like this:

Exception in thread "Thread-0" java.util.NoSuchElementException
at java.util.AbstractQueue.remove(AbstractQueue.java:117)
at PriorityQueueExample$1.run(QueueExample.java:10)
Successfully added an element to the queue

This output indicates that the first thread attempted removing an element from an empty priority queue, and
hence it results in a NoSuchElementException.

However, consider a slight modification of this program (Listing 14-7) that uses a PriorityBlockingQueue
instead of PriorityQueue.

Listing 14-7. PriorityBlockingQueueExample.java

// Illustrates the use of PriorityBlockingQueue. In this case, if there is no element available in
the priority queue
// the thread calling take() method will block (i.e., wait) until another thread inserts an element

import java.util.concurrent.*;

class PriorityBlockingQueueExample {
 public static void main(String []args) {
 final PriorityBlockingQueue<Integer> priorityBlockingQueue
 = new PriorityBlockingQueue<>();
 new Thread() {
 public void run() {
 try {
 // use take() instead of remove()
 // note that take() blocks, whereas remove() doesn't block
 System.out.println("The removed element is: "
 + priorityBlockingQueue.take());
 } catch(InterruptedException ie) {
 // its safe to ignore this exception
 ie.printStackTrace();
 }
 }

Chapter 14 ■ ConCurrenCy

450

 }.start();
 new Thread() {
 public void run() {
 // add an element with value 10 to the priority queue
 priorityBlockingQueue.add(10);
 System.out.println("Successfully added an element to the queue ");
 }
 }.start();
 }
}

The program prints the following:

Successfully added an element to the queue
The removed element is: 10

This program will not result in a crash as in the previous case (Listing 14-6). This is because the take() method
will block until an element gets inserted by another thread; once inserted, the take() method will return that value.
In other words, if you’re using a PriorityQueue object, you need to synchronize the threads such that insertion of an
element always occurs before removing an element. However, in PriorityBlockingQueue, the order does not matter,
and no matter which operation (insertion or removal of an element) is invoked first, the program works correctly. In
this way, concurrent collections provide support for safe use of collections in the context of multiple threads without
the need for you to perform explicit synchronization operations.

Apply Atomic Variables and Locks
The java.util.concurrent package has two subpackages: java.util.concurrent.atomic and
java.util.concurrent.locks. In this section we discuss these two subpackages. Unlike the rest of this chapter,
which discusses high-level concurrency abstractions, both atomic variables and locks are low-level APIs. However,
they provide more fine-grained control when you want to write multithreaded code.

Atomic Variables
Have you seen code that acquires and releases locks for implementing primitive/simple operations like incrementing
a variable, decrementing a variable, and so on? Such acquiring and releasing of locks for such primitive operations is
not efficient. In such cases, Java provides an efficient alternative in the form of atomic variables.

Here is a list of some of the classes in this package and their short description:

•	 AtomicBoolean: Atomically updatable Boolean value.

•	 AtomicInteger: Atomically updatable int value; inherits from the Number class.

•	 AtomicIntegerArray: An int array in which elements can be updated atomically.

•	 AtomicLong: Atomically updatable long value; inherits from Number class.

•	 AtomicLongArray: A long array in which elements can be updated atomically.

•	 AtomicReference<V>: An atomically updatable object reference of type V.

•	 AtomicReferenceArray<E>: An atomically updatable array that can hold object references of
type E (E refers to be base type of elements).

Chapter 14 ■ ConCurrenCy

451

 only AtomicInteger and AtomicLong extend from Number class but not AtomicBoolean. all other
classes in the java.util.concurrent.atomic subpackage inherit directly from the Object class.

Of the classes in the java.util.concurrency.atomic subpackage, AtomicInteger and AtomicLong are the
most important. Table 14-6 lists important methods in the AtomicInteger class. (The methods in AtomicLong are
analogous to these.)

Table 14-6. Important Methods in the AtomicInteger Class

Method Description

AtomicInteger() Creates an instance of AtomicInteger with initial value 0.

AtomicInteger(int initVal) Creates an instance of AtomicInteger with initial value initVal.

int get() Returns the integer value held in this object.

void set(int newVal) Resets the integer value held in this object to newVal.

int getAndSet(int newValue) Returns the current int value held in this object and sets the value
held in this object to newVal.

boolean compareAndSet (int expect,
 int update)

Compares the int value of this object to the expect value, and if they
are equal, sets the int value of this object to the update value.

int getAndIncrement() Returns the current value of the integer value in this object and
increments the integer value in this object. Similar to the behavior
of i++ where i is an int.

int getAndDecrement() Returns the current value of the integer value in this object and
decrements the integer value in this object. Similar to the behavior
of i-- where i is an int.

int getAndAdd(int delta) Returns the integer value held in this object and adds given delta value
to the integer value.

int incrementAndGet() Increments the current value of the integer value in this object and
returns that value. Similar to the behavior of ++i where i is an int.

int decrementAndGet() Decrements the current integer value in this object and returns that
value. Similar to behavior of --i where i is an int.

int addAndGet(int delta) Adds the delta value to the current value of the integer in this object
and returns that value.

int intValue()
long longValue()
float floatValue()
doubleValue()

Casts the current int value of the object and returns it as int, long,
float, or double values.

Chapter 14 ■ ConCurrenCy

452

Let’s try out an example to understand how to use AtomicInteger or AtomicLong. Assume that you have a
counter value that is public and accessible by all threads. How do you update or access this common counter value
safely without introducing the data race problem (discussed in the previous chapter)? Obviously, you can use the
synchronized keyword to ensure that the critical section (the code that modifies the counter value) is accessed by
only one thread at a given point in time. The critical section will be very small, as in

public void run() {
 synchronized(SharedCounter.class) {
 SharedCounter.count++;
 }
}

However, this code is inefficient since it acquires and releases the lock every time just to increment the value of
count. Alternatively, if you declare count as AtomicInteger or AtomicLong (whichever is suitable), then there is no
need to use a lock with synchronized keyword. Listing 14-8 gives the full program to show how to use AtomicLong
in practice.

Listing 14-8. AtomicVariableTest.java

import java.util.concurrent.atomic.*;

// Class to demonstrate how incrementing "normal" (i.e., thread unsafe) integers and incrementing
// "atomic" (i.e., thread safe) integers are different: Incrementing a shared Integer object without
locks can result
// in a data race; however, incrementing a shared AtomicInteger will not result in a data race.

class AtomicVariableTest {
 // Create two integer objects – one normal and another atomic – with same initial value
 private static Integer integer = new Integer(0);
 private static AtomicInteger atomicInteger = new AtomicInteger(0);

 static class IntegerIncrementer extends Thread {
 public void run() {
 System.out.println("Incremented value of integer is: " + ++integer);
 }
 }
 static class AtomicIntegerIncrementer extends Thread {
 public void run() {
 System.out.println("Incremented value of atomic integer is: "
 + atomicInteger.incrementAndGet());
 }
 }
 public static void main(String []args) {
 // create three threads each for incrementing atomic and "normal" integers
 for(int i = 0; i < 5; i++) {
 new IntegerIncrementer().start();
 new AtomicIntegerIncrementer().start();
 }
 }
}

Chapter 14 ■ ConCurrenCy

453

The actual output depends on thread scheduling. In one run it printed the following:

Incremented value of atomic integer is: 1
Incremented value of integer is: 1
Incremented value of integer is: 1
Incremented value of atomic integer is: 2
Incremented value of integer is: 2
Incremented value of atomic integer is: 3
Incremented value of integer is: 3
Incremented value of integer is: 4
Incremented value of atomic integer is: 4
Incremented value of atomic integer is: 5

In this output, notice that incrementing the Integer object has resulted in a data race: the final value of Integer
after incrementing it 5 times (from initial value 0) is 4. For AtomicInteger, however, it is 5—which is correct.

Let’s analyze this program. The AtomicVariableTest has two data members—one of type Integer and the other
of type AtomicInteger—with same initial value.

There are two Thread classes. One class increments Integer value in its run() method, and the other increments
AtomicInteger in its run() method. In the main() method, you spawn five threads of these two kind of Threads. The
output shows that incrementing the Integer value is prone to a data race when it is without a lock, whereas it is safe to
increment the AtomicInteger value without any locks.

Locks
In the last chapter, we discussed the synchronized keyword and how it enforces that only one thread executes in a
critical section at a time. The java.util.concurrent.locks package provides facilities that are more sophisticated. In
this section, we will discuss the Lock interface.

Using a Lock object is similar to obtaining implicit locks using the synchronized keyword. The aim of both
constructs is the same: to ensure that only one thread accesses a shared resource at a time. However, unlike the
synchronized keyword, Locks also support the wait/notify mechanism along with its support for Condition objects.

 you can think of using synchronized for locking implicitly and using Lock objects for locking explicitly.

The advantage of using the synchronized keyword (implicit locking) is that you don’t have to remember to
release the lock in a finally block since, at the end of the synchronized block (or method), code will be generated
to automatically release the lock. Although this is a useful feature, there are some situations where you may need to
control the release of the lock manually (say, for releasing it other than at the end of that block), and Lock objects
provide this flexibility. However, it is your responsibility to ensure that you release the lock in a finally block while
using Lock objects. The following snippet describes the usage idiom for a Lock:

Lock lock = /* get Lock type instance */;
lock.lock();

Chapter 14 ■ ConCurrenCy

454

try {
 // critical section
}
finally {
 lock.unlock();
}

Another difference between implicit locks and explicit Lock objects is that you can do a “non-blocking attempt”
to acquire locks with Locks. Well, what does “non-blocking attempt” mean here? You get a lock if that lock is available
for locking, or you can back out from requesting the lock using the tryLock() method on a Lock object. Isn’t it
interesting? If you acquire the lock successfully, then you can carry out the task to be carried out in a critical section;
otherwise you execute an alternative action. It is noteworthy that an overloaded version of the tryLock() method
takes the timeout value as an argument so that you can wait to acquire the lock for the specified time.

tryLock(long time, TimeUnit unit).

With tryLock(), the idiom to use the Lock object is:

Lock lock = /* get Lock type instance */;
if(tryLock()) {
 try {
 // critical section
 }
 finally {
 lock.unlock();
 }
}
else {

}

Using tryLock() helps avoid some of the thread synchronization-related problems discussed in the last chapter,
such as deadlocks and livelocks. Table 14-7 lists important methods in the Lock class.

Table 14-7. Important Methods in the Lock Class

Method Description

void lock() Acquires the lock.

boolean tryLock() Acquires the lock and returns true if the lock is available; if the lock is not
available, it does not acquire the lock and returns false.

boolean tryLock(long time,
 TimeUnit unit)

Same as the previous method tryLock(), but waits for the given waiting
time before failing to acquire the lock and returns false.

void lockInterruptibly() Acquires a lock; during the process of a acquiring the lock, if another
thread interrupts it, this method throws an InterruptedException

Condition newCondition() Returns a Condition object associated with this Lock object.

void unlock() Releases the lock.

Chapter 14 ■ ConCurrenCy

455

Let’s look at an example of a Lock object. In this example, you use a Lock object and pass it to threads to
synchronize them on this Lock object. This program is a simple variation of the program using Semaphores given in
Listing 14-1. In Listing 14-9, you simulate accessing an ATM machine, which is a shared resource. Of course, only one
person can use an ATM machine at a time, hence the code for accessing the machine is a critical section.

Listing 14-9. ATMRoom.java

import java.util.concurrent.locks.*;

// This class simulates a situation where only one ATM machine is available and
// and five people are waiting to access the machine. Since only one person can
// access an ATM machine at a given time, others wait for their turn
class ATMMachine {
 public static void main(String []args) {
 // A person can use a machine again, and hence using a "reentrant lock"
 Lock machine = new ReentrantLock();

 // list of people waiting to access the machine
 new Person(machine, "Mickey");
 new Person(machine, "Donald");
 new Person(machine, "Tom");
 new Person(machine, "Jerry");
 new Person(machine, "Casper");
 }
}

// Each Person is an independent thread; their access to the common resource
// (the ATM machine in this case) needs to be synchronized using a lock
class Person extends Thread {
 private Lock machine;
 public Person(Lock machine, String name) {
 this.machine = machine;
 this.setName(name);
 this.start();
 }
 public void run() {
 try {
 System.out.println(getName() + " waiting to access an ATM machine");
 machine.lock();
 System.out.println(getName() + " is accessing an ATM machine");
 Thread.sleep(1000); // simulate the time required for withdrawing amount
 } catch(InterruptedException ie) {
 System.err.println(ie);
 }
 finally {
 System.out.println(getName() + " is done using the ATM machine");
 machine.unlock();
 }
 }
}

Chapter 14 ■ ConCurrenCy

456

Here is the output of this program:

Donald waiting to access an ATM machine
Jerry waiting to access an ATM machine
Tom waiting to access an ATM machine
Mickey waiting to access an ATM machine
Donald is accessing an ATM machine
Casper waiting to access an ATM machine
Donald is done using the ATM machine
Jerry is accessing an ATM machine
Jerry is done using the ATM machine
Tom is accessing an ATM machine
Tom is done using the ATM machine
Mickey is accessing an ATM machine
Mickey is done using the ATM machine
Casper is accessing an ATM machine
Casper is done using the ATM machine

As you can observe from the output, the machine is accessed by only one person at a time, though there may be
others waiting to access it. In this program, the class ATMMachine creates a Lock object representing an ATM machine.
There are five people waiting to access the machine, which is simulated by creating five instances of the Person class.
The Person class extends the Thread and remembers the Lock object on which it has to acquire and release the lock.

The run() method simply acquires the lock, accesses the shared resource, and releases the lock in a finally
block. The Lock object (machine variable here) ensures that only one thread accesses it at a given point in time. Other
threads block while one thread is accessing the lock.

Note that you may get a different order of people accessing the machine if you try running this program. This is
because the access order depends on how the scheduler in the JVM schedules the threads to run.

 the ReadWriteLock interface (which extends from the Lock interface) specifies a lock that provides
 separate locks for read-only access and write access. you can use the readLock() and writeLock()
 methods to get instances of read and write locks, respectively. the ReentrantReadWriteLock class
implements the ReadWriteLock interface.

Conditions
A Condition supports thread notification mechanism. When a certain condition is not satisfied, a thread can wait
for another thread to satisfy that condition; that other thread could notify once the condition is met. A condition is
bound to a lock. A Condition object offers three methods to support wait/notify pattern: await(), signal(), and
signalAll(). These three methods are analogous to the wait(), notify(), and notifyAll() methods supported by
the Object class.

A thread can wait for a condition to be true using the await() method, which is an interruptible blocking call. If
you want non-interruptible waiting, you can call awaitUninterruptibly(). You can also specify time duration for the
waiting using one of the overloaded methods:

•	 long awaitNanos(long nanosTimeout)

•	 boolean await(long time, TimeUnit unit)

•	 boolean awaitUntil(Date deadline)

Chapter 14 ■ ConCurrenCy

457

Now let’s look at an example that makes use of Condition objects. Assume that you’re waiting for a person
named Joe to come on train IC1122, which is from Madrid to Paris. When Joe’s train arrives at the station, he informs
you; you pick him up and go home.

Assuming that multiple trains can arrive at a railway station, you need to wait for a specific train to arrive. Once
the train arrives that you’re interested in, you get a “notification” or “signal” from that train. This scenario is a good
candidate for using the wait/notify pattern. There are two ways to implement this pattern. The first option is to use
implicit locks and make use of the wait() and notifyAll() methods in the Object class. The second option—shown
in Listing 14-10—is to use the explicit Lock and Condition objects and use the await() and signalAll() methods in
the Condition object.

Listing 14-10. RailwayStation.java

import java.util.concurrent.locks.*;

// This class simulates arrival of trains in a railway station.
class RailwayStation {
 // A common lock for synchronization
 private static Lock station = new ReentrantLock();
 // Condition to wait or notify the arrival of Joe in the station
 private static Condition joeArrival = station.newCondition();

 // Train class simulates arrival of trains independently
 static class Train extends Thread {
 public Train(String name) {
 this.setName(name);
 }
 public void run() {
 station.lock();
 try {
 System.out.println(getName() + ": I've arrived in station ");
 if(getName().startsWith("IC1122")) {
 // Joe is coming in train IC1122 - he announces it to us
 joeArrival.signalAll();
 }
 }
 finally {
 station.unlock();
 }
 }
 }

 // Our wait in the railway station for Joe is simulated by this thread. Once we get
notification from Joe
 // that he has arrived, we pick-him up and go home
 static class WaitForJoe extends Thread {
 public void run() {
 System.out.println("Waiting in the station for IC1122 in which Joe is coming");
 station.lock();
 try {
 // await Joe's train arrival
 joeArrival.await();

Chapter 14 ■ ConCurrenCy

458

 // if this statement executes, it means we got a train arrival signal
 System.out.println("Pick up Joe and go home");
 } catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 finally {
 station.unlock();
 }
 }
 }

 // first create a thread that waits for Joe to arrive and then create new Train threads
 public static void main(String []args) throws InterruptedException {
 // we are waiting before the trains start coming
 new WaitForJoe().start();
 // Trains are separate threads - they can arrive in any order
 new Train("IC1234 - Paris to Munich").start();
 new Train("IC2211 - Paris to Madrid").start();
 new Train("IC1122 - Madrid to Paris").start();
 new Train("IC4321 - Munich to Paris").start();
 }
}

Here is the output of this program:

Waiting in the station for IC1122 in which Joe is coming
IC1234 - Paris to Munich: I've arrived in station
IC1122 - Madrid to Paris: I've arrived in station
IC2211 - Paris to Madrid: I've arrived in station
Pick up Joe and go home
IC4321 - Munich to Paris: I've arrived in station

Let’s analyze how this program works. In the RailwayStation class you have a common Lock object named
station. From that station object, you obtain a Condition object (remember that a condition is always associated
with a lock) named joeArrival. You used the newCondition() method, so the resulting Condition object is an
interruptible condition; you have not specified any time-out, so the awaiting thread will wait forever until it gets
the signal.

The Train class is a Thread that simulates arrival of a train in the railway station. The run() method in Train first
obtains the lock before announcing that the train has arrived, and it releases before the method exits. Note that if you
call await() on the Condition object without acquiring a lock, you’ll get an IllegalMonitorStateException. In the
run() method, if the Train name is IC1122, it will signal us that Joe has arrived by calling joeArrival.signalAll();.

Your wait in the railway station for Joe is simulated by this WaitForJoe thread. In the run() method, you acquire
the lock and wait for the joeArrival condition to be signaled. Once you are notified (i.e., signaled) that he has arrived,
you pick him up and go home.

 In multithreading, a common need is to wait for a condition to be satisfied by one thread before another
thread can proceed. using polling (i.e., repeatedly checking for a condition using a while loop) is a bad
solution because this solution wastes Cpu cycles; further, it is also prone to data races. use guarded
blocks using wait/notify or await/signal instead.

Chapter 14 ■ ConCurrenCy

459

Multiple Conditions on a Lock
From the OCPJP 7 exam perspective, it is important to understand locks and conditions. So, we’ll discuss one
more detailed example that makes use of locks and conditions. In this program, we show how you can get multiple
Condition objects on a Lock object.

Assume that you are asked to implement a fixed-size queue with the size of the queue determined at the time of
thread creation. In a typical queue, if there are no elements in the queue and if the remove() method is called, it will
throw a NoSuchElementException (as you saw in Listing 14-6). However, in this case, you want the thread to block
until some other thread inserts an element. Similarly, if you try inserting in a queue that is already full, instead of
throwing IllegalStateException to indicate that it is not possible to insert any more elements, the thread should
block until an element is removed. In other words, you need to implement a simple blocking queue (see Listing 14-11).

Listing 14-11. BlockerQueue.java

import java.util.concurrent.locks.*;

// this implements a fixed size queue with size determined at the time of creation. I/ if remove()
is called
// when there are no elements, then the queue blocks (i.e., waits) until an element is inserted.
// If insert() is called when the queue is full, then the queue blocks until an element is removed

class BlockerQueue {
 // remember the max size of the queue
 private int size = 0;

 // array to store the elements in the queue
 private Object elements[];

 // pointer that points to the current element in the queue
 private int currPointer = 0;

 // internal lock used for synchronized access to the BlockerQueue
 private Lock internalLock = new ReentrantLock();

 // condition to wait for when queue is empty that makes use of the common lock
 private Condition empty = internalLock.newCondition();

 // condition to wait for when queue is full that makes use of the common lock
 private Condition full = internalLock.newCondition();

 public BlockerQueue(int size) {
 this.size = size;
 elements = new Object[size];
 }

 // remove an element if available; or if there are no elements in the queue,
 // await insertion of an element. Once an element is inserted, notify to any threads
 // waiting for insertion in a full queue
 public Object remove() {
 Object element = null;
 internalLock.lock();

Chapter 14 ■ ConCurrenCy

460

 try {
 if(currPointer == 0) {
 System.out.println("In remove(): no element to remove, so waiting
for insertion");
 // cannot remove - no elements in the queue;
 // so block until an element is inserted
 empty.await();
 // if control reaches here, that means some thread completed
 // calling insert(), so proceed to remove that element
 System.out.println("In remove(): got notification that an element has
got inserted");
 }
 // decrement the currPointer and then get the element
 element = elements[--currPointer];
 System.out.println("In remove(): removed the element " + element);

 // an element is removed, so there is space for insertion
 // so notify any threads waiting to insert
 full.signalAll();
 System.out.println("In remove(): signalled that there is space for insertion");
 } catch(InterruptedException ie) {
 ie.printStackTrace();
 } finally {
 internalLock.unlock();
 }
 return element;
 }

 // insert an element if there is space for insertion. if queue is full,
 // await for remove() to be called and get signal to proceed for insertion.
 // after insertion, signal any awaiting threads in case of an empty queue.
 public void insert(Object element) {
 internalLock.lock();
 try {
 if(currPointer == size) {
 System.out.println("In insert(): queue is full, so waiting for removal");
 // cannot insert - the queue is full;
 // so block until an element is removed
 full.await();
 // if control reaches here, that means some thread completed
 // calling remove(), so proceed to insert this element
 System.out.println("In insert(): got notification that remove got called,
so proceeding to insert the element");
 }
 // get the element and after that decrement the currPointer
 elements[currPointer++] = element;
 System.out.println("In insert(): inserted the element " + element);
 // an element is inserted, so any other threads can remove it...
 // so notify any threads waiting to remove
 empty.signalAll();
 System.out.println("In insert(): notified that queue is not empty");

Chapter 14 ■ ConCurrenCy

461

 } catch(InterruptedException ie) {
 ie.printStackTrace();
 } finally {
 internalLock.unlock();
 }
 }
}

Here is test code for this class:

class BlockerQueueTest1 {
 public static void main(String []args) {
 final BlockerQueue blockerQueue = new BlockerQueue(2);
 new Thread() {
 public void run() {
 System.out.println("Thread1: attempting to remove an item from the queue ");
 Object o = blockerQueue.remove();
 }
 }.start();

 new Thread() {
 public void run() {
 System.out.println("Thread2: attempting to insert an item to the queue");
 blockerQueue.insert("one");
 }
 }.start();
 }
}

This test code prints the following:

Thread1: attempting to remove an item from the queue
In remove(): no element to remove, so waiting for insertion
Thread2: attempting to insert an item to the queue
In insert(): inserted the element one
In insert(): notified that queue is not empty
In remove(): got notification that an element has got inserted
In remove(): removed the element one
In remove(): signalled that there is space for insertion

As you can see from the output, the remove() method got called first, which waits for insert() to be called. Once
insert() is complete, the remove() method successfully removes the element from the queue. Now, let’s try another
test case to test if blocking in the insert() method works:

class BlockerQueueTest2 {
 public static void main(String []args) {
 final BlockerQueue blockerQueue = new BlockerQueue(3);
 blockerQueue.insert("one");
 blockerQueue.insert("two");
 blockerQueue.insert("three");
 new Thread() {

Chapter 14 ■ ConCurrenCy

462

 public void run() {
 System.out.println("Thread2: attempting to insert an item to the queue");
 blockerQueue.insert("four");
 }
 }.start();

 new Thread() {
 public void run() {
 System.out.println("Thread1: attempting to remove an item from the queue ");
 Object o = blockerQueue.remove();
 }
 }.start();
 }
}

This test code prints the following:

In insert(): inserted the element one
In insert(): notified that queue is not empty
In insert(): inserted the element two
In insert(): notified that queue is not empty
In insert(): inserted the element three
In insert(): notified that queue is not empty
Thread2: attempting to insert an item to the queue
In insert(): queue is full, so waiting for removal
Thread1: attempting to remove an item from the queue
In remove(): removed the element three
In remove(): signalled that there is space for insertion
In insert(): got notification that remove got called, so proceeding to insert the element
In insert(): inserted the element four
In insert(): notified that queue is not empty

As you can see from the output, when a thread invokes insert on the full queue (you have specified the capacity
as 3 elements in this case), the thread blocks. Once another thread removed an element from the queue, the blocked
thread resumes and successfully inserts the element.

Use Executors and ThreadPools
You can directly create and manage threads in the application by creating Thread objects. However, if you want to
abstract away the low-level details of multi-threaded programming, you can make use of the Executor interface.

Figure 14-1 shows the important classes and interfaces in the Executor hierarchy. In this section, you’ll focus on
using the Executor interface, ExecutorService, and ThreadPools. We’ll cover ForkJoinPool in the next section, “Use
the Parallel Fork/Join Framework.”

Chapter 14 ■ ConCurrenCy

463

Executor
Executor is an interface that declares only one method: void execute(Runnable). This may not look like a big
interface by itself, but its derived classes (or interfaces), such as ExecutorService, ThreadPoolExecutor, and
ForkJoinPool, support useful functionality. We will discuss the derived classes of Executor in more detail in the rest
of this section. For now, look at Listing 14-12 for a simple example of the Executor interface to understand how to
implement this interface and use it in practice.

Listing 14-12. ExecutorTest.java

import java.util.concurrent.*;

// This Task class implements Runnable, so its a Thread object
class Task implements Runnable {
 public void run() {
 System.out.println("Calling Task.run() ");
 }
}

// This class implements Executor interface and should override execute(Runnable) method.
// We provide an overloaded execute method with an additional argument 'times' to create and
// run the threads for given number of times
class RepeatedExecutor implements Executor {
 public void execute(Runnable runnable) {
 new Thread(runnable).start();
 }

Executor
(Interface)

AbstractExecutorService
(abstract class)

ExecutorService
(Interface)

ScheduledThreadPoolExecutor

ThreadPoolExecutor ForkJoinPool

Figure 14-1. Important classes/interfaces in the Executor hierarchy

Chapter 14 ■ ConCurrenCy

464

 public void execute(Runnable runnable, int times) {
 System.out.printf("Calling Task.run() thro' Executor.execute() for %d times %n", times);
 for(int i = 0; i < times; i++) {
 execute(runnable);
 }
 }
}

// This class spawns a Task thread and explicitly calls start() method.
// It also shows how to execute a Thread using Executor
class ExecutorTest {
 public static void main(String []args) {
 Runnable runnable = new Task();
 System.out.println("Calling Task.run() by directly creating a Thread object");
 Thread thread = new Thread(runnable);
 thread.start();
 RepeatedExecutor executor = new RepeatedExecutor();
 executor.execute(runnable, 3);
 }
}

Here is the output of this program:

Calling Task.run() by directly creating a Thread object
Calling Task.run()
Calling Task.run() thro' Executor.execute() for 3 times
Calling Task.run()
Calling Task.run()
Calling Task.run()

In this program, you have a Task class that implements Runnable by providing the definition of the run()
method. The class RepeatedExecutor implements the Executor interface by providing the definition of the
execute(Runnable) method.

Both Runnable and Executor are similar in the sense that they provide a single method for implementation. In
this definition you may have noticed that Exectutor by itself is not a thread, and you must create a Thread object
to execute the Runnable object passed in the execute() method. However, the main difference between Runnable
and Exectutor is that Executor is meant to abstract how the thread is executed. For example, depending on the
implementation of Executor, Exectutor may schedule a thread to run at a certain time, or execute the thread after a
certain delay period.

In this program, you have overloaded the execute() method with an additional argument to create and execute
threads a certain number of times. In the main() method, you first create a Thread object and schedule it for running.
After that, you instantiate RepeatedExectutor to execute the thread three times.

Callable, Executors, ExecutorService, ThreadPool, and Future
Callable is an interface that declares only one method: call(). Its full signature is V call() throws Exception. It
represents a task that needs to be completed by a thread. Once the task completes, it returns a value. For some reason,
if the call() method cannot execute or fails, it throws an Exception.

To execute a task using the Callable object, you first create a thread pool. A thread pool is a collection of threads
that can execute tasks. You create a thread pool using the Executors utility class. This class provides methods to get
instances of thread pools, thread factories, etc.

Chapter 14 ■ ConCurrenCy

465

The ExecutorService interface implements the Executor interface and provides services such as termination of
threads and production of Future objects. Some tasks may take considerable execution time to complete. So, when
you submit a task to the executor service, you get a Future object.

Future represents objects that contain a value that is returned by a thread in the future (i.e., it returns the value
once the thread terminates in the “future”). You can use the isDone() method in the Future class to check if the task is
complete and then use the get() method to fetch the task result. If you call the get() method directly while the task is
not complete, the method blocks until it completes and returns the value once available.

Enough talking—try a simple example to see how these classes work together (Listing 14-13).

Listing 14-13. CallableTest.java

// Factorial implements Callable so that it can be passed to a ExecutorService
// and get executed as a task.
class Factorial implements Callable<Long> {
 long n;
 public Factorial(long n) {
 this.n = n;
 }
 public Long call() throws Exception {
 if(n <= 0) {
 throw new Exception("for finding factorial, N should be > 0");
 }
 long fact = 1;
 for(long longVal = 1; longVal <= n; longVal++) {
 fact *= longVal;
 }
 return fact;
 }
}

// Illustrates how Callable, Executors, ExecutorService, and Future are related;
// also shows how they work together to execute a task
class CallableTest {
 public static void main(String []args) throws Exception {
 // the value for which we want to find the factorial
 long N = 20;
 // get a callable task to be submitted to the executor service
 Callable<Long> task = new Factorial(N);
 // create an ExecutorService with a fixed thread pool consisting of one thread
 ExecutorService es = Executors.newSingleThreadExecutor();
 // submit the task to the executor service and store the Future object
 Future<Long> future = es.submit(task);
 // wait for the get() method that blocks until the computation is complete.
 System.out.printf("factorial of %d is %d", N, future.get());
 // done. shutdown the executor service since we don't need it anymore
 es.shutdown();
 }
}

The program prints the following:

factorial of 20 is 2432902008176640000

Chapter 14 ■ ConCurrenCy

466

In this program, you have a Factorial class that implements Callable. Since the task is to compute the
factorial of a number N, the task needs to return a result. You use Long type for the factorial value, so you implement
Callable<Long>. Inside the Factorial class, you define the call() method that actually performs the task (the task
here is to compute the factorial of the given number). If the given value N is negative or zero, you don’t perform the
task and throw an exception to the caller. Otherwise, you loop from 1 to N and find the factorial value.

In the CallableTest class, you first create an instance of the Factorial class. You then need to execute this task.
For the sake of simplicity, you get a singled-threaded executor by calling the newSingleThreadExecutor() method
in the Executors class. Note that you could use other methods such as newFixedThreadPool(nThreads) to create a
thread pool with multiple threads depending on the level of parallelism you need.

Once you get an ExecutorService, you submit the task for execution. ExecutorService abstracts details such
as when the task is executed, how the task is assigned to the threads, etc. You get a reference to Future<Long> when
you call the submit(task) method. From this future reference, you call the get() method to fetch the result after
completing the task. If the task is still executing when you call future.get(), this get() method will block until the
task execution completes. Once the execution is complete, you need to manually release the ExecutorService by
calling the shutdown() method.

Now that you are familiar with the basic mechanism of how to execute tasks, here’s a complex example. Assume
that your task is to find the sum of numbers from 1 to N where N is a large number (a million in our case). Of course,
you can use the formula [(N * (N + 1)) / 2] to find out the sum. Yes, you’ll make use of this formula to check if the
summation from 1 . . . N is correct or not. However, just for illustration, you’ll divide the range 1 to 1 million to N
sub-ranges and by spawn N threads to sum up numbers in that sub-range; see Listing 14-14.

Listing 14-14. SumOfN.java

import java.util.*;
import java.util.concurrent.*;

// We create a class SumOfN that sums the values from 1..N where N is a large number.
// We divide the task
// to sum the numbers to 10 threads (which is an arbitrary limit just for illustration).
// Once computation is complete, we add the results of all the threads,
// and check if the calculation is correct by using the formula (N * (N + 1))/2.
class SumOfN {
 private static long N = 1_000_000L; // one million
 private static long calculatedSum = 0; // value to hold the sum of values in range 1..N
 private static final int NUM_THREADS = 10; // number of threads to create for distributing the effort

 // This Callable object sums numbers in range from..to
 static class SumCalc implements Callable<Long> {
 long from, to, localSum = 0;

 public SumCalc(long from, long to) {
 this.from = from;
 this.to = to;
 }
 public Long call() {
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(long i = from; i <= to; i++) {
 localSum += i;
 }
 return localSum;
 }
 }

Chapter 14 ■ ConCurrenCy

467

 // In the main method we implement the logic to divide the summation tasks to
 // given number of threads and finally check if the calculated sum is correct
 public static void main(String []args) {
 // Divide the task among available fixed number of threads
 ExecutorService executorService = Executors.newFixedThreadPool(NUM_THREADS);
 // store the references to the Future objects in a List for summing up together
 List<Future<Long>> summationTasks = new ArrayList<>();
 long nByTen = N/10; // divide N by 10 so that it can be submitted as 10 tasks
 for(int i = 0; i < NUM_THREADS; i++) {
 // create a summation task
 // starting from (10 * 0) + 1 .. (N/10 * 1) to (10 * 9) + 1 .. (N/10 * 10)
 long fromInInnerRange = (nByTen * i) + 1;
 long toInInnerRange = nByTen * (i+1);
 System.out.printf("Spawning thread for summing in range %d to %d %n",
fromInInnerRange, toInInnerRange);
 // Create a callable object for the given summation range
 Callable<Long> summationTask =
 new SumCalc(fromInInnerRange, toInInnerRange);
 // submit that task to the executor service
 Future<Long> futureSum = executorService.submit(summationTask);
 // it will take time to complete, so add it to the list to revisit later
 summationTasks.add(futureSum);
 }

 // now, find the sum from each task
 for(Future<Long> partialSum : summationTasks) {
 try {
 // the get() method will block (i.e., wait) until the computation is over
 calculatedSum += partialSum.get();
 } catch(CancellationException | ExecutionException
 | InterruptedException exception) {
 // unlikely that you get an exception - exit in case something goes wrong
 exception.printStackTrace();
 System.exit(-1);
 }
 }

 // now calculate the sum using formula (N * (N + 1))/2 without doing the hard-work
 long formulaSum = (N * (N + 1))/2;
 // print the sum using formula and the ones calculated one by one
 // they must be equal!
 System.out.printf("Sum by threads = %d, sum using formula = %d",
 calculatedSum, formulaSum);
 }
}

Here is the output of this program:

Spawning thread for summing in range 1 to 100000
Spawning thread for summing in range 100001 to 200000
Spawning thread for summing in range 200001 to 300000
Spawning thread for summing in range 300001 to 400000

Chapter 14 ■ ConCurrenCy

468

Spawning thread for summing in range 400001 to 500000
Spawning thread for summing in range 500001 to 600000
Spawning thread for summing in range 600001 to 700000
Spawning thread for summing in range 700001 to 800000
Spawning thread for summing in range 800001 to 900000
Spawning thread for summing in range 900001 to 1000000
Sum by threads = 500000500000, sum using formula = 500000500000

Let’s now analyze how this program works. In this program, you need to find the sum of 1..N where N is one
million (a large number). The class SumCalc implements Callable<Long> to sum the values in the range from to
to. The call() method performs the actual computation of the sum by looping from from to to and returns the
intermediate sum value as a Long value.

In this program, you divide the summation task among multiple threads. You can determine the number of
threads based on the number of cores available in your processor; however, for the sake of keeping the program
simpler, use ten threads.

In the main() method, you create a ThreadPool with ten threads. You are going to create ten summation tasks, so
you need a container to hold the references to those tasks. Use ArrayList to hold the Future<Long> references.

In the first for loop in main(), you create ten tasks and submit them to the ExecutorService. As you submit a
task, you get a Future<Long> reference and you add it to the ArrayList.

Once you’ve created the ten tasks, you traverse the array list in the next for loop to get the results of the tasks. You
sum up the partial results of the individual tasks to compute the final sum.

Once you get the computed sum of values from one to one million, you use the simple formula N * (N + 1)/2
to find the formula sum. From the output, you can see that the computed sum and the formula sum are equal, so you
can ascertain that your logic of dividing the tasks and combining the results of the tasks worked correctly.

Now, before we move on to discuss the fork/join framework, we’ll quickly discuss a few classes that are useful for
concurrent programming.

ThreadFactory
ThreadFactory is an interface that is meant for creating threads instead of explicitly creating threads by calling new
Thread(). For example, assume that you often create high-priority threads. You can create a MaxPriorityThreadFactory
to set the default priority of threads created by that factory to maximum priority (see Listing 14-15).

Listing 14-15. TestThreadFactory.java

import java.util.concurrent.*;

// A ThreadFactory implementation that sets the thread priority to max
// for all the threads it creates
class MaxPriorityThreadFactory implements ThreadFactory {
 private static long count = 0;
 public Thread newThread(Runnable r) {
 Thread temp = new Thread(r);
 temp.setName("prioritythread" + count++);
 temp.setPriority(Thread.MAX_PRIORITY);
 return temp;
 }
}

Chapter 14 ■ ConCurrenCy

469

class ARunnable implements Runnable {
 public void run() {
 System.out.println("Running the created thread ");
 }
}

class TestThreadFactory {
 public static void main(String []args) {
 ThreadFactory threadFactory = new MaxPriorityThreadFactory();
 Thread t1 = threadFactory.newThread(new ARunnable());
 System.out.println("The name of the thread is " + t1.getName());
 System.out.println("The priority of the thread is " + t1.getPriority());
 t1.start();
 }
}

It prints the following:

The name of the thread is prioritythread0
The priority of the thread is 10
Running the created thread

With the use of ThreadFactory, you can reduce boilerplate code to set thread priority, name, thread-pool, etc.

The ThreadLocalRandom Class
When you do concurrent programming, you’ll find that there is often a need to generate random numbers.
Using Math.random() is not efficient for concurrent programming. For this reason, the java.util.concurrent
package introduces the ThreadLocalRandom class, which is suitable for use in concurrent programs. You can use
ThreadLocalRandom.current() and then call methods such as nextInt() and nextFloat() to generate the
random numbers.

TimeUnit Enumeration
You’ve already seen some methods earlier in this chapter that take TimeUnit as an argument. TimeUnit is an
enumeration that is used to specify the resolution of the timing. The unit of time in TimeUnit can be one of DAYS,
HOURS, MINUTES, SECONDS, MICROSECONDS, MILLISECONDS, or NANOSECONDS. The enumeration also has useful methods
for converting between these time units. For example,

System.out.printf("One day has %d hours, %d minutes, %d seconds",
 TimeUnit.DAYS.toHours(1), TimeUnit.DAYS.toMinutes(1), TimeUnit.DAYS.toSeconds(1));

prints

One day has 24 hours, 1440 minutes, 86400 seconds

Some of the methods in the Java API use specific periods. For example, the sleep() method takes time to sleep
in milliseconds. So, what if you want to specify the time for thread sleep in some other time unit, say seconds or days?
TimeUnit makes this task easy. See Listing 14-16 for an example.

Chapter 14 ■ ConCurrenCy

470

Listing 14-16. TimeUnitExample.java

import java.util.concurrent.TimeUnit;

// A simple example showing how to make use of TimeUnit enumeration
class TimeUnitExample {
 public static void main(String []args) throws InterruptedException {
 System.out.println("Calling sleep() method on main thread for 2 seconds");
 // Thread.sleep takes milli-seconds as argument. By using TimeUnit enumeration,
 // you can specify the time to sleep in other time units such as hours, minutes,
 // seconds, etc.
 Thread.sleep(TimeUnit.SECONDS.toMillis(2));
 System.out.println("main thread wakes up from sleep");
 }
}

Use the Parallel Fork/Join Framework
The Fork/Join framework in the java.util.concurrent package helps simplify writing parallelized code. The
framework is an implementation of the ExecutorService interface and provides an easy-to-use concurrent platform
in order to exploit multiple processors. This framework is very useful for modeling divide-and-conquer problems.
This approach is suitable for tasks that can be divided recursively and computed on a smaller scale; the computed
results are then combined. Dividing the task into smaller tasks is forking, and merging the results from the smaller
tasks is joining.

The Fork/Join framework uses the work-stealing algorithm: when a worker thread completes its work and is free,
it takes (or “steals”) work from other threads that are still busy doing some work. Initially, it will appear to you that
using Fork/Join is a complex task. Once you get familiar with it, however, you’ll realize that it is conceptually easy and
that it significantly simplifies your job. The key is to recursively subdivide the task into smaller chunks that can be
processed by separate threads.

Briefly, the Fork/Join algorithm is designed as follows:

forkJoinAlgorithm() {
 split tasks;
 fork the tasks;
 join the tasks;
 compose the results;
}

Here is the pseudo-code of how these steps work:

doRecursiveTask(input) {
 if (the task is small enough to be handled by a thread) {
 compute the small task;
 if there is a result to return, do so
 }
 else {
 divide (i.e., fork) the task into two parts
 call compute() on first task, join() on second task, combine both results and return
 }
}

Chapter 14 ■ ConCurrenCy

471

Figure 14-2 visualizes how the task is recursively subdivided into smaller tasks and how the partial results
are combined. As shown by the figure, a task is split into two subtasks, and then each subtask is again split in two
subtasks, and so on until each split subtask is computable by each thread. Once a thread completes the computation,
it returns the result for combining it with other results; in this way all the computed results are combined back.

Figure 14-2. How the Fork/Join framework uses divide-and-conquer to complete the task

Useful Classes of the Fork/Join Framework
The following classes play key roles in the Fork/Join framework: ForkJoinPool, ForkJoinTask, RecursiveTask, and
RecursiveAction. Let’s consider these classes in more detail.

•	 ForkJoinPool is the most important class in the Fork/Join framework. It is a thread pool
for running fork/join tasks—it executes an instance of ForkJoinTask. It executes tasks and
manages their lifecycle. Table 14-8 lists the important methods belonging to this abstract class.

Table 14-8. Important Methods in the ForkJoinPool Class

Method Description

void execute(ForkJoinTask<?> task) Executes a given task asynchronously.

<T> T invoke(ForkJoinTask<T> task) Executes the given task and returns the computed result.

<T> List<Future<T>>
invokeAll(Collection<? extends
 Callable<T>> tasks)

Executes all the given tasks and returns a list of future
objects when all the tasks are completed.

boolean isTerminated() Returns true if all the tasks are completed.

int getParallelism()

int getPoolSize()

long getStealCount()

Status checking methods.

int getActiveThreadCount()
<T> ForkJoinTask<T> submit(Callable<T> task)

<T> ForkJoinTask<T> submit(ForkJoinTask<T> task)

ForkJoinTask<?> submit(Runnable task)

<T> ForkJoinTask<T> submit(Runnable task, T result)

Executes a submitted task. Overloaded versions take
different types of tasks; returns a Task object or a
Future object.

Chapter 14 ■ ConCurrenCy

472

•	 ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines methods
such as fork() and join(). Table 14-9 lists the important methods of this class.

Table 14-9. Important Methods in the ForkJoinTask Class

Method Description

boolean cancel(boolean mayInterruptIfRunning) Attempts to cancel the execution of the task.

ForkJoinTask<V> fork() Executes the task asynchronously.

V join() Returns the result of the computation when the
computation is done.

V get() Returns the result of the computation; waits if the
computation is not complete.

V invoke()

static <T extends ForkJoinTask<?>>
Collection<T> invokeAll(Collection<T> tasks)

Starts the execution of the submitted tasks; waits until
computation complete, and returns results.

boolean isCancelled() Returns true if the task is cancelled.

boolean isDone() Returns true if the task is completed.

•	 RecursiveTask<V> is a task that can run in a ForkJoinPool; the compute() method returns a
value of type V. It inherits from ForkJoinTask.

•	 RecursiveAction is a task that can run in a ForkJoinPool; its compute() method performs the
actual computation steps in the task. It is similar to RecursiveTask, but does not return a value.

Using the Fork/Join Framework
Let’s ascertain how you can use Fork/Join framework in problem solving. Here are the steps to use the framework:

First, check whether the problem is suitable for the Fork/Join framework or not. Remember: •	
the Fork/Join framework is not suitable for all kinds of tasks. This framework is suitable if your
problem fits this description:

The problem can be designed as a recursive task where the task can be subdivided into •	
smaller units and the results can be combined together.

The subdivided tasks are independent and can be computed separately without the need •	
for communication between the tasks when computation is in process. (Of course, after
the computation is over, you will need to join them together.)

If the problem you want to solve can be modeled recursively, then define a task class that •	
extends either RecursiveTask or RecursiveAction. If a task returns a result, extend from
RecursiveTask; otherwise extend from RecursiveAction.

Override the •	 compute() method in the newly defined task class. The compute() method
actually performs the task if the task is small enough to be executed; or split the task into
subtasks and invoke them. The subtasks can be invoked either by invokeAll() or fork()
method (use fork() when the subtask returns a value). Use the join() method to get the
computed results (if you used fork() method earlier).

Chapter 14 ■ ConCurrenCy

473

Merge the results, if computed from the subtasks.•	

Then instantiate •	 ForkJoinPool, create an instance of the task class, and start the execution of
the task using the invoke() method on the ForkJoinPool instance.

That’s it—you are done.•	

Now let’s try solving the problem of how to sum 1..N where N is a large number. In Listing 14-16, you subdivided
the sum computation task iteratively into ten sub-ranges; then you computed the sum for each sub-range and then
computed the sum-of-the-partial sums. Alternatively, you can solve this problem rescursively using the Fork/Join
framework (Listing 14-17).

Listing 14-17. SumOfNUsingForkJoin.java

import java.util.concurrent.*;

// This class illustrates how we can compute sum of 1..N numbers using fork/join framework.
// The range of numbers are divided into half until the range can be handled by a thread.
// Once the range summation completes, the result gets summed up together.

class SumOfNUsingForkJoin {
 private static long N = 1000_000; // one million - we want to compute sum
 // from 1 .. one million
 private static final int NUM_THREADS = 10; // number of threads to create for
 // distributing the effort

 // This is the recursive implementation of the algorithm; inherit from RecursiveTask
 // instead of RecursiveAction since we're returning values.
 static class RecursiveSumOfN extends RecursiveTask<Long> {
 long from, to;
 // from and to are range of values to sum-up
 public RecursiveSumOfN(long from, long to) {
 this.from = from;
 this.to = to;
 }
 // the method performs fork and join to compute the sum.
 // if the range of values can be summed by a thread
 // (remember that we want to divide the summation task equally among NUM_THREADS)
 // then, sum the range of numbers from..to using a simple for loop
 // otherwise, fork the range and join the results
 public Long compute() {
 if((to - from) <= N/NUM_THREADS) {
 // the range is something that can be handled by a thread, so do summation
 long localSum = 0;
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(long i = from; i <= to; i++) {
 localSum += i;
 }
 System.out.printf("\t Summing of value range %d to %d is %d %n",
from,to, localSum);
 return localSum;
 }

Chapter 14 ■ ConCurrenCy

474

 else { // no, the range is big for a thread to handle, so fork the computation
 // we find the mid-point value in the range from..to
 long mid = (from + to)/2;
 System.out.printf("Forking computation into two ranges: " +
 "%d to %d and %d to %d %n", from, mid, mid, to);
 // determine the computation for first half with the range from..mid
 RecursiveSumOfN firstHalf = new RecursiveSumOfN(from, mid);
 // now, fork off that task
 firstHalf.fork();
 // determine the computation for second half with the range mid+1..to
 RecursiveSumOfN secondHalf = new RecursiveSumOfN(mid + 1, to);
 long resultSecond = secondHalf.compute();
 // now, wait for the first half of computing sum to
 // complete, once done, add it to the remaining part
 return firstHalf.join() + resultSecond;
 }
 }
 }

 public static void main(String []args) {
 // Create a fork-join pool that consists of NUM_THREADS
 ForkJoinPool pool = new ForkJoinPool(NUM_THREADS);
 // submit the computation task to the fork-join pool
 long computedSum = pool.invoke(new RecursiveSumOfN(0, N));
 // this is the formula sum for the range 1..N
 long formulaSum = (N * (N + 1)) / 2;
 // Compare the computed sum and the formula sum
 System.out.printf("Sum for range 1..%d; computed sum = %d, formula sum = %d %n", N,
computedSum, formulaSum);
 }
}

The program prints the following:

Forking computation into two ranges: 0 to 500000 and 500000 to 1000000
Forking computation into two ranges: 0 to 250000 and 250000 to 500000
Forking computation into two ranges: 0 to 125000 and 125000 to 250000
Forking computation into two ranges: 0 to 62500 and 62500 to 125000
 Summing of value range 0 to 62500 is 1953156250
 Summing of value range 62501 to 125000 is 5859406250
Forking computation into two ranges: 125001 to 187500 and 187500 to 250000
 Summing of value range 125001 to 187500 is 9765656250
 Summing of value range 187501 to 250000 is 13671906250
Forking computation into two ranges: 250001 to 375000 and 375000 to 500000
Forking computation into two ranges: 250001 to 312500 and 312500 to 375000
 Summing of value range 250001 to 312500 is 17578156250
 Summing of value range 312501 to 375000 is 21484406250
Forking computation into two ranges: 375001 to 437500 and 437500 to 500000
 Summing of value range 375001 to 437500 is 25390656250
 Summing of value range 437501 to 500000 is 29296906250
Forking computation into two ranges: 500001 to 750000 and 750000 to 1000000
Forking computation into two ranges: 500001 to 625000 and 625000 to 750000

Chapter 14 ■ ConCurrenCy

475

Forking computation into two ranges: 500001 to 562500 and 562500 to 625000
 Summing of value range 500001 to 562500 is 33203156250
 Summing of value range 562501 to 625000 is 37109406250
Forking computation into two ranges: 625001 to 687500 and 687500 to 750000
 Summing of value range 625001 to 687500 is 41015656250
 Summing of value range 687501 to 750000 is 44921906250
Forking computation into two ranges: 750001 to 875000 and 875000 to 1000000
Forking computation into two ranges: 750001 to 812500 and 812500 to 875000
 Summing of value range 750001 to 812500 is 48828156250
 Summing of value range 812501 to 875000 is 52734406250
Forking computation into two ranges: 875001 to 937500 and 937500 to 1000000
 Summing of value range 875001 to 937500 is 56640656250
 Summing of value range 937501 to 1000000 is 60546906250
Sum for range 1..1000000; computed sum = 500000500000, formula sum = 500000500000

Let’s analyze how this program works. In this program, you want to compute the sum of the values in the range
1..1,000,000. For the sake of simplicity, you decide to use ten threads to execute the tasks. The class RecursiveSumOfN
extends RecursiveTask<Long>. In RecursiveTask<Long>, you use <Long> because the sum of numbers in each
sub-range is a Long value. In addition, you chose RecursiveTask<Long> instead of plain RecursiveAction because
each subtask returns a value. If the subtask does not return a value, you can use RecursiveAction instead.

In the compute() method, you decide whether to compute the sum for the range or subdivide the task further
using following condition:

(to - from) <= N/NUM_THREADS)

You use this “threshold” value in this computation. In other words, if the range of values is within the threshold
that can be handled by a task, then you perform the computation; otherwise you recursively divide the task into two
parts. You use a simple for loop to find the sum of the values in that range. In the other case, you divide the range
similarly to how you divide the range in a binary search algorithm: for the range from .. to, you find the mid-point
and create two sub-ranges from .. mid and mid + 1 .. to. Once you call fork(), you wait for the first task to
complete the computation of the sum and spawn another task for the second half of the computation.

In the main() method, you create a ForkJoinPool with number of threads given by NUM_THREADS. You submit
the task to the fork/join pool and get the computed sum for 1..1,000,000. Now you also calculate the sum using the
formula to sum N continuous numbers.

From the output of the program, you can observe how the task got subdivided into subtasks. You can also verify
from the output that the computed sum and sum computed from the formula are the same, indicating that your
division of tasks for summing the sub-ranges is correct.

In this program, you arbitrarily assumed the number of threads to use was ten threads. This was to simplify the
logic of this program. A better approach to decide the threshold value is to divide the data size length by the number
of available processors. In other words,

 threshold value = (data length size) / (number of available processors);

How do you programmatically get the number of available processors? For that you can use the method
Runtime.getRuntime().availableProcessors()).

In Listing 14-17, you used RecursiveTask; however, if a task is not returning a value, then you should use
RecursiveAction. Let’s implement a search program using RecursiveAction. Assume that you have a big array (say
of 10,000 items) and you want to search a key item. You can use the Fork/Join framework to split the task into several
subtasks and execute them in parallel. Listing 14-18 contains the program implementing the solution.

Chapter 14 ■ ConCurrenCy

476

Listing 14-18. SearchUsingForkJoin.java

import java.util.concurrent.*;

//This class illustrates how we can search a key within N numbers using fork/join framework
// (using RecursiveAction).
//The range of numbers are divided into half until the range can be handled by a thread.
class SearchUsingForkJoin {
 private static int N = 10000;
 private static final int NUM_THREADS = 10; // number of threads to create for
 // distributing the effort
 private static int searchKey= 100;
 private static int[] arrayToSearch;

 // This is the recursive implementation of the algorithm;
 // inherit from RecursiveAction
 static class SearchTask extends RecursiveAction {
 private static final long serialVersionUID = 1L;
 int from, to;
 // from and to are range of values to search
 public SearchTask(int from, int to) {
 this.from = from;
 this.to = to;
 }

 public void compute() {
 //If the range is smaller enough to be handled by a thread,
 //we search in the range
 if((to - from) <= N/NUM_THREADS) {
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(int i = from; i <= to; i++) {
 if(arrayToSearch[i] == searchKey)
 System.out.println("Search key found at index:" +i);
 }
 }
 else {
 // no, the range is big for a thread to handle,
 // so fork the computation
 // we find the mid-point value in the range from..to
 int mid = (from + to)/2;
 System.out.printf("Forking computation into two ranges: " +
"%d to %d and %d to %d %n", from, mid, mid, to);
 //invoke all the subtasks
 invokeAll(new SearchTask(from, mid),new SearchTask(mid + 1, to));
 }
 }
 }

Chapter 14 ■ ConCurrenCy

477

 public static void main(String []args) {
 //intantiate the array to be searched
 arrayToSearch = new int[N];
 //fill the array with random numbers
 for(int i=0; i<N; i++){
 arrayToSearch[i] = ThreadLocalRandom.current().nextInt(0,1000);
 }
 // Create a fork-join pool that consists of NUM_THREADS
 ForkJoinPool pool = new ForkJoinPool(NUM_THREADS);
 // submit the computation task to the fork-join pool
 pool.invoke(new SearchTask(0, N-1));
 }
}

The program prints the following output (which might be different from run to run):

Forking computation into two ranges: 0 to 4999 and 4999 to 9999
Forking computation into two ranges: 0 to 2499 and 2499 to 4999
Forking computation into two ranges: 5000 to 7499 and 7499 to 9999
Forking computation into two ranges: 2500 to 3749 and 3749 to 4999
Forking computation into two ranges: 0 to 1249 and 1249 to 2499
Forking computation into two ranges: 2500 to 3124 and 3124 to 3749
Forking computation into two ranges: 7500 to 8749 and 8749 to 9999
Forking computation into two ranges: 5000 to 6249 and 6249 to 7499
Forking computation into two ranges: 8750 to 9374 and 9374 to 9999
Forking computation into two ranges: 5000 to 5624 and 5624 to 6249
Forking computation into two ranges: 7500 to 8124 and 8124 to 8749
Forking computation into two ranges: 3750 to 4374 and 4374 to 4999
Search key found at index:4736
Search key found at index:2591
Forking computation into two ranges: 1250 to 1874 and 1874 to 2499
Search key found at index:1315
Forking computation into two ranges: 0 to 624 and 624 to 1249
Search key found at index:445
Search key found at index:9402
Search key found at index:9146
Forking computation into two ranges: 6250 to 6874 and 6874 to 7499
Search key found at index:6797
Search key found at index:7049
Search key found at index:862

The key difference between Listings 14-14 and 14-15 is that you used RecursiveAction in the latter instead of
RecursiveTask. You made several changes to extend the task class from RecursiveAction. The first change is that
the compute() method is not returning anything. Another change is that you used the invokeAll() method to submit
the subtasks to execute. Another obvious change is that you carried out search in the compute() method instead of
summation in earlier case. Apart from these changes, the program in Listing 14-17 works much like the program in
Listing 14-18.

Chapter 14 ■ ConCurrenCy

478

Points to Remember
Remember these points for your exam:

It is possible to achieve what the Fork/Join framework offers using basic concurrency •	
constructs such as start() and join(). However, the Fork/Join framework abstracts many
lower-level details and thus is easier to use. In addition, it is much more efficient to use
the Fork/Join framework instead handling the threads at lower levels. Furthermore, using
ForkJoinPool efficiently manages the threads and performs much better than conventional
threads pools. For all these reasons, you are encouraged to use the Fork/Join framework.

Each •	 worker thread in the Fork/Join framework has a work queue, which is implemented
using a Deque. Each time a new task (or subtask) is created, it is pushed to the head of its
own queue. When a task completes a task and executes a join with another task that is not
completed yet, it works smart. The thread pops a new task from the head of its queue and
starts executing rather than sleeping (in order to wait for another task to complete). In fact,
if the queue of a thread is empty, then the thread pops a task from the tail of the queue
belonging to another thread. This is nothing but a work-stealing algorithm.

It looks obvious to call •	 fork() for both the subtasks (if you are splitting in two subtasks) and
call join() two times. It is correct—but inefficient. Why? Well, basically you are creating more
parallel tasks than are useful. In this case, the original thread will be waiting for the other
two tasks to complete, which is inefficient considering task creation cost. That is why you call
fork() once and call compute() for the second task.

The placement of •	 fork() and join() calls are very important. For instance, let’s assume that
you place the calls in following order:

first.fork();
resultFirst = first.join();
resultSecond = second.compute();

This usage is a serial execution of two tasks, since the second task starts executing only after the first is
complete. Thus, it is less efficient even than its sequential version since this version also includes cost of
the task creation. The take-away: watch your placement of fork/join calls.

Performance is not always guaranteed while using the Fork/Join framework. One of the •	
reasons we mentioned earlier is the placement of fork/join calls.

Question time!

1. Consider the following program:

import java.util.concurrent.atomic.*;

class AtomicIntegerTest {
 static AtomicInteger ai = new AtomicInteger(10);
 public static void check() {
 assert (ai.intValue() % 2) == 0;
 }
 public static void increment() {
 ai.incrementAndGet();
 }

Chapter 14 ■ ConCurrenCy

479

 public static void decrement() {
 ai.getAndDecrement();
 }
 public static void compare() {
 ai.compareAndSet(10, 11);
 }
 public static void main(String []args) {
 increment();
 decrement();
 compare();
 check();
 System.out.println(ai);
 }

}

the program is invoked as follows:

java -ea AtomicIntegerTest

What is the expected output of this program?

a. It prints 11.

B. It prints 10.

C. It prints 9.

D. It crashes throwing an AssertionError.

Answer:

D. It crashes throwing an AssertionError.

(the initial value of AtomicInteger is 10. Its value is incremented by 1 after calling
incrementAndGet(). after that, its value is decremented by 1 after calling
getAndDecrement(). the method compareAndSet(10, 11) checks if the current value
is 10, and if so sets the atomic integer variable to value 11. Since the assert statement
checks if the atomic integer value % 2 is zero (that is, checks if it is an even number),
the assert fails and the program results in an AssertionError.)

2. Which one of the following options correctly makes use of Callable that will compile
without any errors?

a. import java.util.concurrent.Callable;

 class CallableTask implements Callable {
 public int call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

Chapter 14 ■ ConCurrenCy

480

B. import java.util.concurrent.Callable;

 class CallableTask extends Callable {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

C. import java.util.concurrent.Callable;

 class CallableTask implements Callable<Integer> {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

D. import java.util.concurrent.Callable;

 class CallableTask implements Callable<Integer> {
 public void call(Integer i) {
 System.out.println("In Callable.call(i)");
 }
 }

Answer:

C. import java.util.concurrent.Callable;

 class CallableTask implements Callable<Integer> {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

(the Callable interface is defined as follows:

public interface Callable<V> {
 V call() throws Exception;
}

In option a), the call() method has the return type int, which is incompatible with the
return type expected for overriding the call method and so will not compile.

In option B), the extends keyword is used, which will result in a compiler (since
Callable is an interface, the implements keyword should be used).

option C) correctly defines the Callable interface providing the type parameter
<Integer>. the same type parameter Integer is also used in the return type of the
call() method that takes no arguments, so it will compile without errors.

Chapter 14 ■ ConCurrenCy

481

In option D), the return type of call() is void and the call() method also takes a
parameter of type Integer. hence, the method declared in the interface Integer call()
remains unimplemented in the CallableTask class and so the program will not compile.)

3. Which one of the following methods return a Future object?

a. the overloaded replace() methods declared in the ConcurrentMap interface

B. the newThread() method declared in the ThreadFactory interface

C. the overloaded submit() methods declared in the ExecutorService interface

D. the call() method declared in the Callable interface

Answer:

C. the overloaded submit() methods declared in ExecutorService interface

option a) the overloaded replace() methods declared in the ConcurrentMap interface
remove an element from the map and return the success status (a Boolean value) or the
removed value.

option B) the newThread() is the only method declared in the ThreadFactory interface
and it returns a Thread object as the return value.

option C) the ExecutorService interface has overloaded submit() method that takes a
task for execution and returns a Future representing the pending results of the task.

option D) the call() method declared in Callable interface returns the result of the task
it executed.)

4. you’re writing an application that generates random numbers in the range 0 to 100.
you want to create these random numbers for use in multiple threads as well as in
ForkJoinTasks. Which one of the following options will you use for less contention
(i.e., efficient solution)?

a. int randomInt = ThreadSafeRandom.current().nextInt(0, 100);

B. int randomInt = ThreadLocalRandom.current().nextInt(0, 101);

C. int randomInt = new Random(seedInt).nextInt(101);

D. int randomInt = new Random().nextInt() % 100;

Answer:

B. int randomInt = ThreadLocalRandom.current().nextInt(0, 101);

(ThreadLocalRandom is a random number generator that is specific to a thread. From apI
documentation of this class: “use of the ThreadLocalRandom rather than shared random
objects in concurrent programs will typically encounter much less overhead and contention.”

the method "int nextInt(int least, int bound)" in the ThreadLocalRandom class
returns a pseudo-random number that is uniformly distributed between the given
least value and the bound value. note that the value in parameter least is inclusive of
that value and the bound value is exclusive. So, the call nextInt(0, 101) returns
pseudo-random integers in the range 0 to 100.)

Chapter 14 ■ ConCurrenCy

482

5. In your application, there is a producer component that keeps adding new items to a
fixed-size queue; the consumer component fetches items from that queue. If the queue is
full, the producer has to wait for items to be fetched; if the queue is empty, the consumer
has to wait for items to be added.

Which one of the following utilities is suitable for synchronizing the common queue for
concurrent use by a producer and consumer?

a. RecursiveAction

B. ForkJoinPool

C. Future

D. Semaphore

e. TimeUnit

Answer:

D. Semaphore

(the question is a classic producer–consumer problem that can be solved by using
semaphores. the objects of the synchronizer class java.util.concurrent.Semaphore
can be used to guard the common queue so that the producer and consumer can
synchronize their access to the queue. of the given options, semaphore is the only
synchronizer; other options are unrelated to providing synchronized access to a queue.

option a) RecursiveAction supports recursive ForkJoinTask, and option B)
ForkJoinPool provides help in running a ForkJoinTask in the context of the Fork/Join
framework. option C) Future represents the result of an asynchronous computation
whose result will be “available in the future once the computation is complete.” option e)
TimeUnit is an enumeration that provides support for different time units such as
milliseconds, seconds, and days.)

Summary
Using java.util.concurrent Collections

A semaphore controls access to shared resources. A semaphore maintains a counter to specify •	
number of resources that the semaphore controls.

•	 CountDownLatch allows one or more threads to wait for a countdown to complete.

The •	 Exchanger class is meant for exchanging data between two threads. This class is useful
when two threads need to synchronize between each other and continuously exchange data.

•	 CyclicBarrier helps provide a synchronization point where threads may need to wait at a
predefined execution point until all other threads reach that point.

•	 Phaser is a useful feature when few independent threads have to work in phases to complete a task.

Chapter 14 ■ ConCurrenCy

483

Applying Atomic Variables and Locks

Java provides an efficient alternative in the form of atomic variables where one needs to •	
acquire and release a lock just to carry out primitive operations on variables.

A lock ensures that only one thread accesses a shared resource at a time.•	

A •	 Condition supports thread notification mechanism. When a certain condition is not
satisfied, a thread can wait for another thread to satisfy that condition; that other thread could
notify once the condition is met.

Using Executors and ThreadPools

The •	 Executors hierarchy abstracts the lower-level details of multi-threaded programming and
offers high-level user-friendly concurrency constructs.

The •	 Callable interface represents a task that needs to be completed by a thread. Once the
task completes, the call() method of a Callable implementation returns a value.

A thread pool is a collection of threads that can execute tasks.•	

•	 Future represents objects that contain a value that is returned by a thread in the future.

•	 ThreadFactory is an interface that is meant for creating threads instead of explicitly creating
threads by calling a new Thread().

Using the Parallel Fork/Join Framework

The Fork/Join framework is a portable means of executing a program with decent parallelism.•	

The framework is an implementation of the •	 ExecutorService interface and provides an
easy-to-use concurrent platform in order to exploit multiple processors.

This framework is very useful for modeling divide-and-conquer problems.•	

The Fork/Join framework uses the work-stealing algorithm: when a worker thread completes •	
its work and is free, it takes (or “steals”) work from other threads that are still busy doing
some work.

The work-stealing technique results in decent load balancing thread management with •	
minimal synchronization cost.

•	 ForkJoinPool is the most important class in the Fork/Join framework. It is a thread pool
for running fork/join tasks—it executes an instance of ForkJoinTask. It executes tasks and
manages their lifecycles.

•	 ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines methods
such as fork() and join().

485

Chapter 15

OCPJP 7 Quick Refresher

This chapter provides a quick summary to important points to remember from the OCPJP 7 exam perspective.
A summarized list of exam tips is also compiled to help you prepare for the exam. Read this chapter the day
before taking the exam. Good luck!

exam tips

Most questions in the OCPJP 7 exam are about predicting the behavior of the program. In •	
our experience taking the exam, we found that if we read the question and immediately
start looking at the answers, the answers confused us in many cases (leading us
to selecting the wrong answer!). To avoid this confusion, we suggest an alternative
approach: first understand the question and arrive at an answer, and then check the
options to see if there is a matching answer. This is especially important for questions
related to pattern matching (in regex, glob, etc.); if you look at the answers first, they can
often mislead you to choosing the wrong answer!

Questions in the OCPJP 7 exam clearly mention the number of correct options that you •	
should select for a given question. The exam software will not warn you if you choose
only one option for a question that requires selecting multiple answers and vice versa.
So, beware of this pitfall, and ensure that you select only the exact number of answers as
explicitly mentioned for each question.

While taking the OCPJP 7 exam, you can mark the question to revisit later if you’re not sure •	
of the answer. The exam software provides a check box at the top right side of the screen.

There are many questions in the exam that are long or time-consuming. If you’re taking •	
too long to read or answer a particular question, mark it for revisiting later.

Many of the questions ask you to predict the behavior of a program, and most of the •	
options will provide possible output with one of the options mentioning that the prgoram
will result in a compiler error (without giving the specific compiler error). It is a common
mistake to be “optimistic” and assume that the program will compile without errors! For
example, you know that you will get a compiler error if you try to instantiate an abstract
class; however, in a question that presents you a 20-25 lines program, it is easy to miss
an attempt to instantiate an abstract class if you directly look at the list of answers. To
avoid this pitfall, we recommend that you first look for possible compiler errors in the
program before checking other options relating to the output of the program.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

486

Look out for potential exceptions that the program can throw before looking •	
at the answers. For example, check if the program could result in an
IllegalThreadStateException for the program relating to thread state transition.
Similarly, programs that perform downcasts without checking the type first can result in
a ClassCastException. Yes, it is obvious, but in our experience in taking the exam, we
found that it was easy to miss out on such common runtime exceptions when answering
the questions.

There are many aPIs in which arguments are passed to specify the range. For example, •	
the subpath(int beginIndex, int endIndex) method in the Path interface takes
beginIndex and endIndex as arguments. In this case, note that beginIndex is the index
of the first name element, inclusive of itself, and endIndex is the index of the last name
element, exclusive of itself. In other words, in most Java aPIs methods that specify a
range (such as the nextInt() method in Random), the first argument is inclusive and the
second argument is exclusive. When answering a question whose answer depends on the
range, and when you don’t know if the arguments are inclusive or not, an educated guess
would be to treat the first argument as inclusive and the second argument as exclusive!

In questions involving assertions, the question will mention if assertions are enabled or •	
disabled by mentioning if the –ea or –da option is passed in the command line (if it is not
explicitly mentioned, remember that the assertions are disabled in a program by default).
answer questions about the behavior of the program, keeping in mind whether assertions
are enabled or disabled.

For questions relating to passing null to aPIs, do not always assume that the aPI will •	
throw a NullPointerException. For example, the add() method in ArrayList accepts
null arguments and does not throw a NullPointerException. In general, while reviewing
the behavior of methods in the Java library, give a special attention to the corner cases
and the exceptions that the methods can throw.

While reviewing aPIs, understand the differences between similar looking classes •	
or methods (for example, similarities and differences between the Comparable and
Comparator interfaces).

When predicting the output of the programs relating to threads and concurrency, give •	
special attention to how thread scheduling and thread interleaving can affect the output.

When taking the exam, you may be given an erasable scribble board. You may find it •	
handy for answering certain kinds of questions. For example, we recommend that you to
quickly draw the class relationships on the board for selecting the correct option(s) for
questions relating to class relationships (such as is-a and has-a relationships).

Chapter 3: Java Class Design
You cannot access the •	 private methods of the base class in the derived class.

You can access the •	 protected method from a class in the same package (just like package
private or default) as well as a derived class (even belonging to another package).

You can have •	 overloaded constructors. You can call a constructor of the same class in another
constructor using the this keyword.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

487

•	 Inheritance is also called an is-a relationship.

In •	 overriding, the name of the method, number of arguments, types of arguments, and return
type should match exactly (however, in covariant return types, you can provide the derived
class of the return type in the overriding method).

You cannot overload methods that differ in return types alone. Similarly, you cannot overload •	
methods that differ in exception specifications alone.

For an overload resolution to succeed, you need to define methods such that the compiler •	
finds one exact match. If the compiler finds no matches for your call or finds more than one
match, the overload resolution fails and the compiler issues an error.

Overloading is an example of •	 static polymorphism (early binding) while overriding is an
example of dynamic polymorphism (late binding).

You don’t need to do an explicit cast to perform an •	 upcast. An upcast will always succeed.

You need to do an explicit cast to perform a •	 downcast. A downcast may fail. You can use the
instanceof operator to see if a downcast is valid.

A static import only imports static members of the specified package or class.•	

Chapter 4: Advanced Class Design
The •	 abstract keyword can be applied to a class or a method but not to a field.

An abstract class cannot be instantiated. You can, however, create reference variables of an •	
abstract class type.

An abstract class can extend another abstract class or can implement an interface. Further, •	
an abstract class can be derived from a concrete class (though it is not a good practice)!

An abstract class need not declare an abstract method, which means it is not necessary for •	
an abstract class to have methods declared as abstract. However, if a class has an abstract
method, it should be declared as an abstract class.

A concrete subclass of an abstract class needs to provide implementation of all the abstract •	
methods it inherits; otherwise you need to declare that subclass as an abstract class.

An abstract class may have methods or fields declared static. A final class is a non-inheritable •	
class (i.e., you cannot inherit from a final class).

A final method is a non-overridable method (i.e., subclasses cannot override a final method).•	

All methods of a final class are implicitly final (i.e., non-overridable).•	

A final variable must be initialized. If it’s not initialized when it is declared, it must be •	
initialized in all the constructors. Also, a final variable can be assigned only once.

The keyword •	 final can be used for parameters. The value of a final parameter cannot be
changed once assigned. Here, it is important to note that the value is implicitly understood
for primitive types. However, the value for an object refers to the object reference, not its state.
Therefore, you can change the internal state of the passed final object, but you cannot change
the reference itself.

All static members do not require an instance of its class to call/access them. You can directly •	
call/access them using the class name.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

488

A static member can call/access only a static member of its own class.•	

A static method cannot use the •	 this or super keyword in its body.

Java supports four types of nested classes: static nested classes, inner classes, local inner •	
classes, and anonymous inner classes.

Static nested classes may have static members, whereas the other flavors of nested classes may not.•	

Static nested classes and inner classes can access members of an outer class (even private •	
members). However, static nested classes can access only static members of the outer class.

Local classes (both local inner classes and anonymous inner classes) can access all variables •	
declared in the outer scope (whether a method, constructor, or a statement block).

You cannot use •	 new with enums, even inside the enum definition.

•	 Enums are implicitly declared public, static, and final, which means you cannot extend them.

When you define an enumeration, it implicitly inherits from •	 java.lang.Enum. Internally,
enumerations are converted to classes. Further, enumeration constants are instances of the
enumeration class for which the enumeration constants are declared as members.

If you declare an •	 enum within a class, then it is by default static.

You can compare two enumerations for equality using the •	 == operator. When an enumeration
constant’s toString() method is invoked, it prints the name of the enumeration constant.

Chapter 5: Object-Oriented Design Principles
An interface can extend another interface. Use the •	 extends (and not the implements) keyword
for this.

All methods declared in an interface are implicitly considered to be abstract.•	

Interfaces cannot contain instance variables. If you declare a data member in an interface, •	
it should be initialized, and all such data members are implicitly treated as public static
final members.

An interface cannot declare static methods. It can only declare instance methods.•	

You cannot declare members as •	 protected or private in an interface. Only public access is
allowed for members of an interface.

All methods declared in an interface are implicitly considered to be abstract. You can, •	
however, explicitly use the abstract qualifier for the method.

An interface can be declared with an empty body (i.e., an interface without any members; •	
these interfaces are known as tagging interfaces or marker interfaces). Such interfaces are
useful for defining a common parent, so that runtime polymorphism can be used. For
example, java.util defines the interface EventListener without a body.

An interface can be declared within another interface or class. Such interfaces are known as •	
nested interfaces.

Unlike top-level interfaces that can have only public or default access, a nested interface can •	
be declared as public, protected, or private.

Inheritance implies is-a, interface implies is-like-a, and composition implies has-a •	
relationships.

f

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

489

Favor composition over inheritance wherever feasible.•	

The •	 Singleton design pattern ensures that only one instance of the class is created.

Making sure that an intended singleton implementation is indeed singleton is a non-trivial •	
task, especially in a multi-threaded environment.

The factory design pattern “manufactures” the required type of product on demand.•	

You should consider using the abstract factory design pattern when you have a family of •	
objects to be created.

A •	 DAO design pattern essentially separates your core business logic from your persistence logic.

In a •	 DAO pattern, you may also employ the abstract factory design pattern if you have multiple
DAO objects and you have multiple persistence mechanisms.

Chapter 6: Generics and Collections
Generics will ensure that any attempts to mix elements of types other than the specified •	
type(s) will be caught at compile time itself. Hence, generics offer type safety over using the
Object type.

Java 7 has introduced the “diamond” syntax where the type parameters (given after new •	
operator and class name) can be omitted. The compiler will infer the types from the type
declaration.

Generics are not covariant. That is, subtyping doesn’t work with generics. You cannot assign a •	
derived generic type parameter to a base type parameter.

The •	 <?> specifies an unknown type in generics and is known as a wildcard. For example,
List<?> refers to a list of unknown type values.

Wildcards can be bounded. For example, •	 <? extends Runnable> specifies that ? can match
any type as long as it is Runnable or any of its derived types. Note that both extends and super
in this context are inclusive clauses, so you can replace X in <? extends X> and <? super X>.

Use the •	 extends keyword for both class type and interface when specifying bounded types
in generics. For specifying multiple base types, use the & symbol. For example, in List<?
extends X & Y>, ? will match types, extending both the types X and Y.

In general, when you use wildcard parameters, you cannot call methods that modify the •	
object. If you try to modify, the compiler will give error messages. However, you can call
methods that access the object.

The terms Collection, Collections, and collection are different. Collection— •	 java.util.
Collection<E>—is the root interface in the collection hierarchy. Collections—java.util.
Collections—is a utility class that contains only static methods. The general term collection(s)
refers to containers like map, stack, queue, etc.

It’s possible to define or declare generic methods in an interface or a class even if the class or •	
the interface is not generic.

A generic class used without its type arguments is known as a •	 raw type. Of course, raw types
are not type safe. Java supports raw types so that it is possible to use the generic type in
code that is older than Java 5 (note that generics were introduced in Java 5). The compiler
generates a warning when you use raw types in your code. You may use @SuppressWarnings({
"unchecked" }) to suppress the warning associated with raw types.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

490

•	 List<?> is a supertype of any List type, which means you can pass List<Integer>, or
List<String>, or even List<Object> where List<?> is expected.

Implementation of generics is static in nature, which means that the Java compiler interprets •	
the generics specified in the source code and replaces the generic code with concrete types.
This is referred to as type erasure. After compilation, the code looks similar to what a developer
would have written with concrete types. Essentially, the use of generics offers two advantages:
first, it introduces an abstraction that enables you to write generic implementation; second, it
allows you to write generic implementation with type safety.

There are many limitations of generic types due to type erasure. A few important ones are the •	
following:

You cannot instantiate a generic type using a •	 new operator. For example, assuming mem is
a field, the following statement will result in a compiler error:

T mem = new T(); // wrong usage - compiler error

You cannot instantiate an array of a generic type. For example, assuming •	 mem is a field, the
following statement will result in a compiler error:

T[] amem = new T[100]; // wrong usage - compiler error

You can declare non-static fields of type •	 T, but not of static fields of type T. For example,

class X<T> {
 T instanceMem; // okay
 static T statMem; // wrong usage - compiler error
}

It is not possible to have generic exception classes. For example, the following will not •	
compile:

class GenericException<T> extends Throwable { } // wrong usage - compiler error

You cannot instantiate a generic type with primitive types. For example, •	 List<int> will elicit a
compiler error. However, you can use boxed primitive types.

The methods •	 hashCode() and equals() need to be consistent for a class. For practical
purposes, ensure that you follow this rule: the hashCode() method should return the same
hash value for two objects if the equals() method returns true for them.

If you’re using an object in containers like •	 HashSet or HashMap, make sure you override the
hashCode() and equals() methods correctly.

In containers, it is not recommended that you store null as an argument since it could be •	
difficult to understand the behavior of methods that return null. For example, there are
methods in the Deque interface that return null, and it would be difficult for you to distinguish
if the method successfully returned the element value null, or if the method failed and
returned null.

The Figure •	 15-1 shows important interfaces belonging to the java.util package.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

491

Iterable

Collection

List Set Queue

SortedSet

SortedMap

Deque

NavigableSet

NavigableMap

Map Iterator

ListIterator

Figure 15-1. Important high-level java.util interfaces and their inheritance relationships

Implement the •	 Comparable interface for your classes when a natural order is possible. If you
want to compare the objects other than the natural order or if there is no natural ordering
present for your class type, then create separate classes implementing the Comparator
interface. Also, if you have multiple alternative ways to decide the order, then go for the
Comparator interface.

Chapter 7: String Processing
A regular expression defines a search pattern that can be used to execute operations such as •	
string search and string manipulation. Table 15-1 summarizes commonly used symbols to
specify regex, Table 15-2 lists commonly used metasymbols to specify regex, and Table 15-3
presents commonly used quantifiers with regex.

Table 15-1. Commonly Used Symbols to Specify Regular Expressions

Symbol Description

^expr Matches the expr at the beginning of line.

expr$ Matches the expr at the end of line.

. Matches any single character (except newline character).

[xyz] Matches either x, y, or z.

[p-z] Specifies a range. Matches any character from p to z.

[p-z1-9] Matches either any character from p to z or any digit from 1 to 9
(remember, it won’t match p1).

[^p-z] ‘^’ as first character inside a bracket negates the pattern;
it matches any character except characters p to z.

Xy Matches x followed by y.

x | y Matches either x or y.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

492

The argument of the •	 split() method is a delimiter string, which is a regular expression.
If the regular expression you pass has invalid syntax, you’ll get a PatternSyntaxException
exception.

Use the •	 Pattern and Matcher classes whenever you are performing a search or replace on
strings heavily; they are more efficient and faster than any other way to perform search/
replace in Java.

You can form groups within a regex. These groups can be used to specify quantifiers on a •	
desired subset of the whole regex. These groups can also be used to specify back reference.

The method •	 printf() (and the method format() in the String class) uses string formatting
flags to format strings.

Each format specifier starts with the •	 % sign; followed by flags, width, and precision
information; and ending with a data type specifier. In this string, the flags, width, and precision
information are optional while the % sign and data type specifier are mandatory. Table 15-4
shows the commonly used data type specifier symbols.

Table 15-2. Commonly Used Metasymbols to Specify Regular Expressions

Symbol Description

\d Matches digits (equivalent to [0–9]).

\D Matches non-digits.

\w Matches word characters.

\W Matches non-word characters.

\s Matches whitespaces (equivalent to [\t\r\f\n]).

\S Matches non-whitespaces.

\b Matches word boundary when outside bracket. Matches backslash
when inside bracket.

\B Matches non-word boundary.

\A Matches beginning of string.

\Z Matches end of string.

Table 15-3. Commonly Used Quantifier Symbols

Symbol Description

expr? Matches 0 or 1 occurrence of expr (equivalent to expr{0,1}).

expr* Matches 0 or more occurrences of expr (equivalent to expr{0,}).

expr+ Matches 1 or more occurrences of expr (equivalent to expr{1,}).

expr{x} Matches x occurrences of expr.

expr{x, y} Matches between x and y occurrences of expr.

expr{x,} Matches x or more occurrences of expr.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

493

If you do not specify any string formatting specifier, the •	 printf() method will not print
anything from the given arguments!

Flags such as •	 '-', '^', or '0' make sense only when you specify width with the format
specifier string.

You can also print the •	 % character in a format string; however, you need to use an escape
sequence for it. In format specifier strings, % is an escape character, which means you need to
use %% to print a single %.

If you do not provide the intended input data type as expected by the format string, you can •	
get an IllegalFormatConversionException.

If you want to form a string and use it later rather than just printing it using the •	 printf()
method, you can use a static method in the String class, format().

Chapter 8: Java I/O Fundamentals
You can obtain reference to the console using •	 the System.console() method; if the JVM is
not associated with any console, this method will fail and return null.

Many methods are provided in •	 Console-support formatted I/O. You can use the printf()
and format() methods available in the Console class to print formatted text; the overloaded
readLine() and readPassword() methods take format strings as arguments.

You can use character streams for text-based I/O and byte streams for data-based I/O.•	

Table 15-4. Commonly Used Data Type Specifiers

Symbol Description

%b Boolean

%c Character

%d Decimal integer (signed)

%e Floating point number in scientific format

%f Floating point number in decimal format

%g Floating point number in decimal or scientific format
(depending on the value passed as argument)

%h Hashcode of the passed argument

%n Line separator (new line character)

%o Integer formatted as an octal value

%s String

%t Date/time

%x Integer formatted as an hexadecimal value

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

494

Character streams for reading and writing are called •	 readers and writers, respectively
(represented by the abstract classes Reader and Writer). Byte streams for reading and writing
are called input streams and output streams, respectively (represented by the abstract classes
InputStream and OutputStream).

You can combine stream objects. You can create an object of •	 BufferedInputStream that takes a
FileInputStream object. In this way, the output of one stream is chained to the filtered stream.
This is an important, useful, and elegant way to customize the stream based on your needs.

For processing data with primitive data types and •	 Strings, you can use data streams.

•	 Serialization is the process of converting the objects in memory into a series of bytes. You
need to implement the Serializable interface in a class if you want to make the objects of the
class serializable.

•	 The Serializable interface is a marker interface. That means the Serializable interface
does not declare any method inside it.

If you want to customize the process of serialization, you can implement the •	 readObject()
and writeObject() methods. Note that both of these methods are private methods, which
means you are not overriding or overloading these methods. JVM checks the implementation
of these methods and calls them instead of the usual methods. It sounds weird but it is the way
the customization of the serialization process is implemented in the JVM.

A serialized object can be communicated over the network and deserialized on another •	
machine. However, the class file of the object must be in the path of the destination machine,
otherwise only the state of the object will be restored, not the whole object (i.e., you cannot
invoke a method on the restored object).

You can create your own protocol for serialization. For that, you need to implement the •	
Externalizable interface instead of the Serializable interface.

When you are not specifying serialVersionUID in a serialized class, JVM computes it for you. •	
However, each JVM implementation has different mechanism to compute it; hence, it is not
guaranteed that your serialized class will work on two different JVMs when you have not
specified the serialVersionUID explicitly. Therefore, it is strongly recommended that you
provide serialVersionUID in a class implementing the Serializable interface.

Chapter 9: Java File I/O (NIO.2)
A •	 Path object is a programming abstraction to represent a path of a file/directory.

Do not confuse •	 File with Files, Path with Paths, and FileSystem with FileSystems; they
are different. File is an old class (Java 4) that represents file/directory path names, while
Files was introduced in Java 7 as a utility class with comprehensive support for I/O APIs. The
Path interface represents a file/directory path and defines a useful set of methods. However,
the Paths class is a utility class that offers only two methods (both to get the Path object).
FileSystems offer a list of factory methods for the class FileSystem, whereas FileSystem
provides a useful set of methods to get information about a file system.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

495

The file or directory represented by a •	 Path object might not exist.

•	 Path provides two methods to use to compare Path objects: equals() and compareTo(). Even
if two Path objects point to the same file/directory, it is not guaranteed that you will get true
from the equals() method. You need to make sure that both are absolute and normalized
paths for an equality comparison to succeed for paths.

You can check the existence of a file using the •	 exists() method of the Files class.

You can retrieve attributes of a file using the •	 getAttributes() method. You can use the
readAttributes() method of the Files class to read attributes of a file in bulk.

While copying, all the directories (except the last one if you are copying a directory) in the •	
specified path must exist to avoid NoSuchFileException.

If you copy a directory using the •	 copy() method, it will not copy the files/directories contained
in the source directory; you need to explicitly copy them to the destination folder.

It is not necessary that you perform copy on two files/directories only. You can take input from •	
an InputStream and write to a file; similarly, you can take input from a file and copy to an
OutputStream. You can use the methods copy(InputStream, Path, CopyOptions...) and
copy(Path, OutputStream, CopyOptions...).

Use the •	 delete() method to delete a file; use the deleteIfExists() method to delete a file
only if it exists.

If you do not want to implement all four methods in •	 the FileVisitor interface, you can
simply extend your implementation from the SimpleFileVisitor class.

The •	 PathMatcher interface is useful when you want to find a file satisfying a certain pattern.
You can specify the pattern using glob or regex. Table 15-5 summarizes the patterns
supported by the Glob syntax.

Table 15-5. Patterns Supported by Glob Syntax

Pattern Description

* Matches any string of any length, even zero length.

** Similar to “*” but it crosses directory boundaries.

? Matches to any single character.

[xyz] Matches to either x, y, or z.

[0-5] Matches to any character from the range 0 to 5.

[a-z] Matches to any lowercase letter.

{xyz, abc} Matches to either xyz or abc.

Java 7 offers a directory watch service that can notify you when the file you are working on is •	
changed by some other program. You can register a Path object using a watch service along
with certain event types. Whenever any file in the specified directory changes, an event is sent
to the registered program.

You must be careful performing an operation while walking a file tree. For instance, if you •	
are performing a recursive delete, then you should first delete all the containing files before
deleting the directory that is holding these containing files.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

496

The •	 Visitor design pattern is used to enable walking through a file tree.

In the context of a watch service, a state is associated with a watch key. A watch key might be •	
in ready state (ready to accept events), in signed state (when one or more events are queued),
or in invalid state (when the watch key is not valid). If the key is in the signed state, it is
required to call the reset() method; otherwise the state of the key will not change to ready
state and you will not receive any further event notification.

If you are watching a directory using the watch service offered by Java 7, only files contained •	
in that directory will be watched—and not the files contained in the subdirectories of that
directory. If you intend to watch the whole subtree of the file system, you need to recursively
register each directory in the subtree.

Chapter 10: Building Database Applications with JDBC
JDBC (Java DataBase Connectivity) APIs provided by Java are meant for programmatic access •	
to DataBase Management Systems (DBMSs).

JDBC hides all the heterogeneity of all the DBMSs and offers a single set of APIs to interact •	
with all types of databases. The complexity of heterogeneous interactions is delegated to the
JDBC driver manager and JDBC drivers; hence all the details and complications are hidden by
the JDBC API from the application developer.

There are four types of drivers:•	

•	 Type 1 (JDBC-ODBC bridge drivers): The JDBC driver calls ODBC (Open Database
Connectivity) native calls using the Java Native Interface (JNI).

•	 Type 2 (Native-API drivers): These drivers use client-side libraries of a specific database
and convert JDBC calls to native database calls.

•	 Type 3 (Network-protocol drivers): These drivers call database middleware, and the
middleware actually converts JDBC calls to database-specific native calls.

•	 Type 4 (Native-protocol drivers): The driver directly makes database-specific calls over
the network without any support of an additional client-side library.

The •	 java.sql.Connection interface provides a channel through which the application and
the database communicate. The getConnection() method in the DriverManager class takes
three arguments: the URL string, username string, and password string.

The syntax of the URL (which needs to be specified to get •	 Connection object) is
<protocol>:<subprotocol>://<server>:<port>/. An example of URL string is
jdbc:mysql://localhost:3306/. The <protocol> jdbc is same for all DBMSs; <subprotocol>
will differ for each DBMS, <server> depends on the location in which you host the database,
and each DBMS uses a specific <port> number.

If the JDBC API is not able to locate the JDBC driver, it will throw a •	 SQLException. If there are
jars for the drivers available, they need to be included in the classpath to enable the JDBC API
to locate the driver.

Prior to JDBC 4.0, you had to explicitly load the JDBC driver using the •	 Class.forName()
statement; with JDBC 4.0 and above, this statement is not needed and JDBC API will load the
driver from the details given in the URL string.

JDBC supports two classes for querying and updating: •	 Statement and Resultset.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

497

A •	 Statement is a SQL statement that can be used to communicate a SQL statement to
the connected database and receive results from the database. There are three types of
Statements:

•	 Statement: Use Statement when you need to send a SQL statement to the database
without any parameter.

•	 PreparedStatement: Represents a precompiled SQL statement that can be customized
using IN parameters.

•	 CallableStatement: Used to execute stored procedures; can handle IN as well as OUT
and INOUT parameters.

Choose the proper execute method based on the type of the SQL statement. Remember •	
that each execute method returns different output. The method executeQuery() returns a
resultset; executeUpdate() returns an update count; and the execute() method may return
multiple resultsets, or multiple update count, or combination of both.

•	 A Statement object closes the current ResultSet object if a) the Statement object is closed,
b) is re-executed, or c) is made to retrieve the next set of result. That means it is not necessary
to call close() explicitly with the ResultSet object; however, it is good practice to call close()
once you are done with the object.

It is your responsibility to issue a correct SQL command; JDBC •	 Statement will not check for its
correctness. For example, if there is a syntax error in the SQL command string, you will not get
a compiler error. Rather, you’ll get a SQLSyntaxErrorException at runtime.

A •	 ResultSet object maintains a cursor pointing to the current row. Initially, the cursor is set to
just before the first row; calling the next() method advances the cursor position by one row.

You can use column name or column index with •	 ResultSet methods. The index you use is the
index of the ResultSet object, not the column number in the database table.

The column index in the •	 ResultSet object starts from 1 (not from 0).

You may use the column name of a •	 ResultSet object without worrying about the case:
getXXX() methods accept case-insensitive column names to retrieve the associated value.

Think of a case when you have two columns in a •	 ResultSet object with the same name.
How you can retrieve the associated values using the column name? If you use column name
to retrieve the value, it will always point to the first column that matches with the given
name. Hence, you have to use column index in this case to retrieve values associated with the
both columns.

You need to call •	 updateRow() after modifying the row contents in a ResultSet; otherwise
changes made to the ResultSet object will be lost.

You may cancel any update you made using the method •	 cancelRowUpdates(). However, you
must call this method before calling the method updateRow(). In all other cases, it has no
impact on the row.

By calling the •	 getMetaData() method in the Connection interface, you can examine the
capabilities of the underlying database.

A transaction is a set of SQL operations that needs to be either executed all successfully •	
or not at all.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

498

By default auto-commit mode is set to true, so all changes you make through the connection •	
are committed automatically to the database. You can use setAutoCommit(false); to enable
manual commits. With auto-commit not enabled, you need to explicitly commit or rollback
transactions.

If the •	 commit() method does not execute in manual commit mode, there will be no change in
the database.

You can divide a big transaction into multiple milestones. These milestones are referred to •	
as Savepoints. This way you may save the changes to database up to a milestone once the
milestone is achieved.

•	 RowSet is a special ResultSet that supports the JavaBean component model. Figure 15-2
summarizes the RowSet hierarchy and associated key capabilities.

ResultSet

ResultSet capabilities+
Java Bean capabilities

capabilities supported
by WebRowset+ SQL

join capabilities

capabilities supported
by CachedRowset+ XML

 capabilities

capabilities supported
by WebRowset+

filtering capabilities

ResultSet capabilities+
Java Bean capabilities+
disconnected ResultSet

capabilities
JdbcRowSet

WebRowSet

JoinRowSet FilteredRowSet

CachedRowSet

RowSet

Figure 15-2. The RowSet hierarchy

•	 JdbcRowSet is a connected RowSet while other subinterfaces of RowSet (i.e., JoinRowSet,
CachedRowSet, WebRowSet, and FilteredRowSet) are disconnected RowSets.

•	 RowSetProvider provides APIs to get the RowSetFactory implementation, which can in turn
be used to instantiate a relevant RowSet implementation.

JDBC 4.1 introduces the capability to use try-with-resources statement to close resources •	
(Connection, ResultSet, and Statement) automatically.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

499

Chapter 11: Exceptions and Assertions
While providing multiple exception handlers (“stacked” catch handlers), specific exception •	
handlers should be provided before general exception handlers. Providing base exception
handlers before the derived handlers will result in a compiler error.

A •	 try block can have multiple catch handlers. If the cause of two or more exceptions is similar
and the handling code is also similar, you can consider combining the handlers and make it
into a multi-catch block.

The code inside a •	 finally block will be executed irrespective of whether a try block has
successfully executed or resulted in an exception. This makes a finally block the most suitable
place to release resources such as file handles, data base handles, network streams, etc.

In a multi-catch block, you cannot combine catch handlers for two exceptions that share a •	
base- and derived-class relationship. You can only combine catch handlers for exceptions that
do not share the parent-child inheritance relationship between them.

Forgetting to release resources by explicitly calling the •	 close() method is a common mistake.
You can use a try-with-resources statement to simplify your code and auto-close resources.
For a resource to be usable in a try-with-resources statement, the class of that resource must
implement the java.lang.AutoCloseable interface and define the close() method.

You can auto-close multiple resources within a try-with-resources statement. These resources •	
need to be separated by semicolons in the try-with-resources statement header.

Because you can use multiple resources within a try-with-resources statement, the possibility •	
of more than one exception getting thrown from both the try block and the finally block is
high. If a try block throws an exception, and a finally block also throws exception(s), then
the exception(s) thrown in the finally block will be added as suppressed exceptions to the
exception that gets thrown out of the try block to the caller.

You cannot assign to the resource variables declared in the try-with-resources within the body •	
of the try-with-resources statement. This is to make sure that the same resources acquired in
the try-with-resources header are released in the finally block.

It is a common mistake to close a resource explicitly inside the try-with-resources statement. •	
Remember that try-with-resources expands to calling the close() method in the finally
block, so if you provide an explicit call to the close() method in the finally block, the
expanded finally block will effectively have a double call to the close() method.

The class •	 Throwable is the root class of the exception hierarchy. Only Throwable and its derived
classes can be used with Java exception handling keywords such as try, catch,and throws.

The •	 Exception class (except its subhierarchy of the RuntimeException class) and its derived
classes are known as checked exceptions. These exceptions represent exceptional conditions
that can be “reasonably expected” to occur when the program executes and thus must be
handled. A method that contains some code segment that can throw a checked exception
must either provide a catch handler to handle it or declare that exception in its throws clause.

The •	 RuntimeException and Error classes and derived classes are known as unchecked
exceptions. They can be thrown anywhere in the program (without being declared that the
segment of code can throw these exceptions).

The •	 RuntimeException classes and derived classes represent programming mistakes (logical
mistakes) and are not generally expected to be caught and handled in the program. However,
in some cases it is meaningful to handle these exceptions in catch blocks.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

500

The •	 Error classes and derived classes represent exceptions that arise because of JVM errors—
either the JVM has detected a serious abnormal condition or has run out of resources. When
an Error occurs, the typical best course of action is to terminate the program.

A catch block should either handle the exception or rethrow it. To •	 hide or swallow an
exception by catching an exception and doing nothing is really a bad practice.

The throws clause for a method is meant for listing the •	 checked exceptions that the method
body can throw.

Static initialization blocks cannot throw any checked exceptions. Non-static initialization •	
blocks can throw checked exceptions; however, all the constructors should declare that
exception in their throws clause.

A method’s throws clause is part of the contract that its overriding methods in derived classes •	
should obey. An overriding method can provide the same throw clause as the base method’s
throws clause or a more specific throws clause than the base method’s throws clause. The
overriding method cannot provide a more general throws clause or declare to throw additional
checked exceptions when compared to the base method’s throws clause.

If a method does not have a throws clause, it does •	 not mean it cannot throw any exceptions—it
just means it cannot throw any checked exceptions.

It is a bad practice to use a throws clause to list unchecked exceptions that a method may •	
throw. Why? Since the compiler cannot force the callers to handle unchecked exceptions,
it does not make sense to list them in the throws clause. Rather, if a method can throw an
unchecked exception, it is better to use the @throws clause to document that possibility.

Non-static initialization blocks can throw checked exceptions; however, all the constructors •	
should declare those exceptions in their throws clause. Why? The compiler merges the code
for non-static initialization blocks and constructors during its code generation phase, so the
throws clause of the constructor can be used to declare the checked exceptions that a non-
static initialization block can throw.

An overriding method cannot declare more exceptions in the throws clause than the list of •	
exceptions declared in the throws clause of the base method. Why? The callers of the base
method see only the list of the exceptions given in the throws clause of that method and will
declare or handle these checked exceptions in their code (and not more than that).

An overriding method can declare more specific exceptions than the exception(s) listed in the •	
throws clause of the base method; in other words, you can declare derived exceptions in the
throws clause of the overriding method.

If a method is declared in two or more interfaces and if that method declares to throw different •	
exceptions in the throws clause, then the implementation should list all these exceptions in its
throws clause.

You can define your own exception classes (known as custom exceptions) in your programs.•	

It is recommended that you derive custom exceptions from either the •	 Exception or
RuntimeException class. Creation of custom exceptions by extending the Throwable class (too
generic) or the Error class (exceptions of this type are reserved for JVM and the Java APIs to
throw) is not recommended.

You can wrap one exception and throw it as another exception. These two exceptions become •	
chained exceptions. From the thrown exception, you can get the cause of the exception.

Assertions are condition checks in the program and are meant to be used to explicitly check •	
the assumptions you make while writing programs.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

501

The •	 assert statement is of two forms: the one that takes a Boolean argument and the other
one that takes an additional string argument.

If the Boolean condition given in the •	 assert argument fails (i.e., evaluates to false), the
program will terminate after throwing an AssertionError. It is not advisable to catch and
recover from when an AssertionError is thrown by the program.

By default, assertions are disabled at runtime. You can use the command-line arguments •	 –ea
(for enabling asserts) and –da (for disabling asserts) and their variants when you invoke the JVM.

Chapter 12: Localization
A •	 locale represents a language, culture, or country; the Locale class in Java provides an
abstraction for this concept.

Each locale can have three entries: the language, country, and variant. You can use standard •	
codes available for language and country to form locale tags. There are no standard tags for
variants; you can provide variant strings based on your need.

There are many ways to create or get a •	 Locale object corresponding to a locale:

Use the constructor of the •	 Locale class.

Use the •	 forLanguageTag(String languageTag) method in the Locale class.

Build a •	 Locale object by instantiating Locale.Builder and then calling
setLanguageTag() from that object.

Use the predefined static final constants for locales in the •	 Locale class.

A resource bundle is a set of classes or property files that help define a set of keys and map •	
those keys to locale-specific values.

The class •	 ResourceBundle has two derived classes: PropertyResourceBundle and
ListResourceBundle. You can use ResourceBundle.getBundle() to automatically load a
bundle for a given locale.

•	 The PropertyResourceBundle class provides support for multiple locales in the form of
property files. For each locale, you specify the keys and values in a property file for that locale.
You can use only Strings as keys and values.

The naming convention for a fully qualified resource bundle name is •	 packagequalifier.
bundlename + "_" + language + "_" + country + "_" + (variant + "_#" | "#") +
script + "-" + extensions.

The search sequence to look for a matching resource bundle is presented here. Search starts •	
from Step 1. If at any step the search finds a match, the resource bundle is loaded. Otherwise,
the search proceeds to the next step.

•	 Step 1: The search starts by looking for an exact match for the resource bundle with the
full name.

•	 Step 2: The last component (the part separated by _) is dropped and the search is
repeated with the resulting shorter name. This process is repeated till the last locale
modifier is left.

•	 Step 3: The search is restarted using the full name of the bundle for the default locale.

•	 Step 4: Search for the resource bundle with just the name of the bundle.

•	 Step 5: The search fails, throwing a MissingBundleException.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

502

For the resource bundles implemented as classes extended from •	 ListResourceBundles, Java
uses the reflection mechanism to find and load the class. You need to make sure that the class
is public so that the reflection mechanism will find the class.

To handle date and time, numbers, and currencies in a culture-sensitive way, you can use the •	
java.text.Format class and its two main derived classes, NumberFormat and DateFormat.
Figure 15-3 shows Format and its important derived classes.

Format
(abstract class)

Abstract base class
supporting formatting of

locale-sensitive
information such as date,
time,and currency values

NumberFormat

Base class for processing
numbers for percentage,

currency, etc.

Base class for processing date
and time based on the locale

Allows you to define a custom
pattern for processing

date-type

DateFormat

SimpleDateFormat

Figure 15-3. The Format class and its important derived classes

•	 The NumberFormat class provides methods to format or parse numbers. “Formatting” means
converting a numeric value to a textual form suitable for displaying to users; “parsing” means
converting a number back to numeric form for use in the program. The parse() method
returns a Number if successful; otherwise it throws ParseException (a checked exception).

•	 NumberFormat has many factory methods: getInstance(), getCurrencyInstance(),
getIntegerInstance(), and getPercentInstance().

The •	 Currency class provides good support for handling currency values in a locale-sensitive way.

The •	 DateFormat class provides support for processing date and time in a locale-sensitive
manner.

•	 DateFormat has three overloaded factory methods—getDateInstance(), getTimeInstance(),
and getDateTimeInstance()—that return DateFormat instances for processing date, time,
and both date and time, respectively.

•	 SimpleDateFormat (derived from DateFormat) uses the concept of a pattern string to support
custom formats for date and time. Here is the list of important letters and their meanings for
creating patterns for dates:

G Era (BC/AD)
y Year
Y Week year
M Month (in year)

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

503

w Week (in year)
W Week (in month)
D Day (in year)
d Day (in month)
F Day of week in month
E Day name in week
u Day number of week (value range 1–7)

Similarly, here are the important letters useful for defining a custom time pattern:•	

a Marker for the text am/pm marker
H Hour (value range 0–23)
k Hour (value range 1–24)
K Hour in am/pm (value range 0–11)
h Hour in am/pm (value range 1–12)
m Minute
s Second
S Millisecond
z Time zone (general time zone format)

Chapter 13: Threads
You can create classes that are capable of multi-threading by implementing the •	 Runnable
interface or by extending the Thread class.

Always implement the •	 run() method. The default run() method in Thread does nothing.

Call the •	 start() method and not the run() method directly in code. (Leave it to the JVM to
call the run() method.)

Every thread has thread name, priority, and thread-group associated with it; the default •	
toString() method implementation in Thread prints them.

If you call the •	 sleep() method of a thread, the thread does not release the lock and it holds on
to the lock.

You can use the •	 join() method to wait for another thread to terminate.

In general, if you are not using the “interrupt” feature in threads, it is safe to ignore •	
the InterruptedException; however it’s better still to log or print the stack trace if that
exception occurs.

Threads are non-deterministic: in many cases, you cannot reproduce problems like deadlocks •	
or data races by running the program again.

There are three basic thread states: •	 new, runnable and terminated. When a thread is just
created, it is in new state; when it is ready to run or running, it is in runnable state. When the
thread dies, it’s in terminated state.

The runnable state has two states internally (at the OS level): •	 ready and running states.

A thread will be in the •	 blocked state when waiting to acquire a lock. The thread will be in the
timed_waiting state when timeout is given for calls like wait. The thread will be in the waiting
state when, for example, wait() is called (without time out value).

You will get an •	 IllegalThreadStateException if your operations result in invalid thread state
transitions.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

504

Simultaneous reads and writes to common resources shared by multiple threads may lead to •	
the “data race” (also known as “race condition” and “race hazard”) problem.

You must use thread synchronization (i.e., locks) to access shared values and avoid data •	
races. Java provides thread synchronization features to provide protected access to shared
resources—namely, synchronized blocks and synchronized methods.

Using locks can introduce problems such as deadlocks. When a deadlock happens, the process •	
will hang and will never terminate.

A deadlock typically happens when two (or more) threads acquire locks in opposite order. •	
When one thread has acquired one lock and waits for another lock, another thread has
acquired that other lock and waits for the first lock to be released. So, no progress is made and
the program deadlocks.

To avoid deadlocks, it is better to avoid acquiring multiple locks. When you must acquire such •	
multiple locks, ensure that they are acquired in the same order in all places in the program.

When a thread has to wait for a particular condition or event to be satisfied by another thread, •	
you can use a wait/notify mechanism as a communication mechanism between threads.

When a thread needs to wait for a particular condition/event, you can call •	 wait() with or
without timeout value specified.

To avoid notifications getting lost, it is better to always use •	 notifyAll() instead of notify().

Chapter 14: Concurrency
A •	 semaphore controls access to shared resources. A semaphore maintains a counter to specify
number of resources that the semaphore controls.

•	 CountDownLatch allows one or more threads to wait for a countdown to complete.

The •	 Exchanger class is meant for exchanging data between two threads. This class is useful
when two threads need to synchronize between them and also continuously exchange data.

•	 CyclicBarrier helps provide a synchronization point where threads may need to wait at a
predefined execution point until all other threads reach that point.

•	 Phaser is a useful feature when a few independent threads have to work in phases to complete
a task.

Instead of acquiring and releasing a lock just to carry out operations on primitive type •	
variables, Java provides an efficient alternative in the form of atomic variables.

Classes •	 AtomicInteger and AtomicLong extend from the Number class. All other classes in the
java.util.concurrent.atomic subpackage inherit directly from the Object class and do not
extend the Number class.

•	 Conditions support thread notification mechanism. When a certain condition is not satisfied,
a thread can wait for another thread to satisfy that condition; that other thread could notify
once the condition is met.

The •	 Executors hierarchy abstracts the lower-level details of multi-threaded programming and
offers high-level user-friendly concurrency constructs.

The •	 Callable interface represents a task that needs to be completed by a thread. Once the
task completes, the call() method of a Callable implementation returns a value.

ChaPTer 15 ■ OCPJP 7 QuICk reFreSher

505

•	 Future represents objects that contain a value that is returned by a thread in the future.

•	 ThreadFactory is an interface that is meant for creating threads instead of explicitly creating
threads by calling new Thread().

The Fork/Join framework allows for exploiting parallelism (available in the form of multiple •	
cores) for certain kinds of tasks. A task that can be modeled as a divide-and-conquer problem
is suitable to be used with Fork/Join framework.

The Fork/Join framework is an implementation of the •	 ExecutorService interface.

The Fork/Join framework uses the work-stealing algorithm—in other words, when a •	 worker
thread completes its work and is free, it takes (or “steals”) work from other threads that are still
busy doing some work.

The work-stealing technique results in decent load balancing thread management with •	
minimal synchronization cost.

In Fork/Join, it looks acceptable to call •	 fork() for both the subtasks (if you are splitting in
two subtasks) and call join() two times. It is correct—but inefficient. Why? In this case,
the original thread will be waiting for the other two tasks to complete, which is inefficient
considering task creation cost. That is why you call fork() once and call compute() for the
second task.

•	 ForkJoinPool is the most important class for the Fork/Join framework. It is a thread pool for
running fork/join tasks—in other words, it executes an instance of ForkJoinTask. It executes
tasks and manages their lifecycles.

ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines methods •	
such as fork() and join().

507

APPENDIX A

Exam Topics

This appendix lists the topics for the following two certification exams:

•	 Java SE 7 Programmer II exam (a.k.a. exam number 1Z0-804):

OCAJP 7 certification + 1ZO-804 pass = Oracle Certified Professional,
Java SE 7 Programmer (OCPJP 7) certification

•	 Upgrade to Java SE 7 Programmer exam (a.k.a. exam number 1Z0-805):

Earlier version (OCPJP 5 or OCPJP 6 or any SCJP) certification + 1ZO-805 pass = Oracle
Certified Professional, Java SE 7 Programmer (OCPJP 7) certification

We show how the exam topics map to the chapters in this book (denoted “G&S” for Ganesh and Sharma)
in parentheses beside the topic headings below.

OCPJP7 Exam (1Z0-804 a.k.a. Java SE 7 Programmer II) Topics
While preparing the reader equally for the Z10-804 or Z10-805 exam paths to OCPJP 7 certification, this book is
organized to mirror the topics of the more comprehensive exam, the 1Z0-804. The exam topics in the 1Z0-804 syllabus
map to the chapters in this book in a one-to-one correspondence as indicated in the parentheses below. We wish to
thank Oracle Corporation for providing permission to use of their exam topics in this appendix.

1. Java Class Design (G&S Chapter 3)
1.1. Use access modifiers: private, protected, and public.

1.2. Use override methods.

1.3. Use overload constructors and other methods appropriately.

1.4. Use the instanceof operator and casting.

1.5. Use virtual method invocation.

1.6. Use override methods from the Object class to improve the functionality of your class.

1.7. Use package and import statements.

APPENDIX A ■ EXAm ToPIcs

508

2. Advanced Class Design (G&S Chapter 4)
2.1. Identify when and how to apply abstract classes.

2.2. How to construct abstract Java classes and subclasses.

2.3. Use the static and final keywords.

2.4. Create top-level and nested classes.

2.5. Use enumerated types.

3. Object-Oriented Design Principles (G&S Chapter 5)
3.1. Write code that declares, implements, and/or extends interfaces.

3.2. Choose between interface inheritance and class inheritance.

3.3. Develop code that implements “is-a” and/or “has-a” relationships.

3.4. Apply object composition principles.

3.5. Design a class using the Singleton design pattern.

3.6. Write code to implement the DAO pattern.

3.7. Design and create objects using a factory, and use factories from the API.

4. Generics and Collections (G&S Chapter 6)
4.1. Create a generic class.

4.2. Use the diamond syntax to create a collection.

4.3. Analyze the interoperability of collections that use raw type and generic types.

4.4. Use wrapper classes and autoboxing.

4.5. Create and use a List, a Set, and a Deque.

4.6. Create and use a Map.

4.7. Use java.util.Comparator and java.lang.Comparable.

4.8. Sort and search arrays and lists.

5. String Processing (G&S Chapter 7)
5.1. Search, parse, and build strings.

5.2. Search, parse, and replace strings by using regular expressions, using expression patterns for
matching limited to . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b. \B, [], ().

5.3. Format strings using the formatting parameters %b, %c, %d, %f, and %s in format strings.

APPENDIX A ■ EXAm ToPIcs

509

6. Exceptions and Assertions (G&S Chapter 11)
6.1. Use throw and throws statements.

6.2. Use the try statement with multi-catch and finally clauses.

6.3. Autoclose resources with a try-with-resources statement.

6.4. Create custom exceptions.

6.5. Test invariants by using assertions.

7. Java I/O Fundamentals (G&S Chapter 8)
7.1. Read and write data from the console.

7.2. Use streams to read and write files.

8. Java File I/O (NIO.2) (G&S Chapter 9)
8.1. Use the Path class to operate on file and directory paths.

8.2. Use the Files class to check, delete, copy, or move a file or directory.

8.3. Read and change file and directory attributes.

8.4. Recursively access a directory tree.

8.5. Find a file by using the PathMatcher class.

8.6. Watch a directory for changes by using WatchService.

9. Building Database Applications with JDBC (G&S Chapter 10)
9.1. Define the layout of the JDBC API.

9.2. Connect to a database by using a JDBC driver.

9.3. Update and query a database.

9.4. Customize the transaction behavior of JDBC and commit transactions.

9.5. Use the JDBC 4.1 RowSetProvider, RowSetFactory, and RowSet interfaces.

10. Threads (G&S Chapter 13)
 10.1. Create and use the Thread class and the Runnable interface.

 10.2. Manage and control thread lifecycle.

 10.3. Synchronize thread access to shared data.

 10.4. Identify potential threading problems.

APPENDIX A ■ EXAm ToPIcs

510

11. Concurrency (G&S Chapter 14)
 11.1. Use java.util.concurrent collections.

 11.2. Apply atomic variables and locks.

 11.3. Use Executors and ThreadPools.

 11.4. Use the parallel Fork/Join framework.

12. Localization (G&S Chapter 12)
 12.1. Read and set the locale by using the Locale object.

 12.2. Build a resource bundle for each local.

 12.3. Load a resource bundle in an application.

 12.4. Format text for localization by using NumberFormat and DateFormat.

OCPJP 7 Exam (1Z0-805, a.k.a. Upgrade to Java SE 7
Programmer) Topics
This book covers all the topics covered on the upgrade exam—the alternative path to OCPJP 7 certification—in the
chapters indicated in the parentheses.

1. Language Enhancements (G&S Chapters 6, 11)
1.1. Use String in the switch statement.

1.2. Use binary literals and numeric literals with underscores.

1.3. Use try-with-resources.

1.4. Use multi-catch in exception statements.

1.5. Use the diamond operator with generic declarations.

1.6. Use more precise rethrow in exceptions.

2. Design Patterns (G&S Chapter 5)
2.1. Design a class using the Singleton design pattern.

2.2. Identify when and how to use composition to solve business problems.

2.3. Write code to implement the DAO pattern.

2.4. Design a class that uses the Factory design pattern.

APPENDIX A ■ EXAm ToPIcs

511

3. Database Applications with JDBC (G&S Chapter 10)
3.1. Describe the JDBC API.

3.2. Identify the Java statements required to connect to a database using JDBC.

3.3. Use the JDBC 4.1 RowSetProvider, RowSetFactory, and new RowSet interfaces.

3.4. Use JDBC transactions.

3.5. Use the proper JDBC API to submit queries and read results from the database.

3.6. Use JDBC PreparedStatement and CallableStatement.

4. Concurrency (G&S Chapters 13, 14)
4.1. Identify potential threading problems.

4.2. Use java.util.concurrent collections.

4.3. Use atomic variables and locks.

4.4. Use Executors and ThreadPools.

4.5. Use the parallel Fork/Join framework.

5. Localization (G&S Chapter 12)
5.1. Describe the advantages of localizing an application.

5.2. Define what a locale represents.

5.3. Read and set the locale by using the Locale object.

5.4. Build a resource bundle for each locale.

5.5. Call a resource bundle from an application.

5.6. Select a resource bundle based on locale.

5.7. Format text for localization by using NumberFormat and DateFormat.

6. Java File I/O (NIO.2) (G&S Chapter 9)
6.1. Use the Path class to operate on file and directory paths.

6.2. Use the Files class to check, delete, copy, or move a file or directory.

6.3. Read and change file and directory attributes.

6.4. Recursively access a directory tree.

6.5. Find a file by using the PathMatcher class.

6.6. Watch a directory for changes by using WatchService.

513

Appendix B

Mock Test – 1

The questions in this mock test are designed per the requirements of the OCPJP 7 exam pattern and its standard.
The questions in the real exam will not be equally distributed based on exam topics and you’ll get questions in
a random order. Further, when you take the real exam, you’ll find that some of the questions are unintuitive or
confusing. For instance, you may find questions 22, 23, and 26 to be incomplete or confusing and that is intentional.

Take the test as if it were your real OCPJP 7 exam. Best of luck.

Time: 2 hours 30 minutes No. of questions: 90

1. Consider the following code snippet:

if(i == 10.0)
 System.out.println("true");

Which one of the following declarations of the variable i will compile without errors and print true
when the program executes?

a) int i = 012;

b) int i = 10.0f;

c) int i = 10L;

d) int i = 10.0;

2. Consider the following program:

import java.math.BigDecimal;

class NumberTest {
 public static void main(String []args) {
 Number [] numbers = new Number[4];
 numbers[0] = new Number(0); // NUM
 numbers[1] = new Integer(1);
 numbers[2] = new Float(2.0f);
 numbers[3] = new BigDecimal(3.0); // BIG
 for(Number num : numbers) {
 System.out.print(num + " ");
 }
 }
}

Appendix B ■ Mock TesT – 1

514

Which one of the following options correctly describes the behavior of this program?

a) Compiler error in line marked with comment NUM because Number cannot be
instantiated.

b) Compiler error in line marked with comment BIG because BigDecimal does not
inherit from Number.

c) When executed, this program prints the following: 0 1 2.0 3.

d) When executed, this program prints the following: 0.0 1.0 2.0 3.0.

3. Consider the following code segment:

StringBuffer strBuffer = new StringBuffer("This, that, etc.!");
System.out.println(strBuffer.replace(12, 15, "etcetera"));

Which one of the following options correctly describes the behavior of this code segment?

a) This code segment: This, that, etcetera.!

b) This code segment: This, that, etcetera!

c) This code segment: This, that, etc.

d) This program throws in an ArrayIndexOutOfBoundsException.

4. Consider the following program:

class SBAppend {
 public static void main(String []args) {
 Object nullObj = null;
 StringBuffer strBuffer = new StringBuffer(10);

 strBuffer.append("hello ");
 strBuffer.append("world ");
 strBuffer.append(nullObj);
 strBuffer.insert(11, '!');
 System.out.println(strBuffer);
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program prints the following: hello world!

b) This program prints the following: hello world! null

c) This program throws a NullPointerException.

d) This program throws an InvalidArgumentException.

e) This program throws an ArrayIndexOutOfBoundsException.

5. Consider the following code segment:

Boolean b = null;
System.out.println(b ? true : false);

Appendix B ■ Mock TesT – 1

515

Which one of the following options correctly describes the behavior of this code segment?

a) This code will result in a compiler error since a reference type (of type Boolean)
cannot be used as part of expression for condition check.

b) This code will result in a throwing a NullPointerException.

c) This code will print true in console.

d) This code will print false in console.

6. What will be the output of the following program?

class Base {
 public Base() {
 System.out.println("Base");
 }
}

class Derived extends Base {
 public Derived() {
 System.out.println("Derived");
 }
}

class DeriDerived extends Derived {
 public DeriDerived() {
 System.out.println("DeriDerived");
 }
}

class Test {
 public static void main(String []args) {
 Derived b = new DeriDerived();
 }
}

a) Base

 Derived
 DeriDerived

b) Derived
 DeriDerived

c) DeriDerived
 Derived
 Base

d) DeriDerived
 Derived

Appendix B ■ Mock TesT – 1

516

7. Consider the following code segment:

MODIFIER class SomeClass { }

Which three of the following modifiers, when replaced instead of MODIFIER, will compile cleanly?

a) public

b) protected

c) private

d) abstract

e) final

f) static

8. Consider the following class definition:

class Point {
 private int x = 0, y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 // DEFAULT_CTOR
}

Which one of the following definitions of the Point constructor can be replaced without compiler
errors in place of the comment DEFAULT_CTOR?

a) public Point() {
 this(0, 0);
 super();
 }

b) public Point() {
 super();
 this(0, 0);
 }

c) private Point() {
 this(0, 0);
 }

d) public Point() {
 this();
 }

e) public Point() {
 this(x, 0);
 }

Appendix B ■ Mock TesT – 1

517

9. Consider the following program:

class Base {
 public Base() {
 System.out.print("Base ");
 }
 public Base(String s) {
 System.out.print("Base: " + s);
 }
}

class Derived extends Base {
 public Derived(String s) {
 super(); // Stmt-1
 super(s); // Stmt-2
 System.out.print("Derived ");
 }
}

class Test {
 public static void main(String []args) {
 Base a = new Derived("Hello ");
 }
}

Select three correct options from the following list:

a) Removing Stmt-1 will make the program compilable and it will print the following:
Base Derived.

b) Removing Stmt-1 will make the program compilable and it will print the following:
Base: Hello Derived.

c) Removing Stmt-2 will make the program compilable and it will print the following:
Base Derived.

d) Removing both Stmt-1 and Stmt-2 will make the program compilable and it will print
the following: Base Derived.

e) Removing both Stmt-1 and Stmt-2 will make the program compilable and it will print
the following: Base: Hello Derived.

10. You want to use the static member MYCONST belonging to class A in abc.org.project
package. Which one of the following statements shows the correct use of static import
feature?

a) static import abc.org.project.A;

b) static import abc.org.project.A.MYCONST;

c) import static abc.org.project.A;

d) import static abc.org.project.A.MYCONST;

Appendix B ■ Mock TesT – 1

518

11. Which one of the following programs compiles without any errors and prints “hello
world” in console?

a) import static java.lang.System.out.println;
 class StaticImport {
 public static void main(String []args) {
 println("hello world");
 }
 }

b) import static java.lang.System.out;
 class StaticImport {
 public static void main(String []args) {
 out.println("hello world");
 }
 }

c) import static java.lang.System.out.*;
 class StaticImport {
 public static void main(String []args) {
 out.println("hello world");
 }
 }

d) import static java.lang.System.out.*;

 class StaticImport {
 public static void main(String []args) {
 println("hello world");
 }
 }

12. Consider the following program and choose the right option from the given list:

class Base {
 public void test() {
 protected int a = 10; // #1
 }
}

class Test extends Base { // #2
 public static void main(String[] args) {
 System.out.printf(null); // #3
 }
}

a) The compiler will report an error at statement #1.

b) The compiler will report an error at statement #2.

c) The compiler will report errors at statement #3.

d) The program will compile without any error.

Appendix B ■ Mock TesT – 1

519

13. Consider the following program and choose the correct option from the list of options:

class Base {
 public void test() {}
}

class Base1 extends Base {
 public void test() {
 System.out.println("Base1");
 }
}

class Base2 extends Base {
 public void test() {
 System.out.println("Base2");
 }
}

class Test {
 public static void main(String[] args) {
 Base obj = new Base1();
 ((Base2)obj).test(); // CAST
 }
}

a) The program will print the following: Base1.

b) The program will print the following: Base2.

c) The compiler will report an error in the line marked with comment CAST.

d) The program will result in an exception (ClassCastException).

14. Consider the following program:

class Outer {
 class Inner {
 public void print() {
 System.out.println("Inner: print");
 }
 }
}

class Test {
 public static void main(String []args) {
 // Stmt#1
 inner.print();
 }
}

Appendix B ■ Mock TesT – 1

520

Which one of the following statements will you replace in place of // Stmt#1 to make the program
compile and run successfully to print “Inner: print” in console?

a) Outer.Inner inner = new Outer.Inner();

b) Inner inner = new Outer.Inner();

c) Outer.Inner inner = new Outer().Inner();

d) Outer.Inner inner = new Outer().new Inner();

15. Consider the following program:

public class Outer {
 private int mem = 10;
 class Inner {
 private int imem = new Outer().mem; // ACCESS1
 }

 public static void main(String []s) {
 System.out.println(new Outer().new Inner().imem); // ACCESS2
 }
}

Which one of the following options is correct?

a) When compiled, this program will result in a compiler error in line marked with
comment ACCESS1.

b) When compiled, this program will result in a compiler error in line marked with
comment ACCESS2.

c) When executed, this program prints 10.

d) When executed, this program prints 0.

16. Consider the following program:

interface EnumBase { }

enum AnEnum implements EnumBase { // IMPLEMENTS_INTERFACE
 ONLY_MEM;
}

class EnumCheck {
 public static void main(String []args) {
 if(AnEnum.ONLY_MEM instanceof AnEnum) {
 System.out.println("yes, instance of AnEnum");
 }
 if(AnEnum.ONLY_MEM instanceof EnumBase) {
 System.out.println("yes, instance of EnumBase");
 }
 if(AnEnum.ONLY_MEM instanceof Enum) { // THIRD_CHECK
 System.out.println("yes, instance of Enum");
 }
 }
}

Appendix B ■ Mock TesT – 1

521

Which one of the following options is correct?

a) This program results in a compiler in the line marked with comment
IMPLEMENTS_INTERFACE.

b) This program results in a compiler in the line marked with comment THIRD_CHECK.

c) When executed, this program prints the following:
yes, instance of AnEnum

d) When executed, this program prints the following:
yes, instance of AnEnum
yes, instance of EnumBase

e) When executed, this program prints the following:
yes, instance of AnEnum
yes, instance of EnumBase
yes, instance of Enum

17. Which of the following statements are true with respect to enums? (Select all that
apply.)

a) An enum can have private constructor.

b) An enum can have public constructor.

c) An enum can have public methods and fields.

d) An enum can implement an interface.

e) An enum can extend a class.

18. Consider the following program and predict the behavior:

class base1 {
 protected int var;
}

interface base2 {
 int var = 0; // #1
}

class Test extends base1 implements base2 { // #2
 public static void main(String args[]) {
 System.out.println("var:" + var); // #3
 }
}

a) The program will report a compilation error at statement #1.

b) The program will report a compilation error at statement #2.

c) The program will report a compilation error at statement #3.

d) The program will compile without any errors.

Appendix B ■ Mock TesT – 1

522

19. Consider the following program:

class WildCard {
 interface BI {}
 interface DI extends BI {}
 interface DDI extends DI {}

 static class C<T> {}
 static void foo(C<? super DI> arg) {}

 public static void main(String []args) {
 foo(new C<BI>()); // ONE
 foo(new C<DI>()); // TWO
 foo(new C<DDI>()); // THREE
 foo(new C()); // FOUR
 }
}

Which of the following options are correct?

a) Line marked with comment ONE will result in a compiler error.

b) Line marked with comment TWO will result in a compiler error.

c) Line marked with comment THREE will result in a compiler error.

d) Line marked with comment FOUR will result in a compiler error.

20. Consider the following definitions:

interface BI {}
interface DI extends BI {}

The following options provide definitions of a template class X. Which one of the options specifies
class X with a type parameter whose upper bound declares DI to be the super type from which all
type arguments must be derived?

a) class X <T super DI> { }

b) class X <T implements DI> { }

c) class X <T extends DI> { }

d) class X <T extends ? & DI> { }

21. Consider the following program:

class base1{}

class base2{}

interface base3{}

interface base4{}

Appendix B ■ Mock TesT – 1

523

// Stmt
public static void main(String args[]){
 }
}

Which one of the following statements will compile without errors if replaced in place of the line
marked with comment Stmt?

a) class Test extends base1, base2 implements base3, base4 {

b) class Test extends base1 implements base3, base4 {

c) class Test extends base1 implements base3 implements base4 {

d) class Test extends base1, extends base2 implements base3, base4 {

22. In the context of Singleton pattern, which one of the following statements is true?

a) A Singleton class must not have any static members.

b) A Singleton class has a public constructor.

c) A Factory class may use Singleton pattern.

d) All methods of the Singleton class must be private.

23. In the context of DAO pattern, which one of the following classes could be playing a role
of TransferObject:

a) ImageManager

b) ImageFactory

c) Image

d) ImageProcessor

24. Which one of the following object-oriented concepts describes has-a relationship?

a) Inheritance

b) Composite pattern

c) Inner classes

d) Composition

25. Consider the following program:

class ClassA {}

interface InterfaceB {}

class ClassC {}

class Test extends ClassA implements InterfaceB {
 String msg;
 ClassC classC;
}

Appendix B ■ Mock TesT – 1

524

Which one of the following statements is true?

a) Class Test is related with ClassA with a has-a relationship.

b) Class Test is related to ClassC with a composition relationship.

c) Class Test is related with String with an is-a relationship.

d) Class ClassA is related with InterfaceB with an is-a relationship.

26. Consider the following UML diagram of a class program and choose a right option:

a) The class exhibits low cohesion.

b) The class implements Singleton pattern.

c) The class implements DAO pattern.

d) The class exhibits low coupling.

27. Consider the following program:

import java.util.Comparator;
import java.util.Arrays;

class CountryComparator implements Comparator<String> {
 public int compare(String country1, String country2) {
 return country2.compareTo(country2); // COMPARE_TO
 }
}

public class Sort {
 public static void main(String[] args) {
 String[] brics = {"Brazil", "Russia", "India", "China"};
 Arrays.sort(brics, null);
 for(String country : brics) {
 System.out.print(country + " ");
 }
 }
}

Appendix B ■ Mock TesT – 1

525

Which one of the following options correctly describes the behavior of this program?

a) The program results in a compiler error in the line marked with the comment
COMPARE_TO.

b) The program prints the following: Brazil Russia India China.

c) The program prints the following: Brazil China India Russia.

d) The program prints the following: Russia India China Brazil.

e) The program throws the exception InvalidComparatorException.

f) The program throws the exception InvalidCompareException.

g) The program throws the exception NullPointerException.

28. Which one of the following class definitions will compile without any errors?

a) class P<T> {
 static T s_mem;
 }

b) class Q<T> {
 T mem;
 public Q(T arg) {
 mem = arg;
 }
 }

c) class R<T> {
 T mem;
 public R() {
 mem = new T();
 }
 }

d) class S<T> {
 T []arr;
 public S() {
 arr = new T[10];
 }
 }

29. Which one of the following class/interface supports “retrieval if elements based on the
closest match to a given value or values?”

a) EnumSet

b) HashSet

c) AbstractSet

d) NavigableSet

Appendix B ■ Mock TesT – 1

526

30. In a class that extends ListResourceBundle, which one of the following method
definitions correctly overrides the getObject() method of the base class?

a) public String[][] getContents() {
 return new Object[][] { { "1", "Uno" }, { "2", "Duo" }, { "3", "Trie" }};
 }

b) public Object[][] getContents() {
 return new Object[][] { { "1", "Uno" }, { "2", "Duo" }, { "3", "Trie" }};
 }

c) private List<String> getContents() {
 return new ArrayList (Arrays.AsList({ { "1", "Uno" }, { "2", "Duo" },
 { "3", "Trie" }});
 }

d) protected Object[] getContents(){
 return new String[] { "Uno", "Duo", "Trie" };
 }

31. Which one of the following interfaces declares a single method named iterator()?
(Note: Implementing this interface allows an object to be the target of the for-each
statement.)

a) Iterable<T>

b) Iterator<T>

c) Enumeration<E>

d) ForEach<T>

32. Which one of the following options is best suited for generating random numbers in a
multi-threaded application?

a) Using java.lang.Math.random()

b) Using java.util.concurrent.ThreadLocalRandom

c) Using java.util.RandomAccess

d) Using java.lang.ThreadLocal<T>

33. Consider the following program:

import java.util.*;

class ListFromVarargs {
 public static <T> List<T> asList1(T... elements) {
 ArrayList<T> temp = new ArrayList<>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }

Appendix B ■ Mock TesT – 1

527

 public static <T> List<?> asList2(T... elements) {
 ArrayList<?> temp = new ArrayList<>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }

 public static <T> List<?> asList3(T... elements) {
 ArrayList<T> temp = new ArrayList<>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }

 public static <T> List<?> asList4(T... elements) {
 List<T> temp = new ArrayList<T>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }
}

Which of the asList definitions in this program will result in a compiler error?

a) The definition of asList1 will result in a compiler error.

b) The definition of asList2 will result in a compiler error.

c) The definition of asList3 will result in a compiler error.

d) The definition of asList4 will result in a compiler error.

e) None of the definitions (asList1, asList2, asList3, asList4) will result in a
compiler error.

34. Consider the following program:

import java.util.*;

class TemplateType {
 public static void main(String []args) {
 List<Map<List<Integer>, List<String>>> list =
 new ArrayList<>(); // ADD_MAP
 Map<List<Integer>, List<String>> map = new HashMap<>();
 list.add(null); // ADD_NULL
 list.add(map);
 list.add(new HashMap<List<Integer>,
 List<String>>()); // ADD_HASHMAP

Appendix B ■ Mock TesT – 1

528

 for(Map element : list) { // ITERATE
 System.out.print(element + " ");
 }
 }
}

Which one of the following options is correct?

a) This program will result in a compiler error in line marked with comment ADD_MAP.

b) This program will result in a compiler error in line marked with comment
ADD_HASHMAP.

c) This program will result in a compiler error in line marked with comment ITERATE.

d) When run, this program will crash, throwing a NullPointerException in line marked
with comment ADD_NULL.

e) When run, this program will print the following: null {} {}

35. Consider the following program:

class Base<T> { }

class Derived<T> { }

class Test {
 public static void main(String []args) {
 // Stmt #1
 }
}

Which statements can be placed in the place of //Stmt#1 and the program remains compilable
(choose two):

a) Base<Number> b = new Base<Number>();

b) Base<Number> b = new Derived<Number>();

c) Base<Number> b = new Derived<Integer>();

d) Derived<Number> b = new Derived<Integer>();

e) Base<Integer> b = new Derived<Integer>();

f) Derived<Integer> b = new Derived<Integer>();

36. Consider the following program:

class Base<T> { }

class Derived<T> { }

class Test {
 public static void main(String []args) {
 //Stmt#1
 }
}

Appendix B ■ Mock TesT – 1

529

Which statements can be placed in the place of //Stmt#1 and the program remains compilable
(select all that apply)?

a) Base<? extends Number> b = new Base<Number>();

b) Base<? extends Number> b = new Derived<Number>();

c) Base<? extends Number> b = new Derived<Integer>();

d) Derived<? extends Number> b = new Derived<Integer>();

e) Base<?> b = new Derived<Integer>();

f) Derived<?> b = new Derived<Integer>();

37. Which of the following statements are true about java.sql.Savepoint?
(select all that apply)

a) Savepoint is a point within the current transaction that can be
referenced from the Connection.rollback() method

b) When a transaction is rolled back to a savepoint all changes made after
that savepoint are undone.

c) Savepoints must be named. It is not possible to have "unnamed
savepoints".

d) java.sql.Savepoint is an abstract class; it is implemented by the
classes such as JDBCSavepoint, ODBCSavepoint, and TransactionSavepoint
in the java.sql package.

38. Consider the following program and choose the appropriate option:

import java.util.*;

class Test {
 public static void main(String []args) {
 Set<Integer> set = new LinkedHashSet<Integer>(); //#1
 LinkedHashSet<Integer> set2 = new HashSet<Integer>(); //#2
 SortedSet<Integer> set3 = new TreeSet<Integer>(); //#3
 SortedSet<Integer> set4 = new NavigableSet<Integer>(); //#4
 }
}

a) Statements #1 and #2 will compile successfully.

b) Statements #1 and #3 will compile successfully.

c) Statements #1, #2, and #3 will compile successfully.

d) Statements #2 and #4 will compile successfully.

39. Consider the following program:

import java.util.*;

class Test {
 public static void main(String []args) {
 Set<Integer> set = new TreeSet<Integer>();

Appendix B ■ Mock TesT – 1

530

 set.add(5);
 set.add(10);
 set.add(3);
 set.add(5);
 System.out.println(set);
 }
}

What will be the output of this program?

a) [5, 10, 3, 5]

b) [5, 10, 3]

c) [3, 5, 10]

d) [10, 5, 3]

40. Which of the following statements are true about classes relating to formatting date
and time for local cultures? (select all that apply)

a) java.text.Format is the abstract base class that supports formatting of locale sensitive
information such as date, time, and currency

b) java.text.CustomTimeFormat allows you to define custom patterns for processing
time for specific locales.

c) java.text.NumberFormat derives from the java.text.Format class; it is the base
class for processing numbers, currency, etc. in a locale sensitive way.

d) java.text.DateFormat derives from the java.text.Format class; it is the base class
for processing date and time information based on locale.

41. Consider the following program and choose the appropriate option:

import java.util.*;

class Test {
 public static void main(String []args) {
 Map<String, int> map =
 new HashMap<int, String>(); //#1
 Map<String, String> map2 =
 new HashMap<String, String>(); //#2
 Map<String, String> map3 = new HashMap<>(); //#3
 Map<> map4 = new HashMap<String, String>(); //#4
 }
}

a) Statement #1 and #2 will compile successfully.

b) Statement #2 and #3 will compile successfully.

c) Statement #3 and #4 will compile successfully.

d) Statement #4 and #1 will compile successfully.

Appendix B ■ Mock TesT – 1

531

42. Consider the following program and predict the output:

import java.util.*;

class Test {
 public static void main(String []args) {
 Map<Integer, String> map = new TreeMap<Integer, String>();
 map.put(5, "5");
 map.put(10, "10");
 map.put(3, "3");
 map.put(5,"25");
 System.out.println(map);
 }
}

a) {5=5, 10=10, 3=3, 5=25}

b) {10=10, 3=3, 5=25}

c) {3=3, 5=5, 5=25, 10=10}

d) {3=3, 5=25, 10=10}

e) {3=3, 5=5, 10=10}

43. Consider the following program and predict the output:

import java.util.*;

class Test {
 public static void main(String []args) {
 Deque<Integer> deque = new LinkedList<>();
 deque.add(10);
 deque.add(20);
 deque.peek();
 deque.peek();
 deque.peek(); //#1
 System.out.println(deque);
 }
}

a) [10, 20]

b) [20, 10]

c) []

d) NoSuchElementException thrown when executing the line #1.

44. Which of the following classes in the java.util.concurrent.atomic package inherit from
java.lang.Number? (Select all that apply).

a) AtomicBoolean

b) AtomicInteger

c) AtomicLong

d) AtomicFloat

e) AtomicDouble

Appendix B ■ Mock TesT – 1

532

45. Consider the following program and predict the output:

import java.util.HashSet;

class Student{
 public Student(int r) {
 rollNo = r;
 }
 int rollNo;
}

class Test {
 public static void main(String[] args){
 HashSet<Student> students = new HashSet<>();
 students.add(new Student(5));
 students.add(new Student(10));
 System.out.println(students.contains(new Student(10)));
 }
}

a) This program prints the following: true.

b) This program prints the following: false.

c) This program results in a compiler error.

d) This program throws NoSuchElementException.

46. Which of the following statements are true regarding resource bundles in the context
of localization? (select all that apply)

a) java.util.ResourceBundle is the base class and is an abstraction of resource bundles
that contain locale-specific objects.

b) java.util.PropertyResourceBundle is a concrete subclass of java.util.
ResourceBundle that manages resources for a locale using strings provided in the
form of a property file.

c) Classes extending java.util.PropertyResourceBundle must override the
getContents() method which has the return type Object [][].

d) java.util.ListResourceBundle defines the getKeys() method that returns
enumeration of keys contained in the resource bundle.

47. Consider the following program and predict the output:

import java.util.HashSet;

class Student{
 public Student(int r) {
 rollNo = r;
 }

Appendix B ■ Mock TesT – 1

533

 int rollNo;
 public int hashCode(){
 return rollNo;
 }
}

class Test {
 public static void main(String[] args){
 HashSet<Student> students = new HashSet<>();
 students.add(new Student(5));
 Student s10 = new Student(10);
 students.add(s10);
 System.out.println(students.contains(new Student(10)));
 System.out.println(students.contains(s10));
 }
}

a) false
true

b) false
false

c) true
false

d) true
true

48. Which of the following statements are true regarding the classes or interfaces defined
in the java.util.concurrent package?

a) The Executor interface declares a single method execute(Runnable command) that
executes the given command at sometime in the future.

b) The Callable interface declares a single method call() that computes a result.

c) The Exchanger class provides a “synchronization point at which threads can pair and
swap elements within pairs”.

d) The TimeUnit enumeration represents time duration and is useful for specifying
timing parameters in concurrent programs.

49. Consider the following program and predict the output:

import java.util.*;

class Test {
 public static void main(String []args) {
 List<Integer> intList = new ArrayList<>();
 intList.add(10);
 intList.add(20);
 List list = intList;
 list.add("hello"); // ADD_STR

Appendix B ■ Mock TesT – 1

534

 for(Object o : list) {
 System.out.print(o + " ");
 }
 }
}

a) This program will not print any output and will throw ClassCastException.

b) This program will first print 10 and 20 and then throw ClassCastException.

c) This program will result in a compiler error in line marked with comment ADD_STR.

d) This program will print 10, 20, and hello.

50. Which TWO of the following options provide assignments that will compile without
errors?

a) Map<String, String> map1 = new NavigableMap<>();

b) Map<String, String> map2 = new IdentityHashMap<>();

c) Map<String, String> map3 = new Hashtable<>();

d) Map<String, String> map4 = new ConcurrentMap<>();

51. Consider the following program:

import java.util.*;

class AsList {
 public static void main(String []args) {
 String hello = "hello";
 String world = "world";
 StringBuffer helloWorld = new StringBuffer(hello + world);
 List<String> list =
 Arrays.asList(hello, world, helloWorld.toString());
 helloWorld.append("!");
 list.remove(0); // REMOVE
 System.out.println(list);
 }
}

Which one of the following options is correct?

a) When compiled, this program will result in a compiler error in linked marked with
comment REMOVE.

b) When run, this program will crash with throwing the exception
UnsupportedOperationException when executing the line marked with comment
REMOVE.

c) When run, this program will print the following output: [hello, world, helloworld]

d) When run, this program will print the following output: [world, helloworld!]

e) When run, this program will print the following output: [world, helloworld]

Appendix B ■ Mock TesT – 1

535

52. Consider the following program and predict the output:

class Test {
 public static void main(String []args) {
 String s = new String("5");
 System.out.println(1+10+s+1+10);
 }
}

a) 11511

b) 1105110

c) 115110

d) 27

53. Consider the following program and predict the output:

class Test {
 public static void main(String []args) {
 String s = new String("5");
 System.out.println(1.0+10.5+s+(1.0+10.5));
 }
}

a) 11.5511.5

b) 11.551.010.5

c) 1.010.551.010.5

d) 11.55(1.010.5)

e) 11.55(11.5)

54. Consider the following program:

class Printf {
 public static void main(String []args) {
 System.out.printf("%3.4s %n", "hello world");
 System.out.printf("%05d", 123);
 }
}

Which one of the following options correctly provides the output of this program?

a) lo
05123

b) hell
0123

c) hello
123

Appendix B ■ Mock TesT – 1

536

d) hell
00123

e) hello world
123

55. Consider the following program:

class PrintlnTest {
 public static void main(String[] args) {
 String two = "2";
 System.out.println("1 + 2 + 3 + 4 = "
 + 1 + Integer.parseInt(two) + 3 + 4); // PARSE
 }
}

Which one of the following options correctly describes the behavior of this program?

a) When compiled, this program will give a compiler error in line marked with comment
PARSE for missing catch handler for NumberFormatException.

b) When executed, the program prints the following: 1 + 2 + 3 + 4 = 1234.

c) When executed, the program prints the following: 1 + 2 + 3 + 4 = 10.

d) When executed, the program prints the following: 1 + 2 + 3 + 4 = 127.

e) When executed, the program prints the following: 1 + 2 + 3 + 4 = 19.

f) When executed, the program throws a NumberFormatException in the line marked
with comment PARSE.

56. Consider the following program and predict the output:

class Test {
 public static void main(String []args) {
 int a = 7, b = 10;
 System.out.printf("no:%2$s and %1$s", a, b);
 System.out.printf("\nno:2$s and 1$s", a, b);
 }
}

a) no:10 and 7

no:2$s and 1$s

b) no:7 and 10
no:2$s and 1$s

c) no:10 and 7
no:10 and 7

d) no:7 and 10
no:7 and 10

e) This program will result in compiler error(s).

Appendix B ■ Mock TesT – 1

537

57. Consider the following program and predict the output (ignore any empty lines
in the output):

class Test {
 public static void main(String[] s) {
 String quote = "aba*abaa**aabaa***";
 String [] words = quote.split("a**", 10);
 for (String word : words) {
 System.out.println(word);
 }
 }
}

a) ab

aba
*aaba
**

b) b
b
b

c) aba*aba
aaba

d) This program throws a runtime exception.

58. Consider the following program and predict the output:

import java.util.regex.*;

class Test {
 public static void main(String[] args) {
 String str1 = "xxzz";
 String str2 = "xyz";
 String str3 = "yzz";
 Pattern pattern = Pattern.compile("(xx)*y?z{1,}");
 Matcher matcher = pattern.matcher(str1);
 System.out.println(matcher.matches());
 System.out.println(pattern.matcher(str2).matches());
 System.out.println(
 Pattern.compile("(xx)*y?z{1,}").
 matcher(str3).matches());
 }
}

a) true

false
true

b) true
false
false

Appendix B ■ Mock TesT – 1

538

c) false
false
false

d) false
false
true

e) true
true
true

59. Consider the following program and predict the output:

import java.util.regex.*;

class Test {
 public static void main(String[] args) {
 String str = "OCPJP 2013 OCPJP7";

 Pattern pattern = Pattern.compile("\\b\\w+\\D\\b");
 Matcher matcher = pattern.matcher(str);
 while(matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

a) OCPJP

2013
OCPJP7

b) OCPJP
2013

c) OCPJP
OCPJP7

d) This program does not result in any output.

60. Consider the following program and predict the output:

import java.util.regex.*;

class Test {
 public static void main(String[] args) {
 String str =
 "Suneetha N.=9876543210, Pratish Patil=9898989898";
 Pattern pattern =
 Pattern.compile("(\\w+)(\\s\\w+)(=)(\\d{10})");
 Matcher matcher = pattern.matcher(str);
 String newStr = matcher.replaceAll("$4:$2,$1");
 System.out.println(newStr);
 }
}

Appendix B ■ Mock TesT – 1

539

a) 9876543210: N.,Suneetha, 9898989898: Patil,Pratish

b) Suneetha N.=9876543210, Pratish Patil=9898989898

c) Suneetha N.=9876543210, 9898989898: Patil,Pratish

d) This program throws a runtime exception.

61. Which of the following TWO statements are true about the pre-defined streams
System.in, System.out, and System.err?

a) System.in is of type InputStream.

b) System.in is of type FileReader.

c) System.out is of type OutputStream.

d) System.err is of type ErrorStream.

e) Both System.out and System.err are of type PrintStream.

f) Both System.out and System.err are of type FileWriter.

62. Consider the following program:

import java.io.*;

class CloseableImpl implements Closeable {
 public void close() throws IOException {
 System.out.println("In CloseableImpl.close()");
 }
}

class AutoCloseableImpl implements AutoCloseable {
 public void close() throws Exception {
 System.out.println("In AutoCloseableImpl.close()");
 }
}

class AutoCloseCheck {
 public static void main(String []args) {
 try (Closeable closeableImpl = new CloseableImpl();
 AutoCloseable autoCloseableImpl
 = new AutoCloseableImpl()) {
 } catch (Exception ignore) {
 // do nothing
 }
 finally {
 // do nothing
 }
 }
}

Appendix B ■ Mock TesT – 1

540

Which one of the following options correctly shows the output of this program when the program
is executed?

a) This program does not print any output in console.

b) This program prints the following output:
In AutoCloseableImpl.close()

c) This program prints the following output:
In AutoCloseableImpl.close()
In CloseableImpl.close()

d) This program prints the following output:
In CloseableImpl.close()
In AutoCloseableImpl.close()

63. Consider the following code snippet and choose the best option:

public static void main(String []files) {
 try (FileReader inputFile =
 new FileReader(new File(files[0]))) { // #1
 }
 catch (FileNotFoundException | IOException e) { // #2
 e.printStackTrace();
 }
}

a) The code snippet will compile without any errors.

b) The compiler will report an error at statement #1.

c) The compiler will report an error at statement #2.

d) The compiler will report errors at statements #1 and #2.

64. Consider the following code segment:

while((ch = inputFile.read()) != VAL) {
 outputFile.write((char)ch);
}

Assume that inputFile is of type FileReader, and outputFile is of type FileWriter, and ch is of type
char. The method read() returns the character if successful, or VAL if the end of the stream has been
reached. What is the correct value of this VAL checked in the while loop for end-of-stream?

a) -1

b) 0

c) 255

d) Integer.MAX_VALUE

e) Integer.MIN_VALUE

Appendix B ■ Mock TesT – 1

541

65. Consider the following program and predict the output:

import java.io.*;

class USPresident implements Serializable{
 private static final long serialVersionUID = 1L;
 @Override
 public String toString() {
 return "US President [name=" + name +
 ", period=" + period + ", term=" + term + "]";
 }
 public USPresident(String name, String period, String term) {
 this.name = name;
 this.period = period;
 this.term = term;
 }
 private String name;
 private String period;
 private static transient String term;
}

class TransientSerialization {
 public static void main(String []args) {
 USPresident usPresident = new USPresident
 ("Barack Obama", "2009 to --", "56th term");
 System.out.println(usPresident);
 try (ObjectOutputStream oos = new ObjectOutputStream
 (new FileOutputStream("USPresident.data"))){
 oos.writeObject(usPresident);
 } catch(IOException ioe) {
 // ignore
 }
 try(ObjectInputStream ois = new ObjectInputStream
 (new FileInputStream("USPresident.data"))){
 Object obj = ois.readObject();
 if(obj != null && obj instanceof USPresident){
 USPresident presidentOfUS = (USPresident)obj;
 System.out.println(presidentOfUS);
 }
 }catch(IOException ioe) {
 // ignore
 } catch (ClassNotFoundException e) {
 // ignore
 }
 }
}

Appendix B ■ Mock TesT – 1

542

a) US President [name=Barack Obama, period=2009 to --, term=56th term]
US President [name=Barack Obama, period=2009 to --, term=56th term]

b) US President [name=Barack Obama, period=2009 to --, term=56th term]
US President [name=Barack Obama, period=2009 to --, term=null]

c) This program will result in a compiler error.

d) This program will result in a runtime exception.

66. Which one of the following statements true?

a) If you do not specify serialVersionUID while in serialization, your class will not compile

b) If you do not specify serialVersionUID while in serialization, JVM will work across all
platforms and JVM implementations.

c) If you are implementing an Externalizable interface, you need not specify
serialVerionUID.

d) If a class is serialized and you try to serialize it again, the JVM will not serialize it due
to the same serialVersionUID.

67. Consider the following program:

import java.io.*;

class CopyFile {
 public static void main(String []files) {
 if(files.length != 2) {
 System.err.println
 ("Incorrect syntax. Usage: Copy SrcFile DstFile");
 System.exit(-1);
 }
 String srcFile = files[0];
 String dstFile = files[1];

 try (BufferedReader inputFile
 = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile
 = new BufferedWriter(new FileWriter(dstFile))) {
 int ch = 0;
 inputFile.skip(6);
 while((ch = inputFile.read()) != -1) {
 outputFile.write((char)ch);
 }
 outputFile.flush();
 } catch (IOException exception) {
 System.err.println("Error "
 + exception.getMessage());
 }
 }
}

Assume that you have a file named HelloWorld.txt with the following contents:

Hello World!

Appendix B ■ Mock TesT – 1

543

This program is invoked from the command-line as:

java CopyFile HelloWorld.txt World.txt

Which one of the following options correctly describes the behavior of this program (assuming that
both srcFile and dstFile are opened successfully)?

a) The program will throw an IOException because skip() is called before calling read().

b) The program will result in creating the file World.txt with the contents “World!” in it.

c) This program will result in throwing CannotSkipException.

d) This program will result in throwing IllegalArgumentException.

68. Consider the following program:

import java.nio.file.*;

class SubPath {
 public static void main(String []args) {
 Path aPath = Paths.get("C:\\WINDOWS\\system32\\config\\systemprofile\\

Start Menu\\Programs\\Accessories\\Entertainment\\Windows Media Player");
 System.out.println(aPath.subpath(3, 4));
 }
}

Which one of the following options is correct?

a) This program prints the following: config\systemprofile.

b) This program prints the following: config.

c) This program prints the following: systemprofile.

d) This program prints the following: system32\config.

e) This program throws an IllegalArgumentException.

69. Consider the following code segment:

Path testFilePath = Paths.get("C:\\WINDOWS\\system32\\config\\.\\systemprofile\\Start
Menu\\Programs\\Accessories\\Entertainment\\..\\..");
System.out.println("It's normalized absolute path is: " +
testFilePath.normalize().toAbsolutePath());

Which one of the following options correctly provides the output of this code segment?

a) C:\\WINDOWS\\system32\\config\\systemprofile\\Start
Menu\\Programs\\Accessories\\Entertainment\\

b) C:\WINDOWS\system32\config\systemprofile\Start
Menu\Programs\Accessories\Entertainment\

c) C:\WINDOWS\system32\config\systemprofile\Start Menu\Programs

d) C:\WINDOWS\system32\systemprofile\Start
Menu\Programs\Accessories\Entertainment\

Appendix B ■ Mock TesT – 1

544

70. Consider the following program and predict the output:

class Base {
 protected void finalize() {
 System.out.println("in Base.finalize");
 }
}

class Derived extends Base {
 protected void finalize() {
 System.out.println("in Derived.finalize");
 }
}

class Test {
 public static void main(String []args) {
 Derived d = new Derived();
 d = null;
 Runtime.runFinalizersOnExit(true);
 }
}

a) This program prints the following: in Base.finalize.

b) This program prints the following: in Derived.finalize.

c) This program throws a CannotRunFinalizersOnExitException.

d) This program throws a NullPointerException.

71. Consider the following program and predict the output:

class Test {
 private static int mem = 0;
 public static void foo() {
 try {
 mem = mem + 1;
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 mem = mem + 1;
 }
 }
 public static void main(String []args) {
 foo();
 System.out.println(mem);
 }
}

Appendix B ■ Mock TesT – 1

545

a) 0

b) 1

c) 2

d) 3

72. Consider the following program:

class Base {
 public void foo() {
 assert true; // ASSERT_BASE
 }
}

class Derived extends Base {
 public void foo() {
 assert false; // ASSERT_DERIVED
 }
}

class AssertionCheck {
 public static void main(String []args) {
 try {
 Base base = new Base();
 base.foo();
 }
 catch(Exception e) {
 base = new Derived();
 base.foo();
 }
 }
}

From the command line, this program is invoked as follows:

java -ea -da:Derived AssertionCheck

Which one of the following options correctly describes the behavior of this program when it is run?

a) This program crashes throwing an AssertionError in line marked with comment
ASSERT_BASE.

b) This program crashes throwing an AssertionError in line marked with comment
ASSERT_DERIVED.

c) This program first prints “Caught exception” and then crashes throwing an
AssertionError in line marked with comment ASSERT_DERIVED.

d) This program completes execution normally without producing any output or
throwing any exceptions.

Appendix B ■ Mock TesT – 1

546

73. Consider the following code segment:

try (BufferedReader inputFile
 = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile
 = new BufferedWriter(new FileWriter(dstFile))) { // TRY-BLOCK
 int ch = 0;
 while((ch = inputFile.read()) != -1) {
 outputFile.write((char)ch);
 }
} catch (FileNotFoundException
 | IOException exception) { // MULTI-CATCH-BLOCK
 System.err.println("Error in opening or processing file "
 + exception.getMessage());
}

Assume that srcFile and dstFile are Strings. Which one of the following options correctly describes
the behavior of this program?

a) This program will get into an infinite loop because the condition check for
end-of-stream (checking != -1) is incorrect.

b) This program will get into an infinite loop because the variable ch is declared as int
instead of char.

c) This program will result in a compiler error in line marked with comment
TRY-BLOCK because you need to use , (comma) instead of ; (semi-colon) as separator
for opening multiple resources.

d) This program will result in a compiler error in line marked with comment
MULTI-CATCH-BLOCK because IOException is the base class for
FileNotFoundException.

74. Consider the following program and replace the statement #1 and #2 with appropriate
declarations:

import java.io.Console;

class Login {
 public static void main(String []args) {
 Console console = System.console();
 if(console != null) {
 //#1
 //#2
 userName = console.readLine("Enter your username: ");
 password = console.readPassword("Enter password: ");
 System.out.println(userName + " ," + password);
 }
 }
}

Appendix B ■ Mock TesT – 1

547

a) String userName = null;
 char[] password = null;

b) String userName = null;
 String password = null;

c) char[] userName = null;
 String password = null;

d) char[] userName = null;
 char[] password = null;

75. Assuming that file is a String variable, which one of the following statements is NOT a
valid statement?

a) BufferedReader inputFile = new BufferedReader(new FileReader(file));

b) FileReader inputFile = new FileReader(file);

c) FilterReader fr = new FilterReader(file);

d) FilterReader fr = new PushbackReader(new FileReader(file));

76. Consider the following snippet:

try (FileReader inputFile = new FileReader(file)) {
 //#1
 System.out.print((char)ch);
 }
}

Which one of the following statements can be replaced in the place of statement #1?

a) while((ch = inputFile.read()) != null) {

b) while((ch = inputFile.read()) != -1) {

c) while((ch = inputFile.read()) != 0) {

d) while((ch = inputFile.read()) != EOF) {

77. Among the given options, which two options will compile successfully:

a) BufferedReader br =
 new BufferedReader(new FileReader(srcFile));
 br.getChannel();

b) RandomAccessFile raf =
 new RandomAccessFile(srcFile, "rw+");
 raf.getChannel();

c) FileInputStream ifr =
 new FileInputStream(srcFile);
 ifr.getChannel();

d) DataInputStream dis =
 new DataInputStream(new FileInputStream("temp.data"));
 dis.getChannel();

Appendix B ■ Mock TesT – 1

548

78. Consider the following program and predict the output (the following files exist in the
given path File09.java, File0.java, FileVisitor1.java, FileVisitor1.class):

class MyFileFindVisitor extends SimpleFileVisitor<Path> {
 private PathMatcher matcher;
 public MyFileFindVisitor(String pattern) {
 matcher =
 FileSystems.getDefault().getPathMatcher(pattern);
 }
 public FileVisitResult visitFile
 (Path path, BasicFileAttributes fileAttributes){
 find(path);
 return FileVisitResult.CONTINUE;
 }
 private void find(Path path) {
 Path name = path.getFileName();
 if(matcher.matches(name))
 System.out.println
 ("Matching file:" + path.getFileName());
 }
 public FileVisitResult preVisitDirectory
 (Path path, BasicFileAttributes fileAttributes){
 find(path);
 return FileVisitResult.CONTINUE;
 }
}

class FileTreeWalkFind {
 public static void main(String[] args) {
 Path startPath = Paths.get("d:\\workspace\\test\\src");
 String pattern = "glob:File[0-9]+.java";
 try {
 Files.walkFileTree
 (startPath, new MyFileFindVisitor(pattern));
 System.out.println("File search completed!");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

a) File09.java

 File0.java
 FileVisitor1.java
 File search completed!

b) File09.java
 File0.java
 File search completed!

Appendix B ■ Mock TesT – 1

549

c) File0.java
 File search completed!

d) File search completed!

79. Which one of the following statements is NOT correct in the context of NIO.2?

a) While finding files/directories, the default pattern format is glob; hence, you need not
start the search-pattern from "glob:".

b) You can specify the search pattern either in glob format or in regex format.

c) Glob format is a subset of the regex pattern format.

d) There will be no error or runtime exception if you specify a wrong glob search pattern.

80. Which one of the following statements will compile without errors?

a) Locale locale1 = new Locale.US;

b) Locale locale2 = Locale.US;

c) Locale locale3 = new US.Locale();

d) Locale locale4 = Locale("US");

e) Locale locale5 = new Locale(Locale.US);

81. Consider the following program:

import java.util.*;

class Format {
 public static void main(String []args) {
 Formatter formatter = new Formatter();
 Calendar calendar = Calendar.getInstance(Locale.US);
 calendar.set(/* year =*/ 2012,
 /* month = */ Calendar.FEBRUARY, /* date = */ 1);
 formatter.format("%tY/%tm/%td",
 calendar, calendar, calendar);
 System.out.println(formatter);
 }
}

Which one of the following options is correct?

a) The program throws a MissingFormatArgumentException.

b) The program throws an UnknownFormatConversionException.

c) The program prints the following: 2012/02/01.

d) The program prints the following: 12/Feb/01.

Appendix B ■ Mock TesT – 1

550

82. Which one of the following statements is correct with respect to Closeable and
AutoCloseable interfaces?

a) Interface Closeable extends AutoCloseable and defines one method, close().

b) Interface Autocloseable extends Closeable and defines one method, close().

c) Interface Closeable extends AutoCloseable and does not define any method.

d) Interface AutoCloseable extends Closeable and does not define any method.

e) Closeable and AutoCloseable interfaces do not share any inheritance relationship.

83. Which one of the following code snippets shows the correct usage of
try-with-resources statement?

a) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 catch(IOException ioe) {}
 }

b) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 finally {/*...*/}
 catch(IOException ioe) {}
 }

c) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 catch(IOException ioe) {}
 finally {/*...*/}
 }

d) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 }

Appendix B ■ Mock TesT – 1

551

84. Consider the following program and predict the output:

class MyThread extends Thread {
 public MyThread(String name) {
 this.setName(name);
 start();
 System.out.println("in ctor " + getName());
 }
 public void start() {
 System.out.println("in start " + getName());
 }
 public void run() {
 System.out.println("in run " + getName());
 }
}

class Test {
 public static void main(String []args) {
 new MyThread("oops");
 }
}

a) in start oops

 in ctor oops

b) in start oops
 in run oops
 in ctor oops

c) in start oops
 in ctor oops
 in run oops

d) in ctor oops
 in start oops
 in run oops

85. Which one of the following methods returns a Future object?

a) The overloaded submit() method declared in the ExecutorService
interface.

b) The execute() method declared in the Executor interface.

c) The call() method declared in the Callable interface.

d) The run() method declared in the Runnable interface.

Appendix B ■ Mock TesT – 1

552

86. Consider the following program:

import java.util.concurrent.locks.*;

class LockUnlock {
 public static void main(String []args) {
 Lock lock = new ReentrantLock();
 try {
 System.out.print("Lock 1 ");
 lock.lock();
 System.out.print("Critical section 1 ");
 System.out.print("Lock 2 ");
 lock.lock(); // LOCK_2
 System.out.print("Critical section 2 ");
 } finally {
 lock.unlock();
 System.out.print("Unlock 2 ");
 lock.unlock(); // UNLOCK_1
 System.out.print("Unlock 1 ");
 }
 }
}

Which one of the following options is correct?

a) This program will throw an IllegalMonitorStateException in the line marked with
comment LOCK_2.

b) This program will throw an IllegalMonitorStateException in the line marked with
comment UNLOCK_1.

c) This program will throw an UnsupportedOperationException in the line marked with
comment UNLOCK_1.

d) This program prints the following: Lock 1 Critical section 1 Lock 2 Critical section 2
Unlock 2 Unlock 1.

87. Consider the following program:

import java.util.concurrent.locks.*;

class LockUnlock {
 public static void main(String []args) {
 Lock lock1 = new ReentrantLock();
 Lock lock2 = new ReentrantLock();
 try {
 System.out.println("Going to lock...");
 lock1.lock();
 System.out.println("In critical section");
 } finally {
 lock2.unlock();
 System.out.println("Unlocking ...");
 }
 }
}

Appendix B ■ Mock TesT – 1

553

Which one of the following options is correct?

a) This program will print the following:
“Going to lock…”
“In critical section”
Unlocking …

b) This program will print the following:
“Going to lock…”
“In critical section”
and then terminate normally.

c) This program will print the following:
“Going to lock…”
“In critical section”
and then enter into a deadlock because lock2.unlock() waits for lock2 to get locked first.

d) This program will throw an IllegalMonitorStateException.

88. Consider the following program:

import java.util.concurrent.Semaphore;

class ATMRoom {
 public static void main(String []args) {
 Semaphore machines = new Semaphore(2); //#1
 new Person(machines, "Mickey");
 new Person(machines, "Donald");
 new Person(machines, "Tom");
 new Person(machines, "Jerry");
 new Person(machines, "Casper");
 }
}

class Person extends Thread {
 private Semaphore machines;
 public Person(Semaphore machines, String name) {
 this.machines = machines;
 this.setName(name);
 this.start();
 }
 public void run() {
 try {
 System.out.println(getName()
 + " waiting to access an ATM machine");
 machines.acquire();
 System.out.println(getName()
 + " is accessing an ATM machine");
 Thread.sleep(1000);

Appendix B ■ Mock TesT – 1

554

 System.out.println(getName()
 + " is done using the ATM machine");
 machines.release();
 } catch(InterruptedException ie) {
 System.err.println(ie);
 }
 }
}

Which one of the options is true if you replace the statement #1 with the following statement?

Semaphore machines = new Semaphore(2, true);

a) The exact order in which waiting persons will get the ATM machine cannot be

predicted.

b) The ATM machine will be accessed in the order of waiting persons (because of the
second parameter in semaphore constructor).

c) It will not compile since second parameter in semaphore instantiation is not allowed.

d) It will result in throwing an IllegalMonitorStateException.

89. A couple of friends are waiting for some more friends to come so that they can go
to a restaurant for dinner. Which synchronization construct could be used here to
programmatically simulate this situation?

a) Exchanger

b) Lock

c) CyclicBarrier

d) RecursiveAction

90. An application establishes connection with a database, which returns a resultset
containing two identical column names. You are using ResultSet to retrieve the
associated values. In this context, which statement is true?

a) You can retrieve both the column values using column names.

b) You can retrieve both the column values using column names; however, you need to
specify the column names using the column index (i.e. column-name:column-index).

c) You cannot use column names to retrieve both the values; you need to use column
index to do it.

d) Both options b and c will work.

Appendix B ■ Mock TesT – 1

555

Answer Sheet
Question No Answer Question No Answer Question No Answer

1 31 61

2 32 62

3 33 63

4 34 64

5 35 65

6 36 66

7 37 67

8 38 68

9 39 69

10 40 70

11 41 71

12 42 72

13 43 73

14 44 74

15 45 75

16 46 76

17 47 77

18 48 78

19 49 79

20 50 80

21 51 81

22 52 82

23 53 83

24 54 84

25 55 85

26 56 86

27 57 87

28 58 88

29 59 89

30 60 90

Appendix B ■ Mock TesT – 1

556

Answers and Explanations
1. a) int i = 012;

Putting 0 before a number makes that number an octal number. A decimal equivalent of
012 (in octal) is 10. If you attempt an implicit conversion from float, long, or double types
(as given in options b, c, and d respectively) to an integer, you will a get compiler error.

2. a) Compiler error in line marked with comment NUM because Number cannot be
instantiated

Number is an abstract class, hence you cannot instantiate it using new operator. Many
classes including Integer, Float, and BigDecimal derive from the Number class.

3. a) This code segment: This, that, etcetera.!

The method StringBuffer replace(int start, int end, String str) has the
following behavior according to the Javadoc that explains the behavior of this code
segment: “Replaces the characters in a substring of this sequence with characters in the
specified String. The substring begins at the specified start and extends to the character at
index end - 1 or to the end of the sequence if no such character exists. First, the characters
in the substring are removed and then the specified String is inserted at the start. (This
sequence will be lengthened to accommodate the specified String if necessary.)”

4. b) This program prints the following: hello world! null.

The call new StringBuffer(10); creates a StringBuffer object with initial capacity to
store 10 characters; this capacity would grow as you keep calling methods like append().
After the calls to append “hello” and “world ,” the call to append null results in adding
the string “null” to the string buffer (it doesn’t result in a NullPointerException
or InvalidArgumentException). With the append of “null,” the capacity of the
string buffer has grown to 17 characters. So, the call strBuffer.insert(11, '!');
successfully inserts the character ‘!’ in the 11th position instead of resulting in an
ArrayIndexOutOfBoundsException.

5. b) This code will result in a throwing a NullPointerException.

Note that unboxing can take place in expressions when you use a wrapper type object
in place of a primitive type value. In this case, in the condition check for the conditional
operator (?: operator), a primitive boolean value is required, but a wrapper type object is
provided. Hence auto-unboxing occurs, with the reference pointing to null. As a result, this
code segment results in throwing a NullPointerException.

6. a) Base
 Derived
 DeriDerived

Whenever a class gets instantiated, the constructor of its base classes (the constructor of
the root of the hierarchy gets executed first) gets invoked before the constructor of the
instantiated class.

Appendix B ■ Mock TesT – 1

557

7. a) public

d) abstract

e) final

Only public, abstract, and final modifiers are permitted for an outer class; using
private, protected, or static will result in a compiler error.

8. c) private Point() {
 this(0, 0);
 }

Options a) and b): Calls to super() or this() should be the first statement in a constructor,
hence both the calls cannot be there in a constructor.

Option d): Recursive constructor invocation for Point() that the compiler would detect.

Option e): You cannot refer to an instance field x while explicitly invoking a constructor
using this keyword.

9. b) Removing Stmt-1 will make the program compilable and it will print the following:
Base: Hello Derived.

c) Removing Stmt-2 will make the program compilable and it will print the following:
Base Derived.

d) Removing both Stmt-1 and Stmt-2 will make the program compilable and it will print
the following: Base Derived.

If you remove Stmt-1, a call to super(s) will result in printing Base: Hello, and then
constructor of the Derived class invocation will print Derived. Similarly, removal of Stmt-2
will also produce the correct program. In fact, if you remove both these statements, you
will also get a compilable program.

10. d) import static abc.org.project.A.MYCONST;

11. b) import static java.lang.System.out;
 class StaticImport {
 public static void main(String []args) {
 out.println("hello world");
 }
 }

The member out is a static member in the System class; you can statically import it and
call println method on it. Note that println is a non-static member. Also, the statement
import static java.lang.System.out.*; will result in a compiler error since out is not a
class (but a static member of type PrintStream).

12. a) The compiler will report an error at statement #1.

Statement #1 will result in a compiler error since the keyword protected is not allowed
inside a method body.

13. d) The program will result in an exception (ClassCastException).

The dynamic type of variable obj is Base1 that you were trying to cast into Base2.
This is not supported and so results in an exception.

14. d) Outer.Inner inner = new Outer().new Inner();

Appendix B ■ Mock TesT – 1

558

15. c) This program runs and prints 10.

An inner class can access even the private members of the outer class. Similarly,
the private variable belonging to the inner class can be accessed in the outer class.

16. e) When executed, this program prints the following:
yes, instance of AnEnum
yes, instance of EnumBase
yes, instance of Enum

An enumeration can implement an interface (but cannot extend a class, or cannot be
a base class).
Each enumeration constant is an object of its enumeration type. An enumeration
automatically extends the abstract class java.util.Enum. Hence, all the three instanceof
checks succeed.

17. a) Enum can have private constructor.

c) Enum can have public methods and fields.

d) Enum can implement an interface.

18. c) The program will report a compilation error at statement #3.

Statement #1 and #2 will not raise any alarm; only access to the variable var will generate
an error since the access is ambiguous (since the variable is declared in both base1 and
base2).

19. c) The line marked with comment THREE will result in a compiler error.

Options a) and b): For the substitution to succeed, the type substituted for the wildcard ?
should be DI or one of its super types.

Option c): The type DDI is not a super type of DI, so it results in a compiler error.

Option d): The type argument is not provided, meaning that C is a raw type in the
expression new C(). Hence, this will elicit a compiler warning, but not an error.

20. c) class X <T extends DI> { }

The keyword extends is used to specify the upper bound for type T; with this, only the
classes or interfaces implementing the interface DI can be used as a replacement for T.
Note that the extends keyword is used for any base type—irrespective of if the base type is
a class or an interface.

21. b) class Test extends base1 implements base3, base4 {

You can extend from only one base class (since Java does not support multiple class
inheritance). However, you can implement multiple interfaces; in that case, the list of
implemented interfaces is separated by commas.

22. c) A Factory class may use Singleton pattern

A Factory class generates the desired type of objects on demand. Hence, it might be
required that only one Factory object exists; in this case, Singleton can be employed in a
Factory class.

Appendix B ■ Mock TesT – 1

559

23. c) Image

The DAO pattern separates the persistence logic from the rest of the business logic. In
this pattern, TransferObject is a role played by an object that needs to be stored on a
persistent medium. Here, only the Image class fits the description of a TransferObject.

24. d) Composition

Composition is also known as a has-a relationship, and inheritance is known as an is-a
relationship. The Composite pattern is a design pattern and is not an alternative name for a
has-a relationship.

25. b) Class Test is related with ClassC with a composition relationship.

When a class inherits from another class, they share an is-a relationship. On the other
hand, if a class uses another class (by declaring an instance of another class), then the first
class has a has-a relationship with the used class.

26. a) The class exhibits low cohesion.

The methods of the class show that the class carries out various types of operations that
make this class in-cohesive.

27. b) The program prints the following: Brazil China India Russia.

For the sort() method, null value is passed as the second argument, which indicates that
the elements’ “natural ordering” should be used. In this case, natural ordering for Strings
results in the strings sorted in ascending order. Note that passing null to the sort()
method does not result in a NullPointerException.

28. b) class Q<T> {
 T mem;
 public Q(T arg) {
 mem = arg;
 }
 }

Option a): You cannot make a static reference of type T.

Option c) and d): You cannot instantiate the type T or T[] using new operator.

29. d) NavigableSet

EnumSet is a specialized Set implementation class for use with enum types. HashSet is
a Set implementation that makes use of a hashing mechanism for quick retrieval of
elements. AbstractSet is the abstract base class of all Set classes. NavigableSet provides
“navigation methods” that can search for closest matches for a given value or values.

30. b) public Object[][] getContents() {
 return new Object[][] { { "1", "Uno" }, { "2", "Duo" }, { "3", "Trie" }};
 }

The getContents() method is declared in ListResourceBundle as follows:

protected abstract Object[][] getContents()

The other three definitions are incorrect overrides and will result in compiler error(s).

Appendix B ■ Mock TesT – 1

560

31. a) Iterable<T>

The interface Iterable<T> declares this single method:

Iterator<T> iterator();

This iterator() method returns an object of type Iterator<T>. A class must implement
Iterable<T> for using its object in a for-each loop.

32. b) Using java.util.concurrent.ThreadLocalRandom

java.lang.Math.random() is not efficient for concurrent programs. Using
ThreadLocalRandom results in less overhead and contention when compared to using
Random objects in concurrent programs (and hence using this class type is the best option
in this case).

java.util.RandomAccess is unrelated to random number generation. This interface is
the base interface for random access data structures and is implemented by classes such
as Vector and ArrayList. java.lang.ThreadLocal<T> class provides support for creating
thread-local variables.

33. b) The definition of asList2 will result in a compiler error.

In the asList2 method definition, temp is declared as ArrayList<?>. Since the template
type is a wild-card, you cannot put any element (or modify the container). Hence, the
method call temp.add(element); will result in a compiler error.

34. e) When run, this program will print the following: null {} {}

The lines marked with comments ADD_MAP and ADD_HASHMAP are valid uses of the diamond
operator to infer type arguments. In the line marked with comment ITERATE, the Map type
is not parameterized, so it will result in a warning (not a compiler error). Calling the add()
method passing null does not result in a NullPointerException. The program, when run,
will successfully print the output null, {}, {} (null output indicates a null value was added to
the list, and the {} output indicates that Map is empty).

35. a) Base<Number> b = new Base<Number>();

f) Derived<Integer> b = new Derived<Integer>();

Note that Base and Derived are not related by an inheritance relationship. Further, for
generic type parameters, subtyping doesn’t work: you cannot assign a derived generic type
parameter to a base type parameter.

36. a) Base<? extends Number> b = new Base<Number>();

d) Derived<? extends Number> b = new Derived<Integer>();

f) Derived<?> b = new Derived<Integer>();

When <? extends Number> is specified as a type, then you can use any type derived from
Number (including Number); hence, options a) and d) are correct. Option f) is correct since
class names are the same in both the sides, and ? in <?> is replaced by Integer, which is
allowed.

37. a) Savepoint is a point within the current transaction that can be referenced from the
Connection.rollback() method.

b) When a transaction is rolled back to a savepoint, all changes made after that
savepoint are undone.

Appendix B ■ Mock TesT – 1

561

Savepoints can be named or unnamed. We can identify an “unnamed savepoint” by
referring to the ID generated by the underlying data source.

java.sql.Savepoint is an interface (it is not an abstract class). Classes JDBCSavepoint,
ODBCSavepoint, and TransactionSavepoint do not exist in the java.sql package. Hence,
options a) and b) are correct.

38. b) Statements #1 and #3 will compile successfully.

LinkedHashSet inherits from Set so statement #1 will compile. TreeSet inherits from
SortedSet so statement #3 will also compile successfully.

LinkedHashSet is inherited from HashSet so statement #2 will not compile. Statement
#4 tries to create an object of type NavigableSet which is an interface, so it will also not
compile.

39. c) [3, 5, 10]

TreeSet is a sorted set; hence, all the inserted items are sorted in ascending order. Also,
since TreeSet is a Set, it will remove any duplicate item inserted.

40. a) java.text.Format is the abstract base class that supports formatting of locale sensitive
information such as date, time, and currency

c) java.text.NumberFormat derives from java.text.Format class; it is the base class for
processing numbers, currency, etc. in a locale sensitive way.

d) java.text.DateFormat derives from java.text.Format class; it is the base class for
processing date and time information based on locale.

Class java.text.SimpleDateFormat allows you to define custom patterns for processing
date and time for specific locales.

41. b) Statement #2 and #3 will compile successfully.

Due to the diamond syntax, it is optional to specify template types in the right hand side of
an object creation statement. Hence, statement #3 is right. Statement #2 is correct since
HashMap is a Map. Therefore, option b) is correct.

In statement #1, the order of arguments of the declared type is different from the order
of arguments in the initialized type. In statement #4, the diamond syntax is used in the
declaration of the type and so is incorrect (the correct way is to use the diamond operator
in the initialization type).

42. d) {3=3, 5=25, 10=10}

TreeMap is a Map;—a value is stored against a key, and the elements are sorted based on
the key. Option c) is not possible since two values cannot exist for a key. In a Map, keys are
sequential, so options a) and b) are not possible. Option e) is also not correct since you
have overwritten the value 25 against key 5, which is not captured by option e).

43. a) [10, 20]

The method peek() retrieves an element from the head of the Deque and returns, but does
not remove the element. Hence, there will be no impact on the Deque.

Appendix B ■ Mock TesT – 1

562

44. b) AtomicInteger

c) AtomicLong

Classes AtomicInteger and AtomicLong extend Number class.

AtomicBoolean does not extend java.lang.Number. Classes named as AtomicFloat or
AtomicDouble do not exist in the java.util.concurrent.atomic package.

45. b) This program prints the following: false.

Since methods equals() and hashcode() are not overridden for the Student class, the
contains() method will not work as intended and prints false.

46. a) ResourceBundle is the base class and is an abstraction of resource bundles that
contain locale-specific objects.

d) java.util.ListResourceBundle defines the getKeys() method that returns enumeration
of keys contained in the resource bundle.

java.util.ListResourceBundle is a concrete subclass of java.util.The ResourceBundle
that manages resources for a locale using strings provided in the form of a property file.
Classes extending java.util.ListResourceBundle must override the getContents()
method which has the return type Object [][].

47. a) false
true

Since, the newly created object is not part of the students set, the call to contains will
result in false (note that the equals() method is not overridden in this class). Object s10
is part of the students set. So option a) is the correct answer.

48. a) The Executor interface declares a single method execute(Runnable command) that
executes the given command at some time in the future.

b) The Callable interface declares a single method call() that computes a result.

c) The Exchanger class provides a “synchronization point at which threads can pair and
swap elements within pairs”.

d) The TimeUnit enumeration represents time duration and is useful for specifying
timing parameters in concurrent programs.

Options a), b), c), and d) – all four options are correct statements.

49. d) It will print 10, 20, and hello.

The raw type List gets initialized from List<Integer> (which generates a compiler
warning not an error), and then you add a string element to the raw List, which is
allowed. Then the whole list gets iterated to print each element; each element gets cast to
the Object type, so it prints 10, 20, and hello.

50. b) Map<String, String> map2 = new IdentityHashMap<>();

c) Map<String, String> map3 = new Hashtable<>();

The classes IdentityHashMap and Hashtable derive from the Map interface, so the
assignments in the b) and c) options will compile without errors. NavigableMap and
ConcurrentMap are interfaces that derive from the Map interface, and interfaces cannot be
instantiated; hence the assignments in options a) and d) will result in compiler errors.

Appendix B ■ Mock TesT – 1

563

51. b) When run, this program will crash with throwing the exception
UnsupportedOperationException when executing the line marked with the comment
REMOVE.

The Arrays.asList method returns a List object that is backed by a fixed-length array.
You cannot modify the List object returned by this array, so calling methods such as add()
or remove() will result in throwing an UnsupportedOperationException.

52. c) 115110

The string concatenation operator works as follows: if both the operands are numbers,
it performs the addition; otherwise it concats the arguments by calling the toString()
method if needed. It evaluates from left to right. Hence, the expression in the program
results in the string 115110.

53. a) 11.5511.5

The rule specified in the earlier explanation applies here also. However, here, the order of
computation is changed using brackets. Hence, the + operator adds the numbers in the
brackets first, and you get 11.5511.5.

54. d) hell
00123

In first printf() method, %3.4s indicates that you want to print the first four characters
of a string. In the second printf() method call, %05d indicates that you wanted to print
a minimum five digits of an integer. If the number does not have enough digits, then the
number will be preceded by leading zeroes.

55. b) When executed, the program prints the following: 1 + 2 + 3 + 4 = 1234.

The string concatenation operator works as follows: if both operands are numbers,
it performs the addition; otherwise, it performs string concatenation. The operator checks
from left operand to right. Here, the first operand is string; therefore all operands are
concatenated.

Note that parseInt need not catch NumberFormatException since it is a
RuntimeException; so the lack of the catch handler will not result in a compiler error. Since
the parseInt method succeeds, the program does not throw NumberFormatException.

56. a) no:10 and 7
no:2$s and 1$s

The format specifier string %$s indicates that you want to re-order the input values.
A number (integer) sandwiched between a % and a $ symbol is used to re-order the
input values; the number indicates which input variable you want to put here. In %2$s
it indicates that you want to put the second argument. Similarly, %1$s indicates that you
want to put the first argument.

57. b) b
 b
 b

The specified regex (i.e. “a**”) will match to a string starting from an “a” followed by one
or more “*” (since “**” means zero or more occurrences of “*”). Hence, when the split is
called on the input string, it results in three “b”s.

Appendix B ■ Mock TesT – 1

564

The second argument indicates a limit to split, which controls the number of times the
pattern is applied. Here the limit is 10, but the pattern is applied only three times, so it
does not make any difference in this program.

58. a) true
false
true

The specified regex expects zero or more instances of “xx”, followed by a zero or one
instance of “y” and further followed by one or more instances of “z.”

The first string matches the regex (one instance of “xx,” zero instances of “y,” and more
than one instances of “z”), and thus matches() returns true. The second string does not
match with the regex because of one “x” (and not “xx”), thus matches() returns false. The
third string matches with the specified regex (since there are zero instances of “xx,” one
instance of “y,” and more than one instance of “z”), thus matches() prints true.

59. b) OCPJP
 2013

The expression “\b” matches the word boundaries. The first “\b” matches the string start,
“\w+” matches to OCPJP, “” matches white space, and “\b” matches the starting of the
second word. Thus, it prints OCPJP in the first line. Similarly, “\b” matches the starting of
the second word, “\w+" matches to 2013, “\D” matches to white space, and “\b” matches to
the start of the third word. Therefore, the program prints 2013 in the second line. However,
for the last word, “\b” matches to the start of the third word, “\w+” matches to the OCPJP7,
but “\D” did not match with anything; hence, the third word is not printed.

60. c) Suneetha N.=9876543210, 9898989898: Patil,Pratish

The first contact does not match with the specified regex (since “.” is not covered by “\w+”);
hence, the first part of the string is unchanged. The second part of string matches with the
specified regex, so the replace rearranges the substring.

61. a) System.in is of type InputStream.
 e) Both System.out and System.err are of type PrintStream.

System.in is of type InputStream, and both System.out and System.err are of type
PrintStream. These are byte streams, though they are usually used for reading and writing
characters from or to the console.

62. c) This program prints the following output:
In AutoCloseableImpl.close()
In CloseableImpl.close()

The types implementing AutoCloseable can be used with a try-with-resources statement.
The Closeable interface extends AutoCloseable, so classes implementing Closeable can
also be used with a try-with-resources statement.

The close() methods are called in the opposite order when compared to the order of
resources acquired in the try-with-resources statement. So, this program calls the close()
method of AutoCloseableImpl first, and after that calls the close() method on the
CloseableImpl object.

63. c) The compiler will report an error at statement #2.

Both of the specified exceptions belong to same hierarchy (FileNotFoundException
derives from an IOException), so you cannot specify both exceptions together in the
multi-catch handler block.

Appendix B ■ Mock TesT – 1

565

64. a) −1

The read() method returns the value −1 if end-of-stream (EOS) is reached, which is
checked in this while loop.

65. a) US President [name=Barack Obama, period=2009 to --, term=56th term]
US President [name=Barack Obama, period=2009 to --, term=56th term]
Static transient variables are retained during serialization.

66. d) If a class is serialized and you try to serialize it again, the JVM will not serialize it due
to the same serialVersionUID.

67. b) The program will result in creating the file World.txt with the contents “World!” in it.

The method call skip(n) skips n bytes (i.e., moves the buffer pointer by n bytes). In this
case, 6 bytes need to be skipped, so the string “Hello” is not copied in the while loop while
reading and writing the file contents.

Explanation for the wrong options:

Option a): The skip() method can be called before the read() method.

Option c): No exception named CannotSkipException exists.

Option d): The skip() method will throw an IllegalArgumentException only if a negative
value is passed.

68. c) This program prints the following: systemprofile.

Here is the description of the subpath method: The subpath(int beginIndex,
int endIndex) method returns a Path object. The returned Path object has names that
begin at beginIndex till the element at index endIndex - 1. In other words, beginIndex is
inclusive of the name in that index and exclusive of the name in endIndex. This method
may throw an IllegalArgumentException if beginIndex is >= number of elements,
or endIndex <= beginIndex, or endIndex is > number of elements.

In this program, the index starts with WINDOWS, at index 0. The given beginIndex is 3, so it is the
subpath systemprofile, and it is exclusive of the endIndex with value4. Hence the output.

69. c) C:\WINDOWS\system32\config\systemprofile\Start Menu\Programs

The method normalize() removes redundant elements in the path such as . (dot symbol
that indicates current directory) and .. (the double dot symbol that indicates the parent
directory). Hence, the resulting path is
C:\WINDOWS\system32\config\systemprofile\Start Menu\Programs.

70. b) It prints the following: in Derived.finalize.

The statement Runtime.runFinalizersOnExit(true); makes sure that the finalize method
is invoked when the application exits (although the method runFinalizersOnExit() is
now deprecated). Here, the dynamic type of the object is “Derived,” so the finalize()
method of the Derived class is invoked before the application exits.

71. c) 2

The variable mem is 0 initially. It is incremented by one in the try block and is incremented
further in the finally block to 2. Note that finally will always execute irrespective of
whether an exception is thrown in the try block or not. Hence, the program will print 2.

Appendix B ■ Mock TesT – 1

566

72. d) This program completes execution normally without producing any output or
throwing any exceptions.

The statement assert true; when executed will always succeed. The statement assert
true; when executed will always fail.

Remember that assertions are disabled by default, and –ea enables the assertion for the
whole program. However, -da disables assertions, and –da:Derived instructs the JVM to
disable assertions in the Derived class. Hence, the program completes execution normally
without producing any output or throwing any exceptions.

73. d) This program will result in a compiler error in the line marked with the
comment MULTI-CATCH-BLOCK because IOException is the base class for
FileNotFoundException.

74. a) String userName = null;
char[] password = null;

The readLine() method returns a String object while the readPassword() method returns
an array of char.

75. c) FilterReader fr = new FilterReader(file);

FilterReader is an abstract class and hence it cannot be instantiated.

76. b) while((ch = inputFile.read()) != -1) {

The read() method returns -1 when the file reaches the end.

77. b) RandomAccessFile raf = new RandomAccessFile(srcFile, "rw+");
 raf.getChannel();

c) FileInputStream ifr = new FileInputStream(srcFile);
 ifr.getChannel();

The getChannel() method is supported by only the RandomAccessFile and
FileInputStream classes.

78. d) File search completed!

Well, glob does not support “+”; hence, the specified glob expression does not find any file
matching with the expression.

79. a) While finding files/directories, the default pattern format is glob; hence, you need not
start the search-pattern from “glob:”.

The other three statements are true.

80. b) Locale locale2 = Locale.US;

The static public final Locale US member in the Locale class is accessed using the
expression Locale.US, as in option b).

81. c) The program prints the following: 2012/02/01.

The format specifier %t allows for formatting date and time information. It takes as suffix
the format and part of the date or time information. The format Y is for the year displayed
in four digits. The format m is for month as decimal (with months in the range 01 to 12).
The format d is for the day of month as decimal (with the days in the range 01 – 31).

Appendix B ■ Mock TesT – 1

567

82. a) The interface Closeable extends AutoCloseable and defines one method, close().

83. a) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 catch(IOException ioe) {}
 }

Options b) and c) uses the finally block, which is not applicable with try-with-resource
statements. In option d), the catch block is missing, which makes it wrong.

84. a) in start oops
 in ctor oops

You have overridden the start() method, so the run() method is never called!

85. a) The overloaded submit() method is declared in the ExecutorService interface.

The executor interface has overloaded the submit() method that takes “a value-returning
the task for execution and returns a Future representing the pending results of the task.”

86. d) This program prints the following: Lock 1 Critical section 1 Lock 2 Critical section 2
Unlock 2 Unlock 1.

In a re-entrant lock, you can acquire the same lock again. However, you need to release
that lock the same number of times.

87. d) This program will throw an IllegalMonitorStateException.

Note that in this program you call the lock() method on the lock1 variable and call the
unlock() method on the lock2 variable. Hence, in lock2.unlock(), you are attempting
to call unlock() before calling lock() on a Lock object and this results in throwing an
IllegalMonitorStateException.

88. a) The exact order in which waiting persons will get the ATM machine cannot be
predicted.

The second parameter states the fairness policy of the semaphore object. However, there
are two permits for the semaphore object; so you cannot predict the order in which waiting
people will get the permission to access the ATM.

89. c) CyclicBarrier

CyclicBarrier is used when threads may need to wait at a predefined execution point
until all other threads reach that point. This construct matches the given requirements.

90. c) You cannot use column names to retrieve both the values; you need to use column
index to do it.

569

APPENDIX C

Mock Test – 2

The questions in this mock test are designed per the requirements of the OCPJP7 exam pattern and its standard.
Take the test as if it were your real OCPJP 7 exam. Best of luck.

Time: 2 hours 30 minutes No. of questions: 90

1. Consider the following program and predict the behavior of this program:

class Base {
 public void print() {
 System.out.println("Base:print");
 }
}

abstract class Test extends Base { //#1
 public static void main(String[] args) {
 Base obj = new Base();
 obj.print(); //#2
 }
}

a) Compiler error “an abstract class cannot extend from a concrete class” at statement #1.

b) Compiler error “cannot resolve call to print method” at statement #2.

c) The program prints the following: Base:print.

d) The program will throw a runtime exception of AbstractClassInstantiationException.

2. Consider the following program and predict the output:

class Test {
 final Integer a; // #1
 public void print(){
 System.out.println("a = " + a);
 }
 public static void main(String[] args) {
 Test obj = new Test();
 obj.print();
 }
}

APPENDIX C ■ MoCk TEsT – 2

570

a) The program will report a compiler error at statement #1.

b) The program will result in throwing a NullPointerException.

c) The program will print the following: a = 0.

d) The program will print the following: a = null.

3. Consider the following program and predict the output:

class Test {
 int a = 0;
 public static void print(int a) {
 this.a = a;
 System.out.println("a = " + this.a);
 }
 public static void main(String[] args) {
 Test obj = new Test();
 obj.print(10);
 }
}

a) The program will report a compiler error.

b) The program will generate a runtime exception.

c) The program will print the following: a = 0.

d) The program will print the following: a = 10.

4. Consider the following program:

import java.util.*;

class Format {
 public static void main(String []args) {
 Formatter formatter = new Formatter();
 Calendar calendar = Calendar.getInstance(Locale.US);
 calendar.set(/* year =*/ 2012, /* month = */ Calendar.FEBRUARY,
 /* date = */ 1);
 formatter.format("%tY/%<tB/%<td", calendar);
 System.out.println(formatter);
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program throws a MissingFormatArgumentException.

b) The program throws an UnknownFormatConversionException.

c) The program throws an IllegalFormatConversionException.

d) The program prints the following: 12/February/01.

APPENDIX C ■ MoCk TEsT – 2

571

5. Consider the following program:

import java.util.*;

public class ResourceBundle_it_IT extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 { "1", "Uno" },
 { "2", "Duo" },
 { "3", "Trie" },
 };
 public static void main(String args[]) {
 ResourceBundle resBundle =
 ResourceBundle.getBundle("ResourceBundle", new Locale("it", "IT", ""));
 System.out.println(resBundle.getObject(new Integer(1).toString()));
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program prints the following: Uno.

b) This program prints the following: 1.

c) This program will throw a MissingResourceException.

d) This program will throw a ClassCastException.

6. Consider the following program:

import java.util.*;

class SortedOrder {
 public static void main(String []args) {
 Set<String> set = new TreeSet<String>();
 set.add("S");
 set.add("R");
 Iterator<String> iter = set.iterator();
 set.add("P");
 set.add("Q");
 while(iter.hasNext()) {
 System.out.print(iter.next() + " ");
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program prints the following: S R P Q.

b) The program prints the following: P Q R S.

c) The program prints the following: S R.

APPENDIX C ■ MoCk TEsT – 2

572

d) The program prints the following: R S.

e) The program throws a ConcurrentModificationException.

7. Consider the following program:

import java.util.*;
import java.util.concurrent.*;

class SortedOrder {
 public static void main(String []args) {
 Set<String> set = new CopyOnWriteArraySet<String>(); // #1
 set.add("2");
 set.add("1");
 Iterator<String> iter = set.iterator();
 set.add("3");
 set.add("-1");
 while(iter.hasNext()) {
 System.out.print(iter.next() + " ");
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program prints the following: 2 1.

b) The program prints the following: 1 2.

c) The program prints the following: -1 1 2 3.

d) The program prints the following: 2 1 3 -1.

e) The program throws a ConcurrentModificationException

f) This program results in a compiler error in statement #1

8. Which one of the following statements is FALSE?

a) The interface Iterator<T> declares these methods: boolean hasNext(), T next(),
and void remove().

b) The interface Enumeration<E> declares two methods: boolean hasMoreElements()
and E nextElement().

c) The interface Iterable<T> declares three methods: boolean hasNext(), T next(),
and void remove().

d) Implementing Iterable<T> interface allows an object to be the target of the foreach
statement.

9. Consider the following program:

import java.io.IOException;
import java.nio.file.*;
class javals {
 public static void main(String []args) {
 Path currPath = Paths.get(".");

APPENDIX C ■ MoCk TEsT – 2

573

 try (DirectoryStream<Path> javaFiles = Files.newDirectoryStream
 (currPath, "*.{java}")) {
 for(Path javaFile : javaFiles) {
 System.out.println(javaFile);
 }
 } catch (IOException ioe) {
 System.err.println("IO Error occurred");
 System.exit(-1);
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program throws a PatternSyntaxException.

b) This program throws an UnsupportedOperationException.

c) This program throws an InvalidArgumentException.

d) This program lists the files ending with suffix .java in the current directory.

10. Consider the following program:

class Assert {
 public static void main(String []args) {
 try {
 assert false;
 }
 catch (RuntimeException re) {
 System.out.println("In the handler of RuntimeException");
 }
 catch (Exception e) {
 System.out.println("In the handler of Exception");
 }
 catch (Error ae) {
 System.out.println("In the handler of Error");
 }
 catch (Throwable t) {
 System.out.println("In the handler of Throwable");
 }
 }
}

This program is invoked in the command line as follows:

java Assert

Which one of the following options correctly describes the behavior of this program?

a) This program prints the following: In the handler of RuntimeException.

b) This program prints the following: In the handler of Exception.

c) This program prints the following: In the handler of Error.

APPENDIX C ■ MoCk TEsT – 2

574

d) This program prints the following: In the handler of Throwable.

e) This program crashes with an uncaught exception AssertionError.

f) This program does not generate any output and terminates normally.

11. Consider the following program:

class GenericCast {
 static <E> E cast(Object item) { // ERROR1
 return (E) item;
 }
 public static void main(String []args) {
 Object o1 = 10;
 int i = 10;
 Integer anInteger = 10;

 Integer i1 = cast(o1); // ERROR2
 Integer i2 = cast(i); // ERROR3
 Integer i3 = cast(10); // ERROR4
 Integer i4 = cast(anInteger); // ERROR5

 System.out.printf("i1 = %d, i2 = %d, i3 = %d, i4 = %d", i1, i2, i3, i4);
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program will result in a compiler error in the line marked with the comment ERROR1.

b) This program will result in a compiler error in the line marked with the comment ERROR2.

c) This program will result in a compiler error in the line marked with the comment ERROR3.

d) This program will result in a compiler error in the line marked with the comment ERROR4.

e) This program will result in a compiler error in the line marked with the comment ERROR5.

f) When executed, this program will print the following: i1 = 10, i2 = 10, i3 = 10, i4 = 10.

12. Consider the following program:

import java.nio.file.*;
import java.util.Iterator;

class PathInfo {
 public static void main(String[] args) {
 Path aFilePath = Paths.get("D:\\dir\\file.txt");
 Iterator<Path> paths = aFilePath.iterator();
 while(paths.hasNext()) {
 System.out.print(paths.next() + " ");
 }
 }
}

APPENDIX C ■ MoCk TEsT – 2

575

Assume that the file D:\dir\file.txt does not exist in the underlying file system. Which of the following
options best describes the behavior of this program when it is executed?

a) The program throws a FileNotFoundException.

b) The program throws an InvalidPathException.

c) The program throws an UnsupportedOperationException.

d) The program gets into an infinite loop printing “path element: dir” forever.

e) The program prints the following: dir file.txt.

13. Consider the following program:

import java.io.*;

class Point2D implements Externalizable {
 private int x, y;
 public Point2D(int x, int y) {
 x = x;
 }
 public String toString() {
 return "[" + x + ", " + y + "]";
 }
 public void writeExternal(ObjectOutput out) throws IOException {
 System.out.println("Point " + x + ":" + y);
 }
 public void readExternal(ObjectInput in) throws IOException,
 ClassNotFoundException {
 /* empty */
 }
 public static void main(String []args) {
 Point2D point = new Point2D(10, 20);
 System.out.println(point);
 }
}

When executed, this program prints the following:

a) Point

b) [10, 0]

c) [10, 20]

d) [0, 0]

e) Point 10:20

14. Consider the following program:

import java.util.PriorityQueue;

class PQueueTest {
 public static void main(String []args) {
 PriorityQueue<Integer> someValues = new PriorityQueue<Integer>();

APPENDIX C ■ MoCk TEsT – 2

576

 someValues.add(new Integer(10));
 someValues.add(new Integer(15));
 someValues.add(new Integer(5));
 Integer value;
 while ((value = someValues.poll()) != null) {
 System.out.print(value + " ");
 }
 }
}

When executed, this program prints the following:

a) 10 10 10

b) 10 15 5

c) 5 10 15

d) 15 10 5

e) 5 5 5

15. Consider the following program:

class Base {}
class DeriOne extends Base {}
class DeriTwo extends Base {}

class ArrayStore {
 public static void main(String []args) {
 Base [] baseArr = new DeriOne[3];
 baseArr[0] = new DeriOne();
 baseArr[2] = new DeriTwo();
 System.out.println(baseArr.length);
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program prints the following: 3.

b) This program prints the following: 2.

c) This program throws an ArrayStoreException.

d) This program throws an ArrayIndexOutOfBoundsException.

16. Consider the following program:

import java.util.*;

class Task implements Comparable<Task> {
 int priority;
 public Task(int val) {
 priority = val;
 }

APPENDIX C ■ MoCk TEsT – 2

577

 public int compareTo(Task that) {
 if(this.priority == that.priority)
 return 0;
 else if (this.priority > that.priority)
 return -1;
 else
 return 1;
 }
 public String toString() {
 return new Integer(priority).toString();
 }
}

class Test {
 public static void main(String []args) {
 PriorityQueue<Task> tasks = new PriorityQueue<Task>();
 tasks.add(new Task(10));
 tasks.add(new Task(15));
 tasks.add(new Task(5));
 Task task;
 while ((task = tasks.poll()) != null) {
 System.out.print(task + " ");
 }
 }
}

When executed, this program prints the following:

a) 10 10 10

b) 10 15 5

c) 5 10 15

d) 15 10 5

e) 5 5 5

17. Consider the following program:

import java.util.ArrayList;

class RemoveTest {
 public static void main(String []args) {
 ArrayList<Integer> list = new ArrayList<Integer>();
 list.add(new Integer(2));
 list.add(1);
 list.add(5);
 list.remove(2); // REMOVE
 System.out.println(list);
 }
}

APPENDIX C ■ MoCk TEsT – 2

578

Which one of the following options correctly describes the behavior of this program?

a) When executed, this program prints the following: [2, , 5].

b) When executed, this program prints the following: [2, 1].

c) When executed, this program prints the following: [1, 5].

d) This program results in a compiler error in the line marked with the comment REMOVE.

e) This program results in a NoSuchElementException in the line marked with the
comment REMOVE.

18. Consider the following program:

class Replace {
 public static void main(String []args) {
 String talk = "Pick a little, talk a little, pick a little, talk a
 little, cheep cheep cheep, talk a lot, pick a little more";
 String eat = talk.replaceAll("talk","eat").replace("cheep", "burp");
 System.out.println(eat);
 }
}

When executed, this program prints the following:

a) Pick a little, talk a little, pick a little, talk a little, cheep cheep cheep, talk a lot, pick a
little more.

b) Pick a little, eat a little, pick a little, eat a little, cheep cheep cheep, eat a lot, pick a little more.

c) Pick a little, eat a little, pick a little, eat a little, burp cheep cheep, eat a lot, pick a little more.

d) Pick a little, eat a little, pick a little, eat a little, burp burp burp, eat a lot, pick a little more.

19. Consider the following program:

import java.util.*;
import java.util.concurrent.*;

class SetTest {
 public static void main(String []args) {
 List list = Arrays.asList(10, 5, 10, 20);
 System.out.println(list);
 System.out.println(new HashSet(list));
 System.out.println(new TreeSet(list));
 System.out.println(new ConcurrentSkipListSet(list));
 }
}

This program prints the following:

a) [10, 5, 10, 20]
 [20, 5, 10]
 [5, 10, 20]
 [5, 10, 20]

APPENDIX C ■ MoCk TEsT – 2

579

b) [10, 5, 10, 20]
 [5, 10, 20]
 [5, 10, 20]
 [20, 5, 10]

c) [5, 10, 20]
 [5, 10, 20]
 [5, 10, 20]
 [5, 10, 20]

d) [10, 5, 10, 20]
 [20, 5, 10]
 [5, 10, 20]
 [20, 5, 10]

20. Consider the following program:

import java.util.regex.Pattern;

class Split {
 public static void main(String []args) {
 String date = "10-01-2012"; // 10th January 2012 in dd-mm-yyyy format
 String [] dateParts = date.split("-");
 System.out.print("Using String.split method: ");
 for(String part : dateParts) {
 System.out.print(part + " ");
 }
 System.out.print("\nUsing regex pattern: ");
 Pattern datePattern = Pattern.compile("-");
 dateParts = datePattern.split(date);
 for(String part : dateParts) {
 System.out.print(part + " ");
 }
 }
}

This program prints the following:

a) Using String.split method: 10-01-2012
 Using regex pattern: 10 01 2012

b) Using String.split method: 10 01 2012
 Using regex pattern: 10 01 2012

c) Using String.split method: 10-01-2012
 Using regex pattern: 10-01-2012

d) Using String.split method:
 Using regex pattern: 10 01 2012

APPENDIX C ■ MoCk TEsT – 2

580

e) Using String.split method: 10 01 2012
 Using regex pattern:

f) Using String.split method:
 Using regex pattern:

21. Consider the following program:

import java.util.ArrayList;

class TypeCheck {
 public static void main(String []args) {
 Class c1 = new ArrayList<String>().getClass(); // LINE A
 Class c2 = ArrayList.class; // LINE B
 System.out.println(c1 == c2);
 }
}

Which one of the following options correctly describes the behavior of this program?

a) The program will result in a compiler error in the line marked with the comment LINE A.

b) The program will result in a compiler error in the line marked with the comment LINE B.

c) When executed, the program prints the following: true.

d) When executed, the program prints the following: false.

22. Consider the following program:

class Waiter extends Thread {
 public static void main(String[] args) {
 new Waiter().start();
 }
 public void run() {
 try {
 System.out.println("Starting to wait");
 wait(1000);
 System.out.println("Done waiting, returning back");
 }
 catch(InterruptedException e) {
 System.out.println("Caught InterruptedException ");
 }
 catch(Exception e) {
 System.out.println("Caught Exception ");
 }
 }
}

APPENDIX C ■ MoCk TEsT – 2

581

When executed, this program prints the following:

a) Starting to wait
 Done waiting, returning back

b) Starting to wait
 Caught InterruptedException

c) Starting to wait
 Caught Exception

d) After printing "Starting to wait," the program gets into an infinite wait and deadlocks.

23. Consider the following program:

import java.util.ArrayList;

class ArrayListUse {
 static ArrayList<Integer> doSomething(ArrayList<Integer> values) {
 values.add(new Integer(10));
 ArrayList<Integer> tempList = new ArrayList<Integer>(values);
 tempList.add(new Integer(15));
 return tempList;
 }
 public static void main(String []args) {
 ArrayList<Integer> allValues = doSomething(new ArrayList<Integer>());
 System.out.println(allValues);
 }
}

This program prints the following:

a) []

b) [10]

c) [15]

d) [10, 15]

24. Consider the following program:

class Overload {
 private Overload(Object o) {
 System.out.println("Object");
 }
 private Overload(double [] arr) {
 System.out.println("double []");
 }
 private Overload() {
 System.out.println("void");
 }
 public static void main(String[]args) {
 new Overload(null); // MARKER
 }
}

APPENDIX C ■ MoCk TEsT – 2

582

Which one of the following options correctly describes the behavior of this program?

a) It throws a compiler error in the line marked with the comment MARKER for ambiguous
overload.

b) When executed, the program prints the following: Object.

c) When executed, the program prints the following: double [].

d) When executed, the program prints the following: void.

25. Consider the following program:

class SuperClass {
 SuperClass() {
 foo();
 }
 public void foo(){
 System.out.println("In SuperClass.foo()");
 }
}
class SubClass extends SuperClass {
 public SubClass() {
 member = "HI";
 }
 public void foo() {
 System.out.println("In Derived.foo(): " + member.toLowerCase());
 }
 private String member;
 public static void main(String[] args) {
 SuperClass reference = new SubClass();
 reference.foo();
 }
}

This program prints the following:

a) In SuperClass.foo()

b) In Derived.foo(): hi

c) In SuperClass.foo()
 In Derived.foo(): hi

d) This program throws a NullPointerException.

26. Consider the following program:

class BaseClass {
 private void foo() {
 System.out.println("In BaseClass.foo()");
 }
 void bar() {
 System.out.println("In BaseClass.bar()");
 }

APPENDIX C ■ MoCk TEsT – 2

583

 public static void main(String[] args) {
 BaseClass po = new DerivedClass();
 po.foo(); // BASE_FOO_CALL
 po.bar();
 }
}

class DerivedClass extends BaseClass {
 void foo() {
 System.out.println("In Derived.foo()");
 }
 void bar() {
 System.out.println("In Derived.bar()");
 }
}

Which one of the following options correctly describes the behavior of this program?

a) This program results in a compiler error in the line marked with the comment
BASE_FOO_CALL.

b) This program prints the following:
In BaseClass.foo()
In BaseClass.bar()

c) This program prints the following:
In BaseClass.foo()
In Derived.bar()

d) This program prints the following:
In Derived.foo()
In Derived.bar()

27. Which one of the following options correctly reads a line of string from the console?

a) BufferedReader br = new BufferedReader(System.in);
 String str = br.readLine();

b) BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 String str = br.readLine();

c) InputStreamReader isr = new InputStreamReader (new BufferedReader(System.in));
 String str = isr.readLine();

d) String str = System.in.readLine();

e) String str;
 System.in.scanf(str);

APPENDIX C ■ MoCk TEsT – 2

584

28. Consider the following program:

import java.util.Scanner;

class AutoCloseableTest {
 public static void main(String []args) {
 try (Scanner consoleScanner = new Scanner(System.in)) {
 consoleScanner.close(); // CLOSE
 consoleScanner.close();
 }
 }
}

Which one of the following statements is correct?

a) This program terminates normally without throwing any exceptions.

b) This program throws an IllegalStateException.

c) This program throws an IOException.

d) This program throws an AlreadyClosedException.

e) This program results in a compiler error in the line marked with the comment CLOSE.

29. Consider the following program:

import java.io.*;
class ExceptionTest {
 public static void thrower() throws Exception {
 try {
 throw new IOException();
 } finally {
 throw new FileNotFoundException();
 }
 }
 public static void main(String []args) {
 try {
 thrower();
 } catch(Throwable throwable) {
 System.out.println(throwable);
 }
 }
}

When executed, this program prints the following:

a) java.io.IOException

b) java.io.FileNotFoundException

c) java.lang.Exception

d) java.lang.Throwable

a

APPENDIX C ■ MoCk TEsT – 2

585

30. Consider the following program:

// class PQR in mock package
package mock;

public class PQR {
 public static void foo() {
 System.out.println("foo");
 }
}

// class XYZ in mock package
package mock;
import static mock.*;

public class XYZ {
 public static PQR pqr;
}

// class StatImport
import static mock.XYZ.*;

class StatImport {
 public static void main(String []args) {
 // STMT
 }
}

Which one of the following statements will compile without errors when replaced with the line
marked with the comment STMT?

a) foo();

b) pqr.foo();

c) PQR.foo();

d) XYZ.pqr.foo();

31. Which of the following is NOT a problem associated with thread synchronization using
mutexes?

a) Deadlock

b) Lock starvation

c) Type erasure

d) Livelock

APPENDIX C ■ MoCk TEsT – 2

586

32. Assume that a thread acquires a lock on an object obj; the same thread again attempts
to acquire the lock on the same object obj. What will happen?

a) If a thread attempts to acquire a lock again, it will result in throwing an
IllegalMonitorStateException.

b) If a thread attempts to acquire a lock again, it will result in throwing an
AlreadyLockAcquiredException.

c) It is okay for a thread to acquire lock on obj again, and such an attempt will succeed.

d) If a thread attempts to acquire a lock again, it will result in a deadlock.

33. Consider the following program:

class NullAccess {
 public static void main(String []args) {
 String str = null;
 System.out.println(str.valueOf(10));
 }
}

Which of the following statements correctly describes the behavior of this program?

a) This program will result in a compiler error.

b) This program will throw a NullPointerException.

c) This program will print 10 in console.

d) This program will print null in console.

34. There are two kinds of streams in the java.io package: character streams (i.e., those
deriving from Reader and Writer interfaces) and byte streams (i.e., those deriving
from InputStream and OutputStream). Which of the following statements is true
regarding the differences between these two kinds of streams?

a) In character streams, data is handled in terms of bytes; in byte streams, data is
handled in terms of Unicode characters.

b) Character streams are suitable for reading or writing to files such as executable files,
image files, and files in low-level file formats such as .zip, .class, .obj, and .exe.

c) Byte streams are suitable for reading or writing to text-based I/O such as documents
and text, XML, and HTML files.

d) Byte streams are meant for handling binary data that is not human-readable;
character streams are meant for human-readable characters.

35. Which one of the following interfaces is empty (i.e., a marker interface that does not
declare any methods)?

a) java.lang.AutoCloseable interface

b) java.util.concurrent.Callable<T> interface

c) java.lang.Cloneable interface

d) java.lang.Comparator<T> interface

APPENDIX C ■ MoCk TEsT – 2

587

36. Which of the following modifiers cannot be combined together for a class?
(Select two options from the given options.)

a) final

b) public

c) strictfp

d) abstract

37. Consider the following code segment:

String str = "A.B.C!";
System.out.println(str.replaceAll(".", ",").replace("!", "?"));

When executed, this code segment will print the following:

a) A,B,C!

b) A,B,C?

c) ,,,,,,

d) A.B.C?

38. Consider the following program and choose the correct option that describes
its output:

import java.util.concurrent.atomic.AtomicInteger;

class Increment {
 public static void main(String []args) {
 AtomicInteger i = new AtomicInteger(0);
 increment(i);
 System.out.println(i);
 }
 static void increment(AtomicInteger atomicInt){
 atomicInt.incrementAndGet();
 }
}

a) 0

b) 1

c) This program throws an UnsafeIncrementException.

d) This program throws a NonThreadContextException.

APPENDIX C ■ MoCk TEsT – 2

588

39. Consider the following program and choose the correct option that describes
its output:

import java.util.concurrent.atomic.AtomicInteger;

class NullInstanceof {
 public static void main(String []args) {
 if(null instanceof Object)
 System.out.println("null is instance of Object");
 if(null instanceof AtomicInteger)
 System.out.println("null is instance of AtomicInteger");
 }
}

a) This program prints the following:
 null is instance of Object

b) This program prints the following:
 null is instance of Object
 null is instance of AtomicInteger

c) This program executes and terminates normally without printing any output in the
console.

d) This program throws a NullPointerException.

e) This program will result in compiler error(s).

40. What is the range of thread priority values and what is the default priority value of a
thread?

a) The range of thread priorities is 1 to 5; the default thread priority is 3.

b) The range of thread priorities is 1 to 10; the default thread priority is 6.

c) The range of thread priorities is 1 to 10; the default thread priority is 5.

d) All threads have equal priority of 1; hence, the default thread priority is also 1.

e) Threads are implemented using co-operative multi-threading approach, and not
pre-emptive multithreading; as a result, they do not have any priority in Java.

41. Which one of the following interfaces does NOT inherit from java.util.Collection<E>

interface?

a) Set<E>

b) Queue<E>

c) List<E>

d) Map<K, V>

APPENDIX C ■ MoCk TEsT – 2

589

42. Which of the modifier(s) can be applied to a data member in a class?
(Select all that apply.)

a) synchronized

b) native

c) abstract

d) transient

e) strictfp

43. Which of the following method(s) from Object can be overridden?
(Select all that apply.)

a) finalize() method

b) clone() method

c) getClass() method

d) notify() method

e) wait() method

44. Consider the following program and predict the output:

class MyThread extends Thread {
 public void run() {
 System.out.println("In run method; thread name is: "
 + Thread.currentThread().getName());
 }
 public static void main(String args[]) {
 Thread myThread = new MyThread();
 myThread.run(); //#1
 System.out.println("In main method; thread name is: "
 +Thread.currentThread().getName());
 }
}

a) The program results in a compiler error at statement #1.

b) The program results in a runtime exception.

c) The program prints the following:
 In run method; thread name is: main
 In main method; thread name is: main

d) The program prints:
 In the run method; the thread name is: thread-0
 In the main method; the thread name is: main

APPENDIX C ■ MoCk TEsT – 2

590

45. Consider the following program and predict the output:

class MyThread extends Thread {
 public void run() {
 System.out.println("In run method; thread name is: " + Thread.
 currentThread().getName());
 }
 public static void main(String args[]) {
 Thread myThread = new MyThread();
 myThread.start();
 myThread.start(); //#1
 }
}

a) The program results in a compiler error at statement #1.

b) The program results in throwing an IllegalThreadStateException.

c) The program prints the following:
 In the run method; thread name is: thread-0
 In the main method; thread name is: thread-0

d) The program prints the following:
 In the run method; thread name is: thread-0

46. Consider the following program and predict the output:

class MyThread extends Thread {
 public void run() {
 try {
 this.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("In run method; thread name is: " + Thread.
 currentThread().getName());
 }
 public static void main(String args[]) {
 Thread myThread = new MyThread();
 myThread.start();
 }
}

a) The program results in compiler error(s).

b) The program results in throwing an IllegalThreadStateException.

c) The program prints the following:
 In the run method; thread name is: thread-0

d) The program will never terminate.

APPENDIX C ■ MoCk TEsT – 2

591

47. Which of these statements are true with respect to Thread and Runnable?
(Select all that apply.)

a) Thread is an abstract class.

b) Thread provides a default implementation for the run() method.

c) Thread is an abstract class that extends the abstract base class Runnable.

d) Runnable is an abstract class.

48. Which of the following state(s) is/are NOT legitimate thread state(s)?
(Select all that apply.)

a) NEW

b) EXECUTING

c) WAITING

d) TERMINATED

e) RUNNABLE

49. Which one of the following constructor is NOT a valid constructor of Thread class?

a) Thread()

b) Thread(String name)

c) Thread(Runnable target, Object obj)

d) Thread(Runnable target, String name)

e) Thread(ThreadGroup group, String name)

50. Consider the following program and choose the best option:

class MyThread extends Thread {
 public void run() {
 System.out.print("Burp! ");
 }
 public static void main(String args[]) throws InterruptedException {
 Thread myThread = new MyThread();
 myThread.start();
 System.out.print ("Eat! ");
 myThread.join();
 System.out.print ("Run! ");
 }
}

a) When executed, it prints always the following: Eat! Burp! Run!

b) When executed, it prints one of the following: Eat! Burp! Run! or Burp! Eat! Run!

c) When executed, it prints one of the following: Eat! Burp! Run!; Burp! Eat! Run!; or Run!
Eat! Burp!

d) When executed, it prints one of the following: Burp! Eat! Run! or Burp! Run! Eat!

APPENDIX C ■ MoCk TEsT – 2

592

51. Consider the following program and choose the correct answer:

class MyThread extends Thread {
 public MyThread(String name) {
 this.setName(name);
 }
 public void run(){
 try {
 sleep(100);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 play();
 }
 private void play() {
 System.out.print(getName());
 System.out.print(getName());
 }
 public static void main(String args[]) throws InterruptedException {
 Thread tableThread = new MyThread("Table");
 Thread tennisThread = new MyThread("Tennis");
 tableThread.start();
 tennisThread.start();
 }
}

a) This program will throw an IllegalMonitorStateException.

b) This program will always print the following: Tennis Tennis Table Table.

c) This program will always print the following: Table Table Tennis Tennis.

d) The output of this program cannot be predicted; it depends on thread scheduling.

52. Consider the following program and choose a right option:

class MyThread extends Thread {
 public void run(){
 System.out.println("Running");
 }
 public static void main(String args[]) throws InterruptedException {
 Runnable r = new MyThread(); //#1
 Thread myThread = new Thread(r); //#2
 myThread.start();
 }
}

a) The program will result in a compilation error at statement #1.

b) The program will result in a compilation error at statement #2.

c) The program will compile with no errors and will print “Running” in the console.

d) The program will compile with no errors but does not print any output in the console.

APPENDIX C ■ MoCk TEsT – 2

593

53. What is the output of the following program?

class EnumTest {
 enum Directions { North, East, West, South };
 enum Cards { Spade, Hearts, Club, Diamond };
 public static void main(String []args) {
 System.out.println("equals: " + Directions.East.equals(Cards.Hearts));
 System.out.println("Ordinals: " +
 (Directions.East.ordinal() == Cards.Hearts.ordinal()));
 }
}

a) equals: false
 Ordinals: false

b) equals: true
 Ordinals: false

c) equals: false
 Ordinals: true

d) equals: true
 Ordinals: true

54. Consider the following code and choose the best option:

import java.util.concurrent.atomic.AtomicInteger;

class AtomicVariableTest {
 private static AtomicInteger counter = new AtomicInteger(0);
 static class Decrementer extends Thread {
 public void run() {
 counter.decrementAndGet(); // #1
 }
 }
 static class Incrementer extends Thread {
 public void run() {
 counter.incrementAndGet(); // #2
 }
 }
 public static void main(String []args) {
 for(int i = 0; i < 5; i++) {
 new Incrementer().start();
 new Decrementer().start();
 }
 System.out.println(counter);
 }
}

APPENDIX C ■ MoCk TEsT – 2

594

a) This program will always print 0.

b) This program will print any value between −5 to 5.

c) If you make the run() methods in the Incrementer and Decrementer classes
synchronized, this program will always print 0.

d) The program will report compilation errors at statements #1 and #2.

55. Which one of the following options is NOT correct?

a) A Condition object can be acquired from a Lock object.

b) Executor is an interface that declares only one method, namely
void execute(Runnable).

c) Using a semaphore with one resource is similar to using a lock.

d) CountDownLatch allows each thread to complete its assigned task step by step.

56. Which one of the following options is NOT correct?

a) A Runnable object does not return a result; a Callable object returns a result.

b) A Runnable object cannot throw a checked exception; a Callable object can throw an
exception.

c) The Runnable interface has been around since Java 1.0; Callable was only introduced
in Java 1.5.

d) The instances of the classes that implement Runnable or Callable are potentially
executed by another thread.

e) A Callable can be executed by an ExecutorService, but a Runnable cannot be
executed by an ExecutorService.

57. Which one of the following methods will you define when you implement the
ThreadFactory interface?

a) Thread newThread(Runnable r)

b) Thread createThread(Runnable r)

c) Thread newThreadInstance(Runnable r)

d) Thread getThread(Runnable r)

58. Which one of the following statements is NOT correct?

a) You can use the ExecutorService to calculate moderate size mathematical equations.

b) You can use the ExecutorService to implement web crawlers.

c) You can use the Fork/Join framework to solve Tower of Hanoi problem.

d) You can use the Fork/Join framework to implement the Euclidean algorithm to find
the GCD.

e) The Fork/Join framework is suitable for tasks that involve extensive user interaction
and I/O operations.

APPENDIX C ■ MoCk TEsT – 2

595

59. For the following enumeration definition, which one of the following prints the value
2 in the console?

enum Pets { Cat, Dog, Parrot, Chameleon };

a) System.out.print(Pets.Parrot.ordinal());

b) System.out.print(Pets.Parrot);

c) System.out.print(Pets.indexAt("Parrot"));

d) System.out.print(Pets.Parrot.value());

e) System.out.print(Pets.Parrot.getInteger());

60. Consider the following program and choose the right option:

import java.util.Locale;

class Test {
 public static void main(String []args) {
 Locale locale1 = new Locale("en"); //#1
 Locale locale2 = new Locale("en", "in"); //#2
 Locale locale3 = new Locale("th", "TH", "TH"); //#3
 Locale locale4 = new Locale(locale3); //#4
 System.out.println(locale1 + " " + locale2 + " " + locale3 + "
 " + locale4);
 }
}

a) This program will print the following: en en_IN th_TH_TH_#u-nu-thai

th_TH_TH_#u-nu-thai.

b) This program will print the following: en en_IN th_TH_TH_#u-nu-thai
(followed by a runtime exception).

c) This program results in a compiler error at statement #1.

d) This program results in a compiler error at statement #2.

e) This program results in a compiler error at statement #3.

f) This program results in a compiler error at statement #4.

61. Consider the following program and predict the output:

import java.util.Locale;

class LocaleTest {
 public static void main(String []args) {
 Locale locale = new Locale("navi", "pandora"); //#1
 System.out.println(locale);
 }
}

APPENDIX C ■ MoCk TEsT – 2

596

a) The program results in a compiler error at statement #1.

b) The program results in a runtime exception of NoSuchLocaleException.

c) The program results in a runtime exception of MissingResourceException.

d) The program results in a runtime exception of IllegalArgumentException.

e) The program prints the following: navi_PANDORA.

62. Which one of the following classes does NOT provide factory method(s) to instantiate
the class?

a) AtomicInteger

b) DateFormat

c) NumberFormat

d) Calendar

63. Which of the given options are true with respect to parse() and format() methods in
the NumberFormat class (choose two):

a) The parse() method is meant for reading numbers provided as String and tries
converting them to Number.

b) The format() method is used for printing the values according to the values set in the
NumberFormat object.

c) The parse() method is meant for printing the values according to the values set in the
NumberFormat object.

d) The format() method is used for reading numbers provided as String and tries
converting them to Number.

64. Consider the following program:

String dateFormat = "d '('E')' MMM, YYYY";
// assume today's date is October 28th 2012
System.out.printf("%s", new SimpleDateFormat(dateFormat).format(new Date()));

This code segment prints the following:

 a) 28 (44) Oct, 2012

b) 28 (Sun) Oct, 2012

c) 28 ‘(Sunday)’ Oct, 2012

d) 28 (7) Oct, 2012

65. Which one of the given options is NOT correct with respect to driver manager
belonging to JDBC architecture?

a) A driver manager maintains a list of available data sources and their drivers.

b) A driver manager chooses an appropriate driver to communicate to the respective DBMS.

c) A driver manager ensures the atomicity properties of a transaction.

d) A driver manager manages multiple concurrent drivers connected to their respective
data sources.

APPENDIX C ■ MoCk TEsT – 2

597

66. Which one of the following statement is NOT correct?

a) You need to use a Statement when you need to send a SQL statement to the database
without any parameter.

b) PreparedStatement represents a precompiled SQL statement.

c) PreparedStatement can handle IN and OUT parameters.

d) CallableStatement is used to execute stored procedures.

67. You need to specify URL to establish connection to the MySQL database. Which one of
the following is the correct one to use?

a) String url = "jdbc:mysql://localhost:3306/";

b) String url = "jdbc:mysql:localhost:3306";

c) String url = "jdbc//mysql//localhost//3306/";

d) String url = "jdbc/mysql/localhost/3306/";

68. Which one of the following statements is a correct way to instantiate a Statement
object:

a) Statement statement = connection.getStatement();

b) Statement statement = connection.createStatement();

c) Statement statement = connection.newStatement();

d) Statement statement = connection.getStatementInstance();

69. Consider the following code snippet:

try(ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")){
 //Stmt #1
 resultSet.updateString("firstName", "John");
 resultSet.updateString("lastName", "K.");
 resultSet.updateString("email", "john@abc.com");
 resultSet.updateString("phoneNo", "+19753186420");
 //Stmt #2
...
}

Assume that resultSet and Statement are legitimate instances. Which one of the following
statements is correct with respect to Stmt #1 and Stmt #2 for successfully inserting a new row?

a) Replacing Stmt #1 with resultSet.moveToInsertRow() alone will make the program
work.

b) Replacing Stmt #1 with resultSet.insertRow() alone will make the program work.

c) Replacing Stmt #1 with resultSet.moveToInsertRow() and Stmt #2 with
resultSet.insertRow() will make the program work.

d) Replacing Stmt #1 with resultSet.insertRow() and Stmt #2 with resultSet.
moveToInsertRow() will make the program work.

APPENDIX C ■ MoCk TEsT – 2

598

70. Which one of the following statements is correct with respect to ResultSet?

a) Calling absolute(1) on a ResultSet instance is equivalent to calling first(),
and calling absolute(-1) is equivalent to call last().

b) Calling absolute(0) on a ResultSet instance is equivalent to calling first(),
and calling absolute(-1) is equivalent to call last().

c) Calling absolute(-1) on a ResultSet instance is equivalent to calling first(),
and calling absolute(0) is equivalent to call last().

d) Calling absolute(1) on a ResultSet instance is equivalent to calling first(),
and calling absolute(0) is equivalent to call last().

71. Which one of the following statements is NOT correct with respect to nested classes?

a) An outer class can access the private members of the nested class without declaring
an object of the nested class.

b) Static nested classes can access the static members of the outer class.

c) Static nested classes can be declared abstract or final.

d) Static nested classes can extend another class or they can be used as a base class.

72. Which of the following classes belonging to JDK does not implement the Singleton
pattern?

a) Runtime in the java.lang package.

b) Toolkit in the java.awt package.

c) Desktop in the java.awt package.

d) Locale in the java.util package.

73. In a DAO pattern implementation with multiple DAO objects and multiple persistence
mechanisms (i.e. data sources), which of the following options is correct in this context?

a) You cannot implement multiple DAO objects and multiple data sources together using
a DAO pattern.

b) You need to implement the Observer pattern to manage the complexity of
the context.

c) You need to use the abstract factory pattern to manage the complexity of the context.

d) You need to implement multiple instances of DAO pattern to handle the complexity of
the context.

74. Consider the following program and predict the output:

import java.nio.file.*;

class PathInfo {
 public static void main(String[] args) {
 // assume that the current directory is "D:\workspace\ch14-test"
 Path testFilePath = Paths.get(".\\Test");
 System.out.println("file name:" + testFilePath.getFileName());

APPENDIX C ■ MoCk TEsT – 2

599

 System.out.println("absolute path:" + testFilePath.toAbsolutePath());
 System.out.println("Normalized path:" + testFilePath.normalize());
 }
}

a) file name:Test
 absolute path:D:\workspace\ch14-test\.\Test
 Normalized path:Test

b) file name:Test
 absolute path:D:\workspace\ch14-test\Test
 Normalized path:Test

c) file name:Test
 absolute path:D:\workspace\ch14-test\.\Test
 Normalized path:D:\workspace\ch14-test\.\Test

d) file name:Test
 absolute path:D:\workspace\ch14-test\.\Test
 Normalized path:D:\workspace\ch14-test\Test

75. Consider the following program:

import java.io.*;

class Read {
 public static void main(String []args) throws IOException {
 BufferedReader br = new BufferedReader(new FileReader("names.txt"));
 System.out.println(br.readLine());
 br.mark(100); // MARK
 System.out.println(br.readLine());
 br.reset(); // RESET
 System.out.println(br.readLine());
 }
}

Assume that names.txt exists in the current directory, and opening the file succeeds, and br
points to a valid object. The content of the names.txt is the following:

olivea
emma
margaret
emily

Which of the following options correctly describe the behavior of this program?

a) This program prints the following:
olivea
emma
margaret

b) This program prints the following:
olivea
emma
olivea

APPENDIX C ■ MoCk TEsT – 2

600

c) This program prints the following:
olivea
emma
emma

d) This program throws an IllegalArgumentException in the line MARK.

e) This program throws a CannotResetToMarkPositionException in the line RESET.

76. Consider the following program and predict the output:

import java.text.DateFormat;
import java.util.*;

class Test {
 public static void main(String[] args) {
 DateFormat df = DateFormat.getDateInstance(DateFormat.LONG, Locale.US);
 Calendar c = Calendar.getInstance();
 c.set(Calendar.YEAR, 2012);
 c.set(Calendar.MONTH, 12);
 c.set(Calendar.DAY_OF_MONTH, 1);
 System.out.println(df.format(c.getTime()));
 }
}

a) The program will produce a runtime exception.

b) The program will produce a compiler error.

c) It will print the following: December 1, 2012.

d) It will print the following: January 1, 2013.

77. Consider the following program and predict the output:

class Test implements Runnable {
 public void run() {
 System.out.println(Thread.currentThread().getName());
 }
 public static void main(String arg[]) {
 Thread thread = new Thread(new Test());
 thread.run();
 thread.run();
 thread.start();
 }
}

a) main
 main
 Thread-0

b) Thread-0
 main
 Thread-1

APPENDIX C ■ MoCk TEsT – 2

601

c) main
 Thread-0
 Thread-1

d) Thread-0
 Thread-1
 Thread-2

78. Consider the following program and predict the output:

class Test {
 Integer I;
 int i;
 public Test(int i) {
 this.i = I + i;
 System.out.println(this.i);
 }
 public static void main(String args[]) {
 Integer I = new Integer(1);
 Test test = new Test(I);
 }
}

a) The program will print the following: 2.

b) The program will print the following: 1.

c) The program will report a compiler error.

d) The program will report a runtime exception.

79. Consider the following program and predict the output:

class Base {
 public void print() {
 System.out.println("Base");
 }
}

class Derived extends Base {
 public void print() {
 System.out.println("Derived");
 }
}

class Test {
 public static void main(String args[]) {
 Base obj1 = new Derived();
 Base obj2 = (Base)obj1;
 obj1.print();
 obj2.print();
 }
}

APPENDIX C ■ MoCk TEsT – 2

602

a) Derived
 Derived

b) Base
 Derived

c) Derived
 Base

d) Base
 Base

80. Consider the following program and predict the output:

class Test {
 public static void main(String args[]) {
 String test = "I am preparing for OCPJP";
 String[] tokens = test.split("\\S");
 System.out.println(tokens.length);
 }
}

a) 0

b) 5

c) 12

d) 16

81. Consider the following program and predict the output:

class Test {
 public void print(Integer i){
 System.out.println("Integer");
 }
 public void print(int i){
 System.out.println("int");
 }
 public void print(long i){
 System.out.println("long");
 }
 public static void main(String args[]) {
 Test test = new Test();
 test.print(10);
 }
}

a) The program results in a compiler error (“ambiguous overload”).

b) long

c) Integer

d) int

APPENDIX C ■ MoCk TEsT – 2

603

82. Consider the following program and choose a correct option to replace Stmt #1, which
will compile without error:

class Phone {
 public enum State {ONCALL, IDLE, WAITING}
}

class Test {
 public static void main(String args[]) throws InterruptedException {
 //Stmt #1
 }
}

a) Phone.State state = Phone.State.ONCALL;

b) State state = Phone.ONCALL;

c) State state = State.ONCALL;

d) State state = ONCALL;

83. Consider the following declaration and choose a correct option:

abstract class abstClass{
 public void print1();
 final void print2(){};
 public abstract final void print3();
 public abstract static void print4();
}

a) Methods print1(), print2(), and print3() will not compile.

b) Methods print1(), print3(), and print4() will not compile.

c) Methods print3() and print4() will not compile.

d) Methods print1() and print3() will not compile.

84. Consider the following class definition:

abstract class Base {
 public abstract Number getValue();
}

Which of the following two options are correct concrete classes extending Base class?

a) class Deri extends Base {
 protected Number getValue() {
 return new Integer(10);
 }
 }

APPENDIX C ■ MoCk TEsT – 2

604

b) class Deri extends Base {
 public Integer getValue() {
 return new Integer(10);
 }
 }

c) class Deri extends Base {
 public Float getValue(float flt) {
 return new Float(flt);
 }
 }

d) class Deri extends Base {
 public java.util.concurrent.atomic.AtomicInteger getValue() {
 return new java.util.concurrent.atomic.AtomicInteger(10);
 }
 }

85. Which one of the following options is correct?

a) An abstract class must declare all of its methods as abstract.

b) An abstract class must contain at least one abstract method.

c) If a method is declared abstract, its class must be declared abstract.

d) In an abstract class, all non-abstract methods are final.

86. Consider the following program:

import java.util.*;

class DequeTest {
 public static void main(String []args) {
 Deque<String> deque = new ArrayDeque<String>(2);
 deque.addFirst("one ");
 deque.addFirst("two ");
 deque.addFirst("three ");
 System.out.print(deque.pollLast());
 System.out.print(deque.pollLast());
 System.out.print(deque.pollLast());
 }
}

What does this program print when executed?

a) one two three

b) three two one

c) one one one

d) three three three

APPENDIX C ■ MoCk TEsT – 2

605

87. Which one of the following statements is NOT correct?

a) A switch can be used with enumerations (enums).

b) A switch can be used with string type.

c) A switch can be used with floating point type.

d) A switch can be used with byte, char, short, or int types.

e) A switch can be used with Byte, Character, Short, or Integer wrapper types.

88. Consider the following program and predict its output:

class Test {
 public static void main(String []args) {
 String str = null;

 switch(str) { // #1
 case "null":
 System.out.println("null string"); // #2
 break;
 }
 }
}

a) This program results in a compiler error in statement #1.

b) This program results in a compiler error in statement #2.

c) This program results in throwing a NullPointerException.

d) This program prints the following: null string.

89. Which of the following interfaces does NOT extend the RowSet interface?

a) JdbcRowSet

b) CachedRowSet

c) WebRowSet

d) TraversalRowSet

e) JoinRowSet

90. Which TWO of the following classes are defined in the java.util.concurrent.atomic
package?

a) AtomicBoolean

b) AtomicDouble

c) AtomicReference<V>

d) AtomicString

e) AtomicObject<V>

APPENDIX C ■ MoCk TEsT – 2

606

Answer Sheet

Question No Answer Question No Answer Question No Answer
1 31 61

2 32 62

3 33 63

4 34 64

5 35 65

6 36 66

7 37 67

8 38 68

9 39 69

10 40 70

11 41 71

12 42 72

13 43 73

14 44 74

15 45 75

16 46 76

17 47 77

18 48 78

19 49 79

20 50 80

21 51 81

22 52 82

23 53 83

24 54 84

25 55 85

26 56 86

27 57 87

28 58 88

29 59 89

30 60 90

APPENDIX C ■ MoCk TEsT – 2

607

Answers and Explanations
1. c) The program prints the following: Base:print.

It is possible for an abstract class to extend a concrete class (though such inheritance often
doesn’t make much sense). Also, an abstract class can have static methods. Since you
don’t need to create an object of a class to invoke a static method in that class, you can
invoke the main() method defined in an abstract class.

2. a) The program will report a compiler error at statement #1.

Every final variable must be initialized. If a final variable is not initialized at the time
of variable declaration (known as blank final), then it must be initialized in all the
constructors of the class. Since the final variable is not initialized in this class, the code
results in a compiler error.

3. a) The program will report a compiler error.

The keyword this cannot be used in a static method, so the program will not compile.

4. d) The program prints the following: 12/February/01.

The < symbol in a format string supports relative index with which you can reuse the
argument matched by the previous format specifier. The equivalent example of passing
arguments explicitly is the following:

formatter.format("%tY/%tB/%td", calendar, calendar, calendar);

The program used a short form by reusing the argument passed to the previous format specifier:

formatter.format("%tY/%<tB/%<td", calendar);

5. a) This program prints the following: Uno.

This program correctly extends ListResourceBundle and defines a resource bundle for the
locale it_IT.

The getObject() method takes String as an argument; this method returns the value of
the matching key. The expression new Integer(1).toString() is equivalent of providing
the key “1”, so the program prints Uno in output.

6. e) The program throws a ConcurrentModificationException.

From the documentation of TreeSet: “The iterators returned by this class’s iterator
method are fail-fast: if the set is modified at any time after the iterator is created, in
any way except through the iterator’s own remove method, the iterator will throw a
ConcurrentModificationException.”

This program modifies the underlying TreeSet container object using the add() method
using the earlier iterator. So, this program throws a ConcurrentModificationException.

7. a) The program prints the following: 2 1.

Since the iterator was created using the snap-shot instance when the elements “2” and
“1” were added, the program prints 2 and 1. Note that the CopyOnWriteArraySet does
not store the elements in a sorted order. Further, modifying non-thread-safe containers
such as TreeSet using methods such as add() and using the older iterator will throw a
ConcurrentModificationException. However, CopyOnWriteArraySet is thread-safe and is
meant to be used concurrently by multiple threads, and thus does not throw this exception.

APPENDIX C ■ MoCk TEsT – 2

608

8. c) The interface Iterable<T> declares three methods: boolean hasNext(), T next(),
and void remove().

The interface Iterable<T> declares only one method, Iterator<T> iterator(), so the
statement in option c) is false. The other statements are true.

9. d) This program lists the files ending with suffix .java in the current directory

The path “.” specifies the current directory. The glob pattern “*.{java}" matches file
names with suffix .java.

10. f) This program does not generate any output and terminates normally.

Since asserts are disabled by default, the program does not raise an AssertionError,
so the program does not generate any output and terminates normally. If the program
were invoked by passing –ea in the command line, it would have printed “In the handler of
Error” (since the program would have thrown an AssertionError).

11. f) When executed, this program will print the following: i1 = 10, i2 = 10, i3 = 10, i4 = 10.

This is a correct implementation of generic method cast for casting between the types.
Note that you'll get an "unchecked cast" warning (not an error) in the definition of the cast
method since an unsafe explicit conversion is performed from Object to type E.

12. e) The program prints the following: dir file.txt.

The name elements in a path object are identified based on the separators. Note: To iterate
name elements of the Path object does not actually require that the corresponding
files/directories must exist, so it will not result in throwing any exceptions.

13. d) [0, 0]

In the constructor of Point2D, the statement x = x; reassigns the passed parameter
and does not assign the member x in Point2D. Field y is not assigned, so the value is 0.
Note that you implement the Externalizable interface to support serialization; this
program uses the toString() method, which has nothing to do with object
serialization/persistence.

14. c) 5 10 15

The PriorityQueue prioritizes the elements in the queue according to its “natural
ordering.” For integers, natural ordering is in ascending order, thus the output. Note that
the poll() method retrieves and removes the head of the queue if an element is available,
or it returns null if the queue is empty.

15. c) This program throws an ArrayStoreException.

The variable baseArr is of type Base[], and it points to an array of type DeriOne. However,
in the statement baseArr[2] = new DeriTwo(), an object of type DeriTwo is assigned
to the type DeriOne, which does not share a parent-child inheritance relationship
(they only have a common parent, which is Base). Hence, this assignment results in an
ArrayStoreException.

APPENDIX C ■ MoCk TEsT – 2

609

16. d) 15 10 5

The Task class implements Comparable<Task>, which specifies how to compare its
elements. The PriorityQueue method prioritizes the elements in the queue by calling the
compareTo() method. The compareTo() method returns -1 if the priority of the current
Task object is greater than the priority of the compared Task object. Hence the elements of
the PriorityQueue are retrieved in the descending order.

17. b) When executed, this program prints the following: [2, 1].

The remove method in ArrayList removes the element at the specified position in the list,
and shifts any subsequent elements in the list to the left.

18. d) Pick a little, eat a little, pick a little, eat a little, burp burp burp, eat a lot, pick a little more.

Both replaceAll() and replace() methods replace all occurrences of the substring from
the given string. The difference between them is that replaceAll() takes regex as the
first argument and replacement string as the second argument. The replace() method
takes CharSequence as both the arguments (note that String implements CharSequence
interface).

19. a) [10, 5, 10, 20]
 [20, 5, 10]
 [5, 10, 20]
 [5, 10, 20]

Lists are unsorted. HashSets are unsorted and retain unique elements. TreeSets are
sorted and retain unique elements. ConcurrentSkipListSets are sorted and retain unique
elements.

20. b) Using String.split method: 10 01 2012
 Using regex pattern: 10 01 2012

Using str.split(regex) gives the same result as Pattern.compile(regex).split(str).

21. c) When executed, the program prints the following: true.

With type erasure, details of the generic type are lost when the program is compiled.
Hence, at runtime, types of the instance ArrayList<String> and the raw type ArrayList
are the same.

22. c) Starting to wait
 Caught Exception

The method wait() is called without acquiring a lock, so the program will result in an
IllegalMonitorStateException. This exception would be caught in the catch block for
Exception, hence the output.

23. d) [10, 15]

In this program, the reference allValues is passed to the doSomething() method. In this
container, the element with value 10 is added. Following that, a new container is created
by copying the elements of the current reference, so the value 10 is copied to the new
container as well. Since element 15 is added in addition to the existing element 10, and the
reference to the container is returned; the program prints [10, 15].

APPENDIX C ■ MoCk TEsT – 2

610

24. c) When executed, the program prints the following: double [].

The overload resolution matches to the most specific overload. When the argument null is
passed, there are two candidates, Overload(Object) and Overload(double[]), and of these
two, Overload(double[]) is the most specific overload, so the compiler resolves to calling
that method.

25. d) This program throws a NullPointerException.

In this program, the SuperClass constructor calls the method foo() that is overridden in
the derived class. Thus, in this program, since the SubClass object is created, the call to the
SuperClass constructor will result in calling the method SubClass.foo().

When the derived class object is created, first the base class constructor is called, followed
by the call to the derived class constructor. Note that the member variable is initialized
only in the derived class constructor. Thus, when the base class constructor executes,
the derived class constructor has not initialized the member variable to “HI” yet. So this
program results in a NullReferenceException.

26. c) This program prints the following:
 In BaseClass.foo()
 In Derived.bar()

Since a private method is not visible to any other classes, including its derived classes,
it cannot be overridden.

27. b) BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 String str = br.readLine();

This is the right way to read a line of a string from the console where you pass a System.
in reference to InputStreamReader and pass the returning reference to BufferedReader.
From the BufferedReader reference, you can call the readLine() method to read the string
from the console.

28. a) This program terminates normally without throwing any exceptions.

The try-with-resources statement internally expands to call the close() method in the
finally block. If the resource is explicitly closed in the try block, then calling close()
again does not have any effect. From the description of the close() method in the
AutoCloseable interface: “Closes this stream and releases any system resources associated
with it. If the stream is already closed, then invoking this method has no effect.”

29. b) java.io.FileNotFoundException

If both the try block and finally block throw exceptions, the exception thrown from the
try block will be ignored. Hence, the method thrower() throws a FileNotFoundException.
The dynamic type of the variable throwable is FileNotFoundException, so the program
prints that type name.

30. b) pqr.foo();

 In this program, the member pqr is imported statically. So, the foo() method can be accessed by
qualifying it as pqr.foo(). Note that foo() itself is not imported statically, so it cannot be invoked directly
in this program.

APPENDIX C ■ MoCk TEsT – 2

611

31. c) Type erasure.

Deadlocks, lock starvation, and livelocks are problems that arise when using mutexes for
thread synchronization. Type erasure is a concept related to generics where the generic
type information is lost once the generic type is compiled.

32. c) It is okay for a thread to acquire lock on obj again, and such an attempt will succeed.

Java locks are reentrant: a Java thread, if it has already acquired a lock, can acquire it again,
and such an attempt will succeed. No exception is thrown and no deadlock occurs for
this case.

33. c) This program will print 10 in the console.

The valueOf(int) method is a static method in String that returns the String
representation of the integer value that is passed as its argument. Since calling a static
method does not require dereferencing the reference variable on which it is called, this
program does not throw a NullPointerException.

34. d) Byte streams are meant for handling binary data that is not human-readable;
character streams are for human-readable characters.

In character streams, data is handled in terms of Unicode characters, whereas in byte
streams, data is handled in terms of bytes. Byte streams are suitable for reading or writing
to files such as executable files, image files, and files in low-level file formats such as .zip,
.class, .obj, and .exe. Character streams are suitable for reading or writing to text-based
I/O such as documents and text, XML, and HTML files.

35. c) java.lang.Cloneable interface

The AutoCloseable interface declares the close() method. Callable declares call()
method. The Comparator<T> interface declares compare() and equals() methods.

From the documentation of clone() method: “By convention, classes that implement
this interface should override the Object.clone method. Note that this interface does not
contain the clone method.”

36. a) final and d) abstract

A class cannot be final (which means it cannot be extended by any other class) and
abstract (which can be extended by other classes) at the same time.

37. c) ,,,,,,

The replaceAll() method in String takes a regular expression as the first argument. Since
the character “.” matches for any character, all the characters in the string str are replaced
with commas, which is the replacement string. In the replaced string, there is no matching
“!” character, so the replace() method has no effect in this code segment.

38. b) 1

Though the return value in the call atomicInt.incrementAndGet(); is ignored, the
method mutates the integer value passed through the reference variable atomicInt, so
the changed value is printed in the main() method. Note that AtomicInteger can be
used in thread or non-thread context (though it is not of any practical use when used in
single-threaded programs).

APPENDIX C ■ MoCk TEsT – 2

612

39. c) This program executes and terminates normally without printing any output in
console.

It is not a compiler error to check null with the instanceof operator. However, if null is
passed for the instanceof operator, it returns false. Since both the condition checks fail,
the program does not print any output in the console.

40. c) The range of thread priorities is 1 to 10; the default thread priority is 5.

The range of thread priorities is 1 to 10, with 10 being the highest priority. By default, the
priority of a thread is 5. You can use getPriority() and setPriority() methods in the
Thread class to get or set priority of threads.

41. d) Map<K, V>

Other than the Map interface (which maps keys to values), the other three interfaces
represent group of elements and derive from the Collection interface.

42. d) transient

Other modifiers can be applied only to methods and not fields. The transient modifier is
used in the context of serialization: when an object is serialized, the data member that is
qualified as transient will not be part of the serialized object.

43. a) finalize() method and b) clone() method.

The methods finalize() and clone() can be overridden. The methods getClass(),
notify(), and wait() are final methods and so cannot be overridden.

44. c) The program prints the following:
 In run method; thread name is: main
 In main method; thread name is: main

The correct way to invoke a thread is to call the start() method on a Thread object.
If you directly call the run() method, the method will run just like any other method
(in other words, it will execute sequentially in the same thread without running as a
separate thread).

45. b) The program results in throwing an IllegalThreadStateException

If you invoke the start() method on a thread object twice, it will result in a
IllegalThreadStateException.

46. d) The program will never terminate.

Calling this.join() will result in indefinite waiting since the thread is waiting for the
thread itself to terminate.

47. b) Thread provides a default implementation for the run() method.

Thread is a concrete class that implements the Runnable interface. The Thread class also
provides a default implementation for the run() method.

48. b) EXECUTING

A thread can be in one of the following states (as defined in the java.lang.Thread.State
enumeration): NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, and TERMINATED.

49. c) Thread(Runnable target, Object obj)

The other constructors are valid Thread constructors.

APPENDIX C ■ MoCk TEsT – 2

613

50. b) When executed, it prints one of the following: Eat! Burp! Run! or Burp! Eat! Run!

If the thread myThread is scheduled to run first immediately after start() is called, it will
print “Burp! Eat! Run!”; otherwise it will print “Eat! Burp! Run!” The output “Run!” will
always be executed last because of the join() method call in the main() method.

51. d) The output of this program cannot be predicted; it depends on thread scheduling.

Since the threads are not synchronized in this program, the output of this program cannot
be determined. Depending on how the threads are scheduled, it may even generate output
such as Table Tennis Tennis Table.

52. c) The program will compile with no errors and will print “Running” in console.

The class Thread implements the Runnable interface, so the assignment in statement #1 is
valid. Also, you can create a new thread object by passing a Runnable reference to a Thread
constructor, so statement #2 is also valid. Hence, the program will compile without errors
and print “Running” in the console.

53. c) equals: false
Ordinals: true

The equals() method returns true only if the enumeration constants are the same. In
this case, the enumeration constants belong to different enumerations, so the equals()
method returns false. However, the ordinal values of the enumeration constants are
equal since both are second elements in their respective enumerations.

54. a) The final value of the counter will always be 0.

You have employed AtomicInteger, which provides a set of atomic methods such as
incrementAndGet() and decrementAndGet(). Hence, you will always get 0 as the final value
of counter. However, depending on thread scheduling, the intermediate counter values
may be anywhere between -5 to +5, but the final value of the counter will always be 0.
So no synchronization is needed between the threads, although they access/modify a
common variable.

55. d) CountDownLatch allows each thread to complete its assigned task step by step.

CountDownLatch allows threads to wait for a countdown to complete. It is Phaser, which
allows each thread to complete its assigned task step by step. The other three statements
are true.

56. e) A callable can be executed by an ExecutorService, but a Runnable cannot be
executed by an ExecutorService.

A Runnable object can also be executed by an ExecutorService. The other statements
are true.

57. a) Thread newThread(Runnable r)

The ThreadFactory interface defines only one method, Thread newThread(Runnable r).
You must define this method when implementing a new thread factory with this interface.

58. e) A Fork/Join framework is suitable for tasks that involve extensive user interaction and
I/O operations.

You can use a Fork/Join framework for computationally intensive tasks that naturally can
be broken down into smaller subtasks and perform computations for the subtasks. The
Fork/Join framework is unsuitable when the tasks involve extensive user interaction or
I/O operations since it does not fit into the framework.

APPENDIX C ■ MoCk TEsT – 2

614

59. a) System.out.print(Pets.Parrot.ordinal());

Option a) The ordinal method prints the position of the enumeration constant within an
enumeration.

Option b) The call print(Pets.Parrot); prints the string "Parrot" to console.

Options c), d) and e) There are no methods named indexAt(), value(),
or getInteger() in Enum

60. f) This program results in a compiler error at #4.

The Locale class supports three constructors that are used in statements #1, #2, and #3;
however, there is no constructor in the Locale class that takes another Locale object as
argument, so the compiler gives an error for statement #4.

61. e) The program prints the following: navi_PANDORA.

To create a Locale object using the constructor Locale (String language, String country),
any String values can be passed; just attempting to create a Locale object will not result
in throwing exceptions (other than a NullPointerException, which could be raised for
passing null Strings).

The toString() method of Locale class returns a string representation of the Locale
object consisting of language, country, variant, etc.

62. a) AtomicInteger

The class DateFormat provides methods such as getDateInstance() and
getTimeInstance(), NumberFormat provides methods such as getInstance() and
getNumberInstance(), and Calendar provides the method getInstance(), which are
factory methods. The AtomicInteger class does not support any factory methods.
(In fact, it does not have any static methods!)

63. a) The parse() method is meant for reading numbers provided as String and try
converting them to Number.

b) The format() method is used for printing the values according to the values set in the
NumberFormat object.

The parse() method is meant for creating a Number object from a String object that has
numeric value, and format() method is meant for converting a numeric value into a
String object.

64. b) 28 (Sun) Oct, 2012

Relevant letters and their meaning:

d Day in month
E Day name in week
M Month in year
Y Year

Calling new Date(); object creates a Date object for the current date. Within the date
format string “d '('E')' MMM, YYYY”, the opening and closing parenthesis are given
within single quotes (i.e., ‘('E')’ to ensure that it is not treated as a format specifier
character), so the single quotes are not part of the output itself.

APPENDIX C ■ MoCk TEsT – 2

615

65. c) A driver manager ensures the atomicity properties of a transaction.

66. c) PreparedStatement can handle IN and OUT parameters.

PreparedStatement can handle only IN parameters; CallableStatement can handle IN,
OUT, and INOUT parameters.

67. a) String url = "jdbc:mysql://localhost:3306/";

68. b) Statement statement = connection.createStatement();

69. c) Replacing Stmt #1 with resultSet.moveToInsertRow(); and Stmt #2 with
resultSet.insertRow(); will make the program work.

You need to call the moveToInsertRow() method in order to insert a new row (this method
prepares the result set for creating a new row). Once the row is updated, you need to call
insertRow() to insert the row into result set and the database.

70. a) Calling absolute(1) on a ResultSet instance is equivalent to calling first(), and
calling absolute(-1) is equivalent to calling last().

71. a) An outer class can access the private members of the nested class without declaring
an object of the nested class.

An outer class can access the private members of the nested class only by declaring an
object of the nested class.

72. d) Locale is in the Java.util package

The Locale class has three public constructors, so it does not implement the Singleton
pattern. The other three classes implement the Singleton pattern.

73. c) You need to use the abstract factory pattern to manage the complexity of the context.

Using the abstract factory pattern, you can create appropriate data source instances with
applicable DAO objects.

74. a) file name:Test
absolute path:D:\workspace\ch14-test\.\Test
Normalized path:Test

The absolute path adds the path from the root directory; however, it does not normalize
the path. Hence, “.\” will be retained in the resultant path. On the other hand, the
normalize() method normalizes the path but does not make it absolute.

75. c) This program prints the following:
olivea
emma
emma

The method void mark(int limit) in BufferedReader marks the current position for
resetting the stream to the marked position. The argument limit specifies the number
of characters that may be read while still preserving the mark. This program marks the
position after “olivea" is read, so after reading “emma,” when the marker is reset and the
line is read again, it reads “emma" once again.

76. d) It will print the following: January 1, 2013.

The month index starts from 0; thus, if you give the month an index of 12, it will increase
the year by one and start counting from January.

APPENDIX C ■ MoCk TEsT – 2

616

77. a) main
 main
 Thread-0

Calling run() directly will not create a new thread. The correct way is to call the start()
method, which in turn will call the run() method in a new thread.

78. d) The program will report a runtime exception.

The member variable I is not initialized and accessed in the constructor, which results in
a NullPointerException. The main() method declares a local variable named I whose
scope is limited to the main() method.

79. a) Derived
 Derived

The dynamic type of the instance variable obj2 remains the same (i.e., Derived). Thus,
when print() is called on obj2, it calls the derived class version of the method.

80. d) 16

The specified regex is “\\S” and not “\\s”; the first regex specifies non-whitespace
characters and the other one specifies whitespace characters.

81. d) int

If Integer and long types are specified, a literal will match to int. So, the program prints int.

82. a) Phone.State state = Phone.State.ONCALL;

83. b) Methods print1(), print3(), and print4() will not compile

The method print2() is correct since it defines a method and declares it final, which is
acceptable.

The method print1() is incorrect since either a method has a body or it needs to be
declared as abstract in an abstract class. Method print3() is not correct since a method
cannot be abstract and final at the same time. Similarly, print4() is also not correct
since a method cannot be static and abstract at the same time.

84. b) class Deri extends Base {
 public Integer getValue() {
 return new Integer(10);
 }
 }

d) class Deri extends Base {
 public java.util.concurrent.atomic.AtomicInteger getValue() {
 return new java.util.concurrent.atomic.AtomicInteger(10);
 }
 }

Option a) attempts to assign weaker access privilege by declaring the method protected
when the base method is public, and thus is incorrect.

Option b) makes use of a co-variant return type (note that Integer extends Number), and
defines the overriding method correctly.

APPENDIX C ■ MoCk TEsT – 2

617

In option c) the method Float getValue(float flt) does not override the getValue() method
in Base since the signature does not match, so it is incorrect.

Option d) makes use of co-variant return type (note that AtomicInteger extends Number),
and defines the overriding method correctly.

85. c) If a method is declared abstract, its class must be declared abstract.

86. a) Prints the following: one two three.

The addFirst() inserts an element in the front of the Deque object and pollLast() method
retrieves and removes the element from the other end of the object. Since the elements
“one,” “two,” and “three” are inserted in one end and retrieved in another end, the
elements are retrieved in the same order as they were inserted.

87. c) A switch can be used with a floating point type.

A switch statement can be used with enums, strings, and primitive types byte, char,
short, and int and their wrapper types; it cannot be used with a floating-point type.

88. c) This program results in throwing a NullPointerException.

If a null value is passed to a switch statement, it results in a NullPointerException.

89. d) TraversalRowSet

The interfaces deriving from JdbcRowSet are CachedRowSet, WebRowSet, JoinRowSet, and
FilteredRowSet.

90. a) AtomicBoolean and c) AtomicReference<V>

The class AtomicBoolean supports atomically updatable Boolean values. The class
AtomicReference<V> supports atomically updatable references of type V. Classes
AtomicDouble, AtomicString, and AtomicObject are not part of the java.util.
concurrent.atomic package.

619

n A, B
Abstract classes vs. interfaces

area() method, 88
comparation, 117–118
error, 88
object, 89
points, 89–90
reasons, 87–88
semantic and usage differences, 116–117
Shape class, 88
summary, 111
syntactical differences, 116–117

Advanced class design. See also Abstract classes
chapter overview, 87
class diagram, 87
enum data types

EnumTest.java, 104
points, 106
PrinterType.java, 105
printer types, 103
summary, 112
typesafe solution, 103

final classes
final class, 90
methods, 91
points, 91
string, 90
subclasses, 90
summary, 111
variables, 91

nested classes
anonymous inner class, 102–103
benefits, 94
definition, 94
inner classes, 97–99
local inner classes, 99–101
static nested classes, 96–97
summary, 112
types, 95

quick summary, 487–488
questions and answers

abstract class, 107
compile error, 108
enum class, 110–111
inner class, 109

static keyword
block, 93–94
class variables, 92
instance variable, 92
points, 94
printCount(), 93
program, 92
summary, 112

Assertions
assert statement

AssertionError, 351
command line arguments, 352
compiler error, 351
in Java, 350
restricted use of, 352

exercises
AccessDeniedException, 354
AccountNotFoundException, 357
ArrayIndexOutOfBoundsException, 355
compiler error, 356
derived type handler, 357
foo() method, 353
initCause() method, 355
new RuntimeException(oob), 355

n C
Chained Exceptions, 326
Collections framework. See also Concrete classes,

Collections framework; Generics
algorithms (collection class)

output, 195
PlayList.java, 193–194
static methods, 192

Index

 ■ Index

620

arrays class
list() method, 198–199
methods, 195–198
points, 200–201

comparable and comparator interfaces
ComparatorTest2.java, 190–191
ComparatorTest.java, 190–189
compareTo() method, 189
differences, 192

components
abstract classes and interfaces, 172–173
interface, 173–174
types, 171

hashCode() and equals() methods, 171
overview, 147–148
points, 200–201
quick summary, 489–490
question and answer, 201–203
reusable classes, 171

Composition vs. inheritance
has-a and is-a phrases, 120
OCPJP 7 exam, 123
reasons, 121–122
resultant code, 122–123
sorting implementation, 121

Concrete classes, Collections framework
deque interface

methods, 186
returns value (methods), 187
SplQueueTest.java, 188

iterator interface, 172
list classes

ArrayList implements, 175–177
LinkedList class, 178–179
ListIterator interface, 177

map interface
HashMap, 181–182
NavigableMap interface, 184–185
override-hashCode()

method, 182–184
set interface

HashSet, 179–180
TreeSet, 180–181

Concurrency, 435
atomic variables

AtomicVariableTest.java, 452–453
methods, 451
package and description, 450
section, 452
summary, 483

Callable, Executors, ExecutorService and
ThreadPool

CallableTest.java, 465
call() method, 464
get() method, 465

shutdown() method, 466
summary, 483
SumOfN.java, 466, 468

conditions
await(), signal(), and signalAll(), 456
overloaded methods, 456
RailwayStation.java, 457–458
run() method, 458

data flow, 435
Executor interface

classes/interfaces, 462–463
execute() method, 464
ExecutorTest.java, 463–464

Fork/Join framework
algorithm, 470
classes, 471–472
divide-and-conquer, 471
problem solving, 472–477
steps, 470
summary, 483

java.util.concurrent package
collection class, 435
concurrent collections, 447–450
CountDownLatch, 438–439
CyclicBarrier, 442, 444
exchanger, 440–441
low-level constructs, 435
Phaser, 444–447
semaphore, 436–438
summary, 482
thread synchronization, 435

locks
advantages, 453–454
ATMRoom.java, 455–456
insert() method, 461–462
methods, 454
multiple conditions, 459–461
summary, 483
synchronized keyword, 453
tryLock() method, 454

overview, 435
points, 478
question and answer, 478–482
ThreadFactory

ThreadLocalRandom class, 469
TimeUnit enumeration, 469–470

Concurrency programming
asynchronous execution, 403–405
Internet applications, 394
introduction, 433
join () method, 402–403
Object class, 394
quick summary, 504–505
runnable interface

compiler errors, 397
declaration, 397

Collections framework (cont.)

 ■ Index

621

extend/implement, 398
run() method, 397

Start() and Run() methods
getName() method, 399
modification, 399

thread class
getName() method, 396
run() method, 395
spaw-main method, 396–397
start() method, 395–396

threading-related methods
important methods, 394
Object class, 395

word processor, 393–394
Concurrent access

data races
example, 407
increment() method, 407–408
operation, 408

dealocks
results, 413–414
run() method, 414
t1 and t2, 415

livelocks,
lock starvation, synchronization

blocks, 409
blocks vs. methods, 412
methods, 410–411

thread states
flowchart, 425
IllegalThreadStateException, 428–429
Thread.State enum, 427
timed_waiting and blocked states, 425–426
waiting states, 426–427

wait/notify mechanism
CoffeeMachine class, 416–417
CoffeeShop class, 418–419
communication, 416
makeCoffee() method, 417
notify() and notifyAll(), 419–420
output, 419
ploblem solving, 420–421, 423–424
summary, 434
Waiter class, 417–418

Constructor overloading
object instantiation, 57–58
output, 60
parameters, 59–60
statement, 58

n D
Data access object (DAO) design pattern

abstractions, 139
benefits, 142
implementation, 140–142

points, 143
UML class diagram, 140

Data streams
close() method, 242
DataStreamExample, 240
example, 241
statement, 242

Data updates
createStatement() method, 294
DbCreateTable, 298–290
DbUpdate, 293–294
DbUpdate2, 295–296
DbInsert, 296–297
delete, 297–298
RecordSet, 296
SQLException, 297
steps, 294
updateRow(), 296

Database queries
column index, 291
DbConnector.java, 290
DbQuery, 290–291
DbQuery4, 292–293
exception, 291
getObject() method, 292
steps, 291

Design patterns, OOP
data access object

abstractions, 139
benefits, 142
implementation, 140–142
points, 143
UML class diagram, 140

descriptions, 123
factory design pattern

Calendar class, 134
differences, 135, 137–138
implementation, 132–134
output, 135
required object(s), 132
Shape interface, 134
UML class design, 132

implementation, 124
loosely coupled implementation, 127
meaning, 123
new implementation, 125–127
observers and subject, 125
points, 143
singleton design pattern

creational design pattern, 128
ensure, 129, 131
FunPaint application, 129
getInstance() method, 129
meaning, 128
UML class diagram, 128

types, 128

 ■ Index

622

n E
Enum data types

EnumTest.java, 104
points, 106
PrinterType.java, 105
printer types, 103
summary, 112
typesafe solution, 103

Exceptions and assertions. See also Assertions
custom exceptions

constructors, exception class, 348
CustomExceptionTest, 349
Exception(), 348
Exception(String), 348
Exception(String, Throwable), 348
Exception(Throwable), 348
InvalidInputException.java, 348
methods, exception class, 348
StackOverflowError, 347
String.getMessage(), 348
Throwable.getClause(), 348
Throwable[] getSuppressed(), 348
toString() method, 350
void printStackTrace(), 348

exception handling
after throwing exception, 329
base type, 324
bit-wise OR operator, 325
blocks, 327
chained exceptions, 326
close() method, 327–328
consoleScanner.close(), 328
debugging, 330
derived type, 324
echo.java, 318
error condition, 318
exactly matching, 321
exceptional chaining, 330
exception, try and catch, 320
foo() method, 331
general catch handlers, 325
general exception handler, 325
getCause() method, 327
getStackTrace() method, 321
handlers, multiple catch, 324
handling error, 319
IllegalArgumentException, 319
IllegalStateException, 323
initCause() method, 327
InputMismatchException, 322
Integer.parseInt() method, 331
matching handler, 321
multi-catch blocks, 324
multiple catch blocks, 322
nextInt(), 320

NoSuchElementException, 323
NumberFormatException, 331
object, constructor, 326
| (OR) operator, 325
overloaded constructor, 326
precise rethrow, 331
printStackTrace() method, 321
resource leak!, 327
resources release, 329
ScanInt1.java, 319
Scanner.nextInt() method, 323
stack trace access, 320–321
syntax, keywords, 318
System.exit(), 329
Throwable class, 327
throwing exception, 318
try and catch, 320
unhandled exceptions, 319

quick summary, 499–501
TryWithResources

close(), 335
closing resources, 333
explicit catch, without, 332
finally blocks, without, 332
getSuppressed(), 335
invalid inputs, 333
resource variables, 335
supressed exception, 335
try-finally block, 332
ZipEntry, 334
zip file creation, 333
zipFile.putNextEntry() method, 334
ZipTextFile, 334

types of exception
apex class, 336
ArithmeticException, 341
ArrayIndexOutOfBoundsException, 339
array member, 340
AssertionError, 343
BufferOverflowException, 341
BufferUnderflowException, 341
checked exceptions, 336
class hierarchy, FileNotFoundException, 345
ClassCastException, 341
clone() method, 338
CloneNotSupportedException, 338
compiler error, 346
EOFException, 338
error class, 341
error message, 337
FileInputStream, 337
FileNotFoundException, 337, 339, 345
FileNotFoundExceptions, 338
forcing, for exception, 336
hierarchy in Java, 336
IllegalArgumentException, 341

 ■ Index

623

IndexOutOfBoundException, 341
IntReader interface, 345
IOError, 343
IOException, 338
LinkageError, 343
main() method, throw clause, 344
NegativeArraySizeException, 341
NoClassDefFoundError, 341, 343
NonTerminatingRecursion.java, 342
NoSuchElementException, 341, 346
NullPointerException, 341
OutOfMemoryError, 343
overloaded constructor, 343
override and throw clause, 345
ParseException, 338
programming errors, 340
readIntFromFile(), 344
ReflectiveOperationException, 338
RunTimeException, 338
SQLException, 338
stack frame, 342
StackOverflowError, 343
statements, throw, 346
subclasses, class, 338
subclasses, error, 343
subclasses, RunTimeException, 341
throw clause method, 343
unreported exception, 346
UnsupportedOperationException, 341
VirtualMachineError, 343

n F
Factory design pattern

Calendar class, 134
differences-abstract factory design patterns

applicability, 135
features, 139
implementation, 136–138
UML class diagram, 135

implementation, 132–134
output, 135
required object(s), 132
Shape interface, 134
UML class design, 132

File I/O (NIO.2)
class design, 251
classes (methods to attributes), 258–259
copy (file/directory)

copy() method, 265
Files.copy(), 264
summary, 280

directories
file change notification, 274
modification events, 274

program steps, 275–276
summary, 280

file finding
FileTreeWalkFind, 272
glob syntax, 271–272
summary, 280
visitFile()/preVisitDirectory()

method, 271
working process, 273

history, 251–252
move (file/directory)

basic implementation, 266
Files.move() method, 265

path interfaces
basic information, 255–256
comparison, 257
definition, 252
directories, 252
methods, 253
summary, 280
symbolic links, 252
toPath() method, 256

points, 276
properties and metadata

BasicFileAttributes, 263–264
file attributes hierarchy, 262
getAttribute() method, 261–262
isDirectory() method, 260
methods, 261
PathCompare2, 259
PathExists, 260
readAttributes(), 262

quick summary, 494–496
question and answers

loops, 277
newWatchService() method, 279
normalize() method, 278
relativize() method, 278
SimpleFileVisitor interface, 277–278

tree
example, 267
file copy, 270
FileTreeWalk, 268–269
input directories, 269
method, 267
summary, 280

Final classes
final class, 90
methods, 91
points, 91
string, 90
subclasses, 90
summary, 111
variables, 91

 ■ Index

624

n G, H
Generics

classes
compiler error, 156
getFirst() and getSecond() methods, 155–156
main() method, 155
PairOfT.java, 156
PairTest.java, 154

definition, 148
diamond syntax, 157–158
feature, 148
methods, 160–162
object base class vs. generics

generics (container implementation), 152, 154
object class (container implementation), 150–151

object type and type safety
println, 148–149
raw type Vector, 149
Vector class, 148

points, 203–204
quick summary, 489–490
question and answer, 201–203
raw types

backward compatibility, 158
legacy code, 159
output, 159
RawTest2.java, 159–160

wildcard parameters
bounded wildcards, 165–168
collections framework, 168–169
limitations, 164–165
meaning, 163
points, 170
section, 163
WildCardUse.java, 164

n I
Inheritance

conversions
inconvertible types, 76
instanceof, 76–77
strongly-typed language, 74
upcasts and downcasts, 74–75

partial hierarchy, 63
polymorphism

area() method, 65–67
Deeper Dive (overriding), 70–72
overriding issues, 68–69
static and dynamic type, 65
superclass methods, 73–74

refresh() method, 65
relationship, 63
return types, 69–70
write methods, 64

Interfaces. See Abstract classes
I/O fundamentals. See also Streams (read and write files)

chapter overview, 225
class design, 225
console class

character handling, 229
Echo command, 226
in formatted I/O, 228
method, 227
return null, 226
summary, 249

points, 249–250
quick summary, 493–494
question and answers

code segment, 247–249
resources statement, 248–249
serialization, 247

n J, K
Java class design, 45, 87. See also Advanced class design;

Object-oriented programming (OOP)
access modifiers

package-protected access, 51, 54–55
private method, 53
public method, 52
types, 51

class foundations, 84
class fundamentals

access modifiers, 51–55
constructors, 49–50
object creation, 49
various parts, 48

exam topics, 45
inheritance

conversions, 74–77
partial hierarchy, 63
points, 85
polymorphism, 65–74
refresh() method, 65
relationship, 63
write methods, 64

overloading
constructor overloading, 57–60
method overloading, 56
overload resolution, 60–62
points, 84
polymorphism, 55
rules, 63

packages
advantages, 77
class name, 78
declaration, 78
graphicshape package, 79
hierarchy, 79
naming conventions, 80

■ Index

625

points, 85
static import, 79–80

quick summary, 486–487
Java Database Connectivity (JDBC)

API, 313
architecture

database, 284–285
two-tier and three-tier configuration, 283
types, 283

class design, 281
connection

databases, 286–288
interface, 285
summary, 314

features, 281
points, 309
quick summary, 496–498
query and updates

database queries, 290–292
data updates, 293–299
metadata, 299
points, 300
ResultSet, 289–290
statement interface, 288–289
summary, 314–315

question and answers
code segment, 310
interfaces, 313
JDBC 3.0, 312
MySQL, 310
operations, 311
RowSets, 313
SQLException, 312

requirements, 281–282
RowSetProvider, RowSetFactory and RowSet

Interfaces, 315
steps, 282
transaction

ACID properties, 300
commit() method, 301
connection interface, 301
DbTransaction, 301–302
execution, 303
inconsistent and erroneous database, 300
MySQL command line, 303
rollback() method, 304–306
RowSet interface, 306–308
summary, 315
updateString() method, 303

questions with answers (explanation), 80–84
java.util.concurrent package

collection class, 435
concurrent collections, 447–450
CountDownLatch, 438–439
CyclicBarrier, 442, 444

exchanger, 440–441
low-level constructs, 435
Phaser, 444–447
semaphore, 436–438
summary, 482
thread synchronization, 435

Java SE 7 Programmer II, 507

n L
Localization, 361

load, resource bundles
bundlename, 372
CandidateLocales.java, 374
country, 372
language, 372
loadResourceBundle(), 375
locale details, 373
naming conventions for, 372
packagequalifier, 372
qualified name, 372
ResourceBundle.getBundle() method, 375
sequences, 373
variant, 372

load, resource bundlesLgetCandidateLocales()
method, 375

local culture format
currency class, 380
CurrencyDetails.java, 380
Currency getCurrency(), 379
CustomDatePatterns.java, 385
DateFormat class, 381
Date parse(), 381
DatePrint.java, 382
DateStyleFormats.java, 382
DateTimePrint.java, 383
format class and subclass, 376
format() method, 377
FormatNumber,java, 377
FractionDigits.java, 378
int getNumericCode(), 380
LocalizedCurrency.java, 379
NumberFormat, 377
Number parse(String source), 378
parse() method, 377
PatternStringExample.java, 384
setMaximumFractionDigits(), 378
SimpleDateFormat class, 384
static Currency getInstance(), 380
static DateFormat getInstance() methods, 381
static Locale[] getAvailableLocales(), 379, 381
static NumberFormat getCurrencyInstance(), 379
static NumberFormat getInstance(), 379
static NumberFormat getIntegerInstance(), 379
static NumberFormat getPercentInstance(), 379

 ■ Index

626

static Set<Currency>getAvailableCurrencies(), 380
String formar(), 378
String format(Date date), 381
String getDisplayName(), 380
String getDisplayNAme, 380
String getSymbol(), 380
String getSymbol(Locale), 380
time pattern, 386
time pattern.java, 386

locales
availability checking, 363
class, 362
codes, 364
getAvailableLocales(), 363
getDefault(), 363
getDisplayName() method, 363
getDisplayVariant(), 366
getScript(), 366
getting details, 365
getVariant(), 366
LocaleDetails, 365
methods in class, 362
static Locale[] getAvailableLocales(), 362
static Locale getDefault(), 362
static void setDefault(Locale newLocale), 362
String getCountry(), 362
String getDisplayCountry(), 362
String getDisplayLanguage(), 362
String getDisplayVariant(), 363
String getLanguage(), 362
String getVariant(), 363
String toString, 363
th_TH_TH_#u-nu-thai, 364
toString() method, 363

point outs
Italian locale, 387
LIstResourceBundle class, 389
load resource bundle, 391
NumberFormat.getInstance(), 389
read and set locale, 390
resource bundle buil, 390
setMaximunFactionDigits, 388
text format, 391

quick summary, 501–503
resource bundles

abstract class, 366–367
ClassCastException, 371
derived classes, 366
English Locale, 367
getContents(), 369
in Java, 366
Italian Locale, 367
ListResourceBundle, 367
ListResourcesBundle, 369

LocalizedHello.java, 368
MissingResourceException, 371
PropertyResourceBundle, 367
ResBundle.java, 370

n M
Method overloading

approaches, 56
different functions, 56–57
feature, 56
fillColor() method, 56–57

Multi-threading. See Concurrency programming

n N
Native-API driver, 283
Native-protocol driver, 283
Network-protocol driver, 283
Nested classes

anonymous inner class
definition, 102
points, 103
StatusReporter.java, 102
syntax, 102

benefits, 94
definition, 94
inner classes

Circle.java, 98
limitation, 99
outer class, 99
points, 99
syntax, 97

local inner classes
getDescriptiveColor() method, 101
points, 102
static nested class, 100
syntax, 99
toString() method, 100

static nested classes
points, 97
syntax, 96
TestColor.java, 96–97
network-protocol driver, 283

summary, 112
types, 95

Non-inheritable class. See Final classes

n O
Object-oriented programming (OOP), 113, 123. See also

Design patterns, OOP
abstraction, 45
chapter overview, 113
concepts, 45

Localization (cont.)

 ■ Index

627

design principles, 113
dynamic binding, 45
foundation, 46

abstraction, 47
encapsulation, 47
inheritance, 47
polymorphism, 48

FunPaint application, 46
inheritance hierarchy, 45
interfaces

abstract classes vs. interfaces, 116–118
class, 114
common boundary, 113
declaration and use of, 114–115
key rules, 115
points, 145
protocol, 113
roll() method, 114
To() method, 114

object composition
abstractions, 119
composition vs. inheritance, 120–123
FunPaint application, 119
Point class, 119
toString() method, 120

quick summary, 488–489
questions and answers, 143–145

OCPJP 7, 513, 569
abstract class, 569, 587, 607, 611
abstract factory pattern, 598, 615
access for class, 558
addFirst() inserts, 604, 617
addition of strings, 563
All() method, 587, 611
append class, 556
ArrayList removes, 577, 609
ArrayStoreException, 514, 608
asList, 560
AsList, 563
AssertionError, 583, 608
AutoCloseable, 540, 550, 564
atomicInt.incrementAndGet(), 587, 612
AtomicInteger, 594, 613
AutoCloseable interface, 586, 613
base and derived class, 515
BigDecimal, 513, 556
boolean operation, 515, 617
BufferedReader, 615
calling last(), 615
Calling run(), 616
class definitions, 525
class Printf, 535
class/interface support, 525
ClassCastException, 534
close(), 539

close() method, 564, 610
Closeable, 539
code segment behavior, 513
cohesion, 559
Comparable<Task>, 596, 609
comparator, 524
compilation and execution, 513
compilation error, 558, 569, 607
composition, 559
concurrent.atomic package, 531, 562
ConcurrentModificationException, 570, 608
Connection.rollback() method, 560
constructors, 607
CountDownLatch, 613
co-variant return type, 616
Date object, 614
DateFormat class, 596
deadlocks, 611
declared abstract, 617
DEFAULT_CTOR, 516
derived class, 557
diamond syntax, 561
dir file.txt, 608
doSomething() method, 609
driver manager ensures, 615
dstFile, 546
dynamic type, 610
end of stream (EOS), 565
enums, 525, 559
equals() method, 613
exceptions, 564
FileNotFoundException, 584, 610
FilterReader, 566
finalize method, 566
finalize() and clone() method, 589, 611
floating point type, 617
foo() method, 610
Fork/Join framework, 613
Format class, 561
format string, 614
future object, 551
generic type and methods, 560, 608, 611
getChannel() method, 566
getPathMatcher(), 548
glob expression, 566
HashSet, 561
IdentityHashMap, 562
IllegalThreadStateException, 612
inputFile, FileReader, 550
instanceof operator, 612
integer functions, 560, 608
interface operation, 558
interface Iterable<T>, 572, 608
iterator() method, 560
java –ea –da, 545

 ■ Index

628

java CopyFile HelloWorld.txt, 543
java.nio.file, 543
java.sql.Savepoint, 560–561
java.util.concurrent package, 533
java.util.concurrent.locks, 552
java.util.regex, 538
ListResourceBundle, 559, 571, 607
Locales, 561, 614–615
lock() method, 567
LockUnlock, 552
Mao interface, 612
mapping, 531
matches(), 564
month index, 615
moveToInsertRow() method, 515
multi catch block, 546
MYCONST, 517
myThread, 592, 613
NavigableSet, 561
normalize(), 565
NOT statement, 547
NullPointerException, 556, 605, 616
NUM class, 556
NumberformatException, 536
+ operator, 563
ordinal method, 614
outer class, 598, 615
outputFile, FileWriter, 539
overload resolution, 600, 610
override methods, 600, 610
parse() method, 596, 614
Point constructor, 516
Point(), 557
Point2D, 575, 608
PreparedStatement, 597, 615
print2() method, 603, 616
printf() method, 563
println method, 557
PrintlnTest, 536
PrintStream, 539
PriorityQueue, 577, 609
read() method, 565
readLine() method, 610
readPassword(), 566
reference types, 559
regex, 580, 616
replaceAll() and replace() methods, 609
resource bundles, 562
ResourceBundle, 562
ResultSet, 554
run() method, 551, 612
runFinalizersOnExit(), 556
Runnable interface, 551, 612
Runnable object, 594, 613
runtime exception, 500, 600, 616

savepoint, 529
serialization, 542
serialVersionUID, 542
singleton pattern, 558
skip() method, 565
snap-shot instance, 607
srcFile, 546
start() method, 567, 612
states, 567, 613
StingBufer replace() method, 556
string operation, 547
StringBuffer(), 556
str.split(regex), 577, 609
subpath method, 565
super() method, 516
suffix .java, 573, 608
synchronization, 533
TemplateType, 527
terminates, 588, 610
testFilePath.normalize(), 543
this() method, 516
thread priorities, 588, 612
ThreadFactory interface, 594, 613
ThreadLocalRandom, 560
threads, 533, 590, 612–613
toString() method, 563
TransferObject, 559
transient modifier, 612
TraversalRowSet, 605, 617
TreeSet, 561
try-with-resource, 564
type arguments, 560
UML diagram, 524
unlock() method, 567
Unicode characters, 586, 611
unsorted and retain unique elements, 578, 609
VAL, 540
valueOf(int) method, 586, 611
wait() method, 589, 609
while statement, 547

OCPJP 7 exam, 1. See also Oracle Java Certifications
congruent exams, 1
cost, 6
duration, 5
exam tips, 485–486
Java language features and APIs, 6–7
key points, 9–10
language concepts, 6
passing scores, 6
preparation, 7–8
questions, 5
real-world programming experience, 7
register and pay online, 9
registration options, 8
sample exams, 8
sections, 1

OCPJP 7 (cont.)

 ■ Index

629

voucher from, 9
web site registeration, 9

ODBC-JDBC bridge drivers, 283
Oracle Java Certifications

comparison (1Z0-803, 1Z0-804 and 1Z0-805
exams), 2–3

differences, 4
different levels, 1–2
Java certification path, 2
OCAJP 7 exam, 4
OCPJP 6/OCPJP 7, 4
prerequisite, 4

Overloading, Java
constructor overloading

object instantiation, 57–58
output, 60
parameters, 59–60
statement, 58

method overloading
approaches, 56
different functions, 56–57
feature, 56
fillColor() method, 56

overloaded resolution
compiler, 61
definition, 61
error message, 62
methods, 60

polymorphism, 46
rules, 63

n P, Q
Pretest

OCPJP 7 exam
ArithmeticException, 39
array comparison, 13, 36
Arrays.sort, 38
AssertionError, 39
base variables, 15, 37
beginIndex, 28
blocking execution, 42
catch exception, 31
ClassCastException, 38
classpath, 42
code snippet, 40
compiler error, 20–21
composition, 38
CopyOnWriteArrayList.class, 42
CopyOnWriteArrayListTest.class, 32
correctness checking, 39
count, static variable, 38
critical executions, 40
date object, 42
dequeueing elements, 20

endIndex, 28
enumeration, 37
equality program, 12, 36
equals() method, 13, 36
exception handling, 39
exceptions, 39
exceptions handle program, 16, 37
file creation failures, 40
files for execution, 28
format specifier, 38
getDefault() method, 40
Glob pattern, 40
IllegalMonitorStateException, 41
inheritance class, 37
interface methods, 37
IOException, 40
Java AssertionFailure, 39
JdbcRowSet object, 41
join() method, 41
OO design concept, 38
overload() method, 36
override method, 37
pattern identification, 39
patterns, 39
points program, 12, 36
preparedStatement() method, 40
probability of head and tail, 14, 36
regex pattern, 38
remove() method, 38
replacement methods, 37
ResourceBundle properties, 42
runtime error, 20
serialization, 40
sets program, 41
sleep() method, 41
sorter function, 38
SQLException, 41
statement verification, 40
str variable, 14, 36
switch statement, 17, 37
TempSensor table, 41
testing for execution, 38
thread class, 41
Thread.currentThread(), 41
throw exception, 25
time formatter, 35
timing and questions, 12
TreeSet string, 40
variable declaration, 15, 37
variable values, 38
wait() method, 41
watch service, 40

post-pretest evaluation, 42–43
Processing strings. See String

processing

 ■ Index

630

n R
regex symbols

in Java
classes, 212
matcher() method, 212
replacement, 216–217
search and parsing, 213–216

metasymbols, 211–212
quantifier symbols, 212
use of, 211–212

ResultSet, 289–290
rollback() method

DbSavepoint, 304–306
points, 304
program, 306

Row interface
DbQuery5, 308
definition, 306
flexibility, 305
hierarchy, 307
JdbcRowSet implementation, 306
RowSetFactory newFactory(), 307–308
String factoryClassName and ClassLoader

classloader, 308–309

n S
Serialization

definition, 242
FileOutputStream, 244
flat files, 242
metadata, 243
objects, 244
ObjectStreamExample.java, 242–243
persistence, 242
readObject() method, 245
TransientSerialization, 244–246

Singleton design pattern
creational design pattern, 128
ensure

double-checked locking, 130–131
inner classes, 131
multi-threaded environment, 129
synchronization, 130

FunPaint application, 129
getInstance() method, 129
meaning, 128
UML class diagram, 128

Split() method, 209–210
Static keyword

block, 93–94
class variables, 92
instance variable, 92
points, 94

printCount(), 93
program, 92
summary, 112

Streams (read and write files)
binary files, 229
byte streams

data streams, 240–241
differences, 230
InputStream, 237
InputStream and OutputStream classes, 238
OutputStream, 237
reading text files, 238–240
serialization, 242–246

character streams
classes (reader class), 230–231
classes (writer class), 232
differences, 230
reader hierarchy, 230
reading text files, 232–233
tokenizing text, 235–237
writer hierarchy, 231
writing and reading text files, 233–235

Java source files and class files (difference), 230
summary, 250

String processing
chapter overview, 205
class design, 205
formation

points, 221
printf() method, 218
specifiers, 218–221

indexOf() method
implementation, 206–207
prefix/suffix, 207
regionMatches() method, 207
search argument, 206
SearchString1.java, 206

parsing
conversions, 208–209
Split() method, 209–210

quick summary, 490–493
regular expression

definition, 211
regex symbols, 211–218

Synchronized blocks vs. Synchronized methods, 412

n T, U, V
Threads. See also Concurrency programming

chapter overview, 394
class design, 393
concurrent access

data races, 407–408
deadlocks, 413–415
livelocks, 415

 ■ Index

631

lock starvation, 416
summary, 434
synchronization, 408–412
thread states, 425–427, 429
wait/notify mechanism, 417, 419–424

quick summary, 503–504
states

getState() instance method, 405
getState() method, 406
operating system level, 406
runnable state, 406
summary, 434

Thread.sleep() method, 401–402
toPath() method, 256
TryWithResources

close(), 335
closing resources, 333
explicit catch, without, 332
finally blocks, without, 332
getSuppressed(), 335
invalid inputs, 333
resource variables, 335
supressed exception, 335
try-finally block, 332
ZipEntry, 334
zip file creation, 333
zipFile.putNextEntry() method, 334
ZipTextFile, 334

n W, X, Y
Wait/notify mechanism

CoffeeMachine class, 416–417
CoffeeShop class, 418–419

communication, 416
makeCoffee() method, 417
notify() and notifyAll(), 419–420
output, 419
ploblem solving, 420–421, 423–424
summary, 434
Waiter class, 417–418

n Z
1Z0-804 a.k.a. Java SE 7 Programmer II

advanced class design, 508
concurrency, 510
database application with JDBC, 509
exceptions and assertions, 509
generics and collections, 508
Java class design, 507
Java file I/O (NIO.2), 509
Java I/O’s, 509
localization, 510
object oriented design principles, 508
string processing, 508
threads, 509

1Z0-805, a.k.a. Upgrade to Java SE 7 Programmer
concurrency, 511
database applications, JDBC, 511
design patterns, 510
Java file I/O (NIO.2), 511
language enhancements, 510
localization, 511

Oracle Certified
Professional Java SE 7

Programmer Exams
1Z0-804 and 1Z0-805

A Comprehensive OCPJP 7 Certification Guide

S G Ganesh
Tushar Sharma

Oracle Certified Professional Java SE 7 Programmer Exams 1Z0-804 and 1Z0-805

Copyright © 2013 by SG Ganesh, Tushar Sharma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4764-7

ISBN-13 (electronic): 978-1-4302-4765-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Saswata Mishra
Technical Reviewer: B V Kumar
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Saswata Mishra, Matthew Moodie, Morgan Ertel, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To my wonderful mom
—Ganesh

To my caring parents, loving wife, and cute son
—Tushar

vii

Contents

About the Authors ��� xvii

About the Technical Reviewer � ��� xix

Acknowledgments ��� xxi

Introduction � ��� xxiii

■Chapter 1: The OCPJP 7 Exam: FAQ � ��������������������������1 Oracle Java Certifications: Overview �

..1

FAQ 1� What are the different levels of Oracle Java certification exams? � ..1

FAQ 2� Can you compare the specifications of the 1Z0-803, 1Z0-804, and 1Z0-805 exams in relation
to OCAJP 7 and OCPJP 7 certification? � ..2

FAQ 3� OCAJP 7 certification is a prerequisite for OCPJP 7 certification via the 1Z0-804 exam�
Does that mean that I have to take the OCAJP 7 exam before I can take the OCPJP 7 exam? �4

FAQ 4� Is OCPJP 7 prerequisite for other Oracle certification exams?� ..4

FAQ 5� Should I take the OCPJP 7 or OCPJP 6 exam? � ..4

FAQ 6� How does the Oracle OCPJP 7 exam differ from the OCPJP 6 and OCPJP 5 exams
(and the previous Sun versions SCJP 6 and SCJP 5)? � ..4

The OCPJP 7 Exam �...5

FAQ 7� How many questions are there in the OCPJP 7 exam? � ...5

FAQ 8� What is the duration of the OCPJP 7 exam? � ..5

FAQ 9� What is the cost of the OCPJP 7 exam? � ..6

FAQ 10� What are the passing scores for the OCPJP 7 exam? � ...6

FAQ 11� What kinds of questions are asked in the OCPJP 7 exam? � ...6

FAQ 12� What does the OCPJP 7 exam test for? � ...6

FAQ 13� I’ve been a Java programmer for last five years� Do I have to prepare for the OCPJP 7 exam? �7

FAQ 14� How do I prepare for the OCPJP 7 exam? � ...7

FAQ 15� How do I know when I’m ready to take the OCPJP 7 exam? � ..8

■ Contents

viii

Taking the OCPJP 7 Exam ���8

FAQ 16� What are my options to register for the exam? �� 8

FAQ 17� How do I register for the exam, schedule a day and time for taking the exam, and appear
for the exam? �� 8

FAQ 18� What are the key things I need to remember before taking the exam and on the day of exam? ������������� 9

Chapter 2: Pretest ■ ��11

The OCPJP 7 Exam: Pretest ���12

Answers with Explanations ���36

Post-Pretest Evaluation ��42

Chapter 3: Java Class Design ■ ��45

Essentials of OOP ��46

FunPaint Application: An Example ��� 46

Foundations of OOP ��� 46

Class Fundamentals ��48

Object Creation �� 49

Constructors �� 49

Access Modifiers ��� 51

Overloading ���55

Method Overloading �� 56

Constructor Overloading �� 57

Overload resolution �� 60

Points to Remember �� 63

Inheritance ��63

Runtime Polymorphism ��� 65

Type Conversions ��� 74

Java Packages ��77

Working with Packages ��� 78

Summary ���84

■ Contents

ix

Chapter 4: Advanced Class Design ■ ��87

Abstract Classes ��87

Points to Remember �� 89

Using the “final” Keyword ���90

Final Classes �� 90

Final Methods and Variables �� 91

Points to Remember �� 91

Using the “static” Keyword ���92

Static Block�� 93

Points to Remember �� 94

Flavors of Nested Classes ���94

Static Nested Classes (or Interfaces)��� 96

Inner Classes ��� 97

Local Inner Classes �� 99

Anonymous Inner Classes ��� 102

Enum Data Types ���103

Points to Remember �� 106

Summary ���111

Chapter 5: Object-Oriented Design Principles ■ ���113

Interfaces ��113

Declaring and Using Interfaces ��� 114

Abstract Classes vs� Interfaces ��� 116

Object Composition ���119

Composition vs� Inheritance �� 120

Design Patterns ���123

The Singleton Design Pattern �� 128

The Factory Design Pattern ��� 132

The Data Access Object (DAO) Design Pattern �� 139

Summary ���145

■ Contents

x

Chapter 6: Generics and Collections ■ ��147

Generics ��148

Using Object Type and Type Safety �� 148

Using the Object Class vs� Generics �� 150

Creating Generic Classes ��� 154

Diamond Syntax ��� 157

Interoperability of Raw Types and Generic Types �� 158

Generic Methods �� 160

Generics and Subtyping ��� 162

Wildcard Parameters ��� 163

Points to Remember �� 170

The Collections Framework ���171

Why Reusable Classes? ��� 171

Basic Components of the Collections Framework ��� 171

Algorithms (Collections Class) ��� 192

The Arrays Class �� 195

Points to Remember �� 200

Summary ���203

Generics ��� 203

Collections Framework �� 204

Chapter 7: String Processing ■ ���205

Processing Strings ��205

String Searching �� 205

String Parsing �� 208

Regular Expressions ��211

Understanding regex Symbols ��� 211

Regex Support in Java ��� 212

String Formatting ��218

Format Specifiers �� 218

Points to Remember �� 221

Summary ���224

■ Contents

xi

Chapter 8: Java I/O Fundamentals ■ ��225

Reading and Writing from Console ��225

Understanding the Console Class �� 225

Using Streams to Read and Write Files ���229

Character Streams and Byte Streams ��� 230

Character Streams ��� 230

Byte Streams ��� 237

Points to Remember ��246

Summary ���249

Chapter 9: Java File I/O (NIO�2) ■ ���251

A Quick History of I/O APIs ��251

Using the Path Interface ��252

Getting Path Information �� 254

Comparing Two Paths �� 257

Using the Files Class ���258

Checking File Properties and Metadata ��� 259

Copying a File �� 264

Moving a File ��� 265

Deleting a File �� 266

Walking a File Tree ��267

Revisiting File Copy ��� 270

Finding a File ���271

Watching a Directory for Changes ���273

Points to Remember ��276

Summary ���280

Chapter 10: Building Database Applications with JDBC ■ ��281

Introduction to JDBC ���281

The Architecture of JDBC ��� 282

Two-Tier and Three-Tier JDBC Architecture �� 283

■ Contents

xii

Types of JDBC Drivers ��� 283

Setting Up the Database �� 284

Connecting to a Database Using a JDBC Driver ��285

The Connection Interface ��� 285

Connecting to the Database �� 286

Querying and Updating the Database ��288

 Statement�� 288

Performing Transactions ���300

The RowSet Interface �� 306

Summary ���313

Define the Layout of the JDBC API ��� 313

Connect to a Database by Using a JDBC driver ��� 314

Update and Query a Database ��� 314

Customize the Transaction Behavior of JDBC and Commit Transactions ��� 315

Use the JDBC 4�1 RowSetProvider, RowSetFactory, and RowSet Interfaces ��� 315

Chapter 11: Exceptions and Assertions ■ ���317

Introduction to Exception Handling ��317

Throwing Exceptions ��� 318

Unhandled Exceptions ��� 319

Try-with-Resources ���332

Closing Multiple Resources �� 333

Points to Remember �� 335

Exception Types ��336

The Exception Class��� 336

The RuntimeException Class �� 338

The Error Class ��� 341

The Throws Clause �� 343

Points to Remember �� 346

Custom Exceptions ���347

■ Contents

xiii

Assertions ���350

Assert Statement ��� 350

How Not to Use Asserts ��� 352

Summary ���358

Chapter 12: Localization ■ ��361

Introduction ���362

Locales ���362

The Locale Class �� 362

Resource Bundles ��366

Using PropertyResourceBundle �� 367

Using ListResourceBundle �� 369

Loading a Resource Bundle ��372

Naming Convention for Resource Bundles ��� 372

Formatting for Local Culture ��376

The NumberFormat Class �� 377

The DateFormat Class �� 381

Points to Remember ��387

Summary ���390

Chapter 13: Threads ■ ��393

Introduction to Concurrent Programming ��393

Important Threading-Related Methods �� 394

Creating Threads ��� 395

Asynchronous Execution ��� 403

The States of a Thread ��405

Two States in “Runnable” State��� 406

Concurrent Access Problems ��407

Data Races �� 407

Thread Synchronization ��� 408

Deadlocks �� 413

■ Contents

xiv

Other Threading Problems ��� 415

The Wait/Notify Mechanism ��� 416

More Thread States ��� 425

Summary ���433

Chapter 14: Concurrency ■ ���435

Using java�util�concurrent Collections ���435

Semaphore �� 436

CountDownLatch ��� 438

Exchanger �� 440

CyclicBarrier �� 442

Phaser�� 444

Concurrent Collections �� 447

Apply Atomic Variables and Locks ���450

Atomic Variables �� 450

Locks ��� 453

Conditions �� 456

Use Executors and ThreadPools ��462

Executor ��� 463

Callable, Executors, ExecutorService, ThreadPool, and Future �� 464

ThreadFactory ��� 468

The ThreadLocalRandom Class�� 469

TimeUnit Enumeration ��� 469

Use the Parallel Fork/Join Framework ��470

Useful Classes of the Fork/Join Framework �� 471

Using the Fork/Join Framework �� 472

Points to Remember ��478

Summary ���482

■ Contents

xv

Chapter 15: OCPJP 7 Quick Refresher ■ ���485

Chapter 3: Java Class Design ��486

Chapter 4: Advanced Class Design ��487

Chapter 5: Object-Oriented Design Principles ���488

Chapter 6: Generics and Collections ���489

Chapter 7: String Processing ���491

Chapter 8: Java I/O Fundamentals ��493

Chapter 9: Java File I/O (NIO�2) ��494

Chapter 10: Building Database Applications with JDBC ��496

Chapter 11: Exceptions and Assertions ���499

Chapter 12: Localization ��501

Chapter 13: Threads ��503

Chapter 14: Concurrency ���504

Appendix A: Exam Topics ■ ��507

OCPJP7 Exam (1Z0-804 a�k�a� Java SE 7 Programmer II) Topics ��507

1� Java Class Design (G&S Chapter 3) ��� 507

2� Advanced Class Design (G&S Chapter 4) ��� 508

3� Object-Oriented Design Principles (G&S Chapter 5) �� 508

4� Generics and Collections (G&S Chapter 6) ��� 508

5� String Processing (G&S Chapter 7) �� 508

6� Exceptions and Assertions (G&S Chapter 11) �� 509

7� Java I/O Fundamentals (G&S Chapter 8) ��� 509

8� Java File I/O (NIO�2) (G&S Chapter 9) ��� 509

9� Building Database Applications with JDBC (G&S Chapter 10) ��� 509

10� Threads (G&S Chapter 13) ��� 509

11� Concurrency (G&S Chapter 14) �� 510

12� Localization (G&S Chapter 12) ��� 510

■ Contents

xvi

OCPJP 7 Exam (1Z0-805, a�k�a� Upgrade to Java SE 7 Programmer) Topics �����������������������������510

1� Language Enhancements (G&S Chapters 6, 11) ��� 510

2� Design Patterns (G&S Chapter 5) ��� 510

3� Database Applications with JDBC (G&S Chapter 10) ��� 511

4� Concurrency (G&S Chapters 13, 14) ��� 511

5� Localization (G&S Chapter 12) ��� 511

6� Java File I/O (NIO�2) (G&S Chapter 9) ��� 511

Appendix B: Mock Test – 1 ■ ��513

Answer Sheet ��555

Answers and Explanations ��556

Appendix C: Mock Test – 2 ■ ��569

Answer Sheet ���606

Answers and Explanations ��607

Index ���619

xvii

About the Authors

S G Ganesh is a practitioner working in the area of code quality management at Siemens Corporate Research and
Technologies in Bangalore. He previously worked in HP’s C++ compiler team and was also a member of the C++
standardization committee. His areas of interests include OO design, design patterns, and programming languages.
He is a Software Engineering Certified Instructor (IEEE certification) and has an OCPJP 7 certification.

Tushar Sharma is a researcher and practitioner at Siemens Corporate Research and Technologies–India. He earned
an MS from the Indian Institute of Technology–Madras (IIT–Madras). His interests include OO software design,
OO programming, refactoring, and design patterns. He has an OCPJP 7 certification.

xix

About the Technical Reviewer

Dr. B V Kumar is currently the Director at Altius Inc and is responsible for delivering technology-based services for
corporate clients. Dr. Kumar has a master’s degree in technology from the Indian Institute of Technology Kanpur
and a PhD from the Indian Institute of Technology-Kharagpur. He has over 22 years of experience in the field of
information technology at various levels and in organizations such as Computer Vision Corporation (Singapore),
Parametric Technologies (Seoul, South Korea), Sun Microsystems (India), and Infosys Technologies Ltd.

Prior to initiating Altius Inc, Dr. Kumar was the Director and Chief Architect at the Global Technology Office
of Cognizant Technology Solutions (India). He has been working on enterprise technology solutions for more than
12 years, focusing on Java, JEE, web services, service-oriented architecture, and open source technologies. He has
also been working on content management systems through applications such as Joomla and Drupal and mobile
platforms such as Android and iPhone.

As a Director of Altius Inc, Dr. Kumar is currently focusing on technology consultancy, technology training and
evangelization, community development, and project support for corporate clients. Dr. Kumar has two patents in
the IT space and has published many technological papers in national and international journals and conferences.
He has also co-authored the following books on information technologies: J2EE Architecture (2007), Web Services 2e:
An Introduction (2011), Implementing SOA Using Java EE (2009), and Secure Java: For Web Application Development
(2010). Dr. Kumar is currently working on the second edition of Java EE 7 Architecture.

xxi

Acknowledgments

Our first and foremost thanks go to our acquisitions editor Saswata Mishra, who played a key role from the
conceptualization to the production stage of the book. Saswata, thank you for your excellent support—you made
writing this book an enjoyable experience!

Our special thanks to book editor Robert Hutchinson. Robert played a major role in improving the quality of the
presentation in this book. His attention to detail is amazing. Robert, thank you for turning our raw initial writes into a
publishable manuscript.

Another special thanks to our technical reviewer, Dr. B V Kumar. His careful and critical review played a key role
in improving the technical quality of the book.

We would like to convey our sincere thanks to the entire Apress team, especially Jeffrey Pepper, Ms. Jill Balzano,
Ms. Mary Behr, and Ms. Anna Ishchenko for their excellent contributions in producing this book.

Both of us have spent countless hours writing chapters quite late into the night and during the weekends and
holidays. With kids in our respective homes screaming for attention, it was only the support of our spouses that made
writing this book possible.

—S G Ganesh and Tushar Sharma

	Oracle Certified Professional Java SE 7 Programmer Exams 1Z0-804 and 1Z0-805
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The OCPJP 7 Exam : FAQ
	Oracle Java Certifications: Overview
	FAQ 1. What are the different levels of Oracle Java certification exams?
	FAQ 2. Can you compare the specifications of the 1Z0-803, 1Z0-804, and 1Z0-805 exams in relation to OCAJP 7 and OCPJP 7 cer...
	FAQ 3. OCAJP 7 certification is a prerequisite for OCPJP 7 certification via the 1Z0-804 exam. Does that mean that I have t...
	FAQ 4. Is OCPJP 7 prerequisite for other Oracle certification exams?
	FAQ 5. Should I take the OCPJP 7 or OCPJP 6 exam?
	FAQ 6. How does the Oracle OCPJP 7 exam differ from the OCPJP 6 and OCPJP 5 exams (and the previous Sun versions SCJP 6 and...

	The OCPJP 7 Exam
	FAQ 7. How many questions are there in the OCPJP 7 exam?
	FAQ 8. What is the duration of the OCPJP 7 exam?
	FAQ 9. What is the cost of the OCPJP 7 exam?
	FAQ 10. What are the passing scores for the OCPJP 7 exam?
	FAQ 11. What kinds of questions are asked in the OCPJP 7 exam?
	FAQ 12. What does the OCPJP 7 exam test for?
	FAQ 13. I’ve been a Java programmer for last five years. Do I have to prepare for the OCPJP 7 exam?
	FAQ 14. How do I prepare for the OCPJP 7 exam?
	FAQ 15. How do I know when I’m ready to take the OCPJP 7 exam?

	Taking the OCPJP 7 Exam
	FAQ 16. What are my options to register for the exam?
	FAQ 17. How do I register for the exam, schedule a day and time for taking the exam, and appear for the exam?

	Chapter 2: Pretest
	The OCPJP 7 Exam: Pretest
	Time : 1 hour 15 minutes 	 No. of questions: 45

	Answers with Explanations
	Post-Pretest Evaluation

	Chapter 3: Java Class Design
	Essentials of OOP
	FunPaint Application: An Example
	Foundations of OOP
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	Class Fundamentals
	Object Creation
	Constructors
	Access Modifiers
	Public Access Modifier
	Private Access Modifier
	Protected and Default Access Modifier

	Overloading
	Method Overloading
	Constructor Overloading
	Overload resolution
	Points to Remember

	Inheritance
	Runtime Polymorphism
	An Example
	Overriding Issues
	Overriding: Deeper Dive
	Invoking Superclass Methods

	Type Conversions
	Upcasts and Downcasts
	Casting Between Inconvertible Types
	Using “instanceof” for Safe Downcasts

	Java Packages
	Working with Packages
	Static Import

	Summary

	Chapter 4: Advanced Class Design
	Abstract Classes
	Points to Remember

	Using the “final” Keyword
	Final Classes
	Final Methods and Variables
	In a class, you may declare a method final. The final method cannot be overridden. Therefore, if you have declared a method...

	Points to Remember

	Using the “static” Keyword
	Static Block
	Points to Remember

	Flavors of Nested Classes
	Static Nested Classes (or Interfaces)
	Points to Remember

	Inner Classes
	Points to Remember

	Local Inner Classes
	Points to Remember

	Anonymous Inner Classes
	Points to Remember

	Enum Data Types
	Points to Remember

	Summary

	Chapter 5: Object-Oriented Design Principles
	Interfaces
	Declaring and Using Interfaces
	Points to Remember

	Abstract Classes vs. Interfaces
	Choosing Between an Abstract Class and an Interface

	Object Composition
	Composition vs. Inheritance
	Points to Remember

	Design Patterns
	The Singleton Design Pattern
	Ensuring That Your Singleton Is Indeed a Singleton

	The Factory Design Pattern
	Differences Between Factory and Abstract Factory Design Patterns

	The Data Access Object (DAO) Design Pattern
	Points to Remember

	Summary

	Chapter 6: Generics and Collections
	Generics
	Using Object Type and Type Safety
	Using the Object Class vs. Generics
	Container Implementation Using the Object Class
	Container Implementation Using Generics

	Creating Generic Classes
	Diamond Syntax
	Interoperability of Raw Types and Generic Types
	Generic Methods
	Generics and Subtyping
	Wildcard Parameters
	Limitations of Wildcards
	Bounded Wildcards
	Wildcards in the Collections Class

	Points to Remember

	The Collections Framework
	Why Reusable Classes?
	Basic Components of the Collections Framework
	Abstract Classes and Interfaces
	Concrete Classes
	List Classes
	ArrayList Class
	The ListIterator Interface
	The LinkedList Class

	The Set Interface
	The HashSet Class
	The TreeSet Class

	The Map Interface
	The HashMap Class
	Overriding the hashCode() Method
	The NavigableMap Interface

	The Queue Interface
	The Deque Interface

	Comparable and Comparator Interfaces

	Algorithms (Collections Class)
	The Arrays Class
	Methods in the Arrays Class
	Array as a List

	Points to Remember

	Summary
	Generics
	Collections Framework

	Chapter 7: String Processing
	Processing Strings
	String Searching
	The IndexOf() Method
	The regionMatches() Method

	String Parsing
	String Conversions
	The Split() Method

	Regular Expressions
	Understanding regex Symbols
	Regex Support in Java
	Searching and Parsing with regex
	Replacing Strings with regex

	String Formatting
	Format Specifiers
	Points to Remember

	Summary

	Chapter 8: Java I/O Fundamentals
	Reading and Writing from Console
	Understanding the Console Class
	Formatted I/O with the Console Class
	Special Character Handling in the Console Class

	Using Streams to Read and Write Files
	Character Streams and Byte Streams
	Character Streams
	Reading Text Files
	Reading and Writing Text Files
	“Tokenizing” Text

	Byte Streams
	Reading a Byte Stream
	Data Streams
	Writing to and Reading from Object Streams: Serialization
	Serialization: Some More Details

	Points to Remember
	Summary

	Chapter 9: Java File I/O (NIO.2)
	A Quick History of I/O APIs
	Using the Path Interface
	Getting Path Information
	Comparing Two Paths

	Using the Files Class
	Checking File Properties and Metadata
	Copying a File
	Moving a File
	Deleting a File

	Walking a File Tree
	Revisiting File Copy

	Finding a File
	Watching a Directory for Changes
	Points to Remember
	Summary

	Chapter 10: Building Database Applications with JDBC
	Introduction to JDBC
	The Architecture of JDBC
	Two-Tier and Three-Tier JDBC Architecture
	Types of JDBC Drivers
	Setting Up the Database

	Connecting to a Database Using a JDBC Driver
	The Connection Interface
	Connecting to the Database
	Statement
	ResultSet
	Querying the Database
	Updating the Database
	Getting the Database Metadata
	Points to Remember

	Querying and Updating the Database
	Performing Transactions
	Sec18
	Rolling Back Database Operations

	The RowSet Interface
	Points to Remember

	Summary
	Define the Layout of the JDBC API
	Connect to a Database by Using a JDBC driver
	Update and Query a Database
	Customize the Transaction Behavior of JDBC and Commit Transactions
	Use the JDBC 4.1 RowSetProvider, RowSetFactory, and RowSet Interfaces

	Chapter 11: Exceptions and Assertions
	Introduction to Exception Handling
	Throwing Exceptions
	Unhandled Exceptions
	Try and Catch Statements
	Programmatically Accessing the Stack Trace
	Multiple Catch Blocks
	Multi-Catch Blocks
	General Catch Handlers
	Finally Blocks

	Points to Remember

	Try-with-Resources
	Closing Multiple Resources
	Points to Remember

	Exception Types
	The Exception Class
	The RuntimeException Class
	The Error Class
	The Throws Clause
	Method Overriding and the Throws Clause

	Points to Remember

	Custom Exceptions
	Assertions
	Assert Statement
	How Not to Use Asserts

	Summary

	Chapter 12: Localization
	Introduction
	Locales
	The Locale Class
	Getting Locale Details

	Resource Bundles
	Using PropertyResourceBundle
	Using ListResourceBundle

	Loading a Resource Bundle
	Naming Convention for Resource Bundles

	Formatting for Local Culture
	The NumberFormat Class
	The Currency Class

	The DateFormat Class
	The SimpleDateFormat Class

	Points to Remember
	Summary

	Chapter 13: Threads
	Introduction to Concurrent Programming
	Important Threading-Related Methods
	Creating Threads
	Extending the Thread Class
	Implementing the Runnable Interface
	The Start( ) and Run( ) Methods
	Thread Name, Priority, and Group
	Using the Thread.sleep() Method
	Using Thread’s Join Method

	Asynchronous Execution

	The States of a Thread
	Two States in “Runnable” State

	Concurrent Access Problems
	Data Races
	Thread Synchronization
	Synchronized Blocks
	Synchronized Methods
	Synchronized Blocks vs. Synchronized Methods

	Deadlocks
	Other Threading Problems
	Livelocks
	Lock Starvation

	The Wait/Notify Mechanism
	Let’s Solve a Problem

	More Thread States
	timed_waiting and blocked States
	waiting State
	Using Thread.State enum
	Understanding IllegalThreadStateException

	Summary

	Chapter 14: Concurrency
	Using java.util.concurrent Collections
	Semaphore
	CountDownLatch
	Exchanger
	CyclicBarrier
	Phaser
	Concurrent Collections

	Apply Atomic Variables and Locks
	Atomic Variables
	Locks
	Conditions
	Multiple Conditions on a Lock

	Use Executors and ThreadPools
	Executor
	Callable, Executors, ExecutorService, ThreadPool, and Future
	ThreadFactory
	The ThreadLocalRandom Class
	TimeUnit Enumeration

	Use the Parallel Fork/Join Framework
	Useful Classes of the Fork/Join Framework
	Using the Fork/Join Framework

	Points to Remember
	Summary
	Using java.util.concurrent Collections
	Applying Atomic Variables and Locks
	Using Executors and ThreadPools
	Using the Parallel Fork/Join Framework

	Chapter 15: OCPJP 7 Quick Refresher
	Chapter 3: Java Class Design
	Chapter 4: Advanced Class Design
	Chapter 5: Object-Oriented Design Principles
	Chapter 6: Generics and Collections
	Chapter 7: String Processing
	Chapter 8: Java I/O Fundamentals
	Chapter 9: Java File I/O (NIO.2)
	Chapter 10: Building Database Applications with JDBC
	Chapter 11: Exceptions and Assertions
	Chapter 12: Localization
	Chapter 13: Threads
	Chapter 14: Concurrency

	Appendix A: Exam Topics
	OCPJP7 Exam (1Z0-804 a.k.a. Java SE 7 Programmer II) Topics
	OCPJP 7 Exam (1Z0-805, a.k.a. Upgrade to Java SE 7 Programmer) Topics

	Appendix B: Mock Test – 1
	Answers and Explanations

	Appendix C: Mock Test – 2
	Answer Sheet
	Answers and Explanations

	Index

