
Leonard

Shelve in
Programming Languages/Java

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Java 7 NIO.2
Pro Java 7 NIO.2 gives you the skills to write robust, scalable Java applications using
NIO.2. It covers the three primary elements that offer new input/output (I/O) APIs in
Java 7, showing you how to:

• Use the extensive file I/O API system that developers have long sought
• Work with the socket channel API to carry out multicasting and socket binding
 associated with channels
• Enhance scalability with the asynchronous I/O API: map to I/O facilities, completion
 ports, and various I/O event port mechanisms

With Pro Java 7 NIO.2, you’ll learn how to:

• Get/set file metadata through the java.nio.file.attribute API (including POSIX)
• Manage symbolic and hard links
• Deal with files and directories through the new java.nio.file.Files API
• Use the FileVisitor API to develop recursive file operations
• Explore the Watch Service API and file change notification
• Use the new SeekableByteChannel API for working with random access files
• Develop blocking/non-blocking socket-based applications
• Use the jewel in the crown of NIO.2: the Asynchronous Channel API
• Refactor java.io.File code

Take your Java applications to the next level with Pro Java 7 NIO.2. Each chapter con-
tains extensive code examples that show the power and elegance of NIO.2, giving you
the knowledge to apply the latest and greatest techniques in your own code.

http://www.it-ebooks.info

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://www.it-ebooks.info

iii

Contents at a Glance

Contents at a Glance ... iii

Contents .. iv

About the Author ... xiii

About the Technical Reviewer ... xiv

Acknowledgments .. xv

Preface .. xvi

Chapter 1: Working with the Path Class ... 1

Chapter 2: Metadata File Attributes ... 11

Chapter 3: Manage Symbolic and Hard Links ... 35

Chapter 4: Files and Directories ... 43

Chapter 5: Recursive Operations: Walks .. 77

Chapter 6: Watch Service API ... 111

Chapter 7: Random Access Files .. 135

Chapter 8: The Sockets APIs .. 169

Chapter 9: The Asynchronous Channel API .. 215

Chapter 10: Important Things to Remember .. 263

Index .. 273

http://www.it-ebooks.info

C H A P T E R 1

■ ■ ■

1

Working with the Path Class

The recommended entry point to start exploring the NIO.2 API, also known as “JSR 203: More New I/O
APIs for the Java Platform” (NIO.2), is the new abstract class java.nio.file.Path. This class is a
milestone of NIO.2, and every application that involves I/O operations will exploit the powerful facilities
of this class. Practically, it is the most commonly used class of NIO.2, since many I/O operations are
based on a Path resource.

The Path class supports two types of operations: syntactic operations (almost any operation that
involves manipulating paths without accessing the file system; these are logical manipulations done in
memory) and operations over files referenced by paths. This chapter covers the first type of operations
and introduces you to the Path API. In Chapter 4, I focus on exploring the second type of operations. The
concepts presented in this chapter will be very useful in the rest of the book.

Introducing the Path Class
A path resides in a file system, which “stores and organizes files on some form of media, generally one or
more hard drives, in such a way that they can be easily retrieved.”1 The file system can be accessed
through the java.nio.file.FileSystems final class, which is used to get an instance of the
java.nio.file.FileSystem we want to work on. FileSystems contains the following two important
methods, as well as a set of newFileSystem() methods, for constructing new file systems:

• getDefault(): This is a static method that returns the default FileSystem to the
JVM—commonly the operating system default file system.

1 Oracle, The Java Tutorials, “What Is a Path? (And Other File System Facts),”
http://download.oracle.com/javase/tutorial/essential/io/path.html.

http://download.oracle.com/javase/tutorial/essential/io/path.html
http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

2

• getFileSystem(URI uri): This is a static method that returns a file system from
the set of available file system providers that match the given URI schema. The
Path class manipulates a file in any file system (FileSystem) that can use any
storage place (java.nio.file.FileStore; this class represents the underlying
storage). By default (and commonly), the Path refers to files in the default file
system (the file system of the computer), but NIO.2 is totally modular—an
implementation of FileSystem for data in memory, on the network, or on a virtual
file system is perfectly agreeable to NIO.2. NIO.2 provides us with all file system
functionalities that we may need to perform over a file, a directory, or a link.

The Path class is an upgraded version of the well-known java.io.File class, but the File class has
kept a few specific operations, so it is not deprecated and cannot be considered obsolete. Moreover,
starting with Java 7, both classes are available, which means programmers can mix their powers to
obtain the best of I/O APIs. Java 7 provides a simple API for conversion between them. Remember the
days when you had to do the following?

import java.io.File;
…
File file = new File("index.html");

Well, those days are gone, because with Java 7 you can do this:

import java.nio.file.Path;
import java.nio.file.Paths;
…
Path path = Paths.get("index.html");

At a closer look, a Path is a programmatic representation of a path in the file system. The path string
contains the file name, the directory list, and the OS-dependent file delimiter (e.g., backslash “\” on
Microsoft Windows and forward slash “/” on Solaris and Linux), which means that a Path is not system
independent since it is based on a system-dependent string path. Because Path is basically a string, the
referenced resource might not exist.

Defining a Path
Once you identify the file system and the location of a file or directory, you can create a Path object for it.
Absolute paths, relative paths, paths defined with the notation “.” (indicates the current directory) or
“..” (indicates the parent directory), and paths containing only a file/directory name are covered by the
Path class. The simplest solution for defining a Path is to call one of the get() methods of the Paths
helper class. The following subsections present several different ways to define a path to the same file
(on Windows)—C:\rafaelnadal\tournaments\2009\BNP.txt.

Define an Absolute Path
An absolute path (also known as a full path or file path) is a path that contains the root directory and all
other subdirectories that contain a file or folder. Defining an absolute path in NIO.2 is a one-line-of-code
task, as you can see in the following example, which points to the file named BNP.txt in the
C:\rafaelnadal\tournaments\2009 directory (the file may not exist for testing this code):

Path path = Paths.get("C:/rafaelnadal/tournaments/2009/BNP.txt");

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

3

get() also allows you to split a path into a set of chunks. NIO will reconstruct the path for you, no
matter how many chunks there are. Note that if you define a chunk for each component of the path, you
can omit the file separator delimiter. The preceding absolute path can be chunked as “follows”:

Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
Path path = Paths.get("C:", "rafaelnadal/tournaments/2009", "BNP.txt");
Path path = Paths.get("C:", "rafaelnadal", "tournaments", "2009", "BNP.txt");

Define a Path Relative to the File Store Root
A relative path (also known as a nonabsolute path or partial path) is only a portion of the full path. A
relative path is often used in creating a web page. Relative paths are used much more frequently than
absolute paths. Defining a path relative to the current file store root should start with the file delimiter.
In the following examples, if the current file store root is C:, then the absolute path is
C:\rafaelnadal\tournaments\2009\BNP.txt:

Path path = Paths.get("/rafaelnadal/tournaments/2009/BNP.txt");
Path path = Paths.get("/rafaelnadal","tournaments/2009/BNP.txt");

Define a Path Relative to the Working Folder
When you define a path relative to the current working folder, the path should not start with the file
delimiter. If the current folder is /ATP under C: root, then the absolute path returned by the following
snippet of code is C:\ATP\rafaelnadal\tournaments\2009\BNP.txt:

Path path = Paths.get("rafaelnadal/tournaments/2009/BNP.txt");
Path path = Paths.get("rafaelnadal","tournaments/2009/BNP.txt");

Define a Path Using Shortcuts
Defining paths using the notation “.” (indicates the current directory) or “..” (indicates the parent
directory) is a common practice. These kinds of paths can be processed by NIO.2 to eliminate possible
cases of redundancy if you call the Path.normalize() method (which removes any redundant elements,
including any “.” or “directory/..” occurrences):

Path path = Paths.get("C:/rafaelnadal/tournaments/2009/dummy/../BNP.txt").normalize();
Path path = Paths.get("C:/rafaelnadal/tournaments/./2009/dummy/../BNP.txt").normalize();

If you want to see the effect of the normalize() method, try to define the same Path with and without
normalize(), as follows, and print the result to the console:

Path noNormalize = Paths.get("C:/rafaelnadal/tournaments/./2009/dummy/../BNP.txt");
Path normalize = Paths.get("C:/rafaelnadal/tournaments/./2009/dummy/../BNP.txt").normalize();

If you use System.out.println() to print the preceding paths, you will see the following results, in
which normalize() has removed the redundant elements:

C:\rafaelnadal\tournaments\.\2009\dummy\..\BNP.txt

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

4

C:\rafaelnadal\tournaments\2009\BNP.txt

Define a Path from a URI
In some cases, you may need to create a Path from a Uniform Resource Identifier (URI). You can do so by
using the URI.create() method to create a URI from a given string and by using the Paths.get() method
that takes a URI object as an argument. This is useful if you need to encapsulate a path string that can be
entered into the address bar of a web browser:

import java.net.URI;
…
Path path = Paths.get(URI.create("file:///rafaelnadal/tournaments/2009/BNP.txt"));
Path path = Paths.get(URI.create("file:///C:/rafaelnadal/tournaments/2009/BNP.txt"));

Define a Path using FileSystems.getDefault().getPath() Method
Another common solution for creating a Path is to use the FileSystems class. First, call the

getDefault() method to obtain the default FileSystem—NIO.2 will provide a generic object that is
capable of accessing the default file system. Then, you can call the getPath() method as follows (the
Paths.get() method in the preceding examples is just shorthand for this solution):

import java.nio.file.FileSystems;
…
Path path = FileSystems.getDefault().getPath("/rafaelnadal/tournaments/2009", "BNP.txt");
Path path = FileSystems.getDefault().getPath("/rafaelnadal/tournaments/2009/BNP.txt");
Path path = FileSystems.getDefault().getPath("rafaelnadal/tournaments/2009", "BNP.txt");
Path path = FileSystems.getDefault().
 getPath("/rafaelnadal/tournaments/./2009","BNP.txt").normalize();

Get the Path of the Home Directory
When you need a path that points to the home directory, you can proceed as shown in the following

example (the returned home directory is dependent on each machine and each operating system):

Path path = Paths.get(System.getProperty("user.home"), "downloads", "game.exe");

On my Windows 7 machine, this returns C:\Users\Leo\downloads\game.exe, while on my friend’s
CentOS system (Linux), this returns /home/simpa/downloads/game.exe.

Getting Information About a Path
After you have defined a Path object, you have access to a set of methods that provide useful information
about the path elements. These methods are based on the fact that NIO.2 splits the path string into a set
of elements (an element is a subpath representing a directory or a file) and assigns index 0 to the highest
element and index n – 1 to the lowest element, where n is the number of path elements; usually, the
highest element is the root folder and the lowest element is a file. This section presents examples that
apply these information-obtaining methods to the path C:\rafaelnadal\tournaments\2009\BNP.txt:

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

5

Path path = Paths.get("C:", "rafaelnadal/tournaments/2009", "BNP.txt");

Get the Path File/Directory Name
The file/directory indicated by a path is returned by the getFileName() method, which is the farthest
element from the root in the directory hierarchy:

//output: BNP.txt
System.out.println("The file/directory indicated by path: " + path.getFileName());

Get the Path Root
The root of the path can be obtained with the getRoot() method (if the Path does not have a root, it
returns null):

//output: C:\
System.out.println("Root of this path: " + path.getRoot());

Get the Path Parent
The parent of this path (the path’s root component) is returned by the getParent() method (if the Path
does not have a parent, it returns null):

//output: C:\rafaelnadal\tournaments\2009
System.out.println("Parent: " + path.getParent());

Get Path Name Elements
You can get the number of elements in a path with the getNameCount() method and get the name of each
element with the getName() method:

//output: 4
System.out.println("Number of name elements in path: " + path.getNameCount());

//output: rafaelnadal tournaments 2009 BNP.txt
for (int i = 0; i < path.getNameCount(); i++) {
 System.out.println("Name element " + i + " is: " + path.getName(i));
}

Get a Path Subpath
You can extract a relative path with the subpath() method, which gets two parameters, the start index
and the end index, representing the subsequence of elements:

//output: rafaelnadal\tournaments\2009
System.out.println("Subpath (0,3): " + path.subpath(0, 3));

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

6

Converting a Path
In this section, you will see how to convert a Path object into a string, a URI, an absolute path, a real
path, and a File object. The Path class contains a dedicated method for each of these conversions, as
shown in the following subsections. The following is the path we are going to work with:

Path path = Paths.get("/rafaelnadal/tournaments/2009", "BNP.txt");

Convert a Path to a String
String conversion of a path can be achieved by the toString() method:

//output: \rafaelnadal\tournaments\2009\BNP.txt
String path_to_string = path.toString();
System.out.println("Path to String: " + path_to_string);

Convert a Path to a URI
You can convert a Path to a web browser format string by applying the toURI() method, as shown in the
following example. The result is a URI object that encapsulates a path string that can be entered into the
address bar of a web browser.

//output: file:///C:/rafaelnadal/tournaments/2009/BNP.txt
URI path_to_uri = path.toUri();
System.out.println("Path to URI: " + path_to_uri);

Convert a Relative Path to an Absolute Path
Obtaining an absolute path from a relative one is a very common task. NIO.2 can do that with the
toAbsolutePath() method (notice that if you apply this method to an already absolute path, then the
same path is returned):

//output: C:\rafaelnadal\tournaments\2009\BNP.txt
Path path_to_absolute_path = path.toAbsolutePath();
System.out.println("Path to absolute path: " + path_to_absolute_path.toString());

Convert a Path to a Real Path
The toRealPath() method returns the real path of an existing file—this means that the file must exist,
which is not necessary if you use the toAbsolutePath() method. If no argument is passed to this method
and the file system supports symbolic links, this method resolves any symbolic links in the path. If you
want to ignore symbolic links, then pass to the method the LinkOption.NOFOLLOW_LINKS enum constant.
Moreover, if the Path is relative, it returns an absolute path, and if the Path contains any redundant
elements, it returns a path with those elements removed. This method throws an IOException if the file
does not exist or cannot be accessed.

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

7

The following snippet of code returns the real path of a file by not following symbolic links:

import java.io.IOException;
…
//output: C:\rafaelnadal\tournaments\2009\BNP.txt
try {
 Path real_path = path.toRealPath(LinkOption.NOFOLLOW_LINKS);
 System.out.println("Path to real path: " + real_path);
} catch (NoSuchFileException e) {
 System.err.println(e);
} catch (IOException e) {
 System.err.println(e);
}

Convert a Path to a File
A Path can also be converted to a File object using the toFile() method, as follows. This a great bridge
between Path and File since the File class also contains a method named toPath() for reconversion.

//output: BNP.txt
File path_to_file = path.toFile();

//output: \rafaelnadal\tournaments\2009\BNP.txt
Path file_to_path = path_to_file.toPath();
System.out.println("Path to file name: " + path_to_file.getName());
System.out.println("File to path: " + file_to_path.toString());

Combining Two Paths
Combining two paths is a technique that allows you to define a fixed root path and append to it a partial
path. This is very useful for defining paths based on a common part. NIO.2 provides this operation
through the resolve() method. The following is an example of how it works:

//define the fixed path
Path base = Paths.get("C:/rafaelnadal/tournaments/2009");

//resolve BNP.txt file
Path path_1 = base.resolve("BNP.txt");
//output: C:\rafaelnadal\tournaments\2009\BNP.txt
System.out.println(path_1.toString());

//resolve AEGON.txt file
Path path_2 = base.resolve("AEGON.txt");
//output: C:\rafaelnadal\tournaments\2009\AEGON.txt
System.out.println(path_2.toString());

There is also a method dedicated to sibling paths, named resolveSibling(). It resolves the passed
path against the current path’s parent path. Practically, this method replaces the file name of the current
path with the file name of the given path.

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

8

The following example clarifies the idea:

//define the fixed path
Path base = Paths.get("C:/rafaelnadal/tournaments/2009/BNP.txt");

//resolve sibling AEGON.txt file
Path path = base.resolveSibling("AEGON.txt");
//output: C:\rafaelnadal\tournaments\2009\AEGON.txt
System.out.println(path.toString());

Constructing a Path Between Two Locations
When you need to construct a path from one location to another, you can call the relativize() method,
which constructs a relative path between this path and a given path. This method constructs a path
originating from the original path and ending at the location specified by the passed-in path. The new
path is relative to the original path. For a better understanding of this powerful facility, consider a simple
example. Suppose that you have the following two relative paths:

Path path01 = Paths.get("BNP.txt");
Path path02 = Paths.get("AEGON.txt");

In this case, it is assumed that BNP.txt and AEGON.txt are siblings, which means that you can
navigate from one to the other by going up one level and then down one level. Applying the
relativize() method outputs ..\AEGON.txt and ..\BNP.txt:

//output: ..\AEGON.txt
Path path01_to_path02 = path01.relativize(path02);
System.out.println(path01_to_path02);

//output: ..\BNP.txt
Path path02_to_path01 = path02.relativize(path01);
System.out.println(path02_to_path01);

Another typical situation involves two paths that contain a root element. Consider the following
paths:

Path path01 = Paths.get("/tournaments/2009/BNP.txt");
Path path02 = Paths.get("/tournaments/2011");

In this case, both paths contain the same root element, /tournaments. To navigate from path01 to
path02, you will go up two levels and down one level (..\..\2011). To navigate from path02 to path01,
you will go up one level and down two levels (..\2009\BNP.txt). This is exactly how the relativize()
method works:

//output: ..\..\2011
Path path01_to_path02 = path01.relativize(path02);
System.out.println(path01_to_path02);

//output: ..\2009\BNP.txt
Path path02_to_path01 = path02.relativize(path01);
System.out.println(path02_to_path01);

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

9

Note If only one of the paths includes a root element, then a relative path cannot be constructed. Both paths
must include a root element. Even then, the construction of the relative path is system dependent.

Comparing Two Paths
The equality of two Paths can be tested in different ways for different purposes. You can test whether
two paths are equal by calling the Path.equals() method. This method respects the Object.equals()
specification. It does not access the file system, so the compared paths are not required to exist, and it
does not check if the paths are the same file. In some OS implementations, the paths are compared by
ignoring the case, while in other implementations, the comparison is case sensitive—the
implementation will specify whether case is considered. Here I show a path relative to the current file
store and an absolute path, both representing the same file, but not equals:

Path path01 = Paths.get("/rafaelnadal/tournaments/2009/BNP.txt");
Path path02 = Paths.get("C:/rafaelnadal/tournaments/2009/BNP.txt");

if(path01.equals(path02)){
 System.out.println("The paths are equal!");
} else {
 System.out.println("The paths are not equal!"); //true
}

Sometimes you’ll want to check if two paths are the same file/folder. You can easily accomplish this
by calling the java.nio.File.Files.isSameFile() method (as shown in the following example), which
returns a boolean value. Behind the scenes, this method uses the Path.equals() method. If
Path.equals() returns true, the paths are equal, and therefore no further comparisons are needed. If it
returns false, then the isSameFile() method enters into action to double-check. Notice that this
method requires that the compared files exist on the file system; otherwise, it throws an IOException.

try {
 boolean check = Files.isSameFile(path01, path02);
 if(check){
 System.out.println("The paths locate the same file!"); //true
 } else {
 System.out.println("The paths does not locate the same file!");
 }
} catch (IOException e) {
 System.out.println(e.getMessage());
}

Since the Path class implements the Comparable interface, you can compare paths by using the
compareTo() method, which compares two abstract paths lexicographically. This can be useful for
sorting. The method returns zero if the argument is equal to this path, a value less than zero if this path is
lexicographically less than the argument, or a value greater than zero if this path is lexicographically
greater than the argument. The following is an example of using the compareTo() method:

//output: 24
int compare = path01.compareTo(path02);
System.out.println(compare);

http://www.it-ebooks.info

CHAPTER 1 ■ WORKING WITH THE PATH CLASS

10

Partial comparison can be accomplished by using the startsWith() and endsWith() methods, as
shown in the following example. Using these methods, you can test if the current path starts or ends,
respectively, with the given path. Both methods returns bool values.

boolean sw = path01.startsWith("/rafaelnadal/tournaments");
boolean ew = path01.endsWith("BNP.txt");
System.out.println(sw); //output: true
System.out.println(ew); //output: true

Iterate over the Name Elements of a Path
Since the Path class implements the Iterable interface, you can obtain an object that enables you to
iterate over the elements in the path. You can iterate either by using an explicit iterator or with a foreach
loop that returns a Path object for each iteration. The following is an example:

Path path = Paths.get("C:", "rafaelnadal/tournaments/2009", "BNP.txt");

for (Path name : path) {
 System.out.println(name);
}

This outputs the elements starting with the closest to the root, as follows:

rafaelnadal

tournaments

2009

BNP.txt

Summary
In this chapter you have taken your first step into the NIO.2 API. In addition to learning about basic
NIO.2 concepts, such as file systems and file stores, you received an overview of the Path class,
knowledge of which is essential for every developer who wants to learn how to use the NIO.2 API.
Knowing how to obtain the default file system and how to define and manipulate file paths is important
because the Path class will sustain the examples throughout the book and will usually be the entry point
of applications.

http://www.it-ebooks.info

C H A P T E R 2

■ ■ ■

11

Metadata File Attributes

If you have questions about a file or a directory, such as whether it is hidden, whether it is a directory,
what its size is, and who owns it, you can get answers to those questions (and many others) from the
metadata, which is data about other data.

NIO.2 associates the notion of metadata with attributes and provides access to them through the
java.nio.file.attribute package. Since different file systems have different notions about which
attributes should be tracked, NIO.2 groups the attributes into views, each of which maps to a particular
file system implementation. Generally, views provide the attributes in bulk through a common method,
readAttributes(). In addition, you can extract and set a single attribute with the getAttribute() and
setAttribute() methods, respectively, which are available in the java.nio.file.Files class. Depending
on the view, other methods are available for additional tasks.

In this chapter you will learn how to use the views provided by NIO.2. You will see how to determine
whether a file is read-only or hidden, when it was last accessed or modified, who owns it, and how to
take ownership of it. You will also discover how to view the access control list (ACL) of a file and how to
set Unix permissions on a file. Moreover, you will explore file store attributes and learn how to define
your own attributes.

Supported Views in NIO.2
NIO.2 comes with a set of six views, an overview of which follows:

• BasicFileAttributeView: This is a view of basic attributes that must be supported
by all file system implementations. The attribute view name is basic.

• DosFileAttributeView: This view provides the standard four supported attributes
on file systems that support the DOS attributes. The attribute view name is dos.

• PosixFileAttributeView: This view extends the basic attribute view with attributes
supported on file systems that support the POSIX (Portable Operating System
Interface for Unix) family of standards, such as Unix. The attribute view name is
posix.

• FileOwnerAttributeView: This view is supported by any file system
implementation that supports the concept of a file owner. The attribute view
name is owner.

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

12

• AclFileAttributeView: This view supports reading or updating a file’s ACL. The
NFSv4 ACL model is supported. The attribute view name is acl.

• UserDefinedFileAttributeView: This view enables support of metadata that is user
defined.

Determining Views Supported by a Particular File System
Before you attempt to access a view's attributes, make sure that your file system supports the
corresponding view. NIO.2 lets you either view the entire list of supported views by name or check if a
file store—represented by the FileStore class that maps any type of store, such as partitions, devices,
volumes, and so on—supports a particular view.

Once you obtain access to the default file system—by calling the FileSystems.getDefault()
method—you can easily iterate over the supported views returned by the
FileSystem.supportedFileAttributeViews() method. The following code snippet shows how to do this:

import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.util.Set;
…
FileSystem fs = FileSystems.getDefault();
Set<String> views = fs.supportedFileAttributeViews();

for (String view : views) {
 System.out.println(view);
}

For example, for Windows 7, the preceding code returned the following results:

acl

basic

owner

user

dos

■ Note All file systems support the basic view, so you should get at least the basic name in your output.

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

13

You can test a particular view on a file store by calling the FileStore.supportsFileAttributeView()
method. You can pass the desired view as a String or as a class name. The following code checks
whether the basic view is supported by all the available file stores:

import java.nio.file.FileStore;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.attribute.BasicFileAttributeView;
…
FileSystem fs = FileSystems.getDefault();
for (FileStore store : fs.getFileStores()) {
 boolean supported = store.supportsFileAttributeView(BasicFileAttributeView.class);
 System.out.println(store.name() + " ---" + supported);
}

Moreover, you can check if a file store in which a particular file resides supports a single view, as
shown in this example:

import java.io.IOException;
import java.nio.file.FileStore;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");

try {
 FileStore store = Files.getFileStore(path);
 boolean supported = store.supportsFileAttributeView("basic");
 System.out.println(store.name() + " ---" + supported);
} catch (IOException e) {
 System.err.println(e);
}

Now that you can determine which views are supported on your file system, it is time to dig deeper
and explore each view’s attributes, starting with the basic view.

Basic View
Most file system implementations support a set of common attributes (size, creation time, last accessed
time, last modified time, etc.). These attributes are grouped into a view named BasicFileAttributeView
and can be extracted and set as described in the following subsections.

Get Bulk Attributes with readAttributes()
You can extract attributes in bulk using the readAttributes() method as follows (the varargs argument
currently supports the LinkOption.NOFOLLOW_LINKS enum—do not follow symbolic links):

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

14

import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
…
BasicFileAttributes attr = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");

try {
 attr = Files.readAttributes(path, BasicFileAttributes.class);
} catch (IOException e) {
 System.err.println(e);
}

System.out.println("File size: " + attr.size());
System.out.println("File creation time: " + attr.creationTime());
System.out.println("File was last accessed at: " + attr.lastAccessTime());
System.out.println("File was last modified at: " + attr.lastModifiedTime());

System.out.println("Is directory? " + attr.isDirectory());
System.out.println("Is regular file? " + attr.isRegularFile());
System.out.println("Is symbolic link? " + attr.isSymbolicLink());
System.out.println("Is other? " + attr.isOther());

Get a Single Attribute with getAttribute()
If you need to extract a single attribute instead of all the attributes in bulk, use the getAttribute()
method. You need to pass the file path and the attribute name and specify whether or not you need to
follow symbolic links. The following code snippet shows how to extract the size attribute value. Keep in
mind that the getAttribute() method returns an Object, so you need an explicit conversion depending
on the attribute’s value type.

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
try {
 long size = (Long)Files.getAttribute(path, "basic:size", NOFOLLOW_LINKS);
 System.out.println("Size: " + size);
} catch (IOException e) {
 System.err.println(e);
}

Basic attribute names are listed here:

• lastModifiedTime

• lastAccessTime

• creationTime

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

15

• size

• isRegularFile

• isDirectory

• isSymbolicLink

• isOther

• fileKey

The generally accepted form for retrieving a single attribute is [view-name:]attribute-name. The
view-name is basic.

Update a Basic Attribute
Updating any or all of the file’s last modified time, last access time, and create time attributes can be
accomplished with the setTimes() method, which takes three arguments representing the last modified
time, last access time, and create time as instances of FileTime, which is a new class in Java 7
representing the value of a file’s timestamp attribute. If any one of lastModifiedTime, lastAccessTime, or
creationTime has the value null, then the corresponding timestamp is not changed.

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributeView;
import java.nio.file.attribute.FileTime;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
long time = System.currentTimeMillis();
FileTime fileTime = FileTime.fromMillis(time);
try {
 Files.getFileAttributeView(path,
 BasicFileAttributeView.class).setTimes(fileTime, fileTime, fileTime);
} catch (IOException e) {
 System.err.println(e);
}

Updating the file’s last modified time can also be accomplished with the
Files.setLastModifiedTime() method:

long time = System.currentTimeMillis();
FileTime fileTime = FileTime.fromMillis(time);
try {
 Files.setLastModifiedTime(path, fileTime);
} catch (IOException e) {
 System.err.println(e);
}

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

16

Updating the file’s last modified time can also be accomplished with the setAttribute() method.
Actually, this method may be used to update the file’s last modified time, last access time, or create time
attributes as if by invoking the setTimes() method:

import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
try {
 Files.setAttribute(path, "basic:lastModifiedTime", fileTime, NOFOLLOW_LINKS);
 Files.setAttribute(path, "basic:creationTime", fileTime, NOFOLLOW_LINKS);
 Files.setAttribute(path, "basic:lastAccessTime", fileTime, NOFOLLOW_LINKS);
} catch (IOException e) {
 System.err.println(e);
}

Obviously, now you have to extract the three attributes’ values to see the changes. You can do so by
using the getAttribute() method:

try {
 FileTime lastModifiedTime = (FileTime)Files.getAttribute(path,
 "basic:lastModifiedTime", NOFOLLOW_LINKS);
 FileTime creationTime = (FileTime)Files.getAttribute(path,
 "basic:creationTime", NOFOLLOW_LINKS);
 FileTime lastAccessTime = (FileTime)Files.getAttribute(path,
 "basic:lastAccessTime", NOFOLLOW_LINKS);

 System.out.println("New last modified time: " + lastModifiedTime);
 System.out.println("New creation time: " + creationTime);
 System.out.println("New last access time: " + lastAccessTime);

} catch (IOException e) {
 System.err.println(e);
}

DOS View
Specific to the DOS file system (or Samba), the DosFileAttributeView view extends the basic view with
the DOS attributes (which means that you can access the basic view directly from DOS view). There are
four attributes, which are mapped by the following methods:

• isReadOnly(): Returns the readonly attribute’s value (if true, the file can’t be
deleted or updated)

• isHidden(): Returns the hidden attribute’s value (if true, the file is not visible to the
users)

• isArchive(): Returns the archive attribute’s value (specific to backup programs)

• isSystem(): Returns the system attribute’s value (if true, the file belongs to the
operating system)

The following listing extracts in bulk the preceding four attributes for a given path:

import java.io.IOException;

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

17

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.DosFileAttributes;
...
DosFileAttributes attr = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");

try {
 attr = Files.readAttributes(path, DosFileAttributes.class);
} catch (IOException e) {
 System.err.println(e);
}

System.out.println("Is read only ? " + attr.isReadOnly());
System.out.println("Is Hidden ? " + attr.isHidden());
System.out.println("Is archive ? " + attr.isArchive());
System.out.println("Is system ? " + attr.isSystem());

Setting an attribute’s value and extracting a single attribute by name can be accomplished by the
setAttribute() and getAttribute() methods, respectively, as follows (I randomly chose the hidden
attribute):

import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
//setting the hidden attribute to true
try {
 Files.setAttribute(path, "dos:hidden", true, NOFOLLOW_LINKS);
} catch (IOException e) {
 System.err.println(e);
}

//getting the hidden attribute
try {
 boolean hidden = (Boolean) Files.getAttribute(path, "dos:hidden", NOFOLLOW_LINKS);
 System.out.println("Is hidden ? " + hidden);
} catch (IOException e) {
 System.err.println(e);
}

DOS attributes can be acquired with the following names:

• hidden

• readonly

• system

• archive

The generally accepted form is [view-name:]attribute-name. The view-name is dos.

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

18

File Owner View
Most file systems accept the concept of file owner as an identity used to determine access rights to
objects in a file system. NIO.2 maps this concept in an interface named UserPrincipal and allows you to
get or set the owner of a file through the file owner view, which is represented by the
FileOwnerAttributeView interface. Actually, as you will see in the following code examples, NIO.2 has
multiple ways for setting and getting the file owner.

■ Note A principal named “apress" is used in the examples in this section, but this principal will not be available
on your machine. To test the code without getting a
java.nio.file.attribute.UserPrincipalNotFoundException, you need to add your principal name (an admin
user of your machine or a user with the proper OS privileges).

Set a File Owner Using Files.setOwner()
You can set a file owner by calling the Files.setOwner() method. Besides the file path, this method gets a
UserPrincipal instance that maps a string representing the file owner. The user principal lookup service
for the default file system can be obtained by calling the FileSystem.getUserPrincipalLookupService()
method. Here is a simple example of setting a file owner:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserPrincipal;
...
UserPrincipal owner = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
try {
 owner = path.getFileSystem().getUserPrincipalLookupService().
 lookupPrincipalByName("apress");
 Files.setOwner(path, owner);
} catch (IOException e) {
 System.err.println(e);
}

Set a File Owner Using FileOwnerAttributeView.setOwner()
The FileOwnerAttributeView maps a file attribute view that supports reading or updating the owner of a
file. The owner attribute is identified by the name owner, and the value of the attribute is a UserPrincipal
object. The following code snippet shows you how to set the owner using this interface:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

19

import java.nio.file.Paths;
import java.nio.file.attribute.FileOwnerAttributeView;
import java.nio.file.attribute.UserPrincipal;
...
UserPrincipal owner = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
FileOwnerAttributeView foav = Files.getFileAttributeView(path,
 FileOwnerAttributeView.class);
try {
 owner = path.getFileSystem().getUserPrincipalLookupService().
 lookupPrincipalByName("apress");
 foav.setOwner(owner);
} catch (IOException e) {
 System.err.println(e);
}

Set a File Owner Using Files.setAttribute()
As with most views, the file owner view has access to the setAttribute() method. The complete name of
the attribute is owner:owner, as you can see here:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserPrincipal;
import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
UserPrincipal owner = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
try {
 owner = path.getFileSystem().getUserPrincipalLookupService().
 lookupPrincipalByName("apress");
 Files.setAttribute(path, "owner:owner", owner, NOFOLLOW_LINKS);
} catch (IOException e) {
 System.err.println(e);
}

Get a File Owner Using FileOwnerAttributeView.getOwner()
Reading the owner of a file is a common task when determining access rights to objects in a file system.
The getOwner() method returns the owner of a file as a UserPrincipal method—the String representing
the file owner can be obtained by calling the UserPrincipal.getName() method:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.FileOwnerAttributeView;
…

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

20

Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
FileOwnerAttributeView foav = Files.getFileAttributeView(path,
 FileOwnerAttributeView.class);
try {
 String owner = foav.getOwner().getName();
 System.out.println(owner);
} catch (IOException e) {
 System.err.println(e);
}

Get a File Owner Using Files.getAttribute()
Last example of this section is involving the Files.getAttribute() method. I believe that this method is
pretty familiar to you from the above sections therefore here is the code snippet:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserPrincipal;
import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
try {
 UserPrincipal owner = (UserPrincipal) Files.getAttribute(path,
 "owner:owner", NOFOLLOW_LINKS);
 System.out.println(owner.getName());
 } catch (IOException e) {
 System.err.println(e);
 }

■ Caution If the user principal lookup service for the default file system can’t be obtained or an invalid
username is specified, then a java.nio.file.attribute.UserPrincipalNotFoundException will be thrown.

The file owner attribute can be required with the following name:

• owner

The generally accepted form is [view-name:]attribute-name. The view-name is owner.

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

21

POSIX View
Good news for Unix fans! POSIX extends the basic view with attributes supported by Unix and its
flavors—file owner, group owner, and nine related access permissions (read, write, members of the same
group, etc.).

Based on the PosixFileAttributes class, you can extract the POSIX attributes as follows:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.PosixFileAttributes;
…
PosixFileAttributes attr = null;
Path path = Paths.get("/home/rafaelnadal/tournaments/2009/BNP.txt");
try {
 attr = Files.readAttributes(path, PosixFileAttributes.class);
} catch (IOException e) {
 System.err.println(e);
}

 System.out.println("File owner: " + attr.owner().getName());
 System.out.println("File group: " + attr.group().getName());
 System.out.println("File permissions: " + attr.permissions().toString());

Or you can use the “long way” by calling the Files.getFileAttributeView() method:

import java.nio.file.attribute.PosixFileAttributeView;
…
try {
 attr = Files.getFileAttributeView(path,
 PosixFileAttributeView.class).readAttributes();
} catch (IOException e) {
 System.err.println(e);
}

POSIX attributes can be required with the following names:

• group

• permissions

The generally accepted form is [view-name:]attribute-name. The view-name is posix.

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

22

POSIX Permissions
The permissions() method returns a collection of PosixFilePermissions objects. PosixFilePermissions
is a permissions helper class. One of the most useful methods of this class is asFileAttribute(), which
accepts a Set of file permissions and constructs a file attribute that can be passed to the
Path.createFile() method or the Path.createDirectory() method. For example, you can extract the
POSIX permissions of a file and create another file with the same attributes as follows (this example uses
the attr object from the previous examples):

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.FileAttribute;
import java.nio.file.attribute.PosixFileAttributes;
import java.nio.file.attribute.PosixFilePermission;
import java.nio.file.attribute.PosixFilePermissions;
import java.util.Set;
…
Path new_path = Paths.get("/home/rafaelnadal/tournaments/2009/new_BNP.txt");
FileAttribute<Set<PosixFilePermission>> posixattrs =
 PosixFilePermissions.asFileAttribute(attr.permissions());
try {
 Files.createFile(new_path, posixattrs);
} catch (IOException e) {
 System.err.println(e);
}

Moreover, you can set a file’s permissions as a hard-coded string by calling the fromString()
method:

Set<PosixFilePermission> permissions = PosixFilePermissions.fromString("rw-r--r--");
try {
 Files.setPosixFilePermissions(new_path, permissions);
} catch (IOException e) {
 System.err.println(e);
}

POSIX Group Owner
The file group owner can be set with the POSIX attribute named group. The setGroup() method gets the
file path and a GroupPrincipal instance that maps a string representing the group owner—this class
extends the UserPrincipal interface:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.GroupPrincipal;
import java.nio.file.attribute.PosixFileAttributeView;
…
Path path = Paths.get("/home/rafaelnadal/tournaments/2009/BNP.txt");

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

23

try {
 GroupPrincipal group = path.getFileSystem().
 getUserPrincipalLookupService().lookupPrincipalByGroupName("apressteam");
 Files.getFileAttributeView(path, PosixFileAttributeView.class).setGroup(group);
} catch (IOException e) {
 System.err.println(e);
}

■ Note A group principal named “apressteam” is used in the preceding example, but this group will not be
available on your machine. To test the preceding code without getting a
java.nio.file.attribute.UserPrincipalNotFoundException, you need to add your group principal name (an
admin group of your machine or a group with the proper OS privileges).

You can easily find out the group by calling the Files.getAttribute() method:

import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
try {
 GroupPrincipal group = (GroupPrincipal) Files.getAttribute(path, "posix:group",
 NOFOLLOW_LINKS);
 System.out.println(group.getName());
} catch (IOException e) {
 System.err.println(e);
}

■ Note You can gain access to owners by calling FileOwnerAttributeView.getOwner() and
FileOwnerAttributeView.setOwner(), which are inherited in the POSIX view.

ACL View
An access control list (ACL) is a collection of permissions meant to enforce strict rules regarding access
to a file system’s objects. In ACL controls the owners, permissions, and different kinds of flags for each
object. NIO.2 provides control over the ACL through the ACL view represented by the
AclFileAttributeView interface, a file attribute view that supports reading or updating a file’s ACL or file
owner attributes.

Read an ACL Using Files.getFileAttributeView()
If you’ve never seen the content of an ACL, then try out the following code, which uses
Files.getFileAttributeView() to extract the ACL as a List<AclEntry>:

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

24

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.AclEntry;
import java.nio.file.attribute.AclFileAttributeView;
import java.util.List;
…
List<AclEntry> acllist = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");

AclFileAttributeView aclview = Files.getFileAttributeView(path, AclFileAttributeView.class);
try {
 acllist = aclview.getAcl();
} catch (IOException e) {
 System.err.println(e);
}

Read an ACL Using Files.getAttribute()
You can also use the getAttribute() method to read an ACL:

import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
List<AclEntry> acllist = null;
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");

try {
 acllist = (List<AclEntry>) Files.getAttribute(path, "acl:acl", NOFOLLOW_LINKS);
} catch (IOException e) {
 System.err.println(e);
}

ACL attributes can be required with the following names:

• acl

• owner

The generally accepted form is [view-name:]attribute-name. The view-name is acl.

Read ACL Entries
The previous two examples showed you how to extract the ACL for a specified path. The result was a list
of AclEntry—a class that maps an entry from an ACL. Each entry has four components:

• Type: Determines if the entry grants or denies access. It can be ALARM, ALLOW, AUDIT,
or DENY.

• Principal: The identity to which the entry grants or denies access. This is mapped
as a UserPrincipal.

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

25

• Permissions: A set of permissions. Mapped as Set<AclEntryPermission>.

• Flags: A set of flags to indicate how entries are inherited and propagated. Mapped
as Set<AclEntryFlag>.

You can iterate over the list and extract each entry’s components as follows—this is the list extracted
in the previous sections:

for (AclEntry aclentry : acllist) {
 System.out.println("++");
 System.out.println("Principal: " + aclentry.principal().getName());
 System.out.println("Type: " + aclentry.type().toString());
 System.out.println("Permissions: " + aclentry.permissions().toString());
 System.out.println("Flags: " + aclentry.flags().toString());
}

The following is example output of this code (tested on Windows 7):

++

Principal: BUILTIN\Administrators

Type: ALLOW

Permissions: [WRITE_OWNER, READ_ACL, EXECUTE, WRITE_NAMED_ATTRS, READ_ATTRIBUTES,
READ_NAMED_ATTRS, WRITE_DATA, WRITE_ACL, READ_DATA, WRITE_ATTRIBUTES, SYNCHRONIZE, DELETE,
DELETE_CHILD, APPEND_DATA]

Flags: []

++

Principal: NT AUTHORITY\SYSTEM

Type: ALLOW

Permissions: [WRITE_OWNER, READ_ACL, EXECUTE, WRITE_NAMED_ATTRS, READ_ATTRIBUTES,
READ_NAMED_ATTRS, WRITE_DATA, WRITE_ACL, READ_DATA, WRITE_ATTRIBUTES, SYNCHRONIZE, DELETE,
DELETE_CHILD, APPEND_DATA]

Flags: []

++

Principal: NT AUTHORITY\Authenticated Users

Type: ALLOW

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

26

Permissions: [READ_ACL, EXECUTE, READ_DATA, WRITE_ATTRIBUTES, WRITE_NAMED_ATTRS,
SYNCHRONIZE, DELETE, READ_ATTRIBUTES, READ_NAMED_ATTRS, WRITE_DATA, APPEND_DATA]

Flags: []

++

Principal: BUILTIN\Users

Type: ALLOW

Permissions: [READ_ACL, EXECUTE, READ_DATA, SYNCHRONIZE, READ_ATTRIBUTES, READ_NAMED_ATTRS]

Flags: []

Grant a New Access in an ACL
ACL entries are created using an associated AclEntry.Builder object by invoking its build() method. For
example, if you want to grant a new access to a principal, then you must follow this process:

1. Look up the principal by calling the
FileSystem.getUserPrincipalLookupService() method.

2. Get the ACL view (as previously described).

3. Create a new entry by using the AclEntry.Builder object.

4. Read the ACL (as previous described).

5. Insert the new entry (recommended before any DENY entry).

6. Rewrite the ACL by using setAcl() or setAttribute().

Following these steps, you can write a code snippet for granting read data access and append data
access to a principal named apress:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.AclEntry;
import java.nio.file.attribute.AclEntryPermission;
import java.nio.file.attribute.AclEntryType;
import java.nio.file.attribute.AclFileAttributeView;
import java.nio.file.attribute.UserPrincipal;
import java.util.List;
import static java.nio.file.LinkOption.NOFOLLOW_LINKS;
…
try {
 //Lookup for the principal
 UserPrincipal user = path.getFileSystem().getUserPrincipalLookupService()

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

27

 .lookupPrincipalByName("apress");

 //Get the ACL view
 AclFileAttributeView view = Files.getFileAttributeView(path,
 AclFileAttributeView.class);

 //Create a new entry
 AclEntry entry = AclEntry.newBuilder().setType(AclEntryType.ALLOW).
 setPrincipal(user).setPermissions(AclEntryPermission.READ_DATA,
 AclEntryPermission.APPEND_DATA).build();

 //read ACL
 List<AclEntry> acl = view.getAcl();

 //Insert the new entry
 acl.add(0, entry);

 //rewrite ACL
 view.setAcl(acl);
 //or, like this
 //Files.setAttribute(path, "acl:acl", acl, NOFOLLOW_LINKS);

} catch (IOException e) {
 System.err.println(e);
}

■ Note The principal named “apress" used in the preceding example will not be available on your machine. To
test the code without getting a java.nio.file.attribute.UserPrincipalNotFoundException, add your
principal name (an admin user of your machine or a user with the proper OS privileges).

The preceding code adds a new entry in an ACL of an existing file. In common cases, you will
probably do that when you create a new file.

■ Note You can gain access to owners by calling FileOwnerAttributeView.getOwner() and
FileOwnerAttributeView.setOwner(), which are inherited in the ACL view.

File Store Attributes
If you think of a computer as a file storage container, then you can easily identify more types of stores,
such as partitions, devices, volumes, and so on. NIO.2 can obtain information about each type of store
through the FileStore abstract class. For a particular store, you can obtain its name, its type, total space,

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

28

used space, and available free space. In the following subsections you will see how to obtain that
information for all the stores in the default file system and for the store that contains a specified file.

Get Attributes of All File Stores
Once you obtain access to the default file system—by calling the FileSystems.getDefault() method—
you can easily iterate over the file stores list provided by the FileSystem.getFileStores() method. Since
each instance (name, type, total space, used space, and available free space) is a FileStore object, you
can call the corresponding dedicated methods such as name(), type(), getTotalSpace(), and so on. The
following code snippet prints information about your stores:

import java.io.IOException;
import java.nio.file.FileStore;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
…
FileSystem fs = FileSystems.getDefault();
for (FileStore store : fs.getFileStores()) {
 try {
 long total_space = store.getTotalSpace() / 1024;
 long used_space = (store.getTotalSpace() - store.getUnallocatedSpace()) / 1024;
 long available_space = store.getUsableSpace() / 1024;
 boolean is_read_only = store.isReadOnly();

 System.out.println("--- " + store.name() + " --- " + store.type());
 System.out.println("Total space: " + total_space);
 System.out.println("Used space: " + used_space);
 System.out.println("Available space: " + available_space);
 System.out.println("Is read only? " + is_read_only);

 } catch (IOException e) {
 System.err.println(e);
 }
}

The following is example output of this code:

--- --- NTFS

Total space: 39070048

Used space: 31775684

Available space: 7294364

--- --- NTFS

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

29

Total space: 39070048

Used space: 8530348

Available space: 30539700

--- SAMSUNG DVD RECORDER VOLUME --- UDF

Total space: 2936192

Used space: 2936192

Available space: 0

■ Note As you can see in the preceding example, if a store does not have a name, a blank string is returned. In
addition, the values returned for the amount of disk space are expressed in bytes, so you will probably want to
convert those numbers to kilobytes, megabytes, or gigabytes to make them easier for humans to read.

Get Attributes of the File Store in Which a File Resides
Based on the FileStore class, you can get attributes of a file store in which a particular file resides. This
task can be accomplished by calling the Files.getFileStore() method, which gets a single argument
representing the file (a Path object). NIO.2 determines the file store for you and provides access to the
information. The following code shows a possible approach:

import java.io.IOException;
import java.nio.file.FileStore;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
try {
 FileStore store = Files.getFileStore(path);

 long total_space = store.getTotalSpace() / 1024;
 long used_space = (store.getTotalSpace() - store.getUnallocatedSpace()) / 1024;
 long available_space = store.getUsableSpace() / 1024;
 boolean is_read_only = store.isReadOnly();

 System.out.println("--- " + store.name() + " --- " + store.type());
 System.out.println("Total space: " + total_space);

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

30

 System.out.println("Used space: " + used_space);
 System.out.println("Available space: " + available_space);
 System.out.println("Is read only? " + is_read_only);
} catch (IOException e) {
 System.err.println(e);
}

Example output of this code follows:

--- --- NTFS

Total space: 39070048

Used space: 8530348

Available space: 30539700

Is read only? false

A file store may support one or more FileStoreAttributeView classes that provide a read-only or
updatable view of a set of file store attributes, as follows:

FileStoreAttributeView fsav =
 store.getFileStoreAttributeView(FileStoreAttributeView.class);

■ Note In addition, you can read the value of a file store attribute by using the getAttribute() method.

User-Defined File Attributes View
If you find that there are not enough built-in attributes for your needs or if you have some unique
metadata (meaningful to the file system) that you want to associate with a file, you can define your own
attributes. NIO.2 offers the user-defined file attributes view—extended attributes—through the
UserDefinedFileAttributeView interface. This facility allows you to associate to a file any attribute that
you consider to be useful for your use cases. For example, this may be useful if you develop a distributed
file system. For instance, you could add a boolean attribute that verifies whether or not the file is
replicated or distributed to other locations.

Check User-Defined Attributes Supportability
Before you attempt to create your own attributes, check whether your file system supports this facility.
Since this is checked over a file store, not over a file itself, first you need to obtain the desired file store.
Then, you can call the supportsFileAttributeView() method, which takes a String argument
representing the name of file attribute view or the view as UserDefinedFileAttributeView.class. It
returns a boolean value, as you can see here:

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

31

import java.io.IOException;
import java.nio.file.FileStore;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserDefinedFileAttributeView;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");

try {
 FileStore store = Files.getFileStore(path);
 if (!store.supportsFileAttributeView(UserDefinedFileAttributeView.class)) {
 System.out.println("The user defined attributes are not supported on: " + store);
 } else {
 System.out.println("The user defined attributes are supported on: " + store);
 }
} catch (IOException e) {
 System.err.println(e);
}

■ Note You can do this check over all file stores, or a set of file stores, by getting them directly from the default
file system. It is not required to get the file store from where a file resides.

Operations on User-Defined Attributes
If your file system supports user-defined attributes, then you are all set to create your own. Next, you will
see how to define an attribute, how to list the user-defined attributes, and how to delete a user-defined
attribute. Your focus in this section should be on the life cycle of user-defined attributes.

Define a User Attribute
To start, you will define an attribute named file.description that has the value "This file contains
private information!". After you get the view by calling Files.getFileAttributeView(), you can write
this user-defined attribute as follows:

import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserDefinedFileAttributeView;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
UserDefinedFileAttributeView udfav = Files.getFileAttributeView(path,
 UserDefinedFileAttributeView.class);
try {

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

32

 int written = udfav.write("file.description", Charset.defaultCharset().
 encode("This file contains private information!"));
} catch (IOException e) {
 System.err.println(e);
}

The write() method writes the value of the attribute from a given buffer as a sequence of bytes. It
receives two arguments: the attribute name and the buffer containing the attribute value. If an attribute
of the given name already exists, then its value is replaced. As you can see, the method returns an int,
which represents the number of bytes written, possibly zero.

■ Note In addition, you can write an attribute using the setAttribute() method. You can write it from a buffer
or byte array (byte[]).

List User-Defined Attribute Names and Value Sizes
At any moment, you can see the list of user-defined attribute names and value sizes by calling the
UserDefinedFileAttributeView.list() method. The returned list is a collection of strings that represents
the attribute names. Passing their names to the UserDefinedFileAttributeView.size() method will
result in the sizes of the attribute values.

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserDefinedFileAttributeView;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
UserDefinedFileAttributeView udfav = Files.getFileAttributeView(path,
 UserDefinedFileAttributeView.class);

try {
 for (String name : udfav.list()) {
 System.out.println(udfav.size(name) + " " + name);
 }
} catch (IOException e) {
 System.err.println(e);
}

Get the Value of a User-Defined Attribute
Reading the value of a user-defined attribute is accomplished by using the
UserDefinedFileAttributeView.read() method. You pass to it the attribute name and the destination
buffer, and it returns the value in the specified buffer. The following code snippet shows you how to do
it:

import java.io.IOException;

http://www.it-ebooks.info

CHAPTER 2 ■

 METADATA FILE ATTRIBUTES

33

import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserDefinedFileAttributeView;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
UserDefinedFileAttributeView udfav = Files.getFileAttributeView(path,
 UserDefinedFileAttributeView.class);

try {
 int size = udfav.size("file.description");
 ByteBuffer bb = ByteBuffer.allocateDirect(size);
 udfav.read("file.description", bb);
 bb.flip();
 System.out.println(Charset.defaultCharset().decode(bb).toString());
} catch (IOException e) {
 System.err.println(e);
}

■ Note Using the UserDefinedFileAttributeView.size() method, you can easily set the correct size of the
buffer that represents the value of the user-defined attribute.

■ Note You can also read an attribute by using the getAttribute() method. The value is returned as byte array
(byte[]).

Delete a File’s User-Defined Attribute
When a user-defined attribute is no longer useful, you can easily delete it by calling the
UserDefinedFileAttributeView.delete() method. You only need to supply the attribute’s name to the
method and it will do the rest of the work for you. The following shows how to delete the attribute
defined earlier:

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.UserDefinedFileAttributeView;
…
Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BNP.txt");
UserDefinedFileAttributeView udfav = Files.getFileAttributeView(path,
 UserDefinedFileAttributeView.class);

http://www.it-ebooks.info

CHAPTER 2 ■ METADATA FILE ATTRIBUTES

34

try {
 udfav.delete("file.description");
} catch (IOException e) {
 System.err.println(e);
}

Summary
In this chapter you have explored the views provided by NIO.2. You saw how to manipulate all kinds of
attributes, how to query a file or a file store for different purposes, and how to define your own metadata.

After an introduction to the NIO.2 views and a description of how to determine which views are
supported by a particular file system, the chapter introduced the basic and DOS attributes, which should
be available for every file. These attributes provide the main metadata, such as size, creation time, last
modified time, read-only, and so forth. The chapter next presented the file owner attributes, which
provide support for setting and getting a file owner, followed by the POSIX attributes for Unix users and
the ACL attributes, which provide access to the collection of permissions that control access to a file
system’s objects. The chapter wrapped up by discussing file store attributes and user-defined attributes.

http://www.it-ebooks.info

C H A P T E R 3

■ ■ ■

35

Manage Symbolic and Hard Links

Linux and Unix users (especially administrators) should be familiar with the concept of links. There is
two types of links: symbolic links and hard links. Links commonly reach a file through several names,
instead of navigating through a series of directories and subdirectories from the root – think of a link as
an entity mapping a file/directory path and identified through a set of names. If you are a dedicated
Windows user, you might not be familiar with links, although Windows itself is perfectly aware of them,
especially symbolic links, which most resemble Windows shortcuts.

NIO.2 provides support for both hard links and symbolic links. Each method of the Path class knows
how to detect a link and will behave in the default manner if no configuration of behavior is specified. In
this chapter, you will learn how to manipulate links through the java.nio.file API, including how to
create a link and how to find the target of a link. Most operations are implemented through the
java.nio.file.Files class, which provides methods such as createLink(), createSymbolicLink(),
isSymbolicLink(), and readSymbolicLink(). Each of these methods will be presented in detail in this
chapter.

Introducing Links
When you reach a file through a set of names (from command-line, an application, or other ways), you
are dealing with a link. A link can be set up either as a hard link (sometimes spelled hardlink) or as a
symbolic link (also called symlink or softlink). When a file has two names of equal weight and the inode
table (Linux files don’t actually live in directories; they are assigned an inode number, which Linux uses
to locate them) points directly to the blocks on the disk that contain the data, the link is a hard link.
Think of a hard link as a directory reference or pointer to a file. When a file has one main name and an
extra entry in the file name table that refers any accesses back to the main name, the link is a symbolic
link. Symbolic links are more flexible and used much more often than hard links. The following are the
main differences/similarities between the two types of links:

• Hard links can be created only for files, not for directories. Symbolic links can link
to a file or a directory.

• Hard links cannot exist across file systems. Symbolic links can exist across file
systems.

• The target of a hard link must exist. The target of a symbolic link may not exist.

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

36

• Removing the original file that your hard link points to does not remove the hard
link itself, and the hard link still provides the content of the underlying file.
Removing the original file that your symbolic link points to does not remove the
attached symbolic link, but without the original file, the symbolic link is useless.

• If you remove the hard link or the symbolic link itself, the original file stays intact.

• A hard link is the same entity as the original file. All attributes are identical. A
symbolic link is not so restrictive.

• A hard link looks, and behaves, like a regular file, so hard links can be hard to find.
A symbolic link’s target may not even exist, therefore it is much flexible.

Creating Links from the Command Line
Windows users can create symbolic and hard links from the command line by using the mklink
command. This command gets a set of options, depending on which kind of link you need to create.
Some of these options are as follows:

/D Creates a directory symbolic link. Default is a file symbolic link.
/H Creates a hard link instead of a symbolic link.
/J Creates a Directory Junction.
Link specifies the new symbolic link name.
Target specifies the path (relative or absolute) that the new link refers to.

For instance, if you wanted to make the folder C:\rafaelnadal\photos available from
C:\rafaelnadal as well, you could use the following command:

mklink /D C:\rafaelnadal C:\rafaelnadal\photos

Now if you look in the C:\rafaelnadal directory, you’ll also see whatever files were in the
C:\rafaelnadal\photos directory.

Unix (Linux) users can use the command named ln to achieve the same effect achieved in the
preceding Windows example (notice that the target file is listed first and the link name is listed second in
this case):

ln –s /home/rafaelnadal/photos /home/rafaelnadal

In addition, in Unix (Linux) you can delete a link using the rm command:

rm /home/rafaelnadal

Creating a Symbolic Link
Creating a symbolic link is very easy to accomplish in NIO.2. You simply call the
Files.createSymbolicLink() method, which uses the path of the symbolic link to create, the target of the
symbolic link, and an array of attributes to set atomically when creating the symbolic link. It returns the
path to the symbolic link.

If your file system does not support symbolic links, then an UnsupportedOperationException
exception will be thrown. In addition, keep in mind that the target of the symbolic link can be absolute
or relative (as described in Chapter 1) and might or might not exist.

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

37

The following code snippet creates a simple symbolic link with the default attributes. It creates a
symbolic link named rafael.nadal.1 for file C:\rafaelnadal\photos\rafa_winner.jpg (the file is
recommended to exist and the file system must have permission to create symbolic links).

…
Path link = FileSystems.getDefault().getPath("rafael.nadal.1");
Path target= FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");

try {
 Files.createSymbolicLink(link, target);
 } catch (IOException | UnsupportedOperationException | SecurityException e) {
 if (e instanceof SecurityException) {
 System.err.println("Permission denied!");
 }
 if (e instanceof UnsupportedOperationException) {
 System.err.println("An unsupported operation was detected!");
 }
 if (e instanceof IOException) {
 System.err.println("An I/O error occurred!");
 }
System.err.println(e);
}

When you want to modify the default attributes of the link, you can use the third argument of the
createSymbolicLink() method. This argument is an array of attributes of type FileAttribute—the class
that encapsulates the value of a file attribute that can be set atomically when creating a new file,
directory, or link. The following code snippet reads the attributes of the target file and creates a link,
assigning the attributes from the target to the link. It creates a symbolic link named rafael.nadal.2 for
file C:\rafaelnadal\photos\rafa_winner.jpg (the file must exist and the file system must have
permission to create symbolic links).

…
Path link = FileSystems.getDefault().getPath("rafael.nadal.2");
Path target = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");

try {
 PosixFileAttributes attrs = Files.readAttributes(target, PosixFileAttributes.class);
 FileAttribute<Set<PosixFilePermission>> attr =
 PosixFilePermissions.asFileAttribute(attrs.permissions());

 Files.createSymbolicLink(link, target, attr);
 } catch (IOException | UnsupportedOperationException | SecurityException e) {
 if (e instanceof SecurityException) {
 System.err.println("Permission denied!");
 }
 if (e instanceof UnsupportedOperationException) {
 System.err.println("An unsupported operation was detected!");
 }
 if (e instanceof IOException) {
 System.err.println("An I/O error occured!");
 }
 System.err.println(e);
}

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

38

In addition, you can use the setAttribute() method to modify the link attributes after creation. For
example, the following code snippet reads the lastModifiedTime and lastAccessTime attributes of the
target and sets them to the link. It creates a symbolic link named rafael.nadal.3 for file
C:\rafaelnadal\photos\rafa_winner.jpg (the file must exist and the file system must have permission to
create symbolic links).

…
Path link = FileSystems.getDefault().getPath("rafael.nadal.3");
Path target = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");

try {
 Files.createSymbolicLink(link, target);

 FileTime lm = (FileTime) Files.getAttribute(target,
 "basic:lastModifiedTime", NOFOLLOW_LINKS);
 FileTime la = (FileTime) Files.getAttribute(target,
 "basic:lastAccessTime", NOFOLLOW_LINKS);
 Files.setAttribute(link, "basic:lastModifiedTime", lm, NOFOLLOW_LINKS);
 Files.setAttribute(link, "basic:lastAccessTime", la, NOFOLLOW_LINKS);
 } catch (IOException | UnsupportedOperationException | SecurityException e) {
 if (e instanceof SecurityException) {
 System.err.println("Permision denied!");
 }
 if (e instanceof UnsupportedOperationException) {
 System.err.println("An unsupported operation was detected!");
 }
 if (e instanceof IOException) {
 System.err.println("An I/O error occured!");
 }
 System.err.println(e);
}

■ Note If the symbolic link already exists, then a FileAlreadyExistsException exception will be thrown.

Creating a Hard Link
You can create a hard link by calling the createLink() method, which uses the link to create and a path
to an existing file. It returns the path to the link, which represents the new directory entry. You then can
access the file using the link as the path.

If your file system does not support hard links, then an UnsupportedOperationException exception
will be thrown. In addition, keep in mind that a hard link can be created only for existing files.

The following code snippet creates a hard link named rafael.nadal.4 for file
C:\rafaelnadal\photos\rafa_winner.jpg (the file must exist and the file system must have permission to
create hard links):

import java.io.IOException;

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

39

import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;

public class Main {

 public static void main(String[] args) {

 Path link = FileSystems.getDefault().getPath("rafael.nadal.4");
 Path target = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");

 try {
 Files.createLink(link, target);
 System.out.println("The link was successfully created!");
 } catch (IOException | UnsupportedOperationException | SecurityException e) {
 if (e instanceof SecurityException) {
 System.err.println("Permission denied!");
 }
 if (e instanceof UnsupportedOperationException) {
 System.err.println("An unsupported operation was detected!");
 }
 if (e instanceof IOException) {
 System.err.println("An I/O error occured!");
 }
 System.err.println(e);
 }
 }
}

■ Note If the hard link already exists, then a FileAlreadyExistsException exception will be thrown.

Checking a Symbolic Link
Different instances of Path can point to files or links, so you can detect if a Path instance points to a
symbolic link by calling the Files.isSymbolicLink() method. It receives a single argument, representing
the Path to be tested, and returns a boolean value. The following code snippet is a simple example of
testing a Path for a symbolic link. It creates a symbolic link named rafael.nadal.5 for file
C:\rafaelnadal\photos\rafa_winner.jpg (the file must exist and the file system must have permission to
create symbolic links).

…
Path link = FileSystems.getDefault().getPath("rafael.nadal.5");
Path target = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");

try {
 Files.createSymbolicLink(link, target);
 } catch (IOException | UnsupportedOperationException | SecurityException e) {

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

40

 …
}

//check if a path is a symbolic link - solution 1
boolean link_isSymbolicLink_1 = Files.isSymbolicLink(link);
boolean target_isSymbolicLink_1 = Files.isSymbolicLink(target);

System.out.println(link.toString() + " is a symbolic link ? " + link_isSymbolicLink_1);
System.out.println(target.toString() + " is a symbolic link ? " + target_isSymbolicLink_1);
…

This code outputs the following result:

rafael.nadal.5 is a symbolic link ? true

C:\rafaelnadal\photos\rafa_winner.jpg is a symbolic link ? false

As you read in Chapter 2, you can test Path for a symbolic link by using the attribute views. The basic
view provides an attribute named isSymbolicLink, which returns true if the specified Path locates a file
that is a symbolic link. You can view the isSymbolicLink attribute through the readAttributes() method
(not recommended in this case since it returns a bulk list of attributes) or, much more easily, through the
getAttribute() method, which can be used as follows:

…
try {
 boolean link_isSymbolicLink_2 = (boolean) Files.getAttribute(link,
 "basic:isSymbolicLink");
 boolean target_isSymbolicLink_2 = (boolean) Files.getAttribute(target,
 "basic:isSymbolicLink");

 System.out.println(link.toString() + " is a symbolic link ? " + link_isSymbolicLink_2);
 System.out.println(target.toString() + " is a symbolic link ? "+ target_isSymbolicLink_2);
 } catch (IOException | UnsupportedOperationException e) {
 System.err.println(e);
}
…

Again, the output is

rafael.nadal.5 is a symbolic link ? true

C:\rafaelnadal\photos\rafa_winner.jpg is a symbolic link ? false

Locating the Target of a Link
Starting from a link, you can locate its target (which may not exist) by calling the readSymbolicLink()
method. This method receives from the user the link, as a Path, and returns a Path object representing

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

41

the target of the link. If the passed path is not a link, then a NotLinkException exception will be thrown.
The following code snippet uses this method to create a symbolic link named rafael.nadal.6 for file
C:\rafaelnadal\photos\rafa_winner.jpg (the file must exist and the file system must have permission to
create symbolic links):

:

…
Path link = FileSystems.getDefault().getPath("rafael.nadal.6");
Path target = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");…
…
try {
 Path linkedpath = Files.readSymbolicLink(link);
 System.out.println(linkedpath.toString());
} catch (IOException e) {
 System.err.println(e);
}

Checking If a Link and a Target Point to the Same File
Sometimes you may need to check if a link and a target point to the same file (location). You can get this
information in different ways, but a simple solution is to use the Files.isSameFile() method. This
method receives (from the user) the two Paths to be compared and returns a boolean value. The
following code snippet creates a target and a symbolic link for the target and then applies the
isSameFile() method. It creates a symbolic link named rafael.nadal.7 for file
C:\rafaelnadal\photos\rafa_winner.jpg (the file must exist and the file system must have permission to
create symbolic links).

…
Path link = FileSystems.getDefault().getPath("rafael.nadal.7");
Path target = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_winner.jpg");

try {
 Files.createSymbolicLink(link, target);
 } catch (IOException | UnsupportedOperationException | SecurityException e) {
 …
}

try {
 Path linkedpath = Files.readSymbolicLink(link);
 System.out.println(linkedpath.toString());
 } catch (IOException e) {
 System.err.println(e);
}

The output follows:

rafael.nadal.7 and C:\rafaelnadal\photos\rafa_winner.jpg point to the same location

http://www.it-ebooks.info

CHAPTER 3 ■ MANAGE SYMBOLIC AND HARD LINKS

42

Summary
In this chapter you saw how NIO.2 deals with symbolic and hard links. After a short overview of these
two concepts and some brief examples of how to create them in Windows and Unix (Linux), you saw the
NIO.2 approach. You learned how to create symbolic and hard links directly from Java, how to check if a
path is a link, how to detect the target of a link, and how to check if a link and a target point to the same
file.

http://www.it-ebooks.info

C H A P T E R 4

■ ■ ■

43

Files and Directories

Now that you know how to point to a file or directory using the Path class, you are ready to learn how to
accomplish the most common tasks for managing files and directories, such as create, read, write, move,
delete, and so on. NIO.2 comes with a set of brand new methods to accomplish these tasks, most of
which are found in the java.nio.file.Files class.

The chapter starts by exploring some methods dedicated to checking if a Path is readable, writable,
executable, regular, or hidden. These checks enable you to determine what kind of file or directory you
are dealing with before you apply operations such as write or read. The chapter then focuses on
directory operations, showing you how to list, create, and read directories. You will see how to list the file
system roots, create directories with methods such as createDirectory() and createTempDirectory(),
write directory filters, and list a directory’s content using the newDirectoryStream() method. After you
are familiar with directory operations, you will explore file operations, such as reading, writing, creating,
and opening files. As you will see, there is a wide array of file I/O methods to choose from. In this
chapter, you will see at work methods for buffered and unbuffered streams, leaving coverage of the
methods for channels for the next chapters, in which you will see the real power of NIO. The chapter
ends with the well-known delete, copy, and move operations.

Each of these tasks is detailed presented and, as you will see, many aspects were “redesigned” from
previous Java 6, but you will also recognize many of the presented methods from the java.io.File class.

Checking Methods for Files and Directories
The Files class provides a set of isSomething methods that you can use to perform various kinds of
checks before you actually manipulate a file or a directory. Some of these methods were presented in the
previous chapters, while the rest are presented here. Taking advantage of these methods is
recommended because they can be very useful in helping you to avoid exceptions or other strange
behavior in your applications. For example, it is a good idea to check if a file exists before you try to move
it to another location. Similarly, it is a good idea to check if a file is accessible to read before you try to
read from it. Some of these checks can also be performed through the metadata attributes, as you have
seen in Chapter 2.

Checking for the Existence of a File or Directory
As you know from previous chapters, a Path instance is perfectly valid even if the mapped file or
directory does not physically exist. Moreover, the syntactic Path methods can be applied with success in
such cases because they do not operate on the file or directory itself. But at some point, it is very

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

44

important to know whether or not a file or directory exists, which is why the Files class provides the
following two methods for this type of check:

• exists(): Checks whether a file exists

• notExists(): Checks whether a file does not exist

Both methods receive two arguments, representing the path to the file to test and options indicating
how symbolic links are handled. The exists() method returns true if the file exists, and false otherwise
(the file does not exist or the checking cannot be performed).

The following code snippet checks if the file AEGON.txt exists in the
C:\rafaelnadal\tournaments\2009 directory (in our hypothetical directory structure, this file exists):

Path path = FileSystems.getDefault().getPath("C:/rafaelnadal/tournaments/2009","AEGON.txt");
…
boolean path_exists = Files.exists(path, new LinkOption[]{LinkOption.NOFOLLOW_LINKS});

If you need to take action only if the file does not exist, then call the notExists() method, which
returns true if the file does not exist and false otherwise (the file exists or the checking cannot be
performed):

Path path = FileSystems.getDefault().getPath("C:/rafaelnadal/tournaments/2009",
"AEGON.txt");
…
boolean path_notexists = Files.notExists(path, new LinkOption[]{LinkOption.NOFOLLOW_LINKS});

■ Note If both methods are applied to the same Path and both return false, then the checking cannot be
performed. For example, if the application does not have access to the file, then the status is unknown and both
methods return false. From here, it is easy to draw the conclusion that a file/directory’s existence status can be:
exist, not exist, or unknown. Immedately after checking this status, the result is outdated, since a file that exists
can be deleted just after check, therefore the result must "expire" immediately. If this method indicates the file
exists then there is no guarantee that a subsequence access will succeed. In addition, a SecurityException may
be thrown if one of these methods does not have permissions to read the file.

■ Caution !Files.exists(…) is not equivalent to Files.notExists(…) and the notExists() method is
not a complement of the exists() method.

Checking File Accessibility
Another good practice before you access a file is to check its accessibility level, using the isReadable(),
isWritable(), and isExecutable() methods. After you pass the Path to be verified, these methods will

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

45

check, respectively, if it is a readable Path (the file exists, and JVM has the permissions to open it for
reading), a writable Path (the file exists, and JVM has the permissions to open it for writing), and an
executable Path (the file exists, and JVM has the permissions to execute it).

In addition, you can check if the Path points to a regular file by calling the isRegularFile() method.
Regular files are files that have no special characteristics (they are not symbolic links, directories, etc.)
and contain real data, such as text or binary files. isReadable(), isWritable(), isExecutable(), and
isRegularFile() all return boolean values: true if the file exists and is readable, writable, executable, and
regular, or false if either the file does not exist, read, write, execute, and regular access would be denied
because the JVM has insufficient permissions, or access cannot be determined.

Putting these methods into a code snippet that checks the accessibility of the AEGON.txt file in the
C:\rafaelnadal\tournaments\2009 directory (the file must exist) looks like the following:

Path path = FileSystems.getDefault().getPath("C:/rafaelnadal/tournaments/2009","AEGON.txt");

boolean is_readable = Files.isReadable(path);
boolean is_writable = Files.isWritable(path);
boolean is_executable = Files.isExecutable(path);
boolean is_regular = Files.isRegularFile(path, LinkOption.NOFOLLOW_LINKS);

if ((is_readable) && (is_writable) && (is_executable) && (is_regular)) {
 System.out.println("The checked file is accessible!");
} else {
 System.out.println("The checked file is not accessible!");
}

Or, you can use this shorter version:

boolean is_accessible = Files.isRegularFile(path) & Files.isReadable(path) &
 Files.isExecutable(path) & Files.isWritable(path);
if (is_accessible) {
 System.out.println("The checked file is accessible!");
} else {
 System.out.println("The checked file is not accessible!");
}

■ Note The preceding examples check the accessibility by applying all four methods to a Path, but you can
combine these four methods in different ways depending on what level of accessibility you need to get. For
example, you may not care whether or not the Path is writable, in which case you can exclude this check.

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

46

■ Caution Even if these methods confirm the accessibility, there is no guarantee that the file can be
accessed. The explanation resides in a well-known software bug, named time-of-check-to-time-of-use (TOCTTOU,
pronounced “TOCK too”), which means that in the time between checking and using the checking result, the
system may suffer different kinds of changes. Unix fans are probably familiar with this concept, but it is applicable
to any other system as well.

Checking If Two Paths Point to the Same File
In the previous chapter, you saw how to check if a symbolic link and a target point to the same file.
Another common test that you can perform using the isSameFile() method is to check if two Paths
expressed differently point to the same file. For example, a relative Path and an absolute Path may point
to the same file, even if it is not quite obvious. Calling the isSameFile() method will reveal this in the
following code snippet, which expresses the path to the MutuaMadridOpen.txt file in three different ways
(the file must exist in the C:\rafaelnadal\tournaments\2009 directory):

Path path_1 = FileSystems.getDefault().getPath("C:/rafaelnadal/tournaments/2009",
 "MutuaMadridOpen.txt");
Path path_2 = FileSystems.getDefault().getPath("/rafaelnadal/tournaments/2009",
 "MutuaMadridOpen.txt");
Path path_3 = FileSystems.getDefault().getPath("/rafaelnadal/tournaments/dummy/../2009",
 "MutuaMadridOpen.txt");
try {
 boolean is_same_file_12 = Files.isSameFile(path_1, path_2);
 boolean is_same_file_13 = Files.isSameFile(path_1, path_3);
 boolean is_same_file_23 = Files.isSameFile(path_2, path_3);

 System.out.println("is same file 1&2 ? " + is_same_file_12);
 System.out.println("is same file 1&3 ? " + is_same_file_13);
 System.out.println("is same file 2&3 ? " + is_same_file_23);
} catch (IOException e) {
 System.err.println(e);
}

The output is as follows:

is same file 1&2 ? true

is same file 1&3 ? true

is same file 2&3 ? true

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

47

Checking the File Visibility
If you need to find out if a file is hidden, you can call the Files.isHidden() method. Keeping in mind
that the notion of “hidden” is platform/provider dependent, you just need to pass the Path to be checked
and get a true or false response. The following code snippet checks if the MutuaMadridOpen.txt file is a
hidden file (the file must exist in the C:\rafaelnadal\tournaments\2009 directory):

Path path = FileSystems.getDefault().getPath("C:/rafaelnadal/tournaments/2009",
 "MutuaMadridOpen.txt");
…
try {
 boolean is_hidden = Files.isHidden(path);
 System.out.println("Is hidden ? " + is_hidden);
} catch (IOException e) {
 System.err.println(e);
}

Creating and Reading Directories
When it comes to creating and reading directories, NIO.2 provides a set of dedicated methods in the
Files class. In this section, you will discover how to list the file system roots, create directories (including
temporary directories), list a directory’s content, and write and use filters for directories.

Listing File System Root Directories
In Java 6, the file system root directories were extracted as an array of File objects. Starting with Java 7,
NIO.2 gets the file system root directories as an Iterable of Path objects. This Iterable is returned by the
getRootDirectories() method as follows:

Iterable<Path> dirs = FileSystems.getDefault().getRootDirectories();
for (Path name : dirs) {
 System.out.println(name);
}

A possible output follows:

C:\

D:\

E:\

You can easily get from Iterable into an array as follows:

Iterable<Path> dirs = FileSystems.getDefault().getRootDirectories();
ArrayList<Path> list = new ArrayList<Path>();
for (Path name : dirs) {
 // System.out.println(name);

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

48

 list.add(name);
}
Path[] arr = new Path[list.size()];
list.toArray(arr);

for(Path path : arr) {
 System.out.println(path);
}

If you need to extract the file system root directories as an array of File, use the Java 6 solution:

File[] roots = File.listRoots();
for (File root : roots) {
 System.out.println(root);
}

Creating a New Directory
Creating a new directory is a common task that you can accomplish by calling the
Files.createDirectory() method. This method gets the directory to create (Path) and an optional list of
file attributes (FileAttribute<?>) to set atomically at creation time. It returns the created directory. The
following code snippet creates a new directory named \2010 under the C:\rafaelnadal\tournaments
directory with the default attributes (the directory must not exist):

Path newdir = FileSystems.getDefault().getPath("C:/rafaelnadal/tournaments/2010/");
…
try {
 Files.createDirectory(newdir);
} catch (IOException e) {
 System.err.println(e);
}

You can add a set of attributes at creation time as shown in the following example code snippet,
which creates a new directory on a POSIX file system that has specific permissions:

Path newdir = FileSystems.getDefault().getPath("/home/rafaelnadal/tournaments/2010/");
…
Set<PosixFilePermission> perms = PosixFilePermissions.fromString("rwxr-x---");
FileAttribute<Set<PosixFilePermission>> attr = PosixFilePermissions.asFileAttribute(perms);
try {
 Files.createDirectory(newdir, attr);
} catch (IOException e) {
 System.err.println(e);
}

■ Note If the directory exists, then the createDirectory() method will throw an exception.

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

49

Sometimes you need to create more than just a single directory. For example, you may need to
create a sequence of hierarchical directories, like \statistics\win\prizes. You can call a cascade of
createDirectory() methods or, much more elegantly, use the Files.createDirectories() method,
which will create the sequence of directories in a single call; the directories are created, as needed, from
the top down, with \statistics as the relative root and \prizes as the last leaf. The sequence of
directories is passed as a Path instance with or without a list of file attributes to set atomically when
creating the directory. The following code snippet shows how to create a sequence of hierarchical
directories under the C:\rafaelnadal directory:

Path newdir= FileSystems.getDefault().getPath("C:/rafaelnadal/", "statistics/win/prizes");
…
try {
 Files.createDirectories(newdir);
} catch (IOException e) {
 System.err.println(e);
}

■ Note If in the sequence of directories one or more directories already exist, then the createDirectories()
method will not throw an exception, but rather will just “jump” that directory and go to the next one. This method
may fail after creation of some directories, but not all of them.

Listing a Directory’s Content
Working with directories and files usually involves looping a directory’s content for different purposes.
NIO.2 provides this facility through an iterable stream named DirectoryStream, which is an interface
that implements Iterable. The access to the directory stream is straightforward through the
Files.newDirectoryStream() method, which gets the Path to the directory and returns a new and open
directory stream.

Listing the Entire Content
The following code snippet will return the entire contents of a directory as links, files, subdirectories,
and hidden files (the listed directory is C:\rafaelnadal\tournaments\2009):

Path path = Paths.get("C:/rafaelnadal/tournaments/2009");

//no filter applied
System.out.println("\nNo filter applied:");
try (DirectoryStream<Path> ds = Files.newDirectoryStream(path)) {
 for (Path file : ds) {
 System.out.println(file.getFileName());
 }
}catch(IOException e) {
 System.err.println(e);
}

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

50

A possible output follows (this is the entire content of the C:\rafaelnadal\tournaments\2009
directory):

No filter applied:

AEGON.txt

BNP.txt

MutuaMadridOpen.txt

supershot.bmp

Tickets.zip

TournamentsCalendar.xls

Videos

…

Listing the Content by Applying a Glob Pattern
Sometimes, you may need to list only the content that meets certain criteria, which requires applying a
filter to the directory’s content. Commonly, you need to extract only files and subdirectories whose
names match a particular pattern. NIO.2 defines this particular pattern as a built-in glob filter.
Conforming to NIO.2 documentation, a glob pattern is just a string that is matched against other
strings—in this case, directories and files names. Since this is a pattern, it must respect some rules, as
follows:

• *: Represent (match) any number of characters, including none.

• **: Similar to *, but cross directories’ boundaries.

• ?: Represent (match) exactly one character.

• {}: Represent a collection of subpatterns separated by commas. For example,
{A,B,C} matches A, B, or C.

• []: Convey a set of single characters or a range of characters if the hyphen
character is present. Some common examples include the following:

• [0-9]: Matches any digit

• [A-Z]: Matches any uppercase letter

• [a-z,A-Z]: Matches any uppercase or lowercase letter

• [12345]: Matches any of 1, 2, 3, 4, or 5

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

51

• Within the square brackets, *, ?, and \ match themselves.

• All other characters match themselves.

• To match *, ?, or the other special characters, you can escape them by using the
backslash character, \. For example, \\ matches a single backslash, and \?
matches the question mark.

Now that you know how to build a glob pattern, it is time to introduce the newDirectoryStream()
method that gets the Path to the directory and a glob filter to apply. The following example will extract all
files of type PNG, JPG, and BMP (regardless of their names) from the C:\rafaelnadal\tournaments\2009
directory:

Path path = Paths.get("C:/rafaelnadal/tournaments/2009");
…
//glob pattern applied
System.out.println("\nGlob pattern applied:");
try (DirectoryStream<Path> ds = Files.newDirectoryStream(path, "*.{png,jpg,bmp}")) {
 for (Path file : ds) {
 System.out.println(file.getFileName());
 }
} catch (IOException e) {
 System.err.println(e);
}

The output will be as follows:

Glob pattern applied:

supershot.bmp

Listing the Content by Applying a User-Defined Filter
If a glob pattern does not satisfy your needs, then is time to write your own filter. This is a simple task
that requires implementing the DirectoryStream.Filter<T> interface, which has a single method,
named accept(). A Path is accepted or rejected based on your implementation. For example, the
following code snippet accepts only directories in the final result:

Path path = Paths.get("C:/rafaelnadal/tournaments/2009");
…
//user-defined filter - only directories are accepted
DirectoryStream.Filter<Path> dir_filter = new DirectoryStream.Filter<Path>() {

public boolean accept(Path path) throws IOException {
 return (Files.isDirectory(path, NOFOLLOW_LINKS));
 }
};

The created filter is next passed as a parameter to the newDirectoryStream() method:

System.out.println("\nUser defined filter applied:");

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

52

try (DirectoryStream<Path> ds = Files.newDirectoryStream(path, dir_filter)) {
for (Path file : ds) {
 System.out.println(file.getFileName());
 }
} catch (IOException e) {
 System.err.println(e);
}

The output will be as follows:

User defined filter applied:

videos

The following list presents a set of commonly used filters:

• Filter that accepts only files/directories larger than 200KB:

DirectoryStream.Filter<Path> size_filter = new DirectoryStream.Filter<Path>() {

public boolean accept(Path path) throws IOException {
 return (Files.size(path) > 204800L);
 }
};

• Filter that accepts only files modified in the current day:

DirectoryStream.Filter<Path> time_filter = new DirectoryStream.Filter<Path>() {

public boolean accept(Path path) throws IOException {
 long currentTime = FileTime.fromMillis(System.currentTimeMillis()).to(TimeUnit.DAYS);
 long modifiedTime = ((FileTime) Files.getAttribute(path, "basic:lastModifiedTime",
 NOFOLLOW_LINKS)).to(TimeUnit.DAYS);
 if (currentTime == modifiedTime) {
 return true;
 }

 return false;
 }
};

• Filter that accepts only hidden files/directories:

DirectoryStream.Filter<Path> hidden_filter = new DirectoryStream.Filter<Path>() {

public boolean accept(Path path) throws IOException {
 return (Files.isHidden(path));
 }
};

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

53

Creating, Reading, and Writing Files
Probably the most common operations with files involve creating, reading, and/or writing actions. NIO.2
comes with numerous dedicated methods for performing these actions at various levels of complexity
and performance, from methods for commonly used small files (cases where it is convenient to read all
bytes into a byte array) to methods for advanced features such as file locking and memory-mapped I/O.
This section starts with methods for small files and finishes with methods for buffered and unbuffered
streams.

A stream represents an input source or an output destination (it can be anything from disk files to
memory arrays). Streams support different kinds of data, as strings, bytes, primitive data types, localized
characters, and objects. In an unbuffered stream, each read or write request is handled directly by the
underlying operating system, while in a buffered stream, the data is read from a memory area known as
a buffer; and the native input API is called only when the buffer is empty. Similarly, buffered output
streams write data to a buffer, and the native output API is called only when the buffer is full. When a
buffer is written out without waiting for it to fill, we say that the buffer is flushed.

Using Standard Open Options
Starting with NIO.2, the methods dedicated to creating, reading and writing actions (or any other action
that involves opening a file) support an optional parameter, OpenOption, which configures how to open
or create a file. Actually, the OpenOption is an interface from the java.nio.file package and it has two
implementations: the LinkOption class (remember the well-known NOFOLLOW_LINKS enum constant) and
the StandardOpenOption class, which defines the following enums:

READ Opens file for read access

WRITE Opens file for write access

CREATE Creates a new file if it does not exist

CREATE_NEW Creates a new file, failing with an exception if the
file already exists

APPPEND Appends data to the end of the file (used with
WRITE and CREATE)

DELETE_ON_CLOSE Deletes the file when the stream is closed (used for
deleting temporary files)

TRUNCATE_EXISTING Truncates the file to 0 bytes (used with the WRITE
option)

SPARSE Causes the newly created file to be sparse

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

54

SYNC Keeps the file content and metadata synchronized
with the underlying storage device

DSYNC Keeps the file content synchronized with the
underlying storage device

Some of these constants will be shown at work in the upcoming sections, after you take a look at

creating a new file.

Creating a New File
Creating a new file is a common task that can be accomplished by calling the Files.createFile()
method. This method gets the file to create (Path) and an optional list of file attributes
(FileAttribute<?>) to set atomically at creation time. It returns the created file. The following code
snippet creates a new file named SonyEricssonOpen.txt in the C:\rafaelnadal\tournaments\2010
directory (the directory must exist) with the default attributes (initially, the file must not exist; otherwise
a FileAlreadyExistsException exception will be thrown):

Path newfile = FileSystems.getDefault().
 getPath("C:/rafaelnadal/tournaments/2010/SonyEricssonOpen.txt");
…
try {
 Files.createFile(newfile);
} catch (IOException e) {
 System.err.println(e);
}

You can add a set of attributes at creation time as shown in the following code snippet. This code
creates a new file on a POSIX file system that has specific permissions.

Path newfile = FileSystems.getDefault().
 getPath("/home/rafaelnadal/tournaments/2010/SonyEricssonOpen.txt");

Set<PosixFilePermission> perms = PosixFilePermissions.fromString("rw-------");
FileAttribute<Set<PosixFilePermission>> attr = PosixFilePermissions.asFileAttribute(perms);
try {
 Files.createFile(newfile, attr);
} catch (IOException e) {
 System.err.println(e);
}

As you will see soon, this is not the only way to create a new file.

Writing a Small File
NIO.2 comes with an elegant solution for writing small binary/text files. This facility is provided through
two Files.write() methods. Both of these methods open the file for writing (this can involve creating
the file, if it doesn’t exist) or initially truncate an existing regular file to a size of 0 bytes. After all bytes or
lines are written, the method closes the file (it closes the file even when an I/O error or exception

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

55

occurs). In short, this method acts as if the CREATE, TRUNCATE_EXISTING, and WRITE options are present—of
course, this is applicable by default when no other options are specified.

Writing Bytes with the write() Method
Writing bytes into a file can be accomplished with the Files.write() method. This method gets the path
to the file, the byte array with the bytes to write, and options specifying how the file is opened. It returns
the path of the written file.

The following code snippet writes a byte array (representing a small tennis ball picture) with the
default opening options (the file name is ball.png and it will be written in the C:\rafaelnadal\photos
directory):

Path ball_path = Paths.get("C:/rafaelnadal/photos", "ball.png");
…
byte[] ball_bytes = new byte[]{
(byte)0x89,(byte)0x50,(byte)0x4e,(byte)0x47,(byte)0x0d,(byte)0x0a,(byte)0x1a,(byte)0x0a,
(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x0d,(byte)0x49,(byte)0x48,(byte)0x44,(byte)0x52,
(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x10,(byte)0x00,(byte)0x00,(byte)0x00,(byte)0x10,
(byte)0x08,(byte)0x02,(byte)0x00,
…
(byte)0x49,(byte)0x45,(byte)0x4e,(byte)0x44,(byte)0xae,(byte)0x42,(byte)0x60,(byte)0x82
};

try {
 Files.write(ball_path, ball_bytes);
} catch (IOException e) {
 System.err.println(e);
}

Now, if you check the corresponding path, you will find a small picture representing a tennis ball.
Moreover, if you need to write text (String) and you want to use this method, then convert the text

to a byte array as follows (the file name is wiki.txt and is created in C:\rafaelnadal\wiki):

Path rf_wiki_path = Paths.get("C:/rafaelnadal/wiki", "wiki.txt");
…
String rf_wiki = "Rafael \"Rafa\" Nadal Parera (born 3 June 1986) is a Spanish professional
tennis " + "player and a former World No. 1. As of 29 August 2011 (2011 -08-29)[update], he is
ranked No. 2 " + "by the Association of Tennis Professionals (ATP). He is widely regarded as
one of the greatest players " + "of all time; his success on clay has earned him the nickname
\"The King of Clay\", and has prompted " + "many experts to regard him as the greatest clay
court player of all time. Some of his best wins are:";

try {
 byte[] rf_wiki_byte = rf_wiki.getBytes("UTF-8");
 Files.write(rf_wiki_path, rf_wiki_byte);
} catch (IOException e) {
 System.err.println(e);
}

Even if this works, it is much easier to use the write() method, described next, to write text to files.

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

56

Writing Lines with the write() Method
Writing lines into a file can be accomplished by using the Files.write() method (a “line” is a char
sequence). After each line, this method appends the platform’s line separator (line.separator system
property). This method gets the path to the file, an iterable object over the char sequence, a charset to
use for encoding, and options specifying how the file is opened. It returns the path to the written file.

The following code snippet writes some lines into a file (actually, it appends some lines to the end of
the file wiki.txt created in the preceding section):

Path rf_wiki_path = Paths.get("C:/rafaelnadal/wiki", "wiki.txt");
…
Charset charset = Charset.forName("UTF-8");
ArrayList<String> lines = new ArrayList<>();
lines.add("\n");
lines.add("Rome Masters - 5 titles in 6 years");
lines.add("Monte Carlo Masters - 7 consecutive titles (2005-2011)");
lines.add("Australian Open - Winner 2009");
lines.add("Roland Garros - Winner 2005-2008, 2010, 2011");
lines.add("Wimbledon - Winner 2008, 2010");
lines.add("US Open - Winner 2010");

try {
 Files.write(rf_wiki_path, lines, charset, StandardOpenOption.APPEND);
} catch (IOException e) {
 System.err.println(e);
}

Reading a Small File
NIO.2 provides a quick method to read small byte/text files in a single shot. This facility is provided
through the Files.readAllBytes() and Files.readAllLines() methods. These methods read the entire
file’s bytes or lines, respectively, into a single read and take care of opening and closing the stream for
you after the file has been read or an I/O error or exception has occurred.

Reading with the readAllBytes() Method
The Files.readAllBytes() method reads the entire file into a byte array, while the Files.readAllLines()
method reads the entire file into a collection of String (as described in the next section). Focusing on the
readAllBytes() method, the following code snippet reads the previously created ball.png binary file
(the file must exist) into a byte array (the file path is passed as an argument):

Path ball_path = Paths.get("C:/rafaelnadal/photos", "ball.png");
…
try {
 byte[] ballArray = Files.readAllBytes(ball_path);
} catch (IOException e) {
 System.out.println(e);
}

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

57

If you want to make sure that the returned byte array contains the picture, you can run (as a test) the
following code snippet, which writes the bytes into a file named bytes_to_ball.png in the same
directory:

…
Files.write(ball_path.resolveSibling("bytes_to_ball.png"), ballArray);
…

Or you can use the ImageIO as follows. The line ImageIO.write() will write your bufferedImage data
to your disk as a file of type PNG and will store it in the C:\rafaelnadal\photos directory.

BufferedImage bufferedImage = ImageIO.read(new ByteArrayInputStream(ballArray));
ImageIO.write(bufferedImage, "png", (ball_path.resolveSibling("bytes_to_ball.png")).toFile());

The readAllBytes() method can also read a text file. This time the byte array should be converted to
String, as in the following example (you can use any charset that is proper for your text files):

Path wiki_path = Paths.get("C:/rafaelnadal/wiki", "wiki.txt");
…
try {
 byte[] wikiArray = Files.readAllBytes(wiki_path);
 String wikiString = new String(wikiArray, "ISO-8859-1");
 System.out.println(wikiString);
} catch (IOException e) {
 System.out.println(e);
}

■ Caution If the file is too large (bigger than 2GB), then the size of the array cannot be allocated and a
OutOfMemory error will be thrown. This depends on the Xmx parameter on the JVM: for a 32-bit JVM, it can’t be
larger than 2GB (but is usually smaller by default, 256MB, depending on the platform). For a 64-bit JVM, it can be
much larger—tens of gigabytes potentially.

Reading with the readAllLines() Method
In the preceding example you saw how to read a text file through the readAllBytes() method. A more
convenient solution is to use the readAllLines() method, since this method will read the entire file and
return a List of String, which can be easily looped as follows (pass to this method the Path of the file to
read and the charset to use for decoding):

Path wiki_path = Paths.get("C:/rafaelnadal/wiki", "wiki.txt");
…
Charset charset = Charset.forName("ISO-8859-1");
try {
 List<String> lines = Files.readAllLines(wiki_path, charset);
 for (String line : lines) {
 System.out.println(line);
 }
} catch (IOException e) {

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

58

 System.out.println(e);
}

Conforming to official documentation, this method recognizes the following as line terminators:

• \u000D followed by \u000A: CARRIAGE RETURN followed by LINE FEED

• \u000A: LINE FEED

• \u000D: CARRIAGE RETURN

Working with Buffered Streams
In most operating systems, a system call to read or write data is an expensive operation. Buffers can fix
this issue by providing a memory space between the buffered methods and the operating system. Before
calling the native API, these methods get or put the data from/into a buffer between the operating
system and the application, which increases the application’s efficiency because it reduces the number
of system calls—the disk is accessed only when the buffer is full or empty, depending on whether it is a
write operation or a read operation. NIO.2 provides two methods for reading and writing files through
buffers: Files.newBufferedReader() and Files.newBufferedWriter(), respectively. Both of these
methods get a Path instance and return an old JDK 1.1 BufferedReader or BufferedWriter instance.

Using the newBufferedWriter() Method
The newBufferedWriter() method gets the path to the file, a charset used for encoding, and options
specifying how the file is opened. It returns a new default buffered writer (this is a java.io-specific
BufferedWriter). The method opens the file for writing (this can involve creating the file, if it doesn’t
exist) or initially truncates an existing regular file to a size of 0 bytes. In short, this method acts as if the
CREATE, TRUNCATE_EXISTING, and WRITE options are present (which is applicable by default when no other
options are specified).

The following code snippet uses a buffer to append data into the previously created wiki.txt file
(the file exists; you should find it in the C:\rafaelnadal\wiki directory):

Path wiki_path = Paths.get("C:/rafaelnadal/wiki", "wiki.txt");
…
Charset charset = Charset.forName("UTF-8");
String text = "\nVamos Rafa!";
try (BufferedWriter writer = Files.newBufferedWriter(wiki_path, charset,
 StandardOpenOption.APPEND)) {
 writer.write(text);
} catch (IOException e) {
 System.err.println(e);
}

Using the newBufferedReader() Method
The newBufferedReader() method can be used to read files through a buffer. The method gets the path to
the file and a charset to use for decoding bytes into characters. It returns a new default buffered reader
(this is a java.io-specific BufferedReader).

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

59

The following code snippet reads the wiki.txt file using the UTF-8 charset:

Path wiki_path = Paths.get("C:/rafaelnadal/wiki", "wiki.txt");
…
Charset charset = Charset.forName("UTF-8");
try (BufferedReader reader = Files.newBufferedReader(wiki_path, charset)) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
} catch (IOException e) {
 System.err.println(e);
}

If you followed along with the examples in the previous sections and created the entire wiki.txt file,
then the preceding code will output the following content:

Rafael "Rafa" Nadal Parera (born 3 June 1986) is a Spanish professional tennis player and a
former World No. 1. As of 29 August 2011 (2011 -08-29)[update], he is ranked No. 2 by the
Association of Tennis Professionals (ATP). He is widely regarded as one of the greatest
players of all time; his success on clay has earned him the nickname "The King of Clay", and
has prompted many experts to regard him as the greatest clay court player of all time. Some
of his best wins are:

Rome Masters - 5 titles in 6 years

Monte Carlo Masters - 7 consecutive titles (2005-2011)

Australian Open - Winner 2009

Roland Garros - Winnner 2005-2008, 2010, 2011

Wimbledon - Winner 2008, 2010

US Open - Winner 2010

Vamos Rafa!

Working with Unbuffered Streams
The unbuffered streams can be obtained through the new NIO.2 methods and either can be used
verbatim or can be converted to buffered streams using the wrapping idiom provided by the java.io
API. The unbuffered streams methods are Files.newInputStream() (input stream to read from the file)
and Files.newOutputStream() (output stream to write to a file).

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

60

Using the newOutputStream() Method
The newOutputStream() method gets the path to the file and options specifying how the file is opened. It
returns a new default thread-safe unbuffered stream that may be used to write bytes to the file (this is a
java.io-specific OutputStream). The method opens the file for writing (this can involve creating the file, if
it doesn’t exist) or initially truncates an existing regular file to a size of 0 bytes. In short, this method acts
as if the CREATE, TRUNCATE_EXISTING, and WRITE options are present (which is applicable by default when
no other options are specified).

The following code snippet will write the text line “Racquet: Babolat AeroPro Drive GT” into the file
C:\rafaelnadal\equipment\racquet.txt (the file doesn’t initially exist, but it will be automatically
created because no options are specified):

Path rn_racquet = Paths.get("C:/rafaelnadal/equipment", "racquet.txt");
String racquet = "Racquet: Babolat AeroPro Drive GT";

byte data[] = racquet.getBytes();
try (OutputStream outputStream = Files.newOutputStream(rn_racquet)) {
 outputStream.write(data);
} catch (IOException e) {
 System.err.println(e);
}

Moreover, if you decide that it is a better idea to use a buffered stream instead of the preceding
code, a conversion based on the java.io API is recommended, such as shown in the following code,
which appends to the file racquet.txt (the file must exist) the text “String: Babolat RPM Blast 16”:

Path rn_racquet = Paths.get("C:/rafaelnadal/equipment", "racquet.txt");
String string = "\nString: Babolat RPM Blast 16";

try (OutputStream outputStream = Files.newOutputStream(rn_racquet, StandardOpenOption.APPEND);
 BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(outputStream))) {
 writer.write(string);
} catch (IOException e) {
 System.err.println(e);
}

Using the newInputStream() Method
The newInputStream() method gets the path to the file to open and options specifying how to open the
file. It returns a new default thread-safe unbuffered stream that may be used to read bytes from the file
(this is a java.io-specific InputStream). The method opens the file for read; if no options are present,
then it is equivalent to opening the file with the READ option.

The following code snippet reads the content of the file racquet.txt (the file must exist):

Path rn_racquet = Paths.get("C:/rafaelnadal/equipment", "racquet.txt");
…
int n;
try (InputStream in = Files.newInputStream(rn_racquet)) {
 while ((n = in.read()) != -1) {
 System.out.print((char)n);
 }
} catch (IOException e) {

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

61

 System.err.println(e);
}

As you probably already know from the java.io API, the InputStream class also provides a read()
method that fills up a buffer array of type byte. Therefore, you can modify the preceding code as follows
(keep in mind that you are still dealing with an unbuffered stream):

Path rn_racquet = Paths.get("C:/rafaelnadal/equipment", "racquet.txt");
…
int n;
byte[] in_buffer = new byte[1024];
try (InputStream in = Files.newInputStream(rn_racquet)) {
 while ((n = in.read(in_buffer)) != -1) {
 System.out.println(new String(in_buffer));
 }
} catch (IOException e) {
 System.err.println(e);
}

■ Note Calling the read(in_buffer) method is the same thing as calling the
read(in_buffer,0,in_buffer.length) method.

Moreover, you can convert the unbuffered stream to a buffered stream by interoperating with the
java.io API. The following example has the same effect as the preceding example, but it is more
efficient:

Path rn_racquet = Paths.get("C:/rafaelnadal/equipment", "racquet.txt");
…
try (InputStream in = Files.newInputStream(rn_racquet);
 BufferedReader reader = new BufferedReader(new InputStreamReader(in))) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
} catch (IOException e) {
 System.err.println(e);
}

The past three examples will have the same output:

Racquet: Babolat AeroPro Drive GT

String: Babolat RPM Blast 16

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

62

Creating Temporary Directories and Files
A temporary directory is a directory that stores temporary files. The location of the temporary directory
depends on the operating system. In Windows, the temporary directory is set through the TEMP
environment variable, usually C:\Temp, %Windows%\Temp, or a temporary directory per user in Local
Settings\Temp. In Linux/Unix the global temporary directories are /tmp and /var/tmp.

Creating a Temporary Directory
In NIO.2 you can create a temporary directory with the createTempDirectory() method. Creating a
temporary directory in the default operating system location can be accomplished by calling the
createTempDirectory() method with two parameters: a prefix string to be used in generating the
directory’s name (it can be null) and an optional list of file attributes to set atomically when creating the
directory. The following code snippet creates two temporary directories, one with a prefix and one
without a prefix:

String tmp_dir_prefix = "nio_";
try {
 //passing null prefix
 Path tmp_1 = Files.createTempDirectory(null);
 System.out.println("TMP: " + tmp_1.toString());

 //set a prefix
 Path tmp_2 = Files.createTempDirectory(tmp_dir_prefix);
 System.out.println("TMP: " + tmp_2.toString());
 } catch (IOException e) {
 System.err.println(e);
 }

The following is possible output:

TMP: C:\Users\Leo\AppData\Local\Temp\3238630399269555448

TMP: C:\Users\Leo\AppData\Local\Temp\nio_1097550355199661257

■ Note If you don’t know what the default location for temporary directories is, you can use the following code:

//output: C:\Users\Leo\AppData\Local\Temp\

String default_tmp = System.getProperty("java.io.tmpdir");

System.out.println(default_tmp);

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

63

Going further, you can specify the default directory in which a temporary directory is created by
calling another createTempDirectory() method. Besides the temporary directory prefix and optional list
of attributes, this method also gets a Path representing the default directory for temporary directories.
The following example creates a temporary directory in the C:\rafaelnadal\tmp directory:

Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp/");
String tmp_dir_prefix = "rafa_";
…
try {
 //create a tmp directory in the base dir
 Path tmp = Files.createTempDirectory(basedir, tmp_dir_prefix);
 System.out.println("TMP: " + tmp.toString());
} catch (IOException e) {
 System.err.println(e);
}

The following is possible output:

TMP: C:\rafaelnadal\tmp\rafa_1753327229539718259

Deleting a Temporary Directory with Shutdown-Hook
Most operating systems will automatically delete the temporary directories (if not, you can use one of
several kinds of cleaner software). But, sometimes you may need to programmatically control the delete
process. The createTempDirectory() method does only half of the job, because the deletion is your
responsibility. For this you can attach a shutdown-hook mechanism, a runtime mechanism used to
perform any resource cleanup or save that must take place before the JVM shuts down. This hook can be
implemented as a Java Thread. The run() method of the Thread will get executed when the hook is
executed by the JVM at shutdown. A nice and simple flow design of a shutdown-hook is shown in Figure
4-1.

Figure 4-1. The simple flow design of a shutdown-hook

Putting the diagram shown in Figure 4-1 into code lines provide the following skeleton code:

Runtime.getRuntime().addShutdownHook(new Thread() {

@Override
public void run() {

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

64

 System.out.println("Shutdown-hook activated ...");

 //… here, cleanup/save resources

 System.out.println("Shutdown-hook successfully executed ...");
 }
});

■ Note Notice that adding a shutdown-hook as a Thread to the Runtime can be done as an anonymous inner
class, as in the preceding code, or as a separate class that implements the Runnable or extends Thread.

A shutdown-hook is a nice solution to delete a temporary directory when the JVM shuts down, but,
as you probably know, a directory cannot be deleted if it is not empty; therefore, you need to loop
through the temporary directory content and delete each entry before deleting the temporary directory
itself. At this point, you know how to loop through a directory’s content only one level down, so suppose
for now that your temporary directory contains only temporary files (as is true in many real-life cases)
and other empty temporary directories. Later in this book you will see how to implement recursive
operations for navigating through all levels of a hierarchy structure.

The following example combines code from the preceding section for listing directory content with
a shutdown-hook:

final Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp/");
final String tmp_dir_prefix = "rafa_";

try {
//create a tmp directory in the base dir
final Path tmp_dir = Files.createTempDirectory(basedir, tmp_dir_prefix);

Runtime.getRuntime().addShutdownHook(new Thread() {

@Override
public void run() {
 System.out.println("Deleting the temporary folder ...");

 try (DirectoryStream<Path> ds = Files.newDirectoryStream(tmp_dir)) {
 for (Path file : ds) {
 Files.delete(file);
 }

 Files.delete(tmp_dir);

 } catch (IOException e) {
 System.err.println(e);
 }

 System.out.println("Shutdown-hook completed...");
 }

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

65

});

//simulate some I/O operations over the temporary file by sleeping 10 seconds
//when the time expires, the temporary file is deleted
Thread.sleep(10000);
//operations done

} catch (IOException | InterruptedException e) {
 System.err.println(e);
}

■ Note The preceding example uses a Thread.sleep() method to add a delay between the creation time of the
temporary directory and the JVM shutdown. Obviously, in place of that, you will provide the business logic that
uses the temporary directory for the job for which it was created.

Deleting a Temporary Directory with the deleteOnExit() Method
Another solution for deleting a temporary directory is to call the deleteOnExit() method. This method is
available in the java.io.File class (not specific to NIO.2) and it will delete the passed file or directory
when the JVM shuts down. Because this method must be called for each temporary file or directory, it is
considered the least attractive choice because it will consume memory for each temporary entity.

■ Caution If your system is active for a long period of time or creates many temporary files or directories
in a short period of time, then using deleteOnExit() is a bad idea! Before you choose to use deleteOnExit(),
consider that it can use a lot of memory that will not be released until the JVM terminates.

The following code snippet shows you how to use deleteOnExit():

Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp/");
String tmp_dir_prefix = "rafa_";

try {
 //create a tmp directory in the base dir
 Path tmp_dir = Files.createTempDirectory(basedir, tmp_dir_prefix);

 File asFile = tmp_dir.toFile();
 asFile.deleteOnExit();

 //simulate some I/O operations over the temporary file by sleeping 10 seconds
 //when the time expires, the temporary file is deleted
 //EACH CREATED TEMPORARY ENTRY SHOULD BE REGISTERED FOR DELETE ON EXIT
 Thread.sleep(10000);

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

66

 //operations done

} catch (IOException | InterruptedException e) {
 System.err.println(e);
}

■ Note Since deleteOnExit() applies to File instances, not Path, you need to convert the Path to a File by
calling the Path.toFile() method.

Creating Temporary Files
This section takes a closer look at temporary files and the NIO.2 approach to them. In real-world
applications, temporary files often provide very useful help. They work very well when you need files
that are not indented to be used outside of the application or the application execution. Known in Java
as “work files,” they can be placed in any directory chosen from the application or in the default location
returned by the Java property java.io.tmpdir.

In NIO.2 you can create a temporary file with the createTempFile() method. Creating a temporary
file in the default operating system location can be accomplished by calling the createTempFile()
method with three parameters: a prefix string to be concatenated in front of the file’s name (it can be
null), a suffix string to be concatenated at the end of the file’s name (it can be null; the default is .tmp),
and an optional list of file attributes to set atomically when creating the file. The following code snippet
creates two temporary files, one without a prefix and suffix and one with a specified prefix and suffix:

String tmp_file_prefix = "rafa_";
String tmp_file_sufix=".txt";

try {
 //passing null prefix/suffix
 Path tmp_1 = Files.createTempFile(null,null);
 System.out.println("TMP: " + tmp_1.toString());

 //set a prefix and a suffix
 Path tmp_2 = Files.createTempFile(tmp_file_prefix, tmp_file_sufix);
 System.out.println("TMP: " + tmp_2.toString());

} catch (IOException e) {
 System.err.println(e);
}

The output will be two empty temporary files in the operating system default location:

TMP: C:\Users\Leo\AppData\Local\Temp\6873427319542945524.tmp

TMP: C:\Users\Leo\AppData\Local\Temp\rafa_6168226983257408796.txt

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

67

■ Note If you don’t know what the default location for temporary files is, you can use the following code:

//output: C:\Users\Leo\AppData\Local\Temp\

String default_tmp = System.getProperty("java.io.tmpdir");

Going further, you can specify the default directory in which a temporary file is created by calling
another createTempFile() method. Besides the temporary file prefix and suffix and optional list of
attributes, this method also gets a Path representing the default directory for temporary files. The
following is an example that creates a temporary file in the C:\rafaelnadal\tmp directory:

Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp");
String tmp_file_prefix = "rafa_";
String tmp_file_sufix=".txt";

try {
 Path tmp_3 = Files.createTempFile(basedir, tmp_file_prefix, tmp_file_sufix);
 System.out.println("TMP: " + tmp_3.toString());
} catch (IOException e) {
 System.err.println(e);
}

The output will be one empty temporary file in the C:\rafaelnadal\tmp directory:

TMP: C:\rafaelnadal\tmp\rafa_512352743612949417.txt

Deleting a Temporary File with Shutdown-Hook
A temporary file is just a simple file until you make sure that it is truly temporary, which means that an
automatic mechanism must delete temporary files periodically or at a specified time. The shutdown-
hook mechanism was presented earlier in the chapter in the section “Deleting a Temporary Directory
with Shutdown-Hook.” The mechanism works in the same way for temporary files, so we will skip that
presentation here and go straight to the code example.

The following code snippet will create a temporary file in the C:\rafaelnadal\tmp directory, wait 10
seconds (simulating some file use), and delete the file when the JVM shuts down through the shutdown-
hook mechanism:

Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp");
String tmp_file_prefix = "rafa_";
String tmp_file_sufix = ".txt";

try {
 final Path tmp_file = Files.createTempFile(basedir, tmp_file_prefix, tmp_file_sufix);

 Runtime.getRuntime().addShutdownHook(new Thread() {

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

68

 @Override
 public void run() {
 System.out.println("Deleting the temporary file ...");

 try {
 Files.delete(tmp_file);
 } catch (IOException e) {
 System.err.println(e);
 }

 System.out.println("Shutdown hook completed...");
 }
});

//simulate some I/O operations over the temporary file by sleeping 10 seconds
//when the time expires, the temporary file is deleted
Thread.sleep(10000);
//operations done

} catch (IOException | InterruptedException e) {
 System.err.println(e);
}

■ Note The preceding code uses a Thread.sleep() method to add a delay between the creation time of the
temporary file and the JVM shutdown. Obviously, in place of that, you will provide the business logic that uses the
temporary file for the job for which it was created.

Deleting a Temporary File with the deleteOnExit() Method
Another solution for deleting a temporary file is to call the deleteOnExit() method. This mechanism was
detailed in the earlier section “Deleting a Temporary Directory with the deleteOnExit() Method” and
works the same way for temporary files, so we will skip it here and to straight to the code example.

The following code snippet will create a temporary file in the C:\rafaelnadal\tmp directory, wait 10
seconds (simulating some file use), and delete it when the JVM shuts down through the deleteOnExit()
mechanism:

Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp");
String tmp_file_prefix = "rafa_";
String tmp_file_sufix = ".txt";

try {
 final Path tmp_file = Files.createTempFile(basedir, tmp_file_prefix, tmp_file_sufix);

 File asFile = tmp_file.toFile();
 asFile.deleteOnExit();

 //simulate some I/O operations over the temporary file by sleeping 10 seconds

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

69

 //when the time expires, the temporary file is deleted
 Thread.sleep(10000);
 //operations done

} catch (IOException | InterruptedException e) {
 System.err.println(e);
}

■ Note Since deleteOnExit() applies to File instances, not Path, you need to convert the Path to a File by
calling the Path.toFile() method.

Deleting a Temporary File with DELETE_ON_CLOSE
An ingenious solution for deleting a temporary file is to use the DELETE_ON_CLOSE option. As its name
suggests, this option deletes the file when the stream is closed. For example, the following code snippet
creates a temporary file in the C:\rafaelnadal\tmp directory with the createTempFile() method and
opens a stream for it with DELETE_ON_CLOSE explicitly specified, so when the stream is closed, the file
should be deleted:

Path basedir = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp");
String tmp_file_prefix = "rafa_";
String tmp_file_sufix = ".txt";
Path tmp_file = null;

try {
 tmp_file = Files.createTempFile(basedir, tmp_file_prefix, tmp_file_sufix);
} catch (IOException e) {
 System.err.println(e);
}

try (OutputStream outputStream = Files.newOutputStream(tmp_file,
 StandardOpenOption.DELETE_ON_CLOSE);
 BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(outputStream))) {

 //simulate some I/O operations over the temporary file by sleeping 10 seconds
 //when the time expires, the temporary file is deleted
 Thread.sleep(10000);
 //operations done
} catch (IOException | InterruptedException e) {
 System.err.println(e);
}

Moreover, you can simulate a temporary file even without calling the createTempFile() method.
Simply define a file name, and use the DELETE_ON_CLOSE option in conjunction with the CREATE option, as
shown in the following snippet (the effect is the same as in the preceding example):

String tmp_file_prefix = "rafa_";
String tmp_file_sufix = ".txt";

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

70

Path tmp_file = null;

tmp_file = FileSystems.getDefault().getPath("C:/rafaelnadal/tmp", tmp_file_prefix +
 "temporary" + tmp_file_sufix);

try (OutputStream outputStream = Files.newOutputStream(tmp_file, StandardOpenOption.CREATE,
 StandardOpenOption.DELETE_ON_CLOSE);
 BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(outputStream))) {

 //simulate some I/O operations over the temporary file by sleeping 10 seconds
 //when the time expires, the temporary file is deleted
 Thread.sleep(10000);
 //operations done
} catch (IOException | InterruptedException e) {
 System.err.println(e);
}

Deleting, Copying, and Moving Directories and Files
Delete, copy, and move are three of the most common operations used on files and directories. NIO.2
provides dedicated methods to sustain different approaches to these operations. Most of them come
from the Files class, as you will see in this section.

Deleting Files and Directories
NIO.2 provides two methods for deleting a file or directory, Files.delete() and Files.deleteIfExits().
Both of them take a single argument representing the Path to delete, but Files.delete() returns void,
while Files.deleteIfExits() returns a boolean value representing the success or failure of the deletion
process. The delete() method tries to delete the passed Path and, in case of failure, throws one of the
following exceptions: NoSuchFileException (if the passed Path does not exist),
DirectoryNotEmptyException (if the passed Path is a directory that it is not empty), IOException (if an I/O
error occurs), or SecurityException (if the access for deletion is denied).

The following code snippet deletes the file rafa_1.jpg from the C:\rafaelnadal\photos\ directory
(the file must exist):

Path path = FileSystems.getDefault().getPath("C:/rafaelnadal/photos", "rafa_1.jpg");

//delete the file
try {
 Files.delete(path);
} catch (NoSuchFileException | DirectoryNotEmptyException | IOException |
 SecurityException e) {
 System.err.println(e);
}

As the name suggests, the Files.deleteIfExists() method deletes a file only if it exists, which
means that the returned boolean value will be false if the file could not be deleted because it did not
exist (instead of throwing a NoSuchFileException exception). This is useful when you have multiple
threads deleting files and you don’t want to throw an exception just because one thread did so first.

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

71

Keeping in mind that the preceding code just deleted the rafa_1.jpg file, the following code will return
false:

try {
 boolean success = Files.deleteIfExists(path);
 System.out.println("Delete status: " + success);
} catch (DirectoryNotEmptyException | IOException | SecurityException e) {
 System.err.println(e);
}

■ Caution If the deleted resource is a directory, then it must be empty. Deleting the entire directory
content (which may contain other directories, files, and so on) is a task usually implemented as a recursive
operation. This operation is presented in Chapter 5.

■ Note If the file is a symbolic link, then the symbolic link itself, not the final target of the link, is deleted.

Copying Files and Directories
Copying files and directories is a piece of cake in NIO.2. It provides three Files.copy() methods to
accomplish this task and provides a set of options for controlling the copy process—the methods take a
varargs argument represented by these options. These options are provided under the
StandardCopyOption and LinkOption enums and are listed here:

• REPLACE_EXISTING: If the copied file already exists, then it is replaced (in the case of
a nonempty directory, a FileAlreadyExistsException is thrown). When dealing
with a symbolic link, the target of the link it is not copied; only the link is copied.

• COPY_ATTRIBUTES: Copy a file with its associated attributes (at least, the
lastModifiedTime attribute is supported and copied).

• NOFOLLOW_LINKS: Symbolic links should not be followed.

If you are not familiar with enum types, then you should know that they can be imported into
applications as follows. These are called static imports and can import any static fields or methods, not
just fields from enum types (e.g., methods from java.lang.Math).

import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
import static java.nio.file.StandardCopyOption.COPY_ATTRIBUTES;
import static java.nio.file.LinkOption.NOFOLLOW_LINKS;

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

72

■ Note By default, when copying a symbolic link, the target of that link is copied. Copying only the link itself can
be accomplished through the REPLACE_EXISTING and NOFOLLOW_LINKS options. Moreover, file attributes are not
required to be copied.

■ Caution Trying to copy a nonempty directory will result in an empty directory. This is a task usually
implemented as a recursive operation, as you will see in Chapter 5. Moreover, copying a file is not an atomic
operation, which means that an IOException exception can be thrown and the copy aborted even if the target file
is incomplete or the attributes were not totally copied.

Copying Between Two Paths

Usually, when you copy a file, you need a source path (copy from) and a target path (copy to). Based on
this simple case, NIO.2 provides a Files.copy() method that takes the path to the file to copy, the path
to the target file, and a set of options for controlling the copy process. It returns the path to the target file.
If no options are specified, then the copy ends successfully only if the target file does not exist and it is
not a symbolic link. Otherwise, an exception will be thrown unless the source and the target are not the
same (the isSameFile() method returns true).

The following code snippet will copy the file draw_template.txt from
C:\rafaelnadal\grandslam\AustralianOpen to C:\rafaelnadal\grandslam\USOpen (the file must exist). It
replaces an existing file, copies attributes of the source to the target, and does not follow links.

Path copy_from = Paths.get("C:/rafaelnadal/grandslam/AustralianOpen", "draw_template.txt");
Path copy_to= Paths.get("C:/rafaelnadal/grandslam/USOpen",copy_from.getFileName().toString());

try {

 Files.copy(copy_from, copy_to, REPLACE_EXISTING, COPY_ATTRIBUTES, NOFOLLOW_LINKS);

} catch (IOException e) {
 System.err.println(e);
}

Copying from an Input Stream to a File

When you need to copy all bytes from an input stream to a file, you can call the Files.copy() method
that gets the input stream to read from, the path to the file, and a set of options for controlling the copy
process. It returns the number of bytes read or written. By default, the copy fails if the target file already
exists or is a symbolic link.

The following code snippet will copy the file draw_template.txt from
C:\rafaelnadal\grandslam\AustralianOpen to C:\rafaelnadal\grandslam\Wimbledon through an input
stream (the file must exist). It will replace an existing file.

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

73

Path copy_from = Paths.get("C:/rafaelnadal/grandslam/AustralianOpen", "draw_template.txt");
Path copy_to = Paths.get("C:/rafaelnadal/grandslam/Wimbledon", "draw_template.txt");

try (InputStream is = new FileInputStream(copy_from.toFile())) {

 Files.copy(is, copy_to, REPLACE_EXISTING);

} catch (IOException e) {
 System.err.println(e);
}

The input stream may be extracted in other ways. For example, the following code snippet will get
the input stream from an Internet URL (it will copy the picture indicated by the URL to the
C:\rafaelnadal\photos directory only if the file does not exist):

Path copy_to = Paths.get("C:/rafaelnadal/photos/rafa_winner_2.jpg");
URI u = URI.create("https://lh6.googleusercontent.com/--
 udGIidomAM/Tl8KTbYd34I/AAAAAAAAAZw/j2nH24PaZyM/s800/rafa_winner.jpg");

try (InputStream in = u.toURL().openStream()) {

 Files.copy(in, copy_to);

} catch (IOException e) {
 System.err.println(e);
}

■ Caution It is strongly recommended that you close the input stream immediately after an I/O error
occurs.

Copying from a File to an Output Stream

When you need to copy all bytes from a file to an output stream, you can call the Files.copy() method
that gets the path to the file and the output stream to write to. It will return the number of bytes read or
written.

The following code snippet copies the file draw_template.txt from
C:\rafaelnadal\grandslam\AustralianOpen to C:\rafaelnadal\grandslam\RolandGarros. The target file is
represented as an output stream (the target will be replaced if exists).

Path copy_from = Paths.get("C:/rafaelnadal/grandslam/AustralianOpen", "draw_template.txt");
Path copy_to = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "draw_template.txt");

try (OutputStream os = new FileOutputStream(copy_to.toFile())) {

 Files.copy(copy_from, os);

https://lh6.googleusercontent.com/--udGIidomAM/Tl8KTbYd34I/AAAAAAAAAZw/j2nH24PaZyM/s800/rafa_winner.jpg
https://lh6.googleusercontent.com/--udGIidomAM/Tl8KTbYd34I/AAAAAAAAAZw/j2nH24PaZyM/s800/rafa_winner.jpg
http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

74

} catch (IOException e) {
 System.err.println(e);
}

■ Caution It is strongly recommended that you close the output stream immediately after an I/O error
occurs.

Moving Files and Directories
In this section, you will see how to move files and directories using the Files.move() method. This
method gets the path to the file to move, the path to the target file, and a set of options that controls the
moving process. These options are provided under the StandardCopyOption enum and are listed here:

• REPLACE_EXISTING: If the target file already exists, then the move is still performed
and the target is replaced. When dealing with a symbolic link, the symbolic link is
replaced but what it points to is not affected.

• ATOMIC_MOVE: The file move will be performed as an atomic operation, which
guarantees that any process that monitors the file’s directory will access a
complete file.

Again, these enum types can be imported into an application like this:

import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
import static java.nio.file.StandardCopyOption.ATOMIC_MOVE;

By default (when no options are explicitly specified), the move() method tries to move the file to the
target file, failing if the target file exists (FileAlreadyExistsException is thrown) except if the source and
target are the same file (the isSameFile() method returns true), in which case this method has no effect.

■ Note By default, when moving a symbolic link, the symbolic link itself is moved, not the target of that link.

■ Caution The move() method can also be used to move empty directories. Trying to move a nonempty
directory is a task usually implemented as a recursive copy operation, as you will see in Chapter 5. Nevertheless, it
is possible to move a directory that it is not empty if it does not require moving the entries in the directory. In some
cases a directory has entries for special files (such as links) that are created when the directory is created, and if
the directory contains only those entries, it is considered empty.

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

75

The following code snippet tries to move the file named rafa_2.jpg (the file must exist) from
C:\rafaelnadal to C:\rafaelnadal\photos. If the target already exists, then it is replaced because the
REPLACE_EXISITING option is specified.

Path movefrom = FileSystems.getDefault().getPath("C:/rafaelnadal/rafa_2.jpg");
Path moveto = FileSystems.getDefault().getPath("C:/rafaelnadal/photos/rafa_2.jpg");

try {
 Files.move(movefrom, moveto, StandardCopyOption.REPLACE_EXISTING);
} catch (IOException e) {
 System.err.println(e);
}

You can skip to hard-code the name of the file in the moveto path by using the Path.resolve()
method (for more details, see Chapter 1). With this approach, you can move a file by extracting its name
directly from the movefrom path (do not forget to restore the rafa_2.jpg file in C:\rafaelnadal before
testing this code):

Path movefrom = FileSystems.getDefault().getPath("C:/rafaelnadal/rafa_2.jpg");
Path moveto_dir = FileSystems.getDefault().getPath("C:/rafaelnadal/photos");

try {
 Files.move(movefrom, moveto_dir.resolve(movefrom.getFileName()),
 StandardCopyOption.REPLACE_EXISTING);
} catch (IOException e) {
 System.err.println(e);
}

Rename a File
Finally, with a little trick, you can rename a file using the Files.move() and Path.resolveSibling()

methods. The following code snippet renames the file rafa_2.jpg as rafa_renamed_2.jpg in the
C:\rafaelnadal\photos directory. If you have tested the preceding code, then rafa_2.jpg should be
present in this directory.

Path movefrom = FileSystems.getDefault().getPath("C:/rafaelnadal/photos/rafa_2.jpg");

try {
 Files.move(movefrom, movefrom.resolveSibling("rafa_2_renamed.jpg"),
 StandardCopyOption.REPLACE_EXISTING);
} catch (IOException e) {
 System.err.println(e);
}

http://www.it-ebooks.info

CHAPTER 4 ■ FILES AND DIRECTORIES

76

Summary
This chapter started by exploring some methods dedicated to checking if a Path is readable, writable,
regular, or hidden. It then focused on directory operations and how to list, create, and read directories.
You saw how to list the file system roots, how to create directories with methods such as
createDirectory() and createTempDirectory(), how to write directory filters, and how to list a
directory’s content using the newDirectoryStream() method. The chapter then explored files operations,
such as reading, writing, creating, and opening files. As you saw, there is a wide array of file I/O methods
to choose from (for buffered and unbuffered streams). The chapter ended with the well-known delete,
copy, and move operations.

http://www.it-ebooks.info

C H A P T E R 5

■ ■ ■

77

Recursive Operations: Walks

As you probably know, recursive programming is a debated technique because it usually needs a lot of
memory but it simplifies some programming tasks. Basically, a recursive programming is a situation in
which a procedure calls itself, passing in a modified value of the parameter or parameters that were
passed in to the current iteration of the procedure. Programming tasks such as calculating factorial,
Fibonacci numbers, anagrams, and Sierpinski carpet are just a few of the well-known tasks that can be
accomplished through the recursive programming technique. The following code snippet uses this
technique to calculate the factorial (n! = 1 * 2 * 3* … *n)—notice how the procedure calls itself:

/**
 * Calculate the factorial of n (n! = 1 * 2 * 3 * … * n).
 *
 * @param n the number to calculate the factorial of.
 * @return n! - the factorial of n.
 */
 static int fact(int n) {

 // Base Case:
 // If n <= 1 then n! = 1.
 if (n <= 1) {
 return 1;
 }
 // Recursive Case:
 // If n > 1 then n! = n * (n-1)!
 else {
 return n * fact(n-1);
 }
 }

If you are already familiar with this programming technique, then proceed reading this chapter to
see how NIO.2 takes advantage of it. Otherwise, it is a good idea before you proceed to read some
tutorials dedicated to recursive programming, such as “Mastering Recursive Programming” by Jonathan
Bartlett, available at www.ibm.com/developerworks/linux/library/l-recurs/index.html.

Many programming tasks that involve working with files require visiting all files in a file tree, which
is a good opportunity for using the recursive programming mechanism because every file should be
“touched” individually. This is a very common approach when performing tasks such as deleting,
copying, or moving a file tree. Based on this mechanism, NIO.2 encapsulates the traversal process of a
file tree in an interface, named FileVisitor, in the java.nio.file package.

http://www.ibm.com/developerworks/linux/library/l-recurs/index.html
http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

78

This chapter starts by presenting the FileVisitor’s scope and methods. Once you are familiar with
FileVisitor, the chapter will help you to develop a set of applications you can use to perform tasks that
involve traversing a file tree, such as finding, copying, deleting, and moving files.

The FileVisitor Interface
As previously mentioned, the FileVisitor interface provides the support for recursively traversing a file
tree. The methods of this interface represent key points in the traversal process, enabling you to take
control when a file is visited, before a directory is accessed, after a directory is accessed, and when a
failure occurs; in other words, this interface has hooks for before, during, and after a file is visited, as well
as for when failure occurs. Once you have control (at any of these key points), you can choose how to
process the visited file and decide what should happen to it next by indicating a visit result through the
FileVisitResult enum, which contains four enum constants:

• FileVisitResult.CONTINUE: This visit result indicates that the traversal process
should continue. It can be translated into different actions depending on which
FileVisitor method is returned. For example, the traversal process may continue
by visiting the next file, visiting a directory’s entries, or skipping a failure.

• FileVisitResult.SKIP_SIBLINGS: This visit result indicates that the traversal
process should continue without visiting the siblings of this file or directory.

• FileVisitResult.SKIP_SUBTREE: This visit result indicates that the traversal
process should continue without visiting the rest of the entries in this directory.

• FileVisitResult.TERMINATE: This visit result indicates that the traversal process
should terminate.

The constants of this enum type can be iterated as follows:

for (FileVisitResult constant : FileVisitResult.values())
 System.out.println(constant);

The following subsections discuss how you can control the traversal process by implementing the
various FileVisitor methods.

FileVisitor.visitFile() Method
The visitFile() method is invoked for a file in a directory. Usually, this method returns a CONTINUE
result or a TERMINATE result. For example, when searching for a file, this method should return CONTINUE
until the file is found (or the tree is completely traversed) and TERMINATE after the file is found.

When this method is invoked, it receives a reference to the file and the file’s basic attributes. If an
I/O error occurs, then it throws an IOException exception. The following is the signature of this method:

FileVisitResult visitFile(T file, BasicFileAttributes attrs) throws IOException

FileVisitor.preVisitDirectory() Method
The preVisitDirectory() method is invoked for a directory before visiting its entries. The entries will be
visited if the method returns CONTINUE and will not be visited if it returns SKIP_SUBTREE (the latter visit

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

79

result is meaningful only when it is returned from this method). Also, you can skip visiting the siblings of
this file or directory (and any descendants) by returning the SKIP_SIBLINGS result.

When this method is invoked, it gets a reference to the directory and the directory’s basic attributes.
If an I/O error occurs, then it throws an IOException exception. The signature of this method is

FileVisitResult preVisitDirectory(T dir, BasicFileAttributes attrs) throws IOException

FileVisitor.postVisitDirectory() Method
The postVisitDirectory() method is invoked after all entries in the directory (and any descendants)
have been visited or the visit has ended suddenly (that is, an I/O error has occurred or the visit has
programmatically aborted). When this method is invoked, it gets a reference to the directory and
IOException object—it will be null if no error occurred during the visit or it will return the corresponding
error if one occurred. If an I/O error occurs, then it throws an IOException exception. The following is
the signature of this method

FileVisitResult postVisitDirectory(T dir, IOException exc) throws IOException

FileVisitor.visitFileFailed() Method
The visitFileFailed() method is invoked when the file cannot be accessed for any of several different
reasons, such as the file’s attributes cannot be read or a directory cannot be opened. When this method
is invoked, it gets a reference to the file and the exception that occurred while trying to visit that file. If an
I/O error occurs, then it throws an IOException exception. The following is the signature of this method:

FileVisitResult visitFileFailed(T file, IOException exc) throws IOException

The SimpleFileVisitor Class
Implementing the FileVisitor interface requires implementing all of its methods, which may be
undesirable if you need to implement only one or a few of those methods. In that case, it is much
simpler to extend the SimpleFileVisitor class, which implements the FileVisitor interface. This
approach requires overwriting only the desired methods.

For example, you may want to traverse a file tree and list the names of all directories. To accomplish
this, it is sufficient to use only the postVisitDirectory() and visitFileFailed() methods, as shown in
the following code snippet (the starting file tree is presented in the next section):

class ListTree extends SimpleFileVisitor<Path> {

 @Override
 public FileVisitResult postVisitDirectory(Path dir, IOException exc) {

 System.out.println("Visited directory: " + dir.toString());

 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException exc) {

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

80

 System.out.println(exc);

 return FileVisitResult.CONTINUE;
 }
}

As you can see, the preVisitDirectory() and visitFile() methods were skipped.

Starting the Recursive Process
Once you have created the recursive mechanism (by implementing the FileVisitor interface or
extending the SimpleFileVisitor class), you can start the process by calling one of the two
Files.walkFileTree() methods. The simplest walkFileTree() method gets the starting file (this is
usually the file tree root) and the file visitor to invoke for each file (this is an instance of the recursive
mechanism class). For example, you can start the code example in the preceding section by calling the
walkFileTree() method as follows (the passed file tree is C:\rafaelnadal):

Path listDir = Paths.get("C:/rafaelnadal"); //define the starting file tree
ListTree walk = new ListTree(); //instantiate the walk

try{
 Files.walkFileTree(listDir, walk); //start the walk
 } catch(IOException e){
 System.err.println(e);
 }

The second walkFileTree() method gets the starting file, options to customize the walk, the
maximum number of directory levels to visit (to ensure that all levels are traversed, you can specify
Integer.MAX_VALUE for the maximum depth argument), and the walk instance. The accepted options are
the constants of the FileVisitOption enum. Actually, this enum contains a single constant, named
FOLLOW_LINKS, indicating that the symbolic links are followed in the walk (by default, they are not
followed).

Calling this method for the preceding walk may look like the following:

Path listDir = Paths.get("C:/rafaelnadal"); //define the starting file
ListTree walk = new ListTree(); //instantiate the walk
EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS); //follow links

try{
 Files.walkFileTree(listDir, opts, Integer.MAX_VALUE, walk); //start the walk
 } catch(IOException e){
 System.err.println(e);
 }

■ Note Calling walkFileTree(start, visitor) has the same effect as calling walkFileTree(start,
EnumSet.noneOf(FileVisitOption.class), Integer.MAX_VALUE, visitor).

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

81

The following lines are the output of the preceding example:

Visited directory: C:\rafaelnadal\equipment

Visited directory: C:\rafaelnadal\grandslam\AustralianOpen

Visited directory: C:\rafaelnadal\grandslam\RolandGarros

Visited directory: C:\rafaelnadal\grandslam\USOpen

Visited directory: C:\rafaelnadal\grandslam\Wimbledon

Visited directory: C:\rafaelnadal\grandslam

…

Visited directory: C:\rafaelnadal

Common Walks
There is a set of common walks that you can easily implement through the FileVisitor interface. This
section shows you how to write and implement applications to perform a file search, a recursive copy, a
recursive move, and a recursive delete.

Writing a File Search Application
Most operating systems provide a dedicated tool for searching files (for example, Linux has the find
command, while Windows has the File Search tool). From simple searches to advanced searches, all of
the tools generally work in the same way: you specify the search criteria and then wait for the tool to find
the matching file(s). But, if you need to accomplish the search programmatically, then FileVisitor can
help you with the traversal process. Whether you are looking for a file by name, by extension, or by a
glob pattern or are looking inside files for some text or code, the approach is always to visit each file in
the file store and perform some checks to determine whether the file conforms to your search criteria.

When you write your file search tool based on FileVisitor, you need to keep in mind the following:

• The visitFile() method is the best place to perform the comparison between the
current file and your search criteria. At this point you can extract each file name,
its extension, or its attributes or open the file for reading. You can use the file
name, extension, and so on for determining whether the visited file is the searched
one. Sometimes you will mix these information into complex search criteria. This
method does not find directories.

• If you want to find directories, then the comparison must take place in the
preVisitDirectory() or postVisitDirectory() method, depending on case.

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

82

• If a file cannot be visited, the visitFileFailed() method should return
FileVisitResult.CONTINUE because this issue does not require the entire search
process to be stopped.

• If you search for a file by name and you know that there is a single file with that
name in the file tree, then you can return FileVisitResult.TERMINATE once the
visitFile() method finds it. Otherwise, FileVisitResult.CONTINUE should be
returned.

• The search process can follow symbolic links, which can be a good idea, since
following symbolic links may locate the searched file before traversing the
symbolic link’s target sub-tree. Following symbolic links is not always a good idea;
for example, for deleting files it is not advisable.

Searching for Files by Name
The preceding list can be incorporated into the following single code snippet to produce an application
that searches for a file by name. This application will search for the file rafa_1.jpg in the entire default
file system and will stop the search when it finds it.

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.EnumSet;

class Search implements FileVisitor {

 private final Path searchedFile;
 public boolean found;

 public Search(Path searchedFile) {
 this.searchedFile = searchedFile;
 this.found = false;
 }

void search(Path file) throws IOException {
 Path name = file.getFileName();
 if (name != null && name.equals(searchedFile)) {
 System.out.println("Searched file was found: " + searchedFile +
 " in " + file.toRealPath().toString());
 found = true;
 }
 }

 @Override

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

83

 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {
 System.out.println("Visited: " + (Path) dir);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)
 throws IOException {
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 search((Path) file);
 if (!found) {
 return FileVisitResult.CONTINUE;
 } else {
 return FileVisitResult.TERMINATE;
 }
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 //report an error if necessary
 return FileVisitResult.CONTINUE;
 }
}

class Main {

 public static void main(String[] args) throws IOException {

 Path searchFile = Paths.get("rafa_1.jpg");
 Search walk = new Search(searchFile);
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Iterable<Path> dirs = FileSystems.getDefault().getRootDirectories();
 for (Path root : dirs) {
 if (!walk.found) {
 Files.walkFileTree(root, opts, Integer.MAX_VALUE, walk);
 }
 }

 if (!walk.found) {
 System.out.println("The file " + searchFile + " was not found!");
 }
 }
}

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

84

A fragment of the output may look something like this:

…

Visited: C:\Python25\Tools\webchecker

Visited: C:\Python25\Tools

Visited: C:\Python25

…

Visited: C:\rafaelnadal\equipment

Visited: C:\rafaelnadal\grandslam\AustralianOpen

Visited: C:\rafaelnadal\grandslam\RolandGarros

Visited: C:\rafaelnadal\grandslam\USOpen

Visited: C:\rafaelnadal\grandslam\Wimbledon

Visited: C:\rafaelnadal\grandslam

Searched file was found: rafa_1.jpg in C:\rafaelnadal\photos\rafa_1.jpg

Searching for Files by Glob Pattern
Sometimes you may have only partial information about the file you want to search for, such as only its
name or extension or perhaps even just a chuck of its name or extension. Based on this small piece of
information, you can write a glob pattern, as described in the Chapter 4 section “Listing the Content by
Applying a Glob Pattern.” The search will locate all files in a file store that match the glob pattern, and
from the results you’ll probably be able to find the file you needed to locate.

The following code snippet searches all files of type *.jpg in the C:\rafaelnadal file tree. The
process will stop only after the entire tree has been traversed.

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.PathMatcher;
import java.nio.file.Paths;

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

85

import java.nio.file.attribute.BasicFileAttributes;
import java.util.EnumSet;

class Search implements FileVisitor {

 private final PathMatcher matcher;

 public Search(String glob) {
 matcher = FileSystems.getDefault().getPathMatcher("glob:" + glob);
 }

 void search(Path file) throws IOException {
 Path name = file.getFileName();
 if (name != null && matcher.matches(name)) {
 System.out.println("Searched file was found: " + name +
 " in " + file.toRealPath().toString());
 }
 }

 @Override
 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {
 System.out.println("Visited: " + (Path) dir);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)
 throws IOException {
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 search((Path) file);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 //report an error if necessary
 return FileVisitResult.CONTINUE;
 }
}

class Main {

 public static void main(String[] args) throws IOException {

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

86

 String glob = "*.jpg";
 Path fileTree = Paths.get("C:/rafaelnadal/");
 Search walk = new Search(glob);
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Files.walkFileTree(fileTree, opts, Integer.MAX_VALUE, walk);

 }
}

A fragment of the output shows the files found:

Searched file was found: rafa_1.jpg in C:\rafaelnadal\photos\rafa_1.jpg

Searched file was found: rafa_winner.jpg in C:\rafaelnadal\photos\rafa_winner.jpg

…

If you have additional information about the file you are looking for, then you can create a more
complex search. For example, besides the small piece of information about the file name and type,
perhaps you know that the file size is smaller than a certain number of kilobytes, or perhaps you know a
detail such as when the file was created, when the file was last modified, whether the file is hidden or
read-only, or who owns it. Additional information may be a part of the file attributes, as shown in the
following code snippet that combines the *.jpg glob pattern with a size of file smaller then 100KB (as
you probably know, the size is a basic attribute):

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.PathMatcher;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.EnumSet;

class Search implements FileVisitor {

 private final PathMatcher matcher;
 private final long accepted_size;

 public Search(String glob, long accepted_size) {
 matcher = FileSystems.getDefault().getPathMatcher("glob:" + glob);
 this.accepted_size = accepted_size;
 }

 void search(Path file) throws IOException {
 Path name = file.getFileName();

4

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

87

 long size = (Long) Files.getAttribute(file, "basic:size");

 if (name != null && matcher.matches(name) && size <= accepted_size) {
 System.out.println("Searched file was found: " + name + " in " +
 file.toRealPath().toString() + " size (bytes):" + size);
 }
 }

 @Override
 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {
 System.out.println("Visited: " + (Path) dir);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)
 throws IOException {
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 search((Path) file);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 //report an error if necessary
 return FileVisitResult.CONTINUE;
 }
}

class Main {

 public static void main(String[] args) throws IOException {

 String glob = "*.jpg";
 long size = 102400; //100 kilobytes in bytes
 Path fileTree = Paths.get("C:/rafaelnadal/");
 Search walk = new Search(glob, size);
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Files.walkFileTree(fileTree, opts, Integer.MAX_VALUE, walk);
 }
}

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

88

The following is a fragment of the found files output:

Searched file was found: rafa_winner.jpg in C:\rafaelnadal\photos\rafa_winner.jpg size
(bytes):77718

…

Searching for Files by Content
One of the advanced file searches involves finding files by their content. You pass a sequence of words or
sentences and the search returns only files that contain that text. This is the most time-consuming file
search task because it requires searching for text inside each visited file, which means opening the file,
reading it, and finally closing it. Moreover, there are many file formats that support text, such as PDF,
Microsoft Word, Excel, and PowerPoint, simple text files, XML, HTML, XHTML, and so forth. Each of
these formats is read differently, which requires dedicated code that is capable of extracting text files
from them.

In this section we will develop an application that searches for files by content. The text to search for
is passed as a String containing a sequence of words or sentences separated by commas; for example:
“Rafael Nadal,tennis,winner of Roland Garros,BNP Paribas tournament draws”. Using the
StringTokenizer class, and commas as separators, the following example extracts each word and
sentence into an ArrayList:

…
String words="Rafael Nadal,tennis,winner of Roland Garros,BNP Paribas tournament draws";
ArrayList<String> wordsarray = new ArrayList<>();
…
StringTokenizer st = new StringTokenizer(words, ",");
while (st.hasMoreTokens()) {
 wordsarray.add(st.nextToken());
}

The following code loops this ArrayList and compares each word and sentence with the text
extracted from the visited file. Notice in the searchText() method that the extracted text is passed as a
parameter.

//search text
private boolean searchText(String text) {

 boolean flag = false;
 for (int j = 0; j < wordsarray.size(); j++) {
 if ((text.toLowerCase()).contains(wordsarray.get(j).toLowerCase())) {
 flag = true;
 break;
 }
 }
 return flag;
}

The following subsections focus on isolating a set of methods for extracting text from some of the
most common file formats and performing the comparison. Since we are not attempting to reinvent the

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

89

wheel here, we will exploit some third-party libraries that were written especially for understanding a
specific file format. We’ll then combine each of the methods we develop into a full search program.

Searching in PDFs

For reading PDF files, we will use two of the most popular third-party open source libraries, iText and
Apache PDFBox. You can download the iText library from http://itextpdf.com/ and the PDFBox library
from http://pdfbox.apache.org/. For purposes of this chapter, I used version 5.1.2 of iText and version
1.6.0 of PDFBox. Based on the iText documentation, I wrote the following method to extract text from a
PDF. The first step consists of creating a PdfReader over the visited file. Continue by extracting the PDF’s
number of pages, extracting the text from each page, and passing the extracted text to the searchText()
method. If one of the tokens is found in the extracted text, then the search in the current file is stopped,
the file is considered a valid search result, and its path and name are stored so we can print it out later
when the entire search is over.

//search in PDF files using iText library
boolean searchInPDF_iText(String file) {

 PdfReader reader = null;
 boolean flag = false;

 try {
 reader = new PdfReader(file);
 int n = reader.getNumberOfPages();

 OUTERMOST:
 for (int i = 1; i <= n; i++) {
 String str = PdfTextExtractor.getTextFromPage(reader, i);

 flag = searchText(str);
 if (flag) {
 break OUTERMOST;
 }
 }

 } catch (Exception e) {
 } finally {
 if (reader != null) {
 reader.close();
 }
 return flag;
 }
}

If you are more familiar with PDFBox than iText, then try the following method. Start by creating a
PDFParser over the PDF file, continue by extracting the number of pages, and finish by extracting the text
of each page and passing it to the searchText() method.

boolean searchInPDF_PDFBox(String file) {

 PDFParser parser = null;
 String parsedText = null;

http://itextpdf.com/
http://pdfbox.apache.org/
http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

90

 PDFTextStripper pdfStripper = null;
 PDDocument pdDoc = null;
 COSDocument cosDoc = null;
 boolean flag = false;
 int page = 0;

 File pdf = new File(file);

 try {
 parser = new PDFParser(new FileInputStream(pdf));
 parser.parse();

 cosDoc = parser.getDocument();
 pdfStripper = new PDFTextStripper();
 pdDoc = new PDDocument(cosDoc);

 OUTERMOST:
 while (page < pdDoc.getNumberOfPages()) {
 page++;
 pdfStripper.setStartPage(page);
 pdfStripper.setEndPage(page + 1);
 parsedText = pdfStripper.getText(pdDoc);

 flag = searchText(parsedText);
 if (flag) {
 break OUTERMOST;
 }
 }
 } catch (Exception e) {
 } finally {
 try {
 if (cosDoc != null) {
 cosDoc.close();
 }
 if (pdDoc != null) {
 pdDoc.close();
 }
 } catch (Exception e) {}
 return flag;
 }
}

Searching in Microsoft Word, Excel, and PowerPoint Files

The Microsoft Office suite’s files can be manipulated through the Apache POI library, which is the most
commonly used Java API for Microsoft documents. You can download this library from
http://poi.apache.org/. For purposes of this chapter, I used version 3.7. Based on the developer guide, I
wrote the following method for extracting text from a Word document. Apache POI extracts an array of
String containing all the paragraphs of a Word document. The array can be looped and each paragraph
can be passed to the searchText() method.

http://poi.apache.org/
http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

91

boolean searchInWord(String file) {

 POIFSFileSystem fs = null;
 boolean flag = false;

 try {
 fs = new POIFSFileSystem(new FileInputStream(file));

 HWPFDocument doc = new HWPFDocument(fs);
 WordExtractor we = new WordExtractor(doc);
 String[] paragraphs = we.getParagraphText();

 OUTERMOST:
 for (int i = 0; i < paragraphs.length; i++) {

 flag = searchText(paragraphs[i]);
 if (flag) {
 break OUTERMOST;
 }
 }

 } catch (Exception e) {
 } finally {
 return flag;
 }
}

We can extract text from Excel files as shown in the following example. After creating an
HSSFWorkbook for the Excel document, the basic idea is to iterate over the sheets, then over the rows, and
finally over the cells. The cell should contain the specific text that we are looking for.

boolean searchInExcel(String file) {

 Row row;
 Cell cell;
 String text;
 boolean flag = false;
 InputStream xls = null;

 try {
 xls = new FileInputStream(file);
 HSSFWorkbook wb = new HSSFWorkbook(xls);

 int sheets = wb.getNumberOfSheets();

 OUTERMOST:
 for (int i = 0; i < sheets; i++) {
 HSSFSheet sheet = wb.getSheetAt(i);

 Iterator<Row> row_iterator = sheet.rowIterator();
 while (row_iterator.hasNext()) {
 row = (Row) row_iterator.next();

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

92

 Iterator<Cell> cell_iterator = row.cellIterator();
 while (cell_iterator.hasNext()) {
 cell = cell_iterator.next();
 int type = cell.getCellType();
 if (type == HSSFCell.CELL_TYPE_STRING) {
 text = cell.getStringCellValue();
 flag = searchText(text);
 if (flag) {
 break OUTERMOST;
 }
 }
 }
 }
 }

 } catch (IOException e) {
 } finally {
 try {
 if (xls != null) {
 xls.close();
 }
 } catch (IOException e) {}
 return flag;
 }
}

Finally, we can extract text from PowerPoint files as shown in the following example; each slide may
contain text and notes:

boolean searchInPPT(String file) {

 boolean flag = false;
 InputStream fis = null;
 String text;

 try {
 fis = new FileInputStream(new File(file));
 POIFSFileSystem fs = new POIFSFileSystem(fis);
 HSLFSlideShow show = new HSLFSlideShow(fs);

 SlideShow ss = new SlideShow(show);
 Slide[] slides = ss.getSlides();

 OUTERMOST:
 for (int i = 0; i < slides.length; i++) {

 TextRun[] runs = slides[i].getTextRuns();
 for (int j = 0; j < runs.length; j++) {
 TextRun run = runs[j];
 if (run.getRunType() == TextHeaderAtom.TITLE_TYPE) {
 text = run.getText();
 } else {

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

93

 text = run.getRunType() + " " + run.getText();
 }

 flag = searchText(text);
 if (flag) {
 break OUTERMOST;
 }
 }

 Notes notes = slides[i].getNotesSheet();
 if (notes != null) {
 runs = notes.getTextRuns();
 for (int j = 0; j < runs.length; j++) {
 text = runs[j].getText();
 flag = searchText(text);
 if (flag) {
 break OUTERMOST;
 }
 }
 }
 }
 } catch (IOException e) {
 } finally {
 try {
 if (fis != null) {
 fis.close();
 }
 } catch (IOException e) {}
 return flag;
 }
}

■ Note I arbitrarily chose the third-party libraries used in the preceding examples. There are many other open
source and commercial libraries available for dealing with different kinds of documents. Feel free to use anything
that is convenient for your needs. Our search example is not the most efficient way to do the searching. In a worst-
case scenario, we would have to walk through an entire array (half of an array in a typical scenario). Perhaps using
an indexing search such as the one that Apache Lucene (http://lucene.apache.org/java/docs/index.html)
provides would be a better way to do it. This as an exercise you can attempt on your own.

Searching in Text Files

Text files (.txt, .html, .xml, etc.) do not require a third-party library. They can be read using pure NIO.2
code as follows:

boolean searchInText(Path file) {

http://lucene.apache.org/java/docs/index.html
http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

94

 boolean flag = false;
 Charset charset = Charset.forName("UTF-8");
 try (BufferedReader reader = Files.newBufferedReader(file, charset)) {
 String line = null;

 OUTERMOST:
 while ((line = reader.readLine()) != null) {
 flag = searchText(line);
 if (flag) {
 break OUTERMOST;
 }
 }

 } catch (IOException e) {
 } finally {
 return flag;
 }
 }

Writing a Complete Search Program
Yes! The pie is ready! Just throw it in the oven! We have the searched text, the text extracted from a set of
common file formats, and a method that checks if the extracted text contains the searched text. Put
everything in the traversal process and the application is ready:

import com.itextpdf.text.pdf.PdfReader;
import com.itextpdf.text.pdf.parser.PdfTextExtractor;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.charset.Charset;
import java.nio.file.FileSystems;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.pdfbox.cos.COSDocument;
import org.apache.pdfbox.pdfparser.PDFParser;
import org.apache.pdfbox.pdmodel.PDDocument;
import org.apache.pdfbox.util.PDFTextStripper;
import org.apache.poi.hslf.HSLFSlideShow;
import org.apache.poi.hslf.model.Notes;
import org.apache.poi.hslf.model.Slide;

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

95

import org.apache.poi.hslf.model.TextRun;
import org.apache.poi.hslf.record.TextHeaderAtom;
import org.apache.poi.hslf.usermodel.SlideShow;
import org.apache.poi.hssf.usermodel.HSSFCell;
import org.apache.poi.hssf.usermodel.HSSFSheet;
import org.apache.poi.hssf.usermodel.HSSFWorkbook;
import org.apache.poi.hwpf.HWPFDocument;
import org.apache.poi.hwpf.extractor.WordExtractor;
import org.apache.poi.poifs.filesystem.POIFSFileSystem;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;

class Search implements FileVisitor {

 ArrayList<String> wordsarray = new ArrayList<>();
 ArrayList<String> documents = new ArrayList<>();
 boolean found = false;

 public Search(String words) {
 wordsarray.clear();
 documents.clear();

 StringTokenizer st = new StringTokenizer(words, ",");
 while (st.hasMoreTokens()) {
 wordsarray.add(st.nextToken().trim());
 }
 }

 void search(Path file) throws IOException {

 found = false;

 String name = file.getFileName().toString();
 int mid = name.lastIndexOf(".");
 String ext = name.substring(mid + 1, name.length());

 if (ext.equalsIgnoreCase("pdf")) {
 found = searchInPDF_iText(file.toString());
 if (!found) {
 found = searchInPDF_PDFBox(file.toString());
 }
 }

 if (ext.equalsIgnoreCase("doc") || ext.equalsIgnoreCase("docx")) {
 found = searchInWord(file.toString());
 }

 if (ext.equalsIgnoreCase("ppt")) {
 searchInPPT(file.toString());
 }

 if (ext.equalsIgnoreCase("xls")) {

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

96

 searchInExcel(file.toString());
 }

 if ((ext.equalsIgnoreCase("txt")) || (ext.equalsIgnoreCase("xml")
 || ext.equalsIgnoreCase("html"))
 || ext.equalsIgnoreCase("htm") || ext.equalsIgnoreCase("xhtml")
 || ext.equalsIgnoreCase("rtf")) {
 searchInText(file);
 }

 if (found) {
 documents.add(file.toString());
 }
 }

 //search in text files
 boolean searchInText(Path file) {

 boolean flag = false;
 Charset charset = Charset.forName("UTF-8");
 try (BufferedReader reader = Files.newBufferedReader(file, charset)) {
 String line = null;

 OUTERMOST:
 while ((line = reader.readLine()) != null) {
 flag = searchText(line);
 if (flag) {
 break OUTERMOST;
 }
 }

 } catch (IOException e) {
 } finally {
 return flag;
 }
 }

 //search in Excel files
 boolean searchInExcel(String file) {

 Row row;
 Cell cell;
 String text;
 boolean flag = false;
 InputStream xls = null;

 try {
 xls = new FileInputStream(file);
 HSSFWorkbook wb = new HSSFWorkbook(xls);

 int sheets = wb.getNumberOfSheets();

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

97

 OUTERMOST:
 for (int i = 0; i < sheets; i++) {
 HSSFSheet sheet = wb.getSheetAt(i);

 Iterator<Row> row_iterator = sheet.rowIterator();
 while (row_iterator.hasNext()) {
 row = (Row) row_iterator.next();
 Iterator<Cell> cell_iterator = row.cellIterator();
 while (cell_iterator.hasNext()) {
 cell = cell_iterator.next();
 int type = cell.getCellType();
 if (type == HSSFCell.CELL_TYPE_STRING) {
 text = cell.getStringCellValue();
 flag = searchText(text);
 if (flag) {
 break OUTERMOST;
 }
 }
 }
 }
 }

 } catch (IOException e) {
 } finally {
 try {
 if (xls != null) {
 xls.close();
 }
 } catch (IOException e) {
 }
 return flag;
 }
 }

 //search in PowerPoint files
 boolean searchInPPT(String file) {

 boolean flag = false;
 InputStream fis = null;
 String text;

 try {
 fis = new FileInputStream(new File(file));
 POIFSFileSystem fs = new POIFSFileSystem(fis);
 HSLFSlideShow show = new HSLFSlideShow(fs);

 SlideShow ss = new SlideShow(show);
 Slide[] slides = ss.getSlides();

 OUTERMOST:
 for (int i = 0; i < slides.length; i++) {

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

98

 TextRun[] runs = slides[i].getTextRuns();
 for (int j = 0; j < runs.length; j++) {
 TextRun run = runs[j];
 if (run.getRunType() == TextHeaderAtom.TITLE_TYPE) {
 text = run.getText();
 } else {
 text = run.getRunType() + " " + run.getText();
 }

 flag = searchText(text);
 if (flag) {
 break OUTERMOST;
 }

 }

 Notes notes = slides[i].getNotesSheet();
 if (notes != null) {
 runs = notes.getTextRuns();
 for (int j = 0; j < runs.length; j++) {
 text = runs[j].getText();
 flag = searchText(text);
 if (flag) {
 break OUTERMOST;
 }
 }
 }
 }

 } catch (IOException e) {
 } finally {
 try {
 if (fis != null) {
 fis.close();
 }
 } catch (IOException e) {
 }
 return flag;
 }

 }

 //search in Word files
 boolean searchInWord(String file) {

 POIFSFileSystem fs = null;
 boolean flag = false;

 try {
 fs = new POIFSFileSystem(new FileInputStream(file));

 HWPFDocument doc = new HWPFDocument(fs);

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

99

 WordExtractor we = new WordExtractor(doc);
 String[] paragraphs = we.getParagraphText();

 OUTERMOST:
 for (int i = 0; i < paragraphs.length; i++) {

 flag = searchText(paragraphs[i]);
 if (flag) {
 break OUTERMOST;
 }
 }

 } catch (Exception e) {
 } finally {
 return flag;
 }
 }

 //search in PDF files using PDFBox library
 boolean searchInPDF_PDFBox(String file) {

 PDFParser parser = null;
 String parsedText = null;
 PDFTextStripper pdfStripper = null;
 PDDocument pdDoc = null;
 COSDocument cosDoc = null;
 boolean flag = false;
 int page = 0;

 File pdf = new File(file);

 try {
 parser = new PDFParser(new FileInputStream(pdf));
 parser.parse();

 cosDoc = parser.getDocument();
 pdfStripper = new PDFTextStripper();
 pdDoc = new PDDocument(cosDoc);

 OUTERMOST:
 while (page < pdDoc.getNumberOfPages()) {
 page++;
 pdfStripper.setStartPage(page);
 pdfStripper.setEndPage(page + 1);
 parsedText = pdfStripper.getText(pdDoc);

 flag = searchText(parsedText);
 if (flag) {
 break OUTERMOST;
 }
 }

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

100

 } catch (Exception e) {
 } finally {
 try {
 if (cosDoc != null) {
 cosDoc.close();
 }
 if (pdDoc != null) {
 pdDoc.close();
 }
 } catch (Exception e) {
 }
 return flag;
 }
 }

 //search in PDF files using iText library
 boolean searchInPDF_iText(String file) {

 PdfReader reader = null;
 boolean flag = false;

 try {
 reader = new PdfReader(file);
 int n = reader.getNumberOfPages();

 OUTERMOST:
 for (int i = 1; i <= n; i++) {
 String str = PdfTextExtractor.getTextFromPage(reader, i);

 flag = searchText(str);
 if (flag) {
 break OUTERMOST;
 }
 }

 } catch (Exception e) {
 } finally {
 if (reader != null) {
 reader.close();
 }
 return flag;
 }

 }

 //search text
 private boolean searchText(String text) {

 boolean flag = false;
 for (int j = 0; j < wordsarray.size(); j++) {
 if ((text.toLowerCase()).contains(wordsarray.get(j).toLowerCase())) {
 flag = true;

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

101

 break;
 }
 }

 return flag;
 }

 @Override
 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {
 System.out.println("Visited: " + (Path) dir);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)
 throws IOException {
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 search((Path) file);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 //report an error if necessary

 return FileVisitResult.CONTINUE;
 }
}

class Main {

public static void main(String[] args) throws IOException {

 String words = "Rafael Nadal, tennis, winner of Roland Garros, BNP Paribas tournament draws";
 Search walk = new Search(words);
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Iterable<Path> dirs = FileSystems.getDefault().getRootDirectories();
 for (Path root : dirs) {
 Files.walkFileTree(root, opts, Integer.MAX_VALUE, walk);
 }

 System.out.println("__");
 for(String path_string: walk.documents){
 System.out.println(path_string);

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

102

 }
 System.out.println("__");

 }
}

Note that sometimes this is a pretty slow process that may take from several seconds to dozens of
minutes—the running time will vary based on the file tree size, number of checked files, and the size of
those files. In the preceding example, the file tree contains all file stores in the default file system, so
each file in any of the supported formats will be opened, read, and explored for our set of search words.
Depending on how large and numerous the matching files are, the process may appear to be jammed for
a few seconds as the results are returned. You can improve this application by adding more file formats,
a progress bar or flag indicating process status, and multiple threads to speed up the process. Moreover,
displaying the name of the files as they are found may be a better idea than storing their names and
path.

Writing a File Delete Application
Deleting a single file is a simple operation, as you saw in the Chapter 4 section “Deleting Files and
Directories.” After you call the delete() or deleteIfExists() method, the file is deleted from your file
system. Deleting an entire file tree is an operation based on calling the delete() or deleteIfExists()
method recursively through a FileVisitor implementation. Before you see an example, here are a few
things you need to keep in mind:

• Before you delete a directory, you must delete all files from it.

• The visitFile() method is the best place to perform the deletion of each file.

• Since you can delete a directory only if it is empty, it is recommended to delete
directories in the postVisitDirectory() method.

• If a file cannot be visited, the visitFileFailed() method should return
FileVisitResult.CONTINUE or TERMINATE, depending on your decision.

• The delete process can follow symbolic links, which may be not advisable, since
symbolic links may point files outside the deletetion domain. But if you are sure
that this case can never happen, or a supplementary condition prevents
undesirable deletions, then follow symbolic links.

Our aim in this section is to create an application that deletes an entire file tree. The following code
deletes the C:\rafaelnadal directory (for further use, make a backup of this directory before you run the
following code):

import java.io.IOException;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.EnumSet;

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

103

class DeleteDirectory implements FileVisitor {

 boolean deleteFileByFile(Path file) throws IOException {
 return Files.deleteIfExists(file);
 }

 @Override
 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {

 if (exc == null) {
 System.out.println("Visited: " + (Path) dir);
 boolean success = deleteFileByFile((Path) dir);

 if (success) {
 System.out.println("Deleted: " + (Path) dir);
 } else {
 System.out.println("Not deleted: " + (Path) dir);
 }
 } else {
 throw exc;
 }
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)
 throws IOException {
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 boolean success = deleteFileByFile((Path) file);

 if (success) {
 System.out.println("Deleted: " + (Path) file);
 } else {
 System.out.println("Not deleted: " + (Path) file);
 }

 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 //report an error if necessary

 return FileVisitResult.CONTINUE;
 }

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

104

}

class Main {

 public static void main(String[] args) throws IOException {

 Path directory = Paths.get("C:/rafaelnadal");
 DeleteDirectory walk = new DeleteDirectory();
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Files.walkFileTree(directory, opts, Integer.MAX_VALUE, walk);
 }
}

■ Note Sending the deleted files to the recycle bin can be accomplished by using JNI to invoke Windows API
SHFileOperation() method. Check out David Shay’s post at www.jroller.com/ethdsy/entry/send_to_recycle_bin
for more details.

Writing a Copy Files Application
Copying a file tree requires calling the Files.copy() method for each traversed file and directory. (For
details about copying a file or directory in NIO.2, refer to the Chapter 4 section “Copying Files and
Directories.”) Before you see an example, here a some pointers to keep in mind:

• Before you copy any files from a directory, you must copy the directory itself.
Copying a source directory (empty or not) will result in an empty target directory.
This task must be accomplished in the preVisitDirectory() method.

• The visitFile() method is the perfect place to copy each file.

• When you copy a file or directory, you need to decide whether or not you want to
use the REPLACE_EXISTING and COPY_ATTRIBUTES options.

• If you want to preserve the attributes of the source directory, you need to do that
after the files have been copied, in the postVisitDirectory() method.

• If you choose to follow links (FOLLOW_LINKS) and your file tree has a circular link to
a parent directory, the looping directory is reported in the visitFileFailed()
method with the FileSystemLoopException exception.

• If a file cannot be visited, the visitFileFailed() method should return
FileVisitResult.CONTINUE or TERMINATE, depending on your decision.

• The copy process can follow symbolic links if you specify the FOLLOW_LINKS option.

The following code snippet incorporates the preceding concepts and copies the C:\rafaelnadal
subtree to the C:\rafaelnadal_copy file tree:

import java.nio.file.FileSystemLoopException;

http://www.jroller.com/ethdsy/entry/send_to_recycle_bin
http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

105

import java.nio.file.attribute.FileTime;
import java.io.IOException;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.EnumSet;
import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
import static java.nio.file.StandardCopyOption.COPY_ATTRIBUTES;

class CopyTree implements FileVisitor {

 private final Path copyFrom;
 private final Path copyTo;

 public CopyTree(Path copyFrom, Path copyTo) {
 this.copyFrom = copyFrom;
 this.copyTo = copyTo;
 }

 static void copySubTree(Path copyFrom, Path copyTo) throws IOException {
 try {
 Files.copy(copyFrom, copyTo, REPLACE_EXISTING, COPY_ATTRIBUTES);
 } catch (IOException e) {
 System.err.println("Unable to copy " + copyFrom + " [" + e + "]");
 }

 }

 @Override
 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {
 if (exc == null) {
 Path newdir = copyTo.resolve(copyFrom.relativize((Path) dir));
 try {
 FileTime time = Files.getLastModifiedTime((Path) dir);
 Files.setLastModifiedTime(newdir, time);
 } catch (IOException e) {
 System.err.println("Unable to copy all attributes to: " + newdir+" ["+e+ "]");
 }
 } else {
 throw exc;
 }

 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

106

 throws IOException {
 System.out.println("Copy directory: " + (Path) dir);
 Path newdir = copyTo.resolve(copyFrom.relativize((Path) dir));
 try {
 Files.copy((Path) dir, newdir, REPLACE_EXISTING, COPY_ATTRIBUTES);
 } catch (IOException e) {
 System.err.println("Unable to create " + newdir + " [" + e + "]");
 return FileVisitResult.SKIP_SUBTREE;
 }

 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Copy file: " + (Path) file);
 copySubTree((Path) file, copyTo.resolve(copyFrom.relativize((Path) file)));
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 if (exc instanceof FileSystemLoopException) {
 System.err.println("Cycle was detected: " + (Path) file);
 } else {
 System.err.println("Error occurred, unable to copy:" +(Path) file+" ["+ exc +
"]");
 }

 return FileVisitResult.CONTINUE;
 }
}

class Main {

 public static void main(String[] args) throws IOException {

 Path copyFrom = Paths.get("C:/rafaelnadal");
 Path copyTo = Paths.get("C:/rafaelnadal_copy");

 CopyTree walk = new CopyTree(copyFrom, copyTo);
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Files.walkFileTree(copyFrom, opts, Integer.MAX_VALUE, walk);
 }
}

After running the preceding application, you will find a C:\rafaelnadal_copy target that has the
same content and attributes as the C:\rafaelnadal source.

http://www.it-ebooks.info

CHAPTER 5 ■

 RECURSIVE OPERATIONS: WALKS

107

Writing a Move Files Application
Moving a file tree is a task that combines into a single application the steps of copying and deleting the
file tree. (For more details about moving files, refer to the Chapter 4 section “Moving Files and
Directories.”) Actually, there are two approaches commonly used to move a file tree: combine
Files.move(), Files.copy(), and Files.delete(), or use only Files.copy() and Files.delete().
Depending on the approach you choose, FileVisitor should be implemented accordingly to
accomplish the move file tree task. Before you see an example, here are some items you need to keep in
mind:

• Before you move any files from a directory, you must move the directory itself.
Since nonempty directories cannot be moved (only empty directories can be
moved), you need to use the Files.copy() method, which will copy an empty
directory instead. This task must be accomplished in the preVisitDirectory()
method.

• The visitFile() method is the perfect place to move each file. For this you can
use the Files.move() method, or Files.copy() combined with Files.delete().

• After all files from a source directory are moved into the target directory, you need
to call Files.delete() to delete the source directory, which, at this moment,
should be empty. This task must be accomplished in the postVisitDirectory()
method.

• When you copy a file or directory, you need to decide whether or not you want to
use the REPLACE_EXISTING and COPY_ATTRIBUTES options. Moreover, when you
move a file or directory, you need to decide if ATOMIC_MOVE is needed.

• If you want to preserve the attributes of the source directory, you need to do that
after the files have been moved, in the postVisitDirectory() method. Some
attributes, such as lastModifiedTime, should be extracted in the
preVisitDirectory() method and stored until they are set in
postVisitDirectory(). The reason is that after you move a file from the source
directory, the directory content has changed and the initial last modified time is
overwritten by the new date.

• If a file cannot be visited, the visitFileFailed() method should return
FileVisitResult.CONTINUE or TERMINATE, depending on your decision.

• The move process can follow symbolic links if you specify the FOLLOW_LINKS
option. Keep in mind that moving a symbolic link moves the link itself, not the
target of that link.

The following code snippet moves the C:\rafaelnadal directory content into the
C:\ATP\players\rafaelnafal directory (before testing, you must manually create the folder
C:\ATP\players\). In this case the directory and sub-directories are moved using Files.copy() and
Files.delete(), and the files are moved using Files.move().

import java.io.IOException;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.FileVisitor;
import java.nio.file.Files;

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

108

import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.attribute.FileTime;
import java.util.EnumSet;
import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
import static java.nio.file.StandardCopyOption.COPY_ATTRIBUTES;
import static java.nio.file.StandardCopyOption.ATOMIC_MOVE;

class MoveTree implements FileVisitor {

 private final Path moveFrom;
 private final Path moveTo;
 static FileTime time = null;

 public MoveTree(Path moveFrom, Path moveTo) {
 this.moveFrom = moveFrom;
 this.moveTo = moveTo;
 }

 static void moveSubTree(Path moveFrom, Path moveTo) throws IOException {
 try {
 Files.move(moveFrom, moveTo, REPLACE_EXISTING, ATOMIC_MOVE);
 } catch (IOException e) {
 System.err.println("Unable to move " + moveFrom + " [" + e + "]");
 }

 }

 @Override
 public FileVisitResult postVisitDirectory(Object dir, IOException exc)
 throws IOException {
 Path newdir = moveTo.resolve(moveFrom.relativize((Path) dir));
 try {
 Files.setLastModifiedTime(newdir, time);
 Files.delete((Path) dir);
 } catch (IOException e) {
 System.err.println("Unable to copy all attributes to: " + newdir+" [" + e + "]");
 }

 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Object dir, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Move directory: " + (Path) dir);
 Path newdir = moveTo.resolve(moveFrom.relativize((Path) dir));
 try {
 Files.copy((Path) dir, newdir, REPLACE_EXISTING, COPY_ATTRIBUTES);
 time = Files.getLastModifiedTime((Path) dir);
 } catch (IOException e) {

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

109

 System.err.println("Unable to move " + newdir + " [" + e + "]");
 return FileVisitResult.SKIP_SUBTREE;
 }

 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Object file, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Move file: " + (Path) file);
 moveSubTree((Path) file, moveTo.resolve(moveFrom.relativize((Path) file)));
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Object file, IOException exc)
 throws IOException {
 return FileVisitResult.CONTINUE;
 }
}

class Main {

 public static void main(String[] args) throws IOException {

 Path moveFrom = Paths.get("C:/rafaelnadal");
 Path moveTo = Paths.get("C:/ATP/players/rafaelnadal");

 MoveTree walk = new MoveTree(moveFrom, moveTo);
 EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

 Files.walkFileTree(moveFrom, opts, Integer.MAX_VALUE, walk);
 }
}

You can accomplish the same task without using Files.move(), since every move is just a pair of
copy and delete operations. For example, you can rewrite the moveSubTree() method to use Files.copy()
and Files.delete() to move files also:

static void moveSubTree(Path moveFrom, Path moveTo) throws IOException {
 try {
 Files.copy(moveFrom, moveTo, REPLACE_EXISTING, COPY_ATTRIBUTES);
 Files.delete(moveFrom);
 } catch (IOException e) {
 System.err.println("Unable to move " + moveFrom + " [" + e + "]");
 }
 }

http://www.it-ebooks.info

CHAPTER 5 ■ RECURSIVE OPERATIONS: WALKS

110

Summary
This chapter focused on developing recursive operations over files and directories. After a short intro to
the recursive programming technique, you learned about the FileVisitor interface and
SimpleFileVisitor implementation. You then saw how to develop a set of applications that that you can
use to perform tasks that involve traversing a file tree, such as finding, copying, deleting, and moving
files.

http://www.it-ebooks.info

C H A P T E R 6

■ ■ ■

111

Watch Service API

The Watch Service API was introduced in Java 7 (NIO.2) as a thread-safe service that is capable of
watching objects for changes and events. The most common use is to monitor a directory for changes to
its content through actions such as create, delete, and modify. You’ve probably seen the effect of such a
service many times. For example, when you open a text file in an editor (such as GridinSoft Notepad,
jEdit, etc.) and the file content is modified outside the editor, you will see a message that asks whether
you want to reload the file because it was modified. This means the editor has detected a file change
through a watch service and is reporting it accordingly. This is known as the file change notification
mechanism, and starting with NIO.2, it is available through the Watch Service API.

The Watch Service API is a low-level API that can be used as is or can be customized. You can even
write a high-level API on top of it. By default, this API uses the underlying file system functionalities to
watch the file system for changes. It allows you to register a directory (or directories) to be monitored for
different kinds of notification events that you specify during registration. When one or more of the
registered notification events are detected by the watch service, the watch service passes the notification
events to the process that is registered to handles them through a separate thread or pool of threads.

■ Note Starting with NIO.2, you no longer need to poll the file system for changes or use other in-house
solutions to monitor the file system changes. In previous Java versions, you have to implement an agent running in
a separate thread that keeps track of all the contents of the watched directories, constantly polling the file system
to see if anything important has happened. Now, regardless of whether you are running Mac OS X, Linux, Unix,
Windows, or some other OS, you have the guarantee that the underlying operating system and file system provide
the required functionalities to allow Java to register to receive notification of file system changes.

In this chapter you will see how to develop applications based on the provided Watch Service API.
Implementing a functional application isn’t easy, so we will start with the simplest case in which the
application monitors a single directory for changes. Afterward, you will see how to recursively monitor a
directory tree that you have registered to be watched. In addition, we will develop two more applications
that are less generic and that encapsulate real-life cases. To get you started, the chapter provides an
overview of the main classes involved in writing a Watch Service API–based application.

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

112

The Watch Service API Classes
The java.nio.file.WatchService interface is the starting point of this API. It has multiple
implementations for different file systems and operating systems. You use this interface together with
three classes to develop a system that has file system watch capability. These classes are overviewed by
the below bullets:

• Watchable object: An object is “watchable” if it represents an instance of a class
that implements the java.nio.file.Watchable interface. In our case, this is the
most important class of NIO 2, the well-known Path class.

• Event types: This is the list of events we are interested in monitoring. Events trigger
a notification only if they are specified in the register call. The standard supported
events are represented by the java.nio.file.StandardWatchEventKinds class and
include create, delete, and modify. This class implements the WatchEvent.Kind<T>
interface.

• Event modifier: This qualifies how a Watchable is registered with a WatchService.
As of the time of this writing, NIO.2 does not define any standard modifiers.

• Watcher: The watcher watches watchables! In our examples, the watcher is
WatchService and it monitors the file system changes (the file system is a
FileSystem instance). As you will see, the WatchService will be created through
the FileSystem class. It will work away silently in the background watching the
registered Path.

Implementing a Watch Service
Implementing a watch service is a task that requires accomplishing a set of steps. In this section, you will
see the main steps for developing a watch service that monitors a given directory for three notification
events: delete, create, and modify. Each step is supported by a chunk of code that demonstrates how to
practically accomplish the step. At the end, we will glue the chunks together into a complete functional
example of a watch service.

Creating a WatchService
We begin our journey by creating a WatchService for monitoring the file system. For this we call the
FileSystem.newWatchService() method:

WatchService watchService = FileSystems.getDefault().newWatchService();

We now have a watch service at our disposal.

Registering Objects with the Watch Service
Every object that should be watched must be explicitly registered with the watch service. We can register
any object that implements the Watchable interface. For our example, we will register directories that are
instances of the Path class. Besides the watched objects, the registration process requires identification

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

113

of the events for which the service should watch and notify. The supported types of events are mapped
under the StandardWatchEventKinds class as constants of type Kind<Path>:

• StandardWatchEventKinds.ENTRY_CREATE: A directory entry is created. An
ENTRY_CREATE event is also triggered when a file is renamed or moved into this
directory.

• StandardWatchEventKinds.ENTRY_DELETE: A directory entry is deleted. An
ENTRY_DELETE event is also triggered when a file is renamed or moved out of this
directory.

• StandardWatchEventKinds.ENTRY_MODIFY: A directory entry is modified. Which
events constitute a modification is somewhat platform-specific, but actually
modifying the contents of a file always triggers a modify event. On some
platforms, changing attributes of files can also trigger this event.

• StandardWatchEventKinds.OVERFLOW: Indicates that events might have been lost or
discarded. You do not have to register for the OVERFLOW event to receive it.

Since the Path class implements the Watchable interface, it provides the Watchable.register()
methods. There are two such methods dedicated for registering objects with the watch service. One of
them receives two arguments representing the watch service to which this object is to be registered and
the events for which this object should be registered. The second register method receives these two
arguments also, and a third argument that specifies modifiers that qualify how the directory is
registered. At the time of this writing, NIO.2 does not provide any standard modifiers.

The following code snippet registers the Path C:\rafaelnadal with the watch service (the monitored
events will be create, delete, and modify):

import static java.nio.file.StandardWatchEventKinds.*;
…
final Path path = Paths.get("C:/rafaelnadal");
WatchService watchService = FileSystems.getDefault().newWatchService();
…
path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY, StandardWatchEventKinds.ENTRY_DELETE);
…
watchService.close();
…

You receive a WatchKey instance for each directory that you register; this is a token representing the
registration of a watchable object with a WatchService. It is your choice whether or not to hang onto this
reference, because the WatchService returns the relevant WatchKey to you when an event is triggered.
More details about watch keys are provided in the following section.

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

114

Waiting for the Incoming Events
Waiting for the incoming events requires an infinite loop. When an event occurs, the watch service is
responsible for signaling the corresponding watch key and placing it into the watcher’s queue, from
where we can retrieve it—we say that the watch key was queued. Therefore, our infinite loop may be of
the following type:

while(true){
//retrieve and process the incoming events
…
}

Or it may be of the following type:

for(;;){
//retrieve and process the incoming events
…
}

Getting a Watch Key
Retrieving a queued key can be accomplished by calling one of the following three methods of the
WatchService class. All three methods retrieve the next key and remove it from the queue. They differ in
how they respond if no key is available, as described here:

• poll(): If no key is available, it returns immediately a null value.

• poll(long, TimeUnit): If no key is available, it waits the specified time and tries
again. If still no key is available, then it returns null. The time period is indicated
as a long number, while the TimeUnit argument determines whether the specified
time is minutes, seconds, milliseconds, or some other unit of time.

• take(): If no key is available, it waits until a key is queued or the infinite loop is
stopped for any of several different reasons.

The following three code snippets show you each of these methods called inside the infinite loop:

//poll method, without arguments
while (true) {
 //retrieve and remove the next watch key
 final WatchKey key = watchService.poll();
 //the thread flow gets here immediately with an available key or a null value
…
}

//poll method, with arguments
while (true) {
 //retrieve and remove the next watch key
 final WatchKey key = watchService.poll(10, TimeUnit.SECONDS);
 //the thread flow gets here immediately if a key is available, or after 10 seconds
 //with an available key or null value
…
}

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

115

//take method
while (true) {
 //retrieve and remove the next watch key
 final WatchKey key = watchService.take();
 //the thread flow gets here immediately if a key is available, or it will wait until a
 //key is available, or the loop breaks
…
}

Keep in mind that a key always has a state, which can be either ready, signaled, or invalid:

• Ready: When it is first created, a key is in the ready state, which means that it is
ready to accept events.

• Signaled: When a key is in the signaled state, it means that at least one event has
occurred and the key was queued, so it is available to be retrieved by poll() or
take() methods. (It is analogous to fishing: the key is the float, and the events are
the fish. When you have a fish on the hook, the float (key) signals you to pull the
line out of the water.) Once signaled, the key remains in this state until its reset()
method is invoked to return the key to the ready state. If other events occur while
the key is signaled, they are queued without requeuing the key itself (this never
happens when fishing).

• Invalid: When a key is in the invalid state, it means that it is no longer active. A key
remains valid until either it is cancelled by explicitly calling the cancel() method,
the directory becomes inaccessible, or the watch service is closed. You can test
whether a key is valid by calling the WatchKey.isValid() method, which will return
a corresponding boolean value.

■ Note Watch keys are safe for use by multiple concurrent threads.

Retrieving Pending Events for a Key
When the key is signaled, we have one or more pending events waiting for us to take action. We can
retrieve and remove all pending events for a specific watch key by calling the WatchKey.pollEvents()
method. It gets no arguments and returns a List containing the retrieved pending events. We can iterate
this List to extract and process each pending event individually. The List type is WatchEvent<T>, which
represents an event (or repeated event) for an object that is registered with a WatchService:

public List<WatchEvent<?>> pollEvents()

■ Note The pollEvents() method does not wait if there are no events pending, which sometimes may result in
an empty List.

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

116

The following code snippet iterates the pending events for our key:

…
while (true) {
 //retrieve and remove the next watch key
 final WatchKey key = watchService.take();

 //get list of pending events for the watch key
 for (WatchEvent<?> watchEvent : key.pollEvents()) {
…
 }
 …
}
…

■ Note Watch events are immutable and thread-safe.

Retrieving the Event Type and Count
The WatchEvent<T> interface maps event properties, such as type and count. The type of an event can be
obtained by calling the WatchEvent.kind() method, which returns the event type as a Kind<T> object.

■ Note If you ignore the registered event types, it is possible to receive an OVERFLOW event. This kind of event
can be ignored or handled, the choice of which is up to you.

The following code snippet will list the type of each event provided by the pollEvents() method:

…
//get list of pending events for the watch key
for (WatchEvent<?> watchEvent : key.pollEvents()) {

 //get the kind of event (create, modify, delete)
 final Kind<?> kind = watchEvent.kind();

 //handle OVERFLOW event
 if (kind == StandardWatchEventKinds.OVERFLOW) {
 continue;
 }

 System.out.println(kind);
}
…

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

117

Besides the event type, we can also get the number of times that the event has been observed
(repeated events). This is possible if we call the WatchEvent.count() method, which returns an int:

System.out.println(watchEvent.count());

Retrieving the File Name Associated with an Event
When a delete, create, or modify event occurs on a file, we can find out its name by getting the event
context (the file name is stored as the context of the event). This task can be accomplished by calling the
WatchEvent.context() method:

…
final WatchEvent<Path> watchEventPath = (WatchEvent<Path>) watchEvent;
final Path filename = watchEventPath.context();

System.out.println(filename);
…

Putting the Key Back in Ready State
Once signaled, the key remains in this state until its reset() method is invoked to return the key to the
ready state. It then resumes waiting for events. The reset() method returns true if the watch key is valid
and has been reset, and returns false if the watch key could not be reset because it is no longer valid. In
some cases, the infinite loop should be broken if the key is no longer valid; for example, if we have a
single key, there is no reason to stay in the infinite loop.

Following is the code that is used to break the loop if the key in no longer valid:

…
while(true){
 …
 //reset the key
 boolean valid = key.reset();

 //exit loop if the key is not valid (if the directory was deleted, for example)
 if (!valid) {
 break;
 }
}
…

■ Caution If you forget or fail to call the reset() method, the key will not receive any further events!

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

118

Closing the Watch Service
The watch service exits either when the thread exits or when the service is closed. It should be closed by
explicitly calling the WatchService.close() method, or by placing the creation code in a try-with-
resources block, as follows:

try (WatchService watchService = FileSystems.getDefault().newWatchService()) {
…
}

When the watch service is closed, any current operations are canceled and invalidated. After a watch
service is closed, any further attempt to invoke operations upon it will throw
ClosedWatchServiceException. If this watch service is already closed, then invoking this method has no
effect.

Gluing It All Together
In this section, we glue together all the preceding chunks of code, with imports and spaghetti-code, into
a single application that watches for create, delete, and modify events for the path C:\rafaelnadal and
reports the type of event and the file where it occurred. For purposes of testing, try manually to add,
delete, or modify a file or directory under this path. Keep in mind that only one level down is monitored
(only the C:\rafaelnadal directory), not the entire directory tree under the C:\rafaelnadal directory.

The application code follows:

package watch_01;

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardWatchEventKinds;
import java.nio.file.WatchEvent;
import java.nio.file.WatchEvent.Kind;
import java.nio.file.WatchKey;
import java.nio.file.WatchService;

class WatchRafaelNadal {

 public void watchRNDir(Path path) throws IOException, InterruptedException {
 try (WatchService watchService = FileSystems.getDefault().newWatchService()) {
 path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY, StandardWatchEventKinds.ENTRY_DELETE);

 //start an infinite loop
 while (true) {

 //retrieve and remove the next watch key
 final WatchKey key = watchService.take();

 //get list of pending events for the watch key
 for (WatchEvent<?> watchEvent : key.pollEvents()) {

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

119

 //get the kind of event (create, modify, delete)
 final Kind<?> kind = watchEvent.kind();

 //handle OVERFLOW event
 if (kind == StandardWatchEventKinds.OVERFLOW) {
 continue;
 }

 //get the filename for the event
 final WatchEvent<Path> watchEventPath = (WatchEvent<Path>) watchEvent;
 final Path filename = watchEventPath.context();

 //print it out
 System.out.println(kind + " -> " + filename);
 }

 //reset the key
 boolean valid = key.reset();

 //exit loop if the key is not valid (if the directory was deleted, for
example)
 if (!valid) {
 break;
 }
 }
 }
 }
}

public class Main {

 public static void main(String[] args) {

 final Path path = Paths.get("C:/rafaelnadal");
 WatchRafaelNadal watch = new WatchRafaelNadal();

 try {
 watch.watchRNDir(path);
 } catch (IOException | InterruptedException ex) {
 System.err.println(ex);
 }

 }
}

Since this application contains an infinite loop, be careful to manually stop the application, or
implement a stop mechanism. The application is provided as a NetBeans project, so you can easily stop
it, with no supplementary code, from the Output window.

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

120

Other Examples of Using a Watch Service
In this section, we will “play” with the preceding application for coding some scenarios meant to explore
the possibilities of the watch service. We will build new applications based on this one for accomplish
more complicated tasks that involves a watch service. As in the previous section, following the
description of each step, a chunk of code supporting the step is provided. After the steps are described in
full, we will pull everything together into the complete application.

■ Note For purposes of keeping the code as clean as possible, we will skip the declaration of variables (their
names are the same as in the previous application) and code that should just be repeated.

Watching a Directory Tree
To get started, we’ll develop an application that extends the preceding example to watch the entire
C:\rafaelnadal directory tree. Moreover, if a CREATE event creates a new directory somewhere in this
tree, it will get registered immediately as if it were there from the beginning.

First, create a watch service:

private WatchService watchService = FileSystems.getDefault().newWatchService();

Next, we need to register the directory tree for create, delete, and modify events. This is trickier than
it was in the original application because we need to register each subdirectory of C:\rafaelnadal, not
only this directory. Therefore, we need a walk (see Chapter 5) to traverse each subdirectory and register
it individually in the watch service. This case is perfect for implementing a walk by extending the
SimpleFileVisitor class, since we only need to get involved when a directory is previsited (additionally,
you may want to override the visitFileFailed() method for explicitly treating an unexpected traversal
error). To accomplish this, we will create a method, named registerTree(), as follows:

private void registerTree(Path start) throws IOException {

 Files.walkFileTree(start, new SimpleFileVisitor<Path>() {

 @Override
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Registering:" + dir);
 registerPath(dir);
 return FileVisitResult.CONTINUE;
 }
 });
}

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

121

As you can see, no registration happens here. For each traversed directory, this code calls another
method, named registerPath(), which will register the received path with the watch service as follows:

private void registerPath(Path path) throws IOException {

 //register the received path
 WatchKey key = path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY, StandardWatchEventKinds.ENTRY_DELETE);
 }

At this point, the initial C:\rafaelnadal directory and all subdirectories are registered for create,
delete, and modify events.

Next, we will focus on the infinite loop that will “capture” these events. When an event occurs, we
are especially interested whether it is a CREATE event, since it may signal that a new subdirectory has
been created, in which case it is our responsibility to add this subdirectory into the watch service process
by calling the registerTree() method with the corresponding path. The issue we need to resolve here is
that we do not know which key has been queued, so we do not know which path should be passed for
registration. The solution may be to keep the keys and corresponding paths in a HashMap that is updated
at every registration in the registerPath() method, as follows, after which, when an event occurs, we
can just extract the associated key from the hash map:

private final Map<WatchKey, Path> directories = new HashMap<>();
…
private void registerPath(Path path) throws IOException {
 //register the received path
 WatchKey key = path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY, StandardWatchEventKinds.ENTRY_DELETE);

 //store the key and path
 directories.put(key, path);
}

Now, in the infinite loop, we can register any new subdirectory as follows:

…
while (true) {
 …
 if (kind == StandardWatchEventKinds.ENTRY_CREATE) {
 final Path directory_path = directories.get(key);
 final Path child = directory_path.resolve(filename);

 if (Files.isDirectory(child, LinkOption.NOFOLLOW_LINKS)) {
 registerTree(child);
 }
 }
…
}
…

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

122

The HashMap can also be used to stop the infinite loop when no more valid keys are available. To
accomplish this, when a key is invalid, it is removed from the HashMap, and when the HashMap is empty,
the loop is broken:

…
while (true) {
 …
 //reset the key
 boolean valid = key.reset();

 //remove the key if it is not valid
 if (!valid) {
 directories.remove(key);

 if (directories.isEmpty()) {
 break;
 }
 }
}
…

That’s it! At this point, let’s put everything together into a single shot:

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.FileVisitResult;
import java.nio.file.Files;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.StandardWatchEventKinds;
import java.nio.file.WatchEvent;
import java.nio.file.WatchEvent.Kind;
import java.nio.file.WatchKey;
import java.nio.file.WatchService;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.HashMap;
import java.util.Map;

class WatchRecursiveRafaelNadal {

 private WatchService watchService;
 private final Map<WatchKey, Path> directories = new HashMap<>();

 private void registerPath(Path path) throws IOException {
 //register the received path
 WatchKey key = path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY, StandardWatchEventKinds.ENTRY_DELETE);

 //store the key and path
 directories.put(key, path);
 }

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

123

 private void registerTree(Path start) throws IOException {

 Files.walkFileTree(start, new SimpleFileVisitor<Path>() {

 @Override
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Registering:" + dir);
 registerPath(dir);
 return FileVisitResult.CONTINUE;
 }
 });

 }

 public void watchRNDir(Path start) throws IOException, InterruptedException {

 watchService = FileSystems.getDefault().newWatchService();

 registerTree(start);

 //start an infinite loop
 while (true) {

 //retrieve and remove the next watch key
 final WatchKey key = watchService.take();

 //get list of events for the watch key
 for (WatchEvent<?> watchEvent : key.pollEvents()) {

 //get the kind of event (create, modify, delete)
 final Kind<?> kind = watchEvent.kind();

 //get the filename for the event
 final WatchEvent<Path> watchEventPath = (WatchEvent<Path>) watchEvent;
 final Path filename = watchEventPath.context();

 //handle OVERFLOW event
 if (kind == StandardWatchEventKinds.OVERFLOW) {
 continue;
 }

 //handle CREATE event
 if (kind == StandardWatchEventKinds.ENTRY_CREATE) {
 final Path directory_path = directories.get(key);
 final Path child = directory_path.resolve(filename);

 if (Files.isDirectory(child, LinkOption.NOFOLLOW_LINKS)) {
 registerTree(child);
 }
 }

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

124

 //print it out
 System.out.println(kind + " -> " + filename);
 }

 //reset the key
 boolean valid = key.reset();

 //remove the key if it is not valid
 if (!valid) {
 directories.remove(key);

 //there are no more keys registered
 if (directories.isEmpty()) {
 break;
 }
 }
 }
 watchService.close();
 }
}

public class Main {

 public static void main(String[] args) {

 final Path path = Paths.get("C:/rafaelnadal");
 WatchRecursiveRafaelNadal watch = new WatchRecursiveRafaelNadal();

 try {
 watch.watchRNDir(path);
 } catch (IOException | InterruptedException ex) {
 System.err.println(ex);
 }

 }
}

For testing purposes, try to create new subdirectories and files, modify them, and then delete them.
At the same time, keep an eye on the console output to see how events are reported. The following is
example output from adding a new picture named rafa_champ.jpg to the C:\rafaelnadal\photos
directory and deleting it after a few seconds:

Registering:C:\rafaelnadal

Registering:C:\rafaelnadal\equipment

Registering:C:\rafaelnadal\grandslam

Registering:C:\rafaelnadal\grandslam\AustralianOpen

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

125

Registering:C:\rafaelnadal\grandslam\RolandGarros

Registering:C:\rafaelnadal\grandslam\USOpen

…

Registering:C:\rafaelnadal\wiki

ENTRY_CREATE -> rafa_champ.jpg

ENTRY_MODIFY -> rafa_champ.jpg

ENTRY_MODIFY -> photos

ENTRY_MODIFY -> rafa_champ.jpg

ENTRY_DELETE -> rafa_champ.jpg

ENTRY_MODIFY -> photos

Watching a Video Camera
For this scenario, suppose that we have a surveillance video camera that captures at least one image
every 10 seconds and sends it in JPG format to a computer directory. Behind the scenes, a controller is
responsible for checking if the camera sends the image captures on time and in the correct, JPG format.
It displays an alert message if the camera does not work properly.

This scenario can be easily reproduced in code lines thanks to the Watch Service API. We are
especially interested in writing the controller that watches the video camera. Since the video camera
sends the captures to a directory, our controller can watch that directory for the CREATE event. The
directory in this example is C:\security (which you should manually create) and it is mapped as a Path
by the path variable:

…
final Path path = Paths.get("C:/security");
…
WatchService watchService = FileSystems.getDefault().newWatchService();
path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE);
…

Next, we know that the video camera sends images every 10 seconds, which means that the
poll(long, TimeUnit) method should be perfect for monitoring this (remember that if an event occurs
during the specified time period, this method exits, returning the relevant WatchKey). We set it to wait
exactly 11 seconds, and if in this time no new capture is created, then we report this through a message
and stop the system:

…

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

126

while (true) {
 final WatchKey key = watchService.poll(11, TimeUnit.SECONDS);
 if (key == null) {
 System.out.println("The video camera is jammed - security watch system is canceled!");
 break;
 } else {
 …
 }
}
…

Finally, if we have a new capture available, then all we need to do is check whether it is in the JPG
image format. For this, we can use a helper method from the Files class, named probeContentType(),
which probes the content type of a file. We pass the file, and it returns null or the content type as a
MIME. For JPG images, this method should return image/jpeg.

…
OUTERMOST:
while (true) {
 …
 if (kind == StandardWatchEventKinds.ENTRY_CREATE) {

 //get the filename for the event
 final WatchEvent<Path> watchEventPath = (WatchEvent<Path>) watchEvent;
 final Path filename = watchEventPath.context();
 final Path child = path.resolve(filename);

 if (Files.probeContentType(child).equals("image/jpeg")) {

 //print out the video capture time
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MMM-dd HH:mm:ss");
 System.out.println("Video capture successfully at: " + dateFormat.format(new Date()));
 } else {
 System.out.println("The video camera capture format failed! This could be a virus!");
 break OUTERMOST;
 }
 }
}
…

We have accomplished the main tasks in writing the controller, so now all we need to do is fill in the
missing code (imports, declarations, main function, etc.) to give us the complete application, as follows:

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardWatchEventKinds;
import java.nio.file.WatchEvent;
import java.nio.file.WatchEvent.Kind;
import java.nio.file.WatchKey;
import java.nio.file.WatchService;

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

127

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.TimeUnit;

class SecurityWatch {

 WatchService watchService;

 private void register(Path path, Kind<Path> kind) throws IOException {
 //register the directory with the watchService for Kind<Path> event
 path.register(watchService, kind);
 }

 public void watchVideoCamera(Path path) throws IOException, InterruptedException {

 watchService = FileSystems.getDefault().newWatchService();
 register(path, StandardWatchEventKinds.ENTRY_CREATE);

 //start an infinite loop
 OUTERMOST:
 while (true) {

 //retrieve and remove the next watch key
 final WatchKey key = watchService.poll(11, TimeUnit.SECONDS);

 if (key == null) {
 System.out.println("The video camera is jammed - security watch system is
 canceled!");
 break;
 } else {

 //get list of events for the watch key
 for (WatchEvent<?> watchEvent : key.pollEvents()) {

 //get the kind of event (create, modify, delete)
 final Kind<?> kind = watchEvent.kind();

 //handle OVERFLOW event
 if (kind == StandardWatchEventKinds.OVERFLOW) {
 continue;
 }

 if (kind == StandardWatchEventKinds.ENTRY_CREATE) {

 //get the filename for the event
 final WatchEvent<Path> watchEventPath = (WatchEvent<Path>) watchEvent;
 final Path filename = watchEventPath.context();
 final Path child = path.resolve(filename);

 if (Files.probeContentType(child).equals("image/jpeg")) {

 //print out the video capture time

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

128

 SimpleDateFormat dateFormat = new
 SimpleDateFormat("yyyy-MMM-dd HH:mm:ss");
 System.out.println("Video capture successfully at: " +
 dateFormat.format(new Date()));
 } else {
 System.out.println("The video camera capture format failed!
 This could be a virus!");
 break OUTERMOST;
 }
 }
 }

 //reset the key
 boolean valid = key.reset();

 //exit loop if the key is not valid
 if (!valid) {
 break;
 }
 }
 }

 watchService.close();
 }
}

public class Main {

 public static void main(String[] args) {

 final Path path = Paths.get("C:/security");
 SecurityWatch watch = new SecurityWatch();

 try {
 watch.watchVideoCamera(path);
 } catch (IOException | InterruptedException ex) {
 System.err.println(ex);
 }

 }
}

For testing purposes, you may need to write a tester class or, much easier, play the role of the video
camera. Just start the application and copy and paste JPG images in C:\security before the critical time
passes. Try different cases, such as using a wrong file format, waiting more than 11 seconds before
copying another image, and so on.

Watching a Printer Tray System
In this section, we will develop an application that monitors a large-scale printer tray. Suppose that we
have a multithreading base class that receives documents to be printed and dispatches them to a suite of

3

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

129

network printers based on an algorithm that is intended to optimize use of the printers—a printing
thread terminates after the corresponding document has been printed. The class is implemented as
follows:

import java.nio.file.Path;
import java.util.Random;

class Print implements Runnable {

 private Path doc;

 Print(Path doc) {
 this.doc = doc;
 }

 @Override
 public void run() {
 try {
 //sleep a random number of seconds for simulating dispatching and printing
 Thread.sleep(20000 + new Random().nextInt(30000));
 System.out.println("Printing: " + doc);
 } catch (InterruptedException ex) {
 System.err.println(ex);
 }
 }
}

■ Note Java 7 recommends using the new ThreadLocalRandom class for generating random numbers in
multithreading cases. But I prefer the old Random class because the new class seems to have a bug; it generates
the same numbers over multiple threads. If the bug has been resolved by the time you read this book, then you
may want to use this line instead: ThreadLocalRandom.current().nextInt(20000, 50000);.

Now the printers are “fed” from a common public tray represented by a directory (C:\printertray,
which you need to create manually). Our job is to implement a watch service to manage this tray. When
a new document arrives into the tray, we have to pass it to the Print class, and after a document has
been printed, we have to delete it from the tray.

We start by obtaining a watch service via the classical approach and registering the C:\printertray
directory for CREATE and DELETE events:

…
final Path path = Paths.get("C:/printertray");
…
WatchService watchService = FileSystems.getDefault().newWatchService();
path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_DELETE);
…

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

130

Next, when a new document arrives into the tray, we have to create a new Print thread and store the
thread and the document path for further tracking the thread state. This will help us to know when a
document has been printed and thus should be deleted from the tray and removed for storage (we use a
HashMap for this task). The following code snippet contains the block of code executed when a new
document arrives into the tray (a CREATE event was queued):

private final Map<Thread, Path> threads = new HashMap<>();
…
if (kind == StandardWatchEventKinds.ENTRY_CREATE) {

 System.out.println("Sending the document to print -> " + filename);

 Runnable task = new Print(path.resolve(filename));
 Thread worker = new Thread(task);

 //we can set the name of the thread
 worker.setName(path.resolve(filename).toString());

 //store the thread and the path
 threads.put(worker, path.resolve(filename));

 //start the thread, never call method run() direct
 worker.start();
}
…

After a document is deleted from the tray (a DELETE event is queued), we just print a message:

…
if (kind == StandardWatchEventKinds.ENTRY_DELETE) {
 System.out.println("Document " + filename + " was successfully printed!");
}
…

But when is the document deleted? To solve this task, we use a little trick. Instead of using the
take() method for waiting keys to be queued, we use the poll(long, TimeUnit) method, which will give
us control in the infinite loop at the specified time interval—when we have control (no matter whether
or not any key was queued), we can loop the HashMap of threads to see if any printing job has terminated
(the associated thread state is TERMINATED). Every TERMINATED state will be followed by deletion of the
associated path and removal of the HashMap entry. When the path is deleted, a DELETE event will be
queued. The following code shows you how to accomplish this:

…
if (!threads.isEmpty()) {
 for (Iterator<Map.Entry<Thread, Path>> it = threads.entrySet().iterator(); it.hasNext();)
 Map.Entry<Thread, Path> entry = it.next();
 if (entry.getKey().getState() == Thread.State.TERMINATED) {
 Files.deleteIfExists(entry.getValue());
 it.remove();
 }
 }
}
…

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

131

Now, put everything together to obtain the complete application:

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardWatchEventKinds;
import java.nio.file.WatchEvent;
import java.nio.file.WatchEvent.Kind;
import java.nio.file.WatchKey;
import java.nio.file.WatchService;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.TimeUnit;

class Print implements Runnable {

 private Path doc;

 Print(Path doc) {
 this.doc = doc;
 }

 @Override
 public void run() {
 try {
 //sleep a random number of seconds for simulating dispatching and printing
 Thread.sleep(20000 + new Random().nextInt(30000));
 System.out.println("Printing: " + doc);
 } catch (InterruptedException ex) {
 System.err.println(ex);
 }
 }
}

class WatchPrinterTray {

 private final Map<Thread, Path> threads = new HashMap<>();

 public void watchTray(Path path) throws IOException, InterruptedException {
 try (WatchService watchService = FileSystems.getDefault().newWatchService()) {
 path.register(watchService, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_DELETE);

 //start an infinite loop
 while (true) {

 //retrieve and remove the next watch key
 final WatchKey key = watchService.poll(10, TimeUnit.SECONDS);

s

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

132

 //get list of events for the watch key
 if (key != null) {
 for (WatchEvent<?> watchEvent : key.pollEvents()) {

 //get the filename for the event
 final WatchEvent<Path> watchEventPath = (WatchEvent<Path>) watchEvent;
 final Path filename = watchEventPath.context();

 //get the kind of event (create, modify, delete)
 final Kind<?> kind = watchEvent.kind();

 //handle OVERFLOW event
 if (kind == StandardWatchEventKinds.OVERFLOW) {
 continue;
 }

 if (kind == StandardWatchEventKinds.ENTRY_CREATE) {
 System.out.println("Sending the document to print ->" + filename);

 Runnable task = new Print(path.resolve(filename));
 Thread worker = new Thread(task);

 //we can set the name of the thread
 worker.setName(path.resolve(filename).toString());

 //store the thread and the path
 threads.put(worker, path.resolve(filename));

 //start the thread, never call method run() direct
 worker.start();
 }

 if (kind == StandardWatchEventKinds.ENTRY_DELETE) {
 System.out.println(filename + " was successfully printed!");
 }
 }

 //reset the key
 boolean valid = key.reset();

 //exit loop if the key is not valid
 if (!valid) {
 threads.clear();
 break;
 }
 }

 if (!threads.isEmpty()) {
 for (Iterator<Map.Entry<Thread, Path>> it = threads.entrySet().iterator();
 it.hasNext();) {
 Map.Entry<Thread, Path> entry = it.next();

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

133

 if (entry.getKey().getState() == Thread.State.TERMINATED) {
 Files.deleteIfExists(entry.getValue());
 it.remove();
 }
 }
 }
 }
 }
 }
}

public class Main {

 public static void main(String[] args) {

 final Path path = Paths.get("C:/printertray");
 WatchPrinterTray watch = new WatchPrinterTray();

 try {
 watch.watchTray(path);
 } catch (IOException | InterruptedException ex) {
 System.err.println(ex);
 }

 }
}

For testing purposes, start the application and copy a set of files into the C:\printertray directory.
For example, the following is output from testing with a set of files:

Sending the document to print -> rafa_1.jpg

Sending the document to print -> AEGON.txt

Sending the document to print -> BNP.txt

Printing: C:\printertray\rafa_1.jpg

Printing: C:\printertray\AEGON.txt

rafa_1.jpg was successfully printed!

AEGON.txt was successfully printed!

Printing: C:\printertray\BNP.txt

Sending the document to print -> rafa_winner.jpg

BNP.txt was successfully printed!

http://www.it-ebooks.info

CHAPTER 6 ■ WATCH SERVICE API

134

Printing: C:\printertray\rafa_winner.jpg

rafa_winner.jpg was successfully printed

Summary
In this chapter you have explored a great facility of NIO.2, the Watch Service API. You learned how to
watch a directory or directory tree for events such as create, delete, and modify. After an overview of this
API and an introductory application, you saw how to combine this API with NIO.2 walks, how to
simulate video camera surveillance, and how to watch a large-scale printer tray. These examples were
simply meant to stimulate your curiosity to explore further the exciting world of this API. Since it is very
versatile, it can be applied in many other scenarios. For example, you might use it to update a file listing
in a GUI display or to detect the modification of configuration files that could then be reloaded.

http://www.it-ebooks.info

C H A P T E R 7

■ ■ ■

135

Random Access Files

In previous chapters we have explored files sequentially. Files that can be explored sequentially are
known as sequential files. In this chapter you will see the advantages of using nonsequential (random)
access to a file’s contents. Files that permit random access to their contents are known as random access
files (RAFs). Sequential files are used more often because they are easy to create, but RAFs are more
flexible and their data can be located faster.

With a RAF, you can open the file, seek a particular location, and read from or write to that file. After
you open a RAF, you can read from it or write to it in a random manner just by using a record number, or
you can add to the beginning or end of the file since you know how many records are in the file. A RAF
allows you to read a single character, read a chunk of bytes or a line, replace a portion of the file, append
lines, delete lines, and so forth, and allows you to perform all of these actions in a random manner.

Java 7 (NIO.2) introduces a brand-new interface for working with RAFs. Its name is
SeekableByteChannel and it is available in the java.nio.channels package. It extends the older
ByteChannel interface and represents a byte channel that maintains a current position and allows that
position to be modified. Moreover, Java 7 improves the well-known FileChannel class by implementing
this interface and providing RAF and FileChannel power in a single shot. With a simple cast we can
transform a SeekableByteChannel into a FileChannel.

This chapter uses the java.nio.ByteBuffer class extensively, so we will start with a short overview of
it. We will continue by detailing the SeekableByteChannel interface with applications that will read and
write files randomly to accomplish different types of common tasks. You will then see how to get a
FileChannel with RAF capabilities and explore the main facilities provided by FileChannel, such as
mapping a region of the file directly into memory for faster access, locking a region of the file, and
reading and writing bytes from an absolute location without affecting the channel’s current position.
The chapter ends with a benchmarking application that will help you to determine the fastest way to
copy a file using FileChannel capabilities versus other common approaches, like Files.copy(), buffered
streams, and so on.

Brief Overview of ByteBuffer
A buffer is essentially an array (usually of bytes, but other kinds of arrays can be used—the Buffer
interface offers ByteBuffer, CharBuffer, IntBuffer, ShortBuffer, LongBuffer, FloatBuffer, and
DoubleBuffer) that holds some data to be written or that was just read.

The two most important components of buffers in NIO are properties and ancestor methods, as
discussed next in turn.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

136

ByteBuffer Properties
The following are the essential properties of a buffer:

• Limit: When writing from a buffer, the limit specifies how much data remains to
get. When you are reading into a buffer, the limit specifies how much room
remains to put data into.

• Position: The position keeps track of how much data you have read or written. It
specifies into which or from which array element the next byte will go or come. A
buffer’s position is never negative and is never greater than its limit.

• Capacity: The capacity specifies the maximum amount of data that can be stored
in a buffer. The limit can never be larger than the capacity.

■ Note As an invariant, these three properties respect the following relationship: 0 ≤ position ≤ limit ≤ capacity.

As an example, suppose a buffer has a 6-byte capacity, as represented in Figure 7-1.

Figure 7-1. Java buffer representation (a)

At the starting point, the limit and capacity are equal (the limit cannot be larger than the capacity,
but the converse is perfectly normal) and are set to a virtual slot (in our case, slot number 7), as shown in
Figure 7-2.

Capacity
Limit

Figure 7-2. Java buffer representation (b)

■ Note In some cases, the initial limit may be 0, or it may be some other value, depending on the type of the
buffer and the manner in which it is constructed.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

137

Also, at the starting point the position is set to 0 (slot 1, as shown in Figure 7-3)—a read or write byte
will access position 0.

CapacityPosition
Limit

Figure 7-3. Java buffer representation (c)

Next, suppose that we read 2 bytes of data into our buffer. The 2 bytes of data go into the buffer
starting at position 0. Therefore, the first 2 bytes are filled and the position goes to the third byte, as
shown in Figure 7-4.

CapacityPosition
Limit

Figure 7-4. Java buffer representation (d)

Continuing with a second read, another 3 bytes go into the buffer. The position is increased to 5
(slot 6), as you can see in Figure 7-5.

CapacityPosition
Limit

Figure 7-5. Java buffer representation (e)

At this point, suppose that we are not reading into the buffer anymore and want to write from the
buffer. To do this, we first need to call the flip() method before we write any bytes. This will set the limit
to the current position, and set the position to 0. After the flip, the buffer appears as shown in Figure 7-6.

CapacityPosition
Limit

Figure 7-6. Java buffer representation (f)

Suppose we write 3 bytes from the buffer. Since the position is 0, the first 3 bytes are written and the
position moves to 3 (slot 4), as shown in Figure 7-7. The limit and capacity remain unchanged.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

138

CapacityPosition
Limit

Figure 7-7. Java buffer representation (g)

Next, we write 2 more bytes, and the position moves forward to slot 6, as shown in Figure 7-8; the
limit and capacity remain unchanged.

CapacityPosition
Limit

Figure 7-8. Java buffer representation (h)

There are two additional operations we may want to accomplish. Continuing with Figure 7-8 as a
reference, we may want to rewind the buffer or clear the buffer. Rewinding the buffer (calling the
rewind() method) will prepare the buffer for re-reading the data that it already contains—the limit
remains unchanged and the position is set to 0. Clearing the buffer (calling the clear() method) will
reset the buffer for receiving more bytes (the data is not deleted)—the limit is set to the capacity and the
position is set to 0. Figure 7-9 shows the effect of the clear()method, and Figure 7-10 shows the effect of
the rewind() method.

CapacityPosition
Limit

Figure 7-9. Java buffer representation (i)

CapacityPosition
Limit

Figure 7-10. Java buffer representation (j)

In addition, a buffer holds a mark. This is the index to which its position will be reset when the
reset() method is invoked. The mark is not always defined, but it is never negative and is never greater
than the position. If the mark is defined, then it is discarded when the position or the limit is adjusted to
a value smaller than the mark. If the mark is not defined, then invoking the reset() method causes an
InvalidMarkException to be thrown.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

139

■ Note Inserting the mark into the relationship results in the following: 0 ≤ mark ≤ position ≤ limit ≤ capacity.

ByteBuffer Ancestor Methods
ByteBuffer provides a set of get() and put() methods for accessing data. Since they are pretty intuitive, I
will simply list them here. For more details, consult the official documentation at
http://download.oracle.com/javase/7/docs/api/index.html and
http://download.oracle.com/javase/7/docs/index.html.

public abstract byte get()
public ByteBuffer get(byte[] dst)
public ByteBuffer get(byte[] dst, int offset, int length)
public abstract byte get(int index)

public abstract ByteBuffer put(byte b)
public final ByteBuffer put(byte[] src)
public ByteBuffer put(byte[] src, int offset, int length)
public ByteBuffer put(ByteBuffer src)
public abstract ByteBuffer put(int index, byte b)

In addition to the get() and put() methods, ByteBuffer also has extra methods for reading and
writing values of different types, as follows:

public abstract char getChar()
public abstract char getChar(int index)
public abstract double getDouble()
public abstract double getDouble(int index)
public abstract float getFloat()
public abstract float getFloat(int index)
public abstract int getInt()
public abstract int getInt(int index)
public abstract long getLong()
public abstract long getLong(int index)
public abstract short getShort()
public abstract short getShort(int index)

public abstract ByteBuffer putChar(char value)
public abstract ByteBuffer putChar(int index, char value)
public abstract ByteBuffer putDouble(double value)
public abstract ByteBuffer putDouble(int index, double value)
public abstract ByteBuffer putFloat(float value)
public abstract ByteBuffer putFloat(int index, float value)
public abstract ByteBuffer putInt(int value)
public abstract ByteBuffer putInt(int index, int value)
public abstract ByteBuffer putLong(int index, long value)
public abstract ByteBuffer putLong(long value)
public abstract ByteBuffer putShort(int index, short value)
public abstract ByteBuffer putShort(short value)

http://download.oracle.com/javase/7/docs/api/index.html
http://download.oracle.com/javase/7/docs/index.html
http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

140

A byte buffer can be direct or non-direct. The JVM will perform native I/O operations on direct
buffers. Direct buffers are created by using the allocateDirect() method, while non-direct buffers are
created by using the allocate() method.

At this point you have sufficient information about ByteBuffer to understand the following
applications. (To get deeper into the bowels of ByteBuffer, access dedicated tutorials on the Web.)
Therefore, we leave behind ByteBuffer for the moment and proceed to the main topic of this chapter,
the SeekableByteChannel interface. The next section will introduce you to channels and relate them with
buffers.

Brief Overview of Channels
In a stream-oriented I/O system, an input stream produces 1 byte of data and an output stream
consumes 1 byte of data—such a system is often rather slow. By contrast, in a block-oriented I/O system,
the input/output stream produces or consumes a block of data in one step.

Channels are analogous to streams, but with a few differences:

• While streams are typically one-way (read or write), channels support read and
write.

• Channels can be read and written asynchronously.

• Channels always read to, or write from, a buffer. All data that is sent to a channel
must first be placed in a buffer. Any data that is read from a channel is read into a
buffer.

Using the SeekableByteChannel Interface for Random Access
to Files
The new SeekableByteChannel interface provides support for RAF by implementing the notion of
position over channels. We can read or write a ByteBuffer from or to a channel, get or set the current
position, and truncate an entity connected to a channel to a specified dimension. The following
methods are associated with these features (more details are available in the official documentation at
http://download.oracle.com/javase/7/docs/api/index.html):

• position(): Returns the channel’s current position (non-negative).

• position(long): Sets the channel’s position to the specified long (non-negative).
Setting the position to a value that is greater than the current size is legal but does
not change the size of the entity.

• truncate(long): Truncates the entity connected to the channel to the specified
long.

• read(ByteBuffer): Reads bytes into the buffer from the channel.

• write(ByteBuffer): Writes bytes from the buffer to the channel.

• size(): Returns the current size of entity to which this channel is connected.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

141

Getting an instance of SeekableByteChannel can be accomplished through two methods of the Files
class, named newByteChannel(). The first (simplest) newByteChannel() method receives the path to the
file to open or create and a set of options specifying how the file is opened. The StandardOpenOption
enum constants were described in the Chapter 4 section “Using Standard Open Options,” but they are
repeated here for easy reference:

READ Opens file for read access

WRITE Opens file for write access

CREATE Creates a new file if it does not exist

CREATE_NEW Creates a new file, failing with an exception if the
file already exists

APPPEND Appends data to the end of the file (used with
WRITE and CREATE)

DELETE_ON_CLOSE Deletes the file when the stream is closed (used for
deleting temporary files)

TRUNCATE_EXISTING Truncates the file to 0 bytes (used with the WRITE
option)

SPARSE Causes the newly created file to be sparse

SYNC Keeps the file content and metadata synchronized
with the underlying storage device

DSYNC Keeps the file content synchronized with the
underlying storage device

The second newByteChannel() method receives the path to the file to open or create, a set of options
specifying how the file is opened, and, optionally, a list of file attributes to set atomically when the file is
created.

Both of these methods open or create a file, returning a SeekableByteChannel to access the file.

Reading a File with SeekableByteChannel
Focusing on the first newByteChannel() method, we get a SeekableByteChannel for reading the path
C:\rafaelnadal\grandslam\RolandGarros\story.txt (the file must exist):

…
Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");
…
try (SeekableByteChannel seekableByteChannel = Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.READ)))
{

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

142

…
} catch (IOException ex) {
 System.err.println(ex);
}

As an example, the following application will read and display the content of story.txt using a
ByteBuffer (the file must exist). I chose a buffer of 12 bytes, but feel free to use any other size.

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.EnumSet;
import java.nio.file.StandardOpenOption;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 //read a file using SeekableByteChannel
 try (SeekableByteChannel seekableByteChannel = Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.READ))) {

 ByteBuffer buffer = ByteBuffer.allocate(12);
 String encoding = System.getProperty("file.encoding");
 buffer.clear();

 while (seekableByteChannel.read(buffer) > 0) {
 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.clear();
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

The output should be similar to the following:

Rafa Nadal produced another masterclass of clay-court tennis to win his fifth French Open
title ...

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

143

Writing a File with SeekableByteChannel
Writing a file with SeekableByteChannel involves using the WRITE option. In addition, if we want to clean
up the existing content before writing, we can add the TRUNCATE_EXISTING option as follows. Here we
truncate story.txt and prepare it for writing (the story.txt file must exist).

…
Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");
…
try (SeekableByteChannel seekableByteChannel = Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.WRITE, StandardOpenOption.TRUNCATE_EXISTING))) {
…
} catch (IOException ex) {
 System.err.println(ex);
}

As an example, the following application will truncate and write some text in story.txt using a
ByteBuffer (in this case the file already exists; if it did not exist, then we would add CREATE or CREATE_NEW
and WRITE options and take out the TRUNCATE_EXISTING option since the file is empty anyway):

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 //write a file using SeekableByteChannel
 try (SeekableByteChannel seekableByteChannel = Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.WRITE, StandardOpenOption.TRUNCATE_EXISTING))) {

 ByteBuffer buffer = ByteBuffer.wrap("Rafa Nadal produced another masterclass of clay-court
 tennis to win his fifth French Open title ...".getBytes());

 int write = seekableByteChannel.write(buffer);
 System.out.println("Number of written bytes: " + write);

 buffer.clear();
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

144

When you write a file, there a few common cases that involve combining the open options:

• To write into a file that exists, at the beginning, use WRITE

• To write into a file that exists, at the end, use WRITE and APPEND

• To write into a file that exists and clean up its content before writing, use WRITE
and TRUNCATE_EXISTING

• To write into a file that does not exist, use CREATE (or CREATE_NEW) and WRITE

SeekableByteChannel and File Attributes
The following code snippet (written for Unix and other POSIX file systems) creates a file with a specific
set of file permissions. This code creates the file email.txt in the home\rafaelnadal\email directory or
appends to it if it already exists. The email.txt file is created with read and write permissions for the
owner and read-only permissions for the group.

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.nio.file.attribute.FileAttribute;
import java.nio.file.attribute.PosixFilePermission;
import java.nio.file.attribute.PosixFilePermissions;
import java.util.EnumSet;
import java.util.Set;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("home/rafaelnadal/email", "email.txt");
 ByteBuffer buffer = ByteBuffer.wrap("Hi Rafa, I want to congratulate you for the amazing
 match that you played ... ".getBytes());

 //create the custom permissions attribute for the email.txt file
 Set<PosixFilePermission> perms = PosixFilePermissions.fromString("rw-r------");
 FileAttribute<Set<PosixFilePermission>> attr = PosixFilePermissions.asFileAttribute(perms);

 //write a file using SeekableByteChannel
 try (SeekableByteChannel seekableByteChannel = Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.CREATE, StandardOpenOption.APPEND), attr)) {

 int write = seekableByteChannel.write(buffer);
 System.out.println("Number of written bytes: " + write);

 } catch (IOException ex) {
 System.err.println(ex);

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

145

 }

 buffer.clear();
 }
}

Reading a File with the Old ReadableByteChannel Interface
The new SeekableByteChannel interface is based on the old interfaces ReadableByteChannel (represents a
channel that reads bytes; only one thread can read at a time) and WritableByteChannel (represents a
channel that writes bytes; only one thread can write at a time) that have been available in NIO since JDK
1.4. These two interfaces are super interfaces for SeekableByteChannel. Thanks to this relationship
between them, we can use the old ReadableByteChannel interface with the new Files.newByteChannel()
method as follows, in which we read the content of the existing story.txt file:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.ReadableByteChannel;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 //read a file using ReadableByteChannel
 try (ReadableByteChannel readableByteChannel = Files.newByteChannel(path)) {

 ByteBuffer buffer = ByteBuffer.allocate(12);
 buffer.clear();

 String encoding = System.getProperty("file.encoding");

 while (readableByteChannel.read(buffer) > 0) {
 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.clear();
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

As you can see, there is no need to specify the READ option.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

146

Writing a File with the Old WritableByteChannel Interface
We can also combine the old WritableByteChannel interface with the new Files.newByteChannel()
method as follows, in which we append some text into story.txt:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.WritableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;
public class Main {

public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 //write a file using WritableByteChannel
 try (WritableByteChannel writableByteChannel = Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.WRITE, StandardOpenOption.APPEND))) {

 ByteBuffer buffer = ByteBuffer.wrap("Vamos Rafa!".getBytes());

 int write = writableByteChannel.write(buffer);
 System.out.println("Number of written bytes: " + write);

 buffer.clear();

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Even if we use a WritableByteChannel, we still need to explicitly specify the WRITE option. The APPEND
option is optional, and is specific to the preceding example.

Playing with SeekableByteChannel Position
Now that you know how to read and write an entire file with SeekableByteChannel, you are ready to
discover how you can do the same operations but at a specified channel (entity) position. For this, we
will exploit the position() and position(long) methods in a suite of four examples meant to familiarize
you with the RAF concept. Keep in mind that the position() method without arguments returns the
current channel (entity) position, while the position(long) method sets the current position in the
channel (entity) by counting the number of bytes from the beginning of it. The first position is 0 and the
last valid position is the channel (entity) size.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

147

Example 1: Read One Character from Different Positions
We start with a simple example that reads exactly one character from a text file from the first, middle,
and last positions. The file is MovistarOpen.txt and it is located in the C:\rafaelnadal\tournaments\2009
directory.

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "MovistarOpen.txt");
 ByteBuffer buffer = ByteBuffer.allocate(1);
 String encoding = System.getProperty("file.encoding");

 try (SeekableByteChannel seekableByteChannel = (Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.READ)))) {

 //the initial position should be 0 anyway
 seekableByteChannel.position(0);

 System.out.println("Reading one character from position: " +
 seekableByteChannel.position());
 seekableByteChannel.read(buffer);
 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.rewind();

 //get into the middle
 seekableByteChannel.position(seekableByteChannel.size()/2);

 System.out.println("\nReading one character from position: " +
 seekableByteChannel.position());
 seekableByteChannel.read(buffer);
 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.rewind();

 //get to the end
 seekableByteChannel.position(seekableByteChannel.size()-1);

 System.out.println("\nReading one character from position: " +
 seekableByteChannel.position());

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

148

 seekableByteChannel.read(buffer);
 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.clear();

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

The preceding application will produce the following output:

Reading one character from position: 0

T

Reading one character from position: 181

n

Reading one character from position: 361

.

Example 2: Write Characters at Different Positions
Next, we will try to write to a specific position. Suppose that the MovistarOpen.txt file has the following
default content:

The Movistar Open moved to Santiago from Viña del Mar in 2010. It is the first clay-court
tournament of the ATP World Tour season and also the opening leg of the four-tournament swing
through Latin America, aptly coined the "Golden Swing" in honour of top Chileans and Olympic
Gold medalists Fernando Gonsales and Nicolas Massu. Gonzalez is a four-time champion.

We want to accomplish two tasks: first, add some text at the end of the preceding text, and second,
replace “Gonsales” with “Gonzalez” because Fernando’s last name was misspelled in the first instance.
Here is the application:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

149

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "MovistarOpen.txt");
 ByteBuffer buffer_1 = ByteBuffer.wrap("Great players participate in our tournament, like:
 Tommy Robredo, Fernando Gonzalez, Jose Acasuso or Thomaz Bellucci.".getBytes());
 ByteBuffer buffer_2 = ByteBuffer.wrap("Gonzalez".getBytes());

 try (SeekableByteChannel seekableByteChannel = (Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.WRITE)))) {

 //append some text at the end
 seekableByteChannel.position(seekableByteChannel.size());

 while (buffer_1.hasRemaining()) {
 seekableByteChannel.write(buffer_1);
 }

 //replace "Gonsales" with "Gonzalez"
 seekableByteChannel.position(301);

 while (buffer_2.hasRemaining()) {
 seekableByteChannel.write(buffer_2);
 }

 buffer_1.clear();
 buffer_2.clear();

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

If everything worked fine, the new MovistarOpen.txt content should be as follows:

The Movistar Open moved to Santiago from Viña del Mar in 2010. It is the first clay-court
tournament of the ATP World Tour season and also the opening leg of the four-tournament swing
through Latin America, aptly coined the "Golden Swing" in honour of top Chileans and Olympic
Gold medalists Fernando Gonzalez and Nicolas Massu. Gonzalez is a four-time champion. Great
players participate in our tournament, like: Tommy Robredo, Fernando Gonzalez, Jose Acasuso or
Thomaz Bellucci.

Example 3: Copy a Portion of a File from the Beginning to the End
Moving on to a new application, we next want to copy a portion of text from the beginning of a file to the
end of the same file. As an example, we’ll use the HeinekenOpen.txt file (located in the
C:\rafaelnadal\tournaments\2009 directory), which has the following content:

The Pride Of New Zealand
The Heineken Open is the biggest men's professional sporting event in New Zealand, held in...

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

150

We want to copy the text “The Pride of New Zealand” at the end, like this:

The Pride Of New Zealand
The Heineken Open is the biggest men's professional sporting event in New Zealand, held in...
The Pride Of New Zealand

The following application accomplishes this task:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "HeinekenOpen.txt");

 ByteBuffer copy = ByteBuffer.allocate(25);
 copy.put("\n".getBytes());

 try (SeekableByteChannel seekableByteChannel = (Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.READ, StandardOpenOption.WRITE)))) {

 int nbytes;
 do {
 nbytes = seekableByteChannel.read(copy);
 } while (nbytes != -1 && copy.hasRemaining());

 copy.flip();

 seekableByteChannel.position(seekableByteChannel.size());
 while (copy.hasRemaining()) {
 seekableByteChannel.write(copy);
 }

 copy.clear();

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

151

Example 4: Replace a File Portion with Truncate Capability
In this example we will truncate a file and append new text in place of the truncated text. We will use the
BrasilOpen.txt file (found in the C:\rafaelnadal\tournaments\2009 directory), which has the following
content:

Brasil Open At Forefront Of Green Movement
The Brasil Open, the second stop of the four-tournament Latin American swing, is held in an
area renowned for its lush natural beauty and stunning beaches. From this point forward ...

We want to truncate the file content to remove the text “From this point forward ...” and append
new text in its place. Here is the solution:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BrasilOpen.txt");

 ByteBuffer buffer = ByteBuffer.wrap("The tournament has taken a lead in environmental
conservation efforts, with highlights including the planting of 500 trees to neutralise carbon
emissions and providing recyclable materials to local children for use in craft
work.".getBytes());

 try (SeekableByteChannel seekableByteChannel = (Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.READ, StandardOpenOption.WRITE)))) {

 seekableByteChannel.truncate(200);

 seekableByteChannel.position(seekableByteChannel.size()-1);
 while (buffer.hasRemaining()) {
 seekableByteChannel.write(buffer);
 }

 buffer.clear();

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

The effect of this application is the following modification of the BrasilOpen.txt file:

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

152

Brasil Open At Forefront Of Green Movement
The Brasil Open, the second stop of the four-tournament Latin American swing, is held in an
area renowned for its lush natural beauty and stunning beaches. The tournament has taken a
lead in environmental conservation efforts, with highlights including the planting of 500
trees to neutralise carbon emissions and providing recyclable materials to local children for
use in craft work.

This suite of examples should help you to understand how to randomly access file content. Next, we
are going to cast the SeekableByteChannel interface to FileChannel to give us access to more advanced
features.

Working with FileChannel
FileChannel was introduced in Java 4, but recently it was updated to implement the new
SeekableByteChannel interface, combining their forces to achieve more power. SeekableByteChannel
provides the random access file feature, while FileChannel offers great advanced features such as
mapping a region of the file directly into memory for faster access and locking a region of the file.

Getting a FileChannel for a Path can be accomplished with the two new FileChannel.open()
methods. Both methods are able to open or create a file for the given Path and return a new channel. The
first (simplest) method receives the path of the file to open or create and a set of options specifying how
the file is opened. The second method receives the path of the file to open or create, a set of options
specifying how the file is opened, and, optionally, a list of file attributes to set atomically when the file is
created.

For example, the following code gets for the specified path a file channel with read/write
capabilities:

Path path = Paths.get("…");
…
try (FileChannel fileChannel = (FileChannel.open(path, EnumSet.of(
 StandardOpenOption.READ, StandardOpenOption.WRITE)))) {
…
} catch (IOException ex) {
 System.err.println(ex);
}

Explicitly casting a SeekableByteChannel to a FileChannel can be an alternative to the preceding
code:

Path path = Paths.get("…");
…
try (FileChannel fileChannel = (FileChannel)(Files.newByteChannel(path,
 EnumSet.of(StandardOpenOption.READ, StandardOpenOption.WRITE))))
{
…
} catch (IOException ex) {
 System.err.println(ex);
}

Now, the fileChannel instance has access to the methods provided by SeekableByteChannel and
FileChannel.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

153

Mapping a Channel’s File Region Directly into Memory
One of the great FileChannel facilities is the capability to map a region of a channel’s file directly into
memory. This is possible thanks to the FileChannel.map() method, which gets the following three
arguments:

• mode: Mapping a region into memory can be accomplished in one of three modes:
MapMode.READ_ONLY (read-only mapping; writing attempts will throw
ReadOnlyBufferException), MapMode.READ_WRITE (read/write mapping; changes in
the resulting buffer can be propagated to the file and can be visible from other
programs that map the same file), or MapMode.PRIVATE (copy-on-write mapping;
changes in the resulting buffer can’t be propagated to the file and aren’t visible
from other programs).

• position: The mapped region starts at the indicated position within the file (non-
negative).

• size: Indicates the size of the mapped region (0 ≤ size ≤ Integer.MAX_VALUE).

■ Note Only channels opened for reading can be mapped as read-only, and only channels opened for reading
and writing can be mapped as read/write or private.

The map() method will return a MappedByteBuffer that actually represents the extracted region. This
extends the ByteBuffer with the following three methods, more details of which you can find in the
official documentation at http://download.oracle.com/javase/7/docs/api/index.html:

• force(): Forces the changed over buffer to be propagated to the originating file

• load(): Loads the buffer content into physical memory

• isLoaded(): Verifies whether the buffer content is in physical memory

The next application gets a new channel for the file BrasilOpen.txt (located in
C:\rafaelnadal\tournaments\2009) and maps its entire content into a byte buffer in READ_ONLY mode. To
test if the operation completes successfully, the following is a printout of the byte buffer content:

import java.io.IOException;
import java.nio.CharBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.charset.CharacterCodingException;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

154

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "BrasilOpen.txt");
 MappedByteBuffer buffer = null;

 try (FileChannel fileChannel = (FileChannel.open(path,
 EnumSet.of(StandardOpenOption.READ)))) {

 buffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());

 } catch (IOException ex) {
 System.err.println(ex);
 }

 if (buffer != null) {
 try {
 Charset charset = Charset.defaultCharset();
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 String content = charBuffer.toString();
 System.out.println(content);

 buffer.clear();
 } catch (CharacterCodingException ex) {
 System.err.println(ex);
 }
 }
 }
}

If everything worked fine, you should see the BrasilOpen.txt content output to the console.

Locking a Channel’s File
File locking is a mechanism that restricts access to a file or other piece of data to ensure that two or more
users can’t modify the same file simultaneously. This prevent the classic interceding update scenario.
Usually the file is locked when the first user accesses it and stays locked (can be read, but not modified)
until that user is finished with the file.

The exact behavior of file locking is platform dependent. On some platforms, file locking is advisory
(any application can access the file if the application does not check for a file lock), while on others it is
mandatory (file locking prevents any application from accessing a file).

We can take advantage of file locking in Java applications through the NIO API. However, there is no
guarantee that the file locking mechanism will always work as you expect. Underlying OS support or,
sometimes, a faulty implementation may affect the expected behavior. Keep in mind the following:

• “File locks are held on behalf of the entire Java virtual machine. They are not
suitable for controlling access to a file by multiple threads within the same virtual
machine.” (Java Platform SE 7 official documentation,
http://download.oracle.com/javase/7/docs/api/java/nio/channels/FileLock.html
.)

http://download.oracle.com/javase/7/docs/api/java/nio/channels/FileLock.html
http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

155

• Windows takes care of locking directories and other structures for you, so a delete,
rename, or write operation will fail if another process has the file open. Therefore,
creating a Java lock over a system lock will fail.

• The Linux kernel manages a set of functions known as advisory locking
mechanisms. In addition, you can enforce locking at the kernel level with
mandatory locks. Therefore, when using Java locks, keep in mind this aspect.

The FileChannel class provides four methods for file locking: two lock() methods and two
tryLock() methods. The lock() methods block the application until the desired lock can be retrieved,
while the tryLock() methods do not block the application and return null or throw an exception if the
file is already locked. There is one lock()/tryLock() method for retrieving an exclusive lock on this
channel’s file and one for retrieving a lock over a region of the channel’s file—this method also allows a
lock to be shared.

To demonstrate file locking, we’ll look at two applications. The first one locks a file named vamos.txt
(under C:\rafaelnadal\email) for 2 minutes while writing some text into it. The second application will
attempt to write to the same file during this time. If the file was successfully locked for 2 minutes, then
the second application will throw a java.io.IO.Exception and output a message like the following:

The process cannot access the file because another process has locked a portion of the file.

Here is the first application:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.FileLock;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/email", "vamos.txt");
 ByteBuffer buffer = ByteBuffer.wrap("Vamos Rafa!".getBytes());

 try (FileChannel fileChannel = (FileChannel.open(path, EnumSet.of(StandardOpenOption.READ,
 StandardOpenOption.WRITE)))) {

 // Use the file channel to create a lock on the file.
 // This method blocks until it can retrieve the lock.
 FileLock lock = fileChannel.lock();

 // Try acquiring the lock without blocking. This method returns
 // null or throws an exception if the file is already locked.
 //try {
 // lock = fileChannel.tryLock();

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

156

 //} catch (OverlappingFileLockException e) {
 // File is already locked in this thread or virtual machine
 //}

 if (lock.isValid()) {

 System.out.println("Writing to a locked file ...");
 try {
 Thread.sleep(60000);
 } catch (InterruptedException ex) {
 System.err.println(ex);
 }
 fileChannel.position(0);
 fileChannel.write(buffer);
 try {
 Thread.sleep(60000);
 } catch (InterruptedException ex) {
 System.err.println(ex);
 }
 }

 // Release the lock
 lock.release();

 System.out.println("\nLock released!");

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Run the preceding application and, within a maximum of 2 minutes, start the following application
in parallel:

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;

public class Main {

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/email", "vamos.txt");
 ByteBuffer buffer = ByteBuffer.wrap("Hai Hanescu !".getBytes());

 try (FileChannel fileChannel = (FileChannel.open(path, EnumSet.of(StandardOpenOption.READ,
 StandardOpenOption.WRITE)))) {

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

157

 fileChannel.position(0);
 fileChannel.write(buffer);

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

You should find that the second application can write into vamos.txt only after the lock is released,
after 2 minutes.

Copying Files with FileChannel
FileChannel provides a few ways to copy a file. You can use FileChannel with a direct or non-direct
ByteBuffer, use FileChannel.transferTo() or FileChannel.transferFrom(), or use FileChannel.map().

Copying Files with FileChannel and a Direct or Non-direct ByteBuffer
To copy files with FileChannel and a direct or non-direct ByteBuffer, we need one channel for the source
file, one channel for the target file, and a direct or non-direct ByteBuffer. For example, the following
snippet of code will copy the file Rafa Best Shots.mp4 (located in the
C:\rafaelnadal\tournaments\2009\videos directory) to the C:\ root using a direct ByteBuffer of 4KB:

…
final Path copy_from = Paths.get("C:/rafaelnadal/tournaments/2009/
 videos/Rafa Best Shots.mp4");
final Path copy_to = Paths.get("C:/Rafa Best Shots.mp4");
int bufferSizeKB = 4;
int bufferSize = bufferSizeKB * 1024;
…
System.out.println("Using FileChannel and direct buffer ...");
try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 // Allocate a direct ByteBuffer
 ByteBuffer bytebuffer = ByteBuffer.allocateDirect(bufferSize);

 // Read data from file into ByteBuffer
 int bytesCount;
 while ((bytesCount = fileChannel_from.read(bytebuffer)) > 0) {
 //flip the buffer which set the limit to current position, and position to 0
 bytebuffer.flip();
 //write data from ByteBuffer to file
 fileChannel_to.write(bytebuffer);
 //for the next read
 bytebuffer.clear();

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

158

 }
} catch (IOException ex) {
 System.err.println(ex);
}
…

To use a non-direct ByteBuffer, just replace the line

 ByteBuffer bytebuffer = ByteBuffer.allocateDirect(bufferSize);

with the following line:

 ByteBuffer bytebuffer = ByteBuffer.allocate(bufferSize);

Copying Files with FileChannel.transferTo() or FileChannel.transferFrom()
FileChannel.transferTo() transfers bytes from one channel’s file to the given writable byte channel. You
choose the position, the maximum number of bytes to be transferred, and the target channel, and
FileChannel.transferTo() returns the number of transferred bytes. The following example transfers the
entire content of Rafa Best Shots.mp4:

…
System.out.println("Using FileChannel.transferTo method ...");
try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 fileChannel_from.transferTo(0L, fileChannel_from.size(), fileChannel_to);

} catch (IOException ex) {
 System.err.println(ex);
}
…

Alternatively, you can use FileChannel.transferFrom() to transfer bytes into this channel’s file from
the given readable byte channel. To do so, modify the preceding code by replacing the line

 fileChannel_from.transferTo(0L, fileChannel_from.size(), fileChannel_to);

with the following line:

 fileChannel_to.transferFrom(fileChannel_from, 0L, (int) fileChannel_from.size());

Copying Files with FileChannel.map()
Earlier in the chapter you saw how to map a region of the channel’s files into memory using a
MappedByteBuffer. In this section, we extrapolate that example to copy the Rafa Best Shots.mp4 content:

…
System.out.println("Using FileChannel.map method ...");
try (FileChannel fileChannel_from = (FileChannel.open(copy_from,

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

159

 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 MappedByteBuffer buffer = fileChannel_from.map(FileChannel.MapMode.READ_ONLY, 0,
 fileChannel_from.size());

 fileChannel_to.write(buffer);
 buffer.clear();

} catch (IOException ex) {
 System.err.println(ex);
}
…

Benchmarking FileChannel Copy Capabilities
In the previous three sections you saw different ways to copy a file using FileChannel capabilities. Java
also comes with another set of solutions for copying a file, including using the Files.copy() method or
buffered/unbuffered streams and a byte array. Which one should you choose? This is a hard question,
and its answer depends on many factors. This section focuses on one factor, speed, because completing
a copy task quickly increases productivity and, in some situations, is critical to success. Thus, this
section implements an application that compares how much time each of the following solutions takes
for each copy:

• FileChannel and a non-direct ByteBuffer

• FileChannel and a direct ByteBuffer

• FileChannel.transferTo()

• FileChannel.transferFrom()

• FileChannel.map()

• Using buffered streams and a byte array

• Using unbuffered streams and a byte array

• Files.copy() (Path to Path, InputStream to Path, and Path to OutputStream)

The test was made under the following conditions:

• Copied file type: MP4 video (the file is named Rafa Best Shots.mp4 and is initially
located in C:\rafaelnadal\tournaments\2009\videos)

• Copied file size: 58.3MB

• Buffer size tested: 4KB, 16KB, 32KB, 64KB, 128KB, 256KB, and 1024KB

• Machine: Mobile AMD Sempron Processor 3400 + 1.80 GHz, 1.00GB RAM, 32-bit
OS, Windows 7 Ultimate

• Measurement type: Using the System.nanoTime() method

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

160

• Time was captured only after three ignored consecutive runs; the first three runs
are ignored to achieve a trend. The first-time run is always slower than the
subsequent runs.

The application is listed next and is available in the Source Code Download section of this book’s
page on Apress.com:

import java.nio.MappedByteBuffer;
import java.io.OutputStream;
import java.io.InputStream;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.EnumSet;
import static java.nio.file.LinkOption.NOFOLLOW_LINKS;

public class Main {

 public static void deleteCopied(Path path){

 try {
 Files.deleteIfExists(path);
 } catch (IOException ex) {
 System.err.println(ex);
 }

 }

 public static void main(String[] args) {

 final Path copy_from = Paths.get("C:/rafaelnadal/tournaments/2009/videos/
 Rafa Best Shots.mp4");
 final Path copy_to = Paths.get("C:/Rafa Best Shots.mp4");
 long startTime, elapsedTime;
 int bufferSizeKB = 4; //also tested for 16, 32, 64, 128, 256 and 1024
 int bufferSize = bufferSizeKB * 1024;

 deleteCopied(copy_to);

 //FileChannel and non-direct buffer
 System.out.println("Using FileChannel and non-direct buffer ...");
 try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

161

 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 startTime = System.nanoTime();

 // Allocate a non-direct ByteBuffer
 ByteBuffer bytebuffer = ByteBuffer.allocate(bufferSize);

 // Read data from file into ByteBuffer
 int bytesCount;
 while ((bytesCount = fileChannel_from.read(bytebuffer)) > 0) {
 //flip the buffer which set the limit to current position, and position to 0
 bytebuffer.flip();
 //write data from ByteBuffer to file
 fileChannel_to.write(bytebuffer);
 //for the next read
 bytebuffer.clear();
 }

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
 } catch (IOException ex) {
 System.err.println(ex);
 }

 deleteCopied(copy_to);

 //FileChannel and direct buffer
 System.out.println("Using FileChannel and direct buffer ...");
 try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 startTime = System.nanoTime();

 // Allocate a direct ByteBuffer
 ByteBuffer bytebuffer = ByteBuffer.allocateDirect(bufferSize);

 // Read data from file into ByteBuffer
 int bytesCount;
 while ((bytesCount = fileChannel_from.read(bytebuffer)) > 0) {
 //flip the buffer which set the limit to current position, and position to 0
 bytebuffer.flip();
 //write data from ByteBuffer to file
 fileChannel_to.write(bytebuffer);
 //for the next read
 bytebuffer.clear();
 }

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

162

 } catch (IOException ex) {
 System.err.println(ex);
 }

 deleteCopied(copy_to);

 //FileChannel.transferTo()
 System.out.println("Using FileChannel.transferTo method ...");
 try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 startTime = System.nanoTime();

 fileChannel_from.transferTo(0L, fileChannel_from.size(), fileChannel_to);

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
 } catch (IOException ex) {
 System.err.println(ex);
 }

 deleteCopied(copy_to);

 //FileChannel.transferFrom()
 System.out.println("Using FileChannel.transferFrom method ...");
 try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 startTime = System.nanoTime();

 fileChannel_to.transferFrom(fileChannel_from, 0L, (int) fileChannel_from.size());

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
 } catch (IOException ex) {
 System.err.println(ex);
 }

 deleteCopied(copy_to);

 //FileChannel.map
 System.out.println("Using FileChannel.map method ...");
 try (FileChannel fileChannel_from = (FileChannel.open(copy_from,
 EnumSet.of(StandardOpenOption.READ)));
 FileChannel fileChannel_to = (FileChannel.open(copy_to,
 EnumSet.of(StandardOpenOption.CREATE_NEW, StandardOpenOption.WRITE)))) {

 startTime = System.nanoTime();

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

163

 MappedByteBuffer buffer = fileChannel_from.map(FileChannel.MapMode.READ_ONLY,
 0, fileChannel_from.size());

 fileChannel_to.write(buffer);
 buffer.clear();

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
} catch (IOException ex) {
 System.err.println(ex);
}

deleteCopied(copy_to);

//Buffered Stream I/O
System.out.println("Using buffered streams and byte array ...");
File inFileStr = copy_from.toFile();
File outFileStr = copy_to.toFile();
try (BufferedInputStream in = new BufferedInputStream(new FileInputStream(inFileStr));
 BufferedOutputStream out = new BufferedOutputStream(new FileOutputStream(outFileStr))) {

 startTime = System.nanoTime();

 byte[] byteArray = new byte[bufferSize];
 int bytesCount;
 while ((bytesCount = in.read(byteArray)) != -1) {
 out.write(byteArray, 0, bytesCount);
 }

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
} catch (IOException ex) {
 System.err.println(ex);
}

deleteCopied(copy_to);

System.out.println("Using un-buffered streams and byte array ...");
try (FileInputStream in = new FileInputStream(inFileStr);
 FileOutputStream out = new FileOutputStream(outFileStr)) {

 startTime = System.nanoTime();

 byte[] byteArray = new byte[bufferSize];
 int bytesCount;
 while ((bytesCount = in.read(byteArray)) != -1) {
 out.write(byteArray, 0, bytesCount);
 }

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

164

} catch (IOException ex) {
 System.err.println(ex);
}

deleteCopied(copy_to);

System.out.println("Using Files.copy (Path to Path) method ...");
try {
 startTime = System.nanoTime();

 Files.copy(copy_from, copy_to, NOFOLLOW_LINKS);

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
} catch (IOException e) {
 System.err.println(e);
}

deleteCopied(copy_to);

System.out.println("Using Files.copy (InputStream to Path) ...");
try (InputStream is = new FileInputStream(copy_from.toFile())) {

 startTime = System.nanoTime();

 Files.copy(is, copy_to);

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
} catch (IOException e) {
 System.err.println(e);
}

deleteCopied(copy_to);

System.out.println("Using Files.copy (Path to OutputStream) ...");
try (OutputStream os = new FileOutputStream(copy_to.toFile())) {

 startTime = System.nanoTime();

 Files.copy(copy_from, os);

 elapsedTime = System.nanoTime() - startTime;
 System.out.println("Elapsed Time is " + (elapsedTime / 1000000000.0) + " seconds");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

The output of this application is pretty hard to sort through since there are so many numbers
involved, so I’ve plotted some of the data instead to give you a clearer image of the results of several

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

165

comparisons, as shown in the figures in the following sections. The Y axis in these figures is the
estimated time expressed in seconds, and the X axis is the size of the used buffer (or run number, after
skipping the first three runs).

FileChannel and Non-direct Buffer vs. FileChannel and Direct Buffer

As shown in Figure 7-11, it seems that for buffers smaller than 256KB, the non-direct buffer is much
faster, while for buffers larger than 256KB, the direct buffer is slightly faster (see Figure 7-11).

Figure 7-11. FileChannel and non-direct buffer vs. FileChannel and direct buffer

FileChannel.transferTo() vs. FileChannel.transferFrom() vs. FileChannel.map()

As shown in Figure 7-12, it looks like transferTo() and transferFrom() are almost the same over seven
consecutive runs, while FileChannel.map() is the slowest solution.

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

166

Figure 7-12. FileChannel.transferTo() vs. FileChannel.transferFrom() vs. FileChannel.map()

The three different Files.copy()approaches

As shown in Figure 7-13, the fastest Files.copy() method is Path to Path, followed by Path to
OutputStream, and finally InputStream to Path.

igure 7-13. Files.copy() approches

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

167

FileChannel and Non-direct Buffer vs. FileChannel.transferTo() vs. Path to Path

As final test we took the fastest results from the above three diagrams and put them together in figure 7-
14. Since we did not specify a buffer size for FileChannel.transferTo() and Path to Path we take as the
reference the average time over the seven runs. As you can see, Files.copy() with Path to Path seams to
be the fastest solution for copying a file.

Figure 7-14. FileChannel with non-direct buffer vs. FileChannel.transferTo() vs. Path to Path

http://www.it-ebooks.info

CHAPTER 7 ■ RANDOM ACCESS FILES

168

Summary
This chapter started with a short overview of the ByteBuffer class, which is commonly used with
SeekableByteChannel and FileChannel. It continued by detailing the SeekableByteChannel interface with
applications that will read and write files randomly to accomplish different types of common tasks. You
then saw how to get a FileChannel with RAF capabilities and discovered the main facilities provided by
FileChannel, including mapping a region of the file directly into memory for faster access, locking a
region of the file, and reading and writing bytes from an absolute location without affecting the
channel’s current position. The chapter ended with a benchmarking application that tries to determine
the fastest way to copy a file by comparing FileChannel capabilities against other common approaches,
such as Files.copy(), using buffered streams and a byte array, and using unbuffered streams and a byte
array.

http://www.it-ebooks.info

C H A P T E R 8

■ ■ ■

169

The Sockets APIs

The Internet was born around the 1950s and ’60s. Some years later, around the ’80s, the notion of the
socket was introduced on BSD (Berkeley Software Distribution—a Unix variant) for communication
between processes using Internet Protocol (IP). A few years later, in 1996, JDK 1.0 brought the notion of
the socket to the programming world as a model for network communications that it is easy to use and
cross-platform. Finally, programmers can now create network applications without years of study about
network communications. Java developers can write a simple network application just by scratching the
surface of a few subjects, such as IP, IP addresses, ports, and Java networks.

IP breaks all communications into packets (chunks of data) that are treated individually from source
to destination—there is no delivery guarantee. On top of IP, we have other common protocols, such as
TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) (this chapter’s applications
exploit these protocols), and on top of these we have even more, including HTTP, TELNET, DNS, and so
on. Sockets make use of IP for communication between machines, so Java network applications can
“talk” to existing servers using their predefined protocol.

On the Internet, each machine can be identified by a numerical label, known as an IP address. Every
Java developer should knows that we deal with two types of IP addresses: IPv4 (represented on 32-bits—
e.g., 124.32.45.23) and IPv6 (represented on 128-bits —e.g., 2607:f0d0:1002:0051:0000:0000:0000:0004).
Moreover, it is important to know that IP addresses are organized into classes A, B, C, D, and E. Since we
have a special interest in class D of IP addresses, let’s say that IPv4s addresses vary between 224.0.0.1
and 239.255.255.255, and denote multicast groups. In addition, remember that the address 127.0.0.1 is
reserved for the localhost address.

Focusing on ports, TCP/UDP ports range between 0 and 65535 and they are represented in Java as
integers. Certain types of servers are typically found on certain ports: for example if you connect to port
80 of a host, you can expect to find an HTTP server. On port 21 you can expect an FTP server, on 23 a
Telnet server, on 119 an NNTP server, and so on. Therefore, be careful when choosing ports; make sure
you don’t interfere with other processes and that you keep in range.

Each of these notions has entire books dedicated to it, but this is enough information for the
purposes of creating Java client/server applications. In a client/server model, a server runs on a host and
listens to a port for connection requests from clients across the network, or even from the same
machine. Clients use the IP address (hostname) and port to locate the server, while the server serves
each client according to its request. On the connection process, the client identifies itself to the server
through a local port number that can be explicitly set or assigned by the kernel—a socket is bound to this
local port number to be used during this connection (we say that the client binds to a local port
number). Upon acceptance, the server gets a new socket bound to a new local port number and also has
its remote endpoint set to the address and port of the client—it needs a new port number so that it can
continue to listen for connection requests on the original port. Once the communication is settled, data

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

170

can go back and forth between the sockets until the communication is purposely shut down or
accidentally broken.

We can conclude that, for Java, a socket is a bidirectional software endpoint between a server
program and its client programs, or more generally, between two programs running on the network that
are involved in a two-way communication. An endpoint is a combination of an IP address and a port
number.

Java introduced support for sockets in JDK 1.0, but things have of course changed over time from
version to version. Jumping to Java 7, NIO.2 has improved this support by updating existing classes with
new methods and adding new interfaces/classes for writing TCP/UDP-based applications. First of all,
NIO.2 introduces an interface named NetworkChannel that provides methods commons to all network
channel classes—any channel that implements this interface is a channel to a network socket. The main
classes dedicated to synchronous socket channels, ServerSocketChannel, SocketChannel, and
DatagramChannel, implement this interface, which comes with methods for binding to and returning
local addresses, and methods for setting and getting socket options through the new SocketOption<T>
interface and StandardSocketOptions class. This interface’s methods and the ones added directly into
classes (for checking connection state, getting remote addresses, and shutdown) will prevent you from
having to call the socket() method.

NIO.2 also introduces the MulticastChannel interface as a subinterface of NetworkChannel. As its
name suggests, the MulticastChannel interface maps a network channel that supports IP multicasting.
Keep in mind that MulticastChannel is implemented only by the datagram channel (the DatagramChannel
class). When joining a multicast group you get a membership key, which is a token that represents the
membership of a multicast group. Through the membership key, you can block/unblock datagrams
from different addresses, drop membership, get the channel and/or multicast group for which this
membership key was created, and more.

■ Note For a short overview of Java channels, please take a look at the “Short Overview of Channels” section of
Chapter 7. In addition, the “Short Overview of ByteBuffer” section may be taken in consideration to understand
how Java buffers work.

NetworkChannel Overview
In this section we will have a short overview of the NetworkChannel methods. This interface represents a
channel to a network socket and comes with a set of five common methods for all sockets. We present
them here since they will be very useful in the next sections.

We’ll start with the bind() method, which binds the channel’s socket to a local address. More
precisely, this method will establish an association between the socket and a local address, which is
usually explicitly specified as an InetSocketAddress instance (this class represents a socket address with
IP (or hostname) and port, and extends the abstract SocketAddress class). The local address can also be
automatically assigned if we pass null to the bind() method. This method is used to bind server socket
channels, socket channels, and datagram socket channels with the local machine. It will return the
current channel:

NetworkChannel bind(SocketAddress local) throws IOException

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

171

NetworkChannel can extract the bound address by calling the getLocalAddress() method. If the
channel’s socket is not bound, then it returns null:

SocketAddress getLocalAddress() throws IOException

Socket Options
The remaining three methods of NetworkChannel deal with socket options supported by the current
channel. A socket option associated with a socket is represented by the SocketOption<T> interface.
Currently, NIO.2 implements this interface with a set of standard options in the StandardSocketOptions
class. Here they are:

• IP_MULTICAST_IF: This option is used to specify the network interface
(NetworkInterface) used for multicast datagrams sent by the datagram-oriented
socket; if it is null, then the OS will choose the outgoing interface (if one is
available). By default, it is null, but the option’s value can be set after the socket is
bound. When we talk about sending datagrams, you will see how to find out what
multicast interfaces are available on your machine.

• IP_MULTICAST_LOOP: This option’s value is a boolean that controls the loopback of
multicast datagrams (this is OS dependent). You have to decide, as the application
writer, whether you want the data you send to be looped back to your host or not.
By default, this is TRUE, but the option’s value can be set after the socket is bound.

• IP_MULTICAST_TTL: This option’s value is an integer between 0 and 255, and it
represents the time-to-live for multicast packets sent out by the datagram-
oriented socket. If not otherwise specified, multicast datagrams are sent with a
default value of 1, to prevent them to be forwarded beyond the local network. With
this option we can control the scope of the multicast datagrams. By default this is
set to 1, but the option’s value can be set after the socket is bound.

• IP_TOS: This option’s value is an integer representing the value of the Type of
Service (ToS) octet in IP packets sent by sockets—the interpretation of this value is
specific to the network. Currently this is available only for IPv4, and by default its
value is typically 0. The option’s value can be set any time after the socket is
bound.

• SO_BROADCAST: This option’s value it is a boolean that indicates if transmission of
broadcast datagrams is allowed or not (specific to datagram-oriented sockets
sending to IPv4 broadcast addresses). By default, it is FALSE, but the option’s value
can be set any time.

• SO_KEEPALIVE: This option’s value it is a boolean indicating if the connection
should be kept alive or not. By default, it is set to FALSE, but the option’s value can
be set any time.

• SO_LINGER: This option’s value is an integer that represents a timeout in seconds
(the linger interval). When attempting to close a blocking-mode socket via the
close() method, it will wait for the duration of the linger interval before
transmitting the unsent data (not defined for non-blocking mode). By default, it is
a negative value, which means that this option is disabled. The option’s value can
be set any time and the maximum value is OS dependent.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

172

• SO_RCVBUF: This option’s value is an integer that represents the size in bytes of the
socket receive buffer—the input buffer used by the networking implementation. By
default, the value is OS dependent, but it can be set before the socket is bound or
connected. Depending on the OS, the value can be changed after the socket is
bound. Negative values are not allowed.

• SO_SNDBUF: This option’s value is an integer that represents the size in bytes of the
socket send buffer—the output buffer used by the networking implementation. By
default, the value is OS dependent, but it can be set before the socket is bound or
connected. Depending on the OS, the value can be changed after the socket is
bound. Negative values are not allowed.

• SO_REUSEADDR: This option’s value is an integer that represents if an address can be
reused or not. This is very useful in datagram multicasting when we want multiple
programs to be bound to the same address. In the case of stream-oriented sockets,
the socket can be bound to an address when a previous connection is in the
TIME_WAIT state – TIME_WAIT means the OS has received a request to close the
socket, but waits for possible late communications from the client side. By default,
the option’s value is OS dependent, but it can be set before the socket is bound or
connected.

• TCP_NODELAY: This option’s value is an integer that enables/disables Nagle’s
algorithm (for more information on Nagle’s algorithm, see
http://en.wikipedia.org/wiki/Nagle%27s_algorithm). By default it is FALSE, but it
can be set at any time.

Now, setting and getting an option can be accomplished by the NetworkChannel.getOption() and
NetworkChannel.setOption() methods:

<T> T getOption(SocketOption<T> name) throws IOException
<T> NetworkChannel setOption(SocketOption<T> name, T value) throws IOException

Retrieving the supported options for a specific channel (for a network socket) can be accomplished
by calling the NetworkChannel.supportedOptions() method over that channel:

Set<SocketOption<?>> supportedOptions()

Writing TCP Server/Client Applications
It is far from our aim to write a TCP tutorial, since this is a very well-documented and large subject, and
involves many technical notions and aspects, but we’ll give a quick overview. TCP is like a telephone
connection—it establishes a connection between two endpoints through a socket, and the socket
remains open throughout the duration of the communications. The primary function of TCP is to
provide a point-to-point communication mechanism. One process on one machine communicates with
another process on another machine or within the same machine. A unique TCP connection is identified
by five elements: the IP address and port of the server, the IP address and port of the client, and the
protocol (TCP/IP, UDP, etc.). The server listens to one single port and can talk to many clients at the
same time. TCP provides many advantages (e.g., over UDP) that involve data packets. TCP is responsible
for many important tasks, including breaking data into packets, buffering data, tracking lost packets (for
resending lost or out-of-order packets), and controlling the speed of transmitting data with respect to
application-processing capabilities. Moreover, TCP supports sending data as byte arrays or using
streams, which are very popular in Java.

http://en.wikipedia.org/wiki/Nagle%27s_algorithm
http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

173

Blocking vs. Non-Blocking Mechanisms
When you decide to write a Java TCP server/client application, you must consider whether you need to
write a blocking or non-blocking application. This decision is important because the implementations
are different and the complexity may also be critical.

The main characteristic of a blocking mechanism presumes that a given thread cannot do anything
more until the I/O is fully received, which may take a while in some cases—the application’s flow is
blocked because the methods do not return right away. Non-blocking mechanisms, on the other hand,
immediately queue an I/O request and return the control to application flow (methods return right
away). The request will be processed later by the kernel.

From a Java developer perspective, you also must take into account the degree of complexity
involved by these mechanisms. Non-blocking mechanisms are much more complex to implement than
blocking mechanisms, but they allow you more performance and scalability.

■ Note Non-blocking mechanisms are not the same as asynchronous mechanisms (although this is often
debated depending on who you ask). For example, in a non-blocking environment, if an answer can’t be returned
rapidly, the API returns immediately with an error and does nothing else, while in an asynchronous environment,
the API always returns immediately, having started a behind-the-scenes effort to serve your request. In other
words, with a non-blocking mechanism, a function won’t wait while on the stack, and with an asynchronous
mechanism, work may continue on behalf of the function call after that call has left the stack. Asynchronous is
more familiar with parallel (as threading), while non-blocking often refers to polling.

Both blocking and non-blocking modes have been implemented since NIO, but we will try to spice
up the code with the new NIO.2 features.

In the next sections, we will develop both types of application. Let’s start with the easy one that uses
the blocking mechanism.

Writing a Blocking TCP Server
The easiest approach for a better understanding of how to accomplish this task is to follow a
straightforward set of steps accompanied by chunks of codes that will be glued together at the end of the
discussion. We want to develop a single-thread blocking TCP server that will echo to the client
everything that it gets from it. Many of the steps to accomplish this are transferable to other blocking
TCP servers as well.

Creating a New Server Socket Channel
The first step involves creating a selectable channel for stream-oriented listening socket, which is
possible thanks to the java.nio.channels.ServerSocketChannel class, which is safe for use by multiple
concurrent threads. More precisely, this task is accomplished by the ServerSocketChannel.open()
method, as show here:

ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

174

Keep in mind that a newly created server socket channel is not bound or connected. Binding and
connecting will be accomplished in the next steps.

You can check if a server socket is already open or has been successfully opened by calling the
ServerSocketChannel.isOpen() method, which returns the corresponding Boolean value:

if (serverSocketChannel.isOpen()) {
 ...
}

Configuring Blocking Mechanisms
If the server socket channel has been successfully opened, it is time to specify the blocking mechanism.
For this we call the ServerSocketChannel.configureBlocking() method which receives a boolean value. If
we pass true, then the blocking mechanism will be used; if we pass false, then the non-blocking
mechanism will be used:

serverSocketChannel.configureBlocking(true);

Notice that this method returns a SelectableChannel object, which represents a channel that can be
multiplexed via a Selector. This is useful when we are in non-blocking mode; therefore we will ignore it
for the moment.

Setting Server Socket Channel Options
This is an optional step. There is no required option (you can use the default values), but we’ll explicitly
set a few options to show you how this can be done. More precisely, a server socket channel supports
two options: SO_RCVBUF and SO_REUSEADDR. We’ll set them both, as shown here:

serverSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
serverSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);

You can find out the supported options for a server socket channel by calling the inherited method
supportedOptions():

Set<SocketOption<?>> options = serverSocketChannel.supportedOptions();
for(SocketOption<?> option : options) System.out.println(option);

Binding the Server Socket Channel
At this point we can bind the channel’s socket to a local address and configure the socket to listen for
connections. For this we call the new ServerSocketChannel.bind() method (this method was introduced
earlier in the “NetworkChannel Overview” section). Our server will wait for an incoming connection on
localhost (127.0.0.1), port 5555 (arbitrarily chosen):

final int DEFAULT_PORT = 5555;
final String IP = "127.0.0.1";
serverSocketChannel.bind(new InetSocketAddress(IP, DEFAULT_PORT));

Another common approach consists of creating an InetSocketAddress object without specifying the
IP address, only the port (there is a constructor for that). In this case, the IP address is the wildcard

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

175

address, and the port number is a specified value. The wildcard address is a special local IP address that
can be used only for bind operations, and usually means “any”:

serverSocketChannel.bind(new InetSocketAddress(DEFAULT_PORT));

■ Caution When you are using an IP wildcard address, take care to avoid any undesirable complications that
may occur if you have multiple network interfaces with separate IP addresses. In this case, if you are not sure how
to accomplish this without issues, is it recommended to bind the socket to a specific network address, rather than
use a wildcard.

In addition, there is one more bind() method that receives the address to bind the socket and the
maximum number of pending connections:

public abstract ServerSocketChannel bind(SocketAddress local,int pc) throws IOException

The local address can also be automatically assigned if we pass null to the bind() method. You can
also find out the bound local address by calling the ServerSocketChannel.getLocalAddress() method,
which is inherited from the NetworkChannel interface. This returns null if the server socket channel has
not been bound yet.

System.out.println(serverSocketChannel.getLocalAddress());

Accepting Connections
After opening and binding, we finally reach the accepting milestone. Since we are in blocking mode,
accepting a connection will block the application until a new connection is available or an I/O error
occurs. We signal our impatience to accept new connections by calling the
ServerSocketChannel.accept() method. When a new connection is available, this method returns the
client socket channel (or simply, socket channel) for the new connection. This is an instance of the
SocketChannel class, which represents a selectable channel for stream-oriented connecting sockets.

SocketChannel socketChannel = serverSocketChannel.accept();

■ Note Trying to invoke the accept() method for an unbound server socket channel will throw a
NotYetBoundException exception.

Once we have accepted a new connection, we can find out the remote address by calling the
SocketChannel.getRemoteAddress() method. This method is new in Java 7 (NIO.2), and it returns the
remote address to which this channel’s socket is connected:

System.out.println("Incoming connection from: " + socketChannel.getRemoteAddress());

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

176

Transmitting Data over a Connection
At this point the server and client can transmit data over a connection. They can send and receive
different kinds of data packets mapped as byte arrays or using streams along with the standard Java file
I/O mechanism. Implementing the transmission (send/receive) is a flexible and implementation-
specific process since it involves many aspects. For example, for our server we chose to use ByteBuffers
and we kept in mind that this is an echo server—what it reads from the client is what it writes back. Here
it is the transmission code snippet:

ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
...
while (socketChannel.read(buffer) != -1) {

 buffer.flip();

 socketChannel.write(buffer);

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
}

The SocketChannel class provides a set of read()/write() methods for ByteBuffers. Since they are
pretty intuitive, we’ll just list them:

• Read a sequence of bytes from this channel into the given buffer. These methods
return the number of bytes read (it can be zero) or –1 if the channel has reached
end-of-stream:

public abstract int read(ByteBuffer dst) throws IOException
public final long read(ByteBuffer[] dsts) throws IOException
public abstract long read(ByteBuffer[] dsts, int offset, int length) throws IOException

• Write a sequence of bytes to this channel from the given buffer. These methods
return the number of bytes written; it can be zero:

public abstract int write(ByteBuffer src) throws IOException
public final long write(ByteBuffer[] srcs) throws IOException
public abstract long write(ByteBuffer[] srcs, int offset, int length) throws IOException

Using Streams Instead of Buffers

As you know, channels are very good friends with buffers, but if you decide to use streams instead
(InputStream and OutputStream), then you need to use the following code; once you have obtained an
I/O stream you can further explore the standard Java file I/O mechanism.

InputStream in = socketChannel.socket().getInputStream();
OutputStream out = socketChannel.socket().getOutputStream();

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

177

Shutting Down a Connection for I/O

You can shut down a connection for I/O without closing the channel by calling the new NIO.2
SocketChannel.shutdownInput() or SocketChannel.shutdownOutput() method. Shutting down the
connection for input (or reading) will reject any further read attempts by returning the end-of-stream
indicator, –1. Shutting down the connection for output (or writing) will reject any writing attempts by
throwing a ClosedChannelException exception.

//shut down connection for reading
socketChannel.shutdownInput();

//shut down connection for writing
socketChannel.shutdownOutput();

These methods are very useful if you want to reject read/write attempts without closing the channel.
Checking if a connection is currently shut down for I/O can be accomplished with the following code:

boolean inputdown = socketChannel.socket().isInputShutdown();
boolean outputdown = socketChannel.socket().isOutputShutdown();

Closing the Channel
When a channel becomes useless, it must be closed. For this, you can call the SocketChannel.close()
method (this will not close the server for listening for incoming connections, it will just close a channel
for a client) and/or the ServerSocketChannel.close() method (this will close the server for listening for
incoming connections; further clients won’t be able to locate the server anymore).

serverSocketChannel.close();
socketChannel.close();

Alternatively, we can close these resources by placing the code into the Java 7 try-with-resources
feature —this is possible because the ServerSocketChannel and SocketChannel classes implement the
AutoCloseable interface. Using this feature will ensure that the resources are closed automatically. If you
are not familiar with try-with-resources feature, check out
http://download.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html.

Putting it All Together into the Echo Server
Now we have everything we need for creating our echo server. Putting together the preceding chunks,
adding the necessary imports and spaghetti code, and so on will provide us the following echo sever:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;

public class Main {

 public static void main(String[] args) {

http://download.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

178

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";

 ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

 //create a new server socket channel
 try (ServerSocketChannel serverSocketChannel = ServerSocketChannel.open()) {

 //continue if it was successfully created
 if (serverSocketChannel.isOpen()) {

 //set the blocking mode
 serverSocketChannel.configureBlocking(true);
 //set some options
 serverSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
 serverSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 //bind the server socket channel to local address
 serverSocketChannel.bind(new InetSocketAddress(IP, DEFAULT_PORT));

 //display a waiting message while ... waiting clients
 System.out.println("Waiting for connections ...");

 //wait for incoming connections
 while(true){
 try (SocketChannel socketChannel = serverSocketChannel.accept()) {
 System.out.println("Incoming connection from: " +
 socketChannel.getRemoteAddress());

 //transmitting data
 while (socketChannel.read(buffer) != -1) {

 buffer.flip();

 socketChannel.write(buffer);

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
 }
 } catch (IOException ex) {
 }
 }

 } else {
 System.out.println("The server socket channel cannot be opened!");
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

179

Writing a Blocking TCP Client
What good is a server without a client? We do not want to find out the answer to this question, so let’s
develop a client for our echo server. Suppose the following scenario: the client connects to our server,
sends a “Hello!” message, and then keeps sending random numbers between 0 and 100 until the number
50 is generated. When the number 50 is generated, the client stops sending and closes the channel. The
server will echo (write back) everything it reads from the client. Now that we have a scenario, let’s see the
steps for implementing it.

Creating a New Socket Channel
The first step is to create a selectable channel for a stream-oriented connecting socket. This is
accomplished with the java.nio.channels.SocketChannel class, which is safe for use by multiple
concurrent threads. More precisely, this task is accomplished by the SocketChannel.open() method, as
follows:

SocketChannel socketChannel = SocketChannel.open();

Keep in mind that a newly created socket channel is not connected. Creating and connecting a
socket channel in a single shot involves calling the SocketChannel.open(SocketAddress) method. It is
also possible to do this in two steps, as we will discuss.

You can check if a server socket is already open or has been successfully opened by calling the
SocketChannel.isOpen() method, which returns the corresponding Boolean value:

if (socketChannel.isOpen()) {
 ...
}

Configuring Blocking Mechanisms
If the socket channel has been successfully opened, it is time to specify the blocking mechanism. We will
pass the true value, since we want to activate the blocking mechanism:

socketChannel.configureBlocking(true);

Setting Socket Channel Options
A socket channel supports the following options: SO_RCVBUF, SO_LINGER, IP_TOS, SO_OOBINLINE,
SO_REUSEADDR, TCP_NODELAY, SO_KEEPALIVE, and SO_SNDBUF. Some of them are shown following:

socketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
socketChannel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
socketChannel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);
socketChannel.setOption(StandardSocketOptions.SO_LINGER, 5);

You can find the supported options for a server socket channel by calling the inherited method
supportedOptions():

Set<SocketOption<?>> options = socketChannel.supportedOptions();
for(SocketOption<?> option : options) System.out.println(option);

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

180

Connecting the Channel’s Socket
After opening a socket channel (and optionally binding it), you should connect to the remote address
(the server-side address). Since we are in blocking mode, connecting to a remote address will block the
application until a new connection is available or an I/O error occurs. The intention to connect is
signaled by calling the SocketChannel.connect() method and passing to it the remote address as an
instance of InetSocketAddress, as follows (remember that our echo servers runs on 127.0.0.1, port 5555):

final int DEFAULT_PORT = 5555;
final String IP = "127.0.0.1";
socketChannel.connect(new InetSocketAddress(IP, DEFAULT_PORT));

The method returns a boolean value representing a successful connection attempt. You can use this
boolean value to check the connection availability, until sending/receiving packets through this
connection. In addition, the same check can be accomplished by calling the
SocketChannel.isConnected() method, like so:

if (socketChannel.isConnected()) {
 ...
}

■ Note Obviously, in real-world cases it’s considered bad practice to hard-code IP addresses within the
application. In this case the client will only be able to run on the same machine with the server, which sort of
defeats the purpose of remote communication. In your case, the client may likely use the hostname of the server
instead of the IP address (likely configured through DNS). IP addresses often change, and are sometimes even
dynamically assigned via DHCP.

Transmitting Data over a Connection
The connection has been established, so we can start transmitting data packets. The following code
sends the “Hello!” message, and then sends random numbers until the number 50 is generated. We used
ByteBuffer, CharBuffer, and the read()/write() methods of SocketChannel class (we listed these
methods previously when we developed the server-side code, so you should be familiar with them
already):

ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
ByteBuffer helloBuffer = ByteBuffer.wrap("Hello !".getBytes());
ByteBuffer randomBuffer;
CharBuffer charBuffer;
Charset charset = Charset.defaultCharset();
CharsetDecoder decoder = charset.newDecoder();
...
socketChannel.write(helloBuffer);

while (socketChannel.read(buffer) != -1) {

 buffer.flip();

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

181

 charBuffer = decoder.decode(buffer);
 System.out.println(charBuffer.toString());

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }

 int r = new Random().nextInt(100);
 if (r == 50) {
 System.out.println("50 was generated! Close the socket channel!");
 break;
 } else {
 randomBuffer = ByteBuffer.wrap("Random number:"
 .concat(String.valueOf(r)).getBytes());
 socketChannel.write(randomBuffer);
 }
}

Closing the Channel
When a channel becomes useless, it must be closed. For this, you can call SocketChannel.close(), and
the client will be disconnected from the server:

socketChannel.close();

Again, the Java 7 try-with-resources feature may be used for automatic closing.

Putting It All Together into the Client
Now we have everything we need for creating our client. Putting together all the required elements will
provide us the following client:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Random;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

182

 ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
 ByteBuffer helloBuffer = ByteBuffer.wrap("Hello !".getBytes());
 ByteBuffer randomBuffer;
 CharBuffer charBuffer;
 Charset charset = Charset.defaultCharset();
 CharsetDecoder decoder = charset.newDecoder();

 //create a new socket channel
 try (SocketChannel socketChannel = SocketChannel.open()) {

 //continue if it was successfully created
 if (socketChannel.isOpen()) {

 //set the blocking mode
 socketChannel.configureBlocking(true);
 //set some options
 socketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
 socketChannel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
 socketChannel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);
 socketChannel.setOption(StandardSocketOptions.SO_LINGER, 5);
 //connect this channel's socket
 socketChannel.connect(new InetSocketAddress(IP, DEFAULT_PORT));

 //check if the connection was successfully accomplished
 if (socketChannel.isConnected()) {

 //transmitting data
 socketChannel.write(helloBuffer);

 while (socketChannel.read(buffer) != -1) {

 buffer.flip();

 charBuffer = decoder.decode(buffer);
 System.out.println(charBuffer.toString());

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }

 int r = new Random().nextInt(100);
 if (r == 50) {
 System.out.println("50 was generated! Close the socket channel!");
 break;
 } else {
 randomBuffer = ByteBuffer.wrap("Random number:".
 concat(String.valueOf(r)).getBytes());
 socketChannel.write(randomBuffer);
 }
 }

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

183

 } else {
 System.out.println("The connection cannot be established!");
 }
 } else {
 System.out.println("The socket channel cannot be opened!");
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Testing the Blocking Echo Application
Testing the application is a simple task. First, start the server and wait until you see the message
“Waiting for connections ...”. Continue by starting the client and check out the output. Following is some
possible server output:

Waiting for connections ...

Incoming connection from: /127.0.0.1:49911

And here is some possible client output:

Hello !

Random number:71

Random number:60

Random number:22

Random number:4

Random number:60

Random number:13

...

50 was generated! Close the socket channel!

w

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

184

Writing a Non-Blocking TCP Client/Server Application
Before we start developing, let’s have a short overview of the non-blocking API, which has been available
since NIO, so it shouldn’t look totally new to you. Keeping this in mind, we won’t go into too much detail
about the things you likely already know.

Non-blocking socket mode is all about allowing I/O operation on a channel without blocking the
processes using it. The story begins exactly as in a blocking application: the server side is opened, is
bound to a local address, and receives requests from the client side, which, obviously, is open,
connected to the remote address, and sending requests to the server.

Things start to go wild when the main entity of all non-blocking technology—the
java.nio.channels.Selector class—comes onto the scene. A Selector is created through a no-argument
open() method (Selector was not modified in Java 7). Basically, this class has the ability to recognize
when one or more channels are available for data transfer and serializes the requests for helping the
server to satisfy its clients (it monitors each recorded socket channel).

Moreover, the Selector processes multiple sockets’ I/O read/write operations in a single thread,
thanks to a concept known as multiplexing—this solves the problem of dedicating one thread to each
socket connection. In API terms, the Selector is a multiplexor for
java.nio.channels.SelectableChannels, which can be registered through the register() method
(available in the ServerSocketChannel and SocketChannel classes, which are indirect subclasses of
SelectableChannel) and deregistered by deallocating the resources that were allocated to the channel by
the Selector.

Using the SelectionKey Class
If you are still on track, then let’s go deeper! Each time a channel is registered with a Selector, it is

represented through an instance of the java.nio.channels.SelectionKey class, and those instances are
known as selection keys—Java 7 does not modify this class. Think of keys as the helpers used by the
selector to sort the client requests—each helper (key) represents a single client subrequest and contains
information for identifying the client and the type of the request (connect, read,write, etc.).When
registering, we indicate the selector and, usually, the interest set for the resulting key (the interest set
identifies the operations for which the key’s channel is monitored by the Selector). There are four
possible types for a key:

• SelectionKey.OP_ACCEPT (acceptable): The associated client requests a connection
(usually created on the server side for indicating that a client requires a
connection).

• SelectionKey.OP_CONNECT (connectable): The server accepts the connection
(usually created on the client side).

• SelectionKey.OP_READ (readable): This indicates a read operation.

• SelectionKey.OP_WRITE (writable): This indicates a write operation.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

185

A selector is responsible for maintaining three sets of selection keys:

• key-set: Contains the keys representing the current channel registrations of this
selector

• selected-key: Contains the set of keys such that each key’s channel was detected
to be ready for at least one of the operations identified in the key’s interest set
during a prior selection operation

• cancelled-key: Contains the set of keys that have been cancelled but whose
channels have not yet been deregistered

■ Note All three sets are empty in a newly created selector. Selectors are themselves safe for use by multiple
concurrent threads, but their key sets however are not.

When something happens on the battlefield, the selector wakes up and creates the corresponding
keys (instances of the SelectionKey class). Each key holds information about the application making the
request and the type of the request (attempting/accepting connection and read/write operations).

The selector waits for incoming connections into an infinite loop (waits for events recorded on the
selector). Usually the Selector.select() method is the first line in the loop, and it blocks the application
until at least one channel is selected, the selector’s Selector.wakeup() method is invoked, or the current
thread is interrupted—whichever comes first. (In addition, a “select() with timeout” method is
available, as is a non-blocking method called selectNow().)

The Selector waits for a client to attempt a connection, and when that happens, the server
application gets the keys created by the selector. For each key, it checks the type (each processed key is
removed from the set by explicitly calling the remove() method of an Iterator over keys—this will
prevent the same key from coming up again). The acceptable key is hunted here, and when the
SelectionKey.isAcceptable() method returns true, the server locates the client socket channel by
invoking the accept() methods, sets it to be non-blocking, and registers it to the selector using the
OP_READ and/or OP_WRITE options.

At this point, the client socket channel is registered to the selector for reading/writing operations. In
keeping with this trend, when the client writes data on the socket channel, the selector will tell the server
that there is some data to read—for this, the SelectionKey.isReadable() method returns true. If the
client attempts to read data from server, the process is similar, but the server instead writes data and the
SelectionKey.isWritable() method returns true.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

186

Figure 8-1 shows a diagram of a non-blocking flow.

Figure 8-1. Selector base non-blocking flow.

So, the server is ready to rock!

■ Note In non-blocking mode, an I/O operation may transfer fewer bytes than were requested (partial read or
write), or possibly no bytes at all.

Using the Selector’s Methods
Next, we’ll go over the methods invoked in this section, as well as a few more, are overviewed next (most
of the following descriptions were taken from the official Java 7 Javadoc).

• Selector.open(): Creates a new selector.

• Selector.select(): Selects a set of keys by performing a blocking selection
operation.

• Selector.select(t): Same as select, but the blocking is performed only for the
specified milliseconds. If time expires and there is nothing to select, it returns 0.

• Selector.selectNow(): Same as select, but with non-blocking selection
operation. It returns 0 if there is nothing to select.

• Selector.selectedKeys(): Returns this selector’s selected key set as
Set<SelectionKey>.

• Selector.keys(): Returns this selector’s key set as Set<SelectionKey>.

• Selector.wakeup(): Causes the first selection operation that has not yet returned
to return immediately.

• SelectionKey.isValid(): Checks if the key is valid. A key is invalid if it is cancelled,
its channel is closed, or its selector is closed.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

187

• SelectionKey.isReadable(): Tests whether this key’s channel is ready for reading.

• SelectionKey.isWritable(): Tests whether this key’s channel is ready for writing.

• SelectionKey.isAcceptable(): Tests whether this key’s channel is ready to accept
a new socket connection.

• SelectionKey.isConnectable(): Tests whether this key’s channel has either
finished or failed to finish its socket connection operation.

• SelectionKey.cancel(): Requests that the registration of this key’s channel with
its selector be cancelled.

• SelectionKey.interestOps(): Retrieves this key’s interest set.

• SelectionKey.interestOps(t): Sets this key’s interest set to the given value.

• SelectionKey.readyOps(): Retrieves this key’s ready-operation set.

Moreover, ServerSocketChannel and SocketChannel contain the register() method, which is used
for registering the current channel with the given selector and returning a selection key. It gets the
selector, the interest set for the resulting key, and the attachment for the resulting key (may be null).

public final SelectionKey register(Selector s,int p,Object a) throws ClosedChannelException

Writing the Server
Based on these methods and the preceding discussion, we have written the following non-blocking echo
server (every step is commented to help give you a good understanding):

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

public class Main {

 private Map<SocketChannel, List<byte[]>> keepDataTrack = new HashMap<>();
 private ByteBuffer buffer = ByteBuffer.allocate(2 * 1024);

 private void startEchoServer() {

 final int DEFAULT_PORT = 5555;

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

188

 //open Selector and ServerSocketChannel by calling the open() method
 try (Selector selector = Selector.open();
 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open()) {

 //check that both of them were successfully opened
 if ((serverSocketChannel.isOpen()) && (selector.isOpen())) {

 //configure non-blocking mode
 serverSocketChannel.configureBlocking(false);

 //set some options
 serverSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 256 * 1024);
 serverSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);

 //bind the server socket channel to port
 serverSocketChannel.bind(new InetSocketAddress(DEFAULT_PORT));

 //register the current channel with the given selector
 serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);

 //display a waiting message while ... waiting!
 System.out.println("Waiting for connections ...");

 while (true) {
 //wait for incomming events
 selector.select();

 //there is something to process on selected keys
 Iterator keys = selector.selectedKeys().iterator();

 while (keys.hasNext()) {
 SelectionKey key = (SelectionKey) keys.next();

 //prevent the same key from coming up again
 keys.remove();

 if (!key.isValid()) {
 continue;
 }

 if (key.isAcceptable()) {
 acceptOP(key, selector);
 } else if (key.isReadable()) {
 this.readOP(key);
 } else if (key.isWritable()) {
 this.writeOP(key);
 }
 }
 }
 } else {
 System.out.println("The server socket channel or selector cannot be opened!");
 }

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

189

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }

 //isAcceptable returned true
 private void acceptOP(SelectionKey key, Selector selector) throws IOException {

 ServerSocketChannel serverChannel = (ServerSocketChannel) key.channel();
 SocketChannel socketChannel = serverChannel.accept();
 socketChannel.configureBlocking(false);

 System.out.println("Incoming connection from: " + socketChannel.getRemoteAddress());

 //write a welcome message
 socketChannel.write(ByteBuffer.wrap("Hello!\n".getBytes("UTF-8")));

 //register channel with selector for further I/O
 keepDataTrack.put(socketChannel, new ArrayList<byte[]>());
 socketChannel.register(selector, SelectionKey.OP_READ);
 }

 //isReadable returned true
 private void readOP(SelectionKey key) {

 try {
 SocketChannel socketChannel = (SocketChannel) key.channel();

 buffer.clear();

 int numRead = -1;
 try {
 numRead = socketChannel.read(buffer);
 } catch (IOException e) {
 System.err.println("Cannot read error!");
 }

 if (numRead == -1) {
 this.keepDataTrack.remove(socketChannel);
 System.out.println("Connection closed by: " + socketChannel.getRemoteAddress());
 socketChannel.close();
 key.cancel();
 return;
 }

 byte[] data = new byte[numRead];
 System.arraycopy(buffer.array(), 0, data, 0, numRead);
 System.out.println(new String(data, "UTF-8") + " from " +
 socketChannel.getRemoteAddress());

 // write back to client
 doEchoJob(key, data);

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

190

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }

 //isWritable returned true
 private void writeOP(SelectionKey key) throws IOException {

 SocketChannel socketChannel = (SocketChannel) key.channel();

 List<byte[]> channelData = keepDataTrack.get(socketChannel);
 Iterator<byte[]> its = channelData.iterator();

 while (its.hasNext()) {
 byte[] it = its.next();
 its.remove();
 socketChannel.write(ByteBuffer.wrap(it));
 }

 key.interestOps(SelectionKey.OP_READ);
 }

 private void doEchoJob(SelectionKey key, byte[] data) {

 SocketChannel socketChannel = (SocketChannel) key.channel();
 List<byte[]> channelData = keepDataTrack.get(socketChannel);
 channelData.add(data);

 key.interestOps(SelectionKey.OP_WRITE);
 }

 public static void main(String[] args) {
 Main main = new Main();
 main.startEchoServer();
 }
}

Writing the Client
Focusing on the client side, the structure is almost the same, with a few differences:

• First, the client socket channel is registered with the SelectionKey.OP_CONNECT
option, since the client wants to be informed by the selector when the server
accepts the connection.

• Second, the client does not attempt a connection infinitely, since the server may
not be active; therefore, the Selector.select() method with timeout is proper for
it (a timeout of 500 to 1,000 milliseconds will do the job).

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

191

• Third, the client must check if the key is connectable (i.e., if the
SelectionKey.isConnectable() method returns true). If the key is connectable, it
mixes the socket channel isConnectionPending() and finishConnect() methods in
a conditional statement for closing the pending connections. When you need to
tell whether or not a connection operation is in progress on this channel, call the
SocketChannel.isConnectionPending() method, which returns a Boolean value.
Also, finishing the process of connecting a socket channel can be accomplished by
the SocketChannel.finishConnect() method.

Finally, the client is ready for I/O operations. We reproduced the same scenario as in the blocking
client/server application: the client connects to our server and sends a “Hello!” message, and then keeps
sending random numbers between 0 and 100 until the number 50 is generated. When 50 is generated,
the client stops sending and closes the channel. The server will echo (write back) everything it reads
from the client.

import java.io.IOException;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Iterator;
import java.util.Random;
import java.util.Set;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";

 ByteBuffer buffer = ByteBuffer.allocateDirect(2 * 1024);
 ByteBuffer randomBuffer;
 CharBuffer charBuffer;

 Charset charset = Charset.defaultCharset();
 CharsetDecoder decoder = charset.newDecoder();

 //open Selector and ServerSocketChannel by calling the open() method
 try (Selector selector = Selector.open();
 SocketChannel socketChannel = SocketChannel.open()) {

 //check that both of them were successfully opened
 if ((socketChannel.isOpen()) && (selector.isOpen())) {

 //configure non-blocking mode
 socketChannel.configureBlocking(false);
 //set some options

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

192

 socketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
 socketChannel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
 socketChannel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);

 //register the current channel with the given selector
 socketChannel.register(selector, SelectionKey.OP_CONNECT);

 //connect to remote host
 socketChannel.connect(new java.net.InetSocketAddress(IP, DEFAULT_PORT));

 System.out.println("Localhost: " + socketChannel.getLocalAddress());

 //waiting for the connection
 while (selector.select(1000) > 0) {

 //get keys
 Set keys = selector.selectedKeys();
 Iterator its = keys.iterator();

 //process each key
 while (its.hasNext()) {
 SelectionKey key = (SelectionKey) its.next();

 //remove the current key
 its.remove();

 //get the socket channel for this key
 try (SocketChannel keySocketChannel=(SocketChannel) key.channel()) {

 //attempt a connection
 if (key.isConnectable()) {

 //signal connection success
 System.out.println("I am connected!");

 //close pending connections
 if (keySocketChannel.isConnectionPending()) {
 keySocketChannel.finishConnect();
 }

 //read/write from/to server
 while (keySocketChannel.read(buffer) != -1) {

 buffer.flip();

 charBuffer = decoder.decode(buffer);
 System.out.println(charBuffer.toString());

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

193

 }

 int r = new Random().nextInt(100);
 if (r == 50) {
 System.out.println("50 was generated! Close
 the socket channel!");
 break;
 } else {
 randomBuffer = ByteBuffer.wrap("Random number:"
 .concat(String.valueOf(r)).getBytes("UTF-8"));
 keySocketChannel.write(randomBuffer);
 try {
 Thread.sleep(1500);
 } catch (InterruptedException ex) {
 }
 }
 }
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
 }
 } else {
 System.out.println("The socket channel or selector cannot be opened!");
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }

 }
}

Testing the Non-Blocking Echo Application
Testing the application is a simple task. First, start the server and wait until you see the message
“Waiting for connections” Continue by starting a set of clients and check out the output. Figure 8-2
shows an example of running the server and three client instances.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

194

Figure 8-2. Non-blocking server echo application output.

Figure 8-3 shows the output of client 2.

Figure 8-3. Non-blocking client echo application output

Keep in mind that even if it looks like a multithreading application, this is a single-thread
application based on the multiplexing technique.

Writing UDP Server/Client Applications
Since TCP has had its moment of glory, it is time for UDP to get our attention. UDP is built on top of IP,
and has a couple of important characteristics. For one, the packet sizes are limited to the amount that
can be contained in a single IP packet—at most 65507 bytes; this is the 65535-byte IP packet size minus
the minimum IP header of 20 bytes, and minus the 8-byte UDP header. Additionally, each packet is an
individual, and is handled separately (no packet is aware of other packets). Moreover, the packets can
arrive in any order, and some of them can be lost without the sender being informed, or they can arrive

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

195

faster or slower than they can be processed—there’s no guarantee of delivering/receiving data in a
particular sequence and no guarantee that the delivered data will be received.

Since the sender can’t track the packets’ routes, each packet encapsulates the remote IP address and
the port. If TCP is like a telephone, UDP is like a letter. The sender writes the receiver address (remote IP
and port) and sender address (local IP and port) on the envelope (UDP packet), puts the letter (data to be
sent) into the envelope, and sends the letter. He doesn’t know if the letter will arrive to the receiver or
not. Moreover, a more recent letter can arrive faster than and old one, and a letter might never arrive at
all—the letters are not aware of one another. Keep in mind that TCP is for high-reliability data
transmissions while UDP is for low-overhead transmissions. Typically, use UDP in applications in which
reliability is not critical but speed is. UDP is good for sending messages from one system to another
when the order isn’t important and you don’t need all of the messages to get to the other machine.

In the next sections, we will write a single-thread blocking client/server application based on UDP.
We’ll start with the server side.

Writing a UDP Server
To aid your understanding, we will split the developing process into discrete steps and bring to the front
the features of NIO.2 meant to increase performance and ease of development. Again, we will write an
echo server and a client that sends some text to it and receives it back.

Creating a Server Datagram–Oriented Socket Channel
The entire process of writing a client/server UDP application involves the
java.nio.channels.DatagramChannel class, which represents a thread-safe selectable channel for
datagram-oriented sockets. Therefore, we’ll start our server by creating a new DatagramChannel, which
can be accomplished by calling the NIO.2 DatagramChannel.open() method. This method gets a
parameter known as a protocol family parameter, which is actually a java.net.ProtocolFamily object.
This interface is new in NIO.2, and it represents a family of communication protocols—currently it has
an implementation as java.net.StandardProtocolFamily and defines two enum constants:

• StandardProtocolFamily.INET: IP version 4 (IPv4)

• StandardProtocolFamily.INET6: IP version 6 (IPv6)

So, we can create a server datagram–oriented socket for IPv4 like this:

DatagramChannel datagramChannel = DatagramChannel.open(StandardProtocolFamily.INET);

The old NIO no-argument DatagramChannel.open() method is still available and can be used since it
is not deprecated. But in this case, the ProtocolFamily of the channel’s socket is platform (configuration)
dependent and therefore unspecified.

You can check if a datagram-oriented socket channel is already open or has been successfully
opened by calling the DatagramChannel.isOpen() method, which returns the corresponding Boolean
value:

if (datagramChannel.isOpen()) {
 ...
}

A client datagram–oriented socket channel can be created and checked in the same manner.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

196

Setting Datagram-Oriented Socket Channel Options
Datagram-oriented socket channels support the following options (although you can use the default
values in most cases): SO_REUSEADDR, SO_BROADCAST, IP_MULTICAST_LOOP, SO_SNDBUF, IP_MULTICAST_TTL,
IP_TOS, IP_MULTICAST_IF, and SO_RCVBUF. As an example, we can set the input and output buffers used by
the networking implementation as follows:

datagramChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
datagramChannel.setOption(StandardSocketOptions.SO_SNDBUF, 4 * 1024);

Notice that you can find out the supported options for a datagram-oriented socket channel by
calling the inherited method supportedOptions():

Set<SocketOption<?>> options = datagramChannel.supportedOptions();
for(SocketOption<?> option : options) System.out.println(option);

Binding the Datagram-Oriented Socket Channel
At this point we can bind the channel’s socket to a local address and configure the socket to listen for
connections. For this we call the new DatagramChannel.bind() method (this method was introduced
earlier in the “NetworkChannel Overview” section). Our server will wait for an incoming connection on
localhost (127.0.0.1), port 5555 (arbitrarily chosen):

final int LOCAL_PORT = 5555;
final String LOCAL_IP = "127.0.0.1";
datagramChannel.bind(new InetSocketAddress(LOCAL_IP, LOCAL_PORT));

The wildcard address can also be used:

datagramChannel.bind(new InetSocketAddress(LOCAL_PORT));

The local address can also be automatically assigned if we pass null to the bind() method. You can
also discover the bound local address by calling the ServerSocketChannel.getLocalAddress() method,
which is inherited from the NetworkChannel interface. This returns null if the datagram-oriented socket
channel has not been bound yet.

System.out.println(datagramChannel.getLocalAddress());

Transmitting Data Packets
At this point our server is ready to receive and send packets. Since UDP is a connectionless network
protocol, you cannot just by default read and write to a DatagramChannel like you do from other
channels—later, you will see how to set up a connection over UDP. Instead, you send and receive
packets of data using the DatagramChannel.send() and DatagramChannel.receive() methods.

When you send a packet, you pass to the send() method a ByteBuffer that contains the precious
data and the remote address (of the server or client, depending who is sending). Here’s how this works
according to the official documentation (see http://download.oracle.com/javase/7/docs/api/):

If this channel is in non-blocking mode and there is sufficient room in the underlying
output buffer, or if this channel is in blocking mode and sufficient room becomes
available, then the remaining bytes in the given buffer are transmitted as a single

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

197

datagram to the given target address. This method may be invoked at any time. If
another thread has already initiated a write operation upon this channel, however,
then an invocation of this method will block until the first operation is complete. If
this channel’s socket is not bound then this method will first cause the socket to be
bound to an address that is assigned automatically, as if by invoking the bind()
method with a parameter of null.

The method will return the number of bytes sent.
When you receive a packet, you pass to the receive() method the buffer (ByteBuffer) into which the

datagram is to be transferred. Again, here’s how it works according to the documentation (see
http://download.oracle.com/javase/7/docs/api/):

If a datagram is immediately available, or if this channel is in blocking mode and one
eventually becomes available, then the datagram is copied into the given byte buffer
and its source address is returned. If this channel is in non-blocking mode and a
datagram is not immediately available then this method immediately returns null.
This method may be invoked at any time. If another thread has already initiated a
read operation upon this channel, however, then an invocation of this method will
block until the first operation is complete. If this channel’s socket is not bound then
this method will first cause the socket to be bound to an address that is assigned
automatically, as if by invoking the bind() method with a parameter of null.

The method will return the datagram’s source address, or null if this channel is in non-blocking
mode and no datagram is immediately available. The remote address can be used to find out where to
send an answer packet.

In addition, you can find out the remote address by calling the
DatagramChannel.getRemoteAddress() method. This method is new in Java 7 (NIO.2), and it returns the
remote address to which this channel’s socket is connected—keep in mind that for a UDP
connectionless case, this method returns null:

System.out.println("Connected to: " + datagramChannel.getRemoteAddress());

Our datagram echo server will listen for incoming packets in an infinite loop, in blocking mode (by
default), and when a packet arrives, it will extract from it the remote address and data. The data is sent
back based on the remote address:

final int MAX_PACKET_SIZE = 65507;
ByteBuffer echoText = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);
...
while (true) {

 SocketAddress clientAddress = datagramChannel.receive(echoText);

 echoText.flip();
 System.out.println("I have received " + echoText.limit() + " bytes from " +
 clientAddress.toString() + "! Sending them back ...");
 datagramChannel.send(echoText, clientAddress);
 echoText.clear();
}

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

198

Closing the Datagram Channel
When a datagram channel becomes useless, it must be closed. For this, you can call the
DatagramChannel.close() method:

datagramChannel.close();

Again, the Java 7 try-with-resources features can be used for automatic closing.

Putting All Together into the Server
Now we have everything we need for creating our server. Putting all of the previous information together
will provide us the following server:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.net.StandardProtocolFamily;
import java.nio.channels.DatagramChannel;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.ClosedChannelException;

public class Main {

 public static void main(String[] args) {
 final int LOCAL_PORT = 5555;
 final String LOCAL_IP = "127.0.0.1"; //modify this to your local IP
 final int MAX_PACKET_SIZE = 65507;

 ByteBuffer echoText = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);

 //create a new datagram channel
 try (DatagramChannel datagramChannel = DatagramChannel.open(StandardProtocolFamily.INET)) {

 //check if the channel was successfully opened
 if (datagramChannel.isOpen()) {

 System.out.println("Echo server was successfully opened!");
 //set some options
 datagramChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
 datagramChannel.setOption(StandardSocketOptions.SO_SNDBUF, 4 * 1024);
 //bind the channel to local address
 datagramChannel.bind(new InetSocketAddress(LOCAL_IP, LOCAL_PORT));
 System.out.println("Echo server was binded on:"+datagramChannel.getLocalAddress());
 System.out.println("Echo server is ready to echo ...");

 //transmitting data packets
 while (true) {

 SocketAddress clientAddress = datagramChannel.receive(echoText);

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

199

 echoText.flip();
 System.out.println("I have received " + echoText.limit() + " bytes from " +
 clientAddress.toString() + "! Sending them back ...");
 datagramChannel.send(echoText, clientAddress);
 echoText.clear();
 }
 } else {
 System.out.println("The channel cannot be opened!");
 }
 } catch (Exception ex) {
 if (ex instanceof ClosedChannelException) {
 System.err.println("The channel was unexpected closed ...");
 }
 if (ex instanceof SecurityException) {
 System.err.println("A security exception occured ...");
 }
 if (ex instanceof IOException) {
 System.err.println("An I/O error occured ...");
 }

 System.err.println("\n" + ex);
 }
 }
}

Writing a Connectionless UDP Client
Writing a connectionless UDP client is similar to writing a UDP server. After creating a new
DatagramChannel in the same manner as shown previously, and setting whatever options you need, you
can start sending and receiving data packets. A client datagram–oriented socket channel doesn’t have to
be bound to a local address, since the server will extract the IP address and port from each received data
packet—in other words, it knows where the client lives. Moreover, if this channel’s socket is not bound,
then the send() and receive() methods will first cause the socket (client or server) to be bound to an
address that is assigned automatically, as if by invoking the bind() method with a parameter of null. But
keep in mind that if the server side is automatically bound (not explicitly), then the client should be
aware of the chosen address (or more precisely, of the chosen IP address and port). The opposite is also
true if the server sends the first data packet.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

200

Our client knows that the server lives at the address 127.0.0.1, port 5555; therefore, it sends the first
data packet and receives the answer from it. Here it is the code:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardProtocolFamily;
import java.nio.channels.DatagramChannel;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.ClosedChannelException;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;

public class Main {

 public static void main(String[] args) throws IOException {

 final int REMOTE_PORT = 5555;
 final String REMOTE_IP = "127.0.0.1"; //modify this accordingly if you want to test remote
 final int MAX_PACKET_SIZE = 65507;

 CharBuffer charBuffer = null;
 Charset charset = Charset.defaultCharset();
 CharsetDecoder decoder = charset.newDecoder();
 ByteBuffer textToEcho = ByteBuffer.wrap("Echo this: I'm a big and ugly server!".getBytes());
 ByteBuffer echoedText = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);

 //create a new datagram channel
 try (DatagramChannel datagramChannel = DatagramChannel.open(StandardProtocolFamily.INET)) {

 //check if the channel was successfully opened
 if (datagramChannel.isOpen()) {

 //set some options
 datagramChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
 datagramChannel.setOption(StandardSocketOptions.SO_SNDBUF, 4 * 1024);

 //transmitting data packets
 int sent = datagramChannel.send(textToEcho,
 new InetSocketAddress(REMOTE_IP, REMOTE_PORT));
 System.out.println("I have successfully sent "+sent+ " bytes to the Echo Server!");

 datagramChannel.receive(echoedText);

 echoedText.flip();
 charBuffer = decoder.decode(echoedText);
 System.out.println(charBuffer.toString());
 echoedText.clear();

 } else {
 System.out.println("The channel cannot be opened!");

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

201

 }
 } catch (Exception ex) {
 if (ex instanceof ClosedChannelException) {
 System.err.println("The channel was unexpected closed ...");
 }
 if (ex instanceof SecurityException) {
 System.err.println("A security exception occured ...");
 }
 if (ex instanceof IOException) {
 System.err.println("An I/O error occured ...");
 }

 System.err.println("\n" + ex);
 }
 }
}

Testing the UDP Connectionless Echo Application
Testing the application is a simple task. First, start the server and wait until you see the following
message:

Echo server was successfully opened!
Echo server was binded on: /127.0.0.1:5555
Echo server is ready to echo ...

Then start the client and check out the output. Here is some possible output from the UDP server:

Echo server was successfully opened!

Echo server was binded on: /127.0.0.1:5555

Echo server is ready to echo ...

I have received 37 bytes from /127.0.0.1:49155! Sending them back ...

And here is some possible UDP client output:

I have successfully sent 37 bytes to the Echo Server!

Echo this: I'm a big and ugly server!

■ Caution Don’t forget to manually stop the UDP server after finishing tests!

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

202

Writing a Connected UDP Client
If you want to use the DatagramChannel.read() and DatagramChannel.write() methods (based on
ByteBuffers), rather then send() and receive(), you need to write a connected UDP client. In a
connected-client scenario, the channel’s socket is configured so that it only receives/sends datagrams
from/to the given remote peer address. After the connection is established, data packets may not be
received/sent from/to any other address. A datagram-oriented socket remains connected until it is
explicitly disconnected or until it is closed.

This type of client must explicitly call the DatagramChannel.connect() method and pass to it the
server-side remote address, as follows:

final int REMOTE_PORT = 5555;
final String REMOTE_IP = "127.0.0.1";
datagramChannel.connect(new InetSocketAddress(REMOTE_IP, REMOTE_PORT));

Notice that, unlike the SocketChannel.connect() method, this method does not actually
send/receive any packets across the network, since UDP is a connectionless protocol—this method
returns pretty quickly, and does not block the application in a concrete sense. There is no need here for a
finishConnect() or isConnectionPending() method. This method may be invoked at any time, because it
will not affect read/write operations that are already in progress at the moment that it is invoked. If this
channel’s socket is not bound, then this method will first cause the socket to be bound to an address that
is assigned automatically, as if invoking the bind() method with a parameter of null.

You can check out a connection status by calling the DatagramChannel.isConnected() method. A
corresponding boolean value will be returned (true if this channel’s socket is open and connected):

if (datagramChannel.isConnected()) {
 ...
}

The following application is a UDP connected client for our UDP echo server. It connects to the
remote address and uses read()/write() methods for transmitting data:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardProtocolFamily;
import java.nio.channels.DatagramChannel;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.ClosedChannelException;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;

public class Main {

 public static void main(String[] args) throws IOException {

 final int REMOTE_PORT = 5555;
 final String REMOTE_IP = "127.0.0.1"; //modify this accordingly if you want to test remote
 final int MAX_PACKET_SIZE = 65507;

 CharBuffer charBuffer = null;
 Charset charset = Charset.defaultCharset();

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

203

 CharsetDecoder decoder = charset.newDecoder();
 ByteBuffer textToEcho = ByteBuffer.wrap("Echo this: I'm a big and ugly server!".getBytes());
 ByteBuffer echoedText = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);

 //create a new datagram channel
 try (DatagramChannel datagramChannel = DatagramChannel.open(StandardProtocolFamily.INET)) {

 //set some options
 datagramChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
 datagramChannel.setOption(StandardSocketOptions.SO_SNDBUF, 4 * 1024);

 //check if the channel was successfully opened
 if (datagramChannel.isOpen()) {

 //connect to remote address
 datagramChannel.connect(new InetSocketAddress(REMOTE_IP, REMOTE_PORT));

 //check if the channel was successfully connected
 if (datagramChannel.isConnected()) {

 //transmitting data packets
 int sent = datagramChannel.write(textToEcho);
 System.out.println("I have successfully sent "+sent
 +" bytes to the Echo Server!");

 datagramChannel.read(echoedText);

 echoedText.flip();
 charBuffer = decoder.decode(echoedText);
 System.out.println(charBuffer.toString());
 echoedText.clear();

 } else {
 System.out.println("The channel cannot be connected!");
 }
 } else {
 System.out.println("The channel cannot be opened!");
 }
 } catch (Exception ex) {
 if (ex instanceof ClosedChannelException) {
 System.err.println("The channel was unexpected closed ...");
 }
 if (ex instanceof SecurityException) {
 System.err.println("A security exception occured ...");
 }
 if (ex instanceof IOException) {
 System.err.println("An I/O error occured ...");
 }

 System.err.println("\n" + ex);
 }
 }

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

204

}
The well-known read()/write() methods are available in DatagramChannel:

• Reading sequence of bytes from this channel into the given buffer. These methods
return the number of bytes read (it can be zero) or –1 if the channel has reached
the end of the stream:

public abstract int read(ByteBuffer dst) throws IOException
public final long read(ByteBuffer[] dsts) throws IOException
public abstract long read(ByteBuffer[] dsts, int offset, int length) throws IOException

• Writing a sequence of bytes to this channel from the given buffer. These methods
return the number of bytes written; it can be zero:

public abstract int write(ByteBuffer src) throws IOException
public final long write(ByteBuffer[] srcs) throws IOException
public abstract long write(ByteBuffer[] srcs, int offset, int length) throws IOException

Testing the UDP Connected Echo Application
Testing the application is a simple task. First, start the server and wait until you see this message:

Echo server was successfully opened!

Echo server was binded on: /127.0.0.1:5555

Echo server is ready to echo ...

Then start the client and check out the output. The UDP server output is shown here:

Echo server was successfully opened!

Echo server was binded on: /127.0.0.1:5555

Echo server is ready to echo ...

I have received 37 bytes from /127.0.0.1:57374! Sending them back ...

Here’s the UDP client output:

I have successfully sent 37 bytes to the Echo Server!

Echo this: I'm a big and ugly server!

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

205

Multicasting
You are probably already familiar with the term multicasting. But, if you are not, let’s have a short
overview of this concept. Without academic descriptions and definitions, think of multicasting as the
Internet’s version of broadcasting. For example, a television station broadcasts its signal from one
source, but the signal can reach everyone that lives in the signal area—only the ones that do not have the
right equipment or refuse to catch the signal will fail to receive the transmission.

In the computer world, the TV station can be translated to a main node, or machine, that spreads
datagrams to a group of destination hosts. This is possible thanks to the multicast transport service,
which sends datagrams from a source to multiple receivers in a single call—this opposed to the unicast
transport service, which is specific to high-level network protocols that are based on point-to-point
connections and requires a replicated unicast for sending the same data to multiple points (actually, it
sends a copy of the data to each point).

Multicasting introduces the notion of a group for representing the receivers of the datagrams. A
group is identified by a class D IP address (a multicast group IPv4 address is between 224.0.0.1 and
239.255.255.255). When a new receiver (client) wants to join a multicast group, it needs to connect to the
group through the corresponding IP address and listen for the incoming datagrams.

Many real-life cases can be programmed based on multicasting, such as online conferencing, news
distribution, advertising, e-mail groups, and data-sharing management.

Next, we’ll discuss NIO.2’s contribution to multicasting.

MulticastChannel Overview
NIO.2 comes with a new interface for mapping a network channel that supports IP multicasting. This is
the java.nio.channels.MulticastChannel interface. At the API level, this is a subinterface of the
NetworkChannel interface presented earlier in this chapter, and it is implemented by a single class: the
DatagramChannel class.

Basically, it defines two join() methods and a close() method. Focusing on the join() methods,
here it is a short overview:

• The first join() method is called by a client who wants to join a multicast group
for receiving the incoming datagrams. We need to pass the IP address of the group
and the network interface on which to join the group (you will see shortly how to
check if your machine has a network interface capable of multicasting). If the
indicated group is successfully joined, this method returns a MembershipKey
instance. This is new in NIO.2, and it is a token representing the membership of an
IP multicast group (see the next section).

MembershipKey join(InetAddress g, NetworkInterface i) throws IOException

• The second join() method is also used for joining a multicast group. In this case,
however, we indicate a source address from which group members can begin
receiving datagrams. Membership is cumulative, which means that this method
may be invoked again with the same group and interface for receiving datagrams
sent by other source addresses to the group.

MembershipKey join(InetAddress g, NetworkInterface i, InetAddress s) throws IOException

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

206

■ Note A multicast channel may join several multicast groups, including the same group on more than one
interface.

The close() method is used to drop the membership (if any group was joined) and close the
channel.

MembershipKey Overview
When you join a multicast group, you get a membership key that can be used to perform different kinds
of actions inside that group. The most common are presented here:

• Block/unblock: You can block the sent datagrams from a specific source by calling
the block() method and passing the source address. Moreover, you can unblock
the blocked source by calling the unblock() method with the same address.

• Get group: You can get the source address of the multicast group for which this
membership key was created by calling the no-argument group() method. This
method returns an InetAddress object.

• Get channel: You can get the channel for which this membership key was created
by calling the no-argument method channel(). This method returns a
MulticastChannel object.

• Get source address: If the membership key is source specific (receives only
datagrams from a specific source address), you can get the source address by
calling the no-argument sourceAddress() method. This method returns an
InetAddress object.

• Get network interface: You can get the network interface for which this
membership key was created by calling the no-argument networkInterface()
method. This method returns a NetworkInterface object.

• Check validity: You can check if a membership is valid by calling the isValid()
method. This method returns a boolean value.

• Drop: You can drop membership (the channel will no longer receive any
datagrams sent to the group) by calling the no-argument drop() method.

A membership key is valid when you create it and remains valid until the membership is dropped by
using the drop() method or the channel is closed.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

207

NetworkInterface Overview
The NetworkInterface class represents a network interface, which is made up of a name and a list of IP
addresses assigned to this interface. It is used to identify the local interface to which a multicast group is
joined. For example, the following code will return information about all the network interfaces found
on your machine:

import java.net.InetAddress;
import java.net.NetworkInterface;
import java.util.Enumeration;

public class Main {

 public static void main(String argv[]) throws Exception {

 Enumeration enumInterfaces = NetworkInterface.getNetworkInterfaces();
 while (enumInterfaces.hasMoreElements()) {
 NetworkInterface net = (NetworkInterface) enumInterfaces.nextElement();
 System.out.println("Network Interface Display Name: " + net.getDisplayName());
 System.out.println(net.getDisplayName() + " is up and running ?" + net.isUp());
 System.out.println(net.getDisplayName()+" Supports Multicast: "+net.supportsMulticast());
 System.out.println(net.getDisplayName() + " Name: " + net.getName());
 System.out.println(net.getDisplayName() + " Is Virtual: " + net.isVirtual());
 System.out.println("IP addresses:");
 Enumeration enumIP = net.getInetAddresses();
 while (enumIP.hasMoreElements()) {
 InetAddress ip = (InetAddress) enumIP.nextElement();
 System.out.println("IP address:" + ip);
 }
 }
 }
}

This application will return all the network interfaces found on your machine, and for each one will
render its display name (a human-readable String describing the network device) and name (the real
name used to identify a network interface). Moreover, each network interface is checked to see if it
supports multicast, if it is virtual (a subinterface), and if it is up and running.

Figure 8-4 shows a fragment of output on my machine. The framed interface is the one used for
testing multicast applications—its name is eth3 and will be used later in the client/server multicast
application for indicating this interface.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

208

Figure 8-4. Find out local interfaces.

Writing a UDP Multicast Server
In this section, we will write a UDP multicast server that sends to the group datagrams containing the
current date and time on the server. This will be repeated every 10 seconds. Now that we have some
experience with writing UDP client/server applications, there is no need to repeat the entire process step
by step. We’ll just point out the main differences that transform a usual UDP client/server application
into a UDP multicast client/server application.

We start the developing process by creating a new DatagramChannel object by calling the open()
method. Next, we set two important options, IP_MULTICAST_IF and SO_REUSEADDR. The first one will
indicate the network interface for IP multicast datagrams used in this case, and the second one should
be enabled prior to binding the socket—this is required to allow multiple members of the group to bind
to the same address:

NetworkInterface networkInterface = NetworkInterface.getByName("eth3");
...
datagramChannel.setOption(StandardSocketOptions.IP_MULTICAST_IF, networkInterface);
datagramChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);

Next, we bind the channel’s socket to the local address by calling the bind() method:

final int DEFAULT_PORT = 5555;
datagramChannel.bind(new InetSocketAddress(DEFAULT_PORT));

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

209

Finally, we prepare the datagram-transmitting code. Since we send to the group the server date and
time every 10 seconds, we need an infinite loop containing a sleep duration of 10 seconds and a call to
the send() method. The multicast group IP address was arbitrarily chosen as 225.4.5.6, and it is mapped
by an InetAddress object:

final int DEFAULT_PORT = 5555;
final String GROUP = "225.4.5.6";
ByteBuffer datetime;
...
while (true) {

 //sleep for 10 seconds
 try {
 Thread.sleep(10000);
 } catch (InterruptedException ex) {}

 System.out.println("Sending data ...");
 datetime = ByteBuffer.wrap(new Date().toString().getBytes());
 datagramChannel.send(datetime, new
 InetSocketAddress(InetAddress.getByName(GROUP), DEFAULT_PORT));
 datetime.flip();
}

Putting everything together will result in the following application:

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.nio.channels.DatagramChannel;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.util.Date;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String GROUP = "225.4.5.6";
 ByteBuffer datetime;

 //create a new channel
 try (DatagramChannel datagramChannel = DatagramChannel.open(StandardProtocolFamily.INET)) {

 //check if the channel was successfully created
 if (datagramChannel.isOpen()) {

 //get the network interface used for multicast
 NetworkInterface networkInterface = NetworkInterface.getByName("eth3");

 //set some options

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

210

 datagramChannel.setOption(StandardSocketOptions.IP_MULTICAST_IF, networkInterface);
 datagramChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);

 //bind the channel to the local address
 datagramChannel.bind(new InetSocketAddress(DEFAULT_PORT));
 System.out.println("Date-time server is ready ... shortly I'll start sending ...");

 //transmitting datagrams
 while (true) {

 //sleep for 10 seconds
 try {
 Thread.sleep(10000);
 } catch (InterruptedException ex) {}

 System.out.println("Sending data ...");
 datetime = ByteBuffer.wrap(new Date().toString().getBytes());
 datagramChannel.send(datetime, new
 InetSocketAddress(InetAddress.getByName(GROUP), DEFAULT_PORT));
 datetime.flip();
 }
 } else {
 System.out.println("The channel cannot be opened!");
 }
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Writing a UDP Multicast Client
The code for a UDP multicast client is almost the same as for a server, with a few differences. First, you
may want to check if the remote address is actually a multicast address—this is possible by calling the
InetAddress.isMulticastAddress() method, which returns a boolean. And second, since this is a client, it
must join the group by calling one of the two join() methods. The datagram-transmitting code is
adapted only for receiving datagrams from the UDP multicast server. The following application is a
possible client implementation:

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.nio.channels.DatagramChannel;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.MembershipKey;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

211

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final int MAX_PACKET_SIZE = 65507;
 final String GROUP = "225.4.5.6";

 CharBuffer charBuffer = null;
 Charset charset = Charset.defaultCharset();
 CharsetDecoder decoder = charset.newDecoder();
 ByteBuffer datetime = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);

 //create a new channel
 try (DatagramChannel datagramChannel = DatagramChannel.open(StandardProtocolFamily.INET)) {

 InetAddress group = InetAddress.getByName(GROUP);
 //check if the group address is multicast
 if (group.isMulticastAddress()) {
 //check if the channel was successfully created
 if (datagramChannel.isOpen()) {
 //get the network interface used for multicast
 NetworkInterface networkInterface = NetworkInterface.getByName("eth3");

 //set some options
 datagramChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 //bind the channel to the local address
 datagramChannel.bind(new InetSocketAddress(DEFAULT_PORT));
 //join the multicast group and get ready to receive datagrams
 MembershipKey key = datagramChannel.join(group, networkInterface);

 //wait for datagrams
 while (true) {

 if (key.isValid()) {

 datagramChannel.receive(datetime);
 datetime.flip();
 charBuffer = decoder.decode(datetime);
 System.out.println(charBuffer.toString());
 datetime.clear();
 } else {
 break;
 }
 }

 } else {
 System.out.println("The channel cannot be opened!");
 }
 } else {
 System.out.println("This is not multicast address!");

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

212

 }

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Blocking and Unblocking Datagrams
Sometimes joining multicast groups can bring to you undesired datagrams (the reasons are not relevant
here). You can block receiving a datagram from a sender by calling the MembershipKey.block() method
and passing to it the InetAddress of that sender. In addition, you can unblock the same sender, and start
receiving datagrams from it again, by calling the MembershipKey.unblock() method and passing it the
same InetAddress. Usually, you’ll be in one of the following two scenarios:

• You have a list of senders’ addresses that you’d like to join. Supposing that the
addresses are stored in a List, you can loop it and join each address separately, as
shown here:

List<InetAddress> like = ...;
DatagramChannel datagramChannel =...;

if(!like.isEmpty()){
 for(InetAddress source: like){
 datagramChannel.join(group, network_interface, source);
 }
}

• You have a list of senders’ addresses that you don’t want to join. Supposing that
the addresses are stored in a List, then you can loop it and block each address
separately, as shown here:

List<InetAddress> dislike = ...;
DatagramChannel datagramChannel =...;

MembershipKey key = datagramChannel.join(group, network_interface);

if(!dislike.isEmpty()){
 for(InetAddress source: dislike){
 key.block(source);
 }
}

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

213

Testing the UDP Multicast Application
Testing the application is a simple task. First, start the multicast server and wait until you see this
message:

Date-time server is ready ... shortly I'll start sending ..

Then start the client and check out the output. Here is some example output for the UDP multicast
server:

Date-time server is ready ... shortly I'll start sending ...

Sending data ...

Sending data ...

Sending data ...

Sending data ...

Sending data ...

Here is the UDP client output (the client is started after a few minutes):

Sat Oct 08 09:40:09 GMT+02:00 2011

Sat Oct 08 09:40:19 GMT+02:00 2011

Performing some tests on this example will reveal some issues. When the server is started, it sends
datagrams without being aware of whether any client is listening for those datagrams. Also, it is not
aware of when clients join or leave the group. On the opposite side, the client starts receiving datagrams
when it joins the group, but is not aware of whether the server stops sending because of any causes. If
the server goes offline, the client is still waiting, and it will receive again when the server is online again
and begins sending. It can be an interesting exercise to try solving these issues if your case requires more
control. Also, you may want to experiment with threads, blocking /non-blocking modes, and
connectionless/connected features to add more flexibly and performance to your multicasting
applications.

http://www.it-ebooks.info

CHAPTER 8 ■ THE SOCKET APIS

214

Summary
This chapter covered the NIO.2 features for creating TCP/UDP client/server applications. As discussed,
NIO.2 has improved this support by updating existing classes with new methods and adding new
interfaces/classes for writing such applications.

The chapter began with the NetworkChannel interface, which provides methods commons to all
network channel classes. It also covered the main classes dedicated to synchronous socket channels:
ServerSocketChannel, SocketChannel, and DatagramChannel. It also discussed the MulticastChannel
interface—a subinterface of NetworkChannel that maps a network channel that supports IP multicasting.
Finally, you saw how to write a single-thread blocking/non-blocking TCP client/server application, a
single-thread blocking UDP client/server application, and a single-thread multicast UDP client/server
application.

http://www.it-ebooks.info

C H A P T E R 9

 ■ ■ ■

215

The Asynchronous Channel API

We’ve finally reached the most powerful feature introduced in NIO.2, the asynchronous channel API. As
you’ll see in this chapter, the asynchronous I/O (AIO) Java 7 journey starts in the
java.nio.channels.AsynchronousChannel interface, which extends a channel with asynchronous I/O
operations support. This interface is implemented by three classes: AsynchronousFileChannel,
AsynchronousSocketChannel, and AsynchronousServerSocketChannel. There is a fourth class,
AsynchronousDatagramChannel, which was added in the Java 7 beta release and then removed in the Java
7 final release; at this writing, this class is not available, but it may appear in future Java 7 releases, so this
chapter covers it in sufficient depth to make you aware of its purpose. These classes are similar in style to
the NIO.2 channel APIs. In addition, there is an asynchronous channel named AsynchronousByteChannel
that can read and write bytes and stands up as a subinterface of AsynchronousChannel (this subinterface
is implemented by the AsynchronousSocketChannel class). Moreover, the new API introduces a class
named AsynchronousChannelGroup, which presents the concept of an asynchronous channel group, in
which each asynchronous channel belongs to a channel group (the default one or a specified one) that
shares a pool of Java threads. These threads receive instructions to perform I/O events and they dispatch
the results to the completion handlers. All the effort is for the purpose of handling the completion of
initiated asynchronous I/O operations.

In this chapter, you will see the asynchronous mechanism from the Java perspective. You will see
the big picture of how Java implements asynchronous I/O, after which you will develop related
applications for files and sockets. We will start with asynchronous I/O for files by exploring the
AsynchronousFileChannel class and continue with asynchronous I/O for TCP sockets and UDP sockets.

But, before we jump into the features of the API, a short overview of the difference between
synchronous I/O and asynchronous I/O is in order.

Synchronous I/O vs. Asynchronous I/O
The difference between synchronous and asynchronous execution may seem a bit confusing at first, so
let’s clear it up. Basically, there are two types of input/output (I/O) synchronization: synchronous I/O
and asynchronous I/O (also referred to as overlapped I/O). In a synchronous I/O operation, a thread
enters into action and waits until the I/O request is completed (the program is “stuck” waiting for the
process to end, with no way out). When the same action occurs in an asynchronous environment, a
thread performs the I/O operation with more kernel help. Actually, it immediately passes the request to
the kernel and continues on to process another job. The kernel signals to the thread when the operation
has completed, and the thread “respects” the signal by interrupting its current job and processing the
data from the I/O operation as necessary. In the Java spirit of platform independence, asynchronous I/O
can be tied to multiple threads—basically, allowing something to be processed on a separate thread.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

216

Asynchronous I/O and synchronous I/O serve different purposes. You can use synchronous I/O if
you simply want to make a request and receive a response. Synchronous I/O limits performance and
scalability since it is one thread per I/O connection, and running thousands of threads significantly
increases overhead on the operating system. Asynchronous I/O is a different programming model,
because you don’t necessarily wait for a response, but rather submit your work for execution and then
come back for a response either almost immediately or sometime later. Therefore, asynchronous I/O
seems to be better than synchronous I/O, since performance and scalability are keywords of the I/O
system. Various important operating systems, such as Windows and Linux, support fast, scalable I/O
based on the use of asynchronous notifications of I/O operations taking place in the OS layers.

In summary, I/O processing that is expected to take a large amount of time can be optimized by
using asynchronous I/O. For relatively fast I/O operations, synchronous I/O would be better because the
overhead of processing kernel I/O requests and kernel signals may make asynchronous I/O less
beneficial.

Asynchronous I/O Big Picture
When talking about asynchronous I/O in Java, we are talking about the asynchronous channels. An
asynchronous channel is a connection that supports multiple I/O operations in parallel through
separate threads (connecting, reading, and writing, for example) and provides mechanisms for
controlling the operations after they’ve been initiated.

This section discusses a few important aspects that are common to all asynchronous channels.
Foremost, note that all asynchronous channels initiate I/O operations (does not block the application to
perform other tasks) and provide notifications when I/O completes. This rule is the foundation of
asynchronous channels, and from it derives the entire asynchronous channel API.

To begin our discussion of the asynchronous I/O big picture, we’ll look at forms. All asynchronous
I/O operations have one of two forms:

• Pending result

• Complete result

Pending Result and the Future Class
The first form returns a java.util.concurrent.Future<V> object and represents the pending result of an
asynchronous I/O operation. Through Future’s methods we can check if the operation is complete, wait
for its completion (if it’s not already complete), and retrieve the result of the operation.

For example, you can perform boolean checks through the Future.isXXX() methods: you can find
out if the operation is complete by calling the Future.isDone() method, or you can check if the
operation was canceled by calling the Future.isCancelled() method. You can explicitly cancel an
operation by calling the Future.cancel() method, which will return a boolean representing the success
of the cancellation—if the thread executing this task should be interrupted, then pass true to this
method; otherwise, in-progress tasks are allowed to complete. This attempt will fail if the task has
already completed, has already been canceled, or could not be canceled for some other reason. If
successful, and this task had not started when cancel() was called, the task should never run.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

217

■ Caution When canceling an asynchronous I/O operation, all threads waiting on the result will throw
CancellationException. There is no guarantee that the underlying I/O operation will be canceled right away, but
it is guaranteed that further attempts to initiate I/O operations that are “the same” as the operation that was
canceled will not be allowed (i.e., the channel is put into an implementation-specific error state). Also, keep in
mind that if the cancel() method argument was set to true, then the I/O operation may be interrupted by closing
the channel—all threads waiting on the result of the I/O operation will throw CancellationException, and any
other I/O operations outstanding on the channel complete with the exception AsynchronousCloseException.

■ Tip Make sure that the I/O buffers involved in a canceled read/write operation are not further accessed while
the channel remains open.

The result of the operation can only be retrieved using the methods Future.get() and
Future.get(long timeout, TimeUnit unit) after the operation has completed, waiting if necessary until
it is ready or the specified timeout has expired. In this case, a TimeoutException will be thrown. The V
represents the result type returned by this Future’s get() method, which means that this is the result
type of the operation.

Complete Result and the CompletionHandler Interface
The second form, complete result, is reminiscent of the well-known callback mechanism (such as AJAX
callbacks). This is an alternative mechanism to the Future form. We register a callback to the
asynchronous I/O operation (read or write, for example), and when the operation completes or fails, a
handler (CompletionHandler) is invoked to consume the result of the operation.

A completion handler is of the form CompletionHandler<V,A>, where V is the type of the result value
and A is the type of object attached to the I/O operation. A handler should override two methods: the
completed() method, which is invoked when the I/O operation completes successfully, and the failed()
method, which is invoked if the I/O operation fails. If the operation completes successfully, then the
result is passed as a parameter to the completed() method, and if the operation fails, a Throwable is
passed to the failed() method. Ignoring the operation status, both methods receive an attachment
parameter representing an object that is passed in to the asynchronous operation. It can be used to track
which operation finished first if the same CompletionHandler object is used for multiple operations, but,
of course, you may find it useful in other situations. The syntax of these methods looks like this:

void completed(V result, A attachment)
void failed(Throwable exc, A attachment)

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

218

■ Tip Per the official Java Platform SE 7 documentation for CompletionHandler, “The implementations of
these methods should complete in a timely manner so as to avoid keeping the invoking thread from dispatching to
other completion handlers.” The following sections will explain the reason.

Types of Asynchronous Channels
As of this writing, Java 7 comes with the following three types of asynchronous channels. The following
subsections briefly describe each one in turn.

• AsynchronousFileChannel

• AsynchronousServerSocketChannel

• AsynchronousSocketChannel

AsynchronousFileChannel
As its name suggests, the AsynchronousFileChannel class represents an asynchronous channel for
reading, writing, and manipulating a file. This class provides methods for reading and writing a file
based on ByteBuffers. In addition, it provides methods for locking files, truncating files, and getting file
sizes, but keep in mind that, unlike a synchronous FileChannel channel, this type of channel does not
maintain a global file position (current position) or offset. Even if no global position or offset is available,
each read or write operation should specify the position in the file from which to read or write. This
allows accessing of different parts of the file concurrently.

When you work with an AsynchronousFileChannel channel, you must be careful to take into account
the following aspects:

• Closing an asynchronous file channel by explicitly calling the inherited close()
method (from the AsynchronousChannel interface) causes all outstanding
asynchronous operations on the channel to complete with an
AsynchronousCloseException exception. After a channel is closed, further attempts
to initiate asynchronous I/O operations complete immediately with cause
ClosedChannelException.

• A reading attempt may cause a NonReadableChannelException exception if the
channel has not been opened for reading. A writing attempt may cause a
NonWritableChannelException exception if this channel has not been opened for
writing.

• A locking attempt when a lock is already held by this Java virtual machine, or there
is already a pending attempt to lock a region, will cause an
OverlappingFileLockException exception.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

219

AsynchronousServerSocketChannel
The AsynchronousServerSocketChannel class represents an asynchronous channel for stream-oriented
listening sockets. Opening such a channel type allows us to bind it to a group that has an associated
thread pool to which tasks are submitted to handle I/O operations (there is also a default group when
none is specified). After opening, the channel has the capability to accept incoming connections in an
asynchronous manner, which means that we can choose between a Future and a CompletionHandler for
tracking the connection status. Important tasks such as binding and setting channel options are
provided through the implemented NetworkChannel interface.

When you work with an AsynchronousServerSocketChannel channel, be careful to take into account
the following:

• Closing an asynchronous server socket channel by explicitly calling the inherited
close() method (from the AsynchronousChannel interface) causes all outstanding
asynchronous operations on the channel to complete with an
AsynchronousCloseException exception. After a channel is closed, further attempts
to initiate asynchronous I/O operations complete immediately with cause
ClosedChannelException.

• An opening attempt will cause a ShutdownChannelGroupException exception if the
channel group is shut down.

• An attempt to invoke the accept() method on an unbound channel will cause a
NotYetBoundException exception to be thrown.

• If a thread initiates an accept operation before a previous accept operation has
completed, then an AcceptPendingException exception will be thrown.

AsynchronousSocketChannel
The AsynchronousSocketChannel class represents an asynchronous channel for stream-oriented
connecting sockets. Opening such a channel type allows us to bind it to a group that has an associated
thread pool to which tasks are submitted to handle I/O operations (there is also a default group when
none is specified). After opening, the channel has the capability to connect to the remote addresses in an
asynchronous manner, which means that we can choose between a Future and a CompletionHandler for
tracking the connection status. For a successful connection, this channel can read and write buffers of
bytes (sequences of bytes, ByteBuffers) through a set of read() and write() asynchronous methods—
again, we can choose between a Future and a CompletionHandler for tracking the reading or writing
status. Important tasks such as binding and setting channel options are provided through the
implemented NetworkChannel interface.

When you work with an AsynchronousSocketChannel channel, be careful to take into account the
following:

• Closing an asynchronous socket channel by explicitly calling the inherited close()
method (from the AsynchronousChannel interface) causes all outstanding
asynchronous operations on the channel to end up with an
AsynchronousCloseException exception. Further attempts to initiate asynchronous
I/O operations over a closed channel will finish immediately with a
ClosedChannelException exception.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

220

• An attempt to invoke an I/O operation upon an unconnected channel will cause a
NotYetConnectedException exception to be thrown.

• If a thread initiates a read operation before a previous read operation has
completed, then a ReadPendingException exception will be thrown. If a thread
initiates a write operation before a previous write operation has completed, then a
WritePendingException exception will be thrown.

• An attempt to connect to a channel may cause an AlreadyConnectedException
exception if this channel is already connected.

• An attempt to connect to a channel may cause a ConnectionPendingException
exception if a connection operation is already in progress on this channel.

• The read() and write() methods defined by the AsynchronousSocketChannel class
allow a timeout to be specified when initiating a read or write operation,
respectively. If the timeout elapses before an operation completes, then an
InterruptedByTimeoutException exception will complete the operation. A timeout
may leave the channel, or the underlying connection, in an inconsistent state. If
the implementation cannot guarantee that bytes have not been read from or
written to the channel, then it puts the channel into an implementation-specific
error state. A subsequent attempt to initiate a read or write operation causes an
unspecified runtime exception to be thrown.

Groups
As mentioned in the introduction to the chapter, the asynchronous API introduces a class named
AsynchronousChannelGroup, which presents the concept of an asynchronous channel group, in which
each asynchronous channel belongs to a channel group (the default one or a specified one) that shares a
pool of Java threads. These threads receive instructions to perform I/O events and they dispatch the
results to the completion handlers. The asynchronous channel group encapsulates thread pool and the
resources shared by all the threads working for the channels. Also, the channel is in effect owned by the
group, so if the group is closed, the channel is closed too.

Asynchronous channels are safe for use by multiple concurrent threads. Some channel
implementations may support concurrent reading and writing but may not allow more than one read
and one write operation to be outstanding at any given time.

Default Group
Besides the developer’s created groups, JVM maintains a system-wide default group that is constructed
automatically, useful for simple applications. When a group is not specified, or a null is passed instead,
the asynchronous channels are bound, at construction time, to the default group. The default group may
be configured by means of two system properties, the first of which follows:

java.nio.channels.DefaultThreadPool.threadFactory

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

221

Following is the description of this property from the official Java Platform SE 7 documentation for
the AsynchronousChannelGroup class:

The value of this property is taken to be the fully-qualified name of a concrete
ThreadFactory class. The class is loaded using the system class loader and instantiated.
The factory’s newThread method is invoked to create each thread for the default group’s
thread pool. If the process to load and instantiate the value of the property fails then
an unspecified error is thrown during the construction of the default group.

To paraphrase, this system property defines a java.util.concurrent.ThreadFactory to use instead
of the default one.

The second system property is

java.nio.channels.DefaultThreadPool.initialSize

The official Java Platform SE 7documentation provides this description:

The value of the initialSize parameter for the default group. The value of the property
is taken to be the String representation of an Integer that is the initial size parameter.
If the value cannot be parsed as an Integer it causes an unspecified error to be thrown
during the construction of the default group.

In short, this system property specifies the thread pool’s initial size.

Custom Groups
If the default group does not satisfy your needs, the AsynchronousChannelGroup class provides three
methods for creating your own channel groups. For AsynchronousServerSocketChannel,
AsynchronousSocketChannel, and AsynchronousDatagramChannel (unavailable as of this writing), the
channel group is passed on creation in the open() method of each one. AsynchronousFileChannel differs
from the other channels in that, in order to use a custom thread pool, the open() method takes an
ExecutorService instead of an AsynchronousChannelGroup. Now, let’s see what the advantages and
disadvantages of each supported thread pool are; these characteristics will help you to decide which one
is proper in your case.

Fixed Thread Pool

You can request a fixed thread pool by calling the following AsynchronousChannelGroup method:

public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,
ThreadFactory threadFactory) throws IOException

This method creates a channel group with a fixed thread pool. You must specify the factory to use
when creating new threads and the number of threads.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

222

■ Caution The life cycle in a fixed thread pool follows a simple scenario: a thread waits for an I/O event,
completes I/O for the event, invokes a completion handler, and goes back to wait for more I/O events (the kernel
dispatches events directly to these threads). When the completion handler terminates normally, the thread returns
to the thread pool and waits for the next event. But if the completion handler does not complete in a timely
manner, then it is possible to enter into an indefinitely blocking. If all threads “deadlock” inside a completion
handler, then the application is blocked until a thread is available to execute again, and any new event will be
queued until a thread is available. In the worst-case scenario, no thread can get free and the kernel can no longer
execute anything. This issue may be avoided if you don’t use blocking or long operations inside a completion
handler. Also, you may use a cached thread pool or timeouts for avoiding this issue.

Cached Thread Pool

You can request a cached thread pool by calling the following AsynchronousChannelGroup method:

public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,
 int initialSize) throws IOException

This method creates an asynchronous channel group with a given thread pool that creates new
threads as needed. You just need to specify the initial number of threads and an ExecutorService that
creates new threads as needed. It may reuse previously constructed threads when they are available.

In this case the asynchronous channel group will submit events to the thread pool that simply
invoke completion handlers. But if the thread pool simply invokes the completion handlers, then who
does the hard work and performs the I/O operations? The answer is the hidden thread pool. This is a set
of separate threads that waits for incoming I/O events. More precisely, the kernel I/O operations are
handled by one or more invisible internal threads that dispatch events to a cached pool, which in turn
invokes completion handlers.

The hidden thread pool is important because it greatly reduces the probability that the application
will be blocked (it solves the fixed thread pool issue) and guarantees that the kernel will be able to
complete its I/O operations. But we still have an issue, because the cached thread pool needs
unbounded queuing, which can make the queue grow infinitely and cause OutOfMemoryError—so
monitor the queue (avoid locking all the threads and avoid feeding the queue forever). Avoiding the use
of blocking or long operations inside completion handlers is still a good idea.

Designated Thread Pool

You can also request a thread pool by calling the following AsynchronousChannelGroup method:

public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)
throws IOException

This method creates an asynchronous channel group with a designated thread pool. The thread
pool is provided through an ExecutorService object.

The ExecutorService executes tasks submitted to dispatch completion results for operations
initiated on asynchronous channels in the group. Using this approach requires extra care when
configuring ExecutorService—do at least two things here: provide support for direct handoff or

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

223

unbounded queuing of submitted tasks, and never allow the thread that invokes the execute() method
to invoke the task directly.

Shutting Down a Group

Shutting down a group can be accomplished by calling the shutdown() method or the shutdownNow()
method. Calling the shutdown() method initiates the procedure of shutting down the group by marking
the group as shutdown. Further attempts to construct a channel that binds to the group will throw
ShutdownChannelGroupException. Once it is marked for shutdown, the group begins the termination
process, which involves waiting for all the bound asynchronous channels to be closed (i.e., the
completion handlers have run and the resources have been released).

You can block until the group terminates by calling the awaitTermination() method with a specified
timeout—the blocking is in charge until the group terminates, the timeout occurs, or the current thread
is interrupted, whichever happens first. You can check if a group has terminated by calling the
isTerminated() method and you can check if it is shut down by calling the isShutdown() method. Keep
in mind that the shutdown() method will not force to stop or interrupt threads that are executing
completion handlers.

In addition, forcing a group to shut down can be accomplished by calling the shutdownNow()
method, which will close all the channels in the group exactly as the AsynchronousChannel.close()
method closes them. Keep in mind that calling this method will complete with the exception
AsynchronousCloseException any outstanding asynchronous operations upon this channel. After a
channel is closed, further attempts to initiate asynchronous I/O operations complete immediately with
cause ClosedChannelException.

When a ServiceExecutor is specified, it is intended to be used exclusively by the resulting
asynchronous channel group. Termination of the group results in the orderly shutdown of the executor
service; if the executor service shuts down for some other reason, an unspecified behavior will occur.

■ Note In the case of an asynchronous channel for stream-oriented connecting sockets, there is also the
possibility to shut down the connection for reading by calling the shutdownInupt() method (which will reject any
further read attempts by returning the end-of-stream indicator, -1) and for writing by calling the
shutdownOutput() method (which will reject any writing attempts by throwing a ClosedChannelException
exception). Neither of these methods will close the channel.

ByteBuffer Considerations
As you know, ByteBuffers are not thread-safe. Therefore, you must make sure that you do not access a
byte buffer that is currently involved in an I/O operation. A nice solution for avoiding this issue is to use
a ByteBuffer pool. When an I/O operation is oncoming, you get a byte buffer from the pool, perform the
I/O operation, and then return the byte buffer to the pool.

Fixing this issue also fixes another issue regarding the out of memory errors. Memory requirements
for buffers depend on the number of outstanding I/O operations, but using a pool will help you to reuse
a set of buffers and avoid out of memory issues.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

224

Introducing the ExecutorService API
The earlier discussion of groups referenced the ExecutorService API. If you are not familiar with this API,
you should consult the official documentation, available at

http://download.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

This API is an important component of the Java concept of concurrency and multithreading, and it
is beyond our aim to present it here since it is a large and complex API. I recommend that you also
consult the “Java Concurrency/Multithreading” tutorial of Lars Vogel at
http://www.vogella.de/articles/JavaConcurrency/article.html (published on May 17, 2011).

To give you a brief introduction, the Executor Framework provides a convenient way to create
custom thread pools through the java.util.concurrent.Executors class (which contains factory and
utility methods for different kinds of interfaces involved in the multithreading API, such as
java.util.concurrent.Executor and java.util.concurrent.ExecutorService). This class contains
methods such as newFixedThreadPool(), newCachedThreadPool(), and newScheduledThreadPool().

Each of these methods creates a number (specified by developer or deduced by default
implementation) of worker threads. The ExecutorService interface adds life cycle methods to the
Executor, which enables shutting down the Executor (shutdown() method) and waiting for termination
(awaitTermination() method). In many cases the Executor Framework works with Runnable tasks that
do not return results, but when you expect your threads to return a computed result, you can use the
java.util.concurrent.Callable interface, which makes use of generics to define the type of object
returned. The result is computed inside the Callable.call() method, which should be overridden
accordingly—this throws an Exception if the result cannot be computed. Each Callable task is submitted
to the Executor (the submit() method) and it returns a Future representing the pending result; use this to
check the result status and retrieve the result by calling the get() method.

Developing Asynchronous Applications
There are so many examples to develop and so many tests to perform to accomplish best scalability with
the asynchronous channel API that an entire dedicated book would be required to cover all the details.
Since we are covering the topic in a single chapter, we will cut straight to the stub applications, which
should provide you with a source of inspiration to develop others.

We start this developing spree with the asynchronous file channel for reading, writing, and
manipulating a file. You will see how to perform these I/O operations over a file based on both Future
and CompletionHander forms. We’ll then move on to the asynchronous channel for stream-oriented
listening sockets and the asynchronous channel for stream-oriented connecting sockets.

Asynchronous File Channel Examples
The first step of any application that involves an asynchronous file channel is to create a new
AsynchronousFileChannel instance for a file by calling one of the two open() methods. The easiest to use
will receive the path of the file to open or create and, optionally, a set of options specifying how the file is
opened, as shown next. This open() method will associate the channel with a system-dependent default
thread pool that may be shared with other channels (the default group).

public static AsynchronousFileChannel open(Path file, OpenOption... options)
throws IOException

http://download.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://www.vogella.de/articles/JavaConcurrency/article.html
http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

225

■ Note The set of options called in the preceding code are the StandardOpenOption enum constants previously
described in both Chapter 4 and Chapter 7, so you should already be familiar with these options.

File Read and Future
The following code snippet creates a new asynchronous file channel for reading the file story.txt
located in the C:\rafaelnadal\grandslam\RolandGaross directory (the file must exist):

Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");
AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.
 open(path, StandardOpenOption.READ) ;

The file is prepared for reading, so we can start reading. This task is accomplished by the read()
methods (there are two of them). Since we are interested in using the Future mode, we will use the
following read() method:

public abstract Future<Integer> read(ByteBuffer dst, long position)

This method reads a sequence of bytes from this channel into the given buffer, starting at the given
file position, and returns an object representing the pending result. Since we are in an asynchronous
environment, this method just initiates the read and does not block the application. The following code
shows you how to use it to read the first 100 bytes:

ByteBuffer buffer = ByteBuffer.allocate(100);
Future<Integer> result = asynchronousFileChannel.read(buffer, 0);

The pending result allows us to track the reading process status through the Future.isDone()
method, which will return false until the read operation completes. Placing this call in a loop allows us
to complete other tasks until the read completes:

while (!result.isDone()) {
 System.out.println("Do something else while reading ...");
}

When the read operation completes, the application flow exits the loop and the result can be
retrieved by calling the get() method, which waits if necessary for the operation to complete. The result
is an integer representing the number of read bytes, while the bytes are in the destination buffer:

System.out.println("Read done: " + result.isDone());
System.out.println("Bytes read: " + result.get());

Gluing everything together results in the following application:

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.concurrent.Future;

public class Main {

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

226

 public static void main(String[] args) {

 ByteBuffer buffer = ByteBuffer.allocate(100);
 String encoding = System.getProperty("file.encoding");

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");
 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.READ)) {

 Future<Integer> result = asynchronousFileChannel.read(buffer, 0);

 while (!result.isDone()) {
 System.out.println("Do something else while reading ...");
 }

 System.out.println("Read done: " + result.isDone());
 System.out.println("Bytes read: " + result.get());

 } catch (Exception ex) {
 System.err.println(ex);
 }

 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.clear();
 }
}

The following is possible output of this application:

…

Do something else while reading ...

Do something else while reading ...

Do something else while reading ...

Do something else while reading ...

Read done: true

Bytes read: 100

Rafa Nadal produced another masterclass of clay-court tennis to win his fifth French Open
title ...

File Write and Future
The following code snippet creates a new asynchronous file channel for writing more bytes into the file
story.txt located in C:\rafaelnadal\grandslam\RolandGaross (the file must exist):

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

227

Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");
AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.
 open(path, StandardOpenOption.WRITE) ;

The file is prepared for writing, so we can start writing. This task is accomplished by the write()
methods (there are two of them). Since we are interesting in using the Future mode, we will use the
following write() method:

public abstract Future<Integer> write(ByteBuffer src, long position)

This method writes a sequence of bytes to this channel from the given buffer, starting at the given
file position, and returns an object representing the pending result. Since we are in an asynchronous
environment, this method just initiates the write and does not block the application. The following code
shows you how to use it to write some bytes starting from position 100:

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.concurrent.Future;

public class Main {

 public static void main(String[] args) {

 ByteBuffer buffer = ByteBuffer.wrap("The win keeps Nadal at the top of the heap in men's
tennis, at least for a few more weeks. The world No2, Novak Djokovic, dumped out here in the
semi-finals by a resurgent Federer, will come hard at them again at Wimbledon but there is
much to come from two rivals who, for seven years, have held all pretenders at
bay.".getBytes());

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");
 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.WRITE)) {

 Future<Integer> result = asynchronousFileChannel.write(buffer, 100);

 while (!result.isDone()) {
 System.out.println("Do something else while writing ...");
 }

 System.out.println("Written done: " + result.isDone());
 System.out.println("Bytes written: " + result.get());

 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

This time the get() method returns the number of written bytes. The bytes are written starting with
position 100 in the file. The application output will be as follows:

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

228

…

Do something else while writing ...

Do something else while writing ...

Do something else while writing ...

Written done: true

Bytes written: 319

As an exercise, try combining both applications into a single one for reading and writing
asynchronously.

File Read and Future Timeout
As previously stated, the get() method waits if necessary for the operation to complete, after which it
retrieves the result. This method also has a timeout version, in which we can specify precisely how long
we can afford to wait. For this, we pass to the get() method a timeout and unit time. If the time expires,
this method throws a TimeoutException and we can interrupt the thread to finish this task by calling the
cancel() method with a true parameter. The following application reads the content of story.txt with a
very short timeout:

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class Main {

 public static void main(String[] args) {

 ByteBuffer buffer = ByteBuffer.allocate(100);
 int bytesRead = 0;
 Future<Integer> result = null;

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.READ)) {

 result = asynchronousFileChannel.read(buffer, 0);

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

229

 bytesRead = result.get(1, TimeUnit.NANOSECONDS);

 if (result.isDone()) {
 System.out.println("The result is available!");
 System.out.println("Read bytes: " + bytesRead);
 }

 } catch (Exception ex) {
 if (ex instanceof TimeoutException) {
 if (result != null) {
 result.cancel(true);
 }
 System.out.println("The result is not available!");
 System.out.println("The read task was cancelled ? " + result.isCancelled());
 System.out.println("Read bytes: " + bytesRead);
 } else {
 System.err.println(ex);
 }
 }
 }
}

This application has two possible outputs. First, if the time expires and the I/O operation does not
complete, the output will be as follows:

The result is not available!

The read task was cancelled ? true //(or, false)

Read bytes: 0

If the I/O operation completes before the time expires, the output will be as follows:

The result is available!

Read bytes: 100

File Read and CompletionHandler
Now that you’ve seen a few examples of how the Future form works, it’s time to see how a
CompletionHandler can be written to read the story.txt content. After creating an asynchronous file
channel for reading the content of the story.txt file, we call the second read() method of
AsynchronousFileChannnel class:

public abstract <A> void read(ByteBuffer dst, long position, A attachment,
CompletionHandler<Integer,? super A> handler)

v

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

230

This method reads a sequence of bytes from this channel into the given buffer, starting at the given
file position. Besides the destination buffer and the file position, this method gets the object to attach to
the I/O operation (can be null) and the completion handler for consuming the result. Since we are in an
asynchronous environment, this method just initiates the read and does not block the application. The
following code shows you how to use it to read the first 100 bytes—you can locate the CompletionHandler
as an anonymous inner class:

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.channels.CompletionHandler;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;

public class Main {

 static Thread current;

 public static void main(String[] args) {

 ByteBuffer buffer = ByteBuffer.allocate(100);
 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.READ)) {

 current = Thread.currentThread();
 asynchronousFileChannel.read(buffer, 0, "Read operation status ...", new
 CompletionHandler<Integer, Object>() {

 @Override
 public void completed(Integer result, Object attachment) {
 System.out.println(attachment);
 System.out.print("Read bytes: " + result);
 current.interrupt();
 }

 @Override
 public void failed(Throwable exc, Object attachment) {
 System.out.println(attachment);
 System.out.println("Error:" + exc);
 current.interrupt();
 }
 });

 System.out.println("\nWaiting for reading operation to end ...\n");
 try {
 current.join();
 } catch (InterruptedException e) {
 }

 //now the buffer contains the read bytes

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

231

 System.out.println("\n\nClose everything and leave! Bye, bye ...");

 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

The current thread was used just to discover when we should stop the application; in some cases,
the flow may end the application before the completion handler consumes the result. You can choose
instead to use a Thread.sleep() method, a System.in.read() method, or any other convenient approach.

Possible output follows:

Waiting for reading operation to end ...

Read operation status ...

Read bytes: 100

Closing everything and leave! Bye, bye ...

In other cases, you may see the waiting message after the CompletionHandler output, depending on
how fast it consumes the result of the I/O operation.

The destination ByteBuffer may “arrive” into the CompletionHandler as the object attached to the
I/O operation (when you do not have any attachments, just pass null). The following application
decodes and displays the content of the destination ByteBuffer into the completed() method of
CompletionHandler:

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.channels.CompletionHandler;
import java.nio.charset.Charset;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;

public class Main {

 static Thread current;
 static final Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 public static void main(String[] args) {

 CompletionHandler<Integer, ByteBuffer> handler =
 new CompletionHandler<Integer, ByteBuffer>() {

 String encoding = System.getProperty("file.encoding");

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

232

 @Override
 public void completed(Integer result, ByteBuffer attachment) {
 System.out.println("Read bytes: " + result);
 attachment.flip();
 System.out.print(Charset.forName(encoding).decode(attachment));
 attachment.clear();
 current.interrupt();
 }

 @Override
 public void failed(Throwable exc, ByteBuffer attachment) {
 System.out.println(attachment);
 System.out.println("Error:" + exc);
 current.interrupt();
 }
 };

 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.READ)) {

 current = Thread.currentThread();
 ByteBuffer buffer = ByteBuffer.allocate(100);
 asynchronousFileChannel.read(buffer, 0, buffer, handler);

 System.out.println("Waiting for reading operation to end ...\n");
 try {
 current.join();
 } catch (InterruptedException e) {
 }

 //the buffer was passed as attachment
 System.out.println("\n\nClosing everything and leave! Bye, bye ...");

 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

Possible output follows:

Waiting for reading operation to end ...

Read bytes: 100

Rafa Nadal produced another masterclass of clay-court tennis to win his fifth French Open
title ...

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

233

Closing everything and leave! Bye, bye ...

File Lock
Sometimes you need to acquire an exclusive lock on a channel’s file before performing another I/O
operation, such as reading or writing. AsynchronousFileChannel provides a lock() method for the Future
form and a lock() method for CompletionHandler (both also have signatures for locking regions of a file,
more details of which you can find in the official documentation at
http://download.oracle.com/javase/7/docs/api/):

public final Future<FileLock> lock()
public final <A> void lock(A attachment, CompletionHandler<FileLock,? super A> handler)

The following application uses the lock() method with the Future form for locking a file. We will
wait to acquire the lock by calling the Future.get() method, and, afterward, we will write some bytes
into our file. Again, we call the get() method that will wait until the new bytes are written and, finally,
release the lock. The file used is CopaClaro.txt, located in C:\rafaelnadal\tournaments\2009 (the file
must exist).

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.channels.FileLock;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.concurrent.Future;

public class Main {

 public static void main(String[] args) {

 ByteBuffer buffer = ByteBuffer.wrap("Argentines At Home In Buenos Aires Cathedral\n The
Copa Claro is the third stop of the four-tournament Latin American swing, and is contested on
clay at the Buenos Aires Lawn Tennis Club, known as the Cathedral of Argentinean tennis. An
Argentine has reached the final in nine of the 11 editions of the ATP World Tour 250
tournament, with champions including Guillermo Coria, Gaston Gaudio, Juan Monaco and David
Nalbandian.".getBytes());

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "CopaClaro.txt");
 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.WRITE)) {

 Future<FileLock> featureLock = asynchronousFileChannel.lock();
 System.out.println("Waiting for the file to be locked ...");
 FileLock lock = featureLock.get();
 //or, use shortcut
 //FileLock lock = asynchronousFileChannel.lock().get();

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

234

 if (lock.isValid()) {
 Future<Integer> featureWrite = asynchronousFileChannel.write(buffer, 0);
 System.out.println("Waiting for the bytes to be written ...");
 int written = featureWrite.get();
 //or, use shortcut
 //int written = asynchronousFileChannel.write(buffer,0).get();

 System.out.println("I’ve written " + written + " bytes into " +
 path.getFileName() + " locked file!");

 lock.release();
 }

 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

Possible output follows:

Waiting for the file to be locked ...

Waiting for the bytes to be written ...

I’ve written 423 bytes into CopaClaro.txt locked file!

Moreover, an implementation of the lock() method with CompletionHandler may look like the
following:

import java.io.IOException;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.channels.CompletionHandler;
import java.nio.channels.FileLock;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;

public class Main {

 static Thread current;

 public static void main(String[] args) {

 Path path = Paths.get("C:/rafaelnadal/tournaments/2009", "CopaClaro.txt");

 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 StandardOpenOption.READ, StandardOpenOption.WRITE)) {

 current = Thread.currentThread();

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

235

 asynchronousFileChannel.lock("Lock operation status:", new
 CompletionHandler<FileLock, Object>() {

 @Override
 public void completed(FileLock result, Object attachment) {
 System.out.println(attachment + " " + result.isValid());

 if (result.isValid()) {
 //... processing ...
 System.out.println("Processing the locked file ...");
 //...
 try {
 result.release();
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
 current.interrupt();
 }

 @Override
 public void failed(Throwable exc, Object attachment) {
 System.out.println(attachment);
 System.out.println("Error:" + exc);
 current.interrupt();
 }
 });

 System.out.println("Waiting for file to be locked and process ... \n");
 try {
 current.join();
 } catch (InterruptedException e) {
 }
 System.out.println("\n\nClosing everything and leave! Bye, bye ...");

 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

The following is possible output:

Waiting for file to be locked and process ...

Lock operation status: true

Processing the locked file ...

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

236

Closing everything and leave! Bye, bye ...

■ Note AsynchronousFileChannel also provides the well-known tryLock() methods, but they are not
associated with Future or CompletionHandler forms.

AsynchronousFileChannel and ExecutorService
So far, you’ve seen at work only the first AsynchronousFileChannel.open() method, which uses the
default pool thread. It is time to see the second open() method at work, which allows us to specify a
custom thread pool through an ExecutorService object. The syntax of this method is as follows:

public static AsynchronousFileChannel open(Path file, Set<? extends OpenOption> options,
ExecutorService executor, FileAttribute<?>... attrs) throws IOException

As you can see, this open() method gets the path of the file to open or create, a set of options
specifying how the file is opened (optional), a thread pool (or null) as an ExecutorService (see
“Introducing the ExecutorService API” above), and a list of file attributes to set atomically when creating
the file (optional).

In our scenario, we want to develop an application that asynchronously fills up 50 ByteBuffers with
bytes from random positions of the story.txt file. The capacity of ByteBuffers will also be random.
Moreover, we want to use a custom group with a fixed thread pool of five threads.

We start by creating the thread pool through an ExecutorService:

final int THREADS = 5;
ExecutorService taskExecutor = Executors.newFixedThreadPool(THREADS);

We continue by passing the thread pool to the open() method, next to the file path and options:

private static Set withOptions() {
 final Set options = new TreeSet<>();
 options.add(StandardOpenOption.READ);
 return options;
}
AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open
 (path, withOptions(), taskExecutor);

Next, in a loop, we create 50 Callable workers (value-returning tasks) and override the call()
method to create random-capacity byte buffers and fill them up with bytes from from random positions
in the file—this is our computation. We submit each “worker” to the executor and store its Future into
an ArrayList. Later, we will loop this list and call the get() method to retrieve the result from each byte
buffer.

List<Future<ByteBuffer>> list = new ArrayList<>();
…
for (int i = 0; i < 50; i++) {
 Callable<ByteBuffer> worker = new Callable<ByteBuffer>() {

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

237

 @Override
 public ByteBuffer call() throws Exception {

 ByteBuffer buffer=ByteBuffer.allocateDirect(ThreadLocalRandom.current().nextInt(100, 200));
 asynchronousFileChannel.read(buffer, ThreadLocalRandom.current().nextInt(0, 100));

 return buffer;
 }
 };

 Future<ByteBuffer> future = taskExecutor.submit(worker);

 list.add(future);
}

Since we passed to the executor all the necessary tasks, we can shut it down so that it doesn’t accept
new tasks. It finishes all existing threads in the queue and terminates—in the meantime, we can count
some sheep:

…
taskExecutor.shutdown();

while (!taskExecutor.isTerminated()) {
 //do something else while the buffers are prepared
 System.out.println("Counting sheep while filling up some buffers!
 So far I counted: " + (sheeps += 1));
}
…

After counting sheep for awhile, the isTerminate() method returns true, and the results are just
“out of the oven.” Iterate the Future list and call the get() method to retrieve each result:

for (Future<ByteBuffer> future : list) {

 ByteBuffer buffer = future.get();
 …
}

Done! Gluing everything together and adding boilerplate code and imports produces the following:

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.TreeSet;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

238

import java.util.concurrent.Future;
import java.util.concurrent.ThreadLocalRandom;

public class Main {

private static Set withOptions() {
 final Set options = new TreeSet<>();
 options.add(StandardOpenOption.READ);
 return options;
}

public static void main(String[] args) {

 final int THREADS = 5;
 ExecutorService taskExecutor = Executors.newFixedThreadPool(THREADS);

 String encoding = System.getProperty("file.encoding");
 List<Future<ByteBuffer>> list = new ArrayList<>();
 int sheeps = 0;

 Path path = Paths.get("C:/rafaelnadal/grandslam/RolandGarros", "story.txt");

 try (AsynchronousFileChannel asynchronousFileChannel = AsynchronousFileChannel.open(path,
 withOptions(), taskExecutor)) {

 for (int i = 0; i < 50; i++) {
 Callable<ByteBuffer> worker = new Callable<ByteBuffer>() {

 @Override
 public ByteBuffer call() throws Exception {
 ByteBuffer buffer = ByteBuffer.allocateDirect
 (ThreadLocalRandom.current().nextInt(100, 200));
 asynchronousFileChannel.read(buffer, ThreadLocalRandom.current().nextInt(0,100));

 return buffer;
 }
 };

 Future<ByteBuffer> future = taskExecutor.submit(worker);
 list.add(future);
 }

 //this will make the executor accept no new threads
 // and finish all existing threads in the queue
 taskExecutor.shutdown();

 //wait until all threads are finished
 while (!taskExecutor.isTerminated()) {
 //do something else while the buffers are prepared
 System.out.println("Counting sheep while filling up some buffers!
 So far I counted: " + (sheeps += 1));
 }

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

239

 System.out.println("\nDone! Here are the buffers:\n");
 for (Future<ByteBuffer> future : list) {

 ByteBuffer buffer = future.get();

 System.out.println("\n\n"+ buffer);
 System.out.println("__");
 buffer.flip();
 System.out.print(Charset.forName(encoding).decode(buffer));
 buffer.clear();
 }

 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
}

The following is a fragment of possible output:

…

Counting sheep while filling up some buffers! So far I counted: 352

Counting sheep while filling up some buffers! So far I counted: 353

Counting sheep while filling up some buffers! So far I counted: 354

Done! Here are the buffers:

java.nio.HeapByteBuffer[pos=100 lim=100 cap=100]

__

d another masterclass of clay-court tennis to win his fifth French Open title ...

java.nio.HeapByteBuffer[pos=189 lim=189 cap=189]

__

nother masterclass of clay-court tennis to win his fifth French Open title ...

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

240

…

java.nio.HeapByteBuffer[pos=112 lim=112 cap=112]

__

y-court tennis to win his fifth French Open title ...

…

Asynchronous Channel Sockets Examples
Asynchronous channel sockets are the jewels of NIO.2. Developing an asynchronous client/server
application is an interesting project for any Java developer who is focused on the networking
applications field. The easiest approach for a better understanding of how to accomplish this task is to
follow a straightforward set of steps accompanied by chunks of codes that will be glued together at the
end of the discussion. We’ll start with an asynchronous server based on the Future form.

Writing an Asynchronous Server (Based on Future)
We want to develop an asynchronous server that will echo to the client everything that it gets from it.
During execution, the Future mode will be responsible for tracking the status of tasks such as accepting
connections, reading bytes from the client, and writing bytes to the client.

Creating a New Asynchronous Server Socket Channel

The first step involves creating an asynchronous channel for a stream-oriented listening socket, which is
accomplished with java.nio.channels.AsynchronousServerSocketChannel. More precisely, this task is
accomplished by the AsynchronousServerSocketChannel.open() method, as shown here, in which the
asynchronous server socket channel is bound to the default group:

AsynchronousServerSocketChannel asynchronousServerSocketChannel=
 AsynchronousServerSocketChannel.open();

Keep in mind that a newly created asynchronous server socket channel is not bound to the local
address. This will be accomplished in the following steps.

You can check if an asynchronous server socket is already open or has been successfully opened by
calling the AsynchronousServerSocketChannel.isOpen() method, which returns the corresponding
Boolean value:

if (asynchronousServerSocketChannel.isOpen()) {
 …
}

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

241

Setting Asynchronous Server Socket Channel Options

This is an optional step. There is no required option (you can use the default values), but we’ll explicitly
set a few options to show you how this can be done. More precisely, an asynchronous server socket
channel supports two options: SO_RCVBUF and SO_REUSEADDR. We’ll set them both, as follows:

asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);

You can find out which options are supported for an asynchronous server socket channel by calling
the inherited method supportedOptions():

Set<SocketOption<?>> options = asynchronousServerSocketChannel.supportedOptions();
for(SocketOption<?> option : options) System.out.println(option);

Binding the Asynchronous Server Socket Channel

At this point we can bind the asynchronous server socket channel to a local address and configure the
socket to listen for connections. For this we call the AsynchronousServerSocketChannel.bind() method.
Our server will wait for an incoming connection on localhost (127.0.0.1), port 5555 (arbitrarily chosen):

final int DEFAULT_PORT = 5555;
final String IP = "127.0.0.1";
asynchronousServerSocketChannel.bind(new InetSocketAddress(IP, DEFAULT_PORT));

Another common approach is to create an InetSocketAddress object without specifying the IP
address, only the port (there is a constructor for that). In this case, the IP address is the wildcard address,
and the port number is a specified value. The wildcard address is a special local IP address that can be
used only for bind operations.

asynchronousServerSocketChannel.bind(new InetSocketAddress(DEFAULT_PORT));

In addition, there is one more bind() method that gets, in addition to the address to bind the socket
to, the maximum number of pending connections:

public abstract AsynchronousServerSocketChannel bind(SocketAddress local,int pc) throws
IOException

The local address can also be automatically assigned if we pass null to the bind() method. You can
also find out the bound local address by calling the
AsynchronousServerSocketChannel.getLocalAddress() method, which is inherited from the
NetworkChannel interface. This returns null if the asynchronous server socket channel has not been
bound yet.

System.out.println(asynchronousServerSocketChannel.getLocalAddress());

Accepting Connections

After opening and binding, we finally reach the accepting milestone. We signal our impatience to accept
new connections by calling the AsynchronousServerSocketChannel.accept() method, which initiates an
asynchronous operation to accept a connection made to this channel’s socket and returns a Future
object to track the operation status. We call the Future.get() method, which returns the new connection
on successful completion. In addition, you may want to use the isDone() method to check periodically
the operation completion status. The returned connection is an instance of the

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

242

AsynchronousSocketChannel class, which represents an asynchronous channel for stream-oriented
connecting sockets.

Future<AsynchronousSocketChannel> asynchronousSocketChannelFuture =
 asynchronousServerSocketChannel.accept();
AsynchronousSocketChannel asynchronousSocketChannel = asynchronousSocketChannelFuture.get();

■ Note Trying to invoke the accept() method for an unbound server socket channel will throw a
NotYetBoundException exception.

Once we have accepted a new connection, we can find out the remote address by calling the
AsynchronousSocketChannel.getRemoteAddress() method:

System.out.println("Incoming connection from: " +
 asynchronousSocketChannel.getRemoteAddress());

Transmitting Data over a Connection

At this point the server and client can transmit data over a connection. They can send and receive
different kinds of data packets mapped as byte arrays. Implementing the transmission (send/receive) is
a flexible and specific process since it involves many options. For example, for our server we’ll use
ByteBuffers, keeping in mind that this is an echo server—what it reads from the client is what it writes
back. Here is the transmitting code snippet:

final ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
…
while (asynchronousSocketChannel.read(buffer).get() != -1) {

 buffer.flip();

 asynchronousSocketChannel.write(buffer).get();

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
 }

The preceding read() and write() methods get a destination/source ByteBuffer, initiate a
read/write operation, and return a Future<Integer> object for tracking the read/write operation status.
Calling the get() method forces the application to wait until the operation is complete before returning
the number of read/written bytes. First, we wait for incoming bytes to be read (this is what the server
echoes). Second, we wait until the write operation ends, to avoid the case in which more bytes should be
echoed and a thread initiates a new write operation before a previous write operation has completed,
which ends with a WritePendingException exception. Since the application is “captured” inside
read/write operations with the first client, it is unprepared to accept other connections until it has
completely served the current client, which means that only one client can be served at a time. This is

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

243

pretty rudimentary, and obviously not satisfactory for a server, but it is acceptable for our first
asynchronous server.

Closing the Channel

When a channel becomes useless, it must be closed. To accomplish this, you can call the
AsynchronousSocketChannel.close() method (this will not close the server for listening for incoming
connections, it will just close a channel for a client) and/or the
AsynchronousServerSocketChannel.close() method (this will close the server for listening for incoming
connections; subsequent clients won’t be able to locate the server any more).

asynchronousServerSocketChannel.close();
asynchronousSocketChannel.close();

Alternatively, we can close these resources by placing the code into the Java 7 try-with-resources
feature. This is possible because the AsynchronousServerSocketChannel and AsynchronousSocketChannel
classes implement the AutoCloseable interface. Using this feature will ensure that the resources are
closed automatically.

Combining Everything into an Echo Server

Now we have everything we need to create our echo server. Putting together the preceding chunks of
code and adding the necessary imports, spaghetti code, and so forth produces the following echo sever:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";

 //create an asynchronous server socket channel bound to the default group
 try (AsynchronousServerSocketChannel asynchronousServerSocketChannel =
 AsynchronousServerSocketChannel.open()) {

 if (asynchronousServerSocketChannel.isOpen()) {

 //set some options
 asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
 asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 //bind the asynchronous server socket channel to local address
 asynchronousServerSocketChannel.bind(new InetSocketAddress(IP, DEFAULT_PORT));

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

244

 //display a waiting message while ... waiting clients
 System.out.println("Waiting for connections ...");
 while (true) {
 Future<AsynchronousSocketChannel> asynchronousSocketChannelFuture =
 asynchronousServerSocketChannel.accept();

 try (AsynchronousSocketChannel asynchronousSocketChannel =
 asynchronousSocketChannelFuture.get()) {

 System.out.println("Incoming connection from: " +
 asynchronousSocketChannel.getRemoteAddress());

 final ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

 //transmitting data
 while (asynchronousSocketChannel.read(buffer).get() != -1) {

 buffer.flip();

 asynchronousSocketChannel.write(buffer).get();

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
 }

 System.out.println(asynchronousSocketChannel.getRemoteAddress() +
 " was successfully served!");

 } catch (IOException | InterruptedException | ExecutionException ex) {
 System.err.println(ex);
 }
 }
 } else {
 System.out.println("The asynchronous server-socket channel cannot be opened!");
 }

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

You’re likely still wondering about how to accept multiple clients. A simple solution is to wrap the
preceding code into an ExecutorService. Every time a new connection is accepted and the get() method
returns it as an AsynchronousSocketChannel channel, we write a “worker” meant to maintain or close the
“conversation” with the client. Afterward, the worker is submitted to the executor and a new connection
is prepared to be accepted. If an unexpected error occurs, then we shut down the executor and wait to

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

245

terminate. The following application modifies the preceding one so that it accepts multiple clients at the
same time:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";
 ExecutorService taskExecutor=
 Executors.newCachedThreadPool(Executors.defaultThreadFactory());

 //create asynchronous server socket channel bound to the default group
 try (AsynchronousServerSocketChannel asynchronousServerSocketChannel =
 AsynchronousServerSocketChannel.open()) {

 if (asynchronousServerSocketChannel.isOpen()) {

 //set some options
 asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024);
 asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 //bind the server socket channel to local address
 asynchronousServerSocketChannel.bind(new InetSocketAddress(IP, DEFAULT_PORT));

 //display a waiting message while ... waiting clients
 System.out.println("Waiting for connections ...");

 while (true) {
 Future<AsynchronousSocketChannel> asynchronousSocketChannelFuture =
 asynchronousServerSocketChannel.accept();

 try {
 final AsynchronousSocketChannel asynchronousSocketChannel =
 asynchronousSocketChannelFuture.get();
 Callable<String> worker = new Callable<String>() {

 @Override
 public String call() throws Exception {

 String host = asynchronousSocketChannel.getRemoteAddress().toString();

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

246

 System.out.println("Incoming connection from: " + host);

 final ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

 //transmitting data
 while (asynchronousSocketChannel.read(buffer).get() != -1) {

 buffer.flip();

 asynchronousSocketChannel.write(buffer).get();

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
 }

 asynchronousSocketChannel.close();
 System.out.println(host + " was successfully served!");
 return host;
 }
 };

 taskExecutor.submit(worker);

 } catch (InterruptedException | ExecutionException ex) {
 System.err.println(ex);

 System.err.println("\n Server is shutting down ...");

 //this will make the executor accept no new threads
 // and finish all existing threads in the queue
 taskExecutor.shutdown();

 //wait until all threads are finished
 while (!taskExecutor.isTerminated()) {
 }

 break;
 }
 }
 } else {
 System.out.println("The asynchronous server-socket channel cannot be opened!");
 }

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

247

Writing an Asynchronous Client (Based on Future)
Now let’s develop a client for our echo server. Suppose we have the following scenario: The client
connects to our server, sends a “Hello!” message, and then keeps sending random numbers between 0
and 100 until the number 50 is generated. When the number 50 is generated, the client stops sending
and closes the channel. The server will echo (write back) everything it reads from the client. The steps for
implementing the client for this scenario are discussed next.

Creating a New Asynchronous Socket Channel

The first step is to create an asynchronous channel for stream-oriented connecting sockets bound to the
default group. This is accomplished with the java.nio.channels.AsynchronousSocketChannel class. More
precisely, this task is accomplished by the AsynchronousSocketChannel.open() method, as follows:

AsynchronousSocketChannel asynchronousSocketChannel = AsynchronousSocketChannel.open();

Keep in mind that a newly created asynchronous socket channel is not connected. You can check if
an asynchronous server socket is already open or has been successfully opened by calling the
AsynchronousSocketChannel.isOpen() method, which returns the corresponding Boolean value:

if (asynchronousSocketChannel.isOpen()) {
 …
}

Setting Asynchronous Socket Channel Options

An asynchronous socket channel supports the following options: SO_RCVBUF, SO_REUSEADDR, TCP_NODELAY,
SO_KEEPALIVE, and SO_SNDBUF. Some of them are shown here:

asynchronousSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
asynchronousSocketChannel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
asynchronousSocketChannel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);

You can discover the supported options for an asynchronous server socket channel by calling the
inherited method supportedOptions():

Set<SocketOption<?>> options = asynchronousSocketChannel.supportedOptions();
for(SocketOption<?> option : options) System.out.println(option);

Connecting the Asynchronous Channel’s Socket

After opening an asynchronous socket channel (and optionally binding it), you should connect to the
remote address (the server-side address). The intention to connect is signaled by calling the
AsynchronousSocketChannel.connect() method and passing to it the remote address as an instance of
InetSocketAddress, as follows (remember that our echo servers runs on 127.0.0.1, port 5555):

final int DEFAULT_PORT = 5555;
final String IP = "127.0.0.1";
Void connect = asynchronousSocketChannel.connect
 (new InetSocketAddress(IP, DEFAULT_PORT)).get();

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

248

This method initiates an operation to connect to this channel. The method returns a Future<Void>
object representing the pending result. The Future’s get() method returns null on successful
completion.

Transmitting Data over a Connection

The connection has been established, so we can start transmitting data packets. The following code
sends the “Hello!” message, and then sends random numbers until the number 50 is generated. The
following read() and write() methods get a destination/source ByteBuffer, initiate a read/write
operation, and return a Future<Integer> object for tracking the read/write operation status. Calling the
get() method will wait until the operation is complete and returns the number of read/written bytes.
Using the get() method with the write() method will avoid the case in which more bytes should be
written and a thread initiates a new write operation before a previous write operation has completed,
which ends with a WritePendingException exception.

ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
ByteBuffer helloBuffer = ByteBuffer.wrap("Hello !".getBytes());
ByteBuffer randomBuffer;
CharBuffer charBuffer;
Charset charset = Charset.defaultCharset();
CharsetDecoder decoder = charset.newDecoder();
…
asynchronousSocketChannel.write(helloBuffer).get();

while (asynchronousSocketChannel.read(buffer).get() != -1) {

 buffer.flip();

 charBuffer = decoder.decode(buffer);
 System.out.println(charBuffer.toString());

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }

 int r = new Random().nextInt(100);
 if (r == 50) {
 System.out.println("50 was generated! Close the asynchronous socket channel!");
 break;
 } else {
 randomBuffer = ByteBuffer.wrap("Random number:".concat(String.valueOf(r)).getBytes());
 asynchronousSocketChannel.write(randomBuffer).get();
 }
}

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

249

Closing the Channel

When a channel becomes useless, it must be closed. To accomplish this, you can call
AsynchronousSocketChannel.close(), and the client will be disconnected from the server:

asynchronousSocketChannel.close();

Again, the Java 7 try-with-resources feature may be used for automatically closing.

Combining Everything into a Client

Now we have everything we need to create our client. Putting together the preceding code chunks and
adding the necessary imports, spaghetti code, and so on will provide us the following client:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Random;
import java.util.concurrent.ExecutionException;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";
 ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
 ByteBuffer helloBuffer = ByteBuffer.wrap("Hello !".getBytes());
 ByteBuffer randomBuffer;
 CharBuffer charBuffer;
 Charset charset = Charset.defaultCharset();
 CharsetDecoder decoder = charset.newDecoder();

 //create an asynchronous socket channel bound to the default group
 try (AsynchronousSocketChannel asynchronousSocketChannel =
 AsynchronousSocketChannel.open()) {

 if (asynchronousSocketChannel.isOpen()) {

 //set some options
 asynchronousSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
 asynchronousSocketChannel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
 asynchronousSocketChannel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);
 //connect this channel's socket
 Void connect = asynchronousSocketChannel.connect
 (new InetSocketAddress(IP, DEFAULT_PORT)).get();

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

250

 if (connect == null) {

 System.out.println("Local address: " +
 asynchronousSocketChannel.getLocalAddress());

 //transmitting data
 asynchronousSocketChannel.write(helloBuffer).get();

 while (asynchronousSocketChannel.read(buffer).get() != -1) {

 buffer.flip();

 charBuffer = decoder.decode(buffer);
 System.out.println(charBuffer.toString());

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }

 int r = new Random().nextInt(100);
 if (r == 50) {
 System.out.println("50 was generated! Close the asynchronous
 socket channel!");
 break;
 } else {
 randomBuffer = ByteBuffer.wrap("Random
 number:".concat(String.valueOf(r)).getBytes());
 asynchronousSocketChannel.write(randomBuffer).get();
 }
 }

 } else {
 System.out.println("The connection cannot be established!");
 }

 } else {
 System.out.println("The asynchronous socket channel cannot be opened!");
 }

 } catch (IOException | InterruptedException | ExecutionException ex) {
 System.err.println(ex);
 }
 }
}

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

251

Testing the Echo Application (Based on Future)
Testing the application is a simple task. First, start the server and wait until you see the message
“Waiting for connections ...”. Continue by starting the client and check out the output. The following is
possible serve output:

Waiting for connections ...

Incoming connection from: /127.0.0.1:49578

Incoming connection from: /127.0.0.1:49579

Incoming connection from: /127.0.0.1:49580

/127.0.0.1:49579 was successfully served!

Incoming connection from: /127.0.0.1:49581

/127.0.0.1:49580 was successfully served!

/127.0.0.1:49578 was successfully served!

/127.0.0.1:49581 was successfully served!

The following is some possible client output:

Hello !

Random number:78

Random number:72

Random number:29

Random number:77

Random number:35

Random number:0

…

50 was generated! Close the asynchronous socket channel!

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

252

Writing an Asynchronous Server (Based on CompletionHandler)
Next, we want to develop the same echo asynchronous server using the CompletionHandler mode instead
of the Future mode. Actually, we will mix them together, by letting the CompletionHandler mode deal
with the connection’s acceptance operation and letting the Future mode deal with read/write
operations. We open the asynchronous server socket channel, set its options, and bind it in the exact
same manner as we did earlier. Next we focus on signaling the desire to accept connections. For this, we
call the accept() method:

public abstract <A> void accept(A attachment,
CompletionHandler<AsynchronousSocketChannel,? super A> handler)

This method gets the object to attach to the I/O operation (which can be null) and the completion
handler that is invoked when a connection is accepted (or the operation fails). The result passed to the
completion handler is the AsynchronousSocketChannel to the new connection.

We implement the CompletionHandler as an anonymous inner class and override its methods. Now,
the completed() method of the completion handler is responsible for maintaining and closing the
“conversation” with the connected client. For this we use the same read() and write() methods as
earlier and use the same approach. The failed() method of the completion handler should be called
only if the operation of accepting connections fails—we just throw an exception and get ready to accept
another connection.

Once a connection is accepted, we immediately get ready for a new one by invoking the accept()
method from the completed() and failed() methods, as follows (this is the first line of code):

asynchronousServerSocketChannel.accept(null, this);

Finally, there is one more aspect to take care off. Since this is an asynchronous application, the flow
will “traverse” the entire application and exit so fast that not even a single connection can be established
or served, which is not good, because we want the server to wait and serve clients for a long time. Thus,
we have to add some code to make the flow “hang in the air,” such as by adding a Thread.sleep()
method or a System.in.read() method or by joining the main thread and waiting until it dies or
something else. We’ll choose the System.in.read() method for this example.

Here is the CompletionHandler asynchronous server:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.ExecutionException;

public class Main {

 public static void main(String[] args) {

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";

 //create an asynchronous server socket channel bound to the default group
 try (AsynchronousServerSocketChannel asynchronousServerSocketChannel =
 AsynchronousServerSocketChannel.open()) {

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

253

 if (asynchronousServerSocketChannel.isOpen()) {

 //set some options
 asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF,4 * 1024);
 asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 //bind the server socket channel to local address
 asynchronousServerSocketChannel.bind(new InetSocketAddress(IP, DEFAULT_PORT));

 //display a waiting message while ... waiting clients
 System.out.println("Waiting for connections ...");

 asynchronousServerSocketChannel.accept(null, new
 CompletionHandler<AsynchronousSocketChannel, Void>() {

 final ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

 @Override
 public void completed(AsynchronousSocketChannel result, Void attachment) {

 asynchronousServerSocketChannel.accept(null, this);

 try {
 System.out.println("Incoming connection from: " + result.getRemoteAddress());

 //transmitting data
 while (result.read(buffer).get() != -1) {

 buffer.flip();

 result.write(buffer).get();

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
 }
 } catch (IOException | InterruptedException | ExecutionException ex) {
 System.err.println(ex);
 } finally {
 try {
 result.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 @Override
 public void failed(Throwable exc, Void attachment) {
 asynchronousServerSocketChannel.accept(null, this);

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

254

 throw new UnsupportedOperationException("Cannot accept connections!");
 }
 });

 // Wait
 System.in.read();

 } else {
 System.out.println("The asynchronous server-socket channel cannot be opened!");
 }

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Writing an Asynchronous Client (Based on CompletionHandler)
The client for our server can also be implemented with a CompletionHandler for dealing with the
connection request operations. For this, we will call the following connect() method:

public abstract <A> void connect(SocketAddress remote, A attachment,
CompletionHandler<Void,? super A> handler)

This method gets the remote address to which this channel is to be connected, the object to attach
to the I/O operation (can be null), and the completion handler that is invoked when the connection is
successfully established or not.

We implement the CompletionHandler as an anonymous inner class and override its methods. Now,
the completed() method of the completion handler is responsible for maintaining and closing the
“conversation” with the server. For this we use the same read() and write() methods as earlier and use
the same approach. The failed() method of the completion handler should be called only if the
operation of connecting fails—in this case, the channel is closed.

Here is the CompletionHandler asynchronous client:

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Random;
import java.util.concurrent.ExecutionException;

public class Main {

 public static void main(String[] args) {

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

255

 final int DEFAULT_PORT = 5555;
 final String IP = "127.0.0.1";

 //create an asynchronous socket channel bound to the default group
 try (AsynchronousSocketChannel asynchronousSocketChannel =
 AsynchronousSocketChannel.open()) {

 if (asynchronousSocketChannel.isOpen()) {

 //set some options
 asynchronousSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 128 * 1024);
 asynchronousSocketChannel.setOption(StandardSocketOptions.SO_SNDBUF, 128 * 1024);
 asynchronousSocketChannel.setOption(StandardSocketOptions.SO_KEEPALIVE, true);

 //connect this channel's socket
 asynchronousSocketChannel.connect(new InetSocketAddress(IP, DEFAULT_PORT), null,
 new CompletionHandler<Void, Void>() {

 final ByteBuffer helloBuffer = ByteBuffer.wrap("Hello !".getBytes());
 final ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
 CharBuffer charBuffer = null;
 ByteBuffer randomBuffer;
 final Charset charset = Charset.defaultCharset();
 final CharsetDecoder decoder = charset.newDecoder();

 @Override
 public void completed(Void result, Void attachment) {
 try {
 System.out.println("Successfully connected at: " +
 asynchronousSocketChannel.getRemoteAddress());

 //transmitting data
 asynchronousSocketChannel.write(helloBuffer).get();

 while (asynchronousSocketChannel.read(buffer).get() != -1) {

 buffer.flip();

 charBuffer = decoder.decode(buffer);
 System.out.println(charBuffer.toString());

 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }

 int r = new Random().nextInt(100);
 if (r == 50) {
 System.out.println("50 was generated! Close the asynchronous
 socket channel!");
 break;

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

256

 } else {
 randomBuffer = ByteBuffer.wrap("Random
 number:".concat(String.valueOf(r)).getBytes());
 asynchronousSocketChannel.write(randomBuffer).get();
 }
 }
 } catch (IOException | InterruptedException | ExecutionException ex) {
 System.err.println(ex);
 } finally {
 try {
 asynchronousSocketChannel.close();
 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
 }

 @Override
 public void failed(Throwable exc, Void attachment) {
 throw new UnsupportedOperationException("Connection cannot be established!");
 }
 });

 System.in.read();

 } else {
 System.out.println("The asynchronous socket channel cannot be opened!");
 }

 } catch (IOException ex) {
 System.err.println(ex);
 }
 }
}

Testing the Echo Application (Based on CompletionHandler)
Testing the application is a simple task. First, start the server and wait until you see the message
“Waiting for connections” Continue by starting the client and checking out the output. The following
is possible server output:

Waiting for connections ...

Incoming connection from: /127.0.0.1:50369

Incoming connection from: /127.0.0.1:50370

Incoming connection from: /127.0.0.1:50371

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

257

Incoming connection from: /127.0.0.1:50372

The following shows possible client output:

Hello !

Random number:19

Random number:54

Random number:28

Random number:59

Random number:34

Random number:60

…

50 was generated! Close the asynchronous socket channel!

Using Read/Write Operations and CompletionHandler
In the previous examples, we have managed the read/write operations through the Future mode. If you
want to associate a CompletionHandler with a read/write operation, then you can use the next
AsynchronousSocketChannel read() and write() methods:

• The first read() method initiates an operation that reads a sequence of bytes from
this channel into a subsequence of the given buffers (known as an asynchronous
scattering read). The operation must end in the specified timeout:

public abstract <A> void read(ByteBuffer[] dsts, int offset, int length, long timeout,
TimeUnit unit, A attachment, CompletionHandler<Long,? super A> handler)

• This method initiates an operation that reads a sequence of bytes from this
channel into the given buffer:

public final <A> void read(ByteBuffer dst, A attachment, CompletionHandler<Integer,? super
A> handler)

• This method initiates an operation that reads a sequence of bytes from this
channel into the given buffer. The operation must end in the specified timeout:

public abstract <A> void read(ByteBuffer dst,long timeout, TimeUnit unit, A attachment,
CompletionHandler<Integer,? super A> handler)

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

258

Analogue to these methods, but for writing operations, we have one method for asynchronous
gathering write:

public abstract <A> void write(ByteBuffer[] srcs, int offset, int length, long timeout,
TimeUnit unit, A attachment, CompletionHandler<Long,? super A> handler)

And we have two more methods for writing a sequence of bytes to this channel from the given buffer:

public final <A> void write(ByteBuffer src, A attachment,
CompletionHandler<Integer,? super A> handler)

public abstract <A> void write(ByteBuffer src, long timeout, TimeUnit unit,
A attachment, CompletionHandler<Integer,? super A> handler)

Writing an Asynchronous Client/Server Based on Custom Group
The previous client/server applications were developed by using the default group. We can specify a
custom group as an AsynchronousChannelGroup object passed to the
AsynchronousServerSocketChannel.open() method and/or AsynchronousSocketChannel.open() method.
First, we create a custom group. This example creates a cached thread pool with the initial size of one
thread:

AsynchronousChannelGroup threadGroup = null;
…
ExecutorService executorService = Executors
 .newCachedThreadPool(Executors.defaultThreadFactory());
try {
 threadGroup = AsynchronousChannelGroup.withCachedThreadPool(executorService, 1);
} catch (IOException ex) {
 System.err.println(ex);
}

The following example creates a fixed thread pool with exactly five threads:

AsynchronousChannelGroup threadGroup = null;
…
try {
 threadGroup = AsynchronousChannelGroup.withFixedThreadPool(5,
 Executors.defaultThreadFactory());
 } catch (IOException ex) {
 System.err.println(ex);
}

And, the threadGroup can be passed to the asynchronous channel for stream-oriented listening
sockets—if the group is shut down and a connection is accepted, then the connection is closed, and the
operation completes with an IOException exception and causes ShutdownChannelGroupException:

AsynchronousServerSocketChannel asynchronousServerSocketChannel =
AsynchronousServerSocketChannel.open(threadGroup);

When a new connection is accepted, the resulting AsynchronousSocketChannel will be bound to the
same AsynchronousChannelGroup as this channel.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

259

Or the ThreadGroup can be passed to the asynchronous channel for stream-oriented connecting
sockets—if the group is shut down and a connection is active, then the connection is closed, and the
operation completes with an IOException exception and causes ShutdownChannelGroupException:

AsynchronousSocketChannel asynchronousSocketChannel =
AsynchronousSocketChannel.open(threadGroup);

Now you can modify the preceding applications for using custom groups.

Tips
The applications presented in this chapter are fine for educational purposes but not for a production
environment. If you need to write applications for a production environment, then it is a good idea to
keep in mind the following tips.

Use Byte Buffer Pool and Throttle Read Operations

Consider the scenario in which an AsynchronousSocketChannel.read() method reads from thousands of
clients and creates thousands of ByteBuffers. The method is able to read from a large number of slow
clients for a while, but eventually it is overwhelmed by the huge number of clients arriving. You can
avoid this by applying a trick: use a byte buffer pool and throttle read operations. In addition, there may
be a danger here of running out of memory if your byte buffer grows too large, so you must be mindful of
memory consumption (perhaps adjust Java heap parameters such as Xms and Xmx).

Use Blocking Only for Short Reading Operations

For the next scenario, suppose that an AsynchronousSocketChannel.read() method is reading from
clients in Future mode, which means that the get() method will wait until the read operation completes,
thus blocking the thread. In this scenario, you must make sure you do not lock your thread pool,
especially if you are using a fixed thread pool. You can avoid this scenario by using blocking only for
short reading operations. Using timeouts can also be a solution.

Use FIFO-Q and Allow Blocking for Write Operations

Focusing now on write operations, consider the scenario in which an
AsynchronousSocketChannel.write() method writes bytes to its client without blocking—it initiates the
write operation and moves on to other tasks. But, moving on to other tasks may cause the thread to
invoke the write() method again, and the completion handler has not yet been invoked by the previous
write call. Bad idea! A WritePendingException exception will be thrown. You can fix this issue by making
sure that the completion handler complete() method is invoked before a new write operation is initiated.
For this, use a first-in first out queue (FIFO-Q) for the byte buffers and write only when the previous
write() has completed. So, use FIFO-Q and allow blocking for write operations.

Refer to the “ByteBuffers Considerations” section, earlier in this chapter, also.

Writing an Asynchronous Datagram Application
As of this writing, the AsynchronousDatagramChannel class is no longer available (it existed in Java 7
DRAFT ea-b89), so this discussion is included just in case it reappears in the future. If it does, this class

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

260

will follow the same trend as the AsynchronousServerSocketChannel and AsynchronousSocketChannel
classes: it will provide two open() methods (one for the default group and one for custom groups), a
bind() method, and a connect() method. It will also have dedicated methods for read/write operations:
a set of send()/receive() methods for connectionless case, and a set of read()/write() methods for
connection case. All read/write operations will be asynchronous and will provide support for Future and
CompletionHandler modes.

ASYNCHRONOUSDATAGRAMCHANNEL

This class was introduced in and then removed from earlier, unstable versions of Java 7. There is a chance
it will show up in later releases, so some guidelines for its main features are presented here.

The AsynchronousDatagramChannel class represents an asynchronous channel for datagram-oriented
sockets. This channel supports asynchronous opening and read/write operations (through
send()/receive() methods for unconnected channels, and read()/write() methods for connected
channels). That means that these operations can be tracked by Future and CompletionHandler
mechanisms. On the other hand, this channel implements NetworkChannel for binding and setting/getting
socket options and implements MulticastChannel for joining multicast groups.

If you work with an asynchronous datagram channel in the future, you must be careful to take into account
the following aspects:

The following snippet of code was copied verbatim from the official documentation available for
Java 7 DRAFT ea-b89, to give you a general idea of what may be available in the future:

 final AsynchronousDatagramChannel dc = AsynchronousDatagramChannel.open()
 .bind(new InetSocketAddress(4000));

 // print the source address of all packets that we receive
 dc.receive(buffer, buffer, new CompletionHandler<SocketAddress,ByteBuffer>() {
 public void completed(SocketAddress sa, ByteBuffer buffer) {
 System.out.println(sa);
 buffer.clear();
 dc.receive(buffer, buffer, this);

• An attempt to connect a channel may cause a ClosedChannelException
exception if this channel is closed.

• An attempt to invoke an I/O operation upon an unconnected channel will cause a
NotYetConnectedException exception to be thrown.

• Closing an asynchronous datagram socket channel by explicitly calling the
inherited close() method (from the AsynchronousChannel interface) causes all
outstanding asynchronous operations on the channel to complete with the
AsynchronousCloseException exception. After a channel is closed, further
attempts to initiate asynchronous I/O operations complete immediately with cause
ClosedChannelException. In addition, the inherited MulticastChannel.close()
method is available for closing the channel.

http://www.it-ebooks.info

CHAPTER 9 ■ THE ASYNCHRONOUS CHANNEL API

261

 }
 public void failed(Throwable exc, ByteBuffer buffer) {
 ...
 }
 });

Summary
In this chapter, you learned how to work with the NIO.2 asynchronous channel API. After a brief
introduction to the differences between synchronous I/O and asynchronous I/O, you received a detailed
overview of this API structure. After that, you saw theory put into practice, starting with the
java.nio.channels.AsynchronousChannel interface, which extends a channel with asynchronous I/O
operations support. The three classes that implement this interface for asynchronous operations over
files and sockets were then presented: AsynchronousFileChannel, AsynchronousSocketChannel, and
AsynchronousServerSocketChannel. The currently unavailable AsynchronousDatagramChannel class was
also described in this chapter, just in case it reappears in the future. The chapter also introduced the
AsynchronousChannelGroup, including the notion of the asynchronous channel group. The chapter
wrapped up with a few tips regarding developing asynchronous-based applications.

http://www.it-ebooks.info

C H A P T E R 10

■ ■ ■

263

Important Things to Remember

The first parts of this chapter offer some information that is good to know, or at least hear about. This
information didn’t fit neatly into any of the previous chapters, and you probably won’t use it very soon,
but it may be helpful someday. The following topics are covered:

• Refactoring java.io.File code

• Working with the ZIP file system provider

• Considerations about custom file system providers

We finish this chapter (and the book also) with a set of NIO.2 milestone methods that were
presented and used in the book. Every time you need a quick reminder or overview of these methods,
you can easily leaf through the last pages of the book for them.

Refactoring java.io.File Code
If you have developed a few applications based on java.io.File, then you should be familiar with the
most common methods of this class. But, if you’ve developed more than a few applications based on
java.io.File, then you should be familiar with not only its methods, but also its methods’ drawbacks.
For example, many of these methods don’t throw exceptions when they fail, there is no real support for
symbolic links, metadata access is inefficient, file-renaming across platforms is inconsistent, some
methods don’t scale, and so on—all of which should sound pretty familiar to many senior Java
developers, and pretty scary for juniors.

While juniors will sprightly jump to Java 7 (which fixes these drawbacks and is a breath of fresh air in
this area), seniors must take some precious time to refactor existing code to support Java 7 (or more
precisely, java.nio.file classes).

The first milestone of refactoring java.io.File code may be considered the conversion of File
objects into java.nio.file.Path objects through the java.io.File.toPath() method:

File file ...;
Path path_from_file = file.toPath();

After conversion, you can exploit the Path features.
However, while this is the easiest solution, it may not always satisfy your needs. Sometimes you will

need to rewrite your file I/O code and align code to java.nio.file classes, and for this you can use the
one-by-one correspondence between the two APIs. Table 1-1 shows this correspondence.

http://www.it-ebooks.info

CHAPTER 10 ■ IMPORTANT THINGS TO REMEMBER

264

Table 1-1. Correspondence Between java.io.File and java.nio.file

Javadoc Description java.io.File java.nio.file Chapter

Class name
correspondence

java.io.File java.nio.file.Path Chapter 1

Tests this abstract
pathname for equality
with the given object

File.equals(Object) Path.equals(Object) Chapter 1

Compares two abstract
pathnames
lexicographically

File.compareTo(File) Path.compareTo(Path) Chapter 1

Returns the absolute
pathname string of this
abstract pathname

File.getAbsolutePath() Path.toAbsolutePath() Chapter 1

Returns the absolute form
of this abstract pathname

File.getAbsoluteFile() Path.toAbsolutePath() Chapter 1

Returns the canonical
pathname string of this
abstract pathname

File.getCanonicalPath()
Path.toRealPath(LinkOption...)

Path.normalize() Chapter 1

Returns the canonical
form of this abstract
pathname

File.getCanonicalFile()
Path.toRealPath(LinkOption...)

Path.normalize() Chapter 1

Constructs a file: URI
that represents this
abstract pathname

File.toURI() Path.toUri() Chapter 1

Tests whether the file
denoted by this abstract
pathname is a normal file

File.isFile() Files.isRegularFile(Path,
LinkOption ...) Chapter 4

Tests whether the file
denoted by this abstract
pathname is a directory

File.isDirectory() Files.isDirectory(Path,
LinkOption...) Chapter 4

Tests whether the file
named by this abstract
pathname is a hidden file

File.isHidden() Files.isHidden(Path) Chapter 4

Tests whether the
application can read the
file denoted by this
abstract pathname

File.canRead() Files.isReadable(Path) Chapter 4

Tests whether the
application can modify
the file denoted by this
abstract pathname

File.canWrite() Files.isWritable(Path) Chapter 4

http://www.it-ebooks.info

CHAPTER 10 ■

 IMPORTANT THINGS TO REMEMBER

265

Javadoc Description java.io.File java.nio.file Chapter

Tests whether the
application can execute
the file denoted by this
abstract pathname

File.canExecute() Files.isExecutable(Path) Chapter 4

Tests whether the file or
directory denoted by this
abstract pathname exists File.exists()

Files.exists(Path, LinkOption
...)

Files.notExists(Path,
LinkOption ...)

Chapter 4

Creates the directory
named by this abstract
pathname

File.mkdir() Files.createDirectory(Path,
FileAttribute<?> ...) Chapter 4

Creates the directory
named by this abstract
pathname, including any
necessary but nonexistent
parent directories

File.mkdirs() Files.createDirectories(Path,
FileAttribute<?> ...) Chapter 4

Atomically creates a new,
empty file named by this
abstract pathname if and
only if a file with this
name does not yet exist

File.createNewFile() Files.createFile(Path,
FileAttribute<?> ...) Chapter 4

Returns an array of strings
naming the files and
directories in the directory
denoted by this abstract
pathname

File.list()

File.listFiles()
Files.newDirectoryStream(Path) Chapter 4

Returns an array of strings
naming the files and
directories in the directory
denoted by this abstract
pathname that satisfy the
specified filter

File.list(FilenameFilter)

File.listFiles(FileFilter)

File.listFiles(FilenameFilter)

Files.newDirectoryStream(Path,
DirectoryStream.Filter<? super
Path>)

Files.newDirectoryStream(Path,
String)

Chapter 4

The length of the file
denoted by this abstract
pathname

File.length() Files.size(Path) Chapter 4

Deletes the file or
directory denoted by this
abstract pathname

File.delete()
Files.delete(Path)

Files.deleteIfExists(Path) Chapter 4

Renames the file denoted
by this abstract pathname

File.renameTo(File) Files.move(Path, Path,
CopyOption) Chapter 4

http://www.it-ebooks.info

CHAPTER 10 ■ IMPORTANT THINGS TO REMEMBER

266

Javadoc Description java.io.File java.nio.file Chapter

Sets the owner or
everybody’s execute
permission for this
abstract pathname

File.setExecutable(boolean,
boolean)

Files.setAttribute(Path,
String, Object, LinkOption...) Chapter 2

Sets the owner or
everybody’s read
permission for this
abstract pathname

File.setReadable(boolean,
boolean)

Files.setAttribute(Path,
String, Object, LinkOption...) Chapter 2

Marks the file or directory
named by this abstract
pathname so that only
read operations are
allowed

File.setReadOnly() Files.setAttribute(Path,
String, Object, LinkOption...) Chapter 2

Sets the owner or
everybody’s write
permission for this
abstract pathname

File.setWritable(boolean,
boolean)

Files.setAttribute(Path,
String, Object, LinkOption...) Chapter 2

Returns the time that the
file denoted by this
abstract pathname was
last modified

File.lastModified() Files.getLastModifiedTime(Path
path, LinkOption... options) Chapter 2

Sets the last-modified
time of the file or directory
named by this abstract
pathname

File.setLastModified(long) Files.setLastModifiedTime(Path,
FileTime) Chapter 2

Creates an empty file in
the default temporary-file
directory, using the given
prefix and suffix to
generate its name

File.createTempFile(String,
String)

Files.createTempFile(String pre
fix, String suffix,
FileAttribute<?>... attrs)

Chapter 4

Creates a new empty file
in the specified directory,
using the given prefix and
suffix strings to generate
its name

File.createTempFile(String,
String, File)

Files.createTempFile(Path dir,
String prefix, String suffix,
FileAttribute<?>... attrs)

Chapter 4

Returns the size of the
partition named by this
abstract pathname

File.getTotalSpace() FileStore.getTotalSpace() Chapter 2

Returns the number of
unallocated bytes in the
partition named by this
abstract path name

File.getFreeSpace() FileStore.getUnallocatedSpace() Chapter 2

http://www.it-ebooks.info

CHAPTER 10 ■

 IMPORTANT THINGS TO REMEMBER

267

Javadoc Description java.io.File java.nio.file Chapter

Returns the number of
bytes available to this
virtual machine on the
partition named by this
abstract pathname

File.getUsableSpace() FilesStore.getUsableSpace() Chapter 2

Lists the available file
system roots

File.listRoots() FileSystem.getRootDirectories() Chapter 4

Random access file
java.io.RandomAccessFile

java.nio.channels.SeekableByte

Channel Chapter 7

Requests that the file or
directory denoted by this
abstract pathname be
deleted when the virtual
machine terminates

File.deleteOnExit() Replaced by the DELETE_ON_CLOSE
option

Chapter 4

Combines two paths new File(parent, "new_file") parent.resolve("new_file") Chapter 1

This table will make your code transition from Java 5 or 6 to Java 7 much easier.

Working with the ZIP File System Provider
Conforming to NIO.2, a file system concerns the generic notion of a container that’s capable of
managing and accessing the file system objects. A file system object is typically a file store (e.g., on
Windows we usually have C:, D:, and E: file stores, and we refer to them as partitions), but it can be a
directory or a file as well.

Based on this approach, the NIO.2 API introduced in Java 7 the ability to develop a custom file
system provider that can be used to manage file system objects. Moreover, it provides an
implementation of a custom file system provider—the ZIP File System Provider (ZFSP)—that can be used
as-is, and/or can be the inspiration point to develop other custom file system providers. The ZFSP treats
a ZIP/JAR file as a file system and provides the ability to manipulate the contents of the file. The ZFSP
creates one file system for each ZIP/JAR file.

In this section, you will see how to use the ZFSP to create a ZIP file system (the
C:\rafaelnadal\tournaments\2009\Tickets.zip archive will become a ZIP file system) and to copy a file
named AEGONTickets.png from the new ZIP file system in the C:\rafaelnadal\tournaments\2009\
directory as AEGONTicketsCopy.png.

First, we create a simple HashMap that contains the configurable properties of a ZIP file system
created by the ZFSP. Currently, there are two properties that can be configured:

• create: The value can be true or false, but of type java.lang.String. If the value
is true, the ZFSP creates a new ZIP file if it does not exist.

• encoding: The value is a java.lang.String indicating the encoding scheme (e.g.,
UTF-8, US-ASCII, ISO-8859-1, etc.). UTF-8 is the default.

http://www.it-ebooks.info

CHAPTER 10 ■ IMPORTANT THINGS TO REMEMBER

268

Therefore, we can indicate that the ZIP file exists and the needed encoding is ISO-8859-1 like so:

Map<String, String> env = new HashMap<>();
env.put("create", "false");
env.put("encoding", "ISO-8859-1");

For creating a new ZIP file system or obtaining a reference to an existing one, we use the factory
methods of the java.nio.file.FileSystems class. Create a ZIP file system by specifying the path of the
ZIP/JAR file. This can be accomplished by using the JAR URL syntax defined in the
java.net.JarURLConnection class:

URI uri = URI.create("jar:file:/C:/rafaelnadal/tournaments/2009/Tickets.zip");
FileSystem ZipFS = FileSystems.newFileSystem(uri, env);

In addition, there are two more newFileSystem() methods for accomplishing this step:

public static FileSystem newFileSystem(Path path, ClassLoader loader) throws IOException
public static FileSystem newFileSystem(URI uri, Map<String,?> env, ClassLoader loader) throws
IOException

Now that we have an instance of a ZIP file system, we can invoke the methods of the
java.nio.file.FileSystem and java.nio.file.Path classes to perform operations such as copying,
moving, and renaming files, as well as modifying file attributes. We want to copy the AEGONTickets.png
entry out of the archive. The following code will do that for us:

import java.io.IOException;
import java.net.URI;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.HashMap;
import java.util.Map;

public class Main {

 public static void main(String[] args) throws IOException {

 //set zip file system properties
 Map<String, String> env = new HashMap<>();
 env.put("create", "false");
 env.put("encoding", "ISO-8859-1");

 //locate file system with java.net.JarURLConnection
 URI uri = URI.create("jar:file:/C:/rafaelnadal/tournaments/2009/Tickets.zip");

 try (FileSystem ZipFS = FileSystems.newFileSystem(uri, env)) {
 Path fileInZip = ZipFS.getPath("/AEGONTickets.png");
 Path fileOutZip = Paths.get("C:/rafaelnadal/tournaments/2009/AEGONTicketsCopy.png");

 //copy AEGONTickets.png outside the archive
 Files.copy(fileInZip, fileOutZip);

http://www.it-ebooks.info

CHAPTER 10 ■

 IMPORTANT THINGS TO REMEMBER

269

 System.out.println("The file was successfully copied!");
 }
 }
}

If everything worked fine, then you will see the following message, and the file
AEGONTicketsCopy.png should exist in C:\rafaelnadal\tournaments\2009 directory.

The file was successfully copied!

Considerations on Developing a Custom File System Provider
In the preceding section, you saw how to use a custom file system provider. If you decide to try to write
your own custom file system provider, then it is a good idea to take into account the considerations
listed in this section. For one, you must know that the main class that supports this kind of attempt is
java.nio.file.spi.FileSystemProvider. A custom file system provider will implement this class as a
factory for java.nio.file.FileSystem instances. A file system provider is identified by a URI scheme
such as file, jar, memory, or cd, and a file system’s URI has a URI scheme that matches the file system
provider’s URI scheme.

Therefore, implementing a custom file system provider requires writing at least two classes and
keeping in mind a set of mandatory steps.

Creating a Custom File System Provider Class
You can create such a class by following these steps:

1. Extend the java.nio.file.spi.FileSystemProvider class.

2. Define a URI scheme for the provider (the getScheme() method should return
this URI scheme).

3. Create an internal cache for managing the provider’s created file systems.

4. Implement the newFileSystem() and getFileSystem() methods for creating a
file system and for retrieving a reference to an existing file system.

5. Implement the newFileChannel() or the newAsyncronousFileChannel()
method, which returns a FileChannel object that allows a file to be read or
written in the file system.

Creating a Custom File System Class
Create such a class by following these steps:

1. Extend the java.nio.file.FileSystem class.

2. Implement the methods of the file system according to your needs (you may
need to define the number of roots, read/write access, file stores, etc.).

http://www.it-ebooks.info

CHAPTER 10 ■ IMPORTANT THINGS TO REMEMBER

270

For more details, you may want to take a closer look at official documentation, at
http://download.oracle.com/javase/7/docs/technotes/guides/io/fsp/filesystemprovider.html.

Useful Methods
We have almost finished our NIO.2 journey. This last section covers some useful methods that are ready
to help you in any NIO.2 application.

Default File System
You’ve seen how to get the default file system many times in this book, but we’re putting this so you can
easily access this information if you forget. Getting the default file system is accomplished through the
FileSystems.getDefault() method:

FileSystem fs = FileSystems.getDefault();

File Stores
Getting the file system file stores is another well-covered subject in the book, but for a quick reminder,
come here. Here’s the required code:

for (FileStore store: FileSystems.getDefault().getFileStores()) {
 ...
}

Path of a File
Here’s how to get the path of a file:

Path path = Paths.get("...");
Path path = FileSystems.getDefault().getPath("...");
Path path = Paths.get(URI.create("file:///..."));
Path path = Paths.get(System.getProperty("user.home"), "...");

Path String Separator
As you know, a path string separator is OS dependent. To retrieve the Path string separator for the
default file system, you can use one of the following approaches:

String separator = File.separator;
String separator = FileSystems.getDefault().getSeparator();

http://download.oracle.com/javase/7/docs/technotes/guides/io/fsp/filesystemprovider.html
http://www.it-ebooks.info

CHAPTER 10 ■

 IMPORTANT THINGS TO REMEMBER

271

Summary
In this chapter you learned how to convert code based on the java.io.File class into code based on

the java.nio.file.Path class. Also, you learned how to use the ZIP file system provider and some
information on creating a custom file system provider. The chapter (and the book) ends with the most
used snippets of codes from the book.

http://www.it-ebooks.info

INDEX

■ ■ ■

273

A
Access control list (ACL)

AclEntry class, 24, 26
AclEntry.Builder object, 26, 27
AclFileAttributeView interface, 23
Files.getAttribute() method, 24
Files.getFileAttributeView() method, 23

Asynchronous channel API, 215
asynchronous channel sockets

asynchronous client (see
Asynchronous client)

asynchronous datagram
application, 259, 261

asynchronous server (see
Asynchronous server)

byte buffer pool and throttle read
operations, 259

custom group, 258
echo application test (see Echo

application test)
FIFO-Q, 259
production environment

applications, 259
read/write operations and

CompletionHandler mode, 257
short reading operation blocking,

259
write operation blocking, 259

asynchronous I/O (see Asynchronous
I/O)

AsynchronousFileChannel class (see
AsynchronousFileChannel class)

Asynchronous client
CompletionHandler mode, 254–256
future mode, 247

AsynchronousSocketChannel.close(
) method, 249

AsynchronousSocketChannel.conne
ct() method, 247

channel creation, 247
client creation, 249, 250
data transmission, 248
options setting, 247

Asynchronous I/O
asynchronous channels, 216

AsynchronousFileChannel, 218
AsynchronousServerSocketChannel,

219
AsynchronousSocketChannel, 219,

220
AsynchronousChannelGroup, 220
ByteBuffers, 223
complete result and

CompletionHandler interface, 217
custom groups

cached thread pool, 222
designated thread pool, 222
ExecutorService function, 221
fixed thread pool, 221
shutdown() method, 223

default group, 220, 221
ExecutorService API, 224

http://www.it-ebooks.info

■ INDEX

274

pending result and future class, 216,
217

vs. synchronous I/O, 215, 216
Asynchronous server

CompletionHandler mode, 252, 254
future mode

AsynchronousServerSocketChannel.
accept() method, 241, 242

AsynchronousSocketChannel.close(
) method, 243

channel binding, 241
channel creation, 240
data transmission, 242
echo server, 243–246
options setting, 241

AsynchronousFileChannel class
ExecutorService object, 236–239
file lock, 233, 234, 236
file read

CompletionHandler class, 229, 231,
233

future mode, 225, 226
future Timeout, 228, 229

file write and future mode, 226, 227
open() method, 224

B
ByteBuffer

ancestor methods, 139, 140
components, 135
properties, 136–139

C
completed() method, 217
Custom file system provider

class creating, 269
system class creation, 269

D
deleteIfExists() method, 102

Directories, 43
delete() method, 70, 71
entire content list, 49, 50
file system root directories, 47, 48
Files.copy() method, 71–74
Files.newDirectoryStream() method, 49
glob pattern content list, 50, 51
move() method, 74, 75
new directory creation, 48, 49
Path class, 43
temporary directory (see Temporary

directory)
user-defined filter, 51, 52

E
Echo application test

CompletionHandler mode, 256, 257
future mode, 251

ExecutorService interface, 224

F, G
FileChannel

benchmarking, 159–165
FileChannel.transferTo() vs.

FileChannel.transferFrom() vs.
FileChannel.map() method, 165

Files.copy() method, 166
non-direct buffer vs.

FileChannel.transferTo() vs. Path
to Path method, 167

non-direct vs.direct buffer, 165
file locking, 154–157
file mapping, 153, 154
FileChannel.open() method, 152
files copying

direct/non-direct ByteBuffer, 157,
158

FileChannel.map() method, 158, 159
FileChannel.transferFrom() method,

158
FileChannel.transferTo() method,

158

http://www.it-ebooks.info

■

 INDEX

275

Files, 43
accessibility, 44–46
buffer, 53
delete() method, 70, 71
exists() method, 44
Files.copy() method, 71–74
Files.newBufferedWriter() method, 58
Files.write() method, 54
isSameFile() method, 46
isSomething method, 43
move() method, 74, 75
new file creation, 54
newBufferedReader() method, 58, 59
newBufferedWriter() method, 58
newInputStream() method, 60, 61
newOutputStream() method, 60
notExists() method, 44
Path class, 43
readAllBytes() method, 56, 57
readAllLines() method, 57
StandardOpenOption class, 53
stream, definition, 53
temporary files (see Temporary file)
visibility, 47
writing bytes, 55
writing lines, 56

Files.copy() method, 104
Files.move() method, 107, 109
File search application

complete search program, 94–102
FileVisitor tool, 81, 82
glob pattern, 84–88
search by content

ArrayList, 88
Excel files, 91, 92
PDFs, 89, 90
PowerPoint files, 92, 93
searchText() method, 88
Text files, 93, 94
Word document, 90, 91

search by name, 82, 84
Future.get() method, 217
Future.isCancelled() method, 216
Future.isDone() method, 216

H, I
Hard link

creation, 38, 39
differences/similarities, 35, 36

J, K
Java.io.file code, 263–267

L
lock() method, 233–235

M
Metadata file attributes, 11

default file system, 12
FileStore.supportsFileAttributeView()

method, 13
java.nio.file.attribute package, 11
NIO.2 (see NIO.2 group)

N, O
NetworkChannel

bind() method, 170
socket options

IP_MULTICAST_IF, 171
IP_MULTICAST_LOOP, 171
IP_MULTICAST_TTL, 171
IP_TOS, 171
SO_BROADCAST, 171
SO_KEEPALIVE, 171
SO_LINGER, 171
SO_RCVBUF, 172
SO_REUSEADDR, 172
SO_SNDBUF, 172
TCP_NODELAY, 172

NIO.2 application
default file system, 270
file path, 270
file stores, 270

http://www.it-ebooks.info

■ INDEX

276

path string separator, 270
NIO.2 group, 11

ACL (see Access control list)
basic attribute method, 15, 16
BasicFileAttributeView, 13
DOS file system, 16, 17
file owner system

FileOwnerAttributeView interface,
18

FileOwnerAttributeView.getO
wner() method, 19

FileOwnerAttributeView.setOwner()
method, 18, 19

Files.getAttribute() method, 20
Files.setAttribute() method, 19
Files.setOwner() method, 18
UserPrincipal interface, 18

file store attribute
FileStore abstract class, 27
FileStoreAttributeView class, 30
FileSystem.getFileStores() method,

28, 29
Path object, Files.getFileStore()

method, 29
getAttribute(), single attribute, 14, 15
POSIX attribute

Files.getAttribute() method, 23
permissions() method, 22
PosixFileAttributes class, 21
setGroup() method, 22
Unix, 21

readAttributes(), bulk attributes, 13, 14
supportsFileAttributeView() method,

30, 31
user-defined attribute operation

file.description attribute, 31
names and value sizes, 32
UserDefinedFileAttributeView.delet

e() method, 33
UserDefinedFileAttributeView.read(

) method, 32, 33
write() method, 32

UserDefinedFileAttributeView
interface, 30

P, Q
Packets, 169
Path class

conversion
file, 7
real path, 6
relative absolute path, 6
string path, 6
URI path, 6

definition
absolute path, 2
relative file store root, 3
shortcuts, 3
URI, 4
working folder, 3

getDefault(), 1
getFileSystem(URI uri), 2
getting information

file/directory name, 5
name elements path, 5
parent path, 5
path root, 5
subpath, 5

name element iterating, 10
newFileSystem() methods, 1
path combining, 7
path comparing, 9
path construction, 8

postVisitDirectory() method, 79
preVisitDirectory() method, 78, 79

R
Random access files (RAFs), 135

block-oriented I/O system, 140
ByteBuffer (see ByteBuffer)
FileChannel (see FileChannel)
Java 7, 135
SeekableByteChannel interface

features, 140
file attributes, 144, 145
newByteChannel() method, 141
old ReadableByteChannel interface,

145

http://www.it-ebooks.info

■

 INDEX

277

old WritableByteChannel interface,
146

position() and position(long)
method, 146–152

reading a file, 141, 142
writing a file, 143, 144

stream-oriented I/O system, 140
Recursive programming technique, 77

factorial calculation, 77
file copy application, 104, 106
file delete application, 102, 104
file search application (see File search

application)
FileVisitor.postVisitDirectory() method,

79
FileVisitor.preVisitDirectory() method,

78, 79
FileVisitor.visitFile() method, 78
FileVisitor.visitFileFailed() method, 79
FileVisitResult enum, 78
move files application, 107, 109
SimpleFileVisitor class, 79, 80
walkFileTree() method, 80, 81

S
SimpleFileVisitor class, 79, 80
Socket, 169
StringTokenizer class, 88
Symbolic link

checking, 39, 40
command line creation, 36
creation, 36, 38
definition, 35
differences/similarities, 35, 36
target checking, 41
target locating, 40

T
TCP client

block writing, 179
close() method, 181
configuring blocking mechanisms, 179

data transmission, 180
putting together, 181
setting() option, 179
socketchannel connect() method, 180
SocketChannel.open(), 179

TCP server/client applications
blocking TCP server

accept() method, 175
bind() method, 174, 175
buffering, 176
close() method, 177
configuring mechanisms, 174
data transmitting, 176
echo server, 177, 178
I/O connection, 177
new creation, 173
setting options, 174

blocking vs. non-blocking mechanisms,
173

echo testing, 183
non-blocking

accept() method, 185
client writing, 190–193
I/O operation, 184
selection keys,sets, 185
selectionKey.OP_ACCEPT, 184
selectionKey.OP_CONNECT, 184
selectionKey.OP_READ, 184
selectionKey.OP_WRITE, 184
selector methods, 186
selector.wakeup() method, 185
server writing, 187–190
testing, 193

telephone connection, 172
Temporary directory

createTempDirectory() method, 62, 63
deletion

deleteOnExit() method, 65, 66
Shutdown-Hook, 63–65

Temporary file
createTempFile() method, 66, 67
deletion

DELETE_ON_CLOSE option, 69, 70
deleteOnExit() method, 68, 69
Shutdown-Hook, 67, 68

http://www.it-ebooks.info

■ INDEX

278

TimeoutException function, 217
Transmission control protocol (TCP), 169

U
UDP server/client application

DatagramChannel.connect() method,
202

DatagramChannel, IOException, 204
DatagramChannel.read() method, 202
datagramChannel.write() method, 202
datagram–oriented socket channel

bind() method, 196
ByteBuffer, 196
creation, 195
data packets transmission, 196–197
data receive() method, 197
datagramChannel.close(), 198
setting option, 196

multicasting
block/unblock key, 206
blocking and unblocking datagrams,

212
check validity key, 206
client writing, 210–212
close() method, 206
descriptions and definitions, 205
drop key, 206
find out local interfaces, 208
first join() method, 205
get channel key, 206
get group key, 206
get network interface key, 206
get source address key, 206
multicast channel interface, 205
Network interface, 207
second join() method, 205
testing, 213
UDP server/client application, 208–

210
send() and receive() methods, 199
testing echo application, 201
together server, 198

User datagram protocol (UDP), 169

V
visitFileFailed() method, 79

W, X, Y
walkFileTree() method, 80, 81
Watch service API

directory tree
CREATE event, 120
HashMap, 122–24
registerPath() method, 121
registerTree() method, 120, 121
visitFileFailed() method, 120

event modifier, 112
event types, 112
implementing

creation, 112
event type and count, 116
file name retrieving, 117
gluing, 118, 119
incoming events, 114
key back, 117
pending events, 115
registering objects, 112
watch key, 114, 115
WatchService.close() method, 118

printer tray system
DELETE event, 130
HashMap loop, 130
Print class, 129
Print thread, 130
testing, 133
thread termination, 129

video camera, 125–128
watchable object, 112
watcher, 112

Z
ZIP file system, 267–269
ZIP file system provider (ZFSP), 267

http://www.it-ebooks.info

Pro Java 7 NIO.2

Anghel Leonard

http://www.it-ebooks.info

Pro Java 7 NIO.2

Copyright © 2011 by Anghel Leonard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4011-2

ISBN-13 (electronic): 978-1-4302-4012-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Matthew Moodie
Technical Reviewer: Michael Turner
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Bill McManus, Damon Larson
Compositor: Apress Production (Christine Ricketts)
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-
code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.it-ebooks.info

iv

Contents

Contents at a Glance iii

Contents . .. iv

About the Author xiii

About the Technical Reviewer . .. xiv

Acknowledgments ... xv

Preface . .. xvi

Who This Book Is For .. xvii

What This Book Covers ... xvii

Carry out Path class operations xvii

Get/set file metadata through the new java.nio.file.attribute API xvii

Manage symbolic and hard links . .. xviii

Deal with files and directories through the new java.nio.fileFiles API xviii

Use the FileVisitor API to develop recursive file operations .. xviii

Explore the Watch Service API and file changed notifications xviii

Use the new SeekableByteChannel API for working with random access file xviii

Develop blocking/non-blocking socket-based applications ... xviii

Use the jewel in the crown of NIO.2: the Asynchronous Channel API xiv

Work with the Zip File System and write a custom file system provider xiv

What You Need to Use This Book xviv

http://www.it-ebooks.info

■ CONTENTS

v

Chapter 1: Working with the Path Class .. 1

Introducing the Path Class ... 1

Defining a Path ... 2

Define an Absolute Path... 2

Define a Path Relative to the File Store Root ... 3

Define a Path Relative to the Working Folder .. 3

Define a Path Using Shortcuts ... 3

Define a Path from a URI .. 4

Define a Path using FileSystems.getDefault().getPath() Method 4

Get the Path of the Home Directory ... 4

Getting Information About a Path ... 4

Get the Path File/Directory Name .. 5

Get the Path Root ... 5

Get the Path Parent .. 5

Get Path Name Elements ... 5

Get a Path Subpath .. 5

Converting a Path ... 6

Convert a Path to a String .. 6

Convert a Path to a URI .. 6

Convert a Relative Path to an Absolute Path.. 6

Convert a Path to a Real Path .. 6

Convert a Path to a File .. 7

Combining Two Paths ... 7

Constructing a Path Between Two Locations ... 8

Comparing Two Paths ... 9

http://www.it-ebooks.info

■ CONTENTS

vi

Iterate over the Name Elements of a Path .. 10

Summary .. 10

Chapter 2: Metadata File Attributes .. 11

Supported Views in NIO.2 ... 11

Determining Views Supported by a Particular File System 12

Basic View .. 13

Get Bulk Attributes with readAttributes() ... 13

Get a Single Attribute with getAttribute() ... 14

Update a Basic Attribute .. 15

DOS View .. 16

File Owner View .. 18

Set a File Owner Using Files.setOwner() .. 18

Set a File Owner Using FileOwnerAttributeView.setOwner() ... 18

Set a File Owner Using Files.setAttribute() .. 19

Get a File Owner Using FileOwnerAttributeView.getOwner() ... 19

Get a File Owner Using Files.getAttribute() .. 20

POSIX View ... 21

POSIX Permissions ... 22

POSIX Group Owner ... 22

ACL View ... 23

Read an ACL Using Files.getFileAttributeView() ... 23

Read an ACL Using Files.getAttribute() .. 24

Read ACL Entries ... 24

Grant a New Access in an ACL ... 26

http://www.it-ebooks.info

■ CONTENTS

vii

File Store Attributes .. 27

Get Attributes of All File Stores .. 28

Get Attributes of the File Store in Which a File Resides .. 29

User-Defined File Attributes View ... 30

Check User-Defined Attributes Supportability ... 30

Operations on User-Defined Attributes .. 31

Summary .. 34

Chapter 3: Manage Symbolic and Hard Links ... 35

Introducing Links .. 35

Creating Links from the Command Line ... 36

Creating a Symbolic Link .. 36

Creating a Hard Link ... 38

Checking a Symbolic Link .. 39

Locating the Target of a Link .. 40

Checking If a Link and a Target Point to the Same File .. 41

Summary .. 42

Chapter 4: Files and Directories .. 43

Checking Methods for Files and Directories ... 43

Checking for the Existence of a File or Directory ... 43

Checking File Accessibility .. 44

Checking If Two Paths Point to the Same File ... 46

Checking the File Visibility ... 47

http://www.it-ebooks.info

■ CONTENTS

viii

Creating and Reading Directories ... 47

Listing File System Root Directories .. 47

Creating a New Directory ... 48

Listing a Directory’s Content .. 49

Creating, Reading, and Writing Files .. 53

Using Standard Open Options .. 53

Creating a New File.. 54

Writing a Small File .. 54

Reading a Small File .. 56

Working with Buffered Streams ... 58

Working with Unbuffered Streams ... 59

Creating Temporary Directories and Files .. 62

Creating a Temporary Directory ... 62

Creating Temporary Files ... 66

Deleting, Copying, and Moving Directories and Files .. 70

Rename a File .. 75

Summary .. 76

Chapter 5: Recursive Operations: Walks ... 77

The FileVisitor Interface ... 78

FileVisitor.visitFile() Method ... 78

FileVisitor.preVisitDirectory() Method .. 78

FileVisitor.postVisitDirectory() Method ... 79

FileVisitor.visitFileFailed() Method ... 79

The SimpleFileVisitor Class .. 79

Starting the Recursive Process .. 80

http://www.it-ebooks.info

■ CONTENTS

ix

Common Walks ... 81

Writing a File Search Application ... 81

Writing a File Delete Application .. 102

Writing a Copy Files Application .. 104

Writing a Move Files Application ... 107

Summary .. 110

Chapter 6: Watch Service API ... 111

The Watch Service API Classes .. 112

Implementing a Watch Service ... 112

Creating a WatchService ... 112

Registering Objects with the Watch Service .. 112

Waiting for the Incoming Events .. 114

Getting a Watch Key ... 114

Retrieving Pending Events for a Key .. 115

Retrieving the Event Type and Count ... 116

Retrieving the File Name Associated with an Event .. 117

Putting the Key Back in Ready State ... 117

Closing the Watch Service ... 118

Gluing It All Together ... 118

Other Examples of Using a Watch Service .. 120

Watching a Directory Tree ... 120

Watching a Video Camera .. 125

Watching a Printer Tray System .. 128

Summary .. 134

Chapter 7: Random Access Files .. 135

http://www.it-ebooks.info

■ CONTENTS

x

Brief Overview of ByteBuffer .. 135

ByteBuffer Properties... 136

ByteBuffer Ancestor Methods .. 139

Brief Overview of Channels .. 140

Using the SeekableByteChannel Interface for Random Access to Files 140

Reading a File with SeekableByteChannel .. 141

Writing a File with SeekableByteChannel .. 143

SeekableByteChannel and File Attributes .. 144

Reading a File with the Old ReadableByteChannel Interface ... 145

Writing a File with the Old WritableByteChannel Interface .. 146

Playing with SeekableByteChannel Position .. 146

Working with FileChannel ... 152

Mapping a Channel’s File Region Directly into Memory .. 153

Locking a Channel’s File .. 154

Copying Files with FileChannel .. 157

Summary .. 168

Chapter 8: The Sockets APIs ... 169

NetworkChannel Overview ... 170

Socket Options ... 171

Writing TCP Server/Client Applications .. 172

Blocking vs. Non-Blocking Mechanisms .. 173

Writing a Blocking TCP Server ... 173

Writing a Blocking TCP Client .. 179

Testing the Blocking Echo Application ... 183

Writing a Non-Blocking TCP Client/Server Application .. 184

http://www.it-ebooks.info

■ CONTENTS

xi

Writing UDP Server/Client Applications .. 194

Writing a UDP Server ... 195

Writing a Connectionless UDP Client ... 199

Testing the UDP Connectionless Echo Application .. 201

Writing a Connected UDP Client ... 202

Testing the UDP Connected Echo Application .. 204

Multicasting ... 205

Testing the UDP Multicast Application ... 213

Summary .. 214

Chapter 9: The Asynchronous Channel API ... 215

Synchronous I/O vs. Asynchronous I/O .. 215

Asynchronous I/O Big Picture ... 216

Pending Result and the Future Class ... 216

Complete Result and the CompletionHandler Interface ... 217

Types of Asynchronous Channels .. 218

Groups ... 220

ByteBuffer Considerations ... 223

Introducing the ExecutorService API .. 224

Developing Asynchronous Applications ... 224

Asynchronous File Channel Examples ... 224

Asynchronous Channel Sockets Examples .. 240

Summary .. 261

Chapter 10: Important Things to Remember ... 263

Refactoring java.io.File Code .. 263

http://www.it-ebooks.info

■ CONTENTS

xii

Working with the ZIP File System Provider .. 267

Considerations on Developing a Custom File System Provider 269

Creating a Custom File System Provider Class .. 269

Creating a Custom File System Class .. 269

Useful Methods ... 270

Default File System .. 270

File Stores .. 270

Path of a File .. 270

Path String Separator .. 270

Summary .. 271

Index ... 273

http://www.it-ebooks.info

xiii

About the Author

Anghel Leonard is a senior Java developer with more than 12 years of
experience in Java SE, Java EE, and related frameworks. He has written and
published more than 30 articles about Java technologies and more than 200
tips and tricks for JavaBoutique, O’Reilly, DevX, Developer and InformIT. In
addition, he wrote two books about XML and Java (one for beginners and
one for advanced developers) for Albastra, a Romanian publisher, and three
books for Packt: Jboss Tools 3 Developer Guide, JSF 2.0 Cookbook and JSF 2.0
Cookbook LITE. Currently, he is developing web applications using the
latest Java technologies on the market (EJB 3.0, CDI, Spring, JSF, Struts,

Hibernate, and more). In the past two years, he has focused on developing rich Internet applications for
geographic information systems. He can be contacted at leoprivacy@yahoo.com.

mailto:leoprivacy@yahoo.com
http://www.it-ebooks.info

xiv

About the Technical Reviewer

Boris Minkin is a Senior Technical Architect at a major financial corporation. He has
more than 20 years of experience working in various areas of information technology
and financial services. Boris achieved his Master’s Degree in Information Systems at
Stevens Institute of Technology, New Jersey. His professional interests are in Internet
technology, service-oriented architecture, enterprise application architecture, multi-
platform distributed applications, cloud, distributed caching, Java, grid, and high
performance computing. You can contact Boris at bm@panix.com.

mailto:bm@panix.com
http://www.it-ebooks.info

xv

Acknowledgments

Thank You, God, because without You nothing is possible. Thank you to the Java 7 Project team for
developing NIO.2. Thank you to the Apress team for trust in me to write this book and for the hard work
you put in this project. And thank you, Octavia, my dear wife, for your love, patience, and for being next
to me all the time.

http://www.it-ebooks.info

xvi

Preface

This book covers all the important aspects involved in developing NIO.2-based applications. It provides
clear instructions for getting the most out of NIO.2 and offers many exercises and case studies to spice
up your Java 7 applications with the new I/O capabilities. You will learn to develop NIO.2 applications,
beginning with simple but essential stuff and gradually moving on to complex features such as sockets
and asynchronous channels.

Who This Book Is For

This book is for both experienced Java programmers who are new to Java 7 and for those who have some
experience with Java 7. For the opening chapters (Chapters 1-5), it is enough to be familiar with Java
syntax and to know how to open and run NetBeans projects. For Chapters 6-10), having some knowledge
about a few fundamental programming concepts such as recursion, multi-threading and concurrency,
Internet protocols, and network applications is essential.

What This Book Covers
This section contains a brief summary of what is covered in each chapter.

Carry out Path class operations
Chapter 1: Here you meet the new API for manipulating file paths; you now use the java.nio.file.Path
class to manipulate a file in any file system. In this chapter I cover such important topics as declaring
Path instances and syntactic operations.

Get/set file metadata through the new java.nio.file.attribute API
(including POSIX)
Chapter 2: With NIO.2 you can manage more details about files’ metadata than ever before. Attributes
are divided into categories, and now they cover POSIX systems as well. Chapter 2 deeply explores each of
these categories.

http://www.it-ebooks.info

■

 INTRODUCTION

xvii

Manage symbolic and hard links
Chapter 3: An unexplored territory of Java is now revealed in NIO.2. This chapter shows you how to
create, follow, and manipulate symbolic and hard links.

Deal with files and directories through the new java.nio.file.Files
API
Chapter 4: Here you learn the most common tasks that involve files/directories, such as create, read,
write, update, and more. You learn how to check file status and loop file stores, how to work with
temporary files, and how to delete, copy, and move files and directories.

Use the FileVisitor API to develop recursive file operations
Chapter 5: Need to copy, move, or delete an entire directory? You’ve come to the right place. Chapter 5
shows you how to do all that through the brand new FileVisitor API. You also find out how to develop a
Search File tool.

Explore the Watch Service API and file changed notification
Chapter 6: Want to monitor a file/directory for changes such as entries created, deleted, or modified?
This is what the Watch Service does best. I also cover watching a print tray and surveying a video camera
in this chapter. This is where you discover how flexible and versatile the new Watch Service API is.

Use the new SeekableByteChannel API for working with random
access file
Chapter 7: Random access file (RAF) is a powerful tool in the right hands. This chapter introduces the
new SeekableByteChannel API and provides plenty of examples that exploit its methods. Practice,
practice, practice, and go beyond being a RAF apprentice!

Develop blocking/non-blocking socket-based applications
Chapter 8: Learn how to develop Java network-based applications in blocking and non-blocking styles. I
cover both TCP and UDP in detail and sprinkle important aspects of sockets programming throughout
the chapter.

http://www.it-ebooks.info

■

 INTRODUCTION

xviii

Use the jewel in the crown of NIO.2: the Asynchronous Channel
API
Chapter 9: This is my own personal favorite chapter. It was a pleasure to write, and I hope you find it as
useful as I found it fun. With the Asynchronous Channel API, you can develop asynchronous network-
based Java applications with a suite of classes and options. Asynchronous Channel API rocks!

Work with the Zip File System Provider and write a custom file
system provider
Chapter 10: This last chapter finishes the book with an example of using the new Zip File System
Provider. I address a few considerations about writing a custom file system provider as well. Chapter 10
also contains a table with detailed conversions between java.io.File and java.nio.file.Path APIs.

http://www.it-ebooks.info

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Who This Book Is For
	What This Book Covers
	Carry out Path class operations
	Get/set file metadata through the new java.nio.file.attribute API (including POSIX)
	Manage symbolic and hard links
	Deal with files and directories through the new java.nio.file.Files API
	Use the FileVisitor API to develop recursive file operations
	Explore the Watch Service API and file changed notification
	Use the new SeekableByteChannel API for working with random access file
	Develop blocking/non-blocking socket-based applications
	Use the jewel in the crown of NIO.2: the Asynchronous Channel API
	Work with the Zip File System Provider and write a custom file system provider

	Working with the Path Class
	Introducing the Path Class
	Defining a Path
	Define an Absolute Path
	Define a Path Relative to the File Store Root
	Define a Path Relative to the Working Folder
	Define a Path Using Shortcuts
	Define a Path from a URI
	Define a Path using FileSystems.getDefault().getPath() Method
	Get the Path of the Home Directory

	Getting Information About a Path
	Get the Path File/Directory Name
	Get the Path Root
	Get the Path Parent
	Get Path Name Elements
	Get a Path Subpath

	Converting a Path
	Convert a Path to a String
	Convert a Path to a URI
	Convert a Relative Path to an Absolute Path
	Convert a Path to a Real Path
	Convert a Path to a File

	Combining Two Paths
	Constructing a Path Between Two Locations
	Comparing Two Paths
	Iterate over the Name Elements of a Path
	Summary

	Metadata File Attributes
	Supported Views in NIO.2
	Determining Views Supported by a Particular File System
	Basic View
	Get Bulk Attributes with readAttributes()
	Get a Single Attribute with getAttribute()
	Update a Basic Attribute

	DOS View
	File Owner View
	Set a File Owner Using Files.setOwner()
	Set a File Owner Using FileOwnerAttributeView.setOwner()
	Set a File Owner Using Files.setAttribute()
	Get a File Owner Using FileOwnerAttributeView.getOwner()
	Get a File Owner Using Files.getAttribute()

	POSIX View
	POSIX Permissions
	POSIX Group Owner

	ACL View
	Read an ACL Using Files.getFileAttributeView()
	Read an ACL Using Files.getAttribute()
	Read ACL Entries
	Grant a New Access in an ACL

	File Store Attributes
	Get Attributes of All File Stores
	Get Attributes of the File Store in Which a File Resides

	User-Defined File Attributes View
	Check User-Defined Attributes Supportability
	Operations on User-Defined Attributes

	Summary

	Manage Symbolic and Hard Links
	Introducing Links
	Creating Links from the Command Line
	Creating a Symbolic Link
	Creating a Hard Link
	Checking a Symbolic Link
	Locating the Target of a Link
	Checking If a Link and a Target Point to the Same File
	Summary

	Files and Directories
	Checking Methods for Files and Directories
	Checking for the Existence of a File or Directory
	Checking File Accessibility
	Checking If Two Paths Point to the Same File
	Checking the File Visibility

	Creating and Reading Directories
	Listing File System Root Directories
	Creating a New Directory
	Listing a Directory’s Content

	Creating, Reading, and Writing Files
	Using Standard Open Options
	Creating a New File
	Writing a Small File
	Reading a Small File
	Working with Buffered Streams
	Working with Unbuffered Streams

	Creating Temporary Directories and Files
	Creating a Temporary Directory
	Creating Temporary Files
	Deleting, Copying, and Moving Directories and Files
	Rename a File

	Summary

	Recursive Operations: Walks
	The FileVisitor Interface
	FileVisitor.visitFile() Method
	FileVisitor.preVisitDirectory() Method
	FileVisitor.postVisitDirectory() Method
	FileVisitor.visitFileFailed() Method

	The SimpleFileVisitor Class
	Starting the Recursive Process
	Common Walks
	Writing a File Search Application
	Writing a File Delete Application
	Writing a Copy Files Application
	Writing a Move Files Application

	Summary

	Watch Service API
	The Watch Service API Classes
	Implementing a Watch Service
	Creating a WatchService
	Registering Objects with the Watch Service
	Waiting for the Incoming Events
	Getting a Watch Key
	Retrieving Pending Events for a Key
	Retrieving the Event Type and Count
	Retrieving the File Name Associated with an Event
	Putting the Key Back in Ready State
	Closing the Watch Service
	Gluing It All Together

	Other Examples of Using a Watch Service
	Watching a Directory Tree
	Watching a Video Camera
	Watching a Printer Tray System

	Summary

	Random Access Files
	Brief Overview of ByteBuffer
	ByteBuffer Properties
	ByteBuffer Ancestor Methods

	Brief Overview of Channels
	Using the SeekableByteChannel Interface for Random Access to Files
	Reading a File with SeekableByteChannel
	Writing a File with SeekableByteChannel
	SeekableByteChannel and File Attributes
	Reading a File with the Old ReadableByteChannel Interface
	Writing a File with the Old WritableByteChannel Interface
	Playing with SeekableByteChannel Position

	Working with FileChannel
	Mapping a Channel’s File Region Directly into Memory
	Locking a Channel’s File
	Copying Files with FileChannel

	Summary

	The Sockets APIs
	NetworkChannel Overview
	Socket Options

	Writing TCP Server/Client Applications
	Blocking vs. Non-Blocking Mechanisms
	Writing a Blocking TCP Server
	Writing a Blocking TCP Client
	Testing the Blocking Echo Application
	Writing a Non-Blocking TCP Client/Server Application

	Writing UDP Server/Client Applications
	Writing a UDP Server
	Writing a Connectionless UDP Client
	Testing the UDP Connectionless Echo Application
	Writing a Connected UDP Client
	Testing the UDP Connected Echo Application
	Multicasting
	Testing the UDP Multicast Application

	Summary

	The Asynchronous Channel API
	Synchronous I/O vs. Asynchronous I/O
	Asynchronous I/O Big Picture
	Pending Result and the Future Class
	Complete Result and the CompletionHandler Interface
	Types of Asynchronous Channels
	Groups
	ByteBuffer Considerations
	Introducing the ExecutorService API

	Developing Asynchronous Applications
	Asynchronous File Channel Examples
	Asynchronous Channel Sockets Examples

	Summary

	Important Things to Remember
	Refactoring java.io.File Code
	Working with the ZIP File System Provider
	Considerations on Developing a Custom File System Provider
	Creating a Custom File System Provider Class
	Creating a Custom File System Class

	Useful Methods
	Default File System
	File Stores
	Path of a File
	Path String Separator

	Summary
	A
	E
	F, G
	B
	C
	D
	H, I
	J, K
	L
	M
	N, O
	P, Q
	R
	S
	T
	V
	U
	W, X, Y
	Z

	Index
	A
	B
	C
	D
	E
	F, G
	H, I
	J, K
	L
	M
	N, O
	P, Q
	R
	S
	T
	U
	V
	W, X, Y
	Z

